
m&SSm

- -mmMOB

OUOU-V KNOX WBRAB* %
SvZt POSTGRADUATE bC*C*«

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
AUTOMATIC IDENTIFICATION OF NETWORK ROWS

IN LARGE-SCALE OPTIMIZATION MODELS

by

William Gordon Wright

September 1980

Thesis Advisor: G. G. Brown

Approved for public release; distribution unlimited

T196278

UNCLASSIFIED
SECURITY CLASSIFICATION Of TMIS **r,C (Wmon Daim Bniorod)

REPORT DOCUMENTATION PAGE
•Epopt numKM

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. OOVT ACCESSION NO I. RECIPIENT'S CATALOG NUMBER

4. Tl Tl£ (and Suaillla)

Automatic Identification of Network Rows
in Large-Scale Optimization Models

»• TYPE OF REPORT * PERIOD COVERED
Master's Thesis;
September 1980

s. performing org. report number

7. AuTNOR<»> ». CONTRACT OR GRANT NUMlEHfll

William Gordon Wright

t. RERFORMINO ORGANIZATION NAME ANO AODRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

M CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

September 198
IS. NUMBER OF PAGES

51
IT MONITORING AGENCY NAME a AOORESSflf Hltlaront from Controlling Olllco) It. SECURITY CLASS, (ol thlm 'apart

t

Unclassified

!»-. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT (ol thla *aa>artj

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol tha amatrmet ontorod In Block 20. II dlllatont rtom Homort)

IE. SUPPLEMENTARY NOTES

If. KEY WOROS (Contlnuo on roaorao aldo II nocoaaawr »*•'

Networks
Large-Scale Optimization
Basis Factorization
Computational Complexity
Mixed Integer Optimization

Idontlty *r Hoc* ntmmmor)

Generalized Upper Bounds

20. ABSTRACT (Continue on rororoo aldo II nacoaamrr and Kraniirr *7 Hoc* W>lf)

The solution of contemporary large-scale linear, integer, and
mixed integer programming problems is often facilitated by the
exploitation of intrinsic special structure in the model. This
paper deals with the problem of identifying embedded pure network
rows within the coefficient matrix of such models and presents two
heuristic algorithms for identifying such structure. The problem
of identifying the maximum size embedded pure network is shown to
be among the class of NP-hard problems, therefore, the

FOAM
I JAN 73

(Page 1)

DO 1473 EDITION OF I NOV •• IS OBSOLETE
S/N 103-0 14- AA01

:

UNCLASSIFIED
•ECUAITV CLASSIFICATION OF THIS PAGE (Wnon Pa-ta tntorod)

UNCLASSIFIED
u«*«> «••• *»<•*•#

#20 - ABSTRACT - CONTINUED

polynomially-bounded algorithms presented here do not guarantee
network sets of maximum size. However, upper bounds on the
size of the maximum network set are developed and used to
evaluate the algorithms. Finally, the algorithms were tested
with a number of large-scale, real-world models and the
results of these benchmark runs are presented.

DD
1 525^3

U73
2

UNCLASSIFIED
S/N 0102-014-6601 iffeumrv clauipicatiom or t*i§ **a«r»*«- o«

Approved for public release; distribution unlimited

Automatic Identification of Network Rows
in Large-Scale Optimization Models

by

William Gordon Wright
Captain, United States Marine Corps

B.A., Washington State University, 1973
B.S., Washington State University, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 1980

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOP
MONTEREY, CALIF 93940

ABSTRACT

The solution of contemporary large-scale linear, integer,

and mixed integer programming problems is often facilitated

by the exploitation of intrinsic special structure in the

model. This paper deals with the problem of identifying

embedded pure network rows within the coefficient matrix of

such models and presents two heuristic algorithms for iden-

tifying such structure. The problem of identifying the maximum

size embedded pure network is shown to be among the class of

NP-hard problems, therefore, the polynomially-bounded

algorithms presented here do not guarantee network sets of

maximum size. However, upper bounds on the size of the

maximum network set are developed and used to evaluate the

algorithms. Finally, the algorithms were tested with a

number of large-scale, real-world models and the results of

these benchmark runs are presented.

TABLE OF CONTENTS

I. INTRODUCTION 6

II. PROBLEM DEFINITION AND REPRESENTATIONS H

A. THE LINEAR PROGRAMMING PROBLEM H

B. THE GUB PROBLEM H
C. REPRESENTATIONS OF THE GUB PROBLEM 12

D. THE NET PROBLEM 14

E. REPRESENTATIONS OF THE NET PROBLEM I 5

1. Double-GUB Set Representation 16

2. Vector Space Representation 17

III. IMPLEMENTATION OF AUTOMATIC NETWORK
IDENTIFICATION HEURISTICS 20

A. DOUBLE-GUB (D-GUB) ALGORITHM 20

B. NETWORK IDENTIFICATION ALGORITHM 22

IV. PROBLEM COMPLEXITY 29

V. UPPER BOUNDS ON MAXIMUM NETWORK SET SIZE 35

VI. COMPUTATIONAL RESULTS 40

VII. EXTENSIONS 42

VIII. CONCLUSIONS 44

APPENDIX A 45

LIST OF REFERENCES 49

INITIAL DISTRIBUTION LIST 51

I. INTRODUCTION

The success of mathematical optimization in Operations

Research and the increase in size and speed of digital

computers have led to the formulation of very large and

complex systems as mathematical programming models. The

direct solution of the associated linear programming (LP)

problems using the classical simplex method is often pro-

hibitively expensive, if not impossible in a practical sense.

The large-scale models are predominantly characterized

by sparse coefficient matrices and inherent special structure.

If special structure can be identified, it can often be used

to reduce the problem to a more manageable size. Methods so

used to exploit special structure can be classified as

indirect methods or direct methods.

Indirect methods use special structure to decompose a

large problem into smaller related problems. The solution

of these sub-problems is then used to construct a solution

to the larger problem. Indirect methods are not considered

in this paper.

Direct methods attempt tc solve the original problem more

efficiently by using specializations of the simplex procedure

which exploit the special structure. These specializations

often replace arithmetic operations with logical operations

and use information concerning the nature of the eventual

solution provided by the special structure to reduce compu-

tational effort.

This paper is concerned with structures which can be used

in direct, static factorization algorithms, for which all

simplex bases share a common structure under row partition.

The details of actual exploitation of special structure, once

identified, will not be discussed here (see Graves and McBride

[6]).

Static basis factorizations include simple upper bounds,

generalized upper bounds (GUB) , and embedded network rows,

among others. Simple upper bound rows have only one non-zero

coefficient. GUB refers to a set of rows for which each

column (restricted to those rows) has at most one non-zero

coefficient. Embedded network rows refers to a set of rows

for which each column (restricted to those rows) has at most

two non-zero coefficients of opposite sign. If the non-zero

coefficients in the embedded network rows are restricted to

one +1 and one -1 in each column, then the structure is

referred to as an embedded pure network (NET)

.

Various transformations are available to identify and

exhibit special structure in the coefficient matrix. These

range from simple permutation of rows and columns to full

(linear) transformations of the coefficient matrix. An

intermediate method allows simple scaling (multiplication by

a non-zero constant) of each row and/or column. Generally,

complete transformation methods are used in an attempt to

convert the entire coefficient matrix to one having a very

special structure, such as a node-arc incidence matrix for

a network. Partial transformation methods look for large

subsets of rows in the coefficient matrix which exhibit the

desired structure, with the implicit presumption that large

subsets are more efficiently exploited than small subsets.

As mentioned earlier, much of the computational improve-

ment of the specialized simplex algorithms is obtained when

logic can be substituted for arithmetic in simplex operations.

This is most conveniently accomplished when the coefficient

values in the rows of the special structure set are restricted

to 0, ±1 . This restriction can be satisfied by considering

for inclusion in the structure set only those rows with

intrinsic 0, ±1 entries. In practice, however, it is often

possible, through row and/or column scaling, to produce the

desired 0, ±1 values. For simple upper bounds, row scaling

will suffice. GUB sets can be converted with row and column

scaling (except that columns corresponding to integer varia-

bles are not customarily scaled) . To produce pure network

rows, however, the scaling problem is non-trivial due to the

existence of two non-zero coefficients in many columns as

well as the requirement that unit elements in the same column

be of opposite sign.

The use of generalized upper bounds has received much

attention since the concept was introduced in 1964 by Dantzig

and Van Slyke [4] . Some form of GUB has been implemented in

many commercial LP systems, though restrictions on what

constitutes an admissible (i.e., implemented) GUB set vary.

Work has been done in the automatic identification of GUB

sets [2], [8]; computational results on large-scale problems

indicate that this is not only feasible, but can be extremely

advantageous [3] , [13]

.

This paper extends the research done in identifying GUB

sets to finding sets of embedded pure network rows . In pure

network rows, coefficients are restricted to the values 0,±1

and columns with two non-zero entries must have exactly one

+1 entry and one -1 entry. Although some recent work has been

done in the theory of complete conversion of a linear program

to a network problem ([1] , [10]), few practical results have

been achieved which reliably identify a subset of rows which

form a network structure if complete conversion fails. An

efficient algorithm for doing so is of great value since the

problem usually fails to be completely convertible, and since

the expense of attempting complete conversion may be

prohibitive.

The problem of finding a maximum GUB set (in terms of

number of rows) within a general coefficient matrix has been

shown by Thomen to be NP-hard in complexity [13] . This paper

proves the same result for the maximum embedded pure network

problem. The implication is that currently only exponential

time algorithms exist to solve these types of problems and

the hope of finding a more efficient algorithm is dim.

Therefore, the efficient GUB-finding methods developed

to date have been heuristic algorithms. That is, they use

methods which attempt to find large, sometimes even maximum

GUB sets, but which cannot guarantee a maximum GUB set. Since

the size of the maximum GUB set is not known for the large-

scale problems with which we work, we must resort to compari-

son with upper bounds on the size of the maximum set to

evaluate the heuristics [13]

.

The methods developed in this paper for finding pure

network row sets are also heuristic algorithms. Bounds are

developed for the maximum number of pure network rows, in

order to evaluate the NET identification algorithms.

Computational results are given for a number of large-

scale, real-world problems. They show the NET identification

algorithms to be very efficient and effective in identifying

large sets of pure network rows.

Portions of this research have been published in abstract

form in [14]

.

10

II. PROBLEM DEFINITION AND REPRESENTATIONS

A. THE LINEAR PROGRAMMING PROBLEM

The Linear Programming Problem is defined here as

(L) minimize c x

s.t. r Ax <_ r (ranged constraints)

b <_ x <_ b (simple bounds)

where r and r are m-vectors, x, c, b and b are n-vectors and

A is an m x n matrix. Consider for the moment the case where

all x variables are real-valued; the integer and mixed integer

cases will be discussed later.

B. THE GUB PROBLEM

The (maximum) GUB problem for (L) can be stated as:

(GUB) Find a (maximum) subset of rows in A which

can be scaled to contain only 0,+l entries

and which satisfy the property that each

column of A (restricted to those rows) has

at most one non-zero entry.

The real values of the non-zero coefficients in A do not

make a difference in the GUB problem, since any non-zero entry

11

in a GUB row can be scaled to +1 by column scaling alone.

Therefore, it is convenient to replace A by a binary (0,1)

matrix, K, of the same dimension where each non-zero entry

of A is replaced by +1 with all other entries zero.

Using the matrix K, with entries k. . , the (maximum) GUB

problem can be formulated as the binary integer program

(GUBI) (maximize) z, + z
2

+ . . . + zm

s.t. T k . . z . < 1; j=l,...,n

where z. e {0,1}

The variable z. is an indicator variable for GUB inclusion,

i.e., if z. = 1, row i is included in the GUB set, otherwise

it is not.

C. REPRESENTATIONS OF THE GUB PROBLEM

Alternative representations of the GUB problem have been

developed as the basis for various heuristic algorithms and

for theoretical considerations such as determining the com-

plexity of the problem and developing bounds on the maximum

achievable size of a GUB set. Some of these representations,

covered in detail in [13] , are the graphical conflict repre-

sentation, the conflict matrix representation, and the vector

space representation.

12

The concept of row conflicts is basic to the GUB problem.

Two rows in A are said to conflict if there is at least one

column of A with non-zero entries in both rows. If each row

of A is considered as a vertex in an undirected graph with

two vertices connected by an edge whenever the corresponding

rows conflict, then the (maximum) GUB problem becomes one of

finding a (maximum) independent set of vertices in the graph.

An independent set of vertices in a graph is a subset of the

total vertex set with no two vertices adjacent (connected by

an edge) in the graph.

The conflict matrix representation of the GUB problem

uses an m x m symmetric binary matrix M with each row and

column representing a row of A. M has +1 values in those i,j

entries where row i and row j conflict in A. By definition,

every row conflicts with itself so the main diagonal of M

has all +1 entries. The (maximum) GUB problem then becomes

one of finding (through permutation of the rows of A) an

embedded identity matrix (of maximum size) in the conflict

matrix M.

The vector space representation has developed from a paper

by Senju and Toyoda [12] dealing with the heuristic solution

of certain 0,1 programming problems. Each row of K is con-

sidered as a vector in n-space having unit length in those

directions corresponding to its non-zero entries. The vector

R is formed as the sum of each of the row vectors. A unit

hypercube in n-space situated at the origin with length 1 in

13

all positive directions represents the feasible GUB region.

If R extends beyond this region, the set of rows is not a

GUB set and at least one row must be removed to bring R into

the feasible region. The (maximum) GUB problem becomes one

of determining (the minimum number of) rows which must be

removed in order to bring R into the feasible region. The

heuristics based on this representation compute gradient vec-

tors which indicate the direction of shortest distance to the

feasible region and remove first those rows which produce

the greatest movement in that direction. These heuristics

have proven to be the fastest to date and produce GUB sets

comparable in quality to other heuristics [13]

.

D. THE NET PROBLEM

The (maximum) Embedded Pure Network problem for (L) can

be stated as:

(NET) Find a (maximum) subset of rows in A which can

be scaled to contain only 0,±1 entries and

which satisfy the property that each column

of A (restricted to those rows) has at most

two non-zero entries, and if the column has two

non-zero entries, the (scaled) entries must be

of opposite sign.

The real values of the non-zero coefficients in A cannot be

ignored as they were in the GUB problem since simple column

14

scaling is no longer sufficient to produce the required ±1

entries in columns containing two non-zero entries. The

addition of row scaling may help, but even this is not suffi-

cient to guarantee that a network set of rows obtained by

considering only the signs of the non-zero elements can be

scaled to the required 0,±1 values.

Considering, for the moment only, matrices with 0,±1

entries (or a subset of m rows with 0,±1 entries in a general

matrix) with no scaling allowed, the (maximum) NET problem can

be formulated as the binary integer program:

(NETI) maximize z, + z- + ... + z12 m

s.t. I z. 1; j=l,...,n
i:a. .=-1 1

i:a. .=+1
Z. <_ 1; j = 1, . . . ,n

where z. e {0,1}

Again, z. is an indicator variable for inclusion in the

network set.

E. REPRESENTATIONS OF THE NET PROBLEM

Unfortunately, NET does not lend itself to the many repre-

sentations which GUB admits. The primary reason for this is

that the scaling problems associated with NET make it impossi-

ble to disregard the real values of the non-zero coefficients

15

in A. Also, the concept of pairwise row conflicts so useful

in the GUB algorithms does not apply to network rows when row

scaling is allowed.

To efficiently confront the scaling dilemma, we are

currently forced to restrict the eligibility of rows for

membership in the network set. The most obvious restriction

is to allow no scaling and consider only those rows with

intrinsic 0,±1 entries. This may be unnecessarily prohibi-

tive. Two less restrictive options are employed in the

algorithms described later. These are:

1. Admit only rows with intrinsic 0,±1 entries but

allow row reflection (multiplication of a row by -1)

.

2. Admit only rows whose non-zero entries can be row

scaled to 0,±1. This includes rows with all non-zero

entries of the same absolute value. Row reflection

is also allowed.

For the algorithms presented in this paper, two repre-

sentations of the NET problem are developed. The double-GUB

representation is used in the identification of networks with

a bipartite structure by considering the network set as con-

sisting of two disjoint GUB sets. The vector space repre-

sentation is used in the identification of general network

structure.

1. Double-GUB Set Representation

As suggested by Thomen [13], GUB heuristics can be

used to produce a bipartite network row factorization. This

16

type of factorization has the property that the rows in the

network set can be partitioned into two subsets, N, and N^,

such that each column of the matrix has at most one non-

zero entry in N. and at most one non-zero entry in N~.

Additionally, the entries must be of opposite sign. To

produce such a factorization, a GUB heuristic can be applied

to the eligible rows of A producing one GUB set, and then

to the remaining eligible rows not selected in the first

pass, producing a second GUB set. This can be done if inclu-

sion in the second GUB set is conditioned on agreement with

rows in the first GUB set, allowing row reflection if necessary

This algorithm (entitled D-GUB) was implemented using the

fastest of the GUB heuristics.

2 . Vector Space Representation

If we consider only the rows of A with 0,±1 entries,

or those which have been scaled to 0,±1, a vector space

representation for NET can be developed similar to that

developed for GUB. The representation can also allow reflec-

tion of rows, if desired.

With each row in the eligible set, we associate two

+ — + .

vectors in n-space, V. and V.. V. is the vector consisting

of 1 in those dimensions corresponding to +1 entries in row i

and zero in all other dimensions. V. is the vector consisting

of -1 in those dimensions corresponding to -1 entries in row

i and zero in all others. For example, if row i is (1,0,-1,

1,0,-1,0), then V
+

= (1,0,0,1,0,0,0) and V~ = (0,0,-1,0,0,-1,0)

17

We define R as the resultant vector from the sum of

all V. and R as the resultant vector from the sum of all
1

V. . These vectors extend from the origin into the orthants

of n-space corresponding to all positive dimensions and all

negative dimensions, respectively. Two hypercubes in this

n-space, one situated at the origin with length 1 in all

positive directions and another situated at the origin with

length 1 in all negative directions, constitute the feasible

NET region. Should either R or R extend beyond its feasi-

ble region then the rows in the eligible set do not currently

form an admissible set of network rows.

The reflection (multiplication by -1) of a row merely

results in the switching of the V and V vectors for the

row. That is, when row i is reflected, the negative of V.

becomes V. and the negative of V. becomes V.. This in turn
l 3 i l

will change the vectors R and R . In fact, it is possible

in some cases that just the reflection of rows in an infeasible

set may bring R and R into their feasible regions without

deletion of any rows.

This representation is used as the basis for the

network identification heuristic for (NET) developed by the

author and presented herein. If either R or R extends

beyond the feasible region, a row penalty for each row is

computed as the dot product of V . and R plus the dot product

of V. and R~. The row with the greatest row penalty is

identified and the revised penalty for that row, if reflected,

18

is computed. If this reflected penalty is less than the

original row penalty, the row is reflected, otherwise it is

deleted. When both R and R fall within the feasible region,

the set of rows which remain constitutes an admissible net-

work set.

19

III. IMPLEMENTATION OF AUTOMATIC NETWORK
IDENTIFICATION HEURISTICS

A. DOUBLE-GUB (D-GUB) ALGORITHM

The D-GUB Algorithm is based on the double-GUB represen-

tation of the network problem discussed in the previous

section. The automatic GUB algorithm used to find the GUB

sets is a gradient method based on a heuristic for approxi-

mate solution of certain 0,1 variable linear programming

problems developed by Senju and Toyoda [12] . It was coded

by Thomen and proved to be the most efficient of the GUB

identification algorithms tested in his research. A brief

description of the GUB algorithm will be given here; it is

fully described in [13]

.

The GUB heuristic is a two-phase, one-pass, non-back-

tracking algorithm which is feasibility seeking. The initial

eligible set consists of all rows which can be scaled to the

required values according to the scaling scheme employed.

Phase 1 attempts to delete as few rows as possible in order

to produce a feasible GUB set. Phase 2 examines the rows

deleted in Phase 1 and reincludes rows which do not violate

the GUB restriction.

The D-GUB algorithm uses a sequential application of the

GUB heuristic to the set of network eligible rows. Eligi-

bility for inclusion in the first GUB set is determined by

one of the two scaling restrictions described in the previous

20

section. In the first pass, the initial GUB set is deter-

mined. Eligible rows not included in the first GUB set are

then examined to determine (under the requirement that two

entries in a network column be of opposite sign) if the row

is eligible for inclusion in the second GUB set in either

present or reflected form. If eligible rows are found, a

second pass is made with the GUB algorithm producing a second

GUB set.

The D-GUB Algorithm:

Step 0. Determine Eligible Rows, Using the scaling scheme

desired, determine which rows of the matrix are eligible

for selection as network rows.

Step 1. Find First GUB Set. Apply the GUB heuristic to the

eligible set updating the gradient vector following

each row deletion.

Step 2. Determine Eligibility for Second GUB Set. For each

eligible row not included in the first GUB set, check the

columns in which the row has non-zero entries. In each

of these columns, if the first GUB set has no non-zero

entries or one non-zero entry of opposite sign then the

row is eligible for inclusion in the second GUB set in

its present form. If the first GUB set has no non-zero

entries or a non-zero entry of like sign in each column,

then the row is eligible for inclusion in reflected form.

Otherwise, the row is not eligible and is discarded.

21

Step 3. Find Second GUB Set. If there are any rows eligible

for the second pass, reapply the GUB heuristic to those

rows

.

Computational experience on a number of real-world models

indicates that Phase 2 of the GUB heuristic rarely adds

additional rows to the GUB sets obtained in either pass

.

For the second GUB set, Phase 2 was especially ineffectual.

This suggests that the algorithm, which is already extremely

fast, can be made even faster by the elimination of Phase 2

with minimal loss of solution quality.

B. NETWORK IDENTIFICATION (NET) ALGORITHM

The NET Algorithm is based on the vector space represen-

tation of the network problem discussed in Section II. The

algorithm is two-phased, one-pass, and non-backtracking. It

is a deletion heuristic which is feasibility seeking. As

such, it begins with an eligible set of rows which normally

do not form an admissible network set and attempts to delete

as few rows as possible to obtain a feasible set. Deleted

rows are then considered for reinclusion if they do not violate

the feasibility requirement.

The measure of infeasibility at any point is a matrix

penalty computed as the sum of individual row penalties. Rows

in the eligible set are examined in order of decreasing row

penalty and either reflected, if the row penalty would be

reduced, or removed and placed in a candidate set for later

use. This guarantees that the matrix penalty will be reduced

22

at each iteration. Thus, the number of iterations in Phase

1 is bounded by the initial matrix penalty, which is poly-

nomially bounded. In Phase 2, the rows in the candidate set

are examined for reinclusion in the eligible set if they do

not increase the matrix penalty. Those not reincluded are

discarded.

Statement of the Problem:

Let A = {a . . } be an m x n matrix with a.. = , ±1 V i , j

.

13 13
' J

Problem: Find a matrix N = {n. .} with (m-k) rows and n

columns which is derived from A by

1. Deleting k rows of A where k >_ ,

2. Multiplying zero or more rows of A by -1,

where N has the property that each column of N has

at most one +1 element and at most one -1 element.

We wish to find a large N in the sense of containing

as many rows as possible, i.e., minimize k.

Terminology and Notation:

1. E is the set of row indices for rows eligible for inclusion

in N and is called the eligible set.

2. C is the set of row indices for rows removed from E in

Phase I (Deletion) . Some rows in C may be readmitted to

E in Phase II. C is called the candidate set.

3. The phrase "reflect row i' of A" means to multiply each

element in row i' by -1, i.e., a... * -a. , . V j.

4. Other notation will be defined in the algorithm itself.

23

The NET Algorithm:

Phase I - deletion of Infeasible Rows

Step 0: Initialization. Set E = { 1, 2 , . . . ,m} , C =
<J>

.

For each column j of A compute the + penalty (K.) and

the - penalty (K.) as follows:

K
+

= (I 1)-1, KT = (1) - 1 .

J ieE:a. . >0 J ieE:a. . <0
ID ID

These penalties represent the number of excess +1 and -1

elements, respectively, in column j which prevent the

rows whose indices remain in E from forming a valid N

matrix. A penalty value of -1 for K.(K.) indicates that

the column does not contain a +1(-1) element.

Step 1: Define How Penalties . For every i e E, compute a

row penalty (p.) as follows:

Pi = I K+ + I K"
j :a . . >0 J

j :a . . <0 J
J

13
J

13

This is simply the sum of + penalties for all columns in

which row i has a +1 plus the sum of - penalties for

all columns in which row i has a -1.

Step 2; Define Matrix Penalty. Compute the penalty (h)

for the matrix by summing the row penalties as follows:

24

h = I p. .

ieE

If h = 0, then go to Step 7. Otherwise, go to Step 3.

Step 3: Row Selection . Find the row i 1

e E with the

greatest penalty, i.e.,

Find i' e E such that p. , = max p.
ieE

(If there is a tie, choose i' from among the tied values

Compute the reflected row penalty p., for i' as follows:

p = I (kT+1) + I (K++1) .

j:a
i ,

j

>0 J j:a itj <0 ->

This would be the row penalty for row i 1 if it were to

be reflected.

Step 4: delete, or Reflect Row.

Case i) p .
, >_ p . . Let E + E - { i ' } , C «- C U { i ' } . Go

to Step 5

.

Case ii) p., < p.,. Reflect row i'. Go to Step 6.

Step 5: Reduce column penalties as follows:

For all j such that a... > 0, K. «- K .
- 1J I'D 3 3

For all j such that a... < 0, K. -*- K . -

1

J i'3 3 3

Go to Step 1.

25

Step 6: Change column penalties as follows:

Using the a. , . values after reflection of row i*,

For all j such that a . . . > , K
+

+ K
+
+ 1 and K~ * kT - 1

i 3 3 3 3 3

For all j such that a. , . < 0, K
+

«- K
+

- 1 and kT * K~ + 1
i 3 3 3 3 3

Go to Step 1.

Phase II - Reinolusion of Rows from C

Step 7. Eliminate Conflicting Rows. The rows with indices

in E, some possibly reflected from the original A matrix,

form a valid N matrix. However, some of the rows removed

from E and placed in C may now be reincluded in E if they

do not make h > 0. Remove from C (and discard) all row

indices for rows which, if reincluded in E in present or

reflected form, would make h > 0. I.e., Remove i from

C if

a) 3 j, such that a. . > and K. =0
1 ^1 =>1

or a . < and K . =0
^1 3l

and

b) 3 j such that a. . > and K. =0
2 ^2 3 2

or a . . < and K . =0m 2 3 2

If C = <j>, STOP, otherwise go to Step 8.

26

Step 8. Select Row for Reinalusion . At this point a row

from C may be reincluded in E. There are several possible

schemes for selecting the row. After the row is rein-

eluded, the column penalties are adjusted. Then go to

Step 7.

No dominating rule has been discovered for breaking ties

in maximum row penalty encountered in Step 3. The rule used

for the computational results presented herein is to select

the row with the minimum number of non-zero entries in an

attempt to place a larger number of non-zero entries in the

network set. Other possible rules are "first-come, first-

served", maximum number of non-zero entries, type of con-

straint, or modeler preference.

Although the algorithm described above is presented for

a matrix with strictly 0,±1 entries, it can be generalized

to any matrix by simply letting E be the set of rows with

strictly 0,±1 entries or which can be scaled to contain only

0,±1 entries.

Prespecified network rows can also be accommodated with

the following modifications:

Let P = {i|row i is prespecified}.

Then E •*• E - P.

After computation of K. and K~ in Step 0, for each column

if 3i e P such that a. . = 1 then K
+

«- K
+

+ 1,
ill 3 3

27

if 3 i e P such that a. . = -1 then kT «- K~ + 1

.

ID 3 3

Rows in P are not eligible for deletion or reflection.

At the termination of the algorithm, the rows in N are

given by EUP.

Computational experience on real-world models indicates

that Phase 2 of the NET algorithm is even less productive

than that of the GUB algorithm. In only two of sixteen cases

were any rows eligible for reinclusion and the maximum number

eligible was three. This indicates that the expense of

examining the rows in the candidate set for eligibility is

probably not justified for the occasional small improvement

in quality.

28

IV. PROBLEM COMPLEXITY

Analysis of the inherent complexity of a problem can

reveal whether there is a possibility of developing an

efficient algorithm to completely solve all cases of the

problem. Unfortunately, analysis of the NET problem indi-

cates that it cannot be solved optimally by an efficient

algorithm at this time.

The complexity of a problem is said to be polynomial if

an algorithm exists which can solve the problem in a number

of fundamental operations bounded by a polynomial function of

intrinsic problem dimensions. Such an algorithm is called a

polynomial time algorithm. An algorithm which is not bounded

by such a polynomial function is said to be an exponential

time algorithm. The maximum solution time for exponential

time algorithms grows explosively as problems dimensions

increase.

The class of intractable problems consists of those

problems for which no polynomial time algorithms exist.

Between the class of polynomial problems and the class of

intractable problems, there is the class of non-deterministic

polynomial problems—class NP . This class consists of those

problems for which a guessed solution can be verified in poly-

nomial time, but for which the existence of a polynomial

time algorithm to solve such problems has not yet been proved

or disproved.

29

A problem b is said to be reducible to a problem c if a

polynomial time algorithm for solving c (if one exists) can

be used to produce, in polynomial time, a polynomial time

algorithm for solving b. If every problem of the class NP

is reducible to the problem c, then c is said to be NP-hard.

In addition, if c also belongs to class NP, then c is NP-

oomplete . This means that should a polynomial time algorithm

be found which solves an NP-complete problem, then polynomial

time algorithms exist to solve all problems in class NP . On

the other hand, should an NP-complete problem be proved

intractable, then all problems in class NP are intractable.

The question is still open at this time. For a more complete

treatment of complexity theory, see [5], [9].

The problem of finding a GUB set of specified size (i.e.,

number of rows) was shown by Thomen [13] to be NP-complete,

while that of finding a maximum GUB set was shown to be NP-

hard. As an observation, the corresponding maximum D-GUB

problem with no scaling, since it represents a composition

of two disjoint GUB problems, is also NP-complete (for a D-GUB

set of specified size) and NP-hard (for a maximum D-GUB set)

.

The problem of complete conversion of an arbitrary matrix

to the node-arc incidence matrix of a pure network, using

linear transformation of the matrix as well as row and column

scaling, has been shown to be polynomial in complexity [1]

,

[10] . This, however, does not apply to the problem of finding

the maximum embedded pure network should complete conversion

30

fail. Consider the NET problem for a unit matrix, that is,

a matrix containing only 0,±1 entries. For the present, no

scaling is allowed. A slightly less complex problem than

finding the maximum size embedded network set is the following

problem:

(NETD) Given an m * n unit matrix A and an integer p < m,

determine whether A contains a set of p or more

rows such that each column of A (restricted to

those rows) has at most two non-zero entries,

where entries in the same column must be of oppo-

site sign.

Given a set of p rows from A, it is easy to verify, in

polynomial time, whether the set satisfies the above cri-

terion. Given an integer p < m, it is not easy to determine

whether there exists a set of p or more rows in A which

satisfies the criterion. In general, there does not currently

exist an algorithm which can do so in polynomial time, as

will now be shown.

In a unit matrix, two rows may be said to conflict if they

both contain a non-zero element of like sign in a common

column. The absence of such pairwise conflicts in a subset

of rows from A is not a necessary condition for the rows to

form a valid network set if row reflection is allowed. How-

ever, that condition is necessary and sufficient for that

purpose when no scaling is allowed. With no scaling, it is

31

evident that the absence of pairwise conflicts is necessary

in a valid network set, for the existence of a conflict vio-

lates the opposite sign requirement for columns containing

two non-zero elements. It is also sufficient, because the

violation of the criterion for a valid network set would re-

quire at least one column of A to contain at least two non-

zero entries of like sign in rows of the set. This, in turn,

would imply that the two rows in which this occurs are in

conflict.

Following closely the arguments presented by Thomen [13]

for the GUB problem, a graph is defined in which the nodes

represent the rows of A and two nodes are connected by an

edge if and only if the rows conflict in A. The problem of

finding a set of p or more rows in A which do not conflict is

then equivalent to finding an independent set of size p or

more in the graph so defined. This problem, known as the

independent set decision problem, is known to be NP-complete

[5] . Furthermore, the problem of finding a maximum independent

set, and therefore, a maximum GUB set or network set, is NP-

hard.

The addition of row reflection to the problem simply means

that each row can exist in one of two states, namely, unreflected

or reflected. Clearly then, in a set of m rows, there are 2

distinct states for the set, each corresponding to a different

subset of reflected rows. The problem of finding a maximum

network set in A, allowing row reflection, is equivalent to

32

finding a maximum network set with no scaling allowed (shown

above to be NP-hard) for 2 distinct matrices. As a result,

this problem is also NP-hard.

Given a general matrix in which non-zero entries may be

of any magnitude, and allowing simple row and column scaling,

the problem of finding a maximum subset of rows which can be

scaled to produce a pure network set can be approached

(conceptually) in at least two ways. One approach is to

ignore the magnitude of non-zero entries and consider only

their sign. When a maximum size network set is found for the

resulting unit matrix (an NP-hard problem) , an attempt can

be made to scale the entries in the rows of the network set to

the required 0,±1 values. The scaling, which may or may not

be successful, can be done in polynomial time, however, the

entire problem remains NP-hard. Another approach is to

consider only subsets of rows which can be scaled to the

required unit values should the subset be found to be a valid

network set. In essence, the scaling restrictions applied in

the algorithms described in this paper guarantee that any

subset will have the required unit values. However, if this

approach excludes any subsets which may be scalable to the

required values, the maximum size set may be missed. Appar-

ently, even with the addition of scaling considerations, the

basic problem of finding a maximum embedded pure network set

remains NP-hard.

33

The above analysis of network identification algorithms

has only addressed the worst case bound. No conclusions can

be made about the average performance of an optimal algorithm

In other words, it may be possible to develop an optimal

algorithm with good average performance, but having an

exponential worst case bound.

34

V. UPPER BOUNDS ON MAXIMUM NETWORK SET SIZE

The problem of finding a maximum size pure network set

of rows in a matrix, regardless of scaling restrictions , has

been shown to be NP-hard. This also applies to the problem

of determining the size of a maximum set. Upper bounds on

the maximum set size, computed in polynomial time, can be

useful in evaluating the quality of network sets produced

by heuristic algorithms.

The upper bounds on maximum pure network set size depend

on the scaling restrictions employed. It should be noted

that the bounds computed here apply to the maximum set size

obtainable from the set of eligible rows. They do not apply,

in general, to the maximum set size obtainable from the entire

coefficient matrix.

Clearly, the maximum set size can be no greater than the

number of rows in the eligible set, but this bound is of

little practical use. Better bounds can be constructed using

information already available in the heuristic procedure.

Two upper bounds were developed as a result of this research

and are presented here.

The first bound follows directly from the restriction that

each column of the matrix (restricted to the eligible set) is

allowed at most two non-zero entries. If k represents the

maximum number of non-zero entries in any column of A

(considering only entries in eligible rows) , then it is clear

35

that at least k-2 rows must be deleted from the eligible

set in order to make this "worst column" feasible. Since the

column counts are readily available in the form of the column

penalties (K. and K.), the upper bound on the network set

size for a matrix with m eligible rows is:

u, = m - max (K . + K .) .

1
j 3 1

This bound is evidently sharp in that matrices can be con-

structed for which it is achieved.

The second bound is tighter, but requires more information

about the problem and more computation. It is based on a

matrix penalty computed from column penalties, rather than

row penalties as in the NET algorithm. This penalty is

defined as:

h = y k
+

+ y kT .

1 3
j:K

+
>0 j:K->0

3
J

3

Clearly, as long as H > 0, the rows remaining in the

eligible set do not form a valid network set. The reflection

of a row in the eligible set may decrease H, increase H, or

leave it unchanged. The deletion of a row from the eligible

set may decrease H, or leave it unchanged. The actual effect

of a reflection or deletion depends on the rows remaining in

the eligible set and their state (unreflected or reflected)

at the time. However, it is possible to compute for each row

36

the maximum possible reduction in H obtainable by reflection

or deletion of the row, regardless of the other rows remaining

in the eligible set. These maximum possible reductions are

called the reflection potential and deletion potential for

the row, respectively.

The bound will be computed by determining the minimum

number of row deletions necessary to reduce H to zero . This

cannot, of course, be computed exactly; however, the result

will be conservative in that it will guarantee that at least

that number of rows must be deleted.

Consider the possible states of a column j of A in which

row i has a non-zero entry (i.e., a. . ^ 0). The six possible

cases are summarized in Table 1.

Case K
£

K
u

2 1_

1 0-1
2

3 >0

4 >0 -1

5 >0

6 >0 >0

K. = column penalty of like sign to a.

.

(K+ if a
±j

> 0; K~ if a
±

. < 0)

K
1

? = column penalty of unlike sign to a . .

Table 1

37

The non-zero entries in each column are counted only

when they occur in the initial eligible set. The penalties

used are those computed before any row reflections or dele-

tions have occurred.

Consider first the effect on column j, and thus H, of

reflecting row i. In cases 1, 5, and 6, reflection of row i

would not change H. In case 4, reflection of row i would

decrease H by 1, unless another row with a non-zero in column

j was previously reflected. In cases 2 and 3, reflection of

row i would actually increase H by 1, unless enough other

rows with non-zero entries in column j were reflected or

deleted to produce a -1 value for K.. Since we cannot be

sure that reflection in cases 2 and 3 would actually increase

H, we must consider H unchanged by reflection in these cases.

In summary, we allow H to be decreased only by reflection

of rows with non-zero entries in columns exhibiting case 4.

The reflection potential for row i is computed by summing

the effects for each column in which row i has a non-zero

element, with the condition that only one row reflection is

allowed to decrease H for each column exhibiting case 4.

Row deletions provide greater opportunity for reducing H.

In cases 1 and 2, deletion of row i has no effect on H, while

in cases 4, 5, and 6, deletion of row i directly decreases H

by 1. In case 3, deletion of row i does not directly decrease

H, but it allows reflection of another row with a non-zero

in column j, producing a net decrease of 1 in the value of

38

H. In summary, we allow H to be decreased by deletion of

rows with non-zero entries in columns exhibiting case 3, 4,

5, or 6. The deletion potential for row i is computed by

summing the effects for each column in which row i has a

non-zero entry.

To obtain the second bound, the reflection and deletion

potentials for each row in the eligible set are computed.

Then the maximum possible reduction of H by row reflections

alone is computed by summing the individual row reflection

potentials. If H > at this point, then rows must be

deleted. Rows are deleted in order of decreasing deletion

potential until H < 0. The upper bound is then computed as

Up = m - number of rows deleted,

where m is the number of rows in the initial eligible set

This bound is evidently sharp, since examples can be

constructed which satisfy the bound exactly.

39

VI. COMPUTATIONAL RESULTS

The D-GUB and NET algorithms were coded in FORTRAN IV and

were tested on 16 large-scale , real-world models. The sizes

of the models ranged from small (90 rows, 177 columns) to

large (3500 rows, 6500 columns). Table Al of Appendix A

provides the characteristics of each model.

The results obtained for the D-GUB algorithm are given

in Table A2 of Appendix A. The row eligibility criterion

used for the results reported was that the row contain only

0,±1 entries, or be able to be scaled to 0,±1 entries by row

scaling only. The number of eligible rows as a fraction of

the total row count ranged from 9% to 100% (the objective

row(s) not being eligible in any case). The number of GUB

rows obtained in each pass is indicated. In two cases, the

entire eligible set was determined to be a GUB set, so no

second pass was required. The times given are in CPU seconds

for the IBM 360/67 with the program compiled using FORTRAN H

(Extended) with code optimization (OPT = 2)

.

The results for the NET algorithm are given in Table A3

of Appendix A. Also included are the upper bounds on the

maximum pure network set size computed from the problem data.

The times given for determining the eligible set should be

nearly the same as those for the D-GUB algorithm since the

same eligibility criterion and code were used in both cases.

40

The eligibility of rows in the candidate set for reinclusion

in Phase 2 was determined, but Phase 2 was not included due

to the absence of eligible rows in nearly every case. The

solution time does not include the time required to determine

eligibility for Phase 2. The times given are again in CPU

seconds on the IBM 36 0/67. The NET quality value is the number

of rows in the network set, expressed as a percentage of the

best known upper bound on the pure network set size. As

explained earlier, the actual maximum network set size is, in

general, unknown and thus the actual NET quality may be better

than this conservative estimate. In particular, the bounds

are almost certainly too high for problems with a large number

of eligible rows (e.g., PAPER) and for problems with dense,

unstructured coefficient matrices (e.g., TRUCK).

The overall results obtained are very encouraging. The

algorithms are very fast (especially when compared with

computer time expended in any attempt to solve these large

problems) and they consistently produce maximum or near

maximum pure network sets (from the eligible rows) as

evidenced by the upper bounds . Work is underway to include

one or both algorithms as a part of a state-of-the-art

optimization system which will provide results concerning the

value of the factorizations obtained in improving the solution

times for the models.

41

VII. EXTENSIONS

The current weakness in this research appears to lie

primarily in the area of scaling. Many problems exhibiting

intrinsic network structure are disguised by their formulation

and resist the simplistic attempts used here to rescale them.

In particular, the COAL model is known to be a complete

network, if appropriately scaled, but it is not evident how

this is to be discovered using general, problem- independent

automatic identification. Methods used to scale an entire

matrix to 0,±1 values (see [1], [10]) can be attempted, but

failing complete conversion the next step is not evident.

This remains a potentially fruitful area for further research.

Another potentially profitable area is the extension of

the methods developed for the network identification and

associated upper bounds to other types of special structure.

Schrage [11] has reported research in this area using the

conflict method of Greenberg and Rarick [7] . It is felt

that the superior speed of the gradient method exhibited in

the GUB factorization [13] and seen here in the network

factorization would carry over to the identification of other

special structures. This approach is currently being pursued.

Finally, the possible use of the automatic identification

algorithms in discovering special structure which can be

used in the automatic decomposition of very large models

looks extremely promising. If the algorithms can be used

42

to identify subproblems connected by a few coupling constraints,

then a decomposition of the problem into smaller problems,

each with a special structure (e.g., transportation or assign-

ment problems), may be possible. The solution of these

smaller problems using very efficient, specialized algorithms

may assist in the solution of the larger problem. One class

of such models is that of large multi-commodity production-

transportation problems.

43

VIII. CONCLUSIONS

The stated purpose of this research was to extend the

results obtained for automatic GUB identification in large-

scale models to embedded pure network identification. As

was the case with the GUB problem, the maximum embedded pure

network identification was shown to be NP-hard in complexity.

Therefore, heuristic algorithms were developed and used to

identify large pure network sets in polynomial time.

With regard to accomplishing the intended purpose, the

research was very successful. Using restrictions on row

eligibility to overcome the inherent scaling problems, the

algorithms proved extremely efficient in identifying large

pure network sets. Upper bounds were developed for maximum

pure network set size and were used to evaluate the effec-

tiveness of the algorithms. The results on problem complexity

were obtained and, as expected, justify the use of heuristic

algorithms to approximate optimal solution of what would

otherwise be an extremely difficult problem.

The unexpected benefit of this research appears to be

the applicability of both the general NET identification pro-

cedure and the upper bound computations to many other types

of special structures. Research is continuing in this area.

44

APPENDIX A

This appendix contains three tables describing the

linear and mixed integer programming models used to test

the algorithms described in this paper and the computational

results of the algorithms applied to the models. The content

of the tables is:

TABLE Al: Sample LP (MIP) Model Characteristics

TABLE A2: D-GUB Algorithm Computational Results

TABLE A3: NET Algorithm Computational Results

The execution times provided in the tables are expressed in

CPU seconds on an IBM 360/67 with the programs compiled

using FORTRAN IV H (Extended) . Further description of the

data in the tables is provided in Section VI , Computational

Results.

45

Eh

O 2
05 fa
fa H
N U

I H
3
O
2

"S* ro ro CN o CO ^ VO rH cr> o <3<

r-» 00 CN ^D CN CN CO o rr in H «3*

o o O ^» in o •^ LT> ro *t ID <o

o ro VjO CO o CN o r- H m cn CN
ro H ro CN •^ rH 00

1/1 00 <t >
r- co r-- in
ro cn -^r o

ro r-
rH CN

ro
H

fa

CQ

<
Eh

cn
U
H
Eh
cn
H
fa
w
Eh

u
sa
<
33
U
fa

Q
O
a

cn
2
a
D
fa
O

CNCNOOOOOOinOOO
IT) ^ ^ Vfi

i> h in

CNOOOroLn'^rocN'^cnror-royj cn
LncN'^, ococNCNir)coro'^,,q, r»CNro r-r^oocous^or'LncriooLnHcnm h

ro cn cn ro ro ro ^o cn in

cn o O
£ CN o
O CN o
05 -

in co ^ ^o
CO t ro o
r~ <o cn vo

in cn o ro cn
VO Cn CO CN Cn ^O CT>

ro v£> m
cn ro

>£>

CN

Cn

*-+ H CD

fa H CD 73 H H H
H cy 73 CD CD CD

a H 73 a H 73 H H 73 H 73
Q) a CD CD CD CD

73 a c 73 a 73 73 a 73 a
fa • H
hJ a • H 73 •H CU a • a a H • a •

a a) CD +J 73 a CD 04 04
w cn s 73 Si =1 cn e Cn 3 73 s Cn 6
J H 3 H 3 U X! a 3 3 C 3 3 3
fa CD •H cd CO a cn •H •H CO •H •H a CO -H CO

2 73 H 73 a P p H 3 H P 3 rH 3
<| 3 Cn M P c 3 3 rcj CD 3
cn a 73 a u c CD CO CD 73 u 73 U Cn U 73 u

a) •H 3 •H e CD CD 3 CD

43 s: .c <-3 C Q a x: <Ji x: H <d l3 jr. ^3

O o c a u H Si o
4-> cn p • to 3 ca rH cn • cn < o • cn •

2 rtj (0 73 f-i (0 CD 73 X 73 73
O a c CU fa a a > c C C fa 3
H CO CO U CD P u P
Eh •H •H •H fa p <H •H Q •H fa •H •H >1 fa •H fa

fa Q p Q CD p P P P P
H u >1 5 • o >i U >i u c >1 U >i
05 P 3 P cn a 3 Cn 3 Cn 3 3 CD CT> 3 Cn
U <D 73 0) p Qu •H 73 P 73 P 73 73 P P 73 P
CO CD (U CD C 3 CD CD P CD CD

w H U H c ro tr P C P 3 P P 3 3 P 3
Q fa fa fa w a fa fa fa fa fa fa fa U fa fa fa

J « fa cn 05
2
H Eh

fa u s h3 O < O &H J cn fa fa Eh cn
Q C3 15 05 w cn 2 05 < fa Q < fa Eh u cn fa
O 05 O H H4 Q rtj fa O D <C U <c W H <C H
a Eh fa < fa O J fa U U fa ^ fa 2 fa CJ fa

46

CO

o ^
S3 W
W 03
[S3

2 2
O H
2

LD rH o H T «* rH m
ID O o <T> -* o CT\ LD
[-» o o VD ro CO CN r^

CN CN VO CT> CN CO cn
in CN p- CO <T> o f*
\T) V£> H ro o ^r

co m cn in vo ro CN 00 cn

Q
W
Eh

CO U
s w
O J
PS fa

2

CO
rH

VO CN
CT>

H ro rH ro 00 o m
O ro rH r^
CN T

CN

<
w
CQ

<
E-t

00
Eh
rj

D
CO

S

8
Eh
H
«
o

<c

CQ
D

Q

O
fa

CO

O
«

a
o
Eh

a w
I 2
Q

o cn rH cn <J\ ^ ro o cn CO o ^ r^ \o o CN

^r CO rr cn ro r* O in CN in m CN o in o cn

00 rH o o ro ro ^O o o o CN r^ o o in o
r^ rH o CN r- in CN rH rH o ^r «* "3" CO CN cn
•^r in m r^ H 00 p- rH in vo r* CO m CN CO o

cn rH CN ro in in rH CN •H CO •*r rH vo rH

^ <y CN m ro ro
"tf cn PQ m m CO O CQ

• • D • • • • D
TT o o rH o ro

CO •^r r-3 ^o CN ro ro J
rH CO < CN <3« rH <

in
o

CN

r-^ rH ^* m en 00
O r- o o ro ^

• • • • • •

rH ro o o CN o

r-~ CO CO o in ro
in V£ rH r- rH
ro •<*

VO in rH r*» *r rH O o rr CN cn ro ro rH rH *?

cn cn •^r T 00 cn o in rH in T in O in KO "S*

ro o o O rH CN ro o o o rH ro o o CN o

cn r- o ^ in CN cn rH o o r^ V£> v£> CO r^ <o
CN rH in VO cn ^r in rH in v£> rH rH ro CN o cn

cn rH CN rH ro in rH rH rH in o rH <o

p-

cn

CN

ro
ro

cn cn
O rH «J0

<0 CN
CN <^>

in o
O rH

<£> cn
cn r^

cn oo
o m

uo o CN o o in
^o in CN rH in 00
cn rH ro ^ 00 in

o
o
ro

p"
oo

CN
ro

CN

O
O O O O

cn
m

cn cn cn
tt in o
rH P» <H

u
J « fa CO fa H Eh

fa u 2 J u < u Eh J CO fa fa Eh CO o
Q D *5 fa w CO 2 fa <C fa a <: fa Eh fa CO r-l

O 05 O H rJ Q < W O D <2 u < W H < H
2 Eh fa < fa o J fa u O fa r*3 fa 2 a. U Ui

47

CO
o E-t

OS W
w cn
(NJ

2 z
O M
Z

H h o LD r- Cn rH ro CN CN O m CTl CN CN Cn
00 o o rH o cn a\ in vo IT) T en CO <J\ O l>
r» o o Cn CN CN CN r» 00 LO in CTi CO O "31

oo ro cn vo cn vo m CN 00

Q
W
e*

cn u
2 U
O j
os Pm

§

00 o ^ m cn
cn «z>

cn o cn CO O cn
o o rH cn
CN VD

cn

<

CQ

Eh

cn
E-t

D
cn

2
B
E-h

H
OS

o
CJ

<
Eh

W
Z

Eh

H

<
O

CN

D

<#> oK» orVB crP <#> <#> crP crP dP dp dP oP
00 00 '-Q H o cn vo l> CN •*r r-» 00
in m T in CN cn in cn m r- en O

• • tfP • • • crP tfP dp
cn cn O cn p- [^ O O cn i> m 00 "^r ^o «3« o
cn CTi O

H
cn r- 00 o

H
O
H

<T\ cn 00 r~ cn cn cn o
H

CN <o in r- m CN in n ^r cn p* ^3 CO cn H '-'

00 H cn o m 00 H ^ H in o H o in r- ro

cn H o CN ^ •sr ^o o O o «3" ^ o o cn O
H H H <r cn

VO rH o ^O \o H CN H m o r» r- ^ 00 CO cn
"^ in in 00 CO VO r> H Cn *£> H CN m CN <o o

cn H CN CN «sD in H CN H cn ^o H ^o rH

r-» in o v£> cn CO CN H [^ ^r CN CN r» CN o cn
cn m m o M3 m r» H en V£ cn r^ m cn H o
H cn H n m r- in H CN H o o H r*» H

CN

CN

in o o ^o VO "5T H cn H H <o co cn O cn
vo m H o ro 00 H cn r» o H m cn in o
cn H n •^ 00 in H CN H CO m H r- H

CN

VO 'sr cn ^ H cn CN H m o VD *>D H <7i O o
r* cn o H v£> CN ^D rH o H CN VO o o V£> rH

o o o O O o O o o o o O o o O o

cn «x> o CN o o m H o *r H •^ cn o CN cn
rH vo in CN H in 00 rH o r» H CN in •^ m o
CN cn H ro T CO in H cn H 00 cn H r- rH

CN

rH" « O. cn
w u 2 J u < CJ E-t iJ
Q 3 <2 OS w cn 2 OS <
O OS o H J Q ^ W o
s Eh Cn < w O J b u

OS
cn & w
di Q < ft
d 5: u <
U &. h) ft

CJ
Z
H H
Eh cn O
^ w cn h-1

W H < H
Z ft CJ ft

48

LIST OF REFERENCES

1. Bixby, R. E. and Cunningham, W. H., "Converting Linear
Programs to Network Problems," (to appear in Mathema-
matics of Operations Research)

.

2. Brearly, A. L., Mitra, G., and Williams, H. P., "Analysis
of Mathematical Programming Models Prior to Applying
the Simplex Algorithm," Mathematical Programming ,

v. 8, p. 54-83, 1975.

3. Brown, G. G. and Thomen, D. S., "Automatic Factoriza-
tion of Generalized Upper Bounds in Large Scale Opti-
mization Models," Technical Report NPS55-80-003 , Naval
Postgraduate School, Monterey, January 19 80.

4. Dantzig, G. B. and Van Slyke, R. M. , "Generalized Upper
Bounding Techniques ,

" Journal of Computer and System
Sciences , v. 1, p. 213-226, 1967.

5. Garey, M. R. and Johnson, D. S., Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness ,

W. H. Freeman and Company, 19 79.

6. Graves, G. W. and McBride, R. D. , "The Factorization
Approach to Large-Scale Linear Programming," Mathe-
matical Programming , v. 10, p. 91-110, 1976.

7. Greenberg, H. J. and Rarick, D. C, "Determining GUB
Sets via an Invert Agenda Algorithm," Mathematical
Programming , v. 7, p. 240-244, 1974.

8. McBride, R. D. , "Linear Programming with Linked Lists
and Automatic Guberization, " Working Paper No. 8175,
University of Southern California, School of Business,
July 19 75.

9. Klee, V., "Combinatorial Optimization: What is the
State of the Art," Mathematics of Operations Research ,

v. 5, p. 1-26, February 1980.

10. Musalem, J. S., "Converting Linear Models to Network
Models," Ph.D. Dissertation, UCLA, January 1980.

11. Schrage, L. (Private Communication, March 1980).

49

12. Senju, S. and Toyoda, Y., "An Approach to Linear Pro-
gramming with 0-1 Variables," Management Science ,

v. 15, p. B196-B207, 1968.

13. Thomen, D. S., "Automatic Factorization of Generalized
Upper Bounds in Large Scale Optimization Problems,"
M.S. Thesis, Naval Postgraduate School, September 1979.

14. Wright, W. G. and Brown, G. G., "Automatic Factorization
of Embedded Structure in Large-Scale Optimization
Models," Proceedings of the Symposium on Computer-
Assisted Analysis and Model Simplification , Boulder,
Colorado, March 1980.

50

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22 314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 55 1

Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

4. Professor Gerald Brown, Code 55BW 1
Naval Postgraduate School
Monterey, California 93940

5. Professor Glenn W. Graves 1
Graduate School of Management
University of California
Los Angeles, California 90024

6. CAPT William G. Wright, USMC 1
1508 Mountain View
Tacoma, Washington 9 8465

51

«t-on of ?' c
'

^3527

9e^ n?*WorT tificeSc*/e
°rk

'o*,.
°Pt/

07/2a t/
'n

on

Thesis

W916
c.l

189527
Wright

Automatic identifica-
tion of network rows in

large-scale optimization
model s

.

thesW916

Automatic identification of network rows

3 2768 000 98879 4
DUDLEY KNOX LIBRARY

HI
itfS&P

Wmm--..
Vv : .v.'"

B
a

