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Preface

Few personal computers—indeed few computers of any kind—

have been as thoughtfully designed or as attractive to people

P"! who enjoy programming as the Commodore 128. It has sev
eral environments, optimized disk access, 16 memory config

urations, and dozens of special codes, escape sequences, and

screen controls. It's a generously equipped toolbox for people

who like to customize their computers and their software. And

it offers the programmer a set of tools which are hitherto un

matched in variety and power in a consumer computer.

It represents the best of a breed: the eight-bit machine.

These computers are built on chips which work with one byte

at a time—the 8502 chip in the 128 and the 6502 chip upon

which most of the first consumer computers were built. They

are a technology in its twilight, but the 128 has significant

strengths and could well survive for years as a model of what

personal computers can be.

The 68000 chip is emerging—Commodore's Amiga, Atari's

ST, and Apple's Macintosh all use it—and no one can turn

back the clock. This new 68000 is bigger, faster, and much

more flexible than eight-bit chips. It can manipulate four bytes

at a time and directly access massive amounts of memory. It

doesn't need to switch banks, and it races along at eight times

the speed of the older chips. It's the end of an age.

Nevertheless, excellence can and often does appear at the

end of an age. Bach, probably the finest musician ever, sum

marized and synergized the music of his time. He embodied

pi the best of what was then known. As it turned out, his sum

maries and synergism have proven timeless and durable.

There has been more dramatic music since, equal music per-

(jmm\ haps, but no better music. The Commodore 128 is a complex,

full, and rich summation of the best that is possible with an

eight-bit machine architecture. It is a classic programmer's

j—1 computer. You can spend years exploring its abilities.

However, the heart of a computer is only accessible via

machine language. Several years ago I decided to learn to pro-

j""! gram in machine language, the computer's own language. I

— understood BASIC fairly well and I realized that it was simply

not possible to accomplish all that I wanted to do with my
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computer using BASIC alone. BASIC is sometimes just too slow. j /

I faced the daunting (and exhilarating) prospect of learn- {—'

ing to go below the surface of my computer, of finding out

how to talk directly to a computer in its language, not the | f

imitation English of BASIC. As I was to discover, something (—■>

amazing lies beneath BASIC.

Few events in learning to use a personal computer have \ )

had more impact on me than the moment that I could in- <—'

stantly fill the TV screen with any picture I wanted because of

a machine language program I had written. I was amazed at

its speed, but more than that, I realized that anytime large

amounts of information were needed onscreen in the future—

it could be done via machine language. I had, in effect, created

a new BASIC "command" which could be added to any of my

programs. This command—using a SYS instruction to send the

computer to my custom-designed machine language routine—

allowed me to have previously impossible control over the

computer.

BASIC might be compared to a reliable, comfortable car.

It will get you where you want to go. Machine language is like

a sleek racing car—you get there with lots of time to spare.

When programming involves large amounts of data, music,

graphics, or games, speed can become the single most im

portant factor.

.After becoming accustomed to machine language, I de

cided to write an arcade game entirely without benefit of

BASIC. It was to be in machine language from start to finish. I

predicted that it would take about 20 to 30 hours. It was a

space invaders game with mother ships, rows of aliens, sound

... the works. It took closer to 80 hours, but I am probably

more proud of that program than of any other I've written. , >

After I'd finished it, I realized that the next games would —I
be easier and could be programmed more quickly. The mod

ules handling scoring, sound, screen framing, delay, and ^ »

player/enemy shapes were all written. I only had to write < /

new sound effects, change details about the scoring, create

new shapes. The essential routines were, for the most part, al- ^ *

ready written for a variety of new arcade-type games. When 1 i

creating machine language programs, you build up a collection

of reusable subroutines. For example, once you find out how ^ >

to make sounds on your 128, you change the details, but not i 1
the underlying procedures, for any new songs.

uVI
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The great majority of books about machine language as

sume a considerable familiarity with both the details of

microprocessor chips and with programming technique. This

book assumes only a working knowledge of BASIC. It was de-

signed to speak directly to the amateur programmer, the part-

time computerist. It should help you make the transition from

BASIC to machine language with relative ease.

You'll quickly discover that machine language is your key

to the excellence and power waiting within Commodore's 128.

M you^tefer to purchase a disk coirttaTOrig the4pp§

cx^enieirt eoup#i m lie bacJt or tat loi
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~ Why Machine Language?

H
Sooner or later, many programmers find that they want to

learn machine language. BASIC is a fine general-purpose tool,

*■"") but it has its limitations. Machine language (often called

' -1 assembly language) performs much faster. BASIC is fairly easy
to learn, but most beginners do not realize that machine lan

guage can also be easy. And, just as learning Italian goes

faster if you already know Spanish, if a programmer already

knows BASIC, much of this knowledge will make learning

machine language easier. There are many similarities.

This book is designed to teach machine language on the

Commodore 128 to those who have a working knowledge of

BASIC. For example, Chapter 9 is a dictionary of BASIC com

mands. Following each BASIC command is a machine lan

guage routine which accomplishes the same task. In this way,

if you know what you want to do in BASIC, you can find out

how to do it in machine language.

To make it easier to write programs in machine language

(called ML from here on), most programmers use a special

program called an assembler. This is where the term assembly

language comes from. ML and assembly language programs

are both essentially the same thing. Using an assembler to cre

ate ML programs is far easier than being forced to look up and

then POKE each byte into RAM memory. That's the way it

used to be done, when there was too little memory in comput

ers to hold languages (like BASIC or assemblers) at the same

time as programs created by those languages. The old-style

r*—} hand-programming was very laborious.

'—[ There is an assembler at the end of this book called
LADS, for Label Assembly Development System. It will let

you type in ML instructions (like INC 2) and will translate

them into the right numbers and POKE them for you wher

ever in memory you decide you want your ML program to be

located. LADS will help you in a variety of other ways as

well. It was designed to offer you a fast, convenient, and effec

tive ML programming environment, a way of writing pro

grams which is both natural and familiar.

ML instructions are like BASIC commands; you build an

ML program by using the ML instruction set A complete,

IX
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descriptive table of all the 8502 ML instructions can be found ) ,

in Appendix A. Whenever you see a three-letter abbreviation Lj
(like INC) in this book that you don't recognize, it's an ML

instruction and you can look it up in Appendix A, where , ,

you'll find its purposes, modes, and syntax fully described. ! J
It's a little premature, but if you're curious, INC 2 will in

crease the number in your computer's second memory cell

(the second byte of RAM memory) by one. If 15 is the number LJ
currently in cell 2, it will become a 16 after INC 2. Think of it

as "increment address two." Like BASIC, ML has a series of

commands which you use to communicate with the computer

when you write a program. ML commands are always three-

letter abbreviations, like INC, and LADS will help you write

your ML programs using these commands and numbers that

you generally add to the commands as additional information,

like INC 2.

Throughout the book you'll be learning how to handle a

variety of ML instructions, and LADS will be of great help.

You might want to familiarize yourself with it. Knowing what

it does (and using it to enter the examples in this book), you

will gradually build your understanding of ML, hexadecimal

numbers, and the extraordinary range of new possibilities

open to the computerist who knows ML. Knowing ML, being

able to talk directly to your machine, changes things so much

that it's like getting a whole new computer, a much more

powerful computer.

Seeing It Work

Chapters 2-8 each examine a major aspect of ML where it dif

fers from the way BASIC works. In each chapter, examples

and exercises lead the programmer to a greater understanding

of the methods of ML programming. By the end of the book, \ j
you should be able to write, in ML, most of the programs and

subroutines you will want or need. ,

Let's examine some advantages of ML, starting with the ^ )

main one—ML runs extremely fast.

Here are two programs which accomplish the same thing.

The first is in ML, and the second is in BASIC. They get re- } j
suits at very different speeds indeed as you'll see:

Machine Language { >

169 1 160 0 153 0 4 153 0 5 lJ
250 153 0 6 153 0 7 200 208 241 96
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I ! 5 FOR I = 1 TO 1000: PRINT "A";: NEXT I

These two programs both print the letter A on the screen

p-j 1000 times. The ML version takes up 21 bytes of RAM (Ran-

- - ■ dom Access Memory). The BASIC version takes up 45 bytes

and takes about 30 times as long to finish the job. If you want

'—> to see how quickly the ML works, you can POKE those num-

'■ ■' bers somewhere into RAM and run the ML program with a
SYS command to the little program. (For this and other ex

ample programs in this book which directly store characters to

the screen RAM, please switch to 40-column mode when try

ing the example.)

In both BASIC and ML, many instructions are followed

by an argument. We mentioned the instruction INC 2. In that

example, the number 2 is the argument. In BASIC, the SYS

instruction must be given an argument which tells it where to

SYS, where the ML program it's going to run is located in

RAM. The SYS instruction will turn control of the computer

over to the address given as its argument. There would be an

ML program waiting there.

Just remember that an argument is the second item in a

pair and that an argument modifies (makes more specific) a

given instruction. In the pairs INC 2, SYS 2816, and Send a

Letter, the 2, 2826, and Letter are the arguments. The INC,

SYS, and Send are the instructions.

To make it easy to see the speed of our 1000 A's example

ML program, we'll just load it into memory without yet know

ing much about it. We'll use a BASIC loader program that sim

ply POKEs all the numbers of the ML program into memory;

then you SYS 2816 from BASIC to activate the ML program.

r—> This little ML program is just numbers so far (and that's

' ' all the computer needs anyway). But for us humans it would

be worthwhile being able to see what the program looks like

i—7 as instructions. There's a way. A disassembly is like a BASIC

■ .) LIST. You can give the starting address of an ML program to a

disassembler, and it will translate the numbers it finds in the

f*l computer's memory into a readable series of ML instructions.

' . J The built-in monitor on the 128 contains a disassembler that

you can use to examine and study ML programs. Note that

r-*-) you have to give a start address whenever you write (with an

L ( assembler), list (with a disassembler), or run (with SYS) an ML

XI
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program. That's because, unlike BASIC programs, ML pro- v .

grams can be located anywhere in RAM memory. Lj

Here's what our little example ML program looks like

when it has been translated by a disassembler: , .

0B00 A9 01 LDA #$01 L—'
0B02 A0 00 LDY #$00

0B04 99 00 04 STA $0400,Y ,

0B07 99 00 05 STA $0500,Y ] [
0B0A 99 00 06 STA $0600,Y

0B0D 99 00 07 STA $0700#Y

0B10 C8 INY

0B11 D0 Fl BNE $0B04

0B13 60 RTS

The following BASIC program (called a loader) will POKE

the ML instructions (and their arguments) into memory for you:

10 FOR I = 2816 TO 2835:READ A:POKE I,A:NEXT I

20 PRINT"SYS 2816 TO ACTIVATE"

30 DATA 169,1,160,0,153,0,4,153,0,5

40 DATA 153,0,6,153,0,7,200,208,241,96

After running this program, switch to 40-column mode

and type SYS 2816 as instructed. The screen will instantly fill.

BASIC stands for Beginner's All-purpose Symbolic

Instruction Code. Because it is all-purpose, it cannot be the

perfect code for any specific job. The fact that ML speaks di

rectly to the machine, in the machine's language, makes it far

the more efficient language. This is because however cleverly

a BASIC program is written, it will nevertheless always require

extra running time to finish a job. This same problem slows

down every other computer language as well: Logo, Forth,

Pascal, C, whatever. None of them is the machine's language

and, thus, none can run at maximum speed. \ j

To see why this is, think of the common PRINT instruc

tion in BASIC. A PRINT statement drags BASIC into a series

of operations which ML avoids. BASIC must ask and answer a \ (

series of questions. Where is the text located that is to be

printed? Is it a variable? Where is the variable located? What's

its length? Where on the screen is the text to be placed? \ \

ML is far more efficient. As we will discover, ML does not

need to hunt for a string variable. And 40-column screen ad

dresses do not require a complicated series of searches in an ] I

ML program. Each of these tasks, and others, slows BASIC

Xll LJ



<-—> down because it must serve so many general purposes. The

I J screen fills slowly because BASIC has to make so many more
decisions about every action it attempts than does ML.

i \ Inserting ML for Speed

A second benefit which you derive from learning ML is that

*-*) your understanding of computing will be much greater. On

I J> the abstract level, you will be far more aware of just how
computers work, On the practical level, you will be able to

choose between BASIC or ML, whichever is best for the pur

pose at hand. This choice between two languages permits far

more flexibility and allows a number of tasks to be pro

grammed which are clumsy or even impossible in BASIC.

Quite a few of your favorite BASIC programs would benefit

from a small ML routine, "inserted" into BASIC with a SYS,

to replace a heavily used, but slow, loop or subroutine. Large

sorting tasks, smooth animation, and many arcade games and

other kinds of programs must involve ML. And most programs

can benefit from ML patches. It's no accident that nearly all

commercial computer programs are written in machine language.

BASIC vs. Machine Language

Because of the great efficiency and speed of ML, it's not

surprising that BASIC itself is written in ML It's made up of

many ML subprograms stored in your 128's Read Only Mem

ory (ROM). BASIC is a collection of special words such as

STOP and RUN, each of which stands for a cluster of ML

instructions. One such cluster sits in ROM (unchanging mem

ory) just waiting for you to type LIST. If you do type in that

word, the computer turns control over to the ML routine

p^ which accomplishes a program listing. The BASIC programmer

/ J understands and uses these BASIC words to build a program.

You hand instructions over to the computer and then rely on

—^ the convenience of referring to all those prepackaged ML

f \ routines by their BASIC names. The computer always works
with ML instructions. That's why you cannot honestly say that

you truly understand computing until you understand the

computer's language: machine language.

Another reason to learn ML is that custom programming

is then possible. Computers come with a disk operating sys

tem (DOS) and BASIC (or other higher-level languages). After

awhile, you will likely find that you are limited by the rules or

xm
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the commands available in these languages. You will want to

add to them, to customize them. An understanding of ML is [_J
necessary if you want to add new words to BASIC, to modify

a word processor (which was written in ML), to personalize

your computer—to make it behave precisely as you want it to. <^J
This book will give you the knowledge and the tools to fully

understand and to speak directly to your 128.

BASIC'S Strong Points ^
Of course, BASIC has its advantages and in some cases is to

be preferred over ML. BASIC is usually simpler to debug (to

get all the problems ironed out so that it works as it should).

In Chapter 3 we'll examine some ML debugging techniques

which work quite well, but BASIC is the easier of the two lan

guages to correct. For one thing, BASIC often just comes out

and tells you your programming mistakes by printing error

messages on the screen. Nevertheless, if you use the LADS

assembler from this book, it too will print error messages and

identify the offending line number.

Contrary to popular opinion, ML is not always a memory-

saving process. ML can use up about as much memory as

BASIC does when accomplishing the same task. Short pro

grams can be somewhat more compact in ML, but longer pro

grams generally use up bytes fast in both languages. However,

worrying about using up computer memory is quickly becom

ing less and less important.

Soon programmers will probably have more memory

space available than they will ever need. The 128 is particu

larly RAM rich. In any event, a talent for conserving bytes,

like skill at trapping wild game, will likely become a victim of

technology. It will always be a skill, but it seems as if it will

not be an everyday necessity.

So, which language is best? They are both best—but for

different purposes. Many programmers, after learning ML, find

that they continue to construct some of their programs in BASIC

or some other language, but add ML modules where speed is

important. An all-ML program will, however, generally be

more efficient, more flexible, and far faster than any alter

native. Remember, it's no accident that the great majority of

professional and commercial programs are written in pure ML.

But perhaps the best reason of all for learning ML is that

it is fascinating and fun.

XIV
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H How to Use This Book

Throughout this book there are short example programs in

machine language for you to type in and experiment with.

They vary in length, but most are quite brief and are intended

to illustrate an ML concept or technique. The best way to learn

something new is often to just jump in and do it. Machine lan

guage programming is no different. Machine language pro

grams are written using a program called an assembler, just as

BASIC programs are written using a program inside the com

puter called Microsoft BASIC.

This book includes a powerful assembler, LADS, in

Appendix R In addition to being versatile, LADS offers the

beginner a number of conveniences such as error messages

and a familiar working environment. And the more sophis

ticated features of the assembler are there for you when you're

ready to use them.

The First Step: Assembling

It is probably a good idea to first type LADS into your com

puter (typing instructions are in Appendix F). Once you've got

a working version, you're ready to use the assembler with the

practice examples throughout the book. (If you prefer, you can

order a disk which contains LADS and other programs from

this book. See the coupon in the back of this book for details.)

Frequently, the examples in the book are designed to do

something to the screen. The reason for this is that you can

then tell at once if things are working as planned. If you are

trying to send the message TEST STRING to the screen and it

comes out TEST STRI or TEST STRING@, you can go back

and quickly reassemble with LADS until you get it right. More

important, you'll discover what you did wrong.

Many programs manipulate data within a database or

make calculations with some numbers somewhere in RAM,

but the action takes place offscreen. When learning ML, how

ever, it's often helpful to put your data manipulations right up

in front of your eyes on the screen so that you can see pre

cisely how things are going. When everything is working cor

rectly, you can redirect the data to some less visible place

elsewhere in RAM.
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However, the 80-column screen cannot be directly

POKEd. So, while LADS works with 40 or 80 columns, you J_J
may want to test some of the examples using the 40-column

mode. Any examples which access $0400 or 1024 (for ex

ample, STA $0400) will be visible only on the 40-column j|
screen. You can assemble the source code in 80-column mode,

but when you run the object code, it will not be visible except

in the 40-column mode. Other examples use JSR $FFD2 or JSR |_j
PRINT, and these examples will run as is on either screen.

A Sample Program

The following little ML program will show you how to go

about entering and testing the practice examples in this book.

At this point, of course, you won't yet recognize the ML

instructions involved. This sample program is intended only to

serve as a guide to working with the examples you will come

upon later in the text.

After you've typed in and made a few backup copies of

LADS, you can use it to create runnable ML programs. De

tailed instructions on using all of the LADS features are found

in Appendix B, but for now, we just want to know how to en

ter a short, easy program.

The LADS environment is very like BASIC. In fact, you

write your programs as if you were writing a BASIC program,

except you use ML commands rather than BASIC commands.

You use line numbers and, if you wish, colons to separate

statements. The first line, however, must tell LADS where you

want your ML program located in memory (since ML can be

placed anywhere in RAM). A safe place to locate your shorter

ML programs is address 2816 (we'll learn why later), so:

10 *= 2816 , i

20 .S LJ
30 .O

31 LDA #0:STA $FFD0; SWITCH TO BANK 15 ,

40 LDA #65 U
50 JSR $FFD2

60RTS

Try this. Turn on your computer. If you have a 1571 disk

drive with a bootable LADS disk inside, LADS will have al

ready been loaded into your 128 when you turned it on.

If you've also typed in the LADS loader (see Appendix F),

it will load LADS in and also set up a small template so you

won't have to type *= or .S or .O each time you start a pro-

4
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ngram. If you prefer not to have this template, delete the POKE

loop in line 50 of the loader.

You might also want to type

j—j AUTO10

L " so that the 128 makes automatic line numbers as you type.
Entering an ML program for LADS is indistinguishable from

I? entering a BASIC program as far as the 128 is concerned.

So, type in the program above, in BASIC mode, just as if

it were a BASIC program. If you didn't have LADS autoload

itself, type BLOAD"LADS". Be sure to use BLOAD so LADS

will load in where it's supposed to be in RAM, not at the start

of BASIC memory. Then type SYS 10000 which will activate

LADS, and you'll see your program changed into an ML pro

gram. This transformation is called an assembly. You've just

assembled this little program.

By the way, the LADS loader program sets up the Fl key

to SYS 10000, so you could just hit Fl instead of typing SYS

10000 if you've booted the LADS disk. You can hit Fl from

anywhere on the screen; you need not be on a blank line. It

will clear the screen as does LADS when it begins assembling.

LADS will print out the results on the screen while it

works (the .S in line 20 tells LADS to provide a screen listing

to show you what's happening during assembly), and it will

store the resulting finished machine language program in

RAM memory starting at address 2816. The .O in line 30 tells

LADS to store the program into RAM memory.

If you made any typing errors and LADS couldn't as

semble this program, LADS will ring the bell and print the

line number where the error is located. It will also give you an

error message. (To fix such things, just LIST and change the

f**l offending line as you would to modify a BASIC program.) You
- might want to see what happens if you change line 40 to a

misspelling:

f~l 40 LDR #65

Or if you forget to give the number:

r—j 40 LDR

In any case, once you've loaded LADS into memory, you

won't need to load it again if you want to assemble other pro-

]""""] grams later. This program is supposed to print the letter A on
~ your screen. To test the program, simply type SYS 2816. The
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.O caused the results of the assembly to be stored in RAM , .

where you can test them. i_J

The little ML program will do its job, you'll see the letter

A appear, and then the computer will return control back to A ,

the normal BASIC environment. If you want to try making an [ j
adjustment, change the number 65 in line 40 to some other

number to print a different character. Type LIST, and you'll

see that your original program is still there in memory (2816 is I |
outside the ordinary BASIC programming locations, so neither

our little ML program nor LADS disturbed our code written in

the BASIC environment). Just change it the way you would

change a BASIC program by writing over the 1 and pressing

RETURN. Then, hit the Fl key or type SYS 10000 to re

assemble the new version and test it again with SYS 2816.

This is the general method you'll want to use for creating

ML programs. There is another, more elaborate way to handle

very large ML programs, to automatically save the results to

disk, and a number of other LADS features we'll come to

later. For now, you know pretty much everything you need to

know to use LADS with the brief examples in this book. (If

you want to experiment with all LADS's features right away,

see Appendix B, "How to Use LADS.")

The main thing to learn here is how to type in programs

and assemble them using LADS. Primarily, you should

remember three things:

1. LADS always has to know where you want to store your

ML program, so the first line of any program you give

LADS must have *= 2816 and nothing else on that line.

We're going to give various start addresses for the example

programs in this book because this will help you learn

where to put ML and learn more about memory usage. But, . (

if an example doesn't have *= 2816 as the first line, you 1—)
can safely put it in. Many examples are given in the form

they would look if you disassembled them from the mon- ^ r

itor, as we'll discover in Chapter 3. However, you're always w-j

safe putting your test routines at 2816.

If you should forget to include a starting address,

LADS will alert you to the fact by printing an error message

onscreen and halting. Some of the examples give *= $B00

as the starting address, but that's just another way of writ-



n
1 Chapter 1

H

i—t ing 2816. They mean the same thing, but $B00 is hex and

L> we'll learn about hex in the next chapter.
2. You don't need to tell LADS where your ML program ends.

p-n Like BASIC, LADS can tell when it's come upon the last

J line number in a program. You can just type in a program
without indicating where it ends, just as you do when writ-

r—> ing a BASIC program. LADS will see the end and calculate

' \ the proper addresses in RAM to store your entire program.
3. You should be in BASIC mode—you should see READY.—

when you start to type in programs that you want LADS to

assemble. The environment will be quite familiar if you've

done any BASIC programming (with a few exceptions such

as using ; instead of REM as illustrated in line 31 of the ex

ample above). Generally, though, everything's the same as

BASIC. You can use AUTO 10 to set up automatic line

numbering, replace lines by typing their number, insert

lines, and everything else you would do when working with

a normal BASIC program. Of course what you write are ML

commands. These commands are not the same commands

as BASIC'S, but that's the subject of rest of this book.

n
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The Fundamentals
i !

The difficulty of learning ML has sometimes been exaggerated.

There are some new rules to learn and some new habits to ac-

/ \ quire. But most ML programmers would probably agree that

ML is not inherently more difficult to understand than BASIC.

More of a challenge to debug in some cases, but it's not

worlds beyond BASIC in complexity. In fact, in the 1970s,

many of the first home computerists learned ML before they

learned BASIC. This is because an average version of the

BASIC language used in microcomputers takes up around

12,000 bytes of memory, and the early personal computers

(KIM, AIM, etc.) were severely restricted—they had only a

small amount of available memory. These early machines

were unable to offer BASIC; it took up more space than they

had, so everyone programmed in ML.

Interestingly, some of these pioneers reportedly found

BASIC to be just as difficult to grasp as ML. In both cases, the

problem seems to be that the rules of a new language simply

are "obscure" until you know them. In general, though, learn

ing either language probably requires roughly the same

amount of effort.

The first thing to learn about ML is that it reflects the

construction of computers. ML programmers often use a num

ber system (hexadecimal, or hex for short) which is not based

on ten.

We count by tens because it is a familiar (though ar

bitrary) grouping for us. Humans have ten fingers. If we had

i j eleven fingers, the odds are that we would be counting by

~~ elevens.

P5 What's a Natural Number?

Computers count in groups of twos. It is a fact of electronics

that the easiest way to store and manipulate information is by

PI on/off states. A light bulb is either on or off. This is a two-
group; it's binary, and so the powers of two become the natu

ral groupings for electronic counters: 2, 4, 8, 16, 32, 64, 128,

f""J 256. Finger counters (us) have been using tens so long that we
have come to think of ten as natural, like thunder in April.
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Tens isn't natural at all. What's more, twos is a more efficient ] j

way to count. {—

To see how the powers of two relate to computers, we

can run a short BASIC program which will give us some of \ i

these powers. Powers of a number is the number multiplied by (—'

itself.

Two to the power of two (2A2) means 2 times 2 (in other s ^

words, 4). Two to the power of three (2*3) means 2 times 2 {—*
times 2 (8).

10 FOR I - 0 TO 16

20 PRINT 2 AI

30 NEXT I

ML programming can be done entirely in the familiar

decimal number system. For beginners, that's probably a wise

thing to do. The LADS assembler in this book allows you to

use either decimal or hex, as you wish. However, you'll prob

ably see hex used in magazine articles and books, and hex

does format on the screen or paper more neatly than decimal

numbers. Another advantage of hex is that it relates visually

to the binary numbers that the computer is using. The argu

ments for some advanced ML commands like ROL and EOR

are more easily visualized with hex than with decimal.

Why not just always program in the familiar decimal

numbers (as we do in BASIC)? Because hex is based on groups

of 16 digits, not decimal's groups of 10. And 16 is one of the

powers of two. Thus, 16 is a convenient grouping (or base) for

ML because it organizes numbers the way the computer looks

at numbers. For example, at the most elementary level all

computers work with bits. A bit is the smallest piece of infor

mation possible: Something is either on or off, yes or no, plus

or minus, true or false. This two-state condition (binary) can j j

be remembered by a computer's smallest single memory cell.

This single cell is called a bit. The computer can turn each bit

on or off as if it were a light bulb, or a flag raised or lowered. L )
It's interesting that the word bit is frequently explained as ^^

a shortening of the phrase Binary digiT. In fact, the word bit

goes back several centuries. There was a coin which was soft j |
enough to be cut with a knife into eight pieces. Hence, pieces ~^

of eight. A single piece of this coin was called a bit and, as

with computer memories, it meant that you couldn't slice it ) \
any further. We still use the word bit today as in the phrase ' '
two bits, meaning 25 cents.

u
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P^ Whatever it's called, the bit is a small, essential aspect of

computing. Imagine that we wanted to remember the result of

a subtraction. When two numbers are subtracted, they are ac-

r~j tually being compared with each other. The result of the

— subtraction tells us which number is the larger or if they are

equal. ML has an instruction, like a command in BASIC,

f| which compares two numbers by subtraction. It is called CMP

1 (for compare). This instruction sets flags in the CPU (Central

Processing Unit) of the computer, and one of the flags always

shows whether or not the result of the most recent action

taken by the computer was a zero. We'll go into this again

later. What we need to realize now is simply that each flag—

like the flag on a mailbox—has two possible conditions: up or

down. In other words, this information (that there's a zero re

sult or a nonzero result) is binary and can be stored within a

single bit. Each of the seven flags within the 8502 chip is a bit.

Together, the flags are all held within a single byte. That byte

is called the status register.

Byte Assignments

Our computers group bits into units of eight, called bytes. This

relationship between bits and bytes is easy to remember if you

think of a bit as one of the "pieces of eight." Eight is a power

of two also (two to the third power). Eight is a convenient

number of bits to work with as a group since we can count

from 0 to 255 using only eight bits. We'll see how this is done

in a minute.

A byte—able to "hold" 256 different numbers—gives us

enough room to assign all 26 letters of the alphabet (and the

uppercase letters, punctuation marks, and so on) so that each

p—} character we might want to print will have its own particular

- < number. The letter A (uppercase) has been assigned the num

ber 65 (in the standard ASCII code that computers use to

f—} communicate). The letter B is 66, and so on. Most micro-

] * computers, however, do not adhere strictly to the ASCII code,
except when they are communicating with other computers,

1—} for example, through telephone links. The 128 uses the code

1 ' in Appendix G for its internal operations. It's pretty close to

standard ASCII.

nThe ASCII code, an assignment of numbers to letters and

symbols, forms a convention by which computers worldwide

can communicate with each other. Text can be sent via

H
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modems and telephone lines, and it will arrive meaning the \ j

same thing to an alien computer. It's important to visualize '—'
each byte, then, as being eight bits ganged together and that a

byte is able to represent 256 different things. As you might \ {

have suspected, 256 is another power of two (two to the {—l
power of eight).

So these groupings of eight, these bytes, are a major as- * \

pect of computing; but we also want to simplify our counting '—'
from 0 to 255. We want the numbers to line up in a column

on screen or on paper. Obviously, decimal numbers are erratic:

The number 5 takes up one space, the number 230 takes up

three spaces. Hex numbers between 0 and 255 will always,

predictably, take up two spaces (here's 0-255 expressed in the

hexadecimal format: $00-$FF).

In addition to being easier to format in printouts, hex is

also somewhat easier to visualize in terms of the binary num

ber system—the on/off, single-bit way that the computer

manipulates numbers:

Decimal Hex Binary

1 01 00000001

2 02 00000010

3 03 00000011(1+2)

4 04 00000100

5 05 00000101(4+1)

6 06 00000110 (4+ 2)

7 07 00000111(4+2+1)

8 08 00001000

9 09 00001001(8+ 1)
10 (Note new digits) ► 0A 00001010 (8 + 2)

11 0B 00001011(8+ 2+1)

12 0C 00001100(8+4) . ,

13 0D 00001101(8+4+1) LJ
14 0E 00001110(8+4+2)

15 OF 00001111(8+4+2+ 1)
16 (Note new column ► 10 00010000 i \
17 in the hex) 11 00010001(16+1) ^

See how hex $10 (hex numbers are usually preceded by a , ,
dollar sign to show that they are not decimal) looks like bi- 1 '
nary? If you split a hex number into two parts, 1 and 0, and

the equivalent binary number into two parts, 0001 and 0000,
you can see the relationship. [_J

14 . LJ
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pn The Rationale for Hex Numbers

1 Many ML programmers like to use hexadecimal numbers be

cause they are a superior visual symbol of the manipulations

rn inside the computer; hex is simply more like binary because

hex is a power of two and decimal (base ten) is not a power of

two. It's really up to you whether or when you add hex to

your bag of tricks. (In the early days of programming, another

base—base eight—called octal was very popular. It's still used

today when programming some large computers.) You will see

that you can choose to use hex or decimal when writing ML

with the LADS assembler in this book. And you can use them

interchangeably, even on the same line of program code. You

can write LDA $0A or LDA 10, whichever you prefer.

Here's what it looks like when you count up from zero in

both systems:

Decimal

0 123456789

And now you start over by moving to a new column with the

number 10.

Hex

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E OF

And then you start over with $10, $11, and so on.

See how we ran out of digits when trying to count up to

16 in hex? Hex substitutes the first few letters of the alphabet

to count past 09.

The first thing to notice is that instead of the familiar deci

mal symbol 10, hex uses the letter A because this is where we

run out of symbols and must start over again with a 1 and a 0.

Zero always reappears at the start of each new grouping in any

j—| number system: 0, 10, 20, and so on. The same thing happens

> with the groupings in hex: 0, 10, 20, 30, ... The difference is

that, in hex, the 1 in the "10's" column is actually what we

r-1 would call a 16 (in our normal decimal way of counting).

1 l The second column is now a 16's column; 11 (hex) means 17

(decimal), and 21 means 33 (2 times 16 plus 1). Learning hex

j—n is probably the single biggest hurdle to overcome when get-

f * ting to know ML.

Don't be discouraged if it's not immediately clear what's

going on. (It probably never will be totally clear—hex is, after

all, unnatural.) And remember that hex is an option, not a

requirement, when programming in ML.

15
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It's just that much ML printed in magazines and books

LJ
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uses hex. That's why you at least need to be able to recognize 1 I
what it means. Nobody really knows it that well. Most ML

programmers use one of the calculators sold by Sharp, TI, or , ,

Hewlett-Packard that perform hex/decimal conversions. Also, I I
you can give a decimal number to the 128 in monitor mode

and it will print the hex, octal, and binary versions of the same < .

number. Just precede the number with a plus sign (+). For ex- < I
ample, to see versions of 100, type +100 and press RETURN.

You can translate a hex number into decimal by preceding it

with a dollar sign ($) and pressing RETURN. If you happen to

be in BASIC mode, writing some LADS source code, you can

use ?HEX$(15) to get the hex of 15 or ?DEC("0F") to get the

decimal of $0F. Ultimately, though, hex is one of those things,

like telephone books and dictionaries, that you have to know

how to use, but you don't have to memorize.

It's possible that someday hex will go the way of octal,

and we'll stick to the easy, obvious decimal mode entirely (ex

cept for excursions into binary numbers from time to time). If

you want more understanding, you might want to practice the

exercises at the end of this chapter. As you work with hex, it

will gradually seem less and less alien.

To figure out a hex number, multiply the second column

by 16, and add the other number to it. So, $2A would be 2

times 16 plus 10 (recall that A stands for 10).

Hex does seem impossibly confusing when you come

upon it for the first time. It will never become second nature,

but it should be at least generally understood. You need not

memorize hex beyond learning to count from 1 to 16; this

teaches you the symbols. Be able to count from 00 up to OF.

(By convention, even the smallest hex number is listed as two .

digits as in 03 or 0B. The other distinguishing characteristic is * (

the dollar sign that is usually placed in front of the digits: $05

or $0E.) , ,

It's enough to know what hex numbers look like and be LJ

able to find them when you need them.

The First 255 LJ
Another thing that makes all this easier is that if you do need

to work with hex, most ML programming involves working (

with hex numbers only between 0 and 255. This is because a j j

single byte (eight bits) can hold no number larger than 255.

Manipulating numbers larger than 255 is of no real importance {

16 U
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in ML programming until you are ready to work with more

advanced ML programs. This comes later in the book. For ex

ample, all 8502 ML instructions are coded into one byte, all

the flags are held in one byte, and many addressing modes

use one byte.

To learn all we need to know about hex for now, we can

try some problems and look at some ML code to see how hex

is used in the majority of ML work. But first, let's take an

imaginary flight over computer memory. Let's get a visual

sense of what bits and bytes and the inner workings of the

computer's RAM look like.

The City of Bytes

Imagine a city with a single long row of houses. It's night.

Each house has a peculiar Christmas display: On the roof is a

row of eight lights. The houses represent bytes; each light is a

single bit (Figure 2-1).

If we fly over the City of Bytes, at first we see only dark

ness. Each byte contains nothing (zero), so all eight of its

bulbs are off. (On the horizon we can see a glow, however,

because the computer has memory up there, called ROM

memory, which is very active and contains built-in programs.)

But we are down in RAM, our free user-memory, and there

are no programs in RAM yet, so every house is dark. Let's ob

serve what happens to an individual byte when different num

bers are stored there; we can randomly choose byte 1504. We

hover over that house to see what information is "contained"

in the light display:

Like everywhere else in the City of Bytes, this byte is

dark. Each bulb is off. Observing this, we know that the byte

here is "holding," or representing, a zero. If someone at the

computer types in POKE 1504,1, suddenly the rightmost light

bulb goes on and the byte holds a one instead of a zero:

17
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This rightmost bulb is the one's column (so far, this is ex

actly the way things would work in our usual way of counting

by tens, our familiar decimal system). But the next bulb is in

the two's column, so POKE 1504, 2 would be:

And three would be one and two:

In this way—by checking which bits are turned on and

then adding them together—the computer can look at a byte

and know what number is there. Each light bulb, each bit, is

in its own special position in the row of eight and has a value

twice the value of the one just before it:

128* 64*

Eight bits together make a byte. A byte can hold a num

ber from 0 through 255 decimal. We can think of bytes,

though, in any number system we wish—in hex, decimal, or

binary. Because the computer uses binary, it's useful to be able

to visualize it. Hex has its uses in ML programming. And deci

mal is familiar. But a number is still a number, no matter what

we call it. After all, five pennies are always five pennies,

whether we symbolize them by 5 (decimal) or $05 (hex) or

00000101 (binary) or just call them a nickel.

A Binary Quiz

BASIC doesn't understand numbers expressed in hex or bi

nary. Binary, for humans, is very visual. It forms patterns out

of zeros and ones and lets you see an x-ray of the interior of a

19
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byte. The following program will let you quiz yourself on < j

these patterns. I ;
Here is a game which will show you a byte as it looks in

binary. You then try to give the number in decimal: { }

Program 2-1. Binary Quiz

10 REM BINARY QUIZ \ j

20 Cl = 49:C0 =48 <—>
30 X = INT(256 * RND (1)):D = X:P = 128

40 PRINT"{CLR}"

50 FOR I = 1 TO 8

60 IF INT(D / P) = 1 THEN PRINT CHR?(C1);:D = D -

{SPACE}P:GOTO 80

70 PRINT CHR$(C0);

80 P = P / 2:NEXT I:PRINT

90 PRINT"WHAT IS THIS IN DECIMAL?":PRINT

100 INPUT Q:IF Q = X THEN PRINT"CORRECT":GOTO 120

110 PRINT"SORRY, IT WAS"X

120 FOR T = 1 TO 1000:NEXT T

130 GOTO 30

This next program will print out an entire table of binary

numbers from 0 through 255.

Program 2-2. Binary Table

100 REM COMPLETE BINARY TABLE

120 FOR X = 0 TO 255:PRINTX;

130 Z = X:L = 7

140 FOR Q = 0 TO 7:T = INT (X / 2)

150 K$(L) = CHR$(48 + (X - T * 2))

160 L = L - 1:X = T:NEXT Q

170 X = Z

180 PRINT TAB(10);

190 FOR I = 0 TO 7:PRINT K$(I);:NEXT I « i

200 PRINT I I
210 NEXT X

\ I
Examples and Practice ^
Here are several ordinary decimal numbers. Try to work out

the hex equivalent: J I

1

?

3.

4.

m

15

i*

5.

6.

7.

17

198

8.

9.

10.

1?Q

u
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(—■J We are not making an issue of learning hex or binary. If

/ I you used your monitor to get the answers, fine. As you work
with ML, you will familiarize yourself with some of the com-

r—» mon hex numbers. And remember, you can program in ML

1 * without needing to worry about hex numbers. For now, we
only want to be able to recognize what hex is. The LADS

r—*) assembler or the 128's built-in monitor will do the translations

' I for you any time you need them.
One other reason that we're not stressing hex too much is

that ML is generally not programmed without the help of an

assembler. LADS will handle your input automatically. It al

lows you to choose whether you prefer to program in hex or

decimal. With LADS, just use the $ symbol when you intend a

number to be interpreted as hex. Otherwise, LADS will as

sume you mean decimal.

This short BASIC program is good for practicing hex and

also shows you how a two-byte hex number relates to a one-

byte hex number. It will take decimal in and give back the

correct hex.

Program 2-3. Hex Practice

10 PRINT"lCLR}"

20 INPUT"ENTER A DECIMAL NUMBER";X

30 IF X> 255 THEN 20:REM NO NUMBERS BIGGER THAN 25

5 ALLOWED

40 PRINT "$";RIGHT$(HEX$(X),2)

50 PRINT:GOTO 20

For larger hex numbers (up to two bytes, $FFFF equals

65535), we can just make a simple change to Program 2-3.

Change line 30 to IF X > 65535 THEN 20, and change line 40

f"1 to PRINT "$";HEX$(X). This will give us four-place hex num
bers. These larger hex numbers are used in ML mainly for ad

dresses, since the 8502 can directly address 65536 bytes (bytes

r~{ with addresses from 0 through 65535). This is the reason that

many microcomputers max out at 64K. There are special ways

to get around this, but an eight-bit microprocessor like the

P"! 8502 is generally limited in the total amount of RAM memory

it can access directly.

The number 65535 is interesting because it represents the

!"""! limit of our computers' memories. The 128 has additional

ROM and RAM in banks which we'll discuss later. The 128

21
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can directly address only 64K at any one time, but it can , j

quickly switch banks in and out so that it appears to address 1 )
more than 65535 bytes at once. But 64K is the upper limit of

direct addressing without bank switching because the 8502 ( f

chip is designed to be able to address (put bytes in or take * I

them out of memory cells) only up to $FFFF (65535).

Ganging Two Bytes Together to Form an Address 1 (
The 8502 often addresses by attaching two bytes together and

looking at them as if they formed a unit. It's like the way that

putting eight bits together forms the unit we call a byte. The

largest number that two bytes can represent is $FFFF (65535),

and the most that one byte can represent is $FF (255). Three-

byte addressing is not possible for the 8502 chip. Machine lan

guage means programming instructions which are understood

directly by the 8502 chip itself. There are other CPU (Central

Processing Unit) chips, but the 8502 is the 128's CPU that's

covered in this book.

Reading a Machine Language Program

Before getting into an in-depth look at the monitor, that bridge

between you and your machine's language—we should first

learn how to read ML program listings. You've probably seen

them often enough in magazines.

These commented, labeled, but very strange-looking pro

grams are called source code (see Program 2-7 for an example).

Source code is what you write when you want to create an

ML program. It can be translated by an assembler program (like

LADS) into an ML program. When you have an assembler

program attack your source code, it looks at the keywords (the

instructions and their arguments, and their addresses) and {

then POKEs a series of numbers into the computer. This series | J
of numbers is called the object code and is the runnable ML

program. You can CALL object code and it will do whatever

you've designed it to do. ( |
Source code usually contains a great deal of information

in the form of comments which are of interest to the pro- }

grammer, but which the computer ignores. It's rather like the j, )

way a BASIC program has REMarks to which the computer

pays no attention.

The computer needs only a list of numbers which it can j j
execute in order. That's what an ML program is. But for most

22 U
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i—I people, lists of numbers are only slightly more understandable

■ than Morse code. The solution is to let us use words which are

then translated into numbers for the computer. The primary

r—j job of an assembler is to recognize an ML instruction. These

' ' instructions are called mnemonics, which means "memory
aids." They are like BASIC words except that they are always

m three letters long and are somewhat less like standard English.

' * If you type the mnemonic instruction JMP, the assembler
POKEs a 76 into RAM memory. It's easier for us to remember

something like JMP than the number 76. Seeing a 76, how

ever, the computer immediately knows that it's supposed to

perform a JMP. The number 76 is an operation code, or opcode,

to the computer.

We write the mnemonic instruction JMP, an assembler

translates this into the number 76, and the computer rec

ognizes 76 as the command JUMP. These three-letter words

we use in ML programming were designed to sound like what

they do. JMP does a JUMP (like a GOTO in BASIC). Deluxe

assemblers like LADS also let you use labels instead of num

bers. These labels can refer to individual memory locations,

special values like the score in a game, or entire subroutines.

(See the instructions for LADS in Appendix B for more infor

mation about using labels.)

Four Ways to List a Program

Labeled, commented source code listings are the most elabo

rate kind of ML program representation. There are also three

other kinds of ML listings you might come across. Let's see

how these four styles of representing an ML program would

look by using a simple example program that just adds 2 + 5

p■) and stores the result in RAM memory location 848. The first

' » two styles are simply ways for you to type a program into the

computer. The last two styles show you what to type in, but

j—j also illustrate what is going on in the ML program. First, let's

' ) look at the most elementary kind of ML found in books and

magazines: the BASIC loader.

r—i

( I Program 2-4. BASIC Loader

10 FOR ADDRESS = 2816 TO 2824

p—I 20 READ BYTE

(I 30 POKE ADDRESS, BYTE

40 NEXT ADDRESS

50 DATA 24,169,2,105,5,141,80,3,96

' ! 23
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This is a series of decimal numbers in DATA statements i j

which are POKEd into memory beginning at decimal address t—I
2816 (or, expressed as hex, $B00). This is a BASIC program.

When you run this program, these numbers are stashed into i j

RAM, and they form a little ML routine which clears the carry < I

(so there won't be any holdover from previous addition—you

always clear the carry before any addition in ML), then puts t >

the number 2 into the accumulator—a special location in the I—I
computer that we'll get to later—and then adds 5. The result

of the addition is then copied from the accumulator into deci

mal address 848. If you try this program out, you can SYS

2816 to execute the ML program and then PRINT PEEK (848)

and you'll see the answer: 7. BASIC loaders are convenient for

magazines to publish because the user doesn't need to know

anything at all about ML to enter and use the ML programs.

The BASIC loader POKEs the ML program into memory, and

then the only thing the user has to do is SYS to the right ad

dress and the ML transfers control back to BASIC when its job

is done. Many ML programs end with an RTS (ReTurn from

Subroutine) instruction which causes the computer to revert to

BASIC mode after the ML program has finished.

Getting even closer to the machine level is the second

way you might see ML printed in books or magazines: the hex

dump. The 128 has a special monitor program in ROM which

lets you list memory addresses and their contents as hex

numbers.

More than that, with the monitor you can type in new

numbers and change the program. That's what a hex dump

listing is for. You copy its numbers into your computer's RAM

by using your computer's monitor. (The monitor is so im

portant to ML programming that we'll spend all of Chapter 3 , ,

exploring what it can do for us.) 1 !
A hex dump, like a BASIC loader, tells you nothing about

the functions or strategies employed within an ML program. ^ (

Program 2-5 is the hex dump version of the same 2 + 5 ( I

addition program.

The third type of listing is called a disassembly. It's the op- , j

posite of an assembly: A program called a disassembler takes I I

machine language (the series of numbers, the opcodes in the

computer's memory) and translates it into the words, the < ,

mnemonics, which humans can read and understand. The in- 1 S
struction (the mnemonic) you use when you want to put some-
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thing into the accumulator is called LDA, and you store what's

in the accumulator by using an STA. We'll get to them later.

In this version of our addition routine, Program 2-6, it's a

bit clearer what's going on and how the program works. No-

tice that on the far left we have the memory addresses (in

hex), then hex numbers representing the actual bytes of the

program and, on the right, the translation into ML instruc-

tions. ADC means ADd with Carry and RTS means ReTurn

from Subroutine. A disassembly is to ML what LIST is to

BASIC. Your monitor has a disassembler built-in which will

produce these listings.

The Deluxe Version

Finally, we come to that full, luxurious, commented, labeled,

deluxe source code we spoke of earlier. Program 2-7 includes

the hex dump and the disassembly, but it also has labels and

comments and line numbers added to further clarify the pur

poses of things and to make it easier for programmers to enter

and edit their programs. This kind of listing can be produced

with the LADS assembler by invoking the .S or .P features to

create a full listing on screen or printer during the assembly

process.

Note that in Program 2-7 all the numbers (except the line

numbers on the far left) are in hex. LADS makes this optional.

To make them decimal, use the .NH option and your listing

will be entirely in decimal.

On the far left are the line numbers for the convenience

of the programmer when writing the source code (the program

you write to feed into the assembler). The line numbers can be

used the way BASIC line numbers are used: deleted, inserted,

and so on. Next are the memory addresses where each in

dividual instruction in this routine is located in RAM. Then

come the hex numbers of the instructions. (So far, it resembles

the traditional hex dump.) Next are the disassembled transla

tions of the hex, but note that you can replace numbers with

labels as we'll see in Program 2-8. Last are the comments.

They are the same as REM statements in BASIC.

Program 2-8 is functionally the same as 2-7, but we've

defined some labels and used them instead of numbers. That

can be a good way to remember the purpose of various things,

just the way variable names in BASIC assist the programmer.
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Chapter 2

u

Where Programs 2-7 and 2-8 show you what LADS prints j I

out during an assembly if you request a listing, Program 2-9 ;—}

illustrates just the source code part, what you would type into

your 128 prior to assembly. Source code is the program you \

write; it's what's fed to the assembler to produce object code *■—'

(the runnable ML program.) The object code has not yet been

generated from this source code. The code has not been assem- i )

bled yet. You can save or load source code in the same way *—'
that you can save or load programs via BASIC. Once Program

2-9 is typed in, you could SYS 10000 (if you'd previously

loaded LADS into memory), and LADS would translate the

instructions and print them on the screen and/or POKE them

into memory if so instructed.

Those few differences between Programs 2-8 and 2-9 are

conveniences for the programmer. The *= symbol tells the

assembler where you want the ML program located in mem

ory. The .P turns on the printer, and .S turns on listing to

screen during assembly. The semicolons announce that a re

mark follows and the assembler should ignore the rest of the

line, just like REM in BASIC.

A simple assembler, like the one found in the 128's mon

itor, operates differently. It translates, prints, and POKEs as

soon as you hit RETURN on each line of code. You can save

and load the object, but not source code, with this simple

assembler.

Before we get into the heart of ML programming, a study

of the opcodes and ways of moving information around

(called addressing), we should look at that major ML program

ming aid: the monitor. It deserves its own chapter.

u

t i

Answers

1. OA

2. OF

3.05

4. 10

5. 11

to quiz

6.

7.

8.

9.

10.

20

80

81

FF

FE
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n

n The Monitor
n

A monitor is a program which allows you to work directly

with your computer's memory. When you "go below" BASIC

into the monitor mode, BASIC is no longer active. If you type

RUN, it will not execute anything. BASIC commands are not

recognized. The computer waits, as usual, for you to type in

some instructions. There are only a few instructions to give to

a monitor. When you're working with it, you're pretty close to

talking directly to the machine in machine language.

The 128 has a monitor in ROM. This means that you do

not need to load the monitor program into the computer; it's

always available to you. You can use hex, decimal, or binary

numbers with the monitor. Signify hex as usual with $ before

the number and use % before binary numbers. However, you

don't need to use the $ when giving an address for disassembly

or assembly, or a range of addresses for hunting, and so forth.

Hex is assumed in these cases as the default condition.

Also, you can specify any memory bank by giving its

number before the actual address number. For example, M

3000 will show you what's in address 3000 (hex) and beyond

of bank 0 (always the default bank). To see memory in bank 1

you would type M 13000.

Debugging is the main purpose of a monitor. You use it to

check your ML code to find errors. Some computer manufac

turers, Apple, for instance, even call their monitor a debugger.

You enter the 128 monitor by hitting the F8 key (SHIFT-

F7). You will see the registers displayed and the cursor below

the display. Here are the monitor instructions:

1. Assemble

A (address) (mnemonic) (argument) will assemble a line of source

code.

Example: 2000 LDA #$15

will assemble that at address 02000. Remember that anytime

you want to access memory banks other than bank 0, you can

type the bank number before the actual memory address. If

you want to assemble to bank 1, address 2000, you would

type 12000 LDA #$15.
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If you make a mistake, a question mark (?) will appear on j /

the line. As always, you can cursor up and correct your mis- *■—'

take; RETURN always enters each line. Also, like auto-

numbering, the next address for assembly will automatically j \

appear on the line below, so you need specify the address *—1

only when you first start assembling.

You can also use the period (.) to signify assembly. The ^ j

monitor prints periods at the start of each line. <—'

This mini-assembler cannot use labels and has other

drawbacks. However, it's a fine tool for testing small ideas, a

few lines long, and for making little adjustments to a larger

program while debugging.

2. Compare memory

C (start of block) (end of block) (start of second block)

To see whether two sections of memory are identical or

which bytes differ, you type C followed by the start and end

address of the first block (which lets the assembler also cal

culate the length of the blocks being compared) and then give

the address of the start of the second block.

Example: C 1000 1020 4000

This will print the addresses of any bytes which do not

match when the blocks of memory between 1000-1020 and

4000-4020 are compared. This facility can be useful if you

want to see where two versions of the same routine differ. If,

for example, version 5 of the game you're writing always

works, but version 6 turns the screen black, you can load the

two versions into memory, targeting one of them to a different

location in memory (see a special feature of Load described

below), and then compare them to see where they differ.

Alternatively, you could use a BASIC-Aid type program to j j

compare their source codes. When possible, that's the pre

ferred method.

3. Disassemble Lj
D (start address) (optional end address)

This allows you to see the ML equivalent of a program \

listing in BASIC. Raw object code in memory will be printed L—

to the screen in a readable, rough source code form, as it ap

pears when you type in source code using A (Assemble) de

scribed above. There still won't be labels, but you can

interpret what a piece of code does.
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D, like M described below, can simply be given a start ad-

dress, in which case it disassembles about 20 bytes and stops.

Alternatively, you can give both a start and an end address,

whereupon it will scroll through the range of memory re-

quested. You can always slow down the scrolling by holding

down the Commodore key, freeze the scroll with CONTROL-S,

or end the scroll with RUN/STOP.

Disassembly is perhaps the single most useful command

in the monitor. You will sometimes be trying out a program

you've written, and, bing (the monitor makes a noise when

you enter it this way), you'll find yourself staring at the reg

ister display. This means that your program failed, but luckily

the computer didn't harden into immobility (the worst kind of

bug to fix). Instead, you gained some valuable information:

You can look at the PC (Program Counter) and see where you

fell into monitor mode (disassemble a few bytes before the PC

address and you'll find the 00 (BRK) that sent you into the

monitor). Not only that, but sometimes the values in the accu

mulator or Y or X registers will be a clue about what went awry.

In tough situations, where a bug is enigmatic, you'll find

yourself following a path through your program, dis

assembling until you find a JSR or JMP, then disassembling

the subroutine indicated by the JSR, trying to see where your

program goes off the rails. One obvious case would be if the

disassembler reported that it couldn't make sense of your code

(it will print ??? when it cannot disassemble something). This

probably means that you typed in your source code incorrectly

($#B0 with the # in the wrong place, for example) which con

fused the assembler.

When debugging larger programs, you'll be deliberately

inserting BRK at key points in the code to force the computer

into the monitor so that you can examine the registers or key

variables (maybe your zero page pointers) in your program.

Here D helps you discover which of perhaps several break-

points you've landed on.

You can also make direct modifications to the code. You

can't change the hex numbers, the object code, but you can

cursor over and change the source code. For example, .BOO A9

00 LDA #$00 can be altered by moving to the #$00 and

changing it to, say, #$05 and hitting RETURN. Because the

period at the start of the line is the same as the A (Assemble)

command, you'll have activated the mini-assembler.
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If you do want to change the object bytes, you can put a j i

greater-than symbol (>) at the start of the line and then w

change the 00 to 05, but you must get rid of the LDA #$00

which follows on that line. The > (memory change) command j ;

cannot make sense of LDA #$00. The fastest way to eliminate L—'
the end of the line is ESC then Q, one of the 128's convenient

escape code tricks. Note that you press ESC, but do not hold it ^ )

down while pressing Q. ^-cJ

The reason we bother with this Disassemble/Memory

change method is that sometimes you'll want to insert NOPs

directly into your program to eliminate something temporarily

and test the program without it. Let's say that you have a

change screen color subroutine at $3500 and you suspect it

might be what's crashing your program.

LDA #$04

JSR $3500

LDY #$03

might be a segment of your program. You could disassemble

this, insert EA EA EA over the 20 00 35 which represented

your jump to that suspect subroutine, and then rerun your

program. EA is the code for NOP, NO oPeration. It does noth

ing, so you've temporarily removed that entire subroutine

from the program you're testing (if this is the only JSR to that

subroutine). Alternatively, you could place a 60 (RTS, ReTurn

from Subroutine) at $3500 to remove it from all attempts to

call it throughout your program.

These and other debugging tricks will occur to you as you

test and work with your programs. The Disassemble function

will prove invaluable.

It's also instructive to use the disassembler to follow the

logic of the BASIC in your 128. Try looking at bank 15 jj

wherein BASIC, I/O, and the Kernal reside between $4000—

$FFFF. Just D F4000. To continue, type D RETURN repeat

edly. Around F41C0 you'll start to see lots of ??? which means ) I
it's likely to be a table of some sort. Switch to M F41C0 to see

the meaning of this section. See if you can locate the BASIC

keywords. ] j
Because it's such a valuable tool, let's briefly review the ^

elements of disassembly. A disassembly will contain three fields

(a field is a "zone" of information). The first field will contain jJ

the address of an instruction (in hex). The address field is
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■—7 somewhat comparable to BASIC'S line numbers. It defines the

' - order in which instructions will normally be carried out.
The second field shows the hex numbers for the instruc-

p7 tion, and the third field is where a disassembly differs from a

"memory" or "hex" dump (see Memory below). This third

field translates the hex numbers of the second field back into a

f"^ mnemonic and its argument.

1 Here's an example of a disassembly:

2000 A9 41 LDA #$41

2002 8D 23 32 STA $3223

2005 A4 99 LDY $99

Recall that a dollar sign shows that a number is in hexa

decimal. The pound sign (#) means "immediate" addressing

(put the number itself into the A register at 2000 above).

Confusing these two symbols is a major source of errors for

beginning ML programmers.

You should pay careful attention to the distinction be

tween LDA #$41 and LDA $41. The second instruction (with

out the pound sign) means to load A with whatever number is

found in address $41 hex.

LDA #$41 means put the actual number 41 itself into the

accumulator.

If you are debugging a routine, check to see that you've

got these two types of numbers straight, that you've loaded

from addresses where you meant to (and, vice versa, that

you've loaded immediately where you intended).

4. Fill

F (start address) (end address) (value)

This fills the zone between start address and end address

n with the byte value which follows. It's most useful when try

ing to see what areas of memory are unsafe to use, particularly

when you are modifying a commercial program like a word

r*| processor and are unsure where it might be storing variables.

Load the word processor, F 0B00 0BFF 00 (filling the cassette

buffer with zeros), and put the word processor through its

paces. Then, enter the monitor and examine the "snow," the

zeros you sprayed there, to see if any of them changed, if the

word processor left any tracks. This is a quick way to find out

if your use of this buffer will conflict with the word proces

sor's need for the same space.
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5. Go j i

G (address) ^
You can run an ML program from within the monitor

with the G instruction. The program must end with a BRK if |_J
you expect to return to the monitor when the program ends.

Try this: Type A BOO LDA #$15 and then hit RETURN. Then

type TAY (and press RETURN), then BRK (and RETURN [J
twice). You've created a little program that puts $15 into the

accumulator, transfers it to the Y register, and stops. Type R to

see the condition of the accumulator and the Y register. Then

type G BOO and see what happened to the accumulator and Y

registers.

Note that you can Go to Mars if you give G the wrong

address. If you've written something lengthy, you might want

to first save it with S (described below) to be on the safe side.

Also, remember that the ML must end with a BRK; otherwise,

you may be kicked out of the monitor back into BASIC or the

program may crash altogether. For routines that normally end

with RTS, simply change the RTS to BRK to use the G instruc

tion (remember to change the BRK back to an RTS after

you've tested the routine). Or, if you don't need the register

display that G provides when the program ends you can use

the J instruction instead (see below).

6. Hunt

H (start address) (end address) (pattern)

This can be useful when you're exploring a commercial

program or BASIC or even want to find a particular location in

your own program. It will search between the start and end

addresses for a match to the pattern you give it. The pattern

can be a series of hex numbers or a character string. Let's try

locating BASIC'S table of keywords:

H F4000 FFFFF TRIN

and wait a few seconds while the monitor reports where it

finds matches. (We left off the T in PRINT because BASIC

stores its keywords with the final letter "shifted" by adding

128 to it. This is how it knows the end, the length of each

keyword.) Then, use M (described below) to see the memory

and look at whatever you find.

Be sure to use a single quotation mark to set off a charac

ter string.
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*"—"[ Here's another use for H. Assume that you know that a

1 — certain pattern of bytes is going to appear in BASIC and you
want to find them. Let's look for all locations where BASIC

p-| switches in ROM bank 15. To get the pattern, type:

A BOO LDA #0

STA $FF00

/j and you can then see what pattern of bytes to look for. So

now hunt:

H F4000 FFFFF A9 00 8D 00 FF

and then you can disassemble to learn more about what's go

ing on in your ROM.

7. Jump

J (address)

This instruction is similar to G, but if the ML program be

ing executed ends with RTS it doesn't break back into the

monitor with a display of registers. Instead, it just quietly re

turns to the monitor with no special display—just the usual

blinking cursor. You might want to use J if you are testing a

routine which affects the screen, such as printing a message.

You'd get cleaner results with J than G in this case.

Remember that ML programs you run with the J instruc

tion should end with RTS if you want to avoid the register dis

play. If the ML ends with BRK, the effect will be the same as

if you had used the G instruction.

8. Load

L (''filename") (,8 for disk or ,1 for tape) (.optional load address)

If you've worked with ML on a computer which has no

P_ monitor, you'll welcome the convenience of this and Save, its

) I companion function. With L you can retrieve any file from
tape or disk (it's like BASIC'S BLOAD command), and, even

,—^, more helpful, you can load an ML program to an address

which is different from the one whereat it normally resides,

different from the address from which you originally saved it.

This is a good way to test versions of a program (see Compare

above).

If you write a program in bank 1 and save it, it will load

back into bank 0 unless you specify bank 1 in the optional

load address field. Notice, too, that commas are necessary

with this command to separate the argument fields. Load and

37



Chapter 3 '-'

u

Save are odd this way; you must type L "FILENAME",8 rather I (

than L "FILENAME" 8. *—]

9. Memory

M (optional start address) (optional end address) |_J

Among the most useful of all monitor commands, this

memory display shows you a visual display of your memory. , }

It's sometimes called a hex dump because you will see the 1 )
value in each memory cell displayed as a two-character hex

digit. To the right, you'll see the same bytes displayed as

characters when possible. Unprintable characters are signified

by a period (.). You can change any of the bytes (except the

address) as long as the > symbol appears at the first position

in the line. You can thus quickly check your tables and vari

ables to see if they're behaving properly or modify them for

testing purposes.

If you provide no argument, M will show you the zone of

memory most recently accessed. If you give a start address,

that's the memory you'll see. As before, if you use a number

like BOO, you'll see bank 0. If you want to specify another

bank, type its number first: 10B00 would show you BOO in

bank 1.

10. Registers

R

This will show you the current status of your registers. It

looks like this:

PC SR AC XR YR SP

; 00B09 30 00 05 FF F9

The PC is the program counter, the place in memory

where you last were when the monitor was invoked. Perhaps

you had a BRK instruction which forced your program to halt

so you could test it. If you have a BRK at 0B07, the PC will

show 0B09 as above. It's always two bytes past where you ac

tually break for some reason. Just remember that this is what

happens. You can locate the BRK with Disassemble described

above.

The SR is the status register (the byte that holds the

flags). It's not useful in this form because it's too hard to fig

ure out what flags are up or down to achieve, as above, for ex

ample, a total byte value of $30. The AC is the accumulator;
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the X and Y registers follow. The SP is the stack pointer. For

get about it, too.

You can cursor over and directly change the values in the

AC, XR, or YR, which can be useful sometimes during testing.

Note that the monitor always supplies that first digit

signifying bank number, but for you it's optional. Most of the

time you'll be in the default bank 0.

11. Save

S (''filename") (,8 for disk or ,1 for tape) (,start address) (,end address

plus one)

S saves a section of memory to disk or tape, like BSAVE.

The commas are necessary to separate the fields as shown.

You could save screen RAM if you wanted or anything else,

but the most common use for this is to save ML programs.

The bank conventions and other rules described under Load

above apply to Save as well.

Notice, however, a special oddity here: The end address

must be one byte beyond the actual end of your program. Again,

nobody who knows why, tells, but you've got to remember

this mysterious fact or you'll lop off your RTS or BRK or what

ever is the highest byte in your program.

00B00 A9 00 LDA#$00

00B02 8D 00 FF STA $FF00

00B05 60 RTS

00B06 00 BRK

If you want to save this and include the RTS, you must S

//FILENAME",8,0B00,0B06, and if you wanted to include that

BRK, you'd need to specify 0B07 as the end address.

Remember, too, that if you save from within bank 1 or

somewhere other than bank 0, that information is not trans-

ferred to the disk with the program. You must specify which

bank you are saving from if it's not 0, but when you go to

load your program back in, it will load into bank 0 unless you

specify the bank in the optional address field at the end.

12. Transfer

T (start address of source) (end address of source) (start address of

target)

This isn't too useful since you can load to any target. It

does not make your programs relocatable. It simply, dumbly

moves the zone of bytes between start and end address of
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source and sets them down unchanged at the target. So, if | /

you've got a direct JMP to some address within your ML pro- ^—'

gram, JMP $B09 for example, the new version after the trans

fer will still JMP $B09 to a subroutine which is no longer at \ j

that location. Also, references to tables like error messages will UJ
be similarly erroneous. It's difficult to think of a real use for

this function, but it's there if you ever come up with one. . (

13. Verify ^

V (''filename") (,8 for disk or ,1 for tape) (.optional alternate start

address)

This reports any errors caused by Save or it could be a

way of comparing two program versions for identity. In prac

tice, because the Commodore mass storage systems are so

highly intelligent and reliable, you may find you'll never need

to verify I/O.

14. X (Exit to BASIC)

X

Takes you out of the monitor.

15. @ (communicate with disk drive)

@ (unit number), (command string)

You can see the directory from the monitor by @,$ or see

the disk status (as with ?DS$ in BASIC) by @ with no com

mand string at all. You can also initialize a disk with @,I, but

you should be in BASIC for things like that anyway.

16. $, +, &, %

These symbols are put directly before a number to in

dicate whether it is hex (the default, so you don't need $),

decimal, octal (forget this; you'll probably never meet anyone \ I

who uses octal, base 8, numbers), and binary. i—'

Thus, if you want to assemble LDA #2 you can do it three

useful ways: decimal (LDA # + 2), hex (LDA #$02), or binary ) I

which shows you how the bits look in the byte (LDA ^—'
#%00000010). Whichever form you use, the 128 will convert

the input to hex when you enter the line. No matter which

way you enter the example instruction, it will change to LDA

#$02 after you press RETURN.
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P"[ Another use for these symbols is to type in a number at

*'-' the start of a line in the monitor and let it translate the num

ber into the four number bases. If you want to know what

p-7 decimal 1024 is in hex, type:

+1024

r-^s then press RETURN and you'll see:

- 1 $0400
+ 1024

&2000

%10000000000

Conversely, you can see what a hex number would be in deci

mal by typing:

$400

or take a look at binary. This can be useful, particularly when

looking at someone else's program or working with a map of

ROM such as the one in Appendix C.

Using the Monitor

You will make mistakes. Monitors are for checking and fixing

ML programs. ML is an exacting programming process, and

causing bugs is as unavoidable as mistyping when writing a

letter. It will happen, be sure, and the only thing for it is to go

back and try to locate and fix the slip-up. It is said that every

Persian rug is made with a deliberate mistake somewhere in

its pattern. The purpose of this is to show that only Allah is

perfect. This isn't our motivation when causing bugs in an ML

program, but we'll cause them nonetheless. The best you can

do is try to get rid of them when they appear.

^ Probably the most effective tactic, especially when you are

/ I just starting out with ML, is to write very short subroutines.

Because they are short, you can more easily check and exam-

^^ ine them to make sure that they are functioning the way they

should. Let's assume that you want to write an ML subroutine

to ask a question on the screen. (This is often called a prompt

since it prompts the user to do something.)

The message can be PRESS ANY KEY. First, we'll have to

store the message in RAM somewhere. Let's put it at hex $2000.
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ASCII

2000 80 P

2001 82 R

2002 69 E ;

2003 83 S U
2004 83 S

2005 32

2006 65 A

2007 78 N

2008 89 Y

2009 32

200A 75 K

200B 69 E

200C 89 Y

200D 00

(The final zero is a special signal to the computer called the

delimiter which shows that the message is concluded.)

We'll put our "print-it-out" subroutine at address $lF00, a

RAM zone where BASIC programs usually reside. So, we've

got the data at address $2000 and the subroutine that uses the

data located at $lF00. All this is entirely arbitrary. The ML

programmer can put things wherever in RAM he or she

wishes as long as the location doesn't conflict with other

needs of the computer as would be the case in zero page.

Remember, you can safely put your ML between $0B00-$0BFF

or $lC00-$FF00 in bank 0 and anywhere between $0400-

$FF00 in bank 1 (or between $1COO-$4OOO in bank 15).

We haven't gotten into actual programming yet, but this

example is a good place to see if you can spot an error in ML

programming. This subroutine will not work as printed. There

are two errors in this program. See if you can spot them:

1F00 LDY #$00 Set up the Y register to count events. ] J
1F02 LDA $2000,Y Get the first character from the data.

1F05 CMP $00 Is it the delimiter?

1F07 BNE $1FOA If not, continue on. \ I

1F09 RTS It was zero, so quit and return to whatever ^—*
JSRed, or called, this subroutine.

1F0A STA $0400,Y The 128's text display area in 40-column

mode.

1F0D INY Raise the counter by one.

1F0E JMP $lF00 Always JMP back to address $lF00.

Since we haven't yet gone into addressing or opcodes

much, this is like learning to swim by the throw-them-in-the-
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fi water method. Nevertheless, see if you can make out how

- > these instructions interact. Here's some help: a BASIC version

of the same routine, containing the same errors.

P7 10 DATA P,R,E,S,S, ,A,N,Y, ,K,E,Y
- l 20 Y = 0

30 READ X: IF X <> PEEK(O) THEN 50

f^s 40 RETURN

'- I 50 POKE 1024 + Y,X
60 Y = Y + 1

70 GOTO 20

This subroutine won't work. In the ML version, you'll find

two of the most common bugs in ML programming. Unfortu

nately, they are not obvious bugs. An obvious bug would be

mistyping LDS when you meant LDA. Any assembler would

alert you to this error by printing an error message to let you

know that no such instruction as LDS exists in 8502 ML.

No, the bugs in this program are errors in logic, in the

flow or sense of the thing. If you disassemble it, it will also

look just fine to the disassembler program, and no error mes

sages will be printed out by the disassembler either.

But, the routine will not work the way you want it to.

Before reading on, see if you can spot the two errors. Also, see

if you can follow the events as the ML routine runs through its

loop, picking up the characters in the message and supposedly

depositing them onscreen. Where does the computer go after

the first pass through the code? When and how does it know

that it's finished with its job?

Two Common Errors

A very common bug, perhaps the most common ML bug, is

r^ caused by accidentally using zero page addressing when you

C1 mean to use immediate addressing. We mentioned this distinc

tion before, but it is the cause of so much puzzlement to the

]**■> beginning ML programmer that we're going to pound away at

'- i it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are

r—) dealing with one of the cells, or bytes, in the first 256 ad-

'.. >.! dresses in RAM memory in the computer. The lowest locations
possible.

A page of memory is 256 bytes. Page 1 is from addresses

256 through 511 and is special. It's called the stack, and the

computer has a special use for it. We'll get to it later, but don't
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try storing anything in page 1 unless you're fond of havoc. \ i

Addresses 512-767 comprise page 3 which is the input buffer cJ
(where a line is stored when you type it in) for BASIC. The

128 text screen memory starts at address $0400 (1024 in deci- i »

mal), and this is the start of page 5. And so on, in 256-byte wi
blocks, on up memory to the very top, page 255.

In contrast to zero page addressing is immediate address- / »

ing. Immediate addressing means that the number you're deal- LJ
ing with is right within the ML code (not somewhere else in

memory). It means that you knew what number you were

dealing with and put it right into your program when you

wrote the program. Immediate addressing means that the

number directly follows an instruction; it's the argument, the

operand, of an instruction. LDY #0 is immediate addressing. It

puts the number 0 into the Y register (see line 1F00 in the ex

ample routine above).

LDY 0 is not immediate addressing, and you very well

might not get a zero into the Y register. LDY 0 is zero page

addressing. LDY 34 is also zero page addressing. Using any

address lower than 256 would mean zero page addressing.

LDY 34 might put anything, any number, into the Y register

because whatever number is in address 34 will be placed into

the Y register. The key is that # symbol, the number symbol.

If you mean to load the number 34 into the Y register, use

LDY #34. Think of it as LoaD Y with number 34.

If you mean to fetch whatever is currently in address 34,

use LDY 34. If you mean hex address 34, use LDY $34. It's

easy and very common to mix up these two modes—immedi

ate loading which uses # and zero page which has no symbol

except, perhaps, the $ to identify a hex number. So, look for

this error first when debugging a faulty program. Check to see -,

that all your zero page addressing is supposed to fetch from l^J
RAM and that all your immediate mode numbers are sup

posed to come from within the ML code itself, immediately -.

following the instruction. ^J
In our example ML program, LDY #0 is correct—we do

want to set the Y register to zero so that it can help us put the , ,

characters in the proper places on the screen (STA $0400,Y j^J
stores each character at address 0400, the screen, plus the cur

rent value of Y). For this purpose, we want the immediate, the .

actual number zero. j [
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!*■*) Take a close look, however, at the instruction at location

'-■->- $1FO5. Here we are trying to see if we've picked out that zero
in the message that tells us the message is finished. We want

7—7 to CoMPare to the number zero. But, we left off the # symbol

----- that tells the computer to use the number zero. Instead, we're

going to cause a comparison against whatever unpredictable

^ value might be in location zero, address zero. To fix this bug,

-••- * the instruction should be changed to read CMP #0 so that it
will be immediate mode, not zero page mode. (If this confuses

you, take a look at line 30 in the BASIC version to see the

same flaw in a familiar context. If it still confuses you, don't

worry, we'll be going over all this in much greater detail in

Chapters 4 and 6.)

It Never Quits

The second bug in this example routine is also a very common

one. The subroutine, as written, can never quit; it will end

lessly loop. Loop structures are usually preceded by a short

setup of some kind. You have to initialize counters before the

loop can begin because you have to tell it where to start and

how many times to loop. In BASIC, FOR I = 1 TO 10 tells the

computer to cycle ten times.

In ML, we set the Y register to zero and let it act as our

counter. In this particular routine, we don't use Y to tell us

when to stop (that's the job of the delimiter, the embedded

zero at the end of the message itself). Instead, Y serves two

other purposes. It kills two birds with one stone. It is the off

set (the pointer to the current position in a list or series) to

load the message in the data and is also the offset to position

the letters of the message on the screen. Without Y going up

r*} one (INY) each time through this loop, we would always print

LJ the first letter of the message and always print it in the first

position on the screen.

p*-> What's the problem? It's that JMP instruction at $1FOE.

! -l We should be jumping back to address $1FO2, but the JMP

tells us to jump back to $1FOO. As things stand, the Y register

r-^ will always be reset to zero, there will never be a chance to

[.. ! read through the message and pick up that 0 which ends
things, and we cannot therefore ever exit this loop. We will

r-j endlessly cycle, printing P over and over again. Y will never

'-_J go up past zero because each loop puts a zero back into Y.

Look at the relationship between lines 70 and 20 in the BASIC

<—-* example.

L ~< 45



Chapter 3 I—1

LJ

Tracking Them Down and Nabbing Them f |

The monitor will let you locate these and other errors. You can ^

replace an instruction with a zero (the BReaK command)

which will stop your ML program midrun and let you see the ) j

condition of your variables and what's going on in the reg- ^
isters at the breakpoint.

If this doesn't help, you can get more specific by single ( " i
stepping through your program in order to discover, for ex- *—■*

ample, that you are using CMP 0 when you meant CMP #0.

Unfortunately, the monitor built into this otherwise excellent

programmer's computer does not contain one of the best

debugging tools: single-step tracing. With this, you see the re

sults of each instruction in turn as the computer executes your

code one step at a time. That can be a real shortcut to locating

errant programming. Monitor add-ons for all the previous

Commodore computers have included single-step functions

and, doubtless, one will be published in COMPUTE! magazine

or COMPUTERS Gazette soon. But, as of this writing, no such

tool is yet available.

It would also be easy, by stepping, to notice that your Y

register is being reset to zero every time through the loop. For

single stepping, it's good to first make a printout of the sus

pect area of your program so that you can follow along during

the single stepping. If the Y register keeps turning back into

zero, that clues you that this register isn't cooperating; it's not

counting up each time through the loop the way you intended

it to. These and other errors, if not always immediately ob

vious, are at least discoverable from within the monitor.

Also, the disassembler function of the monitor will permit

you to study the program and look, deliberately, for the cor

rect use of #00 and $00. Since that mixup between immediate ^ \

and zero page addressing is so common an error, always check O

for it first.

Programming Tools *J
The single most significant quality of monitors which contrib

utes to easing the ML programmer's job is that monitors, like j i

BASIC, are interactive. This means that you can make changes uj
and test them right away, right then. In BASIC, you can find

an error in line 120, make the correction, and run a test im- i i

mediately. You can insert a STOP in BASIC or a BRK in ML LJ
and look at your variables and registers.
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nit's not always that easy to locate and fix bugs in ML:

There are few error messages which point out faulty program

logic, so finding the location of a logic bug can be difficult.

j—«j But a monitor does allow interactivity: You make changes

I.A and test them on the spot. This is one of the drawbacks of
complex assemblers, especially those which have several steps

r*-*, between the writing of the source code and the final assembly

L ] of executable object code (ML which can be executed). LADS,

however, was designed to maximize interactivity, and you

should find that its speed of assembly, its open architecture

(you can easily modify it, adding your own error messages and

bug traps), and its BASIC-like environment will all contribute

to quick program adjustments and quick testing.

Unfortunately, other sophisticated assemblers often re

quire several steps between writing an ML program and being

able to test it. These assemblers can require linkers, relocatable

loaders, mapping, global/local variable definition, macros,

separate and clumsy source code editors, and other "features"

which contribute little to the actual assembly of a program or

to the comfort of the programmer. If you don't already know

the function of these "enhancements," count it a blessing.

They greatly retard program development except in pro

fessional, programming-by-committee situations. These func

tions make it easier to rearrange ML subroutines, put them

anywhere in memory without modification, and so forth. They

make ML greatly modular (composed of very small, self-suf

ficient modules or subroutines), but they also make it far less

interactive. You cannot easily make a change and see the ef

fects at once.

One obvious reason for this kind of assembler, for it hav-

_ ing value at all, is that you want to discourage interactivity

/J when five people are writing separate sections of the same
program. In that environment, all programmers must play by

P^ the same rules and things like macros and relocatability have

I ji value. For the individual programmer, however, restrictions
like these can prove, in the long run, more of a hindrance than

_ a help. Industrial-strength linker/assemblers are, for the in-

[_j dividual programmer, rather like installing pay toilet stalls in
your bathroom. For most people, it's not merely unnecessary,

_ it's downright inconvenient.

)_j However, using the monitor's mini-assembler, or LADS

from this book, you are right near the monitor level, and fixes
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can be easily and quickly tested. In other words, the assem- ( i

biers which are best for individual programmers trade ef- L-J
ficiency for group-programming communication requirements.

Personal assemblers, like personal computers, should reflect > |

the needs of the programmer, not the needs of industrial, Lji
programming teams. Personal assemblers should involve little,

if any, preplanning, less forethought, less abstract analysis, . ^

and no rules for communicating between one programmer and Lj

another. If something goes awry, you can just try something

else until it all works. Not only does this help you learn, it's

also significantly the fastest way to program.

Plan Ahead or Plunge In?

Some people find such trial-and-error programming un

comfortable, disgraceful even. Industrial assemblers (and some

assemblers currently sold for personal use) discourage

interactivity, requiring flowcharts, even expecting the pro

grammer to write out a program ahead of time on paper and

debug it before even sitting down at the computer.

In one sense, these large assemblers are a holdover from

the early years of computing, when computer time was ex

tremely expensive.

There was a clear advantage to coming to the terminal as

prepared as possible. Interactivity was costly. But, like the

increasingly outdated advice urging programmers to worry

about saving computer memory space, it seems that strategies

designed to conserve computer time are also anachronistic.

You can spend all the time you want on your personal

computer.

Complex assemblers tend to downgrade the importance of

a monitor, to reduce its function in the programming process.

Some programmers who've worked on large IBM mainframe l^J
computers for 20 years do not know what the word monitor

means in the sense we are using it.

To them, monitors are CRT screens. The machine Ian- ^J
guage tools used for years by mainframe programmers often

have what we call a monitor, but it will be seriously restric

tive. It can, for example, have no provision for saving an ML j [
program to disk or tape from within the monitor.

Whether or not you prefer the interactive style of personal

programming, its greater reliance on the monitor and on trial- )_J
and-error programming, is your decision. If you're used to *"*"
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<**—r group programming, you might find it difficult to abandon the

L ) preplanning, the flowcharts, and all the rest. The choice is ul
timately a matter of personal style.

lj Time Is Cheap
Some programmers are uncomfortable unless they have a

r—) fairly complete plan before they even get to the computer key-

lS board. Others are quickly bored by elaborate flowcharting,
"dry computing" on paper, and can't wait to get on the com

puter and see-what-happens-if.

Perhaps a good analogy can be found in the various ways

that people make telephone calls. When long-distance calls

were extremely expensive, most people made lists of what

they wanted to say and carefully planned the call before dial

ing. They would also watch the clock during the call. (Some

still do this today.) As the costs of phoning came down, many

people found that spontaneous conversation was more satisfy

ing. It's up to you.

Computer time, though, is now extremely cheap. If your

computer uses 100 watts and your electric company charges 5

cents per kilowatt-hour, never turning your machine off would

only cost about 12 cents a day.
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i I Addressing

' » The 8502 processor is an electronic brain. It performs a variety

of manipulations with numbers to allow us to write words, draw

f-n pictures, control outside machines such as recorders and disk

■—■l drives, calculate, and do many other things. It was designed to
be logical and fast, to work accurately and efficiently.

If you could peer down into the CPU (Central Processing

Unit), the heart of the processor, you would see numbers be

ing delivered and received from memory locations all over the

computer. Sometimes the numbers arrive and are sent out, un

changed, to some other address. Other times they are com

pared, added, or otherwise modified, before being sent back to

RAM or to a peripheral.

Writing an ML program can be compared with planning

the activities of this message center. This can be illustrated by

thinking of computer memory as a City of Bytes with the CPU

acting as the main post office (Figure 4-1). The CPU uses four

tools to do its job: three registers, a program counter, a stack

pointer, and seven little one-bit flags.

The monitor, if you type R (for registers), will display the

present status of these tools. It looks something like this:

PC SR AC XR YR SP

;FB000 30 01 00 FF F8

A, X, and Y are the registers, SR is the processor status flags

(each bit in this byte is a flag), PC is the program counter (the

address of the last instruction executed plus two before we en

tered monitor mode), and SP is the stack pointer. You can

P3 more or less let the computer handle the stack pointer. It
keeps track of numbers, usually return-from-subroutine ad

dresses, which are kept together in a list called the stack.

f""} The computer will automatically manipulate the stack
pointer. It will also handle the program counter (PC) which

keeps track of where you are located at any given time within

|~"I the computer. For example, each ML instruction can be either

one, two, or three bytes long. TYA has no argument and is the

instruction to transfer a number from the Y register to the

f\ accumulator. Since it has no argument, the PC can locate the

next instruction to be carried out by adding one to itself. If the
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r-j PC held $4000, it would hold $4001 after execution of a TYA.

' J Whenever you insert a BRK instruction, you cause the pro
gram to halt at that point and enter monitor mode. The PC

r-S shows you where, in your program, you halted.

I..-* LDA #$01 is a two-byte instruction. It takes up two bytes

in memory, so the next instruction to be executed after LDA

^-i #$01 will be two bytes beyond it. In this case, the PC will

'_. J raise itself from $4000 to $4002. But we can just let it work
merrily away without worrying about it other than to note the

location when setting several BRKs in a program to debug it.

The Accumulator: The Busiest Register

SR, A, X, and Y, however, are our business. They are all eight

bits, or one byte, in size. They are not located in memory

proper. You can't PEEK them since they have no address like

the rest of memory. They are zones of the CPU. The A reg

ister, most often called the accumulator, is the busiest place in

the computer. The great bulk of the mail comes to rest here, if

only briefly, before being sent to another destination.

Any logical transformations (EOR, AND, ORA) or

arithmetic operations leave their results in the accumulator.

Most of the bytes streaming through the computer come

through the accumulator. You can compare one byte against

another using the accumulator. And nearly everything that

happens which involves the accumulator will have an effect

on the status register (SR, the flags). We won't need to actually

work directly with the status register, but the information it

holds will be significant because several important instruc

tions, like Branch if EQual (BEQ) test to see if a flag is up or

down when deciding where to send the program for the next

<__ task. BEQ looks at the SR and checks whether or not the Z

'. i flag (zero was the result of the most recent event) is up.
The X and Y registers are similar to each other in that one

fmm^ of their main purposes is to assist the accumulator. They are

used as addressing indexes. There are some methods of

addressing that we'll get to in a minute which add an index

value to another number. For example, if the X register is cur

rently holding a five, LDA $4000,X will load the byte in ad

dress $4005 into A. In other words, the real address when

you're using indexed addressing is the number plus the index

value. If X has a six, then we load from $4006. Why not just

LDA $4006? The reason is that it's far easier to raise or lower
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an index inside a loop structure than it would be to write in .

each specific address literally. 1 I
A second major use of X and Y is in counting and loop

ing. We'll go into this more in the chapter on the instruction

set. We'll also have some things to learn later about SR, the cj
status register, which holds some flags showing current con

ditions. Among other things, the SR can tell a program or the { }

CPU if there has been a zero, a carry, or a negative number as i_j

the result of some operation. Although it's not important to be

able to work directly with the status register, knowing about

carry and zero flags is especially significant in ML. The

branching instructions will check these flags for you, but you

should be aware of what some of the flags signify.

But we can leave learning about the instructions until we

get to Chapter 6. For now, the task at hand is to explore the

various "classes" of mail delivery, the 8502 addressing modes.

The computer must have a logical way to pick up and

send information. Rather like a postal service in a dream—

everything should be picked up and delivered rapidly, and

nothing should be lost, damaged, or delivered to the wrong

address.

The 8502 accomplishes its important function of getting

and sending bytes (GET and PRINT would be examples of the

same activity in BASIC) by using several addressing modes.

There are 13 different ways that a byte might be "mailed"

either to or from the central processor.

When programming, in addition to picking an instruction

(of the 56 available to you) to accomplish the job you are

working on, you must also make one other decision. You must

decide how you want to address the instruction—how, in other

words, you want the mail sent or delivered. There is some

room for maneuvering, however. It will rarely matter if you [_J
should choose a slower delivery method than you could have.

Nevertheless, it is worth knowing about the various address

ing modes; most of them are designed to be helpful during jj
some particular programming activity.

Absolute and Zero I \.

Let's picture a postman's dream city, a city so well planned

from a postal-delivery point of view that no byte is ever lost,

damaged, or sent to the wrong address. It's the City of Bytes j I
we first toured in Chapter 2. It has 65536 houses all lined up
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on one side of a street (a long street). Each house is clearly la- . i

beled with its number, starting with house 0 and ending with I—I
house 65535. When you want to get a byte from or send a

byte to a house (each house holds one byte), you must "ad- -s ,

dress" the package (See Figure 4-2). LJ

Let's look at the most elementary mode of addressing. It's

quite popular and could be thought of as "first class." Called { {

absolute addressing, it can send a number to or receive one 't f

from any house in the city. It's what we normally think of first

when the idea of addressing something comes up. You just put

the number on the package and send it off. No indexing or

special instructions. If it says 2500, then it means house 2500.

1000 STA $2500

or

1000 LDA $2500

These two, STore A and LoaD A, STA and LDA, are the

instructions which get a byte from or send it to the accu

mulator. The address, though, is those numbers following the

instruction. The item following an instruction is sometimes

called the instruction's argument. You could have written the

above addresses several ways. Writing $2500, however, tells

the computer to carry out the instruction with respect to ad

dress $2500, to store or load the byte from that location. This

kind of addressing uses just a simple $ (to show that this is a

hex, not decimal, number) and a four-digit number. You can

send the byte in the accumulator to anywhere in normal 64K

memory by this method (or retrieve it from anywhere).

Remember, too, that if you send a byte from the accumulator,

it also remains in the accumulator. It's more a copying than a

literal sending. Getting and sending to the 128's alternative s l

RAM banks is another matter; it will be covered below. I !

Heavy Traffic in Zero Page ^ ,

A second addressing mode, called zero page, we've touched on LJ

before. If you are sending a byte down to anywhere between

addresses 0 and 255 ($0000 and $00FF), the zero page, you can , .

just leave off the first two numbers: 1000 STA $07. (Remem- * !
ber that the 1000 is the address, the location, of the instruc

tion, not the argument, or target, of the instruction.) { ,

Zero page addressing, using only two hex digits or deci- 1 1
mal numbers lower than 256, is pretty fast mail service: The

58 I I



Chapter 4

mail carrier has to worry about choosing between only 256 in-

stead of 65536 possible houses. And, also, the computer is

specially wired to service these special addresses. Think of

them being close to the post office. Things get picked up and

delivered rapidly in zero page. That's precisely why your

BASIC and operating systems tend to use it so often.

Although zero page addressing works only with the first

256 locations in your computer, it gets more than its share of

the mail. The 128's BASIC language, its operating system, and

disk operating systems use up most of zero page to hold flags

and other temporary information they need. Why? Because

zero page addressing is the fastest of all the addressing modes.

It's nearly instantaneous. Since the 128 has appropriated these

first 256 houses for its own use, there's not much room left

over down there for you to store your own ML pointers or

flags, not to mention entire subroutines. You will, however,

want to squeeze in some address pointers, which we'll get to

in a minute. After all, your programs, too, will sometimes

want the fastest possible service.

These two addressing modes, absolute and zero page, are

very common ones. In your programming, however, you prob

ably won't get to use zero page as much as you might want

to. You will notice on a map of the 128 that zero page is

heavily trafficked. You could cause a problem by storing

things in zero page where the 128 expects to use it for its own

purposes. You can find a map of the 128 in Appendix C. Maps

not only tell you what space must be avoided, but also where

to access the many built-in BASIC routines in your computer.

More about this later.

There are, however, safe areas for you to use down there

in those exclusive locations in lower RAM memory. The buffer

for the cassette recorder ($B00) or for BASIC activities like

floating-point arithmetic are safe when you're not using a tape

drive or BASIC. So, if you put your pointers and flags into

these addresses, things will be fine. In any case, zero page is a

popular, busy neighborhood. Don't put any of your actual ML

programs there. Your main use of zero page will be to hold

pointers for an especially useful addressing mode called in

direct Y that we're going to look at in detail. But you've al

ways got to make sure that you aren't interfering with the

128's own requirements for space in zero page. If BASIC is ac

tive, you can only be sure of the safety of addresses $FA-$FE.

59



Chapter 4

LJ

However, if your ML routine isn't accessing I/O routines at j I

the time, you can use cassette-specific zero page areas. If it's

not using floating point, you can use the accumulators. Some

times, it's easiest just to try using some addresses in zero page j I

and see if your program runs correctly.

While we're on the subject of places to avoid, keep out of

page 1 (decimal addresses 256-511), too. That's for the stack, { I

about which more later. We'll get to the safe places in RAM '—f
that you can use for your ML programs and their flags, vari

ables, tables, and so on. It's always okay to use ordinary

higher RAM as long as you keep BASIC programs from

putting their variables on top of the ML and keep the ML

from writing over BASIC (if you want them to coexist during a

program run). And, using the special addressing techniques

and bank switching we'll discuss below, you can access the

entire 64K of bank 1 which is all blank RAM.

The safest place of all for short ML routines is between

addresses 2816 ($B00) and 3071 ($BFF) since the 128 leaves

these RAM locations essentially undisturbed unless the cas

sette drive is active. So, when you want to practice with the

examples in this book, it's always okay to give the LADS

assembler a start address instruction of * = $B00 or its decimal

equivalent *= 2816.

Immediate

Another very common addressing mode is called immediate

addressing—it deals directly with a number. Instead of send

ing away for the number, we can just shove it directly into the

accumulator by putting the number right in the same place

where the other addressing modes would have an address.

Let's illustrate this: ( i

BOO LDA $2500 Absolute mode, loading from address 2500 '—'
BOO LDA #$9 Immediate mode, put number 9 into the

accumulator I j

The first example will load the accumulator with whatever

number is found in address $2500. In the second example, we . ,

simply wanted to put a $9 into the accumulator. We know I I
that we want the number $9. So, instead of sending off for the

$9, we just type in a $9 where we normally would put a ( .

memory address. And we tack on the # symbol to show that 1 I
the $9 is the number we're after. Without that #, the computer
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j~| would load the accumulator with whatever it finds at address

$9 (as in LDA $9). Without the #, it would be zero page

addressing, not immediate addressing.

P"l In any case, immediate addressing is very commonly

1 used, since you often know already what number you are after
and do not need to send away for it at all. One example

f1 would be printing out a carriage return on the screen. You al

ready know that the code for a carriage return is 13, so you

just load it into the accumulator with LDA #13. This is similar

to BASIC where you define a variable (10 VARIABLE = 9). In

this case, we have a variable being given a known value. LDA

#9 is the same idea. (When using the mini-assembler in 128's

built-in monitor, remember that it assumes numbers are hex

unless otherwise indicated. For the LADS assembler from this

book, LDA #10 means "put the value 10 into the accu

mulator," but the same instruction to the mini-assembler will

put the decimal value 16 (hex $10) in the accumulator. To use

decimal numbers you must always add a + sign: LDA # + 10.)

To repeat, immediate addressing is used when you know

what number you're dealing with; you're not sending off for

it. It's put right into the ML program code as a number, not as

an address. To illustrate immediate and absolute addressing

working together, imagine that you wanted to copy the num

ber 15 ($0F) into address $4000 (see Program 4-1).

Implied

Here's an easy one. You don't use any address or argument

with this one. You just type the instruction; it sits alone, needs

no argument.

This is probably the easiest addressing mode to grasp. It's

called implied, since the mnemonic, the instruction itself, im

plies what is being sent where: TXA means Transfer the X reg

ister's contents to the Accumulator. Implied addressing means

that you do not type anything following the instruction. The

instruction defines what's being done without your having to

give it any argument.

TYA and others are similar short-haul moves from one

register to another. Included in this implied group are the

SEC, CLC, SED, CLD instructions as well. They merely clear

or set the flags in the status register, thereby letting you and

the computer keep track of whether or not the most recent

arithmetic resulted in a zero, whether or not a carry occurred,

and so forth.
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Also "implied" are such instructions as RTS (ReTurn from

Subroutine), BRK (BReaK, which is the ML equivalent of BA-

SIC's STOP command), PLP, PHP, PLA, PHA (which "push"

or "pull" the processor status register or accumulator onto or

off the stack).

Increasing by one (incrementing) the X or Y register's

number (INX, INY) or decreasing it (DEX, DEY) are also "im-

plied." What all of these implied addressing modes have in

common is the fact that you do not need to actually give any

address. By comparison, an LDA $2500 (the absolute mode)

must have that $2500 address to know where to pick up the

package. TXA already says, in the instruction itself, that the

address, the destination, is the accumulator. Likewise, you do

not put an address after RTS since the computer always

memorizes its jump-off address when it does a JSR. NOP (NO

oPeration) is, of course, implied mode, too.

Relative

One particular addressing mode, the relative mode, used to be

a real headache for programmers. Not so long ago, in the days

when ML programming was done "by hand," this was a fre

quent source of errors. Hand computing—entering each byte

by flipping eight switches up or down and then pressing an

ENTER key—meant that the programmer had to first write a

program on paper, translate the mnemonics into their number

equivalents, and then "key" the whole thing into the machine

with that set of switches.

It was a big advance when hexadecimal numbers permit

ted entering $0F instead of eight switches: 00001111. This re

duced errors and fatigue.

An even greater advance was having enough free memory

so that an assembler program could be in the computer while

the ML program was being written. An assembler not only

takes care of translating LDA $2500 into its three (eight-

switch) numbers—10101101 (the code for the instruction

LDA) and 00000000 00100101 (the number $2500)—but an

assembler also does relative addressing. So, for the same rea-

son that you can program in ML without knowing how to deal

with binary numbers, you can also forget about relative

addressing. The assembler will do it for you. All you need to

remember about it is that you can't go very far away from the

current instruction when using relative addressing and LADS

will warn you if you try.

63



1 I

Chapter 4 *—'

u

Relative addressing is used with eight instructions only: > i

BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS. They are all U
branching instructions. They force the control of the program

to branch (jump) when the overflow flag is set (or cleared); \ j

when the carry flag is set (or cleared); or if the most recent '—'
arithmetic resulted in equal, less than, not equal, or more than.

Branch if EQual (BEQ) would look like this in BASIC: IF X ; j

= 0 THEN GOTO. It forces the computer to branch some- '—'

where else in a program if something is equal to zero.

All these B instructions can branch only as far as 128 ad

dresses forward or 127 backward from where the instruction is

located. If you were delivering the mail in the City of Bytes,

you would probably dislike relative addresses; it would mean

extra work. You would be going peacefully from house to

house up the road and then, suddenly, one of the letters has a

giant B on it and a number like —5 or +47. You've then got

to stop your orderly progress up the road and take this letter 5

houses back from the current house or 47 houses forward.

Remember that these branches, these jumps, can be a dis

tance of only 128 bytes from their own addresses, but they

can go in either direction. Thus, if a BNE instruction above is

located in RAM at address $3500, you cannot specify $5600 as

its target. That would be much too big a branch. However, if

you do exceed the limit of branching, LADS will print "Branch

Out Of Range" and give you the line number where the error

was so that you can easily correct it.

When using the B instructions to branch relatively, you

specify where the branch should go by giving an address

within the boundaries of 128 bytes in either direction. Here's

an example:

1000 LDX #$00

1002 INX

1003 BNE $1002

1005 BRK

(The X register in this example will count up by ones until

it hits 255 decimal. At that point, it resets itself to zero. When

it does become zero, that will fail to trigger the Branch if Not

Equal to zero instruction, and we will "fall through" the

branch to the BRK at $1005.)

This is how you create an ML FOR-NEXT loop. You are

branching relative to address 1003, which means that the
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assembler will calculate what address to place into the com

puter that will get you to address $1002. You might wonder

what's wrong with the computer just accepting the number

$1002 as the address to which you want to branch. Absolute

addressing does give the computer the actual address, but the

branching instructions all need addresses which are offsets of

the starting address. After assembling the example above, the

assembler puts the following into the computer:

1000 A2 00

1002 E8

1003 DO FD

1005 00

The odd thing about this piece of code is the FD which

LADS will assemble into address $1004. How does $FD tell

the computer to branch back to $1002? $FD is 253 decimal.

Now it begins to be clear why relative addressing used to be

so messy to program. If you are curious, numbers larger than

127, when used as arguments for the B instructions, tell the

computer to go back down to lower addresses. What's worse,

the larger the number, the less far down it goes. In this case,

the computer counts the address $1005 as zero and counts

backward thus:

1005 = 0 = $00

1004 = 255 = $FF

1003 = 254 = $FE

1002 = 253 = $FD

Not a very pretty counting method. It's easy for the com

puter to deal with this, but to us it's awkward and strange.

Fortunately, all that we LADS assembler users need do is to

assign a label to the address we're branching to and use the

label as the address (as if it were an absolute address). The

assembler will do the hard part. So, relative branching be

comes quite easy when using LADS because you label ad

dresses and, thus, don't need to know the particular address to

give as the argument of the B instructions (or JSR or JMP

either). (However, if you're using the simple assembler in the

128's monitor, you will need to specify an address; there are

no labels permitted in the monitor.)

The strange counting method illustrated by relative

addressing is the way that the computer handles negative

numbers. It thinks of the leftmost bit in a byte as the sign bit.
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Whether the bit is on or off signifies a positive or negative 1 I

number. For the beginning ML programmer, however, it's just '—'
as well to forget all about negative numbers. You won't find

that you'll need to use them since practically everything you'll J I

want to do can be done with positive integers.

Before leaving our discussion of branching, let's look at

one special problem that you will need to deal with if you use j j

the simple assembler in the monitor. When you are using one '—'
of the branch instructions, you sometimes branch forward. Let's

say that you want to have a different kind of FOR-NEXT loop:

1000 LDX #$0

1002 INX

1003 BEQ $100A

1005 JMP $1002

1008 BRK

1009 BRK

100A BRK

When jumping forward, you often do not yet know the

precise address you want to branch to. In the example above,

we really wanted to go to $1008 when the loop was finished

(when X was equal to zero), but we just entered an approxi

mate address ($100A) and made a note of the place where this

guess appeared ($1004). Then, using the direct memory

changing function in the monitor, we can change location

$1004 to the correct offset when we know what it should be.

Forward counting is easy. When we learned that we

wanted to go to $1008, we would change the number $5 in

address $1004 to $3.

Remember that you start counting from zero from the ad

dress immediately following the branch instruction. For ex

ample, a jump to $1008 would be three because you count \ i

$1005 = 0, $1006= 1, $1007=2, $1008=3. All this confusion LJ
disappears after writing a few programs and practicing with

estimated branch addresses. Luckily, the assembler does all j i

the backward branches. That's lucky because they are much *—■>

harder to calculate.

Unknown Forward Branches I 1
If you are using LADS, all branches are given names rather

than addresses. These names are called labels, and they are < i

automatically calculated for you by the assembler. You would <—»

write the above example with LADS in this way:
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LDX #0

COUNTUP INX

BEQ MORETHINGS ;or any other label you want

to give it

JMP COUNTUP ;jumps also have labels as

their targets

MORETHINGS BRK

With LADS and other advanced assemblers, you'll gen

erally want to use labels instead of actual addresses. This

makes things pretty easy on the programmer. LADS does

much of the busywork for you, particularly if you make good

use of its pseudo-ops. By the way, pseudo-ops are essentially

instructions directly to the assembler, such as "please insert

the following as pure ASCII text," but which are not normal

8502 instructions that get translated into ML object code. In

stead, a pseudo-op is a request to the assembler program to

perform some extra service for the programmer. We'll go into

them in detail later.

Absolute,X and Absolute,Y

Another important mode provides you with an easy way to

access lists or tables. This method looks like absolute address

ing, but you attach an X or a Y to the address. The X and Y

stand for the X and Y registers, which are being used in this

technique as offsets. That is, if the X register contains the num

ber 3, then whatever address you type in will have 3 added to

it. If X holds a 3 and you type LDA $1000,X, you will LoaD

Accumulator with the value (number) which is in memory cell

$1003. The register value is added to the absolute address.

Another addressing method called zero page,X works the

same way: LDA $05,X. (Load from cell 5 plus whatever's in

the X register.) These indexed addressing modes let you easily

transfer or search through messages, lists, or tables. Error mes

sages can be sent to the screen using such a method. Assume

that you set it up so that the words SYNTAX ERROR are held

in some part of memory because you sometimes need to send

them to the screen from your program. You might have a

whole table of such messages. But we'll say that the words

SYNTAX ERROR are stored at address $3000. Your screen

memory address is 1024 ($0400 hex); here's how you would

send the message:

67



Chapter 4

u

1000 LDX #$00 Set the counter register to zero. j I

1002 LOOP LDA $3000,X Get a letter at 3000 + X. LJ
1005 BEQ QUIT If the letter is a zero, we've reached

the end of the message, so we » i

branch to the end of this routine. j \
1007 STA $0400,X Send the letter to 0400 + X.

100A INX Increment the counter so that the

next letter in the message as well as 1 I
the next screen position are pointed

to.

100B JMP LOOP Jump to the load instruction to fetch

the next character.

1010 QUIT BRK Task completed, message transferred.

This sort of indexed looping is an extremely common ML

programming device. It can be used to create delays (FOR T = 1

TO 5000: NEXT T), to transfer any chunk of memory to an

other place, to check the status of memory (to see, for ex

ample, if a particular word appeared somewhere on the

screen), and to perform many other tasks. It is a fundamental,

all-purpose machine language technique.

Here's a fast way to fill your screen or any other area of

memory. This is a full source code for the demonstration

screen-fill example we tried in Chapter 1. See if you can fol

low how this indexed addressing works. What bytes are filled

in and when? At ML speeds, it isn't necessary to fill them in

order—nobody would see an irregular filling pattern because,

like magic, it all happens too fast for the eye to see (see Pro

gram 4-2).

Program 4-2. Filling the Screen with the letter A

10 *= $B00

20 .0

30 .S

40 A = $01; SCREEN CODE FOR "A"

50 ;

60 LDY #0; SET COUNTER TO ZERO

70 LDA #A

80 STA $0400,Y

90 STA $0500,Y

100 STA $0600,Y

110 STA $0700,Y

120 INY; RAISE COUNTER BY 1

130 BNE LOOP; IF Y IS NOT YET ZERO, KEEP GOING

140 RTS
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Compare this with the program on page xii to see the ef

fects of using a different screen starting address and how

source code is a more elaborate version of what you get when

you run the monitor's disassembler to get an ML program

listing.

Indirect Y

This addressing mode is a real workhorse; you'll use it often.

Several of the examples in this book refer to it and explain it

in context. The argument you use with this mode isn't so

much an address in itself as a method of creating an address. It

looks like this:

4000 STA ($80),Y

Seems innocent enough. That Y works like the other

kinds of index modes we've discussed before. Whatever is in

the Y register is added to the final address.

But watch out for those parentheses. They mean that $80

is not the real address here. We're not going to put the byte in

the accumulator into address $80 plus the value of Y. Instead,

addresses $80 and $81 are themselves holding the address we

are sending our byte to. We are not sending to $0080; hence,

the name for this mode is indirect Y.

Where does the byte in the accumulator end up? It de

pends what address you've stored in bytes $80 and $81. If $80

and $81 have these numbers in them:

$0080 01

$0081 20

and Y is holding a 5, then the byte in A will end up in ad

dress $2006. How did we get $2006?

First, you've got to mentally swap the numbers in $80

and $81. The 8502 requires that address pointers be listed in

backward order: The pointer is holding $2001, not $0120.

Then, you've got to add the value in the Y register, 5, and you

get $2006.

This is a valuable tool, even if it's perplexing at first. You

should familiarize yourself with it. It lets you get easy access

to many memory locations very quickly by just changing the Y

register (using INY or DEY) or by directly changing the ad

dress pointer itself (using INC or DEC, instructions that raise

or lower a byte in RAM memory by one). You can make rad

ical shifts with this pointer-changing technique. You can shift
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up a whole page (256 bytes) by simply INC $81: That will j I

change your target address from $2001 to $2101. To go down '—'
four pages, subtract four from address $81. Combine this with

the indexing that the Y register is doing for you, and you've | j

got greater efficiency, greater reach to all the RAM you want '—'
to manipulate.

Right now you're paying the only price you'll ever pay for ) j

this valuable tool: It's possibly the most perplexing thing '—>

when you're learning ML. You've got to try it a few times,

scratch your head, and get the concept.

Let's clear away some of the fog. How were those bytes at

$80 and $81 selected to be the ones holding our indirect ad

dress? The programmer decides where address pointers are

stashed (they must be in zero page). You figure out where the

safe places are in zero page, and you use them for your point

ers. That's the main use that you'll have for zero page.

Remember that the creators of the 128 set aside zero page

bytes $FA through $FE for our use. The 128 leaves them

alone, so there's room for two of your indirect Y pointers in

that safe area.

How did the numbers $20 and $01 get into the pointer in

the example above? The programmer put them there. As part

of the initial activities of an ML program, you stick byte-pairs

(these address pointers) into zero page. If you're using a sim

ple assembler, you'll need to keep a record of the pointers on

paper. If you're using LADS, you give the pointers labels like

this:

SCREENPOINTER = $80

And you can also have a label for the actual screen address:

SCREEN = $0400

Then, to set up a pointer, you use some pseudo-ops in LADS

which break a two-byte address like $0400 into halves for

storage in pointers:

LDA #<SCREEN; loads the low byte

STA SCREENPOINTER

LDA #>SCREEN; loads the high byte

STA SCREENPOINTER+1; stores into address SCREENPOINTER

plus 1 ($81)

When an address is set up in a pointer, it's split in half.

The address $0400 was split in the example above. When
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programming in ML, it's useful to distinguish between the two

halves by saying that one of the bytes is the LSB (least signifi

cant byte) and the other is the MSB (most significant byte). In

our example, the $00 is the LSB, and the $04 is the MSB.

That's not because one number is smaller than the other;

rather, it's because they are in different positions in the two-

byte address. The position on the left is of far more signifi

cance than the position on the right in $0400. It's the same for

decimal numbers: 5015 when chopped in half means that the

left half stands for fifty 100's and the right half only stands for

fifteen l's. Clearly the right position is the less significant.

Note that every time you add one to the MSB of a double-

byte hex number in ML, you are adding one page, 256. This is

how you can INC or DEC the MSB of your pointer and move

quickly through the "pages" of memory. And, remember, you

store pointers in reverse order when you are setting up a

pointer, LSB, MSB:

0080 00

0081 04; a pointer to the screen memory of the 128

Indirect X

This addressing mode is rarely used. It makes it possible to set

up a group of pointers, a cluster of them, in zero page. It's like

indirect Y, except the X register value is not added to the ad

dress pointer to form the ultimate address target. Rather, X

points to the pointer you desire to use. Nothing is added to the

address held in the pointer. It looks like this:

5000 STA ($90,X)

To see it in action, let's assume that you've already set up

a cluster of pointers in zero page. It's a table of pointers, not

just one:

0090

0091

0092

0093

0094

0095

$00;

$04;

$05;

$70;

$EA;

$81;

Pointer 1

points to $0400

Pointer 2

points to $7005

Pointer 3

points to $81EA

If X holds a 2 when we STA ($90,X), then the byte in the

accumulator will be sent to address $7005. If X holds a 4, the

byte will go to $81EA.
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All things considered, this addressing mode has little to i j

recommend it. If you set up the same table, you could access '—'
these pointers just as easily and have the flexibility of that Y

index into the bargain. Who knows why the designers of the j j

8502 chip included this mode? ^

Accumulator Mode j j

ASL, LSR, ROL, and ROR shift the bits in the byte held in the <—'
accumulator. We'll touch on this shifting in Chapter 6 when

we discuss the instruction set. This mode doesn't really have

much to do with addressing as such, but it's always listed as a

separate mode.

Zero Page,Y

This mode can be used with only two instructions: LDX and

STX. Otherwise, it operates just like zero page,X discussed

above.

What to Remember

There you have them, 13 addressing modes to choose from.

However, there are only six that you should focus on. Try

practicing with them until you understand their uses: immedi

ate, absolute (plus absolute,X and ,Y), zero page, and indirect

Y. The rest are either unimportant when you're programming

because they are automatic (like the implied mode) or are not

really worth bothering with. Now that we've surveyed the

ways you can move numbers around, it's time to see how to

do arithmetic in ML.
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n
1 There'll be many things that you'll want to do in ML, but

complicated math is not one of them. Mathematics beyond

f—j simple addition, subtraction, multiplication, and division will

not be covered in this book. For games and most other ML for

personal computing, you won't need to use complex math. In

this chapter we'll cover what you are likely to use. BASIC is

well-suited to sophisticated mathematical programming and is

far easier to work with for such tasks. If you're planning a

program that's going to involve trigonometry or quadratic

equations, use BASIC.

But before we look at ML arithmetic, let's briefly review

an important concept: how the computer tells the difference

between addresses, numbers as such, and instructions. It is

valuable to be able to visualize what the computer is going to

do as it comes upon each byte in your ML routine.

Even when a computer appears to be working with

words, letters of the alphabet, graphics symbols, and the like,

it is still working with numbers. A computer works only with

numbers. The ASCII code is a convention by which a com

puter understands that when the context is alphabetic, the

number 65 means the letter A. At first this is confusing. How

does it know when 65 is A and when it is just 65? And there's

a third possibility: The 65 could represent the cell 65 in the

computer's memory, the sixty-fifth address.

It is worth remembering that, like us, the computer means

different things at different times when it uses a symbol (like

j—j 65). We can mean a street address by it, a temperature, or a

' ' code. We could agree that whenever we used the symbol 65,
we were ready to leave the party. We would look meaning-

|—i fully at our companion and say, "Everyone expects to retire at

1 - 1 sixty-five/' Then hope they get the hint and remember the
code.

r—| The point is that symbols aren't anything in themselves.

•■ ' They stand for other things, and what they stand for must be
agreed upon in advance. There must be rules. A code is an

j—-I agreement in advance that one thing symbolizes another.
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The Computer's Rules I i

Inside your machine, at the most basic level, there is a stream <—'

of input. The stream flows continually past a "gate" like a

river through a canal. For 99 percent of the time, the 128 sees i [

a continuous stream of 88's. «—I
When you first turn it on, the computer just sits there.

What's it doing? It will be updating its clock, and it's i i

holding things coherent on the TV screen—but it mainly waits I—I
in an endless loop for you to press a key on your keyboard to

let it know what it's supposed to do.

There is a memory cell inside your 128 which the com

puter constantly checks. This byte in the 128 is located at $D4.

While no key is pressed, $D4 holds the number 88. When a

key is hit on the keyboard, however, a different number ap

pears in $D4, a number unique to the key pressed called its

keyboard matrix code. This isn't the same as the ASCII code

that you use to print to the screen. However, you can use this

matrix code to make branches and decisions just as well as

any other code. For example, anything other than 88 in $D4

signals that someone is typing something on the keyboard. If

the RETURN key is pressed, a 1 will appear in location $D4.

Finally, after centuries (the computer's sense of time differs

from ours) here is something to work with. Something has

come up to the gate at last.

But assume that someone hits the RETURN key, and a 1

appears in location $D4. You notice the effect at once—every

thing on the screen moves up one line, because 1 (in the key

board matrix code) stands for a carriage return. How did the

128 know that you were not intending to type the number 1

when it saw 1 in the keyboard sampling cell? Simple. The

number 1, and any other keyboard input, is always read from . .

$D4 as a keyboard matrix code number. Besides, there's a dif- I I
ference between the number 1 and the ASCII or matrix codes

for the character 1. , ,

Let's look at this a slightly different way. Say that some- 1 I
one typed in the number 141 on they keyboard. The matrix

code for each of those three characters 1, 4, and 1 would ap- , .

pear, in turn, in cell $D4 for as long as each key was being I I
pressed. But, in the matrix code or ASCII, the digits from 0

through 9 are the only number symbols. There is no single , ,

symbol for the three characters 1 4 1. So, when you type in a I 1
1 followed immediately by a 4 and then another 1, the
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n computer's input-from-keyboard routine notices that you have

not pressed one of the "instant action" keys (such as the ESC,

TAB, or cursor-control keys). Rather, you typed 1 and 4 and

f—I another 1—the keyboard sampling cell, the "which key

I l pressed" location in zero page at $D4, received the matrix

code for 1, and then for 4, and finally another 1. And, in be-

ntween each of these codes, it received 88 showing that the hu

man, operating at slow human speeds, was not pressing any

keys for a time.

The point is that hitting the key labeled 1 followed by the

key labeled 4 followed by another 1 is not storing those num

bers into that sampling cell at $D4. Instead, these keypresses

are stored as characters. On the ML level, numbers are distinct

from characters. A character like 3 has an ASCII and matrix

code value which differs from its numeric value. In other

words, typing 14 1 will not result in the computer seeing a 1,

a 4, and a 1. Type in this little BASIC program to see what's

happening in $D4:

10 PRINT PEEK(212);:GOTO 10

and then type on the keyboard. Each key has a different ma

trix value. What happens when you SHIFT or ESC a key?

Incidentally, 128's ASCII code representations (as distinct

from the matrix code) of the digits are easy to remember in

hex: 0 is $30, 1 is $31, ... up to $39 for 9. In decimal, the dig

its would be 48 through 57. The matrix code follows no

particular pattern.

The point of all this is that the computer decides the

"meaning" of the numbers which flow into and through it by

each number's context. If it is in "alphabetic" mode, the com

puter will see the number 65 as A; or if it has just received an

I™""} A, it might see a subsequent number 65 as an address to store

the A. It all depends on the events that surround a given num

ber. We can illustrate this with a simple example:

fl 2000 LDA #$C1 $A9 (169) $C1 (193)
2002 STA $C1 $85 (133) $C1 (193)

nThis short ML program (the numbers in parentheses are

the decimal values) shows how the computer can "expect" dif

ferent meanings from the number 193 ($C1 hex). When it re-

_ ceives an instruction to perform an action, it is then prepared

i I to act upon a number. The instruction comes first and, since it

n 77



Chapter 5 u

u

is the first thing the computer sees when it starts a job, it , .

knows that the number $A9 (169) is not a number. I |
It has to be one of the ML instructions from its set of

instructions (see Appendix A).

Instructions and Their Arguments

The computer would no more think of this first 169 as the

number 169 than you would seal an envelope before the letter ] |
was inside. If you are sending out a pile of Christmas cards,

you perform instruction-argument just the way the computer

does: You (1) fill the envelope (instruction) (2) with a card

(argument, or operand). You don't get the envelopes confused

with the cards and try to stuff an envelope into a card.

All actions do something to something. A computer's ac

tion is called an instruction (or, in its numeric form as part of

an ML program inside the computer's memory, it's called an

opcode for operation code). The target of the action is called its

argument, or operand. In our program above, the computer

must LoaD Accumulator with 193. The # symbol means im

mediate; the target is right there in the next memory cell

following the LDA instruction, so it isn't supposed to be

fetched from a distant memory cell. That 193, however, is not

another instruction; it's the number 193.

Then, after this action has been completed, after the accu

mulator contains the number 193, the next number (the 133

which means STore Accumulator in zero page, the first 256

cells) must be an instruction, the start of another complete ac

tion. And, once again, the computer knows that the instruction

133 must be followed by an address of a cell in memory to

store to. So, in the example, we've got a total of four numbers:

169, 193, 133, and 193. If you PEEKed at this little ML rou

tine, you'd find these numbers in this order. But when this ML [ (
program is run, is executed by the 8502, it will see 169 as an

instruction, 193 as a number, 133 as another instruction, and

the 193 following that instruction as an address in memory. j I
Instructions, numbers, addresses—they are all mixed in to

gether, but the chip can figure out which is which based upon

their context. It knows that LDA # will be followed by a sin- j }
gle-byte number because that's what LDA in the immediate

addressing mode demands. The computer would no more ex

pect an address to come after LDA # than you would expect | j
someone to say "1700 Taylor Street" when you asked what

time it was.
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_ Think of the computer as completing each action and then

I I looking for another instruction. It moves through your list of
instructions logically. Recall from the last chapter that the tar-

_ get can be "implied" in the sense that INX simply increases

I I the X register by one. The one is "implied" by the instruction
itself, so there is no target argument in these cases. The next

cell in this case must also contain an instruction for a new

j I instruction-argument cycle.
Some instructions call for a single-byte argument. LDA

#193 is of this type. You cannot LoaD Accumulator with any

thing greater than 255. The accumulator is only one byte

large, so anything that can be loaded into it can also be only a

single byte large. (Recall that 255, $FF, is the largest number

that can be represented by a single byte.)

STA $C1 also has a one-byte argument because the target

address for the STore Accumulator is, in this case, in zero

page.

Storing to zero page or loading from it will need only a

one-byte argument—the address. Zero page addressing is a

special case, but an assembler program will take care of it for

you. It will pick the correct opcode for this addressing mode

when you type LDA $C1. Typing in LDA $OOC1 would create

ML code that performs the same operation, though it would

use three bytes instead of two to do it.

But how does the chip know that a given instruction is

self-contained like the INY, implied addressing mode? Or an

other instruction uses up two bytes like zero page addressing

(STA $15 uses one byte for the STA command and one byte

for the $15)? Or the biggest addressing modes, like STA

$1500, absolute addressing, take three bytes before they can

look for the next instruction in a program?

f"""| Inside the chip is a program counter (PC). It has a list of all
the ML instructions. And it knows how many bytes—one,

two, or three—that each instruction takes up. During an ML

F"| program's execution, the program counter acts like a finger
that keeps track of where the computer is located at any given

time in its trip up the series of ML instructions that comprise

|""| your program. Each instruction takes up one, two, or three
bytes, depending on what type of addressing is going on. The

program counter looks at its list and moves up the appropriate

{"""] number of bytes to show where the next instruction will be.
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Context Defines Meaning . ,

TXA uses only one byte, so the program counter moves ahead I I
one byte and stops and waits until the value in the X register

is moved over into the accumulator. TXA is supposed to trans- i >

fer into the accumulator whatever number is in the X register. I I
Then the computer asks the PC, "Where are we?" and the PC

is pointing to the address of the next instruction. The PC < ,

never points to an argument. It skips over them because it I I
knows how many bytes each addressing mode uses up in a

program.

Say that the next instruction after TXA is LDA $15. This

is a two-byte-long, zero page addressing mode. The PC looks

on its list and moves up two bytes. The longest possible

instruction would use three bytes, such as LDA $5000 (ab

solute addressing). The PC counts up three and points. Your

assembler would translate LDA $15 into $A5 and POKE it. It

would translate LDA $1500 into $AD and POKE that. Since

the opcodes that get POKEd are different, even though the

LDA mnemonics are identical, the computer can know how

many bytes a given instruction will use up. That's how it

knows where the next instruction must be in your program.

Having reviewed the way that your computer makes

contextual sense out of the mass of seemingly similar numbers

of which an ML program is composed, we can now move on

to see how elementary arithmetic is performed in ML.

Addition

Arithmetic is performed in the accumulator. The accumulator

holds the first number, the target address holds the second

number (but is not affected by the activities), and the result is

left in the accumulator. So,

LDA #$40 Remember, the # means immediate, the $ means hex. I—I
ADC #$01

will result in the number $41 being left in the accumulator. j I

We could then STA that number wherever we wanted. Simple '—'
enough.

The ADC means ADd with Carry. If an addition results in j I

a number higher than 256 (if we added, say, 250 + 7), then '—'
there would have to be a way to show that the number left

behind in the accumulator isn't the correct result—that what's i |

in the accumulator isn't the total, it's the carry. '—!
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r^ After adding 250 + 7, you would find a 1 in the accu-

I I mulator, and the carry flag would be up.

That means that you must add 256 to whatever is in the

_ accumulator to find the real answer: 257.

1 j To make sure that things never get confused, always CLC
(dear the Carry flag) before you do any addition. CLC will push

r^ the carry flag down (in case it was up from some previous

I \ event in your program). Then, if you find that it is up after the

addition (ADC), you'll know that you need to add 256 to

whatever is in the accumulator. You'll know that the accu

mulator is holding the carry, not the total result.

One other point about the status register: There is another

flag, the decimal flag. If you ever set this flag up (with the

SED, SEt Decimal instruction), all addition and subtraction is

performed in a decimal mode in which the carry flag is set

whenever an addition exceeds 99. In this book, we are not go

ing into the decimal mode at all. Decimal mode has little value

in ML programming. It's another one of those things that

sounds good, but doesn't do much in practice.

Adding Numbers Larger Than 255

We have already discussed the idea of setting aside some

memory cells as a table for data. To do this, we simply make a

note to ourselves that, say, addresses $D6 and $D7 are de

clared a zone for our personal use as a storage area. Using a

typical example, let's think of this two-byte zone as the place

that holds the address of a "moving finger" going through a

list of names we've stored in RAM. As long as the zone is not

in ROM or used by our program elsewhere or used by the

computer (see the memory map in Appendix C or use the safe

r—) areas like $FA-$FE we discussed earlier), it's fine to declare an

t I area a data zone. It is a good idea (especially with longer pro

grams) to make notes on a piece of paper to show where you

P—i intend to have your subroutines, your main loop, your

L \ initialization, and your miscellaneous data—names, messages

for the screen, input from the keyboard, and so on. This is one

r—, of those things that BASIC does for you automatically, but

/ J which you must do for yourself in ML. However, you can set

up data zones with the LADS assembler by using the .BYTE,

=, or *= pseudo-ops. It's generally a good idea to put mes

sage tables, and so forth, at the very end of your program.
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When BASIC creates a string variable, it sets aside an area

to store variables. This is what DIM does. In ML, you set aside \ j
your own areas by simply finding a clear memory space and

not writing a part of your program into it (or by staking out

some memory with .BYTE or *= in LADS). Part of your data \ \
zone can be special registers you declare to hold the results of

addition or subtraction.

But back to our example: You might make a note to your- \ j
self that after finding these zero page locations safe to use,

$D6 and $D7 will hold the current position within a list of

names in your database. This is a pointer, and we can look at

all the bytes within our database by adjusting this pointer in

$D6 and $D7. In this way we can efficiently search through

the database.

Since the "moving finger" searching through the database

is constantly in motion, this pointer will be changing all the

time as it looks for your target information. Notice that you

need two bytes for this pointer. That is because one byte could

hold only a number from 0 through 255. Two bytes together,

though, can hold a number up to 65535 (all the possible ad

dresses in the 128 without bank switching).

To define the pointer location, you could do this in LADS:

FINGER = $D6

If you needed another two-byte pointer to hold another ad

dress, you could write this:

OTHER = $EB

and so on, using safe areas, for as many pointers as you

needed.

Since your 128 can address only a total of 65536 memory

cells with any single instruction, two-byte registers like these

can address any addressable cell in your current bank. So if [ J
your "moving finger" is supposed to look up the name

"Mitchell, Nancy" in the database, you'll want to start off by

looking for the letter M. In setting up your list of names, you \ J
decided that each entry, each record, would be given 40 bytes

of space. Thus, you are going to be adding 40 to the FINGER

if the first character in the first record isn't an M. Let's say that |_J
the list of records starts in memory at address $8000.

Before accessing the list, we punch in the target address:

LDA #0:STA $D6:LDA #$80:STA $D7 LJ
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r—■| Or you could accomplish the same thing with the LADS

f ' assembler by using labels and the #> and #< pseudo-ops
which extract the MSB and LSB of a label's address:

p| LDA #<DATA:STA FINGER:LDA #>DATA:STA FINGER+1.

The FINGER address register now looks like this in the

monitor: $00D6 00 80 (remember that the higher, most signifi-

) \ cant byte, comes after the LSB, the least significant byte). To

move to the next name in the list, we want FINGER to be

$00D6 28 80. (The 28 is hex for 40.) In other words, we're go

ing to move the finger up one record in the database list. To

do this, we need to add $28 (40 decimal) to the pointer, the

FINGER.

Remember the indirect Y addressing mode which lets us

use an address in zero page as a pointer to another address in

memory? The number in the Y register is added to whatever

address sits in $D6 and $D7, so we don't STA to $D6 or $D7,

but rather to the address that they contain: STA ($D6),Y.

How to add $28 to the FINGER pointer? First of all, CLC

(CLear the Carry) to be sure that flag is down. This example is

written for the mini-assembler in the monitor:

1000 CLC $1000 is the location of our "add 40 to FINGER"

subroutine.

1001 LDA $D6 We fetch the LSB of FINGER.

1003 ADC #$28 Add 40.

1006 STA $D6 Put the new result into FINGER.

1008 LDA $D7 Get the MSB of FINGER.

100A ADC #$00 Add with carry to the MSB of FINGER.

1010 STA $D7 Update FINGER'S MSB.

That's it. Any carry will automatically set the carry flag up

during the ADC action on the LSB and will be added into the

P"j result when we ADC to the MSB. It's all quite similar to the
way that we add numbers, putting a carry onto the next col

umn when we get more than a ten in the first column. And

P^ this carrying is why we always CLC (clear the carry flag; put it
down) just before additions. If the carry is set, we could get

the wrong answer if our problem did not result in a carry. Did

["""I the addition above cause a carry? (Remember, we started with
a value of $8000 in FINGER.)

Note that we need not check for any carries during the

r"j MSB+MSB addition. Any carries resulting in a database ad
dress greater than $FFFF (65535) would be impossible on our

machines.
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The 8502 is permitted to address $FFFF tops, under nor- . }

mal conditions. However, it is possible to add numbers larger I I
than 65535 by simply using more than two bytes and continu

ing to add with carry across a multibyte chain. , ,

The example above would be somewhat easier with Lj
LADS because you would substitute label names (FINGER and

DATA, in this case) for the numbers. Also, you could define { ,

another label to hold the size of a record (RECORD = 40), LJ

and then line 1003 would read ADC #RECORD.

Subtraction

As you might expect, subtracting single-byte numbers is a

snap:

LDA #$41

SBC #$01

results in a $40 being left in the accumulator. As before,

though, it's important to make it a habit to deal with the carry

flag before each calculation. When subtracting, however, you

set the carry flag: SEC. Why is unimportant. Just always SEC

before any subtractions, and your answers will be correct.

Here's double subtracting that will move the FINGER back

down one record in the data list:

$1020 SEC $1020 is where we arbitrarily decided to locate

our "take 40 from FINGER" subroutine.

1021 LDA $D6 Get the LSB of FINGER.

1023 SBC #$28 LSB of the size of a single record.

1026 STA $D6 Put the new result into FINGER.

1028 LDA $D7 Get FINGER's MSB.

102A SBC #$00 Subtract the MSB of the size of a single record.

102D STA $D7 Update FINGER's MSB.

Multiplication and Division <—J

Multiplying could be done by repeated adding. To multiply 5

X 4, you could just add 4 + 4 + 4 + 4 + 4. One way would i j

be to set up two registers like the ones we've used before. L-^
Both registers (or storage zones) could contain a 4, and then

you could loop through an add-these-two-registers subroutine i |

five times. For practical purposes, however, multiplying and ^—'
dividing are more easily accomplished in BASIC. They are

simply not worth the trouble of setting up in ML, especially if j /

you need to involve decimal-point fractions (floating-point t—i
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r—[ arithmetic). Perhaps surprisingly, for games and most personal

'... ' computing tasks where ML routines and programs are created,
there is little use either for negative numbers or arithmetic be

yond simple addition and subtraction. When we get into di

vision and multiplication, we've gone beyond the simple

arithmetic that you'll need—unless you're writing an account-

r—i ing program or a spreadsheet program.

! i If you find that you do need complicated mathematical
structures, create the program in BASIC, adding ML where su

per speeds are desirable. Such hybrid programs are efficient

and, in their way, elegant.

One final note: An easy way to divide the number in the

accumulator by two is to LSR. Try it. Similarly, you can mul

tiply by two with ASL. We'll define LSR and ASL in the next

chapter. If you're interested in using these techniques, take a

look at the "Library of Subroutines" (Appendix E).

Double Comparison

One rather tricky technique is used fairly often in ML and

should be learned. It is tricky because two of the B branching

instructions seem to be worth using in this context, but are

best avoided for this kind of comparing. If you're trying to

keep track of the location of a record within a database, this

will be a two-byte address. If you need to compare those two

bytes against another two-byte address, you'll need a "double-

compare" subroutine. You might, for example, want to check

whether or not one record is located higher in the database

than another.

Double-compare is also useful in any other ML where you

need to manipulate numbers larger than can be held in one

r—j byte (where the single CMP instruction would be able to com-

i I pare them for you).
The problem is the BPL instruction (Branch on PLus) and

,—, its companion, BMI (Branch on Minus). Don't use them for

/_ \ comparisons. In any comparisons, whether single- or double-

byte, use BEQ to test if two numbers are equal, BNE for not

r—^ equal, BCS for equal or higher, and BCC for lower. You can

I ) remember BCS because its S is higher and BCC because its C is

lower in the alphabet. Program 5-1 shows one easy way to

,-_. perform a double-compare.

/ I
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Program 5-1. Double-Compare

10 *= $B00

20

30

COMPARE THE LOW BYTES

COMPARE THE HIGH BYTES

TESTED = SECOND

TESTED

TESTED

SECOND

SECOND

LANDING PLACES

STORAGE AREA

.S

.0

40 START SEC

50 LDA TESTED;

60 SBC SECOND

70 STA TEMP

80 LDA TESTED+1

90 SBC SECOND+1

100 ORA TEMP

110 BEQ EQUAL;

120 BCC LOWER;

130 BCS HIGHER;

140 7

150 7

160 LOWER BRK

170 EQUAL BRK

180 HIGHER BRK

400 7

500 TEMP .BYTE 0

600 SECOND .BYTE 0 0

700 TESTED .BYTE 0 0

710 .END 5-1

This is LADS at work. Recall that with assemblers like

LADS, you can use line numbers and labels, add numbers to

labels (see the TESTED + 1 in line 80), add comments, and

all the rest.

To try out this double comparison, type in the source

code in Program 5-1. Then assemble it with LADS. Now go

into the monitor with F8, and type D $B00 to see the results

of your assembly. Notice the eight zeros at the end of the little

program. You can then try putting different numbers into

TESTED and SECOND and reassemble (or just insert them in

the monitor using the > monitor memory change command).

Notice that the numbers being compared are not really

interchangeable. One is the "tested" number, and the other is

the number it is being tested against, the one we're calling

SECOND in our label scheme here. As you can see, you've

got to keep it straight in your mind which number is being

tested, or the results won't make much sense.

When you've set up two double-byte numbers in the reg

isters (TESTED and SECOND), you can run this routine from

within the monitor by typing G BOO. All that will happen is
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pi that you will land on a BRK instruction and halt further activ-

ity. Where you land tells you the results of the comparison. If

the numbers are equal, you land at EQUAL'S address. If the

P"j tested number is less than the second number, you'll end up

■ in the location of LOWER, and so forth. (The monitor will

give a PC number which is two bytes above the actual BRK

P*J instruction, so take that into account.)

' * You could test using only a BNE if all you needed to
know is whether or not the two numbers are equal. You could

leave out some of these branch tests if you're not interested in

them. Play around with this until you've understood the ideas

involved.

In a real program, you would be branching to addresses

in your ML program which do something if the numbers under

comparison are equal or one is greater or whatever. This ex

ample sends the computer to LOWER, EQUAL, or HIGHER,

where it comes to an abrupt halt just to let you see the effects

of a double-compare subroutine, but in a real program EQUAL

would be the start of a subroutine which accomplished some

thing based on the discovery of equality. Above all, remember

that you should use BCC and BCS (not BPL or BMI) when

comparing in ML.

Some might wonder why we use CMP to test the low

bytes and then switch to SBC to test the high bytes. It's just a

convenience. CoMPare is a subtraction of one number from

another. The only difference between CMP and SBC, really, is

that subtraction replaces the number in the accumulator with

the result. LDA #5:SBC #2 will leave 3 in the accumulator.

Using LDA #5:CMP #2 leaves the 5 in the accumulator, and

all that happens is that flags are affected. Both SBC and CMP

pi have an effect on the zero, negative, and carry flags. In our

' * double-compare we don't care if there is a result left in the
accumulator or not. So, we can use either SBC or CMP. The

f—> reason for starting off with CMP, however, is that we don't

1 ' have to SEC (set the carry flag) as we always need to do
before an SBC.

H

H
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n The Instruction Set

There are 56 instructions (commands) available in 8502 ma

chine language. Most versions of BASIC have about 50 com-

p-! mands. Some BASIC instructions are rarely used by the

1 l majority of programmers, for example, END, SGN, TAN, USR.
Some, such as LET, contribute nothing to a program and seem

to have remained in the language for nostalgic reasons. Oth

ers, like TAN, have uses that are highly specialized.

There are surplus commands in computer languages just

as there are surplus words in English. People don't often say

culpability. They usually just say guilt. The message gets

across without using the entire dictionary. The simple, com

mon words can do the job.

Machine language is the same as any other language in

this respect. There are around 20 heavily used instructions.

The 36 remaining ones are used far less often. You can switch

into the 128's monitor with F8 and look at part of your

computer's ROM. To look at BASIC ROM, once in the mon

itor, type D F4000 and press RETURN. To see more, press D

and RETURN. You can now read the machine language

routines which comprise BASIC. You'll find interesting things

all the way from $4000 up to $FFFF in bank 15. You'll also

quickly discover that the accumulator is heavily trafficked

(LDA and STA appear frequently in the disassembly), but you

will have to hunt to find BVC, CLV, ROR, RTI, or SED.

ML, like BASIC, offers you many ways to accomplish the

same job. Some programming solutions, of course, are better

pn than others, but the main thing is to get the job done. An in-

f ' fluence still lingers from the early days of computing when
memory space was rare and expensive. This influence—that

j—? you should try to write programs using up as little memory as

' ■ possible—can be safely ignored. Efficient memory use will
often be at the bottom of your list of objectives when program-

f? ming ML. It could hardly matter whether you use 25 instead

' - ■ of 15 bytes to print a message to the screen when your com
puter has space for programming which exceeds 130,000 bytes.

r-| Rather than memorize each ML instruction individually,

' ' we will concentrate on the workhorses. Bizarre or arcane
instructions will get only passing mention. Unless you are
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planning to use ML programs to interface to strange i

peripherals or need to do complex mathematical calculations i i
and such, you will be able to write excellent machine language

programs for nearly any application with the instructions we'll

focus on in this book. I
For each instruction group, we will describe three things

before getting down to the details about programming with , *

them: (1) what the instructions accomplish, (2) the addressing I I

modes you can use with them, and (3) what they do, if any

thing, to the flags in the status register. A condensed, reference

version of this information is also found in Appendix A.

The Six Instruction Groups

The best way to approach the instruction set might be to break

it down into the following six categories which group the

instructions according to their functions:

1. Transporters

2. Arithmetic Group

3. Decision Makers

4. Loop Group

5. Subroutine and Jump Group

6. Debuggers

We will deal with each group in order, pointing out

similarities to BASIC and describing the major uses for each.

As always, the best way to learn is by doing. Move bytes

around. Use each instruction, typing a BRK as the final

instruction to see the effects. If you LDA #65, look in the A

register to see what happened. Then, STA $12 and check to

see what was copied into address $12. If you send the byte in

the accumulator (STA), what is left behind in the accumulator?

Is it better to think of bytes being copied rather than being ) 1

sent? UJ
Play with each instruction to get a feel for it. Discover the

effects, qualities, and limitations of these ML commands. ) j

u
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n 1. The Transporters:

1 LDA, LDX, LDY
STA, STX, STY

n TAX, TAY

L TXA, TY4
r^i These instructions move a byte from one place in memory to

I l another. To be more precise, they copy whatever value is in a

source location into a target location. The source location still

contains the byte, but after a "transporter" instruction, a copy

of the byte is also in the target location. This does replace

whatever used to be in the target.

All of them affect the N and Z flags, except STA, STX,

and STY which do nothing to any flag.

There are a variety of addressing modes available to dif

ferent instructions in this group. Check the chart in Appendix

A for specifics.

Remember that the computer does things one at a time.

Unlike the human brain which can carry out a thousand dif

ferent instructions simultaneously (walk, talk, and smile, all at

once), the computer goes from one tiny job to the next. It

works through a series of instructions, raising the program

counter (PC) each time it handles an instruction.

If you do a TYA, the PC goes up by one to the next ad

dress, and the computer looks at that next instruction. STA

$80 is a two-byte-long instruction; it's zero page addressing,

so PC=PC+ 2. STA $8600 is a three-byte-long absolute

addressing mode, and PC=PC+3 automatically.

Recall that there's nothing larger than a three-byte in

crement of the PC. However, in each case, the PC is cranked

..t up the right amount to make it point to the address for the

| ( next instruction. Things would quickly get out of control if the

PC pointed to some argument (some address) thinking it was

; an instruction. It would be incorrect (and soon disastrous) if

| \ the PC pointed to the $15 in LDA $15.

If you type SYS 15000 from BASIC, the program counter

is loaded with 15000, and the computer transfers control to

/ \ the ML instructions which are (we hope) sitting at address

15000 (decimal) on up. It will then look at byte 15000 (deci-

mal), expecting it to be an instruction. Since the computer

\\ does all this very fast, it can seem to be keeping score, bounc
ing the ball, moving the paddle, and everything else—simulta

neously. It's not, though. It's flashing from one task to another
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and doing it so fast that it creates the illusion of simultaneity

much the way that 24 still pictures per second look like mo-

tion in movies.

u

u

The Programmer's Time Warp j_J
Movies are, of course, lots of still pictures flipping by in rapid

succession. Computer programs are composed of lots of in

dividual instructions performed in rapid succession. j {
Grasping this sequential, step-by-step activity makes our

programming job easier: We can think of large programs as

single steps, coordinated into meaningful, harmonious actions.

Now the computer will put a blank over the ball at the ball's

current address, then adjust the ball address to move it

slightly downward on the screen, then print the ball character

to the new address. The main single-step action is moving

information, as single-byte numbers, from here to there, in

memory. We are always creating, updating, modifying, mov

ing, and destroying single-byte variables. The moving is gen

erally done from one double-byte address to another. But it all

looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp.

You might spend several hours constructing a program which

executes in seconds. You are putting together instructions

which will later be read and acted upon by coordinated elec

trons, moving at electron speeds. It's as if you spent an after

noon slowly and carefully drawing up pathways and patterns

which would later be a single bolt of lightning.

Registers

In ML there are three primary places where variables rest

briefly on their way to memory cells: the X, the Y, and the A

registers. And the A register (the accumulator) is the most fre- |_J
quently used; X and Y are used for looping and indexing. Each

of these registers can grab a byte from anywhere in memory

or can grab the byte from the address right after its own |_j
opcode (immediate mode addressing):

LDY $8000 Puts the number at hex address 8000 into Y, with- . ,

out destroying it at $8000. i 1
LDY #65 Puts the decimal number 65 into Y. (Remember, with

the 128's built-in monitor, you'd need to add a +

sign in front of the 65 to have the mini-assembler j I
consider the 65 a decimal value: LDA #+ 65.)

LDA and LDX Work the same.
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<—j Be sure you understand what is happening here. LDY

'. J $1500 does not copy the byte in the Y register into address
$1500. It's just the opposite. The number (or value, as it's

sometimes called) in $1500 is copied into the Y register. This

is LoaD Y.

To copy a byte from X, Y, or A, use STX, STY, or STA.

For these "store-bytes" instructions, however, there is no im-

mediate addressing mode. No STA #$15. It would make no

sense to have STA #$15. That would be disruptive, for it

would modify the ML program itself. It would put the number 15

into the next cell beyond the STA instruction within the ML pro

gram itself.

Another type of transporter moves bytes between reg

isters—TAX, TAY, TXA, TYA. See the effect of writing the

following. Look at the registers after executing this:

1000 LDA #$65

1002 TAY

1003 TAX

The number $65 is placed into the accumulator, then

transferred to the Y register, then sent from the accumulator to

X. All the while, however, the A register (the accumulator) is

1 not being emptied. Sending bytes is not a transfer in the usual

sense of the term sending. It is more as if a photocopy were

made of the number, and then the copy was sent. The original

stays behind after the copy is sent.

LDA #$15 followed by TAY would leave the $15 in the

accumulator, sending a copy of $15 into the Y register.

Notice that you cannot directly move a byte from the X to

the Y register or vice versa. There is no TXY. or TYX.

Flags Up and Down

Another effect of moving bytes around is that it sometimes

throws a flag up or down in the status register. LDA (or LDX

or LDY) will affect the N and Z, negative and zero, flags.

We will ignore the N flag. It changes when you used

"signed numbers," a special technique to allow for negative

numbers. For our purposes, the N flag will fly up and down

all the time, and we won't care. We won't pay any attention to

it; we won't test to see where it is. If you're curious, signed

numbers are manipulated by allowing the seven bits on the

right to hold the number, the leftmost bit to stand for positive

or negative. We normally use a byte to hold values from 0
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through 255. If we were working with "signed" numbers, any- . >

thing higher than 127 would be considered a negative number !
since the leftmost bit would be "on"—and an LDA #255

would be thought of as —1. ,

This is another example of how the same thing (the num- LJ
ber 255 in this case) can signify several different conditions,

depending on the context in which it is being interpreted. .

The Z flag, on the other hand, is quite important; we can't LJ
ignore this flag. It shows whether or not some action during a

program run resulted in a zero. The branching instructions and

looping depend on this flag, and we'll deal with the important

zero-result effects below with the BNE and INX instructions,

and so on.

No flags are affected by the STA, STX, or STY instruction.

The Stack Can Take Care of Itself

There are some instructions which move bytes to and from the

stack. These are for advanced ML programmers. PHA and

PLA copy a byte from A to the stack and vice versa. PHP and

PLP move the status register to and from the stack. TSX and

TXS move the stack pointer to or from the X register. Forget

them. Unless you know precisely what you are doing, you can

cause havoc with your program by fooling with the stack. The

main job for the stack is to hold the return addresses pushed

into it when you JSR 0umP to SubRoutine). Then, when you

come back from a subroutine (RTS), the computer pulls the

addresses off the stack to find out where to go back to.

For most ML programming, avoid stack manipulation un

til you are an advanced programmer. If you manipulate the

stack without great care, you'll cause an RTS to the wrong re

turn address, and the computer will travel far, far beyond your

control. If you are lucky, it sometimes lands on a BRK instruc- |^J

tion and you fall into the monitor mode. The odds are that

you would get lucky roughly once every 256 times. Don't

count on it. Since BRK is rare in your BASIC ROM, the [_J
chances are pretty low.

You could fill large amounts of RAM with "snow" by

putting zeros everywhere. This greatly improves the odds that j \
a crash will hit a BRK. But why bother? Play it safe when

you're writing a program.

As an aside, there is another use for snow, a blanket of j |
"zero page snow." Recall that you can safely use some loca-
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ntions in zero page (addresses 0-255), but that your computer

. and many commercial programs compete for space in zero

page because it's such a fast place to access. If you are plan

ning to modify, say, a commercial word processor and need to

make sure that it's not using a particular area of zero page for

its own purposes, fill zero page with 00 (snow), put the word

processor through its paces, and then take a look at the tracks,

the nonzeros, in the snow.

n

2. The Arithmetic Group:

ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or clear

the carry flag. ADC and SBC trigger the N, Z, C, and V (over

flow) flags. CLC and SEC, needless to say, affect the C flag,

and their only addressing mode is implied.

ADC and SBC can be used in eight addressing modes: im

mediate, absolute, zero page, (indirect,X), (indirect),Y, zero

page,X, and absolute,X and ,Y.

Arithmetic was covered in the previous chapter. To re

view, the carry flag must be cleared with CLC before any

addition. Before any subtraction, it must be set with SEC. The

decimal mode should be cleared at the start of any program

(the initialization) with CLD. You can multiply by two with

ASL and divide by two with LSR. You can divide by four with

LSR LSR or by eight with LSR LSR LSR. You could multiply a

number by eight with ASL ASL ASL. What would this do to a

number: ASL ASL ASL ASL? To multiply by numbers which

aren't powers of two, use addition plus multiplication. To mul

tiply by ten, for example, copy the original number temporar-

ily to a vacant byte somewhere in memory. Then ASL ASL

I { ASL to multiply it by eight. Multiply the original number by
two with a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for

j ( anything. You can forget about the branch which depends on

it, BVC, too. Only five instructions affect it, and it relates to

twos complement arithmetic which we've not touched on in

this book. Like decimal mode or negative numbers, you will

be able to construct your ML programs very effectively if you

remain in complete ignorance of this mode. We have largely

avoided discussion of most of the flags in the status register: B,

D, I, N, and V. This avoidance has also removed several branch
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instructions from our consideration: BMI, BPL, BVC, and BVS. . ,

These flags and instructions are not usually found in ML pro- LJ
grams, and their use is confined to specialized mathematical or

interfacing applications. They will not be of use or interest to

the majority of ML programmers. The only use for BPL or BMI I
which might interest you is that they can quickly detect whether

a character is shifted above 128 in value. In the lower/uppercase . >

character set, small a is 65, but capital A is 193. If you were LJ
going through a list of names and the way you had arranged

to separate them was by shifting the first letter in each name,

you could quickly LDA TARGET:BMI SHIFTED to detect that

you had reached the end of a particular target name. Other

wise, forget BPL and BMI.

The two flags of interest to most ML programmers are the

carry flag and the zero flag. That is why, in the following sec

tion, we will examine only the four branch instructions which

test the C and Z flags. They are likely to be the only branch

ing instructions that you'll ever find occasion to use.

3. The Decision Makers:

BCC, BCS, BEQ, BNE, CMP

The four "branchers" here—they all begin with a B—have

only one addressing mode. In fact, it's an interesting mode

unique to the B instructions and created especially for them:

relative addressing. They do not address a memory location as

an absolute thing; rather, they address a location which is just

a certain distance from their position in the ML code. Put an

other way, the argument of a B instruction is an offset which

is relative to the position of the instruction itself. You never

have to worry about relative instructions if you relocate an ML

program, if you locate the ML program in some other place in \ j
RAM memory. The B instructions will work just as well no

matter where your ML program is moved.

That's because their argument just says "add 5 to the J [
present address" or "subtract 27" or whatever argument you

give them. You do give the branchers actual addresses as you

would in absolute addressing: BEQ $3560. However, your j [
assembler will translate that $3560 into a different, somewhat

strange, number that is used in relative addressing. (If you are

using an advanced assembler like LADS, you will give label j [
names as the argument of the branchers instead of actual nu

meric addresses.)
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TTze branchers cannot branch further back than 127 or further

forward than 128 bytes.

None of the brancher instructions have any effect whatso-

never on any flags; instead, they are the instructions which look

at the flags. They are the only instructions which base their

activity on the condition of the status register and its flags.

r—) They're why the flags exist at all.

I _( CMP is an exception. Many times it is the instruction that
comes just before the branchers and sets flags for them to look

at and make decisions about. Lots of instructions—LDA is

one—will set or clear (put down) flags—but sometimes you

need to use CMP to find out what's going on with the flags.

CMP affects the N, Z, and C flags. CMP has many addressing

modes available to it: immediate, absolute, zero page,

(indirect,X), (indirect),Y, zero page,X, and absolute,X and ,Y.

You might, for example, LDA NAME:CMP SECOND-

NAME to see if both names start with the same letter (you

would BEQ) or if they don't (BNE) or if the first is higher than

the second (BCS) or lower (BCC). In all these cases, you

branch based on what the CMP did to the flags. Let's take a

closer look at what branching does for us and how to make

the best use of it.

The Foundations of Computer Power

This decision-maker group and the following group (loops) are

the basis of our computers' enormous strength. The decision

makers allow the computer to decide between two or more

possible courses of action. This decision is based on compari

sons. If the ball hits a wall, then reverse its direction. In

BASIC, we use IF-THEN and ON-GOTO structures to make

decisions and to make appropriate responses to conditions as

they arise during a program run.

Recall that the 128 uses memory-mapped video in its 40-

column mode, which means that you can treat the screen like

an area of RAM memory. You can PEEK and POKE into it to

create animation, text, or other visual events. In ML, you

PEEK by LDA SCREEN and examine what you've PEEKed

with CMP. You POKE via STA SCREEN.

CMP does comparisons. It tests the value at an address

against what is in the accumulator. Less common are CPX and

CPY.
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Assume that we have just added 40 to a register we set ,

aside to hold the current address-location of FINGER which |^j
points to records in our database. We want to POKE in a new

record, but we need to locate a vacant record. We don't want ,

to cover over a record that's in use. LJ

In practical terms, you might have deleted several records

within your database and, each time one is deleted, you just

stick a zero into the first byte of the record's 40-byte space to ] [
show that it's empty. Thus, we can bounce along the records,

looking at the first byte of each, to find an available empty

record.

Recall that the very useful indirect Y addressing mode al

lows us to use an address in zero page as a pointer to another

address in memory. The number in the Y register is added to

whatever address sits in $D6,$D7; so we don't LDA from $D6

or $D7, but rather from the address that they contain, plus Y's

value.

To see what's in the first byte of a record, we can do the

following:

LDY #$0 We want to fetch from the first byte, so we don't

want to add anything to it. Y is set to zero.

LDA ($D6),Y Fetch whatever is sitting there. To review indirect,Y

addressing once more, say that the address we are

fetching from here is $1077. Address $D6 would

hold the least significant byte, LSB ($77), and ad

dress $D7 would hold the MSB ($10). Notice that

the argument of an indirect,Y instruction only men

tions the lower address of the two-byte pointer, the

$D6. The computer knows that it has to combine

$D6 and $D7 to get the full address—and it does

this automatically.

At this point, we might come upon a $CD or some other \ I

number which we would know indicated that this record was ^
not deleted. Now that this questionable number sits in the

accumulator, we will CMP it against a $0 which signals a de- | I

leted record. We could compare it with other numbers, too, {—

numbers which we—in setting up the database—had decided

would mean "old record" or "duplicated record" or some 1 (

other housekeeping information which would help us in {—

managing the data. It doesn't matter. The main thing is to

compare it and find out the condition of this particular record: j [

100



n
Chapter 6

uJ

n

2004

2007

200A

200C

200E

2011

2014

JSR

JMP

CMP

BNE

JSR

JMP

CMP

$3000

$2020

#$1

$2014

$3050

$2020

#$2

2000 CMP #$0 Is it a zero?

2002 BNE $200A Branch if Not Equal (if not zero) to address

$200A, which contains the first of a series of

comparisons to see if it's an "old" or "dupli

cated" record, or the like. On the other hand, if

the comparison worked, if it was a zero, so we

didn't Branch Not Equal, then the next thing

that happens is the instruction in address

$2004. We "fall through" the BNE to an

instruction which jumps to the subroutine, JSR,

which moves the new record into the vacant

record space, thus jumping past the series of

comparisons for old, duplicated, and so forth.

Insert new record subroutine.

Jump over the rest of the comparisons.

Is it an old record?

If not, continue to next comparison.

Perform the "old records" subroutine and...

jump over the rest, as before in $2007.

Is it a duplicated record? ... and so forth with as

many comparisons as needed.

This structure is to ML what ON-GOTO or ON-GOSUB is

to BASIC. It allows you to take multiple actions based on a

single LDA. Doing the CMP only once would be like IF-THEN.

Other Branching Instructions

In addition to the BNE we just looked at, there are BCC, BCS,

BEQ, BMI, BPL, BVC, and BVS. Learn BCC, BCS, BEQ, and

BNE and you can safely ignore the others.

All of them are branching, if-then, instructions. They

work in the same way that BNE does. You would write BEQ

followed by the address you want to go to. If the result of the

comparison is "yes, equal-to-zero is true/' then the ML pro

gram will jump (branch) to the address which is the argument

of the BEQ instruction. "True" here means that something

EQuals zero. One example that would send up the Z flag

(thereby triggering a branch with BEQ) is LDA #$00. The ac

tion of loading a zero into the accumulator sets the Z flag up.

You are allowed to branch either forward or backward

from the address that holds the B instruction. However, you

cannot branch any further than 128 bytes in either direction. If

you want to go further, you must JMP (JuMP) or JSR (Jump to
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SubRoutine). For all practical purposes, you will usually be , ,

branching to instructions located within 30 bytes of your B l^J
instruction in either direction. You will be taking care of most

things right near where the CoMPare, or other flag-flipping , ,

event, takes place. l^J

If you need to use an elaborate, big subroutine which can

not reside within 128 bytes of a branch, simply JSR to it at the ■

target address of your branch: LJ

2000 LDA $65

2002 CMP $85 Is what was in address 65 equal to what was in

address 85?

2004 BNE $2009 If Not Equal, branch over the next three bytes

which perform some elaborate job.

2006 JSR $4000 At $4000 sits the elaborate subroutine to take

care of cases where addresses $65 and $85 turn

out to be equal.

2009 Continue with the program here.

If you are branching backward, you've already written

that part of your program, so you know the address to type in

after a BNE or one of the other branches. But, if you are

branching forward—to an address in part of the program not

yet written—how do you know what to give as the address to

branch to? In two-pass assemblers like LADS, you can just use

a word like BRANCHTARGET, and the assembler will pass

twice through your program when it assembles it. The first

pass simply notes that your BNE is supposed to branch to

BRANCHTARGET, but it doesn't yet know where that is.

When it finally finds the actual address of

BRANCHTARGET, it makes a note of the correct address in a

special label table. Then, it makes a second pass through the

program and fills in (as the next byte after your BNE or what

ever) the correct address of BRANCHTARGET. |_j
All of this is automatic, and the labels make the program

you write (called the source code) look almost like English. In

fact, assemblers like LADS include so many special features LJ
that they approach higher-level languages like BASIC:

2000 TESTBYTE = $80 These initial definitions of , ,

labels... LJ
2000 NEWBYTE = $FC are sometimes called equates.

2000 LDA#TESTBYTE

2002 CMP NEWBYTE } |
2004 BNE BRANCHTARGET *~'

102 LJ
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r-1 2006 JSR SUBROUTINE

1 I BRANCHTARGET 2009 ...etc.

Instead of using lots of numbers (as you do when using

|—| the built-in mini-assembler in the monitor) for the

•— target/argument of each instruction, LADS allows you to de

fine (equate) the meanings of words like testbyte and then use

J—j the word instead of the number. And LADS does simplify the

1 ' problem of forward branching since you just give (as above)
address $2009 a name, BRANCHTARGET, and the word at

address $2005 is later replaced with $2009 when the assem

bler does its passes.

Program 6-1 shows how the example above looks as

source code to be fed into LADS.

Actually, we should point out in passing that a $2009 will

not be the number which finally appears at address $2005 to

replace BRANCHTARGET. (Take a look at Program 6-1.) As

we mentioned, all branches are relative, an offset from the ad

dress of the branch. The number which will finally replace

BRANCHTARGET at $2005 is, as you can see, a 3. This is

similar to the way that the value of the Y register is added to

an address in zero page during indirect Y addressing: The

number given as an argument of a branch instruction is added

to the address of the next instruction. So, $2006 + $3 =

$2009. If this seems confusing, forget about it. LADS, or even

the mini-assembler in the monitor, will take care of all this for

you. All you need to do is give $2009 as the argument to the

mini-assembler, or a label name to LADS, and they will com

pute the three for you.

Forward Branch Solutions

I"—| There is one responsibility that you do have, though, if you

are using the monitor's mini-assembler. When you are writing

2004 BNE $2009, how do you know to write in $2009? You

f""J can't yet know to exactly which address up ahead you want to

! - branch. There are two ways to deal with this. Perhaps easiest
is just to put in BNE $2004 (have it branch to itself). This will

(—■] result in an $FE being temporarily left as the target of your

-:-1 BNE. Then, you can make a note on paper to later change the

byte at $2005 to point to the correct address, $2009. You've

f] got to remember to "resolve" that $FE, to POKE in the correct

( J offset to the target address, or you will leave a little bomb in

your program—an endless loop.
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The other, even simpler, way to deal with forward branch

addresses will come after you are familiar with which instruc

tions use one, two, or three bytes. The BNE-JSR-TARGET

construction is common and will always be three above the

next address, an offset of three. If your branch instruction is at

$2004, you just add two to get the next address ($2006), then

r—> count off three: $2006,7,8 and write BNE 2009.

i i Other, more complex branches such as ON-GOTO con
structions will also become easy to count off when you're

familiar with the instruction byte lengths. In any case, it's sim

ple enough to make a note of any unsolved branches and cor

rect them before running the program.

Of course, LADS is the easiest assembler to use for for

ward branching: It allows you to branch to any address by just

giving the label name of that address.

Recall our previous warning about not using the infamous

BPL and BMI instructions? BPL (Branch on PLus) and BMI

(Branch on Minus) sound good, but should be avoided. To test

for less-than or more-than situations, use BCC and BCS

respectively. (Actually, the BCS test is "true" for greater-than-

or-equal-to, not just greater-than.) Remember that BCC is

alphabetically less-than BCS—an easy way to remember which

to use. The reasons for this are exotic. We don't need to go into

them. Just be warned that BPL and BMI which sound so logi

cal and useful are not. They can fail you, and neither one lives

up to its name. Stick with the always trustworthy BCC, BCS.

Also remember that BNE and the other three main B

group branching instructions often don't need to have a CMP

come in front of them to affect a flag that can be tested by a

following B instruction. Many actions of many opcodes will

R automatically affect flags. For example, LDA $80 will affect

the Z flag so that you can tell (using BNE or BEQ) if the num

ber in address $80 was or wasn't zero. LDA $80 followed by

r—j BNE would branch away if there were anything besides a zero

■L.> in address $80. If in doubt about which flags are affected by

which instructions, check Appendix A. You'll soon get to

p- know the common ones. If you are really in doubt, go ahead

i ! and stick in a CMP. It can't do any harm.
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4. The Loop Group: I

DEX, DEY, INX, INY, INC, DEC u
INX and INY raise the X and Y register values by one each

time they are used. If Y is a 17 and you INY, Y becomes an I j

18. Likewise, DEX and DEY decrease the values in these reg

isters by one. There is no such increment or decrement

instruction for the accumulator. j I

Similarly, INC and DEC will raise or lower a memory ad

dress by one. You can give arguments to these instructions in

four addressing modes: absolute, zero page, zero page,X, and

absolute,X. These instructions affect the N and Z flags.

The loop group are generally used to set up FOR-NEXT

structures. The X register is used most often as a counter to

allow a certain number of events to take place. In the structure

FOR I = 1 TO 10:NEXT I, the value of the variable I goes up

by one each time the loop cycles around. The same effect is

created by:

2000 LDX #$0A Decimal 10

2002 DEX "DEcrement" or "DEcrease X" by one

2003 BNE $2002 Branch if Not Equal (to zero) back up to ad

dress $2002

Notice that DEX is tested by BNE (which sees if the Z

flag, the zero flag, is up). DEX sets the Z flag up when X fi

nally gets down to zero after ten cycles of this loop. The only

other flag affected by this loop group is the N (negative) flag

for signed arithmetic.

Why didn't we use INX, INcrease X by one? This would

parallel exactly the FOR I = 1 TO 10, but it would be clumsy

since our starting count which is #10 above would have to be

#245. This is because X will not become a zero going up until

it hits 255. So, for clarity and simplicity, it is customary to set t |
the count of X and then DEX it downward to zero. The follow

ing program will accomplish the same thing as the one above

and allow us to INX, but it too is somewhat clumsy: J_[

2000 LDX #$0

2002 INX ., .

2003 CPX #$0A LJ
2005 BNE $2002

Here, we had to use zero to start the loop because, right , ,

off the bat, the number in X is INXed to one by the instruction I 1
at $2002. In any case, it is a good idea simply to memorize the
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pH simple loop structure in the first example. It is easy and ob

vious and works very well.

|—I Big Loops

- . How would you create a loop which has to be larger than 256

cycles? When we wanted to add large numbers, numbers too

f—"I big to be held in a single byte, we simply used two-byte units

' instead of single-byte units to hold our information. Likewise,

to do large loops, you can count down using two bytes rather

than one. In fact, this is quite similar to the idea of nested

loops (loops within loops) in BASIC.

2000 LDX #$0A Start of first loop.

2002 LDY #$0 Start of second loop.

2004 DEY

2005 BNE $2004 If Y isn't yet zero, loop back to DEcrease Y

again—this is the inner loop.

2007 DEX Reduce the outer loop by one.

2008 BNE $2002 If X isn't yet zero, go through the entire DEY

loop again.

200A Continue with the rest of the program....

One thing to watch out for: Be sure that a loop BNEs back

up to one address after the start of its loop. The start of the

loop sets a number into a register and, if you keep looping up

to it, you'll always be putting the same number into it. The

DEcrement (decrease by one) instruction would then never

bring it down to zero to end the looping. You'll have created

an endless loop. This is another one of those common bugs.

So if your program hangs up, check to see if you're looping

back into an initialization section.

The example above could be used for a timing loop in a

r—^ way that's similar to the method that BASIC creates delays

O with FOR T = 1 TO 2000: NEXT T. Also, sometimes you do
want to create a pseudo-endless loop (the BEGIN-UNTIL in

n structured programming). A useful pseudo-endless loop in

BASIC waits until the user hits any key: 10 GET K$: IF K$ =

"" THEN 10.

j—j The simplest way to accomplish this in ML is to look on

<l ' the map of your computer to find which byte holds the last
key pressed number. On the 128, it's $D4. In any event, when

j—s a key is pressed, it deposits its special numeric value into this

' _J cell. If no key is pressed, $D4 contains the number 88. How
ever, there's a built-in ROM routine at $FFE4 which will re-

f—i
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turn the ASCII value of a keypress. It's often easier to use j /

than polling $D4 because $D4 gives character values in the '—'
keyboard matrix code which differ from ASCII. (To find out

more about your keyboard input options, see INPUT and GET j j

in Chapter 9.) Here's $FFE4 in action: . ^

4000 JSR $FFE4

4003 BEQ $4000 Ij

Unless a key is being pressed on the keyboard, a JSR to

$FFE4 results in a zero result (setting the Z flag), and so when

we test the Z flag with BEQ, we'll keep looping back to ad

dress 4000 in the example above until someone presses a key.

When a key is finally pressed, the BEQ test will then fail and

we'll fall through to whatever instruction you have put at ad

dress $4005 right below the BEQ. At this point, the accumulator

will hold the ASCII value of the key that was pressed.

Dealing with Strings

You've probably been wondering how ML handles strings.

It's pretty straightforward. There are essentially two ways:

known-length and zero-delimit. If you know how many char

acters there are in a message, you can store this number at the

very start of the text: 5ERROR. (The number 5 will fit into one

byte.) If this message is stored in your "message zone"—some

arbitrary area of free memory set aside by you at the begin

ning to hold all of your messages—you would make a note of

the particular address of the "ERROR" message. Say it's

stored at address $0FE6 (4070).

To print out the message, you pluck off the length and

then repeatedly JSR to $FFD2, the 128's character output rou

tine in ROM. But remember that any time you want to access ^ [

the built-in ROM routines, you must have switched in bank 15 i—'

by LDA #0:STA $FF00.

Alternatively, you could simply set up your own zero j j

page pointers to the screen and use the STA (NN),Y addressing u^

mode (the NN means "any number").

Screen memory starts at $0400 (1024). You can set up a j j

"cursor management" system for yourself. To simplify, we'll !—!>
send our message to the beginning of the 128's screen and just

use the simple absolute,Y addressing mode: i .
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n2000 LDX $0FE6 Remember, we put the length of the message

as the first byte of the message, so we load our

counter with the length.

p—. 2003 LDY #$0 Y will be our message offset.

I j 2005 LDA $0FE7,Y Gets the character at the address plus Y. Y is
zero the first time through the loop, so the "e"

from here lands in the accumulator. It also

P] stays in $0FE7 (4071). It's just being copied
into the accumulator.

2008 STA $0400,Y We can make Y do double-duty as the mes

sage and the screen-printout offset. Y is still

zero, so the "e" goes to $0400 the first time

through the loop.

200B INY Prepare to add one to the message-storage

location and to the screen-print location.

200C DEX Lower the counter.

200D BNE $2005 If X isn't used up yet, go back and get-and-

print the next character, the "r."

One thing you should remember when printing to the

screen: there are two different codes you can use. If you STA

$0400 as we do in the example immediately above, you are

using the screen POKE code, the same code that would apply

were you to POKE that value from BASIC. The other code

(very similar to standard ASCII) applies when you load the

character value into the accumulator and then JSR $FFD2.

When you turn on the 128, its default mode is uppercase/

graphics. You can change it to uppercase/ lowercase by print

ing CHR$(14)—in ML, LDA #14:JSR $FFD2—and back to

graphics by printing CHR$(12). Alternately, you can switch

between modes by pressing the SHIFT and Commodore keys

simultaneously. If, when you are testing the examples below,

p—> you are getting graphics rather than letters of the alphabet,

_( you should switch to the uppercase/lowercase screen mode as
described. Using the $FFD2 printing routine, however, will

r—] work as expected in any mode.
!__ \.

If the Length Is Not Known

n There is yet another way to print to the screen—probably the

most common and the easiest, and it doesn't require that you

know the length of the string. You just put a special character

n (usually zero) at the end of each message to show its limit.

This is called a delimiter. A zero works well because, in ASCII,

the value zero has no character or function (such as a carriage
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return) coded to it. Consequently, any time the computer loads \ /

a zero into the accumulator (which will flip up the Z flag), it '—'
will then know that it is at the end of your message. At

$0FE6, we might have a couple of error messages: "Ball out of i

rangeOTime nearly up!0". (These zeros are not ASCII zeros, '—
remember. ASCII zero, the zero character that can be printed,

has a value of 48.) < »

To print the time warning message to the top of the I—1
screen:

2000 LDY #$0

2002 LDA $0FF8,Y Get the "T."

2005 BEQ $2005 The LDA just above will flip the zero flag up

if it loads a zero, so we forward branch out of

our message-printing loop.

2007 STA $0400,Y We're using the Y as a double-duty offset

again.

200A INY

200B JMP $2002 In this loop, we always jump back. Our exit

from the loop is not here, at the end. Rather, it

is the Branch if EQual which is within the

loop. This is similar to the BEGIN-UNTIL

structure in structured programming.

200E Continue with another part of the program.

Now that we know the address which follows the loop

($200E), we can store that address into the "false forward

branch" we left in address $2006. What number do we store

into $2006? Just subtract $2007 from $200E, which is 7.

Of these two ways of handling strings, the zero-delimit

method is the most popular and probably the easiest to use.

It's even easier if you use LADS. With LADS, you don't need

to remember the address of the stored string, you just give

each string a label. Also, you don't need to translate the mes- \ I
sage into ASCII, just use the .BYTE pseudo-op in LADS. '
Here's how you would write the source code for LADS using

the zero-delimit technique example above: j j

100 SCREEN = 1024 This variable is defined at the start of the pro

gram, not with the body of the ML. The num

bers on the left are not addresses;, they are j
line numbers that you use when writing the

source code. The assembler handles memory

addresses for you. j j
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500 LDY #0

ft 510 MESSAGE LDA TIMEOUT,Y Get the "T."

n

520 BEQ MORE

530 STA SCREENS

540 INY

550 JMP MESSAGE

560 MORE Continue with another part of the program.

1000 TIMEOUT .BYTE "TIME

NEARLY UP!": .BYTE 0 Message stored with a true zero at

the end. This is stored at the very

end of the ML program, not in with

the instructions themselves.

All the ways of handling messages discussed above are

effective, but you must keep a list on paper of the starting ad

dresses of each message if you are using the monitor assem

bler so that you can remember from where to pick off the

letters of the message. In ML, you have the responsibility for

some of the tasks that BASIC (at an expense of speed) does for

you. If you're using LADS, however, you can simply define

the location of the message with a label.

Also, when using these techniques, no message can be

larger than 255 characters because the offset and counter reg

isters (X and Y) can count only that high before starting over

at zero again. To print two strings back-to-back gives a longer,

but still less than 255-byte-long, message:

2000 LDY #$0

[_J 2002 LDX #$2 In this example, we use X as a counter which
represents the number of messages we are

printing.

PJ 2004 LDA $4000,Y Get the "B" from "Ball out of...."
1 2007 BEQ $2011 Go to increment Y, reduce (and check) the

value of X.

r—| 2009 STA $0400,Y We're using the Y as a double-duty offset

' * again.
200D INY

_. 200E JMP $2004

I I 2011 INY We need to raise Y since we skipped that step
when we branched out of the loop.

n ,„
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2012 DEX At the end of the first message, X will be a ( ,

one; at the end of the second message, it will j |
be zero.

2013 BNE $2004 If X isn't down to zero yet, reenter the loop to

print out the second message. j I

This example, too, could not deliver a message longer

than 255 characters. To fill your screen with instructions in- , (

stantly (say, at the start of a game), you can use the following ' |
mass-move. We'll assume that the instructions go from $5000

to $6024 in memory and that you want to transfer them to the

screen (at $0400):

2000 LDY #$0

2002 LDA $5000,Y

2005 STA $0400,Y

2008 LDA $5100,Y

200B STA $0500,Y

200E LDA $5200,Y

2011 STA $0600,Y

2014 LDA $5300,Y

2017 STA $0700,Y

201A INY

201B BNE $2002 If Y hasn't counted up to 0—which comes just

above 255—go back and load-store the next

character in each quarter of the large message.

This technique is fast and easy anytime you want to

mass-move one area of memory to another. It makes a copy

and does not disturb the original memory. To mass-clear a

memory zone (to clear the screen, for example), you can use a

similar loop, but instead of loading the accumulator each time

with a different character, you load it at the start with 32, the

128's code for the character that prints a space:

2000 LDA #32 J}
2002 LDY #0

2004 STA $0400,Y

2007 STA $0500,Y I I

200A STA $0600,Y L—J
200D STA $0700,Y

2011 INY i |

2012 BNE $2004 I—J

Of course a simpler way to clear the screen would be to

JSR to the PRINT routine in BASIC ROM after having loaded [ I

the clear-screen character into the accumulator: LDA #$93JSR

$FFD2. In Chapter 7 we will explore the techniques of using

u
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n
BASIC as a group of examples to learn from and also as a

collection of ready-made ML subroutines. Now, though, we

can look at how subroutines are handled in ML.

H
5. The Subroutine and Jump Group:

JMP, JSR, RTS

I I JMP has only one useful addressing mode: absolute. You give
it a firm, two-byte argument and it goes there. The computer

puts the argument into the program counter, and control is

transferred to this new address where an instruction located

there is acted upon. (There is a second addressing mode, JMP

indirect, which has a bug and is best left unused.)

JSR can use only absolute addressing.

RTS's addressing mode is implied. The address is on the

stack, put there during the JSR.

JSR (Jump to SubRoutine) is the same as GOSUB in

BASIC, but instead of giving a line number, you give an ad

dress in memory where the subroutine sits (or, with LADS,

you give a label name). BASIC'S SYS is a kind of JSR, too. It

acts like GOSUB, except the destination is an ML routine

rather than a BASIC subroutine.

RTS (ReTurn from Subroutine) is the same as RETURN in

BASIC, but instead of returning to the next BASIC command,

you return to the address following the JSR instruction (it's a

three-byte-long instruction containing JSR and the two-byte

target address). JMP (JuMP) is GOTO. Again, you JMP to an

address or label name, not a line number. As in BASIC, there

is no RETURN from a JMP.

Some Further Cautions About the Stack

I I The stack is like a pile of coins. The last one you put on top of
the pile is the first one you'll pull off later. The main reason

that the 8502 chip sets aside an entire page of memory for the

I 1 stack is that it has to know where to go back to after GOSUBs
andJSRs.

A JSR instruction "pushes" the address held in the pro-

I [ gram counter plus two onto the stack and, later, the next RTS
"pulls" the top two numbers off the stack, increments the re-

suit, and uses this number as its argument (target address) for

II the return. Some programmers, as we noted before, like to
play with the stack and use it as a temporary register to PHA
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(PusH Accumulator onto stack). This sort of thing is best , ,

avoided until you are an advanced ML programmer. Stack I I
manipulations often result in a very confusing program. Han

dling the stack is one of the few things that the computer does , ,

for you in ML. Let it. I |
The main function of the stack (as far as we're concerned)

is to hold return addresses. It's done automatically for us by , - *

"pushes" with the JSR and, later, "pulls" (sometimes called LJ
pops) with the RTS instruction. If we don't bother the stack, it

will serve us well. There are thousands upon thousands of

cells where you could temporarily leave the accumulator—or

any other value—without fouling up the orderly arrangement

of your return addresses.

Subroutines are extremely important to ML programming.

ML programs are designed around them, as we'll see.

There are times when you'll be several subroutines deep (one

will call another which calls another); this is not as confusing

as it sounds. Your main player-input routine might call a

print-message subroutine which itself calls a wait-until-key-is-

pressed subroutine. If any of these routines PHA (PusH the

Accumulator onto the stack), they then disturb the addresses

on the stack. If the extra number on top of the stack isn't

PLAed off (PulL Accumulator), the next RTS will pull off the

number that was PHAed along with half the correct address. It

will then merrily return to what it thinks is the correct ad

dress: It might land somewhere in the RAM, it might go to an

address somewhere in the outer reaches of your operating sys

tem—but it certainly won't go where it should.

Some programmers like to change a GOSUB into a GOTO

(in the middle of the action of a program) by PLA PLA. Pull

ing the two top stack values off with PLA PLA has the effect

of eliminating the most recently stored RTS address. It does j f

leave a clean stack, but why bother to JSR in the first place if

you later want to change it to a GOTO? Why not use JMP in ^

the first place. (There is some use for this technique, but it's j |
for advanced ML programming where you want to speed up a

program by returning directly to some routine elsewhere in

the calling subprogram. LADS uses this method in places.) j [
There are cases, too, when the stack has been used to

hold the current condition of the flags (the status register

byte). U
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r—j This is pushed/pulled from the stack with PHP and PLP.

f ' You probably never will, but if you should need to "remem
ber" the condition of the status flags, why not just PHP PLA

r—j STA $NN (NN means the address is your choice)? Set aside a

'- ]- byte somewhere that can hold the flags (they are always

changing inside the status register during a program run) for

r-) later and keep the stack clean. Leave stack acrobatics to Forth

{ \ programmers. The stack, except for advanced ML, should be
inviolate.

Forth, an interesting language, requires frequent stack

manipulations. But in the Forth environment, the reasons for

this and its protocol make excellent sense. In ML, though,

stack manipulations are a sticky business.

Saving the Current Environment

There are two exceptions to our leave-the-stack-alone rule.

Sometimes (especially when you are "borrowing" a routine

from BASIC by JSRing into the ROM) you will want to take

up with your own program from where it left off. In other

words, you want to preserve what's in the registers.

However, when you JSR into one of these ready-made

subroutines, you often don't know what sorts of things the

subroutine will do to your accumulator or X and Y registers.

To illustrate, let's say you are going to open a disk file and

you've written the necessary subroutine and labeled it OPEN.

You will JSR to OPEN and it will have to JSR, in turn, several

times into the ROM to accomplish the job of opening a disk

file. However, you need to retain the status of the registers be

cause your program is going to need them. You sometimes

cannot afford to have unpredictable things happen to your X,

nY, A, and status registers. If you know you don't need to pre

serve the state of the accumulator or the X or Y register, then

JSR blithely away. The JSR into ROM will probably change

r—I . the registers, but you don't care.

I i However, sometimes you are using, let's say, Y to hold
the offset of a line of information or a screen line. You can't

r—, allow it to suffer from some unknown event in a ROM sub-

1 1 routine. In such cases, you can use the following "save the
state of things" routine:

f—1 2000 PHP Push the status register onto the stack.

i J 2001 PHA
2002 TXA
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2003 PHA

2004 TYA

2005 PHA

2006 JSR OPEN

2009 PLA

200A TAY

200B PLA

200C TAX

200D PLA

200E PLP

To the various ROM calls necessary to open a

file that you've written as a subroutine called

"OPEN." When the subroutine is finished, it

will end with an RTS. This RTS will remove the

return address ($2009) from the stack, and

you'll then have access to a mirror image of the

things you had pushed onto the stack. They are

pulled out in reverse order, as you can see be

low. This is because the first pull from the stack

will get the most recently pushed number. If you

make a little stack of coins, the first one you pull

off will be the last one you put onto the stack.

Now we reverse the order to get them back.

This one stays in A.

The status register.

This example demonstrates how to save the registers, JSR

to a subroutine where unpredictable things will happen to the

registers, and then restore the registers to their previous state.

It preserves everything, including the flags (PHP, push proces

sor status register) as it was before you JSRed. Use this tech

nique when you're unsure. Nearly every ROM routine mentioned

in this book will alter one or more of the registers. The only

truly safe one is JSR $FFD2, the output-a-character routine.

You can use this one with impunity.

Saving the current state of things before visiting an un

charted, unpredictable subroutine is probably the only valid

excuse for playing with the stack as a beginner in ML. The

routine above is constructed to leave the stack intact. Every

thing that was pushed on has been pulled back off.

If you dare, you can also use the stack as a temporary

storage place when you need to save something briefly. You

could save the accumulator (while JSRing to the GET routine

in BASIC) by PHAJSR $FFE4:PLA. That would temporarily

push the accumulator onto the stack, hold it there beneath the

two-byte return address pushed onto the stack by the JSR, and

then pull it off again after the RTS had fetched the return ad

dress (leaving your accumulator on top of the stack). This

u
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m pushing is sometimes considered a dangerous practice be-

1 I cause, if you forget to match every push with a subsequent
pull, the stack will overflow and you might not realize why.

i—j Use this trick at your own risk. For simple register saves, it's

' i pretty easy to define register "holding bytes" using LADS and
then stuff things there whenever you need temporary storage:

fi 10 GET = $FFE4

' { 100 STY Y:STA A:LOOP JSR GET:BEQ LOOP:LDA A:LDY Y

While, somewhere after the end of your program proper,

down with the messages and other things that are data, not

program, you have:

5000 A .BYTE 0

5010 Y .BYTE 0

5020 X .BYTE 0

The Significance of Subroutines

Possibly the best way to approach ML program writing—es

pecially a large program—is to think of it as a collection of

subroutines. Each of these subroutines should be small. It

should be listed on a piece of paper followed by a note on

what it needs as input and what it gives back as parameters.

"Parameter passing" simply means that a subroutine needs to

know things from the main program (parameters) which are

handed to it (passed) in some way. Alternatively, if you are

using LADS, you can insert comments about parameters into

the body of the source code of the program using the semi

colon (;) remark pseudo-op.

The current position of the record in a database is a

parameter which has its own "register" (we would have set

r—) aside a register for it at the start when we were assigning

1 1 memory space either on paper for simple assemblers or by

using the equate pseudo-op for LADS). So, the "look at the

nnext record in the database" subroutine is a double-adder

which adds 40 or whatever to the "current position register."

This value always sits in the register to be used anytime any

I—I subroutine needs this information. In other words, the register

I. 1 (we called it FINGER in a previous example) is always point

ing to our current position within the database. This is why

nsuch registers are called pointers.

The "look at the next register" subroutine sends the

current-position parameter by passing it to the current-position

r-i register.
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This is one example of a way that parameters are passed. }

Another example might be when you are telling a delay loop j j
how long to delay. Ideally, your delay subroutine will be

multipurpose. That is, it can delay for anywhere from 1/2 sec- . j

ond to 60 seconds or something. This means that the sub- ] 1
routine itself isn't locked into a particular length of delay.

The main program will "pass" the amount of delay to the K .

subroutine. ( j

3000 LDY #$0

3002 INY

3003 BNE $3002

3005 DEX

3006 BNE $3000

3008 RTS

Notice that X never is initialized (set up) here with any

particular value. This is because the value of X is passed to

this subroutine from the main program. If you want a short

delay, you would:

2000 LDX #$5

2002 JSR $3000

And for a delay which is twice as long as that:

2000 LDX #$0A 10 decimal

2002 JSR $3000

In some ways, the less a subroutine does, the better. If it's

not entirely self-sufficient, and the shorter and simpler it is,

the more versatile it will be. For example, our delay above

could function to time responses, to hold sounds for specific

durations, and so on. When you make remarks about a gen

eral-purpose routine, write something like this: 3000 ; DELAY

LOOP (expects duration in X; returns zero in X). K .

The longest duration delay would be set up with LDX #0. I 1

This is because the first thing that happens to X in the delay

subroutine is DEX. If you DEX a zero, you get 255. If you '

need longer delays than the maximum value of X, simply: | |
2000 LDX #$0

2002 JSR $3000 t ,

2005 JSR $3000 Notice that we don't need to set X to zero this Lj
second time. It returns from the subroutine with

a zeroed X.

You could even make a loop out of the JSRs above for ex- I—1
tremely long delays. The point to notice here is that it helps to
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r—j document each subroutine in your library: what parameters it

' expects; what registers, flags, and so on, it changes; and what
it leaves behind as a result. This documentation—on a single

j—"I sheet of paper or within LADS source—helps you remember

each routine's address and lets you know what effects and

preconditions are involved.

ii JMP
Like BASIC'S GOTO, JMP is easy to understand. It goes to an

address: JMP $5000 leaps from wherever it is to start carrying

out the instructions which start at $5000. It doesn't affect any

flags. It doesn't do anything to the stack. It's clean and simple.

Yet some advocates of structured programming suggest avoid

ing JMP (and GOTO). Their reasoning is that JMP is a shortcut

and a poor programming habit.

For one thing, they argue, using GOTO makes programs

confusing. If you drew lines to show a program's "flow" (the

order in which instructions are carried out), a program with

lots of GOTOs would look like boiled spaghetti. Many pro

grammers feel, however, that JMP has its uses. Clearly, you

should not overdo it and lean heavily on JMP. In fact, you

might see if there isn't a better way to accomplish something

if you find yourself using it all the time and your programs are

becoming impossibly awkward. But JMP is convenient, often

necessary, in ML.

An 8502 Chip Bug

On the other hand, there is another, rather peculiar JMP

addressing mode which is hardly, if ever, used in ML: JMP

($5000). This is an indirect jump which works like the indirect

j—| addressing we've seen before. Remember that with the

J I indirect,Y addressing mode, LDA ($81),Y, the number in Y is
added to the address found in $81 and $82. This address is the

r—i real place we are LDAing from, sometimes called the effective

1 i address. If $81 holds a 00, $82 holds a $40, and Y holds a 2,
the address we LDA from is going to be $4002. Similarly (but

without adding Y), the effective address found at the two

bytes within the parentheses becomes the place we JMP to in
JMP ($5000).

There are no necessary uses for this instruction. Best

avoid it the same way you avoid playing around with the

stack until you're an ML expert. If you find it in your comput-
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er's BASIC code, it will probably be involved in an "indirect i j

jump table/' a series of registers which are dynamic. That is, I—>
they can be changed as the program progresses. Such a tech

nique is very close to a self-altering program and would have i j

few applications in ML. But worse than than, there is a bug in I—1
the 8502 chip itself which causes the indirect JMP instruction

to malfunction under certain circumstances. Just put JMP i \

($NNNN) into the same category as BPL and BMI. Avoid them. I I
If you decide that for some reason you must use indirect

JMP, be sure to avoid the edge of pages, such as JMP ($NNFF).

Whenever the low byte is right on the edge of a page ($FF is

on the edge, it's ready to reset to $00), an indirect JMP will

correctly use the low byte (LSB) from the pointer at $NNFF,

but it will not pick up the high byte (MSB) from $NNFF+1 as

it should. Instead, it gets the high byte from $NN00.

Here's how this error would work if you had set up a

pointer to address $5043 with the pointer located at $40FF:

$40FF 43

$4100 50

Your intention would be to JMP to $5043 by bouncing off

this pointer. You would write JMP ($40FF) and expect that the

next instruction the computer would follow would be the

instruction located at $5043. Unfortunately, your pointer

would malfunction in this example. You would land at $0043

(if address $4000 held a zero). The indirect JMP would get its

MSB from $4000.

This bug does not apply to any other addressing modes,

just JMP (indirect). So, unless you want to take a chance with an

addressing mode that's strictly for advanced programmers, con

tains a bug, and has no compelling uses, avoid JMP (indirect).

u
6. Debuggers:

BRKandNOP , ,
BRK and NOP have no arguments and are therefore members '—'
of that class of instructions which use only the implied

addressing mode. They also affect no flags in any way with j )

which we would be concerned. BRK does affect the I and B l—*

flags, but since it is a rare situation which would require test

ing those flags, we can ignore this flag activity altogether. j j

After you've assembled your program and it doesn't work '—'
as expected (few do), you start debugging. Some studies have
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p-j shown that debugging takes up more than 50 percent of pro-

' gramming time. Such surveys can be misleading, however, be
cause "making improvements and adding options" frequently

J"—j take place after a program is allegedly finished and would be

thereby categorized as part of the debugging process.

Another factor is that these surveys reflect the sometimes

r—i inefficient programming styles adopted by professional or aca-

1 ■ demic programming teams. Some assemblers and compilers
used by professionals are extraordinarily cumbersome, requir

ing heroic efforts with linkers, maps, variable definition, and

so forth, before a piece of program can be tested. LADS, by

contrast, is virtually instantaneous. It will make the process of

debugging very efficient.

In ML, debugging is facilitated by setting breakpoints with

BRK and then seeing what's happening in the registers or

memory. If you insert a BRK, it has the effect of halting the

program and throwing you into the monitor where you can

examine, say, the Y register to see if it contains what you

would expect it to at this point in the program. It's similar to

BASIC'S STOP instruction:

2000 LDA #$15

2002 TAY

2003 BRK

At this point, you could use the monitor to examine any

areas of memory just as you would examine variables after

having your BASIC program STOP.

Debugging Methods

In practice, you debug whenever your program runs merrily

along and then does something unexpected. It might crash and

]"""] lock you out. You look for a likely place where you think it is
failing and just insert a BRK right over some other instruction.

Remember that when you're in the monitor mode, you can

P"] directly change bytes, you can insert $00 (BRK) where you want.
In the example above, imagine that we put the BRK over

a STY $8000. Make a note of the instruction you covered over

with the BRK so that you can restore it later. After checking

the registers and memory, you might find something wrong,

some variable or register isn't behaving as it should or you

somehow never even arrive at the break (some branch or JMP

is being incorrectly activated). Now you have narrowed things

down. Now you can locate and fix the error.
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Sometimes it helps to have a printed listing of the suspect i j

area in a program. You can turn your printer on and off with *—1
the .P and .NP options in LADS, printing out only the suspect

zone of the program and use that to help you locate errors * t

while working with the monitor. Alternatively, you can check I—'
the program with the built-in disassembler.

If nothing seems wrong at this point, restore the original t i

STY over the BRK, and put BRK in somewhere further on. By 1 1
this process, you can isolate the cause of the oddity in your

program. Setting breakpoints (like putting STOP into BASIC

programs) is an effective way to run part of a program and

then examine the variables.

Like BRK ($00), the hex number of NOP ($EA) is worth

memorizing. If you're working within your monitor, you will

need to use hex numbers, and these two are particularly worth

knowing. /

NOP means NO oPeration. The computer slides over

NOPs without taking any action other than increasing the pro

gram counter. There are two ways in which NOP can be effec

tively used.

First, it can be an eraser. If you suspect that JSR $8000 is

causing all the trouble, try running your program with every

thing else the same, but with JSR $8000 erased. Simply put

three $EAs over the instruction and argument. (Make a note,

though, of what was under the $EAs so that you can restore

it.) Then, the program will run without this instruction, with

out going to that subroutine at $8000, and you can watch the

effects.

Second, it is sometimes useful to use $EA to hold open

some space temporarily. If you don't know something (an ad

dress, a graphics value) during assembly, $EA can mark that , ,

this space needs to be filled in later before the program is run. 1 1
As an instruction, it will let the program slide by. $EA could

become your "fill this in" alert within programs in the way , ,

that we use self-branching (leaving a zero) to show that we { i

need to put in a forward branch's address when using a mini

assembler. . I

LJ

Less Common Instructions

The following instructions are not often necessary for begin- , .

ning applications, but we can briefly touch on their main uses. [ 1
There are several logical instructions which can manipulate or
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J—"? test individual bits within each byte. This is most often nec

essary when interfacing. If you need to test what's coming in

from a disk drive, or translate on a bit-by-bit level for I/O

P"j (input/output), you might work with the logical group.

' In general, I/O is handled for you by your machine's

operating system and is well beyond beginning ML program-

j—[ ming. I/O is perhaps the most difficult, or at least the most

complicated, aspect of ML programming. When putting things

on the screen, programming is fairly straightforward, but han

dling the data stream into and out of a disk is pretty involved.

Timing must be precise, and the preconditions which need to

be established are complex.

For example, if you need to mask a byte by changing

some of its bits to zero, you can use the AND instruction.

After an AND, both numbers must have contained a one in

any particular bit position for it to result in a one in the an

swer. This lets you set up a mask: 00001111 will zero any bits

within the left four positions. So, 00001111 and 11001100 re

sult in 00001100.

The unmasked bits remained unchanged, but the four

high bits were all masked and, thus, zeroed.

There is a minor use for AND when you want to change

a character to a reverse (black on white) or change it back to

normal. The reversed letter A, for example, has a value of $C1

which looks like this in binary (all the bits within the byte

showing): 11000001. Notice that the left two bits are "on." To

change this to a normal A character, we need to turn the

leftmost bit off so that we end up with 01000001, which is

$41. You can turn off the leftmost bit by 11000001 AND

01111111, which will leave 01000001. When this is expressed

r—^ in hex numbers, you take the reversed A ($C1) and AND it

' ( with 01111111 ($7F) to get the normal $41. Likewise, reversed
B ($C2) AND $7F results in a normal B ($42).

n Going the other way, you can change a normal A into a

reversed A by $41 ORA $80 (10000000). The ORA instruction

is the same as AND, except it lets you mask to set bits (make

m them a one). Thus, 11110000 ORA 11001100 results in

'-- -1 11111100. The accumulator will hold the results when these

instructions are used.

p~) EOR (Exclusive OR) permits you to toggle bits. Toggle

■ ' means to switch back and forth between two states, like tog

gling a light switch on and off. If a bit is 1, it will go to 0. If
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it's 0, it will flip to 1. EOR is sometimes useful in games. If \ (

you are heading in one direction, for example, and you want '—'

to go back when bouncing a ball off a wall, you could toggle.

Let's say that you use a register to show direction: When the j (

ball's going up, the byte contains the number 1 (00000001), <—'

but down is 0 (00000000). To toggle this least significant bit,

you would EOR with 00000001. This would flip 1 to 0, and 0 j j

to 1. This action results in the complement of a number. Thus, '—'
11111111 EOR 11001100 results in 00110011.

To know the effects of these logical operators, we can

look them up in truth tables which give the results of all pos

sible combinations of zeros and ones:

AND OR EOR

0 AND 0 = 0 0 OR 0 = 0 0 EOR 0 = 0

0 AND 1 = 0 0 OR 1 = 1 0 EOR 1 = 1

1 AND 0 = 0 1 OR 0 = 1 1 EOR 0 = 1

1 AND 1 = 1. 1 OR 1 = 1 1 EOR 1 = 0

Another instruction, BIT, also tests (it does an AND), but,

like the BNE, and so forth, branch instructions, it does not af

fect the number in the accumulator—its sole purpose is to set

flags in the status register. The N flag is set (has a one) if bit 7

has a one (and vice versa). The V flag responds similarly to

whatever value is in the sixth bit of the tested byte. The Z flag

shows whether or not the result of the AND resulted in a

zero. Instructions, like BIT, which do not affect the numbers

being tested are called nondestructive.

We discussed LSR and ASL in the chapter on arithmetic:

They can conveniently divide and multiply by two. ROL and

ROR rotate the bits left or right in a byte, but, unlike with the

Logical Shift Right or Arithmetic Shift Left, no bits are lost off

one end during the shift. ROL will leave the seventh (most \ |

significant) bit in the carry flag, leave the carry flag in the {—'
zeroth bit (least significant bit), and move every other bit one

space to the left: I I

ROL 11001100 With the carry flag set, results in:

10011001 Carry is still set; it got the leftmost one.

If you disassemble your computer's BASIC, you may well j \

look in vain for an example of ROL, but it and ROR are avail

able in the 8502 instruction set if you should ever find a use

for them. ( ;

Should you go into advanced ML arithmetic, ROL and

ROR can be used for multiplication and division routines.
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j""j Please see Appendix A for more details on some of these ob

scure instructions if you're interested.

Three other instructions remain to be discussed: SEI (SEt

pi Interrupt), RTI (ReTurn from Interrupt), and CLI (CLear Inter

rupt). These operations are also beyond the scope of a book

on beginning ML programming, but we'll briefly note their ef-

r*7 fects. Your computer gets busy as soon as the power goes on.

Things are always happening: Timing registers are being up

dated; the keyboard, the video, and the peripheral connectors

are being refreshed or examined for signals. To interrupt all

this activity, you can SEI, perform some task, and then CLI to

let things pick up where they left off.

SEI sets the interrupt flag. Following this, all maskable

interruptions (things which can be blocked from interrupting

when the interrupt status flag is up) are no longer possible.

There are also nonmaskable interrupts which, as you might

guess, will jump in anytime, ignoring the status register.

The RTI instruction (ReTurn from Interrupt) restores the

program counter and status register (takes them from the

stack), but the X and Y registers, and so on, might have been

changed during the interrupt. Recall that our discussion of the

BRK instruction involved the above actions. The key difference

is that BRK stores the program counter plus two on the stack

and sets the B flag on the status register. CLI puts the inter

rupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn't

matter. They are essentially hardware and interface related.

You can do nearly everything you will want to do in ML

without them. How often have you used WAIT in BASIC?

pi A Newer Chip

' * The venerable 6502 chip, which has been the brains of most
of the popular home computers for years, has been replaced in

the 128 by the 8502. From a programmer's point of view,

there's no difference between the two.

Commodore owns the manufacturer of the 6502 and its

newer cousins. When the 64 was built, they decided to make a

few changes to the 6502 and called it the 6510. Similarly, a

few more changes resulted in the 8502 inside the 128. These

chips are physically different—they are not pin-compatible.

This means you cannot pull a 6502 out of a socket and plug

an 8502 in its place, because the operating signals appear on
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different pins. (If you're interested, the data bus is pins 30-37 j /

on a 6510, but pins 26-33 on a 6502. The 6510 is a 6502 with i—i
an on-chip six-bit I/O port addressed at locations 0000 and

0001. The 8502 is an enhanced 6510, capable of operating at 2 \ j

megahertz and with a seven-bit I/O port.) <—>

For programmers, though, the significant thing is that

none of the physical differences reflect any modifications to j (

the instruction set, the commands we've been learning in this y—>

chapter. From a programmer's perspective, the three processors

used in the Commodore machines are identical

In any event, we've covered all the instructions now. It's

time to explore some important shortcuts. Life would be far

tougher for ML programmers if they had to write, for example,

the entire complex of instructions necessary to communicate

with the disk drive. Fortunately, we can turn jobs like that

over to the ML routines already written, already inside BASIC.

That's the subject of the next chapter.

i

U
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n Borrowing from BASIC

BASIC is a collection of ML subroutines. It is a large web of

hundreds of short ML programs. Why not use some of them

by JSRing to them? At times, this is in fact the best solution to

a problem.

How would this differ from BASIC itself? Doesn't BASIC

just create a series of JSRs when it runs? Wouldn't using BA-

SIC's ML routines in this way be just as slow as BASIC is?

In practice, you will not be borrowing from BASIC for

everything you try to do. One reason is that such JSRing

makes your program far less portable, less easily run on other

computers or other models of your computer. When you JSR

to an address within your ROM set to save yourself the trou

ble of reinventing the wheel, you are, unfortunately, making

your program applicable only to machines which are the same

model as yours.

While Commodore has been better than many computer

companies at keeping important ROM addresses like $FFD2 in

the same place in new models, there are no guarantees that

this will always be the case.

However, if you want your program to work on many dif

ferent computer brands, you'll need to limit the degree to

which you make it ROM-specific. Stick to the few essential

ones (see the equates at the beginning of the LADS program

for the few ROM routines that it needed to use).

If you try to get too tricky—using your BASIC'S or operat

ing system's ROM to the maximum—your programs will be

pretty hard to translate to other Commodore computer mod

els, not to mention other computer brands. For example, the

subroutine to allocate space for a string in memory is found at

$D3D2 in the earliest Commodore PET model. A later version

of PET BASIC (Upgrade) used $D3CE, and the current models

use $C61D. Although Microsoft BASIC is nearly universally

used in personal computers (Atari is the exception), each

computer's version differs in both the order and the addresses

of key subroutines.
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Jump Tables and Other Menus I j

To help overcome this lack of portability, some computer

manufacturers set aside a group of frequently used subroutines

and create a "jump table," or, as Commodore calls it, a 1 (

Kernal, for them. The idea is that future, upgraded BASIC ver- { *
sions will still retain this table. It would look something like

this: jj

INPUT one byte

OUTPUT one byte

LOAD something

SAVE something

This example is part of the Commodore Kernal and is in

tended to apply to all future versions of BASIC on Com

modore machines.

One interesting thing about this table of jumps is that

there is a trick to the way this sort of table works, and you

might want to use it yourself sometime. Notice that each

member of the table begins with 4C. That's the JMP instruc

tion and, if you land on it, the computer bounces right off to

the address which follows.

Now, at that address following the 4C, there is going to

be a subroutine (so it will end in RTS). So, when we JSR to

one of the JMPs inside this table, to, say, FFD2, we're going to

land on a JMP and rebound, just bounce right off the JMP ta

ble to the correct subroutine. When that subroutine finally fin

ishes its work and ends in RTS, we will be returned to our

starting place. That's how a JMP table works and it can be a

useful technique.

By the way, the PRINT subroutine is a fundamental one

in any computer because it offers you so much value. For one

thing, it keeps track of the cursor position which is in

cremented each time you access PRINT. It works semi-

automatically, and you don't have to keep track of where you

are on the screen. The PRINT-the-character routine in the 128

is $FFD2 (65490 decimal). This is a very important address;

you should memorize it.

For convenience, you might want to make a standard

"header" for all your ML source programs that you use with

LADS. It would consist of a series of "equates" which define

frequently used internal subroutines by giving them labels:
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pi 30 PRINT = $FFD2; PRINTS CHARACTER IN

'- ( ACCUMULATOR
40 SCREEN = $0400; LOCATION OF TEXT SCREEN

PJ Then, when you're writing an ML source program using

'-■ ■ - LADS and want to print some character, you just JSR PRINT.
ML can thus be very similar to BASIC in that when you are

p] going to use a known subroutine, a subroutine that you've

given a label at the beginning of your program in the manner

illustrated above, you just type a word like SCREEN that

means something to your program and also means something

memorable to you. You might want to use the routines de

fined in the Defs subprogram of LADS as a useful starter set

of ROM routines.

The same PRINT routine will work for a printer or a disk

or a tape—anything that the computer sees as an output de

vice. However, unless you open a file to one of the other de

vices, the computer defaults to (assumes) the screen as the

output device, and $FFD2 prints there. To see how to set up

different output targets, see the Openl source code of LADS

in Appendix D. It will show you the way to load or save a

program.

So, if you look into any ML program and discover a series

of JMPs (4C xx xx 4C xx xx), you've found a jump table. Using

a jump table should help make your programs compatible

with later versions of BASIC which might be released.

What's Fastest?

Since, when a BASIC program runs, it is JSRing around in

side itself, how, then, is a JSR into BASIC code any faster than

a BASIC program? The answer is that a program written en-

r—j tirely in ML, aside from the fact that it borrows only sparingly

■ J from BASIC prewritten routines, differs from BASIC in an im
portant way.

pn A finished ML program is like compiled code; that is, it is

' l ready to execute without any overhead. BASIC, for each com

mand or instruction, must be interpreted as it runs. This is

pi why BASIC is called an interpreter. Each instruction must be

'— - looked up in a table to find its address in ROM. And many
other aspects of a BASIC instruction need to be interpreted.

r—} All this takes time. Your ML code will contain the direct ad-

•' • dresses for its JSRs. When that ML program runs, the instruc
tions don't need elaborate interpretation, time-consuming
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cross-checking, table lookups, or any other delay. The JSR just i j

leaps into the right area of BASIC ROM without further ado. LJ
There are special programs called compilers which can

take a BASIC program and transform (compile) it into ML-like * j

code which can then be executed like ML, without having to I >
interpret each command during the program's run. The JSRs

are within the compiled program, just as in ML. Compiled » ,

programs will run perhaps 20 to 40 times faster than the I !
BASIC program they grew out of. (Generally, there is a small

price to pay in that the compiled version is almost always

larger than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic

ML writers. You write it in BASIC, and they translate it into

an ML-like program. Even greater improvements in speed can

be achieved if a program uses no floating point (decimal

points) in the arithmetic. Also, there are "optimized" com

pilers which take longer during the translation phase to com

pile the finished program, but which try to create the fastest,

most efficient compiled program design possible. No compiler

is excessively slow, however. A good optimizing compiler can

translate an 8K BASIC program in two or three minutes. Well,

why not just compile BASIC programs and forget about ML

altogether? The main reason is that ML is always far faster

than even optimized compilations. You just can't beat the ef

ficiency of hand-crafted communications which speak directly

to the chip in its own language.

GET and PRINT

Two of the most common activities of a computer program are

getting characters from the keyboard and printing them to the

screen. To illustrate how to use BASIC from within an ML . ,

program, we'll show how both of these tasks can be accom- LJ
plished from within ML.

Try this program and hit a key on the keyboard. Notice ,

that the code number for whatever character you typed on the ) 1
keyboard appears in the accumulator.

The 128's BASIC'S GET:

10 *= $B00 Li
20 .S

30 .O

40 LOOP JSR $FFE4; get a key from the keyboard

50 BEQ LOOP; if no key pressed, try again

60 BRK; now check what's in the accumulator
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r1! This routine will wait until the user types in a character,

but will not show a cursor on the screen. Nor will it print an

"echo/' an image of the character on the screen.

p"? To print any character to the screen:

" " 2000 LDA #$41 Put the character's ASCII value into the

accumulator.

pj 2002 JSR $FFD2 Print it.

If you combine these routines into a "GET and PRINT/'

you can leave out the LDA #$41, because JSR $FFE4 will have

left the value of whatever key you typed in the accumulator,

and JSR $FFD2 will print whatever is in the accumulator to

the next available location onscreen. Here's the completed

GET and PRINT routine:

10 *= $B00

20 .S

30 .O

40 LOOP JSR $FFE4; get a key from the keyboard

50 BEQ LOOP; if no key pressed, try again

60 JSR $FFD2; print it

However, if you intend to use or analyze what's being

typed into the computer, you must also store each character

somewhere in RAM:

10*= $B00

20 .S

30 .O

35 LDY #0:STY STOREY; set up pointer to string buffer

40 LOOP JSR $FFE4; get a key from the keyboard

50 BEQ LOOP; if no key pressed, try again

60 JSR $FFD2; print it

70 LDY STOREY:STA BUFFER,Y:INY:STY STOREY; save

p"[ character and Y

j - 80 JMP LOOP; get another character

500 BUFFER .BYTE 00000000000000000000000

P| 510 STOREY .BYTE 0; safe place to keep the value of Y

$FFD2 doesn't change the value of X or Y when we JSR

P^ to it. When it RTSs back to our ML program, X and Y are the

/_ J same as when we JSRed to $FFD2. Most BASIC ROM routines,

however, aren't that considerate. Usually, they'll use X and Y

_ and RTS back to your ML with those registers changed un-

/ \ predictably. So, it's sometimes necessary to preserve the val

ues in X or Y, prior to JSRing into ROM, if you're using X or Y
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for looping or other purposes. We've done that in the example j /

above by setting aside a byte to hold Y (line 510) and by LJ
fetching, updating, and saving Y when necessary (line 70).

Notice that this example is an endless loop: It has no way j j

to exit its loop. You would need to add a CMP #13 if you ^J
wanted to exit when the typist hit the RETURN key. You

would CMP #13:BEQ END to branch to a label called END j i

which you put somewhere beyond this loop, beyond that JMP '—'
LOOP instruction in line 80. You could insert your check for

carriage return at line 55. Or, because we've set aside a buffer

with only 23 bytes to hold the characters (line 500), you might

want to check the value of Y and CPY #23:BEQ END to pre

vent further input when the buffer had been filled.

In any event, the ML routine within BASIC ROM which

keeps track of the current cursor position and will help you

print things to the screen is often needed in ML programming.

$FFD2 will handle this for you.

You will discover that there are many freeze-dried ML

modules sitting in BASIC. These routines were written by the

professionals who built BASIC itself, and their methods can

seem intimidating at first. However, disassembling some of

these routines and picking them apart is a good way to dis

cover new techniques, new efficiencies, and to see how the

best ML programs are constructed.

Here's another example to look at. It illustrates how to

print out a string, the length of which is known in advance.

Although this is less common than the zero-delimiter method

of printing strings (BEQ is triggered by a zero at the end of the

string), you'll still see this printout method in some software:

10 *= $2000

30 LENGTH =10 j|
40 PRINT = $FFD2 ^^
50 ;

60 START LDY #0 . j

70 CLOSE LDA STRING,Y Lj
80 JSR PRINT

90 INY

100 CPY #LENGTH I I
110 BNE CLOSE <—1
120 RTS

130 ; .

140 STRING .BYTE "SUPERDUPER D

READY.
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Studying your computer's BASIC is worth the effort, and

it's something you can do for yourself. You won't understand

everything (some shortcuts are taken which are obscure in the

extreme). Nevertheless, if you've got some time, take a look at

a particular routine and see if you can see the logic in it, its

purpose and structure. And, as you can see by the example

above, you have great freedom to construct the customized

INPUT routine that suits your ML program perfectly, that re

flects precisely what you want to allow or disallow the user to

INPUT, and that formats to the screen or saves in a buffer in

the exact way that's most efficient for your purposes.

n

n

n

n
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Building a Program

Using what we've learned so far and adding a couple of new

techniques, let's build a useful program. This example will dem-

onstrate many of the techniques we've discussed and will also

show some of the thought processes involved in writing ML.

Among the computer's more impressive talents is search

ing. It can run through a mass of information and find some

thing very quickly. We can write an ML routine which looks

through any area of memory to find matches with anything

else. Based on an idea by Michael Erperstorfer published in

COMPUTE! magazine, this ML program will report the line

number of all the matches it finds. You'll also find this a use

ful utility to keep on your LADS disk. If you need to find a

particular subroutine in a long source code file, this

"Searcher" program can save considerable time and effort.

Safe Havens

Before we go through some typical ML program-building

methods, let's review the "where do I put it?" question. ML

can't be just dropped anywhere in RAM. When you give the

starting address to LADS at the beginning of your source code

with the * = symbol, you can't just put in any address that

pops into mind.

There are other things going on in the computer in addi

tion to your hard-won ML program. RAM is used in many

ways. There is always the possibility that you want to have a

BASIC program coresident with your ML program. If so, you'll

need to figure out where to put the ML so that it won't cover

up, or be covered up by, the BASIC. Too, BASIC needs to use

part of RAM to store some of its variables. During execution,

these variables might be written (POKEd) into your vulnerable

ML if you located it in a vulnerable zone. That would fatally

corrupt your ML.

Also, the operating system, the disk operating system,

cassette or disk loads, printers—they all use parts of RAM for

their housekeeping activities. There are other things going on

besides your ML. And you obviously can't put your ML pro-

gram into ROM addresses. That's impossible. Nothing can be
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POKEd into those frozen ROM addresses; they're read only < j>

memory, no writing allowed. <—'

This is one good use for a map of the 128. It will tell you

where you can safely store your programs and variables with- j i

out interfering with space used by the computer itself. For ex- w^

ample, assume that you're writing a program which will need

to access the disk drive. To complicate things, you want to use i i

about six two-byte spaces in zero page (the lowest 256 bytes (—'

in memory) for your own program. ROM routines also make

heavy use of zero page, but you can't use bytes they'll be

using since the ROM routines would then interfere with your

data and mess up your pointers. The solution is to look at the

map (see Appendix C).

To solve the above problem, you'd notice that addresses

250-254 are safe. But we need more than this. Looking at the

map of the 128, you can see that addresses 99-111 are used

for floating-point operations and thus can be expected to be

safe, too. We'll be accessing the disk drive but the floating

point routines won't be involved in this program. That solves

our problem.

On the 128, the tape-drive zero page usage is not conve

niently contiguous, but you can still find two-byte pairs which

are safe. Also, if you're not using other ROM routines in your

program, look for their zero page areas. For example, the floating

point accumulators can often be used if you're not accessing

math routines in ROM.

You'll also be able to stash things (though not for zero

page access) safely in various other places in RAM where your

ML program won't be in the way. If you're not using sprites,

you can put your program or variables between addresses

3584 and 4095. Also free for ML use is the foreign language H r

and function key area between 4864 and 7167 or the section t^J
reserved for a BASIC program even when bank 15 is operative

(7168-16384). . >

The 128 is a very RAM-rich machine, though, so you'll l^J
also be able to use most of banks 0 and 1 even if you do re

quire ROM routines. Just switch them in and out as necessary, < j

or invoke the special long-distance LDA, STA, CMP, JSR, and i—I
JMP Kernal routines available in the 128.
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If the ML is a short piece of program, you can stash it into the

safe $B00-$BFF zone mentioned before, the cassette drive

P"I buffer area. Because this safe area is only 256 bytes long, and

because so many ML routines will want to use that area, it can

become crowded. Worse yet, it isn't 100 percent safe. The 128

!"—) uses the top part of this area sometimes. If you notice odd

—' things happening, memory conflict is one of the first things to

suspect. For example, you might be able to run an ML pro

gram at $B00 the first time, but subsequent SYSs to it will

crash. If you've used a ROM routine, it might well have "bor

rowed" a few bytes from the $B00 zone. That would have the

effect of damaging your ML.

An alternative, particularly worthwhile when you're using

ML as an extension of BASIC and they are supposed to work

together, is to deceive the computer into thinking that its RAM

is smaller than it really is.

Your ML will be truly safe if your computer doesn't even

suspect the existence of some set-aside RAM. It will leave the

now-safe RAM alone because you've told it that it has less

RAM than it really does. Nothing can overwrite your ML pro

gram after you've misled your computer's operating system

about the size of its RAM memory. There are two bytes in

zero page which tell the computer what its highest RAM ad

dress is for bank 1. You just change those bytes to point to a

lower address. You can have your ML program do this as its

first job. While this trick is effective on the 64, the 128's mem

ory management system makes things more complicated.

Nevertheless, if you want to try, these crucial top-of-

memory bytes are 57,58 ($39,$3A hex).

f—> To repeat, pointers such as these are stored in LSB,MSB

' order. That is, the more significant byte (the one that's mul
tiplied by 256) comes second (this is the reverse of normality).

p^ For example, $8000, divided between two bytes in this top-of-

' RAM pointer, would look like this:

0039 00

ri 003A 80
i 1

As we mentioned earlier, this odd inversion of normal nu

meric representation is a peculiarity of the 8502 that you just

f\ have to get used to. You can take comfort in the fact that the
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8502 and its family of chips have far fewer peculiarities and il- < ' /

logical rules than their main rivals, the Z80 family. You can be Lj
driven to distraction with chips where the language is frequently

at odds with the way humans think. Destinations precede \ i

sources, and so on. It's maddening. Fortunately, the 68000 O
chip, the chip in the Amiga, is a sensible, programmer-friendly

chip, too. If you go on to learn how to work with this new i (

generation of chips, the 8502 family will seem both familiar Lj
and reasonable. But do beware of the pointer inversion: The

LSB is stored in the lower byte in memory. It's a small price to

pay for an otherwise well-designed microprocessor.

Anyway, you can lower the computer's opinion of the

top-of-RAM-memory, thereby making a safe place for your

ML in 64 mode, by changing only the MSB. If you need one

page (256 bytes), POKE 58, PEEK (58)-1. For four pages, POKE

58, PEEK (58)—4, and so on. You don't need to fiddle around

with the LSB of the pointer. Give yourself plenty of room.

Note that for the POKEs to be effective, they must be followed

by a BASIC CLR (CLeaR variables) command. The full state

ment would be something like POKE 58, PEEK(58)-4:CLR.

Since the CLR erases all variable values, this should generally

be the first statement in any program in which this technique

is used.

This chapter also introduces an important consideration

when assembling source code that's larger than IK (1024

bytes). When your work begins to exceed this size, you should

switch to disk-based assembly (see Appendix B for complete

instructions). The reason is that LADS reserves all of bank 1

for object code and all of bank 0 for source code. LADS itself

is in bank 15 (which uses the same RAM as bank 0) and,

when you are assembling with RAMLADS—as we have for all .

the examples in the book thus far—small source code will ere- LJ
ate no memory conflicts.

However, source code for RAMLADS resides at 7168 and, |

as you type in more source code, it builds up from there. l^J
RAMLADS itself resides at 10000. This leaves 2832 bytes free.

During assembly, LADS builds its label array down from , ,

10000 and so, when your source code reaches a size some- I I
what larger than IK, the labels and source will meet and

you'll start getting error messages about undefined labels that ,

you know you've defined, and so forth. \^J
RAMLADS is best for trying out short, under IK, source
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<*—i code. When your program grows beyond this size, you need

L J to switch to DISKLADS. With DISKLADS, source code or ob
ject code can be much larger since each source file is loaded

r*< from disk into bank 0 RAM above LADS, assembly takes place

L \ on the source code in memory, and the resulting object code is
stored in bank 1 where it will be entirely safe. When all source

?—i files have been assembled, the object code will be saved to disk.

f i Because of all the comments, the source code of Searcher,
the example program in this chapter, is 4K large. You can type

it all in without worry, but you should make a habit of first

DSAVEing source code prior to assembling in case you run

into memory conflict or other problems during the assembly.

It is necessary to invoke DISKLADS with Searcher. If you at

tempt to assemble it via RAMLADS, LIST will reveal that part

of the source code has been overwritten by the label array.

Building the Code

Now we return to the subject at hand—building an ML pro

gram. Most people find it easiest to mentally divide a task into

several tasks, solve the individual small tasks, and then weave

them all together into a complete program. That's how we'll

attack the job of building a search program.

We will build our ML program in pieces and then tie

them all together at the end. The first phase, as always, is the

initialization. We set up the variables and fill in the pointers.

Lines 90 and 100 define two, two-byte zero page pointers. L1L

is going to point at the address of the BASIC line we are cur

rently searching through; L2L points to the starting address of

the line following it.

BASIC stores four important bytes just prior to the start of

r-^ the code in each BASIC line. Take a look at Figure 8-1. The

\ \ first two bytes contain the address of the next line in the

BASIC program. Thus, when BASIC has finished evaluating

nand acting upon the current line, it will already know where

to go to find the next line. This is called linking.

The second two bytes hold the line number. The end of a

p BASIC line is signaled by a zero. Zero does not stand for any-

i t thing in the ASCII code or for any BASIC command. This is
quite similar to the way we signal in ML programs that a text

n message is finished—by storing a zero at the end of the text.

We discussed this earlier when we talked of delimiting an

ASCII message.

H 143



Chapter 8

uu

If there are three zeros in a row, it tells BASIC that it has ( (

reached the end of the program in memory. Three zeros is a I j
super delimiter.

But back to our examination of the ML program. In line ^ >

110 is a definition of the zero page location which holds a i^J
two-byte number that BASIC looks at when it is going to print

a line number on the screen. We'll want to store line numbers , ^

in this location as we come upon them during the execution of Lj
our ML search. Each line number will temporarily sit waiting

in case a match is found. If a match is found, the program will

JSR to the BASIC ROM routine we're calling PLINE, as de

fined in line 140. This routine prints a line number on the

screen, and it will need to have the "current line number"

where it expects to find it.

Line 120 establishes that BASIC RAM starts at $1COO,

and line 130 gives the address of the "print the character in

the accumulator" ROM routine. Use *= $B00 to put the object

code into the traditional "safe" RAM area to store short ML

programs.

Refer to Program 8-1 to follow the logic of the construc

tion of our search program. The search is initiated by typing in

line 0, followed by the item we want to locate. It might be

that we are interested in removing all REM statements from a

program to shorten it. We would type 0REM and hit RETURN

to enter this line into the BASIC program. Then we would

start the search by a SYS to the starting address of the ML

program: SYS 2816.

By entering the "sample" string or command into the

BASIC program, we simplify our task in two ways. First, if the

thing we're searching for is a string, it will be automatically

stored as the ASCII code for that string, just as BASIC stores s j

strings. O

If it is a keyword like REM, it will be translated into the

"tokenized," one-byte representation of the keyword, just as , >

BASIC stores keywords. LJ
The second problem this method solves is that our sample

is located in a known area of RAM. By looking at Figure 8-1, < ,

you can tell that the sample's starting address will always be LJ
the start of BASIC plus five. In Program 8-1 that means $1CO5

(see line 1090). , j
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Set Up the Pointers ^ ^

Our first job, as always when we're going to be using ROM uJ

routines, is to switch in bank 15. We do this in lines 190-200.

Then we'll need to get the address of the next line in the * j

BASIC program we are searching. And then we need to store U*j
it while we look through the current line. The way that BASIC

lines are arranged, we come upon the link to the next line's \ >

address and the line number before we see any BASIC code it- 1—/
self. Therefore, the first order of business is to put the address

of the next line into our L1L location for safekeeping. Lines

240-270 take the link found in start-of-BASIC RAM (plus one)

and move it to the storage pointer L1L.

Next, lines 320-380 check to see if we have reached the

end of the BASIC program. It would be the end if we had

found two zeros in a row as the pointer to the next line's ad

dress. If it is the end, the RTS sends us back to BASIC mode.

The subroutine in lines 540-720 saves the pointer to the

following line's address and also the current line number.

Note the double-byte addition in lines 670-720. We al

ways CLC before any addition. If adding four to the LSB (line

680) results in a carry, we want to be sure that the MSB goes

up by one during the ADd with Carry in line 710. At first

glance, it seems to make no sense to add a zero in that line.

What's the point? We're doing an addition with carry; in other

words, if the carry flag has been set up by the addition of four

to the LSB in line 680, then the MSB will have one added to

it. That's the carry. The carry flag makes this happen.

First Characters

When you're searching for something, say, your car in a park

ing lot, you look for something distinctive. You might search ^ >

for the color blue, or perhaps a plastic flower that you've at- I I

tached to the antenna. You certainly don't look at each entire

car, at the hood, the wheels, the windows, the size, the color, , ,

etcetera, etcetera. You look for a single attribute; then, if the v^J
car is blue, you compare other attributes to see if it is indeed

entirely the same as yours. < ,

Likewise, it's better just to compare the first character in a LJ

word against each byte in the searched memory than to try to

compare the entire sample word. If you are looking for the , ,

word MEM, you don't want to stop at each byte in memory i^j

and see if M-E-M starts there. Just look for M's. When you
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ncome upon an M, then go through the full string comparison.

If line 920 finds a first-character match, it transfers the pro

gram to the subroutine labeled SAME (line 1060) which will

I—I perform a thorough comparison.

1 J On the other hand, if the routine starting at line 890

comes upon a zero (line 900), it knows that the BASIC line

has ended (all BASIC lines end with zero, and zero is not used

in any other way within a BASIC program). Our search pro

gram then goes down to STOPLINE (line 1240), which puts

the "next line" address pointer into the "current line" pointer,

and the whole process of reading a new BASIC line begins

anew.

If, however, a perfect match was found (line 1100 found a

zero at the end of the 0:REM line, showing that we had come

to the end of the sample string), we go to PERFECT and it

makes a JSR to print out the line number (line 1390). The

PERFECT subroutine bounces back (RTS) to STOPLINE,

which replaces the "current line" (L1L) pointer with the "next

line" pointer (L2L).

Then we JMP back to READLINE, which, once again,

pays very close attention to zeros to see if the whole BASIC

program has ended with a pair of zeros. We have now re

turned to the start of the main loop of this ML program.

This all sounds more complicated than it is. If you've fol

lowed it so far, you can see that there is enormous flexibility

in constructing ML programs. If you want to put the STOP-

LINE segment before the SAME subroutine—go ahead. Self-

contained subroutines are not position-dependent.

It is quite common to see a structure like this:

Definitions

SCREEN = $0400

Initialization

LDA #15

STA $83

Main Loop

START JSR1

JSR 3

BEQ START Until some index runs out

RTS To BASIC

U7
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u

Subroutines , i

i lJ
2 Each ends with RTS back to the Main Loop

3

DATA I I
Table 1 ^
Table 2

Table 3 jj

These are the main subdivisions of machine language pro

grams. If you use this structure, you will find that it simplifies

locating the different parts of a program, and it also prevents

nonprogram data (such as tables, messages, definitions) from

getting mixed in with the program code proper. LADS is de

signed using this nearly universal format. Since all but the

shortest programs will have defined variables, initialization, a

main loop, a cluster of subroutines, and, finally, a collection of

data tables, why not organize all your programs in this simple,

straightforward, and sensible way?

Try typing in the source code in Program 8-1 and assem

bling it with LADS. (Refer to Appendix B for instructions on

using LADS.) As mentioned earlier, because of the length of

the source code, you'll need to save it on disk and use

DISKLADS. After you've assembled the source code, you'll

need to BLOAD the object file created during the assembly.

Next, load the BASIC program you wish to search and add

line number 0 containing the word or words you want to

seach for. Then use SYS 2816 to activate the program; that's

where it sits in RAM.

As your skills improve, you will likely begin to appreciate,

and finally embrace, the extraordinary freedom that ML con

fers on the programmer.

At first, learning ML can seem fraught with apparently }_J
endless obscure tricks and rules. It can even seem menacing,

beyond your understanding. It's this way with every new lan

guage because the words are still new, still odd. . \j
Everyone passes through this (surprisingly brief) sense of

dread. Once you know how to tell your computer, directly in

its language, how to print something on the screen, you don't j I
need to relearn this trick. Things fall into place. It won't take

as long as it might now seem for you to begin to grasp the rel

atively few novelties of machine language programming. ML j 1
isn't the theory of relativity; it's no more difficult than BASIC.
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H

r~[ It's just a new vocabulary for the same programming tech-

' ' niques you've been using with BASIC.
And this brief sensation, this brief confusion, is a very

|—j small price to pay for the flights you will soon be taking

through your computer. Work at it. Try things. Learn how to

find your errors. It's not circular—there will be steady ad-

r-j vances in your understanding. One day soon, you'll be able to

easily turbocharge your BASIC programs with ML, to write

convenient, custom utilities like our search routine, and to do

pretty much anything you could want to do with your

machine.

n

n

H

n
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T
H
E

N
U
M
B
E
R

1
3
2
0

;
I
N

$
3
B
,
3
C

A
N
D

T
H
E
N

P
R
I
N
T
S
.

1
3
3
0

;
T
H
E

R
O
M

R
O
U
T
I
N
E

W
I
L
L

P
R
I
N
T

T
H
E

N
U
M
B
E
R

A
T

T
H
E

1
3
4
0

;
N
E
X
T

C
U
R
S
O
R

P
O
S
I
T
I
O
N

O
N

T
H
E

S
C
R
E
E
N
.

T
H
E
N

W
E

1
3
5
0

;
P
R
I
N
T
A

B
L
A
N
K

S
P
A
C
E

A
N
D

R
E
T
U
R
N

T
O

L
I
N
E

6
1
0

1
3
6
0

;
T
O

C
O
N
T
I
N
U
E

O
N
W
I
T
H

T
H
E

M
A
I
N

L
O
O
P

A
N
D

1
3
7
0

;
M
A
Y
B
E

F
I
N
D

M
O
R
E

M
A
T
C
H
E
S
.

1
3
8
0

;

1
3
9
0

P
R
I
N
T
O
U
T

J
S
R

P
L
I
N
E

1
4
0
0

L
D
A

#
$
2
0
;

P
R
I
N
T
A

B
L
A
N
K

1
4
1
0

J
S
R

P
R
I
N
T
;

S
P
A
C
E

B
E
T
W
E
E
N

N
U
M
B
E
R
S

1
4
2
0

R
T
S

1
4
3
0

.
E
N
D

8
-
1

R
E
A
D
Y
.

9 i

c
c
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c
c

c
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n ML Equivalents of BASIC
n Commands

What follows is a small dictionary, arranged alphabetically, of

the major BASIC commands. If you need to accomplish some

thing in ML—TAB, for example—look it up in this chapter to

see one way of doing it in ML. Often, because ML is so much

freer than BASIC, there will be several ways to go about a

given task.

Of these choices, one might work faster, one might take

up less memory, and one might be easier to program and

understand. For this chapter, example routines were selected

to favor those which are easier to program and understand.

At ML's extraordinary speeds, and with the large amounts

of RAM memory available to today's computerists, it will be

rare that you will need to opt for velocity or memory

efficiency.

CLR
In BASIC, this clears all variables. Its primary effect is to reset

pointers. It is a somewhat abbreviated form of NEW since it

does not "blank out" your program as NEW does.

CLR, in fact, is rarely used.

We might think of CLR, in ML, as the initialization phase

of a program which erases (fills with zeros) the memory loca

tions you've set aside to hold your ML flags, pointers,

counters, and so on. You can see an example of this in the

LADS source code in Eval between lines 30 and 70 (Appendix

D).

Before an ML program runs, you will usually want to be

sure that some of its variables are set to zero. If they are in

different places in memory, you will need to zero them

individually:

2000 LDA #$0

2002 STA $1990 Put zero into one of the "variables."

2005 STA $1994 Continue putting zero into each byte which

needs to be initialized.
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On the other hand, if you've put all your variables to- j i

gether at the end, the job is easy: Just loop through the lisL, '—'

putting zero in each variable. BASIC sets up a group of its

variables (pointers) in zero page, so you can use a loop to zero j /

them out: '—'

2000 LDA #$0

2002 LDY #$0F Y will be the counter. There are 15 bytes to zero j f

out in this example. '—'
2004 STA $199,Y The highest of the 15 bytes.

2007 DEY

2008 BNE $2004 Let Y count down to zero, BNEing until Y is

zero, then the Branch if Not Equal will let the

program fall through to the next instruction at

$200A.

CONT
This BASIC command allows your program to pick up where

it left off after a STOP command. You might want to look at

STOP, below. In ML, you can't usually get a running program

to stop with the RUN/STOP key. If you like, you could write

a subroutine which checks to see if a particular key is being

held down on the keyboard and, if it is, BRK:

3000 JSR $FFE4; Routine to get the key currently pressed.

3003 BEQ 3000; If nothing is currently pressed, keep looking.

3005 CMP #13 This is the RETURN key on your machine, but

you'll want CMP here to the value that appears

in the "currently pressed" byte for the key you

select as your "stop" key. It could be any key. If

you want to use A for your "stop" key, try

CMP #$41.

3007 BNE $300A If it's not your target key, jump to RTS.

3009 BRK If it is the target, BRK... }_j
300A RTS back to the routine which called this subroutine.

However, the above routine requires that some key be , ,

pressed. It will keep branching back to 3000 until some key is I I
pressed. This is the kind of input you would use when you

printed a menu and wanted the program to pause until a , ,

selection was made. \ i

There is, however, a location in zero page, the byte at

$D4, which detects keypresses on the fly. You could LDA .

$D4:CMP #10:BEQ FOUNDA (FOUNDA is your routine that LJ
does something whenever the user presses the A). Notice that
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DATA

nthe code for the letter A has a value of ten here. Unlike a JSR

$FFE4, the value returned from location $D4 is not regular

ASCII. It's a different code, the "keyboard matrix code/' and

n there's no use learning it or having a chart of it. Carriage re

turn is 1, the letter A is 10; when no key is pressed, $D4 con

tains an 88. If you need to know sometime what value will be

*—> in $D4 for a particular keypress, just look at $D4 via BASIC

•' ' with this simple program:

10 PRINT PEEK(212);:GOTO 10

and then press the key you're interested in.

Now back to CONT, the matter at hand. The 8502 places

the program counter (plus two) on the stack after a BRK. A

close analogy to BASIC is the placement of BRK within ML

code to cause a halt to program execution. Then, after examin

ing registers or variables or buffers (places that hold input or

output before it's received or sent), you can restart your pro

gram by using the monitor G (go) command. G is the equiva

lent of CONT.

DATA
In BASIC, DATA announces that the items following the word

DATA are to be considered pieces of information (as opposed

to being thought of as parts of the program). That is, the pro

gram will probably use this data, but the data elements are not

BASIC commands.

In ML, such a zone of "nonprogram" is called a table. It is

unique only in that the program counter never starts trying to

run through a table to carry out instructions. This never hap

pens because you never transfer program control, using JMP,

c—1 JSR, or a branching instruction, to anything within a table.

' I (This is similar to the way that BASIC slides right over DATA
lines.) There are no meaningful instructions inside a table. To

f—j see what a table looks like and what it does, see the Tables

• • subprogram in the LADS source code in Appendix D.

To keep things simple, tables of data are usually stored

together either above or below the program. Usually, tables

are stored above, at the very end of the ML program (see Fig

ure 9-1).

Tables can hold messages that are to be printed to the

screen, hold variables, hold flags (temporary indicators), and

so on. If you disassemble your BASIC in ROM/you'll find the
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DIM

words STOP, RUN, LIST, and so forth, gathered together in a

table. You can suspect a data table when your disassembler

starts giving lots of ??? error messages. It cannot find groups of

meaningful opcodes within tables.

Figure 9-1. Typical ML Program Organization

Bottom of Memory

Start of ML Program

DATA

INITIALIZATION

MAIN

LOOP

SUBROUTINES

DATA

u

u

u

u

u

DIM
With its automatic string handling, array management, and er

ror messages, BASIC makes life easy for the programmer.

The price you pay for this hand holding is that it slows

down the program when it's run. In ML, the DIMensioning of

space in memory for variables is not explicitly handled by the

computer. You must make a note that you are setting aside

memory from $6000 to $6500, or whatever, to hold variables.

It helps to make a simple map of this "dimensioned" memory

so that you know where permanent strings, constants, variable

strings, and variables, flags, and so on, are within the dimen

sioned zone. Because this set-aside memory will not contain

meaningful ML instructions, it is generally placed at the end of

the actual ML program. With LADS, you can make Tables the

final file in your chain of files. That will automatically put the

tables at the end of your program proper. To define data

(string or numeric), you use the .BYTE instruction; .BYTE auto

matically makes space, like DIM.
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H END

1.1

r-> A particular chunk of memory (where, and how much, is

' . I up to you) is reserved; that's all. You don't write any instruc
tions in 8502 ML to set aside the memory; you just start using

r—| the .BYTE pseudo-op and it fills in your tables. That's why it's

< J best to place tables at the end of your program. This way,
they can be enlarged conveniently without affecting any other

r—) part of the program.

I i

END

There are several ways to make a graceful exit from ML pro

grams. You can JMP to the "warm start" address ($4003). Or

you can go to the "cold start" address ($4000).

If you went into the ML from BASIC with a SYS, you can

return to BASIC with an RTS. Recall that every JSR matches

up with its own RTS. Every time you use a JSR, it shoves its

"return here" address onto the top of the stack. If the com

puter finds another JSR (before any RTS), it will shove another

return address on top of the first one. So, after two JSRs, the

stack contains two return addresses. When the first RTS is en

countered, the top return address is lifted from the stack and

put into the program counter so that the program returns con

trol to the current instruction following the most recent JSR.

When the next RTS is encountered, it pulls its appropriate

return (waiting for it on the stack), and so on. The effect of a

SYS from BASIC is like a JSR from within ML. The return ad

dress to the correct spot within BASIC is put on the stack. In

this way, if you are within ML and there is an RTS (without

any preceding JSR), what's on the stack will be a return-to-

BASIC address left there by SYS when you first went into ML.

Another way to END is to put a BRK in your ML code.

p"j This drops you into the machine's monitor. Normally, you use
BRKs during program debugging. When the program is finished,

though, you would not want this ungraceful exit any more

PI than you would want to end a BASIC program with STOP.
In fact, many ML programs, if they stand alone and are

^ not part of a larger BASIC program, never end at all. They are

***■ an endless loop. The main loop just keeps cycling over and
over. A game will not end until you turn off the power. After

each game, you see the score and are asked to press a key

when you are ready for the next game. Arcade games which

cost a quarter will ask for another quarter, but they don't end.
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They go into "attract mode/' The game graphics are left run- t j

ning onscreen to interest new customers. I J
An ML word processor will cycle through its main loop,

waiting for keys to be pressed, words to be written, format or « >

disk instructions to be given. Here, too, it is common to find ! !
that the word processor takes over the machine, and you can

not stop it without turning the computer off. Among other . ,

things, such an endless loop protects software from being pi- I I
rated. Since it takes control of the machine, this makes it

harder for someone to save it or examine it once it's in RAM?

Some such programs are "autobooting" in that they start

themselves running as soon as they are loaded into the

computer.

BASIC, itself an ML program, also loops endlessly until

you power down. When a program is running, all sorts of

things are happening. BASIC is an interpreter, which means

that it must look up each word (like INT) it comes across dur

ing a RUN (interpreting, or translating, its meaning into ma

chine-understandable JSRs). Then, BASIC executes the correct

sequence of ML actions from its collection of routines.

In contrast to BASIC RUNs, BASIC spends 99 percent of

its time waiting for you to program with it. This waiting for

you to press keys is its endless loop, a tight, small loop

indeed.

It would look like our "which key is pressed?" routine:

2000 LOOP LDA $D4; THE "WHICH KEY IS BEING

PRESSED" LOCATION

2002 CMP #88; IF 88, KEEP LOOPING

2004 BEQ LOOP

If there is an 88 in $D4, this means that no key has been

pressed. So, we keep looping until the value in address $D4 is j j

something other than 88. This setup is similar to INPUT in i—'

BASIC because not only does it wait until a key is pressed, but

it also leaves a unique value of the key in the accumulator \ \

when it's finished. '—'

FOR-NEXT LJ
Everyone has had to use delay loops in BASIC (FOR T = 1

TO 1000: NEXT T) which are also tight loops, sometimes

called do-nothing loops because nothing happens between the

FOR and the NEXT except the passage of time. For example,
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n
when you need to let the user read something on the screen,

it's sometimes easier just to use a delay loop than to say,

"When finished reading, press any key."

In any case, you'll need to use delay loops in ML just to

slow ML itself down. In a game, the ball can fly across the

screen. It can get so fast, in fact, that you can't see it. It just

"appears" when it bounces off a wall. And, of course, you'll

need to use loops in many other situations. Loops of all kinds

are fundamental programming techniques.

In ML, you don't have that convenient little counter (T in

the BASIC FOR-NEXT example above) which decides when to

stop the loop. When T becomes 1000, go to the instructions

beyond the word NEXT. Again, you must set up and check

your counter variable by yourself.

If the loop is going to be smaller than 255 cycles, you can

use the X register as the counter—Y is saved for the very use

ful indirect indexed addressing discussed in Chapter 4: LDA

(96),Y. Anyway, by using X, you can count to 200 by:

2000 LDX #200 (or $C8 hex)

2002 DEX

2003 BNE $2002

For loops involving counters larger than 255, you'll need

to use two bytes to count down, one going from 255 to 0 and

then clicking (like a gear) the other (more significant) byte.

To count to 512:

2000 LDA #$2

2002 STA $6000 Put the 2 into address 6000, our MSB, most

significant byte, counter.

2004 LDX #$0 Set X to 0 so that its first DEX will make it 255.

Further DEXs will count down again to 0, when

it will click the MSB down from 2 to 1 and then

finally to 0.

2006 DEX

2007 BNE $2006

2009 DEC $6000 Click the number in address 6000 down 1.

200B BNE $2006

Here we used the X register as the LSB (least significant

byte) and address 6000 as the MSB. Why use address 6000?

Why not? Use any RAM byte you want that won't interfere

with other things going on in the computer. In practice, you'll

want to set aside a byte in your Tables at the end of your ML
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200

210

220

230

240

250

260

270

2000

2002

2004

2006

2007

2008

200A

200c

LDA

STA

LDX

DEX

DEX

6NE

DEC

BNE

#$2

COUNTER

#$0

$2006

COUNTER

$2006

This is going to

X is holding our

Here we click X

for -2.

hold our MSB.

LSB.

down a second time,

u

u

program to be sure that it's not going to interfere with some- » >

thing. See DATA above for a discussion of Tables. 1 I
We could use addresses $FA and $FB to hold the MSB/LSB

if we wanted. This is commonly useful because then address . ,

$FA (or some available, two-byte space in zero page) can be l_J
used for LDA ($FA),Y. You would print a message to the

screen using the combination of a zero page counter and LDA . ,

(zero page address),Y. I I

FOR-NEXT-STEP
Here you would just increase your counter (usually X or Y)

more than once. To create FOR I = 100 TO 1 STEP -2 you

could use:

2000 LDX #100

2002 DEX

2003 DEX

2004 BNE $2002

For larger numbers you create a counter which uses two

bytes, working together, to keep count of the events. Follow

ing our example above for FOR-NEXT, we could translate FOR

I = 512 TO 0 STEP -2:

400 COUNTER .BYTE 0; A single byte set aside in our Tables ]_j
(In this example, we've shown how you would create

LADS source code to set aside a COUNTER byte above the | ;

main code. However, the addresses of this code, 2000-200C, w^

are not known when you write source code. They are created

after you activate LADS. They're here just for illustrative pur- | j

poses. You don't type in addresses when writing source code for u^

LADS.)
To count up, use the CoMPare instruction. FOR I = 1 TO

50 STEP 3:
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"-1 2000 LDX #$0

1 I 2002 INX
2003 INX

r—, 2004 INX

i_i 2005 CPX #$50
2007 BNE $2002

nForlarger STEP sizes, you can use a nested loop within

the larger one. This would avoid a whole slew of INXs. To

write the ML equivalent of FOR I - 1 TO 50 STEP 10:

2000 LDX #$0

2002 LDY #$0

2004 INY

2005 CPY #$0A

2007 BNE $2004

2009 CPX #$32

200B BNE $2002

GET
Every computer must have that important "which key is being

pressed?" address, where it holds the value of a character

typed in from the keyboard. To GET, you create a very small

loop which tests this address. See a complete description of

this technique under CONT above.

GOSUB
This is nearly identical to BASIC. Use JSR $NNNN and you

will go to a subroutine at address NNNN instead of a line

number as in BASIC. (NNNN just means that you can sub

stitute any hex number for the NNNN that you want to. This

is a form of math shorthand.) LADS allows you to give labels,

Pj names to JSR to, instead of addresses. A simple assembler like
the one in the monitor does not allow labels. You are respon-

^ sible (as with DATA tables, variables, and so on) for keeping a

; \ list of your subroutine addresses and the parameters involved if

you're not using LADS.

Parameters are the number or numbers handed to a sub

routine to give it information it needs. Quite often, BASIC

subroutines work with the variables already established within

the BASIC program. In ML, though, managing variables is up

to you. Subroutines are useful because they can perform tasks

repeatedly without needing to be written into the body of the
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program each time the task is to be carried out. Beyond this, i >

they can be generalized so that a single subroutine can act in a I—I
variety of ways, depending upon the variable (the parameter)

which is passed to it. j i

A delay loop to slow up a program could be general in *—I

the sense that the amount of delay is handed to the subroutine

each time. The delay can, in this way, be of differing dura- i >

tions, depending on what it gets as a parameter from the main I—I
routine.

Let's say that we've decided to use address $40 to pass

parameters to subroutines. We could pass a delay of five cy

cles of the loop by:

2000 LDA #$5

The Main Program 2002 STA $40

2004 JSR $5000

5000 DEC $40

5002 BEQ $500C If address $40 has counted

all the way down from 5

to 0, RTS back to the main

program.

5004 LDY #$0

5006 DEY

The Subroutine 5007 BNE $5006

5009 JMP $5000

500C RTS

A delay which lasted twice as long as the above would

merely require a single change to the calling routine: 2000

LDA #$0A. j j

GOTO
In ML, it's JMP. JMP is like JSR, except the address you leap |_J
away from is not saved anywhere. You jump, but cannot use

an RTS to find your way back.

There are two basic kinds of branching in computing. A j \
conditional branch would be CMP #0:BEQ 5000. The condition

of equality is tested by BEQ, Branch if EQual. BNE tests a con

dition of inequality, Branch if Not Equal. Likewise, BCC LJ
(Branch if Carry is Clear) and the rest of these branches are

testing conditions within the program.
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I"""! GOTO and JMP do not depend on any conditions within

the program, so they are unconditional branches. The question

arises when you use a GOTO: Why did you write a part of

!—j your program that you must always (unconditionally) jump

over? GOTO and JMP are sometimes used to patch up a pro

gram, but used without restraint, they can make your program

f? hard to understand later. On the other hand, JMP can many

1 ' times be the best solution to a programming problem. In fact,
it is hard to imagine ML programming without it.

One additional note about JMP: It makes a program

nonrelocatable. If you later need to move your whole ML pro

gram to a different part of memory, all the JMPs (and JSRs)

need to be checked to see if they are pointing to addresses

which are no longer correct. (JMP or JSR into your BASIC

ROMs will still be the same, but not those which are targeted

to addresses within the ML program.)

2000 JMP $2005

2003 LDY #$3

2005 LDA #$5

If you moved this little program up to $5000, everything

would survive intact and work correctly except the JMP $2005.

It would still say to jump to $2005, but it should say to jump

to $5005, after the move. You have to go through with a dis

assembly and check for all these incorrect JMPs. To make your

programs more "relocatable," you can use a special trick with

unconditional branching which will move without needing to

be fixed:

2000 LDY #$0

2002 BEQ $2005 Since we just loaded Y with a zero, this Branch

if EQual to zero instruction will always be true

J i and cause a pseudo-JMP.

2004 NOP

2005 LDA

r\ #$5

Your monitor includes a "moveit" routine, invoked with T

(Transfer), which will take an ML program and relocate it

f"[ somewhere else in memory for you. You can go into the mon
itor and type T 2000 2006 5000 (you give the monitor these

numbers in hex). The third number is the target address. The

f""j first and second are the start and end of the program you
want to move.
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The best solution to relocatability, however, is LADS. j j

With it, you never JMP to actual addresses; rather, you JMP or '—
JSR or branch to labels. This way, relocating your program

couldn't be simpler. You just change the start address with * = s [

and reassemble. Everything is taken care of and the program '—'
reassembles to the new location flawlessly. With LADS, the

example above is written like this: \ j

100 JMP NEXTROUTINE

110 LDY #3

120 NEXTROUTINE LDA #5

(The numbers at the left are not addresses; they are line

numbers for your convenience when writing the program, and

they have no effect on the resulting ML code after assembly.)

IF-THEN
This familiar and fundamental computing structure is accom

plished in ML with the combination CMP-BNE or any other

conditional branch: BEQ, BCC, and so forth. Sometimes, the IF

half isn't even necessary. Here's how it would look:

2000 LDA $57 What's in address $57?

2002 CMP #$0F Is it $0F, 15 decimal?

2004 BEQ $200D IF it is, branch up to $200D.

2006 LDA #$0A Or ELSE, put a $0A, 10 decimal, into address

$57

2008 STA $57

200A JMP $2011 And jump over the THEN part.

200D LDA #$14 THEN, put a $14, 20 decimal, into address $57.

200F STA $57

2011 Continue with the program....

Often, though, your flags are already set by an action, . ,

making the CMP unnecessary. For example, if you want to I I
branch to $200D if the number in address $57 is zero, just

LDA $57:BEQ $200D. This works because the act of loading . ,

the accumulator will affect the status register flags. You don't uJ
need to CMP #0 because the zero flag will be set if a zero was

just loaded into the accumulator. It won't hurt anything to use »

a CMP, but you'll find many cases in ML programming where ^^

you can shorten and simplify your coding if you wish to. As

you gain experience, you will see these patterns and learn . ^

what affects the status register flags. LJ
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PI INPUT
This is a series of GETs, echoed to the screen as they are

typed in, which end when the typist hits the RETURN key.

P""| The reason for the echo (the symbol for each key typed is re
produced on the screen) is that few people enjoy typing with

out seeing what they've typed. This also allows for error cor-

["""] rection using cursor control keys or DELETE and INSERT keys.
To handle all of these actions, an INPUT routine must be

fairly complicated. We don't want, for example, the DELETE

to become a character within the string. We want it to act im

mediately on the string being entered during the INPUT, to

erase a mistake.

Our INPUT routine must also be smart enough to know

what to add to the string and what keys are intended only to

modify it. Here is the basis for constructing your own ML IN

PUT. It simply receives a character from the keyboard, prints

it to the screen, and ends when the RETURN key is pressed.

We'll write this INPUT as a subroutine. That simply means

that when the 13 (ASCII for carriage return) is encountered,

we'll perform an RTS back to a point just following the main

program address which JSRed to our INPUT routine. Let's do

it in the LADS source code format, with line numbers instead

of addresses:

10 *= $B00

20 .S

30 .O

40 LOOP JSR $FFE4:BEQ

LOOP; If we got a zero, no key had been

pressed

50 JSR $FFD2; Print the character to the screen

r—> 60 CMP #13; Is it a carriage return

'- ' 70 BNE LOOP; If not, return for more keypresses
80 RTS; Otherwise return to the calling

p—j routine

If you try this out, you'll notice that even the cursor keys

and delete, screen clear, and so forth, work correctly. This is

\—[ because when you JSR $FFD2 (PRINT), it is just as if you

' printed any character from BASIC (with cursor control codes

embedded in a string). This INPUT could be, however, much

r—[ more complex. As it stands, it will hold the string on the

' screen only. To save the string, you would need to store it in
some buffer of yours in addition to its appearance on the
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screen. However, if you're going to store the string into some j i

safe location where you are keeping string variables, you'll '—'
need to refuse storage to such things as the delete character or

your stored string will be corrupted (will include delete) if the )' j

user needs to correct a misspelling. Or you might want to pre- l—'
vent the user from hitting a key like carriage return. In that

case, just CMP #13:BEQ LOOP so that nothing is echoed to i i

the screen or stored in your string when the user trys to enter '—'
that particular key.

The great freedom you have with ML is that you can re

define anything you want. You can softkey: define a key's

meaning via software; have any key perform any task you

want. You might even decide to use the $ key to DELETE.

Along with this freedom goes the responsibility for

organizing, writing, and debugging these routines.

LET

Although this word is still available on most BASICs, it is a

holdover from the early days of computing. It is supposed to

remind you that statements like LET NAME = NAME + 4 is

an assignment of a value to a variable, not an algebraic equa

tion. The two numbers on either side of the equal sign, in

BASIC, are not intended to be equal in the algebraic sense.

Most people write NAME = NAME + 4 without using LET.

The function of LET applies, though, to ML as well as to

BASIC: We must assign values to variables.

In the 128, for example, where the RAM bank can change

depending on how you configure the computer, there has to

be a place where we can find out which bank is the current

bank (it's address $FF00). Likewise, a program will sometimes

require that you assign meanings to string variables, counters, i ]
and the like. This can be part of the initialization process, the

tasks performed before the real program, your main routine,

gets started. Or it can happen during the execution of the Jl
main loop. In either case, there has to be an ML way to estab

lish, to assign, variables. This also means that you must have

zones of memory set aside to hold these variables unless, like j \
the bank-switching location, the computer has already defined

a variable. Normally, you will store your variables as a group

at the end of an ML program. | j
For strings, you can think of LET as the establishment of

a location in memory. In our INPUT example above, we might
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pi have included an instruction which would have sent the

characters from the keyboard to a table of strings as well as

echoing them to the screen. If so, there would have to be a

pi way of managing these strings. For a discussion on the two

most common ways of dealing with strings in ML, see Chapter

6 under the subhead "Dealing with Strings."

f—I In general, you will probably find that you program in

ML using somewhat fewer variables than in BASIC. There are

three reasons for this:

1. You will probably not write many programs in ML like

databases where you manipulate hundreds of names, ad

dresses, and so forth. It might be somewhat inefficient to

create an entire database management program, an in

ventory program for example, in ML. Keeping track of the

variables would require careful programming. (For an ex

ample database manager, see LADS's Equate and Array

subprograms, Appendix D.)

The value of ML is its speed of execution, but its

drawback is that it requires more precise programming and,

at least for beginners, can take more time to write. So, for

an inventory program, you could write the bulk of the pro

gram in BASIC and simply attach ML routines for sorting

and searching tasks within the program.

2. The variables in ML are often handled within a series of

instructions (not held elsewhere as BASIC variables are).

FOR I = 1 TO 10 : NEXT I becomes LDY #1:INY:CPY

#10:BNE.

Here, the BASIC variable is counted for you and

stored outside the body of the program. The ML "variable,"

though, is counted by the program itself. ML has no inter-

I""] preter which handles such things. If you want a loop, you

must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the

|~| start of the program and then to refer to them later by their

variable names, as in 10 BALL = 79. Then, anytime you

want to PRINT the BALL to the screen, you could say,

pi PRINT CHR$(BALL). Alternatively, you might define it this

way in BASIC: 10 BALL$ = "O". In either case, your pro

gram will later refer to the word BALL. In this example we

pi are assuming that the number 207 will place a ball charac

ter on your screen (the letter O).
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In ML we can use variable names precisely the same way j j

if we are programming with an advanced assembler like '—'
LADS. However, with an elementary assembler like the one in

the monitor, you will just LDA #207, STA (screen position) i i

each time. Some people like to put the 207 into their zone of ^
variables (that arbitrary area of memory set up at the end of a

program to hold tables, counters, and important addresses). j j

They can pull it out of that zone whenever it's needed. That is '—■
somewhat cumbersome, though, and slower. You would LDA

1015, STA (screen position), assuming you had put a 207 into

this "ball" address, 1015, earlier.

Obviously, a value like BALL will always remain the same

throughout a program. The ball will look like a ball in your

game, whatever else happens. So, it's not a true variable; it

does not vary. It is constant. A true variable must be located in

your "zone of variables," your variable table.

It cannot be part of the body of your program itself (as in

LDA #207) because it will change. You don't know when writ

ing your program what the variable will be. So you can't use

immediate mode addressing because it might not be a #207.

You have to LDA 1015 from within your table of variables.

Elsewhere in the program you have one or more STA

1015 or INC 1015 or some other manipulation of this address

which keeps updating this variable. In effect, ML makes you

responsible for setting aside areas which are safe to hold vari

ables if you are using the monitor assembler. What's more,

you have to remember the addresses and update the variables

in those addresses whenever necessary. This is why it is so

useful to keep a piece of paper next to you when you are writ

ing ML using the monitor. The paper lists the start and end

addresses of the zone of variables, the table. You write down ( »

the specific address of each variable as you write your pro- Lj
gram. LADS, of course, makes variable zones and names auto

matic with the .BYTE pseudo-op. See LADS's Tables sub- < .

program (Appendix D) to see how variables (and constants) U^J
can be handled efficiently.

LIST ^
This is done via a disassembler. It will not have line numbers

(though, again, advanced assembler packages like LADS do j |
have line numbers). You will see the address of each instruc-
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P"| tion in memory. You can look over your work and plan debug-

1 ging strategies, where to set BRKs into problem areas, and so on.
The most common way to list and check your work, how-

pn ever, is to read over the source code. This does not require a

! disassembler. You write LADS source code as if it were a
BASIC program and, thus, can LIST it and modify it as if it

|—I were a BASIC program. There is a subtle difference between

'-■ ' studying source code and studying object code (via dis
assembly). The former is most useful for making modifications

and for locating the more obvious bugs. The latter is for pa

tiently tracking down those last few stubborn bugs that no

amount of reading over the source code will reveal.

LOAD
The method of saving and loading an ML program varies from

computer to computer. You have two options: loading from

within the monitor or from BASIC. When you finish working

on a program, or a piece of a program, on the mini-assembler,

you will know the starting and ending addresses of your

work. Using these, you can save to disk or tape using the S

monitor command (described in Chapter 3). To load, the sim

plest way is just to L "FILENAME",! (for tape) or ,8 (for disk).

You can also load ML when you're in BASIC mode by

BLOAD. With both the monitor's L and BASIC'S BLOAD com

mands, you can reassign your ML routine to a different target

address (see your manual). However, this will not adjust the

JSRs, and so on, so you haven't really relocated the program,

and it probably would not run at the new location. To truly

relocate it, you need to change the start address * = and re

assemble it with LADS. However, loading in a version of your

I | ML program to a different location with the L command and
then loading in another version in its normal location does

allow you to compare them with the monitor's C command.

|| To see how to save and load from within your ML pro
grams, to write ML which itself saves and loads files, please

refer to the Openl subprogram of LADS in Appendix D.

NEW
r—| In Microsoft BASIC, this has the effect of resetting some point-

' ' ers which make the machine think that you are going to start

over again. The next program line you type in will be put at
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the "start-of-a-BASIC-program" area of memory. Some I j

computers, the Atari for example, even wash memory by fill- '—'

ing it with zeros. There is no special command in ML for

NEWing an area of memory, though the monitor has a "fill i j

memory" option which will fill an area of memory as large as '—*
you want with whatever value you choose.

The reason that NEW is not found in ML is that you do j i

not always write your programs in the same area of memory '—'
as you do in BASIC, building up from some predictable ad

dress. You might have a subroutine floating up in high mem

ory, another way down low, your table of variables at the end,

and your main program in the middle. Or you might not.

We've been using $2000 as our starting address for many of

the examples in this book and $5000 for subroutines, but this

is entirely arbitrary.

To "NEW" in ML, just start assembling over the old

program.

Alternatively, you could just turn the power off and then

back pn again. This would, however, have the disadvantage of

wiping out LADS along with your program.

ON-GOSUB
In BASIC, you are expecting to test values from among a

group of numbers: 1, 2, 3, 4, 5, .... The value of X must fall

within this narrow range: ON X GOSUB 100, 200, 300, ... (X

must be 1 or 2 or 3 here). In other words, you could not

conveniently test for widely separated values of X (18, 55,

220). There is also an improved form of ON-GOSUB where

you can test for any values. If your computer were testing the

temperature of your bath water:

CASE [_J
80 OF GOSUB HOT ENDOF

100 OF GOSUB VERYHOT ENDOF

120 OF GOSUB INTOLERABLE ENDOF I I
ENDCASE L—J

ML permits you the greater freedom of the CASE struc

ture. Using CMP, you can perform a multiple branch test: | |

2000 LDA $96 Get a value, perhaps input from the keyboard.

2002 CMP #$50 Decimal 80 , ,

2004 BNE $2009 |_J
2006 JSR $5000 Where you would print "hot," following our ex

ample of CASE.
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2009 CMP #$64 Decimal 100

200B BNE $2011

200D JSR $5020 Print "very hot"

2010 CMP #$78 Decimal 120

2012 BNE $2017

2014 JSR $5030 Print "intolerable"

This illustrates one way that bugs get into ML—by not

cleanly entering and leaving subroutines. The potential prob

lem here is triggering the CMPs more than once. Since you are

JSRing and then will be RTSing back to within the multiple

branch test above, you will have to be sure that the subroutines

up at $5000 do not change the value of the accumulator. If the

accumulator started out with a value of $50 and, somehow,

the subroutine at $5000 left a $64 in the accumulator, you

would print "hot" and then also print "very hot." One way

around this would be to put a zero into the accumulator

before returning from each of the subroutines (LDA #$0). This

assumes that none of your tests, none of your cases, responds

to a zero. »

ON-GOTO
This is more common in ML than the ON-GOSUB structure

above. It eliminates the need to worry about what is in the

accumulator when you return from the subroutines. Instead of

RTSing back, you jump back, following all the branch tests.

2000 LDA $96

2002 CMP #$50

2004 BNE $2009

2006 JMP $5000 Print "hot"

2009 CMP #$64

200B BNE $2010

200D JMP $5020 Print "very hot"

2010 CMP #$78

(—1 2012 BNE $2017

!- ) 2014 JMP $5030 Print "intolerable"
2017 All the subroutines JMP $2017 when they

,—^ finish.

f -l Instead of RTS, each of the subroutines will JMP back to
$2017, which lets the program continue without accidentally

f~j "triggering" one of the other tests with something left in the

f - accumulator during the execution of one of the subroutines.
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You could print out a message in the following way: l—

2000 LDY #$0

2002 LDA #72 The letter H I \
2004 STA $0400,Y An address on the screen

2007 INY

2008 LDA #69 The letter E I i

200A STA $0400,Y U->

200D INY

200E LDA #76 The letter L

2010 STA $0400,Y

2013 INY

2014 LDA #76 The letter L

2016 STA $0400,Y

2019 INY

201A LDA #79 The letter O

201C STA $0400,Y

But this is clearly a clumsy, memory-hungry way to go

about it. In fact, it would be absurd to print out a long mes

sage this way. The most common ML method involves putting

message strings into a data table and ending each message

with a zero. Zero is never a printing character in computers; to

print the number zero, you use 176: LDA #$30, STA $0400.

So, true zero (not the code for the character 0) can be used as

a delimiter to let the printing routine know that you've fin

ished the message. In a data table, we first put in the message

"hello":

1000 $48 H

1001 $45 E

1002 $4C L

1003 $4C L

1004 $4F O \ [

1005 $00 The delimiter L~J
1006 $48 H

1007 $49 I Another message | j

1008 $0 Another delimiter *—■*

Such a message table can be as long as you need; it holds

all your messages and they can be used again and again: j j

2000 LDY #$0

2002 LDA $1000,Y

2005 BEQ $200F If the zero flag is set, it must mean that we've [I
reached the delimiter, so we branch out of this

printing routine.
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PRINT

2007 STA $0400,Y Put it on the screen.

200A INY

200B JMP $2002 Go back and get the next letter in the message.

200F Continue with the program.

Had we wanted to print HI, the only change necessary

would have been to put $1006 into the LDA at address $2003.

To change the location on the screen that the message starts

printing, we could just put some other address into $2008.

The message table, then, is just a mass of words, separated by

zeros, in RAM memory.

The process of printing messages is even simpler using

the LADS label-based assembler and its .BYTE trick for storing

numbers or words:

10 SCREEN = $0400

100 LDY #0:MORE LDA MESSAGE,Y:BEQ FINISH

110 STA SCREEN,Y:INY:JMP MORE

with, at the end of your source code, the following line in

cluded somewhere in your table of variables, your data:

400 MESSAGE .BYTE "HELLO":.BYTE 0

410 MESSAGE1 .BYTE "HI":.BYTE 0

See the Tables section of LADS (Appendix D) for more

examples of message storage.

The fastest way to print to the screen, especially if your

program will be doing a lot of printing, is to create a sub

routine which will print any of your messages. It can use some

bytes in zero page (addresses 0-255) to hold the location of

the message within your table of data.

To put an address into zero page, you will need to put it

into two bytes. Addresses are too big to fit into one byte. With

LADS, you can use the #< and #> pseudo-ops to extract the

LSB and MSB of a label and thus store the address of your

message into a zero page pointer:

10 MSGADDRESS = 56

20 SCREEN = $0400

100 LDA #<MESSAGE:STA MSGADDRESS; set up pointer

110 LDA #>MESSAGE:STA MSGADDRESS+1

120 JSR PRINTMSG; go to universal print subroutine

500 PRINTMSG LDY #0:LOOP LDA (MSGADDRESS),Y:BEQ

END:STA SCREEN,Y

510 STA SCREEN,Y:INY:JMP LOOP

520ENDRTS
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This same trick can be done with the simple assembler in the i )

monitor, but it is more cumbersome. I—'
First, you split the hex number in two. The left two digits,

$10, are the MSB (most significant byte) and the right digits, t \

$00, make up the LSB (least significant byte). If you are going I—)
to put this target address into zero page at 56 (decimal):

2000 LDA #$00 LSB \ I

2002 STA $56 '—'
2004 LDA #$10 MSB

2006 STA $57

2008 JSR $5000 Printout subroutine

5000 LDY #$0

5002 LDA ($56)Y

5004 BEQ $5013 If zero, return from subroutine...

5006 STA $0400,Y to screen.

5009 INY

500A JMP $5002

500D RTS

One drawback to this PRINT subroutine we've con

structed is that it will always print any messages to the same

place on the screen. That $0400 is frozen into your subroutine.

Solution? Use another zero page pair of bytes to hold the

screen address. Then, your calling routine sets up the message

address as above, but also goes on to specify a screen address

as well.

The 128's screen starts at $0400 (1024 decimal), so you

will want to put 0 and 4 into the LSB and MSB respectively

for your screen pointer.

2000 LDA #$00 LSB

2002

2004

2006

2008

200A

200C

200E

2010

5000

5002

5004

178

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDY

LDA

BEQ

$56

#$10

$57

#$0

$58

#$4

$59

$5000

#$0

($56)Y

$500D

Set up message address

MSB

LSB

We'll just use the next two bytes in zero page

above our message address for the screen

address.

MSB

If zero, return from subroutine...

[ I

Lj

U

ML__J

Li

u



n REM

<—) 5006 STA ($58),Y to screen.

r i 5009 INY
500A JMP $5002

500D RTS

' ' The easiest way to print messages to particular places on
the screen, however, is to use the 128's built-in BASIC PRINT

n routine to send the characters, one by one, each to the next

cursor position onscreen. The built-in routine updates and

keeps track of the current cursor position for you. So, you can

get around having to keep a screen pointer in zero page this

way. In the example immediately above, just replace line 5006

with JSR $FFD2 (the 128's PRINT routine) and remove lines

2008-200E.

READ
There is no reason for a reading of data in ML. Variables are

not placed into "DATA statements." They are entered into a

table when you are programming. The purpose of READ, in

BASIC, is to assign variable names to raw data, or to take a

group of data and move it somewhere, or to manipulate it into

an array of variables. These things are handled by you, not by

the computer, in ML programming.

If you need to access a piece of information, you set up

the addresses of the datum and the target address to which

you are moving it. (See the PRINT routines above.) As always,

in ML you are expected to keep track of the locations of your

variables. If you are using the simple assembler in the mon

itor, you must keep a map of data locations, vectors, tables,

and subroutine locations. This pad of paper is always next to

you as you program in ML. It would seem that you would

P") need many notes, but in practice an average program of, say,
1000 bytes could be mapped out and commented on, using

only one sheet.

f"I Alternatively, with more sophisticated assemblers like
LADS, the labels themselves within the program will keep

track of things for you, and embedded comments serve to re-

j""! mind you of the use and function of all data.

n REM
' ' You do this on a pad of paper, too, when working with a sim

ple assembler. If you want to comment or make notes about
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your program (and it can be a necessary, valuable explanation , ,

of what's going on), you can disassemble some ML code like a I j
BASIC listing. If you have a printer, you can make notes on

the printed disassembly. If you don't use a printer, make notes , j

on your pad to explain the purpose of each subroutine, the I )
parameters it expects to get, and the results or changes it

effects.

The more sophisticated assemblers like LADS will permit ' I
comments within the source code. As you program, you can

include REMarks by typing a semicolon, which is a signal to

the assembler to ignore the REMarks when it is assembling

your program. In these assemblers, you are working much

closer to the way you work in BASIC. Your REMarks remain

part of the source program, and can be listed out and studied.

RETURN
RTS works the same way that RETURN does in BASIC: It

takes you back to just after the JSR (GOSUB) that sent control

of the program away from the main program and into a sub

routine. JSR pushes, onto the stack, the address which im

mediately follows the JSR itself. That address, then, sits on the

stack, waiting until the next RTS is encountered. When an

RTS occurs, the address is pulled from the stack and placed

into the program counter. This has the effect of transferring

program control back to the instruction just after the JSR.

RUN
There are several ways to start an ML program. If you are tak

ing off into ML from BASIC, you just SYS to it by giving its

address (in decimal) as the argument of the SYS. This acts just , >

like JSR and will return control to BASIC, just as RETURN LJ
would, when there is an unmatched RTS in the ML program.

By unmatched, we mean the first RTS which is not part of a { t

JSR/RTS pair. SYS can take you into ML either in immediate I—I
mode (directly from the keyboard) or from within a BASIC

program as one of the BASIC commands. • \

If you need to "pass" information from BASIC to ML, it is I—I
easiest to use integer numbers and just POKE them into some

predetermined ML variable zone that you've set aside and , j

noted on your notepad. Then just SYS to your ML routine, 1—)
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j—■) which will look into the set-aside, POKEd area when it needs

1 ; the values from BASIC.
If you are not going between BASIC and ML, you can

p*] start (RUN) your ML program from within the built-in mon-

1 ' itor. To enter the monitor, press F8. To run an ML program
from within the monitor, type G 2000 (that's address 8192 in

pi decimal; this presumes that you've either loaded in your ML

' -' program at that address or have just assembled one there).
The 128 expects to encounter a BRK instruction to end the

run and return control to the monitor.

SAVE
When you save a BASIC program, the computer automatically

handles it. The starting address and the ending address of

your program are calculated for you. In ML, you must know

the start and end address. From the monitor, you type S, then

the name of your program, then 8 for disk or 1 for tape, the

starting address, and the ending address. All these items are

separated by commas:

S "FILENAME",8,2000,2010

(Note that these addresses are in hex. The addresses are 8192

and 8208, in decimal, but you must use hex from the monitor

unless you specify otherwise. See Chapter 3 for more infor

mation about the monitor.) For more information about BSAVE

and BLOAD, the ML save and load routines in BASIC, please

see your User's Guide.

Saving object code is automatic with LADS; if you use the

.D NAME pseudo-op, LADS will automatically save your ML

program after it has finished assembling it. To see how to save

r~) and load from within your ML programs—to write ML which

1 l itself saves and loads files—please refer to the Openl sub
program of LADS in Appendix D.

n
STOP
BRK (or an RTS with no preceding JSR) throws you back into

/ I the monitor mode after running an ML program. BRK is most
often used for debugging programs because you can set

"breakpoints" in the same way that you would use STOP to

/ 1 examine variables when debugging a BASIC program.
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SYS i j
This is BASIC'S way of using a piece of ML code, an ML rou- i—
tine, as a subroutine. The only difference between SYS and

GOSUB is that the computer is alerted to the fact that it needs 1 I

to switch mental gears: The next series of instructions will be {—'
ML. In other words, the computer shouldn't try to interpret

what it finds at the SYS address as more BASIC instructions. j )

Later, when it comes upon an RTS instruction in the ML pro- '—'
gram which was not matched by a previous JSR instruction, it

will then revert to the BASIC program and pick up where it

left off, following the SYS instruction.

There are times when you want to write in ML and use it

as a subroutine for a BASIC program. This can greatly speed

up the execution of the BASIC program. To put an ML pro

gram in RAM where it will be safe from BASIC'S dynamic

variable storage (where it won't be overwritten by BASIC),

you lower the "top-of-memory" pointer ($39,3A) to create

some space in high RAM of which the computer is "un

aware." This pointer contains the address (in the usual

LSB,MSB format discussed earlier) beyond which BASIC is

forbidden to intrude. If you're going to use only one page of

memory (256 bytes), just DEC #3A which has the effect of

making it point 256 bytes lower than it normally would. This

pointer affects bank 1.

After resetting this pointer, you are free to load in your

ML program into the now-safe RAM between where the

pointer points and the true highest RAM byte in your

computer.

Short ML routines can always be stored in the page be

tween $B00 and $BFF without any special preliminaries.

String Handling ^
ASC
In BASIC, this will give you the number of the ASCII code 1 |

which stands for the character you are testing. ?ASC("A") will

result in a 65 being displayed. There is never any need for this

in ML. If you are manipulating the character A in ML, you are j )

using ASCII already. In other words, the letter A is 65 in ML

programming. The Commodore ASCII code isn't standard ( .

ASCII; it stores character symbols in some nonstandard ways, [ \

so you will need to write a special program to be able to
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p"j translate to standard ASCII if you are using a modem or some

other peripheral which uses true ASCII. Appendix G lists both

Commodore ASCII and true ASCII.

CHR$
r—* This is most useful in BASIC to let you use characters which

) \ cannot be represented within normal strings, will not show up

on your screen, or cannot be typed from the keyboard.

For example, if you have a printer attached to your com

puter, you could send CHR$(13) to it, and it would perform a

carriage return. The correct numbers which accomplish various

things sometimes differ, though decimal 13—an ASCII code

standard—is nearly universally recognized as carriage return,

and the 128 uses this convention, too.

Or, you could send the combination CHR$(27) CHR$(8),

and the printer would backspace.

There is no real use for CHR$ within ML. If you want to

specify a carriage return, just LDA #13. In ML, you are not

limited to the character values which can appear onscreen or

within strings. Any value can be dealt with directly.

lefts
As usual in ML, you are in charge of manipulating data. Here's

one way to extract a certain "substring" from the left side of a

string as in the BASIC statement LEFT$(X$,5):

2000 LDY #$5

2002 LDX #$0 Use X as the offset for buffer storage.

2004 LDA $1000,Y The location of X$.

2007 STA $4000,X The "buffer," or temporary storage area, for

r"") the substring.

'-•• * 200A INX
200B DEY

r— 200C BNE $2004

f i

LEN
f""j In some cases, you will already know the length of a string in

ML. One of the ways to store and manipulate strings is to

know beforehand the length and address of a string. Then you

j] could use the subroutine given for LEFT$, above. More com
monly, though, you will store your strings with delimiters (ze-
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ros) at the end of each string. To find out the length of a | j

certain string: *—'

2000 LDY #$0

2002 LDA $1000,Y The address of the string you are testing. j I

2003 BEQ $2009 Remember, if you LDA a zero, the zero flag is —l
set. So you don't really need to use a CMP #0

here to test whether you've loaded the zero i j

delimiter. I—I
2005 INY

2006 BNE $2002 We are not using a JMP here because we as

sume that all your strings are less than 256

characters long.

2008 BRK If we still haven't found a zero after 256 INYs,

we avoid an endless loop by just BRKing out

of the subroutine.

2009 DEY The LENgth of the string is now in the Y

register.

We had to DEY at the end because the final INY picked

up the zero delimiter. So, the true count of the LENgth of the

string is one less than Y shows, and we must DEY one time to

make this adjustment.

MID$
To extract a substring which starts at the fourth character from

within the string and is five characters long—MID$(X$,4,5):

2000 LDY #$5 The size of the substring we're after.

2002 LDX #$0 X is the offset for storing the substring.

2004 LDA $1003,Y To start at the fourth character from within the

X$ located at $1000, simply add three to that

address. Instead of starting our LDA,Y at

$1000, skip to $1003. This is because the first , >

character is not in position 1. Rather, it is at LJ
the zeroth position, at $1000.

2007 STA $4000,X The temporary buffer to hold the substring.

200A INX j_j
200B DEY

200C BNE $2004

I I

RIGHTS ^
This, too, is complicated because normally we do not know t i

the LENgth of a given string. To find RIGHT$(X$,5) if X$ L_i
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starts at $1000, we should find the LEN first and then move

the substring to our holding zone (buffer) at $4000:

2000 LDY #$0

2002

2004

The delimiting zero is found.

LDX #$0

LDA $1000,Y

2007 BEQ $200D

2009 INY

200A JMP $2004

200D TYA

200E

200F

SEC

SBC #$5

2011 TAY

2012 LDA $1000,Y

2015 BEQ $201E

2017 STA $4000,X

201A INX

201B DEY

201C BNE $2012

201E RTS

Put LEN into A so that we can subtract the

substring size from it.

Always set carry before any subtraction.

Subtract the size of the substring you want to

extract.

Put the offset back into Y, now adjusted to

point to five characters from the end of X$.

We found the delimiter, so end.

H

H

TAB
This formatting instruction moves you to a specified column

on a given line. TAB 10 moves you ten spaces from the left

side of the screen.

In ML, you have more direct control over what happens:

You would just add or subtract the amount you want to TAB

over to. If you were printing to the screen and wanted ten

spaces between A and B so it looked like this:

A B

you could write:

2000 LDA #$41 A

2002 STA $0400 Screen RAM address

2005 LDA #$42 B

2007 STA $040A You've added ten to the target address.

Alternatively, you could add ten to the Y offset (this is

LADS format):

10 SCREEN - $0400

100 LDY #0:LDA #"A:STA SCREEN,Y:LDY #10:LDA #"B:STA

SCREEN,Y
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An even simpler LADS method uses the + pseudo-op to ) j

add whatever amount you wish to a label: <

10 SCREEN = $0400

100 LDA #"A:STA SCREEN:STA SCREEN+10 [_j

As an example, we are writing to the screen here, but in

practice, you would print to the screen using $FFD2 as de

scribed below. The examples above, using Y as an offset, are ' f
more applicable to storing, say, items in a database or printing

hardcopy.

Nonetheless, if you are printing out many columns of

numbers and need a subroutine to space your printout cor

rectly, you might want to use a subroutine which will add ten

to the Y offset each time you call the subroutine:

5000 TYA

5001 CLC

5002 ADC #10

5004 TAY

5005 RTS

This subroutine directly adds ten to the Y register when

ever you JSR $5000. However, it's more typical to rely on

$FFD2 for screen printing since it will keep track of the cursor

position for you. Just LDA with whatever character you want

printed and then JSR $FFD2, and it will be printed at the next

available space.

You can see that moving over ten spaces could be accom

plished by LDA #32:JSR $FFD2 performed ten times. The 32

is the blank character. However, here, too, there is a more

practical method.

Anything you can print from BASIC you can print from ML,

So, all the cursor control characters can be printed, CLR . .

screen, backspace, anything. Most control characters can be < !
entered into LADS directly by typing #"c where c is the con

trol code you desire: , ,

5000 LDA #"c <—i
5001 JSR $FFD2

Alternatively, you can put the actual Commodore ASCII ) I

value into the accumulator prior to JSR $FFD2. One way to —'

find out the ASCII value to, for example, clear the screen, you

could go to BASIC and type CHR$(" ") to get it. There is a • j

complete list of Commodore 128 ASCII in Appendix G. Here —'

is a list of the control characters:
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H
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i

"I

1
i
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Dec

2

5

7

9

10

13

14

15

17

18

19

20

24

27

28

29

30

31

32

129

130

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Notes

Hex

02

05

07

09

0A

0D

0E

OF

11

12

13

14

18

IB

1C

ID

IE

IF

20

81

82

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

1. 80-column

2. 128 mode

3. 40-column

TAB

Uppercase/Graphics Set Lowercase/Uppercase Set

display only

only

display only

underline on1

white

bell tone2

tab2

linefeed2

RETURN

switch to lowercase

flash on1

cursor down

reverse on

home

delete

TAB set/clear2

ESCape

red

cursor right

green

blue

space

orange3

dark purple1

underline off1

switch to uppercase

flash off1

black

cursor up

reverse off

clear screen

insert

brown3

dark yellow1

light red

dark gray3

dark cyan1

medium gray

light green

light blue

light gray

purple

cursor left

yellow

cyan

-i on
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The 128 Environment

Let's take a tour of some of the capabilities of this potent ma-

chine. We'll discover switches and modes that you can tap

which will turbocharge your ML programs.

Versatile Escapes

First off, your ML programs can control the screen by invoking

the ESCape key sequences.

Do you need to delete the current line, the line whereon

the cursor sits? From BASIC, you would hit the ESC key, let it

go, then type D. To do this from within an ML program:

LDA #"D:JSR $C01E

$C01E is a subroutine which activates the escape sequences.

You must be in bank 15 for this to work. If your ML program

is going to utilize built-in routines like this, you must either

switch in bank 15 at the start of your program and leave it ac

tive (as does LADS) or switch it in just before you access a

subroutine like the one at $C01E.

You switch in bank 15 by:

LDA #0:STA $FF00

This is the first thing LADS does prior to assembling your

source code because LADS uses a number of built-in ROM

routines.

Here is a list of the other escape sequences; there's one

for every letter of the alphabet. To use them, just replace the

D in the example above with the appropriate letter.

A Turn on autoinsert mode

B Current cursor position becomes bottom of screen window

C Turn off autoinsert mode

D Delete the line where the cursor is

E Make cursor not flash

F Make cursor flash

G Enable beep sound

H Prevent beep from sounding

I Insert line

J Move cursor to the start of the current line

K Move cursor to the end of the current line

L Permit scrolling
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M Prevent scrolling ) j

N Make screen white-on-black (80-column screen only) *■—'

O Turn off insert, reverse, or quote modes

P Erase from cursor to the start of the current line ^ .

Q Erase from cursor to the end of the current line j 1
R Turn on black-on-white mode (80-column screen only)

S Change to square cursor (80-column screen)

T Current cursor position becomes top of screen window ] j
U Change to underline cursor (80-column screen)

V Cause scroll upward

W Cause scroll downward

X Switch between a 40- or 80-column TV monitor

Y Make TAB every eight columns

Z Remove all TABs

@ Clear the screen from the cursor to the bottom

Many Memories

The 128 has a total of 16 memory configurations, called banks.

Each bank is 64K large, but that doesn't mean that the 128 has

16 separate 64K blocks of memory. Rather, the banks are just

different 64K selections from the smorgasbord of RAM, ROM,

and input/output chips in the computer. Two banks, 0 and 1,

are mostly RAM, and you can do with them what you will—

the RAM in each bank comes from a separate 64K block of

RAM. Other banks are mixtures of RAM and ROM. Special

locations like low memory and $FFD0 and other registers are

common to all banks so that communication is possible be

tween the banks (something has to be unvarying).

How are these banks best visualized? Clearly they aren't

all there all the time. You are always only "in" one bank at a

time. You might think of it as if you are in charge of lighting a

play and you've got a box with 16 buttons, one for each bank, \ (

labeled 0 through 15. '—>
Onstage, there are 16 different performers, each with dif

ferent talents and different shapes (although as you can see in | j

the list of banks above, there are some which look like the J—>

others in places). In any case, when the play starts, you can

turn a spotlight on any performer you wish. But, the rule is \

that only one performer can be lit at a time. So, if you turn on l—'

bank 0, you are, in effect, turning the light off one other bank,

the one previously lit. i \

In other words, you're confined to serial, not parallel, I—*

lighting effects. However, you can be very fast with a series of
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switches. You can even switch between banks so quickly that

the illusion is created that more than one is active at once. By

using JSR, JMP, CMP, LDA, and STA LONG commands (see

Chapter 11), you can access distant banks without even explic-

itly switching out of your home bank. The lighting will flicker

imperceptibly for the briefest moment when you use one of

the LONG Kernal routines.

Memory in the Monitor

When in the monitor (via F8 directly from BASIC mode or a

BRK instruction that stops an ML program in progress), you

can save, load, modify memory, and many other things (see

Chapter 3). Normally, you use four-character hex numbers to

indicate where you want things to happen:

M0B00

Or you can leave off leading zeros:

MB00

followed by RETURN will show you what's in the memory

locations following address $B00 in bank 0. Bank 0 is the de

fault when you just give the monitor a number between 0 and

FFFF (0-65535 decimal). To access other banks, you need to

add a digit between 1 and F (1-15 decimal) which will put

you in touch with any of the banks you thus select. To see

memory at BOO bank 1, type M 10B00. To see bank 14, type

M E0B00, and so on, for any of the banks. In practice, bank 0,

bank 1, and bank 15 are the most commonly used. Bank 0 is

the monitor's default, bank 1 has 64K of free RAM memory,

and bank 15 puts all the I/O, BASIC, and Kernal routines at

your disposal. Here's what each bank gives you when ref-

erenced via the monitor:

Bank Memory Configuration

0 RAMO

1 RAM 1

2 RAM 2

3 RAM 3

4 Internal ROM, RAM 0, Input/Output Chips

5 Internal ROM, RAM 1, Input/Output Chips

6 Internal ROM, RAM 2, Input/Output Chips

7 Internal ROM, RAM 3, Input/Output Chips

8 External ROM, RAM 0, Input/Output Chips

9 External ROM, RAM 1, Input/Output Chips

A External ROM, RAM 2, Input/Output Chips
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B External ROM, RAM 3, Input/Output Chips \ j

C Kernal, 1/2 Internal, RAM 0, Input/Output *—'
D Kernal, 1/2 External, RAM 0, Input/Output

E Kernal, BASIC, RAM 0, Character ROM i >

F Kernal, BASIC, RAM 0, Input/Output LJ

Its name implies that the Commodore 128 has 128K of

RAM, and you may be wondering how that relates to the \ ?

information above. Interestingly, the 128 is actually designed !—}
like a 256K computer with only half of its memory installed.

That memory is in two separate 64K blocks, RAM 0 and RAM

1. The other two blocks, RAM 2 and RAM 3, are empty. In

the 128, the phantom banks behave as mirror images of RAM

0 and RAM 1, respectively. Thus, banks 0 and 2 are identical,

as are banks 9 and B. Thus, until the Commodore 256 comes

along, the following banks should not be used: 2, 3, 6, 7, A and

B. Internal ROM refers to an empty socket inside the 128 which

may, in the future, hold ROM chips with built-in software,

similar to the "productivity package" in the earlier Commodore

Plus/4 model. External ROM refers to ROM in cartridges

plugged into the memory expansion port. These can be ignored

for now, so the only banks you really need to know are 0, 1,

and 15 (and occasionally 14 if you need access to the character

ROM—when designing custom character sets, for example).

If you use some BASIC ROM routines, you'll need a bank

that invokes it. If you want to use the Kernal (the jump table

into operating system, BASIC, and I/O routines), you'll have

to have that as well. In sum, you should probably call in bank

15 at the start of your ML program and have it all. You don't

put a 15 into the switching register to get bank 15—you put a

0 into it. LDA #0:STA $FF00 will create bank 15, and you can

then freely access any routines you might need; you'll have \ f

the full complement of Commodore routines at your disposal. '—>
If you need more RAM, switch in and out of bank 1. (Don't

worry why 0 calls in bank 15; we'll explain forthwith.) But \ |

remember that the RAM portion of bank 15 comes from the *—>

same place as bank 0, the RAM 0 block. That is, address

$2000 in bank 0 and $2000 in bank 15 both refer to the same

memory location. If you put a routine at $2000 in bank 0, then

try to put another routine at that address in bank 15, you'll

overwrite the original routine.

Or, best, use the long-distance JSR, CMP, LDA, and so

on, special features which can quickly reach outside the cur-
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p*^ rent bank. There is a way to go into other banks without
switching. We'll get to that soon. For most ML, just remember

that you'll want to set bank 15 as the environment. And, a

p"l good place to store things is in the 64K RAM available in bank

1. The other banks are only very rarely useful for most ML

programming.

' { Manipulating Memory
To understand how the 128 organizes its memory, you must

visualize that the 8502 chip can address only 64K of memory

at any given time. Any single instruction can only, for ex

ample, LDA 65535 or, in hex, LDA $FFFR You cannot LDA

higher. Zero to 65535 is the range of possible addressing for

an eight-bit chip.

How then is it possible to call this the 128 and say that

you can use 128K of RAM for your programming?

The answer is that the computer has a facility for switch

ing between those zones of memory called banks. When you're

programming in BASIC, your program can reside in one 64K

area of memory while its variables reside in another 64K area.

In ML, you can cause banks to be switched in and out of range

of the chip. This switching is accomplished by storing different

numbers into location $FF00.

There are some considerations. It would be ungainly to

keep switching whole banks when you only wanted to use,

say, bank 1 as storage space. The easier way to access this

bank is to use special LDA and STA instructions which can

reach into it without your switching banks in your program.

We'll get to these special instructions in a minute.

When you turn on the computer, it defaults to bank 0

f-j RAM. However, if you are programming in ML and intend to

make use of the Kernal, I/O, and BASIC routines (and most

ML programs do), you'll want to switch to bank 15 and stay

r~! there. Bank 15 is the normal environment for ML pro

grammers because it gives you some RAM, but it also provides

access to all the important ROM routines, too. LADS switches

j—j in bank 15 right at the start (see the Eval subprogram in

Appendix D). You switch in bank 15 by LDA #0:STA $FF00,

and that's it. Thereafter, unless you put something else into

p] $FF00, you'll be in bank 15, and all BASIC'S routines and the
Kernal and I/O routines will be at your disposal.
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Obviously, you couldn't switch banks if all 64K always \ [

switched when you changed banks. $FF00, for example, has to U-J
be available to any bank. It can't change. Neither, for other

reasons, can zero page change. You can count on these loca- ) I

tions to be common to any bank. But we're programming in ^
ML, and we're not concerned here with banks which involve

CPM, cartridge memory, or such. So, we need only worry j /

about bank 15, our usual configuration, and banks 0 and 1 ^
wherein we'll find lots of RAM with which to make good use.

How can you store something in bank 1 RAM, then call

in bank 15 with all its ROM? Won't the heavy information in

bank 15 crush or cover over what you put into bank 1? No.

bank 1 really is a different memory area; you just can't access

it at the same time that you access bank 15 (except for the

memory zones they have in common). So, STA LONG to bank

1 while you're in bank 15. The things you STA will still be

there when you go to LDA LONG or when you switch banks.

Coming In from the Keyboard

If you need to test keys being pressed, you'll have to ask loca

tion $D4 (212 decimal). Unhappily, this location does not

yield the ASCII code. Carriage return is not 13. The letter A is

not 65. It's another code altogether, the "keyboard matrix

code." You don't need to deal with this. If you want your ML

program to detect a particular key being pressed, find out its

"matrix code" by running this simple BASIC program:

10 PRINT PEEK(212);:GOTO 10

and while it runs, press the key you're interested in. The num

bers on the screen will be the code for that key. Then you can:

LDA 212:CMP #whatever code:BEQ FOUNDIT . f

to handle a case where some particular key was pressed. Notice —)
that while no key is pressed, the number 88 is always in ad

dress 212. That's useful. You can see if any key is pressed by: \ j

LDA 212:CMP #88:BEQ NOKEY ^
and continue on with your program since the user hasn't , ,

touched the keyboard. I \
By the way, the letter A is 10, and the carriage return key

is 1 in the 128's keyboard matrix code. Don't worry about t ,

what the matrix means or how it is calculated. Just run the lit-

tie BASIC program above if you want to pause your space
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\ [ invaders game when the player holds down the P key. It'll tell

you what P sticks into location 212 and can CMP for it and

JSR to a subroutine that pauses until any other key is pressed

P"[ (when 212 contains something besides the number 88.)

The Speed Switch

p^ One of the most exciting and valuable features of the 128 is
the fact that you can make the 128 run twice as fast as nor

mal—go from 1 to 2 megahertz. The speed is controlled by

the register at $D030. It normally contains $FC. If you LDA

#$FF:STA $D030, you switch on the turbocharger and things

only take half as long to compute. A 40-column display will

blank out during this speedup. You shouldn't speed things up

during access to disk or printer or tape, but it's well worth

using in other circumstances.

LADS uses this speed switch. For example, when using a

1571 disk, LADS can assemble a large program, 72K of source

code, in two minutes, 25 seconds. Pass one takes 55 seconds;

pass two takes 90 seconds. These measurements were taken

with LADS assembling itself.
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Built-in Routines

Commodore machines, since the start, have made a sensible

r^ provision for upgrading software after the arrival of a new

l ) model. Because many programmers will want to access the

canned ROM routines like PRINT for their own purposes, it

would be much easier for software manufacturers and pro

grammers in general if the addresses of the most popular

ROM routines were to remain stable. Commodore has made a

provision so that this will happen.

In the original Commodore PET, JSR $FFD2 printed the

character in the accumulator. In the 128, Commodore's latest

machine, it is the same. There is a whole list of such ad

dresses, high up in ROM memory, which has remained trust

worthy throughout the years and has simplified the job of

transporting software when new models and new machines

are introduced. This list is called the Kernal.

The Kernal list is a series of JMP $NNNN instructions.

The NNNN will point to the actual address, in that particular

machine, where, say, PRINT is really accomplished. You don't

need to bother with the NNNN when using the Kernal, just

JSR to the Kernal routine and your program will be directed to

the appropriate ROM address. Here are the useful Kernal

routines for the 128.

You should be in bank 15 to access the 128's Kernal

routines. LDA #0:STA $FF00 will accomplish this; put it at the

start of your ML program if you're going to be using BASIC or

^ Kernal ROM routines.

Set 2,8,1

$FFBA establishes preconditions for communication with a

peripheral by setting up the file number, device number, and

secondary address. It works together with the next two

routines described immediately below. It establishes the 2,8,1

part of BASIC'S OPEN 2,8,1, "FILENAME" and, thus, you

have accomplished one third of the job of opening a file (or

loading or saving) when you've JSRed to $FFBA. You put the

file number (2, in our example above) into the accumulator,

the device number (8, for disk, in the example) into X, and the

secondary address (the example's 1) into Y. Then JSR $FFBA.
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Here's how to set things up for an OPEN 2,8,1: | j

LDA #2:LDX #8:LDY #1:JSR $FFBA

To see this (and the two companion routines below) in ac- . ,

tion, prior to a LOAD, see the Openl subprogram in LADS LJ
(Appendix D). If you are calling the printer, use 4,4,255.

Set Filename LJ
$FFBD also sets things up prior to an OPEN, SAVE, or LOAD.

This tells the OPEN, SAVE, or LOAD where to find the file

name for the command. You put the length of the name into

the accumulator, the LSB of the name into X, the MSB into Y.

Then JSR $FFBD.

Here's how you would establish the name:

LDA #4:LDX #<FILENAME:LDY #>FILENAME:JSR $FFBD

FILENAME .BYTE "NAME"

Note that if you are communicating with the printer, there

will be no filename. However, you should still JSR to $FFBD,

but give a zero as the length.

Set Bank Number

$FF68 is the third precondition to opening, loading, or saving.

It establishes which bank you want to have involved with the

I/O. Do you want to load into bank 1? Or save from bank 0?

You must tell the computer prior to I/O. Also, this routine

tells the computer which bank holds the filename set up by the

previous routine ($FFBD).

So, put the memory bank (1-15) into the accumulator,

and the bank where the filename is into X. Then JSR $FF68.

See the SAVE routine in Openl in LADS to follow how the

filename and bank are handled prior to a save from bank 1 \ /

(even though LADS resides in bank 15). ^

OPEN | )

$FFC0 opens a file on disk or tape. After you've performed <w—'
the three precondition JSRs above, you can just JSR $FFC0

and start working with it (pulling in or sending out bytes). To I \

see the four Kernal calls thus far described working in concert, ^^
please look at the LOAD or SAVE routine in LADS's Openl

subprogram. The filename to which those examples refer is I |

held in the Tables subprogram. *-~*
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pi Just as in BASIC, you can also pass commands to the disk
1-*" via OPEN 15,8,15 "VO:", where the item in quotes (set up just

as if it were a filename) instructs the disk to, in this case, vali-

f"! date the disk.

CLOSE

[—■} $FFC3 closes a file. When you want to perform a CLOSE, put

the file number into the accumulator and JSR $FFC3. LADS

closes down files during its shutdown routine in the Eval sub

program (lines 4390-4540) just prior to returning control of

the computer to BASIC.

Note that you don't need to CLOSE after LOAD or SAVE.

INPUT*

$FFC6 establishes a channel to a peripheral for input. You put

the file number into the X register and JSR $FFC6. It's the

equivalent of the #2 in INPUT#2,A$. This is used any time

you want to get a byte from an already opened disk file. It

would be followed by the GET routine (below). Without

establishing this channel, all input comes, by default, from the

keyboard. When you finish and wish to restore the default

conditions, you must JSR to CLEARCHANNELS (below).

OUTPUT#

$FFC9 establishes a channel to a peripheral for output. You

put the file number into the X register and JSR $FFC9. It's

the equivalent of the #3 in PRINT#3,A$. It's used any time

you want to send a byte to an already opened disk file. It

would be followed by $FFD2, the PRINT routine. Without

establishing this channel, all output goes, by default, to the

'*—^ screen. Thus, for each character that you are printing to the

- printer, you must LDA #4:JSR $FFC9:LDA CHARACTERJSR

$FFD2:JSR CLEARCHANNELS. To see this in action, see the

/■"? printer routines in the second half of the LADS Printops

subprogram.

r-i Restore Default I/O (Screen and Keyboard)

'--J $FFCC clears the channels which were established by the
preceding two routines. It restores the keyboard as the default

rn for input and the screen as the default for output.
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INPUT i i

$FFCF is an important routine. It's the equivalent of PRINT, ^
but in the other direction—it INPUTs characters from the key

board, or, if a file and channel have been opened for input j {

from the disk, it pulls the next character off the file, leaving it ^
in the accumulator for you to do with as you wish (store to a

buffer, encode, look for a particular key, and so on). A disk j j

file will be read sequentially, one byte at a time, by repeatedly

JSR $FFCF because the disk will remember which was the last

byte pulled off the file. Also, you can read sequential, pro

gram, or other kinds of files in this fashion. If you haven't

opened a channel to a disk file, the routine will read from the

keyboard until it detects a carriage return.

PRINT

$FFD2 is perhaps the most famous Commodore Kernal routine

and you'll use it extensively. It parallels the INPUT routine

above, except it PRINTs characters—it goes in the other direc

tion; it's the O in I/O.

What you put into the accumulator will be printed to the

screen, or disk or printer (if you've opened files and channels

to those devices as described above). Obviously, opening a

channel to print to the keyboard is as useless as opening a

channel to input from the printer. Some peripherals are, by

nature, insensitive to input or output.

If you intend to print directly to the screen, you can use

$C00C which operates just like $FFD2, but is slightly faster.

FFD2 eventually gets to COOC, but it does a number of things

first which are unrelated to screen printing.

A third method of printing which some people find useful

is similar to immediate addressing. You JSR $FA17, and the i /

128 will look for the message you want printed immediately ^
following this JSR in your code. You must end the message with

a zero to show where it finishes. The computer will print the ) \

message and then pick up the next instruction just following W

the embedded message. Here's an example which combines tra

ditional PRINT with this new method we're calling PRINTIM, j i

for print immediate: s^

i i.
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f~] Program 11-1. Embedded PRINT

10 *= $B00

r—[ 20 .S

L .* 30 .0
40 ; EMBEDDED PRINT

50 ;

) \ 60 PRINTIM = $FA17; PRINT IMMEDIATE

70 PRINT = $FFD2

80 ;

90 LDA #0:STA $FF00; SET BANK 15

100 LDA #"A:JSR PRINT; NORMAL PRINT

110 JSR PRINTIM; PRINT WHAT IMMEDIATELY FOLLOWS

120 .BYTE "BCDEFG":.BYTE 0; ZERO DELIMITER ENDS MESSAGE

130 LDA #"H:JSR PRINT; NORMAL PRINT

140 RTS

Although this routine might at first glance seem attractive,

it is probably better to cluster all your messages at the end of

your ML program as described under PRINT in Chapter 9.

One reason is that this is an eccentric method of writing ML

and is possible with only a few operating systems. You

couldn't run this on the 64, for instance.

But a more important reason is that you won't be able to

debug your program as easily because embedded messages

will not, of course, disassemble.

LOAD

$FFD5 loads a program file into memory. You set it up the

way you would set up access to a sequential file (described

above) by establishing the file parameters, the filename, and

the bank wherein the name resides and the bank to which you

r—> wish the program loaded. The parameters are set as 0,8,1 for

C~.! normal loading:

LDA #0:LDX #8:LDY #1:JSR FFBA

f"^ sets the parameters for a LOAD from disk. It would be 0,1/1
for tape.

This routine will also VERIFY. If, just prior to JSR $FFD5,

you put a zero into the accumulator, LOAD will take place.

Any other number in the accumulator will cause a VERIFY.

(There was an error if, after JSR $FFD5, the carry flag is set.

So you can BCS to an error-handling routine. All disk or tape

access can be tested in this fashion for errors. The accumulator

will contain an error code as well.)
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Following LOAD, Y holds the MSB of the ending address ) j

and X, the LSB. ^
To see the steps involved in loading a program file into

bank 1, see LOAD in the Openl LADS subprogram. In addi- \ '

tion to setting a zero into the accumulator (to LOAD, not ^

VERIFY) just prior to JSR $FFD5, you can also put the LSB

into X, the MSB into Y of a target address. In this way, you < j

can force a LOAD to an address other than that from which *—-*
the program was originally saved. To trigger this forced load,

you must use a secondary address of 0; that is, the value you

load into the Y register before you call the routine to set the

file parameters ($FFBA) must be 0 instead of the 1 shown in

the example above. Then:

LDA #0; cause LOAD

LDX #0; LSB

LDY #$80; MSB

JSR $FFD5

will cause the program to be loaded at address $8000, regard

less of where it was saved from. Normally, BASIC programs

are saved from $lC00.

SAVE

$FFD8 saves a program to disk or tape. It's quite similar to the

way you load and is illustrated, like LOAD, in the LADS

Openl subprogram. Set the filename (see $FFBD above); set

the bank number (see $FF68 above); set the file parameters

(see $FFBA above). The accumulator is unused in this routine;

Y holds 8 for disk or 1 for tape, and X, holding the secondary

address, is only used for tape SAVEs. Then load the pointer to

the starting address of the program you want saved into the

accumulator. There is a pointer to the normal start of BASIC [_j
programs at $2D, so, unless you are saving something other

than a BASIC program, LDA #$2D. Put the ending address

(there's a pointer at $2F holding this address) into X (LSB) and |i
Y (MSB) and JSR $FFD8. To establish the ending address: LDX
$2F:LDY $30.

I )

Test RUN/STOP Key ^
$FFE1 checks the RUN/STOP key. If it's being pressed, the Z
flag will be set, so you can JSR $FFE1:BEQ STOPKEYDOWN. LJ
This is one way to let the user exit your ML program. See line

690 in the Eval subprogram of LADS.
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n GET
- $FFE4 GETs a character. This is a way to get a keypress in the

Commodore ASCII code from the keyboard. Unlike polling loca-

j-8-* tion $D4, where you get the keyboard matrix value of a

- 3 pressed key, JSR $FFE4 leaves a printable ASCII character
code in the accumulator. It will return a zero if no key is

r-» pressed:

1 GETKEY JSR $FFE4
BEQ GETKEY

CMP #13

BEQ CARRIAGE

CMP #65

BEQ CHARA

CMP #66:BEQ CHARB

CMP #//C:BEQ CHARC

CMP #"D:BEQ CHARD

shows how to accept input from the user and branch to appro

priate subroutines depending on which key the user selected.

You can use this to allow selection from a menu (CMP #"1 if

the 1 key is pressed) or to build your own customized input

routine which, for example, might refuse to recognize any

numbers and, upon detecting one, would BEQ GETKEY to

wait for a correct key. And, to make $FFE4 especially conven

ient, you can directly print whatever ASCII value is returned:

LOOP JSR $FFE4; GET KEYPRESS

BEQ LOOP; 0 MEANS NO KEY WAS PRESSED, SO TRY AGAIN

JSR $FFD2; ECHO THE CHARACTER TO SCREEN

Cursor Control

$FFF0 allows you to find out where the cursor is on the screen

ri or to move it to a different location. If you are using the 128's

1 windowing facility, the positions will reference the start ad
dress of the window.

|—I The carry flag is used to determine whether you intend to

read or move the cursor. SEC if you want to read. CLC if you

want to move.

P") To move the cursor down three lines and over five po-

'- -l sitions, you first read its position by SECJSR $FFF0. Then,
you set it up to move down three lines by INX:INX:INX and

f—| over five columns by INY:INY:INY:INY:INY and CLCJSR

' - $FFF0 to send the cursor to its new place on the screen. The
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carry will be set if there was an error, so you can BCS I »

ERROROUTINE after JSR $FFF0 to check. LJ
This routine has obvious applications for screen format

ting, TAB, and PRINTAT routines. It could also be used to () f

govern some kinds of games where character graphics are on I I

the move around the screen.

The routines described so far (except for Set Bank Number 1 1

and Print Immediate) are Commodore Kernal routines and, there

fore, can be used in 64 mode as well as 128 mode. However, the

following routines are new, created to access some of the features

unique to the 128.

GO 64

$FF4D sends you into 64 mode, with no hope of returning.

JMP to it and you cannot regain control via ML. It's as if you

typed GO 64 from BASIC and answered Y when asked ARE

YOU SURE? The machine transforms itself into a 64 and the

transformation cannot be reversed without resetting the

computer.

Customize Function Keys

$FF65 changes the command available via one of the function

keys. You can customize a function key to print whatever you

want onscreen and, if it's a command, perform a carriage re

turn to activate the command. Function keys operate using a

principle similar to the "dynamic keyboard" technique in use

for years on Commodore computers. Dynamic keyboard refers

to stuffing the keyboard buffer with the required command

and then, when the computer regains control, the buffer is

emptied to the screen just as if the user had typed in whatever

was in the buffer. This can, among other things, cause a l^j
BASIC program to modify itself (if you include a line number

at the start of the message and end with a carriage return). 1

To program a function key, you have the accumulator [^J
point to a pointer in zero page which has the LSB, MSB, and

bank number of the string which you want printed when the

function key is pressed. So, if you set up: | J

FA 00

FB30

FCOF LJ

that would point to a string at $3000 in bank 15. Waiting at
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p-i address 3000 might be LIST with a carriage return. In LADS,

' you would:

LDA #<F8:STA $FA:LDA #>F8:STA $FB:LDA #15:STA $FC

PI to set up the pointer and have, at the location we'll label F8:

F8 .BYTE "LIST":.BYTE 13

p—> Then, you put the length of your string into Y which, in this

example, is 5. Finally, put the function key you want to mod

ify into X (8, in this example), and then JSR $FF65. The com

plete LADS source code to accomplish this is

LDA #0:STA $FF00; SWITCH INTO BANK 15

LDA #<F8:STA $FA:LDA #>F8:STA $FB:LDA #15:STA $FC; SET

UP POINTER TO F8

LDA #$FA:LDY #5:LDX #8:JSR $FF65; CREATE FUNCTION

KEY #8

F8 .BYTE "LIST":.BYTE 13

The normal function keys are numbered 1 through 8. You

can also customize the SHIFT-RUN/STOP key by putting 9

into X, or the HELP key with a 10 in X prior to JSRing (these

two keys cannot be changed via the KEY command in BASIC.

It's possible only in ML).

Bank Number Code

$FF6B lets you know the proper code for accessing a memory

bank. You may have noticed that you LDA #0:STA $FF00 to

select bank fifteen, not bank zero as you might expect. When

setting the $FF00 register, you have to use the code, but when

indicating a bank in most other routines (far JSR, LDA, etc.,

and FF65 above) you give the actual bank number.

If you have a problem accessing a bank, it may be that

J—{ you need to use the bank code rather than the bank's actual

' f number. In that case, try LDX #BANKNUMBER:JSR
$FF6B:BRK, and the accumulator will hold the bank code for

P^ that bank number. To find out what bank code to store in

' l $FF00 to switch to bank 14:

LDX #14:JSR $FF6B:BRK

/ \ and the accumulator will have the answer. Try substituting

that number for the actual bank number in your routine and

_ see if it works. However, other than $FF00 and some few reg-

i ( isters right above it, the actual bank number will work and
you needn't bother with any of this special coding.

I ' 209



Chapter 11

Long-Distance Access

JSR Long

$FF6E will JSR to an ML routine in a bank other than the one

you're currently in. There are several such long-distance

routines which will be described below. They use the actual

bank number and also set up pointers in zero page. Some

preparations are necessary. First we must save the registers

and the status register:

STA 6:STX 7:STY 8:PHP:PLA:STA 5

accomplishes that. Then we announce that we want to JSR to

bank 1 at address $4000:

LDA #1:STA 2:LDA #$40:STA 3.LDA #0:STA 4

and we can now JSR $FF6E, and the ML routine in bank 1 at

address $4000 will RTS back to our current bank just like any

other subroutine. However, we'll need to mirror image the

save-registers routine above to restore stability:

LDA 5:PHA:LDA 6:LDX 7:LDY 8:PLP

This makes a JSR long-distance nondestructive to the current

environment, like $FFD2. Registers and the flags are un

affected by the JSR because we saved and restored them.

JMP Long

$FF71 is a JMP long-distance. It works precisely like the JSR

described above except that, like any JMP, there is no auto

matic return.

LDA Long

$FF74 is a long-distance LDA (NN),Y and, as with JSR long

distance described above, must set up a few things before be- s >

ing activated. You put the pointer to the address in the LJ

accumulator and the bank number in X. Presumably, Y is be

ing used by you as an index as it normally would be in in- , «

direct Y addressing. L^J
If you want to load the byte at address $4000 of bank 1

(you're not in bank 1 or you wouldn't need to load long- ,

distance): LJ

LDA #0:STA $FC:LDA #$40:STA $FD; to set up the pointer

LDA $FC; to point to the pointer i i

LDX #1; point to the bank U>
JSR $FF74; causes LDA ($FC),Y from bank 1
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[""] STA Long

$FF77 is a long-distance STA (NN),Y and operates like LDA

described just above. You put the byte you want stored into

j"""] the accumulator and the bank number into X. However, you
must also store the pointer ($FC in our example below) into

$2B9:

[""] First set up the pointer:

LDA #0:STA $FC:LDA #$40:STA $FD:LDA #$FC:STA $2B9

Then put the byte you want stored into the accumulator:

LDA #45

And put the bank number into X:

LDX#1

And:

JSR $FF77

Remember that, as always, Y is an offset, so if it's not

holding a zero when you JSR $FF77, its value will be added to

$4000 to determine exactly where in bank 1 the 45 in the

accumulator will be stored.

When the .D pseudo-op is invoked in LADS, it stores ob

ject code to bank 1 and uses this long-distance STA.

CMP Long

$FF7A compares—CMP (NN),Y—long-distance. You set up a

pointer in zero page and store the pointer's address in $2C8

(as described above for the long-distance STA). Then you put

the byte to be compared into the accumulator and the bank

number into X. Y holds the offset, if any, as is usual with in

direct Y addressing.

f"j Then JSR $FF7A and the flags will be set according to the
result of the comparison as normal. You can BEQ, BNE, BCC,

BCS as you normally would after a CMP test.

n

n

n









n
Appendix A

8502 Instruction Set

Here are the 56 mnemonics, the 56 instructions you can give

the 8502 (or 6502 or 6510) chip. Each of these instructions is

P**] described below in several ways: what it does, what major
uses it has in ML programming, what addressing modes it can

use, what flags it affects, its opcode (hex/decimal), and the

number of bytes it uses up.

ADC
What it does: Adds byte in memory to the byte in the

accumulator, plus the carry flag if set. Sets the carry flag if re

sult exceeds 255. The result is left in the accumulator.

Major uses: Adds two numbers together. If the carry flag

is set prior to an ADC, the resulting number will be one

greater than the total of the two numbers being added (the

carry is added to the result). Thus, one always clears the carry

(CLC) before beginning any addition operation. Following an

ADC, a set (up) carry flag indicates that the result exceeded

one byte's capacity (was greater than 255), so you can chain-

add bytes by subsequent ADCs without any further CLCs (see

"Multibyte Addition" in Appendix E).

Other flags affected by addition include the V (overflow)

flag. This flag is rarely of any interest to the programmer. It

merely indicates that a result became larger than could be held

within bits 0-6. In other words, the result "overflowed" into

bit 7, the highest bit in a byte. Of greater importance is the

nfact that the Z flag is set if the result of an addition is zero.

Also the N flag is set if bit 7 is set. This N flag is called the

"negative" flag because you can manipulate bytes thinking of

f—i the seventh bit as a sign (+ or —) to accomplish "signed

( ' arithmetic" if you want to. In this mode, each byte can hold a

maximum value of 127 (since the seventh bit is used to reveal

(—i the number's sign). The B branching instruction's relative

L I addressing mode uses this kind of arithmetic.
ADC can be used following an SED which puts the 8502

r-i into "decimal mode." Here's an example. Note that the num-

' 1 ber 75 is decimal after you SED:
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SED

CLC

LDA

ADC

CLD

#$75

#$05 This will result

Always get rid

finished.

in 80.

of decimal mode as soon as you've

u

! j
i >

i i

Attractive as it sounds, the decimal mode isn't of much j ;

real value to the programmer. LADS will let you work in deci- '—'
mal if you want to without requiring that you enter the 8502's

mode. Just leave off the $, and LADS will handle the decimal

numbers for you.

Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

ADC #15

ADC 15

ADC 15,X

ADC 1500

ADC 1500,X

ADC 1500,Y

ADC (15,X)

ADC (15),Y

NZCV

Opcode

$69/105

$65/101

$75/117

$6D/109

$7D/125

$79/121

$61/97

$71/113

Bytes Used

2

2

2

3

3

3

2

2

AND
What it does: Logical ANDs the byte in memory with the

byte in the accumulator. The result is left in the accumulator.

All bits in both bytes are compared, and if both bits are one,

the result is one. If either or both bits are zero, the result is

zero. l j

Major uses: Most of the time, AND is used to turn bits j S

off. Let's say that you are pulling in numbers higher than 128

(10000000 and higher) and you want to "unshift" them and ( j

print them as lowercase letters. You can then put a zero into Lj

the seventh bit of your "mask" and then AND the mask with

the number being unshifted: {

LDA ? Test number !—J
AND#$7F 01111111

(If either bit is zero, the result will be zero. So the seventh j- {

bit of the test number is turned off here, and all the other bits L-J
in the test number are unaffected.)

L /
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Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

AND #15

AND 15

AND 15,X

AND 1500

AND 1500,X

AND 1500,Y

AND (15,X)

AND (15),Y

NZ

Opcode

$29/41

$25/37

$35/53

$2D/45

$3D/61

$39/57

$21/33

$31/49

Bytes Used

2

2

2

3

3

3

2

2

n

n

ASL
What it does: Shifts the bits in a byte to the left by 1.

This byte can be in the accumulator or in memory, depending

on the addressing mode. The shift moves the seventh bit into

the carry flag and shoves a zero into the zeroth bit.

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 10

Major uses: Allows you to multiply a number by 2. Num

bers bigger than 255 can be manipulated using ASL with ROL

(see "Multiplication" in Appendix E).

A secondary use is to move the lower four bits in a byte

(a four-bit unit is often called a nybble) into the higher four

bits. The lower bits are replaced by zeros, since ASL stuffs

zeros into the zeroth bit of a byte. You move the lower to the

higher nybble of a byte by ASL ASL ASL ASL.

Addressing modes:

Name

Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

Format

ASL

ASL 15

ASL 15,X

ASL 1500

ASL 1500,X

Opcode

$0A/10

$06/6

$16/22

$0E/14

$1E/3O

Bytes Used

1

2

2

3

3

Affected flags: N Z C
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BCC U
What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the carry flag is clear. In effect, it branches if the first item j ]
(the accumulator contents) is lower than the second, as in LDA

#149:CMP #150 or LDA #15: SBC #22. The comparison or

subtraction would clear the carry and, the cleared carry then | j
triggering BCC, a branch would take place.

Major uses: For testing the results of CMP or ADC or

other operations which affect the carry flag. IF-THEN or ON-

GOTO type structures in ML can involve the BCC test. It is

similar to BASIC'S < instruction.

Addressing modes:

Name Format Opcode Bytes Used

Relative BCC addr. $90/144 2

Affected flags: None

BCS
What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the carry flag is set. It branches if the first item (the accu

mulator contents) is higher than or equal to the second, as in

LDA #249:CMP #150 or LDA #85:SBC #22. The comparison

or subtraction would set the carry and, the carry then trigger

ing BCS, a branch would take place.

Major uses: For testing the results of LDA or ADC or

other operations which affect the carry flag. IF-THEN or ON-

GOTO type structures in ML can involve the BCC test. It is , .

similar to BASIC'S >= instruction. | |

Addressing modes:

Name Format Opcode Bytes Used < j
Relative BCS addr. $B0/176 2

Affected flags: None . ,

BEQ , ,
What it does: Branches up to 127 bytes forward or 128 '—J

bytes backward from the address of the following instruction
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P"1 if the zero flag (Z) is set. In other words, it branches if an ac

tion on two bytes results in a zero, as in LDA #150: CMP

#150 or LDA #22: SBC #22. These actions would set the zero

p"] flag, so the branch would take place.
Major uses: For testing the results of LDA or ADC or

other operations which affect the carry flag. IF-THEN or ON-

Pp GOTO type structures in ML can involve the BEQ test. It is

similar to BASIC'S = instruction.

Addressing modes:

Name Format Opcode Bytes Used

Relative BEQ addr. $F0/240 2

Affected flags: None

BIT
What it does: Tests the bits in the byte in memory against

the bits in the byte held in the accumulator. The bytes (mem

ory and accumulator) are unaffected. BIT merely sets flags.

The Z flag is set as if an accumulator AND memory had been

performed. The V flag and the N flag receive copies of the

sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav

ing any effect on the tested numbers, it is infrequently used

because you cannot employ the immediate addressing mode

with it. Other tests (CMP and AND, for example) can be used

instead.

Addressing modes:

Name

Zero Page

Absolute

Format

BIT 15

BIT 1500

Opcode

$24/36

$2C/44

Bytes Used

2

3

Affected flags: N Z V

H

BMI
I I What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

,__, if the negative (N) flag is set. In effect, it branches if the sev-

1 \ enth bit has been set by the most recent event: LDA #150 or

LDA #128 would set the seventh bit. These actions would set
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the N flag, signifying that a minus number is present if you are j j

using signed arithmetic or that there is a shifted character (or a (—'
BASIC keyword) if you are thinking of a byte in terms of the

ASCII code. j i

Major uses: Testing for BASIC keywords, shifted ASCII, '—i
or graphics symbols. Testing for + or — in signed arithmetic.

Addressing modes: J J

Name Format Opcode Bytes Used

Relative BMI addr. $30/48 2

Affected flags: None

BNE

What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the zero flag is clear. In other words, it branches if the result

of the most recent event is not zero, as in LDA #150: SBC

#120 or LDA #128: CMP #125. These actions would clear the

Z flag, signifying that a result was not zero.

Major uses: The reverse of BEQ. BNE means Branch if

Not Equal. Since a CMP subtracts one number from another

to perform its comparison, a zero result means that they are

equal. Any other result will trigger a BNE (not equal). Like the

other B branch instructions, it has uses in IF-THEN, ON-

GOTO type structures and is used as a way to exit loops (for

example, BNE will branch back to the start of a loop until a

zero delimiter is encountered at the end of a text message).

BNE is like BASIC'S <> instruction.

Addressing modes: , ,

Name Format Opcode Bytes Used

Relative BNE addr. $D0/208 2

Affected flags: None 1 (

bpl U
What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the N flag is clear. In effect, it branches if the seventh bit is \ |
clear in the most recent event, as in LDA #12 or LDA #127.
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These acticms would clear the N flag, signifying that a plus

number (or zero) is present in signed arithmetic mode.

Major uses: For testing the results of LDA or ADC or

other operations which affect the negative (N) flag. IF-THEN

or ON-GOTO type structures in ML can involve the BCC test.

It is the opposite of the BMI instruction. BPL can be used for

tests of "unshifted" ASCII characters and other bytes which

have the seventh bit off and so are lower than 128

(OXXXXXXX).

Addressing modes:

Name Format Opcode Bytes Used

Relative BPL addr. $10/16 2

Affected flags: None

BRK
What it does: Causes a forced interrupt. This interrupt

cannot be masked (prevented) by setting the I (interrupt) flag

within the status register. If there is a Break Interrupt Vector (a

vector is like a pointer) in the computer, it may point to a res

ident monitor if the computer has one. The PC and the status

register are saved on the stack. The PC points to the location

of the BRK + 2.

Major uses: Debugging an ML program can often start

with a sprinkling of BRKs into suspicious locations within the

code. The ML is executed, a BRK stops execution and drops

you into the monitor, you examine registers or tables or vari

ables to see if they are as they should be at this point in the

execution, and then you restart execution from the breakpoint.

I j This instruction is essentially identical to the actions and uses

of the STOP command in BASIC.

r—j Addressing modes:

Name Format Opcode Bytes Used

Implied BRK $00/0 1

}I Affected flags: Break (B) flag is set.
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What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the V (overflow) flag is clear. j j
Major uses: None. In practice, few programmers use

"signed" arithmetic where the seventh bit is devoted to in

dicating a positive or negative number (a set seventh bit j j
means a negative number). The V flag has the job of notifying

you when you've added, say, 120 + 30, and have therefore

set the seventh bit via an "overflow" (a result greater than

127). The result of your addition of two positive numbers

should not be seen as a negative number, but the seventh bit

is set. The V flag can be tested and will then reveal that your

answer is still positive, but an overflow took place.

Addressing modes:

Name Format Opcode Bytes Used

Relative BVC addr. $50/80 2

Affected flags: None

BVS
What it does: Branches up to 127 bytes forward or 128

bytes backward from the address of the following instruction

if the V (overflow) flag is set.

Major uses: None; see BVC above.

Addressing modes:

Name Format Opcode Bytes Used

Relative BVS addr. $70/112 2

Affected flags: None i—s

CLC !J
What it does: Clears the carry flag (puts a zero into it).

Major uses: Always used before any addition (ADC). If i i

there are to be a series of additions (multiple-byte addition), '—>
only the first ADC is preceded by CLC since the carry feature

is necessary. There might be a carry, and the result will be in- j

correct if it is not taken into account. (—'

The 8502 does not offer an addition instruction without
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j—[ the carry feature. Thus, you must always clear it before the

' ' first ADC so that a carry won't be accidentally added.

Addressing modes:

' ' Name Format Opcode Bytes Used
Implied CLC $18/24 1

|—■} Affected flags: Carry (C) flag is set to zero.

CLD
What it does: Clears the decimal mode flag (puts a zero

into it).

Major uses: This clears the flag which forces the chip into

"decimal mode." On some computers, it's necessary to CLD at

the start of an ML program because the D flag can be in an in

determinate state when you SYS to your ML routine. How

ever, this isn't necessary on the 128. Commodore computers

thoughtfully execute a CLD when first turned on as well as

upon entry to monitor modes (PET/CBM and 128 models)

and when the SYS command occurs.

For further detail about the 8502's decimal mode, see SED

below.

Addressing modes:

Name Format Opcode Bytes Used

Implied CLD $D8/216 1

Affected flags: Decimal (D) flag is set to zero.

CLI
\[ What it does: Clears the interrupt-disable flag. All inter

rupts will therefore be serviced (including maskable ones).

Major uses: To restore normal interrupt routine process

es \ ing following a temporary suspension of interrupts for the

purpose of redirecting the interrupt vector. For more detail, see

SEI below.

' ' Addressing modes:

Name Format Opcode Bytes Used

f"> Implied CLI $58/88 1

Affected flags: Interrupt (I) flag is set to zero.
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CLV . ,

What it does: Clears the overflow flag (puts a zero into it). '—'

Major uses: None; see BVC above.

Addressing modes: J |

Name Fc

Implied Cl

Affected flags: Overflow (V) flag is set to zero.

Name Format Opcode Bytes Used

Implied CLV $B8/184 1 , >

I i

CMP

What it does: Compares the byte in memory to the byte

in the accumulator. Three flags are affected, but the bytes in

memory and in the accumulator are undisturbed. A CMP is

actually a subtraction of the byte in memory from the byte in

the accumulator. Therefore, if you LDA #15:CMP #15, the re

sult (of the subtraction) will be zero, and BEQ would be trig

gered since the CMP would have set the Z flag.

Major uses: This is an important instruction in ML. It is

central to IF-THEN and ON-GOTO type structures. In

combination with the B branching instructions like BEQ, CMP

allows the 8502 chip to make decisions, to take alternative

pathways depending on comparisons. CMP throws the N, Z,

or C flag up or down. Then a B instruction can branch,

depending on the condition of a flag.

Often, an action will affect flags by itself, and a CMP will

not be necessary. For example, LDA #15 will put a zero into

the N flag (seventh bit not set) and will put a zero into the Z

flag (the result was not zero). LDA does not affect the C flag.

In any event, you could LDA #15: BPL TARGET, and the

branch would take effect. However, if you LDA $20 and need ] (

to know if the byte loaded is precisely $0D, you must CMP '—'
#$0D:BEQ TARGET. So, while CMP is sometimes not ab

solutely necessary, it will never hurt to include it prior to \ f

branching. {—l

Another important branch decision is based on > or <

situations. In this case, you use BCC and BCS to test the C i (

(carry) flag. And you've got to keep in mind the order of the '—l
numbers being compared. The memory byte is compared to

the byte sitting in the accumulator. The structure is accu- j |

mulator value is less than memory (BCC is triggered because '—'
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r—? the carry flag was cleared). Or accumulator value is more than

' I or equal to memory (BCS is triggered because the carry flag
was set). Here's an example. If you want to find out if the

n number in the accumulator is less than $40, just CMP

#$40:BCC LESSTHAN:

LDA #75

r-j CMP #$40; IS IT LESS THAN $40?

1 I BCC LESSTHAN

One final comment about the useful BCC/BCS tests

following CMP: It's easy to remember that BCC means less

than and BCS means more than or equal if you notice that C is

less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are

limited since it merely reports the status of the seventh bit;

BPL triggers if that bit is clear, BMI triggers if it's set. How

ever, that seventh bit does show whether the number is

greater than (or equal to) or less than 128, and you can apply

this information to the ASCII code or to look for BASIC

keywords or to search databases (BPL and BMI are used by

LADS's database search routines in the Array subprogram).

Nevertheless, since LDA and many other instructions affect

the N flag, you can often directly BPL or BMI without any

need to CMP first.

Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute^

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

CMP #15

CMP 15

CMP 15,X

CMP 1500

CMP 1500,X

CMP 1500,Y

CMP (15,X)

CMP (15),Y

NZC

Opcode

$C9/201

$C5/197

$D5/213

$CD/205

$DD/221

$D9/217

$C1/193

$D1/2O9

Bytes Used

2

2

2

3

3

3

2

2

CPX
What it does: Compares the byte in memory to the byte

in the X register. Three flags are affected, but the bytes in

memory and in the X register are undisturbed. A CPX is ac

tually a subtraction of the byte in memory from the byte in
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the X register. Therefore, if you LDA #15:CPX #15, the result j >

(of the subtraction) will be zero, and BEQ would be triggered I—1
since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter j ,

within loops. Though the Y register is often preferred as an in- <—1
dex since it can serve for the very useful indirect Y addressing

mode (LDA (15),Y), the X register is nevertheless pressed into » |

service when more than one index is necessary or when Y is I—)

busy with other tasks.

In any case, the flags, conditions, and purposes of CPX

are quite similar to CMP (the equivalent comparison instruc

tion for the accumulator). For further information on the vari

ous possible comparisons (greater than, equal, less than, not

equal), see CMP above.

Addressing modes:

Name Format Opcode Bytes Used

Immediate CPX #15 $E0/224 2

Zero Page CPX 15 $E4/228 2

Absolute CPX 1500 $EC/236 3

Affected flags: N Z C

CPY
What it does: Compares the byte in memory to the byte

in the Y register. Three flags are affected, but the bytes in

memory and in the Y register are undisturbed. A CPX is ac

tually a subtraction of the byte in memory from the byte in

the Y register. Therefore, if you LDA #15: CPY #15, the result

(of the subtraction) will be zero, and BEQ would be triggered

since the CPY would have set the Z flag. « j

Major uses: Y is the most popular index, the most heavily LJ
used counter within loops since it can serve two purposes: It

permits the very useful indirect Y addressing mode—LDA j (

(15),Y—and can simultaneously maintain a count of loop events. i—i

See CMP above for a detailed discussion of the various

branch comparisons which CPY can implement. j .
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7-7 Addressing modes:

Name Format Opcode Bytes Used

PI Immediate CPY #15 $C0/192 2
- ■' Zero Page CPY 15 $C4/196 2

Absolute CPY 1500 $CC/204 3

f*j Affected flags: N Z C

DEC
What it does: Reduces the value of a byte in memory by

1. The N and Z flags are affected.

Major uses: A useful alternative to SBC when you are

reducing the value of a memory address. DEC is simpler and

shorter than SBC, and although DEC doesn't affect the C flag,

you can still decrement double-byte numbers (see "Decrement

Double-Byte Numbers" in Appendix E).

The other main use for DEC is to control a memory index

when the X and Y registers are too busy to provide this ser

vice. For example, you could define, say, address $505 as a

counter for a loop structure. Then LOOP STA $8000:DEC

$505:BEQ ENDJMP LOOP. This structure would continue

storing A into $8000 until address $505 was decremented to

zero. This imitates DEX or DEY and allows you to set up as

many nested loop structures (loops within loops) as you wish.

Addressing modes:

Name Format Opcode Bytes Used

Zero Page DEC 15 $C6/198 2

Zero Page,X DEC 15,X $D6/214 2

Absolute DEC 1500 $CE/206 3

Absolute,X DEC 1500,X $DE/222 3

Affected flags: N Z

DEX
What it does: Reduces the X register by 1.

Major uses: Used as a counter (an index) within loops.

Normally, you LDX with some number (the number of times

you want the loop executed) and then DEX:BEQ END as a

way of counting events and exiting the loop at the right time.
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Addressing modes: I i

Name Format Opcode Bytes Used ^
Implied DEX $CA/202 1

Affected flags: N Z j_|

DEY
What it does: Reduces the Y register by 1.

Major uses: Like DEX, DEY is often used as a counter for

loop structures. But DEY is the more common of the two since

the Y register can simultaneously serve two purposes within

a loop by permitting the very popular indirect Y addressing

mode. A common way to print a screen message (the ASCII

form of the message is at $5000 in this example, and the mes

sage ends with zero): LDY #0:LOOP LDA $5000,Y:BEQ

END:STA SCREEN,Y:INY:JMP LOOP:END and continue with

the program.

Addressing modes:

Name Format Opcode Bytes Used

Implied DEY $88/136 1

Affected flags: N Z

EOR
What it does: Exclusive-ORs a byte in memory with the

accumulator. Each bit in memory is compared with each bit in

the accumulator, and the bits are then set (given a one) if one

of the compared bits is one. However, bits are cleared if both

are zero or if both are one. The bits in the byte held in the

accumulator are the only ones affected by this comparison. LJ
Major uses: EOR doesn't have too many uses. Its main

value is to toggle a bit. If a bit is clear (is a zero), it will be set

(to a one); if a bit is set, it will be cleared. For example, if you I 1
want to reverse the current state of the sixth bit in a given

byte: LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in ,

BYTE if it was zero (and clear it if it was one). This selective | [
bit toggling could be used to "shift" an unshifted ASCII

character via EOR #$80 (1000000). Or if the character were

shifted, EOR #$80 would make it lowercase. EOR toggles. | [
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Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

EOR #15

EOR15

EOR 15,X

EOR 1500

EOR 1500,X

EOR 1500,Y

EOR (15,X)

EOR (15),Y

NZ

Opcode

$49/73

$45/69

$55/85

$4D/77

$5D/93

$59/89

$41/65

$51/81

Bytes Used

2

2

2

3

3

3

2

2

INC
What it does: Increases the value of a byte in memory

by 1.

Major uses: Used exactly as DEC (see DEC above), except

it counts up instead of down. For raising address pointers or

supplementing the X and Y registers as loop indexes.

Addressing modes:

Name

Zero Page

Zero Page,X

Absolute

Absolute,X

Affected flags: N Z

Format

INC 15

INC 15,X

INC 1500

INC 1500,X

Opcode

$E6/230

$F6/246

$EE/238

$FE/254

Bytes Used

2

2

3

3

n

n

INX
What it does: Increases the X register by 1.

Major uses: Used exactly as DEX (see DEX above), except

it counts up instead of down. For loop indexing.

Addressing modes:

Name Format Opcode Bytes Used

Implied INX $E8/232 1

Affected flags: N Z
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INY

What it does: Increases the Y register by 1.

Major uses: Used exactly as DEY (see DEY

it counts up instead of down. For loop indexing

above), except

and working

with the indirect Y addressing mode—LDA (15),Y.

Addressing modes:

Name Format

Implied INY

Affected flags: N Z

Opcode

$C8/200

Bytes Used

1

JMP
What it does: Jumps to any location in memory.

Major uses: Branching long range. It is the equivalent of

BASIC'S GOTO instruction. The bytes in the program counter

are replaced with the address (the argument) following the

JMP instruction and, therefore, program execution continues

from this new address.

Indirect jumping—JMP (1500)—is not recommended, al

though some programmers find it useful. It allows you to set

up a table of jump targets and bounce off them indirectly. For

example, if you had placed the numbers $00 $04 in addresses

$88 and $89, a JMP ($0088) instruction would send the pro

gram to whatever ML routine was located in address $0400.

Unfortunately, if you should locate one of your pointers on

the edge of a page (for example, $00FF or $17FF), this indirect

JMP addressing mode reveals its great weakness. There is a

bug which causes the jump to travel to the wrong place—JMP

($00FF) picks up the first byte of the pointer from $00FF, but

the second byte of the pointer will be incorrectly taken from j ;

$0000. With JMP ($17FF), the second byte of the pointer U
would come from what's in address $1700.

Since there is this bug and since there are no compelling \ j

reasons to set up JMP tables, you might want to forget you «—*

ever heard of indirect jumping.

Addressing modes: j I

Name Format Opcode Bytes Used

Absolute JMP 1500 $4C/76 3 ,

Indirect JMP (1500) $6C/108 3 LJ

Affected flags: None
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'~J What it does: Jumps to a subroutine anywhere in mem

ory. Saves the PC (Program Counter) address, plus three, of

P"! the JSR instruction by pushing it onto the stack. The next RTS
— in the program will then pull that address off the stack and re

turn to the instruction following the JSR.

p] Major uses: As the direct equivalent of BASIC'S GOSUB
command, JSR is heavily used in ML programming to send

control to a subroutine and then (via RTS) to return and pick

up where you left off. The larger and more sophisticated a

program becomes, the more often JSR will be invoked. In LADS,

whenever something is printed to screen or printer, you'll

often see a chain of JSRs performing necessary tasks: JSR

PRNTCR: JSR PRNTSAJSR PRNTSPACEJSR PRNTNUMJSR

PRNTSPACE. This JSR chain prints a carriage return, the cur

rent assembly address, a space, a number, and another space.

Another thing you might notice in LADS and other ML

programs is a PLA:PLA pair. Since JSR stuffs the correct return

address onto the stack before leaving for a subroutine, you

need to do something about that return address if you later

decide not to RTS back to the position of the JSR in the pro

gram. This might be the case if you usually want to RTS, but

in some particular cases, you don't. For those cases, you can

take control of program flow by removing the return address

from the stack (PLArPLA will clean off the two-byte address)

and then performing a direct JMP to wherever you want to go.

If you JMP out of a subroutine without PLA:PLA, you

could easily overflow the stack and crash the program.

Addressing modes:

r~] Name Format Opcode Bytes Used

1 ' Absolute JSR 1500 $20/32 3

Affected flags: None

n

LDA
/ I What it does: Loads the accumulator with a byte from

memory. Copy might be a better word than load, since the byte

in memory is unaffected by the transfer.

) j Major uses: The busiest place in the computer. Bytes

coming in from disk, tape, or keyboard all flow through the

^ accumulator, as do bytes on their way to screen or peripherals.
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Also, because the accumulator differs in some important ways j j

from the X and Y registers, the accumulator is used by ML ^
programmers in a different way from the other registers.

Since INY/DEY and INX/DEX make those registers useful j j

as counters for loops (the accumulator couldn't be conve- WJ

niently employed as an index; there is no INA instruction), the

accumulator is the main temporary storage register for bytes j (

during their manipulation in an ML program. ML program- —'

ming, in fact, can be defined as essentially the rapid, or

ganized maneuvering of single bytes in memory. And it is the

accumulator where these bytes often briefly rest before being

sent elsewhere.

Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

LDA #15

LDA15

LDA 15,X

LDA 1500

LDA 1500,X

LDA 1500,Y

LDA (15,X)

LDA (15),Y

NZ

Opcode

$A9/169

$A5/165

$B5/181

$AD/173

$BD/189

$B9/185

$A1/161

$B1/177

Bytes Used

2

2

2

3

3

3

2

2

LDX
What it does: Loads the X register with a byte from

memory.

Major uses: The X register can perform many of the tasks

that the accumulator performs, but it is generally used as an , ,

index for loops. In preparation for its role as an index, LDX LJ
puts a value into the register.

Addressing modes: l^J

Name Format Opcode Bytes Used

Immediate LDX #15 $A2/162 2 (

Zero Page LDX 15 $A6/166 2

Zero Page,Y LDX 15,Y $B6/182 2

Absolute LDX 1500 $AE/174 3

Absolute,Y LDX 1500,Y $BE/190 3

Affected flags: N Z
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LDY

What it does: Loads the Y register with a byte from

memory.

Major uses: The Y register can perform many of the tasks

that the accumulator performs, but it is generally used as an

index for loops. In preparation for its role as an index, LDY

puts a value into the register.

Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Affected flags:

Format

LDY #15

LDY 15

LDY 15,X

LDY 1500

LDY 1500,X

NZ

Opcode

$A0/160

$A4/164

$B4/180

$AC/172

$BC/188

Bytes Used

2

2

2

3

3

LSR
What it does: Shifts the bits in the accumulator or in a

byte in memory to the right by one bit. A zero is stuffed into

bit 7, and bit 0 is put into the carry flag.

^ J

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 10

Carry

Flag

Major uses: To divide a byte by 2. In combination with

the ROR instruction, LSR can divide a two-byte or larger num

ber (see Appendix E).

LSR:LSR:LSR:LSR will put the high four bits (the high

nybble) into the low nybble (with the high nybble replaced by

the zeros being stuffed into the seventh bit and then shifted to

the right).
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Addressing modes:

Name

Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

Affected flags::

Format

LSR

LSR15

LSR 15,X

LSR 1500

LSR 1500,X

NZC

Opcode

$4A/74

$46/70

$56/86

$4E/78

$5E/94

Bytes Used

2

2

2

3

3 LJ

NOP
What it does: Nothing; NO oPeration.

Major uses: Debugging. When setting breakpoints with

BRK, you will often discover that a breakpoint, when exam

ined, passes the test. That is, there is nothing wrong at that

place in the program. So, to allow the program to execute to

the next breakpoint, you cover the BRK with a NOP. Then,

when you run the program, the computer will slide over the

NOP with no effect on the program. Three NOPs could cover

a JSR XXXX, and you could see the effect on the program

when that particular JSR is eliminated.

Addressing modes:

Name Format Opcode Bytes Used

Implied NOP $EA/234 1

Affected flags: None

ORA
What it does: Logically ORs a byte in memory with the . j

byte in the accumulator. The result is in the accumulator. An LJ
OR results in a one if either the bit in memory or the bit in

the accumulator is one. j »

Major uses: Like an AND mask which turns bits off, ORA LJ
masks can be used to turn bits on. For example, if you wanted

to "shift" an ASCII character by setting the seventh bit, you i \

could LDA CHARACTER:ORA #$80. The number $80 in bi- LJ
nary is 10000000, so all the bits in CHARACTER which are

ORed with zeros here will be left unchanged. (If a bit in \ j

CHARACTER is a one, it stays a one. If it is a zero, it stays L->
zero.) But the one in the seventh bit of $80 will cause a zero
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p{ in the CHARACTER to turn into a one. (If CHARACTER al-
ready has a one in its seventh bit, it will remain a one.)

r—I Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

Format

ORA#15

ORA15

ORA 15,X

ORA 1500

ORA 1500,X

ORA 1500,Y

ORA (15,X)

ORA (15),Y

NZ

Opcode

$09/9

$05/5

$15/21

$0D/13

$lD/29

$19/25

$01/1

$11/17

Bytes Used

2

2

2

3

3

3

2

2

PHA
What it does: Pushes the accumulator onto the stack.

Major uses: To temporarily (very temporarily) save the

byte in the accumulator. If you are within a particular sub

routine and you need to save a value for a brief time, you can

PHA it. But beware that you must PLA it back into the accu

mulator before any RTS so that it won't misdirect the computer

to the wrong RTS address. All RTS addresses are saved on the

stack. Probably a safer way to temporarily save a value (a

number) would be to STA TEMP or put it in some other tem

porary variable that you've set aside to hold things. Also, the

values of A, X, and Y need to be temporarily saved, and the

programmer will combine TYA and TXA with several PHAs to

stuff all three registers onto the stack. But, again, matching

PLAs must restore the stack as soon as possible and certainly

prior to any RTS.

Addressing modes:

Name Format Opcode Bytes Used

Implied PHA $48/72 1

Affected flags: None
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PHP jj
What it does: Pushes the "processor status" onto the top

of the stack. This byte is the status register, the byte which

holds all the flags: N Z C I D V. [_
Major uses: To temporarily, very temporarily, save the

state of the flags. If you need to preserve all current conditions

for a minute (see description of PHA above), you may also j J
want to preserve the status register as well. You must, how

ever, restore the status register byte and clean up the stack by

using a PLP before the next RTS.

Addressing modes:

Name Format Opcode Bytes Used

Implied PHP $08/8 1

Affected flags: None

PLA

What it does: Pulls the top byte off the stack and puts it

into the accumulator.

Major uses: To restore a number which was temporarily

stored on top of the stack (with the PHA instruction). It is the

opposite action of PHA (see above). Note that PLA does affect

the N and Z flags. Each PHA must be matched by a corre

sponding PLA if the stack is to correctly maintain RTS ad

dresses, which is the main purpose of the stack.

Addressing modes:

Name Format Opcode Bytes Used

Implied PLA $68/104 1

Affected flags: N Z

PLP Li
What it does: Pulls the top byte off the stack and puts it

into the status register (where the flags are). PLP is a mne- \ \

monic for PuLl Processor status. LJ

Major uses: To restore the condition of the flags after the

status register has been temporarily stored on top of the stack s i

(with the PHP instruction). It is the opposite action of PHP Li
(see above). PLP, of course, affects all the flags. Any PHP
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must be matched by a corresponding PLP if the stack is to cor

rectly maintain RTS addresses, which is the main purpose of

the stack.

Addressing modes:

Name Format

Implied PLP

Affected flags: All

Opcode

$28/40

Bytes Used

1

ROL
What it does: Rotates the bits in the accumulator or in a

byte in memory to the left by one bit. A rotate left (as op

posed to an ASL, Arithmetic Shift Left) moves bit 7 to the

carry, moves the carry into bit 0, and every other bit moves one

position to its left. (ASL operates quite similarly, except it al

ways puts a zero into bit 0.)

Carry

Flag Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 10

Major uses: To multiply a byte by 2. ROL can be used

with ASL to multiply multiple-byte numbers since ROL pulls

any carry into bit 0. If an ASL resulted in a carry, it would be

thus taken into account in the next higher byte in a multiple-

byte number. (See Appendix E.)

Notice how the act of moving columns of binary numbers

to the left has the effect of multiplying by 2:

0010 The number 2 in binary

0100 The number 4

This same effect can be observed with decimal numbers,

except the columns represent powers of 10:

0010 The number 10 in decimal

0100 The number 100

n
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Addressing modes:

Name

Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

Affected flags: N Z C

Format

ROL

ROL15

ROL 15,X

ROL 1500

ROL 1500,X

Opcode

$2A/42

$26/38

$36/54

$2E/46

$3E/62

Bytes Used

1

2

2

3

3
U

ROR
What it does: Rotates the bits in the accumulator or in a

byte in memory to the right by one bit. A rotate right (as op

posed to an LSR, Logical Shift Right) moves bit 0 into the

carry, moves the carry into bit 7, and every other bit moves one

position to its right. (LSR operates quite similarly, except it al

ways puts a zero into bit 7.)

Bit Bit Bit Bit Bit Bit Bit Bit

7 6 5 4 3 2 10

Major uses: To divide a byte by 2. ROR can be used with

LSR to divide multiple-byte numbers since ROR puts any

carry into bit 7. If an LSR resulted in a carry, it would be thus

taken into account in the next lower byte in a multiple-byte

number. (See Appendix E.)

Notice how the act of moving columns of binary numbers

to the right has the effect of dividing by 2:

1000 The number 8 in binary

0100 The number 4

This same effect can be observed with decimal numbers,

except the columns represent powers of 10:

1000 The number 1000 in decimal

0100 The number 100

u
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Addressing modes:

Name

Accumulator

Zero Page

Zero Page,X

Absolute

Absolute,X

Affected flags: N Z C

Format

ROR

ROR 15

ROR 15,X

ROR 1500

ROR 1500,X

Opcode

$6A/106

$66/102

$76/118

$6E/110

$7E/126

Bytes Used

1

2

2

3

3

RTI

What it does: Returns from an interrupt.

Major uses: None. You might want to add your own

routines to your machine's normal interrupt routines (see SEI

below), but you won't be generating actual interrupts of your

own. Consequently, you cannot ReTurn from Interrupts you

never create.

Addressing modes:

Name Format Opcode Bytes Used

Implied RTI $40/64 1

Affected flags: All (status register is retrieved from the stack)

H

n

n

RTS
What it does: Returns from a subroutine jump (caused by

JSR).
Major uses: Automatically picks off the two top bytes on

the stack and places them into the program counter. This re

verses the actions taken by JSR (which put the program

counter bytes onto the stack just before leaving for a sub

routine). When RTS puts the return bytes into the program

counter, the next event in the computer's world will be the

instruction following the JSR which stuffed the return address

onto the stack in the first place.

Addressing modes:

Name Format Opcode Bytes Used

Implied RTS $60/96 1

Affected flags: None
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SBC LJ
What it does: Subtracts a byte in memory from the byte

in the accumulator, and "borrows" if necessary. If a "borrow"

takes place, the carry flag is cleared (set to zero). Thus, you al- j j
ways SEC (set the carry flag) before an SBC operation so that

you can tell if you need a "borrow." In other words, when an

SBC operation clears the carry flag, it means that the byte in |_J
memory was larger than the byte in the accumulator. And

since memory is subtracted from the accumulator in an SBC

operation, if memory is the larger number, we must "borrow."

Major uses: Subtracts one number from another.

Addressing modes:

Name

Immediate

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags: N

Format

SBC #15

SBC 15

SBC 15,X

SBC 1500

SBC 1500,X

SBC 1500,Y

SBC (15,X)

SBC (15),Y

ZCV

Opcode

$E9/233

$E5/229

$F5/245

$ED/237

$FD/253

$F9/249

$El/225

$F1/241

Bytes Used

2

2

2

3

3

3

2

2

SEC
What it does: Sets the carry (C) flag (in the processor sta

tus register byte).

Major uses: This instruction is always used before any

SBC operation to show if the result of the subtraction was

negative (if the accumulator contained a smaller number than \ i

the byte in memory being subtracted from it). See SBC above. ^

Addressing modes:

Name Format Opcode Bytes Used ^
Implied SEC $38/56 1

Affected flags: C j j

SED ^ [J
What it does: Sets the decimal (D) flag (in the processor

status register byte).
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Major uses: Setting this flag puts the 8502 into decimal

arithmetic mode. This mode can be easier to use when you are

inputting or outputting decimal numbers (from the user of a

program or to the screen). Simple addition and subtraction can

be performed in decimal mode, but most programmers ignore

this feature since more complicated math requires that you re-

main in the normal binary state of the 8502.

Note: Commodore computers automatically clear this

mode when powered on or when entering ML via SYS. How

ever, Apple and Atari computers can enter ML in an in

determinate state. Since there is a possibility that the D flag

might be set (causing havoc) on entry to an ML routine, it is

sometimes suggested that Apple and Atari owners use the

CLD instruction at the start of any ML program they write.

Fortunately Commodore users do not need to worry about

this, but all ML programmers must CLD following any delib

erate use of the decimal mode (see SED).

Addressing modes:

Name Format Opcode Bytes Used

Implied SED $F8/248 1

Affected flags: D

SEI
What it does: Sets the interrupt disable flag (the I flag) in

the processor status byte. When this flag is up, the 8502 will

not acknowledge or act upon interrupt attempts (except a few

nonmaskable interrupts which can take control in spite of this

flag, like a reset of the entire computer). The operating sys-

r~] terns of most computers will regularly interrupt the activities
of the chip for necessary, high-priority tasks such as updating

an internal clock, displaying things on the TV, receiving sig-

["""} nals from the keyboard, and so forth. These interruptions of
whatever the chip is doing normally occur 60 times every sec

ond. To find out what housekeeping routines your computer

{""] interrupts the chip to accomplish, look at the pointer in
$FFFE/FFFF. It gives the starting address of the maskable

interrupt routines.

r"7 Major uses: You can alter a RAM pointer so that it sends

these interrupts to your own ML routine, and your routine then

would conclude by pointing to the normal interrupt routines.
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In this way, you can add something you want (a click sound i /

for each keystroke? the time of day on the screen?) to the nor- '—'
mal actions of your operating system. The advantage of this

method over normal SYSing is that your interrupt-driven rou- i >

tine is essentially transparent to whatever else you are doing LJ
(in whatever language). Your customization appears to have

become part of the computer's ordinary habits. i j

However, if you try to alter the RAM pointer while the I—I
other interrupts are active, you will point away from the nor

mal housekeeping routines in ROM, crashing the computer.

This is where SEI comes in. You disable the interrupts while

you LDA STA LDA STA the new pointer. Then CLI turns the

interrupt back on and nothing is disturbed.

Interrupt processing is a whole subcategory of ML

programming and has been widely discussed in magazine arti

cles. Look there if you need more detail.

Addressing modes:

Name Format Opcode Bytes Used

Implied SEI $78/120 1

Affected flags: I

STA
What it does: Stores the byte in the accumulator into

memory.

Major uses: Can serve many purposes and is among the

most used instructions. Many other instructions leave their re

sults in the accumulator (ADC/SBC and logical operations like

ORA), after which they are stored in memory with STA.

Addressing modes:

Name

Zero Page

Zero Page,X

Absolute

Absolute,X

Absolute,Y

Indirect,X

Indirect,Y

Affected flags:

242

Format

STA 15

STA 15,X

STA 1500

STA 1500,X

STA 1500,Y

STA (15,X)

STA (15),Y

None

Opcode

$85/133

$95/149

$8D/141

$9D/157

$99/153

$81/129

$91/145

Bytes Used

2

2

3

3

3

2

2

u

u
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STX
What it does: Stores the byte in the X

iricinory.

Major uses: Copies the

Addressing modes:

Name Format

Zero Page STX 15

Zero Page,Y STX 15,Y

Absolute STX 1500

Affected flags: None

byte in X into

Opcode

$86/134

$96/150

$8E/142

register into

a byte in memory.

Bytes Used

2

2

3

STY
What it does: Stores the byte in the Y register into

memory.

Major uses: Copies the byte in Y into a byte in memory.

Addressing modes:

Name Format Opcode Bytes Used

Zero Page STY 15 $84/132 2

Zero Page,X STY 15,X $94/148 2

Absolute STY 1500 $8C/140 3

Affected flags: None

TAX
What it does: Transfers the byte in the accumulator to the

X register.

Major uses: Sometimes you can copy the byte in the

I""] accumulator into the X register as a way of briefly storing the
byte until it's needed again by the accumulator. If X is cur

rently unused, TAX is a convenient alternative to PHA (an-

[""] other temporary storage method).
However, since X is often employed as a loop counter,

TAX is a relatively rarely used instruction.

' I Addressing modes:

Name Format Opcode Bytes Used

|—| Implied TAX $AA/170 1

Affected flags: N Z
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TAY u
What it does: Transfers the byte in the accumulator to the

Y register.

Major uses: Sometimes you can copy the byte in the j I

accumulator into the Y register as a way of briefly storing the

byte until it's needed again by the accumulator. If Y is cur

rently unused, TAY is a convenient alternative to PHA (an- j I

other temporary storage method).

However, since Y is quite often employed as a loop

counter, TAY is a relatively rarely used instruction.

Addressing modes:

Name Format Opcode Bytes Used

Implied TAY $A8/168 1

Affected flags: N Z

TSX
What it does: Transfers the stack pointer to the X register.

Major uses: The stack pointer is a byte in the 8502 chip

which points to where a new value (number) can be added to

the stack. The stack pointer would be "raised" by two, for ex

ample, when you JSR and the two bytes of the program

counter are pushed onto the stack. The next available space on

the stack thus becomes two higher than it was previously. By

contrast, an RTS will pull a two-byte return address off the

stack, freeing up some space, and the stack pointer would

then be "lowered" by two.

The stack pointer is always added to $0100 since the stack

is located between addresses $0100 and $01FR

Addressing modes: I—J

Name Format Opcode Bytes Used

Implied TSX $BA/186 1 j I

Affected flags: N Z

LJ

U
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TXA
What it does: Transfers the byte in the X register to the

accumulator.

Major uses: There are times, after X has been used as a

counter, when you'll want to compute something using the

value of the counter. And you'll therefore need to transfer the

byte in X to the accumulator. For example, if you search the

screen for character $75:

CHARACTER = $75:SCREEN = $0400

LDX#0

LOOP LDA SCREEN,X:CMP #CHARACTER:BEQ MORE:INX

BEQ NOTFOUND

; this prevents an endless loop

MORE TXA ; you now know the character's location

NOTFOUND BRK

In this example, we want to perform some action based

on the location of the character. Perhaps we want to remem

ber the location in a variable for later reference. This will re

quire that we transfer the value of X to the accumulator so

that it can be added to the SCREEN start address.

Addressing modes:

Name Format Opcode Bytes Used

Implied TXA $8A/138 1

Affected flags: N Z

TXS
What it does: Transfers the byte in X register into the

stack pointer.

Major uses: Alters where, in the stack, the current "here's

storage space" is pointed to. There are no common uses for

this instruction.

Addressing modes:

Name Format Opcode Bytes Used

Implied TXS $9A/154 1

Affected flags: None
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What it does: Transfers

accumulator.

Major uses: See TXA.

Addressing modes:

Name Format

Implied TYA

Affected flags: N Z

the byte in the

Opcode

$98/152

Y register to the

Bytes Used

1

u

u

u

1 J
1 1

jj
1 >

! !

U
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How to Use LADS

This appendix represents a step-by-step explanation of how to

r^, assemble machine language programs using the LADS assem-

! 1 bier. As you familiarize yourself with its features and practice
using it, you will perhaps discover things about the assembler

which you'd want to modify to suit your own programming

style. For example, if you find that you would prefer to re

word the error messages, simply change them in the Tables

subprogram and run LADS through itself to produce a new-

generation LADS. For a discussion on creating custom versions

of LADS, see the end of this appendix.

Here, however, is a description of the features which are

built into LADS.

General Instructions for Using LADS

LADS assembles from source files. They are particularly easy

and convenient to create: Just turn on your computer and pre

tend you're writing a BASIC program. LADS works with

source files created exactly the way you would write a BASIC

program. You use line numbers, you can use colons, you can

insert new line numbers or delete. The only difference is that

you're writing ML, so you use ML commands rather than

BASIC commands. Here's an example you can type in and try.

Turn on your 128 (or press the RESET button) and type this in:

10 *= 2816

15 .S

jH 20 LDA #66:LDY #65
30 JSR $FFD2

40 TYArJSR $FFD2

I I As you can see, it's quite similar to writing a BASIC pro
gram. You use line numbers, colons, and whatever programmer's

_^ aids (such as automatic line numbering) that you ordinarily

, 1 use to write BASIC itself. But notice that if you use colons you

should keep the instructions tight against the colons. (LDA

#22 : LDY #0 would confuse LADS. Spaces following a colon

j] won't cause any problems, but it's best to. make a habit of
leaving no spaces around colons.)
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Now you're ready to assemble. Type BLOAD "LADS and ] (

press RETURN. Then type SYS 10000 to activate LADS. It will LJ
assemble your program, storing the resulting ML object code

(the runnable ML program) starting at address 2816, and then j j

return you to BASIC mode with the familiar READY. If you !—)

are using a 40-column screen, it will temporarily go blank dur

ing the actual assembly because LADS switches to 2 mega- I j

hertz for extra speed. This won't affect anything, but you'll —1

not see things onscreen during an assembly.

This example program is supposed to print the characters

BA on your screen. To test it, enter SYS 2816. To change

things, just LIST your source code and, perhaps, change the

character being printed:

20 LDA #66:LDY #$43; $43 IS HEX FOR 67, THE ASCII CODE

FOR"C"

and hit RETURN, just as you would to adjust a BASIC pro

gram line. Now we've asked to have the letters BC printed on

the screen. Again, activate LADS assembly by typing SYS

10000, and then test the results by SYS 2816. It's as simple as

that.

But LADS has many other features you'll find useful as

you program. For example, if you've typed in the "Loader"

program (Appendix F) or bought LADS on disk and have a

1571 disk drive, LADS will automatically boot into the 128

when you power up or reset. It will also redefine the Fl, F2,

F3, and F5 keys to run or reload LADS at the press of a key, to

SYS 2816 ($B00, the start of many of the examples in this

book), and to invoke AUTO 10 line numbering.

The Fl key will SYS 10000 and should be used when

you're using LADS as we did in the example above. Use F3 to

BLOAD in a fresh copy of LADS if it should get corrupted and {
fail to respond. Users of the 1571 disk drive might want to

change the two BLOADs to BOOTs in the Loader for greater

convenience; 1541 users should leave it as BLOAD. j J

Few Rules

There are very few absolute rules when using LADS, but one j j
is that you must provide the starting address, the address where

you want the ML program to begin in the computer's memory.

You signify this with the * = symbol, which means "Program jl
Counter equals." LADS expects to find this *= symbol as the

first thing in your source code. When LADS sees * = , it sets
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P| the program counter to the number following the equal sign.
Remember also that there must be a space between the = and

the starting address: *= 2816, not * = 2816.

r™| Also notice that you can use either decimal or hexadeci
mal numbers interchangeably in LADS. Line 20 is hex in the

example above for the number #$43, but the 66 is decimal. It's

P up to you which kind of numbers you want to use at any
given time.

Features

There are a number of pseudo-ops available in LADS. Pseudo-

ops are direct instructions to the assembler which make things

easier for the programmer. The .S in line 15 in the example

above is such an instruction. It tells LADS to print the results

of an assembly to the screen. The .O causes LADS to send the

results of the assembly, the object code, to RAM memory.

If you add line 17 to our test program, you will cause the

listing to be in decimal instead of hex:

10*= 2816

15 .S

16 .O

17 .NH

The pseudo-op .NH means no hex, and causes the listing

to change from hex to decimal.

You can add REM-like comments by using a semicolon.

And you can turn the screen listing off with .NS, anytime.

Turn it on or off as much as you want. This can be an es

pecially useful switch if you don't need to see an entire listing,

but just want to see how a small section or sections of your

program are assembling. Also, using .S will slow up the

) | assembly process. The .S and .NS screen listings are most

helpful as a kind of disassembly on the fly:

— 10*= 2816

n is .s
16 .O

17 .NH

P| 20 LDA #66:LDY #65
25 .NS

30 JSR $FFD2

pi 40 TYA:JSR $FFD2

For more complete listings and more extensive debugging,

you would want to activate printer listings so you can more

n
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easily study the flow of things and make notes or corrections. | j

You turn on printer listings with .P and turn them off with '—'
.NP. When you use .P, it automatically turns on .S, so you'll

see screen listings even if you didn't include .S. j j

Because source code comments would clutter up a screen '—'
listing, particularly a 40-column screen, comments are sup

pressed when you use .S. However, comments are reproduced ) (

when you use .P for printer listings. Also, if you are using a '—'
Cardco interface with a 1541 disk drive, the .P printout might

stall. Should this happen, turn off the disk drive and the print

out will proceed.

To have the ML stored into memory during assembly, use

.O; to switch off these POKEs to memory, use .NO.

The pseudo-ops which turn the printer on and off; direct

object code to disk, screen, and RAM; or switch between hex

and decimal printout can be switched on and off within your

source code wherever convenient. For example, you can turn

on your printer anywhere within the program by inserting .P

and turn it off anywhere with .NP. Among other things, this

would allow you to specify that only a particular section of a

large program be printed out. This can come in very handy if

you're working on a long program where there would be a

significant wait if you had to print out the whole thing.

Always put pseudo-ops on a line by themselves. Any other

programming code can be put on a line in any fashion (di

vided by colons: LDA 15:STA 27:INY), but pseudo-ops should

be the only things on their lines. (The .BYTE pseudo-op,

described below, is an exception—it can be on a multiple-

statement line.)

100 .P .S Wrong

100 .P Right ( I

110 .S Right I—'

And remember to keep your instructions right next to the

colons, no spaces: I j

100 LDA #15 : STA 5000 : INY Wrong

100 LDA #15:STA 5000:INY Right

You have now learned all you will need to know about I )

LADS to create and assemble the examples in this book. What

follows are additional, more advanced features of LADS. , .

I /
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.NP

.O

.NO

.D sourcefilenatne objectfilename

.FILE filename

•END filename

n

H

n

n

r

More Sophisticated Features

Here's a summary of all the commands you can give LADS:

.P Turn on printer listing of object

code (.S will also be activated).

Turn off printer listing of object

code.

Turn on POKEs to memory. Ob

ject code is stored into RAM dur

ing assembly.

Turn off POKEs to memory.

Read source code from

sourcefilename and store object

code to objectfilename on disk

following assembly. Use no

quotes around the filenames (.O

will also be activated).

Necessary when you use .D.

Links one source file to the next

in a chain so that they will all as

semble together as a single large

source program (end the chain

with .END pseudo-op).

Necessary when you use .D.

Links the last source file to first

source file in a chain. If you are

not assembling a chain of files

(rather, are assembling from a

single file), you must still give its

filename as the .END so that the

assembler knows where to go for

the second pass. Any source code

must have .END as the last line

in the program, whether the

source code is contained within a

single disk file or spread across a

multiple-file chain.

Turn on screen listing during

assembly.

Turn off screen listing during

assembly.

Turn on hexadecimal output for

screen or printer listing.

Turn off hexadecimal output for

screen or printer listing (as a re

sult, the listings are in decimal).
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*= Set program counter to new ) j

address. '—'
+ Add a value to a label.

#"c ASCII value of character c (type- \ j

able characters only, no control I !
codes).

#<label Least significant byte (LSB) of

label. LJ
#>label Most significant byte (MSB) of

label

.BYTE N N Insert single-byte decimal num

bers directly into object code.

.BYTE "CCCCC Insert characters directly into ob

ject code.

A Stable Buffer

The pseudo-op * = is always the first item in any ML source

code program. It tells the computer where you want your pro

gram stored. However, * = can be used within a program too,

to change the storage addresses dynamically. This is useful

mainly when you want to create data tables. The subprogram

Tables in LADS source code is an example of a data table. (A

subprogram is one of the source code files which, when linked

together, form an entire ML program. We'll describe linking

shortly.)

Most programmers locate an ML program's tables, non

zero page variables, buffers, and messages at the high end of

the ML program the way LADS does with its Tables sub

program. Since you don't know what the highest RAM ad

dress will be while you're writing a program, you can force

your data tables to always reside at the same high address by

setting *= to some address, perhaps 4K above the starting ad- j I

dress. This gives you space to write the program below the ta

bles without moving the tables up higher in RAM memory

each time you add to the source code. | j

The advantage of stabilizing the location of your tables is '—'

that you can easily PEEK them, and this greatly assists debug

ging. You'll always know exactly where buffers and variables

are going to end up in memory after an assembly—regardless

of the changes you make in the program. After your program

is debugged and running perfectly, you can remove the * =

and assemble one last time, closing up the gap between the

program and its tables.
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r*""j Here's an example. Suppose you write:

10*= $5000

20 STA BUFFER

PI 30 *= $6000
40 BUFFER .BYTE 00000000000000

This creates an ML opcode instruction (STA buffer) at ad-

I ( dress $5000 (the starting address of this particular example ML
program), but places the buffer itself at $6000. When you add

additional instructions after STA buffer, the location of the

buffer itself will remain at address $6000. This means that you

can write an entire program (smaller than $1000 bytes) with

out having to worry that the location of the buffer is being

bumped up higher each time you add new instructions, new

code. It's high enough so that it remains stable at $6000, and

you can debug the program more easily. You can always check

whether something is being correctly sent into the buffer by

just looking at $6000 from the monitor.

This fragment of code illustrates two other features of

LADS. You can use the pseudo-op .BYTE to set aside some

space in memory (the zeros above just make space to hold

other things in a "buffer" during the execution of an ML pro

gram). You can also use .BYTE to define specific numbers in

memory:

.BYTE 65 66 67 68

This would put these numbers (always use decimal num

bers between 0 and 255 with this pseudo-op) into memory at the

location of the .BYTE instruction; .BYTE can also handle text

and any control characters (such as cursor up) except screen

clear. An easy way to create messages that you want to print

to the screen is to use the .BYTE pseudo-op and surround text

with quotes:

500 FIRSTLETTERS .BYTE "ABCD":.BYTE 0

Then, if you wanted to print this message, you could
write:

2 *= $0B00

5 LDY #0

10 LOOP LDA FIRSTLETTERS,Y

20 BEQ ENDMESSAGE

30 STA $0400,Y; location of screen RAM

40INY

50 JMP LOOP
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60 ENDMESSAGE RTS; finished printout ] (

500 FIRSTLETTERS .BYTE "ABCDr.BYTE 0 LJ

Note that using the second set of quotation marks is op

tional with the .BYTE pseudo-op: You can use either .BYTE j |

"ABCD:.BYTE 0 or .BYTE "ABCD":.BYTE 0. To POKE num- u-
bers instead of characters, just leave out the quotation marks:

.BYTE 10 15 75. And since these numeric values are being j j

POKEd directly into bytes in memory, remember that they

cannot be larger than 255. It's like BASIC'S POKE statement.

Another convenient pseudo-op looks like this: #". It is

used when you want to specify a character instead of a num

ber for immediate addressing. Say, you need to print a comma

to the screen. You could LDA #44 (the ASCII code for a

comma) and JSR PRINT.

But if you don't remember that a comma is the number 44

in the ASCII code, and you don't want to look it up, LADS

will do it for you. Just use a quotation mark after the # sym

bol: LDA ■#", (followed by the character you're after, in this

case, the comma). The correct value for the character will be

inserted into your object code. To print the letter A, you would

LDA #"A and proceed to print it with JSR $FFD2. Any charac

ter you type after the quotation mark will be translated into

Commodore ASCII for you. Remember that the #" pseudo-op

gives you the screen print code, not the screen POKE code. If

you try to POKE the character directly on the 40-column

screen with STA $0400, you'll get a shifted version of what

ever character you requested. Also, #" cannot translate cursor

or control codes. If you want to clear the screen, you'll need to

look up clear screen on the ASCII chart in Appendix G. Clear

screen is 147, so you'd use LDA #147:JSR PRINT to accom

plish that. J j

Labels

You probably noticed in the example above how many English j j

words were used to write the source code: FIRSTLETTERS, '—'
ENDMESSAGE, LOOP. These are used pretty much as vari

ables are used in BASIC. But there are some special advan- J j

tages in ML. You give subroutines names rather than line '—'
numbers and that helps document and structure your program.

Also, these words, called labels, can be of any length. And, | j

unlike BASIC which sees only the first two characters as L-*i

significant, each label is entirely significant in LADS. So,
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j"""| SCREEN and SCORE are distinct labels and will not be

confused.

With LADS, as with other assemblers that permit labels, you

pn need not refer to locations in memory or numeric values by

using numbers. And you'll find that labels are far easier to use.

In the example above, line 10 starts off with the word

P"! LOOP. This means that you can use the word LOOP later to

refer to that location (see line 50). That's quite a convenience:

The assembler remembers where the word LOOP is used, and

you need not refer to an actual memory address; you can refer

to the label instead. This kind of label is called a PC-type (for

Program Counter) or address-type label.

The other type of label is defined with an assembly

convention called an equate (an equal sign). This is quite simi

lar to the way that BASIC allows you to assign value to

words—it's called "assigning variables" when you do it in

BASIC. In ML, the = pseudo-op works pretty much the way

the = sign does in BASIC, and these "equates" should be put

at the very start of an ML program. (See the Defs subprogram

in Appendix D.) Here's an example of equates, located at the

start of the program, in lines 10 and 20:

5 *= $0B00

10 SCREEN = $0400; the location of the first byte in RAM of the

screen

20 LETTERA = $41; the letter A

30 ;

40 START LDA #LETTERA; notice "START' (an address-type

label)

50 STA SCREEN; 40-COLUMN MODE ONLY

60RTS

Line 10 assigns the number $0400 (1024 decimal) to the

word SCREEN. Anytime thereafter that you use the word

SCREEN, LADS will substitute $0400 when it assembles your

ML program. Line 20 "equates" the word LETTERA to the

number $41. So, when you LDA #LETTERA in line 40, the

assembler will put a $41 into your program. (Notice that, like

BASIC, LADS requires equate labels to be a single word. You

couldn't use LETTER A, since that's two words.)

Line 30 is just a REMark. The semicolon tells the assem

bler that what follows on that line is to be ignored. Neverthe

less, blank lines or graphic dividers like line 30 can help to

visually separate subroutines, tables, and equates from your
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actual ML program. In this case, we've used line 30 to sepa- j (

rate the section of the program which defines labels (lines 10- '—-'
20) from the program proper (lines 40-60). All this makes it

easier to read and understand your source code later. j |

Remember that in BASIC only the first two letters of a {—'
variable name are significant. So, SCREEN and SCORE are

taken to be identical variables. LADS, however, offers you the t j

advantage of seeing all letters within a label as significant. '—'
SCREEN and SCREEN1 are different labels to LADS. Of

course, you cannot use the same label to mark two different

addresses or values. You can't use the same label for two dif

ferent equates because that would be meaningless:

SCREEN - $0400

SCREEN = $0500

Nor should you define two different addresses within the ML

program using the same label:

10 LOOP LDA 12

20 BEQ LOOP

30 BNE LOOP

40 LOOP RTS

LADS would have no way of knowing, in lines 20 and 30,

to which LOOP you intended to branch. Don't be concerned,

however, about keeping track of what labels you may have al

ready used. When you assemble, LADS will report any dupli

cate labels and tell you which line numbers they occurred in.

Then you can easily make up new labels where necessary:

40 LOOP1

or

40 NEWLOOP t

Notice that lines 20 and 30, although they both contain the la- i—»
bel LOOP, do not cause any problems. That's because they are

only referring to the label, not defining it. Labels are defined

only when they occur as the first thing following a line num

ber or a colon. You can use them to refer to the defined loca

tions or values as often as you want.

A related labeling error will also be flagged by LADS. If

LADS reports this to you:

560 NUMBURS LDA 12 UNDEFINED LABEL

you would need to look at line 560. Usually, this is caused by
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pi a typo. You meant to type NUMBERS as your label and later

' referred to NUMBERS (which would generate an UN
DEFINED LABEL error message of its own). Again, just LIST

j—| 560, and type 560 NUMBERS LDA 12 to make things right.

' -- If your source code contains a label with nothing follow
ing it:

P] 560 NUMBERS

or

570 NUMBERS:INY

you'll see a NAKED LABEL error message. Line 560 is mean

ingless because the line is blank following the label. It defines

nothing. Line 570 is meaningless for the same reason because

a colon separates statements and is therefore the logical

equivalent of an end-of-line.

Automatic Math

There are times when you will want to have LADS do addi

tion for you. That's where the + pseudo-op comes in. If you

write "label+ 1", you will add 1 to the value of the label.

Here's how it works:

10 *= $B00

20 HIMEM = 57; top-of-memory pointer.
30;

40 LDA #0:STA HIMEM:LDA #$50:STA HIMEM+l

Here we are putting a new location into the top-of-mem

ory pointer which the computer uses to decide where it can

store things in bank 1. (Doing that could protect an ML pro

gram which resides above the address stored in this pointer.)

Like all pointers, it uses two bytes. If we want to store $5000

p into this pointer, we store the lower half (the least significant
byte) into MEMTOP. We'll want to put the number $50 into

the most significant byte of the pointer—but we don't need to

p waste time making a new label. It's just one higher in memory
than MEMTOP, hence, MEMTOP+ 1.

You'll also want to use the + pseudo-op command in

constructions like this:

10 *= $B00

15 SCREEN = $0400
17;

20 LDA #32; the blank character

30 LDY #0
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40 START STA SCREEN,Y | /

50 STA SCREEN+256,Y LJ
60 STA SCREEN+512,Y

70 STA SCREEN+768,Y , ,

80INY LJ

90 BNE START

This is the fastest way to fill memory with a given byte. | i

In this case we're clearing out the screen RAM by filling it >—I
with blanks (in the 40-column mode only). As you can see, it's

easy to indicate multiples of 256 by just adding them to the

label SCREEN. Any time you want to add a number to a label,

just attach + and the number, but don't leave any spaces be

tween the label, the + and the number:

LDA (LABEL + 22),Y Wrong

LDA (LABEL+22),Y Right

A similar pseudo-op command is the #<. This refers to

the least significant byte of a label For example,

10 *= $0B00

20 SCREEN = $0400

25 SCREENPOINTER = $FB

40 LDA #<SCREEN; LSB (least significant byte of the label

SCREEN, $00)

50 STA SCREENPOINTER

60 LDA #>SCREEN; MSB (most significant byte of the label

SCREEN, $04)

70 STA SCREENPOINTER+1

Line 40 is the equivalent of LDA #$00 and line 60 is the

equivalent of LDA #$04, but using #< and #> allows you to

break a label into its bytes conveniently without having to

know the actual value of the label.

You'll find this technique used several times in the LADS

source code. It puts the LSB (least signficant byte) or the MSB

(most signficant byte) of a label into the LSB or MSB of a

pointer which, in effect, creates the pointer (makes it point to

the label). In the example above, we want to set up a pointer

that will hold the address of the screen RAM. We've called

this pointer SCREENPOINTER, and we want to put $00 (the

LSB of SCREEN) into SCREENPOINTER. So, we extract the

LSB of SCREEN in line 40 by using # combined with the less-

than symbol. We complete the job of creating the pointer by

using the greater-than symbol to fetch the MSB:
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j"~] 60 LDA #>SCREEN:STA SCREENPOINTER+1

Notice that these symbols must be attached to the label;

_ no space is allowed. For example, LDA #> SCREEN would cre-

jj ate problems. This LSB or MSB extraction from a label is

something you'll need to do from time to time. The #< and

#> pseudo-ops do it for you.

Chained Files

LADS has two distinct personalities. So far we've been

discussing LADS as it comes out of the can, its native state

when you, or the Loader, BLOAD it in from disk. It assembles

and stores the results on screen (with .S), in RAM in bank 15

(.O), or to the printer (.P). Let's call this mode RAMLADS

since it works exclusively in RAM.

This personality is most useful for testing routines which

are short enough for the source code to fit between $1COO (the

default start of BASIC text area) and $2710 where the LADS

assembler starts in memory. But when source code gets fairly

large, it will either overwrite LADS, or LADS itself, which

stores labels during assembly moving down from $2710, will

overwrite the source code. In short, assembling source code

about IK or longer will cause the source code and LADS to

compete for the same memory space and interfere with each

other.

For these larger programs, you should store your source

code on disk and, by using the .D pseudo-op at the start of

the source code, tell LADS to look on the disk drive for ma

terial to assemble. (Cassette tape users will not be able to

switch DISKLADS on with the .D pseudo-op. They must use

RAMLADS and then save object code to tape via the monitor.

See SAVE in Chapter 3.)

When you insert .D into your source code, LADS trans

forms itself; it modifies its actual structure and turns its atten

tion to the disk drive for source code. Let's call this second

personality DISKLADS. DISKLADS offers several benefits

when large programs are involved.

It is sometimes convenient to create several source code

subprograms, to break the ML program source code into sev

eral pieces. An example of this is the LADS source code itself.

It's divided into a number of program files: Array, Equate,

Math, Pseudo, and so on. This way, you don't need to load

the entire source code into the computer's memory when you

259



j I

Appendix B

u

just want to work on a particular part of it. It also allows you j <

to assemble source code far larger than could fit into available '—'

RAM. For example, LADS itself, with all its comments, has

source code which is 72K large. By the way, this creates an in- i [

teresting ratio between source and object code: After assembly, «—'

LADS boils down to about 5K of runnable object code.

When using DISKLADS, you link the separate source i i

code files together into a chain. In the last line of each sub- i—I
program you want to link, you put the linking pseudo-op

.FILE NAME (use no quotes) to tell the assembler which sub

program to assemble next. Subprograms, chained together in

this fashion, will be treated as if they were one large program.

The final subprogram in the chain ends with the special

pseudo-op .END NAME, and this time the name is the file

name of the first of the subprograms, the subprogram which

begins the chain. It's like stringing pearls and then, at the end,

tying thread so that the last pearl is next to the first, to form a

necklace.

Notice however that when you turn on DISKLADS with

.D, you always need to include the .END pseudo-op, even if

you are assembling from just one, unlinked, source code file.

In that case (where you're working with a solo file), you don't

use any linking .FILE pseudo-ops. Instead, refer the file to it

self with .END NAME where you list the solo file's name.

Here's an illustration of how three subprograms would be

linked to form a complete program:

5 *= 2816

10 ; FIRSTSOURCE-first program in chain

20 ;its first line must contain the start address

30 .D FIRSTSOURCE FIRSTOBJECT

40 LDA #20 , ,

50 STA $0400 |_j
60 .FILE SECOND

Then you save this subprogram to disk (it's handy to let , ,

the first remark line in each subprogram identify the sub- lJ
program's filename):

DSAVE "FIRSTSOURCE j j

Next, you create SECOND, the next link in the chain. But

here, you use no starting address; you enter no * = since only

one start address is needed for any program: j j
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p] 10 ; SECOND (IT'S A GOOD IDEA TO PUT THE NAME OF

! ' THE FILE HERE)
20 INY:INX:DEY:DEX

pi 30 .FILE THIRD

' ' DSAVE "SECOND
Now write the final subprogram, ending it with the clasp

I"") pseudo-op .END NAME which links this last subprogram to
the first:

10; THIRD

20 LDA #191:STA $0400

30 .END FIRSTSOURCE

DSAVE "THIRD

When you want to assemble this linked source code, if the

first file in the chain isn't already in RAM memory, you

DLOAD "FIRSTSOURCE to show LADS the .D. Then press

Fl or type SYS 10000, and LADS will take it from there.

The format for .D is

.D sourcename objectname

RAMLADS will see the .D and change itself into

DISKLADS. After you've once transformed RAMLADS into

this new personality, it will locate source code on the disk files

and store object code to bank 1. After it has finished the

assembly, LADS will save (with replace) the object code to the

disk under the name you gave for the object file after .D. In

our three-file example above, LADS will save a file named

FIRSTOBJECT. Finally, LADS will reload itself and, thus,

change back into its RAMLADS personality. In other words,

LADS responds appropriately if there is .D in the source code.

If it doesn't find one, it remains RAM-oriented.

DISKLADS operates somewhat differently from

RAMLADS. DISKLADS always switches on the .O pseudo-op

and saves the object code to RAM in bank 1. Thus (unlike

RAMLADS where you have to find a safe place to store object

code when using .6), with DISKLADS you can create an ML
program that resides anywhere between $0000 and $FFFF

(0-65535 decimal), and it will not interfere with LADS or

BASIC or anything else since it's being stored into the pure

RAM of bank 1. (Remember, though, that extremely low

RAM—$0000-$03FF—is shared between banks.) Thus, your

source and object codes can be huge, as large as a RAM bank.
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Then, when assembly is finished, the object code is stored I j

to disk under the name you gave with .D (FIRSTOBJECT in '—'
the example above). Use no quotation marks around filenames

for .D or .END or .FILE. If you forget to put .END or .FILE I j

when you've used .D, LADS will remind you that it now '—'
needs these linking commands. If you want to go back to

assembling smaller routines with RAMLADS, just start typing | I

in source code, but avoid .D. LADS changes personality only '—'
when triggered with .D. Naturally, you don't use .FILE or

.END with RAMLADS.

When DISKLADS has finished assembling the example

above by the disk method, there will be an ML program on

disk called FIRSTOBJECT. You can BLOAD it and SYS 2816

(that was the start address we gave this program), and the

newly assembled ML program will execute. Note that even

though LADS saved it to disk from bank 1, it will BLOAD into

bank 0 unless you specify otherwise with the BLOAD com

mand. Also, DISKLADS always does a Save-with-Replace,

and this allows you to keep testing versions without having to

rename each one. If you want to preserve a version, be sure to

RENAME it before assembling; it will be replaced at the end

of the assembly. You can always stop any assembly at any

time with the RUN/STOP key. If a file is being loaded when

you press RUN/STOP, just hold down the RUN/STOP key

until disk access finishes. Since no object code is saved to disk

until assembly is finished, any previous version of object code

will remain unreplaced on the disk.

While LADS is assembling in either mode, it will report

any errors by ringing the bell, displaying the line number

wherein the error occurred, and showing the offending source

code in reverse video. After assembly, it will tell you the total t i

number of errors, if any. '—'
LADS also prints the starting address in hex of each file,

and DISKLADS prints LOADING when bringing the file in i j

from disk, and blanks the line while actually assembling. '—'

Rules for LADS .

Here are the rules you need to follow when writing ML for '—'
LADS to assemble:

1. In general, all equate labels (labels using an equal sign) should I

be defined at the start of your program.
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r™| While this isn't absolutely necessary for labels with

numbers above 255 (see SCREEN in the example below), it

is the best programming practice. It makes it easier for you

j—j to modify your programs and simplifies debugging. LADS

itself locates all its equate labels in the subprogram Defs

(Appendix D), the first subprogram in its chain of source

fl code files.

What's more, it is necessary that any equate label with

a value lower than 256 be defined before any ML mnemon

ics reference that label. So, to be on the safe side, just get

into the habit of putting all equate labels at the very start of

your programs:

10 *= 2816

20 ARRAYPOINTER = $FB; (251 decimal), a zero page address

30 OTHERPOINTER = $FD; (253 decimal), another zero page

address
40 —————————————

50 LDY #0:LDA $1

60 STA ARRAYPOINTER,Y

70 SCREEN - $0400

Notice that it's permissible to define the label

SCREEN anywhere in your program. It's not a zero page

address. You do have to be careful, however, with zero page

addresses (addresses lower than 255). So most ML pro

grammers make it a habit to define all their equates at the

start of their source code.

2. Put only one pseudo-op on a line.

Don't use a colon to put two pseudo-ops on a single

line:

10 *= 864

20 .O:.NH Wrong

30.0 Right

40 .NH Right

The main exception to this is the .BYTE pseudo-op.

Normally, you'll set up messages with a zero at their ends

to delimit them, to show that the message is complete.

When you delimit messages with a zero, you don't need to

know the length of the message; you just branch when you

come upon a zero:

10 *= 2816

20 SCREEN = $0400
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40 LDY #0 i I

50 LOOP LDA MESSAGE,Y:BEQ END; loading a zero signals I—1
end of message.

60 STA SCREEN,Y:INY: JMP LOOP; LADS ignores spaces after , ,

colon. I 1
70 ; message area here

80 MESSAGE .BYTE "PRINT THIS ON SCREEN":.BYTE 0

Any embedded pseudo-ops like + or = or #> can be I—I
used on multiple-statement lines. The pseudo-ops which

should be on a line by themselves are the I/O (input/

output) instructions which direct communication to disk,

screen, or printer, like .P, .S, .D, .END, and so forth. It's

also important to put .D at the start of your source code.

Generally, it's important that you space things cor

rectly. Avoid leading spaces before semicolons (see lines 50

and 60 above for correct use of semicolons. Everything on a

line following a semicolon is ignored, so spaces after the

semicolon are fine. Also, if you wrote SCREEN= 864,

LADS would think that your label was screen= instead of

screen. So you need that space between the label and the

equal sign. Likewise, you need to put a single space between

labels, mnemonics, and arguments:

LOOP LDA MESSAGE

Running them together will confuse LADS.

LOOPLDA MESSAGE

and

LOOP LDAMESSAGE

are wrong.

Spaces within remarks are ignored. In fact, LADS ig

nores everything within remarks, everything following a | |
semicolon on a line (see line 70). Thus, the semicolon

should come after anything you want assembled. You

couldn't rearrange line 50 above by putting the BEQ END L |
after the remark message. It would be ignored because it

followed the semicolon.

Errant spacing, while it sometimes won't assemble | |
correctly, is generally not fatal. LADS can ignore some spac

ing errors and will report error messages when it finds oth

ers. LOOPLDA would result in an UNDEFINED LABEL LJ
error message, for example. But it's a good idea to get into
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P"l the habit of putting colons and semicolons right up against
source code, with no extra spaces.

When using the text form of .BYTE, it's up to you

|"""j whether you use a close quote:

50 MESSAGE .BYTE "PRINT THIS" Right

60 MESSAGE .BYTE "PRINT THIS Also right

I ( 3. The first character of any label must be a letter, not a number.
LADS knows when it comes upon a label because a

number starts with a number; a label starts with a letter of

the alphabet:

10 *= $B00

20 LABEL = 255

30 LDA LABEL

40 LDA 255

Lines 30 and 40 accomplish the same thing and are

correctly written. It would confuse LADS, however, if you

wrote

20 5LABEL = 255 Wrong

since the number 5 at the start of the word LABEL would

signal the assembler that it had come upon a number, not a

label. You can use numbers anywhere else in a label

name—just don't put a number at the start of the name.

Also avoid using symbols like #, <, >, and *, and other

punctuation, shifted letters, or graphics symbols within la

bels. Stick with ordinary alphanumerics:

10 5LABEL Wrong

20LABEL15 Right

30*LABEL* Wrong

f—j 4. Move the program counter forward, never backward.

1 ] The *= pseudo-op should be used to make space in
memory. If you set the PC below its current address, you

|—i would be writing over previously assembled code:

1 10 *= $B00
20 LDA #15

30*= $B50 Right

10 •- $B10

20 LDA #15

30 *= $B00 Wrong; you'll assemble right over the LDA #15.
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Modifying LADS jj

LADS is, of course, itself a machine language program. This

book and the optional disk include all the source code for

LADS. It's heavily commented, so you can understand how I I
the assembler works and locate things you want to modify.

To change LADS, to customize your assembler, you'll

have to have typed in all the source code (or purchased this j j

book's disk). Be sure to make a couple of backup disks in case

the first attempts at improvements are less than entirely

successful. Then, modify one or more of the subprograms such

as Eval or Indisk, and SCRATCH the earlier subprogram(s) on

disk and BLOAD or BOOT LADS. For additional safety, RE

NAME "LADS" TO "OLDLADS" so that you'll have a work

ing version of the assembler for any emergencies. Next,

DLOAD "DEFS128", which is LADS's starting subprogram,

and SYS 10000. LADS will then create a new version of itself

with your modifications incorporated and save it to disk under

the name LADS.

LADS can assemble its own source code because, to an

assembler, source code is source code. It doesn't have any

problems with self-regeneration nor does it harbor any

proscriptions against what is, after all, the ethically ambiguous

act of cloning.

U

LJ
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Commodore 128 Memory

Map

0-255 ($OOOO-$OOFF) Zero Page

The numbers in brackets ([ ]) following each entry are the corresponding Commodore 64 loca

tions. An asterisk in brackets ([♦]) indicates that the location is identical in the 64. All addresses

are listed in both decimal and hexadecimal

8502 I/O port data direction register [*]

8502 I/O port data register [*]

Bank value storage for JMPFAR and JSRFAR

Program counter storage for JMPFAR and JSRFAR

Status register storage for JMPFAR and JSRFAR

Accumulator storage for JMPFAR and JSRFAR

X register storage for JMPFAR and JSRFAR

Y register storage for JMPFAR and JSRFAR

Pointer to start of BASIC program text (in bank 0)

[43-44/$2B-$2C]

Pointer to start of variables (in bank 1)

[45-46/$2D-$2E]

Pointer to start of arrays (in bank 1)

[47-48/$2F-$30]

Pointer to start of free memory (in bank 1)

[49-50/$31-$32]

Pointer to bottom of dynamic string storage (in bank

1) [51-52/$33-$34]

Pointer to most recently used string (in bank 1)

[53-54/$35-$36]

Pointer to top of dynamic string storage (in bank 1)

[55-56/$37-$38]

Current BASIC line number [57-58/$39-$3A]

Pointer to current BASIC text character

[122-123/$7A-$7B]

Current DATA line number [63-64/$3F-$40]

Pointer to current DATA item [65-66/$41-$42]

Pointer to current BASIC variable name

[69-70/$47-$48]

Pointer to current variable contents

Floating-point accumulator 1 (FAC1)

[97-102/$61-$66]

Floating-point accumulator 2 (FAC2)

[105-110/$69-$6E]

Pointer into BASIC runtime stack at $0800-$09FF

Status byte for tape and serial I/O [*]

STOP key flag (127 = RUN/STOP key pressed) [*]

Number of files currently opened [*]

0

1

2

3-4

5

6

7

8

45-46

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

65-66

67-68

71-72

73-74

99-104

106-111

125-126

144

145

152

$00

$01

$02

$03-$04

$05

$06

$07

$08

$2D-$2E

$2F-$30

$31-$32

$33-$34

$35-$36

$37-$38

$39-$3A

$3B-$3C

$3D-$3E

$41-$42

$43-$44

$47-$48

$49-$4A

$63-$68

$6A-$6F

$7D-$7E

$90

$91

$98
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153

154

157

160-162

172-173

174-175

178-179

183

184

185

186

187-188

193-195

195-196

198

199

200-201

202-203

204-204

208

211

212

213

215

$99

$9A

$9D

$A0-$A2

$AC-$AD

$AE-$AF

$B2-$B3

$B7

$B8

$B9

$BA

$BB-$BC

$C1-$C2

$C3-$C4

$C6

$C7

$C8-$C9

$CA-$CB

$CC-$CD

$D0

$D3

$D4

$D5

$D7

216

217

224-225

226-227

228

229

230

231

232

268

$D8

$D9

$EO-$E1

$E2-$E3

$E4

$E5

$E6

$E7

$E8

Current input device [*]

Current output device [*]

Kernal message flag (192 = Kernal control and error

messages displayed, 128 = only control messages

displayed, 64 = only error messages displayed, 0 =

no messages displayed) [*]

Software jiffy clock [*]

Working pointer for LOAD, SAVE, and VERIFY [*]

Ending address for LOAD, SAVE, and VERIFY [*]

Pointer to cassette buffer [*]

Length of current filename [*]

Current logical file number (channel) [*]

Current secondary address [*]

Current device number [*]

Address of current filename [*]

Starting address for SAVE, LOAD, and VERIFY [*]

Starting address of memory to be loaded or saved to

tape [*]

Also used as a pointer during block memory moves

Bank for current LOAD, SAVE, or VERIFY operation

Bank where current filename is found

Pointer to RS-232 input buffer [247-248/$F7-$F8]

Pointer to RS-232 output buffer [249-250/$F9-$FA]

Pointer to current keyboard lookup table (in ROM)

[243-244/$F3-$F4]

Number of characters in keyboard buffer [198/$C6]

Current SHIFT, CONTROL, Commodore, and ALT

key status [653/028D]

Matrix coordinate of current key pressed [203/$CB]

Matrix coordinate of last key pressed [197/$C5]

Screen width flag (0 = 40 columns, 128 = 80

columns)

Text/graphics mode flag for 40-column screen:

224 = graphic 4 (split multicolor bitmapped and

text)

160 = graphic 3 (multicolor bitmapped)

96 = graphic 2 (split bitmapped and text)

32 = graphic 1 (bitmapped)

0 = graphic 0 (text)

Shadow register for CHREN bit of location $01 (4 =

I/O block at $D000-$DFFF, 0 = character ROM at

$D000-$DFFF)

Pointer to current text screen line

[209-210/$Dl-$D2]

Pointer to current color (attribute) line

[243-244/$F3-$F4]

Bottom line of current window

Top line of current window

Left margin of current window

Right margin of current window

Line for input [201/$C9]

u

u

u

u

u
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233

234

235

236

237

238

243

$E9

$EA

$EB

$EC

$ED

$EE

$F3

Starting logical column for input [202/$CA]

Ending logical column for input [200/$C8]

Current cursor line [214/$D6]

Current cursor column [211/$D3]

Maximum number of lines in screen

Maximum number of columns in a line [213/$D5]

Reverse mode flag (if nonzero, characters are printed

in reverse video) [199/$C7]

Quote mode flag (if nonzero, quote mode is in effect)

[212/$D4]

Insert mode flag (if nonzero, number of inserts pend

ing) [216/$D8]

Enable/disable character set switching with SHIFT-

Commodore (128 = disable switching, 0 = enable

switching) [657/$0291]

Enable/disable screen scrolling (128 = no scrolling,

0 = allow scrolling)

Unused [251-254/$FB-$FE]

244

245

247

248

$F4

$F5

$F7

$F8

251-254 $FB-$FE

256-511 ($0100-$01FF) Page One—System Stack

512-1023 ($0200-$03FF) Common RAM Vectors and Routines

BASIC input buffer (161 bytes)

[512-600/$0200-$0258]

INDFET routine to get a character from any bank

INDSTA routine to store a character in any bank

INDCMP routine to compare characters in any

banks

JSRFAR routine to jump to a subroutine in any

bank and return to the calling bank

JMPFAR routine to jump to a routine in any

bank without return

IERROR vector to BASIC error message routine
n

IMAIN vector to main BASIC immediate mode

loop [*]

ICRNCH vector to routine that tokenizes a line

of BASIC text [*]

IQPLOP vector to routine that lists a token as

characters [*]

IGONE vector to routine that executes a BASIC

statement token [*]

IEVAL vector to routine that evaluates an

arithmetic expression [*]

Vector to routine that tokenizes a two-byte token

Vector to routine that lists a two-byte token as

characters

Vector to routine that executes a two-byte BASIC

statement token

CINV vector to IRQ handler routine [•]

512-673

674-686

687-701

702-716

717-738

739-761

768-769

770-771

772-773

774-775

776-777

778-779

780-781

782-783

784-785

788-789

$0200-$02Al

$02A2-$02AE

$02AF-$02BD

$02BE-$02CC

$02CD-$02E2

$02E3-$02F9

$0300-$0301

$0302-$0303

$0304-$0305

$0306-$0307

$0308-$0309

$030A-$030B

$030C-$030D

$030E-$030F

$0310-$0311

$0314-$0315
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790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-804

806-807

808-809

810-811

812-813

816-817

818-819

842-851

866-875

876-885

886-895

896-926

902

927-938

939-950

951-959

960-968

969-977

1024-2047

2048-7167

Storage

2048-2559

2560-2561

2562

2563

2565-2566

2567-2568

$0316-$0317

$0318-$0319

$031A-$031B

$031C-$031D

$031E-$031F

$0320-$0321

$0322-$0323

$0324-$0325

$0326-$0327

$0328-$0329

$032A-$032B

$032C-$032D

$0330-$0331

$0332-$0333

$034A-$0353

$0362-036B

$036C-$0375

$0376-$037F

$0380-$039E

$0386

$039F-$03AA

$03AB-$03B6

$03B7-$03BF

$03C0-$03C8

$03C9-$03Dl

($0400-$07FF)

($0800-$lBFF)

$0800-$09FF

$0A00-$0A01

$0A02

$0A03

$0A05-$0A06

$0A07-$0A08

CBINV vector to BRK handler routine [*]

NMINV vector to NMI handler routine [*]

IOPEN vector to the Kernal OPEN routine [*]

ICLOSE vector to the Kernal CLOSE routine [*]

ICHKIN vector to the Kernal CHKIN routine [*]

ICKOUT vector to the Kernal CKOUT routine [*]

ICLRCH vector to the Kernal CHRCH routine [*]

IBASIN vector to the Kernal BASIN routine [*]

IBSOUT vector to the Kernal BSOUT routine [*]

ISTOP vector to the Kernal STOP routine [*]

IGETIN vector to the Kernal GETIN routine [*]

ICLALL vector to the Kernal CLALL routine [*]

ILOAD vector to the Kernal LOAD routine [*]

ISAVE vector to the Kernal SAVE routine [*]

Keyboard input buffer [631-640/$0277-$0280]

Table of logical file numbers

[601-610/$0259-$0262]

Table of device numbers for open files

[611-620/$0263-$026C]

Table of secondary addresses for open files

[621-630/$026D-$0276]

Routine to get next character of BASIC program

text from bank 0 (CHRGET) [115-138/$73-$8A]

Entry point in CHRGET to retrieve previous

character (CHRGOT) [121/$79]

Indirect fetch from bank 0 for ROM routines

Indirect fetch from bank 1 for ROM routines

Fetch from bank 1 for ROM routines; uses

$24-$25 as pointer

Fetch from bank 0 for ROM routines; uses

$26-$27 as pointer

Fetch from bank 0 for ROM routines; uses

$3D-$3E as pointer

BASIC stack: pointers for DO-LOOP, BEGIN-

BEND, etc.

System restore vector (points to BASIC warm-

start routine)

Flag to indicate that system vector has been

initialized

PAL/NTSC flag (0 = NTSC video, 1 = PAL

video) [678/$02A6]

Pointer to bottom of memory used for pro

gram text (in bank 0) [641-642/$0281-$0282]

Pointer to top of memory used for variables

(in bank 1) [643-644/$0283-$0284]

u

u

u

u
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2624-2687 $0A40-$0A7F

2576 $0A10 RS-232 control register [659/$0293]

2577 $OA11 RS-232 command register [660/$0294]

2578-2579 $0A12-$0A13 RS-232 user-defined baud rate

[661-662/$0295-$0296]

2580 $0A14 RS-232 status register [663/$0297]

2582-2583 $0A16-$0A17 RS-232 baud timing constant value

[665-666/$0299-$029A]

2584 $0A18 Index to last character in the RS-232 input

buffer [667/$029B]

2585 $0A19 Index to first character in the RS-232 input

buffer [668/$029C]

2586 $OA1A Index to last character in the RS-232 output

buffer [669/$029D]

2587 $OA1B Index to first character in the RS-232 output

buffer [670/$029E]

2592 $0A20 Maximum number of characters in the key

board buffer [649/$0289]

2594 $0A22 Enable/disable key repeating (128 = all keys

repeat, 64 = no keys repeat, 0 = space,

INST/DEL, and cursor keys delete)

[650/$028A]

Storage area for screen editor variables during

40/80-column screen display exchanges

2752 $0AC0 Number of function ROMs present

2753-2756 $0ACl-$0AC4 Table of function ROM identifier bytes

2816-3007 $0B00-$0BBF Cassette buffer [828-1019/$33C-$03FB]

2816-3071 $0B00-$0BFF Holds image of boot sector during disk boot

3072-3327 $0C00-$0CFF RS-232 input buffer

3328-3583 $0D00-$0DFF RS-232 output buffer

3584-4095 $0E00-$0FFF Sprite definition area

4096-4105 $1000-$1009 Table of indexes to function key definitions

4106-4351 $100A-$10FF Storage area for function key definitions

4616 $1208 Error number for last error

4617-4618 $1209-$120A Line number where last error occurred

4624-4625 $1210-$1211 Pointer to end of BASIC program text (in

bank 0)

4626-4627 $1212-$1214 Pointer to top of memory for BASIC program

text (in bank 0)

4632-4634 $1218-$121A JSR and address for USR statement

2024-65279 ($0800-$FEFF) Bank 1: BASIC Variable Storage

7168-65279 ($lC00-$FEFF) Bank 0: BASIC Program Text Storage

7168-16383 ($1COO-$3FFF) Bank 0: 40-Column High-Resolution

Screen and Color Memory (if used)

7168-8191 $1COO-$1FFF Color memory for bitmapped screen

8192-16383 $2000-$3FFF Bitmap for high-resolution screen

16348-45055 ($4000-$AFFF) BASIC ROM
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16343 $4000

16346 $4003

16349 $4006

BASIC cold-start vector

BASIC warm-start vector

BASIC IRQ entry vector

45056-49151 ($B000-$BFFF) Machine Language Monitor ROM

45056 $B000 Monitor cold-start vector

45059 $B003 Monitor BRK entry vector

49152-53247 ($C000-$CFFF) Screen Editor ROM

Editor Jump Table

49152 $C000 Initialize screen editor and video chips (Kernal CINT)

49155 $C003 Display a character

49158 $C006 Get a key from keyboard buffer (GETIN from keyboard)

49161 $C009 Get a character from the screen (BASIN from screen)

49164 $C00C Print a character on the screen (BSOUT to screen)

49167 $C00F Return number of lines and columns in current window

(Kernal SCRORG)

49170 $C012 Scan keyboard for keypress (Kernal KEY)

49173 $C015 Check for key repeat

49176 $C018 Read or set cursor position (Kernal PLOT)

49179 $C01B Move cursor on 80-column screen

49182 $C01E Handle ESC key sequences

49185 $C021 Define a programmable key (Kernal PFKEY)

49188 $C024 Editor IRQ entry vector

49191 $C027 Initialize character set for 80-column display (Kernal

DLCHR)

49194 $C02A Switch between 40- and 80-column displays (Kernal

SWAPPER)

49197 $C02D Set window boundaries

53248-57343 ($D000-$DFFF) Character ROM

u

u

u

u

LJ

53248-54271

54272-55295

$D000-$D3FF

$D400-$D7FF

55296-56319 $D800-$DBFF

56320-57343 $DC00-$DFFF

Uppercase/graphics set definitions (normal)

Uppercase/graphics set definitions (reverse

video)

Lowercase/uppercase set definitions

(normal)

Lowercase/uppercase set definitions (reverse

video)

LJ

53248-57343 ($D000-$DFFF) I/O Block

53248-53296 $D000-$D030 VIC 40-column video chip

54272-54300 $D400-$D41C SID sound chip

54528-54539 $D500-$D50B MMU memory management chip

54784-54785 $D600-$D601 8563 80-column video chip

55296-56319 $D800-$DBFF Color memory for 40-column screen

56320-56335 $DC00-$DC0F CIA input/output chip 1

56576-56591 $DD00-$DD0F CIA input/output chip 2

U

u
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56832-57087 $DE00-$DEFF Expansion I/O slot (unused)

57088-57098 $DF00-$DF0A REC expansion memory controller chip in

memory expansion module

57344-65535 ($E000-$FFFF) Kernal ROM

New Kernal Jump Table Entries for the 128

65351 $FF47 SPIN-SPOUT Set serial ports for fast input or output

65354 $FF4A CLOSE_ALL Close all files to a device

65357 $FF4D C64MODE Enter 64 mode

65360 $FF50 DMA_CALL Send command to DMA device

65363 $FF53 BOOT_CALL Boot a program from disk

65366 $FF56 PHOENIX Initialize function ROM cartridges

65369 $FF59 LKUPLA Look up logical file number in file tables

65372 $FF5C LKUPSA Look up secondary address in file tables

65375 $FF5F SWAPPER Switch between 40- and 80-column displays

65378 $FF62 DLCHR Initialize character set for 80-column display

65381 $FF65 PFKEY Assign a string to a function key

65384 $FF68 SETBNK Set banks for I/O operations

65387 $FF6B GETCFG Get byte to configure MMU for any bank

65390 $FF6E JSRFAR Jump to a subroutine in any bank, with re

turn to the calling bank

65393 $FF71 JMPFAR Jump to a routine in any bank, with no re

turn to the calling bank

65396 $FF74 INDFET Load a byte from an address (offset of Y) in

any bank

65399 $FF77 INDSTA Store a byte to an address (offset of Y) in

any bank

65402 $FF7A INDCMP Compare a byte to the contents of an ad

dress (offset of Y) in any bank

65405 $FF7D PRIMM Print the string in memory immediately

following the JSR to this routine

Standard Commodore Kernal Jump Table

(Also found on the Commodore 64, VIC-20, 16, and Plus/4)

65409 $FF81 CINT Initialize screen editor and video chips

65412 $FF84 IOINIT Initialize I/O devices

65415 $FF87 RAMTAS Initialize RAM and buffers

65418 $FF8A RESTOR Restore default values for Kernal indirect RAM

vectors

65421 $FF8D VECTOR Set or copy Kernal indirect RAM vectors

65424 $FF90 SETMSG Enable or disable Kernal messages

65427 $FF93 SECND Send secondary address

65430 $FF96 TKSA Send secondary address to talker

65433 $FF99 MEMTOP Set or read top of RAM

65436 $FF9C MEMBOT Set or read bottom of RAM

65439 $FF9F KEY Read the keyboard

65442 $FFA2 SETTMO Enable/disable IEEE timeouts (unused in the

128)

65445 $FFA5 ACPTR Input a byte from the serial bus

65448 $FFA8 CIOUT Output a device to the serial bus
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65451

65454

65457

65460

65453

65466

65469

65472

65475

65478

65481

65484

65487

65490

65493

65496

65499

65502

65505

65508

65511

65514

65517

65520

65523

$FFAB

$PFAE

$FFB1

$FFB4

$FFB7

$FFBA

$FFBD

$FFC0

$FFC3

$FFC6

$FFC9

$FFCC

$FFCF

$FFD2

$FFD5

$FFD8

$FFDB

$FFDE

$FFE1

$FFE4

$FFE7

$FFEA

$FFED

$FFF0

$FFF3

UNTLK

UNLSN

LISTN

TALK

READSS

SETLFS

SETNAM

OPEN

CLOSE

CHKIN

CKOUT

CLRCH

BASIN

BSOUT

LOAD

SAVE

SETTIM

RDTIM

STOP

GETIN

CLALL

UDTIM

SCRORG

PLOT

IOBASE

Send untalk command to serial device

Send unlisten command to serial device

Send listen command to serial device

Send talk command to serial device

Read the I/O status

Set channel, device number, and secondary

address

Specify length and address of current filename

Open a logical file

Close a logical file

Set a specified channel for input

Set a specified channel for output

Clear all channels

Retrieve a byte from the input channel

Send a byte to the output channel

Load or verify data from device

Save contents of memory to a device

Set jiffy clock

Read jiffy clock

Read RUN/STOP key status

Get a byte from the input buffer

Close all files and channels

Update jiffy clock

Get size of current screen window

Set or read cursor position

Get location of I/O block

u

u

u

u

u

65280-65284 ($FF00-$FF04) Common MMU Registers
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n LADS Source Code

■ The source code for LADS (Label Assembly Development Sys

tem) is divided into 13 sections, each of which accomplishes a

f"! particular task for the assembler. All subroutines and most in-

! dividual instructions are commented. If you are interested in

studying or customizing the assembler, here is a brief over

view of functions of the various sections:

• Defs. All the labels for zero page pointers and ROM routines

used by the assembler are defined here.

• Eval. The main routine. Most other sections of the assembler

are called from within Eval to perform their various services.

Eval starts assembly (line 30) and ends assembly (line 4260).

In between, Eval takes each line of source code apart,

determining the intended addressing mode.

• Equate. Builds the database of labels during the assembler's

first pass through the source code.

• Array. Searches through the label database on the second

pass and locates a label name and its numeric value.

• Openl. Loads or saves disk files when DISKLADS is invoked

with .D

• Findmn. A search routine to look through the list of 8502

mnemonics (in Tables below) to find the correct opcode.

• Getsa. Locates the start address as the first thing in the

source code. Also contains the byte-by-byte source code

reading routine, CHARIN.

• Valdec. Transforms ASCII numerals from the source code

into integers. Thus, the characters 2 5 become the number 25

!""") after Valdec finishes with them.
• Indisk. The main input routine. Each line of source code is

brought in, analyzed in various ways, and prepared for Eval.

["""[ • Math. Handles the + pseudo-op.
• Printops. Keeps track of our location within the object code

and formats screen and printer output in various ways.

n • Pseudo. Handles all pseudo-ops except + *= and .BYTE.

The .D section transforms RAMLADS into DISKLADS.

• Tables. LADS's internal database. Contains lookup tables of

I""! mnemonics, opcodes, and addressing-mode categories. In

cludes flags, pointers, error messages, and registers used by

various routines.
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Appendix E

Library of Subroutines

Here is a collection of techniques you'll need to use in many

of your ML programs. Those techniques which are not inher-

ently easy to understand are followed by an explanation.

Increment and Decrement Double-Byte Numbers
You'll often want to raise or lower a number by 1. To in

crement a number, you add 1 to it: Incrementing 5 results in 6.

Decrementing lowers a number by 1. Single-byte numbers are

easy; you just use INC or DEC. But you'll often want to in

crement two-byte numbers which hold addresses, game

scores, pointers, or some other number which requires two

bytes. Two bytes, ganged together and seen as a single num

ber, can hold values from 0 ($0000) up to 65535 ($FFFF).

Here's how to raise a two-byte number by 1, to increment it:

(Let's assume that the number you want to increment or

decrement is located in addresses $0605 and $0606, and the

ML program segment performing the action is located at

$5000.)

5000 INCREMENT INC $0605 Raise the low byte.

5003 BNE GOFORTH If not zero, leave high byte alone.

5005 INC $0606 Raise high byte.

5008 GOFORTH... Continue with program.

The trick in this routine is the BNE. If the low byte isn't

raised to 0 (from 255), we don't need to add a carry to the

high byte, so we jump over it. However, if the low byte does

turn into a 0, the high byte must then be raised. This is similar

to the way an ordinary decimal increment creates a carry

when you add 1 to 9 (or to 99 or 999). The lower number

turns to 0, and the next column over is raised by 1.

To double-decrement, you need an extra step. The reason

it's more complicated is that the 8502 chip has no way to test

if you've crossed over to $FF, down from $00. BNE and BEQ

will test if something is 0, but nothing tests for $FF. (The N

flag is turned on when you go from $00 to $FF, and BPL or

BMI could test it.) The problem with it, though, is that the N

flag isn't limited to sensing $FF. It is sensitive to any number

higher than 127 decimal ($7F).
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So, here's the way to handle double-deckers: j i

5000 LDA $0605 Load in the low byte, affecting the 1—'

zero flag.

5003 BNE FIXLOWBYTE If it's not zero, lower it, skipping j /

high byte. I—'
5005 DEC $0606 Zero in low byte forces this.

5008 FIXLOWBYTE DEC $0605 Always dec the low byte. ,

Here we always lower the low byte, but lower the high ^—'
byte only when the low byte is found to be zero. If you think

about it, that's the way any subtraction would work.

Comparison
Comparing a single-byte against another single-byte is easily

achieved with CMP. Double-byte comparison can be handled

this way:

(Assume that the numbers you want to compare are lo

cated in addresses $0605,0606 and $0700,0701. The ML pro

gram segment performing the comparison is located at $5000.)

5000 SEC

5001 LDA $0605 Low byte of first number

5004 SBC $0700 Low byte of second number

5007 STA $0800 Temporary holding place for this result

500A LDA $0606 High byte of first number

500D SBC $0701 High byte of second number, leave result in A

5010 ORA $0800 Results in zero if A and $0800 were both zero

The flags in the status register are left in various states

after this routine—you can test them with the B instructions

and branch according to the results. The ORA sets the Z (zero)

flag if the results of the first subtraction (left in $0800) and the

second subtraction (in A, the accumulator) were both zero.

This would happen only if the two numbers tested were \ j
identical, and BEQ would test for this (Branch if EQual).

If the first number is lower than the second, the carry flag

would have been cleared, so BCC (Branch if Carry Clear) will j j
test for that possibility. If the first number is higher than the

second, BCS (Branch if Carry Set) will be true. You can there

fore branch with BEQ for =, BCC for <, and BCS for >. Just M
keep in mind which number you're considering the first and

which the second in this test.
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Double-Byte Addition
CLC ADC and SEC SBC will add and subtract one-byte num

bers. To add two-byte numbers, use:

(Assume that the numbers you want to add are located in

addresses $0605,0606 and $0700,0701. The ML program seg

ment performing the addition is located at $5000.)

5000 CLC Always do this before any addition.

5001 LDA $0605

5004 ADC $0700

5007 STA $0605 The result will be left in $0605,0606.

500A LDA $0606

500D ADC $0701

5010 STA $0606

It's not necessary to put the result on top of the number

in $0605,0606—you can put it anywhere. But you'll often be

adding a particular value to another and not needing the orig

inal any longer—adding ten points to a score for every blasted

alien is an example. If this were the case, following the logic

of the routine above, you would have a 10 in $0701,0702:

0701 0A The ten points you get for hitting an alien

0702 00

You'd want that 10 to remain undisturbed throughout the

game. The score, however, keeps changing during the game

and, held in $0605,0606, it can be covered over, replaced with

each addition.

Double-Byte Subtraction
This is quite similar to double-byte addition. Since subtracting

one number from another is also a comparison of those two

numbers, you could combine subtraction with the double-byte

comparison routine above (using ORA). In any event, this is

the way to subtract double-byte numbers. Be sure to keep

straight which number is being subtracted from the other.

We'll call the number being subtracted the second number.

(Assume that the number you want to subtract—the "sec

ond number"—is located in addresses $0700,0701, and that

the number it is being subtracted from—the "first number"—

is held in $0605,0606. The result will be left in $0605,0606.

The ML program segment performing the subtraction is lo

cated at $5000.)
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5000 SEC

5001 LDA

5004 SBC

5007 STA

500A LDA

500D SBC

5010 STA

E

$0605

$0700

$0605

$0606

$0701

$0606

Always do this before any subtraction

Low byte of first number

Low byte of second number

Result will be left in $0605,0606

High byte of first number

High byte of second number

High byte of final result

LJ

U

U

u

u
Multibyte Addition and Subtraction
Using the methods for adding and subtracting illustrated above,

you can manipulate larger numbers than can be held within

two bytes (65535 is the largest possible two-byte integer).

Here's how to subtract one four-byte-long number from another.

The locations and conditions are the same as for the two-byte

subtraction example above, except the ''first number" (the

minuend) is held in the four-byte chain, $0605,0606,0607,0608,

and the "second number" (the subtrahend, the number being

subtracted from the first number) is in $0700,0701,0702,0703.

Also observe that the most significant byte is held in

$0703 and $0608. We'll use the Y register for indirect Y

addressing, four bytes in zero page as pointers to the two

numbers, and the X register as a counter to make sure that all

four bytes are dealt with. This means that X must be loaded

with the length of the chains we're subtracting—in this case, 4.

Length of the byte chains.

Set Y...

always before subtraction.

5000

5002

5004

5005

5007

5009

500B

500C

5010

LDX

LDY

SEC

#4

#0

LOOPLDA (FIRSTLY

SBC

STA

INY

DEX

BNE

(SECONDLY

(FIRSTLY

LOOP

The answer will be left in $0605-$0608.

Raise index to chains. \ f

Lower counter. *—'

Haven't yet done all four bytes.

Before this will work, the pointers in zero page must have j f

been set up to allow the indirect Y addressing. This is one way

to do it:

2000 FIRST = $FB Define zero page pointers at $FB and $FD. l^J
2000 SECOND = $FD

2000 SETUP LDA #5 Set up pointer to $0605.

2002 STA FIRST I (
2004 LDA #6 ^
2006 STA FIRST+1
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i~""| 2008 LDA #0 Set up pointer to $0700.

' ' 200A STA SECOND
200C LDA #7

r—j 200E STA SECOND+1

Multiplication

n x 2
ASL (no argument used, "accumulator addressing mode") will

multiply the number in the accumulator by 2.

X 3

To multiply by 3, use a temporary variable byte we'll call

TEMP.

5000 STA TEMP Put the number into the variable.

5003 ASL Multiply it by 2.

5004 ADC TEMP (X*2 + X = X* 3)—the answer is in A.

X4

To multiply by 4, just ASL twice.

5000 ASL * 2

5001 ASL * 2 again

X 4 (Two Byte)

To multiply a two-byte integer by 4, use a two-byte variable

we'll call TEMP and TEMP+1.

5000 ASL TEMP Multiply the low byte by 2...

5003 ROL TEMP+1 moving any carry into the high byte.

5006 ASL TEMP Multiply the low byte by 2 again.

5009 ROL TEMP+1 Again acknowledge any carry.

'■j x io
To multiply a two-byte integer by 10, use an additional two-

P] byte variable we'll call STORE.

5000 First, put the number into STORE for

^t^ safekeeping.

| I 5000 LDA TEMPrSTA STORE:LDA TEMP+1:STA STORE+1

500C Then multiply it by 4.

500C ASL TEMP Multiply the low byte by 2...

~I 500F ROL TEMP+1 moving any carry into the high byte.
' 5012 ASL TEMP Multiply the low byte by 2 again.

5015 ROL TEMP+1; Again acknowledge any carry.

—7 5018 Then add the original, resulting in X * 5.
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501B

501E

5021

501D

5024

5027

5027

502A

LDA

ADC

STA

LDA

ADC

STA

ASL

ROL

STORE

TEMP

TEMP

STORE+1

TEMP+1

TEMP+1

TEMP

TEMP+1

, .. _ LJ
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U
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Then just multiply by 2 since (5*2 = 10)

Lj
ROL TEMP+1

X ?

To multiply a two-byte integer by other odd values, just use a

similar combination of addition and multiplication which re

sults in the correct amount of multiplication.

X 100

To multiply a two-byte integer by 100, just go through the

above subroutine twice.

X 256

To multiply a one-byte integer by 256, just transform it into a

two-byte integer.

5000 LDA TEMP

5003 STA TEMP+1

5006 LDA #0

5008 STA TEMP

Division

-*- 2

LSR (no argument used, "accumulator addressing mode") will

divide the number in the accumulator by 2. \ I

4

To divide by 4, just LSR twice. j \

5000 LSR / 2

5001 LSR / 2 again

Lj
-5- 4 (Two Byte)

To divide a two-byte integer, called TEMP, by 2:

5000 LSR TEMP+1 Shift high byte right... Lj
5001 ROR TEMP pulling any carry into the low byte.
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Typing In LADS

n
LADS is a very long program. The directions for typing it in

are listed below. For those who prefer not to type it in, it can

be purchased on disk, along with many of the other programs

in this book, by calling COMPUTE! Publications toll-free at 1-

800-346-6767 (in New York, call 1-212-887-8525) or by using

the coupon in the back of this book. Be sure to state that you

want the disk for the book 128 Machine Language for Beginners.

In order to make it as easy as possible to type in LADS,

we've included two program entry aids written in BASIC:

"The Automatic Proofreader" and "MLX." To assist you in

understanding how to enter these programs, COMPUTE! has

established the following listing conventions.

Generally, BASIC program listings like the one for MLX

will contain words within braces which spell out any special

characters: {DOWN} means to press the cursor-down key; {5

SPACES} means to press the space bar five times.

To indicate that a key should be shifted (press the key

while holding down the SHIFT key), the key will be under

lined in our listings. For example, S means to type the S key

while holding the SHIFT key. This would appear on your

screen as a heart symbol. If you find an underlined key en

closed in braces (for example, {10 N}), you should type the

key as many times as indicated. In that case, you would enter

ten shifted N's.

If a key is enclosed in special brackets, \< >\, you should

hold down the Commodore key while pressing the key inside

the special brackets. (The Commodore key is the key in the

lower left corner of the keyboard.) Again, if the key is pre-

ceded by a number, you should press the key as many times

as indicated; f<9(g)>| means type Commodore-@ nine times.

Refer to Figure F-l when entering cursor and color control

keys:
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Figure F-l. Keyboard Conventions

When You

Read: Press: See:

When You

Read:

i 5

{ F2 }

{ F3 }

{ R }

{ F5 }

{ F6 }

{ F7 }

{ F8 }

4,

r

Typing In LADS

Before you can enter LADS, you must first enter the "Machine
Language Editor" program (MLX), Program F-2. MLX will

allow you to enter the LADS object code without a mistake. It
is therefore extremely important that MLX be entered cor
rectly. To assist you in typing in MLX you should use "The
Automatic Proofreader." Here are the steps you should follow
to enter LADS.

1. Read the directions for using the Automatic Proofreader
below.

2. Type in Program F-l, the Automatic Proofreader, and save
it to disk or tape.

3. Activate the Automatic Proofreader and type in and save
Program F-2, MLX, checking each line with the Automatic
Proofreader as you finish typing it in.
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4. Read the directions for using MLX.

5. Run MLX and begin entering the object code for LADS,

Program F-3.

6. When you have finished entering the LADS object code,

use the Save option of MLX to save a copy.

7. You are now ready to BLOAD LADS.

8. Type in and save Program F-4, using the filename LOADER.

If you have a 1571 disk drive, use the "Autoboot Maker"

utility from the Test/Demo Disk that came with the 1571

drive to make "Loader" run when you turn on your system.

The Automatic Proofreader

Philip I. Nelson

"The Automatic Proofreader" helps you type in program list

ings without typing mistakes. It's a short error-checking pro

gram that conceals itself in memory and adheres to your

Commodore's operating system. Each time you press RETURN

to enter a program line, the Proofreader displays a two-letter

checksum in reverse video at the top of your screen. If the

checksum on your screen doesn't match the one in the printed

listing, you've typed the line incorrectly—it's that simple. You

don't have to use the Proofreader to enter printed listings, but

doing so greatly reduces your chances of making a typo.

Getting Started

First, type in the Automatic Proofreader program exactly as it

appears in the listing. Since the Proofreader can't check itself,

type carefully to avoid mistakes. Don't omit any lines, even if

they contain unfamiliar commands or you think they don't ap

ply to your computer. As soon as you're finished typing the

Proofreader, save at least two copies on disk or tape before

running it the first time. This is very important because the

Proofreader erases the BASIC portion of itself when you run

it, leaving only the machine language portion in memory.

When that's done, type RUN and press RETURN. After

announcing which computer it's running on, the Proofreader
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installs the ML routine in memory, displays the message j j

PROOFREADER ACTIVE, erases the BASIC portion of itself,

and ends. If you type LIST and press RETURN, you'll see that

no BASIC program remains in memory. The computer is ready 1 i
for you to type in a new BASIC program.

Entering Programs 1 :

Once the Proofreader is active, you can begin typing in a

BASIC program as usual. Every time you finish typing a line

and press RETURN, the Proofreader displays a two-letter

checksum (reverse-video letters) in the upper left corner of the

screen. Compare this checksum with the two-letter checksum

printed to the left of the corresponding line in the program

listing. If the letters match, it's almost certain the line was

typed correctly. If the letters don't match, check for your mis

take and correct the line.

The Proofreader ignores spaces that aren't enclosed in

quotation marks, so you can omit spaces (or add extra ones)

between keywords and still see a matching checksum. For ex

ample, these two lines generate the same checksum:

10 PRINT"THIS IS BASIC"

10 PRINT "THIS IS BASIC'

However, since spaces inside quotation marks are almost

always significant, the Proofreader pays attention to them. For

instance, these two lines generate different checksums:

10 PRINT"THIS IS BASIC"

10 PRINT"THIS ISBA SIC"

A common typing mistake is transposition—typing two

successive characters in the wrong order, like PIRNT instead

of PRINT or 64378 instead of 64738. A checksum program s (

that adds up the values of all the characters in a line can't ^
possibly detect transposition errors (it can only tell whether

the right characters are present, regardless of what order J [

they're in). Because the Proofreader computes the checksum ^—'
with a more sophisticated formula, it is also sensitive to the

position of each character within the line and thus catches i f

transposition errors. ******
The Proofreader does not accept keyword abbreviations

(for example, ? instead of PRINT). If you prefer to use abbrevi

ations, you can still check the line with the Proofreader: Sim

ply LIST the line after typing it, move the cursor back onto
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the line, and press RETURN. LISTing the line substitutes the

full keyword for the abbreviation and allows the Proofreader

to work properly. The same technique works for rechecking a

program you've already typed in: Reload the program, LIST

several lines on the screen, and press RETURN over them.

Do not use any GRAPHIC commands while the Proofreader

is active. When you activate a command like GRAPHIC 1, the

computer moves everything at the start of BASIC program

space—including the Proofreader—to another memory area,

causing the Proofreader to crash. The same thing happens if

you run any program that contains a GRAPHIC command.

The Proofreader deallocates any graphics areas before install

ing itself in memory, but you are responsible for seeing that

the computer remains in this configuration.

Though the Proofreader doesn't interfere with other

BASIC operations, it's always a good idea to disable it before

running any other program. Some programs may need the

space occupied by the Proofreader's ML routine or may create

other memory conflicts. However, the Proofreader is purposely

made difficult to dislodge: It's not affected by tape or disk op

erations, or by pressing RUN/STOP-RESTORE. The simplest

way to disable it is to turn the computer off, then on again.

Machine Language Editor, MLX

Ottis R. Cowper

"MLX" is a new way to enter long machine language pro

grams without a lot of fuss. MLX lets you enter the numbers

from a special list that looks similar to BASIC DATA state

ments. It checks your typing on a line-by-line basis. It won't

let you enter invalid characters or let you continue if there's a

mistake in a line. It won't even let you enter a line or digit out

of sequence.

Using MLX

Type in and save some copies of MLX (you'll want to use it to

enter future ML programs from other COMPUTE! publica

tions). When you're ready to enter "LADS Object Code," Pro

gram F-3, load and run MLX. It asks you for a starting address
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and an ending address. These addresses are I i

Starting Address: 2710

Ending Address: 3D27

If you're unfamiliar with machine language, the addresses I !
(and all other values you enter in MLX) may appear strange.

Instead of the usual decimal numbers you're accustomed to, ,

these numbers are in hexadecimal—a base 16 numbering sys- 1 '

tern commonly used by ML programmers. Hexadecimal—hex

for short—includes the numbers 0-9 and the letters A-R But

don't worry—even if you know nothing about ML or hex, you

should have no trouble using MLX.

After you enter the starting and ending addresses, MLX

will offer you the option of clearing the workspace. Choose

this option if you're starting to enter LADS for the first time. If

you're continuing to enter LADS that you partially typed from

a previous session, don't choose this option.

It's not necessary to know more about this option to use

MLX, but here's an explanation if you're interested: When you

first run MLX, the workspace area contains random values.

Clearing the workspace fills it with zeros. This makes it easier

to find where you left off if you enter the listing in multiple

sittings. However, clearing the workspace is useful only before

you first begin entering a listing; there's no need to clear it

before you reload to continue entering a partially typed listing.

When you save your work with MLX, it stores the entire

contents of the data buffer. If you clear the workspace before

starting, the incomplete portion of the listing is filled with ze

ros when saved and thus refilled with zeros when reloaded. If

you don't clear the workspace when first starting, the in

complete portion of the listing is filled with random data.

Whether or not you clear the workspace before you reload, \^J
this random data will refill the unfinished part of the listing

when you load your previous work. The rule, then, is to use .

the clear workspace feature before you begin entering data j_j
from a listing and not to bother with it afterward.

At this point, MLX presents a menu of commands:

Enter data LJ
Display data

Load data {

Save file [^

Catalog disk

Quit
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f~\ Entering a Listing
To begin entering data, press E. You'll be asked for the address

at which you wish to begin entering data. (If you pressed E by

j\ mistake, you can return to the command menu by pressing
RETURN.) When you begin typing LADS, you should enter

the starting address here. If you're typing LADS in multiple

{ | sittings, you should enter the address where you left off typing

~~ at the end of the previous session. In any case, make sure the

address you enter corresponds to the address of a line of the

LADS MLX listing. Otherwise, you'll be unable to enter the

data correctly.

After you enter the address, you'll see that address appear

as a prompt with a nonblinking cursor. Now you're ready to

enter data. Type in all nine numbers on that line, beginning

with the first two-digit number after the colon (:). Each line

represents eight data bytes and a checksum. Although an

MLX-format listing appears similar to the "hex dump" ma

chine language listings you may be accustomed to, the extra

checksum number on the end allows MLX to check your typ

ing. (You can enter the data from an MLX listing using the

built-in monitor if the rightmost column of data is omitted, but

we recommend against it. It's much easier to let MLX do the

proofreading and error checking for you.)

Only the numbers 0-9 and the letters A-F can be typed

in. If you press any other key (with some exceptions noted

below), you'll hear a warning buzz. To simplify typing, MLX

redefines the function keys and the + and — keys on the nu

meric keypad so that you can enter data one-handed. Figure F-

2 shows the keypad configuration supported by MLX.

<—^ MLX checks for transposed characters. If you're supposed

I \ to type in A0 and instead enter 0A, MLX will catch your mis

take. To correct typing mistakes before finishing a line, use the

j j INST/DEL key to delete the character to the left of the cursor.

* J (The cursor-left key also deletes.) If you mess up a line really

badly, press CLR/HOME to start the line over.

} The RETURN key is also active, but only before any data

|] is typed on a line. Pressing RETURN at this point retmns you
to the command menu. After you type a character of data,

MLX disables RETURN until the cursor returns to the start of

J I a line. Remember, you can press CLR/HOME to get to a line
number prompt quickly.
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Figure F-2. Keypad for 128 MLX
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Beep Or Buzz

When you enter a line, MLX recalculates the checksum from

the eight bytes and the address and compares this value to the

number from the ninth column. If the values match, you'll

hear a pleasant beep to indicate that the line was entered cor

rectly. The data is then added to the workspace area, and the

prompt for the next line of data appears. But if MLX detects a

typing error, you'll hear a low buzz and see an error message.

MLX will then redisplay the line for editing.

To make corrections in a line that MLX has redisplayed

for editing, compare the line on the screen with the one

printed in the listing, then move the cursor to the mistake and

type the correct key. The cursor-left and -right keys provide

the normal cursor controls. (The INST/DEL key now works as

an alternative cursor-left key.) You cannot move left beyond

the first character in the line. If you try to move beyond the

rightmost character, you'll reenter the line. During editing, RE

TURN is active; pressing it tells MLX to recheck the line. You

can press the CLR/HOME key to clear the entire line if you

want to start from scratch, or if you want to get to a line num

ber prompt to use RETURN to get back to the menu.
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) 1 After you have entered the last number on the last line of

the listing, MLX automatically moves to the Save option.

H Other MLX Functions
The second menu choice, DISPLAY DATA, examines memory

and shows the contents in the same format as the program

I | listing (including the checksum). When you press D, MLX asks
you for a starting address. Be sure that the starting address

you give corresponds to a line number in the listing. Other

wise, the display will be meaningless. MLX displays program

lines until it reaches the end of the program, at which point

the menu is redisplayed. You can pause the scrolling display

by pressing the space bar. (MLX finishes printing the current

line before halting.) To resume scrolling, press the space bar

again. To break out of the display and return to the menu

before the ending address is reached, press RETURN.

Two more menu selections let you save programs and

load them back into the computer. These are SAVE FILE and

LOAD FILE; their operation is quite straightforward. When you

press S or L, MLX asks you for the filename. (Again, pressing

RETURN at this prompt without entering anything returns you

to the command menu.) Next, MLX asks you to press either D

or T to select disk or tape.

You'll notice the disk drive starting and stopping several

times during a save. Don't panic; this is normal behavior. MLX

opens and writes to the file instead of using the usual SAVE

command. (Loads, on the other hand, operate at normal

speed—thanks to the relocating feature of BASIC 7.0's BLOAD

command.) Remember that MLX saves the entire workspace

area from the starting address to the ending address, so the

|"""] save or load may take longer than you might expect if you've
entered only a small amount of data from a long listing. When

saving a partially completed listing, make sure to note the ad-

J~j dress where you stopped typing so that you'll know where to
resume entry when you reload.

Error Alert

MLX reports any errors detected during the save or load and

displays the standard error messages. (Tape users should bear

in mind that the Commodore 128 is never able to detect errors

when saving to tape.) MLX also has three special load error

messages:
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• INCORRECT STARTING ADDRESS, which means the file j_j

you're trying to load does not have the starting address you

specified when you ran MLX. In this case, no data will be

loaded. I j

• LOAD ENDED AT address, which means the file you're try- UJ
ing to load ends before the ending address you specified

when you started MLX. The data from the file is loaded, but I |

it ends at the address specified in the error message.

• TRUNCATED AT ENDING ADDRESS, which means the file

you're trying to load extends beyond the ending address you

specified when you started MLX. The data from the file is

loaded, but only up to the specified ending address.

If you see one of these messages and feel certain that

you've loaded the right file, exit and rerun MLX, being careful

to enter the correct starting and ending addresses.

If you wish to check which programs are on a disk, select

the C option from the command menu for a directory. You can

use the 128's NO SCROLL key to pause the display. After

wards, press any key to return to the menu.

The Quit menu option has the obvious effect—it stops

MLX and enters BASIC. The RUN/STOP key is trapped, so

the Q option lets you exit the program without turning off the

computer. (Of course, RUN/STOP-RESTORE also gets you

out.) You'll be asked for verification; press Y to exit to BASIC

or any other key to return to the menu. After quitting, you can

type RUN again and reenter MLX without losing your data as

long as you don't use the clear workspace option.

The Finished Product

When you've finished typing all the data for an ML program

and saved your work, you're ready to see the results. The t]
instructions for loading and using the finished product vary

from program to program. LADS should be loaded using the

command BLOAD"LADS" or LOAD"LADS",8,1 for disk (if I]
you have a 1571 disk drive, BOOT "LADS" also works) or w
LOAD"LADS",1/1 for tape (assuming you used the filename

LADS to save the object code through MLX). When you wish j j
to assemble source code once LADS is in memory, just SYS

10000 (it's best to reload LADS after you have loaded the

source code). j !
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P] An Ounce of Prevention
By the time you finish typing in the data for a long ML pro-

.. gram such as LADS, you'll have many hours invested in the

j] project. Don't take chances—use our Automatic Proofreader to
type MLX, and then test your copy thoroughly before first

using it to enter any significant amount of data. Make sure all

jt the menu options work as they should. Enter fragments of the
program starting at several different addresses, then use the

Display option to verify that the data has been entered cor

rectly. And be sure to test the Save and Load options several

times to insure that you can recall your work from disk or

tape. Don't let a simple typing error in MLX cost you several

nights of hard work.

The Loader
This is a suggestion for a LADS "Loader" program (Program

F-4) which will boot LADS if you install it on a disk and use

the "Autoboot Maker" on the Test/Demo Disk that comes

with the 1571 disk drive. It also redefines the Fl, F2, F3, and

F5 keys in useful ways. Fl will run either version of LADS.

You can invoke it anywhere onscreen because it will cursor

down and clear the screen before SYS 10000. F3 will boot

RAMLADS in case you want a fresh start because LADS in

RAM became corrupted. F2 invokes AUTO 10, and F5 per

forms a SYS 2816 ($B00, the start address of many of the ex

ample programs in this book). Each of these functions clears

the screen in such a way that you can hit the function key

anywhere on the screen; you need not be on a blank line.

The Loader also creates a small bit of source code contain

ing a common template for experimenting with a short

routine.

Program F-l. The Automatic Proofreader

10 VEC=PEEK(772)+256*PEEK(773):LO=43:HI=44

20 PRINT "AUTOMATIC PROOFREADER FOR ";:IF VEC=4236

4 THEN PRINT "C-64"

30 IF VEC=50556 THEN PRINT "VIC-20"

40 IF VEC=35158 THEN GRAPHIC CLRrPRINT "PLUS/4 & 1

6"

50 IF VEC=17165 THEN LO=45:HI=46:GRAPHIC CLRrPRINT

"128"

60 SA= ( PEEK (LO) +2 56*PEEK (HI) ) +6 : ADR=SA
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70 FOR J=0 TO 166:READ BYT:POKE ADR,BYT:ADR=ADR+1: I' (
CHK=CHK+BYT:NEXT '—'

80 IF CHKO20570 THEN PRINT "*ERROR* CHECK TYPING

I SPACE)IN DATA STATEMENTS":END . ,

90 FOR J=l TO 5:READ RF,LF,HF:RS=SA+RF:HB=INT(RS/2 I 1
56):LB=RS-(256*HB)

100 CHK=CHK+RF+LF+HF:POKE SA+LF,LB:POKE SA+HF,HB:N

EXT j j

110 IF CHKO22054 THEN PRINT "*ERROR* RELOAD PROGR '—'
AM AND CHECK FINAL LINE":END

120 POKE SA+149,PEEK(772):POKE SA+150,PEEK(773)

130 IF VEC=17165 THEN POKE SA+14,22:POKE SA+18,23:

POKESA+29,224:POKESA+139,224

140 PRINT CHR$(147);CHR$(17);"PROOFREADER ACTIVE":

SYS SA

150 POKE HI,PEEK(HI)+1:POKE (PEEK(LO)+256*PEEK(HI)

)-l,0:NEW
160 DATA 120,169,73,141,4,3,169,3,141,5,3

170 DATA 88,96,165,20,133,167,165,21,133,168,169

180 DATA 0,141,0,255,162,31,181,199,157,227,3

190 DATA 202,16,248,169,19,32,210,255,169,18,32

200 DATA 210,255,160,0,132,180,132,176,136,230,180

210 DATA 200,185,0,2,240,46,201,34,208,8,72

220 DATA 165,176,73,255,133,176,104,72,201,32,208

230 DATA 7,165,176,208,3,104,208,226,104,166,180

240 DATA 24,165,167,121,0,2,133,167,165,168,105

250 DATA 0,133,168,202,208,239,240,202,165,167,69

260 DATA 168,72,41,15,168,185,211,3,32,210,255

270 DATA 104,74,74,74,74,168,185,211,3,32,210

280 DATA 255,162,31,189,227,3,149,199,202,16,248
290 DATA 169,146,32,210,255,76,86,137,65,66,67

300 DATA 68,69,70,71,72,74,75,77,80,81,82,83,88
310 DATA 13,2,7,167,31,32,151,116,117,151,128,129,

167,136,137

Program F-2. MLX LJ
AE 100 TRAP 960:POKE 4627,128:DIM NL$,A(7)
XP 110 Z2=2:Z4=254:Z5=255:Z6=256:Z7=127:BS=256*PEE | >

K(4627):EA=65280 LJ
FB 120 BE$=CHR$(7):RT$=CHR$(13):DL$=CHR$(20):SP$=C

HR$(32):LF$=CHR$(157)

KE 130 DEF FNHB(A)=INT(A/256):DEF FNLB(A)=A-FNHB(A ) |
)*256:DEF FNAD(A)=PEEK(A)+2 56*PEEK(A+1) L^J

JB 140 KEY 1,"A":KEY 3,"B":KEY 5,"C":KEY 7,"Dn:VOL

15:IF RGR(0)=5 THEN FAST i |

FJ 150 PRINT"{CLR}"CHR$(142);CHR$(8):COLOR 0,15:CO | !
LOR 4,15:COLOR 6,15
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GQ 160 PRINT TAB(12)"{RED}{RVS}{2 SPACES}g9 @3
{2 SPACES}MRT$;TAB(12)n{RVS}{2 SPACES}{OFF}

{BLU} 128 MLX {RED}{RVS}{2 SPACESJ"RT$;TAB(

12)"{RVS}{13 SPACES}{BLU}"
FE 170 PRINT"{2 DOWN}{3 SPACES}COMPUTE I *S MACHINE

{SPACE}LANGUAGE EDITOR{2 DOWN}"

DK 180 PRINT"{BLK}STARTING ADDRESS&43";:GOSUB 260:

IF AD THEN SA=AD:ELSE 180

FH 190 PRINT"{BLK}{2 SPACESjENDING ADDRESS£4§";:GO

SUB 260:IF AD THEN EA=AD:ELSE 190

MF 200 PRINT"{DOWN}{BLK}CLEAR WORKSPACE [Y/N]?£4§"

:GETKEY A$:IF A$<>"Y" THEN 220

QH 210 PRINT"{DOWN}{BLU}WORKING...";:BANK 0:FOR A=

BS TO BS+(EA-SA)+7:POKE A,0:NEXT A:PRINT"DO

NE"

DC 220 PRINT TAB(10)"{DOWN}{BLK}{RVS} MLX COMMAND

{SPACE}MENU g4§{DOWN}":PRINT TAB(13)"{RVS}E
{OFFjNTER DATA"RT$;TAB(13)"{RVS}D{OFF}ISPLA

Y DATA"RT?;TAB(13)"{RVS}L{OFF}OAD FILE"

HB 230 PRINT TAB(13)"{RVS}S{OFF}AVE FILE"RT$;TAB(1

3)"{RVS}C{OFF}ATALOG DISK"RT$;TAB(13)"{RVS}

Q{OFF}UIT{DOWN}{BLK}"

AP 240 GETKEY A$:A=INSTR("EDLSCQ",A$):ON A GOTO 34

0,550,640,650,930,940:GOSUB 950:GOTO 240

SX 250 PRINT"STARTING AT";:GOSUB 260:IF(AD<>0)OR(A

$=NL$)THEN RETURN:ELSE 250

BG 260 A$=NL$:INPUT A$:IF LEN(A$)=4 THEN AD=DEC(A$

)
PP 270 IF AD=0 THEN BEGIN:IF A$<>NL$ THEN 300:ELSE

RETURN:BEND

MA 280 IF AD<SA OR AD>EA THEN 300

PM 290 IF AD>511 AND AD<65280 THEN PRINT BE$;:RETU

RN

SQ 300 GOSUB 950:PRINT"{RVS} INVALID ADDRESS

{DOWN}{BLK}":AD=0:RETURN

RD 310 CK=FNHB(AD):CK=AD-Z4*CK+Z5*(CK>Z7):GOTO 330

DD 320 CK=CK*Z2+Z5*(CK>Z7)+A

AH 330 CK=CK+Z5*(CK>Z5):RETURN

QD 340 PRINT BE$;"{RVS} ENTER DATA ":GOSUB 250:IF
{SPACE}A$=NL$ THEN 220

JA 350 BANK 0:PRINT:F=0:OPEN 3,3

BR 360 GOSUB 310:PRINT HEX?(AD)+":";:IF F THEN PRI

NT L$:PRINT"{UP}{5 RIGHT}";

QA 370 FOR 1=0 TO 24 STEP 3:B$=SP$:FOR J=l TO 2:IF

F THEN B$=MID$(L$,I+J,1)

PS 380 PRINT"{RVS}"B$+LF$;:IF K24 THEN PRINT"
{OFF}";

RC 390 GETKEY A$:IF (A$>"/" AND A$<":") OR(A$>"@"

{SPACE}AND A$<"G") THEN 470
AC 400 IF A$="+" THEN A$="E":GOTO 470
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QB 410 IF A$="-" THEN A$="F":GOTO 470 I j

FB 420 IF A$=RT$ AND ((1=0) AND (J=l) OR F) THEN P I—I
RINT B$;:J=2:NEXT:I=24:GOTO 480

RD 430 IF A$=M{HOME}" THEN PRINT B$:J=2:NEXT:1=24:

NEXT:F=0:GOTO 360

XB 440 IF (A$=M{RIGHT}") AND F THEN PRINT B$+LF$;:

GOTO 470

JP 450 IF A$<>LF$ AND A$<>DL$ OR ((1=0) AND (J=l)) i )

THEN GOSUB 950:GOTO 390 I—I
PS 460 A$=LF$+SP$+LF$:PRINT B$+LF$;:J=2-JiIF J THE

N PRINT LF$;:I=I-3

GB 470 PRINT A$;:NEXT J:PRINT SP$;

HA 480 NEXT I: PRINT .-PRINT " {UP } {5 RIGHT} "; :L$= "

{27 SPACES}11

DP 490 FOR 1=1 TO 25 STEP 3:GET#3,A$,B$:IF A$=SP$

{SPACE}THEN 1=25:NEXT:CLOSE 3:GOTO 220

BA 500 A$=A$+B$:A=DEC(A$):MID$(L$,I,2)=A$:IF K25

{SPACEjTHEN GOSUB 320:A(l/3)=A:GET#3,A$

AR 510 NEXT I:IF A<>CK THEN GOSUB 950:PRINT:PRINT"

{RVS} ERROR: REENTER LINE ":F=1:GOTO 360

DX 520 PRINT BE$:B=BS+AD-SA:FOR 1=0 TO 7:POKE B+I,

A(I):NEXT I

XB 530 F=0:AD=AD+8:IF AD<=EA THEN 360

CA 540 CLOSE 3:PRINT"{DOWN}{BLU}** END OF ENTRY **

{BLK}{2 DOWN}":GOTO 650
MC 550 PRINT BE$;"{CLR}{DOWN}{RVS} DISPLAY DATA ":

GOSUB 250:IF A$=NL$ THEN 220

JF 560 BANK 0:PRINT"{DOWN}{BLU}PRESS: {RVS}SPACE

{OFF} TO PAUSE, {RVS}RETURN{OFF} TO BREAK

B4§{DOWN}"

XA 570 PRINT HEX?(AD)+":";:GOSUB 310:B=BS+AD-SA

DJ 580 FOR I=B TO B+7:A=PEEK(I):PRINT RIGHT$(HEX$(

A)#2);SP$;:GOSUB 320:NEXT I

XB 590 PRINT"{RVS}";RIGHT$(HEX$(CK),2)
GR 600 F=1:AD=AD+8:IF AD>EA THEN PRINT"{BLU}** END

OF DATA **":GOTO 220

EB 610 GET A$:IF A$=RT$ THEN PRINT BE$:GOTO 220

QK 620 IF A$=SP$ THEN F=F+1:PRINT BE$;

XS 630 ON F GOTO 570,610,570

RF 640 PRINT BE$"{DOWN}{RVS} LOAD DATA ":OP=1:GOTO
660

BP 650 PRINT BE$"{DOWN}{RVS} SAVE FILE ":OP=0

DM 660 F=0:F$=NL$:INPUT"FILENAMEB4§";F$:IF F$=NL$
{SPACEjTHEN 220

RF 670? PRINT"{DOWN}{BLK}{RVS}T{OFF}APE OR {RVSjD
{OFFJISK: B4§";

SQ 680 GETKEY A$:IF A$="T" THEN 850:ELSE IF A$o"D

11 THEN 680

SP 690 PRINT"DISK{DOWN}":IF OP THEN 760

EH 700 DOPEN#1#(F$+",P"),W:IF DS THEN A$=D$:GOTO 7

40
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!—\ JH 710 BANK 0:POKE BS-2,FNLB(SA):POKE BS-1,FNHB(SA

) * ):PRINT"SAVING ";F$:PRINT
MC 720 FOR A=BS-2 TO BS+EA-SA:PRINT*1,CHR$(PEEK(A)

_. );:IF ST THEN A$="DISK WRITE ERROR":GOTO 75

0

GC 730 NEXT A:CLOSE 1:PRINT"{BLU}** SAVE COMPLETED

WITHOUT ERRORS **":GOTO 220

f*-> RA 740 IF DS=63 THEN BEGIN:CLOSE 1:INPUT" {BLKjREPL
I \ ACE EXISTING FILE tY/N]g43n ;A$ :IF A$="Yfl TH

EN SCRATCH(F$):PRINT:GOTO 700:ELSE PRINT"

{BLK}":GOTO 660:BEND
GA 750 CLOSE 1:GOSUB 950:PRINT"{BLK}{RVS} ERROR DU

RING SAVE: &43":PRINT A$:GOTO 220

FD 760 DOPEN#1,(F$+",P"):IF DS THEN A$=DS$:F=4:CLO

SE 1:GOTO 790

PX 770 GET#1,A$,B$:CLOSE 1:AD=ASC(A$)+256*ASC(B$):

IF ADOSA THEN F=1:GOTO 790

KB 780 PRINT"LOADING " ;F$ : PRINT :BLOAD(F$ ) ,B0,P(BS)

:AD=SA+FNAD(174)-BS-1:F=-2*(AD<EA)-3*(AD>EA

)
RQ 790 IF F THEN 800:ELSE PRINT"{BLU}** LOAD COMPL

ETED WITHOUT ERRORS **":GOTO 220

ER 800 GOSUB 950:PRINT"{BLK}{RVS} ERROR DURING LOA

D: B4§":ON F GOSUB 810,820,830,840:GOTO220

QJ 810 PRINT"INCORRECT STARTING ADDRESS (";HEX$(AD

);")":RETURN

DP 820 PRINT"LOAD ENDED AT ";HEX?(AD):RETURN

EB 830 PRINT"TRUNCATED AT ENDING ADDRESS ("HEX$(EA

)")":RETURN

FP 840 PRINT"DISK ERROR ";A$:RETURN

KS 850 PRINT"TAPE":AD=POINTER(F$):BANK 1:A=PEEK(AD

):AL=PEEK(AD+1):AH=PEEK(AD+2)

XX 860 BANK 15:SYS DEC("FF68"),0,1:SYS DEC("FFBA")

,1,1,0:SYS DEC("FFBD"),A,AL,AH:SYS DEC("FF9

0"),128:IF OP THEN 890

FG 870 PRINT:A=SA:B=EA+1:GOSUB 920:SYS DEC("E919")

P*> ,3 : PRINT "SAVING " ; F$
1 AB 880 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("EA18

"):PRINT"{DOWN}{BLU}** TAPE SAVE COMPLETED
f—, {SPACE}**":GOTO 220

/ 1 CP 890 SYS DEC("E99A"):PRINT:IF PEEK(2816)=5 THEN

{SPACE}GOSUB 950:PRINT"{DOWN}{BLK}{RVS} FIL
E NOT FOUND ":GOTO 220

r^ GQ 900 PRINT"LOADING ...{DOWN}":AD=FNAD(2817):IF A

i ] DOSA THEN F=1:GOTO 800:ELSE AD=FNAD( 2819)-
1:F=-2*(AD<EA)-3*(AD>EA)

rmmi SH 910 A=BS:B=BS+(EA-SA)+1:GOSUB 920:SYS DEC("E9FB

/ \ "):IF ST THEN 800:ELSE 790

XB 920 POKE193,FNLB(A):POKE194,FNHB(A):POKE 174,FN
LB(B):POKE 175,FNHB(B):RETURN

n
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CP 930 CATALOG: PRINT M{ DOWN }{BLU}** PRESS ANY KEY F j )

OR MENU **":GETKEY A$:GOTO 220 LJ
MM 940 PRINT BE$"{RVS} QUIT B4§";RT$;"ARE YOU SURE

[Y/N]?":GETKEY A$:IF A$<>"YH THEN 220:ELSE

PRINT" {CLR}11: BANK 15: END ] j
JE 950 SOUND 1, 500,10 .-RETURN J—1
AF 960 IF ER=14 AND EL=260 THEN RESUME 300

MK 970 IF ER=14 AND EL=500 THEN RESUME NEXT « ,

KJ 980 IF ER=4 AND EL=780 THEN F=4:A$=DS$:RESUME 8 I 1
00

DQ 990 IF ER=30 THEN RESUME:ELSE PRINT ERR$(ER);"

{SPACE}ERROR IN LINE";EL

Program F-3. LADS Object Code
This listing must be entered using the MIX program above.

Starting Address: 2710

Ending Address: 3D27

2710:A9 00 8D 00 FF 8D IF 3D 96

2718:A0 30 99 D9 3C 88 D0 FA 34

2720:A9 10 85 FC 85 39 8D Fl E5

2728:3C A9 27 85 FD 85 3A 8D 44

2730:F2 3C A9 01 8D 07 3D EA 3A

2738:EA EA 20 B8 2F A9 00 8D F3

2740:DF 3C 20 88 30 AD F4 3C 78

2748:D0 47 A9 93 20 D2 FF A9 35

2750 :E6 20 D2 FF A9 4C 20 D2 06

2758:FF A9 41 20 D2 FF A9 44 69

2760:20 D2 FF A9 53 20 D2 FF CE

2768:20 97 35 20 97 35 20 97 BE

2770:35 AD E8 3C D0 0B A9 85 31

2778:85 87 A9 3B 85 88 20 FB DE

2780:2F AD E2 3C 85 FA 8D DB 01

2788:3C AD E3 3C 85 FB 8D DC B4

2790:3C 20 El FF D0 03 4C Bl IE [ /

2798:2A AD DF 3C F0 03 4C Bl 05 «■—>

27A0:2A 20 88 30 A9 00 8D E7 70

27A8:3C 8D F3 3C AC F4 3C D0 3D

27B0:03 4C D0 27 8C 08 3D AD CC jj
27B8:06 3D F0 0C 20 A0 35 20 46

27C0:51 35 20 79 35 20 51 35 A2

27C8:AD FF 3C F0 03 20 6B 34 28 \ >

27D0:4C 6A 2F AD DA 3C F0 17 61 i \
27D8:C9 03 D0 72 A9 01 8D DA 55

27E0:3C AD 88 3B D0 68 A9 08 01

27E8:18 6D D9 3C 8D D9 3C 4C 36 \ \
27F0:C7 29 AD F4 3C F0 39 A0 2B '—'
27F8:FF C8 B9 85 3B F0 2E 99 9C
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2800:D7 3B C9 20 D0 F3 C8 B9 E7

2808:85 3B C9 3D D0 03 4C F7 1A

2810:29 A2 00 8E 08 3D 8A 99 6A

2818:D7 3B B9 85 3B F0 08 9D FD

2820:85 3B E8 C8 4C 1A 28 9D 64

2828:85 3B 4C D0 27 20 D5 2C 32

2830:20 77 2C 4C D0 27 AD 9A Dl

2838:3B C9 40 B0 06 AD 9B 3B 05

2840:EE F3 3C 49 80 8D E0 3C 59

2848:20 22 2D 4C CF 28 A0 00 FB

2850:8C E7 3C AD 88 3B C9 20 28

2858:F0 03 4C 94 2B B9 89 3B 43

2860:C9 41 90 03 EE E7 3C 99 51

2868:9A 3B C8 B9 89 3B F0 16 BA

2870:99 9A 3B C9 41 90 03 EE 79

2878 :E7 3C C8 B9 89 3B F0 06 Al

2880:99 9A 3B 4C 7A 28 88 8C 82

2888:E6 3C AD E8 3C D0 40 AD F2

2890:E7 3C D0 A2 A9 9A 85 87 72

2898:A9 3B 85 88 A0 00 AD 9A C0

28A0:3B C9 30 B0 07 18 E6 87 FF

28A8:90 02 E6 88 Bl 87 F0 10 C4

28B0:C9 29 F0 0C C9 2C F0 08 F7

28B8:C9 20 F0 04 C8 4C AC 28 4D

28C0:48 98 48 A9 00 91 87 20 74

28C8:FB 2F 68 A8 68 91 87 AD C0

28D0:9A 3B C9 23 F0 3F C9 28 E8

28D8:F0 17 AD DA 3C C9 08 F0 D4

28E0.-37 C9 03 D0 71 A9 08 18 07

28E8:6D D9 3C 8D D9 3C 4C C7 E6

28F0:29 AC E6 3C B9 9A 3B C9 1A

28F8:29 F0 10 AD DA 3C C9 01 53

2900:D0 09 A9 10 18 6D D9 3C 99

2908:8D D9 3C AD DA 3C C9 06 5B

2910:F0 53 4C 8C 29 4C A7 29 F4

2918:AD F4 3C D0 03 4C 8C 29 9E

2920:38 AD E2 3C E5 FA 48 AD 73

2928:E3 3C E5 FB B0 0E C9 FF 49

2930:F0 04 68 4C 5D 2C 68 10 4A

2938:0C 4C 48 29 F0 04 68 4C F3

2940:5D 2C 68 10 03 4C 5D 2C 8A

2948:38 E9 02 8D E2 3C A9 00 A5

2950:8D E3 3C 4C 8C 29 AC E6 F7

2958:3C 88 B9 9A 3B C9 2C D0 F5

2960:04 C8 4C 3F 2B AD D9 3C 64

2968:C9 4C D0 03 4C 95 29 AD B5

2970:E3 3C D0 59 AD DA 3C C9 8E

2978:09 F0 52 C9 06 B0 0D C9 49

2980:02 F0 09 A9 04 18 6D D9 01

2988:3C 8D D9 3C 20 B2 34 20 AF
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2990:D3 34 4C F7 29 AC E6 3C E8 i >

2998:B9 9A 3B C9 29 D0 05 A9 B2 I 1
29A0:6C 8D D9 3C 4C Fl 29 AD B5

29A8:9B 3B C9 22 D0 06 AD 9C 89

29B0:3B 8D E2 3C AD DA 3C C9 3F ) !
29B8:01 D0 Dl A9 08 18 6D D9 E9 *—J
29C0:3C 8D D9 3C 4C 8C 29 20 9A

29C8:B2 34 4C F7 29 AD DA 3C 7C , }

29D0:C9 02 F0 04 C9 07 D0 0C FE j {
29D8:AD D9 3C 18 69 08 8D D9 El

29E0.-3C 4C Fl 29 C9 06 B0 09 06

29E8.-AD D9 3C 18 69 0C 8D D9 02

29F0:3C 20 B2 34 20 ED 34 AD Dl

29F8:F4 3C D0 03 4C AE 2A AD 3E

2A00:06 3D D0 03 4C AE 2A AD 10

2A08:08 3D D0 3E AD 02 3D F0 8E

2A10:2A A9 14 38 E5 EC 8D F5 DD

2A18:3C 20 CC FF A2 04 20 C9 5B

2A20:FF AC F5 3C 10 05 A0 02 F9

2A28:4C 2D 2A A9 20 20 D2 FF F4

2A30:88 D0 FA 20 CC FF A2 01 0B

2A38:20 FA 2F A9 14 85 EC A9 16

2A40:D7 85 87 A9 3B 85 88 20 8E

2A48.-40 35 A9 IE 38 E5 EC 8D El

2A50:F6 3C A9 IE 85 EC AD 02 83

2A58:3D F0 1A 20 CC FF A2 04 7C

2A60:20 C9 FF AC F6 3C F0 0A 96

2A68:30 08 A9 20 20 D2 FF 88 E2

2A70:D0 FA 20 CC FF 20 AD 35 CD
2A78:AD 00 3D F0 11 C9 01 D0 DC
2A80:05 A9 3C 4C 88 2A A9 3E 8C

2A88:20 D2 FF 20 El 35 AD 09 EB

2A90:3D F0 13 20 51 35 A9 3B 12

2A98:20 D2 FF A9 00 85 87 A9 IB

2AA0:02 85 88 20 40 35 20 97 19

2AA8:35 AD DF 3C D0 03 4C 91 7F

2AB0:27 AD F4 3C D0 10 EE F4 FF ) I
2AB8:3C AD DB 3C 85 FA AD DC 26 —*
2AC0:3C 85 FB 4C 3A 27 20 CC 54

2AC8:FF A9 20 85 87 A9 3D 85 C6 | |

2AD0:88 20 97 35 20 51 35 20 88 L-J

2AD8:51 35 AE IF 3D A9 00 20 9B

2AE0:5A 35 20 40 35 AD 02 3D 59

2AE8:F0 15 20 CC FF A2 04 20 7E } I
2AF0:C9 FF A9 0D 20 D2 FF 20 9C —'
2AF8:CC FF A9 04 20 C3 FF A9 E2

2B00:FC 8D 30 D0 A9 00 8D 00 B3 \ [

2B08:FF AD IE 3D F0 2E A9 04 F8 I )
2B10:8D EA 3C A9 4C 8D D7 3B 8D

2B18:A9 41 8D D8 3B A9 44 8D 69
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2B20:D9 3B A9 53 8D DA 3B 20 0B

2B28:37 2F A9 91 20 D2 FF EA 6B

2B30:EA EA A9 44 20 IE C0 A9 D4

2B38:40 20 IE C0 4C 03 40 B9 2F

2B40:9A 3B C9 58 F0 65 88 88 28

2B48:B9 9A 3B C9 29 D0 03 4C 05

2B50:F1 28 AD E3 3C D0 0F AD 8E

2B58:DA 3C C9 02 F0 52 C9 05 ED

2B60:F0 4E C9 01 F0 7A AD DA B3

2B68:3C C9 01 D0 0C AD D9 3C 83

2B70:18 69 18 8D D9 3C 4C Fl 53

2B78:29 AD DA 3C C9 05 F0 08 3A

2B80:A9 31 20 27 2C 4C 94 2B 55

2B88:AD D9 3C 18 69 1C 8D D9 E5

2B90:3C 4C Fl 29 20 B9 35 20 5B

2B98:A0 35 A9 A5 85 87 A9 3C F5

2BA0:85 88 20 40 35 20 97 35 72

2BA8:4C F7 29 AD E3 3C D0 44 19

2BB0:AD DA 3C C9 02 D0 0C A9 CD

2BB8:10 18 6D D9 3C 8D D9 3C 70

2BC0.-4C 8C 29 C9 01 F0 10 C9 D7

2BC8:03 F0 0C C9 05 F0 08 A9 A0

2BD0:32 20 27 2C 4C 94 2B A9 A4

2BD8:14 18 6D D9 3C 8D D9 3C 92

2BE0:B9 9C 3B C9 59 D0 0A AD 0F

2BE8:D9 3C C9 B6 F0 03 4C 66 72

2BF0:2B 4C 8C 29 AD DA 3C C9 2F

2BF8:02 D0 0C A9 18 18 6D D9 76

2C00:3C 8D D9 3C 4C Fl 29 C9 IF

2C08:01 F0 10 C9 03 F0 0C C9 79

2C10:05 F0 08 A9 33 20 27 2C 57

2C18:4C 94 2B A9 1C 18 6D D9 Bl

2C20:3C 8D D9 3C 4C Fl 29 8D 03

2C28:F5 3C 8C F7 3C 8E F6 3C El

2C30:20 97 35 A9 BA 20 D2 FF BB

2C38:68 AA 68 A8 98 48 8A 48 4A

2C40:98 20 32 8E 20 97 35 AD 93

2C48:F5 3C AC F7 3C AE F6 3C 86

2C50:60 A0 00 98 99 85 3B C8 AC

2C58:C0 50 D0 F8 60 20 97 35 B6

2C60.-20 B9 35 20 A0 35 A9 14 21

2C68:85 87 A9 3C 85 88 20 40 2D

2C70:35 20 97 35 4C 8C 29 A0 39

2C78.-FF C8 B9 85 3B F0 56 C9 A6

2C80:20 D0 F6 C8 C8 8C EE 3C IB

2C88:38 A5 FC ED EE 3C 85 FC 55

2C90:A5 FD E9 00 85 FD A0 00 DD

2C98:B9 85 3B 49 80 91 FC C8 38

2CA0:B9 85 3B C9 20 F0 05 91 9B

2CA8:FC 4C 9F 2C C8 B9 85 3B BC

n 367



Appendix F u

LJ
2CB0:C9 3D F0 3B 88 A5 FA 91 71

2CB8:FC C8 A5 FB 91 FC AE EE 03 I (
2CC0:3C CA A0 00 BD 85 3B F0 69 (—)
2CC8:08 99 85 3B E8 C8 4C C4 B7

2CD0:2C 99 85 3B 60 20 97 35 Fl . (

2CD8:20 A0 35 20 B9 35 A9 4D 55 |_]
2CE0:85 87 A9 3C 85 88 20 40 A5

2CE8:35 20 97 35 4C ID 2D 88 E3

2CF0:8C EF 3C AD E8 3C D0 17 DE ] [

2CF8:C8 C8 C8 8C El 3C A9 85 A2 <—'

2D00:18 6D El 3C 85 87 A9 3B 9A

2D08:69 00 85 88 20 FB 2F AC 4C

2D10:EF 3C AD E2 3C 91 FC AD 25

2DJ.8:E3 3C C8 91 FC 68 68 4C 4C

2D20:F7 29 AD Fl 3C 85 89 AD 4E

2D28:F2 3C 85 8A 20 30 2E A9 2C

2D30:FF 8D 05 3D 38 A5 FC E5 9A

2D38:89 A5 FD E5 8A B0 63 A2 5F

2D40:00 38 A5 89 E9 02 85 89 El

2D48:A5 8A E9 00 85 8A A0 00 EC

2D50:B1 89 30 0C A5 89 D0 02 A3

2D58:C6 8A C6 89 E8 4C 50 2D 70

2D60:A5 89 8D F8 3C A5 8A 8D 4C

2D68:F9 3C Bl 89 CD E0 3C F0 F8

2D70:03 4C 92 2D E8 8E El 3C 06

2D78:A2 01 AD F3 3C F0 04 C8 CF

2D80:20 30 2E C8 B9 9A 3B F0 E8

2D88:53 C9 30 90 4F E8 Dl 89 59

2D90:F0 Fl AD F8 3C 85 89 AD DD

2D98:F9 3C 85 8A 20 30 2E 4C C2

2DA0:34 2D AD 05 3D 30 01 60 73

2DA8:AD F4 3C D0 02 F0 17 20 CD

2DB0:B9 35 20 A0 35 20 51 35 45

2DB8:A9 3D 85 87 A9 3C 85 88 32

2DC0:20 40 35 20 97 35 68 68 AE

2DC8:AD D9 3C 29 IF C9 10 F0 BB

2DD0:08 AD 00 3D D0 03 4C Fl 8B

2DD8:29 4C 8C 29 EC El 3C F0 57 j I

2DE0:03 4C 92 2D EE 05 3D F0 EB

2DE8:03 20 39 2E AC El 3C AD E9

2DF0:F3 3C F0 01 C8 Bl 89 8D 30 j )
2DF8.-E2 3C C8 Bl 89 8D E3 3C 8E LJ
2E00SAD 00 3D F0 0A C9 02 D0 36

2E08:1E AD E3 3C 8D E2 3C AD 3D . f

2E10:FF 3C F0 13 18 AD FD 3C 7A j J
2E18:6D E2 3C 8D E2 3C AD FE A6

2E20:3C 6D E3 3C 8D E3 3C AD 58

2E28:F4 3C D0 01 60 4C 92 2D BE ] j

2E30:A5 89 D0 02 C6 8A C6 89 73 LJ
2E38:60 20 B9 35 A9 87 85 87 55

368 LJ



Appendix F

;—) 2E40:A9 3C 85 88 20 40 35 20 46

\ 1 2E48:97 35 60 A9 00 8D 00 FF 9A
2E50:A9 FC 8D 30 D0 20 CC FF 16
2E58:AD EA 3C A2 D7 A0 3B 20 CF

f""7 2E60:BD FF A9 00 AA 20 68 FF 77
'-* 2E68:A9 00 A2 08 A8 20 BA FF A9

2E70:A9 00 AA A0 80 20 D5 FF 31
r~, 2E78:B0 2F 20 CC FF A9 00 8D FD

j | 2E80:00 FF A9 00 85 41 A9 80 17
2E88:85 42 A9 FC 8D 30 D0 A9 B5

2E90:91 20 D2 FF A9 44 20 IE D4

2E98:C0 A9 91 20 D2 FF A9 44 22
2EA0:20 IE C0 A9 40 20 IE C0 C6

2EA8:60 20 B9 35 A9 FC 8D 30 54

2EB0:D0 4C 03 40 A9 00 8D 00 55

2EB8:FF A9 FC 8D 30 D0 A9 91 Al

2EC0.-20 D2 FF 20 D2 FF A9 44 12

2EC8:20 IE C0 AD EB 3C A2 EE 34

2ED0:A0 3B 20 BD FF A9 01 A2 77

2ED8:00 20 68 FF A9 00 A2 08 E4

2EE0:A0 00 20 BA FF AD DB 3C E7

2EE8:85 87 AD DC 3C 85 88 A9 20

2EF0:87 A6 FA A4 FB 20 D8 FF 76

2EF8:B0 AF 20 CC FF A9 00 8D 9E

2F00:00 FF 4C Bl 2A A9 00 20 IB

2F08:BD FF A2 00 20 68 FF A2 DE

2F10:04 8A A0 FF 20 BA FF 20 33

2F18:C0 FF B0 04 20 CC FF 60 Cl

2F20:20 D2 FF A5 90 D0 05 20 8F

2F28:E2 2F D0 F4 20 B9 35 A9 29

2F30:FC 8D 30 D0 4C 03 40 AD 20

2F38:EA 3C A2 D7 A0 3B 20 BD DC

2F40:FF A9 00 A2 00 20 68 FF 84

2F48:A2 08 A0 FF 20 BA FF A9 A3

2F50:00 20 D5 FF B0 09 20 CC 28

2F58:FF A9 00 8D 00 FF 60 20 DA

PI 2F60:B9 35 A9 FC 8D 30 D0 4C 09
2F68:03 40 A0 00 A2 FF E8 B9 0D

2F70:5D 3A CD 85 3B F0 0A C8 98

f—, 2F78:C8 C8 E0 39 D0 F0 4C F2 F2

I 1 2F80:27 C8 B9 5D 3A CD 86 3B 03
2F88:F0 06 C8 C8 D0 E0 F0 EE 61

2F90:C8 B9 5D 3A CD 87 3B F0 05

pi 2F98:05 C8 D0 D2 F0 E0 AD 88 El
1 ] 2FA0S3B C9 20 F0 04 C9 00 D0 3A

2FA8:D5 BD 05 3B 8D DA 3C BC C2

-_, 2FB0:3D 3B 8C D9 3C 4C D3 27 8D

j \ 2FB8:A9 00 85 41 A9 1C 85 42 BB
2FC0:20 E2 2F 20 E2 2F 20 E2 C6

2FC8:2F 20 E2 2F 20 E2 2F C9 CA

369



Appendix F LJ

u

2FD0:AC F0 0E A9 03 85 87 A9 05

2FD8:3C 85 88 20 40 35 4C C6 FF [_{
2FE0:2A 60 E6 41 D0 02 E6 42 FB

2FE8:8C F7 3C A0 00 Bl 41 EA 51

2FF0:EA EA EA EA 08 AC F7 3C AA \ >

2FF8:28 60 60 A0 00 Bl 87 F0 60 I I
3000:04 C8 4C FD 2F 8C 00 3C E5

3008:88 A9 00 8D E2 3C 8D E3 F6

3010:3C A2 01 8E F6 3C Bl 87 D3 ) {
3018:29 0F 8D FE 3B 8D 01 3C C0 (—'
3020:A9 00 8D FF 3B 8D 02 3C 57

3028 :CA F0 12 20 4D 30 AD FE F3

3030--3B 8D 01 3C AD FF 3B 8D E6

3038:02 3C 4C 28 30 EE F6 3C 1C

3040:AE F6 3C 20 74 30 88 CE 83

3048:00 3C D0 CA 60 18 0E FE FC

3050:3B 2E FF 3B 0E FE 3B 2E 9E

3058:FF 3B 18 AD 01 3C 6D FE 38

3060:3B 8D FE 3B AD 02 3C 6D B0

3068:FF 3B 8D FF 3B 0E FE 3B 94

3070:2E FF 3B 60 18 AD FE 3B 06

3078:6D E2 3C 8D E2 3C AD FF 0C

3080:3B 6D E3 3C 8D E3 3C 60 EE

3088:20 51 2C A0 00 8C F7 3C 3B

3090:8C E8 3C 8C 09 3D 8C 00 18

3098:3D 8C FF 3C AD 04 3D D0 47

30A0:0C 20 E2 2F 8D DD 3C 20 DA

30A8:E2 2F 8D DE 3C 20 E2 2F 3D

30B0:D0 08 20 D8 31 68 68 4C 55

30B8.-91 27 C9 20 F0 EF 4C C9 90

30C0:30 20 E2 2F D0 03 4C D8 94

30C8:31 C9 3A D0 03 4C 73 31 E9

30D0:C9 3B D0 73 8C F5 3C AD 98

30D8:02 3D F0 55 8D 09 3D AD B5

30E0:F5 3C F0 06 20 11 31 4C BD

30E8:39 31 20 E2 2F F0 0E C9 87

30F0:7F 90 03 20 08 34 99 85 61

30F8:3B C8 4C EA 30 20 A0 35 D9 j [
3100:20 51 35 20 AD 35 20 97 89

3108:35 A9 00 8D F5 3C 4C 39 BA

3110:31 8D 09 3D 8D F5 3C A0 C0 } j

3118:00 20 E2 2F D0 07 99 00 A7 *—>

3120:02 AC F5 3C 60 10 03 20 9A

3128:DE 33 99 00 02 C8 4C 19 DE

3130:31 20 E2 2F F0 03 4C 31 DF { \
3138:31 20 D8 31 AD F5 3C D0 F7

3140:05 68 68 4C 91 27 60 C9 C4

3148:B1 F0 36 C9 B3 F0 3A C9 C2 j j

3150:AA D0 03 EE FF 3C C9 AC BC I—*
3158:D0 03 4C 91 31 C9 2E F0 84

370 |j



'■-' Appendix F

n

n

n

n

3160:16 C9 24 F0 15 C9 7F 90 33

3168:03 20 08 34 99 85 3B C8 BA

3170:4C Cl. 30 8D 04 3D 60 4C 6A

3178:8C 32 99 85 3B C8 4C FF CE

3180:31 A9 02 8D 00 3D 4C Cl 4E

3188:30 A9 01 8D 00 3D 4C Cl B5

3190:30 20 Cl 30 A9 18 20 D2 0F

3198:FF A9 2A 20 D2 FF 20 AD 31

31A0:35 20 97 35 AD E8 3C D0 46

31A8:20 A0 00 B9 85 3B C9 20 AB

31B0:F0 04 C8 4C AB 31 C8 84 A2

31B8:87 A9 85 18 65 87 85 87 57

31C0:A9 3B 69 00 85 88 20 FB 7E

31C8:2F AD E2 3C 85 FA AD E3 A5

31D0:3C 85 FB 68 68 4C 91 27 77

31D8:99 85 3B C8 C0 50 D0 F8 3F

31E0:99 85 3B 20 E2 2F 20 E2 Dl

31E8:2F F0 06 A9 00 8D 04 3D F5

31F0:60 AD 01 3D F0 03 4C FA 0A

31F8:33 A9 01 8D DF 3C 60 A2 AB

3200:00 8E F6 3C 20 E2 2F 08 9D

3208:AE F6 3C 28 F0 2C C9 3A 91

3210:F0 28 C9 20 F0 EB C9 3B 38

3218:F0 20 C9 2C F0 0F C9 29 79

3220:F0 0B 9D C2 3B E8 99 85 D5

3228:3B C8 4C 01 32 8E E9 3C Dl

3230:99 85 3B C8 20 4E 32 4C Al

3238 :C1 30 8D F5 3C A9 00 8E Bl

3240:E9 3C 99 85 3B 20 4E 32 5D

3248:AD F5 3C 4C C4 30 A9 00 87

3250:8D E2 3C 8D E3 3C AA 0E 08

3258:E2 3C 2E E3 3C 0E E2 3C 5D

3260:2E E3 3C 0E E2 3C 2E E3 85

3268:3C 0E E2 3C 2E E3 3C BD C5

3270:C2 3B C9 41 90 02 E9 07 B9

3278:29 0F 0D E2 3C 8D E2 3C IF

3280:E8 EC E9 3C D0 Dl EE E8 2A

3288:3C A9 01 60 C0 00 F0 0E 91

3290:AE F4 3C D0 09 48 98 48 01

3298:20 77 2C 68 A8 68 99 85 96

32A0:3B C8 20 E2 2F 99 85 3B 2D

32A8:C8 C9 42 D0 68 A9 00 8D B0

32B0:FA 3C AD F4 3C F0 17 8C 07

32B8:6A 34 AD 06 3D F0 0F 20 61

32C0:A0 35 20 51 35 20 79 35 2E

32C8:20 51 35 AC 6A 34 20 E2 4A

32D0:2F 99 85 3B C8 C9 20 D0 16

32D8:F5 20 E2 2F 99 85 3B C8 Bl

32E0:C9 22 D0 45 20 E2 2F D0 DC

32E8:03 4C C3 33 C9 3A D0 03 69

371



Appendix F LJ

u

32F0:4C C6 33 C9 3B D0 0C 20 85

32F8.-11 31 AE 02 3D 8E 09 3D 9B I (
3300:4C C3 33 C9 22 D0 03 4C 27 '—l
3308:E4 32 AE F4 3C D0 09 20 E9

3310:38 35 4C E4 32 4C CD 36 4C ( f

3318:99 85 3B AA 8C F7 3C 20 9B I j
3320:23 35 AC F7 3C C8 4C E4 FC
3328:32 A2 00 8E FB 3C 9D E7 2D
3330:3B E8 AD FB 3C D0 7D 8E 92 ) I
3338:F6 3C 20 E2 2F 08 AE F6 49
3340:3C 28 F0 43 C9 3A F0 3F 79
3348:C9 3B D0 0C 20 11 31 AE 93
3350:02 3D 8E 09 3D 4C 87 33 C6
3358:8D AE 3B AD F4 3C D0 0D BA
3360:AD AE 3B C9 20 D0 CB 20 49
3368:38 35 4C 32 33 AD AE 3B CD
3370:99 85 3B C8 C9 20 F0 18 Cl
3378:C9 00 F0 14 C9 3A F0 10 4C
3380:9D E7 3B E8 4C 32 33 EE 26
3388:FB 3C 8D AF 3B 4C 58 33 97

3390:A9 E7 85 87 A9 3B 85 88 BC
3398.-8C F7 3C 20 FB 2F AE E2 A9

33A0:3C 20 23 35 AC F7 3C A9 4C

33A8:00 A2 05 9D E7 3B CA D0 C4
33B0.-FA 4C 32 33 AD F4 3C D0 AB

33B8:03 20 38 35 AD AF 3B C9 6F
33C0:3A F0 03 20 D8 31 8D 04 8D

33C8:3D EE 08 3D 68 68 AD F4 93

33D0:3C F0 08 AD 06 3D F0 03 77

33D8.-4C 75 2A 4C 91 27 48 A9 30

33E0:00 8D 5B 34 A9 02 8D 5C 26

33E8:34 68 20 08 34 48 A9 85 A3

33F0:8D 5B 34 A9 3B 8D 5C 34 13

33F8:68 60 A9 BF 85 87 A9 3C B6

3400:85 88 20 40 35 4C C6 2A E7

3408:8C F5 3C 38 E9 7F A0 17 E4

3410:84 8E A0 44 84 8F C9 4F FB \ /

3418:D0 11 A0 C9 84 8E A0 46 C3 I 1
3420:84 8F 20 E2 2F A8 88 98 A6

3428:4C 3D 34 C9 7F D0 0E A0 25

3430:09 84 8E A0 46 84 8F 20 9D ) (
3438:E2 2F A8 88 98 AA A0 00 2C *—'

3440:CA F0 0E Bl 8E 48 E6 8E 19

3448:D0 02 E6 8F 68 10 F4 30 0D , j

3450:EF AE F5 3C A0 00 Bl 8E D5 { [
3458:30 07 9D 85 3B C8 E8 D0 46

3460:F5 29 7F 8E F7 3C AC F7 E8

3468:3C 60 00 A0 00 A2 00 B9 55 j j

3470:85 3B C9 2B F0 04 C8 4C CB »—!

3478:6F 34 C8 B9 85 3B 20 8A 3E

372 LJ



Appendix F

n

n

3480:34 B0 12 9D C2 3B E8 4C 6C

3488:7A 34 C9 3A B0 06 38 E9 10

3490:30 38 E9 D0 60 A9 00 9D B0

3498:C2 3B A9 C2 85 87 A9 3B 6B

34A0:85 88 20 FB 2F AD E2 3C E3

34A8:8D FD 3C AD E3 3C 8D FE E3

34B0:3C 60 AD F4 3C D0 04 20 Al

34B8:38 35 60 AD 06 3D F0 0C 84

34C0:20 CC FF AE D9 3C 20 5A Bl

34C8.-35 20 51 35 AE D9 3C 20 C6

34D0:23 35 60 AD F4 3C D0 04 3D

34D8:20 38 35 60 AD 06 3D F0 FC

34E0:06 AE E2 3C 20 5A 35 AE 9B

34E8:E2 3C 4C 23 35 AD F4 3C 14

34F0:D0 07 20 38 35 20 38 35 DA

34F8.-60 AD 06 3D F0 06 AE E2 71

3500:3C 20 5A 35 AE E2 3C 20 C8

3508:23 35 AD 06 3D F0 0E AD DE

3510:07 3D F0 03 20 51 35 AE FA

3518:E3 3C 20 5A 35 AE E3 3C 95

3520:4C 23 35 8E El 3C AD 03 67

3528.-3D F0 0D EA EA EA EA EA 81

3530:A0 00 8A 91 FA EA EA EA 99

3538:18 E6 FA D0 02 E6 FB 60 D8

3540:A0 00 Bl 87 F0 0A 20 2D C6

3548:C7 20 D5 35 C8 4C 42 35 DD

3550:60 A9 20 20 2D C7 20 D5 F9

3558:35 60 8E F6 3C AD 07 3D 9A

3560:F0 0B 8A 20 A6 36 20 FF A7

3568:35 AE F6 3C 60 A9 00 20 85

3570:32 8E 20 FF 35 AE F6 3C 2A

3578:60 AD 07 3D F0 0E A5 FB 3A

3580:20 A6 36 A5 FA 20 A6 36 Al

3588:20 3C 36 60 A6 FA A5 FB 47

3590:20 32 8E 20 3C 36 60 A9 90

3598:0D 20 2D C7 20 D5 35 60 D6

35A0:AE DD 3C AD DE 3C 20 32 96

35A8:8E 20 79 36 60 A9 85 85 2F

35B0:87 A9 3B 85 88 20 40 35 83

35B8:60 A9 07 20 D2 FF 20 D2 4A

35C0:FF 20 D2 FF A9 12 20 D2 36

35C8:FF 20 AD 35 A9 0D 20 D2 D8

35D0:FF EE IF 3D 60 20 BF 36 E7

35D8:AE F4 3C D0 04 AE F6 3C 71

35E0:60 AE 02 3D D0 04 AE F6 26

35E8:3C 60 20 CC FF A2 04 20 0D

35F0:C9 FF AD F5 3C 20 D2 FF 5D

35F8:20 CC FF 20 C6 36 60 20 98

3600:BF 36 AE F4 3C D0 04 AE DA

3608:F6 3C 60 AE 02 3D D0 04 A0

n 373



Appendix F u

u

3610:AE F6 3C 60 20 BF 36 20 AB

3618:CC FF A2 04 20 C9 FF AD 55 j
3620:07 3D F0 09 AD F6 3C 20 EF '—'
3628:A6 36 4C 35 36 A9 00 AE 59

3630:F6 3C 20 32 8E 20 CC FF DC * (

3638:20 C6 36 60 20 BF 36 AE 4E [_j
3640:F4 3C D0 04 AE F6 3C 60 BA

3648:AE 02 3D D0 04 AE F6 3C 46

3650:60 20 CC FF A2 04 20 C9 BD j (

3658:FF AE 07 3D F0 0D A5 FB 28 *—1

3660:20 A6 36 A5 FA 20 A6 36 83

3668:4C 72 36 A5 FB A6 FA 20 49

3670:32 8E 20 CC FF 20 C6 36 AE

3678:60 20 BF 36 AE F4 3C D0 0B

3680:04 AE F6 3C 60 AE 02 3D 3C

3688:D0 04 AE F6 3C 60 20 CC 14

3690:FF A2 04 20 C9 FF AD DE B0

3698:3C AE DD 3C 20 32 8E 20 55

36A0:CC FF 20 C6 36 60 48 29 D0

36A8:0F A8 B9 75 3B AA 68 4A F4

36B0:4A 4A 4A A8 B9 75 3B 20 E2

36B8:D2 FF 8A 20 D2 FF 60 8D C6

36C0:F5 3C 8C F7 3C 60 AD F5 FC

36C8:3C AC F7 3C 60 C9 46 D0 C8

36D0:08 20 30 37 68 68 4C 91 Dl

36D8:27 C9 80 D0 06 20 7A 37 45

36E0:4C D4 36 C9 44 D0 03 4C C3

36E8:C4 37 C9 50 D0 03 4C 24 13

36F0.-39 C9 4E D0 03 4C 58 39 76

36F8:C9 4F D0 03 4C 50 39 C9 48

3700:53 D0 03 4C 10 3A C9 48 B6

3708:D0 03 4C 2A 3A 99 85 3B 4A

3710:20 A0 35 20 51 35 20 79 78

3718:35 20 B9 35 20 AD 35 A9 7F

3720:A5 85 87 A9 3C 85 88 20 77

3728:40 35 20 97 35 4C 37 39 04

3730:20 E2 2F C9 20 F0 03 4C 01 i

3738:30 37 A0 00 20 E2 2F C9 55 ] 1
3740:00 F0 0E C9 7F 90 03 20 AD

3748:08 34 99 85 3B C8 4C 3C 25

3750:37 8C EA 3C A0 00 B9 85 9C | |

3758:3B F0 07 99 D7 3B C8 4C A4 ^

3760:56 37 20 79 35 20 51 35 65

3768:20 AD 35 20 97 35 20 4B 18 ( ,

3770:2E 20 E2 2F A2 00 8E DF 5F I

3778:3C 60 AD F4 3C F0 03 4C 1A

3780:A9 37 A9 2E 20 D2 FF A9 9F

3788:45 20 D2 FF A9 4E 20 D2 95 I I

3790:FF A9 44 20 D2 FF A9 20 FD LJ
3798:20 D2 FF 20 E2 2F 20 3A 1C

374 (J



n
Appendix F

37A0:37 AD F4 3C F0 03 EE DF C9

37A8:3C EE F4 3C AD F4 3C C9 D6

37B0:02 D0 03 4C 3F 3A AD DB 93

37B8:3C 85 FA AD DC 3C 85 FB BF

37C0:20 88 30 60 EE 03 3D EE 5A

37C8:1E 3D EE 01 3D 20 E2 2F E2

37D0:C9 20 F0 F9 A0 00 C9 7F 02

37D8:90 1C 4C E8 37 20 E2 2F DD

37E0:C9 20 F0 1C C9 7F 90 0E 97

37E8:8C 6A 34 48 20 08 34 68 35

37F0:AC 6A 34 20 4A 3A 99 85 CC

37F8:3B 99 D7 3B C8 4C DD 37 84

3800:8C EA 3C 99 85 3B A0 00 EC

3808:A9 40 99 EE 3B C8 A9 30 FF

3810:99 EE 3B C8 A9 3A 99 EE 55

3818:3B C8 20 E2 2F F0 2D C9 EB

3820:7F 90 18 48 A9 EE 8D 5B 7B

3828:34 A9 3B 8D 5C 34 68 8C 6E

3830:F7 3C 20 08 34 20 ED 33 61

3838:AC F7 3C C9 20 F0 DB 99 37

3840:85 3B 99 EE 3B C8 4C 1A 14

3848:38 20 37 39 8C EB 3C 20 04

3850:D8 31 A2 00 8E DF 3C A0 DA

3858:00 B9 0A 3D 99 37 27 C8 0D

3860:B9 0A 3D 99 37 27 C8 B9 13

3868:0A 3D 99 37 27 C8 A9 80 04

3870:8D BD 2F A9 EA 8D C0 2F D5

3878:8D Cl 2F 8D C2 2F B9 0A 2F

3880:3D C8 8D ED 2F B9 0A 3D 04

3888:C8 8D EE 2F B9 0A 3D C8 CA

3890:8D EF 2F B9 0A 3D C8 8D A9

3898:F0 2F B9 0A 3D C8 8D Fl 3F

38A0:2F B9 0A 3D C8 8D F2 2F BD

38A8:B9 0A 3D C8 8D F3 2F B9 01

38B0:0A 3D C8 8D 2B 35 B9 0A 13

38B8:3D C8 8D 2C 35 B9 0A 3D 50

38C0:C8 8D 2D 35 B9 0A 3D C8 2B

38C8:8D 2E 35 B9 0A 3D C8 8D 32

38D0:2F 35 B9 0A 3D C8 8D 33 59

38D8:35 B9 0A 3D C8 8D 34 35 81

38E0:B9 0A 3D C8 8D 35 35 B9 4A

38E8.-0A 3D C8 8D 36 35 B9 0A A3

38F0:3D 8D 37 35 A9 EA A2 00 DB

38F8:9D 99 27 E8 E0 08 D0 F8 D3

3900:A9 FF 8D 8B 2E 68 68 AD 43

3908:IE 3D C9 01 F0 03 4C 91 DF

3910:27 A9 91 20 D2 FF 20 D2 5E

3918:FF A9 44 20 IE C0 20 4B FE

3920:2E 4C 3A 27 AD F4 3C F0 21

3928:0E 20 05 2F EE 02 3D 20 57
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3930 :CC FF A9 01 8D 06 3D 20 6D , ,

3938:E2 2F F0 07 C9 3A F0 06 95 j |
3940:4C 37 39 20 D8 31 68 68 94

3948:A2 00 8E DF 3C 4C 91 27 39

3950:A9 01 8D 03 3D 4C 37 39 7C I j

3958:AD F4 3C F0 DA 20 E2 2F Cl L-l
3960:C9 50 F0 0C C9 4F F0 3A 52

3968:C9 53 F0 6A C9 48 F0 4C F6

3970:A9 2E 20 D2 FF A9 4E 20 D7 j|
3978:D2 FF A9 50 20 D2 FF 20 FA

3980:97 35 CE 02 3D 20 CC FF 0A

3988:A2 04 20 C9 FF A9 0D 20 CE

3990:D2 FF A9 04 20 C3 FF 20 12

3998:CC FF A2 01 20 FA 2F 4C 6D

39A0:37 39 A9 2E 20 D2 FF A9 0B

39A8:4E 20 D2 FF A9 4F 20 D2 42

39B0:FF 20 97 35 A9 00 8D 03 DC

39B8:3D 4C 37 39 A9 2E 20 D2 70

39C0:FF A9 4E 20 D2 FF A9 48 9B

39C8:20 D2 FF 20 97 35 A9 00 E6

39D0:8D 07 3D 4C 37 39 A9 2E 58

39D8:20 D2 FF A9 4E 20 D2 FF 43

39E0:A9 53 20 D2 FF 20 97 35 13

39E8:A9 00 8D 06 3D 4C 37 39 05

39F0:A6 90 D0 01 60 A9 00 20 CE

39F8:5A 35 20 51 35 A9 63 85 9B

3A00:87 A9 3C 85 88 20 B9 35 EF

3A08:20 40 35 68 68 4C C6 2A F5

3A10:AD F4 3C F0 12 A9 2E 20 E2

3A18.-D2 FF A9 53 20 D2 FF 20 CC

3A20:97 35 A9 01 8D 06 3D 4C 3E

3A28:37 39 A9 2E 20 D2 FF A9 94

3A30:48 20 D2 FF 20 97 35 A9 9E

3A38:01 8D 07 3D 4C 37 39 AD A4

3A40:01 3D F0 03 20 B4 2E 4C 4F

3A48:B1 2A 48 A9 D7 8D 5B 34 A3

3A50:A9 3B 8D 5C 34 68 20 08 6B . (

3A58:34 20 ED 33 60 4C 44 41 DD [_j>
3A60:4C 44 59 4A 53 52 52 54 B8

3A68:53 42 43 53 42 45 51 42 C0 . .

3A70:43 43 43 4D 50 42 4E 45 02 M
3A78:4C 44 58 4A 4D 50 53 54 7A

3A80:41 53 54 59 53 54 58 49 70

3A88:4E 59 44 45 59 44 45 58 16 i j

3A90:44 45 43 49 4E 58 49 4E 2A L^J
3A98:43 43 50 59 43 50 58 53 7E

3AA0:42 43 53 45 43 41 44 43 B0

3AA8:43 4C 43 54 41 58 54 41 D4 j |
3AB0:59 54 58 41 54 59 41 50 E0 l—'
3AB8:48 41 50 4C 41 42 52 4B 73
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3AC0:42 4D 49 42 50 4C 41 4E 7B

3AC8:44 4F 52 41 45 4F 52 42 DF

3AD0:49 54 42 56 43 42 56 53 CF

3AD8:52 4F 4C 52 4F 52 4C 53 A8

3AE0:52 43 4C 44 43 4C 49 41 3C

3AE8:53 4C 50 48 50 50 4C 50 55

3AF0:52 54 49 53 45 44 53 45 29

3AF8:49 54 53 58 54 58 53 43 05

3B00:4C 56 4E 4F 50 01 05 09 8A

3B08:00 08 08 08 01 08 05 06 3A

3B10:01 02 02 00 00 00 02 00 CB

3B18:02 04 04 01 00 01 00 00 25

3B20:00 00 00 00 00 00 08 08 AE

3B28;01 01 01 07 08 08 03 03 59

3B30:03 00 00 03 00 00 00 00 58

3B38:00 00 00 00 00 Al A0 20 96

3B40:60 B0 F0 90 Cl D0 A2 4C ID

3B48:81 84 86 C8 88 CA C6 E8 E3

3B50:E6 C0 E0 El 38 61 18 AA C6

3B58:A8 8A 98 48 68 00 30 10 11

3B60:21 01 41 24 50 70 22 62 FC

3B68:42 D8 58 02 08 28 40 F8 BB

3B70:78 BA 9A B8 EA 30 31 32 5D

3B78.-33 34 35 36 37 38 39 41 ED

3B80:42 43 44 45 46 00 00 00 F7

3B88:00 00 00 00 00 00 00 00 FE

3B90:00 00 00 00 00 00 00 00 07

3B98:00 00 00 00 00 00 00 00 0F

3BA0:00 00 00 00 00 00 00 00 17

3BA8:00 00 00 00 00 00 00 00 IF

3BB0:00 00 00 00 00 00 00 00 27

3BB8:00 00 00 00 00 00 00 00 2F

3BC0:00 00 00 00 00 00 00 00 37

3BC8:00 00 00 00 00 00 00 00 3F

3BD0:00 00 00 00 00 00 00 00 47

3BD8:00 00 00 00 00 00 00 00 4F

3BE0:00 00 00 00 00 00 00 00 57

3BE8:00 00 00 00 00 00 00 00 5F

3BF0:00 00 00 00 00 00 00 00 67

3BF8:00 00 00 00 00 00 00 00 6F

3C00:00 00 00 4E 4F 20 53 54 53

3C08:41 52 54 20 41 44 44 52 38

3C10:45 53 53 00 2D 2D 2D 2D 10

3C18:2D 2D 2D 2D 2D 2D 2D 2D 90

3C20:2D 2D 2D 2D 2D 2D 2D 2D 98

3C28:20 42 52 41 4E 43 48 20 CF

3C30.-4F 55 54 20 4F 46 20 52 58

3C38:41 4E 47 45 00 55 4E 44 58

3C40:45 46 49 4E 45 44 20 4C C2

3C48:41 42 45 4C 00 20 20 20 40

377



Appendix F

u

u
3C50.-20 20 20 20 20 20 20 4E F6

3C58:41 4B 45 44 20 4C 41 42 28

3C60:45 4C 00 20 20 20 20 20 72

3C68.-20 3C 3C 3C 3C 3C 3C 3C D2

3C70:3C 20 44 49 53 4B 20 45 79

3C78:52 52 4F 52 20 3E 3E 3E 72

3C80:3E 3E 3E 3E 3E 20 00 20 E5

3C88:20 20 20 20 20 2D 2D 20 4F i j

3C90:44 55 50 4C 49 43 41 54 7D I |
3C98:45 44 20 4C 41 42 45 4C 77

3CA0:20 2D 2D 20 00 20 20 20 FC

3CA8:20 20 20 2D 2D 20 53 59 F9

3CB0:4E 54 41 58 20 45 52 52 20

3CB8:4F 52 20 2D 2D 20 00 20 4E

3CC0:20 2E 46 49 4C 45 20 4F 39

3CC8:52 20 2E 45 4E 44 20 52 A2

3CD0:45 51 55 49 52 45 44 20 CF

3CD8:00 00 00 00 00 00 00 00 51

3CE0:00 00 00 00 00 00 00 00 59

3CE8:00 00 00 00 00 00 00 00 61

3CF0:00 00 00 00 00 00 00 00 69

3CF8:00 00 00 00 00 00 00 00 71

3D00:00 00 00 00 00 00 00 00 7A

3D08:00 00 20 4B 2E A9 41 A2 78

3D10:00 20 74 FF A9 FA 8D B9 2F

3D18:02 A2 01 20 77 FF 00 00 1A

3D20:20 45 52 52 4F 52 53 00 D5

Program F-4. Loader

MH 1 REM 1571 DISK DRIVE USERS SUBSTITUTE 'BOOT1 F

OR *BLOAD1 IN LINES 30 AND 100

FK 10 PRINT"{CLR}

GD 20 KEY 1#HII+CHR$(17)+CHR$(27)+CHR$(74)+CHR$(27)

+CHR$(64)+"SYS 10000"+CHR$(13)

BQ 30 KEY 3, 1MI+CHR$ (17 )+CHR$ ( 27 )+CHR$ ( 74)+CHR$ ( 27 ) \ I

+CHR$(64)+"BLOAD"+CHR$(34)+"LADS"+CHR$(13) ^
KA 40 KEY 5#MII+CHR$(17)+CHR$(27)+CHR$(74)+CHR$(27)

+CHR$(64)+"SYS 2816"+CHR$(13) .

FR 45 KEY 2,""+CHR$(17)+CHR$(27)+CHR$(74)+CHR$(27) |t
+CHR$(64)+"AUTO 10"+CHR$(13)

BJ 50 FOR I = 7169 TO 7224:READA:POKEI,A:NEXT

GP 60 DATA 13,28,10,0,172,178,32,36,66,48,48,0,20, \ \

28,20,0,46,83,0,27,28,30,0,46,79,0,49 LJ

PP 70 DATA 28,40,0,59,32,32,32,32,80,82,79,71,82,6

5,77,32,78,65,77,69,0,55,28,50,0,59,0,0,0

SG 100 P RINT"{CLR J";:BLOAD "LADS j
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Commodore ASCII Codes

3
Dec

*""> 2

5

7

8

9

10

11

12

13

14

15

17

18

19

20

24

27

28

> 29

1 30

-T 31
. I 32

33

35

_ 36

J 37

38

Hex Uppercase/Graphics Set Lowercase/Uppercase Set

02

05

07

08

09

0A

0B

OC

OD

OE

OF

11

12

13

14

18

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

underline on1

white

bell tone2

disable SHIFT-Commodore3

tab2

enable SHIFT-Commodore3

linefeed2

disable SHIFT-Commodore2

enable SHIFT-Commodore2

RETURN

switch to lowercase

flash on1

cursor down

reverse on

home

delete

tab set/clear2

ESCape

red

cursor right

green

blue

space

! !

# #

$ $

% %

& &

379
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set j ;

39 27

40 28 ( ( | j

41 29 ) ) •—■*

42 2A * *

43 2B + + LJ
44 2C

45 2D -

46 2E .

47 2F / /

48 30 0 0

49 31 1 1

50 32 2 2

51 33 3 3

52 34 4 4

53 35 5 5

54 36 6 6

55 37 7 7

56 38 8 8

57 39 9 9

58 3A : :

59 3B ; ;

60 3C < <

61 3D

62 3E > > |?

63 3F ? ?

64 40 @ @ , i

65 41 A a 1—J
66 42 B b

67 43 C c

68 44 D d

69 45 E e

70 46 F f
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

n

! I

n

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

V

W

X

Y

Z

[

£

]

t

4-

9
IS

EC

9
e
H
e

h

i

j

k

1

m

n

o

P

q

r

s

t

u

v

w

X

y

z

A

B

C

D

E

F

381
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

129

130

133

134

135

136

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

81

82

85

86

87

88

E

ffl

L

H
\Z

C
n
'•i

u
a

a
m
m
E
OD

H

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

m

B

orange4

dark purple1

underline off1

Fl

F3

F5

F7

U

U

u

LJ

U

382



n

n

n

r?

Dec

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Hex

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

A6

Appendix G

Uppercase/Graphics Set Lowercase/Uppercase Set

i

1

H

n
□

rj
Effl

F2

F4

F6

F8

SHIFT-RETURN

switch to uppercase

flash off1

black

cursor up

reverse off

clear screen

insert

brown4

dark yellow1

light red

dark gray4

dark cyan1

medium gray

light green

light blue

light gray

purple

cursor left

yellow

cyan

SHIFT-space

E

H
n

□

Li

S3

383
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 Bl

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BD

190 BE

191 BF

192 CO

193 Cl

194 C2

195 C3

196 C4

197 C5

198 C6

384

□

□

m
□

S3
□

a
b
a

D
C

u

□

a

E

e

n
e
e

e

□

u

c
c

u

E
5

e
A

B

C

D

E

F

U

U

u

u

IJ

U

U

U

U
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n

n

H
) T

Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

n

H

n

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 Dl

210 D2

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8

217 D9

218 DA

219 DB

220 DC

221 DD

222 DE

223 DF

224 E0

225 El

226 E2

227 E3

228 E4

229 E5

230 E6

E

[I
B
a

L

S
\z
c
□

B

□
i

n
□

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

w

X

Y

Z

E

H

□
D

385
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Dec Hex Uppercase/Graphics Set Lowercase/Uppercase Set

231 E7 LJ

232 E8 H

233 E9 B

234 EA □

235 EB \E

236 EC Q

237 ED ffl

238 EE ffl

239 EF U

240 F0 ffl
241 Fl ffl

242 F2 ffl
243 F3 5)

244 F4 D

245 F5 C

246 F6 Cl

247 F7 n

248 F8 D

249 F9 y

250 FA 3

251 FB B

252 FC H

253 FD ffl

254 FE E

255 FF |H

Notes
1. 80-column display only

2.128 mode only

3. 64 mode only

4. 40-column display only

□

□

m
m

ffl

ffl

c

c

□
H

H

ffl

u

u

u

i-J

LJ

386



Appendix G

n

True

Code

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

ASCII

ASCII

1 Character

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

(space)

!

#

$
%
&

(
>
*

+

Code

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

ASCII

\ Character

/

—

#

/
0

1

2

3

4

5

6

7

8

9

<

>

?

@
A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

i

Code

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

\SCII

Character

V

w

X

Y

z

[
\

]
A

a

b

c

d

e

f

g

h

i

j
k

1

m

n

o

P

q

r

s

t

u

V

w

X

y

z

{
1

}

DEL

387





n

n

n

H

n

Index

A (Assemble) monitor instruction 31-32

absolute, X addressing 67-69

absolute, Y addressing 67-69

absolute addressing 58

accumulator 24, 25, 55-56, 80

accumulator mode addressing 72

ADC instruction 25, 80, 97, 146,

215-16

adding large numbers 81-84

addition 80-84

addressing 21-22

modes 53-72

address pointer 69

AND instruction 123, 124, 216-17

Apple computers 31

argument xi, 78

arithmetic 75-87

in ML 24-25

Arithmetic instruction group 97-98

ASC BASIC function, ML equivalent of

182-83

ASCII, true 387

ASCII code 13, 75, 76, 109

ASL instruction 72, 85, 97, 124, 217

assembler ix, 21. See also LADS

assembly, disk 142

assembly language ix. See also LADS

*= pseudo-op 252-53

"Automatic Proofreader, The" program

351-53, 359-60

bank 15, 21, 31, 39, 191, 192-95

Bank Number Code ROM routine 209

bank switching 191-92, 195-96

BASIC

borrowing from 129-35

commands, ML equivalents of

157-87

use for complicated arithmetic 75

versus ML xii-xiv

"BASIC Loader" program 23-24

BCC instruction 64, 85, 87, 98, 101, 218

BCS instruction 64, 85, 87, 98, 101, 218

BEQ instruction 55, 64, 85, 98-99, 101,

218-19

big loops 107-8

binary notation 11

"Binary Quiz" program 1-2

"Binary Table" program 20

bit 12, 16

BIT instruction 124, 219

BLOAD BASIC command 37

BMI instruction 64, 85, 87, 98, 101,

105, 219-20

BNE instruction 64, 85, 87, 96, 99-101,

105, 220

book, how to use 3-7

BPL instruction 64, 85, 87, 98, 101,

105, 220-21

branching 98-105

BRK instruction 33, 36, 37, 46, 63, 64,

87, 96, 120-22, 221

built-in routines. See ROM routines

BVC instruction 64, 91, 98, 101, 222

BVS instruction 64, 98, 101, 222

byte 13-14, 16, 17-19

.BYTE pseudo-op 253-54

carry flag 80-81, 87

cassette

buffer 140-41

tape 259

C (Compare Memory) monitor instruc

tion 32

C flag 97

chained files, LADS and 259-62

character codes, Commodore 379-86

CHR$ BASIC function, ML equivalent

of 183

CLC instruction 61, 97, 146, 222-23

CLD instruction 61, 223

CLI instruction 125, 223

CLOSE ROM routine 203

CLR BASIC command, ML equivalent

of 157-58

CLV instruction 91, 224

CMP instruction 13, 85, 87, 99, 105,

194, 224-25

CMP long ROM routine 193, 211

comparison subroutine 344

compiled code 131

CONT BASIC command, ML equiva

lent of 158-59

CPX instruction 99, 225-26

CPY instruction 99, 226-27

cursor control ROM routine 207-8

customize function keys ROM routine

208-9

database, searching 85

DATA BASIC command, ML equivalent

of 159-60

data tables 252

D (Disassemble) monitor instruction

32-35

389



Debugger instruction group 120-22

debugging xiv, 42-46, 120-22

monitor and 31, 34, 46

DEC instruction 69, 106, 227

Decision Maker instruction group

98-105

DEX instruction 63, 106, 227-28

DEY instruction 63, 69, 106, 228

DIM BASIC command, ML equivalent

of 160-61

disassembly xi-xii, 24-25, 32-35

division 84-85

division subroutine 348

double-byte addition subroutine 345

double-byte subtraction subroutine

345-46

"Double-Compare" program 86-87

double comparison 85-87

.D pseudo-op 261

80-column mode 4

8502 chip 13, 125-26

8502 instruction set 215-46

"Embedded PRINT" program 205

END BASIC command, ML equivalent

of 161-62

endless loop 45

.END pseudo-op 260

environment, 128 191-97

EOR instruction 123-24, 228-29

ESCape key, ML and 191-92

F (fill) monitor instruction 35

fields, disassembly 34-35

.FILE pseudo-op 260

files 205-6

disk 202

tape 202

"Filling the Screen with the Letter A"

program 68-69

FOR-NEXT LOOP, ML equivalent of

64, 162-65

40-column mode 4

forward branching 103-5

GET BASIC command, ML equivalent

of 165

GET BASIC routine, using in ML

132-35

GET ROM routine 207

G (Go) monitor instruction 36

GO 64 ROM routine 208

GOSUB BASIC command, ML equiva

lent of 165-66

GOTO BASIC command, ML equiva

lent of 166-68

hexadecimal notation

advantages of 11-12

how to use 15-16

390

hex dump 24, 38

"Hex Practice" program 21-22

H (Hunt) monitor instruction 36-37

IF-THEN BASIC command, ML equiva

lent of 168

immediate addressing 35, 43-44, 60-61

implied addressing 61-63

INC instruction 69, 106, 229

increment and decrement double-byte

numbers subroutine 343-44

indirect X addressing 71-72

indirect Y addressing 69-71

INPUT BASIC command, ML equiva

lent of 169-70

INPUT ROM routine 204

INPUT* ROM routine 203

instruction, ML x, 23

instructions, length of 53-55

instruction set, 8502 91-126, 215-46

interactive programming 46-47

interpreted code 131

INX instruction 63, 79, 96, 106, 229

INY instruction 63, 69, 106, 230

J (Jump) monitor instruction 37

JMP instruction 23, 101, 113, 114,

119-20, 194, 230

JMP long ROM routine 193 210

JSR instruction 63, 101, 105, 113, 114,

129, 131, 231

JSR long ROM routine 193, 210

jump table 130-31

Kernal 130, 140, 201

Kernal routine. See ROM routine

keyboard matrix code 76

keypress, checking for 76, 196-97, 207

labels, LADS and 254-57

LADS assembler ix-x, 3-7, 25, 86

chained files and 259-62

commands 251-52

how to use 247-66

instructions 28

labels 254-57

loading 5

longer programs and 259-62

modifying 266

object code 364-78

pseudo-ops 249-52

rules for 262-65

source code 275-342

starting address and 248

typing in 349-59

use like BASIC 247

LDA instruction 25, 61, 63, 35, 78, 79,

80, 91, 93-97, 99, 101, 105, 191, 194,

231-32

LDA long ROM routine 193, 196, 210

u
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LDX instruction 72, 232

LDY instruction 233

LEFT$ BASIC function, ML equivalent

of 183

LEN BASIC function, ML equivalent of

183-84

LET BASIC command, ML equivalent

of 170-72

LIST BASIC command, ML equivalent

of 172-73

listing conventions, BASIC 349-50

L (Load) monitor instruction 37-38

LOAD BASIC command, ML equiva

lent of 173

loader, BASIC xi

"Loader" program 378

LOAD ROM routine 205-6

long jumps 21-11

long ROM routine 193, 194, 196, 210,

211

Loop instruction group 106-12

LSR instruction 72, 85, 97, 124, 233-34

machine language

code, locating in memory 4

programs, reading 22

versus BASIC xii-xiv

"Machine Language Editor, MLX" pro

gram 353-58, 360-64

math, LADS and 257-58

memory map 59

memory map, Commodore 128 267-74

MID$ BASIC function, ML equivalent

of 184

ML. See machine language

"MLX Machine Language Editor" pro

gram 353-58, 360-64

M (Memory) monitor instruction 38,

193

mnemonic 23

monitor

bugs and 33

memory in 193-95

modifying code with 33-34

running program from 36

using 41-43

monitor mode 16

multibyte addition and subtraction sub

routine 346-47

multiplication 84-85

multiplication subroutine 347-48

natural numbers 11-13

NEW BASIC command, ML equivalent

of 173-74

N flag 93, 95-96, 97

NOP instruction 34, 63, 122, 234

object code 22

octal notation 15

offset 67, 105

ON-GOSUB BASIC command, ML

equivalent of 174-75

ON-GOTO BASIC command, ML

equivalent of 175

opcode 23, 78

OPEN ROM routine 202-3

operation code. See opcode

.0 pseudo-op 261

ORA instruction 123, 234-35

OUTPUT# ROM routine 203

page 43

parameter 117

PC (program counter) 33, 53, 79, 93

PHA instruction 63, 96, 235

PHP instruction 63, 96, 236

PLA instruction 63, 96, 114, 236

PLP instruction 63, 96, 236-37

portability 129

PRINT BASIC command, ML equiva

lent of 176-79

PRINT BASIC routine, using in ML

132-35

PRINT ROM routine 204

processor status flags. See SR

program, building a 139-54

programming techniques 41, 46-49

pseudo-op 250-52

+ pseudo-op 257-58

#> pseudo-op 258-59

#< pseudo-op 258-59

RAM, reserving for ML 141-43

READ BASIC command, ML equivalent

of 179

register 38-39, 53, 55, 79, 94-95

relative addressing 63-66

REM BASIC command, ML equivalent

of 1119-80

restore default I/O ROM routine 203

RETURN BASIC command, ML equiva

lent of 180

RIGHTS BASIC function, ML equiva

lent of 184-85

ROL instruction 72, 124, 237-38

ROM routine 129, 146, 194, 201-11

ROR instruction 72, 91, 124, 238-39

R (Registers) monitor command 38-39

RTI instruction 91, 125, 239

RTS instruction 24, 36, 63, 113, 114,

239

RUN BASIC command, ML equivalent

of 10-81

safe memory locations 60, 139-40

SAVE BASIC command, ML equivalent

of 181

391



SAVE ROM routine 206

SBC instruction 87, 97, 240

screen 3

"Searcher" program 139-54

program discussion 143-49

SEC instruction 61, 84, 87, 97, 240

SED instruction 61, 81, 91, 240-41

SEI instruction 125, 241-42

set bank number ROM routine 202

set filename ROM routine 202

set 2,8,1 ROM routine 201-2

sign 95

68000 chip 142

6502 chip 125-26 .

6510 chip 125-26

snow 96-97

source code 22, 28

SP (Stack Pointer) 53

speed switch 197

SR 54, 55, 56

S (Save) monitor instruction 39

stack 43, 60, 96-97, 113-17

stack pointer 39

STA instruction 25, 69, 78, 91, 93, 95,

96, 242

STA long ROM routine 196, 211

starting address 6, 248

STOP BASIC command, ML equivalent

of 181

strings 108-13

STX instruction 72, 93, 95, 96, 243

STY instruction 93, 243

subprogram 252

subroutine 41-42, 113-19

subroutine and jump instruction group

113-20

subroutine library 343-48

subtraction 84

SYS BASIC command 24

SYS BASIC command, ML equivalent

of 182

TAB BASIC function, ML equivalent of

185-86

tables, searching 82-83

"Tables" subprogram 252

TAX instruction 95, 243

TAY instruction 95, 244

test RUN/STOP key ROM routine 206

Transporter instruction group 93-97

TSX instruction 96, 244

T (Transfer) monitor instruction 39-40

TXA instruction 61, 63, 80, 95, 244

TXS instruction 96, 245

TYA instruction 53, 61, 95, 246

unknown forward branches 66-67

V (Verify) monitor instruction 40

V flag 97

X (exit to BASIC) monitor instruction

40

X register 55-56

V register 55-56

Z80 chip 142

zero page 140

zero page, X addressing 67

zero page, Y addressing 72

zero page addressing 43-44, 58-60, 79

Z flag 93, 96, 97

LJ

LJ

LJ

Li

I i

u

u
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! i To order your copy of 128 LADS Disk, call our toll-free US
order line: 1-800-346-6767 (in NY 212-887-8525) or send your

prepaid order to:

H 725 LADS Disk
COMPUTE! Publications

n P.O. Box 5038

' ] F.D.R. Station
New York, NY 10150

All orders must be prepaid (check, charge, or money order). NC

residents add 4.5% sales tax.

Send copies of 725 LADS Disk at $12.95 per copy.

(033BDSK)

Subtotal $

Shipping and Handling: $2.00/disk $

Sales tax (if applicable) $

Total payment enclosed $

□ Payment enclosed

□ Charge d Visa □ MasterCard □ American Express

Acct. No. Exp. Date
(Required)

n

Name

Address

City State Zip

Please allow 4-5 weeks for delivery.

46203323
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n COMPUTE! Books
Ask your retailer for these COMPUTE! Books or order

p directly from COMPUTE!.

Call toll free (in US) 800-346-6767 (in NY 212-887-
^ 8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R.
H Station, New York, NY 10150.

Quantity Title Price* Total

SpeedScript: The Word Processor for the
p") Commodore 64 and VIC-20 (94-9) $ 9.95

' - ■ Commodore SpeedScript Book Disk $12.95

128 Machine Language for Beginners (033-5) $16.95

<—*i COMPUTEi's Commodore 64/128 Collection (97-3) $12.95

I I All About the Commodore 64, Volume Two (45-0) $16.95

All About the Commodore 64, Volume One (40-X) $12.95

Programming the Commodore 64:

The Definitive Guide (50-7) $24.95

COMPUTED Data File Handler for the
Commodore 64 (86-8) $12.95

COMPUTEI's Kids and the Commodore 128 (032) $14.95

Kids and the Commodore 64 (77-9) $12.95

COMPUTED Commodore Collection, Volume 1 (55-8) $12.95

COMPUTEI's Commodore Collection, Volume 2 (70-1) $12.95

COMPUTEI's Personal Accounting Manager for the
Commodore 64 (014-9) $ 12.95

COMPUTEI's VIC-20 and Commodore 64
Tool Kit: BASIC (32-9) $16.95

COMPUTEI's VIC-20 and Commodore 64
Tool Kit: Kernal (33-7) $16.95

COMPUTEI's Telecomputing on the

Commodore 64 (009) $12.95

COMPUTEI's VIC-20 Collection (007) $12.95

Programming the VIC (52-3) $24.95

VIC Games for Kids (35-3) $12.95

COMPUTEI's First Book of ViC (07-8) $12.95

COMPUTEI's Second Book of VIC (16-7) $12.95

COMPUTEI's Third Book of VIC (43-4) $12.95

Mapping the VIC (24-8) $14.95

COMPUTEI's VIC-20 Collection (007) $12.95

n

H

•Add $2.00 per book for shipping and handling.

Outside US add $5.00 air mail or $2.00 surface mail.

NC residents add 4.5% sales tax

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.

□ Payment enclosed.

J—1 Charge □ Visa □ MasterCard □ American Express

Acct. No Exp. Date.
(Required)

Name

Address.

City State Zip_

'Allow 4-5 weeks for delivery.

Prices and availability subject to change.

Current catalog available upon request.

46203313





( j If you've enjoyed the articles in this book, you'll find

! ( the same style and quality in every monthly issue of
COMPUTERS Gazette for Commodore.

For Fastest Service

_, Call Our Toil-Free US Order Line

1-800-247-5470
In Iowa call 1-800-532-1272

COMPUTED Gazette
P.O. Box 10957

Des Moines, IA 50340

My computer is:

□ Commodore 64 □ VIC-20 D Other

□ $24 One Year US Subscription
D $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada
□ $65 Air Mail Delivery
□ $30 International Surface Mail

Name

Address

City State Zip

Country

p^ Payment must be in US funds drawn on a US bank, international

i I money order, or charge card. Your subscription will begin with the

next available issue. Please allow 4-6 weeks for delivery of first issue.

Subscription prices subject to change at any time.

(1 □ Payment Enclosed □ Visa
□ MasterCard □ American Express

PI Acct. No. Expires /
(Required)

n
The COMPUTEI's Gazette subscriber list is made available to carefully screened

organizations with a product or service which may be of interest to our readers. If you

n prefer not to receive such mailings, please check this box O
46222033





n
If you've enjoyed the articles in this book, you'll find the

r_1 same style and quality in every monthly issue of COM-

l i PUTEI Magazine. Use this form to order your subscription
to COMPUTE!.

For Fastest Service

p-, Call Our Toil-Free US Order Line

1-800-247-5470
In IA call 1-800-532-1272

I \

COMPUTE!
P.O. Box 10954

Des Moines, IA 50340

My computer is:

D Commodore 64 or 128 □ TI-99/4A □ IBM PC or PCjr □ VIC-20
D Apple □ Atari □ Amiga □ Other
□ Don't yet have one...

□ $24 One Year US Subscription
□ $45 Two Year US Subscription
□ $65 Three Year US Subscription

Subscription rates outside the US:

□ $30 Canada and Foreign Surface Mail
□ $65 Foreign Air Delivery

Name

Address

City State Zip

Country

Payment must be in US funds drawn on a US bank, international

money order, or charge card.

□ Payment Enclosed □ Visa

□ MasterCard □ American Express

Acct. No. Expires /
(Required)

Your subscription will begin with the next available issue. Please

allow 4-6 weeks for delivery of first issue. Subscription prices subject

to change at any time.
46219333










