

©X 11BBI5

awmswais
MBmarnsijs

The University of Alberta
Printing Department
Edmonton, Alberta

THE UNIVERSITY OF ALBERTA

RELEASE,. FORM

NAME OF AUTHOR: John Charles Demco

TITLE OF THESIS: Principles of Multiple Concurrent Computer

Emulation

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of
Science

YEAR THIS DEGREE GRANTED: 1975

Permission is hereby granted to THE UNIVERSITY OF

ALBERTA LIBRARY to reproduce single copies of this

thesis and to lend or sell such copies for private,

scholarly or scientific research purposes only.

The author reserves other publication rights, and

neither the thesis nor extensive extracts from it may be

printed or otherwise reproduced without the author’s

written permission.

DATED

■

THE UNIVERSITY OF ALBERTA

PRINCIPLES OF MULTIPLE CONCURRENT COMPUTER EMULATION

by

John Charles Demco

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA

FALL, 1975

D r

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and

recommend to the Faculty of Graduate Studies and Research, for

acceptance, a thesis entitled ''Principles of Multiple

Concurrent Computer Emulation", submitted by John Charles

Demco in partial fulfilment of the requirements for the degree

of Master of Science.

Date iqif

.

c i; i 11 ;

• .

• .

• 1 «« I . . • •••»•«»• 1 (

ABSTRACT

Emulation of a computer or process usi

microprogrammable machine has widespread application,

the use of a computer to handle a number of

concurrently. This thesis seeks to combine these two con

An environment is proposed whereby a control progra

unlike a multiprogramming supervisor, but en

microprogrammed) manages a number of processes, typ

computer emulators. Principles incorporated in the desig

impl ementation of such a control program are discussed,

description of the major components of an

implementation is given.

ng a

as has

ta sks

cepts.

m (not

tirely

ically

n and

and a

act ual

IV

ACKNOWLEDGMENTS

I would like to thank my supervisor. Dr. J. Tartar, for

his support and guidance throughout the preparation of this

thesis.

I acknowledge the support provided me by the National

Research Council of Canada in the form of scholarships.

Many thanks to the staff at Nanodata Corporation,

especially Joel Herbsman, Mike Brenner, John Hale, and Bob

Hanzlian; thanks also to Steve Sutphen here at the University

of Alberta.

v

TABLE OF CONTENTS

I. INTRODUCTION . 1

II. AN OVERVIEW OF MULTI-EMULATION . 5

2.1 Introduction . 5

2.2 Applications . 5

2.3 Related Work . 9

III. MULTI-EMULATOR SUPERVISOR DESIGN .19

3.1 Introduction .19

3.2 Supervisor Functions .19

3.3 Design Principles.22

3.3.1 Architectural Interference .22

3.3.2 Exact Emulation .23

3.3.2.1 Device Ownership .24

3.3.2.2 Standard Device Drivers.27

3.3.2.3 Interrupt Handling .28

3.4 Specific Guidelines .28

3.5 Note on a High Level I/O Interface .31

IV. A PARTICULAR MULTI-EMULATOR ENVIRONMENT.34

4.1 Introduction .34

4.2 Basic Structure .. 34

4.2.1 Setting .35

4.2.2 The Member Emulators .36

vi

.

....

..

..

'

. « ft? a

.

.^.

... .. * . .

.

4.2.3 Data Structures .39

4.2.3.1 Task Control Block .40

4.2.3.2 Unit Control Block .41

4.3 Logical Structure .41

4.3.1 Task Switch .42

4.3.2 I/O Initiation .42

4.3.3 Interrupt Processing . 43

4.3.4 Command Handling .45

V. CONCLUSION .47

5.1 Results .47

5.2 Suggestions for Further Research .48

REFERENCES .50

vii

'

■

...

.

.

.

.

.... a r.e

LIST OF FIGURES

3.1 Basic Multi-Emulator System Structure 21

viii

CHAPTER I

Introduction

With the advent of writable control stores and user-

microprogrammable computers, microprogramming is becoming more

and more a research tool rather than simply a building tool.

One of the fields of research in microprogramming which is

enjoying prominence is the emulation of computers and of high

level language processors. This thesis seeks to extend the

concepts involved in providing support for emulators by

considering multiple concurrent computer emulation.

Specifically, a compact set of principles governing multi¬

emulator system design will be presented, and components of an

actual implementation will be described.

A number of parallels to the development of multi¬

emulation may be drawn in terms of user support, supervisor

complexity, and architectural complexity. From the point of

view of user support, consider the transition from single user

stand-alone programming to single user operating systems to

multi-user operating systems. In terms of supervisor

complexity, consider the extension from support of single

users to the support of many users to the support of many

operating systems concurrently (e.g. see IBM Corporation

(1972) for an introduction to their multi-operating system

1

-

,

1 Introduction 2

facility VM/370). Finally, from the architectural point of

view, increasing complexity is evident in the development from

single processor machines to multi-processor machines to

computer networks. Each of these sequences bears similarity to

the following transition sequence: stand-alone computer

emulators to "integrated" emulators (Allred, 1971) to multiple

emulations. The increasing degree of complexity and potential

is apparent in each.

Although Tucker (1965) introduced the term. Rosin's

(1969) definition of emulator will be used: "a complete set of

microprograms which, when embedded in a control store, define

a machine." (This "machine" is usually a computer or a high

level language processor.) Tucker's definition of emulation

refers primarily to software routines and hardware

modifications, and is inappropriate in a microprogramming

context. A virtual machine is the machine realized by an

emulator, and a host_machine is one which supports these

microprograms. This work will not deal with microprogramming

itself; the reader may refer, for example, to Husson (1970).

Multiple_.emulation or SJllti^emulation is the concurrent

execution of a (usually hetereogeneous) set of emulators on a

single host machine under the control of a microprogrammed

supervisor; each emulator in the set is referred to as a

member_emulator. A reasonable analogy is a multiprogramming

environment with a varied job mix.

In fact, many principles applied in multiprogramming may

.

.

.

, *
.3 KB

V

;

.

1 Introduction 3

also be applied in multi-emulation. The basic concepts of

memory, processor, device, and information management may be

found in a text such as Madnick and Donovan (1974).

It is important to note that this thesis will be

concerned for the most part with an environment in which the

member emulators are computers rather than language

translators. The resultant differences in the multi-emulator

supervisor are profound: this is due primarily to the great

difference in the level of the corresponding input/output

interfaces. The specification that the system support exact

emulations of computers cannot be overstressed; it is easily

the most important single factor affecting multi-emulator

supervisor design. A contemporary computer carries out I/O

operations at a low level: it deals in status bits, timing

considerations, interrupts, and the like. Communication is

highly device dependent. The simplest and perhaps only way for

the supervisor to provide this sort of communication is to let

the emulators interface with I/O devices directly. On the

other hand, most high level language processors are not

concerned with these matters at all: I/O is accomplished at a

high level and is usually quite device independent. Reliance

is placed on the supervisor to handle the actual low level

communication.

There are several reasons for the examination of a

multi-emulator environment consisting of emulators of

traditional computers rather than of language processors:

■

■

.

1 Introduction 4

• There is still much interest in supporting computer
emulators; a low level interface is therefore
desirable.

• Provision of a high level device-independent interface
nevertheless requires actual communication with devices
at some point: it is reasonable therefore to start by
providing this low level support initially, working up
to the design and implementation of a high level
interface.

The following chapter is an overview of multi-emulation,

presenting a number of possible applications of multi-emulator

systems along with a look at related work in the field.

Chapter III is a consideration of the design of a multi¬

emulator supervisor, including required and desirable

supervisor functions, a small set of underlying design

principles, and a list of guidelines for the designer and

implementor. Chapter IV applies these guidelines in the

description of a particular multi-emulator supervisor for a

QM-1 computer. Finally, results and several suggestions for

further research are stated in Chapter V.

CHAPTER II

An Overview of Multi-Emulation

2•1 Introduction

The purpose of this chapter is provide justification for

the study of multi-emulation in its own right. A number of

possible applications of a multi-emulator environment are

given in the following section. These are in addition to the

obvious argument that the extension from a multiprogramming

environment to a multiple operating system environment to a

multiple computer environment is a worthwhile effort because

it is the extension of a concept. Section 2.3 presents

descriptions of related work in this field. This review is

necessarily short, as very little work has been done on multi¬

emulation.

2•2 Applications

Given a multi-emulator environment, a wide range of

applications is possible. The applications suggested below are

primarily directed toward emulator designers and implementors;

however, some other novel uses are mentioned. Historically,

there have been a number of reasons for writing emulators:

emulation of an outdated machine to retain the use of software

on which a great deal of money has been spent; emulation of an

5

.

A

2.2 Applications 6

experimental machine when sufficient building funds are not

available, final design specifications have not been made, or

architectural flexibility is desired; and emulation of

processes, usually high level machine-independent language

processors. In addition, research has been carried out on high

level microprogramming languages for both vertical and

horizontal control structures. For example, see Husson (1970),

Ramamoorthy and Tsuchiya (1974), Eckhouse (1973), and Dasgupta

(1974). Lloyd and Van Dam (1974) consider the problem as well

and provide a good list of references. There is even interest

in microprogrammed operating systems. See Huberman (1970) and

Liskov (1972) for a discussion of the Venus operating system,

and Werkheiser (1970) for a more general discussion. All of

these capabilities are of course included in a multi-emulator

environment. Here are some others:

• Providing that an inter-emulator communication mechanism

were set up, a restricted form of network simulation could

be produced. Probably the most severe problem would be that

of synchronization, as the use of a single processor does

not usually permit execution of parallel events, at least

not on a macroscopic scale. This idea generates two related

ideas which follow.

• Research could be performed on computer interfacing problems

which are not specifically network problems. For example, in

a simulated computer/front end environment, protocol could

'

,

.

T)

.

.

2.2 Applications 7

be established and software written and tested at both ends.

Again, synchronization problems would exist. As another

example, a special I/O or processing device could be

designed and debugged without actually existing. For

instance, Dalrymple (1972) describes a microprogrammed,

virtual associative memory which was added to an IBM 1130

emulation.

• Another related possibility is actual interface of the host

machine to other real computers by having the real computer

communicate with an emulator of the same type of computer.

This would be done on the premise that it is easier for a

computer to communicate with one of its own kind rather than

another. Design of the actual interface hardware might not

be any simpler, but the writing and testing of software to

support the link might.

• A very interesting prospect is the implementation of an

emulator the purpose of which is to function as a debugging

and developmental aid to the emulator implementor. (Of

course, the multi-emulator supervisor should itself provide

rudimentary debugging and tracing facilities. See section

3.2.) The debugging emulator would have a mechanism to pass

control to the unfinished emulator; the unfinished emulator

would be temporarily fitted with a mechanism to return

control to the debugger, along with pertinent data in a

communications area. (Something along these lines has been

*

*

l'' ■ • '

. • ~r

.

.

.;

2.2 Applications 8

done by Dalrymple and Durakovich (1974). See section 2.3.)

The debugger would also have the ability to examine and

modify the unfinished emulator*s storage.

• The above application is an important specific instance of a

more general application, that of machine hierarchies. This

concept involves two emulators operating in a master-slave

relationship so that the master can control the slave in

order to debug it, monitor it, gather run-time statistics

about it, or whatever. Of course, a significant time

degradation would occur. If one chooses, one may regard this

as a special type of network. Implementation of such a

scheme involves fairly sophisticated communication between

the two emulators, and if the slave is to be ignorant of the

master*s existence (so as not to bias results) then the

supervisor should handle all of the communication. The idea

of supervisor interposition is important for other reasons,

as we shall see later.

• The existence of a multi-emulator system would make easier

the writing and implementing of high level language

machines. Many designs for such machines call for a two-

ph ase process, the first phase translating input text into

some more compressed intermediate form and the second

interpreting this intermediate text. For example, Melbourne

and Pugmire (1965) describe a FORTRAN machine, Weber (1967)

presents an implementation of an EULER machine, and Hassitt,

'

,,

. 1

. ^

)

2.2 Applications 9

Lageschulte, and Lyon (1973) give details of an APL machine

implementation on an IBM 360/25. Such a setup could fairly

easily be implemented, given a multi-emulator environment.

As well, the multi-emulator supervisor could include a set

of (firmware) routines to carry out high level I/O

processing for member emulators. The idea of high level I/O

at the microprogram level is very interesting and is

discussed in more detail in section 3.5.

2.3 Related Work

Little research has been done on multi-emulation. Rosin

(1969) speculates briefly on it, first in relation to a high

level language environment consisting of pairs of emulators,

one for compilation and one for interpretation of a given

language:

The result could indeed be, for example, a FORTRAN
machine having the potential advantages of both
compilation and interpretation. The chief drawback is
that a new emulator would have to be built for each
language environment to be emulated. In a
multiprogramming environment this could lead to
requirements for a very large control store or a most
efficient paging scheme for swapping emulators. A
further disadvantage is that such emulators would have
to be rewritten to take full advantage of the specific
internal organization of all machines involved.

Another approach to high level language support he suggests is

the building of general purpose emulators, implying the

existence of one intermediate target language for all

translators. A similar approach has been taken in the

Burroughs B1700 system, to be discussed shortly.

*

\ h :

' V

2.3 Related Work 10

Rosin also raises some questions on system protection

and integrity:

If a system is to support more than one emulator, either
simultaneously or using overlay techniques, questions of
the following sort arise:

-Using an example, when returning from SN0B0L4
emulation to (say) 36C emulation, how does one assure
that he will get back?

-In the same situation, how does one know there is
something to get back to (the 360 emulator roll-out area
may have been accidentally destroyed)?

-Does the system have to wait until all I/O
operations initiated under one emulator reach completion
before calling in another?

-How can information be passed between emulators?
-How are files to be formulated for emulator

independent processing?
-How are interrupts handled (or emulated) and by

which emulator?

The questions are not new, only the context has changed.
They are quite analogous to the problems which led to
and arose during the development of contemporary
operating systems.

Rosin then goes on to mention the interesting tradeoff

of allowing an emulator to use the hardware directly (and

relying on the emulator for system integrity) versus degrading

system performance by applying protection control (see section

3.3.1) .

The remainder of this section gives short summaries of

existing and proposed multi-emulator systems, and of systems

which bear similarity to multi-emulation. These summaries

provide a good overview of the present state of multi¬

emulation .

!

.

7

.

.(,c.r

2.3 Related Work 11

• Hopkins - batched multi-emulation

Hopkins (1970) speculates about the design of a multi¬

emulator operating system on a microprogrammable computer with

a writable control store, envisioning a single-thread

sequential batch processing environment with only one emulator

resident in control store at one time. He identifies the very

difficult problem of "providing system I/O interface

facilities that are general enough to support a wide range of

emulators", and proposes a low level interface allowing

"relatively powerful I/O requests from the emulator". He also

specifies the following system characteristics:

1) Transparency: a minimum of system intervention in
the normal operations in the emulator and in the virtual
machine program;

2) Generality of emulation: a minimum of
restrictions on the structure and operation of the
emulators;

3) Size: a minimum of resident system functions
during processing of jobs.

Briefly stated, the system goal is the ability to
run a sequence of jobs, under arbitrarily many different
emulators, without manual intervention to load
emulators, check timing, and so on.

Hopkins’ I/O interface is based on the specification that I/O

need not be carried out directly: a method of stacking and

processing I/O requests is suggested. He also suggests a set

of "primitive" I/O procedures which any emulator can call. He

does not, however, address the problem of handling interrupts

in any great detail, and even hints that they may never be

seen above the lowest level of program control. This is

generally unsatisfactory when attempting to achieve something

approaching real time response, especially when the emulated

'

»

2.3 Related Work 12

machines themselves have an interrupt structure. The resident

package consists of the currently running emulator, the I/O

interface, an error recovery routine, an "end of task"

routine, and optional accounting routines. A number of

restrictions are outlined, including use of the system I/O

interface routines, protection of control store tables,

register restrictions imposed by the system, and clean-up by

the exiting emulator. He acknowledges that enforcement of

these restrictions requires co-operation between emulator and

system, but states that they do not restrict the structure of

any particular emulation. Research areas listed are: provision

of real-time communication, concurrent residence of more than

one emulator, and inclusion of microdiagnostics (perhaps in

the error recovery routine).

• McDonnell Douglas Astronautics Corporation

A very specialized form of multi-emulation has found

application in the emulation of the MAGIC 352 computer (Delco

Electronics, 1973) by Dalrymple and Durakovich (1974). Theirs

is a dual emulation, "an emulation of the new computer

combined with an emulation of an existing computer, in order

to take advantage of the support software already available

for the existing machine." The host machine is the DSC META 4

(Digital Scientific Corporation, 1972), a microprogrammable

machine with 32-bit read-only memory and two 64 word (16-bit)

, » i Tra

! ' •

. '•

, »

2.3 Related Work 13

scratch-pad memories. The existing computer emulator is an IBM

1130, and the new emulator is the MAGIC 352.

A master-slave relationship was established between the
IBM 1130 and the MAGIC 352 emulations by providing a new
1130 instruction to "turn on" the 352. When it is
executed, the 1130 emulation stops and the 352 emulation
begins execution. Whenever an exceptional condition
occurs, control returns to the 1130 emulation and a flag
is set which the 1130 program can use to determine the
nature of the condition. Communication between the two
emulations is accomplished via the scratch-pad memories.

The system includes commands to modify and dump MAGIC memory,

modify the MAGIC clock, and arm and disarm interrupts. Also

provided are a checkpoint/restart facility, a breakpoint

capability, a tracing capability, and a snap dump facility.

• Nanodata Corporation

Nanodata Corporation's QM-1 computer is a machine

specially suited for emulation. Of particular interest are its

two levels of microprogram control and large number of

independent data buses. The company, as part of its firmware

and software support, has provided a multi-emulator

environment with its QM-1 computer (Nanodata Corporation,

1974). One of their firmware supervisors, called CONTROL,

supports concurrent execution of multiple NOVA 1200 emulators

and provides firmware device drivers for a wide range of I/O

devices. Much of the basic design of the multi-emulator

environment described in Chapter IV came from studying

CONTROL. CONTROL is completely vertically microcoded and

.

-

>

, •

* 1

.

2.3 Related Work 14

resides in an 18-bit control store. The definition of MULTI,

which is the microinstruction set in which CONTROL is written,

requires approximately 128 360-bit words of nanostore. The

NOVA emulator itself occupies about 60 words of nanostore. No

storage swapping (other than register save and restore) is

required on emulator switch, which occurs on a clock

interrupt. Each emulator accesses its own disk pack, and has

access to all other devices. Although many design and

implementation considerations are simplified because the

environment is homogeneous, CONTROL is a reasonable effort at

providing a computer emulator environment.

• IBM Corporation

A paper by Allred (1971) concerns itself with "the

design and development of integrated emulators for the IBM

Systera/370." Following are the design criteria used in these

emulators as presented by Allred:

1. Emulators must be fully integrated with the operating
system and run as a problem program.
2. Complete multiprogramming facilities must be
available including multiprogramming of emulators.
3. Device independence, with all device allocation
performed by the operating system.
4. Data compatibility with the operating system.
5. A single jobstream environment.
6. A common, modular architecture for improved
maintenance and portability.
7. An improved hardware feature design with emulator
mode restrictions eliminated and all feature operations
interruptible.

Although these emulators fill a real need, i.e. letting

a user keep on using software for an old machine while

■

-

: ft

o f - \ .

.

2.3 Related Work 1 5

"growing into" a newer one, they are not multi-emulator

environments in the sense indicated in the first chapter.

First, I/O is simulated by providing an "emulator access

method" to the 370 operating system. Second, because the

emulator is running as a problem program, it may not use

privileged opcodes and hence is not a complete emulation.

Third, although multi-emulation might be supportable, it was

apparently never done. The "integrated emulation" concept is

interesting because the emulator does not run stand-alone; it

must communicate with the 370 operating system. This is

similar to communication between a multi-emulator supervisor

and a member emulator, and could provide some valuable tips to

the multi-emulator system designer.

• Burroughs Corporation

A report by Davis, Zucker, and Campbell (1972) describes

"a structure for connecting and controlling a multiprocessor

system using a building block technique."

The hardware is modular and includes microprogrammable
processors called "Interpreters", memory modules, and
devices. Each Interpreter is interconnected with every
memory module and every device via a data exchange
network called a "Switch Interlock".

The Interpreters, also known as "D-machines", are identical

and have a writable control memory. See Reigel, Faber, and

Fisher (1972) for a detailed description of the Interpreter.

In the Multi-Interpreter System, ... I/O control and
processing functions are all performed by identical
Interpreters, and any Interpreter can perform any
function simply by a reloading of its microprogram

,

.

*

c

. \ ’

> •

,

2.3 Related Work 16

memory. In the Multi-Interpreter Control Program I/O
operations simply become tasks which are
indistinguishable to the control program from data
processing tasks except that they require the possession
of one or two I/O devices before they can begin to run.
(A task is defined as an independent microprogram and
its associated "S" level program and data, which
performs explicit functions for the solution of user
problems.) Whenever an Interpreter is available it
queries the scheduling tables for the highest priority
ready-to-run task, which may be an I/O task, a
processing task, or a task which combines both
processing and I/O functions.

It is claimed that the Interpreters have successfully

performed the following tasks: emulator, peripheral

controller, high level language executor, and special function

operator. This work is of interest because it describes an

operating system which controls concurrently running emulators

(albeit in a multi- rather than single-processor environment),

and because the Interpreters can be made to change their

function. Thus the intent of this system (modular multi¬

emulator control) is basically the same as that of the system

to be described herein, although the actual structure is

vastly different.

The Burroughs B1700 computer, introduced by Wilner

(1972a), is a small-scale, bit-addressable, microprogrammable

computer. System design centers around a set of "S-languages"

each of which is suited to the accomplishment of a fairly

specific task, usually interpretation of source code for a

particular high level language.

The Bl700*s objective, consequently, is to emulate
existing and future S-machines, whether these are 360*s,
FORTRAN machines, or whatever. Rather than pretend to be
good at all applications, the B1700 strives only to

■

.

.

*■

'

-

.

*

2,3 Belated Work 17

interpret arbitrary S-language superbly. The burden of
performing well in particular applications is shifted to
specific S-machines.

The claim is made that the process of the B1700 hardware

interpreting an S-machine, which in turn is interpreting an

application program, "is more efficient than a single system

when more than one application area is considered." The B1700

Master Control Program (MCP) handles all virtual memory

reguirements, and all multiprogramming functions (I/O, storage

management, and peripheral assignment). All I/O is done by

communicating descriptors; I/O has its own S-language. MCP

itself is written in a higher-level S-language (SDL) and

interpreted. The system appears to be very flexible in

switching between interpreters:

Interpreter switching is independent of any execution
considerations. It may be performed between any two S-
instructions, even without switching S-instruction
streams. That is, an S-program may direct its
interpreter to summon another interpreter for itself.
This facility is useful for changing between tracing and
non-tracing interpreters during debugging.

The system is claimed to be very efficient at emulating high

level language machines. Wilner (1972b) includes some very

favourable statistics when describing the COBOL, BPG, and

FORTRAN S-machines on the B1700. As well, S-machines have been

designed and implemented by others; for example, see Belgard

(1974) and Firestone (1973). However, it seems that the B1700

would not be particularly good at emulating sophisticated

general purpose computers, particularly because of the small

number of general purpose registers (four) and the fact that

control store can hold only microinstructions. A MITRE

.

(

• . '

.

A '

\

2.3 Related Work 18

Corporation report by Burke, Gasser, and Schiller (1974),

describing a feasibility study of emulating the Honeywell

6180, supports this impression:

The benchmark emulation of the STA instruction ...
reguires 76 microinstructions. Assuming 250 nanoseconds
... per microinstruction, this is an execution time of
19 microseconds. Delays due to main memory access could
easily increase this time to 25 microseconds. [The
execution time on a real 6180 is 1 microsecond.] Several
other factors diminish the feasibility of emulating a
6180 with a B1700. The maximum size of control memory on
the B1728 is 4096 microinstructions. It is highly
unlikely that this is large enough for a full emulation
- thus either microinstructions would have to be
executed out of main memory (which the B1700 can do) or
micro routines would have to be "demand paged" into
control memory. In either case performance would suffer.
Also, the maximum size of main memory - 256K bytes for a
B1728 - is very small compared to a "typical" 6180
configuration. Even the theoretical limit of 221 bytes
of main memory (based on the size of the memory address
register) is on the small side.

This same report estimates a time degradation of a factor of

six to ten using the QM-1 rather than the B1700 as the host

for a 6180 emulation.

.

CHAPTER III

Multi-Emulator Supervisor Design

3.1 Introduction

This chapter deals with the design of a multi-emulator

supervisor. The following section states the basic functions

of such a supervisor. Next, the general design principles

embodied in a multi-emulator supervisor are presented. It

should be noted that the principles to be outlined are

particular to a multi-emulator environment; principles drawn

from operating systems theory will not explicitly be stated.

These principles are then expanded into a compact set of

fairly explicit guidelines useful to the designer of a multi¬

emulator system. Finally, the possibility of providing a high

level I/O interface to members of a multi-emulator environment

is examined.

3.2 Supervisor functions

A multi-emulator supervisor must have several basic

functions in order to provide the necessary support for and

exert the necessary control over member emulators. These

functions, including a task scheduling and switch capability,

operator supervisory and control functions, and a low level

I/O interface, are described briefly in this section. A more

1 9

,
■

' t

.1

' v • '■

-

3.2 Supervisor functions 20

detailed discussion of these matters is presented in the next

chapter, as the functions are better understood in the light

of an actual implementation. Figure 3.1 shows the logical

position of the supervisor in a multi-emulator system.

A task switch mechanism must be provided, its precise

form depending upon the design philosophy. For example, in a

batch mode of operation as suggested by Hopkins (1970) , the

incoming emulators state may be assumed to be uninitialized

(corresponding to a machine's state immediately after power-

up) . However, in a multi-tasking environment, emulator states

must be preserved across task switches, and the mechanism

becomes more complex. Storage swapping may be required. Also,

as we shall see, the problems of device ownership and time-

sensitive operations become thorny indeed. For flexibility, a

number of types of events should have the potential to trigger

task switch: these should include timer interrupt, I/O device

interrupt, instruction step, and perhaps explicit emulator

request. Also for flexibility, the event types which actually

are allowed at any one time to cause a switch should be

operator-selectable.

The control program must have some means of interacting

with the system operator. Commands for storage display and

modification are necessary, as are commands to start and stop

member emulators. The operator must have at least as much

control over a member emulator as he would have if he were

operating the real computer from its front panel. Experience

.

.

? i a

.

»r

2\; -

*' ■

3.2 Supervisor functions 21

I—

supervisory
and control

device drivers

task switch

Emulators Supervisor I/O Devices

Fig. 3.1. Basic Multi-Emulator System Structure

shows that debug facilities such as register tracing and

single step mode are very desirable. Provision should be made

for the inclusion of automatic system monitoring facilities.

The operator should also be allowed to dynamically modify an

emulator's configuration (e.g. add a tape drive, reassign the

card reader).

Since the system will include emulators capable of

carrying out I/O operations at a very low level, it must

provide support for such operations. A standard set of

firmware device drivers and a bi-level interrupt mechanism are

necessary. These important concepts will be explained and

their inclusion justified in the following section.

r

,-

..

* - r; *

3.3 Design Principles 22

3.3 Design Principles

In order to better grasp the concepts of multi-

emulation, consideration of the principles involved is

warranted. This section presents two underlying principles of

multi-emulation. It should be stressed again that it is

computers being emulated, not simply processes.

3.3.1 Architectural Interference

A multi-emulator environment will in general consist of

emulators with very different machine architectures. If the

supervisor imposes some basic architectural constraints that

do not already exist in the host machine’s architecture, then

the varieties of emulation possible may be greatly reduced,

and emulator design to fit these additional constraints may

become more difficult. One might argue that providing complete

freedom to member emulators is asking for trouble with respect

to protecting one emulator from another. This is true, but it

is more important to minimize interference and assume that the

emulators are well-behaved, than to restrict severely an

emulator’s access to the machine for the sake of protection.

After all, a multi-emulator environment is a very special one,

not containing users out to "break" the system. Something the

supervisor can do is provide safe facilities for the member

emulators to use, especially in terms of I/O.

'

.

■

*

3.3.2 Exact Emulation 23

3.3.2 Exact Emulation

The supervisor (and the host machine) should have

facilities to provide exact emulation of computers. This

principle is visible primarily in the consideration of

communication between an emulator and the real world. i. e.

emulator/device interfacing. Emulator/device interfacing is

the single most important consideration to the multi-emulator

supervisor designer.

Here is a summary of some of the specifications

presented earlier in the light of providing exact emulation.

First, the supervisor will allow emulators to communicate

directly with I/O devices. When device numbers are limited, as

is often the case, devices must be shared among emulators:

this service is the responsibility of the supervisor, meaning

the provision of both standard device/emulator interfaces and

dynamically alterable device ownership. Second, the member

emulators will be computers, and most computers deal with I/O

devices at a low level; therefore, the supervisor must provide

a suitably low level interface to devices. Thus, the

supervisor must combine a standard device interface with a low

level device interface. The following subsections consider

these points more closely.

'

.

• ---

.

3.3.2.1 Device Ownership 24

3.3.2.1 Device Ownership

Clearly, more than one type of device ownership must be

supported. The types shall be categorized as follows:

• absolute -

This term is applied to devices which are owned solely by a

single emulator. For example, a computer's console would

probably be owned absolutely. This type of ownership is

easiest to support, requiring no special supervisor support

to route interrupt signals, status information, and the

like.

• sequential -

This applies to devices which need a long term ownership but

which must be shared among emulators. Examples are line

printers, magnetic tape drives, card readers, etc.

Supervisor support for this type of ownership becomes much

more complex than for absolute ownership because a number of

new problems arise.

First, a mechanism is required to cause a change of

ownership from one emulator to another. If the I/O were done

at a high level (i.e. the open, close, read, write level of

a multiprogramming operating system), then the problem would

not be difficult: when an emulator opened a device, it would

be given ownership of it until it closed the device. (Of

course, other problems such as what to do when a device is

'

'

: . ~

■

3.3.2.1 Device Ownership 25

required by an emulator while in use by another, and what to

do about an emulator which "forgets" to close a device would

have to be overcome.) However, since the members are

computers, and I/O is carried out at a low level, the

supervisor cannot in general know when an emulator has

finished using a device; the virtual machine has no "close"

instruction to indicate this. For example, consider the

listing of a file on a line printer: how is the supervisor

to know that the emulator is has completed the listing,

unless the emulator has some means of explicitly indicating

this to the supervisor? The following simple sequential

device switch mechanism is therefore proposed: an operator

command would be provided to allocate a device to a given

emulator, and the device would be made to appear not ready

to any other emulator. Of course, the operator should

satisfy himself that the device is not in use before

reallocating it.

A second major problem not encountered in the absolute

ownership case is the provision of a standard firmware

device interface which can communicate with any emulator.

This problem deserves a section of its own (section

3. 3.2.2) .

Manual sequential ownership as described above may be

unsuitable in some real time applications, for example a

system of process control emulators attempting to share data

acquisition devices. For one thing, the delays caused by

,

.a

V * l

■ >

.

3.3.2.1 Device Ownership 26

supervisor overhead and by the fact of emulation itself

might be such that the emulator could not handle interrupts

quickly enough, or that supervisor-imposed changes in

interrupt timing might render results invalid. For another,

the act of manually switching device ownership would almost

surely result in lost interrupts. (Such a system, however,

would probably be usable in a batch rather than concurrent

mode of operation.)

• shared -

Sequential ownership, with its clumsy method of device

ownership allocation, is far too slow for some devices,

notably disk drives. Especially in small configurations,

different emulators may require the services of the same

disk controller in rapid succession; a type ownership of a

very temporary nature is therefore required.

Here is a possible solution to this ownership problem.

For each disk drive, the supervisor would remember the most

recent cylinder address sought to by each emulator sharing

the disk. The currently running emulator would automatically

become disk owner, and any disk access made by it would be

delayed until the supervisor had done a "safety seek" to

ensure the heads were properly positioned. Of course, the

supervisor would have the responsibility of protecting other

emulators* data; the VM/370 "mini-disk" concept (IBM

Corporation, 1972) is useful here. A related problem is the

-

.

3.3.2.1 Device Ownership 27

possibility that task switch might occur while data is being

transferred to or from disk. To solve this problem, the

supervisor could set a lock upon commencement of data

transfer and reset the lock when the transfer is complete;

while the lock was set, task switch would not be permitted

(see section 4.3.1).

3.3.2.2 Standard Device Drivers

Each device type requires a standard firmware device

handler which can communicate with any emulator, especially if

the device may be shared among member emulators. This

interface is necessary for the routing of signals to and from

the current device owner and to guarantee that only the

current owner may access the device. Naturally, as much as

possible of the I/O processing should be done by the

interface, but unfortunately interfacing cannot be provided at

a very high level because (once again) of the average

computer*s ability to carry out low level I/O. For example,

standard multiprogramming features such as device-independent

I/O and spooling of data are simply out of the question.

Provision of standard device drivers is an illustration of an

important principle of multi-emulation: the supervisor should

be interposed between device and emulator, without exception.

Another illustration of this principle follows.

.

*

/ > M Jin V i • i i ^ /At

3.3.2.3 Interrupt Handling 28

3. 3. 2.3 Interrupt_Handling

The supervisor must include an interrupt handling

routine to take interrupts directly from the I/O devices.

Thus, when an interrupt occurs, the supervisor will remember

it in its own gueue, and will signal the appropriate member

emulator. The member emulator will in turn remember the

interrupt in its own fashion, and pass control back to the

supervisor to degueue the device from the supervisor’s

interrupt gueue. This method, called bi-level interrupt

handling, has two very favourable features. First, no reliance

whatever is placed on a member’s interrupt handling mechanism.

In fact, it need not even be resident when an interrupt

occurs. Second, each member’s interrupt mechanism can remember

the interrupt in any way it sees fit. This could range from a

priority interrupt scheme (as in a PDP-11) to simply setting a

flag and forcing control in the emulator to pass to a standard

entry point (as in a PDP-8). Maximum flexibility is therefore

allowed.

3.4 Specific Guidelines

Basic design principles and their ramifications having

been considered in the previous section, these criteria may

now be reformulated into a set of guidelines for the multi¬

emulator supervisor designer.

• The supervisor must impose minimal architectural constraints

. . .

• jbd

■

■ •• ^

3.4 Specific Guidelines 29

upon member emulators. See section 3.3.1.

• If possible, the microinstruction set used to implement the

supervisor should be tailored to maximize its efficient

coding. This is obvious, and at the same time very difficult

for most user-microprogrammable machines.

• Actions by the supervisor not directly affecting the active

emulator’s storage must be invisible to it, as must actions

carried out by other member emulators. In particular, task

switch must be unnoticed by an emulator. This guideline is

easy to follow if constant attention is paid to it during

design; it is nonetheless important, as it doesn’t permit

various sorts of painful interdependencies to build up. Of

course, supervisor functions may exist to explicitly affect

an emulator, for example in supervisor-controlled inter¬

emulator communication.

• Debug and supervisory capabilities must be provided the

operator by the supervisor, especially for the emulator

designer. These were discussed in section 3.2.

• There should be a number of types of task switching

available to the operator. Also, a lock facility must be

provided to delay task switch during critical operations.

The business of task switching was also discussed in section

3.3. Provision of many types of triggers is beneficial

.

. »

. ''; I

*

.

3.4 Specific Guidelines 30

especially in environments where it is not known which types

would provide the smoothest running system. Much work can be

done concerning task switching, perhaps along the lines of

similar multiprogramming concepts such as swapping and

paging. This matter will not be examined further in this

thesis.

• The supervisor must be interposed between emulators and the

physical devices themselves, and, to the greatest extent

possible, code should be shared between different emulators'

firmware device drivers for the same device type.

Interposition is an important concept because it aids both

in device sharing and in reducing the chance of possible

inter-emulator interference.

• A bi-level interrupt control mechanism must be provided by

the supervisor: interrupts will be handled by the supervisor

first, and then allowed to activate the owner's interrupt

mechanism. This may be thought of as a specific application

of interposition, but it is important enough to warrant

special note.

• More than one type of device ownership must be provided. The

categorization presented in section 3.3.2.1 included

absolute, sequential, and shared ownership.

,

3.4 Specific Guidelines 31

The following chapter seeks to apply these guidelines to

a real multi-emulator system. Emulator/device interfacing

forms a major part of the discussion, either directly or

indirectly.

3.5 Note on a High Level^l/0 Interface

Although the provision by the supervisor of low level,

direct communication between emulator and device is a more

flexible approach than any other, it has its drawbacks:

• Any new emulator type being added to the system must
have a complete set of device drivers written for it,
at best using existing drivers as models. This is a
time consuming process.

• While a low level interface is extremely suitable for
computer emulators, it is extremely unsuitable for
language emulators.

A worthwhile effort would be the provision in a multi¬

emulator environment of a high level I/O interface. The reader

should consult the references provided in section 2.3 if he is

interested in this area. Here are some criteria for such an

interface:

• It must not impose architectural constraints upon its
users.

• All I/O should be device independent.

• The concept of "opening” and "closing” devices should
be employed in order that there be no device ownership
problems.

As this thesis is concerned mainly with supporting

traditional computer emulators which require a low level

*d *

:>:■ i

.

^ *

: - .

.

3.5 Note on a High Level I/O Interface 32

interface, this section is not meant to be a solution to the

problem of providing high level I/O at the microprogram level,

but merely an outline of some of its aspects. Many

capabilities must be provided: a file system, spooling

facilities, the ability to handle various data formats, and

the handling and communication of error conditions, to name a

few. Even with all these problems, however, the elevation of

the I/O interface to a high level should make design and

implementation of a system comprised of processes which use

the interface a much simpler task than that of providing an

environment for exact computer emulation. Opportunities for

both theoretical and practical research exist in abundance.

In addition to providing high level I/O for the purpose

of supporting language processors, another interesting

direction for research would be the investigation of computer

architectures with an eye to improving the I/O structure.

Traditional computer order codes are unbalanced:

accomplishment of I/O functions is an order of magnitude more

complex than accomplishment of any other function. The

programmer must get ’’closer to the machine” than at any other

time; he must do more bit manipulation and usually has timing

problems to worry about. The problems are akin to those which

we would have to suffer through if our ADD and SUBTRACT

instructions were replaced by an EXCLUSIVE-OR capability in

which propagation delay had to be considered. It is no

surprise at all that operating systems hide low level I/O

\

1

^ V

.

,

• * 1

'

V.

3.5 Note on a High Level I/O Interface 33

activities from the average user: they are simply too much of

a headache! Work toward the provision of device-independent,

high level I/O instructions for a contemporary computer's main

store instruction set, performing all the necessary low level

activities at the microprogram level, would certainly be

worthwhile.

CHAPTER IV

A Particular Multi-Emulator Environment

4•1 Introduction

Setting down a list of guidelines for the multi-emulator

designer to follow is all very well, but what of showing that

they are actually workable? This chapter gives a brief

description of a multi-emulator system in which the guidelines

suggested are applied. The following section is an overview of

the system: setting, member emulators, and major data

structures. The system's logical structure comprises the final

section. Illustrations of how the guidelines have been applied

are interspersed throughout the chapter.

4.2 Basic Structure

In order to better understand the following sections,

the reader may wish to gain some familiarity with the

architecture of the host machine for this system, the QM-1.

Other than the HardwareL Level_Use rj_s_Manual (Nanodata

Corporation, 1974), a number of articles present short

descriptions of the QM-1. These include: Rosin, Frieder, and

Eckhouse (1972); Lutz and Manthey (1972); Dorin (1972); Thomas

(1974); Petzold, Richter, and Rohrs (1974); and Agrawala and

Rauscher (1974) .

34

.

< < x • fV‘ioqic»3

■

4.2.1 Setting 35

4.2.1 Setting

The multi-emulator system to be described (often

referred to in this chapter as the "system” and the

"supervisor”) is for the Nanodata QM-1, closely modelled after

their system called CONTROL (see section 2.3). The supervisor

is written in MULTI, an assembly-like vertical

microinstruction set defined by Nanodata Corporation. A

favourable feature of MULTI is that unlike most

microinstruction sets, timing problems do not occur: all

actions such as arithmetic operations and memory accesses are

synchronized. Thus, although no parallelism can be achieved,

code is relatively easy to write, understand, and debug.

Execution times of MULTI instructions averages approximately

.5 microseconds per instruction. The supervisor resides

completely in control store; that is, the control store holds

both the code and the data structures which make up the

system. In the implementation each member is a computer

emulator, so the system’s basic functions are these: to

provide low level I/O support to member emulators; to provide

a task switch capability; and to provide the system operator

with control and supervisory functions.

It should be noted that although all of the components

of the system have been written and tested, they have not been

assembled into a complete system. This was due in part to a

lack of availability of certain peripheral devices, and also

. .

.

. <

.

l

.

■

, ' ' ••

4.2.1 Setting 36

to the lack of stability in the QM-1 hardware caused by break-

in troubles and by shipping damage.

4.2.2 The Member Emulators

As has been mentioned, the member emulators making up

the system are computer emulators. One is a Nova 1200 emulator

written by Nanodata Corporation; the other is a PDP-11/10

emulator (Demco and Marsland, 1975). Information regarding the

architectures and instruction sets of these computers may be

found in reference manuals (Data General Corporation, 1972;

Digital Equipment Corporation, 1973).

Neither emulator was written with concurrent operation

in mind. This points out the generality of the design

principles, especially that of minimization of architectural

interference. An emulator can, and in fact should, be designed

for stand-alone operation, and the supervisor will allow for

its inclusion in the system without modification to the

emulator or to any other member emulator.

The emulators' structures are similar. They are not

written in a vertical microinstruction set which is in turn

interpreted by nanocode; instead, main store instructions are

interpreted directly by nanocode. Also, all I/O operations are

handled by firmware routines which reside in control store,

and are coded in the vertical microinstruction set MULTI. The

emulators are reentrant. Both have a similar instruction fetch

.

,

• ■ - : : • '

, >)

>

«

*

'

4.2.2 The Member Emulators 37

and decode routine:

• The program counter is used as pointer into main store,
from which the next instruction is fetched.

• A flag is tested. If it is set, the emulator passes
control to a microroutine instead of proceeding with
the instruction execution. The act of diverting the
emulator to this routine is termed a logical interrupt.
The reason for having this flag is explained below.

• The program counter is updated.

• Some number of bits of the instruction are used as an
index into a table in control store from which is taken
the address of the appropriate nanoroutine to execute
the instruction. The size of this table for each
emulator is 512 words.

• The nanoroutine is executed, performing the required
function. Preliminary actions may occur, depending on
instruction type (e.g. effective address calculation).
Also, side effects may occur, such as auto-incrementing
of a register or memory location.

• If the instruction performs I/O, control passes to a
microroutine in control store to handle the request;
else control passes back to the beginning of the
instruction fetch routine to execute the next main
store instruction.

The Nova instruction set is more suited to this sort of

decoding technique, as a quick look at the formats of the two

instruction sets will show. The emulators are started by

special microinstructions added to MULTI: these

microinstructions simply cause control in the QM-1 to pass to

a particular nanoaddress (the start of the emulator’s fetch

and decode routine) rather than continuing with the execution

of the next microinstruction.

The

interrupt

logical interrupt flag is usually set by an

handler, indicating that one of the emulator’s

> f . . ’

'

X

. - ’C

-T»

4.2.2 The Member Emulators 38

devices requires service. If this is the case, the

microroutine invoked causes the emulator to recognize the

interrupt in whatever fashion the emulator's architecture

demands. For example, the Nova's routine merely forces a

subroutine call to main store location 0. The logical

interrupt flag may also be set by the command handler (this is

explained in section 4.3.4).

The Nova emulator runs at between .3 and 1.25 times the

speed of a real Nova 1200, and the PDP-11 emulator runs at .5

to 1 times the speed of its target machine. Unfortunately,

actual computers were not readily available for comparison of

execution times of sample programs. However, a benchmark

standalone BASIC program took about 4.4 times as long to

execute on the PDP-11 emulator as it did on a real PDP-11/45,

a machine considerably more powerful than the PDP-11/10.

The control store on the QM-1 acting as the host machine

for the system is large enough (5K 18-bit words) to hold the

supervisor and device drivers for both emulators at once. The

supervisor requires approximately 1600 words for task

switching, command handling, and task control blocks (see

section 4.2.3.1). The Nova, which supports a full complement

of I/O devices (teletype, card reader, line printer, moving

head disk drive, and cartridge tape unit), occupies about 1500

words. The PDP-11 presently supports only a teletype and a

high speed paper reader, and requires approximately 500 words.

(Incidentally, the paper tape reader device driver actually

*

l ri n ') '*•■'1 » 2^ <Tl J< ■ &

'

V

»?4»\f t -*• v: t* *i no' &'*§ *1 9-6 loi *iu$-=* *j^o# §0 iai n^jj^yw

4.2.2 The Member Emulators 39

reads cards; this was done because of the ready availability

of paper tape software.) Total control store utilization,

including 1024 words for emulator instruction decode tables,

is approximately 4600 words. The nanocode for the definition

of MULTI and for both emulators also may reside in nanostore

concurrently: MULTI occupies about 125 360-bit words, the Nova

about 60, and the PDP-11 about 125. The host has 512

nanowords. In addition, main store is large enough for one

copy of each emulator's main store: each emulator can address

32K words of main store, and the host presently has 64K words.

(The QM-1 is equipped with a simple option for mapping main

store addresses which permits more than one emulator's address

space to be resident concurrently. However, the option is not

sophisticated enough to provide an efficient paging

mechanism.) Thus, for a simple system comprised of one

emulator of each type, no storage swapping (other than

registers) is required when task switch occurs.

4.2.3 Data Structures

The supervisor manages two major data structures in

controlling devices and member emulators. These data

structures reside in control store, as fast access is

required. The following is a description of each.

.

■

.

• X ■

■

■ y

4.2.3.1 Task Control Block 40

4.2.3.1 Task Control Block

For each member emulator, there is one TCB containing

data used to control and determine the state of the member. It

is comprised of both emulator-independent and emulator-

dependent information. The emulator-independent information

includes a save area for local store, external store, and F-

store; a logical halt indicator (set when the emulator is

halted or inactive); a single step indicator; a word

indicating which console command, if any, is pending for the

emulator; a word indicating how many more clock interrupts

must occur before this task will be deactivated; and a

constant to which the clock counter is set when the task is

activated. For a PDP-11 emulator, the dependent information is

a copy of the switch register, a flag to indicate whether or

not this emulator is executing a WAIT instruction, and a

pointer to a priority-ordered linked list of unit control

blocks which the emulator owns and which are demanding

interrupt servicing. The Nova's dependent information consists

of its logical sense switches and a flag to indicate whether

or not it may be interrupted by its devices. Each TCB requires

approximately 50 control store words.

.

■

4.2.3.2 Onit Control Block 41

4.2.3.2 Unit Control Block

The UCB is used by the supervisor to control the device

it represents. Device independent information is comprised of

a link field for queuing the UCB on the lower level interrupt

queue, an entry point address into the upper level interrupt

handler, the current owner indentification, the physical

device address, and status information. The device-dependent

information for devices currently belonging to PDP-11

emulators includes a link field for the emulator*s priority

interrupt queue, the trap vector address, the bus request

priority, and copies of the device registers. Nova device

information is a list of handler entry point addresses

(corresponding to input, output, test, and null I/O

operations), a done flag, and a busy/inactive flag. UCBs

occupy approximately 15 control store words each.

4.3 Logical Structure

Each of the major components of the multi-emulator

system is described in this section. The components are: task

switch, I/O initiation, interrupt processing, and command

handling.

.

> ^

4.3.1 Task Switch 42

4.3.1 Task Switch

Because in the implementation of this system the storage

requirements for both emulators do not exceed that available

on the QM-1, task switch is easy to accomplish. It is

triggered by timer interrupt only, although other switch

signals (see section 3.2) may easily be added at some later

time.

Upon receipt of a timer interrupt, the task lock is

tested. If set, the lock indicates that a critical operation

is under way (e.g. DMA transfer) and task switch must be

delayed until the active emulator resets it. If the lock is

not set, the supervisor saves the currently active emulator's

register contents in the designated TCB save area, chooses the

next emulator to become active (a simple rotation suffices

here), restores its registers from its TCB, and passes it

control. These actions require approximately 20 microseconds

in total.

4.3.2 I/O Initiation

When an emulator decides to perform an I/O operation, a

microroutine is called to accomplish the function. There are a

number of reasons for handling most I/O requests in microcode

rather than directly in nanocode. Most importantly, the amount

of nanostore is limited to 1024 words, and all of the device

drivers necessary would almost certainly not fit concurrently.

'. f* WKM
1: ' • >

^r-

'

•

.

4.3.2 I/O Initiation 43

Also, the writing of efficient nanocode is difficult and

requires experience, demanding more time than should be spent

on anything except very critical system components.

Before the I/O operation proceeds any further, the

supervisor interposes itself, ensuring that the emulator is

current owner of the device it is attempting to access (by

checking the owner field in the device*s UCB). If the

identification matches, the emulator may proceed, having full

access to the device. (Disk access is an exception if mini-

disking is employed. See section 3.3.2.1.) If not, the device

is simply made to appear not ready to the emulator. The

unexpected appearance of an unready device could conceivably

cause problems in some operating systems, so the operator

should exercise care when reassigning devices. In this

implementation, this is the extent of the "standard device

driver" concept explained in section 3.3.2.1. The

identification check is simple, creating very little overhead

yet giving emulators direct access to devices in order to

carry out low level operations with efficiency.

4.3.3 Interrupt Processing

The most important feature of the system*s interrupt

structure is its bi-level nature (see section 3.3.2.3). When

an I/O interrupt occurs, the supervisor gains control. A small

number of local store registers and F-registers are saved. The

lowest level interrupt routine places the interrupting

'

' • : ’ ■ , ' '

. ■

.

4

• *

■ ■ •

4.3.3 Interrupt Processing 44

device’s UCB on a queue (MULTI has a special microinstruction,

ENQUE, for this purpose), determines the device’s status, and

invokes the upper level interrupt handler for the device

(using the entry point address found in the UCB). In this

implementation, this routine is guaranteed to be resident. The

upper level routine determines which emulator is device owner

and passes control to the appropriate subroutine, in which the

interrupt is recorded in whatever manner the emulator chooses.

For example, the PDP-11 emulator device driver does whatever

action is immediately required (usually merely getting

detailed status information from the interrupting device),

places the UCB on its own priority-ordered interrupt queue,

and sets a flag to logically interrupt main store processing

(see section 4.2.2). The subroutine then returns control to

the supervisor which dequeues the UCB from the lower level

queue (a DEQUE microinstruction is provided), restores the

small number of local store registers and F-registers, and

resumes the interrupted task.

Interrupts are disabled in supervisor code only during

queuing and dequeuing of UCBs; in emulator code they are

disabled whenever the emulator chooses, usually during its own

queuing process. Interrupts are stacked at the lowest level;

however, a second interrupt from a device before the first

interrupt has been handled and its UCB dequeued results in the

second interrupt being lost. The lowest level interrupt

handler usually requires less than 7 microseconds from the

.
• f. '■

r<

.

,

\ i

.

4.3.3 Interrupt Processing 45

moment the QM-1 CPU takes the interrupt until the moment the

upper level interrupt handler is entered; typical total

handling time from interrupt until the restart of the active

emulator is on the order of 25 to 30 microseconds for a device

belonging to either emulator.

4.3.4 Command Handling

As outlined in section 3.2, the multi-emulator system

should give the operator supervisory, control, and debug

capabilities. Commands are provided to display and modify an

emulator*s storage (main store, control store, and registers),

to set and clear single step mode, to cause selected registers

to be traced, to initialize and reassign devices, and to start

and stop member emulators.

The mechanism used to effect an operator command is

straightforward. When the interrupt handler for the operator's

console recognizes a command for a particular member emulator,

it records the command in that member's TCB and signals it

with a logical interrupt. The next time the emulator begins

execution of a main store instruction, it will test its

logical interrupt flag and invoke its logical interrupt

microroutine (section 4.2.2), which in turn will invoke the

command handler. The command handler will execute and return

control to the logical interrupt routine, which will restart

the emulator. In this way, commands issued by the operator are

invisible to the running emulator except for timing

■

. ?

.

N: 3

, ? ■ ;.ll *i ‘ • U09X9

y .

4.3.4 Command Handling 46

considerations, unless of course the command was intended to

affect it.

In a system with a small hardware configuration, it may

be necessary to have one of the emulator consoles double as

the system operator's console. This is easily done by

providing some simple mechanism to "point" keyboard interrupts

at the appropriate handler, either the emulator's or the

system's. Similarly, more than one emulator may use the same

console device.

; . .

.t' ft,-/

' i

*

CHAPTER V

Conclusion

5.1 Results

The purpose of this thesis was to consider aspects of

multiple concurrent computer emulation. As was expected,

experience in the design and implementation of a real multi¬

emulator system has shown that most problems encountered are

associated with providing an environment for exact computer

emulation. The task switch mechanism is straightforward, as

are the control functions. Minimization of architectural

interference by the control program turned out to be a simple

matter for well-behaved emulators. The interposition of the

firmware support system between each emulator and each device

has proved to be both practical and beneficial. However,

emulator/device interfacing is a serious problem. Due to the

ability of a computer to carry out I/O at a very low level,

the envisioned standard interface between a particular device

and any emulator occurs at a much lower level than originally

expected.

The complexion of the device/emulator interface changes

drastically when the emulator is a high level language

machine, reflecting the much higher level of I/O. The

implementation of a multi-emulator system wherein all member

47

.

*

■ V '

V , 1 >»

■

5.1 Results 48

emulators perform high level I/O exclusively is expected to be

a much simpler task than that of providing an environment for

exact computer emulation. In fact, I believe that in the

(perhaps distant) future only device-independent I/O will be

available to the main store programmer of a large general-

purpose computer. This is an intriguing prospect.

The principles and the guidelines which have been

developed are sound. Their applicability has been demonstrated

in the design of a real multi-emulator system, and I expect

that results will be equally favourable in implementations on

other user-microprogrammable computers.

5.2 Suggestions for Further Research

Design and implementation of a mechanism for providing

machine hierarchies (section 2.2) would certainly prove

fruitful. In particular, the design of a general purpose,

microprogrammed, symbolic debugger would be a great asset to

any multi-emulator system, especially if the member emulators

had been designed to indicate the complete state of their

environments to the debugger. Furthermore, designing an

emulator with the question "How can I make this easily run

under a symbolic debugger?" is sure to make for more

structured design, and hence lead to better structure in user

programs.

The idea of placing low level I/O functions in the

'

zs . * *1 -&A v>i.f • |i ! ./.-oiif < :s ii-vot >Vf»f> Jj

. ^ *

, - ^

5.2 Suggestions for Further Research 49

firmware and leaving the main store order code with only

fairly high level I/O capabilities has only been touched on in

this thesis (section 3.5). It is certainly worthy of further

research.

Very little attention was given herein to task

switching. True, mere accomplishment is simple enough, but

providing efficiency is something else again. Several aspects

could be investigated, applying results from operating systems

theory:

• the examination of task scheduling, which types of
events should trigger task switch, and how the operator
could "tune” the system; and

• the possibility of partitioning storage and of
employing paging hardware for main store and control
store, and the application of various paging
algorithms.

Protection in a multi-emulator system is a valid

research topic. How can one compromise between providing

protection and minimizing interference? Can the supervisor

make it easier for the member emulators to be well-behaved? As

in the previous suggestion, ideas may be taken from operating

systems theory, where protection is a major concern.

These suggestions indicate only a small number of the

possible avenues of research, and were provided only to spur

further work in multi-emulation. I hope they will.

'

1 • . / «

-

:c
’

•v

*

' - • ' - 1

■

.

X 5 *

REFERENCES

Agrawala, A. and Rauscher, T. (1974). '’Microprogramming:
Perspective and Status", IEEE Transactions on
Computers, vol. C-23, no. 8, pp. 817-837, August.

Allred, G. (1971). "System/370 integrated emulation under OS
and DOS", AFIPS Conference Proceedings (SJCC), vol.
38, pp. 163-168.

Belgard, R. (1974). An_.Implementation_of_Blaise_on_the
Burroughs B1726. S.U.N.Y./Buffalo Technical Report
81, Buffalo, New York, June.

Burke, C., Gasser, M., and Schiller, W. (1974). Emulating a
Honeywell 6180 Computer_System, MITRE Corporation,
Report RADC-TR-74-137, Bedford, Mass.

Dalrymple, S. (1972). ^Microprogrammed,_Virtual_Associative
Memory. McDonnell Douglas Astronautics Company-West,
Report MDAC WD 1895, Huntington Beach, Calif.

Dalrymple, S. and Durakovich, G. (197 4) . The_MAGIC_352
Computer_Emulation_System, McDonnell Douglas
Astronautics Company, Report MDC G4972, Huntington
Beach, Calif.

Dasgupta, S. (1974). A High-Level Microprogramming Language,
M.Sc. Thesis, Dept, of Computing Science, University
of Alberta, Edmonton, Alberta.

Data General Corporation (1972). How_,to_.Use_the_Nova
Computers. Southboro, Mass., October.

Davis, R., Zucker, S., and Campbell, C. (1972). "A building
block approach to multiprocessing", AFIPS Conference
Proceedings (SJCC), vol. 40, pp. 685-703.

Delco Electronics Division (1973). MAGIC_352_Computer
Programming_Manual, General Motors Corporation,
Report TR73-125, December.

Demco, J., and Marsland, T. (1975). A_Complete PDP-11
Emulator, Technical Report 75-12, Dept, of Computing
Science, University of Alberta, Edmonton, Alberta,
August.

50

* ‘ . , >

. i

\. > . • X
.

V

,

,
-

.

,

.

*

.

,

. {

.

.

,

References
51

Digital Equipment Corporation (197?). PDPl1/45_Processor
Handbook, Maynard, Mass.

Digital Scientific Corporation (1972). Digital Scientific
Corporation META 4 Computer_System Microprogramming
Reference_Manual, Publ. 7043MO, San Diego, Calif.,
June.

Dorin, R. (1972). A_Viable_.Host_Machine_for_Research_in
Emulation. S.U.N.Y./Buffalo Department Report 30-72-
MU, Buffalo, New York.

Eckhouse,R., (1971). "A high level microprogramming language
(MPL)", AFIPS Conference Proceedings (SJCC), vol. 38,
pp. 169-177.

Firestone, W. (1973). Flubbing_on_the_Burroughs_Bl700.
S.U.N.Y./Buffalo Technical Report 64, Buffalo, New
York, July.

Hassitt, A., Lageschulte, J., and Lyon, L. (1973) .
"Implementation of a high level language machine".
Comm. ACM, vol. 16, no. 4, pp. 199-212, April.

Hopkins, W. (1970). "A Multi-Emulator Operating System for a
Microprogrammable Computer", Third Workshop on
Microprogramming, Buffalo, New York, October,
(Preprints).

Huberman, B. (1970). Principles of operation of_the_Venus
microprogram. MITRE Corporation, Report MTR 1843,
Bedford, Mass., July.

Husson, S. (1970). Microprogramming^_Principles_and
Practices. Prentice-Hall Inc., Englewood Cliffs, N.J.

IBM Corporation (1972). IBM Virtual Machine Facility/370:
Introduction. Form GC20-1800-0, Burlington, Mass.,
July.

Liskov, B. (1972). "The Design of the Venus Operating
System", Comm. ACM, vol. 15, no. 3, pp. 144-149,
March.

Lloyd, G., and Van Dam, A. (1974). "Design considerations
for microprogramming languages", AFIPS Conference
Proceedings, vol. 43, pp. 537-543.

. V '
*

<

• 1

1 . . .

1

• .

, ‘
’ .

.

, • % , * ; *~

. i

.

4'' * I ’

. ■ ,

References
52

Lutz, M. and Manthey, M. (1972). "A Microprogrammed
Implementation of a Block Structured Architecture”,
Fifth Workshop on Microprogramming, Urbana, Illinois,
pp. 28-41, September, (Preprints).

Madnick, S. and Donovan, J. (1974). Operating Systems,
McGraw-Hill Book Company, New York, New York.

Melbourne, A. and Pugmire, J. (1965). "A small computer for
the direct processing of FORTRAN statements”.
Computer Journal, vol. 8, pp. 24-27.

Nanodata Corporation (1974). £)_Mzl_Hardware_Level_User* s
Manual, Second Edition, Williamsville, New York,
August.

Petzold, R., Richter, L., and Rohrs, H. (1974). "A Two-Level
Microprogram Simulator”, Seventh Workshop on
Microprogramming, Palo Alto, Calif., pp. 41-47,
(Preprints) .

Ramamoorthy, C. and Tsuchiya, M. (1974). ”A High-Level
Language for Horizontal Microprogramming”, IEEE
Transactions on Computers, vol. C-23, no. 8, pp. 791-
801, August.

Reigel, E., Faber, U., and Fisher, D. (1972). ”The
interpreter - A microprogrammable building block
system”, AFIPS Conference Proceedings (SJCC), vol.
40, pp. 705-723.

Rosin, R. (1969). "Contemporary Concepts of Microprogramming
and Emulation”, Computing Surveys, vol. 1, no. 4, pp.
197-212.

Rosin, R., Frieder, G., and Eckhouse, R. (1972). ”An
Environment for Research in Microprogramming and
Emulation”, Comm. ACM, vol. 15, no. 8, pp. 748-760,
August.

Thomas, R. (1974). ”The Development of User
Microprogramming: A Survey and Status Report”,
Seventh Workshop on Microprogramming, Palo Alto,
Calif., pp. 212-216, (Preprints)

Tucker, S. (1965). "Emulation of Large Systems”, Comm. ACM,
vol. 8, no. 12, pp. 753-761, December.

'

■

, , . t.

,

, ■

'* .

References
53

Weber, H. (1967). "A Microprogrammed Implementation of EULER
on IBM 360/30”, Comm. ACM, vol. 10, no. 10, pp. 549-
558, October.

Werkheiser, A. (1970). "Microprogrammed Operating Systems",
Third Workshop on Microprogramming, Buffalo, New
York, October, (Preprints).

Wilner, W. (1972a). "Design of the Burroughs B1700", AFIPS
Conference Proceedings (FJCC) , vol. 41, Part 1, pp.
489-497.

Wilner, W. (1972b). "Burroughs B1700 memory utilization",
AFIPS Conference Proceedings (FJCC), vol. 41, Part 1,
pp. 579-586.

.

'

.

B30124

