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ABSTRACT

A scheme for automatically integrating the heat equation is discussed.

A program based on this scheme is explained, and the results of integrating the

heat equation for a number of different initial conditions are presented and

interpreted.
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1 . Introduction

The method of lines is a technique for numerically solving partial

differential equations "by replacing the partial derivatives of all but one

independent variable by finite difference approximations. This results in

a system of ordinary differential equations in the remaining independent

variable which can then be solved by using a standard numerical integration

scheme. Such a technique is very flexible, since it can be used with almost

any type of finite difference approximations and with almost any standard

method for numerically solving ordinary differential equations. This suggests

that the method of lines might be well-suited for use in an automatic program

for controlling the errors in the solution of partial differential equations.

By employing the method of lines with a fixed mesh, an automatic program

could vary one or more of the following as it deems it necessary in order to

control the error in accordance with any particular set of criteria:

1. The size of the integration step in the remaining

independent variable.

2. The numerical integration scheme used.

3. The order of the finite difference approximations

used.

Automatic programs for ordinary differential equations attempt to

control the global error by bounding the local error introduced at each

integration step. Since the theory behind this procedure is not yet fully

developed, it is unreasonable to expect the theory for automatically solving

partial differential equations to be any further advanced. However, in the

following section, it is shown that by using the method of lines and making

several reasonable assumptions, it is possible to employ an heuristic scheme



to control the error automat ically in the solution of the heat equation.

Section 3 describes a program that was written to test experimentally the

validity of the analysis in section one and describes the numerical tests

run with the program. The final section discusses the results of these

tests

.



2. Estimating the Global Error-

Suppose that we wish to solve numerically the heat equation

u+ = Au (1)
t xx

using the method of lines. In order to use this technique, at t = we

choose a fixed set of equispaced points {x. } at which we seek approximations

T
to the solution u(t) = (u(t, x.)) at the times {t.}. The t.'s are functions

of the local error tolerance e, since the integration stepsize must be

controlled in order to keep the local error below e. We approximate

m
u = (u (x. , t)) "by the centered difference operator A(T, e). Suppose

that A(t, e) is controlled such that the following conditions always hold:

i. A(t, e) does not change on [t., t .,-,)• It may change only
J J •*-

at the points {t.}. The elements {a. .(t, e)} of A are thus

piecewise constant,

ii. A(t, e) is symmetric and negative definite for all t > 0.

iii. The error p_(t, e) = u - Au in approximating the partial

derivatives by finite differences is controlled at t. such
J

that AAt. I |a(t
.

, e) I
I < e/2 where At . = t . n

- t . . In
J — J 2 j j+1 j

practice, this is too much to expect. At the end of this

section, we discuss the effect of relaxing this requirement

to make it more realistic.

Let A. denote A(t., e). In the event that A( t .
, e) 4 A(t , e) define

J J J J -*-

A(t" e) = A(t e) = A

Let v denote the exact solution to

v. = XA(t, e)v (2)
—

t

—

We obtain approximations w. to v. = v(t., e) by numerical integration using
tJ J J

the trapezoidal rule



'

*i+i = v
-i

+ 1/2 Xit
J
!A(tj^ + "Vi'^n 1

= w + 1/2 XAt A(t )[w + v ] (3)
J J J J J •*-

Define t. to be the local truncation error of the trapezoidal method in (3).
-J

That is, if w, = v., then t. = v ! _ - w... Assume for the moment that we
-J -J -J -J+l -J+l

can control the stepsizes {At.} such that for all j £ , x. L. = e/2. Later,
J

' '

-
J

' ' 2

we will examine the effect of slightly weakening this assumption. Let

z = v - ¥ be the difference between the exact and numerical solutions to (2).

We will now derive a bound for z L. , then address ourselves to the question
1 '—n' ' 2

of bounding |u - vj
|

, and lastly combine the result of the two analyses to

arrive at an estimate of the global error
|
|u - w|

|
for the program.

In solving (2) by the trapezoidal rule, each time a step is taken,

the current global error is multiplied by exp(At.XA.), and a new local
J J

truncation error is added. We thus have

z.,_, = exp(At .XA. )z. + t. (h)
-J+l

. J J -J "J

Assuming that w. - V-. then z = 0, and applying (k) , we have"0 — -"0 —
n-1 n-1

z =
i
1- i • TLi exp(At .XA. )]t.

Since the A. ' s are symmetric negative definite, I exp(At .XA. ) I I _ $ 1. Using
l '

'

J l 2

this fact and the assumption that It.IL = e/2, we obtain

N^ll 2 « °Jo e/2 " ne/2 (5)

We now examine |u - vj
| Q . Using the above definition of o_(t, e),

we can rewrite (l) as

u. = XA(t, e)u + Xa(t, e) (6)—

t

— —

Subtracting (2) and integrating, we have

t t

|u(t ) - v(t )|L $ |/
n

exp[X/
n

A(s', e)ds']Xo(s, e)ds|L— nn^Q s
— d



We again use the fact that A(s', e) being symmetric negative definite implies
t

||exp[X/
n
A(s', e)ds']|| * x to Set

s
c-

t t

|u(t ) - v(t )| L $ /
n

I

|exp[X/
n

A(s», e)ds']||l |Xa(s, e)
|
Lds— n— n^Q s d — d

t

$ /
n
||Xa(s, e)||_ds

d

We approximate / J
|
Xo_( s , e)

|
|

ds by At . X
|

|o_(t . , e)|| . Assuming that the
t ^ ^

J

error in this approximation is small enough to "be neglected, we can use the

assumption that XAt.||o_(t, e )
|

|
<: e/2 to get

J <-

n-1 t
A +1

u(t ) - v(t I < e/2 .1. f J ds/At. = ne/2 (T)'- n — n '2 J=0 t J

J

Finally, we combine (5) and (7) to get a bound for |u - w|
|

. Using the

triangle inequality, we get

|u - w|
|

$ ne (8)

Since we are using the trapezoidal rule to integrate (2) numerically, it is

reasonable to expect that Ix-llp = 0(AtT
>

). But, since | t_.
|

|
= e/2, it

3 1/3
follows that At. = 0(e) and hence, that At. = 0(e ). If we now assume that

J J

-1/3
At. = 0(l/n) (as it ought to be), then we have n = 0(e ). Substituting

J

this relation in (8), we get

|u - w||
2

$ ke
2/3

(9)

for some constant k.

In practice, we cannot expect a program to actually control o_(t., e)
J

and x_. as strictly as was assumed in the above analysis. We will now look

at the consequences of reducing these expectations to a realizable level.

Since u is smooth and A(t, e) is piecewise smooth in t, we can express the

truncation error of the trapezoidal method at t . , as a power series in At.
J+l J



00

x. = e x. .At:
-j 1=3 -tj

Instead of requiring that ||t_JIo = £ /2 5 we require that I|t At.|| $ e/2.

In practice, we do not know t_ exactly, but we will assume that we can

estimate it accurately enough so that the following conclusions are not

altered. Since | t_ A"t . |
L $ e/2, we may infer that At. = 0(e 1/3), and

-30 J u

hence

|
1
t_

|
|

=
|
|t At^|

I

+ o(At^) * e/2 + o(e) (10)

The (at least) piecewise smoothness of u and A(t, e) allows us to

00 "1

similarly write a(t, e) on [t., t., n ) as a(t, e) = .1 a.(t, e)Ax . We-
j o+l - T=p. -l

will no longer purport to control o_ such that XAt .
|

|£.(t., e)|| < e/2.
J J *-

Instead, we only require that

P
i, ,

XAt. o (t., e)Ax J L $ e/2 (ll)
'-p. 2

J

Once again, in practice, we only have an estimate of a (t., e), but we will

assume that the estimate is sufficiently accurate for the discussion to

1/3
2/3p

l
remain unaltered. Since At. = 0(e ) , it follows from (ll) that Ax = 0(e J

)

and hence,

1+2/3P,
At.

|

|a(t, e)|
| S e/2 + o(e J

) (12)
J

We can therefore, still expect the results of the previous analysis to hold,

even when the requirements are less stringent.



3. Programming Application

A version of the numerical procedure analyzed in the previous section

was implemented in a FORTRAN IV program. This section "begins by giving some

of the particulars of its operation. For a more detailed account of its

functioning, see the block diagram which has been included in the appendix.

The program was written specifically to solve the heat equation for various

initial conditions. It approximates the second spatial derivatives using

centered differences and uses the trapezoidal rule to integrate with respect

to time. It was numerically verified that all of the centered difference

formulas used give rise to symmetric matrices A( t , e) which are negative
J

definite.

Prior to attempting an integration step, an estimate of the local

spatial truncation error is made using centered differences on the current

numerical solution to estimate the magnitude of the higher order derivative

which appears in the leading term of the Taylor expansion for the error.

If the estimated error exceeds e/2 , the current centered difference formula

for the second derivatives is replaced by another centered difference

formula which is two orders of accuracy in Ax higher. The local spatial

truncation error for the new formula is estimated, and if its magnitude

still exceeds e/2, the process repeats with the centered difference formula

that is higher in order by yet two more powers of Ax. This continues until

either a formula is found for which the estimated error is less than e/2 in

magnitude or the order of the formula reaches a limit specified in the

initialization section of the program.

If, on the other hand, the estimated spatial truncation error is much

less than e/2, an estimate is made of what the spatial truncation error would
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be if the current centered difference formula were replaced by a centered

difference formula whose accuracy is two orders lower. If the estimated

error for this lower order formula still is less than e/2 in magnitude, the

lower order formula replaces the current formula.

An integration step in t is then taken, and the temporal truncation

error is estimated using step-doubling. This procedure involves taking a

step of size At and comparing the result with the solution obtained by

taking two steps of size At/2. If the estimated error exceeds e/2, At is

adjusted downward, and the integration step is reattempted with the adjusted

At. If, instead the estimated error is less than e/2, the step is accepted,

and At may possibly be increased for the next step.

The program was used to solve the heat equation

u, = Xu
t xx

with the diffusivity constant X = 1/10 subject to the initial condition

u(x, 0) = f(x)

We assumed f(x) was periodic with period 2 and antisymmetric with respect to

x = 0, ±1, ±2, ... . Hence, we can restrict our attention to the interval

[0, l]. This reduces the run time and also permits us to use centered

differences at all mesh points in [0,l], Under these assumptions, with

boundary conditions

u(0, t) = u(l, t) = 0,

the solution is

oo 2 2
u(x, t) = Z- b exp(-n tt Xt) sin nnx

n=l n

where b = 2 / f(x) sin nirx dx
n

The following initial conditions were used:



Case 1. f(x) = sin ttx,

b = 1, n = 1,
n

0, n > 1.

Case 2. f(x) =1 < x < 1.

b = U/(m0 , n odd,

0, n even.

Here u(x, 0) is a square-wave.

Case 3. f(x) - kx, $ x $ .25,

1, .25 S x * .75,

h - kx, .75 $ x $ l.

b = 8 (sin mr/U + sin 3nirA ) , n odd,
n —

nu

0, n even.

Here u(x, 0) is an isoceles trapezoid on [0, l].

Case U. f(x) = x/a, < x £ a,

= 1 - (x - a)/(l - a), a { x $' 1.

2 2
b = 2 sin (mrp)/[n tt p(l -a)].

. Case Ua. p = 1/2

Case Ub. p = 7/10

Case Uc. p = 9/10

Case Ud. p = 999/1000

Here u(x, 0) on [0, l] is a peak with its summit at x = a. As a

approaches 1, the slope to the left of p slowly decreases, while
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the slope to the right of y becomes steeper at an ever increasing

rate. For y close to 1, u(x, 0) is very nearly a sawtooth wave.

_2
The program was run for each of the above cases with e's of 10 ,

-3 -8 -9
10 , . . . , 10 except for CASE 1 where it was also run for e = 10 and

e = 10 . For all cases except for CASE 1, the integration was begun at

t = 1/10 rather than at t = in order to eliminate the difficulties arising

from the discontinuities at zero. The initial number of points in the

centered difference approximation to the second derivative was three. The

initial settings for At and the number of internal mesh points were .01 and

19 respectively. Integration was halted as soon as t exceeded 2.
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k. Results

The results of the tests described above are summarized in the tables

which appear in this section. An explanation of each column that appears in

the table is given below:

e_ - On each integration step, the magnitude of the estimated spatial and

temporal truncation errors are both required to be less than or equal

to e/2.

#_ OATT.fl to RKSTEP - Each time that the subroutine RKSTEP is called, an

integration is performed using the trapezoidal rule. Since the

program uses step doubling, each time a step is attempted, the number

of calls to RKSTEP is increased by three.

#_ CALLS times #_ POINTS - Each time RKSTEP is called, the current number of

internal mesh points is added to this number. It thus provides a

rough measure of the work done by the program.

LOG 10 DIFFERENCE in WORK - The difference between the log (base 10) of the

entry from the current row of the tf CALLS TIMES # POINTS column and

the log (base 10) of the entry from the preceding row in that column.

This may give a better idea of the rate at which the work done by this

program increases for each factor of ten decrease in e.

INTERNAL MESH POINTS - The number of equispaced points {x. } (exclusive of

x^ = and x ,_ = l) at which the solution is computed. If the
n+1

program has difficulty in taking the first step successfully, it

may attempt to raise the number of points .

INITIAL COUPLING - The number of points used in the centered difference

approximation to the second derivative when the first successful

step was taken.
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FINAL COUPLING - The number of points used in the centered difference

approximation to the second derivative when the upper limit of

integration was reached.
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FINAL At - The stepsize when the upper limit of integration was reached.

MAX ERROR EVER - The magnitude of the worst error in any individual component

of the numerical solution vector that was ever found. The numerical

solution was compared to the exact solution on each step that t

equalled or exceeded an integral multiple of 2/10.

MAX FINAL ERROR - The magnitude of the worst error among the components of the

final numerical solution vector.

LOG 10 DIFFERENCE IN MAX FINAL ERROR - This column is to MAX FINAL ERROR as

LOG 10 DIFFERENCE IN WORK is to § CALLS TIMES # POINTS.

Results indicate that the idea of controlling the global error through

separate control of the local spatial and temporal discretization errors is

indeed quite feasible. Of particular interest is the LOG 10 DIFFERENCE IN MAX

FINAL ERROR columns. These show that for each factor of ten decrease in e,

2/3
the global error decreased by a factor which appeared to approach (10)

This is as predicted in the previous section.

The LOG 10 DIFFERENCE IN WORK columns show that as e was successively

decreased by factors of ten, the amount of work done increased by factors

1/3 1/2
which tended to stabilize in the range of (10) to (10) with the exact

number depending on the initial condition. For CASE 1, where it was never

found necessary to increase the number of internal mesh points, the number was

1/3
precisely (10) . This is what would be expected with the trapezoidal rule.

Since the local truncation error is proportional to the cube of the stepsize,

and the program attempts to keep the local errors on the order of e, if the

-1/3
mesh is fixed, the number of integration steps performed should be 0(e ).

Combining the relationships between e and the global error and between

e and the amount of work done by the program, we can get a relationship



21

between the global error and the work. Denoting the global error by e and

the work by q, we can write

2/3
limit e(e) = c e

E -*

limit q(e) = c e~
m

1/3 ^ m $ 1/2
e -*

and hence,

limit e(q) = c q
P -2 £ p $ -k/3

e ->
J

where c. , c_ , and c are constants.

While this may not seem like a particularly good return of accuracy

for the computational effort expended, it compares quite favorably with most

of the methods commonly used to solve partial differential equations. The

well-known Crank-Nicolson method which for the heat equation gives rise to

the system

n+1 n . ,_. , / .2 n „2 n+l N
u. = u. + 1/2 Ar( 6 u. + 6 u. )
i i x l x i

where u. = u(x. , t), r = At/Ax , and 6 is the standard 3-point centered11 x

3 2difference, has a local truncation error of 0(At + At Ax ) . The Douglas

formula is the most accurate formula involving the same six points to approx-

imate u (x., t ._). It generates the system
xx i n+1

n+1 _ n , , x 2 n
, x 2 n+lx 1 ,,.2 n x 2 n+l xu. = u. + 1/2 Xr[& u. + 6 u. ) + r-r X( 6 u. - 6 u. )

i i xi x l 12 xi xi
for the heat equation which results in a local error- of 0(At + At Ax ) . If,

as At approaches zero, r is kept fixed, the local error is 0(At ) . The global

2
error should therefore be 0(At ). This means that

limit e(At) = 0(At
2

)

At ->

just as for the trapezoidal rule.

In advancing the solution one time step, Douglas' method must solve a
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tridiagonal system. The amount of work necessary to solve such a system is

proportional to the number of equations in the system and hence to the number

of internal mesh points. But since the number of internal mesh points is

always within one of Ax , we may take the work proportional to Ax . The

number of steps that must be taken and hence, the number of times the system

must be solved is proportional to At . Hence, for Douglas' method, Ax At

may be taken as a measure of work analogous to the measure # CALLS TIMES #

POINTS described above for the program. If, as before, r is assumed to remain

fixed as At varies, for the Douglas method we have

limit q(At) = 0(Ax
_1

At"
1

) = 0(At~
3 ' 2

)

At *

and hence,

limit e(q) = 0(q
/3

)

At +

which is no better than the worst case observed for the program.
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Print computed
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exact solution,
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and the errors
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I
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.8 * FACTOR#l
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