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ABSTRACT 

Emulation of a computer or process usi 

microprogrammable machine has widespread application, 

the use of a computer to handle a number of 

concurrently. This thesis seeks to combine these two con 

An environment is proposed whereby a control progra 

unlike a multiprogramming supervisor, but en 

microprogrammed) manages a number of processes, typ 

computer emulators. Principles incorporated in the desig 

impl ementation of such a control program are discussed, 

description of the major components of an 

implementation is given. 
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CHAPTER I 

Introduction 

With the advent of writable control stores and user- 

microprogrammable computers, microprogramming is becoming more 

and more a research tool rather than simply a building tool. 

One of the fields of research in microprogramming which is 

enjoying prominence is the emulation of computers and of high 

level language processors. This thesis seeks to extend the 

concepts involved in providing support for emulators by 

considering multiple concurrent computer emulation. 

Specifically, a compact set of principles governing multi¬ 

emulator system design will be presented, and components of an 

actual implementation will be described. 

A number of parallels to the development of multi¬ 

emulation may be drawn in terms of user support, supervisor 

complexity, and architectural complexity. From the point of 

view of user support, consider the transition from single user 

stand-alone programming to single user operating systems to 

multi-user operating systems. In terms of supervisor 

complexity, consider the extension from support of single 

users to the support of many users to the support of many 

operating systems concurrently (e.g. see IBM Corporation 

(1972) for an introduction to their multi-operating system 
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1 Introduction 2 

facility VM/370). Finally, from the architectural point of 

view, increasing complexity is evident in the development from 

single processor machines to multi-processor machines to 

computer networks. Each of these sequences bears similarity to 

the following transition sequence: stand-alone computer 

emulators to "integrated" emulators (Allred, 1971) to multiple 

emulations. The increasing degree of complexity and potential 

is apparent in each. 

Although Tucker (1965) introduced the term. Rosin's 

(1969) definition of emulator will be used: "a complete set of 

microprograms which, when embedded in a control store, define 

a machine." (This "machine" is usually a computer or a high 

level language processor.) Tucker's definition of emulation 

refers primarily to software routines and hardware 

modifications, and is inappropriate in a microprogramming 

context. A virtual machine is the machine realized by an 

emulator, and a host_machine is one which supports these 

microprograms. This work will not deal with microprogramming 

itself; the reader may refer, for example, to Husson (1970). 

Multiple_.emulation or SJllti^emulation is the concurrent 

execution of a (usually hetereogeneous) set of emulators on a 

single host machine under the control of a microprogrammed 

supervisor; each emulator in the set is referred to as a 

member_emulator. A reasonable analogy is a multiprogramming 

environment with a varied job mix. 

In fact, many principles applied in multiprogramming may 
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1 Introduction 3 

also be applied in multi-emulation. The basic concepts of 

memory, processor, device, and information management may be 

found in a text such as Madnick and Donovan (1974). 

It is important to note that this thesis will be 

concerned for the most part with an environment in which the 

member emulators are computers rather than language 

translators. The resultant differences in the multi-emulator 

supervisor are profound: this is due primarily to the great 

difference in the level of the corresponding input/output 

interfaces. The specification that the system support exact 

emulations of computers cannot be overstressed; it is easily 

the most important single factor affecting multi-emulator 

supervisor design. A contemporary computer carries out I/O 

operations at a low level: it deals in status bits, timing 

considerations, interrupts, and the like. Communication is 

highly device dependent. The simplest and perhaps only way for 

the supervisor to provide this sort of communication is to let 

the emulators interface with I/O devices directly. On the 

other hand, most high level language processors are not 

concerned with these matters at all: I/O is accomplished at a 

high level and is usually quite device independent. Reliance 

is placed on the supervisor to handle the actual low level 

communication. 

There are several reasons for the examination of a 

multi-emulator environment consisting of emulators of 

traditional computers rather than of language processors: 
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1 Introduction 4 

• There is still much interest in supporting computer 
emulators; a low level interface is therefore 
desirable. 

• Provision of a high level device-independent interface 
nevertheless requires actual communication with devices 
at some point: it is reasonable therefore to start by 
providing this low level support initially, working up 
to the design and implementation of a high level 
interface. 

The following chapter is an overview of multi-emulation, 

presenting a number of possible applications of multi-emulator 

systems along with a look at related work in the field. 

Chapter III is a consideration of the design of a multi¬ 

emulator supervisor, including required and desirable 

supervisor functions, a small set of underlying design 

principles, and a list of guidelines for the designer and 

implementor. Chapter IV applies these guidelines in the 

description of a particular multi-emulator supervisor for a 

QM-1 computer. Finally, results and several suggestions for 

further research are stated in Chapter V. 





CHAPTER II 

An Overview of Multi-Emulation 

2•1 Introduction 

The purpose of this chapter is provide justification for 

the study of multi-emulation in its own right. A number of 

possible applications of a multi-emulator environment are 

given in the following section. These are in addition to the 

obvious argument that the extension from a multiprogramming 

environment to a multiple operating system environment to a 

multiple computer environment is a worthwhile effort because 

it is the extension of a concept. Section 2.3 presents 

descriptions of related work in this field. This review is 

necessarily short, as very little work has been done on multi¬ 

emulation. 

2•2 Applications 

Given a multi-emulator environment, a wide range of 

applications is possible. The applications suggested below are 

primarily directed toward emulator designers and implementors; 

however, some other novel uses are mentioned. Historically, 

there have been a number of reasons for writing emulators: 

emulation of an outdated machine to retain the use of software 

on which a great deal of money has been spent; emulation of an 

5 
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2.2 Applications 6 

experimental machine when sufficient building funds are not 

available, final design specifications have not been made, or 

architectural flexibility is desired; and emulation of 

processes, usually high level machine-independent language 

processors. In addition, research has been carried out on high 

level microprogramming languages for both vertical and 

horizontal control structures. For example, see Husson (1970), 

Ramamoorthy and Tsuchiya (1974), Eckhouse (1973), and Dasgupta 

(1974). Lloyd and Van Dam (1974) consider the problem as well 

and provide a good list of references. There is even interest 

in microprogrammed operating systems. See Huberman (1970) and 

Liskov (1972) for a discussion of the Venus operating system, 

and Werkheiser (1970) for a more general discussion. All of 

these capabilities are of course included in a multi-emulator 

environment. Here are some others: 

• Providing that an inter-emulator communication mechanism 

were set up, a restricted form of network simulation could 

be produced. Probably the most severe problem would be that 

of synchronization, as the use of a single processor does 

not usually permit execution of parallel events, at least 

not on a macroscopic scale. This idea generates two related 

ideas which follow. 

• Research could be performed on computer interfacing problems 

which are not specifically network problems. For example, in 

a simulated computer/front end environment, protocol could 



' 

, 

. 

T) 

. 

. 



2.2 Applications 7 

be established and software written and tested at both ends. 

Again, synchronization problems would exist. As another 

example, a special I/O or processing device could be 

designed and debugged without actually existing. For 

instance, Dalrymple (1972) describes a microprogrammed, 

virtual associative memory which was added to an IBM 1130 

emulation. 

• Another related possibility is actual interface of the host 

machine to other real computers by having the real computer 

communicate with an emulator of the same type of computer. 

This would be done on the premise that it is easier for a 

computer to communicate with one of its own kind rather than 

another. Design of the actual interface hardware might not 

be any simpler, but the writing and testing of software to 

support the link might. 

• A very interesting prospect is the implementation of an 

emulator the purpose of which is to function as a debugging 

and developmental aid to the emulator implementor. (Of 

course, the multi-emulator supervisor should itself provide 

rudimentary debugging and tracing facilities. See section 

3.2.) The debugging emulator would have a mechanism to pass 

control to the unfinished emulator; the unfinished emulator 

would be temporarily fitted with a mechanism to return 

control to the debugger, along with pertinent data in a 

communications area. (Something along these lines has been 
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2.2 Applications 8 

done by Dalrymple and Durakovich (1974). See section 2.3.) 

The debugger would also have the ability to examine and 

modify the unfinished emulator*s storage. 

• The above application is an important specific instance of a 

more general application, that of machine hierarchies. This 

concept involves two emulators operating in a master-slave 

relationship so that the master can control the slave in 

order to debug it, monitor it, gather run-time statistics 

about it, or whatever. Of course, a significant time 

degradation would occur. If one chooses, one may regard this 

as a special type of network. Implementation of such a 

scheme involves fairly sophisticated communication between 

the two emulators, and if the slave is to be ignorant of the 

master*s existence (so as not to bias results) then the 

supervisor should handle all of the communication. The idea 

of supervisor interposition is important for other reasons, 

as we shall see later. 

• The existence of a multi-emulator system would make easier 

the writing and implementing of high level language 

machines. Many designs for such machines call for a two- 

ph ase process, the first phase translating input text into 

some more compressed intermediate form and the second 

interpreting this intermediate text. For example, Melbourne 

and Pugmire (1965) describe a FORTRAN machine, Weber (1967) 

presents an implementation of an EULER machine, and Hassitt, 
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2.2 Applications 9 

Lageschulte, and Lyon (1973) give details of an APL machine 

implementation on an IBM 360/25. Such a setup could fairly 

easily be implemented, given a multi-emulator environment. 

As well, the multi-emulator supervisor could include a set 

of (firmware) routines to carry out high level I/O 

processing for member emulators. The idea of high level I/O 

at the microprogram level is very interesting and is 

discussed in more detail in section 3.5. 

2.3 Related Work 

Little research has been done on multi-emulation. Rosin 

(1969) speculates briefly on it, first in relation to a high 

level language environment consisting of pairs of emulators, 

one for compilation and one for interpretation of a given 

language: 

The result could indeed be, for example, a FORTRAN 
machine having the potential advantages of both 
compilation and interpretation. The chief drawback is 
that a new emulator would have to be built for each 
language environment to be emulated. In a 
multiprogramming environment this could lead to 
requirements for a very large control store or a most 
efficient paging scheme for swapping emulators. A 
further disadvantage is that such emulators would have 
to be rewritten to take full advantage of the specific 
internal organization of all machines involved. 

Another approach to high level language support he suggests is 

the building of general purpose emulators, implying the 

existence of one intermediate target language for all 

translators. A similar approach has been taken in the 

Burroughs B1700 system, to be discussed shortly. 
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2.3 Related Work 10 

Rosin also raises some questions on system protection 

and integrity: 

If a system is to support more than one emulator, either 
simultaneously or using overlay techniques, questions of 
the following sort arise: 

-Using an example, when returning from SN0B0L4 
emulation to (say) 36C emulation, how does one assure 
that he will get back? 

-In the same situation, how does one know there is 
something to get back to (the 360 emulator roll-out area 
may have been accidentally destroyed)? 

-Does the system have to wait until all I/O 
operations initiated under one emulator reach completion 
before calling in another? 

-How can information be passed between emulators? 
-How are files to be formulated for emulator 

independent processing? 
-How are interrupts handled (or emulated) and by 

which emulator? 

The questions are not new, only the context has changed. 
They are quite analogous to the problems which led to 
and arose during the development of contemporary 
operating systems. 

Rosin then goes on to mention the interesting tradeoff 

of allowing an emulator to use the hardware directly (and 

relying on the emulator for system integrity) versus degrading 

system performance by applying protection control (see section 

3.3.1) . 

The remainder of this section gives short summaries of 

existing and proposed multi-emulator systems, and of systems 

which bear similarity to multi-emulation. These summaries 

provide a good overview of the present state of multi¬ 

emulation . 
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2.3 Related Work 11 

• Hopkins - batched multi-emulation 

Hopkins (1970) speculates about the design of a multi¬ 

emulator operating system on a microprogrammable computer with 

a writable control store, envisioning a single-thread 

sequential batch processing environment with only one emulator 

resident in control store at one time. He identifies the very 

difficult problem of "providing system I/O interface 

facilities that are general enough to support a wide range of 

emulators", and proposes a low level interface allowing 

"relatively powerful I/O requests from the emulator". He also 

specifies the following system characteristics: 

1) Transparency: a minimum of system intervention in 
the normal operations in the emulator and in the virtual 
machine program; 

2) Generality of emulation: a minimum of 
restrictions on the structure and operation of the 
emulators; 

3) Size: a minimum of resident system functions 
during processing of jobs. 

Briefly stated, the system goal is the ability to 
run a sequence of jobs, under arbitrarily many different 
emulators, without manual intervention to load 
emulators, check timing, and so on. 

Hopkins’ I/O interface is based on the specification that I/O 

need not be carried out directly: a method of stacking and 

processing I/O requests is suggested. He also suggests a set 

of "primitive" I/O procedures which any emulator can call. He 

does not, however, address the problem of handling interrupts 

in any great detail, and even hints that they may never be 

seen above the lowest level of program control. This is 

generally unsatisfactory when attempting to achieve something 

approaching real time response, especially when the emulated 
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2.3 Related Work 12 

machines themselves have an interrupt structure. The resident 

package consists of the currently running emulator, the I/O 

interface, an error recovery routine, an "end of task" 

routine, and optional accounting routines. A number of 

restrictions are outlined, including use of the system I/O 

interface routines, protection of control store tables, 

register restrictions imposed by the system, and clean-up by 

the exiting emulator. He acknowledges that enforcement of 

these restrictions requires co-operation between emulator and 

system, but states that they do not restrict the structure of 

any particular emulation. Research areas listed are: provision 

of real-time communication, concurrent residence of more than 

one emulator, and inclusion of microdiagnostics (perhaps in 

the error recovery routine). 

• McDonnell Douglas Astronautics Corporation 

A very specialized form of multi-emulation has found 

application in the emulation of the MAGIC 352 computer (Delco 

Electronics, 1973) by Dalrymple and Durakovich (1974). Theirs 

is a dual emulation, "an emulation of the new computer 

combined with an emulation of an existing computer, in order 

to take advantage of the support software already available 

for the existing machine." The host machine is the DSC META 4 

(Digital Scientific Corporation, 1972), a microprogrammable 

machine with 32-bit read-only memory and two 64 word (16-bit) 
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2.3 Related Work 13 

scratch-pad memories. The existing computer emulator is an IBM 

1130, and the new emulator is the MAGIC 352. 

A master-slave relationship was established between the 
IBM 1130 and the MAGIC 352 emulations by providing a new 
1130 instruction to "turn on" the 352. When it is 
executed, the 1130 emulation stops and the 352 emulation 
begins execution. Whenever an exceptional condition 
occurs, control returns to the 1130 emulation and a flag 
is set which the 1130 program can use to determine the 
nature of the condition. Communication between the two 
emulations is accomplished via the scratch-pad memories. 

The system includes commands to modify and dump MAGIC memory, 

modify the MAGIC clock, and arm and disarm interrupts. Also 

provided are a checkpoint/restart facility, a breakpoint 

capability, a tracing capability, and a snap dump facility. 

• Nanodata Corporation 

Nanodata Corporation's QM-1 computer is a machine 

specially suited for emulation. Of particular interest are its 

two levels of microprogram control and large number of 

independent data buses. The company, as part of its firmware 

and software support, has provided a multi-emulator 

environment with its QM-1 computer (Nanodata Corporation, 

1974). One of their firmware supervisors, called CONTROL, 

supports concurrent execution of multiple NOVA 1200 emulators 

and provides firmware device drivers for a wide range of I/O 

devices. Much of the basic design of the multi-emulator 

environment described in Chapter IV came from studying 

CONTROL. CONTROL is completely vertically microcoded and 
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2.3 Related Work 14 

resides in an 18-bit control store. The definition of MULTI, 

which is the microinstruction set in which CONTROL is written, 

requires approximately 128 360-bit words of nanostore. The 

NOVA emulator itself occupies about 60 words of nanostore. No 

storage swapping (other than register save and restore) is 

required on emulator switch, which occurs on a clock 

interrupt. Each emulator accesses its own disk pack, and has 

access to all other devices. Although many design and 

implementation considerations are simplified because the 

environment is homogeneous, CONTROL is a reasonable effort at 

providing a computer emulator environment. 

• IBM Corporation 

A paper by Allred (1971) concerns itself with "the 

design and development of integrated emulators for the IBM 

Systera/370." Following are the design criteria used in these 

emulators as presented by Allred: 

1. Emulators must be fully integrated with the operating 
system and run as a problem program. 
2. Complete multiprogramming facilities must be 
available including multiprogramming of emulators. 
3. Device independence, with all device allocation 
performed by the operating system. 
4. Data compatibility with the operating system. 
5. A single jobstream environment. 
6. A common, modular architecture for improved 
maintenance and portability. 
7. An improved hardware feature design with emulator 
mode restrictions eliminated and all feature operations 
interruptible. 

Although these emulators fill a real need, i.e. letting 

a user keep on using software for an old machine while 
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2.3 Related Work 1 5 

"growing into" a newer one, they are not multi-emulator 

environments in the sense indicated in the first chapter. 

First, I/O is simulated by providing an "emulator access 

method" to the 370 operating system. Second, because the 

emulator is running as a problem program, it may not use 

privileged opcodes and hence is not a complete emulation. 

Third, although multi-emulation might be supportable, it was 

apparently never done. The "integrated emulation" concept is 

interesting because the emulator does not run stand-alone; it 

must communicate with the 370 operating system. This is 

similar to communication between a multi-emulator supervisor 

and a member emulator, and could provide some valuable tips to 

the multi-emulator system designer. 

• Burroughs Corporation 

A report by Davis, Zucker, and Campbell (1972) describes 

"a structure for connecting and controlling a multiprocessor 

system using a building block technique." 

The hardware is modular and includes microprogrammable 
processors called "Interpreters", memory modules, and 
devices. Each Interpreter is interconnected with every 
memory module and every device via a data exchange 
network called a "Switch Interlock". 

The Interpreters, also known as "D-machines", are identical 

and have a writable control memory. See Reigel, Faber, and 

Fisher (1972) for a detailed description of the Interpreter. 

In the Multi-Interpreter System, ... I/O control and 
processing functions are all performed by identical 
Interpreters, and any Interpreter can perform any 
function simply by a reloading of its microprogram 



, 

. 

* 

c 

. \ ’ 

> • 

, 



2.3 Related Work 16 

memory. In the Multi-Interpreter Control Program I/O 
operations simply become tasks which are 
indistinguishable to the control program from data 
processing tasks except that they require the possession 
of one or two I/O devices before they can begin to run. 
(A task is defined as an independent microprogram and 
its associated "S" level program and data, which 
performs explicit functions for the solution of user 
problems.) Whenever an Interpreter is available it 
queries the scheduling tables for the highest priority 
ready-to-run task, which may be an I/O task, a 
processing task, or a task which combines both 
processing and I/O functions. 

It is claimed that the Interpreters have successfully 

performed the following tasks: emulator, peripheral 

controller, high level language executor, and special function 

operator. This work is of interest because it describes an 

operating system which controls concurrently running emulators 

(albeit in a multi- rather than single-processor environment), 

and because the Interpreters can be made to change their 

function. Thus the intent of this system (modular multi¬ 

emulator control) is basically the same as that of the system 

to be described herein, although the actual structure is 

vastly different. 

The Burroughs B1700 computer, introduced by Wilner 

(1972a), is a small-scale, bit-addressable, microprogrammable 

computer. System design centers around a set of "S-languages" 

each of which is suited to the accomplishment of a fairly 

specific task, usually interpretation of source code for a 

particular high level language. 

The Bl700*s objective, consequently, is to emulate 
existing and future S-machines, whether these are 360*s, 
FORTRAN machines, or whatever. Rather than pretend to be 
good at all applications, the B1700 strives only to 
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2,3 Belated Work 17 

interpret arbitrary S-language superbly. The burden of 
performing well in particular applications is shifted to 
specific S-machines. 

The claim is made that the process of the B1700 hardware 

interpreting an S-machine, which in turn is interpreting an 

application program, "is more efficient than a single system 

when more than one application area is considered." The B1700 

Master Control Program (MCP) handles all virtual memory 

reguirements, and all multiprogramming functions (I/O, storage 

management, and peripheral assignment). All I/O is done by 

communicating descriptors; I/O has its own S-language. MCP 

itself is written in a higher-level S-language (SDL) and 

interpreted. The system appears to be very flexible in 

switching between interpreters: 

Interpreter switching is independent of any execution 
considerations. It may be performed between any two S- 
instructions, even without switching S-instruction 
streams. That is, an S-program may direct its 
interpreter to summon another interpreter for itself. 
This facility is useful for changing between tracing and 
non-tracing interpreters during debugging. 

The system is claimed to be very efficient at emulating high 

level language machines. Wilner (1972b) includes some very 

favourable statistics when describing the COBOL, BPG, and 

FORTRAN S-machines on the B1700. As well, S-machines have been 

designed and implemented by others; for example, see Belgard 

(1974) and Firestone (1973). However, it seems that the B1700 

would not be particularly good at emulating sophisticated 

general purpose computers, particularly because of the small 

number of general purpose registers (four) and the fact that 

control store can hold only microinstructions. A MITRE 
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2.3 Related Work 18 

Corporation report by Burke, Gasser, and Schiller (1974), 

describing a feasibility study of emulating the Honeywell 

6180, supports this impression: 

The benchmark emulation of the STA instruction ... 
reguires 76 microinstructions. Assuming 250 nanoseconds 
... per microinstruction, this is an execution time of 
19 microseconds. Delays due to main memory access could 
easily increase this time to 25 microseconds. [The 
execution time on a real 6180 is 1 microsecond.] Several 
other factors diminish the feasibility of emulating a 
6180 with a B1700. The maximum size of control memory on 
the B1728 is 4096 microinstructions. It is highly 
unlikely that this is large enough for a full emulation 
- thus either microinstructions would have to be 
executed out of main memory (which the B1700 can do) or 
micro routines would have to be "demand paged" into 
control memory. In either case performance would suffer. 
Also, the maximum size of main memory - 256K bytes for a 
B1728 - is very small compared to a "typical" 6180 
configuration. Even the theoretical limit of 221 bytes 
of main memory (based on the size of the memory address 
register) is on the small side. 

This same report estimates a time degradation of a factor of 

six to ten using the QM-1 rather than the B1700 as the host 

for a 6180 emulation. 
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CHAPTER III 

Multi-Emulator Supervisor Design 

3.1 Introduction 

This chapter deals with the design of a multi-emulator 

supervisor. The following section states the basic functions 

of such a supervisor. Next, the general design principles 

embodied in a multi-emulator supervisor are presented. It 

should be noted that the principles to be outlined are 

particular to a multi-emulator environment; principles drawn 

from operating systems theory will not explicitly be stated. 

These principles are then expanded into a compact set of 

fairly explicit guidelines useful to the designer of a multi¬ 

emulator system. Finally, the possibility of providing a high 

level I/O interface to members of a multi-emulator environment 

is examined. 

3.2 Supervisor functions 

A multi-emulator supervisor must have several basic 

functions in order to provide the necessary support for and 

exert the necessary control over member emulators. These 

functions, including a task scheduling and switch capability, 

operator supervisory and control functions, and a low level 

I/O interface, are described briefly in this section. A more 
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3.2 Supervisor functions 20 

detailed discussion of these matters is presented in the next 

chapter, as the functions are better understood in the light 

of an actual implementation. Figure 3.1 shows the logical 

position of the supervisor in a multi-emulator system. 

A task switch mechanism must be provided, its precise 

form depending upon the design philosophy. For example, in a 

batch mode of operation as suggested by Hopkins (1970) , the 

incoming emulators state may be assumed to be uninitialized 

(corresponding to a machine's state immediately after power- 

up) . However, in a multi-tasking environment, emulator states 

must be preserved across task switches, and the mechanism 

becomes more complex. Storage swapping may be required. Also, 

as we shall see, the problems of device ownership and time- 

sensitive operations become thorny indeed. For flexibility, a 

number of types of events should have the potential to trigger 

task switch: these should include timer interrupt, I/O device 

interrupt, instruction step, and perhaps explicit emulator 

request. Also for flexibility, the event types which actually 

are allowed at any one time to cause a switch should be 

operator-selectable. 

The control program must have some means of interacting 

with the system operator. Commands for storage display and 

modification are necessary, as are commands to start and stop 

member emulators. The operator must have at least as much 

control over a member emulator as he would have if he were 

operating the real computer from its front panel. Experience 
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3.2 Supervisor functions 21 

I— 

supervisory 
and control 

device drivers 

task switch 

Emulators Supervisor I/O Devices 

Fig. 3.1. Basic Multi-Emulator System Structure 

shows that debug facilities such as register tracing and 

single step mode are very desirable. Provision should be made 

for the inclusion of automatic system monitoring facilities. 

The operator should also be allowed to dynamically modify an 

emulator's configuration (e.g. add a tape drive, reassign the 

card reader). 

Since the system will include emulators capable of 

carrying out I/O operations at a very low level, it must 

provide support for such operations. A standard set of 

firmware device drivers and a bi-level interrupt mechanism are 

necessary. These important concepts will be explained and 

their inclusion justified in the following section. 
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3.3 Design Principles 22 

3.3 Design Principles 

In order to better grasp the concepts of multi- 

emulation, consideration of the principles involved is 

warranted. This section presents two underlying principles of 

multi-emulation. It should be stressed again that it is 

computers being emulated, not simply processes. 

3.3.1 Architectural Interference 

A multi-emulator environment will in general consist of 

emulators with very different machine architectures. If the 

supervisor imposes some basic architectural constraints that 

do not already exist in the host machine’s architecture, then 

the varieties of emulation possible may be greatly reduced, 

and emulator design to fit these additional constraints may 

become more difficult. One might argue that providing complete 

freedom to member emulators is asking for trouble with respect 

to protecting one emulator from another. This is true, but it 

is more important to minimize interference and assume that the 

emulators are well-behaved, than to restrict severely an 

emulator’s access to the machine for the sake of protection. 

After all, a multi-emulator environment is a very special one, 

not containing users out to "break" the system. Something the 

supervisor can do is provide safe facilities for the member 

emulators to use, especially in terms of I/O. 
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3.3.2 Exact Emulation 23 

3.3.2 Exact Emulation 

The supervisor (and the host machine) should have 

facilities to provide exact emulation of computers. This 

principle is visible primarily in the consideration of 

communication between an emulator and the real world. i. e. 

emulator/device interfacing. Emulator/device interfacing is 

the single most important consideration to the multi-emulator 

supervisor designer. 

Here is a summary of some of the specifications 

presented earlier in the light of providing exact emulation. 

First, the supervisor will allow emulators to communicate 

directly with I/O devices. When device numbers are limited, as 

is often the case, devices must be shared among emulators: 

this service is the responsibility of the supervisor, meaning 

the provision of both standard device/emulator interfaces and 

dynamically alterable device ownership. Second, the member 

emulators will be computers, and most computers deal with I/O 

devices at a low level; therefore, the supervisor must provide 

a suitably low level interface to devices. Thus, the 

supervisor must combine a standard device interface with a low 

level device interface. The following subsections consider 

these points more closely. 
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3.3.2.1 Device Ownership 24 

3.3.2.1 Device Ownership 

Clearly, more than one type of device ownership must be 

supported. The types shall be categorized as follows: 

• absolute - 

This term is applied to devices which are owned solely by a 

single emulator. For example, a computer's console would 

probably be owned absolutely. This type of ownership is 

easiest to support, requiring no special supervisor support 

to route interrupt signals, status information, and the 

like. 

• sequential - 

This applies to devices which need a long term ownership but 

which must be shared among emulators. Examples are line 

printers, magnetic tape drives, card readers, etc. 

Supervisor support for this type of ownership becomes much 

more complex than for absolute ownership because a number of 

new problems arise. 

First, a mechanism is required to cause a change of 

ownership from one emulator to another. If the I/O were done 

at a high level (i.e. the open, close, read, write level of 

a multiprogramming operating system), then the problem would 

not be difficult: when an emulator opened a device, it would 

be given ownership of it until it closed the device. (Of 

course, other problems such as what to do when a device is 
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3.3.2.1 Device Ownership 25 

required by an emulator while in use by another, and what to 

do about an emulator which "forgets" to close a device would 

have to be overcome.) However, since the members are 

computers, and I/O is carried out at a low level, the 

supervisor cannot in general know when an emulator has 

finished using a device; the virtual machine has no "close" 

instruction to indicate this. For example, consider the 

listing of a file on a line printer: how is the supervisor 

to know that the emulator is has completed the listing, 

unless the emulator has some means of explicitly indicating 

this to the supervisor? The following simple sequential 

device switch mechanism is therefore proposed: an operator 

command would be provided to allocate a device to a given 

emulator, and the device would be made to appear not ready 

to any other emulator. Of course, the operator should 

satisfy himself that the device is not in use before 

reallocating it. 

A second major problem not encountered in the absolute 

ownership case is the provision of a standard firmware 

device interface which can communicate with any emulator. 

This problem deserves a section of its own (section 

3. 3.2.2) . 

Manual sequential ownership as described above may be 

unsuitable in some real time applications, for example a 

system of process control emulators attempting to share data 

acquisition devices. For one thing, the delays caused by 
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3.3.2.1 Device Ownership 26 

supervisor overhead and by the fact of emulation itself 

might be such that the emulator could not handle interrupts 

quickly enough, or that supervisor-imposed changes in 

interrupt timing might render results invalid. For another, 

the act of manually switching device ownership would almost 

surely result in lost interrupts. (Such a system, however, 

would probably be usable in a batch rather than concurrent 

mode of operation.) 

• shared - 

Sequential ownership, with its clumsy method of device 

ownership allocation, is far too slow for some devices, 

notably disk drives. Especially in small configurations, 

different emulators may require the services of the same 

disk controller in rapid succession; a type ownership of a 

very temporary nature is therefore required. 

Here is a possible solution to this ownership problem. 

For each disk drive, the supervisor would remember the most 

recent cylinder address sought to by each emulator sharing 

the disk. The currently running emulator would automatically 

become disk owner, and any disk access made by it would be 

delayed until the supervisor had done a "safety seek" to 

ensure the heads were properly positioned. Of course, the 

supervisor would have the responsibility of protecting other 

emulators* data; the VM/370 "mini-disk" concept (IBM 

Corporation, 1972) is useful here. A related problem is the 
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3.3.2.1 Device Ownership 27 

possibility that task switch might occur while data is being 

transferred to or from disk. To solve this problem, the 

supervisor could set a lock upon commencement of data 

transfer and reset the lock when the transfer is complete; 

while the lock was set, task switch would not be permitted 

(see section 4.3.1). 

3.3.2.2 Standard Device Drivers 

Each device type requires a standard firmware device 

handler which can communicate with any emulator, especially if 

the device may be shared among member emulators. This 

interface is necessary for the routing of signals to and from 

the current device owner and to guarantee that only the 

current owner may access the device. Naturally, as much as 

possible of the I/O processing should be done by the 

interface, but unfortunately interfacing cannot be provided at 

a very high level because (once again) of the average 

computer*s ability to carry out low level I/O. For example, 

standard multiprogramming features such as device-independent 

I/O and spooling of data are simply out of the question. 

Provision of standard device drivers is an illustration of an 

important principle of multi-emulation: the supervisor should 

be interposed between device and emulator, without exception. 

Another illustration of this principle follows. 
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3.3.2.3 Interrupt Handling 28 

3. 3. 2.3 Interrupt_Handling 

The supervisor must include an interrupt handling 

routine to take interrupts directly from the I/O devices. 

Thus, when an interrupt occurs, the supervisor will remember 

it in its own gueue, and will signal the appropriate member 

emulator. The member emulator will in turn remember the 

interrupt in its own fashion, and pass control back to the 

supervisor to degueue the device from the supervisor’s 

interrupt gueue. This method, called bi-level interrupt 

handling, has two very favourable features. First, no reliance 

whatever is placed on a member’s interrupt handling mechanism. 

In fact, it need not even be resident when an interrupt 

occurs. Second, each member’s interrupt mechanism can remember 

the interrupt in any way it sees fit. This could range from a 

priority interrupt scheme (as in a PDP-11) to simply setting a 

flag and forcing control in the emulator to pass to a standard 

entry point (as in a PDP-8). Maximum flexibility is therefore 

allowed. 

3.4 Specific Guidelines 

Basic design principles and their ramifications having 

been considered in the previous section, these criteria may 

now be reformulated into a set of guidelines for the multi¬ 

emulator supervisor designer. 

• The supervisor must impose minimal architectural constraints 
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3.4 Specific Guidelines 29 

upon member emulators. See section 3.3.1. 

• If possible, the microinstruction set used to implement the 

supervisor should be tailored to maximize its efficient 

coding. This is obvious, and at the same time very difficult 

for most user-microprogrammable machines. 

• Actions by the supervisor not directly affecting the active 

emulator’s storage must be invisible to it, as must actions 

carried out by other member emulators. In particular, task 

switch must be unnoticed by an emulator. This guideline is 

easy to follow if constant attention is paid to it during 

design; it is nonetheless important, as it doesn’t permit 

various sorts of painful interdependencies to build up. Of 

course, supervisor functions may exist to explicitly affect 

an emulator, for example in supervisor-controlled inter¬ 

emulator communication. 

• Debug and supervisory capabilities must be provided the 

operator by the supervisor, especially for the emulator 

designer. These were discussed in section 3.2. 

• There should be a number of types of task switching 

available to the operator. Also, a lock facility must be 

provided to delay task switch during critical operations. 

The business of task switching was also discussed in section 

3.3. Provision of many types of triggers is beneficial 
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3.4 Specific Guidelines 30 

especially in environments where it is not known which types 

would provide the smoothest running system. Much work can be 

done concerning task switching, perhaps along the lines of 

similar multiprogramming concepts such as swapping and 

paging. This matter will not be examined further in this 

thesis. 

• The supervisor must be interposed between emulators and the 

physical devices themselves, and, to the greatest extent 

possible, code should be shared between different emulators' 

firmware device drivers for the same device type. 

Interposition is an important concept because it aids both 

in device sharing and in reducing the chance of possible 

inter-emulator interference. 

• A bi-level interrupt control mechanism must be provided by 

the supervisor: interrupts will be handled by the supervisor 

first, and then allowed to activate the owner's interrupt 

mechanism. This may be thought of as a specific application 

of interposition, but it is important enough to warrant 

special note. 

• More than one type of device ownership must be provided. The 

categorization presented in section 3.3.2.1 included 

absolute, sequential, and shared ownership. 
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3.4 Specific Guidelines 31 

The following chapter seeks to apply these guidelines to 

a real multi-emulator system. Emulator/device interfacing 

forms a major part of the discussion, either directly or 

indirectly. 

3.5 Note on a High Level^l/0 Interface 

Although the provision by the supervisor of low level, 

direct communication between emulator and device is a more 

flexible approach than any other, it has its drawbacks: 

• Any new emulator type being added to the system must 
have a complete set of device drivers written for it, 
at best using existing drivers as models. This is a 
time consuming process. 

• While a low level interface is extremely suitable for 
computer emulators, it is extremely unsuitable for 
language emulators. 

A worthwhile effort would be the provision in a multi¬ 

emulator environment of a high level I/O interface. The reader 

should consult the references provided in section 2.3 if he is 

interested in this area. Here are some criteria for such an 

interface: 

• It must not impose architectural constraints upon its 
users. 

• All I/O should be device independent. 

• The concept of "opening” and "closing” devices should 
be employed in order that there be no device ownership 
problems. 

As this thesis is concerned mainly with supporting 

traditional computer emulators which require a low level 
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3.5 Note on a High Level I/O Interface 32 

interface, this section is not meant to be a solution to the 

problem of providing high level I/O at the microprogram level, 

but merely an outline of some of its aspects. Many 

capabilities must be provided: a file system, spooling 

facilities, the ability to handle various data formats, and 

the handling and communication of error conditions, to name a 

few. Even with all these problems, however, the elevation of 

the I/O interface to a high level should make design and 

implementation of a system comprised of processes which use 

the interface a much simpler task than that of providing an 

environment for exact computer emulation. Opportunities for 

both theoretical and practical research exist in abundance. 

In addition to providing high level I/O for the purpose 

of supporting language processors, another interesting 

direction for research would be the investigation of computer 

architectures with an eye to improving the I/O structure. 

Traditional computer order codes are unbalanced: 

accomplishment of I/O functions is an order of magnitude more 

complex than accomplishment of any other function. The 

programmer must get ’’closer to the machine” than at any other 

time; he must do more bit manipulation and usually has timing 

problems to worry about. The problems are akin to those which 

we would have to suffer through if our ADD and SUBTRACT 

instructions were replaced by an EXCLUSIVE-OR capability in 

which propagation delay had to be considered. It is no 

surprise at all that operating systems hide low level I/O 
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3.5 Note on a High Level I/O Interface 33 

activities from the average user: they are simply too much of 

a headache! Work toward the provision of device-independent, 

high level I/O instructions for a contemporary computer's main 

store instruction set, performing all the necessary low level 

activities at the microprogram level, would certainly be 

worthwhile. 





CHAPTER IV 

A Particular Multi-Emulator Environment 

4•1 Introduction 

Setting down a list of guidelines for the multi-emulator 

designer to follow is all very well, but what of showing that 

they are actually workable? This chapter gives a brief 

description of a multi-emulator system in which the guidelines 

suggested are applied. The following section is an overview of 

the system: setting, member emulators, and major data 

structures. The system's logical structure comprises the final 

section. Illustrations of how the guidelines have been applied 

are interspersed throughout the chapter. 

4.2 Basic Structure 

In order to better understand the following sections, 

the reader may wish to gain some familiarity with the 

architecture of the host machine for this system, the QM-1. 

Other than the HardwareL Level_Use rj_s_Manual (Nanodata 

Corporation, 1974), a number of articles present short 

descriptions of the QM-1. These include: Rosin, Frieder, and 

Eckhouse (1972); Lutz and Manthey (1972); Dorin (1972); Thomas 

(1974); Petzold, Richter, and Rohrs (1974); and Agrawala and 

Rauscher (1974) . 

34 
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4.2.1 Setting 35 

4.2.1 Setting 

The multi-emulator system to be described (often 

referred to in this chapter as the "system” and the 

"supervisor”) is for the Nanodata QM-1, closely modelled after 

their system called CONTROL (see section 2.3). The supervisor 

is written in MULTI, an assembly-like vertical 

microinstruction set defined by Nanodata Corporation. A 

favourable feature of MULTI is that unlike most 

microinstruction sets, timing problems do not occur: all 

actions such as arithmetic operations and memory accesses are 

synchronized. Thus, although no parallelism can be achieved, 

code is relatively easy to write, understand, and debug. 

Execution times of MULTI instructions averages approximately 

.5 microseconds per instruction. The supervisor resides 

completely in control store; that is, the control store holds 

both the code and the data structures which make up the 

system. In the implementation each member is a computer 

emulator, so the system’s basic functions are these: to 

provide low level I/O support to member emulators; to provide 

a task switch capability; and to provide the system operator 

with control and supervisory functions. 

It should be noted that although all of the components 

of the system have been written and tested, they have not been 

assembled into a complete system. This was due in part to a 

lack of availability of certain peripheral devices, and also 
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4.2.1 Setting 36 

to the lack of stability in the QM-1 hardware caused by break- 

in troubles and by shipping damage. 

4.2.2 The Member Emulators 

As has been mentioned, the member emulators making up 

the system are computer emulators. One is a Nova 1200 emulator 

written by Nanodata Corporation; the other is a PDP-11/10 

emulator (Demco and Marsland, 1975). Information regarding the 

architectures and instruction sets of these computers may be 

found in reference manuals (Data General Corporation, 1972; 

Digital Equipment Corporation, 1973). 

Neither emulator was written with concurrent operation 

in mind. This points out the generality of the design 

principles, especially that of minimization of architectural 

interference. An emulator can, and in fact should, be designed 

for stand-alone operation, and the supervisor will allow for 

its inclusion in the system without modification to the 

emulator or to any other member emulator. 

The emulators' structures are similar. They are not 

written in a vertical microinstruction set which is in turn 

interpreted by nanocode; instead, main store instructions are 

interpreted directly by nanocode. Also, all I/O operations are 

handled by firmware routines which reside in control store, 

and are coded in the vertical microinstruction set MULTI. The 

emulators are reentrant. Both have a similar instruction fetch 
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4.2.2 The Member Emulators 37 

and decode routine: 

• The program counter is used as pointer into main store, 
from which the next instruction is fetched. 

• A flag is tested. If it is set, the emulator passes 
control to a microroutine instead of proceeding with 
the instruction execution. The act of diverting the 
emulator to this routine is termed a logical interrupt. 
The reason for having this flag is explained below. 

• The program counter is updated. 

• Some number of bits of the instruction are used as an 
index into a table in control store from which is taken 
the address of the appropriate nanoroutine to execute 
the instruction. The size of this table for each 
emulator is 512 words. 

• The nanoroutine is executed, performing the required 
function. Preliminary actions may occur, depending on 
instruction type (e.g. effective address calculation). 
Also, side effects may occur, such as auto-incrementing 
of a register or memory location. 

• If the instruction performs I/O, control passes to a 
microroutine in control store to handle the request; 
else control passes back to the beginning of the 
instruction fetch routine to execute the next main 
store instruction. 

The Nova instruction set is more suited to this sort of 

decoding technique, as a quick look at the formats of the two 

instruction sets will show. The emulators are started by 

special microinstructions added to MULTI: these 

microinstructions simply cause control in the QM-1 to pass to 

a particular nanoaddress (the start of the emulator’s fetch 

and decode routine) rather than continuing with the execution 

of the next microinstruction. 

The 

interrupt 

logical interrupt flag is usually set by an 

handler, indicating that one of the emulator’s 
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4.2.2 The Member Emulators 38 

devices requires service. If this is the case, the 

microroutine invoked causes the emulator to recognize the 

interrupt in whatever fashion the emulator's architecture 

demands. For example, the Nova's routine merely forces a 

subroutine call to main store location 0. The logical 

interrupt flag may also be set by the command handler (this is 

explained in section 4.3.4). 

The Nova emulator runs at between .3 and 1.25 times the 

speed of a real Nova 1200, and the PDP-11 emulator runs at .5 

to 1 times the speed of its target machine. Unfortunately, 

actual computers were not readily available for comparison of 

execution times of sample programs. However, a benchmark 

standalone BASIC program took about 4.4 times as long to 

execute on the PDP-11 emulator as it did on a real PDP-11/45, 

a machine considerably more powerful than the PDP-11/10. 

The control store on the QM-1 acting as the host machine 

for the system is large enough (5K 18-bit words) to hold the 

supervisor and device drivers for both emulators at once. The 

supervisor requires approximately 1600 words for task 

switching, command handling, and task control blocks (see 

section 4.2.3.1). The Nova, which supports a full complement 

of I/O devices (teletype, card reader, line printer, moving 

head disk drive, and cartridge tape unit), occupies about 1500 

words. The PDP-11 presently supports only a teletype and a 

high speed paper reader, and requires approximately 500 words. 

(Incidentally, the paper tape reader device driver actually 
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4.2.2 The Member Emulators 39 

reads cards; this was done because of the ready availability 

of paper tape software.) Total control store utilization, 

including 1024 words for emulator instruction decode tables, 

is approximately 4600 words. The nanocode for the definition 

of MULTI and for both emulators also may reside in nanostore 

concurrently: MULTI occupies about 125 360-bit words, the Nova 

about 60, and the PDP-11 about 125. The host has 512 

nanowords. In addition, main store is large enough for one 

copy of each emulator's main store: each emulator can address 

32K words of main store, and the host presently has 64K words. 

(The QM-1 is equipped with a simple option for mapping main 

store addresses which permits more than one emulator's address 

space to be resident concurrently. However, the option is not 

sophisticated enough to provide an efficient paging 

mechanism.) Thus, for a simple system comprised of one 

emulator of each type, no storage swapping (other than 

registers) is required when task switch occurs. 

4.2.3 Data Structures 

The supervisor manages two major data structures in 

controlling devices and member emulators. These data 

structures reside in control store, as fast access is 

required. The following is a description of each. 
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4.2.3.1 Task Control Block 40 

4.2.3.1 Task Control Block 

For each member emulator, there is one TCB containing 

data used to control and determine the state of the member. It 

is comprised of both emulator-independent and emulator- 

dependent information. The emulator-independent information 

includes a save area for local store, external store, and F- 

store; a logical halt indicator (set when the emulator is 

halted or inactive); a single step indicator; a word 

indicating which console command, if any, is pending for the 

emulator; a word indicating how many more clock interrupts 

must occur before this task will be deactivated; and a 

constant to which the clock counter is set when the task is 

activated. For a PDP-11 emulator, the dependent information is 

a copy of the switch register, a flag to indicate whether or 

not this emulator is executing a WAIT instruction, and a 

pointer to a priority-ordered linked list of unit control 

blocks which the emulator owns and which are demanding 

interrupt servicing. The Nova's dependent information consists 

of its logical sense switches and a flag to indicate whether 

or not it may be interrupted by its devices. Each TCB requires 

approximately 50 control store words. 
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4.2.3.2 Unit Control Block 

The UCB is used by the supervisor to control the device 

it represents. Device independent information is comprised of 

a link field for queuing the UCB on the lower level interrupt 

queue, an entry point address into the upper level interrupt 

handler, the current owner indentification, the physical 

device address, and status information. The device-dependent 

information for devices currently belonging to PDP-11 

emulators includes a link field for the emulator*s priority 

interrupt queue, the trap vector address, the bus request 

priority, and copies of the device registers. Nova device 

information is a list of handler entry point addresses 

(corresponding to input, output, test, and null I/O 

operations), a done flag, and a busy/inactive flag. UCBs 

occupy approximately 15 control store words each. 

4.3 Logical Structure 

Each of the major components of the multi-emulator 

system is described in this section. The components are: task 

switch, I/O initiation, interrupt processing, and command 

handling. 
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4.3.1 Task Switch 

Because in the implementation of this system the storage 

requirements for both emulators do not exceed that available 

on the QM-1, task switch is easy to accomplish. It is 

triggered by timer interrupt only, although other switch 

signals (see section 3.2) may easily be added at some later 

time. 

Upon receipt of a timer interrupt, the task lock is 

tested. If set, the lock indicates that a critical operation 

is under way (e.g. DMA transfer) and task switch must be 

delayed until the active emulator resets it. If the lock is 

not set, the supervisor saves the currently active emulator's 

register contents in the designated TCB save area, chooses the 

next emulator to become active (a simple rotation suffices 

here), restores its registers from its TCB, and passes it 

control. These actions require approximately 20 microseconds 

in total. 

4.3.2 I/O Initiation 

When an emulator decides to perform an I/O operation, a 

microroutine is called to accomplish the function. There are a 

number of reasons for handling most I/O requests in microcode 

rather than directly in nanocode. Most importantly, the amount 

of nanostore is limited to 1024 words, and all of the device 

drivers necessary would almost certainly not fit concurrently. 
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4.3.2 I/O Initiation 43 

Also, the writing of efficient nanocode is difficult and 

requires experience, demanding more time than should be spent 

on anything except very critical system components. 

Before the I/O operation proceeds any further, the 

supervisor interposes itself, ensuring that the emulator is 

current owner of the device it is attempting to access (by 

checking the owner field in the device*s UCB). If the 

identification matches, the emulator may proceed, having full 

access to the device. (Disk access is an exception if mini- 

disking is employed. See section 3.3.2.1.) If not, the device 

is simply made to appear not ready to the emulator. The 

unexpected appearance of an unready device could conceivably 

cause problems in some operating systems, so the operator 

should exercise care when reassigning devices. In this 

implementation, this is the extent of the "standard device 

driver" concept explained in section 3.3.2.1. The 

identification check is simple, creating very little overhead 

yet giving emulators direct access to devices in order to 

carry out low level operations with efficiency. 

4.3.3 Interrupt Processing 

The most important feature of the system*s interrupt 

structure is its bi-level nature (see section 3.3.2.3). When 

an I/O interrupt occurs, the supervisor gains control. A small 

number of local store registers and F-registers are saved. The 

lowest level interrupt routine places the interrupting 
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4.3.3 Interrupt Processing 44 

device’s UCB on a queue (MULTI has a special microinstruction, 

ENQUE, for this purpose), determines the device’s status, and 

invokes the upper level interrupt handler for the device 

(using the entry point address found in the UCB). In this 

implementation, this routine is guaranteed to be resident. The 

upper level routine determines which emulator is device owner 

and passes control to the appropriate subroutine, in which the 

interrupt is recorded in whatever manner the emulator chooses. 

For example, the PDP-11 emulator device driver does whatever 

action is immediately required (usually merely getting 

detailed status information from the interrupting device), 

places the UCB on its own priority-ordered interrupt queue, 

and sets a flag to logically interrupt main store processing 

(see section 4.2.2). The subroutine then returns control to 

the supervisor which dequeues the UCB from the lower level 

queue (a DEQUE microinstruction is provided), restores the 

small number of local store registers and F-registers, and 

resumes the interrupted task. 

Interrupts are disabled in supervisor code only during 

queuing and dequeuing of UCBs; in emulator code they are 

disabled whenever the emulator chooses, usually during its own 

queuing process. Interrupts are stacked at the lowest level; 

however, a second interrupt from a device before the first 

interrupt has been handled and its UCB dequeued results in the 

second interrupt being lost. The lowest level interrupt 

handler usually requires less than 7 microseconds from the 
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4.3.3 Interrupt Processing 45 

moment the QM-1 CPU takes the interrupt until the moment the 

upper level interrupt handler is entered; typical total 

handling time from interrupt until the restart of the active 

emulator is on the order of 25 to 30 microseconds for a device 

belonging to either emulator. 

4.3.4 Command Handling 

As outlined in section 3.2, the multi-emulator system 

should give the operator supervisory, control, and debug 

capabilities. Commands are provided to display and modify an 

emulator*s storage (main store, control store, and registers), 

to set and clear single step mode, to cause selected registers 

to be traced, to initialize and reassign devices, and to start 

and stop member emulators. 

The mechanism used to effect an operator command is 

straightforward. When the interrupt handler for the operator's 

console recognizes a command for a particular member emulator, 

it records the command in that member's TCB and signals it 

with a logical interrupt. The next time the emulator begins 

execution of a main store instruction, it will test its 

logical interrupt flag and invoke its logical interrupt 

microroutine (section 4.2.2), which in turn will invoke the 

command handler. The command handler will execute and return 

control to the logical interrupt routine, which will restart 

the emulator. In this way, commands issued by the operator are 

invisible to the running emulator except for timing 
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4.3.4 Command Handling 46 

considerations, unless of course the command was intended to 

affect it. 

In a system with a small hardware configuration, it may 

be necessary to have one of the emulator consoles double as 

the system operator's console. This is easily done by 

providing some simple mechanism to "point" keyboard interrupts 

at the appropriate handler, either the emulator's or the 

system's. Similarly, more than one emulator may use the same 

console device. 
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CHAPTER V 

Conclusion 

5.1 Results 

The purpose of this thesis was to consider aspects of 

multiple concurrent computer emulation. As was expected, 

experience in the design and implementation of a real multi¬ 

emulator system has shown that most problems encountered are 

associated with providing an environment for exact computer 

emulation. The task switch mechanism is straightforward, as 

are the control functions. Minimization of architectural 

interference by the control program turned out to be a simple 

matter for well-behaved emulators. The interposition of the 

firmware support system between each emulator and each device 

has proved to be both practical and beneficial. However, 

emulator/device interfacing is a serious problem. Due to the 

ability of a computer to carry out I/O at a very low level, 

the envisioned standard interface between a particular device 

and any emulator occurs at a much lower level than originally 

expected. 

The complexion of the device/emulator interface changes 

drastically when the emulator is a high level language 

machine, reflecting the much higher level of I/O. The 

implementation of a multi-emulator system wherein all member 

47 
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5.1 Results 48 

emulators perform high level I/O exclusively is expected to be 

a much simpler task than that of providing an environment for 

exact computer emulation. In fact, I believe that in the 

(perhaps distant) future only device-independent I/O will be 

available to the main store programmer of a large general- 

purpose computer. This is an intriguing prospect. 

The principles and the guidelines which have been 

developed are sound. Their applicability has been demonstrated 

in the design of a real multi-emulator system, and I expect 

that results will be equally favourable in implementations on 

other user-microprogrammable computers. 

5.2 Suggestions for Further Research 

Design and implementation of a mechanism for providing 

machine hierarchies (section 2.2) would certainly prove 

fruitful. In particular, the design of a general purpose, 

microprogrammed, symbolic debugger would be a great asset to 

any multi-emulator system, especially if the member emulators 

had been designed to indicate the complete state of their 

environments to the debugger. Furthermore, designing an 

emulator with the question "How can I make this easily run 

under a symbolic debugger?" is sure to make for more 

structured design, and hence lead to better structure in user 

programs. 

The idea of placing low level I/O functions in the 
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5.2 Suggestions for Further Research 49 

firmware and leaving the main store order code with only 

fairly high level I/O capabilities has only been touched on in 

this thesis (section 3.5). It is certainly worthy of further 

research. 

Very little attention was given herein to task 

switching. True, mere accomplishment is simple enough, but 

providing efficiency is something else again. Several aspects 

could be investigated, applying results from operating systems 

theory: 

• the examination of task scheduling, which types of 
events should trigger task switch, and how the operator 
could "tune” the system; and 

• the possibility of partitioning storage and of 
employing paging hardware for main store and control 
store, and the application of various paging 
algorithms. 

Protection in a multi-emulator system is a valid 

research topic. How can one compromise between providing 

protection and minimizing interference? Can the supervisor 

make it easier for the member emulators to be well-behaved? As 

in the previous suggestion, ideas may be taken from operating 

systems theory, where protection is a major concern. 

These suggestions indicate only a small number of the 

possible avenues of research, and were provided only to spur 

further work in multi-emulation. I hope they will. 
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