Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

A99.9
F76.32 U
$C_{r, 3}$

USDA Forest Service

Research Paper RM-98

December 1972

Rocky Mountain Forest and
Range Experiment Station
Forest Service
U.S. Department of Agriculture

Fort Collins, Colorado

by Bernard J. Erickson and Donald C. Markstrom

U. S. DEPT. OF AGRICULTURE NATIONALAGRICULTURALLIERARY RECEIVED

APR 101973
PREMENENT CERTIJN C' RENT SERIAL REOORUS

Preface and Acknowledgments

The computer program presented here was developed in a peripheral study in support of an analysis of the feasibility of roll laminating fiber overlays on low-grade ponderosa pine lumber. A part of that study involved determining economically and technically feasible methods for eliminating open defects in lumber to be used as overlay substrates. The overall study, done in cooperation with the Duke City Lumber Company, Albuquerque, New Mexico, and financed by the Economic Development Administration, U.S. Department of Commerce, is reported in USDA Forest Service Research Paper RM-97.

Several people, in addition to the authors, contributed to the development of the program. Arthur Bourke and John McElfresh, consultants to the Rocky Mountain Station on the roll laminating study, participated both in formulating the problem and writing the initial program. Hiram Hallock, wood technologist with the USDA Forest Products Laboratory, helped formulate the problem. Jacob Kovner, biometrician, and Lincoln Mueller and Roland Barger, wood technologists, Rocky Mountain Station, also provided guidance during the course of the study. Barger is now at the Intermountain Forest and Range Experiment Station, and Mueller is retired.

Abstract

A computer program, written in FORTRAN predicts the maximum yield of cuttings for softwood cut-up and edge- and endgluing operation. The program calculates cutting recovery (given cutting width and length constraints and defect locations on the board), and locates ripping saw kerfs.

Keywords: Programming (computers), softwood cut-up, end and edge gluing, dimension stock.

Predicting Softwood Cutting Yield by Computer

by
Bernard J. Erickson, Computer Programer, and
Donald C. Markstrom, Associate Wood Technologist
Rocky Mountain Forest and Range Experiment Station ${ }^{1}$

${ }^{1}$ Central headquarters maintained at Fort Collins, in cooperation with Colorado State University.

Contents

Page
Program CUTUP in Brief 1
Characterizing Boards and Defects 1
Using the Program 2
Program CUTUP 2
Program PERMU 3
Program CONST 3
Program RECVRY 4
Appendix 1: Sample Output from Programs 5
PERMU Output 5
CONST Output 6
RECVRY Output 8
Appendix 2: Source Listings for Programs 10
Program PERMU 10
Program CONST 11
Program RECVRY 13
Program DEFEDIT 15
Program CTDFCT 15

Predicting Softwood Cutting Yield by Computer

Bernard J. Erickson and Donald C. Markstrom

Program CUTUP in Brief

Currently, major emphasis in improving wood conversion efficiency is concentrated in three areas: (1) improving yields from the resource, (2) reducing waste and residues, and (3) reducing processing errors resulting from repetitive human decisions. The program described here can contribute to greater efficiency in all of these areas. Automated defect-sensing methods now being developed offer the possibility of feeding continuous defect data to a computer as input to the type of optimizing program described, thereby automating the whole cut-up decision process.

A computer program CUTUP to predict the maximum yield of cuttings obtainable from softwood lumber is described in this paper. The program calculates cutting recovery (given cutting width and length constraints and defect location on the board), and will predict the maximum yield of cuttings of a specified grade, for a softwood cut-up and edge- and end-gluing operation.

The conventional practice in softwood cutup operations is to first rip the board into prescribed cutting widths in a manner to maximize recovery, and then crosscut the full-boardlength cuttings to remove defects. The CUTUP computer program simulates this practice systematically, (1) locating full-board-length cuttings of specified widths and sequence to maximize recovery, (2) crosscutting to remove defects, and (3) measuring the areas of all cuttings of a specified length or longer. The recovered area excludes (1) the area of defects, (2) areas between defects, or between a defect and the end of the board, where the recoverable length is less than the specified minimum, and (3) areas of all saw kerfs. The maximum number of rips is also specified in the program.

This program differs fundamentally from computer programs developed to predict yield of cuttings from hardwood cut-stock operations, where the usual sawing practice is to alternately crosscut and rip. ${ }^{3}{ }^{3}$ Hardwood programs systematically scan the board to locate and measure

[^0]cuttings of prescribed width and length between defect areas, with the largest specified cutting considered first. The cuttings can then be removed from the board by starting with either a crosscut or rip, and alternating back and forth, taking as many cuts as possible during each operation. Softwood and hardwood programs are similar, however, in that the same format is used to record board and defect data on the input cards.

Characterizing Boards and Defects

Each board is considered to have X and Y axes, with its lower left corner at (0,0), its length along the X axis, and its width along the Y axis. The board size is described and defects are located by $1 / 4$-inch coordinates, which designate the lower left and upper right corners of the areas (fig. 1). All measurements are expressed in $1 / 4$-inch units, which can be used directly in calculating recovery of cut-up stock.

Data cards describing the boards and defects are punched in the following manner: The first card lists the board grade code in columns 6 and 7 , the board number in columns 32 through 36, and total number of defects in columns 69 through 72. The second card gives the coordinates of the board, and each of the remaining cards gives the coordinates of a single defect. The lower left Y coordinates of the board and the defects are punched in columns 1 through 3 and the X coordinates in columns 5 through 7. The upper right Y coordinates are punched in columns 13 through 15 and the X coordinates in columns 17 through 19. The sequence of the defect cards in the deck must be the same as that of the defects, from left to right across the X axis of the board.

The total number of cards for each board equals the number of defects plus two.

The program was run with a sample of 600 boards selected from surfaced yard lumber at the Duke City Lumber Company. One hundred boards were randomly selected in each of six categories: grades 3 Common and 4 Common, in nominal widths of 4,8 , and 12 inches.

The boards were examined and defects outlined. As a convenience, the boards were then photographed with color transparency film. The slides were projected at one-half scale on rearprojection translucent glass to facilitate measuring board and defect data.

Figure l.--Diagrammatic sketch of a grade 4 Common l- by l2-inch board, with associated program output data, illustrates the program developed for selective cut-up evaluation. Shaded areas represent defects that have been located by $X-Y$ coordinates and blocked out. Lined areas represent additional material lost in cutting out defects.

Using the Program

Boards of different species, sizes, and grades could be sampled and the program used to evaluate the following:

1. Area recovered using alternative rip combinations.
2. Efficiency (in percent recovery) obtained from alternative widths of boards, for specified rip widths.
3. Effects of grade on rip recovery, for given species and specified rip widths.
4. Effects of adding or deleting rip widths from the array now used.
5. Alternative costs of input stock of various species, grades, and widths, based on predicted potential.
The program can undoubtedly be used to evaluate many other situations.

Program CUTUP

Program CUTUP is a set of three main programs - PERMU, CONST, and RECVRY. Program PERMU prepares a table of all possible cutting combinations for the N cutting widths (with M saw blades) to be considered for a given board-width class. User-selected cutting combinations are input to program RECVRY, which fits the cuts to individual boards to obtain maximum recovery area. Program CONST has one subroutine, XOUT, which outlines or
"x's out" the defective areas of a board by relating defect, X, Y coordinates to computer core storage locations. The program prepares an input file of nonrecoverable board-defect areas, by specified cutting widths, for use in the RECVRY program. For boards 7.5 inches and wider, CONST requires considerable computer time. If narrower widths are to be processed, programs CONST and RECVRY may be run together as one program, with the output from CONST used directly as input to RECVRY. This eliminates the necessity of saving CONST output (Tape) for further processing by program RECVRY.

The board-defect data cards which are input to program CONST should be edited and error checked before use. If a large amount of data is to be processed, the data should be tape filed for ease of handling. A sample edit and card-totape program is included with the program listings in appendix 2.

The basic content and purpose of each program and subroutine is described in the sections that follow. The order and format of input control cards for each program are also specified. Variable names are defined in the source listings for each program. A sample output of an application of program CUTUP is shown in appendix 1, which also further explains the overall program operation.

Program PERMU, CONST, and RECVRY were originally written in the BASIC programing language for use on a time-sharing computer
system. The programs were modified, expanded, and rewritten in FORTRAN extended for use on a Control Data Corp. 6400 computer, ${ }^{4}$ and have been tested on the CDC 6400 computer system at the Colorado State University Computing Center.

Program PERMU

This program produces a table of possible cutting combinations for a specified board width, cutting or ripping widths, and cutting positions (kerfs). The computational procedure is based upon the principle that if one event A can take place in m ways, and a second event B can take place in n independent ways, then the number of ways in which both events can take place is mn . This principle can be extended to any number of independent events. The procedure was applied to the problem of cutting boards into different widths where each saw kerf is an event which can happen in m positions of the saw blade over a board. By expanding this technique, all combinations previously derived for narrower cutting widths and fewer cutting blades are saved for possible application in dealing with wider cutting widths and more cutting blades.

The procedure was used to process data involving three cutting widths of four, eight, and twelve $1 / 4$-inch units (Q.I.U.), and five kerfs or cutting positions. Sample board widths ranged from 14 to 46 Q.I.U. To accommodate additional cutting widths and/or cutting positions, test parameters and array dimensions would need to be changed, as specified by the analysis problem.

Program Control Card Type 1. FORMAT (315)

Column 1-5	IBWDT	Overall board width in $1 / 4$-inch Units (Q.I.U.)
6-10	NSIZE	Number of different cutting sizes or rip widths to consider, $M A X=5$
11-15	NSWBL	Number of machine saw blades available, MAX $=6$.

Program Control Card Type 2. FORMAT (515)

Column

1-5 KUT(I) Size of cutting width 1, in Q.I.U.
6-10 KUT(2) Size of cutting width 2, in Q.I.U.

[^1]| 11-15 | $\operatorname{KUT}(3)$ | Size of cutting width 3, in Q.I.U. |
| :--- | :--- | :--- |
| 16-20 | $\operatorname{KUT}(4)$ | Size of cutting width 4, in Q.I.U. |
| 21-25 | $\operatorname{KUT}(5)$ | Size of cutting width 5, in Q.I.U. |

Program CONST

This program constructs, in computer core storage, a board of variable width and length dimensions, and positions the location of defects in the board according to their coordinates. Board and defect coordinates are expressed in Q.I.U. to the X, Y coordinate system.

The amount of core storage available in the computer determines the size of boards which can be analyzed by this program. The array LWB (I,J), Length and Width of Board, is dimensioned according to the length (J) and width (I) of the largest boards to be analyzed in Q.I. U . If the largest boards to be processed are 11.5 inches by 16 feet, the array LWB(I, J) would be dimensioned $\mathrm{I}=46, \mathrm{~J}=768$, resulting in 35,328 computer core locations to store all possible locations of defects.

Input data are contained in the set of cards which specify the board and defect coordinate values for one board (described in Characterizing Boards and Defects). The defects are positioned in LWB according to increasing defect coordinates in the J, or length, dimension of LWB(I,J).

If a large amount of data is to be processed, and is arranged or sorted by some criteria such as increasing board numbers within a boardwidth class, an option is provided to analyze a selected sub-set from the complete file. This option is exercised by two control parameters labeled NBSTR and NBEND, where NBSTR is the number of the first board in the sub-set and NBEND is the number of the last board in the sub-set to be processed.

A user input parameter labeled LBTD is a test variable used for setting a minimum acceptable length between defects. If an area between two defects (or between a defect and the end or start of a board) is less than LBTD (in Q.I.U.), the area is blocked out and treated as a defect area in the final scan of the board to locate all defect areas.

For each input board, program CONST operates in the following manner:

1. The board ID or Header Card is read, setting the variables NGRD, (board grade class), NBRD (board number), and NDEF (number of defects in board).
2. A board coordinate card is read defining the X-dimension (Width) as the ordinate and the Y-dimension (Length) the abscissa of the board to be processed. This notation is
reversed from the normal X, Y notation because of computer core storage procedure.
3. A set of defect coordinate cards is read until an END-OF-BOARD data card is encountered ($\mathrm{IDXS}=999$).

The coordinates for each defect are positioned in an array by a pointer according to their order of occurrence within the board. Using the minimum length between defects test (LBTD), the defect array is scanned to find areas between defects which are less than LBTD. Defect location variables NX, LDS, and LDE are determined and passed to subroutine XOUT, along with the board array LWB, by the use of a COMMON statement. Subroutine XOUT then blocks out or "x's-out" the defined area of the defect in the board. This process continues until all defect areas have been positioned in the LWB array.

Indexes are now determined for a scan of the board to accumulate total defect area for NSIZE desired cuttings over a range of possible starting cut positions determined by board width. The total defect area for the board is written to an output file (Disk or Tape) for input to program RECVRY. The next board ID or Header Card is read and the process is repeated until an end-of-file is encountered in the board input data.

Program Control Card. FORMAT (315)
Column

1-5 LBTD | Minimum length between defects |
| :--- |
| limitation (Q.I.U.) |

6-10 NBSTR \quad Board number to start analysis
$11-15$ NBEND Board number to end analysis
Board Defect Data Card Deck
NDEF + two cards for each board to be processed
plus an END-OF-BOARD Card.

Program RECVRY

This program computes the nondefective areas in a board, and simulates a number of possible cuttings, limited by the width of the board and the combinations of cutting sizes desired, to determine the best combination to use for maximum recovery.

Input for the program is the board-defect area file (Tape or Disk) from program CONST, and a user-selected set of cutting combinations generated by program PERMU to be evaluated. The cutting combinations are input to the program in a DATA statement, array KPCT. The coding order is explained in the program listing.

The program reads a title card and an input parameter control card. The parameter LPRM
is the lower limit of combined cuttings to be evaluated from the combination sets in array KPCT. Only combined cuttings greater than LPRM are used to evaluate the best fit, thus eliminating cutting combinations which do not use the entire width of the board. The variable NSIZE and the array KUT are set from values coded in DATA KSZE.

The board ID and board coordinates are read from the input file, along with board defect areas. Areas of nondefect are computed from defect area and area of the board, and saved. Indexes are set for selecting cutting combinations from array KPCT to obtain maximum recovery for the board. The number of saw kerfs which can be placed within the bounds of the board is determined. A saw kerf may be adjacent to the lower or upper edges of a board, or it may lie within the board itself. There is no provision in this program for straightening the edges and ends of the board to assure a straight board. A warped board may be utilized, however, by crosscutting into shorter lengths or ripping into narrow widths, by assigning appropriate defect coordinates. The sum of the cutting widths and saw kerfs cannot exceed the board width plus one unit.

A total recovery area is computed from the nondefective area data for a selected combination of cuttings. This value is stored as the "best" until a larger recovery area is obtained from a different combination of cuts, which then replaces it as the "best." After all acceptable combinations have been evaluated for best fit, the individual board recovery summary is printed out. Totals are accumulated for total recovery output by board grade and size class until an end-of-file is encountered in the input data file.

Program Control Card Type 1. FORMAT (4A10)

Column		
1-40	title	Short title to identify data being processed.
Program	Control Card	d Type 2. FORMAT (415)
Column		
1-5	LBTD	Minimum length between defects control: same value as in CONST.
6-10	LPRM	Lower limit of combined cuttings control: used to select combinations of cutting sizes.
11-15	NBSTR	Board number to start analysis for recoverable area.
16-20	NBEND	Board number to end analysis for recoverable area.

Board numbers (NBRD) to be included in the analysis should be \geq NBSTR and \leq NBEND.

Appendix 1: Sample Output From Programs

The sample output following is a set of computer printout pages obtained from running the PERMU and CONST/RECVRY programs. The board input data consisted of a set of 10 boards from the 14 Q.I.U. (3.5-inch) board width class. Five boards, numbered 291-295, were grade 3 Common with a length of 768 Q.I.U. (16 feet), and five boards, numbered $301-305$, were grade 4 Common with a length of 576 Q.I.U. (12 feet). The minimum acceptable length between defects was set at 36 Q.I.U. (9 inches). Only those cutting combinations which resulted in a total cut (width) greater than 8 Q.I.U. and less than or equal to 14 Q.I.U. (total board width) were evaluated. Cutting combinations evaluated included (numbers in Q.I.U.), $(4,8),(8,4),(12)$. The only other possible combination ($4,4,4$) was excluded to decrease the number of 1 -inchwide cuttings.

PERMU Output
The first line is a summary of the input values assigned to the program control parameters IBWDT, NSIZE, NSWBL, and the array KUT.

IBWDT $=46$ Q.I.U.	
	Maximum width of sample boards, $11.5-$ inches
NSIZE $=3$	
NSWBL $=4$	
Number of cutting sizes to consider	
Number of machine saw blades	
available	

The total number of possible combinations for three sizes and four blades is the computed value 120 . Only those combinations which can be made using four positions within the limits of the board are printed out for user consideration.

Column 1 of the output table is a combination (COMBO) number used to reference the cutting combination. Columns 2-7 contain cutting combinations. The number 6 is used to fill out the table, and has no significance as far as combinations are concerned. The numbers 1 , 2 , and 3 in the table are referenced to the cutting sizes stored in array KUT so that $1=4$, $2=8$, and $3=12$ Q.I.U. The number in column 8 is the total units cut for the given cutting combination and is used as a test limit in program RECVRY. The table output is ordered by increasing values in column 8.

NBR OF DIFFERENT CUT COMBINATIONS $=120$

55	1	3	2	1	6	6	28
59	2	1	3	1	6	6	28
61	1	2	3	1	6	6	28
69	3	1	1	2	6	6	28
71	2	2	1	2	6	6	28
73	1	3	1	2	6	6	28
77	2	1	2	2	6	6	28
79	1	2	2	2	6	6	28
85	1	1	3	2	6	6	28
95	2	1	1	3	6	6	28
97	1	2	1	3	6	6	28
103	1	1	2	3	6	6	28
30	3	3	2	6	6	6	32
36	3	2	3	6	6	6	32
38	2	3	3	6	6	6	32
48	3	3	1	1	6	6	32
54	3	2	2	1	6	6	32
56	2	3	2	1	6	6	32
60	3	1	3	1	6	6	32
62	2	2	3	1	6	6	32
64	1	3	3	1	6	6	32
72	3	2	1	2	6	6	32
74	2	3	1	2	6	6	32
78	3	1	2	2	6	6	32
80	2	2	2	2	6	6	32
82	1	3	2	2	6	6	32
86	2	1	3	2	6	6	32
88	1	2	3	2	6	6	32
96	3	1	1	3	6	6	32
98	2	2	1	3	6	6	32
100	1	3	1	3	6	6	32
104	2	1	2	3	6	6	32
106	1	2	2	3	6	6	32
112	1	1	3	3	6	6	32
39	3	3	3	6	6	6	36
57	3	3	2	1	6	6	36
63	3	2	3	1	6	6	36
65	2	3	3	1	6	6	36
75	3	3	1	2	6	6	36
81	3	2	2	2	6	6	36
83	2	3	2	2	6	6	36
87	3	1	3	2	6	6	36
89	2	2	3	2	6	6	36
91	1	3	3	2	6	6	36
99	3	2	1	3	6	6	36
101	2	3	1	3	6	6	36
105	3	1	2	3	6	6	36
107	2	2	2	3	6	6	36
109	1	3	2	3	6	6	36
113	2	1	3	3	6	6	36
115	1	2	3	3	6	6	36
66	3	3	3	1	6	6	40
84	3	3	2	2	6	6	40
90	3	2	3	2	6	6	40
92	2	3	3	2	6	6	40
102	3	3	1	3	6	6	40
108	3	2	2	3	6	6	40
110	2	3	2	3	6	6	40
114	3	1	3	3	6	6	40
116	2	2	3	3	6	6	40
118	1	3	3	3	6	6	40

CONST Output

The first line is a statement of the input values assigned to the program control parameters LBTD $=36$, NBSTR $=291$, and NBEND $=$ 305. The next 10 lines are the input data for the first board, followed by the computed defect area for three cutting sizes for that board. Complete output for all the test boards is printed out for the sample run. When a large number of boards is to be evaluated, complete output, for only the first board in the input set is printed to reduce the number of output pages required. The remaining boards in the input set are indicated only by their ID, which contains the grade class, board number, number of defects in the board, and the overall coordinates of the board. The last line is a statement indicating the run was successfully completed, and gives the total number of boards processed.

MIN. LENGTH BETWEEN DEFECTS CONTROL FOR THIS RUN IS 36 291-305

3	291		8	
0	0		14768	
11	366		14374	
0	411		7421	
0	444		1473	
4	451		12463	
0	537		2547	
0	574		3582	
8	667		13671	
3	697		13710	
	1	480	960	1896
	2	440	1120	1776
	3	292	824	1332
	4	260	760	0
	5	260	824	0
	6	380	824	0
	7	380	824	0
	8	220	0	0
	9	252	0	0
10		252	0	0
11		252	0	0
12		0	0	0
13		0	0	0
14		0	0	0
	292		5	
0	0		14768	
	208		9232	
	299		13316	
	514		4525	
	533		10550	
	637		10642	
	1	240	656	984
	2	308	656	984
	3	328	656	984
4	4	328	656	0
5	5	252	504	0

6		252	504	0	1	224	584	1200
7		252	504	0	2	224	728	1200
8		252	0	0	3	256	728	1200
9		252	0	0	4	292	728	0
10		156	0	0	5	232	680	0
11		68	0	0	6	224	520	0
12		0	0	0	7	224	520	0
13		0	0	0	8	224	0	0
14		0	0	0	9	260	0	0
					10	260	0	0
	293		7		11	136	0	0
	0		14768		12	0	0	0
	31		$3 \quad 37$		13	0	0	0
	113		14123		14	0	0	0
	508		7514					
	525		5530		4301		7	
	543		14544		00		14576	
	609		14618		110		1426	
	711		14716		295		7100	
1		292	584	1164	0146		5153	
2		292	664	1164	2181		9186	
3		292	736	1164	7322		11327	
4		144	480	0	0498		2576	
5		144	480	0	3547		9555	
6		184	480	0	1	492	1024	1848
7		220	480	0	2	492	1024	1848
8		100	0	0	3	296	632	1260
9		100	0	0	4	296	632	0
10		100	0	0	5	316	840	0
11		100	0	0	6	176	560	0
12		0	0	0	7	176	560	0
13		0	0	0	8	156	0	0
14		0	0	0	9	260	0	0
					10	124	0	0
	294		5		11	124	0	0
	0		14768		12	0	0	0
	245		14252		13	0	0	0
	295		14355		14	0	0	0
10	359		14381					
	646		14658		4302		12	
	708		14717		00		14576	
1		240	480	1368	040		547	
2		240	480	1368	0226		4237	
3		240	648	1368	10281		14293	
4		240	912	0	3291		9298	
5		240	912	0	12307		14346	
6		240	912	0	9348		14361	
7		324	912	0	9384		14391	
8		456	0	0	0438		6448	
9		456	0	0	6475		9479	
10		456	0	0	0505		7512	
11		456	0	0	0544		6576	
12		0	0	0	12551		14576	
13		0	0	0	1	424	1304	2592
14		0	0	0	2	424	1304	3192
					3	424	1648	3192
3	295		7		4	652	1728	0
0	0		14768		5	608	1640	0
11	75		1484		6	580	1984	0
	175		4190		7	348	1376	0
	431		12439		8	256	0	0
	545		13554		9	256	0	0
	661		14669		10	540	0	0
0	679		5689		11	540	0	0
0	737		10768		12	0	0	0

－かっのUトWNH		 WOONO	$\stackrel{\sim}{\sim}$
owwwarNNN 		www whff N～N 	00
	NNNコO 		00
$000000 \begin{array}{r}n \\ N \\ 0 \\ 0 \\ 0 \\ 0\end{array}$	$00000000000 \stackrel{\infty}{N}$ NN		00

10	96	0	0
11	96	0	0
12	0	0	0
13	0	0	0
14	0	0	0

END－OF－RUN．TOTAL BOARDS PROCESSED $=$

RECVRY Output

The first line is a short title to describe the type of boards processed by the program，and a summary of input values assigned to the pro－ gram control parameters LBTD $=36$ ，LPRM $=$ 8，NBSTR $=291$ ，and NBEND $=305$ ．Output consists of percent recovery for each individual board，percent total recovery for all boards，per－ cent total recovery for grade 3 Common boards， percent total recovery for grade 4 Common boards，and a summary of the number of times each available cutting combination was selected for the individual boards．

Output for the first board，number 291，shows that combination number 5 generated the＂best＂ recovery area．From the PERMU output sample， combination number 5 is a $(2,1)$ cutting or an 8 and 4 Q．I．U．cut．Next is a set of six numbers which position the saw kerfs for combination number 5．The first saw kerf is located at unit 0 of the board．Units 1 through 8 are used for the first cut（8 Q．I．U．）．The second saw kerf is located at unit 9 ．Units $10,11,12$ ，and 13 are used for the second cut（4 Q．I．U．）and the third saw kerf is located at unit 14．A saw kerf loca－ tion of zero indicates a position adjacent to the bottom edge of the board．If the saw kerfs and cutting widths do not account for all available units in the board as shown by boards 292，295， and 302 ，two adjacent saw kerfs of one unit each are indicated，and only the upper saw kerf location is printed．The total clear area recovered is 8,004 Q．I．U．，the total area of the board is 10，752 Q．I．U．（ 14×768 ），and the percent recovery for the board is $74,442(8,004 / 10,752 \times 100)$ ．This format is repeated for each board in the input file．

```
TEST 4-INCH 10 BRDS MIN LGT=36 11/27/72
36 8 291 305
```

BOARD NBR	$=291$	
COMBD NBR	$=$	5
0	9	14
0	15	17
AREA RECOVERED	$=8004$	
AREA OF BOARD	$=$	10752
PRCNT RECOVERY	$=74.4420$	

BOARD NBR $=292$
COMBO NBR $=5$

```
O
AREA RECOVERED = 8492
AREA OF BOARD = 10752
PRCNT RECOVERY = 78.9807
BOARD NBR = 293
COMBD NBR = 5
    0
AREA RECDVERED = 8532
AREA OF BUARD = 10752
PRCNT RECOVERY = 79.3527
BOARD NBR = 294
COMBO NBR = 5
O
AREA RECOVERED = 8280
AREA OF BOARD = 10752
PRCNT RECOVERY = 77.0089
BOARD NBR = 295
COMBO NBR = 5
O
AREA RECOVERED = 8496
AREA OF BCARD = 10752
PRCNT RECOVERY = 79.0179
BOARD NBR = 301
COMBO NBR = 7
    0
AKEA RECOVERED = 5860
AREA OF BOARD = 8064
PRCNT RECOVERY = 72.6687
BOARD NBR = 302
COMBO NBR = 7
    0
AREA RECOVERED = 5112
AREA OF BOARD = 8064
PRCNT RECOVERY = 63.3929
BOARD NBR = 303
COMBO NBR = 7
0
AREA RECOVEREU = 5884
AREA OF BOARD = 8064
PRCNT RECOVERY = 72.9663
BOARD NBK = 304
COMBO NER = 7
    O 5 14 15
AREA RECOVERED = 5908
AREA OF BOARD = 8064
PRCNT RECOVERY = 73.2639
BOARD NER = 305
COMBO NBR = 7
            0
AREA RECOVERED = 6460
AREA OF BOARD = 8064
PRCNT RECOVERY = 80.1091
TOTAL AREA RECOVERED = 71028
TOTAL AREA OF BOARDS = 94080
PRCNT TOTAL RECOVERY = 75.4974
```


PRCNT RECOVERY PER CUTTING SIZE	BOARDS $-3 C$		
26.68899	51.07143	0.00000	0.00000
PRCNT RECOVERY PER CUTTING SIZE	BOARDS-4C		
24.88095	47.59921	0.00000	0.00000
COMBO NBR	NBR TIMES USED		
5	5		
7	5		

END OF RUN. BOARDS 291 - 305 PROCESSED

An example of the System and Program Control Cards for running program CONST/ RECVRY which generated the sample output follows:

JLIMITS, CM55000, T30, PR30. ACOUNT NBR., NAME. FTN.
REQUEST, TAPE7, D0000, 01. CONST OUPUT (DISK)
LGO.
REWIND (TAPE7,LGO)
RECVRY INPUT (DISK)
RFL(43000)
FTN.
LGO.
7/8/9
CONST Source Deck.
7/8/9
CONST Program Control Card (LBTD,NBSTR,NBEND).
Board Defect Data Cards (NDEF+3 Cards/Board).
7/8/9
RECVRY Source Deck.
7/8/9
RECVRY Program Control Card Type 1 (TITLE).
RECVRY Program Control Card Type 2 (LBTD, LPRM, NBSTR, NBEND).
6/7/8/9 END-OF-JOB Card.
If Programs CONST and RECVRY are to be run as two separate programs, request TAPE7 to be a magnetic tape output file from CONST and specify it as a tape input file to Program RECVRY.

Appendix 2: Source Listings for Programs

Program PERMU

PROGRAM PERMU
1 (INPUT, OUTPUT, TAPE5=INPUT,TAPE6=OUTPUT, TAPE1)
C
C CONVERSION OF PROG NAME JI (BASIC) TO FDRTRAN. THIS PROGRAM CONSTRUCTS C THE PERMUTATION, COMBINATION TABLE FOR NSIZE(NBR OF BRO WOTH SIZES) C ANO NSWBLINBR OF MACHINE SAW BLAOES). INITIAL INPUT IS TAKEN FROM THO CAROS. OUTPUT IS A PRINT LISTING ANO IF OESIREO A TAPE FILE(TAPEI). C O. MARKSTROM $10 / 72$ RMFRES BJE

C

C
IBWNO 1 (315)
IBWDT=BOARO WIOTH 14,30,46 UNITS
NSIZE=NBR OF OIFFERENT SIZES TO CONSIOER. MAX=5
NSHBL=NBR OF SAW BLAOES FOR YOUR MACHINE. MAX=6
c-IINPUT CARO 2 (5I5)
KUT(I)=SIZES FOR NSIZE SIZES ON CARO 1. MAX=5
C--PROGRAM VARIABLE NAMES
P(I, J)=PERMUTATION ARRAY FOR 6 SAW BLAOES, 5 CUTTING WIOTHS C(I)=COMBINATION ARRAY FOR 6 SAH BLAOES, 5 CUTTING HIOTHS LSUM=TOTAL NBR OF OIFFERENT CUT COMBINATIONS IN ARRAY C(KK) NSHB $=$ SAW BLAOE NBR., 1 TO NSWBL+1
NCMB $=$ COMBINATION (COMBO) NBR., 1 TO 1023. (FOR 3 SIZES,5 BLAOES)
KERF=ACCUMULATOR FOR 1/4-INCH SAW KERFS
MWOH=ACCUMULATOR FOR CUTTING WIOTHS IN $1 / 4-I N C H$ UNITS
INTEGER P(7,1023),C(10)
OIMENSION KUT(10)
OIMENSI ON
REWINO 1
C
C--INITIALIZE ARRAYS ANO VARIABLES
$005 I=1,10$
$C(I)=0$
$5 \begin{gathered}\text { KUT (I) }=0 \\ \text { CONTINUE }\end{gathered}$
5 CONTINUE
$008 \quad \mathrm{Nl}=1,7$
OO $7 \mathrm{~N} 2=1,1023$
$\mathrm{P}(\mathrm{N} 1, \mathrm{~N} 2)=0$
7 CONTINUE
B CONTINUE
LSUM=0
C--REAO ANO PRINT OUT INPUT CAROS 1 ANO 2. WRITE TAPE FILE 1 IO RECORO REAO(5,100) IBWOT,NSILE,NSWBL
100 FORMAT(5I5)
$\mathrm{KK}=\mathrm{NSWBL}+1$
0010 N $2=1,102$
$0(N 1, N 2)=6$
CONTINUE
10 CONTINUE
REAO (5,100) (KUT(I), I=1,5)
$\operatorname{REAO}(5,100)$ (KUT(I),I=1,5)
HRITE(6,102) IBWOT,NSI2E,NSWBL,(KUT(I),I=1,5)
102 FORMAT(IHI,3I $5,5 \mathrm{X}, 5 \mathrm{I} 5,1)$
WRITE(1,103) NSIZE, (KUT(I), I=1,5)
103 FDRMAT (615)
C
--OETERMINE COMBINATIONS FOR NSIZE CUTS ANO KK SAW BLADES
$K=0$
$C(2)=$ NSI $2 E$
LSUM=LSUM + NSIZE
$\mathrm{I}=0$
$0020 \mathrm{~K}=2, \mathrm{KK}$
$I=K+1$
C(I)=NSI2E**K + C(I-1)
LSUM=LSUM + NSI LE**K
.
CONTINUE
C
NCUT $=$ C ($1-1$)
WRITE (6,104) NCUT
104 FORMAT(IH . FNBR^{2} OF OIFFERENT CUT COMBINATIONS $\left.=* 16,1\right)$
C
C--FILL ARRAY P FOR NSIZE CUTS ANO KK SAW BLADES
$\mathrm{N}=1$
$\mathrm{I}=0$
$I=0$
$C(1)=$
0050 NSWB=1,KK
$K=C(N S W B)$
$I=N S W B-1$
IF(I.EQ.O) KZ=1
IF(I.EQ.O) GO TO 25
KZ $=$ NSI2E**I
$K=K+1$
$25 K C Z=K+K Z$
OO 30 NCMB=K,KC2 IF (NCMB.GT.1023) GO TO 35
$P(N S H B, N C M B)=N$
30 CONTINUE
$35 \mathrm{~N}=\mathrm{N}+1$
$K=K+K Z$
IF(N.GT.NSIZE) GO TO 40
IF(K.GE.LSUM) GO TO 45
GO TO 25
$40 \mathrm{~N}=1$
$\begin{array}{lll}\mathrm{GO} & \text { TO } 25\end{array}$
$45 \mathrm{~N}=1$
50 CONTINUE

C--HIOTH FROM HHICH CUT CAN BE MAOE
KERF $=0$
$\mathrm{MWOH}=0$
$0075 \mathrm{NCMB}=1.1023$
0055 NSWB $=1$, KK
$L=P$ (NSWB, NCMB)
IF(L.EQ.6) GO TO 60
$M W O H=M W O H+K U T(L)$
KERF=KERF + 1
55 CONTINUE
GO TO 70
60 MSUM $=\mathrm{MWOH}+\mathrm{KERF}$
IF(MSUM.LE.IBHOT) GO TO 65
$\mathrm{P}(7, \mathrm{NCMB})=99$
GO TO 70
$65 \mathrm{P}(7, \mathrm{NC} M B)=\mathrm{MWOH}$
$70 \mathrm{KERF}=0$
KERF $=0$
MHOH $=0$
75 CONTINUE
C
C--PRINT OUT PERM-COMB TABLE, ARRAY P, OF POSSIBLE CUTS FROM A BOARO C--4 UNITS(I-INCHI TO IBWOT UNITS WIOE. KTMP $=0$
$0085 \mathrm{~N}=4$, I BHOT
0080 NCMB $=1,1023$
IF(P(7,NCMB).NE.N) GO TO BO
MWOH = P (7,NCMB)
$K T M P=P(6, N C M B)$
IF(KTMP.NE.O) GO TO 78
KTMP $=6$
$78 \operatorname{WRITE}(6,106)$ NCMB, (P(I,NCMB),I $=1,5), K T M P, M W O H$
106 FORMAT(1H.8I5)
WRITE(1,108) NCMB, (P(I,NCMB), I=1,5), KTMP, MWOH
$10 B$ FORMAT(8I5)
80 CONTINUE
85 CONTINUE
C
ENOFILE 1
REWINO 1
CALL EXIT
ENO

Program CONST

PROGRAM CONST

I (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT, TAPET)

C--SET BRD Y-DIR START COORD. = 1 IBYS
$C--R E A O$ BOARD OEFECT COORO. CARO(S
20 READ (5,106) IDXS,IOYS,IOXE,IOYE IF(IDXS.EQ.999) GO TO 35
C IF(KFRST.NE.O) GO TO 22 WRITE(6,107) IOXS,IOYS,IDXE,IDYE
22 LDS = $10 Y$ + 1
LDE = I OYE
IF(IDXE.LE.IBXE) GO TO 25
IOXE = IBXE
25 KK=IDXE -
IF (IOXS.EQ.O.ANO.KK.EQ.O) GO TO 32
C--STORE OEFECT COORD. IN ARRAY T AND SIMULATE DEFECT IN ARRAY LWB DO 30 I=IDXS,KK
$\mathrm{N}=\mathrm{I}+1$
$\mathrm{K}=\mathrm{P}(\mathrm{N})$
$T(N, K+1)=1$ DYS
$T\left(N_{p} K+2\right)=I D Y E$
$P(N)=P(N)+2$
$\mathrm{NX}=\mathrm{N}$
CALL XOUT
30 CONTINUE
GO TO 20
$32 K=P(1)$
$T(1, K+1)=10 Y S$
$T(1 ; K+2)=I D Y E$
$P(1)=P(1)+2$
$\mathrm{NX}=1$
CALL XOUT
C
C--DETERMINE IF MIN LENGTH BETWEEN OEFECTS EXISTS. IF NO, BLOCK DUT
[--(X-OUT) CLEAR AREA BETWEEN OEFECTS IN ARRAY LWB.
35 CDNTINUE
KENO = IBXE
$0050 \mathrm{~N}=1$, KEND
$K=P(N)$
$P(N)=P(N)+1$
$T(N, K+1)=1 B Y E$
$T(N, K+2)=1 B Y E$
$K K=P(N)$
$0045 \mathrm{M}=3, \mathrm{KK}, 2$
IF(T(N,M) - T(N.M-1).EQ.D) GO TO 45
IF(T(N,M) - T(N,M-1).LT.LBTD) GO TO 40
IF(T(N,M).EO.IBYE) GO TO 45 GO TO 45
$40 \operatorname{LOS}=T(N, M-1)+1$
$L O E=T(N, M+1)$
$\mathrm{NX}=\mathrm{N}$
CALL XOUT
45 CONTINUE
$P(N)=2$
50 CONTINUE
C
--SET INDEXS FOR BOARD SCAN TO FIND DEFECT AREAS
DO $85 \mathrm{~N}=1$, KEND
$\mathrm{KK}=\mathrm{D}$
$I S=N$
DO $8 \mathrm{D} K=3.5$
$I=K-K K$
$K K=K K+2$
$I E=N+K U T(I)$
LIMIT=IBXE - KUT(I)
IF(N.GT.LIMIT) GO TO BO
C--FIND MIN-MAX DEFECT COORD. FDR BDARD SCAN. IF MAXD(M)=O, ND DEFECTS
C--FOR RANGE OF SCAN.
DO $54 \mathrm{M}=\mathrm{IS}, \mathrm{IE}$
IF(MAXD(M).EQ.O) GO TO 54
GO TO 56
54 CONTINUE
GO TO BD
56 IBYS=MINDIIS
$I B Y E=M A X D(I S)$
DO 6D M=IS,IE
IF(MIND(M).LT.IBYS) $18 Y S=M I N D(M)$
$I F(M A X D(M) . G T \cdot I B Y E) \quad I B Y E=M A X D(M)$
60 CONTINUE
C--MAKE X,Y SCAN DF bDARD ARRAY LHB TD FIND DEFECT AREA. IF DEFECT FDUNO
C--ACCUMULATE DEFECT AREA IN DFCT(I).
NCLRY=D
DO $75 \mathrm{~J}=\mathrm{IB}$ YS, IBYE
DO $65 \mathrm{M}=\mathrm{IS}$,IE
IF(LWB(M,J).EQ.NBRD) GO TO 68
65 CONTINUE
NCLRY=NCLRY + 1
GO TO 75
C--TEST FOR MIN DISTANCE BETHEEN DEFECTS IN LENGTH(Y) OIRECTION
68 IF(NCLRY.EQ.D) GO TO 70
IF(NCLRY.GE.LBTD) NCLRY=O
$\begin{array}{ll}\text { IF (NCLRY.GE.LBTD) } & \text { NCLRY=0 } \\ \text { IF (NCLRY.GE.LBTD) } & \text { GD TO } 70\end{array}$
IF (NCLRY•GE.LBT
MULT $=\operatorname{KUT}(I)+1$
MULT $=$ KUT (I) + 1
IADD=NCLRY * MULT
IADD=NCLRY *
DFCT(I) $=$ DFCT(I) +IADD
NCLRY=0
C 70 DFCT(I) $=$ DFCT(I) + KUT(I) + 1
75 CONTINUE
8D CONTINUE
P(1)=2

```
C--LIST DEFECT AREAS FDR FIRST BOARD ANO WRITE FILE 7 FOR ALL BOARDS
C--FOR RECVRY INPUT. BRANCH AND DO NEXT BOARD.
    R(TENG.NE,OJ GD TO B2
    FDRMAT(1HB)N,DFCT(1),DFCT(2),DFCT(3)
    10B FDRMAT(1H,I4,3(2X,I5))
    82 WRITE(7) DFCT(1),DFCT(2),OFCT(3)
        OFCT(1)=0
        DFCT(2)=0
        OFCT(3)=0
    B5 CONTINUE
        KDUNT=KDUNT * 1
        KFRS T=1
        GD TO 10
    C 87 KRECS=NDEF +
        DD B8 NSKP=1,KRECS
        READ(5,106) IDUM1,IDUM2,IDUM3,IDUM4
    BB CDNTINUE
        GO TD 12
    90 WRITE (6,110) KOUNT
    110 FORMAT\1HO,5X,*END-DF-RUN. TOTAL BDARDS PROCESSEO =*I41
        ENOFILE 7
        RENIND 
        RENI
        SUBRDUTINE XDUT
    C RDUTINE GD SUB 490 FROM PROG CONST (BASIC)
    THIS ROUTINE SIMULATES THE BRO DEFECT AREAS BY STORING THE BRO NUMBER
    (NBRO) IN ALL X,Y LDCATIDNS OF A DEFECT. IT IS X-ING DUT, DR BLOCKING
    DUT THE AREA OF DEFECT AS SPECIFIED BY THE INOICATORS NX,LOS, ANO LDE.
    C MAX AND MIN DEFECT LIMITS IN THE Y DIRECTIDN ARE ALSO DETERMINED.
C MAX AND MIN DEFECT LIMITS IN THE Y DIRECTION ARE ALSO DET
        COMMDN LHB(14,768),MIND(14),MAXD(14),LDS,LDE,NBRD,NX
        OD 10 I=LDS,LDE
        HB(NX,I)=NBRD
    - CONTINUE
IF(LDE.GT.MAXD(NX)) MAXD(NX)=LDE
    IF(LOS.LT.MINO(NX)) MIND(NX)=LDS
    RETURN
    ENO
```


Program RECVRY

PROGRAM RECVRY
1(INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
THE MODIFIED X,Y BOARO COORDINATES (DEFECT AREA) FROM FILE TAPET
GENERATEO IN PROG CONST AND OUTPUTS THE BEST CUT TO MAXIMIZE RECOVER-
ABLE AREA FOR INOIVIOUAL BOARDS. THE PERMU-COMBO TABLE TO BE USEO TO
EVALUATE SELECTEO BRO SIZES IS CODED IN DATA ARRAY KPCT. THESE VALUES
WILL CHANGE OEPENOING ON BRD SIZE AND A. NEW OATA LIST MUST BE INSERTED
IN SOURCE DECK. D. MARKSTRDM $10 / 72$ RMFRES BJE MODF. D6/72
--INPUT CONTRDL CARO TYPE 1 (4A10)
TITLE(I)=IDENTIFICATION CARD FOR RUN
NPUT CONTROL CARD TYPE 2 (415)
LBTD=MIN. LENGTH BETWEEN OEFECTS, SAME AS IN PROG CONST.
LPRM=LOWER LIMIT OF COMBINED CUTTINGS TO BE CONSIDEREO FROM THE
PERMU-COMBO SETS IN ARRAY KPCT. CUTTINGS GT LPRM ARE USED
TO EVALUATE BEST FIT UNTILL A STOP INOICATOR, 999 IS FOUNO.
NBSTR=NBR OF THE BRO TO START ANALYSIS EXP. 201
NBEND=NBR OF THE BRO TO END ANALYSIS EXP. 299
--PROGRAM VARIABLE NAMES.
NSIZE=NBR OF CUTTING SIZES TO CONSIDER MAX OF 5
KUT(I) $=$ CUT SIZES IN QTR UNITS FOR NSIZE CUTS EXP. $4,8,12,0,0$
NGRD=BRO GRADE COOE
NBRO=BRO NUMBER
NDEF=NBR OF OEFECTS IN BRD
NDEF=NBR OF OEFECTS IN BRD
IBXS=BRO X-DIR(WIOTH) START COORO. IBXS=0
IBYS=BRD Y-OIR(LNGTH) START COORD. IBYS=D
$\begin{array}{llll}\text { IBYS=BRD } & Y \text {-OIR(LNGTH) START COORD. IBYS=D } \\ \text { IBXE=BRO X-OIR(WIDTH) ENO } & \text { COORO. IBXE=14,3D,OR } 46\end{array}$
$\begin{array}{llll}\text { IBXE=BRO } & \text { X-OIR(WIDTH) ENO } & \text { COORO. IBXE } \\ \text { IBYE=BRO } & \text { Y-OIR(LNGTH) } & \text { END,OR } 46 \\ \text { COORO. IBYE=576,672,OR } 768\end{array}$
IBYE=BRO Y-OIR(LNGTH) ENO COORO. IBYE=576,672,OR 768
NCMB=C OMBINATION(COMBO) NUMBER
KKS $1=$ COMBO CUT SILE $1 \quad$ COOE $1=4,2=B, 3=12$ UNITS
KKS2=COMBO CUT SILE $2 \quad$ COOE $1=4,2=8,3=12$ UNITS
KKS3=COMBO CUT SILE 3 CODE $1=4,2=B ; 3=12$ UNITS
KKS $4=$ COMBO CUT SIZE $4 \quad$ COOE $1=4,2=8,3=12$ UNITS
KK S5 = COMBO CUT SIZE $5 \quad$ COOE $1=4,2=8,3=12$ UNITS
KKS6=COMBO CUT SIZE $6 \quad$ COOE $1=4,2=8,3=12$ UNITS
NTCUT=TOTAL UNITS CUT FOR COMBO NCMB(SAWKERFS NOT INCLUOEO)
CLEAR(I,J)=WORK ARRAY TO OETERMINE CLEAR AREA OF BOARO
RGRSZ(I,J)=ARRAY TO ACCUMULATE RECOVERY PER BOARO GRAOE ANO SIZE
SCMBN(I)=ARRAY OF SELECTEO COMBO NBRS
IGRO(I) = IOTAL AREA RECOVEREO BY GRAOE
JGRD(I)=TOTAL AREA OF BOAROS BY GRAOE
INTEGER CLEAR(6,5D),RGRSZ(5,6), SCMBN(13D),TITLE(4),P1,P2,P3,P4,P5,
1P6, CN
OIMENSION KUT(9),IGRO(9),JGRO(9),KSZE(6)
OIMENSION KPCT(56)
C
c--DATA LIST STATEMENTS. KPCT IS OEPENOENT ON SIZE OF BROS EVALUATEO.
C - INCLUDE ONE MORE COMBO SET THEN OESIREO TO TERMINATE SEARCH WITH
C--NCMB (KPCT(IDX)) SET $=999$. KPCT IS FOR IBXE=14 BOARO WIOTH.

OATA KSZE/3,4,8,12, D,0/
OATA KPCT/1, $1,6,6,6,6,6,4,2,2,6,6,6,6,6,8,4,1,1,6,6,6,6,8,3,3,6,6$, $16,6,6,12,5,2,1,6,6,6,6,12,7,1,2,6,6,6,6,12,999,1,1,1,1,1,1,99 /$
C--ZERO OUT ARRAYS ANO REAO CONTROL CAROS 1 ANO 2 $K A=0$
$K A=0$
$K S A R=0$
$K S A B=0$
$K S A B=0$
$K S L T=1$
KSLT $=1$
REWINO 7
REWINO
$00 \quad I=1,6$
$\begin{array}{lll}\text { OO } 2 & \mathrm{I}=1,6 \\ \text { OO } 2 & \mathrm{~J}=1,50\end{array}$
$2 \operatorname{CLEAR}(I, j)=0$
$004 \quad \mathrm{I}=1,5$
$004 \mathrm{~J}=1,6$
$4 \operatorname{RGRSZ}(I, J)=0$
$006 \quad I=1,130$
$6 \operatorname{SCMBN}(I)=0$
DO $10 \quad 1=1,9$ $\operatorname{KUT}(1)=D$
IGRO(I $i=0$
1D JGRO(I)=0
REAO(5,1D0) TITLE
10D FORMAT(4A1D)
REAO (5,1D2) LBTO,LPRM,NBSTR,NBENO
102 FORMAT(4I5)
WRITE $(6,104)$ TITLE,LBTO,LPRM,NBSTR,NBENO
104 FORMAT(1H1,9X,4A1D,4I5,//)
NSI LE=KSZE(1)
$0015 \quad I=1,5$
$15 \operatorname{KUT}(I)=\operatorname{KSZE}(I+1)$
INPUT GENERATEO BY PROG CONST. IO, BRO COORO., OEFECT AREAS I $0 X=1$
REAO (7) NGRO,NBRO, NOEF
IF(EDF(7)) 90,25
25 READ (7) IBXS, IBYS, IBXE, IBYE
IF (NBRO. LT. NBSTR) GO TO 27
IF (NBRO.GT.NBENO) GO TO 90
GO TO 28
c
$2 B M 1=I B X E$
$0030 \mathrm{~J}=1, \mathrm{Ml}$
$\operatorname{REAO}(7) \operatorname{CLEAR}(1, J), \operatorname{CLEAR}(2, J), \operatorname{CLEAR}(3, J)$

30 CONTINUE
IF(KSLT.EQ.O) GO TO BO
C
C
C--USING DEFECT AREAS FROM PROG CONST, COMPUTE CLEAR AREAS OF BOARD $0040 \mathrm{I}=1$, NSI ZE
MULT=KUT(I)*IBYE
MI = ($(I B X E-K U T(I))+1)$
$0035 \mathrm{~J}=1$, M1
$\operatorname{CLEAR}(I, J)=\operatorname{MULT}-\operatorname{CLEAR}(I, J)$
35 CONTINUE
40 CONTINUE
GO TO 50
$\begin{array}{ll}\mathrm{C} \\ \mathrm{C} & 0045 \mathrm{~J}=1, \text { I BXE }\end{array}$
C $\operatorname{WRITE}(6,112) \mathrm{J}, \operatorname{CLEAR}(1, \mathrm{~J}), \operatorname{CLEAR}(2, \mathrm{~J}), \operatorname{CLEAR}(3, \mathrm{~J})$
C 112 FORMAT(IH,418)
C 45 CDNTINUE
C--SELECT A CUTTING COMBINATION FROM ARRAY KPCT
5D CONTINUE
52 NCMB $=K P C T(I D X)$
KKSI $=K P C T(I O X+1)$
$K K S 2=K P C T(I D X+2)$
KKS3 $=$ KPCT $(I D X+3)$
KKS4 $=$ KPCT $(1 D X+4)$
KKS5 $=$ KPCT(IOX+5)
KKS6 $=$ KPCT(IDX+6)
NTCUT=KPCT(IDX+7)
IF(NTCUT.EQ.99) GO TO 75
$10 X=10 X+8$
IF (NTCUT.LE.LPRM) GO TO 52
KX=IBXE - NTCUT
C--KX IS NBR OF SAW KERF CUTS WITHIN THE BOARO OIMENSIONS IBXS-IBXE
C--EVALUATE SELECTEO CUTTING COMBINATION FOR MAX CLEAR AREA, STORE IN KA
$007 \mathrm{D}=1, \mathrm{KX}$
$11=(K U T(K K S 1)+N+1)$
$11=(K U T(K K S 1)+$
$J 1=I 1+(K X-N)$
$\mathrm{JI}=\mathrm{IL}+(K X-N)$
$K S=C L E A R(K K S 1, N)$
$K S=C L E A R(K K S I, N$
$D O$ WB NI=II,JI
$K S 1=C L E A R(K K S 2, N 1)+K S$
$K S 1=C L E A R(K K S 2, N 1)+K S$
$I 2=(K U T(K K S 2)+N 1+1)$
$I 2=(K U T(K K S 2)+N 1+1)$
$J 2=I 2+(K X-((J I-I 1)+N))$
$0066 \mathrm{~N} 2=12, \mathrm{~J} 2$
$K S 2=C L E A R(K K S 3, N 2)+K S 1$
$13=(K U T(K K S 3)+N 2+1)$
$\mathrm{J} 3=\mathrm{I} 3+(\mathrm{KX}-(\mathrm{J} 2-\mathrm{I} 2)+(\mathrm{Jl}-\mathrm{I} 1)+\mathrm{N}))$
0064 N3 = $13, \mathrm{~J} 3$
$K S 3=C L E A R(K K S 4, N 3)+K S 2$
$14=($ KUT $($ KKS4 $)+N 3+1)$
$\mathrm{J} 4=14+(K X-((\mathrm{J} 3-13)+(\mathrm{J} 2-12)+(\mathrm{J} 1-11)+N))$
0062 N4 $=14, \mathrm{~J} 4$
KS4 =CLEAR (KKS5,N4) +KS3
$15=(K U T(K K S 5)+N 4+1)$
$\mathrm{J} 5=15+(K X-((\mathrm{J} 4-14)+(\mathrm{J} 3-13)+(\mathrm{J} 2-12)+(J 1-11)+N))$
0060 N5 = I5, J5
$K S 5=C L E A R(K K S 6, N 5)+K S 4$
IF (KS5.GT.KA) GO TO 85
58 KS5=D
6D CONTINUE
62 CONTINUE
64 CONTINUE
66 CONTINUE
68 CONTINUE
70 CONTINUE
GO TO 52

C--OUTPUT INOIVIOUAL BOARO RESULTS, PCNT RECOVERY BY BRO
75 IF(KA.EQ.D) GO TO BD IF(KA.EQ.D) GO TD
WRITE (6,116) NBRD
116 FORMAT(1H,9X,*BOARO NBR $=*(44)$ WRITE $(6,118) \mathrm{CN}$
118 FORMAT(1H.9X,*COMBO NBR $=$ * 14) WRITE $(6,120)$ P1,P2,P3,P4, P5, P6
120 FORMAT(IH,9X,6I4) WRITE $(6,122)$ KA
122 FORMAT (1H,9X,*AREA RECOVEREO $=$ *I6) $K B=I B X E$ \# I $B Y E$ WRITE 6,124) KB
124 FORMAT (1H , 9X,*AREA OF BOARO $=$ (16) AR=FLOAT (KA) $A B=F L O A T(K B)$ $P R=(A R / A B) * 1 D D$. WRITE $(6,126)$ PR
126 FORMAT(1H,9X,*PRCNT RECOVERY $=* F 8.4,1)$
$\mathrm{Pl}=\mathrm{P} 1+1$
$\mathrm{P} 2=\mathrm{P} 2+1$
$\mathrm{P} 3=\mathrm{P} 3+1$
$P 4=P 4+1$
$P 5=P 5+1$

C
C--ACCUMULATE RESULTS BY GRADE ANO CUTTING SIZES SCMBN(CN)=SCMBN(CN) +1
$K S A B=K S A B+K B$
$K S A R=K S A R+K A$
IGRO(NGRO) $=I G R O(N G R O)+K A$
$J G R O(N G R O)=J G R D(N G R O)+K B$
RGRSZ (NGRO,L1) =RGRSZ (NGRO,L1) + CLEAR(L1,P1)
RGRSZ (NGRD,L2) $=$ RGRSZ (NGRO,L2) + CLEAR(L2,P2)
RGRS Z (NGRO,L3) $=$ RGRSZ (NGRO,L3) + CLEAR (L3,P3) RGRSZ (NGRO, L4) $=$ RGRSZ (NGRO,L4) +CLEAR $(L 4, P 4)$ RGRSZ (NGRO, L5) =RGRSZ (NGRO,L5) + CLEAR(L5,P5) RGRSZ(NGRO,L6) $=\operatorname{RGRSZ}(N G R D, L 6)+\operatorname{CLEAR}(L 6, P 6)$

C
BO KA=0
KSLT=1
00 B2 $I=1,6$
$00 \mathrm{B2} \mathrm{~J}=1,50$
B2 CLEAR $(I, J)=0$
GO TO 20
C
B5 CN=NCMB
$K A=K S 5$
$\mathrm{P} 1=\mathrm{N}-1$
$\mathrm{P} 2=\mathrm{N} 1-1$
P3 $=$ N2 -1
P4
P
N
N
P5 $5=$ N4 -1
P6 $=$ N5 -1
P6 $=$ NS
$\mathrm{L} 1=$ KKS 1
$L 1=K K S 1$
$L 2=K K S 2$
$L 2=K K S 2$
$L 3=K K S 3$
$L 3=K K S 3$
$L 4=K K S 4$
$L 4=K K S 4$
$L 5=K K S 5$
$L 5=$ KKS 5
$L 6=$ KKS 6
$L 6=K K S 6$
$G O T O 5 B$
c
C--OUTPUT ALL BOARO RESULTS, PCNT RECOVERY BY GRAOE, BY SILE HITHIN GRO 90 WRITE(6,200) KSAR
200 FORMAT (1HO. $9 \times$, *TOTAL AREA RECOVEREO $=* I B$)
WRITE $(6,202)$ KSAB
202 FDRMAT (IH , $9 X$, FTOTAL AREA OF BOARDS $=$ *IB)
$A R=F L O A T(K S A R)$
$A B=F L D A T(K S A B)$
$P R=(A R / A B) * 100$.
HRITE 6,204$)$ PR
204 FORMAT(IH.9X,*PRCNT TOTAL RECOVERY = *FB.4.1)
WRITE (6,206) IGRO(3)
206 FORMAT (1HO,9X; FTOTAL AREA RECOVEREO-3C = *IB)
HRITE $(6,20 B)$ JGRO(3)
$20 B$ FORMAT(IH, $9 X$; F TOTAL AREA OF BOAROS-3C $=$ *IB) $A R=F L O A T(J G R O(3))$ $A B=F L O A T(I G R O(3))$
IFIAR.EQ.0.0) $\quad P R=0.0$
IFIAR.EQ.O.O) GO TO 92
$P R=(A B / A R) * 100$
92 HRITE $(6,210)$ PR
210 FORMAT(1H,9X,*PCNT RECOVERY BOAROS-3C $=$ FFB.4. 11
C
WRITE(6,212) IGRD(4)
212 FORMAT(1HO,9X;*TOTAL AREA RECOVEREO-4C = $=(B)$
HRITE $(6,214)$ JGRO(4)
214 FORMAT (1H,9X;*TOTAL AREA OF BOAROS-4C = *IB)
$A R=F L O A T(J G R D(4))$
$A B=F L O A T($ IGRO (4))
IF(AR.EQ.0.0) $P R=0.0$
IF(AR.EQ.O.O) GO TO 94
$P R=(A B / A R)$ 100.
94 WRITE $(6,216)$ PR
216 FORMATIIH,9X,*PCNT RECOVERY BOAROS-4C = *FB.4.11
C
HRITE(6,21B)
$21 B$ FORMATIIHO,9X,*PRCNT RECOVERY PER CUTTING SIZE BOAROS-3C*)
IF (JGRO(3).EQ.O) GO TO 96
$A R=F L O A T(J G R D(3))$
$A B=F L O A T(\operatorname{RGRS} 2(3,1))$
PR1=(AB/AR) * 100 .
$A B=F L O A T(R G R S Z(3,2)$
PR2 $=(A B / A R) * 100$.
$A B=F L D A T(R G R S Z(3,3))$
$P R 3=(A B / A R) * 100$.
$A B=F L O A T(\operatorname{RGRSZ}(3,4))$
PR4 $=(A B / A R) * 100$.
GO TO 9B
96 PRI $=0.0$
$P R 2=0.0$
$P R 3=0.0$
PR $4=0.0$
9B WRITE(6,220) PR1,PR2,PR3,PR4
220 FORMAT(1H,7X,4(2X,F9.5))
c
WRITE $(6,222)$
222 FORMAT (1HO,9X, *PRCNT RECOVERY PER CUTTING SIZE BOARDS-4C*) IF (JGRO (4).EQ.O) GO TO 140
$A R=F L O A T(J G R O(4))$
$A B=F \operatorname{LDAT}(\operatorname{RGRSZ}(4,1))$
$A B=F L D A T(R G R S Z(4,1)$
$P R 1=(A B / A R) * 100$.
$A B=F \operatorname{LOAT}(\operatorname{RGRSZ}(4,2))$
$A B=F L O A T(R G R S Z(4,2)$
$P R 2=(A B / A R) * 100$.
$\mathrm{PR} 2=(A B / A R)$
$A B L D A T$
$(\operatorname{RGRSZ}(4,3))$
$A B=F L D A T(R G R S Z(4,3)$
$P R 3=(A B / A R) * 100$.
$P R 3=(A B / A R)$
$A B=F L O A T(R G R S Z(4,4))$
$P R 4=(A B / A R) * 100$.
GO TO 142
140 PRI $=0.0$
$P R 2=0.0$
PR $3=0.0$
PR $4=0.0$
C
142 HRITE $(6,220)$ PR1,PR2,PR3,PR4
WRITE (6,224)
224 FORMAT ($1 \mathrm{HO}, 9 \mathrm{X}_{\mathrm{p}}$ \#COMBO NBR NBR TIMES USEO *)
DO $144 \mathrm{KC}=1,130$
IF(SCMBN(KC).EQ.0) GO TO 144
WRITE $(6,226) \mathrm{KC}, \operatorname{SCMBN}(K C)$

226 FORMAT(1H,9X,I5,10X,I5)
144 CONTINUE
C
C-ENO DF RUN. REHIND TAPE7, PRINT MESSAGE, CALL EXIT
C
HRITE $(6,22 B)$ NBSTR,NBEND
22B FORMAT (1HO,9X,*END DF RUN. BOAROS*15;* - *I5,* PROCESSEO*) REWINO 7
CALL EXIT
ENO

Program DEFEDIT

PROGRAM DEFEDIT (INPUT, OUTPUT,TAPE5=INPUT,TAPEG=OUTPUT)
C PROG TO EDIT DATA CARDS FOR CUTUP-REPAIR-RECOVERY STUDY D.MARKSTROM DIMENSION DLW(30), DLL(30), DUW(30), DUL(30), IDH(B)
$\operatorname{READ}(5,200)$ IDH

200 FORMAT (8A10) WRITE 6,1$)$ IDH
WRITE $(6,1)$ IDH
FORMAT $(1 \mathrm{HI}, 5 \mathrm{x}, 8 \mathrm{~A} 10,1)$
C--READ AND CHECK HEADER CARD.
3 READ 5,10$)$ CLASS, NUMBD, NDEF
FORMAT $5 \mathrm{X}, \mathrm{R} 3,22 \mathrm{x}, \mathrm{I} 6,32 \mathrm{x}, \mathrm{I} 4)$
IFIEOF(5)) 100,9
IFICLASS .EQ. 3R 3C.OR. CLASS .EQ. 3R 4C) GOTO 11
GO TO 14
11 IF(NDEF . LT. 1) GO TO 14
GO TO 13
14 WRITE $(6,2)$ NUMBD
2 FORMAT ($\# 0 \%, 10 \mathrm{X}$, \#ERROR IN THE FIRST CARD OF BOARD $\#$, I 41
C--READ BOARD COORDINATE CARD. CHECK LWR COORD. LT UPR COORD..
13 READ 5,20) PLW, PLL, PUW, PUL
20 FORMAT(F3.0, $1 \mathrm{X}, \mathrm{F} 3.0,5 \mathrm{X}, \mathrm{F} 3.0,1 \mathrm{X}, \mathrm{F} 3.0)$
IF(PLW.GE. PUW. OR. PLL.GE. PUL) GO TO 46
IF(PUW. .NE. 14.)GO TO 21 GO TO 25
21 IF(PUW.NE. 30.)GOTO 22 GO TO 25
22 IFIPUW .EQ. 46.)GO TO 25 GO TO 46
25 IF(PUL.NE. 576.) GO TO 40 GO TO 35
40 [F(PUL.NE. 672.)GO TO 41 GO TO 35
41 IF(PUL.EQ. 76B.)GO TO 35
47 FORMAT $(1 H 0$) NUMBD,CLASS, PLW, PLL,PUW, PUL 3 , H HAS AN ERROR IN THE BO 1 ARD COORD. CARD*, $2(2 X, F 5.0,2 x, F 5.0))$
C--READ DEFECT COORDINATE CARD(S).
35 DO $36 \mathrm{I}=1$, NDEF
READ(5,20) DLW(I),DLL(I), DUW(I), DUL(I)
36 CONTINUE
C--CHECK LWR COORD. LT UPR COORD. AND FOR DEFECTS OUTSIDE BRD COORD.. DO $60 \mathrm{I}=1$, NDEF
IF(DLW(I)) $56,52,52$
52 IF(DLL(I)) $56,54,54$
54 IF(DLW(I).GT.PUW) GO TO 56 IF(DUW(I).GT.PUW) GO TO 56 IF(DLLII).GT.PUL) GO TO 56 IF(DUL(I).GT.PUL) GO TO 56 IF(DLW(I).GE.DUW(I)) GO TO 56 IF(DLL(I).GE.DUL(I)) GO TO 56 GO TO 60
56 WRITE $(6,57)$ I $\operatorname{NUMBD,DLW(I),~DLL(I),~DUW(I),~DUL~(I)~}$
 $12(2 x, F 5.0,2 x, F 5.0))$
60 CONTINUE
C--CHECK FOR OVERLAP OF DEFECTS
IF (NDEF-1) 3,3,62
$62 \mathrm{Jl}=\mathrm{NDEF}-1$
DO $74 \mathrm{~J}=1, \mathrm{Jl}$
$\mathrm{J} 2=\mathrm{J}+1$
DO $74 \mathrm{~K}=\mathrm{J} 2$, NDEF
$\operatorname{IF}(D U L(J)-D L L(K)) 74,64,64$
$64 \operatorname{IF}(D L L(J)-D U L(K)) 66,66,74$
66 IF(DUW(J)-DLW(K)) 74,6B,6B
68 IF(DLW(J)-DUW(K)) $70,70,74$
70 WRITE(6,72) J,NUMBD,DLW(J),DLL(J),DUW(J), DUL (J)
72 FORMAT(1HO,10X, \#DEFECT CARD*I3, $\#$ BOARD NBR.*I4,* HAS OVERLAP*, 12(2X,F5.0,2X,F5.0))
74 CONTINUE
C
100 CONTINUE
CALL EXIT END

Program CTDFCT

1 (INPUT, OUTPUT,TAPE5 = INPUT, TAPE6=OUTPUT, TAPE1)
PRJG TJ WRITE BOARD DEFECT DATA CARDS ON TAPE(FILE I) FOR INPUT TO PROG
C CONST. A DUMMY RECORD, CONTAINING $999,0,0,0$, IS WRITTEN AS AN END-OF-BOARD
C INDICATOR. INPUT IS A SET OF DEFECT CARDS GROUPED BY BRD-WIDTH CLASS
C SUCH AS ALL 4-INCH, 8-INCH, OR 12-INCH BRDS.
C D.MARKSTROM REPAIR STUDY 02/71 BJE
DIMENSION LSTID(B)
c
REWIND 1
KDUMY $=0$
KTREC=0
KEVD=0
LAST $=0$
NGRD=0
NBRD=0
NDEF $=0$
I $X S=0$
I $Y S=0$
I $X E=0$
I YE $=0$
C--READ LIST ID CARD TO IDENTIFY OUTPUT (BA10) READ 5,100) LSTID
100 FORMAT(BA10)
WRITE 6,102$)$ LSTID
102 FORMAT(1H1,5X,BA10)
C
C READ BRD DEFECT CARDS AND OUTPUT TO TAPEI. LIST FOR MASTER RECORD.
10 READ $(5,104)$ NGRD, NBRD,NDEF
104 FORMAT $(5 X, I 2,24 X, I 5,32 X, I 4)$ IF(EOF(5)) 900,15
15 LAST=NBRD WRITE (1,106) NGRD,NBRD,NDEF, KDUMY
06 FORMAT(4I4)
WRITE (6,10B) NGRD,NBRD,NDEF,KDUMY
IOB FURMAT (1HO,10X,4I5)
$K E N D=N D E F+1$
READ $(5,110)$ IXS, IYS, IXE, IYE
110 FORMAT(I $3,1 \mathrm{X}, \mathrm{I} 3,5 \mathrm{X}, \mathrm{I} 3,1 \mathrm{X}, \mathrm{I} 3$) WRITE(1,106) IXS, IYS,IXE,IYE WRITE $(6,112)$ IXS,IYS,IXE,IYE
112 FORMAT (1H, $10 \mathrm{X}, 4 \mathrm{I} 5$)
20 CONTINUE
I XS =999
I YS $=0$
I $X E=0$
I YE $=0$
WRITE (1,106) IXS, IYS, IXE, IYE
WRITE $(6,112)$ IXS,IYS,IXE,IYE
I $X S=0$
$K T R E C=K T R E C+K E N D+2$
GO TO 10
C END OF CARD INPUT. TERMINATE RUN.
900 ENDFILE 1
REWIND 1
WRITE $(6,114)$ LAST,KTREC
114 FORMAT(1HO,5X,*END-OF-RUN. NBR OF LAST BOARD ON FILE = $=14$; * TOTAL 1 RECS WRITTEN ON FILE $=$ \# $[5)$
CALL EXIT
END

Erickson, Bernard J., and Donald C. Markstrom.
1972. Predicting softwood cutting yield by computer. USDA
For. Serv. Res. Pap. RM-98, 15 p. Rocky Mt. For. and Range
Exp. Stn., Fort Collins, Colo.
A computer program, written in FORTRAN predicts the maximum yield of cuttings for softwood cut-up and edge- and endgluing operation. The program calculates cutting recovery (given cutting width and length constraints and defect locations on the board), and locates ripping saw kerfs.

Keywords: Programming (computers), softwood cut-up, end and edge gluing, dimension stock.

Erickson, Bernard J., and Donald C. Markstrom.
1972. Predicting softwood cutting yield by computer. USDA

A computer program, written in FORTRAN predicts the maximum yield of cuttings for softwood cut-up and edge- and endgluing operation. The program calculates cutting recovery (given cutting width and length constraints and defect locations on the board), and locates ripping saw kerfs.

Keywords: Programming (computers), softwood cut-up, end and

Keywords: Programming (computers), softwood cut-up, end and

[^0]: ${ }^{2}$ Englerth, G. H., and D.E. Dunmire. Programing for lumber yield. For. Prod. J. 16(9): 67-69. 1966.
 ${ }^{3}$ Wodzinski, Claudia, and Eldona Hahm. A computer program to determine yields of lumber. U.S. Dep. Agric., For. Prod. Lab., 33 p. Madison, Wis. 1966.

[^1]: ${ }^{4}$ The use of trade and company names is for the benefit of the reader; such use does not constitute an official endorsement or approval of any service or product by the U. S. Department of Agriculture to the exclusion of others that may be suitable.

