Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

TRANSPORTATION of APPLES in the Appalachion Belt, 1952-53

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Washington, D.C.

UNITED STATES

DEPARTMENT OF AGRICULTURE LIBRARY

BOok number A280.393 M343T

CON TEX TS

Page
Acknowledgments ii
Summary iii
Introduction 1
Research procedure 2
The 1952 crop 3
Utilization of the 1952 apple crop 4
Fresh and processed sales 4
Bulk and packed apples 5
Type of shipper operation 6
Market area 6
Rail and truck shipments 11
By size of shipper and by States 11
By mileage blocks 13
Truck shipments by type of carrier 14
Truck organization and operation 14
Equipment 16
Weight allowances 16
Chief advantages in shipping apples by motortruck 18
Summary of the significant advantages in shipping by truck 19
Better and faster service 20
Lower rates 23
Less handling 34
Flexibility in size of shipments 34
Less loss and damage 35
Flexible stopoff service 36
Profit from trucking operation 37
Prompter payment of claims 38
Other advantages 38
Major disadvantages in shipping apples by motortruck 40
Less reliable 40
More loss and damage 41
Inadequate service on exports 41
Lack of uniform rates 42
Other disadvantages 43
Conclusions 44

This study was made possible through the cooperation of the Appalachion apple industry and the transportation agencies serving that industry. Appreciation is expressed to the growers and shippers, including chain store and wholesale buyers, cold storage operators, brokers, and processors, all of whom gave freely of their time.

The transportation industry, including truck operators, truck brokers, and the traffic departments of the local railroads, also deserve much credit for their cooperation.

Special appreciation is expressed by the author to Carroll R. Miller, Sccretary-Manager, and to Harry E. Dixon, Traffic Manager, of the Appalachian Apple Service; to John Watson, Secretary, Virginia State Horticultural Socicty; and to Fred Burrows, Secretary, Statistics, International Apple Association; for their assistance and advice during the plenning and carrying out of the study.

This study was conducted under the euthority of the Agricultural Marketing Act of 1946 (RMA, Titlc II).

Data on the movements and charges for transportation of apples in the Appalachian belt were obtained by interviews with 78 shippers, 38 motor carriers, and 6 rail carriers in Pennsylvania, Maryland, West Virginia, and Virginia.

Approximately 55 percent of the 1952 crop for fresh use and processing in the 4-State area was handled by the shippers interviewed. The volume hauled by the 38 motor carriers approximated 14 percent. In the sample, sales for fresh use in the 1952-53 season were about double the sales for processing. The volume of packed apples was about $1 \frac{1}{2}$ times that of bulk apples. About 90 percent of the packed apples were put in boxes or baskets. Another 5 percent were placed in consumer packages, and about 4 percent were packed in barrels, lined field crates, wirebound crates, or other containers.

The principal markets for Appalachian apples are in the States east of the Mississippi River. In addition to local fresh markets and processing plants within the 4-State production area, major market outlets for Appalachian apples are found in Florida, Georgia, the Carolinas, Tennessec, Texas, Louisiana, New York, Ohio, Illinois, Alabama, and Massachusetts. Nearly 30 percent of the apples from the Appalachian belt were marketed within a radius of 100 miles from the principal shipping points, 28 percent between 100 and 299 miles, 19 percent from 300 to 499 miles, and 24 percent 500 miles and over.

During the 1952-53 season, shipments from the Appalachian belt were mainly by truck. These shipments approximated 92 percent of the total sales and 87 percent of the fresh apple sales reported in the sample. In contrast, rail shipments were only 8 percent and 13 percent, respectively. The very large shippers made the greatest use of rail transportation, while the small shippers relied heavily upon truck transportation. Rail shipments were concentrated in hauls beyond 300 miles.

Approximately twice the volume of apples was hauled by for-hire trucks as compared to private trucks. Exempt haulers dominated the forhire group, although a sizeable volume was hauled by common carriers regulated by the Interstate Commerce Comission.

Ranked in order of importance, the major advantages of truck transportation were considered by shippers to be: Better and faster service, lower ratcs, less handing, flexibility in size of shipment, less loss and damage, flexible stopoff scrvicc, profit from trucking operations, and prompter payment of claims. Eighty-three percent of the shippers stated the first advantage and 56 percent the second; between 24 and 35 percent of the shippers considered the next 4 advantages to be important. The last 2 advantages listed above were mentioned by 14 percent and 10 percent of the shippers, respectively.

The principal disadvantages of truck transportation mentioned by the shippers were as follows: Less reliability, more loss and damage, inadequate service on exports, and lack of uniform rates. From 5 to 14 percent of the shippers stated one or more disadvantages. Nearly twothirds of the shippers stated they were not aware of any disadvantages in shipping by truck.

The level of truck rates tends to fluctuate with the supply of trucks and the volume of apple traffic. During the early part of the shipping seas on the rates, especially into the Southeast, are at a relatively high level. Throughout much of the season, however, truck rates are generally lower than the corresponding rail rates. The greatest differcntial between rail and truck rates is on short hauls and on those long hauls where apples serve as back-haul traffic for truckers.

The type of transportation service offered by agricultural haulers in the form of (a) availability of equipment--usually on a few hours' notice, (b) fast in-transit time, and (c) diroct delivory from shipper to receiver, is widely recognized by shippers of the Appalachian area. Approximately 80 percent of the shippers interviewed mentioned the better and faster service'by truck compared to rail.

Although the railroads offer a few exceptionally fast services on perishables between some of their main-line connections, the terminal delays and delay in placement of ordered cars tend to offset this otherwise excellent service.

Nearly one-third of the shippers had experienced greater loss and damage by rail than by truck as a result of rough handling or shifting of the load while in transit, temperature failures due to improper refrigeration or ventilation, defective or unfit equipment, and excessive delay. In contrast, about one-twelfth of the shippers had experienced greater loss and damage by truck.

A substantial proportion of the shippers expressod a willingness to increase their use of rail transportation if rates were reduced. One-third of the shippers said they would be willing to do so if rail rates were at the same level as truck rates, three-fifths if rail rates were 10 percent lower than truck rates, and nine-tenths if rail rates were 25 percent lower than truck rates.

Slightly over half of the shippers expressed a willingness to increase their use of rail transportation if the services were improved rather than the rates lowered.

Finally, approximately 90 percent of the shippers who now use some rail transportation planned to increase their use of truck transportation unless the rail freight rates were reduced or the quality of the service was improved.

By Jomes R. Snitzler
Tronsportation and Facilities Branch Agricultural Marketing Service

IN TRODUCTION

In recent years a substential volume of agricultural traffic has shifted from railroads to trucks. Insufficient information is available as to the specific causes of the shift and their effects upon producers, consumers, carricrs, and marketing agencics, particularly in the case of individual commodities.

The merketing of fresh apples from the Appalachian area is typical of this situation. For example, although it is generally recognized that truck shipments of apples in this area increascd substantially in the postwar period, the extent and the causes of the actual increases are not known. The rclative proximity of such large consuming markets as Now York City, Baltimorc, Philadelphin, Pittsburgh, and Washington, D. C., would appenr to favor this incrcasc, since the advantages of truck transportation are greatest on short hauls. However, the complete answer does not lic herc, as Appalochian applos move by truck to markets as far distant as Miami, Fla., Houston, Tcx., and St. Louis, Mo.

This study was designed to provide shippers and carricrs with information on the extent and type of truck transportation in the arca, and the relative importence of factors offecting the choice of carricrs. Comparisons were made between truck nnd rail transportation as a mcans of pointing up possiblc changes in transportation charges and scrvices which would improve marketing efficiency. It is belicved that more effective competition between carriers will be encouraged by such information.

The major points of discussion in the study are as follows:
1.'.The disposition of the Appalachien مrea's 1952 spple crop.
2. The type and extent of shippers' operations.
3. The volume of apples hauled to merket by rail and by truck.
4. The nature and cxtent of truck orgenization and operation.
5. The chief adventages or disadvantages in shipping by truck rathor than by rail.
6. The cvaluation of back-haul traffic as a factor affecting the level of truck rates.
7. The naturc and extent of, and charges for, refrigeration scrvice for apples trucked to markct.
8. A comparison of cherges made and services rendered for apples hauled by rail and truck.

RESEARCH PROCEDU RE

The Appalachian apple area includes the ontirc 4-State rogion-Ponnsylvania, Maryland, West Virginia, and Virginia--but tho bulk of the npple industry in the $4-S t a t e$ arca is limited to approximately 48 counties, cxtonding southwostward about 500 milcs from Lehigh County, Pa., to Wise County, Va., near the Virginia-Kentucky border. Within these 48 countics, known as the Appalachion apple district, applos are grown on the stecp Appolachion ridges, on the slopes of the Blue Ridge Mountains, in the foothills of the Piedmont, and in the Cumberland, Shenandoah, and Great Appalachian valloys (fig. l).

In connection with this study, the apple industry assisted in compiling a master list of 183 shippers who handled approximately 90 percent of the total 1952 apple crop l/ in the 4-State area. All of these 183 shippers wero situated in the Appalachion applo district. From this master list of shippers, the sample used in this study was selected. The sample contained 78 shippers, stratified by size and chosen at random. They happened to be located in 32 counties, which, solcly for the purpose of convenience, arc here referred to as the Appalachian apple belt. The sample design was constructed as shown in table l.

Table l.-- Number of shippers in master list and in sample, by clessification of shipper, Appalachion Belt, 1952

$\begin{gathered} \text { Classification of } \\ \text { shipper } 1 / \\ \hline \end{gathered}$		Master list :	-	
	:		Sampling rate	Sample
	:	Number	Number	Number
Small	:	43	1/6	7
Medium	:	67	1/3	22
Large	:	48	1/2	24
Very large	:	25	All	25
Total	:	183		78

1/ Classification: Small, 1,000-11,999 bushels; medium 12,00049,999 bushels; lorge, 50,000-149,999 bushels; very large, 150,000 bushels and over.

The 78 shippers in the sample sold approximately 55 percent of the Appalachian area's 1952 apple crop. The coverage of the sample by Statos was as follows: Pennsylvanin, 53 percent; Maryland, 49 percent; West Virginia, 54 percent; and Virginia, 60 percont.

A preliminary survey of shippers in the Martinsburg-Winchester aroa was made in October 1953, to tost the adequacy of the questionnaire.

[^0]

Shippers generally considered the questionnaire to be satisfactory. The actual survey was made during November and December 1953.

Information on trucking operations was obtained from shippers, truck brokers, and truck operators. Because truck haulers of apples are exempt from regulation of rates and operating authority by the Interstate Commerce Commission, adcquate information was not available to indicate the number of these firms operating in the Appalachian area. As a result, it was not possible to compile a mester list of such operators or choose a random sample. However, through the cooperetion of shippers, truck brokers, and the truck operators themselves, interviews were obtained with 38 of these truckers. The total apple tonnage hauled by these 38 carriers approximated 14 percent of the 1952-53 commercial crop and 25 percent of the fresh market sales for the $4-S t a t e$ area.

THE 1952 CROP

The 1952 commerciol apple crop for the sppalachion area was slightly over 19 million bushels. 2/ This represents a decline of 13 percent from 1951 and 6 percent from the average for the 5 years 1947-51.

Practically all of the decrease was due to a very short crop in Pennsylvania. The 1952 crop in this State was approximately 40 percent less than in 1951, end 34 percent less than the 5-year average for 1947-51.

In the other 3 States-Maryland, West Virginia, and Virginia-- the 1952 crop, as compared to 1951, ran eed from a slight decline for West Virginia to a 6-percent increase for Maryland. Compared to the previous 5 -year average, the 1952 crop in these 3 States was from 8 to 9 percent larger.

The f.o.b. prices for Appelachian apples in 1952-53 were roughly $\$ 1$ a bushel higher than in the previous season. 3/ The smaller total orop in the 4 -State area was the principal reason $\overline{\mathrm{f}}$ or this higher prico. In addition, production from 2 of the 3 chief sources of competition for Appalachion apples was also lighter than usual. 4/ As a result, there was less downward pressure on apple prices in sev̄eral markets served by the Appalachian area.

2/ The commercial crop refers to the total production of apples in the commercial areas of each of the 4 States.

3/ Stilcs, H. S. Morketing Appalachien Apples, Season of 1952, Martinsburg, W. Va., U. S. Prod. \& Mrtg. Idmin., 1953.

4/. Production in Now York was 34 percent and in Michigan 39 percont less than in 1951. However, in Washington, production was 19 percent greater than in 1951.

UTILIZATION OF THE 1952 APPLE CROP

Fresh and Processed Sales
Approximately 18 million bushels of the Appalachian area's 1952 crop were sold, whereas the remaining l million bushels or so represents fruit used on the farm, not harvested, or excess cullage of harvested fruit. Of the total sales, some $10,000,000$ bushels, or 56 percent, were sold as fresh, whereas $8,000,000$ bushels, or 44 percent, were sold to processors.

The volume of apple sales, including fresh and processed, in the basic sample totaled $10,255,000$ bushels, or 55 percent of the sales for the entire area. Fresh sales amounted to $6,664,000$ bushels or 65 percent of the sample. An additional 3,591,000 bushels, or 35 percent of the sample, were sold to processors.

The larger percentage of sales for fresh use reported by the sample (65 percent compared to 56 percent of the total sales for the 4 -State area) is due to the nature of the marketing process. Included within the basic sample of 78 shippers, and accounting for a substantial percentage of the sales, are brokers and sales agents, who largely handle sales for fresh use. Typically, a substantial portion of the crop destined for processing is sold by the growers themselves. Thus, in a sample of shippers, the ratio of fresh sales to processed sales would tend to run higher than in a sample of growers.

Except where otherwise noted, percentages in this report are based on the sample described above. The distribution of fresh and processed sales by States for the 78 shippers is shown in table 2.

Table 2.--Distribution of sales of fresh and processed apples, in sample, by States, 1952

The ratio of fresh sales to processed sales tends to fluctuate from year to year, generally because of changes in price and production. In periods of relatively high prices and short crops, sales for fresh use tend to increase, whereas sales to processors decline. But when prices are low, growers tend to sell a greater proportion of their crop to processors. These statements are borne out by market behavior in previous years. For
oxample, in 1947 and 1948, a period of very short crops and relatively high prices in the Appalachian area, the ratio of sales of fresh to sales of processed apples increased. However, in 1949 and 1950, a period of large crops and relatively low prices, the ratio of fresh to processed sales declined.

The quantity of apples that processors will buy deponds on the carryover of processed stock from the previous year, as well as on the size of the oncoming crop. Prices of fresh apples, in turn, are usually influenced by processors' prices, which are announcod early in the season.

In 1950, largely as a result of the Korean Wiar, processors bid up the prices they paid to growers to somewhat above the 1949 level. In 1951, prices paid by processors to growers were disastrously low because of the large carryover of processed stock.

Transportation costs have a significant effect on the proportion of apples sold for fresh use and the proportion sold to processors. When prices are low, transportation charges may prohibit the movement of fresh apples to the more distont markets. But, with a largo number of processors located within the Appalachian area, the cost of transporting apples to processors is relatively small. 5/

Bulk and Packed Apples

Approximately 62 percent of the total fresh salcs reported in the sample wes sold as packed, whereas the remaining 38 percent was bulk sales. Sales of packed apples totaled $4,143,000$ bushcls, and sales in bulk totaled 2,521,000 bushols.

Wearly half of the packed apples, approximately 2 million bushels, were shipped in boxes. (No attempt was made to break this figurc down as to type of container.)

An additional 1.8 million bushels, or 43 percent, were packed in baskets. Consumer packages were uscd for 5 percent of the pack--approximately 193,000 bushels. Barrcls, lined field:crates, wirebound crates, and other containers were used for the balnnce--npproximetely 185,000 bushels, or 4 percent of the pack.

Although a few shippers merketed their entire volume in one type of contriner, such as beskets or boxes, the general practicc was to use a combination of containers.

[^1]
TYPE OF SHYPPER OPERATION

Approximately 20 percent of the shippers classified themselves as brokers or sales agents. These 16 brokers or sales agents sold more than $3 \frac{1}{2}$ million bushels. hs indicated by the previous statement, nearly all of these agonts handled a substontial volume of apples. For example, none of the 16 were in the "small" shipper category (1,000-11,999 bushels). Only 2 were in the "medium" category (12,000-49,999 bushels). Four were in the "large" category (50,000-149,999 bushels), whereas the 10 remaining agents each handled 150,000 bushels or more, which is the "very large" category. Eight additional shippers, who indicated they were growers as well as brokers or seles agents, sold another l million bushels. These 24 shippers (16 brokers or sales agents and 8 brokers or sales agents who are also growers) hondled 48 percent of the total sales reported in the survey.

An additional 31 shippers stated they were primarily growers. Approximately two-thirds of this group indicated they also did some packing. Total sales for this group of 31 were slightly over $2 \frac{1}{2}$ million bushels, or approximately 25 percent of the total volume. The grower-packers tended to hendle a larger volume than the nonpackers. However, the largest shipper in this group of 31 operated exclusively as a grower.

In the sample, one class, consisting of 13 chain.store and wholesale buyers, shipped approximately $2,068,000$ bushels, or 20 percent of the total sales volume for the 78 shippers. All but 2 in this group indicated they were also growers. By size of shipper the group was fairly evenly distributed throughout the four categorics. Six of the 13 buyers were in the small and medium classifications, whereas seven were in the large and the very large groupings.

The ten remaining shippers in the sample checked several functions in classifying their type of operation. The functions ranged from broker and shipping point distributor to wholesale buyer, cold storage operator, processor, packer, and grower; and it was not possible to determine their primary operation. Shippers indicating this mixed type of operation accounted for approximately $1,187,000$ bushels, or 12 percent of the total.

MARKET AREA

Though a limited number of shippers market ippalachian apples in a few States immediately west of the Mississippi River, the primary market area is in the Eastern States. Throughout the entire area, however, Appalachian apples meet stiff competition from apples from other producing areas. Some indication of the extent of this oompetition in the 1952-53 season is shown in table 3. It should be noted, however, that table 3 understates the compctitive positions of the Appalachian area, New York State, and the Central States as compared to the State of Washington. This understatement is due to the incompleteness of truck unload data for these areas. Although apples from Washington moved almost 100 percent by rail to the markets listed below, it is generally recognized that apples from the other three major producing areas moved
largely by truck. is a result, ns statcd above, lack of completc truck data for these three producing areas understetes their compctitive positions.

Table 3.--Unloads of fresh apples at sclected markets by origin.

1 Unloads for 1953 preliminary.
$\overline{2} /$ Includcs Michigrn, Ohio, Wisconsin, Illinois, and Indiona.
(3/ Includes rail and truck unlonds converted to carlot equivalents.
New York State apples dominate the markets within thet Stnte and supply a substantiol proportion of the Now England market. In large orop years the market area for apples from Now York State extends woll into Pennsylvania and Maryland, with some shipments as for south as Floridn. In the Contral States, Michigon is the largest local supplicr, Nlthough Illinois, Ohio, Indiano, and Tisconsin also produce a fairly substanticl quantity of apples.6/ The other major source of competition for ippolachion apples is the Pacific Northwest, primarily Washington State. Despite the romoteness of the aren to the largc castcm markets, Washington apples are distributcd to noarly every State in the Union. 7/ Washington supplics applos to most of tho markets which arc also served by the ippalachien arca. In some of the markets in the South, Appalachion apples cannot bo sold successfully after supplies of Washington apples begin to arrive. The extensivc blonketing of rail retes from Washington Statc, as illustrated in table 4, tonds to reduce the geographic advantage of the Appalachian arca al though in most instances the rail rotes from Winchoster arc lower.

6/ Total production for the 5 States in 1952 totalcd approximatcly $12 \frac{1}{2}$ miIlion bushels. Michigan produced 44 perecnt of the total.

7/ During tho lost 12 marketing seasons, onding wi th 1951-52, Washington apples were shipped to all but two States--Dclawarc and Now Hampshirc. Washington Statc ipplc Advortising Commission, Where Washington Apples are Marketed, Supplement No. 6, including 1951-52 Mirketing Serson.

Table 4.--Rail mileage and rate per 100 pounds, Yakima, Wash., and Winchester, Va., to selected markets, 1953

Market	:	Yakima, Wash.		:	Winchester, Va.	
		Miloage	Rate per		Mileage	- Rate per
	:		100 pounds	:		100 pounds
	:	Milcs	Doliars		Miles	Dollars
Minneapolis, Minn.	:	1,690	1.69		1,080	1.29
Peoria, Ill.	:	2,018	1.69		773	. 98
Davenport, I owa	:	2,030	1.69		842	1.06
St. Louis, Mo.	:	2,101	1.69		815	1.03
Dallas, Texas	:	2,196	1.69		1,392	1.70
Milwaukee, Wis.	:	2,201	1.69		755	. 97
Little Rock, Ark.	:	2,225	1.69		1,041	1.52
Memphis, Tenn.	:	2,276	1.69		908	1/. 84
Jacks on, Miss.		2,481	1.69		987	I/ . 90
New Orleans, La.	:	2,622	1.69		1,092	I/ . 94

1/ Rates lowered to mect truck competition.

For example, the rail rates on fresh apples from Yakima, Wash., to Minneapolis, Minn., and to New Orleans, La., are the same even though New Orleans is more than 900 miles farther from the point of origin than Minneapolis is.

In contrast, the rail rates from Winchester to the several selected markets generally reflect mileage differences with the exception of the three citics whose rail rates were reduced to meet truck competition.

Dealer preference and perhaps consumer prefercnce are important factors in the dominant position occupied by Washington apples in some of the southern markets. For exrmple, because of the long distances to most of thoir markets, Washington apple growors have generally adopted the following practices: First, to ship only the better grades of fruit and, second, to use refrigeration or heater service extensively for such shipments. As a result, the fruit generally arrives in the market in excellent condition.

In contrast a fairly substantial quantity of cull and perhaps fieldrun or ungraded apples from the ippalachian area moves through regular distribution chonnels. These culls arepurchased by truckers who in turn resell a large proportion of them to wholesolers and retailers, as well as to ultimate consumers. Spokesmen for the Appalachian apple industry recognized that this cull competition tends to drive many buyers to Nor thwest apples. 8/

Condition, as well as color, size and shape, are factors which influence consumer preference. These factors, in the order previously listed, were

8/ Appalachian ipple Service, innual Report for the 15 th Season, 1950-51, p. 11 .
considered by homemakers to be the most desirable external characteristics of apples, whether for eating, baking, cooking, or general purpose. 9/ Climatic conditions in the Pacific Northwest, that is warm days and cold nights in the fall, tend to result in apples that are somewhat more highly colored than those from the Appalachion area. In addition, because of irrigation, and perhaps more vigorous thinning of apple blossoms to promote size, Northwest apples tend to run larger then those in the Appalachian area, especially when the latter area experiences a season of less than average rainfall.

The market area for Appalachion apples, defined in terms of mileage blocks, shows that approximatcly three-fourths of the volume roported by the 78 shippers was sold in a radius of less than 500 miles from the shipping point (table 5). Within this $500-\mathrm{milc}$ radius the largost volume, nearly 3 million bushels, went to destinations of less than 100 miles. Approximately 2,851, 000 bushels went to destinations from 100 to 299 miles from shipping point, whereas approximatoly 2 million bushels were marketed in the 300 to 499 mileage block. The remaining one-fourth of the volume of shipments, approximately $2 \frac{1}{2}$ million bushels, was shipped to markets at distances of 500 miles and over.

Some indication of the market destinations is given on the map in figure 2. In addition to the frcsh markets of Baltimore, Md., and Washington, D. C., noarly all of the processors in the 4-State area are located within a $100-m i l e$ radius of Winchester, Va. Since the producing area is approximately 500 miles in length, the market destinations for other shipping points vary somewhat from those show in figure 2. However, this variation does not appear to be serious, because the largest segment of the apple crop is produced in and shipped from the area with in a 75 -mile radius of Winchester, Va.

In three of the four States--Pennsylvania, Maryland and West Virginia-shipments of apples generally decline as distance to market increases. Despite this downward trend, however, the quantities moving to markets beyond 300 miles are still substantial, ranging from 33 to 40 percent of the total for the respective Stetes. This downward trend is reversed in shipments of Virginia apples. Of the four aileage blocks designated, the greatest percentage of apple shipments in Virginia is made to markets at distances of 500 miles and over. Of the four States, Virginia has the smallest percentage of apples going to markets within 100 miles.

Table 5 also shows that the large and the very large shippers tend to ship to the more distant markets. Approximately one-four th of their total volume moved to markets over 500 miles from the shipping point. Only onesixth of the apples sold by the small and medium shippers moved that distance.

Some general knowledge of the market arca beyond the 500 -mile radius was obtained by asking shippers to state the most distant point to which

[^2]Table 50--Distribution of shipments of apples, by specified mileage and classification of shippers by States, Appalachian belt, 1952. I/

Shipper and State 2/	: Apples shipped during season								
	Less than 100 miles: 100-299 miles			300-499 miles : 500 miles and over				: Total	
	: Quantity		er- ntage	: Quantity	Per: centage	Quantity	Percentage	: Quantity	: Per- :centage
Small :	: Bushels	Percent Bushels	cent	Bushels	Percent	Bushels	Percent	Bushels	Percent
Pennsylvania :	11,384	$64 \quad 3,734$	21	2,766	15	---	--	17,884	100
Virginia	9,930	$23 \quad 7,850$	18	15,310	35	10,310	24	43,400	100
Total	21,314	3511,584	19	18,076	29	10,310	17	61,284	100
Medium									
Pennsylvania	69,700	33 84,625	40	16,113	7	42,562	20	213,000	100
Maryland	7,250	50 - 7,250	50	16,113	7	42,562	2	14,500	100
Virginia :	: 113,881	47 39,987	16	50,668	21	37,953	16	242,489	100
West Virginia:	: 51,348	52 13,817	14	19,373	19	15,045	15	99,583	100
Total	: 242,179	42 145,679	26	86,154	15	95,560	17	569,572	100
Large									
Pennsylvania :	: 163,650	37 134,100	30	43,100	10	105,150	23	446,000	100
Maryland	88;760	32 89:460	32	59,262	21	41,760	15	- 279,242	100
Virginia :	: 211,175	19 397,863	35	223,997	20	300,737	26	1,133,772	100
West. Virginia:	: 106,114	22 176,940	37	112,487	24	81,180	17	476,721	100
Total	: 569,699	24 798,363	34	438,846	19	528,827	23	2,335,735	100
Very large									
Pennsylvania	652,070	43 351,125	23	180,700	12	322,605	22	1,506,500	100
Maryland	53,421	26 50,118	25	44,585	22	53,770	27	, 201,894	100
Virginia :	: 954,848	23 1,071,552	26	838,310	20	1,305,640	31	$4,170,350$	100
West Virginia:	: $\cdot 480,733$	34 422,475	30	325,850	23	180,275	13	1,409,333	100
Grand total :	: 2,141,072	$291,895,270$	26	1,389,44,5	19	1,862,290	26	7,288,077	100
Grand total :	: 0								
Pennsylvania :	: 896,804	41 573,584	26	242,679	11	470,317	22	2,183,384	100
Maryland :	: 149,431	30146,828	30	103,847	21	95,530	19	495,636	100
Virginia :	: 1,289,834	23 . $1,517,252$	27	1,128;285	20	1,654,640	30	5,590,011	100
West Virginia:	: 638,195	32 613,232	31	457,710	23	-276,500	14	1,985,637	100
Total :	: $2,974,264$	29 2,850,996	28	1,932,521	19	2,496,987	24	10,254,668	100

[^3]

Figure 2. $=$ The 1952-53 shipments of Appalachian apples went largely to markets within 500 miles of Winchester, Va. Twenty-nine percent of the crop was marketed within less than 100 miles of Winchester; 28 percent between 100 and 299 miles; 19 percent between 300 and 499 miles; and 24 percent went to markets 500 miles or more away. These are highway distances.
they make regular shipments. Destinations in the top 10 states, ranked on the basis of number of times mentioned, were as follows: Florida, Georgia, Tennessee, Texas, Louisiana, New York, Ohio, Illinois, Alabama, and Massachusetts. 10/ Approximately 40 percent of the shippers stated they made regular shipments to Florida, whereas from 16 to 14 percent made regular shipments to Georgia, Tennessee, and Texas.

RAIL AND TRUCK SHIPMENTS

By Size of Shipper and by States

Approximately 92 percent of the total volume of apples: sold by the 78 shippers moved to market by truck (table 6). Only 8 percent were shipped by railroad. However, when based only upon fresh sales (excluding sales to processors) the railroads' share of the traffic increases to 13 percent, whereas the percentage hauled by trucks declines to 87 percent. As the sample somewhat over-represents fresh sales, it probably exaggerates slightly the percentage of the total crop that moves by rail. All shippers used truck transportation to some degree, and more than 40 percent of the shippers used trucks for their entire volume. In no instance did a shipper report exclusive use of railroads, although 45 shippers made some rail shipments ranging from a single car (650 bushels) to 212 cars (137,800 bushels).

The breakdown of shipments by size of shipper reveals that the very large shippers used the railroads most. Greater use of the railroads is to be expected by the very large shippers as this group ships a fairly high percentage of its fruit to the more distant markets, and the railroads tend to be more competitive with trucks on long distances. Within each of the shipper size-groups, however, there are rather widespread fluctuations in the rail and truck percentages. The two classes with the greatest percentage of rail shipments are the medium-size shippers of West Virginia and the large shippers of Maryland. Both of these small classes, however, contained one or two shippers, who, because of buyer considerations, shipped a substantial proportion of their volume by railroad.

It is interesting to note that in the distribution of rail and truck shipments by States, 3 of the 4 States, that is, Maryland, Virginia, and West Virginia, have approximately the same percentage distribution. The small percentage of rail shipments made by the Pennsylvania shippers reflects the high percentage of Pennsylvania apples which are processed. Movement to processors is almost exclusively by truck. In addition, the nearness of production areas in Pennsylvania to"large markets such as Pittsburgh, Philadelphia, Baltimore, and New York City favors truck transportation. These facts are borne out by table 5, which shows that more than 40 percent of the apples shipped fron Pennsylvania were marketed within a radius of 100 miles.

10/Not all of the above States necessarily fall in the 500 -mile and over category, Markets in Tennessee, New York, Ohio, and Massachusetts are less than 500 miles from certain production localities in the Appalachian Belt. Both North and South Carolina are important markets for Appalachian apples, but because of their nearness to the area they were not included in the above category.
Table 6.-Shipments of apples by rail and truck, by classification of shipper and by States, Classification :

| Classification |
| :---: | :---: |
| of shipper |
| and State 2% |$:$| Shipment during season |
| :---: | 100

8
8
8
m

B. 8.
 I
最 100 B8: 욱 100
100 149,999 bushels; very large 150,000 bushels and over.
3/ Less than 0.5 percent.

By Mileage Blocks

Truck operation occurred most often in hauls up to 300 miles (table 7). Nearly 3 million bushels of apples vere moved by truck to fresh markets or to processors within 100 miles of the shippers' establishments. An additional $2,800,000$ bushels were shipped by truck to destinations in the 100 to 299 mileage block. In all, more than $5 \frac{1}{2}$ million bushels of apples were hauled by trucks to destinations of less than 300 miles. In contrast, rail shipments totaled approximately 9,300 bushels, or less than half of 1 percent in these first two mileage blocks.

Table 7.--Shipments of apples by rail and truck and by specified mileage, Appalachian belt.

Mileage	Rail		Truck		Total	
	:Quantity: Percen Eage		Quantity: Percentage:Quantity:Percentage			
	: Bushels	Percent	Bushels	Percent	Bushols	Percent
Less than	: -					
100 miles	: 0	0	2,974,264	100	2,974,264	100
100-299	9,302	$1 /$	2,841,594	$99+$	2,850,896	100
300-499	: 317,662	$1 \overline{6}$	1,614,859	84	1,932,521	100
500 and over	: 539,089	22	1,957,898	78	2,496,987	100
Total	: 866,053	8	9,388,615	92	10,254,668	100

1/ Less than 0.5 percent.
Because of the nearness of processing plants and of several large fresh markets, it is not surprising that truck shipments are heavily concentrated in hauls of less than 300 miles. Although, as indicated above, Pennsylvania is especially favored in this respect, the entire Appalachian apple belt is able to market a substantial proportion of its crop within a 300 mile radius.

The highest percentage of rail shipments occurred in hauls of 500 miles and over. Approximately 62 percent of the total rail shipments are in this mileage block. An additional 318,000 bushels, or 37 percent of the total rail shipments, were shipped to destinations between 300 and 499 miles from the shipping points.

This pattern of rail and truck shipments bears out the generally known principle that truck transportation tends to decline as length of haul increases. On the other hand, this decline is probably not as great for the Appalachian apple belt as it is for other sections of the country. 1l/ Because of the opportunity for a return haul of Florida citrus or produce, it is commonplace for truckers in the Appalachian belt to haul apples 750 to 1100 miles--the approximate distances to Jacksonville and Miami, Florida.

11/For example, a recent study of the movement of 10 selected fruits and vegetables to 8 major markets found that for apples, 499 miles appears to be the critical distance for truck shipments. "inen sources were 500 miles and more from market, relatively fev markets received any substantial part of the total supply by truck in either year, (1941 and 1950)." Purcell, Margaret R., Length of Haul to Leading Markets by Motortruck, 1941 and 1950. U. S. Bur. Agr. Econ., June 1953.

THJCK SHI PMANTS BY TYPE OF CARRIER 12/
For-hire trucks dominate the apple traffic. Approximately two-thirds of the total volume of apples reported shipped by truck were hauled by forhire motor carriers. The remaining one-third was hauled by shippers' trucks and buyers' trucks, with approximately a 2 to l ratio between them.

Table 8 indicates that the large and the very large shippers make the greatest use of for-hire trucks, whereas the small and medium shippers use a greater percentage of private trucking. There appears to be a positive relationship between the size of shippor and the percentage of traffic hauled by for-hire trucks. For-hire trucking increases as the size of the shipper's volume increases.

The volume of apples hauled by the 38 for-hire motor carriers interviewed was more than $2 \frac{1}{2}$ million bushels. This approximates 45 percent of the nearly 6 million bushels reported by the 78 shippers as having been hauled in for-hire trucks.

Of the 38 truckers, 22 operate as exempt haulers--that is, they possess no operating authority from the I.C.C.--13 operate as common carriers regulated by I.C.C., and 3 as contract carriers regulated by I.C.C. The operating authorities possessed by the regulated carricrs are necessary for hauling nonexempt commodities. When these carriers haul apples--an exempt commodity--they are not subject to rate regulation by the I.C.C. The status of the regulated carriers in this regard is thus the same as the exempt carriers. All of the carriers interviewed operate, at loast to some extcnt, in interstate commerce.

Nearly $1 \frac{1}{2}$ million bushels, 56 percent of the total volume hauled by the 38 for-hire carriers interviewed, were trucked by exempt haulers; approximately 847,000 bushels, or 32 percent, by common carriers regulated by I.C.C., and the remaining 324,000 bushels, 12 percent, by contract carriers regulated by I.C C. Although 2 of the common and 2 of the contract carriers are among the largest apple haulers in the area, the majority of the regulated carriers consider the apple traffic to be of secondary importance to their operation.

TRUCK ORGANIZATION AND OPERATION

Nearly all of the truckers interviewed operate as sole proprietorships. Three of the carriers are incorporatod, l operatos as a partnership, and the remaining 34 are sole proprietorships.

12/ Two different sources were used to determine the volume of apple business handled by trucks. Information was derived from shippers concerning the truck movement by shippers' trucks, buyers' trucks, and for-hire trucks. Then, by type of oarrier--that is, common, contract and exempt-information was obtained from motor carriers.
Table 8.-eShipments of apples by truck, by ownership of truck, and by classification of shipper.

[^4]Two of the three incorporated concerns are common carriers regulated by I.C.C., whereas the remaining firm is on exempt hauler. The firm organized as a partaership is also an exempt hauler. The 34 individually operated firms consist of 11 common carriers, 3 contract carriers, and 20 exempt houlers. There is no apparent connection between type of organization and type of truck carrier.

Equipment

During the 1952-53 season, 228 pieces of equipment were operated by the 38 carriers. Tractor and semitrailer cambinations totaled 193, whereas the remaining 35 pieces consisted of straight or single-unit trucks. However, not all of this equipment was used primarily for hauling apples. As previously stated, most of the regulated carriers haul apples as a supplement to their regular trucking operations.

Those carriers that derived their greatest revenue from apples operated only 61 trucks and tractor-trailer combinations. The average number of truck and tractormtrailers operated by the primary apple haulers was approximately 4 units, whereas an average of 6 trucks and tractor-trailer combinations was operated by all carriers. The largest trucker in the group of primary apple haulers employed 3 straight or single-unit trucks and 10 tractor-trailor combinations. Three carriers in the entire group operated as many as 15 tractor-truck and semitrailer combinations.

Most of the tractor-trailer combinations hauling apples consist of the tractor-semitrailer combination with tandem axle on semitrailer, as shown in figure 3.

Figure 3

Weight Allowanoes

Straight or single-unit trucks carried an average load of approximately 275 bushels, whereas the tractor-trailer combinations averaged approximately 530 bushels. The range in this latter group was from 450 to 700 bushels.

The amount hauled is limited by State laws. The maximum gross weight allowances for a four-axle tractor-semitrailer combination (fig. 3) in the component States of the Appalachian area are'shown in table 9.

Table 9.--Maximum gross weight allowance for a 4-axle tractor-semitrailer combination, by States, Appalachian area, July l, 1953.

State	$:$	Maximum	grossweight 1/:	State

1/ Assume 45-foot maximum length.
$\overline{2} /$ Applies on designated highways only; on other highways the gross weight is 35,000 pounds.

A 30,000 -pound payload, approximately 600 bushels, is the maximum that can be hauled by truckers in the State of Virginia under the present 50,000pound limit. The unladen weight of a 4-axle tractor-semitrailer combination is approximately 20,000 pounds. When heavier equipment is used, the payload must be reduced accordingly. For example, some "reefer trucks," that is, trucks with mechanically refrigerated units, which haul apples as a backhaul, have only a 20,000 -pound payload because the equipment weighs as much as 30,000 pounds. 13/

As shown in table 9, the payload which may be carried in Pennsylvania is even less. As a result, some truckers have found it necessary to operate a shuttle service within Pennsylvania to the border. Other truckers have refused to pick up loads in the State for long-haul movement because of this lower maximum weight allowance.

Within the marketing area for Appalachian apples (32 States in the eastern section of the country), the maximum gross weight allowances on 4-axle tractor-semitrailer combinations range from 42,000 pounds to 65,000. 14/ Kentucky has the lowest maximum and Maryland the highest.

13/ This type of equipment is used extensively in the northbound Florida citrus and produce trade. It is not necessary to maintain apples at the temperatures required for these other products, but this type of equipment is used in apple traffic only for back-haul purposes.

14/ A rather recent study found that, although there has been considerable liberalization of State maximum weight limits since 1941, there is still a great deal of variation among the several States. See Purcell, Margaret R., Interstate Barriers to Truck Transportation, U. S. Bur. Agr. Econ., December 1950.

During the last 15 years, two major factors, economy and convenience, have brought about a substantial increase in the volume of apple traffic hauled by trucks in the Appalachian area. Because of lower rates, faster service, less handling, or other reasons related to efficiency in marketing, trucks have reached a dominant position in the apple traffic of the area. This position has not been attained through an increase in apple production in the area, but rather through a decrease in shipments by rail. 15/

For example, the cumulative increase in the rail rate on apples for the entire country from 1945-52 has been estimated at 53 percent. 16/ On the other hand, representative rail rates shown in table lo indicate that in many instances the percentage increase in the Appalachian area is substantially above the national average.

Table l0.--Freight rates on fresh apples by selected origin and destination, 1945 and 1953.

1/ Rates reduced in 1950 to meet truck competition.
A 22 -percent reduction in rail rates in 1950 on apples hauled into the South from Virginia and certain West Virginia origins was helpful in keeping the postwar increase on these particular hauls near the national average. On other hauls not benefiting from the reduction, the increases in rates are nearly double the national average. In addition, the rates in table 10 cover hauls ranging from 300 to 1,100 miles in length. Shorter hauls would show even greater per centage increases.

15/A comparison of rail shipments with total fresh sales indicates the railroads hauled approximately 41 percent of the apple volume in the 4 -State area in 1939, but only 10 percent in 1952.

16/ Reese, Robert B., Revised Rail Freight Rate Index Number Series, The Marketing and Transportation Situation, U. S. Bur. Agr. Econ., July-September, 1953.

Besides the increases in rates, rail service to some of the communities has been curtailed during the last 15 years. These factors have encouraged shippers to depend still more heavily on truck transportation for marketing their products.

An evaluation of the major advantages in shipping apples by truck, as stated by the shippers interviewed in the survey, is presented in this section of the study.

Summary of the Significant Advantages in Shipping by Truck

Seventy-seven of the shippers mentioned one or more advantages in handling apples by motortruck. Two shippers gave as many as 6 advantages, whereas approximately 80 percent of the shippers stated three or more. Only one shipper failed to list any advantages, and he shipped more than 75 percent of his 1952 crop by truck.

Better and faster service and lower rates were mentioned by shippers as the principal advantages to be obtained from truck transportation (table 11). More than 80 percent of the shippers listed service as the chief advantage, whereas nearly 60 percent listed rate as the chief advantage.

In order of importance, less handling and flexibility in size of shipment were the next two advantages listed by the shippers. Each of these was considered an important advantage by 35 percent of the shippers. The large number of first place rankings, as shown in table ll, indicates, however, that the former advantage is relatively more important than the latter.

Less loss and damage was mentioned by almost one-third of the shippers. Although only one considered it to be the most important advantage of truck transportation, 22 of the 25 shippers ranked it $2 \mathrm{~d}, 3 \mathrm{~d}$, or 4 th in order of importance.

The last 3 major advantages of truck operation mentioned consisted of stopoff service for partial unloading or to complete loading, profit from the shipper's own trucking operations; and prompter payment of claims. From 10 to 24 percent of the shippers gave one or more of these advantages. In addition, other advantages such as quick billing, control over shipments, and ability to serve more small markets were mentioned by five shippers.

Table ll.--Shippers'listing of the most important advantages to be obtained from truck transportation, by order of importance.

Better and Faster Service

Of the 8 major advantages in shipping apples by truck, better and faster service received the greatest attention. Approximately 60 percent of the shippers who considered service to be an advantage, ranked it first. One of the basic reasons for this attitude is show in table 12 where a comparison is made of shipping times by rail and truck from Winchester, Va., to several selected destinations. Where more than one rail route is available, the table shows the scheduled time for the fastest routa. For trucks, average shipping time is shown.

Although Winchester, $\mathrm{Va} .$, is the lcading shipping point for the Appalachian apple belt, it is served only by the branch lines of two railroads. 17/ As a rcsult, from 7 to $27 \frac{1}{2}$ hours is generally required to move cars from Winchester in a wayfreight train to the main-line terminal, where the cars are subsequently placed in a through train. However, on some hauls into the Midwest, as much as 52 hours is required for cars to move from Winchester through the main-line terminal. The substantially greater time required for these movements is due the nocessity of moving the cars through two intermediate terminals before placing them in a through train. The actual running time from Winchester to the nearest main-line connections at Hagerstow, Md.,

[^5]Table l2.--Distance and approximate shipping time from Winchester, Va., to selected destinations. 1/

1/ Excludes loading and unloading time。
2/ Scheduled arrival times. Information received from Traffic Departments, The Baltimore \& Ohio Railroad, Pennsylvania Railroad, Norfolk and, Western Railway, Southern Railway, Atlantic Coastline Railroad, and Richmond, Fredericksburg and Potomac Railroad.

3/ Average transit time of 11 motor carriers in the Winchester, Va., area.
4/ Constitutes constructive placement at Jersey City, N. J.

Brunswick, Md., and Harrisburg, Pa., and at Manassas, Va., via Strasburg Junction, Va., does not exceed 5 hours. The balance of the previously mentioned time of 7 to $27 \frac{1}{2}$ hours (or 52 hours to certain midwestern points) represents layover at the terminal awaiting a through train. On hauls to southern markets the rail service through Manassas via Strasburg Junction, Brunswick, and Potomac Yards (near Alexandria, Va。), and Hagerstowm, lid., were all computed.

On short hauls the layover time assumes serious proportions. Very often it exceeds the over-the-road time. For example, more than half of the rail transit time to Philadelphia and Pittsburgh, as shown in table 12 , is accounted for by the layover at an intermediate terminal.

Even on relatively long hauls the operations required at each of several terminals greatly reduce the average rate of movement, despite the fast train speed between these terminals. To illustrate, a rail shipment of apples moving from Winchester to New Orleans via Potomac Yards requires approximately 60 hours, averaging 18 miles per hour. Of this total, 23 hours are used to move the car approximately 90 miles--less than $4 \mathrm{~m} . \mathrm{p} . \mathrm{h} .-\mathrm{from}$ Winchester through the Brunswick and Potomac Yards. In the remaining 37 hours the car travels approximately 1,108 miles, averaging approximately $30 \mathrm{~m} \circ \mathrm{p} \cdot \mathrm{h}$. This fast service on the greater portion of the journey is thus largely counter-balanced by the exceedingly slow movement in the initial stage.

The ratio of rail to truck transit times ranges from a high of $6 \frac{1}{2}$ to 1 on a haul of less than 100 miles (Winchester to Washington, D. C.) to a low of $1 \frac{1}{2}$ to 1 on the New Orleans haul, approximately 1,100 miles. The median ratio is approximately 3 to 1.

In 13 of the 28 destinations shown in table l2, the scheduled arri.. val times for rail shipments occur after noon. Al though these cars are then available for receivers' inspection, they are ordinarily too late for that day's market. There are undoubtedly instances where this same situation occurs in truck shipments, but, because of greater flexibility of operations, shippers can more closely schedule their truck shipments to specific daily markets.

The problem illustrated here is one which is inherent in railroad operation. The movement of numerous commodities to countless destinations necessitates the making up and breaking up of trains at various terminals. As indicated previously, this is a time-consuming process. The smaller unit of operation, as well as size of organization, especially with agricultural haulers, makes it possible for motortrucks to offer a more frequent service and to move loads to markets without delay.

An additional aspect of this service problem mentioned by shippers is the delay in placement of rail cars. It is reported that cars have been spotted 24 to 48 hours after the promised date. This excessive delay does
not seem to be associated with a seasonal car shortage. 18/ Even when there is no delay beyond the regularly scheduled spotting date, shippers report that the local freight service at many points has been curtailed to such an extent that several days delay is of ten encountered between the time the car is ordered and its placement on the shipper's siding.

On the other hand, trucks are generally available for loading within a few hours. For example, instances were cited where truckers were called as late as 4 p.m. for hauls to Richmond and Philadelphia for market the next morning. Other instances were given of buyers in Georgia and Alabama placing orders on Wednesday for delivery at the market on Friday morning. Shipments by rail would be out of the question in either of these instances.

One of the benefits that shippers derive from the fast delivery service offered by trucks is that it tends to minimize the effects of unstable market conditions. Daily market quotations on perishable commodities such as apples may fluctuate rather widely. During the early part of the season, apples selling for $\$ 5.50$ on Thesday may decline to $\$ 4.25$ or even less by Friday. The flexibility and speed of truck transportation might make possible the delivery of several shipments to this market before the price reached its low level. The present rail service in the Appalachian area prevents shippers from making adjustments to such rapidly changing market conditions.

The importance of transportation service to shippers in this area is further confirmed in replies to the following question asked during the survey: "Would you be more willing to use the railroads if they improved transportation services rather than lowered their freight rates?" Approximately three-fourths of the 72 shippers who replicd answered in the affirmative. 19/ Eight shippers qualified their answer by stating that it depends partly upon the buyer. It was the general reaction of shippers that the increased use of rail tronsportation would apply only on the longer hauls, that is, over 300 miles. It was not anticipated that the railroads could or would even attompt to compete with trucks on short hauls.

Lower Rates

Rates ranked second in importance to service as a major advantage in shipping by truck. More than half of the shippers interviewed considered rate a major incentive for shifting from rail to truck. Although, as mentioned previously, the Appalachian area is centrally located in relation to the large markets of the East, a rather substantial portion of its apples are hauled to markets ranging in distance from 500 to 1,400 miles from the principal shipping points. Thus trensportation costs are significant in the total costs of many shippers.

18/ One large packer who had shipped from 75 to 100 rail cars during the 1952-53 season stated he was using trucks almost exclusively this year (1953-54), because of the failure of a railroad to meet its switching schedule in spotting empty cars.

19/ These shippers handled more than 6 million bushels of apples in the 1952-53 season.

A comparison of rail and truck rates from major points of origin to selected destinations are shown in tables 13-18. The truck rates were obtained from shippers, truck brokers, and haulers at the time of the survey. Both rail and truck rates are for full carlots or truckloads and are based upon for-hire trensportation. In most cases the truck rates are not published, but represent bargaining by each shipper and each carrier. Because apples are exempt, as was previously pointed out, the Interstate Commerce Cormission does not exercise regulation of rates or operating authority for truckers hauling this commodity. However, within the same shipping areas, the rates quoted, with a few exceptions, were surprisingly uniform. Variations were seldom more than 5 cents a bushel. Refrigeration and cartage costs are not included in the rail rates, nor do the truck rates, in most cases, reflect refrigeration costs. 20/ It is not onticipated that the inclusion of these extra costs would greatly affect the rate pattern, although in specific instances, it would increase the differential between rail and truck rates.

Truck rates on apples tend to vary somewhat from year to year, depending upon the volume of the traffic and the availability of trucks. There is also some variation in the rates during the shipping season, especially on the applemovement into the southeastern States. For example, during the first 6 weeks to 2 months of the season, roughly, September and October, truck rates into the Southeast are relatively high. For the remainder of the shipping season--an additional 5 to 6 months--the rates drop to a substantially lower level. The decline in some instances may be as great as 50 percent. On the other hand, truck rates on hauls to other markets fluctuate considerably less than this during the season.

The substantial decline in the rates to Florida is caused primarily by fluctuations in the Florida citrus and produce traffic. Generally, the heavy truck movement of Florida citrus to the larger northern markets, followed closely by vegetables, begins about October 15 or November l. As a result, a large number of truckers became available for back-haul traffic into the South. 2l/ Because of proximity to the main North-South routes,

20/ Refrigeration for apples is used only during the first and last part of the shipping season, a maximum period of perhaps 3 months of the 8 - to 9 -month period. Even then it is used primarily for hauls into the South. Although the refrigeration costs on apples shipped by truck may be included in the line haul rate, the usual practice is to make a separate charge of either 5 cents a bushel or the cost of the ica. On a full truckload of 600 bushels theso costs approximate $\$ 30$. In contrast, refrigeration costs by rail from Winchester, Va., to Miami, Fla., are \$72.74 per carlot. (Rule 258--initial icing by carrier, re-iced once in transit.)

21/ In 1952, almost half of the fruit and vegetable shipments from Florida were made by truck. This amount is probably somewhat conservative because the truck data are not complete. U. S. Department of Agriculture, Bureau of Agricultural Economics, cooperating with Production and Marketing Administration, Carlot Shipments of Fruits and Vegetables in Florida during 1952.

Table 13.-Rail and truck rates for fresh apples shipped from Chambersburg, Pa., to specified markets, November and December 1953

Table 14.--Kail and truck rates for fresh apples shipped from Martinsburg, W. Va., to specified markets, November and December 1953

Table l50-rail and truck rates for fresh apples shipped from Hancock, Md., to specified markets, November and December 1953

Origin and market	Rate per 100 pounds			
	:	Rail	Truck I/	$\begin{array}{lc} \hline: & \text { Rail } \\ : & \text { over truck } \end{array}$
Hancock, Md., to -	:	Cents	Cents	Cents
	:			
	:			
	:			
Atlanta, Ga.	:	95	87	8
Baltimore, Md.	:	46	28	18
Chicago, Ill.	:	92	87	5
Cleveland, Ohio	:	67	70	-3
Jacksonville, Fla.	:	100	91	9
Knoxville, Tenn.	:	72	77	-5
Miami, Fla.	:	122	109	13
New York, N. Y.	:	62	55	7
Philadelphia, Pa.	:	53	40	13
Pittsburgh, Pa.	:	53	45	8
Richmond, Va.	:	55	40	15
Tampa, Fila.	:	117	98	19
Washington, D. L.	:	41	25	16
Wheeling, W. Va.	:	60	40	20

Paw Paw and Romney Area, w. Va. 2/

	:			
Paw Paw and Romney Area, IV. Va., to -	:			
	:			
	:			
Atlanta, Ga.	:	95	81	14
Baltimore, Md.	:	48	38	10
Birmingham, Ala.	:	101	94	7
Boston, Mass.	:	86	95	-9
Charlotte, N. C.	:	75	70	5
Chicago, Ill.	:	92	97	-5
Cincinnati, Ohio	:	77	81	-4
Cleveland, Ohio	:	66	62	4
Columbia, S. Co	:	87	75	12
Columbus, Ohio	:	71	74	-3
Dallas, Tex.	:	170	185	-15
Jacksonville, Fla.	:	100	88	12
Nijami, Fla.	:	122	103	19
Newt York, N. Y.	:	67	65	2
Norfolk, Va.	:	67	53	14
Philadelphia, Pa.	:	60	55	5
Pittsburgh, Pa .	:	51	42	9
Providence, R. I.	:	86	90	-4
Richmond, Va.	:	60	46	14
Koanoke, Va.	:	60	48	12
Tampa, Fla.	:	117	99	18
Washington, I. C.	:	46	35	11
Wheeling, Ohio	:	55	52	3
Youngstown, Ohio	:	59	70	-11

1/ A weighted average rate including adjustments for seasonai variation. Rail rates from Paw Pav, W. Va., only.

Table 16.-nail and truck rates for fresh apples shipped from Winchester, Va., to specified markets, November and December 1953

Origin and market	Rate per 100 pounds			
	:	Rail	: Truck I/	Rail : over truck
	:	Cents	Cents	Cents
	:			
Winchester, Va., to -	:			
	:			
Altoona, Pa .	:	51	42	9
Atlanta, Ga.	:	71	57	14
Baltimore, ind.	:	46	25	21
Birmingham, Ala.	:	76	69	7
Boston, Mass.	:	86	90	-4
Chicago, Ill.	:	92	84	8
Charlotte, N. C.	:	51	50	1
Chattanooga, Tenn.	:	67	66	1
Cincinnati, Ohio	:	77	75	2
Charleston, W. Va.	:	70	66	4
Cleveland, Ohio	:	71	66	5
Columbia, S. C.	:	62	53	9
Columbus, Ohio	:	71	70	1
Dallas, Tex.	:	170	175	-5
Des Mioines, Iowa	:	129	135	-6
Detroit, mich.	:	77	90	-. 23
Dubuque, Iowa	:	107	116	-9
Houston, Tex.	:	173	181	-8
Indianapolis, Ind.	:	86	79	7
Jackson, Hiss.	:	90	90	0
Jacksonville, Fla.	:	76	66	10
Knoxville, Tenn.	:	62	61	1
Memphis, Tenn.	:	84	90	-6
Wiami, Fla.	:	100	83	17
Nashville, Tenn.	:	75	66	9
New Orleans, La.	:	94	102	-8
New York, $\mathrm{N}_{\text {d }} \mathrm{Y}$.	:	62	58	4
Norfolk, Va.	:	66	48	18
Philadelphia, Pa .	:	55	45	10
Pittsburgh, Pa .	:	59	47	12
Providence, R. I.	:	80	85	-5
Raleigh, N. C.	:	36	34	2
林chmond, Va.	:	55	37	18
St. Louis, Mo.	:	109	123	-14
Tampa, Fla.	:	94	75	19
Washington, D. C.	:	39	24	15

[^6] variation.

Table 17.—Rail and truck rates for fresh apples shipped from Charlottesville, Va., to specified markets, November and December 1953

Origin and market		Rate per 100 pounds		
	:	Rail	Truck 1/	$\begin{aligned} & \text { : Rail } \\ & \text { : over truck } \end{aligned}$
	:	Cents	Cents	Cents
Charlottesville, Va., to-:				
Atlanta, Ga.	:	66	60	6
Baltimore, ind.	:	49	40	9
Birmingham, Ala.	:	71	76	-5
Boston, Mass.	:	87	87	0
Charlotte, N. C.	:	38	42	-4
Chattanooga, Tenn.	:	63	65	-2
Chicago, Ill.	:	92	95	-3
Cincinnati, Ohio	:	76	74	2
Columbia, S. C.	:	56	53	3
Dallas, Tex.	:	164	171	-7
Houston, Tex.	:	166	177	-11
Jacksonville, Fla.	:	71	65	6
Knorville, Tenn.	:	58	54	4
Louisville, Ky.	:	86	81	5
Miami, Fla.	:	98	77	21
Nashville, Tenn.	:	71	65	6
New Orleans, La.	:	91	95	-4
New York, N. Y.	:	70	68	2
Philadelphia, Pa.	:	60	53	7
Pittsburgh, Pa.	:	71	55	16
Providence, R. I.	:	86	82	4
Raleigh, N . C.	:	32	35	-3
Tampa, Fla.	:	90	74	16
Thomasville, Ga.	:	75	72	3
Washington, D. C.	:	43	35	8

Table 18.--Rail and truck rates for fresh apples shipped from Roanoke, Va., to specified markets, Jovember and December 1953

the Appalachian apple traffic is especially desired by these truckers. Additional factors which make this traffic desirable arc: (1) Apples are a clean commodity to haul; (2) they maintain their condition fairly well in transit, that is, they are not as perishablo as some other fruits and vegetables; and (3) they tend to load heavily. A full truckload of 600 bushels of apples weighs approximately 30,000 pounds. Thus, either by personal solicitation or through truck brokers, Florida citrus and vegetablc haulers perticipate heavily in the movement of Appalachian apples into the Southeastorn Statos. For cxample, nearly half of the motor carriers interviewed stated they hauled citrus or general produce from Florida.

The level of truck rates on Appalachian apples into the Southeast is largely governed by the rates established on this back-haul traffic. The rates for hauling apples into that area are lower than the rates on Appalachian apples moving to other areas not only becausc of the large supply of trucks available for shipments moving in to the Southeast, but also because of the level of rates charged by these trucks in their nor thbound movement of Florida citrus and vegetablos. This northbound movement is the initial haul of the trucker and hence bears a higher rate than the southward movement of Appalachian apples. From the standpoint of the truckers of Florida citrus and vogetables, any traffic that can be takon on the return haul will reduce the overall cxpense, provided that it brings in more revenue than the slight cost difference betwoen carrying a return load and deadheading back. $22 /$

Recognition has been given the seasonal variation in the rates. Both a high and a low truck rate werc obtained from shippers and motor carriers for each destination. The high rote, which was charged during the carly part of the shipping season, was given a 25 percent weight factor, sinceit remained in effect only about 2 months of the 8 - or $9-$ month shipping season. The low truck rate received a 75 percent weight factor, as it prevailed during 6 or 7 months of the shipping season. Despite this woighting, the truck rates into such large southeastern markets as Atlanta, Ge., Columbia, S. C., Jacksonville, Tampa, and Miami, Fla., are usually below the rail rates.

Although the Florida movement greatly affects the level of truck rates for Appalachian apples marketed in the Southcast (North and South Carolina, Goorgia, and Florida), truck ratos to other markets are also

[^7]affected by the opportunity for a back-haul. Initial haulers of applesmtruckers whose headquarters are in the Appalachian area--are often able to obtain a haul for at least part of the return trip, either through trip-leasing of nonagricultural commodities, or by bringing back en exempt commodity. Sometimes truckers find it necessary to purchase an agricultural product in order to have a payload for the return trip. In other cases, they have to wait for as long as a week at the market before obtaining a return load. In still other cases they go back empty. As a result of the uncertainty attached to this traffic, the truck rates on hauls of apples into the Northeast and the Midwest do not experience the seasonal decline described carlier as applying to hauls into the Southeast.

Truck rates on apples hauled in to Tennessee, Mississippi, Louisiana, and Texas also tend to be higher than on similar hauls into the Southeast because of the uncertainty of a back-haul. Topography and the low maximum gross weight allowances in Pennsylvania and Kentucky, previously mentioned, also have some influence on the truck rates to markets other than those in the Southeastern States. These facts are borne out by the lower differentials between rail and truck rates on hauls to the following markets: Boston, Mass., Providence, R. I., Cleveland, Ohio, Detroit, Mich., Chicago, Ill., Nashville and Memphis, Tenno, New Orleans, La., Dallas and Houston, Tex. On some of these hauls the rail rates are actually lower than the truck rates.

In contrast to this pattern of narrower rate differentials on longhaul movements that are not affected by the Florida traffic is the pattern revealed by the rates on relatively short hauls. In many instances the truck rates to tho nearby markets are substantially lower than the rail rates. This is particularly true of the rates to such cities as Baltimore, Md., Philadelphia, Pa., Washington, D. C., and Richmond and Norfolk, Va. The primary reason for this widening rate differential lies in the difference in the cost structures of the two types of carriers. The rates on short-haul traffic, as well as other traffic, must bear two types of costs, terminal and line-haul or conveyance cost. However, because terminal operations for rail carriers are on a much larger scale and are more complex and more costly than for motorcarriers, short-haul rail rates must carry a greater proportion of such costs. Because of these differences in terminal costs, rail rates tend to be higher than truck rates on short hauls. The vulncrability of this short-haul traffic to private transportation may also partially account for the low truck rates. As pointed out previously, more then one-third of the total volume of apples reported in the survey were moved to market by private trucks.

The previous discussion has stressed the fact that rates are an important consideration in influencing the shippers' choice of carriers. Lower transportation rates, if they cover the costs of service, are bencficial to shippers, carriers, and the consuming public. 23/ The large number of

[^8]Instances in which truck rates on apples are lower than rail rates strosses the need for some adjustment in rail rates, if the railronds cxpect to increase, or cven to maintain, the presont lovel of traffic. Some indication of the extent of the adjustment necded was given by shippers in reply to the following question asked during the survey: "Would you increase your uso of rail transportation for apple shipments, if (a) rail rates were at the same level as truck rates, (b) rail rates werc 10 percent lower than truck ratos, or (o) rail rates were 25 percent lower then truck rates?" As noted above, a. 22-percent reduction in rates on rail shipnents of apples from Virginia and certain West Virginia origins to southern destinations was put into effect in 1950.

Of the 72 shippors who answered part (a), one-third stated they vrould increasc their use of rail transportation, although 5 of this group qualified their answer by saying it would depend partly upon the buyer. The remaining two-thirds stated that they would not increase their use of rail transportation even if the rail rates were at the some lovel as truck rates.

However, under part (b), 45 of 73 shippers stated they would increase their use of rail transportation if the ratos were 10 percent lower than truck rates. Seven of the 45 qualified their answer by the statemont that it would depend partly upon the buyer.

Finelly, 70 of the 75 shippers roplying to part (c) indicated they would increase their use of rail transportation if rail rates were 25 percent lower then truck ratcs, but again, seven of these shippers stated that it would depend partly upon the buyer. 24/

24/ The totel volume of apples shipped in the $1952-53$ seeson by those shippers who gave affirmative answers to the above questions was as follows:

Part a - Rail rates same level as truck rates
Unqualificd "Yes" 2,370,102 bushels

Part b - Rail rates 10 percent 1 owcr than truck rates
Unqualificd "Yos" 4,256,179 bushels
Partly depends on buyer $\quad \frac{1,800,350 \text { bushels }}{6,056,529 \text { bushels }}$ Total 6,056,529 bushels

Part c - Rail rates 25 percent lower than truck rates
Unqualified "Yes" 7,598,715 bushels

The convenience of being able to load directly from the orchard into a vehicle destined for market is of great value to many shippers. Estimates ranging from 5 to 8 cents a bushel were given by shippers as the extra cost in hauling apples to a rail siding for loading. In the cases cited the rail sidings were relatively close to the orchards. The costs would be larger as the local trucking distance increased. 25/

Frequently it is also possible, through truck shipments, to eliminate an extra handling at the receiving end. Receivers not located on rail sidings are required to truck the apples from railroad team tracks. The door-to-door service given by trucks does away with this extra handing end expense.

The advantage of less handling, when shipping by truck, is one well recognized by shippers. Of the 27 shippers who named this as an advantage, approximately half considered it the most important advantage of truck operation, while the other half ranked it second or third. Only l shipper ranked it fourth.

Flexibility in Size of Shipments

Trucks usually operate with a load capacity substantially less than that of the average rail car. However, as previously pointed out, some truckers haul as many as 650 bushels (a railroad carload), where such a load does not violate State maximum gross weight laws. Whether the truck is large or small, trucking is easily adaptable to small shipments of separate buyers. This flexibility in size of shipment, especially in the apple traffic, is of considerable importance to shippers. 26/An illustration of this flexibility is indicated by the following excerpts from the records of several of the motor carriers interviewed.

25/ This advantage does not apply to apples which are placed in local cold storage plants and then reloaded out later in the season. Peak cold storage holdings for 3 of the 4 States during the 1952-53 season were as follows:

Pennsylvania	932,000 bushels
West Virginia	648,000 bushels
Virginia	$2,286,000$ bushels

Data are not available for Maryland.
Source: U. S. Production and Marketing Administration, Marketing Appalachian Apples, 1952-53 season.
26/ Instances were cited where shippers during the early part of the season were able to realize a greater return by sending out small lots of 200 to 250 bushels to several markets. It was generally believed that full truck lots or rail carlots of 600 to 650 bushels would weaken the market substantially.

Size of shipment
473 boxes
596 bushel baskets
200 boxes
500 boxes
500 bushel baskets
143 bushel baskets
196 crates
230 crates
400 bushel baskets
420 boxes and 21 barrels
225 boxes
500 bushel baskets
559 bushel baskets

Destination

New York
Pennsylvania
Pennsylvania
Pennsylvania
Maryland
Washington, D. C.
West Virginia
Virginia
North Carolina
South Carolina
South Carolina
Florida
Florida

The fact that shippers are able to send out shipments of varying size, most of which are considerably smaller than a full rail carlot, enables them to meet more fully the needs of their customers. Many buyers do not have the storage space to handle over 200 to 300 bushels every other day or so. Even where the storage space is available, they still prefer a hand-to-mouth type of buying in which small lots are purchased frequently. In this manner, less money is tied up in inventories, and, in addition, the merchandise is fresher. Truck transportation with its flexibility and speed is well adapted to this type of operation.

Less Loss and Damage
Nearly one-third of the shippers stated they had experienced less loss and damage in shipping apples by truck than by rail. 27/The fast transit time of motor carriers undoubtedly helps to reduce damage claims arising from deterioration of fruit, whoroas the longer transit time by rail tends to increase the shipping hazards. Because of this factor of speed, truck shipments of apples may require less refrigeration than rail shipments under circumstances otherwise similar; or in other words, if unrefrigeratod shipments of apples are made by rail and by truck between the same points at the same time, the truck shipment will bo less susceptible to damage from hoat. In addition, the elimination of extra handing has undoubtedly served to keep at a minimum the loss and demage of truck shipments through bruising of the fruit.

Although fast transportation and elimination of extra handling are important advantages of truck operation, the smaller loss and damage record of motor carriers cannot be traoed to these two facts alone. Some shippers contend that truckers handle the fruit more carefully en route, whereas with rail shipments, recoopering is often necessary at the terminal market. Additional causes of damage cited by shippers were: Temporature failures because of improper refrigeration or ventilation, defective or unfit equipment, and excessive delay.

27/ In contrast, 8 pereent of the shippers stated they had had greater loss and danege with trixok shipmonts (see page 41).

The need for taking steps to roduce loss and damage is obvious. Such clfims are a source of irritation and expense to shippers; sales may be lost and claims may drag on for many months before settlement. Shippers still suffer a financial loss, even if claims are settlod quickly and the loss and damage completely covered. Since they are an operating expense of the railroads, the higher loss and damage claims are reflected in higher freight rates.

Flexible Stopoff Service

Nearly a fourth of tho shippers indicated that the ability to have shipments delivered to two or more consignees was an important advantage of truck transportation, This service includes stoppage in transit to finish loading or partially unload and split deliveries.

Deliveries are often made to as many as three consignees in the same city or in different cities which may or may not be along the same general route. Generally, no extra charge is made for this service. The substantial flexibility in this service as well as the noncharge feature is due to the exemption status, as previously pointed out, of truckers of apples. Motor carriers, both common and contract, who possess either an operating certificate or permit are able to give the same service on exempt commodities as those carriers who possess no operating authority, providod they do not haul mixed loads of apples and nonexempt commodities.

On the other hand, the stopoff service on apple traffic provided by the rail carriers is subject to regulation by the Interstate Commerce Commission. 28/ These carriers generally make an additional charge for this service. In addition, they are subject to restrictions in its application. For example, a charge of $\$ 13.70$, over and above the regular rail rate, is made on a carload of apples originating at Winchesterg Va., and destined for Jacksonville, Fla., with a stopoff to partialiy unload at Columbia, S. C. This charge is applied generally throughout southern territory (roughly, the area east of the Mississippi River and south of the Ohio and Potomac rivers). A maximum of 3 stopoffs is permitted within this territory and a charge of \$13.70 is made for each stopoff.

On rail shipments of apples from Winchester, Va., to Boston, Mass., or Chicago, Ill., with stopof's to partially unload at Providence, R. I., and Pittsburgh, $\mathrm{Pa} \circ$, a charge of $\$ 14.25$ is made for each stopoff. Only one stopoff is permitted in the rate territories in which these latter cities are located. A further restriction on this service by rail is that the above charges apply only where the stopoff stations are intermediate between points of origin and final destination. Where the stopping of cars is permitted at points not directly intermediate between the originating point and the final destination, an additional charge is made. The charge for this back-haul or out-of-line haul is ordinarily made on a mileage basis.

Stopoff service for rail shipments results in an added cost to the shipper or one or more of the receivers, either through extra bracing or labor in leveling off a load once a pertion of the shipment has been removed from the car. 29/

On the other hand, when a motor carrier makes split deliveries, the trucker assumes the responsibility of making the balance of his load secure after the removal of each consignment.

Profit from Trucking Operations

As previously mentioned, approximately 23 percent of the truck shipments of the 1952 apple crop were hauled by the shippers' own trucks. Although 53 shippers indicated that they shipped some portion of their 1952 crop in their own vehicles, only 14 stated that profit from trucking operations was one of the advantages in shipping by truck. For most of the growers, truck operation is incidental to their primary occupation of caring for an orchard. Many orchards possess \& truck that is used for hauling supplies and equipment. During the harvesting season, the truck is used in hauling apples to processors and fresh markets within a relatively small radius of the grower.

Profit from trucking operations was discussed by the growers in general terms rather than in a strict cost-accounting sense. For example, two growers stated they were able to make a profit from trucking their own apples because they could use the drivers in the orchards during the offeshipping season. Other shippers mentioned the importance of the back-haul in the success of their trucking operations.

Some indication of the extent of this profit was given by ono shipper who stated he was able to undersell his competitors 25 to 50 cents a bushel by doing his own hauling. It is not known, however, whether this particular shipper had fully considered all of his truok costs. 30/

The 14 shippers who stated they made a profit from their trucking oporations hauled up to 100 percent of their 1952 crop. One grower-shippor, for example, operates three tractor-truck and somitrailer combinations and hauls as far as New Orleans. Generally, however, the shippors operate only l or 2 straight or singleanit trucks and limit their hauls to less than 300 miles.

29/ The railroads recommend that if a car contains shipments for more than one consignee each of the shipments be braced separately. This recommendation was made because of the failure of the first receiver to level off the load after he had removed his consignment from the center of tho car. This practice usually resulted in substantial damage to the merchandise through shifting during the remainder of the journoy.

30/ When shippers mentionod their profits from trucking operations as an advantage of using truck transportation, the question arosc as to what alternative means of transportation they had in mind. It was clear that they thought of the railroads, although some of thom thought of for-hire trucks as still another altemative to shipper-operated trucks.

Prompter. Payment of Claims

Ten percent of the shippers stated that motor carriers settlod claims arising from loss or damage to cargo more quickly than did the railroads. There appears to be little excuse for claim settlements being delayed for long. At the same time, the difference in the operational naturc of the two types of carriers favors faster claim settlement for motor carriers. As stated earlier, the majority of the truckers in the Appalachian area operate as individual proprietorships. Therefore, such carriers of ten can make an on-the-spot settlement for any loss or damage that may have occurred.

On the other hand, it would not be feasible for on organization as large and complex as a railroad to grant claim settloment authority to the personnel operating frcight trains. Thus, when loss or damage occurs on a rail shipment, inspection reports are filed by the carricrs' representatives, and standard claim forms are filed by the shipper and the consignce. It is then the duty of the railroads' claim departments to determinc the justification for the claim and the extent of the actual loss. If claims arise through unreasonable delay of the shipment in transit, considerable time may be required to ascertain the precise amount of loss. Similarly, claims resulting from improper refrigeration or ventilation require the compilation of a performance record for the particular equipment involved.

It should also be noted that preceutionary steps must be taken by the railroads to insure against the payment of unjust or illegal claims. Under the Elkins Act, railroads are subject to heavy penaltics for the gronting to shippers of rebates or concessions, such as the payment of illcgal claims. The receivers of the rebates or concessions are also guilty of violating the law.

Although it is apparent that the organizational structure of the railroads precludes claim sottlement procedures as flexible as that of many truck operators, nevertheless, there is room for improvement in this ficld. But cven the quick settlement of claims is a poor substitutc for the delivcry of commoditics in good condition, cither by railroad or by motortruck.

Other Advantages

Threc additional advantages mentioned by a few shippers included prompt return of containers, control over shipments, and ability to serve a larger number of small markets.

The advantage of having shipping containers returnod promptly was mentioned by ε. shipper who sold more than 90 percent of his 1952 crop to processors. This type of short-houl movement, involving the return of the ficld crates by the same truck on which they were loaded, is outside the feasible operation of rail carriors.

Control of shipments was mentioned by two shippors as an advantage of truck transportation. 31/ The instances cited by these shippers involved the failure of receivers to take delivery. The shippers mentioned thet they had averted substonticl losses by having the truckers make delivery to other buycrs with whom the shippers had communicated upon being notified of the original consignee's refusal to accept delivery. If the shipments had moved by railroad, notification would also have been given to the shippers. But, because truck shipments are under close control by the drivers, remedial action can be taken by the shippers somewhat more speedily then in rail shipmonts.

Finally, the ability to scrve more small markets was mentioned by two shippers. This advantage needs little elaboration since it is inherent in motor carrier operation. Providing service to many small communities that do not have rail connections is a distinct feature of the trucking industry.

[^9]Although there are many advantages in using trucks for fresh apple shipments there are also some disadvantages. Soven different objections to truck hauling were voiced by approximately one-third of the shippers surveyed (table 19). However, not over two objections were made by any one shipper. Approximately two-thirds of the shippers stated there were no disadvantages in shipping apples by truck.

Table 19.--Shippers stating chief disadvantages in moving apples by motortruck

Disadvantages	:	Shippers		
	:	Stating disadvantage		Replying as percentage of total shippers surveyed
	:	Number	:	Percent
Less reliable	:	II	:	14
	:		:	
More loss and damage	:	6	:	8
	:		:	
Inadequate service on exports	:	4	:	5
	:		:	
Lack of uniform rates	:	4	:	5
	:		:	
Other disadvantages	:	5	:	6
	:		:	

Less Reliable
The principal disadvantage stated by shippers in trucking fresh apples was the unreliability of some truck operators. This objection was reported by 11 shippers. The expression "we"nursing the truckers" was used in describing this fault of a few truck operators. More detail work and closer supervision of truck shipments were included in the shippers' definition of "wet-nursing."

An example of the unreliability complained of was that cited by a shipper who engaged an itinerant trucker for a haul to a midwestern city. The trucker had gone a relatively short distance from the shipping point when he was arrested and fined for an overload violation. Proceeding to the next town, the trucker unloaded all of the apples, rather than merely the portion exceeding the weight limit, and shipped them railway express collect to the consignee. The shipper, who was required to reimburse the consignee the difference between the truck rate and the substantially higher express rate, has been unable to collect from the motor carrier.

Even more serious are the three cases of theft that were reported by shippers to have occurred during the last 5 to 10 years. In these particular instances unscrupulous truckers hired out to haul the apples to distant markets. The shipments were never delivered to the consignees, but reportedly were sold in other cities. The shippers suffered the full monetary loss.

These isolated instances are not cited for the purpose of permitting inferences to be drawn concerning the character of truck operators in the Appalachian area. The fact that fully two-thirds of the shippers stated that there were no disadvantages in shipping by truck precludes any such inferences being drawn. Rather, the purpose is to point out to shippers that these events have occurred in the past and may occasionally occur in the future unless preventive measures are taken.

The recurrence of the above type of losses may be prevented by dealing with truck operators who are known through past experience to be trustworthy and who carry cargo insurance 32/ or dealing with responsible truck brokers. Some truck brokers will not engage a trucker unless he carries adequate cargo insurance. 33/

More Loss and Damage
Although 25 percent of the shippers stated that loss and damage on truck shipments of apples wera less then on rail shipments, 8 percent of the shippers stated the reverse.

Aside from the previously cited cases where entire shipments were lost through theft, this particular disadvantage is concerned with loss and damage to fruit through bruising and poor refrigeration or ventilation, or both. The praotice of loading as many as six layers of bushel baskets in a truck is claimed by some shippers to be the primary cause of bruising. 34/ Sufficient research has not been done to determine the accuracy of these opinions.

A few shippers stated that the refrigeration of rail shipments was superior to that of truck shipments because temperatures were more evenly controlled. In some cases, truckers had evidently waited too long before re-icing, and this delay had caused damage to the fruit.

Inadequate Service on Exports
More than half a million bushels of fresh apples were exported from the custom districts of New York, Naryland, Virginia, Florida, and New Orleans in 1952. A large percentage of these apples was grown in

32/ One shipper reported that he carried his own blanket cargo insurance policy to cover possible losses when engaging itinerant truckers. However, this additional expense is not practicable for most shippers.

33 / Interstate common and contract carriers are required by the Interstate Commerce Commission to carry $\$ 1,000$ of cargo insurance. The Commission has no authority, however, to require haulers of an exempt commodity to carry such insurance.

34/ The general practice is to load only 3 to 4 layers in a rail car. The heavier loss and damage conceded by most shippers to occur in rail shipments evidently stems from shifting of the load.
the Appalachian area. This export market outlet is of some interest to the area, especially to the large shippers.

About one-sevonth of the shippers in the survey reported that some portion of their 1952 crop was exported. In some cases shippers sold the apples directly to the foreign buyer. In other cases the sales were handled by a broker at the port of export. A substantial portion of the apples exported from the Appalachian area is probably sold by this latter method, that is, through brokers at the port cities.

Shippers mentioned that they had exported apples during the 1952 season to the following countries, which are listed in order of number of times mentioned: Cuba, Canada, Panama, Brazil, Venezuela, Great Britain, and Western Germany.

Although 14 percent of the shippers in the survey exported some portion of their 1952 orop, 5 percent stated that truck service on exports was inadequate. 35/ For example, shippers mentionsd that oftentimes shipments arriving at port cities had to remain in rail cars as long as a weok awaiting a vessel. Since rail cars are refrigerated; re-icing is all that is necessary to keep the fruit in good condition. The necessity of a quick turn-around time for trucks precludes this storage operation.

Shippers also pointed out that they found the railroads especially advantageous for export shipments to Cuba. Through use of the car ferry service operating between the port of Palm Beach, Fla., and Havana, Cuba, apples may be loaded into a rail car at the shippor's siding and unloaded from the same rail car by the importer in Cuba. This service eliminates extra handling and is claimed by shippers to be relatively inexpensive.

Lack of Uniform Rates

The lack of uniform or definite truck rates was mentioned as a disadvantage as it sometimes prevented entry to a mariset by a particular shipper. Shipments to highly competitive markets tend to be made on a relatively narrow margin of profit. Because truck rates on exempt commodities are not standardized, one shipper may, through superior bargaining power, be able to obtain lower rates than another shipper. The resulting savings on transportation costs may be sufficient to enable the favored shipper to undercut the delivered price of his competitor and thus obtain the business for himself.

Although this disadvantage is important to the four shippers who mentioned it, the great majority of shippers have found the truck rates sufficiently stable to permit them to carry on their business activities satisfactorily.

35/ In contrast to the above-mentioned viewpoints, one shipper found truck service for export shipments superior to that of rail where it was necessary to make delivery of several small shipments to more than one steamship pier at the port of export.

Other Disadvantages

The remaining disadvantages of truck shipment of apples may be lumped together, as only five of the surveyed shippers mentioned any of these. The points worth describing are the absence of warehousing at the market and the lack of any way of keeping track of shipments while in transit.

The inability to use trucks for storage of apples at destination was mentioned by two shippers. Although receivers would be more affected by this disadvantage than shippers, both shippers who mentioned it sell a substantial quantity of apples on a consignment besis. As a result, they are interested in the transportation factors affecting terminal market operations, as well as those at the shipping point.

For example, if the market happens to be dull at the time the rail car arrives, the consignee may decide to hold the apples in the car a day or so in anticipation of the market's strengthening. This procedure would not be possible for truck shipments since ordinarily they must be unloaded immediately. 36/ Oftentimes this results in the forced sale of apples which might have been held over for a few days.

The inability to know the whereabouts of a truck shipment while in transit was indicated by two shippers as a disadvantage. Under the car reporting service offered by some of the railroads, shippers and consignees are notified whenever a shipment is delayed in transit. They are notified. when the shipment resumes its journey and of the newly scheduled arrival time.

In the event of mechanical breakdowns or other factors causing delay, truckers often call the shipper and report the difficulty. However, because of the relatively short in-transit time for most truck shipments, there is perhaps less need for the more complete reporting service offered by the railroads.

36/ This disadvantage to the receiver of a truck shipment is moderated in at least 2 localities. Truckers have reported that buyers in the Pittsburgh, Pa., and Cleveland, Ohio, produce markets will unload the trucks only as the apples are sold. This may involve several hours delay.

CONCLUSIONS

A tronsportation situation in which one form of transport has achicved such an overwhelmingly dominant position is not necossarily in the best interests of shippers, carricrs, consumers, or the Nation, even though this position was attained by offoring superior service, lower rates, or both. The maintenonce of some degree of competition among different types of carriers has been recognized by Congress as necessary to the preservation of a good national transportation system. It is foresceable that a national emorgency may arisc which would require the facilities of both types of cerriers to handle adequately the increased volume of traffic.

If the growing percentage of truck shipments in the Appalachion apple belt were an isolated instance, there would be little causo for concern as to the effect on the future adequacy of the railroad segment of the national transportation system. But most students of transportation are well aware of the fact that for some years the railroads have been losing out to trucks in hauling many egricultural, as well as other, commoditics. If this decline continues, it can only result in a weakening of the entire rail transportation system.

In some cascs, perhaps, the railroads can do little about the situation. In other cases certain action can and should be taken. In this study, shippers stated that two of the principal advantages of truck transportation compared to rail were better and faster service and lower rates. Al though shippers do not expect rail transportation to equal the over-the-road time of trucks, they do expect cars to be spottcd for loading at the time promised. Perhaps some improvement could also be made in schedulc coordination at thosc terminals where apple shipments now have an unusually long layover period. Admittedly, this is a vcry complex problem in which the costs may prove to be prohibitive.

The stimulus to traffic obtainablc by lowering rail freight rates can be readily shown for the Appalachian area. As previously mentioncd, rail rates were rcduced approximately 22 percent in 1950 in order to meet truck competition. Reductions were applicable from Virginia and a few West Virginia origins to southern destinations. In the two full years following the rate reduction, rail shipments from Virginia were approximately double those of the year before the reduction. The figures cited in table 20 indicate that this increasc did not stem from a commensurate increase in production.

Table 20.--Commercial production and carlot shipments of fresh apples, Virginia, 1949-52

Item	:	1949	: 1950	: 1951	$: 1952$		Percentage increase in 1952 over 1949.
Production	:	1,000	1,000	1,000	1,000		Porcent
	: bushels		bushels	bushels	bushels	:	
	:	8,525	12,580	9,560	9,577	:	12
	:						
	:	Carlots	Carlots	Carlots	Carlots		
Shipments	:	572	939	1,137	1,178	:	106
	:						

Although the increase in rail shipments of apples from Virginia is impressive, the destination of these shipments must be known in order to determine whether the increase was a result of a reduction in rates. In table 21 rail carlot unloads of apples from Virginia are shown for several markets. The first four markets are among those which received the 1950 rail rate reductions on shipments from Virginia. The second group of markets, on the other hand, did not receive these reductions. As a result, from 1949 to 1952, whereas the first group registered an increase of 159 percent in rail unloads of apples from Virginia, the second group of cities showed no significant change.

Table 21. - Rail unloads of fresh apples from Virginia at selected markets 1949-52

Markets	:	1949	1950	1951	$\begin{aligned} & : 1952 \\ & \hline \end{aligned}$:	52 percentage change from 1949
	: Carlots		Carlots	Carlots	Carlots	:	Percent
Southern 1/	:					:	
						:	
Atlanta, Ga.	:	53	89	114	93	:	75
Memphis, Tenn.		26	30	39	71	:	173
Nashville, Tenn.	:	31	56	- 113	111	:	258
New Orleans, La.		17	12	32	54	:	218
Total	: 127		187	298	329	:	159
	:					:	
Other 2/	:					:	
Boston, Mass.	:	20	19	22	21	:	5
Chicago, 112.	:	4	10	12	4	:	3/-
Cincinnati, Ohio	:	27	23	33	23	:	-15
Cleveland, Ohio	:	7	4	1	1	:	3/ $=$
New York, N. Y.	:	1	4	1	17	:	$3 /-$
Philadelphia, Pa.	:	9	9	14	0	:	3/-
St. Louis, Mo.		2	4	6	1	:	$3 /-$
Total	:	70	73	89	67	:	-4

1 Received 1950 rail rate reductions on shipments from Virginia.
2/ Did not receive 1950 rail rate reductions on shipments from Virginia. 3/ Because the carlot figures were small, the percentage change was not significant.

Consequently, the extension of the 1950 reductions to other production localities within the Appalachian area, and to additional markets served by the apple belt, might be advisable. On the contrary, however, two of the railroads which made the reduction in 1950 have recently proposed that their rates on hauling apples into the South be increased by approximately 25 percent.

This study has indicated that a reduction in rail rates would result in an increase in traffic. The majority of the shippers in the survey said they would be willing to increase their use of rail transportation if the rates were reduced. A similar reaction was expressed by shippers regarding improvements in rail service. A situation favorable to the expansion of
this traffic is that nearly threewifths of the shippers interviewed are at present using the railroads even though for only a small portion of their total business.

The failuze on the part of the railroads to improve their services or to lower freight rates can lead eventarlly to the vítral disappearance of the Appalachion area's apple traffic from the railrcads.

[^0]: 1/ "Total crop" cxcludes that portion of the crop used on farms, not harvested, and excess cullage of harvested fruit--cstimated at 1,000,000 bushels.

[^1]: 5/ During the fall of 1953, local processcrs gavo an allowance for transportation to growers who shipped to their plants. This allowanco was mado primarily because of 2 factors: (1) A very short crop-the result of drought and late frost.conditions, and (2) intelligent, informod selling by the larger growers, who belanced their applc salcs between fresh and procossed. Several processors found it necessary to bring in apples from Michigan and Now York State.

[^2]: 9/ See U. S. Bureau of Agricultural Economics, Consumer Preferences Regarding ipples and Winter Pears, 1950, p. 38.

[^3]: 1/ Includes data for 78 shippers whose total shipments equaled 55 percent of the 1952 commercial crop for the Appalachian area-excludes approximately 1,000,000 bushels used on farms or waste.
 very large 150,000 bushels and over. 99 bushels; medium 12,000-49,999 bushels; large 50,000-149,999 bushels;

[^4]: 1/ Classification: Small $1,000-11,999$ bushels; medium 12,000-49,999 bushels; 1 arge $50,000-149,999$
 bushels; very large 150,000 bushels and over.
 $2 / T o t a l$ truck shipments in the large and very large shipper classification do not agree with the totals for these same shipper categories in table 5 because of the presence of a very large shipper who ships from 3 of the 4 producing States in the Appalachian belt. When his shipments are broken down by States, as shown in table 5, this shipper falls in the large category olass. In table 8, on the basis of his total truck shipments, he is classified as a very large shipper.

[^5]: $17 /$ Some shippers have expressed satisfaction with the rail service now provided at Lynchburg and Roanoke, both of which are southern Virginia mainline terminals located in the apple belt. The former city is served by 3 railroads, whereas the latter is served by 2 railroads. But main-line connections are scarce in the Appalachian apple belt; most communities there have only branch-line connections.

[^6]: 1/ A weighted average rate including adjustments for seasonal

[^7]: 22/ Some of the truckers interviewed indicated they were having great difficulty this season, 1953-54, in obtaining back-haul traffic after a northbound haul of citrus fruit or vegetables. As a result, they of ten made tho long run to Florida cmpty. These conditions were generally attributed to the short apple crop in the Appalachion area, and to a lessening of the opportunity for trip leasing. This latter factor was thought to reflect some declinc in general freight traffic.

[^8]: 23/ By making possible an expansion in market area, shippors realize a greater return. Increased expenditures are made for transportation, thus benefiting carriers; and consumers, in many cases, benefit through reduction in prices brought about by increased market competition.

[^9]: 31/ Two other shippers expressed an opposite viowpoint. They stated that a disadvantage of truck shipments is that there is no means of kecping track of them. See page 43.

