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OPTICAL SYMBOLS AND ABBREVIATIONS

.S'. or Sph.
0. or Cyl.

Pr.

Ax.
Pc. or Peris.

Pcx. or Pcvx.
Pec. or Pcvc.

Dcx. or Dcvx.
Dec. or Dcvc.
F. or P.P.

F-i and

0.

1. ..

Hor. or H.
Ver. or V.

Mer.

Spherical.

Cylindrical.

Prism.
Axis.

Periscopic.

Periscopic convex.
Periscopic concave.
Double convex.
Double concave.

Principal focal distance or

focus.

Anterior and posterior

focal distances or foci.

Conjugate focal distances

or foci.

Object.

Image.
Horizontal.

Vertical.

Meridian.

D. . . . . Diopter.

+ , Cx, , or Cvx. Plus, Convex.
C'c, or Cvc. Minus, Concave.

A PD. . . Prism diopter.

V . • • • Centrad.

A . . . . Metran.
CO . . . . Infinity, a distance in-

finitely great.

O . . . . Combined with.
yti, m., or 11. . . The index of refraction.

M. , n., or V . . A medium.
A or 8 . . The difference between

(applied to lines of the

spectrum).

w or 0) . . . . The ratio between the dis-

persion and refraction of

a medium.
V - . . . . The ratio between the re-

fraction and dispersion

of a medium.

MATHEMATICAL SYMBOLS AND ABBREVIATIONS

M.
cm.
mm.

Ft. or
'

In. or
"

00 or 1/0

0 or 1/cx.

L

Metres.

Centimetres.

Millimetres.

Microns.

Micromillimetres.
Foot.

Inch.

Line.

Degree.

Degree of deviation.

Minute.
Second.

Infinity, a number infin-

itely great.

Zero, a number infinitely

small.

Angle.
Is to, the ratio between.
So is, as or equals (used
with ratios).

Therefore.

Because.
Varies as, proportional to.

Perpendicular to.

Parallel to.

Right angles to.

(Pi) Ratio of circumfer-

ence to diameter.

T or p
r° or p'^

r' or p'

r" or p"

d (p

+

+
X

</~

x^

X"

a + h

. Radius.

. Radius in degrees.

. Radius in minutes.

. Radius in seconds.

. Any angles.

. Plus, addition.

. Minus, subtraction.

. Either -f or -

.

. Multiplied by.

. Divided by.

. The difference between.

. The square root of.

. The cube root of.

. The nth root of.

. X squared (xx).

. X cubed {xxx).

. X raised to the power of a

number equal to n.

. Bond or vinculum. sho\\ ing
that the numbers are to

be taken together. Is

the same as {a+ b).

. Equal to.

. Greater than.

. Less than.

For ophthalmic abbreviations and symbols, see " Visual Optics and Sight- Testing."
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PREFACE

No one recognises more fully than I the errors of omission and commission

to be found in the first edition of " Greneral and Practical Optics." It has,

however, apparently served the j^^-i^'pose for which it was designed, and I

trust that some, at least, of its faults will be found remedied in this second

edition, in which the subject-matter has been entirely rewritten, there being

but few paragraphs of the original left untouched. In addition, the arrange-

ment has been materially changed, some seemingly unnecessary matter

having been omitted, while a large amount of new matter has been intro-

duced, and most of the diagrams are new.

Although primarily intended as a textbook for candidates for the

examination of the Worshipful Company of Spectacle Makers, it is written

also for other students of optics as a reference book for those engaged in

spectacle work, and as an introduction to the study of more pretentious

volumes and those dealing with special branches of optical science.

In the preface to the first edition I acknowledged my indebtedness to

Dr. George Lindsay Johnson. In this I have to acknowledge the valuable

aid, in writing, compiling, revising, and correcting the work, of Mr. H. Oscar

Wood, who has also made all the new diagrams.

As I have said in the preface to " Visual Optics and Sight-Testing," I

have endeavoured to cover in the two works all that is essential for the

sight-testing optician.

LIONEL LAUBANCE.

vii



Digitized by the Internet Archive

in 2014

https://archive.org/details/b21287946



GENERAL AND PRACTICAL
OPTICS

CHAPTER I

LIGHT

Light.—Everything we see around us is rendered visible by means of

a form of radiant energy which is termed light. With the exception of

certain manifestations such as fluorescence, phosphorescence, etc., all light

has its source in bodies which are in a condition of white heat or incan-

descence. The source of light itself may not be visible, but the reflected

light by which objects—the sky, moon, trees, houses, etc.—are seen can

invariably be traced to the sun, or to some artificial source of incandescence.

It was once supposed that light was something which radiated from the eye

to the objects seen, and later it was thought to be due to minute corpuscles

which proceeded from a visible object to the eye at great speed, but it has

now been proved that light is due to vibrations set up in the luminiferous

ether by the molecular agitations of an incandescent body.

Ether.—This is a medium believed to occupy all space throughout the

universe, penetrating between the molecules and atoms of which bodies are

composed, so that every body is saturated with ether, nor can any vacuum,

however perfect, remove the slightest fraction of it. Exceedingly little is

known about its nature, its properties being chiefly negative, since it cannot

be appreciated by any of the senses. It has been concluded, however, that

it possesses density, rigidity and elasticity, properties enabling it to pro-

pagate transverse undulations or weaves, which are generated by vibrations

in incandescent material bodies ; these waves travel to an infinite distance

without appreciable loss of energy. Ether is the connecting medium of the

universe, and it is due to its presence that material bodies ar-e capable of

acting on one another at a distance, and by which such forms of energy as

light, heat, magnetism, electricity, etc., are made manifest.

Light Waves and Rays.—Since every point of a source of light generates

an oscillation which travels in every direction, let one of these parts J.

(Fig. 1) be considered a point of vibrating incandescent matter. This forms

1



2 GENERAL AND PRACTICAL OPTICS

the centre of a tiny sphere whose diameter equals a wave length, and

according to the accepted theory of Huyghen, every point on the circum-

ference of this sphere forms a new centre of disturbance which generates a

fresh sphere, and each of these spheres again forms fresh ones, and so on.

Now, as these tiny spheres' may be supposed to lie side by side overlapping

each other, tangents to points on their combined circumference (which points

are ends of radii from the primary centre of disturbance) will, if taken

collectively, form a wave-front {a h c d e). As each wave-front forms a

centre for the formation of a fresh row of spheres, the diameter of each

sphere is equal to a wave-length. Each successive wave-front may therefore

be considered as the crest {TF or 2^F), and the space between it and the

next wave-front as the trough of a wave (J/For l^W). But although we
may consider light as advancing in the form of a simple wave-front which

forms part of an ever-enlarging sphere, yet in reality the process is exceed-

ingly complex, and cannot be entered into here.

The wave motion of the ether is always transverse^ i.e. at right-angles

to the direction of propagation of the light. The ether particles themselves

li

Fig. 1.

do not travel, but merely oscillate, much in the same way as a cork bobs up

and down in the water as a wave passes by
;

or, to employ another illustra-

tion, as the vibrations of a rope, fixed at one end, travel along it when it

is shaken at the other extremity.

Although light is propagated from a luminous point in a series of wave

fronts, it is more convenient to consider the direction of propagation of any

particular point on the main wave, which can be shown as a straight line.

From the luminous point L (Fig. 1) the light radiates in every direction, and

any line of propagation such as La, Lh, etc., is termed a ray of light. Thus

"rays" are really the imaginary radii of the wave fronts, and as such have

no material existence. For diagrammatic purposes, however, their assump-

tion is most convenient, as they indicate the directions in which portions of

the real wave-front are travelling.

Wave Length and Frequency.—The frequency of a wave motion is the

time taken by it to perform one undulation, or to travel over a distance

of one wave length. If, therefore, V be the velocity of light in mm. per

second, L the wave-length in mm., and T the number of vibrations executed

in one second, V = LT. In free ether (i.e. space) all waves travel with the



LIGHT 3

same velocity and, therefore, it follows that the short waves of blue and
violet must have a higher frequency than the longer red waves in order that
their velocities may be equal. It is only when light passes into material

bodies, like glass or water, that the velocities of the various waves become
unequal, the natural result being the phenomenon of refraction (q.v.).

Radiant Energy.—When the temperature of a body is raised, the

increased molecular activity causes a generation of ether waves of certain

length and frequency, which constitutes what is termed radiant heat. If the

temperature is raised still more, the activity is proportionally increased, so

that the waves become shorter and the vibrations more rapid. Thus, when
the temperature of a body reaches about 500° centigrade, it not only emits

the relatively long waves of heat, but also the shorter waves of light ; the

difference between the two forms of radiant energy— heat and light—existing

solely in the difference in length of the waves. The undulations must be of

a certain shortness and rapidity in order to become '

' light " as distinct from

"heat."

Some bodies transmit light and not heat rays, and others the reverse.

Bodies which transmit the invisible heat rays without becoming quickly

warmed themselves are termed diathermanous ; those which do not transmit

radiant heat without themselves becoming rapidly heated, are termed

athermanous or adiathermanous.

The longest light waves, i.e. those of least frequency, give rise to the

visual sensation of red when the temperature of a body is raised to about

500° C. On further raising the temperature of the body, shorter waves are

also produced which, being of different lengths and frequencies, cause the

sensation of various colours, varying from red, the longest, to violet, the

shortest visible waves. White is a sensation caused by the combined action

of all waves ranging between red and violet, and is produced when the

temperature reaches about 1000° C.

The existence of what is known as the infra red waves, or those beyond

the visible red of the spectrum which are too long, or too slow, to cause

vision, may be shown in various ways. Thus a blackened thermometer bulb

placed just beyond where the red in the spectrum ceases will show a rise

of temperature, proving the existence of heat rays. Again, by employing a

lens made of rocksalt, which readily transmits the long heat waves, the

latter can be demonstrated when the visible spectrum is cut off.

Similarly the spectrum extends beyond the visible violet end, this

portion, called the ultra.- violet, consisting of waves whose vibrations are too

rapid, or whose length is too short, to cause the sensation of sight. The
existence of the ultra-violet waves can be proved by placing beyond the

visible violet a screen painted with a solution of a fluorescent liquid such

as quinine, which fluoresces brightly under the influence of the ultra-violet

light. A quartz prism, which is very transparent to the short vibrations,

must be used to produce the spectrum.
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In addition to the effect on the eye, and the sensation of heat, it is

obvious that light Avaves possess many other properties, especially the

chemical actions which occur in photography, bleaching, the generation of

carbonic acid, and the formation of chlorophyll necessary for vegetable life,

although, for the latter, the heat rays may be equally active or may be more

so than the short waves.

Thus it may be said that, in general, the spectrum within certain limits

consists of the long infra-red (heat) waves, the luminous or visible portion,

and the short ultra-violet actinic (chemical) waA''es. In addition there are

the long Hertzian (electrical) waves beyond the infra-red, and what are

supposed to be the X rays beyond the ultra-violet, as shown in the table on

page 9.

The incandescence of the sun is, of course, the principal source from

which light on the earth is derived. Impact, friction, electricity, chemical

combination, combustion, in fact anything which causes increased molecular

motion also may give rise to light.

Density of Media.—The speed with which light travels within a certain

medium depends on the nature of the latter or, more exactly, on the

elasticity of the ether within it ; thus light travels more slowly in a dense

medium, i.e. one in which its component particles are crowded together like

glass, than in a rare one, such as air.

Velocity of Light.—Light travels in air at about 186,000 miles or

300,000 kilometres per second ; the velocity is lessened in denser media, the

decrease being roughly proportional to the density, although this is not

invariably the case. Thus, in glass, the rate of progression is about one

third less, and in water one fourth less, than it is in air. In air the speed is

slightly less than in space or a vacuum. 186,000 miles is a distance equal to

about eight times the circumference of the earth at the equator, a journey

travelled by light in one second. From the sun it takes about eight minutes

for light to reach the earth, some 93 million miles distant. At this rate

light travels six million million miles in a year, and the distance of a fixed

star, being so enormous, is measured in light years, thus expressing the

number of years the light from the star takes to reach the earth.

Measurement of Light-Speed.—There are at least four methods by which

the velocity of light has been measured. The earliest methods, by reason

of the imperfection of optical instruments, were of necessity astronomical

ones.

Romer's Method.—It was known that one of Jupiter's moons M (Fig. 2)

became eclipsed by the planet J every 48| hours. At a certain period of

the earth's annual revolution round the sun it is in opposition to Jupiter.

If light were to travel instantaneously, the eclipse, and its observation by

an observer on the earth, would occur simultaneously. The light, however.
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has to travel from Jupiter to the earth before the eclipse can be seen. Let

R and r be respectively the radii of the orbits of Jupiter and the earth round

the sun. Then / E (i.e., R-r) is the distance the light has to travel at a

velocity V. This time therefore will be (R-r)/V seconds after the eclipse

has taken place. After six months the earth and Jupiter will again be in

opposition, the earth now being at on the other side of the sun. The

eclipse will therefore be observed (R + r)/V seconds after the occurrence, the

difference between the two observations being equal to 2r = 186 million

miles.

Romer observed that, as the earth moved from E to E\ the observed

time steadily exceeded the calculated time. Thus he found that an eclipse

observed when the earth was at E' occurred 995 seconds later than when it

was observed at E. Since the diameter of the earth's orbit is 186 million

miles, V = 186,000,000/995 -186,000 miles per second (approx.).

Bradley's Method.—The apparent direction of light from a star, owing

to the earth's motion, makes an angle with its true direction. As the earth

pursues its elliptical orbit round the sun it must move in an opposite direc-

FiG. 2.

tion to that which it took six months before, so that a telescope directed to

a star somewhere along a line at right angles to the earth's motion must be

pointed slightly in front of the mean calculated position at the first period

of observation, and a similar distance behind at the second observation.

The angle which the telescope makes between the calculated and the

observed position is called the aberration of the star.

Bradley knew the velocity of the earth's motion, he measured the angle

of aberration, and from these data he proved the velocity of light to be,

velocity of earth IS miles 18 .

V = ~- ~
. = ^ --,7^ = r^f^r^^ = 180,000 milcS pCr SCC.

tan 01 angle tan 20 -0001 '
^

Bradley's method may be illustrated as follows ; if a shot from a cannon

C (Fig. 3) be fired at a ship, moving at right angles to the direction of the

shot, the latter will not pass through the ship at right angles to its line

of travel, but obliquely as if the shot came in the direction of the dotted

line 6".

Fizeau's Method.—Fizeau's method depends on the interruption of a

beam of light by the teeth of a revolving wheel. The light from a source S
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(Fig. 4)—rendered convergent by a lens L—falls on a plane unsilvered

mirror m which is inclined at 45° and situated between the lens and its

focus the latter being at the teeth of the wheel. Another lens U
,
placed

at its principal focal length on the other side of the wheel and in a line with

the mirror, renders the light from F parallel. The beam of light is collected

by a third lens L'\ situated at a distance (say four miles), and is brought to

a focus on a spherical mirror 71/, from which it is reflected, so as to return

along the same path, finally forming a real image at F which is Aaewed by

the observer at E through an eyepiece.

Suppose the light escapes through the first gap while the wheel is turning

Fig. 3.

slowly, then it will, after travelling eight miles, pass through the same

opening and a flickering image is seen. If the speed is greater the second

tooth blocks out the light, but if still greater the light passes through the

second gap, the wheel having revolved one tooth while the light travelled

eight miles, and so reappears to an observer at E. The result is checked

Fig. 4.

by another observer at E' who sees the light through an opening in M.
The speed of the wheel being further increased the light appears and dis-

appears as an additional tooth or gap passes by before the light returns.

The speed of the toothed wheel, the size of the teeth, and the distance

between vi and M being known, Fizeau, and later Cornu, who improved on

the apparatus, found the velocity of light in air to be about 300,000 km. per

second.

Foucault's Method.—Light (Fig. 5) is passed through a slit aS' and a

lens L on to a plane mirror M^, whence the light passes to a concave mirror

placed at a distance equal to its radius. From the light is again reflected



LIGHT 7

back to Mj and retracing its path is partly reflected by the glass plate to

the eye at T. If M-^ is then rapidly rotated it will have had time to turn

through an appreciable angle during the time that the light has travelled

from Af-^^ to J/g back again, so that it will not be reflected back to the

same spot on the mirror M^. Thus the image seen by the observer through

the telescope will not be formed on the cross wires at a, but will be found

shifted to some point h. If the speed be known at which the mirror

is rotated, and the distance which the light has to travel from to and

back (which in this case is equal to eight yards) the velocity of light can be

calculated by the displacement of the image from a to h as seen through the

telescope 2\

Solar Light, which is white, is a combination of seven distinct colours

—

namely, red, orange, yellow, green, blue, indigo, and violet. Some authori-

ties omit indigo and consider the spectrum to consist of six main colours, and

some even omit the yellow, which colour, indeed, occupies but a small space

Fig. 5.

in the spectrum. The combination of these colours in correct proportion

produces white light.

Sunlight is said to consist of about 50 parts red, 30 parts green, and

20 parts violet in 100, and has about 30 per cent, of luminous rays. Artificial

light has a higher proportion of heat or red rays, and the proportion of

luminous rays is much smaller, varying from 20 per cent, for electricity (arc),

10 per cent, for oils and coal-gas, to one per cent, for alcohol. With the

exception of the electric arc and similar sources, artificial light is very deficient

in actinic (violet and ultra-violet) light.

Cause of Colour.—Ethereal waves of certain length and certain frequency

always produce a mental sensation of a definite colour, in a person of normal

colour perception. Whether the length of the wave or its frequency, or

both, give rise to the definite sensation, and whether the retina or the mind

differentiates between the various waves, are points which are not yet pre-

cisely settled. The sensation of red is produced by comparatively long waves

of low frequency, the sensation of violet by short waves of high frequency ,
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while the remaining colours are produced by wave-lengths and frequencies

between these two.

The Spectrum.—When sunlight passes through a dense medium, the

shorter violet waves are more retarded and, if refracted, are bent to a greater

extent than the longer red waves, so that the component colours become

separated. The dispersed colours, caused by refraction of white light by a

prism, can be seen on a screen as a bright-coloured band, called the spectrum,

which contains red, orange, yellow, green, blue, indigo and violet. The

various colours are not sharply separated, but merge so imperceptibly into

one another that it is almost impossible to locate where one colour ends and

another commences. The space in the spectrum, formed by a prism, occupied

by the different colours varies with the refracting medium used for its pro-

duction. If a spectrum of solar rays, refracted by a given prism of flint

AaB C D E t F G K

Rei> y'O Rf^Nod y^LwW^ G^i^tA/; ^i^ue.^ ^A/i^BU/^,^/ C LJ^--r

Fig. 6.

Line. Position in Spectrum. Metal or Gas producing the Line.
Wave-

Lengths.

A Red Oxygen (0) 759
a Red Water Vapour . . .

.

733
B Red Oxygen 686
0 Oraiige-red Hydrogen (H) 656
D Yellow Sodium (Na) .

.

589
E Green Iron (Fe) Calcium (Ca) 527
b Blue-green Magnesium (Mg) 518
F Blue Hydrogen 486
G Dark Blue Hydrogen Iron 430
H Violet Calcium (Bright Line) 397

glass, the red being somewhat crowded and the violet drawn out, be divided

into 360 parts the proportional space occupied by each colour will be approxi-

mately as follows—red 50, orange 35, yellow 15, green 50, blue 60, indigo 50,

violet 100
;
total, 360.

Fraunhbfer's Lines.—When a gas is rendered incandescent the spectrum

of the light, emitted by it, consists of one or more isolated bright lines on a

dark ground which are characteristic of the gas in question ; this is known as

a line spectrum.

The solar spectrum is of the continuous variety caused by the intensely

incandescent nucleus, crossed by dark bands or lines on the bright ground.

These lines, which are very numerous and of varying widths, are called the

Fraunhofer lines. The experiments of Kirchhoff, Bunsen and Fraunhofer
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have proved that the flame of each element radiates characteristic wave
lengths which produce the bright lines of its spectrum, and that the vapour

of this same element at a lower temperature transmits freely all wave-lengths

except those which it would itself give out if it were incandescent, and these

waves it absorbs. Thus salt, if burnt in a Bunsen flame, emits monochromatic

yellow light, and white light from a hotter source would be robbed of precisely

the same colour, i.e. yellow, on its passage through a sodium flame. The
dark absorption bands, of the solar spectrum, correspond to the bright lines

of specific substances, and are the result of the absorption of certain wave

lengths from the hot nucleus of the sun by the relatively cooler layers of

incandescent gases continually being ejected to form the outer envelope.

Some of the Fraunhofer lines are due to certain unknown substances, while

some are said to be due to absorption by the terrestrial atmosphere. Absorp-

tion spectra can be produced experimentally. The chief Fraunhofer lines are

indicated by letters of the alphabet, and as they always correspond to rays of a

definite wave-length, they form a convenient means of identifying any par-

ticular part of the spectrum. Fig. 6 shows their approximate positions.

TABLE OF WAVE-LENGTHS AND FREQUENCIES.

Wave-Lengths in ja/i,.

100,000,000 (100 mm.

3,000,000 (3 mm.)

61,000 4-8^

8,000 37

812 370

750 400^
650 460

590 508
530 566
460 652
420 710
375 800j
330 909^

210 1,430

185 1,620

100 3,000,

Number of Vibrations in Billions

Per Second.

Infra-red spectrum

Ordinary visible spec-

trum

Ultra-violet spectrum

Character.

Electrical vibrations (Hertzian

waves).

Shortest are about 3 mm.
Longest 1 meter to several miles.

Longest heat waves measured by
Langley by his bolometer.

Longest heat waves measured by
Ruebens and Snow by fluor-spar

jnism and bolometer.

Longest waves capable of being

seen by the < spectroscope, ac-

cording to Helmholtz.
Red.
Orange.
Yellow.
Green.

Blue.

Indigo.

Violet.

Shortest waves visible according

to Soret.

Shortest waves visible according

to Mascart.

Shortest waves photographed

through fluor-spar prism alone.

Shortest waves photographed by
means of fluor-spar prism

,^

vacuum camera and bromide of

silver plate without gelatine.

X and Rontgen Rays (?).

Note.—A billion is a million times a million. A micromillimetre /i^u.^: one-millionth

part of a millimetre or the billionth part of a kilometre. A micron one thousandth of

a millimetre.
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Speed and Frequency of Light.—The visible spectrum consists of those

light waves whose lengths vary approximately between 750 and 400 /x/x, and

whose vibrations respectively vary between 400 and 750 billions per second.

The speed of light in air is 300,000 kilometres per second, and if we express

the length of the waves in billionths of a kilometre, that is, in /x/x, and the

frequencies in billions per second, then by dividing 300,000 by the wave-

length in /x/x the number of billions of frequencies per second for any kind of

light is obtained. The wave-length multiplied by the frequency of any part

of the spectrum is a constant, i.e. LT = Y = 300,000.

In the yellow, which is the most luminous part of the solar spectrum, the

number of billionths of a kilometre of the wave-length is equal to the billions

of frequencies per second, namely, about 548. The mean refractive index of

glass, or any other substance, is expressed by that of yellow light (the D line).

Luminous Bodies.—Waves of light are termed incident when they fall on a

body. A body is said to be luminous when it is, in itself, an original source

of light. Every visible body, which is not in itself a source of light, is

illuminated by the light it receives from a luminous source, but it may be

convenient to consider that every visible body is luminous, since light is

emitted or radiated from every point of it. The rays diverging from these

points travel without change so long as they are in the same medium.

Transparency and Translucency.—A body is said to be transparent when

light passes freely through it, with a minimum of absorption or reflection.

It is translucent when it transmits only a portion of the light, as frosted

glass and tortoise-shell. Much of the light incident on such a body is

reflected, scattered or absorbed, so that objects cannot be seen clearly

through it.

Opacity.—A substance is said to be opaque when all the rays of light,

incident on it, are either absorbed or reflected, so that none traverse it.

Reflection.—Reflection is the rebound of light waves from the surface, on

which they are incident, into the original medium. The reflection is regular

from a polished surface and irregular from a roughened surface. Irregularly

reflected light causes the reflecting surface to become visible
;
regularly

reflected light causes the image of the original source of light to be seen, the

reflecting surface being practically invisible.

The rougher the surface, the greater is the proportion of irregularly

reflected light ; the smoother the surface, the greater that of regularly

reflected light. The proportion of light regularly reflected from a partially

roughened surface is increased as the angle of incidence of the light becomes

greater, so that a reflected and fairly distinct image may be obtained with

very oblique incidence of the light from a body which ordinarily gives no

definite reflected image.

Total regular reflection never occurs, for even a silvered mirror or highly

polished surface of metal fails to reflect all the light falling on it, but the pro-
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portion reflected by metallic surfaces does not vary so mach with the inci-

dence of the light as it does with glass. Polished silver reflects some

90 per cent., polished steel some 60 per cent., and mirrors reflect about 70

to 85 per cent, of the incident light. Nor is there ever total irregular reflec-

tion ; even fresh snow absorbs some of the light it receives.

Opacity, Transparency, Absorption and Reflection.—No substance is

absolutely transparent, the clearest glass or water absorbing some of the

incident light. It is estimated that below 50 fathoms the sea is pitch dark,

at least to the human eye, and even glass of sufiicient thickness is opaque.

Again any ordinary opaque object such as stone, metal, etc., may be ground

or hammered into a sheet so thin as to permit the passage of some light

through it. Thus gold leaf of sufficient thinness is translucent and transmits

greenish rays. It follows, therefore, that transparency and opacity are

relative, and depend not only on the nature of the medium, but also on its

thickness.

A body which is usually opaque may be rendered translucent by making

it less capable of reflection. This fact is very often made use of in practice.

For instance, if a drop of Canada Balsam be dropped on to a camera focuss-

ing-screen, and a cover glass pressed over it, the screen becomes immediately

transparent at that spot, so that the aerial image may be readily focussed

with a magnifying-glass, and very minute details observed. The liquid

occupies the spaces between the particles of the surface and, being of the

same index of refraction, converts the whole into a homogeneous refracting

body which transmits nearly all the light. Moistening a piece of paper with

oil or water makes it much more translucent for the same reason. The fibres

of which the paper is made are of a higher index of refraction than the air, so

that, when the latter is replaced by oil or water, the two indices are then

more nearly alike ; and being homogeneous, less light is scattered. The

glass tube of a soda-water siphon is plainly visible in the water, but if the

latter were replaced by oil of the same refractive index as that of the tube,

the tube would be rendered invisible.

Some of the incident light is reflected from the polished surface of a trans-

parent body, and the proportion reflected varies with the nature of the body

and with the angle of incidence, it being greater as such angle increases.

The proportion reflected is very small (about eight per cent.) when the light

is incident perpendicularly, and it is almost totally reflected if the angle of

incidence is nearly 90°.

If with perpendicular incidence practically all the light is transmitted and

none reflected, and if with an extremely oblique incidence (nearly 90°) prac-

tically none is transmitted and all reflected, there must be some angle of

incidence at which half the light is reflected and half transmitted and

refracted. This occurs when the light is incident at about 70° with the

normal to the point of incidence. Also the proportion reflected increases as

the index of refraction of the niedium is greater and vice versa. If glass is
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dusty, the irregularly reflected light is increased and the glass becomes more
visible. Scratches on a piece of glass roughen the surface and so tend to

destroy its transparency by irregularly reflecting the light. If the scratches

be multiplied indefinitely, the glass ceases to be transparent and becomes

translucent. Thus, in the case of eveiy transparent body, some of the

incident light is always transmitted, some absorbed and some reflected. Of

the light falling from all sides on to a piece of M^ell-polished transparent glass,

about 75 per cent, is refracted and transmitted, 15 per cent, is regularly

reflected and gives an image of the source from which the light proceeds^

about five per cent, is irregularly reflected, and so makes the glass itself

visible, while the remainder is lost, being absorbed and changed into

heat, etc.

Linear Propagation of Light.—The propagation of light is rectilinear, and

the familiar instance of sunlight, admitted through a hole in the shutter into

a darkened room, illustrates this fact by the illumination of the dust particles

in the air along its path. The illuminated dust renders the course of the

light visible, for, were the air to be deprived of it, by filtration, the space

over which the light passes would be invisible.

A circle may be regarded as the common terminal of a multitude of straight

lines diverging from a point. A wave front as it advances is an arc of a circle

of which the luminous point is the centre ; the multitude of straight lines

contained in the arc are termed rays of light. Thus the rays of light

diverging from a luminous point form a cone, of which the point itself is the

vertex, and such a collection of rays is called a pencil of light.

Divergence of Light.—In nature, rays of light always diverge from

luminous points, but if the luminous point be very distant the angle of diver-

gence becomes so small that the rays may be considered parallel to each

other, and the luminous point is then said to be at infinity. A collection of

parallel rays is called a beam of light.

As light radiates from luminous points which have no real magnitude, any

body on which it falls must be larger than such points, the pencil from any

given point constituting a cone of which the point of origin is the apex (or

vertex) and the illuminated body the base. From a luminant of sensible size

an innumerable number of such cones of light proceed, all having as their

common base the illuminated object itself.

The angle of divergence is that angle included between the rays, proceed-

ing from the luminous point, which fall on the outermost edges of the object

;

consequently the angle of divergence varies inversely with the distance

between the source of light and the illuminated body, and directty with the

size of the latter. Rays of light which diverge from a very distant point are

always regarded as parallel, and those from a near point as divergent. This

being so, there must be some distance at which divergence can be assumed,

for practical purposes, to merge into parallelism.
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Parallel Light.—In visual optics 20 feet or 6 metres marks the shortest

distance from which light is regarded as parallel, and this distance, or any
beyond it, is regarded as infinity, which is written thus : oo . For some
branches of optics a much greater distance is taken as the divergence limit.

Thus in photographic optics it may amount to 100 yards or more, while in

astronomy the nearest co point may be taken as several miles. If is the

angle of divergence, a the aperture of the lens, and S the distance of the

source, the angular divergence of light is, with sufficient exactitude, found

from ian d= a/S. For example, suppose the source of light is at 6 M., and
the pupil of the eye to be 3-5 mm. in diameter, then the visual angle of

divergence will be 2', since

tan d =
-^^^^

= -0006 = tan 2'.

Since a divergence of 2' is so small as to be negligible, it explains why
6 M. is considered the same as oo in this connection. At 20 cm., with the

same pupil, the divergence of the light is one degree.

Similarly, therefore, if light is converginr/ to a focus a great distance off, it

Fig. 7.

may be considered parallel—for visual purposes—at any distance greater

than 6 M. from the focus. Light is never naturall}^ convergent, but can be

rendered so by means of a lens or reflector. A collection of convergent rays

is also called a 'pencil of light ; the apex of the pencil, towards which they

are convergent, is the focus.

The Flame.—A flame (Fig. 7) consists of three cone-shaped portions,

viz. :—
(A) The dark central portion surrounding the wick is called the cone

of generation or obscure cone. It is of low temperature and is composed of

gaseous products holding in suspension fine carbon particles which have not

yet become incandescent.

(B) The luminous part surrounding A, called the cone of decomposition

or luminous cone, in which the carbon is in a state of intense incandescence,

and in which luminosity is greatest.

(C) The thin external envelope which is light yellow towards the summit

and light blue at the base. It is the cone of complete combustion giving
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but little light, and is the main source of heat. Here the temperature is high

and combustion complete on account of the free access of the oxygen of the air.

The flame in general is brighter at the top where the light predominates,

and darker towards the base where heat is in excess. The outer envelope,

being mixed with oxygen, is called the oxydising element, while the inner

cone, consisting mainly of unconsumed gas, is called the reducing element of

the flame, since at that spot metals may be reduced from their compounds.

A flame is produced by the incandescence of carbon particles which have

been brought to a high temperature, the combustion, when once started,

being continued owing to the heat produced by the chemical action itself.

In a lamp or candle flame the material consumed is drawn up by capillarity

through the wick.

Heat being produced by combustion, and luminosity being the result

of the incandescence of unconsumed particles of carbon, the luminosity of a

flame is low when combustion is complete, as is the case with the flame of

some gases and of alcohol. It is high in a coal-gas flame, or in that produced

by the combustion of oils and fats, where a considerable quantity of incan-

descent carbon is present. If the combustion be intensified by the intro-

duction and intimate mixture of a suflicient supply of oxygen, as is done in

the ordinary blow-pipe or Bunsen burner in which coal-gas is consumed,

luminosity is decreased and heat is increased ; the flame produced is then of

a faint blue instead of the usual yellowish colour. The oxyhydrogen flame

also gives very great heat, and yet is of a pale bluish colour and almost

invisible ; but when made to impinge on a lime cylinder, it renders it white

hot at the point of contact, giving rise to an intensely brilliant spot of light,

so that the temperature of a flame is neither indicated by the luminosity nor

by the colour alone. To obtain maximum luminosity the supply of air must

be neither too large nor too small. If too large the carbon is consumed too

quickly, and if too small the carbon passes off unconsumed as soot.

On the other hand, although the temperature of the Bunsen flame, or any

other source of complete combustion, is very much higher than that of

luminous or incandescent sources, yet its power of radiation is considerably

less. This can be illustrated by means of an experiment with a Bunsen

burner and a thermopile, the latter being an apparatus exceedingly sensitive

to radiant heat and its detection when placed some distance from a source.

With the complete combustion flame practically no rise in temperature

is indicated by the thermopile, but when the oxygen is cut off" and the flame

becomes luminous, the index of the pile immediately swings over to a higher

reading. Thus it will be seen that, for the production of radiant heat, the

source must consist of rapidly vibrating incandescent particles capable of

transferring their energy to the surrounding ether. For local heat, from

conduction and convection air currents, the greatest temperatures are secured

by complete combustion, where practically no energy is wasted in agitating

the surrounding ether.



CHAPTER II

SHADOWS AND PHOTOMETRY

Shadows.—Since light travels in straight lines with the waves vibrating

at right angles to their line of travel, any opaque obstacle in their path will

arrest their march and produce a negative image of the object, called a shadow.

Umbra and Penumbra.—When the source of [light is very small and in

line with the centre of the obstacle, and the ground on which the shadow is

Fig. 8.

cast is at right angles to the central ray of the pencil of light, the shadow has

an outline exactly corresponding to that of the body, because then, as in

Fig. 8, the periphery of B cuts off the light equally in every direction. The
shape of the shadow otherwise depends on the inclination of the screen to the

Fig. 9.

opaque body and the source of light. If the light S is, or approximates to, a

point, the shadow is uniformly dark and its edges clearly defined as at u % on

the screen.

If, however, the source of light aS' is of definite size relative to the inter-

cepting body (Fig. 9), the edges of the shadow are not sharp and the shadow
15
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exhibits two parts, viz., a very dark centre u u called the umbra, from which

the light is entirely cut off, and a less black outer portion Pu, P'u\ called

the penumbra, which receives a certain amount of illumination. The space Pu
receives light from S', but none from while P'u' receives light from ^S"', but

none from *S". The area u u' receives light from neither S' nor S".

Fig. 9 shows the umbra and penumbra when the luminant ^S' is smaller than

the intercepting body B. Both become larger as the shadow is further from

the intercepting body, since the umbral and penumbral cones are divergent.

Fig. 10.

When the luminant S and the obstructing body B are of equal size

(Fig. 10), the umbra is cylindrical in section and does not vary in size with

its distance from the body or screen, but the penumbra increases as the

screen is further away.

Fig. 11 shows the source larger than the intercepting body. In this case,

as the distance between B and the screen increases, the umbra decreases,

since the umbral cone is convergent, while the penumbra increases owing to

p c E

u

yj'

P' c'

Fig. 11.

the penumbral cone being divergent; beyond a certain point there is no

umbra, as when the screen is at C C or beyond it at E E . When the hand

is held close to a wall, in a well-illuminated room, the projected shadow is

almost entirely umbra ; as the hand is moved away the umbra decreases and

the penumbra increases until, at a certain distance, the whole shadow becomes

penumbral. The larger the size of the luminant as compared with that of

the intercepting body, the smaller is the umbra, and the larger the penumbra,

and vice versa.
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The umbral and penumbral portions of a shadow are not sharply separated,

but merge imperceptibly into each other. Generally the brighter the light,

the deeper is the shadow cast, for then the contrast between the illuminated

ground and the part from which the light is totally or partially obstructed is

greater than in a dull light, when shadows are barely perceptible.

Calculations of Umbrae and Penumbrse.—The calculations for determining

the size of the umbra and penumbra are somewhat complicated and vary

with the conditions under which the shadow is cast, so that every case must

be worked out on its own merits, and from general principles. But if we
assume that the size of the luminant is small compared with its distance from

the intercepting body (and this is practically what occurs in the great majority

of cases), most of the complications disappear, enal)ling the necessary calcula-

tions to be much simplified. Here, the angle subtended by the luminant at

the intercepting body being small, either the edge or centre of the luminant

may be assumed to be in line with either edge of the body, so that the edge

of the geometrical shadow may always be regarded as exactly bisecting the

penumhrat cone on either side. By the geometrical shadow is meant an imagin-

FiG. 12. C

ary space on the screen equal in size to the intercepting body, so that an

umbra is formed when P, the calculated size of a penumbral cone, is smaller

than B, but there is no umbra if P is greater than B. In this latter case the

encroachment of the penumbral disc on either side of the geometrical shadow

is more than half the size of the geometrical shadow itself.

In Fig. 12 let £/" be the size of the umbra, P that of either penumbral

cone, S that of the source of light, B that of the intercepting body, and C the

screen. The central line of the whole shadow may be considered as coinciding

with the central line connecting *S', B and C. Now the angle subtended by S
at the edge of B equals the angle of the penumbral cone, so that the penumbra

on each side of U can be calculated from the simple proportion P/S = dj/d2,

w^here d2 is the distance of S to B, and d^^ that of B to screen. Thus

and from what has been said above it may be taken that (Fig. 12)

—

U^B-P
and the total penumbra = 3P+ U

2
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If P is greater than B, then U is negative, and must be reckoned as such

in finding the size of the total penumbra.

As an example, if ^ be a square window 2 ft. in diameter, the size of U
and P on a wall 20 ft. distant, cast by a coin 1 inch in diameter held 1 ft.

from the wall, would be calculated as follows.

P = ^^^^ ^ 2 -26 inches
19

^= 1 - 1.26= --26 inches.

Total penumbra - 2-52 - -26 = 2-26 inches.

Thus there is no umbra, it being a negative quantity, as on EE' Fig. 11.

If the coin were 2 in. in diameter, the other conditions being similar, we
should have

P = ^ = 1 -26 inches
19

C/- 2 - 1-26 = -74 inches.

Total penumbra = 2*52 + -74 = 3*26 inches.

Here the umbra is real or positive, as in Fig. 12.

When the size of the luminant is unknown, or is inaccessible, the size

can be calculated from
P = d-^tan a

when a is the angle subtended at the edge of B by the luminant. The
values of JJ and of the total penumbra are found as before, after P has been

calculated.

Thus if ^ is 3 inches in diameter, and 100 inches from a wall, S being

the sun subtending an angle of 30',

P=100 tan 30' = 100 X -0087 = -87 inch.

^7= 3 --87 = 2-13"

The total penumbra = -87 + 3 3-87 inches.

Shadows cast on the Ground.—In the case of shadows cast by vertical

objects on to an horizontal plane, generally a simple proportion will suffice.

For example, what is the length of the shadow cast by a stick 3 ft. long,

20 ft. from a small lamp 10 ft. from the ground 1 Then, if the length of the

shadow be x, the distance of the lamp to the end of the shadow is 20 + x.

and 20 4-x : x as 10 : 3 ; therefore

(20 + x)/x = 10/3 or lOx = 60 + 3x.

7x = 60, and x = 8 4/7 ft. which is the length of the shadow.

Shadows cast by Lenses.—A concave lens, when placed between a small

source of light and a screen, casts a shadow like a semi-opaque body. The
transmitted rays being divergent, only very few impinge on the screen

immediately behind the central portion of the lens, and the diverged rays

fall on the screen away from the axial line, on a space which receives increased



SHADOWS AND PHOTOMETRY 19

illumination, so that the shadow is surrounded by a luminous zone. The
luminous zone becomes larger and fainter as the distance between the screen

and the lens is increased. A convex lens throws a very bright image on a

screen if placed near the focus, because it condenses to a small area all the

light passing through it. The bright area is surrounded by a shadow, this

being the area from which all light is excluded. If bright light be passed

through a prism the space on a screen immediately behind it exhibits a

shadow, the light deviated by the prism falling on another part of the screen,

which, being also illuminated directly, exhibits there a bright area.

Intensity of Illumination.—In order to illustrate how the intensity of

illumination varies with the distance between a source of Jight and an

illuminated area, let the source of light, say a candle flame, be supposed to

be at the centre of a sphere of one foot radius, and let the intensity of the

light at the surface be considered as unity. The area of a sphere is equal

to 4:TTr-, r being the radius. Now if the radius of the spherical envelope be

increased from one foot to two feet, its area will then be quadrupled, since

the superficial area of a sphere varies as the square of its radius, and there-

FiG. 13.

fore the amount of light received on each point of the sphere is one-fourth

of what it was when the radius was one foot. If the sphere be three feet in

radius its area will be increased nine times. In this latter case, the avail-

able light is distributed over nine times the area of the one foot sphere, so

that the intensity of illumination over a given area is but one-ninth that of

the first sphere, and in this way the intensity may be calculated for a sphere

of any size.

The Law of Inverse Sq.iiares.—Since any flat surface virtually forms a

portion of a sphere having the source of light for its centre, it may be

stated, without much error, that the illumination of a flat surface also varies

inversely with the square of its distawe from the source of light. This distribu-

tion of the illuminating agent is illustrated in Fig. 13.

Let S (Fig. 13) be the source of light and A, B and 6' screens subtending

equal angles, placed vertically at distances of 1, 2 and 3 feet respectively.

The same amount of light from S is received by all, but 6', being at a

distance from S which is three times greater than that of A, is superficially

nine times as large ; and it follows, therefore, that each unit of area of C

receives only l/9th of the quantity of light received by each similar unit of
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A, while B Sit 2 feet receives l/4th. If at a given distance, say 1 foot, a

certain intensity of illumination L is obtained from a lamp, and the lamp

be moved to a greater distance, say 9 feet, then the intensity becomes

1/9^=1/81 of the illumination received at a distance of one foot. If it be

increased to 10 feet it will require 10- = 100 luminants to obtain an equal

intensity as at 1 foot.

Obliquity of Illuminated Surface.—^The intensity of illumination depends

also on the inclination of the surface to the light, with which it varies as the

cosine of the angle which the surface makes with the normal.

Suppose for example parallel light impinges on a vertical screen A B.

li A B he inclined to the position B D, so that the angle of inclination

A BD=60°, then only those rays between C and B will fall on B D, as in

Fig. 14. Now cos CB B = B C/B D^1I2. Also from inspection it is clear

that B C is half of B A, which equals B D. Therefore, if the screen be

nclined 60° from the vertical it will receive half the light that it does when
it is vertical.

Suppose L be the amount of light falling on 'a unit of A, the area of the

screen, 1 metre from the light ; then if the screen is inclined at 45° to the

normal, and removed to five times the distance, the intensity of illumination

per unit area is cos 45°/d2= -7071/25 = -028, or about 1/36 of the light re-

ceived on the screen at 1 M distance. The total amount of light received each

instant is =L A, and the amount of light received on the screen inclined at

45° is therefore L A/36. This holds good also for the light reflected from a

surface, as can be seen from Fig. 14, where the oblique surface B D = A B.

Apparent Exceptions.—An object or source of light appears equally

bright at all distances from the eye. The brightness of an object varies

inversely as the square of the distance, so that an object at one yard is four

times as bright as one at two yards, but at the same time the image on the

retina occupies four times the area, so that it is only a fourth as bright as it

would be if the object were twice as far away. Thus the light gained by

bringing the object nearer is exactly neutralized by spreading it over a pro-

portionately larger area. It may therefore be said that the law of inverse

squares holds good only for light received directly on a screen, and that

if it passes through a lens system so as to form an image, as in a camera or

the eye, the brightness of the image is the same whatever the distance of

A

>

Fig. 14.
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the object may be, provided the distance between lens and screen is not

altered.

A luminous or illuminated surface appears equally bright at whatever

angle it is seen. This apparently contradicts the law of cosines, but although

an inclined surface receives less light, the area perceived is correspondingly

diminished. Therefore its brightness as perceived by the eye is the same in

both cases since the foreshortening which the tilted reflecting surface under-

goes is, like the amount of light it receives, proportional to the cosine of the

angle of inclination.

The sun and moon appear as flat discs and not as hemispheres, since their

surfaces are apparently equally illuminated, and in the same way a cannon

ball or cylinder of metal, heated white hot, appears quite flat.

When light is condensed by a lens or mirror, the illumination of a screen

varies directly as the square of the distance up to the focus
;
beyond the focus

it varies inversely as the square of the distance.

Photometry.—The measurement of the luminosity of a light source, or of

the illumination of a surface, is termed photometry, and the instrument or

apparatus employed is called a photometer.

A luminous source, unless it be a minute point such as a star, has a

definite surface which is seldom of equal luminosity throughout. The quantity

of light emitted varies at difl'erent points of the surface, but the sum of the

light emitted from every point is the total luminosity, and it is this which is

measured by the photometer. It is necessary to diff"erentiate between

luminosity, or the illuminating power of the source light, and illumination or

the amount of light received from the source of a body. The intrinsic

intensity of luminosity I is the mean quantity of light emitted normally from

a unit of surface. It is expressed by I = <^/S, where <^ is the total amount of

light emitted, and S is the area of the luminous source. The intensity of

illuminafion is the total amount of light which falls on a unit of the illuminated

surface.

The power of a light source is expressed in "standard candles" as

described in the next article ; the term " candle-feet " expresses the luminosity

of so many standard candles at 1 foot distance.

Photometric Standards.—The usual standard of illumination in Great

Britain is that given by a sperm candle | inch in diameter, i of a pound in

weight, and burning 120 grains per hour. It has a variation of about 20%.

The luminosity of gas, with an ordinary burner, is equal to that of from

12 to 16 British candles (B.C.).

There are various other photometric units, among them the following :

—

In Germany the standard is the Hefner-Alteneck lamp, called a "Hefner-

lamp " (H), having a cylindrical wick 8 mm. in diameter burning amylacetate,

the flame being 40 mm. high. It is correct to about 2%.

The "Pentane" standard consists of a mixture of pentane gas and air.
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which is burnt at the rate of J cubic foot per hour ; the flame is circular,

2J inches high and J inch in diameter. There is neither wick nor chimney to

the flame. Pentane is a volatile liquid, like naptha, prepared from petroleum.

The form designed by Vernon Harcourt is a 10 candle-power standard, and

is largely used in this country. It is said to vary less than 1%.

The French " Carcel " is a lamp of special construction burning 42 grammes
of colza oil per hour.

The "Violle" or absolute unit was the standard invented by M. Violle,

and adopted at the International Congress at Paris in 1884. It consists of

the light emitted from a square cm. of platinum heated to its melting point.

Of all the standards it is the most exact and reliable, but it is expensive and

difficult to apply.

The International Congress of 1890 adopted as the standard the " Bougie-

decimale " or decimal candle, the unit illumination of a surface being that

produced by one bougie-decimal at one metre.

The British candle and the bougie-decimal have about the same intensities.

Fig. 15.

The " Carcel " equals about 9| candles, and the " Violle " unit about 20 candles.

Thus 20 bougie-decimals =19-75 B.C. = 22-8 Hefner- 2-08 Carcel=l Violle.

MBasurement of Light Sources.—Photometry consists in making a com-

parison of the unknown illuminating power of any source of light with that

of a standard unit. Direct comparison would be difficult, but the stronger

light can be placed at a greater distance, where it produces an intensity of

illumination equal to that of the standard light at some shorter distance. The

illuminating powers of the two sources of light are respectively as the squares

of the distances at which, on a given surface, they produce equal intensities

of illumination. If we represent the respective luminosities of the source to

be measured and that of the standard candle by L and C, and the distances of

the two when they are equal in intensity by a and b, then

L C T Ca2

a-

If a standard candle at 1 ft. and light at 4 ft. give equal intensity of

illumination at some common point, then the greater luminant is 1 x 4^ =

16 c.p.
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Four candles 4 feet from a screen have the same effect as one candle at

2 feet, for 22/4'2 = 4/16= 1/4.

The Rumford Photometer.—The shadow or Bumford photometer consists

of a vertical white screen before which is placed a rod. The standard candle

is placed (preferably at one foot) in front of the screen and the rod casts a

shadow. The lamp or other luminant (Fig. 15) to be measured is placed so

far away that the shadow cast by the rod from its light is of equal intensity

to that of the other. The space on the screen, occupied by the candle's

shadow, is illuminated only by the light from the lamp, while that occupied

by the lamp's shadow is illuminated only by the candle. It is these intensi-

ties of illuminations that are actually compared, although apparently it is the

shadows themselves. The lights should be placed so that the two shadows

lie near to each other without overlapping. The luminant measured is of so

many candle power according to the distance at which the shadow pertaining

to it equals in depth that pertaining to the standard candle, for then L/a2=

The Bunsen Photometer.—The grease spot or Bunsen photometer consists

of a sheet of white paper, suitably mounted in a frame, on which there is

Fig. 16. Fig. 17.

a spot rendered semi-transparent by grease or oil. If the paper be viewed

on the side remote from the candle the grease spot looks lighter than the

balance of the paper, because more light penetrates (Fig. 16). Viewed from

the other side, the greased spot looks darker, because less light is reflected

from it than from the rest of the paper (Fig. 17). Used as a photometer,

the paper is placed one foot from the standard candle, the light from which

is totally reflected by the ungreased part of the paper and transmitted to a

great extent by the grease spot. The luminant to be tested is placed on the

other side of the screen at such a distance that the amount of light from it,

transmitted by the grease spot, equals that passing the other way ; then the

paper appears of uniform brightness all over. If we take one foot as unity,

then the candle power of the light to be tested will be equal to the square

of its distance in feet from the grease spot.

The Slab Photometer.

—

The jMvaffin slab photometer consists of two thick

slabs of solid paraffin separated by an opaque layer of tin foil. The two

lights to be compared are placed one on either side, and their intensities are

compared by viewing the sides of the two slabs simultaneously.

The Lummer-Brodhun Photometer.—This photometer is largely used in

scientific laboratories, being accurate to about 1%. Its superiority over
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the Bunsen and some other photometers is due to the fact that, with these^

the two images to be compared cannot be seen simultaneously. With the

Lummer-Brodhun instrument only one combined image is seen by one eye.

The instrument (Fig. 18) consists of a rail on which the two luminants

iyj and L2 can be made to travel at right angles to the opaque screen A B,

which is whitened on both sides. From A B the light is reflected to the

two mirrors M-^ and and thence through the cube of glass C D made of

two right angle prisms cemented together, the hypothenuse of one of which

is partly cut away.

The observer looks through a short telescope placed in front of D. The
light from which reaches the telescope passes through the central cemented

portion of C and D, while that from is reflected from the peripheral

portion of D. The two lights therefore enter the eye simultaneously in two

Fig. 18.

concentric rings, as shown in the figure, the lights being moved to and fro

along the rail until the two circles appear equally bright.

The Simmance-Abady "Flicker" Photometer.—-This consists essentially

of a white circular disc or wheel, the edge of which is peculiarly bevelled by
being " chucked " eccentrically at two positions with the turning tool set

obliquely at 45°. Thus the periphery of the wheel, when revolved, presents

a bevel of 45° on the one side, say the right, and no bevel on the left, then

graduates to a knife edge, and finally to a bevel of 45° on the left and no

bevel on the right.

This wheel is so fixed in a box that part only of it projects, and imme-

diatety in front of it, but leaving its projecting portions unobscured, there

is a sighting tube carrying a Cx. lens for magnifying purposes. The box

contains a clockwork arrangement by means of which the wheel is made to

revolve at a rapid speed. The box itself is fixed on a bar 60 inches long,
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scaled in terms of a standard candle, and along which the apparatus can be

freely moved.

The two luminants which are to be compared are placed one at each end

of the bar, and the light from them falls on that part of the revolving disc

which projects from the box. When the light falls on the bevelled edge at

45° it is reflected, and passing through the sighting tube, is seen by the

observer. When incident on the unbevelled part of the disc, the light does

not pass through the sighting tube, so that each luminant is alternately light

and dark to the observer's eye, and both are light at the same time when the

knife edge is immediately in front of the sighting tube. Then Avhen the

intensities are equal the light is absolutely steady, while it flickers when
they are not. If there is flickering the apparatus is moved until this disap-

pears, and the position is found where L/a'-^ = C/b^. The smallest alteration

of the position of the apparatus towards either light causes flicker. The
test is made more sensitive, and the point of balanced intensities more exactly

located, when the speed of revolution of the wheel is lessened. The
apparatus can be set obliquely for measuring lights at any angle.

Photometry of Coloured Lights.—One of the great difficulties of photo-

metry is the difference in the nature and colour of various lights ; and the

comparison or measurement of actually coloured or monochromatic lights is

still more difficult, or rather impossible, by ordinary photometry.

The eye, although fairly accurate in judging the difference of hue of

two sources, is very deficient in the comparison of the relative intensities

of two differently coloured lights. These difficulties seem, however, to be

obviated by the Simmance-Abady photometer. Here the rapidly alternating

light from the sources does not afford the eye sufficient time to appreciate

the difference of colour but only their difference of intensity, since the flicker

depends on intensity of illumination on the two sides of the bevelled disc,

and is independent of the colour of these illuminations.

Therefore by the flicker photometer coloured lights, and therefore also

the transmissive qualities of coloured and smoked glasses, can be compared

and measured. By it also the illuminating power of the effect of daylight can

be measured as well as that of different sources of artificial light. Coloured

lights may, however, be compared by occlusion, using for the purpose a serie

of properly graduated smoked glasses.

Calculations in Photometry.—Having by means of a photometer made
the intensities of illumination equal, the candle power of the luminant is

calculated from the formula L = Ca2/b-. When b is unity (say 1 foot) of

course no division is necessary, as the square of 1 is 1. Thus if the luminant

at 5 feet is equal to the standard candle at 1 foot, the former is of 5- =25
c.p. If the candle is at 2 feet and the luminant at 8 feet the latter is

82/22 = 64/4=16 c.p.

To compare the intensity of illumination of two sources of light L and
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C of different powers, if L be 30 c.p. placed at 20 ft., while C is 200 c.p.

at 70 feet, their relative intensities are

400 4900
. ^ 200 400 5 T- / N

so that the nitensity ^^^^00 ^ T0~^9 (^PP^^^-)

The relative distances for equality of illumination of two sources of 9 c.p.

and 36 c.i). are as x/9 : x/36 = 3 : 6 or as 1 : 2.

What candle power in a lamp at 100 feet would give the same illumina-

tion as one of 1,000 candles at 30 feet 1

Now since L^C . L _ 1000

a-^ W ' 1002 30-2'

or 900 L = 10,000,000, so that L= 11,111.

At what distance should an arc lamp of 1,200 c.p. be placed so as to give

an illumination three times as great as that of an incandescent light of 70 c.p.

at 15 feet^

70 o 1200

therefore 210b2= 1200 x 15^ ; that is b= 36 feet (approx.)

The c.p. needed at 13 feet to give on a wall an illumination of 5 candle

feet is L/132 = 5, or L = 845 c.p.

Neutral G-lasses.—The absorption of light by smoke glass can be calcu-

lated fairly closely by means of a simple photometer such as the Bunsen.

Take any two sources of light, A and B, balance them photometrically in the

usual way, and measure the distance d in feet or inches of one of them, say

B, from the screen. Then interpose the smoke glass to be tested between

A and the screen, when it will be found necessary to withdraw B in order to

secure a second balance ; let this distance be b. Then the relative intensities

of illumination of A, with and without the smoke glass, are as l/b^ : 1/d^. If

the first distance d is unity, the fraction of light transmitted by the glass is

l/b^, or lOO/b^ per cent., and the amount blocked out is

V^-1 l QO(b^-l) o/

b2 b-^

It will be noticed that only B is moved, A remaining fixed ; nor does the

actual distance of the latter from the screen affect the result in any way.

The smoke glass should, of course, be sufficiently large to cover the light

completely, but its position between A and screen is immaterial.

Thus if B, when at 2 ft., balanced A, and had to be moved to 3 ft. when a

smoke glass was interposed, the light transmitted is 273- = 4/9 or 45%, and

the amount blocked out is 5/9 or 55%.

Coloured Glasses.—To measure the absorptive or transmissive power of a

coloured glass the method described above can be employed, but, for the
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reason given previously, ordinary artificial lights, which are generally white or

yellowish, cannot be employed alone. To overcome this difficulty the follow-

ing procedure may be followed. Suppose the glass to be measured is green.

Place over the two sources A and B a green glass lighter in tint than the one

to be measured ; this renders the light uniform, though duller, in tint, and the

necessary measurements can then be carried out exactly as for neutral glasses.

Small Apertures.—Since light travels in straight lines, if that from a

candle be allowed to pass through a small aperture on to a white screen, an

inverted image of the flame is formed on the latter. The relative sizes of

image and object are as their respective distances from the aperture ; thus

they are equal in size when the two are equi-distant from the aperture. The
image is smaller if the screen be brought nearer to the aperture, or if the

candle be moved further away, and vice versa. Generally the smaller the

aperture, the sharper but less bright is the image. The shape of the small

aperture does not materially affect the distinctness of the image, nor does it

have any appreciable effect on its shape, because it is immaterial whether the

image be made up of innumerable circles, squares, triangles, etc., of confusion

so long as they are sufficiently small to lose their identity to the eye in the

slight overlapping which takes place between the images of adjacent points

of the object. This is seen when the sun shines through the gaps in the

foliage of a tree. Each of these gaps varies in size and shape, but the

luminous images of the sun form bright discs on the ground, all identical in

shape unless the gaps are large.

In order that a distinct image of a flame may be seen on a screen, it is

necessary that the rays from each point of the luminous body should have a

separate focus on a screen. This may be said to occur when the light passes

through a minute aperture, because then only a very narrow pencil of light

—the cross section of which is similar in shape to that of the aperture—from

each point can reach the screen, and for the same reason the image thus

formed is faint. If twenty apertures be made near one another, twenty

images of the flame w ill be seen on the screen, and the number of images will

increase with the number of holes, until the images will so overlap one

another that it will be found impossible to distinguish them separately, in

which case there will be a general illumination of the screen.

Although the smaller the pin-hole the better is the image defined, yet if

the aperture be too small the image is blurred by diffraction. Hence the

aperture must be theoretically that diameter which is too small for diffusion

and too large for diffraction to blur the image. The aperture is found from

Jii^X, where fg is the distance of the screen from the aperture, and A is the

wave-length, this being -0004 for photographic and '0006 for visual effect.

A (the aperture), fg and A are expressed in mm. If A be a constant -0004,

and fg be in inches, we can simplify the above to A= -2 Ji^, the value of A
being in mm. The intensity of the light is A/fg. The respective sizes of

object and image 0/I = fj/f2, where fj^ is the distance of the object.



CHAPTER III

REFLECTION AND MIRRORS

A normal is a straight line perpendicular to a given point, as PC in

Fig. 19, and the angle of incidence is that which an incident ray makes

with the normal at the point of incidence.

Irregular Reflection.—When light falls on an unpolished surface such as

ground glass it is, owing to the irregular nature of the surface, incident at

all conceivable angles, at each point of the surface. The incident light is

broken up so that each point of the surface, giving rise to a fresh series

of waves, becomes a source of light. No image is therefore formed either

of the original source, or of any external object, but the diffused light

diverging in every direction renders the surface visible, no matter from what

Fig. 19.

direction it is viewed, and it is either coloured or white according as some

wave-lengths are, or are not, absorbed.

Regular Reflection.—When light falls on a smooth polished surface it is

regularly reflected in definite directions according to the following laws :
—

(1) The angle of reflection is equal to the angle of incidence.

(2) The incident and reflected rays are in the same plane as the normal to

the point of incidence, and lie on opposite sides of it.

OblicLue Incidence.—In Fig. 19, A is a reflecting surface at which the

ray / (7 is incident at the point C, and reflected in the direction C 11. F C is

the normal to A B at C, and the angle of reflection B C F is equal to the

angle of incidence IC F. The perpendicular divides equally the angle ICR
between the incident and reflected rays, and all three lines are in the plane

of the paper.

28
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Perpendicular Incidence.—If the ray be incident in a direction P C normal

to the surface the angle of incidence is zero, and therefore the angle of

reflection is also zero ; the ray is thus reflected back along its original path.

Images.—An image of a point is formed when the light, diverging from

it, is caused, by reflection or refraction, to converge to, or to appear to diverge

from, some other point. An image is said to be real or positive when the

reflected or refracted rays from the original object point are made to converge

and actually meet in the image point. If the original rays, after reflection or

refraction, p.re divergent, they are referred back by the eye to an imaginary

image point, and the latter is then said to be virtual or negative (see page 86).

Similarly the real or virtual image of an object is made up of the real or

virtual images of its innumerable points.

A real image can be received and seen on a screen, or it can be seen in the

air, where it actually exists. A virtual image cannot be formed on a screen

;

it is only mentally conceived where it appears to be.

Fig. 20.

Mirror.—A mirror is an opaque body with a highly polished surface. It

is usually made of glass backed by a film of mercurial amalgam, or coated

with an extremely thin layer of silver.

Reflection by Plane Mirror. — If a beam of parallel light falls on a plane

mirror all the rays, having similar angles of incidence, are reflected under

equal angles, and are therefore reflected as parallel light. If a pencil of

divergent rays be thus incident, after reflection they are equally divergent,

and appear to come from a point as far behind the mirror as the original

luminous point is situated in front of it. Accordingly, if an object stands in

front of a plane mirror the rays, diverging from each point on it, are reflected

from the surface of the mirror and enter the eye of an observer as so many
cones of light diverging from so many points behind the mirror, and these

points, from which the light appears to diverge, constitute the virtual image
of the original object.

If the object is parallel to the surface of the mirror the image is also

parallel ; if the object is oblique to the surface the image forms a similar

angle with it.
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Construction of Image.—The image can be graphically constructed by

drawing straight lines from the extremities of the object, perpendicular to the

mirror or plane of the mirror, and continuing such lines as far behind the

mirror as the object points are in front of it. Thus, in Fig. 20, if a line be

drawn from B to B\ and another from A to A\ and B' A' \)Q connected, the

image B' A' is obtained. Eays diverging from A, after reflection, enter the

eye and are projected to a virtual focus at A\ from which point they

appear to diverge. Those from B are projected to B\ so that A' B' is the

virtual image of A B. A' is apparently as far behind MM as A is in front

of it ; so also B and B' are equally distant from 31 M. The complete image

is erect and corresponds exactly as regards shape, distance, and size to the

object itself, the relative directions of the rays from each point on the object

being unchanged by the reflection.

Lateral Inversion by Reflection.—The image is, however, laterally

inverted, the right hand of a person becoming the left of his image in the

Fig. 21. Fig. 22.

mirror, and vice versa. If the eye regards A B (Fig. 20) directly, A is to

the right of A B, but looking into the mirror A' is seen to the left of A' B\
If the top of an inverted page of printed matter be held obliquely down-

wards against a mirror the letters will be in their true order from left to

right, and at the same angle to the mirror, as the page, but they will be

upside down. Engravers sometimes use a mirror in front of the letters

or objects they wish to draw on a wood-block and copy the image they see

in the mirror. On taking an impression of the block the letters or objects

are in their right position.

Distance of Image.— If a person stands in front of a plane mirror, say at

2 ft., and looks into it he sees an image of himself at a distance of 4 feet.

If an object is placed in contact with a glass mirror its image appears

behind the silvered surface, and only twice the thickness of the glass itself

separates object and image, although the image appears rather nearer owing

to vertical displacement by refraction. If the mirror is of polished metal

the two are in contact.

Position of Image.—Since the angle 0 C 31, between the mirror 31 31

and the object 0 C (Fig. 21) and the angle I C 31, between the mirror and
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the image G /, are equal, it follows that the angle 0 C I between the object

and the image is twice as large as either ; therefore if the mirror be placed

at an angle of 45° with the object, the object and image are at right angles

to each other, as is shown in Fig. 22.

Angular Displacement of Image.—If a mirror be turned through any

angle the image will move through twice that angle. This is easily proved

from the first law of regular reflection, for since the angles of incidence and

reflection are equal, it follows that the total angular displacement between

the incident and reflected rays is twice the angle of incidence. But the

angle of incidence of a ray is the same as the angle of inclination of the

mirror. Therefore any reflected ray or image must turn through twice the

angle of inclination of the mirror, and must travel at twice the angular

speed. This fact must be allowed for in the construction of the sextant.

In the reflecting galvanometer it is an advantage in that it doubles the

delicacy of the readings.

The Sextant (Fig. 23) is used to measure the angle subtended at the eye

by the sun and the horizon, from which the angular elevation of the sun

Fig. 23.

can be calculated. It also serves to measure the angle between two in-

accessible objects.

A small mirror revolves about a horizontal axis to which is attached

a pointer G moving over a scale of degrees. is a small fixed mirror

of which one half is silvered and the other half is clear, and is so inclined

that when and are parallel the pointer indicates zero on the scale.

T is a small telescope so directed forwards that it receives at the same time

light from the horizon by direct transmission through the clear part of M^,

and by reflection, from the silvered part, the light which has been reflected

to ilfg from M^.

Let Xg be a ray emanating from the sun, and a ray from the horizon.

Then to an eye E the image of the sun along the path will apparently

coincide with the image of the horizon seen directly along L^. The angle

which makes with L-^, which is parallel to Xg, is the angular distance

between the sun and the horizon, but G, the pointer, only moves through ^,
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which is half this angle ; therefore the scale over which G moves is divided

into half degree spaces, which, however, are numbered as whole degrees

in order that direct readings may be taken from the scale, to which also a

vernier (q.v.) is attached for greater accuracy.

Size of Mirror.—The smallest plane mirror which will enable a person to

see the whole of himself reflected is one which is about half his height, the

top of the mirror being on a level with a point midway between the eyes

and the top of the head, also it must be half the breadth, one eye being

closed, and rather less if both are open. To see in a mirror the whole of a

test chart placed over one's head, the size of the mirror should be one half

that of the chart in both diameters ; for other distances of object and

observer see page 349.

Multiple Images.^—When there is but one reflecting surface, as in a

metal mirror, there is but one image, but in a glass mirror having two

Fig. 24. Fig.' 25.

reflecting surfaces, namelj^ the front surface of the glass A C (Fig. 24) and

its silvered back surface B D, there are multiple images of an object. Let

a candle flame 0 be held near to a glass mirror and a series of images will

be seen by an eye E ; the first image I^, that nearest to the candle, is formed

by direct reflection from the front surface of the glass along a E ; the second

image /g, which is the brightest, is directly reflected from the silvered

surface along e E.

The other images /g, I^, etc., all equally distant from each other, are formed

by repeated internal reflection between the silvered surface and the front of

the glass, but some of the light escaping by refraction at « d after each

reflection, the images become progressively fainter. Ordinarily on looking

into a mirror only two images are noticeable, the faint one reflected from

the front and the bright one from the back surface (Fig. 25), but the more

oblique the line of A^iew and consequently the greater the angle of incidence
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of the light to the mirror, the greater is the separation and number of

images seen. The total number visible also depends, of course, on the

luminosity of the flame.

Parallel Mirrors.—If two plane mirrors Jf and 31' (Fig. 26) are parallel

to each other, and an object 0 is placed between them, a series of images

(the first of which are / and infinite in number, is produced by reflection

of the light backwards and forwards between the two mirrors. As with the

/•.

I 0 V
Fig. 26.

single mirror, the repeatedly reflected light soon becomes too feeble for the

images to remain visible. The number depends, therefore, on the brightness

of O.

Inclined Mirror.—When two mirrors A M, B M are mutually inclined

(Fig. 27), the multiple images formed are situated on an imaginary circle

passing through the object, and whose radius is equal to the distance of the

object from the junction of the mirrors. There being 360° in the complete

circle the number of images produced, including the object itself, is found

Fig. 27.

by dividing 360° by the angle between the mirrors, or the angle may be

calculated by dividing 360° by the total number of images seen, including

the object. Thus, if the angle is 90° there are four, if 60° there are six,

and if 45° there are eight images. A single mirror may be regarded as two
inclined to each other at an angle of 180°; there are then two images, or

rather the object itself and its single image in the mirrors. If two mirrors

are parallel the angle between them is zero and the images are therefore

3
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360/0 = an infinitely great number, although, as stated above, comparatively

few are visible to the eye.

When the number of degrees between the mirrors is an exact even

divisor of 360, as 45° or 60°, the complete figure is symmetrical; if the

number is an exact odd divisor of 360, such as 120° and 72°, the figure is

not symmetrical from every point of view, as when the angle is an exact even

divisor of 360°. If the number is not an exact divisor of 360, the figure is

asymmetrical, as some of the images are either incomplete or overlapping.

Construction of Multiple Images.—To find by construction the images

formed by inclined mirrors, let M A and MB (Fig. 27) be the mirrors at any

angle, and 0 the object between them. AVith M as centre andM 0 as radius,

describe a circle ; measure off A 7^ equal to 0 ^ , and B equal to 0 B

;

measure off A /g equal to A J^, and similarly B equal to B ly Then take

A /g equal to ^ 7^, and so on until two images coincide or overlap.

Kaleidoscope.—The principle of the kaleidoscope depends on the multiple

reflection caused by two inclined mirrors. The mirrors are placed lengthways

in a tube, which is closed at one end by a disc of transparent glass, beyond

which is one of frosted glass. Between these two glass discs there are a

number of small coloured objects, or fragments, of coloured glass. Looking

through the open end of the tube an image is seen consisting of a certain

number of images, the whole forming a more or less symmetrical figure. The

usual form of kaleidoscope has three mirrors inclined to e^ch other at 60°,

and the figure is symmetrically hexagonal, or rather it looks triangular, as

shown in Fig. 27. The whole central figure, as seen in a kaleidoscope, is

surrounded by others formed by repeated reflections of the light.

Curved Mirrors.

Spherical Mirrors.—A spherical mirror is a portion of a sphere, the cross

section of which is an arc of a circle ; its centre of curvature is the centre of

the sphere of which it forms a part. It may be either concave or convex, and

can be considered as made up of an infinite number of minute plane mirrors,

each at right angles to one of the radii of the sphere.

Concave Mirror.—Let J 5 be a concave mirror (Fig. 28) and C its centre

of curvature. Then all straight lines drawn from C to any part oi A B are

radii. They are therefore all of equal length and perpendicular or normal to

the surface of the mirror. All rays therefore starting from C, on reaching

the surface of the mirror, will be reflected back along the same paths and form

an image at the same point C.

The point D is the vertex or j^ole, and the surface A B between the extremi-

ties of the reflecting surface is the aperture. The line passing through C and D
is the pincipal axis; all other lines passing through C to the surface are

secondary axes.

If a luminous point be situated infinitely far away, on the principal axis
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the angle of divergence being very small, the rays are considered parallel to

each other and to the principal axis. Let A'A, B'B, D'D, etc., be such

rays, and let CA, C B, and C Z) be joined; then, since these latter are radii,

they each form a right angle Sut A, B and D respectively with the surface of

the mirror. Therefore ^ C is a normal to the surface at^, and the ray A'

A

will be reflected to F, making the angle of reflection FAC equal to the angle

of incidence A'A C. All the other rays, in the same way, are, provided the

Fk;. 28. Fig. 29.

aperture is not too great, reflected to which is the common image of a

luminous point situated at co. is the princijxil focus of the mirror, and the

distance D F is the prindipal focal distance or focal length. D F is equal to half

the radius D C.

A Cc. mirror therefore renders parallel light convergent, and since the

image can be received on a screen, or seen in the air in front of the mirror,

Fig. 30.

the focus of a Cc. mirror is real or positive. If light is divergent it is made,
by a Cc. mirror, convergent, parallel, or less divergent as the case may be.

The course of a ray can be traced backwards along the same path as that

by which it arrived ; so that if F be the object-point, the rays F F, F A, etc.,

will be reflected parallel to the axis along the lines F E\ A A\ etc. Thus,
image and object are interchangeable.

Convex Mirror.—Let A B (Fig. 30) be a convex mirror, C the centre of

curvature, D the pole, and C D X the principal axis. Then if the object point
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is at cc on the principal axis the rays proceeding from it to the mirror are

parallel. Let K I be one of these rays meeting the mirror at /, and let C H be

a normal to the surface. The ray K I will be reflected at / to / G, so that

the angle of reflection H I G is equal to the angle of incidence H I K, and the

reflected ray / G, produced backwards, cuts the axis at F, which is the

principal focus of the mirror.

A Cx. mirror therefore renders parallel light divergent, and divergent

light still more divergent. The image thus formed is imaginary, so that the

focus of a convex mirror is virtual or negative.

Conjugate Foci.—Conjugate foci may be defined as the positions of object

and image. If the image is real these positions are such that they may be

reversed and the object placed where the image previously was and vice-

versa, the distance of the two conjugate points from the mirror remaining

the same. In other words the direction of the light can be reversed without

altering the positions of the two conjugate foci. Conjugate focal distances are

the distances of the conjugates from the mirror.

Conjugate Focal Distances. Cc. Mirror.—If the object-point (Fig. 31)

be on the principal axis between C and oc, say at /, the image must be at

Fig. 31.

somewhere between F and C. An object at oo will have its image at F^ and

it is obvious that the angle of incidence fK C \s smaller than the angle LKC

;

therefore the angle of reflection /j K C, which equals the angle of incidence

/ K C, must in the same way be smaller than the angle F K C, and therefore

the image of /, will lie nearer to C than F.

As the object-point approaches C, its real image also approaches C; when
the object-point arrives at C the image will also be at C, the ray C K being

reflected back along its own path. When the object-point arrives at the

real image is obviously at /, and when it reaches F its image is at oc.

When the object-point, as f^, passes F towards the vertex, the reflected

ray K I lies outside K L. Then the focus will no longer be on the same side

of the mirror as the object, but will be found by prolonging the ray K

I

backwards to/g on the other side of the mirror. In this case the image is

not actually formed, but is virtual or negative, existing only in the brain of

an observer whose eye is looking into the mirror. As the object-point

travels on towards the vertex the image /g also approaches until the two meet

at, and touch, the mirror.
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Conjugate Focal Distances, Cx. Mirror.—As the object point / (Fig. 32)

approaches the mirror the image also approaches the mirror from F to /),

because the angle of incidence LKI increases with the nearness of the

object, until at D object and image coincide, so that, no matter where the

object is, the image is always formed behind the mirror either at or

between it and Z), by prolongation backwards of the divergent rays, and is

always imaginary or virtual.

Images on Secondary Axes.—In the preceding cases the object is sup-

posed to be on the principal axis, so that the image is also on the principal

/
Fig. 32.

axis. If the object be situated on some secondary axis the image is on that

same secondary axis. Also the object hitherto has been considered as a

point ; it can now be supposed to have a definite size.

Construction of Images—Cc. Mirror.—It is known that (1) a ray

parallel to the principal axis passes, after reflection, through the principal

focus
; (2) a ray passing through F, after reflection, is parallel to the principal

axis
; (3) a ray proceeding through 6^, the centre of curvature, is reflected

along its original path. It is possible to make a graphical construction of

the image of an object placed in front of a spherical mirror by tracing any

:
L=. /

Fig. 33.

two of such rays from the extremities of the object, and their course after

reflection. The point where these rays meet is the point where all the rays,

which diverge from the object-point, also meet, and is therefore the image of

that point.

The graphical construction when the object is beyond C is as follows.

Let A B (Fig. 33) be the object, G the centre of curvature, and let F be

the principal focus. Draw A K parallel to the axis, connect K F, and produce

it onward; draw AL through C. These two lines cut each other in A',

which is therefore the image of A, situated on the secondary axis ACL.
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In the same way, rays drawn from B meet at B', and both B and B' are

on the secondary axis BCK. By connecting B' and A' the image of A B is,

obtained, and it is real, inverted, and smaller than the object. If the object

were at B' A' within the centre of curvature and beyond F, the image would

be A B, real and inverted, but larger.

The course of any ray other than those mentioned can be constructed by

drawing the normal to the point of incidence and making the angle of reflec-

tion equal to the angle of incidence.

Graphical construction when the object is within F.

Let A B (Fig. 34) be the object. Draw A K, connect F and K, and pro-

duce towards A^ ; draw C A, producing it similarly. These lines meet on

the secondary axis C A A' in the point A', which is therefore the image point

of A. Any ray A D is, reflected as if proceeding from A\ In the same way
B' can be shown to be the image of B. By connecting B' and A' the image

BA' is obtained. It is virtual, erect and enlarged.

The graphical construction of an image formed by an object at F resolves

itself into lines parallel to the secondary axes, so that the image is at infinity

If the object is at C, object and real image coincide, but the image is

inverted (Fig. 36). If the object is at D (Fig. 34), no rays can be drawn,

since object and virtual image are in contact with the mirror and coincide.

Construction of Images—Cx. Mirror.—Draw A K (Fig. 37) and connect

K with F ; join A C. Where these cut each other at A' is the image of A
;

it is on the secondary axis AA' C. Any other ray from A can be shown to

be reflected as if proceeding from A'.

By similar construction the position of B\ the image-point of B, is deter-

mined, and connecting A'B' the complete image of the object A Bis obtained,

B' being on the secondary axis B C.

In the case of a convex mirror, wherever the object may be placed, the

Fig. 34.

(Fig. 35).

Fig. 35. Fig. 36.
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image A' B' is always virtual (imaginary) erect and smaller than the object,

but if ^ 5 is in contact with the mirror, the image A' B' coincides with it.

Relative Sizes of Image and Object.^—Since, as will be seen from the

foregoing figures, both object and image subtend the same angle at the vertex

of the mirror, or at the centre of curvature, the relative magnitude of object

and image are proportional to their respective distances from the mirror, or

from its centre of curvature, and this rule holds good for all images, both

virtual and real, and for convex and concave mirrors.

Conjugate Foci of Spherical Mirrors.

For the convention of optical signs see page 86. List of symbols faces

preface.

Conjugate Focal Distances. —If F be the principal focal distance, then

1 /F is the reflecting power of the mirror, the two being reciprocals of each

other
;
thus, if F be 10, then \ Y= 1/10. If be the distance of the object

from which light diverges to the mirror, we can represent the divergence of

the light by 1//^ and this quantity is considered negative.

Fig. 37.

Now a Cc. mirror converges the incident light, but if the latter proceeds

from a very distant object the divergence is negligible, and therefore the

focus of the light is at F as a result of the converging power 1/F of the

mirror, which is reckoned positive. If, however, the light proceeds from a

near object the divergence is appreciable, and a focus is obtained at some

other distance, /g, which distance is determined by the addition of the

divergence of the light to the converging power of the mirror, i.e. 1/F — =
I//2, where I//2 is the reciprocal of the distance /g.

A Cx. mirror diverges incident parallel light ; its power is negative and

representative by - 1 /F. When light is parallel is at F, but when it is

divergent is determined by adding the divergence of the light to the

diverging power of the mirror, that is, - 1/F - 1//^= Ijf^. In the case of a

Cc. mirror is positive or negative according as 1 jf^ is respectively a smaller

or greater quantity than 1/F. With a Cx. mirror /g is always negative.

Since convergence is considered positive and divergence negative, if - 1 //^

represents the divergence of light from a distance /j, then 1 //, represents con-

vergence to the distance /p while l/Zgis that power which causes parallel rays

to converge to /g, and - I//2 that power causing them to diverge from that
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distance. Thus the total power of a mirror 1/F is equal to the sum of the

powers which represent the distances of the object and image. In other

words the reciprocal of the principal^focal distance is equal to the sum of the

reciprocals of any pair of conjugate foci. Then we can write the formula

1-1=1 1^1 1

F A /, F fjf.
This formula is one of the most important in optics. It enables us to

find the focal length of a mirror if /j and are known ; or if F and are

known we can find (the image). It is universal and holds true for both

concave and convex mirrors and, as will be seen, for lenses as well. Since

the two fractions 1//^ + l/f^ added together always produce the same sum', it

follows that however much the one is increased the other is decreased in the

same proportion. Thus if a Cc. mirror be of 20 in. radius or 10 in. focal

length the sum I//1+ I//2 is always 1/10. If a Cx. mirror has F= - 10 in.,

the sum l/f^ + is always - 1/10 ; here is always negative, as it may be

also when 1/F is positive. The formula may also be written F/f^+ F/f^ = l.

Geometrical Proof of the Formula—Cc. Mirror.—Let 0 (Fig. 38) be any
object point situated on the axis of the mirror D M. Let C M be any radius

Fig. 38.

and 0 M a ray incident on M and reflected to /, the image point, such that

the angles 0 MC and IMC are equal.

If, in any triangle, one of the angles be bisected by a line passing through

the opposite side, the latter is so divided that the ratio of the one segment

to the adjacent side is equal to that between the other segment and its

adjacent side. Thus in the triangle 0 MI,

I C : I M : : O C : OM
or

IjC^ OJD
i M O M

But since the semi-aperture MD is considered small, IM may be taken

as equal to / and similarly 0M to 0 D
I c_ o c
I D O D

But I D = /:„ 0 D=/i, and D C = r

Then

rjzA^fuzl or -^1— ^ ^

A /i /1/2

Whence I//1 + l//^^ 2/r= 1/F
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because the radius of curvature is twice the principal focal distance. This

is easily proved, for let LM be a ray parallel to the axis and incident at M
so that, after reflection, it passes through F. Then the angles LM C and

FM C are equal, as are the angles L M C and M C D between the

parallels LM and 0 D. Now MOD is equal to IT (7 ;] therefore the

angles FM C and F CM are also equal, so that FM= F 0.

But, the aperture being small, B F may be considered equal to MF=F C.

Therefore D C is equal to twice D F—in other words, the radius of curvature

is twice the principal focal length.

Another Proof.—In Fig. 39 ^ ^ is an object whose image is B' A', The

Fig. 39.

aperture of the mirror is considered small, so that D M may be considered

a straight line. In the similar triangles A F C and A M A'

' FC ^ AF^B F
MA' AM BD

But F C = F, M A' = D B'=/„ B ^=f^-Y, and B J)=f^
Then

F^/^-F

That is F//2 + F//,= l or l/f, + l/f,^=l/F

A

\-m:

c
1

Fig. 40.

Proof for Cx. Mirror.—The aperture being small, D M (Fig. 40), as

before, may be considered a straight line. Then

CB'^A'B'^A'B'^FB'
CB AB DM FM

Then
C B' = 2F C B = 2F F B' =F and|F M = F

2F-/,_F-/,
2F+/i F '

That is

whence W2-fi)=fif2

-l/F=l//i-l//2
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In all the above proofs it will be noticed that an approximation is intro-

duced by considering the portion of the reflecting surface utilized as flat.

If this were not done the formulse would be very complicated, and a different

value would be got out for each size of aperture—in other words the

spherical aberration of the mirror is ignored in our simple formula, which is

indeed permissible seeing that the portion of the mirror chiefly responsible

for the production of the image is that immediately surrounding the

vertex.

Calculations on Conjugate Foci.—A positive result when working these

problems denotes either a real image, or a concave mirror. If the result is

negative the image is virtual, or if the principal focus is being found, the

mirror is convex.

Examples—Co. Mirror.—Let the mirror be of 10 in, F, and let the

object be at oo ; then we have

1//, = 1/F - I//1 = 1 /lO - 1/ a. = 1/ 1 0 - 0 = 1/ 1

0

The image is real and at the principal focal distance, since /g = F.

It must be remembered that we regard, in these calculations, any consider-

able distance as go. In visual objects any distance beyond 6 M. or 20 feet is

so taken, but there we are dealing with short focal length systems.

If the object be at F the calculation is

1//2 = 1/F-1/F = 0/F .-. /, =F/0=^
so that the image is at 00, and F and 00 are conjugate distances.

If the object is at 30 in., we get

1//^=1/10-1/30=1/15

Therefore the image is 15 in. and real.

If the object were at 15 in. we find

1//^^ 1/10- 1/15 = 1/30

15 in. and 30 in. are conjugate foci with respect to a 10 in, concave

mirror ; if the object be at 15 in. its image is at 30 in. ; if the former is at

30 in. the latter is at 15 in.

If the object be at twice F, that is, at the centre of curvature, say 20 in.,

in front of a 10 in. concave mirror, the image is at the same distance, since

l//2= 1/10 -1/20 -1/20 or /a = 20 ins.

When the object is within the principal focal distance, a higher number

than 1/F being deducted from it, the result is a negative quantity. Thus

if the object be placed 6 inches in front of a 10 in. concave mirror, then

l//2 = 1/10 -1/6= -1/15

so that the virtual image is 15 inches behind the mirror.

Here —15 in. is the conjugate of 6 in. in respect to a 10 in. concave

mirror, and 6 in. is the conjugate of —15 in., hut not of 15 in. That is to
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say, if the rays of light incident on the mirror are convergent to a point 15 in.

behind it, they will be reflected so as to come to a focus 6 in. in front of it.

If light is incident on a \0" mirror convergent to 15"' behind it we get

a real image at ^" for

l//2=l/10+l/15=l/6

From these calculations it will be seen that a real or positive image is

obtained with a concave mirror so long as the object is beyond F, and that

the image becomes virtual or negative when the object is nearer than F.

Also that in all cases 1/F ^ 1//^^ + 1//^. Thus when the light diverges

from 30'' and is converged to 15'' we find 1/10=1/30+1/15. When it

diverges from 6" before reflection, and from 15" after reflection we get

l/10=l/6 + (-l/15).

Relative Distances of 0 and I.—The nearer the object is to F, the more

distant is the real image ; as the object recedes from F, the image approaches

it, but no positive image of an object can be nearer than F since no object

can be more distant than go. If, however, the rays are convergent before

reflection, then passes to the mirror side of F.

The planes of unit magnification for real images lie at the point where

the object coincides with the centre of curvature of the Cc. mirror, for then

the image is equal in size to the object and at the same distance.

The nearer the object is to F, the more distant also is the negative image.

As the object recedes from F and approaches the mirror, the image also

approaches the mirror, but the image is always more distant than the object.

When the object touches the reflecting surface, the image does so likewise,

this being the plane of unit magnification for virtual images formed by a

Cc. mirror.

Examples—Ox. Mirror.—^Let the mirror be of 10 in. F and the object

at 00. Then
1//,= -l/F-l/a.= -1/10-0= -1/10

The image is virtual or negative and at F.

If the object be in front of the mirror at a distance equal to F of a

Cx. mirror, the image is at half F. Thus with a 10" mirror

1//,= -1/10-1/10= -1/5

If an object is situated 30 in. in front of the convex mirror

1//,= -1/10-1/30= -1/7J in.

The image is virtual and 7^ in. behind the mirror.

-
7J in. is conjugate to 30 in. with respect to a 10 in. convex mirror,

and 30 in. is the conjugate of -7^ in. but not of 7 J in. If light were

convergent to a point 7J in. behind the surface, the convergence would be,
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by reflection, so much reduced that an image would be formed 30 in. in front

of a 10 in. convex mirror.

Thus if light converges to a point within F the image is real, if conver-

gent to F the light is parallel after reflection, since the convergence of the

" light and divergence of the mirror neutralise each other. If the light is

convergent to a point beyond F the virtual image formed is also beyond F.

In all cases, however, 1/F = + 1 jf^.

Relative Distances of 0 and I.—The image of a real object formed by a

convex mirror is therefore always virtual, and cannot be at a greater distance

from it than F, the object being then at oo. When the object is nearer

than 00 the image recedes from F towards the mirror, and when the object

touches the surface the image does likewise. This is the plane of unit

magnification of a Cx. mirror.

Another Expression for Conjugate Foci.—If the distance of the object

from F = A, and that of the image from F=B, then AB= F2. That is,

B= F2/A. This is generally known as Newton's formula. Following are

some examples :

Let F = 10 and/i=:30, th n A=:30- 10 = 20

and B= 100/20 = 5, or/2 = 5 + 10=15 in.

Let F=10 and /i=6, then A=6-10 = -4

and B = 100/-4= - 25, o ^ = - 25+ 10 = -15 in.

Let F= -lOand /i
= 30, then A = 30 - (

- 10) = 40

and B= 100/40 = 2-5, or 2-5 + ( - 10)= -7-5 in.

These examples should be compared with those worked by the ordinary

formula.

Size of the Image formed by a Spherical Mirror.—In the case of both Cc.

and Cx. mirrors the size of the image bears the same relation to the size of

the object, as the distance of the image does to the distance of the object

from the mirror, or from the centre of curvature. That is

where 1\ is the size of the object, li^ is the size of the image, is the

distance of the image, and is the distance of the object. In the calculation

and must be in the same terms, then li^ will be in the same terms as \.
This rule holds good in all cases, whether the image be real or virtual, since

both object and image subtend the same angle at the centre of curvature or at the

vertex, so that their respective sizes depend solely on their respective distances from C
or from the vertex.

Suppose the object is SO''' from a 10 in. Cc. mirror and '2" in height, while

the image is at 15", then

h^ = hJ^lf^^2xlbiZ0 = l"
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If the object were at 15 in. and the image therefore at 30 in , the image

would be 4'' high if the object were 2"'.

When the object is 3C from a 10 in. Cx. mirror its image is virtual

at 71 in. and if h^ = 'r

_2x7-5^.g.
30

In the above examples the distances from the mirror have been taken, but

the same ratios would exist were they taken from C. Thus 30" and 1 5" from

a 10" Cc. mirror are 30-20 = 10'' and 20-15 = 5'' from C, and obviously

30/15 = 10/5. Similarly with the Cx. mirror, 30" and 7J in. from it are

30 + 20 = 50 and 20-7|=12^- from the centre of curvature, and 30/7-5 =
50/12*5. All formulas for magnification with lenses apply also to mirrors.

It must not be forgotten that although a distance may be taken as cc for

the calculation of /g, its definite distance is needed for calculating Ag. Thus

suppose an object 3 yards high is an eighth of a mile from a 30" mirror.

What is the distance and size of the image 1 The image is at F = 30", and

7 3x30 1 . , . ,

- - = , yard or -4 nich.
^ 220x36 88-^

Fig. 41.

When the object is inaccessible so that the actual size cannot be deter-

mined, the size of image can readily be found from the angle which the

object subtends at the centre of curvature. For example, what will be the

size of the image of the moon formed by a concave mirror of 1 6 in. focus ?

The object being at cc (Fig. 41) the rays from each point of it are

parallel, and the image / will be formed at the principal focus and .-./g = 16 ins.

But although the object is at cc it has a definite size subtending an angle a

of 32', and we utilise the size of the angle subtended by the object instead of

the object itself. Now object and image subtend the same angle at C, and

since tan 32' = -0093 and f^^ 16 ins., we have, as the size of the image,

16 X •0093 = 0-1488 in., or about i in.

Recapitulation of Conjugates.—Cc. Mirror.

When 0 is at 00, / is real, inverted, diminished and at F.

When 0 is between 00 and 2i^, / is real, inverted, diminished and between

2F and F.

When 0 is at 2F, I is real, inverted, equal to 0 and at 2F.

When 0 is between 2F and F, I is real, inverted, enlarged and between

2F and 00.
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When 0 is at F, I is infinitely great and at oo.

When 0 is within F, I is virtual, erect, enlarged and on the other side of

the mirror.

When 0 is at the mirror, / is virtual, erect, equal to 0 and at the mirror.

Cx. Mirror.

When 0 is oo, i is virtual, erect, diminished and at F.

When 0 is within oo, / is virtual, erect, diminished and within F.

AVhen 0 is at the mirror, / is virtual, erect, equal to 0 and at the mirror.

The virtual image of a Cx. or Cc. mirror is laterally inverted as in a plane

mirror. The real image of a Cc. mirror is entirely reversed, and therefore

not laterally inverted in this sense.

Aperture of a Mirror.—In order that a true image of a point may be

obtained with a spherical mirror, it is essential that the aperture should be

Fig. 42.

small compared with its radius, subtending an angle of, say, not more than

20° at C, so that the arc of the aperture may be approximately a straight

line. Suppose F F (Fig. 42) be the aperture of the mirror, C D the principal

axis, and C the centre of curvature. Join F F. Then if the angle F C Dhe
small (under 10°) the distance D G will also be small, so that C G may,

without much error, be taken as equal to C E ; also

E D C =CE C = E G C = a right angle.

-vy. EG' EG n GCNow tan cb =
r^ Y^y^

siu ft = v^^,, and cos a = ^ws-G C EC EC
Since F C is, taken as equal G C, sin ft = tan a = the arc F D, and

cos ft= 1/1 = 1.

Thus all calculations involving mirrors—and, as will be seen later, lenses

also—are greatly simplified, since the sine and tangent may be considered

equal for small angles and can be replaced by the arc, and the cosine by

unity, whenever the angular aperture is s i all.



CHAPTER lY

REFRACTION AND THE REFRACTIVE INDEX

Normal Incidence of Light.—The fact that the velocity of light is lessened

in a dense medium is the cause of refraction. When a beam of light,

traversing the air, is incident normally on a refracting medium such as a

sheet of glass, the whole of the wave-front is retarded simultaneously and

equally. The plane of the wave after entering the glass is unchanged in

direction and continues so during its progression through the denser medium.

On reaching the second surface, the whole of the wave-front is again inci-

dent at the same time, and each part of it is equally increased in speed as it

Fig. 43.

passes again into the rarer medium, so that its line of progression remains

unchanged.

OblicLue Incidence of Light.—But if the plane wave-front ^ ^' (Fig. 43)

be incident on the first surface obliquely, one part B' meets the denser

medium sooner than the rest and this is retarded, while the others are still

in the rarer medium advancing at an undiminished rate of speed. Each
wavelet on reaching the glass becomes retarded, one by one, until the whole

of the wave-front has passed into the denser medium, and in consequence the

wave-front is changed in direction. The angular change of direction depends
on the distance that the more rapidly advancing parts of the wave-front

47
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travel before their speed is also checked, that is, on the obliquity of the inci-

dence of the light, and on the retardation itself, that is, on the refracting

power of the medium. When the whole of the wave-front C C has entered

the denser medium, it travels without further deviation but at a diminished

rate of speed. On reaching the second surface of the glass the wave-front

D D' is again incident sooner at one point D' than at others. The wavelet at

that point increases its speed, while the remainder is still moving less rapidly

in the denser medium ; then the other wavelets emerge and increase their

speed until, having passed into a rarer medium, the entire wave-front E E'

travels with its original velocity and in a direction parallel to its original

direction.

The Laws of Refraction.—When a ray of monochromatic light (i.e. light

of a single wave-length) is incident obliquely on the boundary between two

media of different optical densities :

—

(1) The incident and refracted rays are in the same plane as the normal

to the point of incidence, and lie on opposite sides of it.

(2) A constant ratio exists between the sines of the angles of incidence

and refraction ; this ratio is governed solely by the relative density of the

two media, and is known as the index of refraction with respect to the two

media.

It will be seen later that the value of the index also depends upon the

colour of the light, but, for the present, we shall consider all light as mono-

chromatic.

From the second law we can deduce the following :

A ray passing obliquely from a rarer into a denser medium is refracted

towards the normal at the boundary plane between the two media.

A ray passing obliquely from a denser into a rarer medium is refracted

away from the normal at the boundary plane between the two media.

A ray suffers no deviation if, at the point of incidence, it is normal to the

surface of the medium which it enters.

Index of Refraction.—The index of refraction between two media is tlie

ratio of the velocities of the light in these media. For example, supposing light

to travel at a speed of x in the first medium and at a speed of y in the second,

then the index of refraction from the first to the second medium is ->/y, but

if the direction of the light is reversed, then the index is said to be ylx,. If

the light travels three miles in the first, while, in the same time, it is travel-

ling two miles in the second, then the index is 3/2 = TS ; from the second to

the first the index would be 2/3.

Snell's Law of Sines.—The second law of refraction states that the con-

stant ratio between the sines of the angles of incidence and refraction is the

index of refraction ; it can be shown that the ratio of the velocities of the

lio^ht in the two media are as the sines of the ano-les of incidence and refrac-
ts o

tion. In Fig. 44, let S S he the bounding surface between the media—the
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second being denser than the first—in which the velocities of the light are

respectively T\ and Fo. Let C be a plane wave-front incident on the sur-

face at the angle D C A = i which, after refraction, passes into the second

medium at the angle of refraction C A E = r.

Then A D and C E are distances travelled by the extremities of the wave

in equal times, the one portion at D being in the rarer and that at C in the

denser medium ; it follows^ therefore, that the ratio AD/CE is the refractive

index for light travelling in that direction between the two media. Now
since the "rays" AD and CE are perpendicular to the wave-front, the

angles ADC and A EC are right angles. Therefore, the hypotenuse A C
being common to the triangles ADC and A E C, A D and CE are numerically

the sines of the angles of incidence and refraction respectively, so that

V-^ _ A D _ sin i

~ C E "~
sin r

That is, the index of refraction^ or the relative velocities of light in the ttuo media,

is given by the ratio of the sines of the angles of incidence and refraction.

This proof holds equally when the incident wave is curved, since we may

Fig. 44.

assume the portion D C under consideration to be so small as to be sensibly

straight—in other words, we may work from the " ray " E B, which is really

the path taken by a very small portion of the wave -front itself. Similarly if

the medium S S is curved, the portion A C may also be considered plane.

Further the ratio sin ?'/sin r is quite independent of the angle of incidence

since, whatever course a wave may take through the same pair of media, its

velocity in each, and therefore the ratio of the velocities, must remain

•constant.

Absolute Refractive Index.—With the exception of certain metals, the

velocity of light is a maximum in free ether, i.e. a vacuum, through which

all waves, of whatever length, travel with equal speed. Its progression

through air is very slightly slower, but for all practical purposes no distinc-

tion need be, nor is, made between free ether and the atmosphere. The
optical density of air is therefore taken as unity or 1, and the density of any

other medium, such as water or glass, is expressed in terms of this unit and
is called the absolute index of refraction, generally denoted by the Greek letter

ft (mu). Thus if the /x of a certain kind of glass is 1*5, it implies that light

travels one and a half times as fast in air as in the glass ; or to put it in

4
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another way, the velocity in the glass is only 1/1*5 = 2/3 that in air. There-

fore /X, or the absolute index of refraction, expresses the optical density of a

medium, and if />t=l*5, the medium to which it pertains has an optical

density 1 -5 times greater than air. To a certain extent the optical density

varies directly with the true density, but there are notable exceptions, as for

instance with some of the metals, but these are opaque ; the departure from

the rule is more noticeable in comparing such transparent media as oil and

water; the former has the greater optical density but the lesser specific

gravity than the latter.

When reference is made to the of a substance it is invariably under-

stood to mean the absolute index as compared with air. In addition ft, unless

otherwise stated, refers to yellow light ; the reason for this restriction will

appear later when chromatism and chromatic aberration are discussed.

It should be noted that the angle of incidence of a wave is that which it

makes with the surface, siS AC D in Fig. 44, the corresponding angle of

refraction being EAC, The angle or incidence of a ray is that which it

makes with the normal as F B N, the angle of refraction being Q B N'. It is

immaterial, however, as to whether the ray or the wave is taken since

obviously the angles of incidence AC D and F BN are equal, as are the

angles of refraction E A C and Q B N'.

It is usual, when several media are involved in a calculation, to refer to

their indices as /a^, [i^, jx^, etc., but when there are only two media, one of

which is air, the index of the denser is denoted simply by fi without any

suffix, that of air being, as before stated, always taken as 1, although actually

it is about 1-000294.

Relative Refractive Index.—The relative index of refraction (usually

written /x,.) is the expression of the refractivity when light passes from one

dense medium into another, say, from water into glass or vice versa. It is

found by dividing the absolute index of the medium into which the ray~

passes, by the absolute index of the medium from which it proceeds ; thus,

when light passes from water /x= 1*333 into glass /x= 1*545 the relative;

index is

sin i 1*545 , -.^

sin r 1'666

Again, the sines of the angles of incidence and refraction, as light passes

through two such media, are to each other as the velocities of the light in

those two media.

Reciprocal /x's.—In the case of any two such media A and B the index of

refraction for light passing from A into B is the reciprocal of the index for

light passing from B into A. Thus, when light passes from air into glass,

the sines of the angles of incidence and refraction are, say, as 3 : 2, and the

index is 3/2. If it passes from glass into air, the sines of the two angles are

as 2 : 3 and the index is 2/3. Taking the example of the last paragraph,.
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the relative /x is 1*16, but if the light passed from the glass to the water

/x=l-333/l-545= 1/M6.

The Course of a Ray.—As an example of the application of the sine

law, let a ray be incident from air (/x= 1) at 30° with the normal, to glass

of /A =1*5, and it is required to find the course of the ray after refraction.

We have sin i/sin r = fi, from which sin r = sin i/fji.

3inr =^i^ = --^ = .3333
1-5 1-5

Now -3333 = sin 19° 30' (approx.), so that y = 19° 30'. Therefore the ray has

been deviated towards the normal by an amount equal to 30° - 19° 30' = 10-5°.

It should be observed that, apart from the angle of incidence, the

actual deviation which light undergoes, when passing from one medium into

another of different density, depends on the ratio between the /x's of the tivo

media, and not on the high value of the of the second medium. Thus

Fia. 45.

the refraction is greater when light passes from air into glass of //= 1*5 than

when it passes from water into glass of />t= 1*6.

Graphical Constructions.—The course of the light can also be graphically

constructed in the following manner. Let DG (Fig. 45) be the ray

incident at the angle i to the surface A B oi /x=l'5. At the point of

incidence G drop the normal C F and with G as centre describe a circle of

any radius—the longer the latter the more accurate will be the construction.

From the point D where the circle cuts the incident ray drop the perpen-

dicular D C and divide it into three equal parts. Then drop a similar per-

pendicular E F from E on the other side of the surface, such that the length

of E F is equal to two of the parts into which D C was divided. Then G E
is the course of the refracted ray. This construction is merely a graphical

representation of the sine law because if, in the right angled triangles C D G
and FE G, the hypotenuse D G is equal to G E, C D and E F Sive numeri-

cally the sines of i and r respectively, and as these have been divided in the

ratio of 3 and 2, G E must be the direction of the refracted ray.
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This construction is universal and can be applied to any pair of media.

Thus suppose, in the above example, that the first medium was water of

ft =1-33 instead of air, CD and F E would have to be divided into 15 and

13*3 parts respectively. To calculate the deviation, if i be 30°

sin i_fJ-2_ 1*5

sin r fji^ 1*33

1-33 sin i 1-33 x -5
. . . .

r = =-4444

r= 26° (approx.)

The deviation, therefore, in this case is only 30-26 = 4°.

Another and perhaps more simple construction is shown in Fig. 46. Let

D GhQ any ray incident at G on the surface S S oi Si medium whose /x= 1 -5

or 3/2. From D drop the perpendicular D B and divide B G into three

equal spaces. Then from G mark G A equal to two such spaces. From A
drop a perpendicular and from G draw a line G E, equal in length to G D,

cutting the perpendicular from A in E. Then G E is the direction of the

refracted ray. In this construction B G and A G takes the place respectively

of D (7 and E F in Fig. 45.

In order to trace the course of a ray of light through any refracting

body, with plane or curved surfaces, the procedure is the same, but in the

case of a curved surface the tangent to the curve, at the point on which the

ray is incident, is considered to contain the plane of incidence and of

refraction.

TABLE OF REFRACTIVE INDICES (FOR THE D LINE).

{For other Media see A'ppendix.

)

Air 1-000

Water 1-3.36

Alcohol 1-366

Pebble 1 -544

Canada Balsam . . . . . . . . . . 1 -535

Tourmaline 1-636

Crown glass . . say 1 -500 to 1 '600

Flint ., 1-530 to 1-800

Diamond .. .. .. .. .. 2-47

The index of glass varies with the materials used in its manufacture, and as a rule tlie

higher the the softer is the glass.

Refractivity.—It should be particularly noted that the refraction or

deviation caused by any medium is not proportional to its /x but to the

difference between its and that of air =1. We say that the r)iean refrac-

tivity of a substance is (/x - 1). The refracting values of any two media—lenses,

prisms, etc., having similar forms—would vary not as their /x's, but as their

(/x-iys.

or

whence
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Dispersion.—The shorter waves, with rare exceptions, are retarded by
a medium, more than the longer waves, so that when white light undergoes

refraction its components are refracted to different extents and the various

colours become separated, producing what is known as dispersion or chro-

matism, which subject is treated in a later chapter.

3 A rt

i
/

///////V ///y//>///

r
Fig. 46.

Critical Angle and Total Reflection.—When a ray of light passes from

a dense into a rare medium, it is bent away from the normal, with which it

makes a larger angle than before refraction. In Fig. 47 let the index

of the dense and that of the rare medium, and let A B he the incident

and B C the refracted ray. As A B makes a larger angle with the normal

the corresponding angle of refraction becomes still larger. Hence if the

' B

/

Fio. 47.

ray A B he incident at an angle sufficiently large, the angle of refraction

becomes a right angle, and the refracted ray B C will skim along the bound-

ing surface. The angle of incidence in the denser medium which produces

this result is termed the critical angle, because the slightest further increase

of it prevents the ray from passing out of the denser medium. If the

incident ray be A" B it is reflected as B C'\ and total internal reflection takes
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place. Internal reflection is termed total to distinguish it from ordinary

reflection, which is always accompanied by a certain amount of absorption

or transmission.

Let C be the critical angle, which is equal to i in the dense medium.
Then

sin i_ sin r

But r = 90°, and sin 90° =1, the greatest possible value of any sine.

Therefore

sin C 1
or sin C = ^i

Thus the sine of the critical angle is equal to the relative index from the denser

to the rarer medium. If the rarer medium be air, /x= 1, so that, for a denser

medium bounded by air,

sin C =

Suppose the ray to pass from glass />t= 1*5 to air ; then l//x = l/l-5 = 0'666,

so that the sine of the critical angle is -666, which is sin 41° 46'. This is

the greatest angle at which a ray can be incident in order to emerge from

glass of />t= 1*5 into air, and the emergent ray is then parallel to the surface.

For light passing from one dense medium into another

sinC= ^i=^

where i^r is the relative index of refraction for the two media. Thus for glass

and water where />tr= 1 •52/1-33 =M 4, sin C= 1/M4 = -877 = sin 6M8'.
This principle affords a method of determining the refractive index of a

medium. If the angle in the denser medium, at which the incident ray just

ceases to emerge into the other, be measured, 1 divided by the sine of that

angle is equal to the fi of the medium, or the relative fi of the two media.

The critical angle when light passes through several media is the same as

that which obtains directly between the first and the last.

TABLE OF CRITICAL OR LIMITING ANGLES.

Medium Index of Refraction. Critical Angle.

Chromate of lead 2-92 20°

Diamond 2-47 24°

Various precious stones 25° to 30°

Flint glass .

.

38° to 40°

Crown glass .

.

40° to 43°

Pebble 1-54 40°

Water 1-83 48° 30'
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It will be seen, from the above, that the critical angle varies inversely

with /X. That of glass in general is about 40°.

Some Effects of Total Reflection.—On looking upwards through the side

of an aquarium tank the surface above one's head glistens like quicksilver,

owing to the light being reflected downwards. A metal ball, blackened

by a smoky flame, immersed in water appears brilliantly polished, because the

thin film of air surrounding it totally reflects the light.

If a tank half full of water has some benzine on the top, the two liquids,

owing to their different specific gravities, do not mix. As the benzine has

the higher index, a beam of light from above may be totally reflected at the

surface of the water and emerges upwards, the surface common to the two

liquids, seen obliquely from above, glistening like polished silver. If a tank,

containing carbon-disulphide be filled up with water, the lower liquid has the

higher refractive index, so that but little light is reflected and the boundary

surface will appear a dull matt grey.

A tank filled with water has a glass window wath a collimating lens behind

which is a light, and an aperture opposite to it which can be opened by a

tap. On opening the aperture the light, in a parallel beam, emerges with

the stream of water, which it follows on account of internal reflection. The
appearance of the jet is such that it is called the cascade of silver ; were the

jet of water perfectly smooth it would appear dark. Similarly, if a solid bent

tube of glass has a strong source of light brought close to one end, and the

other is placed against the opening of the stage of a microscope, the light

traversing the tube by internal reflection forms a powerful evenly-illuminated

disc under the stage, and a slide will be uniformly illuminated from below.

Here no light is scattered since the tube is smooth.

Reflecting Prisms.—^If the principal angle of a prism exceeds twice the

critical angle of the medium of which it is made, total reflection ensues for

incident light. All glass has a critical angle of less than 45°. If, therefore

(Fig. 48), a ray A B enters a right-angled prism normally making an angle of

45° with the normal to the surface Y Z, the ray will be totally reflected in the

direction B C. The light is not refracted at the surfaces D Y and D Z oi

the prism because it is incident normally to each. Thus a right-angled prism

serves as a total reflector when the light is incident perpendicularly to the

one face, the direction of the emergent light being at right angles to the

original course. There is reflection even if the light does not enter at right

angles to D Y, provided it makes, after refraction, an angle greater than 42®

Fig. 48. Fig. 49. Fig. 50.
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with the normal to the hypotenuse Y Z. Thus the ray E BG will be also

totally reflected. The dispersion which takes place as the ray enters is

reversed as it leaves the prism, so that the emergent ray consists of white

light similar to that which entered.

If the light falls normally on the hypotenuse side of a right-angled

prism it causes total reflection twice at B and C, as in Fig. 49, so that the

final direction C D oi the light is parallel to its original course A B. These

forms of prisms are, with variations of shape, extensively employed in prism

binoculars, range finders, etc.

By means of a right-angled prism, as indicated in Fig. 50, vertical without

lateral inversion may be obtained. This prism is largely used in process

photography.

Use is made of the property of total reflection in order to learn whether

a prism is ground to a right angle. If the ray / m (Fig. 51) enters the

prism at m it is reflected at 0 in the direction 7;, and is then partly reflected

and partly refracted. The reflected ray emerges at p' in the direction

which, if the prism be truly worked, makes an angle of 90° with / m pro-

duced, no matter what the direction of / m may be ; but if there is any error

in the angles of the prism, will not meet / m at right angles.

Displacement due to Refraction.—In Fig. 52 let C be a luminous point in

a dense medium from which, after refraction, rays diverge away from the

normal at the surface of the medium, and enter an observer's eye. These rays

being projected backwards intersect at C, the virtual image of C, which is

situated nearer to the refracting surface, at a point dependent on the obliquity

of the emergent rays and the index of refraction of the dense medium. This

explains why a stick ABC partly immersed in water, in an oblique direction,

appears bent towards the surface, the bend commencing at the level of the

water.

Fig. 51.
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The apparent position of an object in a dense medium depends upon the

position of the observing eye with respect to the surface ; the nearer the eye

to the latter, the greater must be the obliquity of the emergent light and the

greater also the apparent raising of the object. If the eye be practically on

the surface of the medium, the object is also apparently raised to the surface,

Fig. 52.

but is very distorted and indistinct. This will be seen from Fig. 53, which re-

presents the surface of a dense medium and 0 the object. A ray 0 A N,

normal to the surface, passes out unrefracted, but other rays from 0 which

are oblique to the surface, are bent away from the normal and when referred

back by the eye appear to come from points I", T" on 0 N, these being

the images of 0 when the eye is at B', C\ and D' respectively. Actually, how-

ever, the images are formed nearer than 0 N on a curve, this being known
as a caustic by refraction, bat it is sufficient for our purpose to consider the

images as lying on the normal 0 N. The exact position of any particular

image depends upon the obliquity of the line of vision, the /x of the medium,
and the depth of the object, and can be calculated as follows.

In Fig. 54, let 0 be the object and 0 B any ray making an angle with

the normal N N'. After refraction it will take the course B B', so that to an

eye at B' the object is apparently raised to /. It is required to find the
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apparent depth of the image, i.e. the distance ^ / in terms of the real depth

A 0, IX and r, the angle of view with the normal.

Now the aagle A 0 B = OBN' = i and A I B - NBB' = r

Also A O = A B/tan i, and A I = A B/tan r

Therefore A I/A 0 = tan ^/tan r

and A I — A O ^ — A O ^

tan r /x cos i

Let the real depth A 0 be ^ and the apparent depth t'. Then

^,
_t cos r

fx cos i

Thus, knowing /x and r we can calculate the value of i, and after that t'

from the known depth t for any angle of view.

Vertical Displacement.—If, however, the eye be on, or near to, the

normal 0 A, the above expression can be greatly simplified, because then the

angles r and i are very small, only a very narrow pencil being able to enter

the pupil of the eye. In these circumstances both cos r and cos i are practi-

cally unity, since the cosine of 0° is 1. Therefore without any appreciable

error we may say that

that is, the apparent depth of a medium viewed verticallyfrom above is equal to the

real depth divided by the fxof the medium. If the medium be water whose index

is 4/3, then the apparent depth is 3/4 that of the real depth ; with glass

^=1-5, r = 2/3 L

On the other hand, if the eye were supposed to be in the dense medium
and viewing an object in air, the apparent position of 0 would be greater

than the real distance such that ^ = tfx.

An object in a dense medium is apparently raised a distance d of

d = t-t/fx = til^^^

(fx— Vjjix is about 1/4 in the case of water, and 1/3 for glass.

The foregoing explains why a fish appears nearer the surface than it

really is, and also why, when the eye is near the surface, it appears dis-

torted, being thinner if length-ways (parallel) to the surface, and stunted

if viewed with its head towards the surface. Light from its under

portions suff'ers relatively more deviation than that from the upper, thus

giving the idea of vertical compression. Supposing the course of a bullet to

be unaltered by the water, one would have to aim, with a rifle, well beneath

a fish in order to hit it. To reach a coin at the bottom of a bath one would

have to dive towards a point apparently nearer. Again if a coin were hidden
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from view by the rim of a basin, it may come into view if water be poured

into the basin.

Refraction through a Parallel Plate.—If aray^ B (Fig. 55) be incident

on a medium with parallel surfaces such as a plate of glass in air, it will be

refracted towards the normal at the first surface in the direction BCy and

will emerge at the second as C D parallel to its original course A B. This is

due to the refraction at the second surface being exactly reversed to that at

the first, so that the angular deviation is zero.

Lateral Displacement.—The ray, however, as a whole is laterally dis-

placed over the distance HD, the extent depending upon the angle of

incidence the ix of the medium, and its thickness t. Let d be the displace-

ment and r the angle of refraction in the plate.

Fig. 55.

Now HD = EC, the angle UBF= t, CBF=r, and EBC=i-r, while

FB= t the thickness.

Then EC = BC sin EBC-BC sin (i-r)

but B C = B F/cos C B F - t/cos r

Therefore q _ _ ^
sin (i- r)

cos r

The value of r must be first found from i and fji, and then the displace-

ment d calculated.

If the angle of incidence be small, and the displacement taken as if

it were on the flat surface, we can get an approximate value for d as

follows

:

d=t {tan i-tan r), and substituting tan i/fx for tan r we have d=t
(tan i - tan i/fx)

Whence , _ / tan i (/x - 1)

Lateral displacement causes slight distortion of a near object when
viewed through a plate, but if the thickness is small, the effect is unappreci-

able. If the object be at such a distance that the incident light may be

considered parallel, there can be no distortion whatever.

Multiple Parallel Media.— If any number of parallel plates of difterent

indices be superposed their combined action is similar to that of a single
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plate of uniform index. That is, light incident on the first surface emerges

parallel from the last jwovided always that thefirst and the last media have the same

index and that the various component layers have themselves parallel surfaces. The

refraction that occurs on the passage of light through various parallel media

would be such that sin i x /x of 1st medium = sin r x /x of last medium, and if

the 1st and last media are of equal optical density sin ^ = sin r. When the

first and last media have not the same index the deviation suffered by the

light, on emergence, is the same as if the light entered from the first directly

into the last medium.

Lateral and Vertical Displacements.—In Fig. 56 the point L viewed

obliquely by an eye A A through a transparent medium N, whose two

refracting surfaces are plane and parallel, is seen as L laterally displaced and

nearer. If L is viewed from B situated vertically above, it appears to be

IB

Fig. 56.

nearer, at 7, but not laterally displaced. It is easily proved that the

distance Z / is given by

1^

as for an object situated in a dense medium as previously described. Thus

for glass of index 1*5, any object viewed through a parallel plate would

always appear nearer by about 1/3 the thickness of the plate.

Eye in Dense Media.—There is, of course, no critical angle for light

passing from a rare into a dense medium, so that to an eye under, say, water,

a field of 180°, including all external objects down to the surface, is visible.

Owing, however, to refraction, the light from external objects is crowded

into a cone whose angle is twice the critical angle of—in this case—water.

This can be seen from Fig. 57, where E is an eye looking upwards from the

dense medium.

Rays A B and D C from objects level with the surface are practically

parallel to the latter and therefore are refracted into the water at the critical

angle E B N' and E C N' and are referred back in the direction (rand F.

The cone F E G contains a distorted view of all external objects, and its
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angle CE B is equal to the sum of the angles E B N' and E C N\ that is, to

twice the critical angle of water—about 96°. Also, as previously mentioned,

objects directly above appear more distant by an amount equal to about 1/3

;n"

i

/G

D

E
I

JV'

Fig. 57.

their real distance, but those closer to the surface are displaced to a rather

greater extent. The distortion and indistinctness are greatest for objects

near the surface, and disappear for those directly above.



CHAPTER V

REFRACTION BY PRISMS

If the two surfaces of a refracting medium are not parallel to each other,

all incident light must suffer refraction, since no ray can be perpendicular to

both surfaces.

Prism.—An optical prism is a transparent body, usually made of glass,

but it may for special reasons consist of quartz, rocksalt, fluorspar, etc. It

has two plane refracting surfaces A B, A G (Fig. 58), which meet in a line

at A, termed the apex or edge of the prism. The third side B C, opposite

this edge and joining the two refracting surfaces, is called the base. The
latter may slope in any direction, as it does not affect the course of the

light.

If a ray be incident in a direction perpendicular to the first surface, it

A

Fig. 58.

passes through the prism without deviation until it reaches the second

surface, when it is refracted away from the normal. If a ray be incident

otherwise than normally on the first surface, as it passes from the rarer

into the denser medium, it is refracted towards the normal to the first

surface, and on emergence is again refracted at the second surface as it passes

from the denser into the rarer medium.

Provided that the angle of incidence be the same, the rays are refracted

to the same extent, no matter on what part of the first surface of a prism

they are incident. If the rays (Fig. 58), incident on the prism, are parallel

before refraction, they are similarly situated in relation to each other after

refraction, and emerge from the prism parallel. If they are divergent before

62
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refraction (Fig. 59) they emerge from the prism divergent ; if they are

convergent, they are convergent on passing out. Nevertheless, as will be

seen later, the degree of divergence or convergence is not quite the same

after refraction as before.

The Principal Angle.—In Fig. 58 the angle formed at A, by the two

refracting surfaces, is called the lorindixil angle^ sometimes known as the

A

Fig. 59.

refracting angle, or angle of inclination. While the principal angle merely

indicates the shape of the prism, yet the refracting power of the latter is

governed chiefly by it.

The Degree.—A prism is usually indicated by the number of degrees

included between its two inclined sides. A prism of, say, 10° is one in which

the two sides enclose an angle of that amount.

The Angle of Deviation.—Let the incident ray DE (Fig. 60) be directed

towards a point H in the centre of the prism. Being refracted at E it takes

Fig. 60.

the direction E F and passes out in the direction F G as if proceeding from

/. The angle of deviation of the prism is, in this case, IHG, because D F,

instead of following the path HI, appears after refraction to follow the path

J F G. An object at D, when viewed through the prism from G, appears

as if it were situated at J. The deviating angle constitutes the important

optical property of a prism and expresses its power or refracting effect.
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Defining Terms.—In the prism (Fig. 61) the line of junction A B oi the

two refracting surfaces is termed the edge. F CD E is the base, A BD C
and A B E F are the two refracting surfaces. The plane A B K I containing

the edge of the prism and situated symmetrically with respect to the two

surfaces is the base apex plane ; generally it bisects the base. Any line, as

L M, at right angles to the edge of the prism and lying in the base-apex

plane, is a base apex line. The line G H, parallel to the edge and lying in the

R

-IE '

1

—

H

Fig. 61.

base-apex plane, midway between the edge and base, is the axis of the prism.

A principal section of a prism is any section, as AFC, cutting it from edge

to base perpendicularly to the axis.

Shape of Prism.—A prism, as regards the outer margins of its refracting

surfaces, may be of any shape—square, circular, or oval ; neither the shape

nor size of its refracting surfaces influences the course of the light passing

through it.

In a circular or oval prism the thinnest part L (Fig. 62) is considered to

Fig. 62.

be the apex. M N is the base opposite to the apex. The central line L M
of the plane (A B K I of Fig. 60) connecting the thinnest and thickest

parts of a round or oval prism is called its base apex line; It is usually

marked on the circular prisms of the trial case by two small scratches, one

at the apex and the other at the base. 0 F, tangent to L and perpendicular

to L M, is the imaginary edge. F MN shows a section of such a prism

along the base-apex line.
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Deviation by a Prism.—The apparent deviation of an object caused by

a prism is the combined result of the refraction suffered by the rays at the

two surfaces, and although commonly said to be towards the apex it is

actually towards the edge of a square prism, or the imaginary edge of a

circular prism, in a direction parallel to the base-apex plane. A ray incident

at X (Fig. 62), from an object beyond the prism, is refracted towards Fand
is referred back towards Z, the line of deviation Z X Y being parallel to the

base apex-line LM. The effect of a prism is to bend the light towards the

base and an object seen throuf/h the 'prisni appears deviated towards the edge.

Deviating Power of Prism.—The deviation of a ray passing through a

prism depends on (1) the angle of the prism, (2) the index of refraction of

the medium, and (3) the angle of incidence of the ray. The larger the

angle formed by the two refracting surfaces the greater is the angle formed

by the incident ray and the normal, and, therefore, the greater is the deviat-

ing effect of the prism. The deviating effect also depends on the index of

refraction of the medium of which the prism is made, since the higher the

index the more is a ray, incident at a given angle, refracted.

As will be seen in the next paragraph the deviation of a ray passing

through a prism is a minimum when the incident ray makes a certain angle

with the first surface, and since, unless otherwise stated, minimum devia-

tion is implied, (3) above is usually ignored when the power of a prism is

considered.

Minimum Deviation.—For every prism there is one position in which

an incident ray will be less deflected than in any other. From this position,

if the prism be rotated round its axis so that either the edge or base is

advanced towards the source of light, an object viewed through the prism

appears still more deviated towards the edge of the prism.

Minimum deviation oljtains tvhen the incident and emergent raijs are equi-

distant frora the edge, and, as shoivn in Fig. 63, the angles of incidence and

emergence {i and e) are also equal. In this position the course of the ray, as it

traverses the prism, forms, with its sides, the base of an isosceles triangle,

and a perpendicular let fall on it from the prism apex will bisect it.

For any other incidence of the ray, as i increases, e decreases less rapidly
;

while if i decreases, e increases more rapidly, so that, in any case, the total

deviation is greater.

To Calculate /v. of a Prism.—In the prism B A C (Fig. 63) P is the

principal angle and d is the deviating angle. Let i be the angle of incidence,

r the angle of refraction at the first service, u the angle of incidence at the

second surface, e the angle of emergence which the refracted ray makes with

the normal F IS , and the index of the prism.

Draw A M to bisect the principal angle P. Produce the incident ray

D E to K, and produce the emergent ray G P" backward to meet D K in Q

;
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then the total deviation of the incident ray is equal to d. Produce the

normals L E and N F to meet at M.

As the prism is in the position of minimum deviation

i = e, and i=jj + r, and e = q + u.

In the triangle Q E F the external angle d equals the two equal internal

and opposite angles p and q.

In the right-angled triangle A E M the angle at ^ = 90° - ^ ME. In

the right-angled triangle OEM, the angle /•=90°-^ M E. Therefore

OEM=EAM. Thatisr=P/2.
Now the angle p = q=^dl2

Then i= r+^ = P/2 + 6//2 = (P + (^)/2

Therefore
sm

sm
sm r

sin

This formula enables us to find the index of refraction of a prism when P
the principal angle and d the angle of minimum deviation are known, P and d

being measured by the spectrometer (q.v.).

Fig. 63.

Example.—What is the index of a prism whose angle of minimum devia-

tion is 28° and principal angle 45° % We have

sm
. /45° + 28'

V 2 J sin 36° 30' -5948

sm
45° sin 22° 30' -3827

= 1-554

To Calculate the Angle of Deviation.—If /x and P are known d can be

found thus :

—

sin

Since

Let

Then

V + d

sin

IX sinP/2 = Sin (P + 6^)/2

{? + d)l2 be called a.

2« = P + f/and 2a-V = d.
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To find the value of cl we require two steps, thus

(1) Find a from sin « = /x sin P/2
; (2) then (l=2a - P.

Expressed as a formula this becomes

d=2 [sin-i (ix sin P/2)]-P

that is, cl equals twice that angle whose sine is sin P/2 less P.

Example.—AVhat is the angle of deviation of a prism whose principal

angle is 60° and index 1*62 ?

Here />i sin P/2 = 1-62 sin 30° = 1'62 x •5 = -81

and -81 = sin 54° (nearly)

Therefore d = (2 x 54) - 60 = 48°

To Calculate the Principal Angle.—The angle P at which a prism of

known index must be ground, so that a certain angle of deviation be obtained

is found as follows :

—

V + d\ . /P d
sin

( ) sm
( +

2

sin

_ sin P/2 cos <i/2 + cos P/2 sin dj'I _ , , sin c?/2— cos CL -r*
, _

sin P/2 ' tan P/2

that is 7 sin dl"2

whence , -r,,^. sin dl2
tan P/2 = ^

IX - COS a/2

Example.—What angle must be given to a prism of 36° minimum devia-

tion when /u, = 1 '586 1

P^ sin 18° ^ -3090 _ •3090_ .,gg.-^
^^

2 1-586 -cos 18° 1-586 -^9511 -6349

whence P/2 = 26° (nearly), and P = 52°

Simplified Formulas.—When the angle of incidence or emergence is zero,

i.e. when the incident ray is normal to the first surface, or the emergent ray

is normal to the second, the formulae for finding d or P when the other two
values are known, become simplified to

_sin ((i + P)
^ sin P

f?=[sin-i (/X sin P)]-P
and

, -r> sin cl
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Further Simplified Formulae.—By substituting angles for their sines,

which can be done without serious error when the angle of the prism is

small, as in ophthalmic prisms, the formula3 may be greatly simplified. The
original formula can be written

d + F d -.

whence d^T (/^^ - 1)

and p_ ^

If the refractive index =1-5 then /x - 1 = 1/2 and

Thus for a prism of 5° the angle of deviation would be taken to be 2° 30'.

It is thus usual to consider that the deviation of ophthalmic prisms is half

the principal angle, although the glass used has an index slightly greater

than 1*5. In addition, when a prism is thin, any moderate departure from

the position of minimum deviation does not result in any appreciable increase

of deviation, so that this factor may also be ignored.

Examples.—If the refracting angle of a prism is 10° and the deviating

angle 5-25, then

A prism of 10° principal angle, whose index is 1'54, has an angle of

deviation of

6^= 10 X -54 = 5-4° = 5° 24'.

If a prism of 6-25° deviation is required, the index of refraction being 1-56,

the prism angle is

P = ^=:ll-166 or 11° 10'.
•56

The Angle of Incidence.—In Fig. 63, we have seen that, when deviation

is a minimum, the angle of refraction r at the first surface is equal to half the.

principal angle P, so that ... . P
sm e =- /X sm r= /x sm ^

When the incidence is normal at the first surface, the principal angle of the

prism is equal to the angle of incidence at the second surface ; when the

emergent light is normal at the second surface, the principal angle is equal to

the angle of refraction at the first surface. Hence for normal emergence sin

i = fxsm P/2.
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For thin prisms, i.e. those having P of not more than about 10° or so, we

may omit the sines and then

so that if /X be taken as 1*5, which is about that found in ophthalmic prisms,

i = 3P/4.

Neutralising Prisms.—Two prisms of similar angle d will, when placed in

opposition, i.e. base to apex, neutralise each other. If they are also of

similar P and /a they act as a plate, having parallel surfaces, on light passing

obliquely through them. If the fx^ are unequal, so also must be the angles

P, that is. Pi (/x,-l)=P2 (/.2-1).

Therefore to calculate the thin prism P^ made of glass of a certain index

of refraction, which will neutralise the deviation of another Pg, whose index

is different, we have only to put

p _ P2(/^-.-l)

Then the prisms, being placed base over apex, act as a single plate

P

Fig. 64.

(although the surfaces are not parallel) since their respective deviations are

equal and opposite.

Thus if a crown glass prism of 15°, whose /x=l-54, has to be neutralised

by a flint prism whose index = 1-62, then from the above formula

jp
lo X 'o4:

Of course, should the prisms be thick, P^ and Pg are not then directly

proportional to d or to 1), so that here the value of the deviation of P
must first be calculated from the exact formula, and from this the correspond-

ing value of Pg for an index of fx^ may be obtained.

Displacement by a Prism.—In Fig. 64 the object A is seen, through the

prism, at ; if the object is at B or at C, it is seen at B' or C respectively.

The angular displacement of the object by a given prism depends entirely on
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the magnitude of d, and no matter how near or how distant the object (as

may be seen from the figure) the angle d is invariable ; but the actual dis-

placement A A', B B', C C is proportional to the distance of the object, and is

represented by the tangent of the angle of deviation at the distance.

Construction.—To trace the course of a ray D E refracted by the prism

^ B C of /X 1'5 it is only necessary to use a double construction like that of

Fig. 46. Draw D F (Fig. 65) normal to ^ C and divide E F into three equal

parts ; from E on E A mark E G equal to two such parts. Draw G I
normal to E A and connect E with 6^ / by a line E H (cutting A B at the

B C

Fig. 65.

point J) such that E H=E D. Then E J will be the direction of the refracted

ray in the prism. Draw E K normal to A B ; divide J K into two equal

parts ; on J B, from J, mark off «/ L equal to three such parts ; draw M L
normal to A B ; connect J with ML by a line J M, such that J M =J E.

Then J M is, the direction of the ray of emergence. The angle of deviation

DN 0 is found by prolonging M J backwards and B E forwards so that they

meet at N.

Should the /x of the prism have any other value than 1'5 then^^i^andJ L
must he to E G and J K respectively as /x: 1. Thus if /x= 1-6 the propor-

tional parts would be 16 and 10, or 8 and 5.



CHAPTER VI

REFRACTION BY CURVED SURFACES

Curved Surface.—A refracting surface is one which separates two media of

different densities, so that, when light passes from the one to the other,

refraction takes place. Only one refraction occurs and in this respect a

surface differs essentially from a lens, where there are at least two surfaces

and two refractions of the light which traverses it.

Since every line drawn from the centre to the circumference of a sphere

F

Fig. 66.

is a radius of curvature, every point on the circumference may be regarded

as a minute plane at right angles to a radius. Thus C E (Fig. 66) is a normal

to the surface at and also when prolonged beyond the circumference.

Course of Light.—Let Fig. 66 represent a transparent body having a

curved surface with its centre at C. Any ray of light A B or P E directed

towards (7, is normal at the point of incidence, and passes into the medium

Fir;. 67.

without deviation. A ray D E, which is not normal to the surface, is bent

towards the perpendicular F E C in the direction E F, if the medium is of

a higher index of refraction, or it is bent away from the perpendicular in the

direction E G, if of a lower index than that of the medium from which the

light proceeds. Both media are supposed to be of indefinite extent.

Cx. and Co. Surfaces.—In Fig. 67 let a mass of glass have a convex sur-

face, and the outer medium be air. The ray f\ A directed towards A is

71
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normal to the refracting surface and passes onward without deviation. The
rays B and j\ D form certain angles with the normals to the surface, and

each, on passing into the denser medium, is bent towards the perpendicular

to an amount governed by the ratio between the sines of the angles of inci-

dence and refraction. Thus D is bent more than B, and the two meet

the line /j^/g at the point
f.^.

Similarly, all rays diverging from are

refracted to
;

is, therefore, called the focus or the image of the source of

light and the points and are conjugate foci. If the object were at f^,

the image would be at/^.

The focus thus formed by a convex surface of a medium of higher index

Fig. 68.

of refraction is positive or real. If the medium is of lower index, light enter-

ing it is rendered divergent, and the focus is negative cr virtual. If the

surface is concave, as in Fig. 68, the reverse is the case, and/g is virtual and

on the same side of the surface as f^. The boundary plane between the two

media may be regarded either as the convex surface of the one or the concave

surface of the other, but it is more convenient to express it as convex or con-

cave to the medium of lower index, which usually is air. Thus for a dense

medium having a convex surface in contact with air we could calculate the

position of from the refractivity and curvature of the dense medium, or

from those of the rare medium, and the result is the same in the two cases,

Fig. 69.

for if the curvature of the latter is taken as negative while that of the former

is positive the refractivity of the latter is also negative.

Defining Terms.—The line A (Fig. 67), which is perpendicular to the

refracting surface and passes through the centre of curvature C and the

principal foci, is the principal axis ; all other lines passing through C are

secondary axes. A C = r is the radius of curvature, and C is the centre of curva-

ture, /j and are the positions occupied by object and image. i\ is the

anterior principal focus formed by the light proceeding from a distant source

on the principal axis in the denser medium, and is the posterior principal

focus formed by light proceeding from a distant source in the rarer medium.
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/x^ sin t = fj-o sm r

i = a + h and r = b - c

/x^sin (rt 4- 6) = /Xg sin (b -c).

Formulae connecting and/o.—In Fig. 69, let 0 be any object on the axis

of a single surface, and / its image formed by direct refraction of the ray 0 D
incident at D. From C draw the radius C D and let the angle A 0 D = a,

A CD = h SindAID = c. Suppose the indices of refraction of the first and

second medium be /x^ and /x^.

Then

But

Therefore

If the incident pencil be considered small and axial, the angles a, b and c

are also small, so that we can write

/Xj(sin rt + sin b) = /X2(sin b — sin c).

Let 0 A =
fj_, A /=/2 and A C= r the radius of curvature.

Then replacing sines by circular measure

Therefore /x-^ /x,^ _ ~
/^i

The Focal Lengths and Power of a Curved Surface.—The refractive

power of a curved surface depends on its curvature and the refractive

P

1^1 or

Figs. 70 and 71.

index of the medium, so that an increase in either is accompanied by
increase of power. The focal length depends on the refractive power, the

one being inversely proportional to the other, i.e. the greater the power, the

shorter is the focal length.

In Figs. 70 and 71 P is the principal or refracting plane of the surface at

which all refraction is presumed to take place. C is the optical centre (or

nodal point) because all rays passing through it are unrefracted. In Fig. 70

the light is parallel to the principal axis in the dense medium, and on emer-

gence into the rare medium is refracted so as to meet at the point F-^ situated

on the principal axis. F is the anterior focal distance, and F^ the anterior

principal focus.
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In Fig. 71 the light is parallel to the principal axis in the rare medium,

and after refraction meets at Fc^ in the denser medium. P is the ^posterior

jmncipal focal distance and F^ the posterior principjal focus. In the formula

given in the preceding article, if /2 is at oo so that the light in the denser

medium may be regarded as parallel, the term /^a/A becomes ^ij cc = 0.

Thus

/i

But has now become the anterior principal focal length, and may be

written F^. Therefore

H - IH

If /j is at 00 so that the light in the rarer medium (air) is parallel, the

term /x^//^ becomes
jj^J

oo = 0. Therefore

Here has become the posterior principal focal length F^. Therefore

r 2

The planes passing through F-^ and F^ perpendicular to the principal axis

are respectively the anterior and posterior focal planes.

If the one medium is air, i~i=l, so that it can be omitted from the

formulae ; the index of the dense medium we can then call {jl, and therefore the

formulae become simplified to

F, = _^ and F, =^
These formulae hold good only when the focus lies within the medium to

which the radius r pertains.

Examples.—If /x of the dense medium is 1-5 and the other medium is air,

for a radius of curvature of 8 in. we have

=
, = 16 in. from P, or 16 + 8 = 24 in. from C.

i '0 — 1

•^^^
(1-5-1)

^^^ ^^^^ ^' 01-24-8 = 16 in. from C.

Thus, ordinary glass having an index of about 1*5, the anterior and pos-

terior focal distances of a curved surface are approximately twice and three

times the radius respectively.
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If the surface is concave towards the light the radius is negative and
would be prefixed in the formulae by a - sign, so that and become
negative quantities, and are situated on the same side of the surface as the

source of light, i.e., is in air and F^ is in the dense medium.
Thus let ?= - 8'' and }x= 1-5, then

Fi =~^^= - 16 in. from P, or - 16 + - 8) = 24 in. from C.

p.^^
l-ox(-8) ^ _ 2^ .^^ or - 24 - ( - 8) = 16 in. from C.

*o

Suppose parallel light passes from water />t = 1-33 into glass /x= 1-5 and let

the radius be eight inches ; then

F2 = . .V^4>>Q = .^1 - = ^'^'^ ^1^0™ or '^0-6 - 8 - 62-6 inches from C.
ID — l'Do Li

If the light passes from glass into water,

Fi= i^'^= 62-6 in. from P, or 62-6 + 8 - 70-6 inches from C.
L'D — i 00 ' L I

In these formulse the relative /x, which equals /^oZ/^i' found and the

calculation then made as if the lower /x were 1.

Relationship of F^ and F^-—The anterior and posterior focal distances

measured from the refracting surface are proportional to the indices of

refraction of the two media.

Thus in the examples given we find respectively

^2^M2^24^1;5 , F2^70;6^2:5
F^

/^i
16 1 Fj 62-6 1-33

In a refracting body with a single curved surface r F^ — F^ ; this holds

good whatever the refractive indices may be. Thus F^ = F^ - r and F^ = F^ + r.

That is shorter than F^ follows from the law of sines. If the two

media are respectively of /Xi = l and /x^^l'S, when light passes into the

denser medium sin r is 2/3 sin i, whereas when light passes into the rarer

medium sin r is 3/2 sin i ; hence for parallel light the angular deviation is

greater when the focus is formed in the air than when it is formed in the

dense medium, it being in the first case about 1 /3 ^, and in the second case

1/2 of i, the incidence being the same in both cases.

In addition to what is stated in the first paragraph of this chapter, a sur-

face difi'ers from a lens in that, with the former, the first and last media being

different, F^ differs from F^, whereas with a lens F^ = F^^. Also as shown in

Fig. 66, the optical centre or nodal point C does not coincide with the prin-

cipal point which marks the refracting plane at B, the apex of the surface.

To find r or fx.—The radius or the refractive index can be found by sub-

stituting known values for the symbols giv^en in the above formulae, and then
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equating. Thus if be 30 in. and the indices of refraction be respectively

1*5 and 1, we have

30=^^', that is 1^=10 in.
•5 1-5

If = r = 8, and F2 = 70*6, we find /x^ as follows :

—

70-6 = ^^1^ and 105-9 -70-6 a. = 12

or 70-6 /xj- 93-9. Therefore 1-33.

All the formulas apply when the denser medium has a concave surface,

but care must be taken that the - sign be given to F and to r in all calcula-

tions.

Secondary Axes.—The principal axis of a refracting body passes through

C the centre of curvature and the principal foci (Fig. 72). All other lines

8hS B C, DC are secondary axes
;
they are radii of curvature of the sur-

face and therefore normals thereto. An object point situated on the lorinci-

2mI axis has its image on the pincijml axis. An object point situated on a

Fig. 72.

secondary axis has its images on that same axis and the focus is a secondary focus.

An object can have only one point on it situated on the principal axis
;
every

other point on its surface is situated on a different secondary axis, and simi-

larly of course with the image of the object.

Position of an Image Point —The image of a luminous point being on a

line drawn from that point through C, its position on that line can be deter-

mined by calculation or construction. It is on the opposite side of the re-

fracting surface if the rays converge after refraction ; and on the same side if,

after refraction, they diverge from the axis on which the point is situated.

The greater the convergence or divergence the sooner do the rays meet or

appear to meet and form the image of the object point from which they

originally diverged.

Construction of Image—Cx. Surface.—In Fig. 73 A B is an object situated

in front of the refracting surface D P H. Rays diverging from A and B have

their images respectively at A' and B\ so that B' A' is the image of the

object A B and can be constructed in the following way.

There are three rays emanating from any point of the object, say the

point A, the course of which can be easily traced, viz.,
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(1) A ray A C directed towards the centre of curvature C. This being

normal to the refracting surface passes into the second medium without

deviation.

(2) A ray A D parallel to the principal axis. This, after refraction passes

through the posterior principal focus F^.

(3) A ray A G passing through the anterior principal This, after

refraction, is parallel to the principal axis in the second medium.

The point where these rays meet at A' is common to all the other rays

diverging from A and constitutes the image of that point. Similar rays from

B form an image at B'. Any two of the rays mentioned suffice for the con-

Fio. 73.

struction of the image points A' and B\ and the latter define the position

and size of the entire image of the object A B.

The image here is real and inverted; it is smaller or larger than the

object according as the image is nearer to, oy further from, the centre of curva-

ture of the refracting surface than the object itself.

If the object is nearer to the surface than F^, SiS A B in Fig. 74, the light

after refraction is still divergent, although less so than before refraction, and

as the rays cannot meet no real image is formed. The rays can, however, be

'referred back so as to meet in front of the refracting surface as A' B'

.

This is shown by the construction employed. From A draw A C ; since

Fig. 74.

this passes through C it undergoes no refraction ; draw A G parallel to the

axis ; this is refracted so as to pass through F^. Since the lines A C K and

G F^, after refraction, diverge, they can meet only by being prolonged back

to A'. Similarly, B C and B H may be drawn, and produced backwards to

meet at B\ Thus A'B' is the virtual image of A B, is further away than

the object, and is virtual or negative, erect and magnified.

When the object is situated in the anterior focal plane the rays, diverging

from any point on it are, after refraction, parallel to each other and to a

secondary axis in the denser medium so that the image, in theory, is formed

at 00. Similarly if the object lies in the posterior focal plane the light is

parallel in the rarer medium after refraction.
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Course of Any Ray—Cx. Surface.—From the foregoing we are able to con-

struct the course of any ray refracted by a Cx. surface. If an object point

were at D in the anterior focal plane (Fig. 75) the light diverging from

it is, after refraction, parallel to the secondary axis D C. Therefore any

ray S D Q incident on the refracting surface, passes through the first focal

plane at D and through the principal plane at Q, and its course, after refrac-

tion at Q, will be parallel io D C drawn from T) through C ; it therefore

takes the direction Q, f^. This construction is useful if it be required to

locate the image of a luminous point situated on the principal axis ; if aS' is

thus situated, /g is its image.

The distance a, between the ray and the principal axis in the refracting

G

r~— i
1

H

Fig. 75.

plane, is equal to the sum of h and c, the distances between the ray and the

axis in, respectively, the first and second focal planes. This fact gives an

alternative construction, because the point can be located by measuring

off on the second focal plane c^a-b, and then connecting Q through that

point to /g.

Construction of Image— Co. Surface.

—

AB is the object (Fig. 76).

Draw A G
;
this, after refraction, is diverged as if proceeding from F^. Draw

Fig. 76.

A C through the centre of curvature ; this is unchanged in direction by

refraction. Now A C and A G are more divergent in the denser medium
than they originally were in the rarer medium, and when projected back-

wards meet at A\ which is the virtual image of A. Similar rays from B
locate its image at B'. Consequently A' B' is the image of the object A B,

and is virtual or negative, erect and diminished.

Course of any Ray— Co. Surface.—To trace the course of any ray as

SG (Fig. 77) incident on a Cc. surface, we know that if rays diverge from

the focal plane they have their image in a plane D E midway between and

the surface. Now S G cuts the focal plane in H, and if from H we draw the

secondary axis H C we determine the point where it cuts D E. The
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ray is refracted as if it came in the direction K G, so that if S is on the

principal axisj /g is its image.

If the object point S (Fig. 78) is within F^, draw H S connecting S
with the focal plane and the surface. Draw HC cutting D E in K ; connect

K

S ] a1 c
~

Fig. 77.

K with the surface to meet there S H, crossing the axis in
f.^, which is the

image of S if the latter is on the principal axis.

Construction for the Course of a Ray.—When and F^ are not known
the construction as is illustrated in Fig. 79 can be employed. Let A B he

the incident ray on a surface of the medium whose centre is C and /x= TG.

H
K ^ \

^-^c j-^

Fig. 78.

Draw DEC normally at the point of incidence, and draw a tangent to the

surface at and at right angles to D B C \ then HK is the refracting plane.

From any point G drop GH normally to E F. Measure ^ 5 and mark off

BK equal to 10/16 of H B. Drop the normal K L and mark off the line B M
whose length equals that of B G. Then B M N is the course of the refracted ray.

Fig. 79.

This method serves also for spheres and lenses by making a second construc-

tion for the second surface.

Formula for Conjugate Foci.—The formula, previously given, for calcu-

lating conjugate foci of a single surface is

fh + /^^ ^ or = ^2 ~ f^i _ f^i
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where and /2 are the two conjugates, and /Xg is the refractive index of the

denser medium, /x^ always jjertains to the medium in which the object is situated,

the other being that of the medium towards which the light proceeds, but

which may or may not be that in which the image is actually situated, since

this may be either real or virtual. The radius r is positive or + when the

surface is convex towards the object, and negative or - when concave

towards it.

Size of Image.

—

Whatever may he the distance of the object, its size and that of

its image are to each other as their resi^ective distances from the centre of curvature,

where the axial rays cross each other. This is shown in Fig. 80, and whether the

image be real or virtual it can be seen that the object and image always sub-

tend the same angle at C.

Let the distance of the image from the surface be and that of the object

and let r be the distance from the surface to the centre of curvature.

Let the size of the image be A., ^^^^ ^Ji^^ of the object h^ and their distances

Fig. 80.

from C respectively IC and OC; then the magnification, in the case of a

real image, is

M = ^ = -/2 ~ ^'

A, OC A + r

Should the distance of /g or not be known, J/ can be found from F^jif^ - F^)

or (/g - F2)/F-^_ respectively.

The linear size of / or 0 is found, when the size of the other is known,

from

h^JhiAzll and h,Jh(A±^
fi + r f2-r

If h^ and/j^ are in the same terms, i.e., inches, cm., etc., then /^g is expressed

in the same terms as /g.

A more useful expression, however, can be found for the magnification as

follows. From the original formula

fi U ^" ^'

that is,

SO that we can write

M = (i2Jfi ill place of
^^1 +

/'i + '^i=./i2_/^2

fiF-2 +
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Thus JhUh

which is a much more convenient formula for calculating the size of the

image.

Unit Magnification.—When the object and its real image are situated at

equal distances from C, and on opposite sides of the refracting surface, they

are equal in size and situated in the planes of unit magnification. In this

case 0 is at twice the anterior focal distance and / is at twice the posterior

focal distance from the surface, or 0 is at 2F^ + r and / is at '2F^ — r from C.

That is, M=l when f^+r =fcy- r, or when Ati/2 = /^2/i- ^^^^ conjugates

are consequently at '2F^ and 2i^2 respectively from the surface. If the image

is virtual, with a concave or convex surface, unit magnification can only occur

when 0 and / are both at the refracting surface and, of course, therefore

equi-distant from C. Since the axial rays cross at C, the image formed at

/•'o of a surface is of a size equal to that formed by a lens whose F=^F^, and

that formed at F^ is the same as that formed by a lens whose F =^ F^.

Examples.—Let r=10 mm., ix.^=\''b, />ii=l, and be in the air at

100 mm. from the surface ; then

— = _ = that IS, = = 37-5 mm.
/g 10 100 100 4

The image is real and inverted and its size relative to the object is

^^^2^ 37-5 _37-5
' 100x1 -5 150

If be, say, 10 mm. then

7 10 X 37*5 r-

^^^~T50
^

Let r = 8 mm., //j= 1*333, /x.^=l, and the object be at 3*6 mm. behind

the surface and 2 mm. in size ; then

1 _1 -l-333 _ l-333 _ -1^

^ "- 8 3-6 3-05

Here is the denser medium containing the object, towards which the

surface is concave. The image is virtual at 3-05 mm. behind the surface, and

its size is

, 2 X 3-05 X 1-33K = = 2-25 mm.
3'b

That is to say, the pupil of the eye, if 2 mm. in diameter, and 3-6 mm. from

the cornea, appears to be 2-25 mm. in diameter and about 3 mm. behind the

cornea.

6
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Suppose r = - 3", = 1 -5, /x^ = 1, = 20" and = 1". Then

l^^l-5_-l_ 1 ^ _13 therefore/,^ -6ir
/2 -3 20 60 ^2 13 13

and 7 2 X 6-^ 6 .

Another Expression for Conjugate Foci.

Since ^^^^^ I., -jr., ^ 1

we could write

/i A
and if ju.i=l and since ix^F^ = F^ we have the most useful formula3 for con-

jugate foci in

7^+^^=^ or /2 =^f and A = -/^\

Examples.—Suppose the object be situated 20 inches in front of a convex

surface where F^ = 6 in. and F^ = 9 in. Then the image is real and

r 20x 9 180 T,^,
.

Let an object be situated 5 inches in front of a surface where Fj^ = Q in.

r 5x9 45 . K .

L = =— = - 45 m.
5-6 -1

andi^2=9in. Then

The image is negative or virtual and on the same side of the surface as f^.

If is situated at F^ the divisor of the fraction is 0, so that is at oo

;

also if is at oo then corresponds to F^.

Let an object be 12y in. in the dense medium having a convex surface

whose F2 = 9 in., and 7'\ = 6 in., then

/=i?i^ = ^.^T^20in
l2f-9 3|

This example should be compared with the one previously given, where

the object is in front of the refracting surface, 20 inches and 12^ inches

being conjugate distances for the given refracting medium.

An object 20 inches from a Cc. surface, whose F^ and F^ are respectively

- 6 and - 9 in. has its virtual ima^e

,_20x(-9)_ -180_ g^,.
^2- 20 -(- 6)" "26 "
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Conjugate Focal Distances—Cx. Surfaces.— If the object is at go repre-

sented by A (Fig. 81), the light is parallel and, after refraction, meets at

F^. This is the nearest point to the refracting surface at which a real

focus can be obtained.

If the light diverges from an object at a finite distance from the

refracting surface, some of the converging power of the medium is required

to neutralise the divergence of the light and there is less residual conver-

gence ; the light therefore is convergent to a gi-eater distance behind the

refracting surface than if the light had been previously parallel ; the image

in the denser medium is at some point situated between and oo.

V
'

Fig. 81.

As the object approaches from oc the image recedes from F^ and vice

versa, until when the object is at F^ the image is at go.

If the object is nearer than F-^ as at 0 the image is at / on the same side

of the surface. As 0 then further approaches the surface so also does /, and

when 0 touches the surface / does so also.

When 0 is within the dense medium and the light is parallel / is at F^ ;

as 0 approaches i^g so / recedes from F^^ and when 0 is at F^ the image is

at CO. When 0 lies nearer to the surface than F^ the image is virtual and

on the same side of the surface as 0.

Thus in Fig. 82 if the object is at 0' the image is further away at F ; if

Fig. 82.

the object is at C then the image is at C, and if the object is at 0" then the

image is nearer the surface at /" ; when 0 touches the surface / does so

also. If light diverges from a point beyond C it becomes less divergent by

refraction at the surface, and if from a point nearer than C it becomes more
divergent. It should be particularly noticed, however, that as the object

moves away from the surface in a convex dense medium, the image increases

in size until, when 0 is at C, / is there also, but with a magnification equal

to /u, (the dense medium being assumed to be bounded by air). As the object

moves beyond C towards F^ the image continues to increase in size, until,

when 0 is at F^, / is at oo and infinitely magnified.
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Conjugate Focal Distances—Cc. Surfaces.—When the surface of the

dense medium is concave and the object is at oo the image is at F^. This

is the most distant point from the surface at which an image can be formed.

If the object is within oo, the original rays being divergent are rendered

still more divergent after refraction than if they had been orginally parallel

;

hence the image is formed nearer to the surface, that is, as 0 approaches

the surface so also does /.

The virtual image is nearer to the surface than the object so long as 0
is beyond C ; when 0 is at C so also is /, but the latter is diminished by

times; when 0 is within C then / is beyond 0, and when 0 touches the

surface / does so also.

When the object is in a concave dense medium, unit magnification occurs

when 0 touches the surface; as 0 moves away towards the image

becomes progressively smaller until when 0 is at oo, / is at F^ and infinitely

diminished.

Virtual Conjugates.—Virtual conjugate foci, formed by Cx. or Cc.

surfaces, are not interchangeable as are real conjugates, but if the light

Avere directed converging towards /g the image formed would be at j\.

Other Formulae for Conjugate Foci and M.—If A and B be respectively

the distance of 0 from F^ and of / from F^, then

AB= F,F, and M =^ =J =
|

Dioptral Formulse for a Single Refracting Surface.—The diopter D is

an expression for the refracting power of a surface and has a value of

D= 100/F, F being in cm. We get

= (/^2~/^i) Dp = 1 00 (/^2-/^i)

r/x^ r fi^

Where (x^ is refractive index of the dense medium,

„ fj^i „ „ „ rare medium,

,, r the radius of curvature of the surface in cm.

„ „ the dioptric power corresponding to Fj^.

I-, I-^p j5 " 1' '1 to Fo.

: Dp as /Xg : fx^.

Example.—Find the power of a surface of radius 8 mm. and /x= 1-333

in air.

100 X (1-333 -l) _ ^^.gg
^ '8 X 1

D _ iQQx(i'^^3-i) _ 31.05
•8x1-33

31-25 : 41-66 as 1 : 1*333.
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Conjugate Foci.

Since
^ and F,u = Fo when the 1st medium is air,

/i A '

we have

hence

^+^=1 or ^i + ?i^=l

which expressed in diopters becomes

djix+ = Dp or + c/g/^t =

where and are the conjugate focal distances expressed dioptrally.



CHAPTEE VII

THIN LENSES

Images have been defined in Chapter III. When light from an object

enters the eye a real image is formed at the retina, the stimulation produced

by the point foci being conveyed to the brain where the sense of sight exists.

The retinal image is not seen, nor is the original object ; what is seen is the

mental conception of the light stimulation which is projected out into space,

and usually this coincides in size and distance with the object itself. The
mental image is virtual, and when it coincides with the object we say that we
see the latter, but if it does not thus coincide we say that we see a virtual

image of the object. This occurs whenever, by reflection or refraction, the

course of the incident light is changed as by mirrors, prisms or lenses.

Light diverges from a real image, formed on a screen or in the air, and it

is seen in the same way as an object ; the mental image of the real image is

projected so as to coincide with it ; but it can be viewed through a lens or

prism, and a virtual image formed of this real image, as occurs when a micro-

scope or telescope is employed. A real image is an actual thing which exists
;

a virtual image, as the term is commonly employed, is imaginary, it merely

appearing to exist.

Position of Object.—It is always taken that an object is in front of a lens

or mirror, and the image is in front or behind according as it is, respectively,

on the same side as, or on the opposite side to, the object.

Optical Signs.—In this work the following convention is followed. Since

light always diverges from luminous points divergence is considered negative^

and therefore convergence is considered ^osi«!iz;e.

Surfaces, mirrors or lenses that cause, or tend to cause, convergence of

light, are similarly positive, as also are their focal lengths and powers, and the

real images and foci produced by them ; to all these the + sign is assigned.

Surfaces, mirrors or lenses that produce, or tend to produce, divergence,

together with their focal lengths and powers, and virtual images and foci, are

negative and given the - sign.

Thus when a convex spherical surface of glass is in contact with air,

refraction occurs, and this may be taken as due either to the Cx. glass sur-

face or to the Cc. air surface ; both are + since both cause convergence of

parallel light. If a double Cc. air lens be in water we could consider the

86
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converging effect which results by calculation of the two Cc. air surfaces, or

of the two Cx. water surfaces. A Cx. surface is not necessarily positive, nor

a Cc. negative ; when they are reflecting surfaces they are the reverse, as

they are, also, when refracting if they are of lower fi than the adjacent

medium. Usually, however, in optics, a Cx. refracting surface is positive

and a Cc. is negative because it has a higher fx than the adjacent medium,

the latter being air, but this may not be the case when light passes suc-

cessively through various media.

Important Consideration.— It is most essential to differentiate between

the direction of axial rays and that of the rays from the various points on an

object with reference to their axes.

From each point of the object a pencil of rays diverges and each pencil

has an axis, which is the axial ray of that pencil. Axial rays always converge

to the optical centre of the lens, and their convergence governs the size of

the angle subtended by the object and the image at the lens.

The rays themselves always diverge from the luminous point to the lens,

and their divergence governs the jjosition or distance of the image, the rays after

refraction being more or less divergent or convergent, according to the

Fig. 83.

degree of original divergence and the diverging or converging power of the

lens.

Parallel light is merely light having a negligible degree of divergence.

These 7nost important considerations, for students are apt to confuse the

conditions, should be carefully noted. Thus, in a diagram which shows

light parallel to the axis, and incident on various parts of the lens surface,

the rays are presumed to originate, not in various points, but in one single

point on the axis.

These considerations apply not only to all lenses, but to surfaces and

curved mirrors as well, and all positions of the object.

Definition of Lens.—A lens is a transparent body bounded by one curved

and one plane surface, or by any two curved surfaces, and is usually sur-

rounded by air. This definition, therefore, covers all forms of convex and

concave sphericals as well as cylindrical and other special forms of lenses.

Prismatic Formation.—If two similar prisms A CD and B C D he placed

base to base as in Fig. 83 incident rays E and F are bent towards the base of
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the prism A C D, and rays H and K are bent towards the base of the prism

BCD, so that those refracted by the one prism meet those refracted by the

other. One ray, viz., G C IJ F suffers no deviation since it coincides with the

base of both prisms ; also L and M may be considered incident perpendicular

to the two refracting surfaces, and are therefore also not deviated.

If two prisms C A D, E A F, sls, in Fig. 84, be joined edge to edge all rays

incident on them, being refracted towards the bases, are therefore diverging

from the common edge, except the central ray incident at the junction of

the two edges.

What is true of two is also true of any number of prisms, and a convex

Fio. 84.

or concave lens may be considered as formed of prisms whose bases or apices

respectively have a common centre ; also every meridian must be considered

as if formed of a series of truncated prisms of different angles of inclination,

- but having a common base apex line.

Any two point areas A and B (Fig. 85) opposite each other constitute a

portion of a prism whose base, in the Cx., and whose apex, in the Cc, is turned

towards the principal axis of the lens. The areas A and B, near the

Fig. 85.

periphery of the lens, are more inclined towards each other than C and i),

situated nearer to the axis, and the inclination between the surfaces decreases

gradually until at (7 /?" on the principal axis they are parallel. Since the angle

formed by A and /; is greater ttan that formed by C and D, a ray passing

through A B is bent to a greater extent than one passing through C D, while

the ray which passes along the axis is not deviated at all.

Each zone of a lens, therefore, whether concave or convex, has a refractive

power which becomes greater as its distance from the axis is increased, and it

is due to this fact that rays diverging from a point, and incident on the lens,

are brought to a common focus practically as a point.



THIN LENSES 89

Forms of Lenses.—There are (Fig. 86) four forms of thin convex and four

of concave spherical lenses :

—

1. Equi-convex. Two convex surfaces of equal curvature.

1'. Equi-concave. concave ,, „ ,,

2. Bi-convex. Two convex surfaces of unequal curvature.

2'. Bi-concave. concave
,, „

3. Plano-convex. One side convex, the other plane.

S\ Plano-concave. concave, ,, ,,

4. Positive meniscus or periscopic convex, Cx. on one side and Cc. on the

other, the Cc. being the weaker power.

4'. Negative meniscus or periscopic concave, Cc. on one side and Cx. on

the other, the Cx. being the weaker power.

i Z 3 4 i'
3' 4-'

Fig. 86.

Variations of the above are made by increasing the interval between the

two surfaces ; these are treated in the chapter on thick lenses.

In any lens of whatever nature or shape, there are innumerable pairs of

points on the two surfaces such that tangents drawn to the surfaces at these

points are parallel. If, therefore, a ray incident at one of these points

Fig. 87.

emerges from the other, its final direction is parallel to its initial course just

as though it had been incident on a parallel plate. The ray, therefore, is not

deviated but merely laterally displaced by an amount depending upon the

thickness and fx of the lens. In Fig. 87 let and S be two parallel points on

the surfaces of the bi-convex lens L. They are located by drawing from the

centres of curvature P and Q any two mutually parallel radii P Fi and Q S,

and therefore, if a ray T R is so incident at R as to emerge at aS', the final

direction S V of the ray will be parallel to the original course T R.

While in the lens the ray will take the direction R S, cutting the principal

axis P Q in 0, which is a fixed point no matter what the position oi R S may
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be. Thus any number of pairs of parallel points may be located by drawing

a corresponding number of pairs of parallel radii, and if lines be drawn, as

R S, tliey will all be found to cut the axis in 0. This fixed point 0 is the

optical centre, and any line R S passing through it is termed a secondary axis,

since it suffers no angular deviation, but only a lateral displacement depend-

ing upon the thickness and /x of the lens.

The imaginary point on the principal axis, towards which a secondary

axis is directed, is called the first nodal point, and the corresponding point

from which it apparently emerges is the second nodal point. It is from these

points that the principal and all conjugate focal distances are measured, since,

as will be shown later in the chapter on thick lenses, it is on planes drawn

perpendicular to the axis through N-^ and N^^ that the refraction of the sur-

faces of the lens is presumed to take place. The nodal points are also

frequently referred to as principal or equivalent points, but as we shall not be

dealing with them until later it is not necessary to explain here the exact

difference between these terms.

Fig. 89 shows the positions of the optical centre for every type Of lens,

as well as the general formation of the latter by the intersection or non-

intersection of spheres and planes.

For our purpose in this chapter we shall, however, regard the thickness

of all lenses as negligible in comparison w^th the focal length of such lenses.

All lenses employed in visual optics are treated thus, and are said to be thin,

as distinct from others whose thickness cannot be disregarded without intro-

ducing considerable error in calculating the power and focal length.

This being so, the action of a lens, considered as thin, is greatly simplified

since we may assume the interval between the nodal points and optical

centre as so small that all three fuse into a single point to which we apply

the single term optical centre. Similarly the equivalent planes passing

through the nodal points are also considered to unite into a single refracting

plane passing through the optical centre, from which all distances and foci

are measured. The position of the optical centre depends only upon the

curvature and thickness of the lens, and is distant from each surface by an

amount proportional to the relative radii of curvature.

Terms of a Lens.—Let Fig. 88 represent a thin Cx. lens ; C C are the

centres of curvature, and 0 the optical centre. The line A 0 B passing

through the two centres of curvature, and the optical centre, is the principal

axis ; it is perpendicular to both surfaces of the lens. The plane LO L
passing through 0, perpendicular to A B, is the refracting plane, on which

all the refraction effected by both surfaces of a thin lens is presumed to

take place. Any lines SiS D B, E E directed to 0, are secondary axes, which

pass, obliquely to the principal axis, through the lens, and the latter being

thin, they are presumed to suffer no deviation at all.

Formation of Lenses.—In each of the diagrams in Fig. 89, which shows

the actual formation of lenses b}^ the intersection or non-intersection of
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spheres and planes, the radius of curvature is a line drawn from the centre

of each sphere to the corres23onding surface of the lens. The optical centre

in each case is marked 0.

In the equi-Cx. and bi-Cx. (1 and 2), and the equi-Cc. and bi-Cc. (5 and 6),

the centres C and C" are on opposite sides of the lens.

In the plano-Cx. (3) and plano-Cc. (7) the curvature of the piano surface

Fig. 88.

may be considered to be of infinite radius ; the centre then being at infinity

can be considered to be on either side.

A Cx. lens consisting of a complete sphere has the centres of its

opposite surfaces coincident.

Fig. 89.

In the periscopic Cx. (4) and periscopic Cc. (8) the centres are on the

same side.

Position of Optical Centre.—By calculation, the position of the optical

centre of any lens is found by dividing the thickness of the glass, on the

principal axis, in the ratio of the two radii of curvature ; so that, if the two
surfaces are equal, 0 is equally distant from each, but it is nearer to the more
curved surface if the two are unequal. If and be the radii of the two
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surfaces, / the thickness of the lens, and 0 the optical centre, then the distance

of the latter from the surfaces whose radii are and i\ is respectively

(> =^and-^>

Thus in a bi-convex lens where = "2 inch, and i\ and are respectively

6 and 10 inches,

•2x6 '2 + 10 .

0 = ^
—

z.-^ = "075 in. from r., and tttttt = '125 in. from r„
b + 10 ^ o + lO ^

The thickness is divided into 6 + 10 = 16 parts, and 0 lies on the axis

six of these parts from the pole of the shorter curve, or ten parts from the

pole of the longer curve. In lenses whose surfaces are both convex or both

concave 0 lies within the lens, but in periscopic lenses 0 lies outside the lens

on the side of the surface of greater power.

Suppose a periscopic convex in which t = -2 in., i\ of the Cx. surface

being 9 in., and of the Cc. - 12 in. Then + = 9 - 12 = - 3 and

0 - 1-8/ - 3 = - -6 in. from i\ and - 24/ - 3 =+ '8 in. from r^.

The distance from the convex surface being negative must be reckoned

away from it, and the two distances coincide -6 in. from the convex surface.

If the lens were periscopic concave 0 would be on the Cc. side.

With a piano lens the one surface having = 9 in. the other = oo, if

t = '2 in., then

9+ 00

since any number divided by oo = 0. 0 therefore lies on the curved surface

in piano Cx. and Cc. lenses.

Construction of Optical Centre.—The method of finding the optical

centre of any form of lens is shown in Fig. 89. From the centre of curva-

ture C, in any of the diagrams, draw a radius C D to the curved surface, of

which C is the centre. From C draw a radius C E to its corresponding

surface, and parallel to C D. Connect the extremities of the two radii by

the line D E and where it cuts the principal axis at 0, is the optical centre

of the lens.

In (3) and (7) C being at oo, the only radius that can be drawn from C,

parallel to C" E, corresponds to the principal axis itself.

In (4) and (8) the line connecting D and E has to be produced in order

to cut the principal axis.

Properties of Lenses.—A convex lens has positive refracting power and,

therefore, can form a real focus and a real image ; it renders parallel rays

convergent and divergent rays less divergent, parallel or convergent as the

case may be.



TRm LENSES 93

A concave lens has negative refracting power and, therefore, can only

form a virtual or negative focus or image ; it renders parallel rays divergent

and divergent rays more divergent.

The general effect of every spherical (and cylindrical) lens is, as with a

prism, to bend every incident ray of light towards the thickest part. This

property and the foregoing ones apply if the surrounding medium is of lower

density than that of the lens ; otherwise the reverse occurs. When discussing

lenses we take them, unless otherwise stated, to be in air.

The Focus.—A real focus, formed by a lens, is that point at which rays

diverging from a point meet after refraction.

A virtual focus is that point where rays diverging from a point meet

when produced backwards, or whence they appear to diverge, they being

still divergent after refraction.

Principal Focus and Focal Distance.—A principal focus is one formed

on the principal axis by the convergence or divergence of originally parallel

rays. A secondary focus is one formed on a secondary axis.

Fig. 90. Fig. 91.

The principal focus of a convex lens is positive and is situated on the

principal axis on the opposite side of the lens from the source of light.

Natural rays signify those rays which proceed from a source of light and

whose course is not altered by a lens or mirror
;
they may be parallel or

divergent, but never convergent.

The distance between the optical centre and the principal focus is the

principal focal distance of a thin convex lens (Fig. 90), the focus being that

point at which, after refraction, parallel rays meet. It is the nearest point

to a convex lens at which a focus of natural rays can be obtained. The
parallel rays in the figure are presumed to diverge from a single point on

the principal axis at oo.

The principal focus of a concave lens is negative, and is situated on the

principal axis on the same side of the lens as the source of light. Thus in

Fig. 91 the distance between 0 and the principal focus is the principal

focal distance of a concave lens. The principal focus being the point from

which, after refraction, parallel rays appear to diverge, is the furthest point

from a concave lens at which a focus can be obtained for natural rays.

The value of a lens is expressed either by its principal focal length F or by
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refractive power D ov 1/F, the latter expression being sometimes termed

the focal power; both properties depend solely on the curvature and the

refractive index, thickness being neglected. F and D vary inversely

with each other, they being reciprocals ; as the one is increased the other is

proportionately diminished. Thus 1/Z), and D = l/F. The meaning of

D and its relationship to F will be found in the next chapter.

Distance of Principal Focus.—Whether the one side or the other of a

thin equi-convex or equi-concave lens is exposed to the light, F is at the

same distance from the back surface of the lens since 0 is situated equally

F 0 A( i r

\

\
Fig. 92. Fig. 93.

distant from each surface ; but this is not the case with other forms of

spherical lenses. In Fig. 92 the principal focal distance 0 F oi ^ bi-convex

lens being measured from 0, it follows that the distance of F behind the

posterior surface of the lens depends on whether the less curved surface

or the more curved surface B, is exposed to the light. If A is thus exposed,

F lies further from B than it does from A when B faces the light. The same

applies to the bi-concave. With the periscopic convex, as shown in Fig. 93,

and the periscopic concave, the difference in the distance of F as measured

to the right from B or to the left from A is very marked. Similarly with

Fig. 94.

the piano Cx. and piano Cc. F is measured from the curved surface since 0

is situated thereon. In all cases 0 F h the same either way, i.e., F^^Fp.

To express the focal length of a lens in terms of the radii of curvature,

the refraction at each surface of the lens must be considered, and the two

combined into one expression.

Let A B (Fig. 94) be a bi-convex lens of radii r-^ and r^ and index /Xg,

that of the surrounding medium being im^. Then if any ray L M parallel to

the principal axis be incident at M it will be refracted and tend to focus at

/<, the posterior focal distance of the first surface.
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Thus r _ /Xg^j

J2
- Ih

Therefore is virtually an object with respect to the second surface, and

the final image is formed at F, which is the principal focus of the whole lens.

Since the thickness of the lens is disregarded we may take A F sls being

equal to B F. For the second surface, f-^^ and f^' being the conjugates

fi U ^2

But the image distance of the first surface becomes] the virtual object

distance // of the second surface, so that we must substitute the former for

the latter, using the negative sign. Then we get

H_ f^2 _ /^2-/^i

f2 - ^2

or

\H _ /^2 ~ /^l + - W

Now the final image distance
f.^

is the principal focal distance F

;

''^ = {lH-lh) + M or F=^ - W\
F 'i^Vn rj C'l + '^o) (/^'2-/^i)

These are the general formula? for a thin lens in any medium, but if jx^ is

air, which is usually the case, and taking /x as the index of the lens, the above

simplify to

(^'l + '-2) (/^ -l)

Since 1 li\ and 1 /rg represent the curvatures of the two surfaces, the power

of a lens is equal to the sum of its curvatures multiplied hy the refradivity of the

medium of which it is made.

A convex surface with regard to a lens is considered positive and a concave

surface negative, as already stated, and this facilitates calculation where we
have only two surfaces to deal with.

We have to consider the three following conditions :

(a) If both surfaces are of the same nature.

Example.—A Cx. lens of /x=l-54 and having surfaces of radii of 8 in.

and 5 in. The focus is here positive, thus

8 x 5 40 . ^ .

5w m.
(8 + 5) (1-54-1) 7-02
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If the surfaces are concave the negative sign must be prefixed to each
;

the focus also is negative.

F = = -i^=-5.7in.
(_8 - 5) X (1-54-1) -7-02

If both surfaces have the same radius, i.e.
?'i
= ?2, as in an equi-Cx. or

equi-Cc. lens, the formula becomes simplified, for

{r, + r^){l^-l) 2r(fx-l) 2 (/.-I

Thus if and r^=b and /x= 1*54

F = ^^- =-^^ = 4-63 in.
•54x2 1-08

If /X = 1 -5 it can be seen that in equi-Cx. or equi-Cc. lenses the focal

length is equal to the radius.

(b) If one surface is plane, then = oo and l/r^ = 1/ oo = 0, so that it may
be ignored and only the curved surface considered, and the original formula

simplifies to

/X- 1

If ^=1-5, it can be also seen that in a piano Cx. or Cc. lens the focus is

twice the radius.

(c) If one surface is positive and the other negative, the focus will be

positive or negative as the one or other predominates.

Example.—In a periscopic Cx. let the two surfaces be respectively

— 8 in. and +4 in. and /x=l-6. Here

-8x4 -32 ,iQQ-
^=(-r8T4)^6 =

^=-^^'''^"-

In a periscopic Cc, if the surfaces are + 8 in. and - 4 in. respectively.

P=8^iifi) =^2^-13-3 in.
(8-4)x-6 2-4

Relative Powers.—It can be seen from the above that, the radii being

constant, the power of a lens in air is proportional, not to /x, but to (/x- 1),

the latter being termed the refractivity of the medium. Thus if two lenses

A and B be ground to the same radii but on glasses of diff'erent /x s, the ratio

of their powers is as (^^ - 1) : {/jLu - 1), their focal lengths being as (/x^ - 1) :
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To find r.—To calculate the curvature of one of the surfaces or when
that of the other, as well as [j^ and F, are known, it is necessary to substitute

the values of the known quantities and then equate as in the following

examples.

What radius should be given to the second surface of a lens so that F =
6 in. i\ = 8 in. and /x= 1*5

17 a

then

6 = --^V_; or 24 + 3ri = 8r,
4 + '57\

5?-3 = 24 or ri=-f4-8

What should be the radius of the Cc. surface of a meniscus when that of

the Cx. is 5 in., F being 12 in, and /x= 1-6 ?

Then

;^^=(5+':.:).6^ 5.,= 12x(3 + -6,,)

and

h =
~~f.:j

= -16-36 in.

To find —Similarly by substitution /x can be calculated. For example,

F= 24 cm. and the radii are + 6 and - 12 cm., then

24^ fix -12 -72

(6-12) (/x-1) -6/X+6

-72= - 144/X+ 144 and /x=l-5

Calculations when /x^ is not Air.—-When the first and last media are not

air—that is to say, if the lens is situated in a dense medium—the original

formula is required :

—

F ^ 'Wi
0'l+^2) 0^2 -/^l)

Thus, suppose a double Cx. lens of /x=l-54 and 8 cm. radius placed in

water ; in that medium

p ^ 8x8x ia3___ ^ 85;l 2 ^ 05.33 cm.
(8 + 8) (1-54 - 1-33) 3-36

Or the relative index /x,. may be found by dividing /Xg by fi^, and the for-

mula then becomes as with thin lenses in air. Here /x^,= l'54/l-33= 1'158,

and

8x8
(8 + 8) X -158

-=25-33 cm.
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Let a similar lens, but of /x= 1*33, be placed in cedar oil of /x= 1-54, then

8x8xL54 ^98j^^_ 29-33 cm.
(8 + 8) (1-33 -1-54) -3-36

Here the lens acts with a negative effect, and it shows us that an air lens

in water must have a concave curvature in order that it may have a positive

refracting power. Dr. Dudgeon constructed such a lens to enable divers,

without helmets, to see under water. It consisted of two small watch-

glasses of very deep curvature cemented into each end of a vulcanite ring,

the convex surfaces facing each other inside the ring. The lens had no

magnifying power out of water, as it only contained air. In water, however,

the concavity of the lens produced a convexity of the water in contact with

it on each side, and this convexity gave the required refractive power.

Let a Cc. air lens be of 10 inch radius on both surfaces. What will its

focus be in water '?

y_ -lQx-10xD33 100 x 1-33 _133_ ^q"(- 10 - 10) (1 - 1-33) -20 x --33" 6^66

Since a Cx. water lens of the same radius in air has F=15 in., it will be

noticed that the effect is not the same when the conditions are reversed.

This arises from a similar cause to that which produces a difference in the

anterior and posterior foci of a single refracting surface. If light passes

finally into a rare medium the focal distance is shorter than when it thus

passes finally into a dense medium.

Change of F in Dense Media.—The change undergone by the power and

focal length of a lens when transferred from air to some denser medium is

greater than we might perhaps expect at first sight. It has been previously

shown that F is inversely proportional to (// - 1), so that when a lens of index

[x^ is immersed in a medium of index /Xg, we have F : F' : : (/x^ - 1 ) ^ (i^i
— 1)?

where /x^ is the relative index ixjixo- other words the lens has a focal

length F' in the medium as if it were made of a substance whose index is fir,

and surrounded by air. Thus

F--
F(/x,-l) p^_ D(/^.-l)

(/x^-1) (/^l-l)

For instance a Cx. lens of radius 8"' and /x= 1-5 has in air a focal length

of 8" and a power of 5 D. If placed in water of /x = 4/3, F' is 32 in. and D is

1-25. Thus a glass lens in water has its focal length increased about four

times, and its power correspondingly reduced to a quarter.

The crystalline lens of the eye suffers an even greater change of power.

In situ its power is about 22 D, but in air it becomes about 125 D. In this

case the relative index between the lens medium and the surrounding

aqueous and vitreous is only some 1*09.
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Cases of Various Media.—When a thin lens of /ig separates two media of

/Xj and /Xg—that is, when there are three different media separated by two

curved surfaces—the following formula serves for finding the focal length :

—

/Xg ^ /X^ - /X^ fX^ - /Xg

If there are four media we have

7-2 rg

The power of any number of surfaces separated by negligible distances

can be found by taking the sum of their anterior focal powers and multiply-

ing it by the reciprocal of the last /x—i.e., by I//X3 or I//X4 as the case may be.

If the last medium be air, like the first, we have 1/F equal to the sum of the

anterior focal powers of all the media.

It should be particularly noted that in the numerator of each fraction the

preceding /x is always deducted from the /x following—-e.g. /Xg - /x^, and that

r is positive or negative according as it is respectively Cx. or Cc. towards the

direction of the light. In this way all calculations involved in fused or inset

bifocals are rendered comparatively eas}^

We have a case of four media when light passes from air to a surface of

/X2, then to another surface of /Xg, and finally, by a third surface again into

air. Such a combination exists if a bi-focal be made by the insertion of

a'deeply curved convex segment of high /x into a space made for it in a

larger lens of low /x. Such a combination is also formed by the contact of a

double Cc. lens of, say, /x=l*5 with a double Cx. lens of, say, /x=l*6, the

two being of equal curvature. The focal power can be found by calculating

for each lens separately and then adding them together, or by calculating for

each surface separately, as indicated above.

Recapitulation of Formulse.—The following is a recapitulation of the

formuke for finding the focal length of the various spherical refracting bodies

when the light passes from air. Where numerical examples are appended

they arc in each case for r= 6 in. and /x= 1'5.

Approx.
Value in r.

Posterior F of a sinp-le surface = 1 8 in. = 3r
^ /X- 1

T
Anterior F of a sinerle surface = 7/X- 1

F of all forms of thin lena - ^ ^

= 12 in. = 2r

F of a thin equi-lens = — — = 6 in. = r
2 (/X- 1)

F of a thin piano-lens =
^ = 1 2 in. = 2r

/x-1
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Dioptral Formulse.

Lens in Air.—To find the dioptral power I) of a Cx. or Cc lens, the

radii being in cm. :

—

j,_ 100 (^-l)(r, + r, /100_^100\

\ h '''2 )

which formulae simplify to

p. 2xl00(/x-l), ^D =
-f^

^ tor an eqm Cx. or Cc.

^ 100 (/x-1).
^ n nD = for a piano Cx. or Cc.

Lens in a Medium Denser than Air.

—

fi^ pertains to the lens and /x^ to

the medium in which it is placed.

j,_/100 ^

lOOx

\ ''\ ^ 2

The Construction of Images formed by Thin Lenses.

Course of Light—Cx. Lens.—If a beam of rays shown by the thick lines

in Fig. 95 be incident on the surface of a Cx. lens in a direction parallel to

the principal axis they are refracted to meet at the point F^, the

principal focus or second focal point, situated on the axis. A line CD
drawn through this point perpendicular to the axis is the second focal plane.

The distance from 0, the optical centre of the lens, to F^^ or F^, is the focal

length of the lens. In the same way parallel rays which are incident on the

other surface of the lens (shown by the dotted lines) meet ni a point at jPj^,

the first focal point. A line A B drawn through it perpendicular to the axis

is the first focal plafie. The distance OF^ is equal to 0 F^, and L 0 L is the

refracting plane of the lens.

Whatever course a ray takes in passing through a lens (or any number of

lenses), if the light retraces its course, it follows the same path. It is clear,

therefore, that if the source of light be at or F^ the rays, after refraction,

pass out of the lens parallel to the principal axis. All rays which diverge

from a luminous point on the principal axis are refracted on passing through

a lens, with the exception of the principal axial ray which passes through

the optical centre and undergoes no refraction.

If, instead of the object point being on the principal axis, it is situated on

a secondary axis E F^, as in Fig. 95, the rays are similarly bent to meet in a

focus at i'Y, and any ray passing through 0 obliquely to F^ F<^ is presumed

to be undeviated by the lens.

I of Point on the Axis—Cx. Lens.—The object point A being beyond F^,

draw the axis A B (Fig. 96) and through F-^ draw the focal plane G H. From
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A draw any line A K jD, cutting the first focal plane at K and the refracting

plane of the lens at D. From K draw a line through the optical centre 0
and from D draw D B parallel to K 0. This refracted ray D B cuts the

A L. C

^

*

Fig. 95.

principal axis at B, which is the image of the point A. This construction

holds good because rays diverging from any point in the focal plane are

parallel to each other after refraction.

G

A

Fig. 96.

The object point A being on the axis nearer than i\ (Fig. 97) from A
draw any line AE, and from draw C parallel to A E. Draw CD
parallel to the principal axis cutting the second focal plane in D. Connect

Fig. 97.

D and E and produce to A' on the principal axis ; then A' is the virtual

image of A. This construction holds good because A E and F^ C are parallel

and therefore meet in the second focal plane ; also F^ C is, after refraction,

parallel to the principal axis.
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Construction of I for Cx. Lens.—In order to construct the image of an

object formed by a Cx. lens we have three rays diverging from any point

whose course, after refraction, it is easy to follow, viz. :,
—

(a) The ray parallel to the principal axis, passing, after refraction,

through i^2-

(b) The ray which passes through I\ and, after refraction, is parallel to

the principal axis.

Fig. 98.

(c) The ray which passes through the optical centre, and whose course is

not altered by refraction.

It is necessary to draw only two of these rays in order to locate the I of

a point, since where any two rays diverging from a point meet, all other rays

diverging from that same point also meet.

Real I.—In order to construct the complete 1 of an 0, the images A' and

of the two extreme points A and B should be found, and these suffice to

Fig. 99.

show the location and size of the image (Fig. 98). Draw from A the ray

parallel to the axis ; this ray, when refracted, passes through F. Draw the

secondary axis A A' passing straight through C. These lines meet at A\
the image of ^. In the same way B' , the image of B, can be constructed.

The images of all intermediate points between A and B could be con-
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structed, but^are not necessary, for B' A* shows the position and size of

the real inverted image of the object A B.

Virtual I.—AVhen the object is nearer the lens than (Fig. 99), from

A draw A E parallel to C D ; E is the course of the ray after refraction.

Draw A Oc passing through the optical centre.

Since these rays are divergent after refraction, no real image can be

obtained, but by producing them backwards they are made to meet at A\

A

> E

B

Fig. 100.

which is the virtual image of A. Similar rays drawn from B locate its

image as J5', and A' B' is the complete virtual erect image of the

object A B.

I at c».—When the object is at F-^, the rays, after refraction, are

parallel to their axes, and, therefore, no image can be constructed, since it

lies at infinity.

Course of Light—Cc. Lens.—If a beam of parallel rays (Fig. 100) is

incident on the surface of a Cc. lens they apparently diverge, after refraction.

a'

7

B

0

Fig. 101.

from Fj and a plane A B perpendicular to the axis passing through F is the

focal plane. Oc F is the principal focal distance. Every ray passing through
the lens is refracted, except that passing along the principal axis or a secondary

axis. A point on any axis as F^ Oc has its image on that same axis.

I of Point on the Axis—Cc. Lens.—To construct the image produced
by a concave lens, the object being a point A on the axis, draw any ray

ABC cutting the focal plane in B and the refracting plane in C (Fig. 101).
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From B draw B 0 through 0 the optical centre. Now B C and B 0 diverg-

ing from the focal plane apparently come from C" on X Y, the latter being a

plane midway between the focal and refracting planes. Prolong C C to A'
on the principal axis; A' is then. the image of the point A. This construc-

tion holds good because rays diverging from the focal plans of a Cc. lens

after refraction apparently come from the plane midway between the focal

and refracting planes.

Construction of I for Cc. Lens.—The construction of the image formed

by a concave lens is the same wherever the object is situated, since the

image is always formed on the same side as the object, and between the

principal focus and the lens. In Fig. 102, let A B be an object placed in

front of a concave lens of which F is the principal focus. From A trace

A 0, the axial ray. Draw A E parallel to the axis before refraction, and

diverging as if from F after refraction. These rays, being divergent, can

only unite by being prolonged backwards, when they meet at A\ Similar

rays from B meet at B\ its image. The complete image oi A B is A' B\

B

Fig. 102.

Construction for the Course of a Ray.—This can be done on the principle

shown in Fig. 79, as it is given for a single surface. In the case of a lens

or sphere, after the course has been determined from the first surface, a

second construction is needed for the second surface.

Characteristics of a Convex or Positive Lens.

(a) It is thicker at the centre than at the edge.

(b) It forms a magnified image of an object held within the focus.

(c) At the proper distance, it forms on a screen an inverted real image of

a luminous object, as a flame or window.

(d) It causes the image of an object, viewed through it, to move in the

contrary direction as the lens is moved.

Characteristics of a Concave or Negative Lens.

{a) It is thinner at the centre than at the edge.

(b) It diminishes the apparent size of an object seen through it.

(c) No image can be projected by it on a screen.

{d) When moved, an object seen through it appears to move in the same

direction.
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Refraction and Reflection Compared.—-A curved mirror may be regarded

as a dioptric system in which
ijx
= l\ ^^^^ therefore F-^ = F2. The principal

point is at the vertex of the curve, and the optical centre is at the centre of

curvature, they being similar to those of a single refracting surface. When
F of a refracting system lies in a medium similar to that from which the

light proceeds = Fg, and both are equally distant from the principal and

nodal points, which are then combined. In a reflecting system the source of

light and F lie in air. F is midway between, and therefore equally distant

from the principal and nodal points.

For comparison, the following figures show the difference between the

focal lengths when an incident beam of light is reflected from, or refracted

by, the surface of a thin piano Cx. or Cc. glass lens of /x= 1*5.

In Figs. 103 and 104, C is the centre of curvature. Rays of light

Fig. 103. Fig. 104.

parallel to the axis, if reflected, meet at R, which is half the distance of C
from the pole P ; if refracted they meet at F, which is twice the distance of

C from the surface. The thick lines represent the course of the refracted

rays and the dotted lines that of the reflected rays.

If we use the surface of a Cc. lens as a reflector and find F, then /x being

taken as 1*5, the refracting F of that surface is four times as long ; or if the

lens be double Cc. the F of the lens is twice as long as that shown by

reflection. Thus with a piano Cc. if the reflection F is 10 cm., the dioptric

F is 40 cm.

If we measure the curvature of a mirror by a lens measure scaled in

diopters, the measurement shown is about 1/4 that of reflection, i.e. F of the

mirror is 1/4 that shown by the scale. Thus if a mirror shows 2-5 D its F
is 100/2-5 X 4 = 10 cm.



CHAPTER VIII

THIN LENS CALCULATIONS

Lenses are numbered by two principal systems, namely, the inch and

the dioptric.

The Inch System of Numeration is based on the measurement of the

focal length of a lens, and the unit is a lens of one inch focus. Since F varies

inversely with the power, a lens which brings parallel light to a focus at

10 ins. or at 20 ins., has respectively 1/10 or 1/20 the power of the unit;

while one whose F= 1/2 in. has twice the power. The abbreviations Cx. for

convex and Cc. for concave are commonly employed in conjunction with the

focal notation of lenses.

The Disadvantages of the F System are that the inch in various countries

differs in value, so that a lens of given focal length in one country may not

be the same as one of similar number in another. There are 37 French

inches, while there are 39 '37 English inches, in the metre, so that a lens of

18 French (Paris) inches focal length is about equivalent to one of 20 English

or American inches.

Again, the intervals between the lenses, although regular as to their focal

lengths, are irregular as to their refractive powers ; thus there is a far

greater difference between the powers of a 5 and a 6 inch, than between a

15 and a 16 inch lens. Further, the unit being a very strong lens, and the

lenses mostly required being weak ones, calculations involve the use of

vulgar fractions.

Dioptric System.—The dioptric system is based on the refractive power

of lenses, and the unit is the diopter, which is that power which causes

parallel light to focus at 1 metre. The diopter of refraction is a measure of

converging or diverging power, and is not, strictly speaking, synonymous

with the metre, which is a unit of linear measurement ;
nevertheless, it is

often convenient to express distances in dioptric measure. The symbols +
and - are always used with this system.

The dioptric system is much more simple than the inch, and is now
universally recognised. The unit being weak, the power of most other

lenses is expressed by whole numbers, while if fractions are involved they are

expressed as decimals. The intervals between the lenses are uniform as

106
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regards their refracting powers. The power of a combination of two or

more lenses is obtained from simple algebraical addition of their numbers.

If a 1 D lens has F =^ 1 M, a 4 D lens, having four times as much power,

has F=l/4 M. But since the M can be sub-divided into 100 cm. or

1000 mm. the focal length of a 4 D is more conveniently expressed as

100/4 = 25 cm. A 10 D lens has ten times the power of the unit; therefore

its F= 100/10= 10 cm., or 110 that of the unit. A 0-50 D has half the

power of the unit
;
consequently its F= 100/"5 = 200 cm., or twace that of the

standard lens.

Conversion.—Since the -f 1 D lens has F^ 1 M, or 40 inches, it is equal

to No. 40 of the inch system, and a 40 D lens is the same as a 1 inch lens.

Now^ the metre (or 100 centimetres) 39 37 English inches, and for all practi-

cal purposes may be regarded as equivalent to either 40 or 39 inches. There-

fore for conversion from either scale into the other, it is only necessary to

divide 40 or 39 (whichcA^er is the most convenient) by the known number.

For instance,

Since many numbers will not divide evenly into 40 or 39, there is fre-

quently a small remainder which need not be considered beyond the 1/4, 1/2

and 3/4 in the lower inch numbers, and -25, '50, and "75 in the dioptral

numbers. Some numbers of both scales have no exact equivalent in spectacle

lenses, numbered according to the other, and the nearest must be taken as

the equivalent pow-er. For instance, it is considered that 3*50 L> = No. 11''

;

3-25 D = No. 12''; 4'50 D=No. 9", etc.

To Find F or D.—Dividing 40 or 100 or 1000 by the dioptral number

gives F in inches, in cm., or in mm. respectively. Thus, a 5 D lens has

F = 40/5 = 8 in., 100/5 = 20 cm., or 1000/5 = 200 mm.
If F is known in cm., mm., or inches^ the dioptral number is found by

dividing respectively into 100 or 1000 or 40; thus, if F= 200 mm., then

D= 1000/200 = 5 ; if F = 40 cm., D = 100/40 = 2-5
; if F=160 in., D =

40/160= -25.

Old Curvature System.—Originally the inch system of numeration was

based on the radius of curvature. No. 10 implied a double Cx. or Cc. lens

having a radius of curvature of 10" on each surface.

Old Cc. System.—In England concave sphericals were formerly numbered
by an arbitrary system commencing at 0000—the weakest—and terminating

with No. 20—the strongest. The values of these numbers in the inch and

dioptric scales are to be found in the appendix, but the system is now
obsolete.

Cyls.—The numeration of cyls. is the same as that of sph's.

2-5 D = 40/2-5 = 16 in.

2 in. = 40/2 = 20 D
13 D = 39/13 = 3 in.,

13 in. = 39/13 = 3 D
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Addition of Lenses.—The combined strength 1/F of the two thin lenses

in contact, whose values are indicated by their focal lengths F^^ and

respectively, is obtained by the addition of their refractive powers, thus

1/F = l/Fi + 1/F2

If the two lenses be, say, 24 inch Cx. and 10 inch Cx. their powers are

respectively 1/24 and 1/10; the combined power is

1/24 + 1/10 = 34/240 - 1 /7 approx.

The two are equivalent to a 1/7 Cx. or a lens of 7 in. F. It is evident

that F of the combination must be shorter than that of either lens alone.

If the two lenses are concave, say 5 and 8, they equal

-l/5 + (-l/8)= -13/40= -l/3approx.

When the one lens is convex and the other concave 1/F is positive or

negative according as F^ or Fg is the shorter. The two neutralise each other

more or less, and the residual power of the stronger is the power of the

combination. Thus, a 15 Ox. and a 12 Cc. when combined make a lens of

60 inch negative F, thus

l/15+(- 1/12) = 12/180- 15/180= -3/180= - 1/60

A 20 Cc. and a 10 Cx. together give 1/10+ (- 1/20) = +1/20 i.e., a 20 Cx.

The summing up of three or four lenses is achieved in a similar manner

;

thus 10 Cx., 16 Cx., 7 Cx., and 5 Cc. make together 1/10 + 1/16 + 1/7-1/5
= 59/560, that is, 9^ Cx. approx.

The strength D of combined dioptral lenses in contact is obtained by
adding them together algebraically, thus

D = Di + D2

being the power of the one, that of the other lens, and D that of the

two combined. For example :

+ 2 D and + 4 D= +6 D; + 4 D and - 3 D= + 1 D

-5-25 D and -2-50 D = - 7-75 D; +3 D and -3 D = 0, i.e. they

neutralise each other.

+ 7 D + 4-50 D + 1-75 D and -6-50 D= +6*75 D

Conjugate Foci with Thin Lenses.

Conjugate Foci.—In the following, let 0 and I represent object and

image respectively.

The focal distance of a thin Cx. lens is the distance from the optical

centre, which marks the refracting plane, to the plane in which originally

parallel light meets after refraction, and it is that distance from which light

must diverge in order to be parallel after refraction. In the case of a thin
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Cc. lens, it is that distance from the refracting plane from which originally

parallel light appears to diverge after refraction. If F is the focal length, its

reciprocal 1/F is the focal power of the lens. If be the distance from the

optical centre from which light from the object diverges, then 1//^^ represents

that divergence
;

if is the distance of the image from the optical centre,

then I//2 is the convergence or divergence of the light which produces the

image. 1/F is positive or negative according as it pertains to a converging
or diverging lens respectively, while 1//^ is always negative. The value of

1/4 is found by adding the divergence of the light to the converging or

diverging power of the lens, that is

l//2 = l/F-l//i whence 1/F= 1//, + I//,,

that is, the power of the lens is always equal to the sum of the reciprocals of

any pair of conjugate foci, or to the sum of its actions on the light.

With a Cx. lens is positive or negative according as the con-

vergence of the lens 1/F is greater or less than the divergence of the light

A

Fig. 105.

With a Cc. lens I//2 is always negative, since the divergence of the

light is added to the divergence of the lens.

By inverting the formula we get a variation which is sometimes more
convenient to use.

/1+/2
therefore

It can also be wri ten

and

r/A+F//2=i.

Geometrical Proofs.—^In Fig. 105 A B is the object and B'A' is the

image. 0 is the optical centre of a Cx. lens, 0 F is its focal length, and F is

the principal focus. Since the triangles A D and 0 A' F are similar

A D _ A A^

OF OA' OB'
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Now

Therefore

That is
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AD=OB=/,, 0B'=/2, and OF = F

/l^/l_+/2 or
F Ah

l/F=l//,+ l//,

For a Cc. lens (Fig. 106) in the pairs of similar triangles A OB and

A' 0 B^ D F O and A' F B',

OB' A'B' A'P/ B'F

Now

Therefore

so that

that is

OB AB DO OF

0B'=/2, 0B = /;, and OF = F

1 =^, or F/,^FA-M

F(A -U) and 1/F = - 1/A + IIU

-l/F=.l//,-l//,

Fig. 106.

Conjugate Distances of 0 and I and Examples—Cx. Lens.—A convex lens

renders rays convergent, parallel or less divergent, according as the point of

divergence is respectively beyond, at, or within F ; the converging property

of the lens is decreased, neutralised, or exceeded by the divergence of the

light due to the nearness of the object, and since any approach of the object

to a Cx. lens causes the light to be less convergent after refraction, it follows

that any real conjugate focus is more distant than F, so that F is the nearest

point to the lens at which a real image can be formed by natural rays.

If a lens has F = 8 inches and /j is at 40 inches, then will be at 1

0*

inches and real, for l//2= 1/8 - 1/40= 4/40= 1/10.

This is proved by 1/10 + 1/40= 1/8, and 8/40 + 8/10= 1.

A real image is 16 inches behind a 7 inch Cx., at what distance is the

object in front of the lens 1 *

1//^=1;7- 1/16 = 9/112. The object is at 12| in.



THIiN LENS CALCULATIONS 111

If, however, the incident light were converging^ I would be nearer than F.

Thus if light converges to 15"' behind a 6'' Cx. lens we have

l//2=l/6 + l/15==21/90

The image is at which is nearer to the lens than F.

When O is at cr., then I is at R since 1/F - 1/ oo = 1/F - 0 = 1/F.

As 0 approaches the lens I recedes from F ; when 0 is at 2 F then I is

at an equal distance. This is the plane of unit magnification for real images.

When 0 is at F the power of the lens is just sufficient to render the

incident rays parallel and I is at go, for then 1//2 = 1/F- 1/F=0 and f^= co.

Therefore x and F are conjugate focal distances.

When 0 is situated nearer than F, the power of the lens is insufficient to

render the light parallel, and it emerges divergent after refraction, although-

less so than before. No real focus is obtained, but if projected backwards

the light meets in front of the lens (on the same side as the object) and forms

a negative focus and virtual image at f^. Whereas the light diverged

originally from /^^ it appears after refraction to diverge from f^. Since the

divergence is greater than the convergence 1/F, on deducting the

former from the latter the result is a negative quantity. Thus let the object

be 6 in. from an 8 in. Cx. lens, then

1//,= 1/8 -1/6= -1/24.

The I is virtual or negative at 24 inches on the same side of the

lens as O.

As 0 approaches the lens from F^^ its virtual 1 also approaches, and when
0 touches the lens so also does I, this being the plane of tinit nioxjnification for

virtual images.

Conjugate Distances of 0 and I—Cc. Lens.—A concave lens renders

parallel light divergent, and increases the divergence of divergent light

;

therefore any distance of 0 nearer than oc, causes I to be nearer than F, so

that the most distant conjugate focus of a Cc. lens is F. Thus let the lens

be -1/10 and at 40 in.; then l//2= - 1/10- 1/40= -5/40= - 1/8 the

image being at 8 in. negative or virtual. This is proved by the power of

the lens 1/F being equal to - 1/8 + 1/40= - 1/10.

When 0 is at co, then I is at F, and as 0 approaches the lens so also

does I, until when 0 touches the surface, I does also, this being the plane of

unit virtual magnification. If, however, the incident light were convergent, I

would be beyond F—for instance, should light be converging towards a

point 15'' behind a 6'' Cc. lens, then llf^= - 1/6 + 1/15= - 9/90 ; the image

is virtual at 10''. If he light converged to 6" it would be rendered parallel

by the Cc. lens, and if the convergence w^ere to 5" we should have - 1/6 +
1/5= +1/30, or a convergence to 30".

Reciprocity of Conjugates.—Real conjugate foci are interchangeable

distances in the sense that if 0 is at either of them, I is at the other. Thus
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when O is at 40'' in front of an 8'' Cx. lens, I is at 10'', and if I were at 10",

O would be at 40". Virtual conjugates are not interchangeable in this sense.

If 0 is at 6" from an 8" Cx. lens I is at 24" virtual. 0 could not be at - 24",

which is a negative distance, and if it were at 24" actually, I would not be

at 6". These conjugates are interchangeable merely in the sense that if light

converged towards the virtual focus, in this case 24", then I would be at the

real distance 6".

The same occurs with the virtual conjugate of a Cc. lens. If 0 is at 40"

and the lens is - 1/10 the I is at 8" virtual
;
light would need to converge

to 8" behind the lens in order that a real image l)e formed at 40".

Dioptral Formulae.

Conjugates of a Cx. Lens.

—

The reciprocal of the focal distance in terms of a

metre, or its value expressed in diopters, indicates the iwiver of the lens. A + 5 D
lens has a focal length of 20 cm., and consequently light diverging from

20 cm. is rendered parallel by it, the converging power of the lens just

Fig. 107.

neutralising the divergence of the light from 20 cm. Similarly light from

00 is brought to a focus at 20 cm. by a + 5 D lens.

If the light diverges from some point within go it has then a divergence

equal to that of a Cc. lens whose F is equal to the distance ; the resulting

image d^ is the dioptral result of the addition of the dioptral divergence of

the light d^ and the dioptral power of the lens D. That is

ld-c\ = dc,^ or l) = d^ + d^

The power of a lens is equal to the sum of the two conjugates f^ and

expressed in diopters as d^ and d^.

Suppose a +5 D (Fig. 107) and let f^ be 100 cm. distant. The lens has

a converging power of 5 D, and the light has a divergence, expressed in

diopters, of 1 D. Consequently after refraction the light has a convergence

of 5 - 1 = 4 D, the I being at 25 cm.

In Fig. 108 the +5 D is shown as if split into two lenses, the +1 D
rendering parallel the light diverging from f^, while the + 4 D brings the

parallel rays to a focus at 25 cm.
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The two distances 100 cm. and 25 cm. expressed in diopters are + 1 and

+ 4 respectively. We may therefore write :

—

1+4 = 5 D = the power of the lens.

5-1 = 4 D = the dioptral distance of 1.

5-4=1 D = the dioptral distance of O.

—

p

Fia. 108.

Examples.—Suppose the object be placed 50 cm. in front of a lens having

its image 12 '5 cm. behind it, then to find the power of the lens

= 100/50 = 2, = 100/1 2-5 = 8
;

therefore D = 2 + 8=10.

Suppose an object is 200 cm. in front of a 7D lens, where will the

image be ?

Here = 100/200= -5, = ^ - '5 = 6-5
j

therefore /2= 100/6-5 = 15 cm.

An image is 22 cm. behind an 8 D lens, where is the object ?

We have d^= 100/22 = 4.-5, = 8 - 4-5 = 3-5
;

therefore f\ = 100/3-5 = 30 < m.

Fig. 109.

If 0 is at oo, then d^ = 100/ = 0
;

so that D - 0 = D and 1 00/D = F,

consequently I is at F.

If 0 is at F, then d^ = 100/F = D,

and D-D = 0 and 100/0= oo,

consequently I is at oo.

If light converges to 50 cm. behind a + 5 D lens we have 5 + 2 = +7 D,

or 14 cm. as the distance of the I, which is nearer than F.

Let the lens be + 5 D and 0 be at 14 cm. (Fig. 109) then = 100/14 = 7;

8
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6^2 = 5 - 7 = - 2, and 100/ - 2 = - 50, so that is at 50 cm. virtual in front

of the lens. While the lens has a converging power of 5 D, the light has a

divergence of 7 D
; therefore, after refraction, there is a residual divergence

of 2 D. We have d^ + d^^J), that is 7 + (
- 2) = + 5 D.

Conjugates of a Co. Lens.—A concave lens refracts light divergently so

that parallel rays, after refraction, appear to diverge from F (Fig. 110). If

the power of the lens is - 5 D, the virtual F will be at 100/5 = 20 cm. or 8 ins.

Fig. 110.

When/j^ is nearer than go (Fig. Ill) the light incident on the lens being

divergent before refraction is rendered still more divergent ; the divergence

of the light is augmented by that of the lens, consequently the conjugate

focus is nearer than F. Here again and —/, are conjugates just as in the

Fig. 111.

case of the virtual focus obtained with a convex lens, because the sum of

their powers d^-\- {- d^--=J).

Let the lens be - 5 D and at 100 cm. ; then 6^2=-5D-lD=-6D,
and 100/ — 6= - 16*66 cm.; is therefore virtual and 16-66 cm. in front of

Fig. 112.

the lens. If light diverges from 100 cm. to a - 5 D lens, after refraction it

is divergent as if from 16*66 cm. If convergent o a point 16*66 cm. behind

a — 5 D lens it is, after refraction, convergent to 100 cm.

Magnification or Relative Sizes of 0 and I.—In Fig. 112, the object 0

and the image / subtend equal angles at C, the optical centre of the lens, since

both are always contained between the extreme secondary axes A jF and B B\
It is obvious that the triangles A C B and A^ C B' are similar.
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Therefore IC_B^A^
OC AB

Thus the relative sizes of 0 and I are proportional to their respiedive distances

from the optical centre of the lens, and this holds equally true for virtual images of

both Cx. and Cc. lenses.

The ratio A
'
jA B is the magnification, and denotes the linear increase

or decrease in the size of the image with respect to the object. Superficial

magnification applies to area, and is the linear magnification squared.

So long as 0 is beyond 2 F the I must be smaller than O, since it is nearer

to the lens. When 0 is at 2 F the size of I is the same as that of 0, because

both are at the same distance in what are termed the syrametrical planes.

When 0 is within 2 F, I is larger, because it is further from the lens than 0.

To calculate the size of I or of 0 the following formula3 are applicable to

all cases, whether the lens be Cx. or Cc. or the image real or virtual.

mJ'^ J:^, that is, h.J"^ and h.J"^'

where /j^ and f^ are the distances of 0 and I respectively from the lens, h^ is

the linear size of O, and that of L In the first formula h-^^ and must be

in similar terms, but not necessarily that of f^ ;
h^ will then be in the same

terms as/g, whether inches, cm., etc. In the second formula and must

be in the same terms ; and h^ will be in that of f^.

For example let 0 be at 2 M, and I '625 cm. long at 25 cm. distance

from the lens ; then
= -625 X 2 X 100/25 = 5 cm.

0 is eight times the size of I. If 0 were at 25 cm. and I at 2 M, then I

would be eight times the size of 0.

Let 0, 4 yards long, be \ mile distant from a +5 D lens ; then the object

being at oo, 20 cm. and

7^2 = 1: X 20/440 = -18 cm.

The answer here is in cm., showing that 0 and I need not be in the same

terms, so long as h^ and are.

When the I formed by a Cx. lens is virtual, it is always larger than O,

since it is always more distant from the lens. With a Cc. lens the virtual I

formed is always smaller than 0, since it is always nearer to the lens.

The relative size of the object to the real and the virtual image formed

by a given Cx. lens is the same when 0 is as far beyond F in the first case

as it is within F in the second case. Thus, suppose 0 situated at 14 in.

and at 6 in. respectively in front of a 10 in. Cx. lens, it being in either posi-

tion 4 in. from F, then the size of the image in each case is 2J times that of

the object.
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Planes of Unit Magnification.—In order that 0 and I be equal in size

they must be equally distant from the lens, i.e., they must be situated in the

planes of unit magnification which, for real images, are the symmetrical

planes, which cut the axis at twice the principal focal distance. It can be

seen that then li^ - h^. For a virtual I to be equal in size to O, it must be in

contact with the lens. This is true for both Cx. and Cc. lenses, so that the

planes of unit magnification for virtual images is zero. It may be remarked
that both planes of unit magnification are distant from F a distance equal

to F.

Eecapitulation of Conjugate Foci.—Cx. Lens.

When 0 is at 00 I

When 0 is between oo and 2 F I

When 0 is at 2 F
When 0 is between 2 F and F

When O is at F
When 0 is within F

When 0 is at the lens

is real, inverted, infinitely diminished

compared with size of 0, and at F.

s real, inverted, diminished and between

F and 2 F.

I is real, inverted, equal to 0 and at 2 F.

I is real, inverted, enlarged and between

2 F and go.

I is infinitely gTcat and at oo.

I is virtual, erect, enlarged and on same side

as 0.

I is virtual, erect, equal to 0 and at the lens.

Cc. Lens.

When 0 is at oo I is virtual, erect, infinitely diminished com-

pared with size of O, and at F.

When O is within oo I is virtual, erect, diminished and within F.

When 0 is at the lens I is virtual, erect, equal to 0 and at the lens.

Reciprocity of Conjugate Distances from F.—If the distance of the two

conjugates /j and of a Cx. lens be measured respectively from F^ and Fg

they are reciprocals of each other in terms of F. If is at a distance n F
beyond F^, then is (l/?i)F or ¥/n beyond F^. Thus, for instance, if the

distance of 0 to F^ is 2 F, then the distance of I to is F/2.

For M (magnification) = 1, the one conjugate must be at F + F, the other

being at F + F also. For M = 2 the one must be at F + 2 F, the other being

at F + F/2. For M = 3 the one must be at F + 3F, the other being at

F + F/3, and so on. Then we find the rather curious relationship of the two

conjugates, that if the object is distant n F, the image, with a Cx. lens, is

distant ?iF/(n - 1), and with a Cc. the latter is at 7iF/{n+ 1). Thus if the

distance from a 5"' Cx. lens is 5 x 4 = 20"", the image is at 5 x 4/3 = 6"66''
; in

the case of a 5'' Cc. if the object is at 5 x 4 = 20"", the image is at 5 x 4/5 = 4'^

Let the distance of 0 to F-^ be called A, and to F^ be called B ; then

since nxl/n=l, it follows that 7lF x Fjn - F^, and A B = F^.
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Newton's Formula for Conjugate Foci.—Let the distances A and B be

as defined in the last article. Now the ordinary formula for conjugate foci is

F aV, F-A^F-B
that is AB = F^'

This last gives us an alternative formula for calculating conjugate foci..

The ratio between the sizes of image and object and h-^ is

//i~A "F

Since, with a given lens. F- is a constant, the value of A B, the multiple

of the distances beyond F of any pair of conjugates, is also a constant.

When employing these formuhe it is essential to remember that positive

quantities are measured forwards from F^ and backwards from F., ; also that

in Cc. lenses F-^ is on the remote side of the lens, and Fg on the object side.

A is always reckoned from F^ and B from F^. These points make this

otherwise valuable formula difficult of application. To obtain or the

value of F must be added to A or B respectively.

Examples.—Thus, suppose to be 50 cm. in front of a Cx. lens of 10 cm.

focus, we get 40 B=10-^ = 100, so that B= 100/40= 2-5, and /g- 2-5 + 10

= 12*5 cm.

If O is 5 cm. high, we have Ag/S = 10/40, so that 40 = 50, or = 1*25 cm.

If an object 5 cm. high be placed 8 cm. in front of a lens of 10 cm. F, then

A = 8-10=-2, and -2 B = 10-=100, so that B = 100/ - 2 = - 50, and
f^= -50 + 10= - 40 cm.

7^2/5 = 10/2, so that '2h^ = bO, or /^2 = 25 cm. The image is negative at

40 cm. and is 25 cm. high.

If an object 5 cm. high be placed 50 cm. in front of a Cc. lens, whose

F = 10 cm., then A = 50 - ( - 10) = 60, and 60 B = 10-^ = 100. B = 100/60 = 1- 66

and /2 = l-66 + (- 10) = - 8-33 cm.

7^2/5 = 10/60, so that 60A2 = 50, or = '833 cm. The image is negative

at 8*33 cm. and is "833 cm. high.

Geometrical Proof.—In Fig. 113, showing the object A B and the image

B^A', it can be seen that the triangles ABO and A'B'O are similar.

Therefore

OB^AB^MO^ 0 F2

O B' A' B' A' B' B'Fg

the triangles MO and A'B'F.^ being also similar.

But 0 B =F-{-A, 0 B' = F+B, 0F^^ = F, and B'F^^ = B. Therefore

F + A F A T79

F + B = B
=
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Power of a Lens.—It has been proved that the power of a Cx. or Co. lens

L is equal to the sum of the powers of any pair of its conjugate foci, whether

the image be real or virtual ; the following examples illustrate this law.

Lis5 + 2= +7D
„ 5-2=+3D
„ -5 + 2= -3 D
„ 1/5 + 1/10=3/10

„ 1/5-1/10=1/10

„ -1/5 + 1/10= -1/10

Light Divergent.—Whether light actually diverges from some point

nearer than oo^ say 50 cm., or whether parallel light is rendered divergent by

an added -2D lens, the converging effect of, say, a + 5 D lens is equally

reduced, and in both cases is at + 5 - 2 = 3 D = 33 cm. behind the lens.

If were 14 cm. (7 D) in front of a + 5 D, or if - 7 D were added to a + 5 D,

the effect in both cases would be that the light, after refraction, diverged as

if proceeding from 50 cm.

Similarly whether light diverges from 50 cm. (2 D) in front of a - 5 D
lens, or whether a - 2 D be added to the - 5 D, and the two combined act on

If the conjugates

;> 5) J)

55 J) 5?

53 5) 5)

5) 1J 3)

20 and 50 cm.

20 and - 50 cm.

- 20 and 50 cm.

b" and 10"

5"and-10''
-5" and 10"

parallel light, the focus /g either cases is at -5-2 = - 7 D or 14 cm.

negative.

Removal of I.—To move the image from /g to some other position

more distant or nearer, there must be added to the lens another Cc. or Cx.

respectively whose power is the diflference between Ijf^ and Ijf^.

Thus, supposing to be at 20 cm. and to be 25 cm., the required

lens is Cc. because is more distant than f^. The power necessary is

4 - 5 = - 1 D. If it is required to place the image at 16 in. behind the lens

instead of at f^, which is 20 in., then the added lens must be positive of

lyi 6 - 1/20 or 80 inches F.

Position of 0 for given M.—Supposing it be required to find where O
should be placed from a given lens so that the image be a certain number of

times larger or smaller. For example, the lens is a 6 in. Cx., the object

2 inches long, and it is required that the real image should measure 18 inches.
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In this case if x is the object conjugate it follows that i8x/2 or 9x must be
the image conjugate, so that

l/6=l/r6'+l/9a;=10/9;«

whence 9x= 60 in. and x = 6f in.

O, therefore, must be placed 6g in. from the lens, and the image will be
at 6f X 9 = 60 in. from the lens.

If a virtual image is required to measure 18 in., then l/9;/j is negative,

and the calculation becomes 1/6= i/x- l/9x=S/9x, whence x = b^ in.

When either the object distance or the image distance /a is not known
the magnification M of the image is found respectively from

M ~ F ^^^^ ^ F
F f^-F

These are deduced from the ordinary conjugate foci expression. M is

positive for a real, but negative for a virtual, image, and is expressed as a

fraction when there is diminution. By transposing the above and sub-

stituting /g for M/j a further variation of the original expression is obtained

for finding the position of 0 and I w^hen the one has to be magnified a

certain number of times, such calculations being readily solved by the

formulae

/2 = F(M+1) and f^-^fJM

As before, M is negative when I is virtual, with either a Cx. or a Cc.

lens, and it is expressed as a fraction when diminution is required.

Position of Lens for given Distance between 0 and I.—The calculation

of the position of a given lens between two given points, so that 0 be at the

one and I at the other, necessitates finding two conjugate distances such that

the sum of their reciprocals is equal to the power of the lens. Let d be the

distance between object and image, and x represent the one conjugate ; then

3, = ''^ + ,
^ " or x^ - dx= - dF

F x d-x

the solution of which involves a quadratic equation.

With a Cx. lens when d is not less than 4 F, the image is real and may

be at either conjugate, and there are two positions for the convex lens,

between object and image, which will fulfil the given conditions. In every

case d is the sum of the two solutions. When d is less than iF, the shorter

conjugate is positive and is the distance of the object ; the greater is

negative and is that of the virtual image, d then being a negative quantity.

When the lens is concave, d is positive but F is negative. The greater
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conjugate is positive and is the distance of the object, while the smaller is

negative and is that of the virtual image.

Let r = 7 in. and the distance between 0 and I be 36 in. Then

a;2_36a;= -252

To find X we must add to each side of the equation the square of half the

coefficient of x, viz. 36, that is 18^ = 324. This turns the whole of the left

hand side into a perfect square, so that it only remains to extract the square

root of each side, and solve the resultant simple equation.

Thus - 2><ox + 324 = - 252 + 324 = 72

Va;2-36a; + 324= x/72.

Therefore a; - 18- ±8-5

and a;= +8'5 + 18 = 26'5 or -8-5 + 18 = 9-5

The lens may be either 9*5 in. or 26*5 from 0.

Let F = 5 in. and the distance between 0 and I be 16 in.; then d is

negative, so that
;?;2 + 16aj= +80

extracting the square roots, we get + 8 = ±12

and .7j=+12-8=+4 or -12-8= -20

The lens is 4 in. from the O and 20 in. from the virtual I.

Let F be 5 in. Cc. and d, as before, 16 in.

a;2-16a: = 80

^2 _ 16a; + 64 = 80 + 64 -144
X -8= ±12
a; = +12 + 8= +20, or -12 + 8= -4.

Therefore the lens is 20 in. from 0 and 4 in. from the virtual I.

If the strength of the lens is expressed in diopters it is better to convert

it into focal length for this calculation, but the two distances A and B can

also be calculated by the following method, in which two numbers, whose

sum and multiple are known, have to be found. Thus

A + B = c^, and AB=100r//D



CHAPTER IX

MAGNIFYING POWER OF LENSES

Apparent Magnification.—Hitherto those chapters on lenses have only

dealt with the ratio l)etween the actual sizes of object and image (real and

virtual), which ratio may vary to an indefinite extent depending upon the

position of the object with respect to the lens. In the present article, how-

ever, we shall deal with what is known as the apparent magnification of the

object— or rather, its image—when viewed through a Cx. lens used as a

reader or loupe. In contra-distinction to the real magnification mentioned

above, the apparent magnification is not subject to such great variations.

Magnification, as before mentioned, is expressed by the linear increase of

the image with respect to the object, the superficial magnification being the

square of the linear. Thus x 3 implies an increase of three diameters,

while X 1/3 expresses a corresponding reduction, the image being one third

the size of the original object.

P

s

Fig. 114.

Apparent Size of Object.—The apparent size of any object depends

solely upon the angle it subtends at either the nodal or anterior focal point

of the eye. G-enerally, the visual angle, as it is known, is taken at the

nodal point, but for our purpose in the present chapter it wi)l be more

convenient to work from the angle subtended by the object at the anterior

focus.

In Fig. 114 let P be the refracting plane of the eye, the anterior

focus, 'X. the corresponding anterior focal length, and 0 any object distant

d from F^. Then any ray drawn from the extremities of 0, through F^^,

must, after refraction at F, be parallel to the principal axis within the eye.

Therefore Q Fi on the refracting plane, will represent the size of the retinal

image of 0, while Q S will denote the corresponding image when 0 is moved
to 0' at a distance d' from F-^^. Therefore the size of the retinal image is

proportional to the distance of the object from F^, since 0 and x remain
121
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constant, although 0 changes position. Actually the projection oi Q B and

^aS on to the retina would give the images formed were the retina capable of

movement to and fro like an ordinary screen to receive the real image as in

the camera.

Now, in the ordinary way, when a person views a near object so as to

get the best possible general view of it, he unconsciously holds it, not at his

near point, but at the most convenient distance called the distance of most

distinct vision. This distance of most distinct vision varies, of course,

considerably in different individuals, depending upon age, length of eyeball,

etc., but is taken, on the average, to be 10"'. Furttier, in order to see the

object clearly at this distance the emmetropic person (whom we shall take

in illustration) must exert a certain amount of accommodation, namely, 4 D
for 10'', and this, by increasing the refraction of the eye and shortening the

anterior focus, slightly reduces the size of the retinal image as compared

with what he would obtain if no accommodation were used. In the latter

case, however, the image would be blurred ; but by means of a pinhole in

the anterior focus it could be sharpened up, and its size would then be seen

to be larger than that obtained in the usual way by accommodation. In

other words, if an emmetrope views an object at 10'' through a +4 D lens,

the object is at the principal focus, the light emerges parallel, and all accom-

modation is suppressed. The result is an increase in the retinal image which

is simply the difterence between what he obtained without the diminishing effect

of accommodation, and the reduced image seen ivith the necessary accommo-

dation, the lens being removed. But, provided the lens is so placed that its

optical centre—or in the case of a combination of lenses, its second nodal

point—coincides with the anterior focus of the eye, there is no magnification

due to the lens itself because, as will be seen from Fig. 114, it cannot, in

this position, alter the direction of the extreme rays F-^R, F^S governing

the size of the images Q R and Q S. Thus if the lens be so placed (and such

is generally the case, F^ being some 15 mm. from the cornea) no matter

what its strength, it cannot alte?' the size of the retinal image, although, by
throwing it out of focus, there may be some appearance of magnification.

The only effect a lens, when used as a simple microscope, can have is to enable

the object to be seen under a larger angle by overcoming the extreme divergence

of the rays from a very near distance. Thus if a watchmaker fixes a 2" lens

in front of his eye at the anterior focus, he sees an object 6 times as large as

he would without the lens at 10". If he were able to see distinctly at 2"

with the same accommodation, the object would appear the same size as

with the lens. It is necessary to assume that the same degree of accommo-
dation is used in all such cases in order to estimate the true apparent

magnification due to the lens. Light from an object at 2" is, however, so

divergent that it cannot be focussed on the retina by the unaided eye. If,

however, no accommodation be used at 10" or 2" the magnification would be

simply the ratio djd^ (Fig. 114) in this case 5. But if accommodation be
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that is to say, the quantity 1 4- cljF is the same as djf^, where is the con-

jugate focus of cl.

This is the usually accepted formula to express the magnifying power

when the lens is placed at Fp or near to it. Since d is taken as 10''

we have
M=l + 10/F

Thus with a + 1" lens M = 1 + 10/2 = 6.

For lenses expressed in diopters,

Thus with a + 20 D the M = 1 + 20/4 6.

When the lens is very strong the formula may be simplified to

M = 10/F or D/4

Thus with a 1/4'' lens M - lO/i = 40 instead of 1 + 40 = 41.

I

F

Fig. 115.

Magnification being practically the ratio between the distance of most

distinct vision and the focal length of the lens, it follows that the magnify-

ing power of any lens is smaller for a myopic eye whose distance of distinct

vision is shorter than 10". On the other hand, the magnification is greater

for the hypermetrope whose position of most acute vision is greater

than 10".
^

Thus for an emmetrope and a 2" lens where d= 10, M = 1 + 10/2 = 6.

For a hypermetrope, where f/=16, M=^l + 16/2 = 9.

For a myope, where = 6, M = 1 + 6/2 = 4.

It may be noticed in passing that the M is the size of the image formed

at / (Fig. 115) compared with the projection of 0—indicated by the dotted

line—on to the plane of / at the distance d.

If the object be within the focus of the lens, and the eye be withdrawn

from the latter, the retinal image becomes smaller, but when the 0 is beyond

F, i.e., adapted for a hyperope, the retinal image increases in size as the eye

is drawn back. Should, however, the object be exactly in the focal plane.
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the retinal image undergoes no change, since the emergent light is parallel.

In all three cases, however, the field of view is reduced, less being seen of the

object than when the eye is close to the lens.

For an object to be seen at its best through a loupe or hand glass, it

should be placed slightly within the focus. Firstly, because, owing to the

curvature of the field, especially in strong lenses, only the central portions

are clearly defined, the object having to be moved nearer to bring the

peripheral parts into focus, whereas, if the edges are rendered clear by
bringing the object within the focus, a slight effort of accommodation will

render also the centre sharp. Secondly, it is almost impossible to view a

near object without involuntary accommodation, and therefore its exertion to

a slight extent renders the observation more comfortable.

Apart from the actual magnification obtained with a lens there are one or

two mental conceptions which influence the effect. Thus, since a Cx. lens

suppresses accommodation, the object is conceived to be more distant, and,

therefore, for a given retinal image, to be larger in size. Also a Cx. lens

reduces the divergence of the light, which is referred back b}^ the mind to an

image whose distance enhances its apparent size in excess of the actual

calculated magnification.

Needless to say the whole of the foregoing remarks and formulie apply

equally to a combination of lenses like that found in an ordinary eyepiece,

provided the equivalent focal length and position of the nodal points be

known.

In the same way that magnification results from vision of a near object

through a Ox. lens, because the angle under which the image is seen is then

larger, diminution is obtained with a Cc. lens because the angle under which

the image is seen is then correspondingly smaller.

Finally, for any position of the object, and for any Cx. lens, withdrawal

of the lens towards the object at first increases the magnification, which

reaches a maximum when half way between the anterior focus and the

object ; M then decreases until, when the lens touches the object, the mag-

nification is the same as wdiat it was when the lens was coincident with

the anterior focus, this being zero. This maximum, when a Cx. lens is about

mid-way between eye and object, holds good in all cases, but is quite inde-

pendent of the clearness of the image, which may either be blurred or sharp,

depending upon the strength of the lens. Similarly the greatest diminution

occurs when any concave lens is mid-w^ay between eye and object, but in this

case, provided there is sufiicient accommodative power, the image is clear.

These facts explain some of the phenomena in connection with spectacle

lenses.



CHAPTER X

CYLINDRICALS

The Cylinder.—A cylinder is a body (Fig. 116) generated by the revolu-

tion of a rectangle about one of its sides as an axis. Such a body consists of

two flat circular ends and an intermediate convex surface.

The cylinder possesses no curvature in any line parallel to the axis A B.

At right angles to the axis, in any plane parallel to the direction C Z), the

curvature is spherical and has its maximum value. In any other direction,

as E F, the curvature is that of an ellipse of which E^F^ is an example. The
curvature is always less than that of the circle C D, diminishing as the direc-

tion departs from CD and approaches that of A B.

B

Fig. 116.

Therefore any section of the cylinder taken at right angles to its axis is a

circle whose centre lies on the axis of the cylinder ; a section in the plane of

the axis is a parallelogram, and one anywhere between these two is an

ellipse.

Fig. 117 represents a Cx. cylindrical lens. It is a segment of a cylinder

on the one side and has a plane surface on the other ; it is formed by a

cylinder and a plane which intersect each other. The Cc. cylindrical lens

(Fig 1 1 8) has a hollowed surface on one side ; it is formed by a cylinder and

a plane which do not intersect each other.

A Cx. cyl. lens may be conceived as formed of a series of prisms whose
126
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bases are directed towards a central line and whose apices are outwards. In

the same way a Cc. cyl. may be considered to be formed of prisms whose

apices are directed towards a central line and whose bases are outwards.

1-^

1,11 . /

3

Fig. 117. Fig. 118.

Meridian.—The term meridian in connection with lenses signifies a plane

passing through the geometrical centre of a lens, as shown in Fig. 119.

The Principal Meridians.—Since in the direction of its axis (Fig. 120)

a cyl. lens has no curvature, it has in that direction no refractive power ; the

9u

Fig. 119.

directions of maximum curvature A B C, D E F, G H K, are at right angles to

the axis. The meridian of no refraction—i.e. the axis—and the meridian of

greatest refraction, at right angles to the axis, are termed the two ijvinci'pal

Fig. 120.

meridians, and these alone need be considered when treating of cyl. lenses.

The position of a cylindrical is indicated by the direction in which its axis

is placed, while its power is expressed by the maximum refractivity. By



128 GENERAL AND PRACTICAL OPTICS

means of these two meridians the path of all rays passing through the lens

may be traced.

The Refraction of a Cylindrical.—A sph. lens has equal curvature and

therefore similar refractivity in every meridian, so that a point image of a

point object is obtained. In a cyl. it is only the meridian at right angles to

the axis that can form a focus, because a ray proceeding from a point and

meeting the surface in an intermediate meridian cannot meet the other rays

which pass through the same meridian. All the light from an object point

refracted by a cyl. passes through two focal lines, one of which is at the focal

distance of the meridian of greatest refraction, and the other at cc. The

cylindrical lens has therefore two focal distances, and the image of a point

is not a point, as with the spherical, but two lines. But since the one focus

is at 00, it need not be considered, so that we can say that the image of a

point formed by a cyl. is a line, as shown in Fig. 120.

Using for illustration a +5 D cyl. axis vertical, if the object be a point

of light the image will be a row of focal points along a Ver. line, which fuse

into a thin streak of light at 20 cm. parallel to the axis of the cyl., and this is

called the focal line. If the cyl. be rotated around its centre E the streak

also will be rotated with it.

In any intermediate mer. the refraction is such that a ray from a distant

point is deviated so as to meet all the other rays in the focal line, and the

deviation is less than in the maximum, and more than in the axial, meridian.

Thus although intermediate meridians of a cyl. are elliptical in curvature and

have no true foci, we can say that the power of a cyl. varies from 0 at the

axis to its maximum power D in the meridian at right angles thereto. These

intermediate powers can be expressed by a formula, as will be shown later.

The focal line is situated at the focal distance of the meridian of greatest

power, which, in this case, is the horizontal meridian, and the lens being

+ 5 D cyl., it is at 20 cm. At any other distance the streak broadens out

into a band of light, and a section of the emergent light, at any distance from

the lens, is rectangular in outline.

Since the image of an object consists of the images of its various points

and each object point has its own line image, the complete image consists of

an infinite number of streaks, parallel to the axis, and narrow as the focal

length is short and vice- versa. The length of a streak is that of the aperture

of the lens in the meridian of its axis. We commonly refer to this streak

image as the focal line.

The refraction of a Cc. cylindrical is similar to that of a Cx., but, of

coarse, the focus and the focal line are virtual, and are formed in front of the

lens. The shape of the refracted pencil, however, is not so apparent, because

the pupil of the eye acts as a very small stop, so that the focal line, on look-

ing through the lens, is so short as to appear little different from the point

focus of a concave spherical, unless the cyl. be very strong. A single

cylindrical power is called a piano- or simple cyl.
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A square seen through a cyl. lens appears to be a rectangle of natural

size in the meridian of the axis, but magnified by a Cx., and diminished by a

Cc., across the axis.

If the cyl. is oblique the square takes the form of a parallelogram, the

obliquity of the sides being due to the fact that the light from each point

diverges from, or tends towards, a line parallel to the axis. The skew thus

given causes the light from each point on the object to appear to come from

points in space other than what they actually do. The series of oblique

parallel lines (or ellipses) which constitute the virtual object of which the

retinal image is formed results in vertical and horizontal lines appearing

oblique. This explains also the dipj^lng of cross lines as a cyl. is rotated (vide

neutralisation). The apparent obliquity is lessened if the lens is near to the

object or very near to the eye.

Viewing a circular object, say a shilling, through a Cx. cyl. axis Ver., the

image is an oblate ellipse in form, having its minor axis vertical and equal to

the diameter of the shilling. AVith a similar Cc. cyl. the image is a prolate

ellipse.

Combined Cylindricals.—If two Cx. cyls. of similar power be placed in

contact Avith their axes corresponding in, say, the vertical meridian, the

cyl. power is doubled. If the second cyl. be at right angles to the first, the

result will be equivalent to a sph. lens of the same power as the single cyl.

In this case the greatest power of the one corresponds with the axis of the

other, and in all intermediate meridians any deficiency of power in the one

is supplied by the other, so that if the second cyl. be rotated from axis

vertical to axis horizontal the vertical image streak will be seen to shrink

until, when the two axes are at right angles, it will have become a point of

light, or a complete image as the case may be. When the axes are oblique to

one another, the eff"ect is that of some sph. -cyl., whose two principal powers

vary with the angle between the axes. Two unlike cyls. are always equiva-

lent to some sph.-cyl. combination no matter what may be the inclination of

their axes, except in the case of the axes being parallel, when they constitute

a plano-cyl. The efiect is the same whether the two cyl. powers be ground

on opposite sides of a piece of glass, or whether two piano- cyls. be placed in

contact. A lens having such powers is termed a cross-cyl.

The Refraction of a Sphero-Oylindrical.—When a sph. is combined with

a cyl., the curvature of the former is ground on the one side of the lens, and

that of the latter on the other. Such a combination is called a sphero-

cylindrical or compound cylindrical, in contradistinction to a piano or simple

cyl. Since there is no curvature and consequently no refractive power along

the axis of the cyl., only the power of the sph. exists in that Mer., whereas at

right angles to the axis there is the united power of the sph. and the cyl. As
with the plano-cyl., these are the two principal Mers. of the combination,

which alone need be considered in practice.

9
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Let us consider a + 4 D Sph. + 4 D Cyl. Axis Ver. and let the object be a

point at oc. All the light incident on the lens is so refracted as to pass

through a vertical line at 12*5 cm. to which it is converged
;
thence, expand-

ing horizontally and converging vertically, it again meets in a horizontal

line at 25 cm. The vertical meridian acts as a piano- Cx. lens, the horizontal

as a double Cx. lens, and these principal meridians have true foci. A ray

incident in any intermediate meridian is converged to a certain extent in

the vertical plane and to a still greater extent in the horizontal, the resultant

deviation being intermediate as to direction and extent. Hence, although an

intermediate meridian of a sphero-cyl. has no true focus, since a ray, passing-

through it, does not meet the other rays passing through it, we can assign to

it a definite dioptral power as in the case of a piano -cyl. Such power depends

on the angular distance of the meridian in question from the axis, and it is,

in all cases, somewhere between the highest and lowest powers of the com-

bination.

The action of a concave sph. -cyl. is similar to that of the corresponding

convex sph. -cyl., the only difference being that the foci and images are

virtual.

As with the simple cyl, the images at the two focal planes of an object of

definite size, consist of bands of light, whose width and length depend on the

powers of the lens and its aperture or diameter.

A section of the cone of light emergent from the lens is elliptical except

where the Hor. and Ver. lines are formed ; also at some position between

the lines where the cone of light has equal diameter in both Mers. producing

what is termed the circle of least confusion.

The Principal Meridians and Powers.—The power of the sph. alone is-

that of the Mer. in which the axis lies. The power of the sph. plus that of

the cyl. constitutes that of the Mer. at right angles to the axis. For

examples see TroMsposing . The positions of the principal Mers. are easily

recognised when Ver. and Hor. ; when they are oblique their angular

positions can be estimated or determined (vide Neutralisation).

The Interval of Sturm.—Let a screen be held close behind a Cx. sph.-cyl.,

say +4 Sph. o +4 Cyl. Axis Ver. ; then the light from a small bright

source, some distance in front of the lens, is cast as a light patch on the

screen. If now the latter be gradually drawn away from the lens (Fig. 121)

at the distance 12 '5 cm., which is equal to F of the combined sph. and cyl.

powers, a Ver. line is formed at ; as the screen is still slowly receded

the line developes gradually into a Ver. (prolate) oval at (7, an almost

perfect circle at B, a Hor. (oblate) oval at A, and finally into a Hor, line

at F^. The screen is then at 25 cm., which is F of the sph. The space

between the two principal focal distances F-^ and F^, represented by the two

sharp lines, is termed the interval of Sturm. As the screen is still further

removed from the lens, the patch of light takes the form of an ever enlarging

Hor. ellipse.
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Calculations of the Interval of Sturm.—The two focal lines are at the

focal distances of the two principal meridians, and their lengths are pro-

portional to the diameter of aperture of the lens and to their distances from

the latter.

Let the lengths be L-^ and L^^ the focal distances and F^, and the

dioptric powers and D^. The formulst' are given in terms of F and D.

Let d be the effective aperture of the lens, and S the length of the

interval of Sturm, i.e. the distance between F^ and F^ (Fig. 1*21), or the

dioptric difference - D.,.

Li = d S/Fg = d S/Di L^ - d S/Fi = d S/D^

The circular disc of confusion B divides S into two parts h and a

distant, respectively, from L-^ and proportional to their distances from

the lens.

S = rt, + h and hja = L^ /L^ = F^/F, = DJB^

i
B
O

A ^CD

Fig. 121.

Then B is distant from L-^ and B-, respectively

_ SF, _ SD,

B cannot be midway between L-^ and Zg, but is always nearer to Z-^. Its

size IS

B = bL2S = aLiS

Its distance from the lens is

2FiF, ^ 200

Example with + 4 D Sph. O + 2 D Cyl. having d = 5 cm.

Fi= 16-66 cm. F2 = 25 cm.

L5 X 8'33 T /-»

. = = I'bb cm.
25

1 8'33 X 16*66
b = ^ = 3*33 cm.

25 + 16*66

VS xj
8*33

3*33 x 2*5 5 x 1*66 .

J3 = = ^ = 1 cm.
8-33

8 = 25- 16*66=8-33 cm.

5 X 8*33 ^

16-66

8-33x 25 ^

2x26;66x_25^20cm.
16-66 + 25
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When the combination is negative the interval of Sturm is also nega-

tive ; when the combination is mixed, it is peculiar; thus when 7^^ = 10"

and = -20'', and cl=y' we find B behin I and negative. ;S= -30,

L^= +1-5, L^= -3, h= +30, a= -60, B= -3, C= +40.

If the power of shorter F is concave, B lies in front of and is again

negative. Jf the + and - powers are numerically equal, B is at oo.



CHAPTER XI

TRANSPOSING AND TORICS

Angle Notation.

Standard Notation.—The Standard angle notation for the location of the

various meridians of a lens (Fig. 119), refers to both the right and left eyes.

The numeration commences on the right-hand of the imaginary horizontal

line drawn through the lens when looked at from the front, the front of the

lens being that face of it remote from the eye of the wearer.

This notation corresponds with the trigonometrical division of the circle

into 360 degrees. The upper right quadrant contains the angles between 0°

and 90°, and the upper left those between 90° and 180°. The notation need

not be carried beyond 180° (the half-circle), since a meridian corresponds to

a diameter, i.e., to two continuous radii—for instance, 45° is the same

meridian as 225°
;
10° the same as 190°, etc. The vertical meridian is 90°,

and the horizontal is 0° or 180°, but is preferably indicated as 180°.

Other Notations.—Some trial frames and prescription forms are marked

differently from that shown in Fig. 119, and it frequently occurs that the

optician has to transfer from one notation to another. The most commonly

met with are the bi-nasal and the bi-temporal methods, in which the zero is

placed at, respectively, the two nasal and the two temporal extremities of the

horizontal line of the eye, the numeration running upwards or conversely

running downwards. Sometimes the zero is placed in the vertical meridian,

the numeration proceeding to the right and left. Indeed, there are many
different methods of notating the hvo etjes, but it is hardly necessary to

attempt to detail them all here. Fig. 122 shows a notation reverse to the

standard.

Suppose a prescription be written with the indicated cylindrical axis at

125° according to the notation of Fig. 122. To translate this to standard

notation, it must be considered how many degrees the required position is

from the horizontal or the vertical. In this case 125°, in Fig. 122, is 35°

from the vertical on the right and, therefore, (corresponds to 55° of Fig. 119.

If the location of the axis is 40° from the horizontal on the right, it would

be 40° in Fig. 119 and 140° in Fig. 122. The same mode of calculating

applies if the cylindrical axis is indicated as so many degrees with a stroke

to show the direction of inclination. This last-mentioned method of axis

133
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indication is unfortunately used by many medical men, thus making the

reading of their prescriptions difficult to the optician. Many oculists also do

not use the O sign, but write the combination with a dividing line, thus :

—

In all these methods it is, however, understood that the direction indi-

cated refers to the front of the lens, or the surface away from the wearer's

eye.

Transposing : The Powers of Cylindrical and Toric Lenses.

Transposition of Sph. Lenses.—A Cx. sph., say, + 6 D, can be made in

the form of a plano-Cx., in which all the power is on the one side ; as an

equi-Cx., in which the power is equally divided between the two surfaces ; as

a bi-Cx., in which the powers are unequally divided between the two surfaces;

or as a periscopic-Cx. , in which the Cx. power on the one side is more than

6 D, but the total is reduced to + 6 D by the necessary Cc. curvature of the

other surface. Similarly, a concave spherical can be made in the various

forms as indicated above. The change from one form to another, without

altering the refractive power of a lens, ,is called a transposition. The power

of the one surface increases proportionately as that of the other decreases, so

that the number of possible forms for a given sph. power is endless ; but the

position of the optical centre varies with the different forms of a lens.

Transposition of Cyl. Lenses.—Lenses which contain a cyl. element are

susceptible of only two or three changes of form, and it is to such a change,

which does not alter the refractive powers of the two principal meridians,

that the term " transposition " is generally applied.

When the two powers have the same sign, they are said to be of lihe

nature, or congeneric ; when they are of opposite signs (the one + and the

other -
)
they are of unlike nature, or contrageneric. A piano (or simple) cyl.

possesses no sph. element, but may be regarded as a sph. -cyl., whose sph.

element is of infinitely great radius, and it will be so treated in this article.

A sph.-cyl. has sph. and cyl. elements, and may be a compound cyl, having

+ or— powers in both principal meridians, or a mixed cyl., having a -i- power

in the one and - power in the other.

+4_S_^

-f2-50 C: Axis 70

Fig. 122.
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A cross cyl. is one formed of two similar or two dissimilar eyls. crossed at

right angles.

Powers and Principal Meridians.—The one principal Mer. of a sph.-cyl.

corresponds to the axis of the cyl., and its power is that of the sph. alone
;

the other is at right angles to the axis of the cyl., and its power is the

algebraical sum of the sph. and cyl. Thus

The powers of + 3 S. O + 2 C. Ax. 70° are + 3 at 70° and + 5 at 160°.

Those of + 3 S. O - 1 C. Ax. 110° are + 3 at 110° and + 2 at 20°.

Those of + 3 S. O - 3 C. Ax. 5° are + 3 at 5° and 0 at 95°.

Those of + 3 S. O - 5 C. Ax. 120° are + 3 at 120° and - 2 at 30°.

In the cross-cyl. the two principal powers are those of the cyls. them-

selves, each being in the Mer. corresponding to the axis of the other.

Thus the powers" of + 2 C. Ax. 40°O + 5 C. Ax. Io0° are + 2 at 130°

and + 5 at 40°.

and - 4 at 70°.

Those of + 2 C. Ax. 70° O - 4 C. Ax. 160° are + 2 at 160^

Possible Combinations.—A cyl. combination may consist of two difierent

3 and - 7, or of two powerspowers of similar nature, as + 2 and + 5, or

+ 5S

-2^ABC
Fig. 123.

of dissimilar nature as + 2 and - 2, or +3 and - 4. They can be made in

three forms, viz., a cross-cyl. and two forms of sph.-cyl., but if the one power
is 0 it can be made only as a plano-cyl., and in one form of sph.-cyl. If there

are two similar equal powers the possible forms are only those of a cross-cyl.

and of a sph.

The Various Forms of a Lens with Cyl. Element.—Where two unequal

powers in the two principal meridians are required, as -f 3 at 180° and -1-5

at 90°.

(a) The + 3 needed at 180° (Fig. 123) can be obtained from + 3C. Ax. 90°,

and the + 5 at 90° from + 5 C. Ax. 180°, the axis of each cyl. being at right

angles to the direction in which the power is required, as in A.

{h) The 3 needed at 180° can be obtained from 4-3 sph., v/hich also

supplies 3 of the -f 5 D needed at 90°, the balance of the latter being

obtained from + 2 C. Ax. 180°, which gives 4- 2 at 90° and 0 at 180°.

(c) The -f 5 needed at 90° can be obtained from + 5 sph., but this not

only supplies the -1-3 needed for 180°, but is 2 D too strong. To reduce the

latter to -1-3 D a - 2 C. Ax. 90° is required, this giving -2 at 180° and

0 at 90°, as in G.
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If the two parts of any of the forms (a) (h) (c) be placed over one another,

the total combination is, in each case, + 5 at 90° and + 3 at 180°. The three

forms are thus made up by—
(a) A cyl. of each of the two powers, the axis of each being at right

angles to the meridian where the power is needed.

(b) A sph. of the lower power and a cyl. of the difference between the

two powers, the axis corresponding to the meridian of least power. If the

lower power is 0, the sph. is also 0.

(c) A sph. of the higher power and a cyl. of the opposite sign and of the

difference between the two, the axis being in the meridian of greater power.

Whether the two powers are of like or unlike nature, the number of the

cyl. is obtained by the algebraical subtraction of the power taken as the sj^h.

from that of the other principal power. Thus in the example the powers are

+ 3 and + 5, so that if the sph. is + 3, the cyl. is + 2 ; if the sph. is + 5 the

cyl. is - 2. If the two powers are + 2 and — 3, then, if the sph. is 4- 2, the

cyl. is - 5 ; if the sph. is - 3, the cyl. is + 5.

For - 4 at 60° and - 7 at 150°, the three forms are :

{a) - 4 C. Ax. 150°O - 7 C. Ax. G0°.

\b) - 4 S. O - 3 C. Ax. 60°.

(c) -7 S.O + 3 C. Ax. 150°.

For - 1 at 45° and + 5 at 135° they are :

(a) - 1 C. Ax. 135°O 4- 5 C. Ax. 45°.

(b) -1 S.O + 6 C. Ax. 45°.

(c) +5 S. 0-6 C. Ax. 135°.

For + 3 at 120° and 0 at 30° they are :

{a) 0 S.O + 3 C. Ax. 30°.

(b) +3 S. 0-3 a Ax. 120°.

Rules.— (1) To transpose a sph.-cyl. or piano-cyl. into another form of s'ph.-

cyl. or piano-cyl.

The following apply to all cases, but when the original or the transposed

form is a plano-cyl, the one power being 0, the sph. may also be 0.

{a) The new sph. is found by adding algebraically the power of the sph.

to that of the cyl.

{b) The new cyl. has the same power as the original cyl., but its sign is

changed and its axis is at right angles.

(2) To transpose a sph.-cyl. into a cross-cyl.

(a) The one cyl. of the new form has the same number and sign as that

of the original sph. and its axis is at right angles to that of the

original cyl.

(b) The other cyl. has its axis in the same meridian as that of the

original cyl., and a sign and number which results from the

algebraical addition of the powers of the original sph. and the original

cyl.
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(3) To tTampose a cross-cyl. into a sph.-cyl.

(a) The sph. of the new form has the number and sign of the first

original cyL

(h) The new cyl. has its axis corresponding to that of the second original

cyl. and a sign and number which results from the algebraical sub-

tmdioii of the first from that of the second original cyl.

Since either original cyl. may be taken as the first, there are two forms

of sph.-cyls. into which a cross-cyl. can be transposed.

Examples.—The above rules can be better appreciated by studying the

example at the same time. In the following examples, which illustrate all

possible combinations, the first is the original, and those following are the

forms into which it can be transposed.

(1) +4 S.o + 2 C. Ax. 20°-

+ 6 S.o-2 C. Ax. 110°

+ 4 C. Ax. 110°o+6 C. Ax. 20

(2) -2-50 S.O- 1-50 C. Ax. 175° =
-4-00 S.O+1-50 C. Ax. 85°

- 2-50 C. Ax. 85°O - 4-00 C. Ax. 175"

(3) + 3-50 S. O - 2-50 C. Ax. 45° =
+ 1-00 S.O + 2-50 C. Ax. 135°

+ 1-00 C. Ax. 45° 0 + 3-50 C. Ax. 135°

(4) +3 S.O-3 C. Ax. 105° =
+ 3C. Ax. 15°

(5) +2-50 S. O- 4-50 C. Ax. 115° =
-2-00 S. O + 4-50 C. Ax. 25°

+ 2-50 C. Ax. 25° O- 2-00 C. Ax. 115°

(6) -1-25 S.O + 1-75 0. Ax. 160° =

+ 0-50 S.O-1-75 C. Ax. 70°

-1-25 C. Ax. 70° o + 0-50 C. Ax. 160°

(7) +2-75 C. Ax. 95° =

+ 2-75 S. 0-2-75 C. Ax. 5°

(8) +2 C. Ax. 80°o+3 C. Ax. 170° =

+ 2 S. O + l C. Ax. 170°

+ 3 S.O-1 C. Ax. 80°

(9) - 5-50 C. Ax. 155° O - 2-50 C. Ax. 65° =
-2-50 S. 0-3 C. Ax. 155°

-5-50 S. 0 + 3 C. Ax. 65°

(10) +2-25 C. Ax. 75° O- 2-25 C. Ax. 165° =

+ 2-25 S. O - 4-50 C. Ax. 165°

- 2-25 S. O + 4-50 0. Ax. 75°
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(11) +3-50 C. Ax. 120° O- 0-75 C. Ax. 30° =
+ 3-50 S. O - 4-25 C. Ax. 30°

-0-75 S.O + 4-25 C. Ax. 120°

(12) -10-00 C. Ax. 180°O + 2 C. Ax. 90° =
+ 2 S.O-12 C. Ax. 180°

-10 S.o + 12 C. Ax. 90

(13) +3-50 C. Ax. 90 0 + 3-50 C. Ax. 180°

+ 3-50 S.

(14) -4 S.=
— 4 C. O - 4 C. with axes at right angles.

Comparison of Original and Transposed Forms.—The two principal

powers and Mers. of the original form of a combination can be extracted and

compared with those of the transposed form, and they must be alike if the

transposition is correct. Thus, suppose - 3 S. O + 4 C. Ax. 90°. The two

principal powers are - 3 at 90° and + i at 180°. The power of the - 3 Sph.

is in both principal meridians, while that of the +4 C. Ax. 90° is only at

180° ; its axis, being at 90°, contributes no refractive power to that meridian.

-5 0 ~5

±1

A B C
Fig. 124.

The two components separated are represented by A and B of Fig. 124.

When combined they are represented by C. The two forms into which they

can be transposed are

(a) +1 S.O-4 C. Ax. 180°

(b) + 1 C. Ax. 90°O - 3 C. Ax 180°

Proof by Neutralisation.—Since a transposition simply assigns the needed

powers in a different way, as regards the two surfaces of a lens, and does not

change the refractive power of the combination, that combination which will

neutralise the original form will also neutralise the transposed forms. Thus

—

(a) +1 S. O - 4 C. Ax. 180° transposes into

{b) -3 S.O + 4 C. Ax. 90°

(a) is neutralised by - 1 S 0 + 4 C. Ax. 180°, and these also neutralise (b) as

can be seen by adding them together thus

—

(-3 S.O + 4 C. Ax. 90°) + (-l S.O + 4 C. Ax. 180°)

The 2 sphs. = - 4 S., the 2 cyls. = + 4 S. ; - 4 S. + 4 S. = 0.

It is never required in practice to give crossed cyls. for any combination,
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since the eftect can be equally well obtained from a sph.-cyL, and at much
less cost. The best form to employ is usually a + Sph. O - Cyl., or a

-Sph. O + Cyl., since from these we obtain a certain periscopic effect with-

out additional expense.

Toric or Toroidal Lenses.

A toric lens is one having two principal powers worked on the same

surface with their axes at right angles to each other, as shown in Fig. 125.

The curvature of the lens along A B is, say, + 3 D, while along C D it is,

say, + 5 D. It is, therefore, equal to +3 S. O + 2 C. and has the same

optical effects. The name is derived from the tore or arched moulding used

at the base of pillars. It can be illustrated by a bent tube or rod ; the side

of an egg or the bowl of a spoon resembles a toric surface.

The curvature of a toroidal surface is spherical in the two principal

meridians, and elliptical in the intermediate ones. It can be eit^her convex or

9
Fig. 125.

concave. Astigmatism of the cornea is due to the toroidal shape of the

latter.

Since the possible toric forms of a combination is exceedingly great, it is

usual to employ tools of a given base curve. Often an assortment is kept of

toric lenses having the one surface unworked, and on which any spherical

curve can be ground. The laM curve indicates the standard or fixed power of

the toric surface. It is usually the lower of the two powers, but may be, and

occasionally is, the higher. In the following it will be taken as if it were

always the lower toric power.

Advantages of the Toric Lens.—The utility of the toric form is that by

its means the refracting power of a lens can more nearly be divided between

the two surfaces. Thus if +10 S. O-f-1 0. be required, instead of there

being +10 S. on the one surface and + 1 C. on the other, it can be made
with +-1:S. on the one surface and + G C. O + 7 C. on the other. Or it

can be made with any other convex spherical power, the virtual cylindricals

of the toric surface being accordingly stronger or weaker, but always having

1 D difference between them. Thus, a strong lens as needed in aphakia or

high myopia can be made less thick and unsightly, and more nearly resem-

bling a Dcx. or Dec. Another, and perhaps greater, advantage of the toric
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surface is that, with it, a sph.-cyl. can be made periscopic, if so needed, to

any extent, as shown in the following example. The advantages of highly

periscopic lenses are mentioned under Menisci

Required +-50 S. 0 + '25 C. Ax. 90°. As a toric periscopic lens on a

Cx. base of 6 D, the combination would be

-5-50 S.

+ 6-0 C. Ax. 180° O +6-25 C. Ax. 90°

Conversion to Toric Form.—Toric tools or plano-toric lenses are usualty

made on a base curve of either 3 D, or 6 D, or sometimes 9 D, the other

curve always being the btronger by an amount equal to the cylindrical effect

required in the finished lens. The number of the toric tool or blank is

therefore simply the ditierence in the principal powers, since we always know
the weaker power to be either 3, 6, or 9 as the case may be ; thus a 2 D tool

is one having a 6 D curve in one direction and 8 D at right angles ; or if the

series is on a 3 D base, the curvatures would be 3 and 5.

Therefore if a + 1 S. O + 1*5 C. were required in toric form with + 6

base curve, a 1*5 tool would be used, giving on the Cx. surface powers of

+ 6 and +7 '5. On the other surface - 5 i> sph. would be necessary in

order to reduce the principal powers to + 1 D and + 2 5 D, as required in the

original lens. The result, therefore, is the same as that of an ordinary sph.

-

cyl., but has the advantage of the periscopic form.

The series of tools being in pairs, the toric surface can be made concave

if the powers of the original lens are not suitable for a convex toric. For

example, the above sph.-cyl. could be made with - 6 D and - 7*5 D powers

on the one side, the adjusting spherical on the other being +8*5 D. Here

a greater periscopic effect is secured with the same toric powers than when
they were convex.

To convert a sph.-cyl. combination into a toric form, it is merely neces-

sary to select the base curve and required tool, and then add to the other

surface that Cx. or Cc. sph. necessary to bring the powers to the requisite

strength. Due regard must, of course, be paid to the powers of the original

lens when selecting the base curve in order to get the best result. If this is

not done the result may be a periscopic little greater than what could be

obtained from the ordinary sph.-cyl., and on the other hand it may be so

deep as to render the lens clumsy or unsuitable for mounting in a frame.

Thus if - 5 S. o - 1 C. Ax. 45° be required in toric form, on a - 6 base,

-fl S.

- 6 C. Ax. 135° O - 7 C. Ax. 45°

would differ but little from the sph.-cyl. form of -6 S. O -h 1 C. Ax.
135°; and on a + 6 base, the sph. being -12 D, the lens would be thicker

and heavier with no great increase in advantage over the ordinary

sph.-cyl. It is in Cx. sph.-cyls. where the toric is most useful, because
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generally only a very small periscopic effect can be obtained by ordinary

transposition. A toric surface may be expressed as two powers in certain

meridians, or as the two virtual cylindricals, which are contained therein, with

their axes at right angles and in certain meridians. The latter method is

followed in this article. It may be added that the usual base power is 6 D.

Rules for Conversion to Toric Form.

(1) Convert the combination into cross-cyls. with their axes.

(2) Find the difference between the two powers.

(3) The lower power of the toric surface is the base curve.

(4) The higher power is the base jjIus the difference found in (2).

(5) Find the spherical to be worked on the other surface to reduce the

powers to the originals as found in (1).

(6) Assign the axes of the toric to conform with those of (1).

For emmple + 1 8ph. O + 2 Cyl. Ax. 45° to a base curve + 6 D.

(1 ) The combination = + 1 C. Ax. 135° O + 3 C. Ax. 45°.

(2) The difference is 2.

(3) The base curve is + 6.

(4) The other toric curve is + 8.

(5) The spherical is - 5.

(6) The axis of (3) is 135°
; that of (4) is 45°, i.e.

-5S.
+ 6 C. Ax. 135°0+8 C. Ax. 45°

The same comhination on a base curve of - 6 D.

(1) and (2) are the same.

(3) The base is - 6.

(4) The other toric curve is — 8.

(5) The adjusting sph. is + 9.

(6) The axis of (3) is 45° ; that of (4) is 135°, i.e.

+9_a
- 6 C. Ax. 45° O - 8 0. Ax. 135°

The above rules seem somewhat complicated, but after a little practice

only (5) and (6) require any consideration. It is useful to remember that

{a) With the base of same sign as the two powers required, the sph. is

the base less the lower power, and the base axis is reverse to the original

cyl. axis.

(Ij) With the base of opposite sign to the two powers required, the sph. is

the base plus the higher power, and the base axis is the same as the original

cyl. axis.

When the combination is mixed these last rules cannot apply.
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Advantages of Menisci.—Of course the advantages derived from the use

of periscopic sph. lenses apply also to toric lenses, which are merely deep

menisci possessing a cyl. element.

A periscopic Cx. or Cc. sph. is preferable to a Dcx. or Dec. A + sph.

O— cyl. is better than a + sph. O + cyl. A concave surface near to the eye

prevents side reflections of light, allows of the frame being fitted closer^

and, what is most important of all, the field of clear view is widened by

the elimination of the oblique aberrations, coma and radial astigmatism.

There is one defect noticeable sometimes in toric and deep meniscus

lenses, especially if the powers be weak. The wearer complains of " ghost
"

or secondary image of any bright object such as a window. This is caused

in the same way as the multiple images in plane mirrors, since a weak lens

made deeply periscopic has its surfaces nearly parallel. Also the elimination

of oblique point aberration tends to render more prominent any residual dis-

tortion in the peripheral portions of the field, or when using the edges of the

lens.

Again, a deep Cc. rear surface is apt to act as a powerful Cc. mirror and

to produce magnified virtual images of the wearer's own corneal reflections,

these being most marked when looking in the neighbourhood of bright lights.

In a meniscus lens the optical centre lies on the remote side of a Cx., and

on the near side of a Cc, with respect to the eye, so that the cfl'ect of the

lens is somewhat increased in both cases as compared with an Ordinary lens

of similar dioptric number. But since the distance of the optical centre

depends largely on the thickness of the lens, any difference of effect resulting

from the toric or meniscus form is negligible if the lens be thin, as is usually the

case with spectacle lenses. It is, however, sometimes noticeable with strong-

lenses. The term toric is often misapplied to deep meniscus spherical lenses.

Wide-angle or Periscopic Lenses. ^—The form of lens which allows of

best vision over a fair range, of say 50° or 60°, i.e., 25° or 30° on each side

of the axis, is one which eliminates radial astigmatism and produces a flat

field ; the two do not necessarily accompany each other, and the former is

the more important.

The subject has been treated by Ostwalt and Wollaston, and more

recently by Dr. Percival in his " Prescribing of Spectacles " and by Mr. A.

Whitwell in the Optician. The calculations, which are of a complicated

nature, are based on motion of the eye about the centre of rotation some

27 mm. behind the plane of the lens. The actual best forms as to the curva-

ture of the two surfaces vary with the power of the lens, with the /x and with

the distance of vision ; it is, however, nearly always a deep meniscus. With
refractive indices between 1-5 and 1*54, for Cx. lenses up to, say, -f8D, the

one surface is about - 7 D or about -f- 20 D ; for concaves the one surface

is either - 7 D or - 20 D added to half the power of the required lens.

These are only very approximate figures for distant vision ; the true figures

differ for every /x, every power of lens, every distance of lens from eye, and,

moreover, for every distance of vision.



CHAPTER XII

ANALYSIS AND NEUTRALISATION OF THIN LENSES
AND PRISMS

Neutralisation.—Neutralisation consists of finding that lens (or lenses) of

opposite refraction and of known power (from the test case) which stops the

movement caused by the lens to be analysed.

A Cx. and a Cc. lens (Fig. 126) of the same power, when placed in con-

tact, have no converging or diverging effect, the convergence of the Cx. being

counteracted by the divergence of the Cc, and incident parallel light

emerges parallel. Two such lenses, when moved in front of the eye, cause no

movement of the image of the object viewed through them, as occurs with a

plane glass.

Cx. and Cc. Lenses,—If an object is viewed through a lens and the lens

be then moved, the virtual image seen moves in the op2)oslte direction

with a Cx. lens, and in the same direction with a Cc. lens. If the lens is dis-

Fig. 126.

placed downwards, a horizontal line is seen through a peripheral portion of

the lens, which is of greater deviating power than the centre, and the line

appears deviated in the direction of the apices of the virtual prisms of which

the lens is formed, that is, towards the edge of aCx., and towards the centre

of a Cc. lens. The degree of deviation and the rapidity of movement of the

line is proportional to the strength of the lens ; also the deviation is greater,

as the part of the lens looked through is near the periphery. The apparent

motion of the object viewed, as the lens is moved, is due to thefact that the lens

increases gradually in prismatic or deviating power from centre to jjeriphery. If

the line be first viewed through, say, the bottom of the lens, and this then

moved downwards, the motion of the image is continuously loitli or against

throughout the journey. If, instead of the lens, the head is moved, an
143
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image seen goes with the head if the lens is Cx., and in the opposite direc-

tion if it is Cc. ; for if the head is moved, say, to the right it produces the

same effect as if the lens had been moved to the left.

Analysing Card.—Analysis and neutralisation are facilitated by the use

of an analysing card, as shown in Fig. 127, although, in its absence, any

clearly-defined straight vertical, or horizontal line, as the sash of a window,

serves the purpose. The card should be 18 or 20 inches square, with two

crossed black lines about J inch in width, running vertically and horizontally,

and for most work should be distant not less than 3 or 4 feet.

A square card viewed through a sph. is slightly increased or decreased in

size equally in every direction and (disregarding distortion) remains a true

square. If viewed through a cyl., axis vertical, the square is apparently in-

creased in size across the axis, by a Cx., and*diminished by a Cc. ; the size is

not altered in the direction of the axis, so that the square appears a rect-

angle in both cases. Diminution caused by a Cc, and magnification caused

by a Cx., disappear when the two of equal power are placed together.

Fig. 127. Fig. 128.

Determination of Cylindrical Element.—The first step in the analysis of

a spectacle lens is to learn whether or not it contains a cyl. element. A lens

having a sph. power only, on being rotated around its geometrical centre in

a plane parallel to the card, does not cause any change in the appearance of

the lines of the analysing chart, because its refractive power is alike in all

meridians. If the lens has a cyl. element the lines become oblique, as

shown in Fig. 128, where the dotted lines represent the black lines of the

chart as seen when the lens is rotated. This obliquity occurs because the

power of the lens is not the same in all meridians.

Determination of Nature of Sphericals.—If the lens has only sph. power,

the next necessary step is to learn whether it is Cx. or Cc. by moving the

lens horizontally while observing the vertical line, or vertically while

observing the horizontal line.

When the vertical line is first viewed through the centre of the lens the

part A B seen through the glass is continuous with the parts C and D seen

beyond its edges (Fig. 129). Then if the lens is moved, say, to the right,

A B becomes broken away from C and D to the left if the lens is Cx.

(Fig. 130), and to the right if it is Cc. (Fig. 131). When making this test

the lens should be moved slowly in a certain direction, and not rapidly from
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side to side or up and down. If the lens is held too close to the eyes the line

C and /) beyond the edges cannot be seen, so that the best distance is about

8 or 10 inches. If, however, the lens is a strong Cx. it must be held nearer

the observer's eyes, or nothing can be seen through it owing to the strong

convergence of the light, but the nature of such a lens can be at once recog-

nised both from its form and from the fact that the lines, seen through it, are

indistinct. Again, if held at a distance somewhat greater than its focal

length, for instance, if a 4 in. Cx. be held 10'' in front of the eye, the light

will have crossed in the air, to enter the eye divergently, and the apparent

movement of the object when the lens is moved is the same as with a Co.

lens. What is really observed is an inverted aerial image of the object, but

the inversion of the chart may not be noticeable. Only very strong Cx.

lenses can, when held a few inches from the eye, form an aerial image suffici-

ently far away to be distinctly seen. The central thickness, however, of a

strong Cx. lens sufficiently indicates its character.

If the glass is 2^l(ino, that part A B oi the vertical line seen through the

glass remains contimmis with the parts C and D on either side ; no displace-

FiG. 129. Fig. 130. Fig. 131.

ment occurs on moving the glass or on rotating it. Also there is no move-

ment of either line on moving a prism in front of the eye, but both lines are

not continuous, nor do they remain stationary on rotation of the prism.

Neutralisation of Sphericals.— If the unknown lens is Cx., a Cc. is

selected from the trial case, as near the power as can be judged, and then the

two held together are again moved. If the movement is still that of a Cx.

the power of the neutralising Cc. is insufficient, and a stronger one must be

tried. If with the first neutralising lens the movement of the two combined

is that of a Cc, the nnutralising lens is too strong, and a weaker one must be

taken. A few trials will enable one to find a lens which, when placed in

contact with the unknown lens and moved, causes no displacement of the

line ; then the number of the neutralised Cx. equals that of the neutralising

Cc. To find the power of an unknown Cc. lens, a neutralising Cx. must, of

course, be used. Practice will soon enable one to judge, by the degree or

rapidity of movement, the approximate neutralising power needed, as well as

to appreciate such slight movements as ocr-ur when neutralisation is nearly,

but not quite, eftected. When neutralising, the lenses must be in actual

contact, because if separated the Cx. acts with increased effect.

10
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The Principal Meridians of a Cylindrical.—If the lens contains a cyl.

element the cross lines of the analysing card are seen continuous within and

beyond the edges of the lens, as in Fig. 1 32, only when the axis of the lens is

horizontal or vertical. The two principal Mers. then correspond in direction

to the lines of the chart. Such a position for a cyl. must be found in order

(a) to learn whether it is a piano- or a sph.-cyl., (b) to determine whether it

is Cx. or Cc, and (c) to neutralise it. This position being found, the lens is

first moved vertically and then horizontally. If no movement is observed in

the one direction it is a plano-cyl. ; if there is movement in both directions

it is a sph.-cyl., or its equivalent, a cross-cyl.

Movement against indicates Cx. power and movement tvith indicates Cc.

power in that meridian. If there is movement in both Mers. they may be

both against, both with, or the one against and the other with. The move-

ment in the one Mer. differs in degree or nature from that in the other if

there is a cyl. element.

The axis of a piano-cyl. lies in the meridian in which there is no move-

ment. The axis of the cyl., in a sph.-cyl., which has two positive or two

Fig. 132.

negative powers, is in that principal meridian in which there is the lesser

movement. When there are + and - powers the axis of the cyl. is also pre-

sumed to be in the principal meridian of lesser movement. In all cases the

axis of the actual cyl. might be in the meridian of greater movement,
because the same principal powers can be obtained in lenses of various forms.

(See Transposing.)

The angular position of the axis is the same as that of the neutralising cyl.

This can be determined after a little practice, with a fair degree of accuracy,

when the lens is held as when in use. With more accuracy its numerical
position can be determined by holding the lens against the neutralising lenses

when the latter are in a trial frame, with the long diameter of the neutralised

lens horizontal. The axis of the trial lens, being marked by a scratch, can
be read off' from the notation of the frame.

There are several forms of inclinometers or axis-finders—that of Dr.
Maddox, for instance, is a most excellent one—designed for the purpose of

aiding in the location of the axis of an unknown cylindrical spectacle lens.

A quick and fairly accurate method of locating the axis is by means of the
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protractor on the " Orthops " rule. For real accuracy the procedure is as

follows :

Holding the lens and the neutralisers in position, the axis of the cyl. is

marked with a grease pencil on the lens by a line coinciding with the axis of

the neutralising cyl. ; also the optical centre is marked by a dot. The lens

is then placed on a protractor with the dot at the centre, the long diameter

of the lens being exactly horizontal ; the angular position of the axis is then

indicated on the protractor. Care must be taken that the same meridian is

covered by the marked grease line both above and below the central hori-

zontal line. When the axis is oblique and the lens is not in a frame, con-

sideration must be given as to which of the two faces of the lens is supposed

to be directed outwards, since the location of the axis varies accordingly.

The rule is that the less convex, or the more concave, surface of a lens is

placed next to the eye.

Neutralisation of Cylindricals.—To neutralise a plano-cyl. the procedure

is the same as with a sph., only that cyls. of opposite nature are employed.

Care must be taken that the cyl. axis is always exactly vertical or horizontal,

and that the axis of the neutraliser precisely corresponds to it. In order

that this may be the case, continuity of the crossed lines at the edges of the lens

must be looked for, and constcmtly maintained during the process of neutralisation.

In a sph.-cyl. the lesser movement is that due to the sph. alone, while the

greater movement is caused by the united powers of the sph. and the cyl.

The lens being held with its axis, say, vertical, that sph. of opposite refraction

is found which neutralises, in the Ver. meridian, the movement of the Hor.

line. This having l)een achieved, the lens and the neutralising sph. are held

together, and the cyl. element is then neutralised with a cyl. axis rerticcd, of

opposite refraction, in the same manner as if the lens were a plano-cyl. The
rapidity and exactitude of the neutralisation depends, as with a plano-cyl.,

on the care exercised in keeijing the lyrincvpal meridians exactly parallel to tht

two lines of the card, and the axes of the two cyls. exactly corresponding

.

Neutralisation of a sph.-cyl, can also be effected by neutralising each

principal meridian separately with a sph. or with a cyl. whose axis is placed

at right angles to the meridian that is being neutralised, the two powers thus

found being transposed into a sph.-cyl. combination. These methods are,

however, not so exact, especially for beginners.

Cross cyls., torics and obliquely crossed cyls. are all merely special forms

of sph. -cyls. and so are analysed and neutralised in a similar manner to these

latter.

Expressing Sphere-Cylindricals.— Since any lens which has two principal

meridians can be put up in various forms, the neutralising combination, while

correctly indicating the refracting powers of the lens, may not represent the

exact form in which it is made. It is always correct to express a combina-
tion as a sph.-cyl. with a sph. of tJw lower poiuer.
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True Form of a Lens.—This can be learnt by [a) ordinary inspection,

(h) reflection from the surfaces, (c) the lens measure or spherometer, [d) by a

straight-edge which, when in contact, easily shows the difference between

Cx. and Cc. curvature.

The Scissors Movement.—On rotating a cyl. in a plane parallel to the

analysing chart the lines on the latter appear to make a scissors-like move-

ment, and if the rotation be continued, appear to move back again, the

amount of clipping being dependent on the strength of the cyl. Each line

appears to bend towards the meridian of greatest positive, or least negative,

refraction, so that they both rotate towards the axis of a Cc. or away from

the axis of a Cx. cyl., and since they incline towards each other, they are

never at right angles except when the principal meridians of the lens corre-

spond to them in direction.

The inclining of the cross lines is due to the prismatic formation of the

lens, the apparent displacement being towards the edges of the virtual p}risms co7i-

tained in the lens. Thus rotation is useless for determining the nature of a

cyl. since the scissors movement is the same for both Cx. and Cc, the one

end of the horizontal line moving up and the other down, one end of the

vertical line moving to the right and the other to the left. For instance, a

Cx. cyl. axis Ver. and a Cc. cyl. axis Hor., both rotated, say, clock- wise,

cause similar movements of the cross lines. An attempt to neutralise by

stopping " the apparent inclinations might result in selecting for that pur-

pose another cyl. of similar power and nature, the two together making a

sph. lens.

Reversion of a Cyl.—If a cylindrical (Fig. 133), having its axis at, say,

60° when the one face is to the front, is turned over so that the other face

becomes the front, the axis is then at 120° (Fig. 134). If the one position

were 5°, the other would be 175°. It is only when the axis is vertical or

horizontal that no change occurs on turning the lens over. When the one

inclination is 45° or at 135°, turning the lens over brings the axis to a posi-

tion at right angles to the former one. The change in the numerical position

of the axis, caused by turning an oblique cylindrical, is calculated as so many
degrees above or below the horizontal, or to the right or to the left of the

\\%0"

A
Fig. 133. Fig. 134.
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vertical, and assigning its position accordinglj^ ; or it is done by simply

deducting the numerical position of the axis from 180°. Thus, suppose the

axis is at 60°, this is 30° to the right of the vertical ; on turning the lens the

axis is at 90° + 30° = 120°, i.e., 30° to the left of the vertical, or more simply

by ISO" - 60° = 120°. The corresponding positions of the axis as the one face

or the other is in front are shown in the following table :

1st Position . .
0° 10" 20" 30° 40° 50° 60" 70° 80° 90°

When reversed .. 180° 170° 160° 150° 140° 130° 120° 110° 100° 90°

Prisms.—The Base-Apex Plane.—As a prism, a sphero-prism, or a

decentered sph. is rotated in front of the analyser, it is found that, in a

certain position, there is a conUmiity of one of the lines tvithin and beyond the

edges of the glass, as in Fig. 135, where the vertical line A B is continuous.

The direction of this line indicates that of the base-apex plane of the prism,

or of the prismatic element of the lens. If the Hor. line CD is deflected

upwards, as to E F, the apex is then pointing upwards towards A, and the

A

B
Fig. 135.

base is down towards B. If the deflection of CD is downwards towards

G II the edge of the prism is pointing downwards, and the base is up. If

properly marked, the indicating scratches of circular trial prisms lie over

A B when that line appears unbroken by the prism.

Neutralisation of Prisms.—The strength of a prism can be learnt by

neutralisation. The base apex line being located, the displacement of a bar

of the analyser can be neutralised by trying one prism after another from

the test case and placing it in opposition to the unknown prism ; that is,

placing the base of the former over the edge of the latter, until that test

prism is found which causes the bar to be seen continuous beyond and

through the two prisms. The number of the test prism, which neutralises

the unknown prism, indicates the A^alue of the latter. By this method the

deviating angle is really neutralised, although the neutraliser may ])e numbered

according to its principal angle.

If the prism is combined with a sph. (or a sph.-cyl.) this latter must Ije

first neutralised. With the lens and the neutraliser held together, the two
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being geometrically centred, the prismatic element is located and neutralised.

It must be remembered that the smallest decentration, with respect to each

other, of neutralising Cx. and Cc. lenses, introduces considerable prismatic

effect not actually existing in the lens which is under analysis. Therefore

the geometrical centres of all the lenses should exactly coincide when any prismatic

element is suspected, or is being measured.

If the angular inclination of an oblique prism is needed the base apex

line, when located, should be marked with a grease pencil and the angular

position determined on a protractor, as with the axis of a cyl.

Points on Neutralising.— It is essential that the front of the lens, i e., the

Cx. surface of a periscopic, or the more Cx. or less Cc. surface of any lens, be

held towards the observer.

A lens possessing sph., cyl. and prismatic elements should be neutralised

in that order. Practice is necessary to neutralise rapidly and correctly, and

it is well to commence with simple sphs., and then proceed to plano-cyls. and

finally to sph.-cyls. and other compound lenses.

If the sph. is strong compared with the cyl. it is difficult to appreciate

the latter until the sph. is partly neutralised. Similarly it is difficult to

appreciate a weak sph., when combined with a strong cyl., until the latter is

wholly or partly neutralised. When the two powers of a sph. -cyl. are

nearly equal it is not always easy to determine in which Mer. the movement
is the lesser, but this becomes easy enough when the lens is partly neutralised.

A simple prism may be mistaken for a piano, since neither causes move-

ment ; rotation is needed to distinguish between them.

It is necessary to guard against supposing a prismatic element to exist,

when it may be produced by holding the neutralising lens out of centre with

the lens which is being tested.

Holding several lenses together is difficult, but is rendered easier if the

surfaces are fitted together, i.e. Cx. to Cc.

To determine very weak powers, or to determine whether neutralisation

is obtained, hold the lens or combination at arm's length, and move in the

ordinary way
;
by this means the apparent movement of the object is

increased and enables very weak powers to be detected.

Strong Opposite Lenses.—It is difficult to get absolute neutralisation

with strong lenses, say over 10 D, there being always some slight move-

ment in the peripheral portion of the lenses, although near the centre there

may be practically none. This is due to the thickness of the Cx., or rather

to the interval between the optical centres of the two lenses. As shown in

Fig. 136 by the dotted lines, the two lenses actually constitute a Cx. men-

iscus, for, with the same radius of curvature, the total lens is one formed of

two intersecting circles.

The thickness of a Cc. lens in the centre, no matter how strong it be, can

be ignored, but this is not the case with a strong Cx. If the focal length of
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the Cx. is equal to that of the Cc, it is clear that F^of the Cc. is further

from the centre of the combination than is F y of the Cx. Parallel light inci-

dent on B is rendered divergent as if proceeding from i^;-, a point outside Fy,

and is therefore slightly convergent after refraction by A. If parallel light

is incident on A, it is converged to Fy, a point nearer than Fy, so that it is

still slightly convergent after refraction. Thus a strong Cx. and Cc. lens of

similar /x and radius do not actually neutralise each other.

This can also be explained in another way. If the light be incident on

the Cx. it is converged, and the convergence is increased as it traverses the

thickness of the two lenses to an extent that the final Cc. surface is unable to

neutralise. On the other hand, if the light is incident first on the Cc. sur-

face it is diverged, but in passing through the Cx. some divergence is lost,

with the result that the Cx surface over-neutralises it and produces a slight

positive effect. Thus with either lens to the front, the result is the same Cx.

power, but when the Cx. lens is in advance of the Cc. the effedivity of the

resultant Cx. power is enhanced. Again, if a ray of light originally parallel

to the axis traverses first a Cx. and then a Cc. of equal dioptric power, or vice-

versa, its passage in both cases is, in the Cx., at a part of the lens more distant

Fig. 136.

from the axis than that of the Cc. and, therefore, where the prismatic element

is greater in the former.

The Cc. being thin at its axis, its required radius for a given focal length

would be calculated by the formula where thickness is neglected, while

that of the Cx. would need to be calculated with its thickness considered.

The -h 20 D from a trial case, being of a large diameter, is about '75 cm.

thick in the centre, and its radius would need to be shorter than that of the

— 20 D to have equal equivalent power. Giving the same radius to each, the

true or equivalent power of the Cx. is weaker than that of the Cc. In order

that two strong opposite lenses should neutralise, the Cc. must be the more

powerful, the focal length of the Cx. being approximately one-third its thick-

ness longer than that of the Cc, which, however, is not the case when the

radii of curvature of the two are equal. In short, although a thick Cx. has

a longer equivalent focal length than a Cc. of similar radius and /x, it is not

sufficiently so for the Cx. to be neutralised by the Cc. For a - 20 D whose

F = -5 cm. to neutralise a Cx. having a thickness of -75 cm., the latter

would need have F = 5-25 cm., or D= +19, and if /x=l-5 would require a

radius of curvature of 5*125 cm. In other words the hack foci of the lenses
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must be equal. If, therefore, a Cx. and a Co. do neutralise, the latter is

stronger, but the difference is quite inappreciable in weak lenses, and not of

importance in spectacle lenses, even if strong.

In modern cases of test lenses the concaves are of their indicated strength,

but the convexes are made to neutralise the concaves of similar numerical

value. Up to 10 D the difference is inappreciable, but the +10 D is only

9-8 D approximately, and the +20 is +18-75 D approx., the intermediate

numbers being of proportional nominal value. AVhether there is good

reason for this arrangement is very doubtful indeed.

Strong Cx. and Cc. lenses may neutralise each other at the centre and

not at the periphery or vice-versa, with excess of either Cx. or Cc. effect at

the one or other ; or there may be Cc. effect at the centre and Cx. at the

periphery, or the reverse. In such cases the lenses are not in contact either

at the centre or at the periphery (Fig. 137), and the phenomenon is due to

the increased effect of a Cx. owing to separation. It is this separation that

renders the neutralisation of torics and deep menisci so difficult.

j
Fig. 137.



CHAPTER XIII

OBLIQUE CYLINDRICALS AND OBLIQUE SPHERIGALS

Powers of a Single Cyl.—If a lens measure be placed in contact with

the maximum meridian M. of a cyl. (Fig. 138) we obtain the highest possible

curvature from that cylindrical. Along the axis the instrument would indi-

cate 0, and between these two the recorded power w^ould vary. Suppose

the two fixed legs touch at d d, then the sag, of the central leg indicates the

power which is based on the formula r = d"/2 S (vide The Spherometer), and

the curvature c= 2 S/d^, where d is half the distance d d. If the sag were a

fixed quantity c varies inversely with d- Let the instrument be turned so

that the legs lie on the meridian at an angle b with M ; then f//cos h^d-^.

If now the sag were the same as before it is because the distance between the

legs is greater, curvature at bearing to the curvature c at M the

relationship gJc = d'^/d^^, where d^ is the new distance d^ between the

/
(

A/,

Fig. 138.

central and one of the fixed legs in the meridian M^. But d-^^djm^ b, so

that

c, d:^ d'^ cos- b «
?

c ^^1- d^

or Cj^ = c cos^ b

Now the dioptric powers D at M, and D^^ at are directly proportional

to the curvatures c and Cj^ respectively, so that in the meridian AI^ the power

of the lens Dj^ = D cos^ b, or what is the same, Dj = D sin- a where a is the

angle between ikfj and the axis. Similarly it can be shown that in the

meridian at right angles to the power = D sin- b, or D cos- a. If

we consider the angle a between a given meridian and the axis of a cyl., the

power varies as sin''^ a ; if we consider the angle b between it and the maxi-

mum meridian, the power varies as cos^ b.

153
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Although we thus refer to the refractive power of a cyl. in any oblique

meridian, yet this latter does not cause a point focus. A cyl. brings incident

light to a line focus, parallel to the axis, and if a meridian of maximum
power be isolated by means of a stenopseic slit, so that the oblique meridians

are cut off, the line is reduced to a point, since the effective curvature in that

meridian is spherical, and the result is similar to that of an ordinary spherical

lens. If the slit be slowly rotated the meridians successively uncovered are

elliptical in curvature, and the point focus, first obtained, gradually widens

into a line parallel to the axis, showing that, although the effective part of

the lens is oblique, the effective curvature is always that of the maximum
meridian. If the rotation be continued until the slit is parallel to the axis?

the line reaches its maximum length just as though the whole lens were

uncovered. Thus the only meridian capable of producing a true focus is the

maximum principal meridian, which has a spherical curvature. It is, how-

ever, as mentioned in Chap. XIL, useful to assume that the oblique

meridians of a cyl. have certain powers relative to the maximum, and the

following is a brief summary of the necessary calculations ; a distinction

/Ix Ax

Fig. 139. Fig. 140.

must, however, be drawn between the incomplete line foci of such powers

and the point foci produced by spherical curvatures.

Obliciue Refractions of a Cyl.—Fig. 139 represents a Cx. cyl. lens whose

axis Ax. is vertical, and whose niaximum power ilf is horizontal. Let this lens

be a + 5 D, and the object be a point at oo. Any ray of light incident in the

meridian Ax^ central to the meridian M, suffers no deviation, it being normal

to the lens at both surfaces. Any ray incident in Mer. M is refracted to an

extent governed by its distance from the central point of Ax., such that it

meets all other rays, incident in that meridian, in a point in line with,

and 20 cm. behind it. Any ray, as h, incident in an intermediate meridian,

say that of 70°, is refracted so as to meet all other rays, incident in the plane

h c a, in a point in line with c, and also 20 cm. distant. The deviation

suffered by the ray refracted in an intermediate meridian, is less than that

which occurs when refracted as e in meridian M, both being equidistant

from the central point of Ax. The total image is a Ver. line.

In the case of a sph.-cyl. (Fig. 140) a ray incident at h in an oblique

meridian is refracted by the sph. to a point on the principal axis, and by the

cyl. to a point in line with c, with the resultant deflection in the direc-
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tioii h\ so that it meets rays incident in a plane h c a parallel to M in h\ and
those incident in a plane parallel to Ax in c ; or if the lens be regarded as

consisting of crossed cyls., the deviation is towards both axes, resulting in

an oblique deviation towards cf in the first, and h' in the second focal line.

Let D be the maximum power of a cyl., the power in a given Mer.,

and Dg that at right angles to D-^ ; let a be the angle between the axis and

the Mer. of Dj. Then the powers of a cyl. in any pair of given meridians

are, as shown on page 153, found by

Dj = D sin^ a and D cos'^ a

The power along the axis is 0, and at right angles it is D, so that the

total power of this pair of opposite Mers. is D + 0 D. Likewise the sum of

the powers of any pair of opposite Mers. is equal to D, for sin^ ft + cos^ a=\,
so that D sin^ a + D cos^ a = 1)^ + 1)^ = D.

Thus the powers of a + 3 D. Cyl. Ax. 180°, at 20° and 110°, are :—

Di = 3 X •11696 = '35 D. at 20°; D^=-d>x -88303 = 2-65 D. at 110°.

Let A Fand^ Z (Fig. 141) represent the forces exerted, respectively, in

Y R

Fig. 141.

the Hor. and Ver. mers. by, say, a 3-5 D. Cyl. Ax. 60°. Let H be the

horizontal and V the vertical effect. Now X Y=A Z=8m 60°, and
X Z = A F=cos 60°, whence H = l) sin2 ^ = 3-5 x -75 = 2-625, V= D cos- a=
3-5 X -25 = -875 and 2-625 + -875 = 3-5 = D.

In these calculations it is merely necessary to find either or Do since

the other can be obtained by subtraction from D. Thus if V=-875, H =
3-5 - -875 = 2*625 and vice-versa.

Following are the approximate powers of unit cyl. in different Mers.

calculated as mentioned.

Degrees fromAx. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Proportional)
Power . . /

0 01 •03 •07 •12 •18 •25 •33 •42 •50 •58 •67 •75 •82 •88 •93 •97 •99 1^0

To find the powers in any Mer. of a given cyl., multiply the decimal

corresponding to the angle between the axis and the Mer., by D of the lens-

Thus 4-5 D cyl. at 25° from the axis - -18 x 4-5 = -81 D.
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OblicLuely crossed Cylindricals.—If two cyls. D and D' are placed with

their axes corresponding in the Ver. Mer. their combined Ver. power = 0,

and the Hor. = D + D'. If one or both cyls. be rotated, they are equivalent

to a combination of some two other principal powers. AVhen the two axes

are at right angles the combination is equal to a sph. if D = D', and to an

ordinary cross-cyl. if D and are unequal. It should be particularly noted

that, with any obliquity of the axes, two [or more) cyls. are always equivalent to

some other cross-cyl. whose axes are at right angles, and are, therefore, also equiva-

lent to some syh.-cyl. The sum of the two principal powers and Dg is

always equal to the sum of the individual maximum powers D and 1)^

that is

Not only the powers of the principal mers., but also the sum of the 'poioers of

any pair of mers. at right angles to each other = T) -{-D\ Rotation of the axis of

one or both cyls., merely locates the refraction in varying quantities as

Fig. 142.

regards each of any pair of opposite meridians, and does not alter the total

power.

Let h (Fig. 142) be the angle between the axes of two cylindricals D and

D\ of which D is the higher of the two. Let and be the two resulting

powers, being the higher. Let c be the angle which the axis of makes

with that of D, the stronger original lens, and let d be the angle which the

axis of J)-^ makes with that of D^ Then angle b^c + d. Now Dj^ corre-

sponds with the axis of Dg, and with the axis of D^.

From the foregoing we have D + D' = Dj^ + Dg

and D sin^ c + D' sin^ d = Dg, also D cos^ c + D' cos- d^D^^

Multiplying these together we get

D1D2 = D2 sin2 c cos2 c + D"^ sin2 d cos^ d + DD' sin^ c cos^ d

+ DD' sin2 d cos^ c

but D'-^ sin^ c cos^ c + D' sin"-^ d cos^ d=2J)D' sin c cos c sin d cos d
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so thafc

DjDg = I) D' (sin- c cos- d + sin- d cos- c) + 2D D' sin c cos c sin cos d

= D D' (sin c cos d + sin cos c)-

but sin c cos d + sin cos c = sin (c + (/) = sin h

therefore D^D^ = D D' sin'^ h

and since D^ + Dg = D + D'

we can, knowing the multiple and the sum of the two numbers, arrive at their

difference N, thus

N = Di-D2= v/(D + D')2-4DD' sin^ h

Then we get in the resultant combination

The higher power _ D + D' + N
1 2

and the lower power -p. _ D + D' - N
^2 2

D-^ is the spherical + the cylindrical
;

Dg is the spherical ; N is the

cylindrical.

The following relationships exist.

D,-D = D^-D,^^ + ^'^^

and D^^ D'^'

sin'^ d cos- sin- c cos- c sin^ h cos- h

also N sin c cos c = D' sin b cos ^

Now from above N- sin- c cos- c = D' - sin^ ^ cos- b

= D^ sin^ 6 (D' - D' sin2 ^)

but D' = Di + D2-D
so that

N"-^ sin^' c cos'^ c - D' sin^ b (D^ + Dg - D - D' sin^ b)

DJ)' sin-' b + I^LY sin- - D D' sin^ b - (D' sin^ bf

substituting D^^Dg for D D' sin- b we get

N2 sin^^ c cos^ c = D^D' sin2 b + D^' sin^ b - J)J)^ - (D' sin^ by-

= (Di - D' sin^ b) (W sin^ b - D^)

Since sin- c + cos- c = 1 , N = N sin- c + N cos- c

But N = Di + D2 = (Di - D' sin2 b) + (D' sin"-^ b - D^)

That is N sin- c + N cos^ c = (D^ - D sin- b) + (D' sin^ b -

And from above

N sin^ c X N cos^ c = (D^ - D sin^ b) (D' sin^ b - 1)^)

Then we deduce that

N sin- c = I)' sin- b - and N cos- c D^ - D' sin^ b
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Now N sin c cos c = D' sin h cos h

Therefore
^^^^ c— ^ si'^ ^ cos h

^ N cos2 c D-L - sin2 h

or
tan c - ^^^^ ^ - ^^^^ ^

~

N sin c cos c sin h cos 6

But sin--^ & - Do D' sin'-^ h D D' sin^ ^ , D ^ .

T./ • 7 f = fv^ 7 7
-

r> •—7 . = tan5-^tan6D sin D cos 0 D sm & cos o D^D sm o cos h D^

So that , (D, - D) tan h
tan c =—=-

Dj^

The value of c is the angular distance of D-,^, the stronger resultant cyl.,

from that of D, the stronger original. We could find a formula for d, but it

is unnecessary, and of course c + = 5. The distance cV of the axis of Dg, the

weaker resultant, from that of D', the weaker original cyl., is found from

Dg

Now since (Dg — D') tan h = (D^ — D) tan b, it is an easy matter to confirm

the calculations, but care must be taken with the - signs. When D and D'

are of similar signs d' is negative ; also both c and d' are taken as negative

when D and D' are of opposite signs. The two resultant axes must be 90°

apart, i.e. h - (c - d')=^90°. A positive measurement is towards the other

axis, and a negative one is away from it.

Example.— + 3 C. Ax. 70° O +2 C. Ax. 20°, D + D'=+5, 5 = 50°,

D^ = 4-15, D2='85, c=18° 18^ c being measured towards D' from D. The

combination is + '85 S. O + 3-30 C. Ax. 51° 42'.

It will be seen that D D' sin2 b = D^Dg, i.e. 3 x 2 x -5868 = 4-15 x -85 = 3-52.

The sum of the maximum powers of the two original cyls., in this

example + 5 D, is not changed by altering the position of the two axes with

respect to each other, for the sum of the two principal meridians of the

resultant cyls. is similarly + 5 D. That is, Dj^ + D2 = 4*15 + -85 = 5 D.

Example.— + 4 C. Ax. 20°O -2-75 C. Ax. 65°, D + D'= +1-25,^ = 45°,

Di = 3-05, D2= -1-80, c = 17° 15'. The combination is -1-80 S. o +4-85

C. Ax. 2° 45', or +3-05 S. O -4-85 C. Ax. 92° 45'.

D^ + D,= +3-05- 1-80= +1-25.

Here by calculation tan c is a minus quantity, and the angle is measured

from the axis of D away from the axis of D' instead of towards it.

Two Equal Like Cyls.—Here the calculation is simplified, for when
D = D', c = d, so that it is unnecessary to calculate N or c. Thus

2 D sin2 b/2 = D^ 2D cos2 b/2 = D2

and, as stated, c = b/'2
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Thus +4 D C. Ax. 10° O + 4 D C. Ax. 60°

= +1-4288 S. O +5-1424 C. Ax. 35°.

Two Equal Unlike Cyls.—Here also the calculation is simplified, for

D = -D\ D + D' = 0, + = 0, and N needs no calculation.

D D' sin2 b = D^L)., - - sin'-^ b = 1)^2 or B^^ ; therefore D sin 5 = D^, and

-D'sin?)= -Dg.

P^Y^ ^ _ ^ measured negatively from the Cx., for the resultant

1 + sin 6 Cx., or from the Cc. for the resultant Cc.

or tan c
— ^ ^ measured from the Cx. positively for the resultant

cos b Cc, or from the Cc. for the resultant Cx.

The two measurements = 90°.

Thus + 4 D C. Ax. 60° O - 4 D C. Ax. 120°

= +3-464 C. Ax. 45° O - 3-464 C. Ax. 135°.

Graphical Illustration of Formulae.

Draw A D (Fig. 143) in units of length =D, and A = making the

angle D'A .D = b.^ On AIJ mark o^^A H = D^- D, and prolong A D

G

H D F

Fig. 143.

distance DF =AH = D^-Dso that A F=D^. From E drop EH normal to

H, and E H = {D-^ - D) tan b. From D draw D G equal and parallel to A E
;

connect EG and from G drop the normal G F to F so that GF^EH.

Connect A G. Then C A F c, and G F = tan c= (^i " D) ^anj.

^1

To find b the angle between two cyls. D and D' in order to produce any

two effects D-,^ and Dg, we have sin^ = D-^Dg/D D', but of course it is possible

only when D^ + Dg = D +

Tlie Cylindrical Effect of Oblique Sphericals.

Let Fig. 144 represent the face of a Cx. lens placed normally to the light.

Let the effect of the refraction in the vertical plane be ignored and that of

the horizontal considered by itself. Rays of light parallel to th^ axis pass-

ing through cc' would meet in a point behind, and in line with, O. ; similar

rays incident at cl d' and e e' would meet in corresponding points behind the

lens, forming a radial line focus parallel to B B'. Now if a beam of light be

incident to the lens obliquely in the vertical plane, it is so refracted that the
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focal line is nearer to the lens and inclined to the principal axis in proportion

as the incidence of the light is oblique.

Again, considering the vertical plane by itself, the refracting effect is to

produce a tangential line focus parallel to A A'. The tangential line meeting

its corresponding radial line combine to form point foci for rays parallel to

the principal axis, but when the incidence is oblique the two do not combine,

the tangential focal line lies nearer to the lens than the radial.

Thus with normal incidence of the ray there is a point focus of a point

source in the focal plane ; with oblique incidence a point source gives rise to

two focal lines, the tangential at a shorter distance than the radial and both

within F. This, as an aberration, is called radial astigmatism (q.v.).

Now since a spherical lens acts with an astigmatic effect on an oblique

pencil of light, a spherical held obliquely to the incident light acts as if it

were a sphero-cylindrical lens. When a spherical lens is held upright,

parallel to a screen, and at its focal distance, a luminous point on the axis

will have a point image on the screen. If now the lens be rotated around,

say, a horizontal axis, the image becomes confused and drawn out as if a

A

/ 1

1 N.

Jc

V 'e E '.e' J\ ~ '

\^ 1

3'

Fig. 144.

cylindrical had been added to the spherical. Two bright focal lines are

formed on the screen when the lens is held at the proper distance for each.

The second focal line is, in this case, vertical, and slightly within the focus

of the lens, the first line being horizontal and still nearer to the lens. Thus

the effect produced by obliquity of a spherical is that of a slightly stronger spherical

combined with a cylindrical whose axis corresponds to the axis of rotation. The
refraction is therefore increased in both meridians, but mostly in that at right

angles to the axis of rotation.

The increase of power in the meridian of the rotation is owing to the fact

that the light has to pass through a rather greater thickness of lens when the

latter is oblique than when it is placed normally. The increase in power in

the meridian at right angles to the axis of rotation is due partly to the same

cause, but is much enhanced by the increased obliquity of the light to the

lens surface. It is this increase of power which enables some people who are

astigmatic or under corrected to see better by looking obliquely through

their glasses.

In Fig. 145 let a represent the angle of rotation of the lens, F the focal
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length, and and F^^ the effective focal lengths of, respectively, the

meridians of greatest and least power. A B is the principal axis of the lens,

and CD is the secondary axial ray on which the focal lines are formed. The
pencil of incident light is presumed to be parallel to C D, so that rays as d

and e, or d' and e\ incident in planes parallel to the axis of rotation, meet

each other to form the radial focal line i^2- Eays as d and d', or e and e',

incident in planes at right angles to the first, meet each other to form the

tangential focal line F-^^. The angle of rotation a is that between 0 D and the

principal axis, and b is the angle of refraction at the first surface. The
distances of F-^^ and F^^ are found from the following formuhe,

or

Fx sm a - sm t

sin (d - h)
-F sin h - sin h

F(^-l
/X cos b — cos a

and

D(/^cos5-co^)
^^^^

' /x-1

sin a cos b - sin b cos a

Y _ (/^ ~ 1
)
^^^^ ^ _ F

fi cos b - cos a
'
cos- a

D _T) {[x cos b — cos a) _ Dg
^

(/^ ~ I) cos'^ a cos- a

Fig. 145.

Therefore with a distant source of light, if the two focal distances be

measured, the angle of .rotation of the lens can be found from the equations

F,/F2=:D2/Di = cos^ a

When /x=l-5 simplified approximate formulae are obtained by substitution,

in those given, of
2/x - sin- a

2[x

——^
, which hold pjood for small

/X COS b — cos a

angles. They can be written

F2 = F(3-sin2 ft)/3

D2 = :3D/(3-sin2 a)

Fj^ = Fg cos- a

Dj — Dg/cos^ a

Examples.—A 10'" Cx. lens is rotated 20°;

F2=10(3--117)/3 = 9-61 and F^= 9-6 X -883 = 8-48^

11
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If a + 4 D be rotated 20°

D2 = 4x3/(3--117) = 5-3 and = 4-13/-883 = 4.68

Since Dg does not vary greatly from D, the increased or cylindrical effect

produced by obliquity of a spherical lens is

C = Di-D2 = D/cos'^ ft-D-D tan^ a.

Table of Cylindrical Elfact of Oblique Sphericals.

The following table gives the approximate effects obtained by rotating a

1 D lens ; the effect on other lenses is proportional. The rotation is

supposed to be around a horizontal axis.

Angle of

Rotation. Ver. Mer. Hor. Mer.
Sph.-Cyl. Combination.

Dg D1-D2

Cyl. rotated

or Di.

5° 99 100 1-00 0 0-01 101
10° 96 99 1-01 0 0-03 1-04

15° 91 98 1-02 0 0-07 1-09

20° 84 96 1-04 0 0-16 1-20

25° 77 94 1-06 0 0-24 1-30

30° 70 91 1-09 0 0-34 1-43

35° 59 88 1-13 0 0-57 1-70

40° 50 86 M6 0 0-84 2-00

45° 42 83 1-20 0 1-20 2-40

The effect increases rapidly with a greater obliquity.

The effective power of a cylindrical rotated around its axis is found by

the same formulae as for D^^ and F;^. It is, in effect, a stronger cyl. If it is

rotated across its axis its effect also is that of a slightly stronger cyl. If a

sph.-cyl., both powers being of similar nature, be rotated round the axis of

the cyl., the cyl. effect is increased. If rotated round its meridian of greatest

power, the sph. effect is increased, and the cyl. decreased. A rotation oblique

to the principal Mers. results in a new combination altogether.



CHAPTER XIV

OPHTHALMIC PRISMS

The Deviation caused by a Prism.—When a glass, possessing a prismatic

element, is rotated around its geometrical centre, the base apex plane and
the edge of the prism are similarly rotated. If the cross lines of the chart

ABC D (Fig. 146) be observed they, being deviated towards the edge of

the prism, move around with the latter, the junction Z of the cross lines

being deflected towards the edge of the prism. As the glass is rotated the

vertical line moves horizontally and the horizontal line moves vertically, but

the two always remain at right angles to each other, and do not become dis-

torted as when a cylindrical is rotated. The movement is the same whether

the prismatic element be derived from a prism or from decentration.

A

z \

B
Fig. 146.

Ophthalmic prisms are presumed to be tliin, i.e., not exceeding, say, 20°

principal angle.

The Notation of Prisms.

Principal Angle.—The numeration of prisms according to the principal

angle (i.e. its form) is similar to the numeration of lenses according to their

curvature. Slight diff'erences cannot be easily recognised, and the true

optical effect is not indicated. Two prisms of, say, 3°, the one of /x=l-5,

and the other /x 1*54, are both prisms of 3°, but their optical properties are

not the same.

Angle of Deviation.—The angle of deviation indicates the true optical

value of the prism, it being the result of the angle of inclination of the two
163
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refracting surfaces and of the refracting power of the medium, with both of

which it varies directly. This system has the drawback that the angle itself

is inconvenient to measure in practice. The unit is a prism of 1° deviation

(rd).

Relationship of the ° and the °d.—If l°-l/2°d, but the °d

increases with respect to the ° as the /x is higher. The number of degrees in

the deviating angle of a prism being about half that of its principal angle, the

*^d is practically double the value of the °. Therefore, if two prisms of the

same strength be numbered respectively in the two systems, its number in

°d would be about half that in °. In the following paragraphs, however, fx is

taken as 1-52, and, therefore, the relative values are slightly less than two

to one.

Prism Diopter.—This prism notation, introduced by Mr. Charles Prentice

of New York, being based on the linear deviation itself, presents many
advantages. The unit is the lA, which is the strength of a prism that causes

a deviation of 1 cm. (on a tangent) at a distance of 1 metre. The deviation

is, therefore, 1 in 100, and NA/100 = tan d. Separate prisms, numbered in

prism diopters, when placed together are not, however, exactly equal to the

sum of their powers. This is due to the fact that, the deviation being

measured on a tangent surface, equal increase in the linear deviation does

not result in a corresponding increase of angular deviation. Thus lA is

equal to 34' 22|' and 10A = 5° 45', but if 10 single lA prisms were com-
bined the total angular deviation, caused by them, would be 34' 22^'' x 10 =
5° 43' 45". The difference is, however, so very inconsiderable, especially in

the weak prisms needed in spectacle work, as to be of no practical

importance.

The A is nearly equal to the ° when the glass has /x= 1-54. The 1° has

then -54° deviation or 32' 12", and the tangent included by such an angle at

1 M. is -94 cm. That of the A being 1 cm., there is a difference of about 6%.

When /x=l-54, the principal angle required to produce lA is 1° 3\ If

/x=l-575, the ° = A, for -575° = 34' 30'', the tangent of which is -01. When
/x=l-52, the °=-9A, and this is the refractive index of the glass usually

employed. It must, however, be remembered that these values can only be

considered true for small angles such as occur in the optics of spectacle

work.

Relative Values.—The relative values of the three units mentioned, in

terms of the deviation they cause at 1 M., are, the °- '9 ; the A = 1 ; the

°d= 1-745, or say 1-75. Their equivalences are as follows :—

1° = -52^ = •9A

lA = •57°d = M°
l°d=l-745A=.l-9°

Calculations in Prism Measurement.—Calculations with prisms can be
made as follows, but for degrees and degrees of deviation, while sufficiently
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accurate for practical purposes, they are not exact, since tangents of angles

are used in place of angles themselves.

Let P represent the power of the prism, M its distance in metres from
the object viewed, C the deviation in centimetres, and K a constant for each

system of prism notation. Then
C = PMK.

For the ° C =PxMx '9

For the °d C = PxMxl-75
For the A C = PxM.

Thus at 3 metres, the deviation caused by a 4°, a 4°d, and a 4

A

respectively is

4° X 3 x -9 = 10-8 cm.

4°r/x 3x1-75 = 21 cm.

4A X 3 = 12 cm.

If the deviation caused by a prism at four metres is 5 cm., the prism is

^ =1-4°, or ^ =.7U or ^ = l-2bA.
4x-9 ' 4x1-75 ' 4

The distance at which a prism of 5°, one of 5°d, and one of 5A respec-

tively causes a deviation of 15 cm., is

=3-33M. ^ —1-75 M. 1^=3 M.
5°x-9 5°d X 1-75 5A

Prism Nomenclature.—A prism placed in a spectacle frame with its base

towards the nose is termed + or base in, while a prism placed with its base

towards the temple is termed — or base out. A prism is called horizontal or

vertical according as the base-apex line is horizontal or vertical respectively.

Conversion of Prismatic Values.—For conversion from one system of

prism notation to another it is only necessary to remember the relative linear

deviation that each unit produces at 1 M., /x being 1-52. Thus

4° = 4 X -9 = 3-6A, or 4 x •9/1-75 = 2-06°d

4A =4/-9 = 4-44°, or 4/1-75 = 2 -28^

4°d = 4x l-75/-9 = 7-77°, or 4x 1-75 = 7A.

Centrad.—Another prism unit is the centrad, which causes at 1 M. a

deviation of 1 cm. on the arc of the circle. The deviation is again 1 in 100,

and the difference between the arc and the tangent of small angles being

negligible, the centrad and A may be considered equal. A given prism

numbered in A would be of fractionally higher number than if numbered in

centrads. The centrad more nearly agrees with the metre angle (which is
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measured by the sine of the angle) than the prism diopter, because there is less

difference in value between the sine and the arc than between the sine and

the tangent. It is, however, very much more inconvenient to measure on a

curved than on a flat surface, and the centrad has never come into general

use. NA/100 = arc d. Calculations for centrads can be taken as the same as

for A's.

The Metran.—Another unit prism suggested by L. Laurance is the

metran. This is a prism which causes a deviation of 3 cm. when placed in

front of the eye at one metre from the scale. It has, therefore, about 1*75°

(or 1° 45') deviation, and is the same as the metre angle for the average inter-

pupillary distance of 2| in. or 60 mm. The symbol is thus 4/\.

False Images of a Prism.—On looking at a candle flame through a

prism a second fainter image can be seen, which is often a source of annoy-

ance to the wearer. This image is formed by internal reflection of some of

the light incident on the prism from the flame, and is projected parallel to

the base-apex line under an angle about five or six times the deviating angle

of the prism, so that in a strong prism it lies too far away to be observed

unless specially sought for. In his work " The Clinical Use of Prisms,"

Dr. E. E. Maddox indicates that it can be utilised for the exact horizontal or

vertical adjustment of the base-apex line of weak prisms by noting that the

•direct and the reflected image are in the same horizontal or vertical plane.

Measurement of Prisms.—The measurement of the principal angle of a

prism is goniometrtj, that of its deviating angle is prismetry.

Determining the Principal Angle.—The principal angle of a prism can be

roughly measured by enclosing it between the legs of a pair of compasses and

measuring the angle so obtained on a protractor or by any instrument made
for the purpose. A goniometer, consisting of a pivotted arm, at one end of

which there are two legs which rest on the face of the prism, serves the same

purpose, the other end indicating the angle on a scale. It can also be deter-

mined by the pin method described further on in Chap. XXVIIL, and most

accurately of all by the spectrometer described in Chap. XXIII. Also, without

much error, for weak ophthalmic prisms, the tangent scale can be, and is,

generally employed.

Determining the Deviating Angle.—^For this the spectrometer method
(Chap. XXIII.) is the true one ; an approximate pi7i method is described in

Chap. XXVIIL The tangent scale and neutralisation (Chap. XIL) methods

are the practical ones for thin prisms.

The Tangent Scale.—A tangent scale, shown in Fig. 148, constitutes the

most convenient method of measuring ophthalmic prisms. It consists of a

card, say, 12 inches wide and 30 inches long, scaled so that the intervals

between the divisions represent the tangents of the angles of deviation, and
was originally designed by Dr. Maddox. The intervals vary in size with the

distance at which the card is used.
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The line A C (Fig. 147) is looked at through the prism, which is held

sufficiently low for the figures on the card to be seen over it, the base being

directed towards A while the edge points to B. If the line AB displaced

upwards or downwards the prism must be rotated in a plane parallel to the

card until A B is continuous and seen unbroken throufjh the prism. The base-

apex line being horizontal, the horizontal deviation is greater than with any
other position of the prism in a plane parallel to the card, and therefore the

number towards which the deviated part oi A C points indicates the pris-

EVQ.

Fig. 147.

matic power of the prism in degrees of deviation. Generally, however, the scale

is so arranged as to read prism diopters or degrees. The deviation caused

by the prism varies if its position departs from that of the minimum devia-

tion
;
consequently, when A B is unbroken, the prism must be rotated on its

axis in order to secure minimum deviation, this being the numerical strength

of the prism. Thus, in Fig. 147, the prism is presumed to be in the position

of minimum deviation, and the indicated number is 3, but if the edge of the

prism were turned either towards or away from the scale, the indicated

deviation would be o;reater than 3.

16 15 la 13 12 V 10 e 7 6 S 4

Fig. 148.

If the prism is combined with sph. or cyl. powers, these must be

neutralised before the prismatic power can be measured on a tangent scale,

care being taken that the geometrical centres of neutralising and neutralised

lenses exactly coincide ; otherwise a false measure of the prismatic power is

obtained.

A tangent scale arranged for one system could be utilised for others by

holding the prism at the proper distance. Thus, the intervals of the

"Orthops" scale (Fig. 148) are 3-5 cm., so that used at 2 M. the numbers



168 GENEEAL AND PRACTICAL OPTICS

indicate degrees of deviation, and at 3*5 M. prism diopters. If used at 4 M.
it serves for ordinary degrees.

Another Tangent Measurement. — The deviation of a prism can be

measured by the following modification of the ordinary tangent scale.

Parallel light is passed through a suitable Cx. cyl. and brought to a sharp

focus as a vertical line at the zero of a tangent scale. The prism is then

introduced, quite close to the cylindrical, with its edge towards the zero and

at right angles to the horizontal line ; the sharply focussed line of light is

then deviated to some number on the scale, which indicates the value of the

prism. This method is suggested by Dr. Maddox.

Oblique Prisms.

Direction of Deviation.—A prism so changes the direction of light that

an object viewed through it appears in a different position from that which

^
H

J
V

Fig. 149.

it really occupies. The deviation is parallel to the base-apex line and
towards the edge of the prism.

If a cross bar be viewed through a prism held with base-apex line hori-

zontal, the vertical bar is displaced horizontally to an extent dependent on
the strength of the prism, and there is no vertical displacement of the hori-

zontal bar. If, now, the prism be rotated a few degrees in a plane parallel

to the card, so that the base-apex line is oblique to both bars, the horizontal

deviation becomes less, and a vertical deviation is introduced (Fig. 149). If

the rotation be continued, the horizontal deviation continues to decrease and
the vertical to increase, until when the base-apex line is vertical all the devia-

tion is vertical, and there is none in the horizontal plane. The maximum
eft'ect d of the prism is always in the base-apex plane, and when the latter is

oblique, its effect can be divided into V, a vertical, and H, a horizontal

component, which are equal when the base-apex line is at 45°.
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Indirect Eflfects.—Suppose V to represent the vertical and H = H' the

horizontal forces of a rotated prism. Let P = 0 Q represent the power of the

prism, and r the angular rotation of its base-apex line from the horizontal.

Then, since sin r = V/P and cos r= H/P, V = P sin r and H = P cos r. Thus
let the base-apex line of a 5°d prism be at 20° from the horizontal ; then

y=5x •3420=1-71°, and H = 5 x -9397 = 4-698°. If the base-apex line is at

45°, a 6A has V=6 x -7071 =4-24^ and H = 6 x -7071 = 4-24^.

Given a 4°d prism, the position of the base-apex line so that the vertical

effect be l°d is sin r= 1/4= -25 = sin 14° 29' from the horizontal. Then
V = 4x-25 = l°d and H = 4 x -9681 = 3-872°d. If with a 6A a horizontal

effect of 3A is needed, cos r = 3/6 = -5 = cos 60°, so that the base-apex line

must be at 60° V being -6 x -866 = 5-2A.

If, instead of the angular distance of the base-apex line from the hori-

zontal, its distance from the vertical is considered, the sine would apj^ly to

the horizontal, and the cosine to the vertical meridian in these calculations.

If P' represent the effect of a prism in a given meridian, P the power of

the prism, and r the angle between the given meridian and the base-apex

line, the effect in the given meridian is P' = P cos r. Thus to find the effect

at 40° of a 4° prism whose base-apex line is vertical, P' = 4 x -6427 = 2-57°,

r being 50°, the cosine of which is -6427.

Neutralisation.—The vertical or horizontal effects of an oblique prism, or

the effect in any oblique meridian of a vertical or horizontal prism, can also

be obtained by direct neutralisation in the meridian whose power has to be

learnt.

Following are the approximate powers of unit prism at different Mers.

calculated as shown above.

Degrees from \
base-apex line /

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Proportional)
power . . /

1 •99 •98 •97 •94 •91 •87 •82 •77 •71 •64 •57 •5 •44 •34 •26 •17 •09 0

Resultant Prisms.

A resultant prism is the combined effect of two prisms whose base-apex

lines are oblique, or at right angles to, each* other; the term can also be

applied to any number of prisms with base apex-lines in various directions,

since the combined effect is always that of some single prism.

In Fig. 150 let A B and A C represent the deviations caused by two
prisms and Pg whose base-apex lines are crossed at the angle a. To con-

struct graphically the resultant deviation we have only to complete the

parallelogram A EC D by drawing C D equal and parallel to A B, and B I)

equal and parallel to A C. Then A I) is the resultant deviation, and r is the

angle it makes with the horizontal. If a third prism P3 were now intro-

duced, a similar construction between A D and P3 would give the single
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resultant of the three prisms Pp and Pg, and so on for any further

number.

Calculation of Resultant Prism.—By means of the cosine formula in

trigonometry, it can be proved that A = A + A + 2A B-A C cos a.

But A D is the resultant prism P, and A B and A C the original prisms P,^

and Pg respectively. Therefore

P= x/Pf +Pi+2PiP2COs a

and
P„ sin a

tan r -

P^ + PgCOS

Suppose two prisms of 6° and 8° respectively whose base-apex lines are

30° apart, we find

P=: n/6^ + 82 + 2x6x8x-866

= 736 + 64 + 83-136= 7183036 = 13-53°.

and

tanr = -,,

—

1^ = '3091 = tan 17° 11'
6 + (8 x-866)

c

The resultant prism is 13-53°, and its base-apex line is 17° 11' from that

of the 6° prism.

When Pi^Pg the formulse simplify to P=(Pj^ + P2) cos rt/2, and r = ft/2.

Prisms at Right Angles.^—It is, however, rare that mutually oblique

prisms are required ; in the great majority of cases the components are

vertical and horizontal. When such is the case ft =90°, so that, since

sin 90° = 1, and cos 90° = 0, the formulae simplify to

p= vvs^tni^
and

tanr = V/H

Or, with a reasonable degree of accuracy, the resultant base-apex line may be

found by dividing 90° by the sum of V and H, and multiplying the result by

the weaker of the two original figures. This gives the angular distance from

the stronger of the original prisms.
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Thus, suppose a 3°d base-apex line horizontal, and 2°d base-apex line

vertical be required, then

P= j3-' + ¥= Vl3 = 3-6°f^

tan r = V/H= 2/3--666 = tan 33° 40' so that r= 33° 40'

The resultant prism needed is 3 -6^1 (3° 36') with its base-apex line

inclined 33° 40' from the horizontal, or 56° 20' from the vertical ; that is,

approximately, 3-5°d base-apex line at 35° Or by the simplified method the

resultant base-apex line would have been found 90/(3 -H 2) - 18, and 18 x 2 =
36° from the 3° prism, or 18x3 = 54° from the 2° prism.

Construction.— To construct graphically the resultant of two prisms at

right angles draw a straight vertical line ^ (Fig. 151) as many inches (or

cm.) long as there are units (degrees, etc.) in the vertical prism, and a hori-

zontal line H as many inches (or cm.) long as there are degrees in the

horizontal prism. The ends of these two lines being connected by a third

line, P, the number of inches (or cm.) in P represents the number of degrees

H

Fig. 151.

in the resultant prism ; and the inclination of P with respect to H and P,

measured by a protractor, is the inclination of the base-apex line of the

resultant prism in its relation to the horizontal and vertical.

Practical Measurement.—A resultant prism can be found by holding the

horizontal and vertical prisms together and finding on a tangent scale the

maximum oblique deviation, that is, the value of the resultant prism. Or
the two original prisms can be put into a trial frame and neutralised by a

single prism from the trial case ; the power of the neutraliser is that of the

resultant prism, and its inclination is at once indicated.

Rotary Prism.—A rotary prism consists of two vertical prisms of equal

power conveniently mounted. In the primary position the base of the one

coincides with the edge of the other, so that the effect is 0. From this posi-

tion they are rotated towards the horizontal, so that their bases approach

each other ; thus a gradually increasing horizontal effect is obtained while the

vertical elfect always remains 0. The maximum effect is obtained when the

two bases coincide in the horizontal meridian. If the primary position is

horizontal a similar vertical effect is obtained by rotation.



CHAPTER XV

DECENTRATION

Prismatic Effect of Lenses.

Optical Centre.—The optical centre of a sph. len^ lies, as mentioned

previously, on the principal axis at a distance from each surface proportional

to its radius of curvature. It is situated, therefore, on the line passing

through the thickest part of a convex and the thinnest part of a concave lens,

and is that point through which the secondary axes pass.

Geometrical Centre.—The geometrical centre is that point of the lens

which is equi-distant from the opposite edges. It can be located by inspec-

tion, or, more exactly, by drawing a horizontal line across the lens, connect-

ing the two extremities of the long diameter, and a vertical line connecting

A

B
Fig. 152.

the highest and lowest points ; where the two lines cut each other is the

geometrical centre.

Locating the 0. C.—^To locate the optical centre the lens must be moved
about until cross lines seen through it are continuous with the parts

of the lines seen beyond the edges, as in Fig. 152, where G is the

geometrical centre of the lens. The optical centre 0 coincides with that

point of the lens opposite to the intersection of the cross lines, and can

be, if necessary, marked by a dot with a grease pencil or pen and ink.

The test should be made with line cross lines drawn on a small card

placed on the table, the lens being held steadily a short distance above the

card, and in a plane parallel to it. This method is preferable for strong-

lenses, but the analysing card at a reasonable distance is better for a very

172
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weak lens. Accuracy is enhanced by employing a pinhole, through which

the observation is made, when the near test card is used.

The same procedure is employed for a sph.-cyl., but the principal

meridians must he parallel loith the lines of the card. With a plano-cyL, there

being only a line of no prismatic effect, and, therefore, no optical centre,

the central point of the axis may be regarded as such, when the cross

lines are seen unbroken.

Centered and Decentered Lenses.—-A lens is said to be centered when its

optical and geometrical centres coincide, and is said to be decentered when
they do not. When an object is viewed through the geometrical centre of a

decentered lens the effect is precisely the same as if the lens were combined

with a prism. Similarly, if a centered lens is looked through at a point which

is not in line with the optical and geometrical centres the effect is the same as

if a sphero-prism were substituted.

To learn whether a spherical lens is truly centered it must be held

parallel to the analysing card and viewed through its geometrical centre. If

centered (Fig. 153) the junction of the two lines of the card is seen in line

Fig. 153. Fig. 154. Fig. 155.

with the exact centre of the lens, the lines being continuous beyond the

edges as in Fig. 153. If decentered the junction of the two lines is seen

not to coincide with the exact centre of the lens and the vertical line, as in

Fig. 154, or the horizontal line as in Fig. 155, is broken at the edges of the

lens, or both are broken.

In a sph. lens there is only one iJoint, i.e. the optical centre in the refract-

ing plane of the lens where there is no prismatic eff'ect. In a piano-cylin-

drical there is a line without prismatic eff'ect along the axis.

In Fig. 156 let the lens be a + cyl., whose axis A X is at 45°, B C being a

vertical, and D E a, horizontal line. On looking through the lens the points

FGH on the vertical line B C are seen deflected by the prismatic action of

the cyl. to FG'H'
,
upwards and to the left, the virtual prisms being base

down and to the right. The points KLM on the horizontal line DE are

seen deflected to K'L'M', also upwards and to the left, the virtual prisms

being base down and to the right. On the other side of the axis the virtual

prisms are base up and to the left, and the deflections are downwards and
to the right. Thus a convex cylindrical axis, say, 45°, causes a vertical line
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BC to appear as B^C, and a horizontal line DE to appear as D'E', both

being deviated away from the axis.

If another equal + cyl. be placed axis at right angles to the first, the

horizontal deviation of the vertical line, and the vertical deviation of the

horizontal, are neutralised, but the vertical effect in the vertical meridian

B/ 3

and the horizontal effect in the horizontal are doubled, the combination

being equivalent to a sph. lens in which the prismatic effects are equal in

every meridian.

With a concave cyl. the edges of the virtual prisms are towards the axis.

3 IB'

"* "^^^

/ 1

/ \

1

Fig. 157.

and if a - cyl. Ax. 45° be looked through (Fig. 157) a vertical line appears

as B' C\ and a horizontal line D E appears as E', the deviation of these

lines being towards the axis of the lens, or towards the apices of the virtual

prisms.

In a sph.-cyl. lens there is (as in the case of a sph.) a point of no prismatic
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effect. This is where the axis of the cylindrical cuts that of the spherical,

and it is therefore at the geometrical centre of a centered lens.

In Fig. 158 let the lens be a + sph.-cjd., whose axis AX is at 45°.

Let B be a point situated between the vertical and the axis. There is, at

this point, the effect 0 B of a prism base down to the left derived from the

sph. The cyl. contributes a prismatic effect P B, the base of the virtual

prism being down to the right. Thus there are two vertical effects both

Fig. 158.

directed upwards, and two horizontal, the one directed to the left and the

other to the right. These latter neutralise each other at some point B, and

similarly at every point on the line E F.

Between the axis and the horizontal, at some point C, there is the effect

0 6' of a prism base down and to the left derived from the sph., and from the

cyl. there is the effect P C oi a prism base up and to the left. There are

\ / j)

Fig. 159.

thus two horizontal effects both directed to the left, and two vertical, the

one up and the other down. At some point C the opposing vertical effects

neutralise each other, and similarly we have a neutralising effect all along

the line G H.

In a Cc. sph. -cyl. there are similar prismatic effects, but in the opposite

directions.

Let Fig. 159 be a combination of + Cyl. Ax. 45°0 - Cyl. Ax. 135°, the
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two being of equal power. C D is the axis of the convex cyl., and E F that

of the concave. At some point A the convex cyl. has an effect XA of a

prism base down and to the right, the concave has an effect YA of one base

up and to the right. The up and down vertical effects neutralise each other,

but there is a combined lateral effect. At the point B the convex acts with

an effect X B base up and to the left, and the concave with an effect Y B
base up and to the right. The right and left horizontal effects neutralising

each other, the combined deviatioQ being vertical. Thus the point A is

deviated to the left, and B is deviated downwards. A vertical line is seen

inclined to the left above, and to the right below ; a horizontal line is inclined

downwards on the right, and upwards on the left.

Locating the Lines of No Prism Effect.—If an oblique sph.-cyl. be moved
horizontally until the oblique image of a vertical line is seen in contact at

B (Fig. 160), at the upper edge of the lens, with the line itself seen above

the lens, and similar contact is then obtained at the lower edge of the lens,

say at C, the line connecting these two contact points indicates the line of no

horizontal prismatic effect. Similarly the points can be found where, by

moving the lens vertically upwards and downwards, a horizontal bar is, at

each side, in contact with its image ; the line connecting them indicates the

line of no vertical prismatic effect.

Prismatic effect can be obtained by decentering a lens as well as by com-

bining a prism w^ith it. The prismatic effect thus obtained by decentration

is called a virtual prism.

How to Decanter.—Decentering is achieved by so cutting the luiedged

glass disc that the optical centre is nearer than the geometrical centre to one

part of the edge of the finished lens. Thus in Fig. 161 6^ is the geometrical

centre of the finished lens, and 0, the optical centre, lies nearer the right edge.

In a centered lens 0 and G coincide. To decenter a lens, the optical centre 0
is located, as previously described, by means of a card having two fine cross

lines. 0 is marked by a dot, the amount of decentering is measuring off, and

the point which is to be the geometrical centre of the edged lens is marked

Fig. 160.

The Decentering of Spherical Lenses.
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as 6r. The lens is then cut out so that G is the geometrical centre, the dis-

tance 0 G being the deceutration of the lens.

It should be observed that the decentration is indicated by the position of

0, the fixed point of a lens, with reference to G. To achieve this the distance is

marked off contrary to the decentration required, so that G is actually altered.

If 0 has to be in, the distance measured off, in order to mark where G is to

be, is otd from 0.

Another method is to place in contact with the lens a prism, equal to the

effect required, with its base in the opposite direction ; mark the optical

centre as then found, and this point is the geometrical centre needed. By

Fig. 161.

this method one can at once see whether the required effect can be obtained

by decentering, it not being possible if the marked point be too near the

periphery, much less if, as may be the case, it is beyond the lens. It is

specially suitable for oblique clecentrations and for oblique sph.-cyls. Thus

suppose lA base in effect is needed on a +4 1) lens; a 1^ base out is placed

with the lens, the 0. C. is then displaced outwards, the lens must be shifted

inwards to find the point of no prism effect, and this being marked indicates

where the geometrical centre of the finished lens must be.

Fig. 162. Fig. 163.

To Measure Decentration.—-To measure the decentration of a lens, the

geometrical centre must be marked with a fine clot, and the optical centre

found and similarly marked; the distance between them is the decentration.

This distance can be measured by placing the lens on a metric rule.

Sphero-Prism and Decentered Lenses.—When a prism is combined with

a sph., the curved surfaces are inclined towards each other at an angle

(Fig. 162), just as if the lens had been split and a prism inserted. If from a

large lens (Fig. 163) one part be cut away, the effect is the same ; in both

figures the principal axis of the lens is shown by the thick vertical line.

The two surfaces of a lens are inclined towards each at an angle which

increases from the centre to the periphery, although the curvature remains

12
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the same ; therefore the effect produced on a ray of light by the outer zones

of a lens is as if a prism of given power were used, the imsmatic power being

greater as the part of the tens, through tuhich the ray passes, is more distant from
the axis.

A ray of light, A B (Fig. 164), passes through the optical centre 0 of a

lens L, and through the prism P ; it is uncleviated by the lens, but is bent

-by the prism towards its base in a direction to the right in the diagram. If

the prism be removed (Fig. 165) and the convex lens decentered to the

Fig. 164. Fig. 165. Fig. 166.

right, the ray A B is bent in the same way as if it had passed through 0 and

a prism. If a concave lens (Fig. 166) be decentered to the left the same

effect is obtained. Similarly all the rays contained in a beam of light,

parallel to the axis, and refracted by a spherical lens, are bent towards, or

away from, the axis to an extent dependent on the distance from the axis of

that part of the lens through which each ray passes. Thus all the rays

parallel to the axis before refraction meet, after refraction (disregarding

aberration) on the axis at a single point.

Fig. 167. Fig. 168.

If the principal axis passes through the geometrical centre of the lens, the

rays, after refraction, converge towards, or diverge from, a point (F) on a

straight line drawn from the luminous point through the geometrical centre

of the lens.

But if 0, the optical centre of the lens, is displaced, the rays are not only

rendered convergent or divergent, but are also bent towards or away from
the displaced axis (Figs. 167, 168) in the same manner as they would be if a

prism had been added to the lens.
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Direction of Decentration.—To produce the effect of a prism with its

base in a certain direction, a convex lens must be decentered in that same direc-

tion, and a concave in the opposite direction.

Effect Produced by Decentering.—The prismatic power obtained by
decentration is directly proportional to the amount of decentration and to

the strength of the lens, so that the decentration necessary to obtain a

desired prismatic effect is directly proportional to the effect required, and

inversely proportional to the power of the lens. The calculation may be

made in any of the systems of prism notation, but the prismatic effect of

decentering lenses can best be illustrated in connection with prism diopters.

In Fig. 169 let S S be a screen situated at the focal distance of a + 1 D
lens ; the distance 0 F is therefore one metre. All rays of light as A B, C D,

parallel to the axis are bent so as to meet at The ray A B incident at B
situated, say, 1 cm. from the axis, instead of falling on the screen at B\ as

it would if it were unrefracted, cuts the axis at F. Consequently, the ray is

deviated the distance B'F= B 0=1 cm. at 1 M. The ray CD incident, say,

2 cm. from the axis, is deviated the distance D' F=l)0='2 cm, at 1 M since

Fig. 169. Fig. 170.

it also meets the axis at F. The effect of placing the geometrical centre of

the lens at B or at D Avould, therefore, be the same as having the lens normally

centered and combined with a prism of 1^ or 2^ respectively, since these

prisms also have the effect of deviating a ray 1 cm. or 2 cm. respectively at

a distance of one metre.

In Fig. 170 the lens is a + 2 I) and S S, the screen, is 1 M from it ; a ray

A B, parallel to the axis, and incident at B, 1 cm. from the axis, meets the

latter at F, 50 cm. from the lens and the screen at G instead of at B'\ The

ray is deviated a distance B'F= 1 cm. at 50 cm., and B'' G = 2 cm. at 1 M, so

that the prismatic effect is the same as that of a 2^ acting on a ray un-

refracted by the lens. If the lens were -\- 4 D, A B would meet the axis at

25 cm. from the lens and would be there deviated 1 cm., while at 1 M it

would be deviated B"H=i cm. and have the effect of 4^. The + 2 D at a

point 2 cm. from the axis has the effect of 4^^, while the 4 D at the same

point has the effect of an added 8^.

Limitations to Decentering.—The smaller the size of the lens required

and the larger the disc from which it is cut, the greater is the extent of

decentration possible with the ordinary disc used in the trade. If the edged
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lens were nearly as large as the unedged disc no decentering would be

possible. Since the usual finished lens is longer in the horizontal than in the

vertical diameter, a greater vertical than horizontal decentration is possible.

Thus a lens which must be of No. 1 eye size when edged can be decentered

about 4 mm. horizontally and about 7 mm. vertically ; for 2 or 3 eye lenses

the extents are greater, while for 0 and 00 eyes they are smaller. The

average size of the uncut disc is 40 mm. square.

Formul8B for Decentration.—Since a + 1 D lens decentered 1 cm. has the

effect of 1^, the formulae for calculating decentrations and their effect are

extremely simple when the prismatic power is expressed in prism diopters.

Let P represent the prismatic effect needed, D the dioptral number of the

lens, and C the decentration mi centimetres, then

P=DC and C = P/D.

Thus if, on a 4-5 D lens, the effect of 2^ is required, the lens must be

decentered

C = 2/4-5=-444 cm.

If a 4 D lens is decentered '75 cm. the prismatic effect in ^ is

P=-75x4 = 3A.

If the optical centre of the lens is found to be '75 cm. from the geometri-

cal centre, and the prismatic effect, as measured on a tangent scale, is 3^,

the lens is

D=3/-75=4 D.

Two similar lenses decentered with respect to each other, have no pris-

matic effect ; the one is base out, the other is base in. Two lenses which

neutralise, if slid one over the other, have a prismatic effect introduced

thereby, the Cx. being moved the one way, and the Cc. the other. If C be

the amount of the slide, D C=^, or ^/C = D, where D is the power of the

one lens, the base of the virtual prism being towards the Cx. lens. In this

case the effect is doubled.

By introducing the necessary constant K, the formulaj for prism diopters

apply also for degrees, whose constant is -94 when /x=l-54, is -9 when
/x=l-52 and -87 when /x=l-5. For degrees of deviation the constant is

1*745 ; or with a sufficient degree of accuracy 1'75, so that

P = DC/K

Suppose the effect of 2°d on an 8 D lens is required, the decentration

will be
C=2 x 1-75/8 = -44 cm.
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If on a 5 D lens the effect of 3*5° is required, it must be decentered

C = 3-5x •9/5 = -63 cm.

A 4 D is decentered '75 cm., the prismatic effect will then be

P = -75 X 4/1-75 - l-75°d, or -75 x 4/-9= 3-3°.

In using these formulae, parts of degrees should be expressed as decimals,,

and not as minutes and seconds, and the decentration in cm. and decimals

thereof. These rules, while sufficiently accurate for practical spectacle work,

especially as no lens can be decentered to a very great extent, are not exact

since the variation of angles have been taken as equivalent to that of their

tangents.

Formulae Involving F.—Where F or 1/F is given, it is easier, for calcula-

ting decentrations, to convert F into diopters, but the calculations can be

made by the following formula, where both F and the decentration are

expressed in inches or cm., K being the constant

—

Decentration = PFK/100

Thus, how much should a 4 in. lens be decentered for 1®?

C=lx 4 x -9/100 = -036 in.

More Exact Formulae.—More accurate formulae for decentration for

degrees of deviation are as follows, where F and D have the usual signifi-

cations, and P is the degree of deviation

—

tanP=C/F or C = FtanP;
and

tanP = CD/100 or C=100tanP/D.

These formulae are illustrated in Fig. 169, where D 0 is the tangent of

the angle of deviation of the ray CD.

Resultant Decentrations.

The value of a prism in any meridian is Pcosr, where r is the angle

between the base-apex line and the meridian in question. Similarly the

prismatic value of a decentration is at its maximum along the line of decen-

tration, and its value at any other meridian is D C cos r. Therefore, if a lens

had to be decentered for both vertical and horizontal prismatic effects, each

may be made separately or the two obtained by a single oblique decentra-

tion
; put in another way, a lens decentered obliquely causes a vertical and

horizontal prismatic effect equal to DC cos?', where r is the angular distance

between the direction of decentration and the horizontal or vertical.
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In Fig. 171 let 0 be the optical centre. If the geometrical centre is

moved horizontally from 0 to h and vertically to the true displacement is

along 0 V. A resultant decentration is calculated by finding, by the formulae

previously given, the oblique prismatic efi'ect required and its angle r, and

then decentering accordingly.

Thus suppose a + 5 D lens has to be decentered for a horizontal effect of

2'^, and a vertical effect of 1-5^
j then

P= V22+l-5'^ = 2-5A

tan r= 1-5/2 = -75=: tan 36° 52'.

and C = 2-5/5 - -5 cm.

The two needed prismatic effects are obtained by decentering the lens

•5 cm. along meridian, say, 37°.

The Yer. and Hor. decentration Y and H could be found separately and

Si resultant decentration then calculated, but the above method is more

Fig. 171.

simple. Thus, in the above example, H = -4 cm., Y = -3cm., and J'i^ + S^

= -5 cm., the angle r being found as shown above.

Instead of finding tan r, the direction can be obtained without serious

error, for small values, by dividing 90° proportionally to the two needed

decentrations, in this case 4 and 3. We should find 90/(4 -}- 3)= 12*8 and

12-8 X 3= 38 '5° from the stronger of the two original decentrations—that is,

about 38° from the horizontal.

The Effects of Oblique Decentering.— When a sph. is decentered

obliquely we have, in the meridian of decentration, P =D C, and since Oh=
cos 7", and Y h = sm r, the Hor. effect H, and the Yer. effect Y, of an oblique

decentration P, are found by the equations

H =» P cos r and Y = P sin r.

But P = D C, where D is the dioptral number of the lens, and C the decen-

tration in cm. ; therefore

H = D C cos r and Y = D C sin r.



DECENTRATION 183

Thus, if a +7 D sph. be clecentered -6 cm. at 30° P = 7x •6 = 4-2^,

H = 7 X -6 X -866 = 3-637^, and V - 7 x -6 x -5 = 2-1 a.

The necessary constants can be introduced into the formula3 when the

prismatic effects are required in degrees or degrees of deviation, or the

effects in ^ can be converted by the usual methods.

The Decentration of Cylindricals.

In the following article, for the sake of brevity, we will term upright

those cyls. and sph.-cyls. whose principal Mers. are Ver. and Hor., in contra-

distinction to those which are oblique.

A lens which possesses a cyl. element should not be decentered except in

its principal meridians, that is to say, upright cyls. ought never to be decen-

tered obliquely, nor should oblique cyls. be decentered horizontally or verti-

cally. However, as will be shown later on, such decentrations can be made,

but the results are difficult to calculate owing to the fact that the virtual

prisms in a cyl. have their base-apex lines at right angles to the axis. The

reason why sphs. are so easy to decenter is because the base-apex lines of all

the virtual prisms radiate from the optical centre, so that any possible decen-

tration must always lie in a virtual base-apex plane.

Upright Cyls.—The effect of decentering a cyl. across its axis is the

same as decentering a sph. in that direction
;
along the axis there is, of course,

no effect, since there is no refractive power. Thus a cyl. axis Ver. can be

decentered horizontally, but not vertically ; a cyl. axis Hor. can only be

decentered vertically.

If -h 4 C. Ax. 90° requires decentration for a horizontal prismatic effect

of 2 A C=2/4 = -5 cm.

Oblique Cyls.—The decentration of an oblique cyl. along the axis has no

effect, while across the axis the effect is, in the principal meridians, the same

as with the Ver. and Hor. decentration of upright cyls. Thus if a 4 cyl.

Ax. 60° be decentered 4 mm. at 150°, the principal effect P along 150° = DC,
that is, P = 4x-4 = l-6^. This, however, produces Hor. and Ver. effects,

because any single oblique displacement can always be resolved into two

components at right angles.

If a plano-cyl. axis oblique be moved horizontally, vertically or in any

oblique direction in front of the eye, any object viewed through it will afpear to

move in a direction across the axis, thus showing that the resultant effect is

always at right angles to the axis, or in the meridian of maximum power.

Indeed this result is only to be expected, since the virtual prisms in a cyl.

lie only in one direction with their base-apex lines across the axis. There-

fore no matter what oblique decentration be made to a cyl., the resultant

effect is as though a smaller decentration had been made in the principal

power at right angles to the axis.
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In Fig. 172 let xy he the axis of the cyl. at an angle a with the horizontal,

and let x^y^ be its position when the lens is decentered from o to ? in the

meridian of maximum refraction. We can resolve the single displacement

0 r into two components o d and o e^d r lying in the Hor. and Ver. planes

respectively, and these expressed in terms of the single decentration o r will

enable us to find the resulting Hor. and Ver. prismatic effects H and V.

Now ord = a. .• . od = or sin a, and dr=o r cos a.

Let C represent the distance o r and D the maximum power of the cyl.

Then
P = DC, H =DC sin a, Y = DC cos a.

Precisely similar prismatic effects are obtained if the lens is decentered

horizontally to h or vertically to but the maximum effect remains in the

diraction o r, and can then be considered the resultant effect of the Hor. and

X

Fig. 172.

Vert, components o d and o e with the base-apex line of the virtual prism

parallel to o r.

Now 0 r = o h sin a = o V cos a, so that if the decentration of an oblique

cyl. is Hor. we have to write C sin a instead of C, and then

P= DC sin ft, H =DC sin2 a, V = DC cos a sin a.

If the decentering is Ver., C cos a replaces C, so that

P = D C cos ft, V = D C cos- a, H = D C sin a cos a.

As an example, let the lens be +4 D. axis 60° decentered along o?- = C= -4

cm. at 150°, as in the example already given; then

P = 4x-4 = 1-6A

H = 4 X -4 X -866 = 1-386A, V = 4 x -4 x -5 = -Sa

oh = or/sin 60° = 4/-866 = -462 cm. ov = orjcos 60° = 4/-5 = -8 cm.

Then if a + 4 C. Ax. 60° is decentered -462 cm. horizontally,

P-4 x-462 x-866 = l-6A

H = 4 X -462 X -75 = 1 •386A, V = 4 x -462 x -5 x -866 = 'SA
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Or if a + 4 D Cyl. Ax. 60° be decentered '8 cm. vertically,

P = 4x'8x-5 = 1-6A

H = 4 X -8 X -866 x -5 = 1-386A, V 4 x "8 x -25 - •8A

It should be noted that a horizontal or vertical effect alone can never be

obtained by decentering an oblique cyl., and that is why it is inadvisable to

decenter such lenses.

The maximum Ver. effect of a Hor. displacement and vice versa results

when the axis is at 45°. Also since sin 45° cos 45°, the effect is equal in

both directions, no matter how decentered.

Only if the maximum meridian nearly corresponds to the line of decen-

tering can the effects in other meridians be ignored. Indeed it may occur

that the Hor. decentering of an oblique cyl. results in a greater Ver., effect

and vice versa.

The Ver. effect of a Hor. decentration of a cyl. whose axis is at, say, 30°

is the came as when the axis is at 60°. This occurs because although the

distance o r (Fig. 172) is less in the first case, the Ver. power of the lens

is greater.

To illustrate these rather peculiar effects referred to let a +4 C. be

decentered horizontally -33 cm., the axis being respectively at 45°, 30° and
60°. Then

With axis at 45° P= -93a H- -66^ V='66A

„ 30° P= -eeA H= •33A V=-57A

„ 60° P = M5A H= lA V=-57A

Upright Sph.-Cyls.—Decentering a sph.-cyl. across the axis of the cyl.

has the same effect as decentering a sph. whose power is that of the two

powers combined ; while in the direction of the axis it is the same as deceu-

tering the sph. alone.

If + 3 S. o + 2 C. Ax. 90° is to be decentered for 2A horizontally, the

power in the Hor. Mer. is 3 + 2 = 5 D ; therefore the amount of decentra-

tion is

0=2/5 = -4 cm.

If + 3 S. o +2 0. Ax. 90° needs to be decentered for 2A vertically, the

power in the Ver. Mer. is 3 D, so that

0 = 2/3 = -66 cm.

Oblique Sph.-Cyls.—The effect of decentering an oblique sph.-cyl. in the

principal meridians is the same as with Hor. and Ver. decentration when the

axis is Hor. and Ver. respectively.

Suppose a + 3 S. o + 2 0. Ax. 30° is decentered -4 cm. at 30°

(Fig. 173), then
P=.3x-4 = 1-2A
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Here the decentration being along the axis of the cyl. only the sph. is

decentered, but there are, besides the effect P in the principal meridian at

30°, certain Hor. and Ver. effects introduced due to the oblique decentering

of the sph. Now a = 30°, and as in Fig. 173, when o is moved to r, there

is a Hor. decentration o h = r v = or cos a, and a Ver. one ov = r h = o r

sin a, therefore

H = DC cos a, V =DC sin a

and in the above example

H-3x-4x-866 = l-04A V= 3 x '4 x '5 = -GA

When the decentration is across the axis of the cyl. (Fig. 174) we have

in the Mer. of decentration, and in the Hor. and Ver. Mer. the effects of both

the sph. and cyl., so that if D is the power of the sph. and D' that of the

cyl. we have

P =: (D + D') C, H = (D + D') C sin a, V = (D -|- D') C cos a.

Thus suppose +3 Sph. O + 2 Cyl. Ax. 30° be decentered -4 cm. at 120°

P=(3 + 2)x •4 = 2A;

H = (3 + 2) X -4 X -5 = 1 A, V - (3 + 2) X -4 X -866 = 1-732A

Fig. 173. Fig. 174.

Now if the lens were decentered horizontally to h or vertically to v,

while the effects from the cyl. are the same, those from the sph. are

different.

If the lens be decentered horizontally, the sph. causes no Ver. effect, but

the cyl. acts as does the plano-cyl. Let D be the power of the sph., D' that

of the cyl. and P' the effect across the axis of the latter. Then

P' = (D + D') C sin a, H = (D + sin^ a) C, V = C cos a sin a

If the decentration is Ver. the sph. causes no Hor. effect, but the cyl.

acts as when not combined with a sph., and

P' = (D + D') C cos a, H = D' C sin a cos a, V = (D + cos^ a) C

Let the axis of the cyl. be 30°, as in the example given; then

oh^or/sin 30° = 4/-5 = -8 cm. and ov = or/GOS 30° = 4/-866 - -462 cm.
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Thus if a + 3 Sph. O +2 Cyl. axis 30° be decentered "8 cm. horizontally

we get

F = (3 + 2)x-8x-5 = 2A

H = (3 + 2 X •25)x •8 = 2-8A V=2x -Sx •866 x -S^'TA

If the same lens be decentered "462 cm. vertically

P' = (3 + 2)x •462 x -866 = 2A

H = 2 x -462 X -5 x '866 = •4A, V = (3 + 2 x -75) x -462 = 2-08A

Actual Resultant Prismatic Effects.—While an oblique cyl. decentered

horizontally or vertically always has its greatest prismatic effect across the axis,

with an oblique sph. -cyl. the effect across the axis might, or might not, be

greater than in that meridian in which the displacement is made, this

depending on the power of the spherical. In the last examples P' is less

than H in the one case and less than V in the other, and the actual resultant

prismatic power lies hettveeM and the meridian of decentration.

The Hor. and Ver. effects of decentering an oblique sph. -cyl. having

been calculated the actual resultant effect P can be obtained from the

formulae given. Suppose H = 2'8A and V = •7A
; then

P= s/W + Y^-= vW+-7^= x/8~3l = 2-88A

tan r = Y/H- -7/2-8= -25 = tan 14^

These effects may be met with in the case of a frame that is incorrect

as to width or height when the lenses are oblique cyls, or sph.-cyls.

It should be noted that while a Hor. or Ver. prismatic effect can never be

obtained with an oblique plano-cyL, this is often possible with a sphero-cyl.

by adjustment of the decentering so as to neutralise the unneeded effects

introduced. Practically this is best achieved, if it be possible, by employing

a prism for the marking as described in " How to Decenter." It is always

possible if the sph. is strong compared with the cyl.

The Formulae and Deductions.—Although definite formulae have been

given in the case of obliquely decentered cyls. and sph.-cyls., and for finding

the Hor. and Ver. components and the main effects, they can be worked, in

each case, from first principles as indicated in the following. This may be

necessary if the decentering is neither Hor. nor Ver. nor in the principal

meridians. When a sph. -cyl. is decentered in a direction obliquely to the

principal meridians, there are the displacements which would take place if

the sph. and the cyl. were separately decentered. The prismatic effect due

to the sph. alone lies in the meridian of decentration, while that due to the

cyl., as we have already shown, lies in the meridian at right angles to the

axis. The total effect, therefore, is that of a prism whose base-apex line

corresponds neither to that of the decentration, nor to that of the maximum
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power of the cyl., but to some meridian between them if the powers of the

sph. and cyl. are of the same sign, and outside them if they are of opposite

sign. Thus suppose a + 6 S. o + 2 C. Ax. 30° be decentered 2 mm.
upwards in meridian 70°. The prismatic effect due to the sph. is 6 x -2 =
1-2A base up at 70°, while that due to the cyl. is 2 x -2 x -6428 = -26

A

where -6428 = sin 40° since the direction of decentration 70°, is 40° from

the axis of the cyl. Therefore the cyl. produces '26A whose base-apex line

is at 120°, and whose base is up. Therefore there are two prismatic effects

crossed at 50° (120°- 70°) and the resultant of these can be found from

P- .sjl -22 + -26-^ + 2 X 1 -2 X -26 X '6428 = x/r9087-l-38

,
'26 X "766

1 A 4. Qo
tan r = —- ='14 = tan 8°

1-2 + -26 X -6428

So that the effect of decentering + 6 S. o + 2 C. Ax. 30° 2 mm. up in

meridian 70°, is 1*38A base up at 78°. Still further, this oblique prismatic

efiect may be resolved into its Hor. and Ver., components from the formulae

given previously.

Any possible case of decentration can be worked from general principles,

as in the example just given, provided, of course, that proper attention be

paid to signs, etc., but, as can be seen, the procedure is complicated.



CHAPTER XVI

EFFECTIVITY AND BACK FOCAL DISTANCE

Effect of Altered Position of a Cx. Lens.^—The power of a lens 1/F or

D is a fixed quantity ; nevertheless the effect of a lens, in relation to a given

plane behind it, varies with its distance from that plane.

Thus a 10 in. Cx. lens L (Fig. 175) placed 6 in. in front of the plane

P P', has F 4 in. behind it. If now we place a 40 in. Cx. lens in contact

with L, the two combined will have 1/F = 1/10 + 1/40 = 1/8 or i^' = 8" so

that the combined focus will be 2 in. behind PP'. The same effect would

be produced if we moved the 10 in. lens 2" forward to L'. Therefore a Cx.

lens moved away from a plane acts with increased effectivity, i.e. it acts like

a lens of shorter focus. If we place a 60 in. Cc. lens in contact with the

10 in. Cx. the two combined will have 1/F = 1/10 - 1/60 = 1/12, i.e.

F = 12 in. and will be at F" 6 in. behind PF\ The same effect is produced if

A /
\

p

f' F f"

V \^ I p'

Fig. 175,

the 10 in. Cx. were moved to L" 2" nearer to P P\ Therefore, a Cx. lens

acts with a lessened effect as regards the plane when brought nearer to it.

The effectivity 1/Fv of a Cx. lens when moved through a given distance

d in the direction of the object is, for parallel light,

l/Fv=l/(F-(/) or Fv = F-r/

If d is equal to F, then l/(F-d) = 1/(F- F) = 10 = cc, in other words

the converging effect will be infinite at the plane, when the lens is placed at

its focal distance in front of it.

If the lens be moved beyond its focal length, since d is then greater than

F, the effectivity will be negative. Thus, if a + 10 in. lens is 12 in. from a

screen, its effect there is 1/F = 1/(10- 12) = - 1/2, or that of a 2 in. Cc,

since the light diverges from 2 in. in front of the plane.

189
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Effect of Altered Position of a Cc. Lens.—The effects produced by
similarly moving a Cc lens are opposite in character. Let P P' be the plane,

and L a 10 in. Cc. lens placed 3 in. in front of it (Fig. 176) • F will then be

13 in. in front oi PP\ If a + 60 in. lens be placed in contact with the first

lens the two combined 1/F' = - 1/10 + 1/60 = - 1/12 or - - 12'', so

that F lies 12 + 3 = 15" in front of PP\ and the same effect is produced if

the lens be carried to U 2 in. further from P P'
. Thus, the effectivity of a

Cc. is decreased by increasing the distance between it and a given plane

behind it, the lens acting as one of longer focus. If a 40 in. Cc. is added

1/F = — 1/10 - 1/40 = - 1/8, the same as if the 10 in. Cc. were carried to

U 2 in. nearer to P P' , so that a Cc. lens acts with an increased effect when
brought nearer to a given plane, F'' being then 2 in. nearer.

The effect of a Cc. lens when moved in the direction of the object through

a given distance for parallel light, is

l/F,.= l/(-F-f/) = l/-(F + ^/), or F,.- - F-f/

Change of Effect.—The altered effect of a lens when moved from one

position to another in front of a plane, or in front of another lens, is the

7
\;

/

1

;

f

;

\ /:
L"

Fig. 176.

difference between its effectivity in its original, and in its new, position ;

thus, if a 5 in. Cx. lens be moved from 1 in. to 2 in. away from a plane, the

change is

1 1 1 1_^
5_2~5-l"3~4^12

or an increase of effect equal to that of an added 1/12 Cx. A 5 in. Cc.

similarly moved causes a decrease of effect just as if a 1/42 convex had been

added to the concave, as shown by,

1 _ 1 _l_f 1\

-5-2 -5-1 ~ 7 V 6/ ""^42

Variation of Effectivity for Near Objects.—Let a 5 in. Cx. L (Fig. 177)

be placed 5 in. in front of P P% and if the light diverges from at 12 in. fo

is at 8|- in. behind the lens, or 8f - 5 = 3i in. behind P F

.

If the lens be now carried outwards 2 in. from its original position, to L\

it is distant 10 in. from and 7 in. from P P' ; is now/g' at 10 in. behind
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the lens, or 3 in. behind P P', the focus being shortened from 3y to 3 in.

with reference to P P\ Removal, therefore, of a Cx. lens towards the source of

light causes increased effectivity so long as the distance between the Cx. lens and the

object is not less than 2F. At this distance the lens has the highest

possible effectivity for the given position of the object with respect to P P', lohich

is reduced by any further withdrawal of the lens outwards. Thus, if the lens is

at 9 in. from Z^, then // will be at 11J-8 = 31" behind P P', the focus

being lengthened ^ in. as compared with the position when the lens is 10 in.

from and 7 in. from P P' ; there is a lessened ettect of 1/39 at the screen.

P

A A A

V. V, V

Fig. 177.

Further withdrawal of the lens results in a rapid increase in the distance of

behind P P' and a corresponding decrease of eftectivity ; thus if the lens

is 6 in. from the source of light, is 19 in. behind P P", and when the lens

is 5 in. from f^ the light, after refraction, is parallel, and is at infinity
;

still further removal of the lens from P P' towards f^ renders the light

divergent after refraction. AVhen the + lens is in contact with /^^ all eftect

vanishes.

In Fig. 178 a 5 in. Cc. lens L is placed at P P\ and if the light proceeds

Fig. 178.

from 12 in. distant, f^ is at 3y\ in. in front of P P\ If the lens be with-

drawn to L' 4 in. from P P' and 8 in. from /j, then f\ lies 3^^^ in. in front

of the lens, and 7^^ in. in front oi P F . If the lens is 3 in. from then/^

is about 11 in. from P P\ When the Cc. lens reaches its effect is zero as

with a Cx.

Therefore if incident light be divergent an increased effect may be

obtained by increasing the distance between a Cx. lens and a plane behind

it, but the increase for a given movement is less than if the light were
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parallel ; there will be a decreased effect if is less than 2 F. With a Cc.

lens the resultant effect is always decreased, but the change is smaller as the

distance between the object and lens is less. Thus the change varies not

only with the strength of the lens, but also with the increased or decreased

divergence of the light. When either a Cx. or Cc. lens is in contact with the

object, the light diverges as if the lens were not there at all.

Quite apart from changes of effect due to change of position of the lens,

increased divergence of the incident light reduces the effect of a Cx. lens and

increases that of a Cc. When light is parallel there is only the effect due

to change of nosition of the lens to consider, but when the light is divergent,

there is also the increased divergence of the liglit from the object to be reckoned

for, and the latter tends always to decrease the effect, due to movement, that

would have resulted had the light been parallel and, indeed, with Cx. lenses

may more than neutralise it.

If any lens is in contact with a given plane, then the effectivity at that

plane is repi'csented by the power of the lens itself, e.g. the effectivity of an
8'^ lens in contact with the cornea is 1/8 or - 1/8 as the case may be.

• Dioptral Expression.—If the power of the lens be expressed in diopters,

its effective power Dy in a new position becomes

Dv=1000/(F-fO

F and d being expressed in mm., or by

Dv=D/(l-DfO

d being expressed in terms of a metre.

Thus, suppose a + 8 D lens is moved from contact with a given plane to

a position 10 mm. further forward, i.e. towards the source of light, which is

at 00, then since F is 1000/8 = 125 mm.

Dv= 1000/(125 -10) = 8-7

The effectivity of the lens is increased + -7 D.

If a + 10 D lens be moved from 15 to 20 mm. in front of a given plane,

the altered values for parallel light, since F = 100 mm., are

at 15 mm. Dv= 1000/(100 - 15)= 11'77

at 20 mm. Dv= 1000/(100 - 20) = 12-5

so that the effectivity is increased by 12*5 - 11-77 = '73 D.

Similarly, moving the lens back from 20 to 15 mm. decreases the effec-

tivity to a like extent.

The distance d (in cms.), which a lens must be in advance of a given

plane in order that it may have a given effectivity at that plane, is found by

c^=100/D-100/Dv

where D is the power of the lens and Dv is that of its required effect.
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EfFectivity of Two Cx. Lenses.—lb has been shown that the combined

power of two thin lenses, placed together, is equal to the sum of their

individual powers, thus

But if the two thin Cx. lenses are separated by an interval d the resultant

effect is not the same as if the two were in contact. The distance of F behind

the back lens, that is, the back surface or effective focal distance F^, is

shorter than when they are in contact, since the effectivity of the front lens

has now become - d) in the plane of the second lens F^. Therefore

1 _ 11 _Y^^Y^-d _(Fi-(/|F2
F, - Fi - + F2 - (Fi - d) F2

^
'

~
Fi + F2 - d

where F^ is the front, F^ the back lens, and d the distance between them.

In Fig. 179 let and be two thin lenses of 10" and 7" focal length

respectively, separated by 2", then

^ (10-2)x7 56

TO + 7-2 ~15 = 3H in—
1n
\

Fig. 179.

Parallel light incident on is converged towards a point F^, 10 in.

behind it, but on its way the light meets, at 2 in. from L^, the 7 in. Cx. lens

Xo, and converges towards a point 10 - 2 = 8 in. behind the latter. The

effectivity of in the plane of L., is that of 1/8, or the effect is the same as

if an 8 in. lens were in contact with Zg, and the common focus F^^ is at

3^i in. instead of in., where it would be if were touching L^, The
separation of the lenses by carrying out from L.^ is to increase the effect-

ivity of the combination with respect to a plane behind it.

The distance of i^jj differs considerably, when the two lenses are of

different powers, according as the one or the other lens faces the light.

Thus, if the combination were reversed so that the 7 in. Cx. faced the light,

and the 10 in. Cx. were 2 in. behind it, F^ = 3^ in. instead of 2>\l in. F^ is

equal on both sides only when the lenses are equal and of same nature.

When d is greater than F^ the Fy^ is negative.

When d = Fj^.—If a Cx. lens (Fig. 180) is placed at its principal focal

distance in front of another Cx. lens the latter has no effect whatever.

Thus when d = F^, the T^b = 0 or IjF^ = 00.

13
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When d = + Fg.—If the interval between two similar Cx.^^lenses

(Fig. 181), is equal to the sum of their focal lengths, parallel light refracted

by Zj, converges to F, which is also the anterior principal focal distance of

L^. Therefore, as the light from F is incident on diverging from its

principal focal distance, after refraction by it emerges parallel as before

Fig. 180.

refraction, but the light and, therefore, the virtual image seen through

are inverted. Such an arrangement is found in terrestrial telescopes for

reinverting the inverted image formed by the objective, and is known as

the erecting eye-piece. In like manner if two unequal Cx. lenses (Fig. 182) are

separated by a distance equal to the sum of their focal lengths, so that

Fig. 181.

d = F-^ + F^, parallel light, after refraction, emerges parallel and reversed.

If the lens of greater focal length is to the front, the combination repre-

sents the principle of the astronomical telescope.

The Telescope is used for obtaining an enlarged view of distant objects,

and consists (Fig. 183) of an objective L-^ of long, and an eye-piece of[short

Fig. 182.

F, both corrected for spherical and chromatic aberration. The objective

forms a real inverted image S T oi Si distant object P R, subtending an angle

ft, and this image is viewed through the eye-piece L^. For an emmetropic

eye the distance between and is equal to the sum of their focal lengths,.
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so that the light, after refraction by both lenses, may enter the eye in parallel

beams. The magnification depends on the ratio between the angle a, which
the object subtends, and b, which the final image P' subtends.

Let Q be the optical centre of the objective, and F E the extreme axial

rays of the object at oo, the one extremity P being assumed to be on the

principal axis Q 0 oi the telescope. Then FQE = a the angle subtended
by the object at Q, and S T is the real image formed in the focal plane of

the ocular, of which 0 is the optical centre. The angle under which this

image is seen is h. The magnification therefore is the ratio between the
angle a, under which the object would be seen by the naked eye, and the

angle h, under which it is apparently seen when the telescope is in use. Thus

M = h/a = h/a'

But as these angles involved are very small, we may replace them by
their tangents. Now tan a' = ST/TQsind tan b = ST/TO. Then

M = S T/T 0 - S T/T Q =: T Q/T 0

\ i

^^^^^^^

P
<

Fig. 183.

But T Q = the focal length of the objective, and T 0 = F^, that of

the eye-piece. Therefore

A hypermetrope would adjust the telescope so that the distance between

the lenses is greater than F^ + F^, the light then entering the eye couA cr-

gently, while the myope, in order to obtain divergent light, would make the

interval less than F^ + F^.

The final image is inverted with respect to the object, and for terrestrial

purposes this difficulty is overcome by means of an erecting eye-piece which,

when suitably placed between the objective and eye-piece, causes a reinver-

sion of the image. For astronomical purposes an erector is not needed, since

inversion of a heavenly body is of no importance, while, on the other hand,

loss of light owing to increase in the number of the refracting surfaces is

avoided.

The Compound Microscope consists of a similar combination, the lens of

shorter focal length being to the front, but in this case, the object viewed
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lies just in front of F of the first lens, and the separation of the lenses is

much greater than F^ + F^. The compound microscope is used to obtain

a magnified view of a small near object, the distance between the lenses being

dependent on the available length of the instrument, usually from 6 to 10 in.,

the distance of most distinct vision of the observer being generally 10 in.

also. The first lens L^, called the objective, is a short focus combination,

highly corrected for aberrations, and the second, called the eye-piece, or

ocular, L^, is also a strong combination, but less so than the other (Fig. 184).

A small object A B h placed just beyond F of the objective L^, so that

the latter forms a real, inverted, magnified image, B'A', of the object. This

image is formed practically in the focal plane of the eye-piece Lg, and an eye

placed behind the latter sees an enlarged virtual imdigQ B"A" oi B'A' at the

distance of most distinct vision. Hence there is magnification due both to

L,

i V

Fig. 184.

the objective and to the ocular and can be very approximately calculated as

follows. Let N denote the position of B'A' on the axis.

The magnification due to the objective is

Mi = B'A7AB = CN/C P.

But ON may be taken as the tube length of the microscope, this value

being a variable quantity depending upon the particular maker, while (7 P is

practically equal to the focal length of the objective. Thus may be

taken as

tube length/Fo

where Fo is the focal length of the objective.

Again, the magnification of the eye-piece can be expressed as 1 + d\F^_^ as

shown in Chap. IX., where Fy. is the focal length of the eye-piece, but as P,.-

is always fairly short, the magnification due to the eye-piece may be

expressed by

If we imagine the final virtual image B'' A'' to be projected to the plane
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of the stage on which the object is placed, the distance d may also be taken

as equal to the tube length ; the total magnification therefore is

M = Ml M2 = tube length/F, x (//F^ = 1 0^Fo F^,

Fp and Fq being expressed in inches.

It must be remembered that this formula is only approximate, but is

more accurate the higher the powers are with which we are dealing. To
calculate exactly the magnification of the microscope would be laborious,

seeing that a knowledge of the principal points of objective and eye -piece,

the position of the focal planes, and so forth, is essential.

Construction of Eye-pieces.—If two piano Cx. lenses and plane

surfaces outward, of, say, 4 in. F each, are separated by | F of either, that

is, d = 2| in.

Thisis the common form of the Ramsden eye-piece (Fig. 185). Used in

a telescope or other instrument, the real image formed by the objective is V

Fid. 185. Fig. 186.

in front of L^, and after refraction by Z^, its image is 1 1/3" from it, and

therefore in the focal plane of the second lens by which the light is

rendered parallel. The front lens of this, and of the two following com-

binations, is termed the field lens, and the back one is the eye lens.

Fig. 186 represents the Huyghen eye-piece, in which two unequal piano

Cx. lenses L-^ and (where = '?>F<^ of, say, respectively 6 in. and 2 in.

focal length are separated by a distance 4 in, equal to the difference between

and F^, or half the sum of their focal lengths {F-^ + F^)l2.

When employed with an instrument such as the telescope, the light from

the objective is convergent on to Z/^ which increases the convergence, so that

the real image is formed 2'' from L^, and therefore in its focal j^lane ; then

the light finally emerges parallel. Both curved surfaces face the light.

Two equal piano Cx. lenses with their curved faces towards the light, and

separated by a distance equal to F of either, constitute the Kellner eye-piece.

In this case F^ = 0, but, when in use, the image formed by the objective lies

in the plane of L^, so that the light then diverges to from its focal

distance and is, after refraction, parallel.

The utility of the field lens, in all eye-pieces, is to increase the field of

view.
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Effectivity of Two Cc. Lenses.—In Fig. 187 let and L^he two thin Cc.

lenses of, say, 10 in. and 7 in. F respectively ; when close together F lies

in front of them.

F.=

If Zj^ is advanced 2 in.

(-10-2)x - 7

10-7-2 -19~ in.

As Fj, (measured from F^) is lengthened by separation, the effectivity is

decreased for any plane behind the lenses, although F^^ is nearer the front lens

—^

—

\

y
"

Fig. 187.

As with Cx. lenses, the distance of i^^ from the back lens of a combination of

two unequal Cc. lenses, separated by an interval, varies as the one or the

other lens faces the light. Thus, if the 7 in. Cc. were 2 in. in front of the

10 in., i^H = 4i| in.

Effectivity of Cx. and Cc. in Combination.—If there is an interval

between a Cx. and a Cc. of equal focal length, the combination is Cx. If,

however, d exceeds F^, the light refracted by the Cx. is brought to a focus,

whence it diverges to the Cc, so that Fy, is negative.

Thus, in Fig. 188 let L-^ be a 10 in. plano-Cx. and a 10 in. Cc. When

Fig. 188. Fig. 189.

placed in contact parallel light is unaltered by them, but if separated by an

interval less than F^ (Fig. 189) parallel light incident on the Cx. is converged

to the Cc. and if = 4 in.

(10-4)x -10 -60
10-10-4 ~ -TF.= 15 in.

Thus the rays are rendered less convergent, and form a real focus at 15"'

behind L^. This is the principle of the Unofocal photographic lens, in which

the components are of equal but opposite power.

If the combination be reversed (Fig. 190) so that the light is incident
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first on the Cc. it is rendered divergent as from 10 + 4 = 14'' from the Cx.,

and

1/F,= +1/10-1/14=1/35;

thus F^. is at 35'', or 20" further from than the other back focus. Although

there^ is an excess of Cx. power in both cases^ is nearer to the back lens

when the Cx. faces the light than when the Cc. does so.

If the Cc. lens has a shorter focal length than the Cx. and the two are in

contact, the result will be an excess of negative power. If the Cx. be moved
towards parallel light, it gains in elfectivity, but the total effect is still nega-

tive until, when the separation is equal to the sum of their focal lengths, the

back focal length is infinite. Any further increase of separation will give

the two lenses a positive focal length, which diminishes as the separation con-

tinues, until when d = F of the Cx., the back focal length is zero. Still

further separation produces a negative effect. When d is less than F of the

Cx., but greater than F^ + F^, the principle of the Telephoto lens is

illustrated.

In order that a Cx. and Cc. should neutralise each other, and parallel rays

emerge from the second lens parallel (Fig. 191) <i must be equal to the alge-

braical sum of their focal lengths, and, further, the value of d must always he a

'

1
7

^—

-

/

P

\

\

/
L,

Fig. 191. Fig. 192.

positive quantity. Thus if F^ = Q in. and i^g = - 6 in., then 6 + (
- 6) = 0 ;

the

two lenses must be in contact in order to neutralise. But if i^^ = + 6 and

F^= --4 the two lenses must be separated 6 + ( - 4) = 2 in. In this last case

the emergent rays are parallel to their axes after refraction, whether the

entering rays are first incident on the Cx. or on the Cc. Here by calculation

F - (6-2)x4 16

T^2"-^
= -/^ = 00

0

It will be noticed, therefore, in order that a Cx. and a Cc. may neutralise
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by separation, the Cx. must always he the weaker^ the principal focus of the Cx.

being behind the Cc. as far as that of the latter is in front of it.

The Opera-Glass consists of a convex lens, L^, placed in front of a concave

lens, L^, of higher power, at a distance equal to the algebraical sum of their

focal lengths so that the lenses neutralise each other by separation. Although

the rays of each pencil emerge parallel from a very distant point after refrac-

tion by both lenses, yet t\iQ pencils themselves are deviated so that an object

appears under a larger angle.

The proof of the expression for magnification in the case of the opera-glass

can be done very similarly to that of the telescope. In Fig. 192 Q is the

optical centre of the objective as before. An extreme axial ray B Q from an

object P R dX cfj subtending the angle a at is incident on the concave, and

is refracted away from the axis in the direction D such that h is the angle

under which the image is seen. Therefore the magnification is

U = l/a = h/a\

The angles, being small, can be replaced by their tangent values, giving

M = QH/SH.

Now QH= — the separation necessary for parallel emergent light,

and the point S is really the virtual conjugate of Q by refraction at the con-

cave lens. Therefore we have

1 _l F,

sh-f/f,-f,-f,(F,-f,)
so that

Therefore the ma2;nification

Thus the magnification of the opera-glass is expressed by FJF^ as in the

telescope.

When the Cc. is to the front the secondary axial rays of the concave are

less divergent after refraction by the convex, and therefore appear to pro-

ceed from a smaller object, so that diminution occurs when an opera-glass is

turned wrong way round. The magnification in this case is still expressed

by FJi^2> where F^ is that of the Cc. ; in practice, of course, the magnifica-

tion is fractional, indicating a diminution equal to the magnification obtained

when the Cx. was to the front.

Thus, if i^j^ = 5 in. and F^ = 'l in., the magnifying power of the opera-

glass is 5/2 = 2 J. If the combination is reversed so that the Cc. is to the

front, M = 2/5, i.e. there is a diminution to 2/5.
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The emmetrope adjusts the glasses so that the separation is exactly

F^ + F^. The hypermetrope, requiring convergent light for clear vision,

makes the separation greater, while the myope, needing divergent light,

makes ii shorter.

Dioptral Formulae for EfFectivity.—The formulae for finding the eff"ective

dioptral lens D^ of two separated lenses Dj^ and are

r^^pT^)
+ or Di + D2 4- Yoo_'d^^

Dj^ being the power of the front, and Dg that of the back lens
;

d, the

interval, is expressed in terms of a metre in the first, and in centimetres in

the second, of the above formulae.

Separation for Given EfFectivity and Opera-G-lass Adjustment.—Suppose

an opera-glass, formed of a + 10 D objective and a - 20 D ocular, has to be

adjusted for the vision of a myope of 4D who requires a back focus of

-4D in order to see clearly through the combination. The distance

between the lenses must be such that the +10D has an effectivity of

4- 16 D in the plane of the - 20 D, so that the required - 4 D is left over.

Then
100/10- 100/16 -10 -6-25 = 3-75 cm.

Again, suppose a hypermetrope of 4 D similarly desires to see clearly

without accommodation through the same combination of + 10 D and
— 20 D. Here a back focus of + 4 D is necessary, so that the + 10 D must

have an effectivity of + 24 D in the plane of the Cc. Then

(7=100/10- 100/24 ==10 -4-16 -5-83 cm.

In order to adjust the distance between two lenses so that the effect is

that of a given back focal length the formula for F^ already given may be

employed. Let the lenses be 5 Cx. and 2 Cc. and the effect required that of

a 20 Cx. ; then

(5-6?) x( -2) -10 + 26?

+ 20-- = 3-d

60-20(7= -10+2t/.

so that - 22d= - 70, and d=3^\ in.

If the eftect required with the same lenses is that of 20 Cc, then

OA _ (5 - ^) X ( - 2) _ -10 + 2(7

5-2-d ~ 3~d

-60 + 20tZ= -10+2(7

so that 1 8(7 = 50, and (7 = 2^ in.
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The value of d can also be obtained from the formula

,
F,F,-F,(F^+F,

)

F,-F,

Effectivity when Light is Divergent—When incident light is divergent

the conjugate focus with respect to the front lens of the combination must

be found before the value of (F^^ - d) can be applied. The conditions for

neutralising and for obtaining certain effectivities with separated lenses differ

for divergent and parallel light. For example, an object is 20 in. in front of

an 8 in. Cx. lens behind which, at 2 in., a 13 in. Cc. lens is placed ;
where is

the image ? Now, the first conjugate j\ is at

I//2 = 1/8 - 1/20 - 1/131, and 1/(131 _ 2) - 1/13 ^ 1/88|

Therefore 1. is at 88f in. behind the concave.

An object is 40 in. in front of a 7 in. Cx., where should a 5 in. Cc. be

placed so that the rays may be rendered parallel % Now

1//.= 1/7 -1/40 = 3.3/280

the image is thus 8if in. behind the Cx., so that the Cc. must be placed

8i| - 5 = 314 in. behind the Cx.

An object is 40 in. in front of a 7 in. Cx. and a 5 in. Cc. The image

must be 20 in. behind the back lens ; how much must the lenses be

separated 1 is 81| in. behind the Cx., which must have the effect of 1/5 +
1/20= 1/4 in the plane of the Cc. The interval between them must therefore

be 8i| - 4 = 4i|.

Suppose a + 3 D lens is placed 20 cm. in front of a screen, where must

another equal lens be placed in front of it so that the image of an object

50 cm. from the front lens be focussed on the screen 1 After refraction by

the second lens alone the light is converging to 1 00 cm., but it must converge

to 20 cm. behind the second lens, since the efFectivity needed is +5 D.

Therefore, the front lens must act as 5 - 3 = + 2 D in the plane of the second,

and the interval between them must be 100 - 50 = 50 cm.



CHAPTER XVII

EQUIVALENCE OF THIN LENSES

Equivalence.—Any two or more lenses, whether in contact or separated,

can be replaced by a single equivalent lens which has the same refracting

effect as the component lenses. Or, to put it in another way, since the size

of image is proportional to focal length, any number of lenses can always be

replaced hy that single thin lens giving the same m/ignification.

If two thin lenses are placed in contact the resultant focal length is the

same as that of a single lens situated in the same plane and whose power

1/F is that of the sum of the two components Fj^ and F^. The combined

power and F may be written

111 F^F,

F==F, + F2 ^""'^ F1 + F2

A
J
\

^

N

Fig. 193.

If the lenses are separated by a distance d, we have seen that the effective

power and back surface focal distance are

1 _ _J_ 1
, _ (F, - d) F,

F.-Fi-tZ + F^'
^"""^ ^^"F. + F^-^^

It now remains to find an expression for the equivalent focal length

of two thin separated lenses.

Equivalent Lens and Focal Length.—Let and (Fig. 193) be two

thin lenses separated by a distance d, and let A B be a ray incident on

parallel to the principal axis MJSf. This is deviated by L^, and, were it not

intercepted by L^, would focus at iV, but it is refracted still more at C to

cross the principal axis in the posterior focus Fj.^-

Now if the incident ray AB be produced, and the final refracted ray Oi'',,2

prolonged backwards, the two will meet in the point P^. Through drop
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the perpendicular P^E^. Then if a thin lens of focal length E^F,,^ be intro-

duced into the plane ^3^2 other lenses removed, this single lens

would give precisely the same result as the combination L^L^. For this

reason the plane ^2 called the second equivalent plane and the point E^^

the second equivalent j^oinf.

Similarly if parallel light be incident first on L.^. it will pass through the

first back focus F^^ and F^E-^^ is located in the same way as P2^2- plane

F^Ej^ is called the first equivalent plane and E-^ the first equivalent point, and it

is here that the equivalent lens must be situated to replace the combination

for light coming from the side of Zg-

Thus it will be seen that F^ and correspond to the refracting planes

of a single thin lens, since all refraction appears to take place on either

Pi or Pg depending upon the direction of the light. E^ and E^ likewise

correspond to the optical centre, because any ray directed towards E^ will,

after refraction, appear to emerge from E^ in a direction parallel to its

initial path. This is illustrated in the next diagram.

R

G 1
;

IT

Fig. 194.

In Fig. 194, Pj^ and P^ are the equivalent planes, E-^ and E^ the

equivalent points, F^ and F^ the principal foci, P F^ and () F^ the focal planes.

Let an oblique parallel beam, of which AI is the secondary axis, fall on L^.

The ray ME^ directed towards E-^ is bent towards the axis by L-^, but is

agani rendered parallel to its original direction by such that it appears to

proceed from E2 towards H. Another ray K G after refraction by P^ and

is directed towards H in the posterior focal plane, apparently proceeding

from a corresponding point N on Pg such that the di4ances of G and N from

the axis are equal. Similarly PP is refracted towards H, the point of

emergence on being S, such that *S' E^ = T F-^^. Thus H is the image of the

point from which the light originally diverged. Conversely rays diverging

from H, or any other point in the focal plane, will emerge as a parallel beam.

Since the intrinsic power of a combination is a fixed quantity the

equivalent focal length is the same on each side, and is the distance E^F^ or E^F^.

The equivalent planes P^ and P^ are always situated symmetrically with

respect to the focal planes, and with two ordinarily separated convex lenses

P^ and Pg are invariably crossed such that E^ lies nearer to Pg than to F^,
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and nearer to E-^^ than to E^, that is to say the 2nd equivalent plane lies

nearer to the source of light. Generally, however, the equivalent points and

planes are uncrossed. That which is the first equivalent plane when the

light is incident on the one lens becomes the second equivalent plane when
the lenses are reversed.

The space E^E.^, over which the light apparently jumps, is called the

optical interval or equivalent thickness. Were the two lenses brought together

this interval would vanish, so that E^ and E^ merge to form the optical

centre of the resultant thin combination, and the united planes and

becomes the refracting plane.

Expression for T^.—In Fig. 195 AB is a ray parallel to the axis and is

refracted through Ey^, the back focus. Let the focal lengths of Zj^ and be

F^ and F^ respectively, d the separation, and F^, the equivalent focal length.

Then we have two pairs of similar triangles CEj^N, P^E^E^, and CDJV,

EDM.
Therefore

E2F3 P^E^ BM MP
NF.^

or E.F,

ow
C xN

~ C N ~ N D

E2F3=:F,;

MD = F,; ND = Fi-f/

M D X N F,,

NI)

NF -F2^F,-./)

^~F, + F~r^

F.=
(Fi + F^-^/) {F^-d)-F^ + F,-d

This formula, it will be noticed, isundependent of the direction of the

light.

The distance of the second equivalent point E^ from is found by

subtracting the back from the equivalent focal distance, i.e. Fg - Fg. Thus

F2 (Fi-^O
E.

FiF, F.d
F^ + F,,-d Fi + F^-fZ-Fi + Fg

The corresponding distance bf E^ from is

FiF, F,(F,-.0 F^d

^^-f^ + F^-d F^ + F^-d-F^ + F^-d
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The equivalent thickness is found from the following equations, the first

of which also shows whether the equivalent points are crossed or not.

The distance is measured hachwards from the 1st lens and forwards

from the second lens, that is in each case toivards the other lens. If, however,

either is a negative quantity, it is measured in the opposite direction or

away from the other lens.

The positions of and E<^ are unchanged in the combination, no matter

which lens faces the light; E^ is that which theoretically is nearer the source,

but actually it may not be so. E^ is that from which the focal length is

measured, and if the combination is reversed that which was E^ then

becomes and vice versa. When the one lens faces the light is

measured from a certain position, and it is measured from another position

if the other lens faces the light.

1

\1V V

Fig. 196.

Two Cx. Lenses.—Suppose a 5 in. Cx. lens is placed 2 in. from a 10 in.

Cx. lens. Then (Fig. 196)

__A^0 _50_
-^^~10 + 5-2"13~^T«

Ei = 5x 2/13 = i§ in. behind L^ 10 x 2/13 = 1^^3 in. in front of

or 2 - lyy = tV in. behind L^

2 - (20 + 10)713= -4/13

If the 10 in. lens faces the light, the two equivalent points change places,

Ft. being the same. Since d=2 in., and E^ is 10/13 in. behind while

E^ is l /yr in. in front of L.^, the distance t is negative, and the two equiva-

lent planes are crossed by 4/13 in.

Special Cases.—The following special cases occur with two separated

Cx. lenses.

(1) Wheii d= F^- F^j then F^ = F^/'2, and E^ is midway between the two

lenses. This is the case of the Huyghen eye-piece. If F^ = S in., F^ = l in.,

and d = 2 in.
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E.^ IS I in. in front of the back iens, midway between the two lenses;
E^, being 3 in. behind the front lens, is 1 in. behind the back lens, and
outside the lens system. Here d>F^ h\\t<F^, and if the lens of shorter
focus faces the light F lies in front of the back lens.

(2) When d = F^ + F^, then i^E= cx, this beinc,^ the case of the telescope

(3) JVhen d>F^ hut <F^ + F^, then F^ is positive and E^ and E^ may be
one or both beyond the lenses and crossed (Fig. 197), d being >F^, the
light, after refraction by L^, is divergent to as'if a single lens were placed
further than its focus from a given plane.

Fsi Fe,

Fig. 197.

Let = 4 in., = 4 in., and d = 6 in. Then (Fig. 197)

The lenses being equal

El or E2 = 4x6/2 = 12 in.

Parallel light incident on comes to a focus at 4 in., whence it diverges

-A

Fig. 198.

to L^, and has its focus, after refraction, at 4 in. in front of Z^, or 8 in.

behind E^. T= - IS inches in this case.

Suppose i^i = 7 in., F^=16 in., and d=9 in. Then F^ = 8 in., E^ is

ih in. from X^, and E^ is 10 1 in. from L^. The effect is as if an 8 in.

lens were placed lOf in. in front of the plane of L^. Light, refracted
by this system, is converged to 7 in., and, after the second refraction,

diverges as if from a point 2f in. in front of L^.

(4) When d >F^ + F^, then F^ is negative, and E^ and E^ are also negative
(Fig. 198). Thus if two 4 in. lenses are 20 in. apart, we get

4x4 16
y =

12 = -H in-



208 GENERAL AND PRACTICAL OPTICS

Here, also, the lenses being similar

El orE2 = 4x20/-12= - 6| in.

Here the equivalent points, being negative, are measured outwards

instead of inwards, and I\ lies behind but \~" in front of E^.

(5) When d = F-^, then F^ = F-^, and the system illustrates the Kellner

eye-piece (q.v.) if the lenses are equal. If the lenses are 3" and with

d = 3", we have = = 9'' and E^ = that is, in the plane of L^.

(6) IFhen d = F^, then F^ = F^, and E^=^d, the image being the same as if

the front lens were not there, but its position is shifted. Thus with a

10'' and a lens separated by V we find F^=V\ E^ = V and ^a^x/
which is the distance that the image is shifted. This illustrates the case of

a lens at the anterior focal point of the eye.

(7) When F^ = F^, then F^ + F^^F^ or F^. This is the case of the

Ramsden eye-piece. Let i^^ and F^ be each of 4 in. focal length, d being

2/3i^i=24in. Then

Ej, or E2 = 4x2f/5i = 2''

Fb is therefore 3-2 = 1".

Equivalence of Two Co. Lenses.—If F^ and F^ are both negative, and

for example, F^ = - S in., F^ ^ - 10 in., and d = 2 in., then

F
-8x(-10) 80

- 8- 10-2 ~ -20

E^= -8x2/-20 = 4in. £3= -10x2/-20 = l in.

<=2-(l+l) = 4in.

Special Cases.—If d equals the difference between F^ and i^g (hoth being

concave), then F^ is half that of the stronger lens, and the equivalent point

measured from the weaker lens is midway between the two.

If F^ - F^, then F, + F^==F^ or F^.

Eauivalence of a Cx. and a Co. Lens.—Suppose 7^^ = 10 cm., F^=
- 15 cm., and d = 2 cm. Then (Fig. 199)

10x(-15) -150
3

El = 1 0 x 2/ - 7 = - 2i in front of L^

E2= - 15 x 2/ - 7 = 4f cm. in front of or 4f - 2 = 2f cm. in front of L^

t=2-{-2f + U) = ^em.

If the negative lens is in front (Fig. 200), F^ is 2^ cm. behind the Cx.,
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or -2f-2= -4^ cm. behind the Cc. In the first case lies 17| cm.

behind the back lens, and in the second case 24f cm. behind it. The

combination resembles that of a positive meniscus in which the optical

centre lies outside the Cx. surface. Whether a combination, such as this,

will have a positive or negative focal length depends, not only on the

respective powers of the components, but also, and essentially, on the value

of d. The weakest Cx. can more than neutralise the strongest Cc. if the

separation be great enough.

Special Cases.—If the two lenses are separated by F^^ + Fg (the

their focal lengths), the negative being of shorter focus, then F^ =

the lenses neutralise each other. This is the case of the opera-glass.

with 9 in. Cx. and a 4 in. Cc. separated by 5 in.

x(-4) -36

sum of

00, and

Thus

9-4-5 0
00

7^

Fig. 199.

Fig. 200.

Fg, the combination is negative ; if d > F-^ + it isIf d < Fi
positive.

When = - Fg.—If the two lenses have equal focal lengths, Fb - Fe =
Fj or Fg, and the formula for finding Fg (which is positive) becomes simpli-

fied to Fb = F^/d. In this case E-^ is negative and both equivalent planes

lies beyond the Cx. lens
;
E^ = Fg and Eg = F^ ; also t = d.

To find d for a given F.—To find the distance d which should

separate two lenses so that they may have a given F^ the following formula

serves.

d = F^ + F,^-F^F^/F^

If d results in a negative quantity, it shows that the desired result is

impossible. If both lenses are similar the formula may be written d =^ 2F
- FVFe, and if the one lens is Cx. and the other Cc. of equal power, the

formula simplifies to = FVFe-
14
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Thus when Fj^ is 10 in. and Fg is - 5 in., in order that F^ be 12 in.

6^ = 10 - 5 - 1 0 X (
- 5)/l 2 = 5 - ( - 4J) = 9i in.

So that the equivalent focal length may be 12 in. Cc. we find that

fZ=10-5 - lOx (-5)/-12 = 5-4i = | in.

The Result of Separation. —Separating two Cx. lenses results always in

reduced power or longer Fg—indeed if d is great, F^ may become infinite, or

even negative. With Cc. lenses the reverse occurs, the power being increased,

or Fg shortened. With a Cx. and a Cc. in combination the result varies

with the powers of the two components as in the next paragraph, where the

results are tabulated.

Change of F,. for Variation in d.—As cl increases with two Cx. lenses,

Fe varies directly, and / varies inversely or becomes negative.

As d increases with two Cc. lenses, F^ varies inversely, and t varies

directly.

As d increases with one Cx. and the other Cc, the Cx. being the

stronger, F^ varies inversely and t varies directly.

As d increases with one Cx. and the other Cc, the Cc. being the stronger,

and Fe being negative, Fe varies directly, and / varies inversely or becomes

negative.

As d increases with one Cx. and the other Cc, the Cc. being the stronger,

and Fe being positive Fg varies inversely, and t varies inversely.

Conjugate Foci.—The equivalent focal length of two separated lenses

being that of a single lens substituted for them, the ordinary formulae for

conjugate foci hold good, but the distance of is from E^, and that of is

measured from Eg, as with thick lenses (q.v.).

Combination of More than Two Lenses.—When more than two lenses

are separated by intervals, the method of finding Fg of the whole system

is to obtain that of the first pair of lenses, and then combine this combina-

tion with the third lens, or another pair of lenses, and so on. It must be

remembered that the distance d between two combinations is that between the

two them^etically most adjacent equivalent points, that is, between Eg of the first and

E^ of the second combination ; also that the position of the equivalent points

Ej and Eg of the whole combination is reckoned respectively from Ej of the

first, and Eg of the second combination. In fact the calculations are similar

to those required for two thick lenses (q.v.),

Dioptral Equivalent Thin Lenses.

With dioptral powers, the equivalent power and points of two separated

lenses are found from the following formula?, where and Dg are the powers

of the two lenses, d is the interval between them expressed in cm., is the
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equivalent dioptral lens, Ej^ and Eg are respectively the first and second

equivalent points, and t is the distance between E-^ and Eg.

Dp = Di + D2-DiD2^//100

^1 ~ Di (Di + Dg - D^Dg d/lOO) " D^D^
~

E.=
^2-D2(Di + D2-DiD2r//100)~ D^D^

"

If d is expressed in terms of a metre, we can write :

If Dj^ is positive and equal in power to Dg, which is negative, then

Dh = D2^/100

The distance between two dioptral lenses so that they may have a

certain equivalent dioptral power is found from

100(Dt + D,-D,)

which, when T)^ and Dg are equal, simplifies to

100 (2D -De)
d=

D2

If the one lens is positive and the other negative and of equal powers,

the formula becomes
f/=100D,yD2



CHAPTER Xmi
THICK LENSES AND COMBINATIONS

Hitherto we have considered all lenses as having no appreciable thickness

in relation to their focal length, so that, as described in a previous chapter,

all the refraction caused by the two surfaces may be presumed to take place

on a single refracting plane passing through the optical centre. Further,

this plane may be taken as coinciding with the surfaces and therefore, for

practical purposes, all measurements may be taken from the lens itself, and

all secondary axes passing through the optical centre assumed to undergo no

lateral deviation. With a thick lens, however, these simplifications are not

permissible.

Let Fig. 201 represent a thick bi-convex lens of which X and Fare the

Fig. 201. Fm. 202.

centres of curvature. From X and Y let any two parallel radii, such as A" B
and YA be drawn meeting their respective surfaces in B and A \ then tangent

planes drawn through A and B are parallel, so that at these points the lens

acts as a plate, and any ray A'A, incident at A, after transmission and

refraction, emerges as BB' parallel to its original course. As described in

Chapter VH., the point 0 where the ray cuts the axis is the optical centre,

which is a fixed point whose position on X Y depends only upon the ratio of

the radii of curvature.

The point E^, towards which the secondary axis A'A is directed, is the

first equivalent point, while E^, from which it apparently emerges, is the

212
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second equivalent point. and have precisely the same significance

given them as in the previous chapter on thin lens combinations, i.e., they

are the points from which the principal and secondary foci are measured,

and through which pass the planes where all refraction is presumed to take

place. In a single thick Cx. lens, however, E^ and E^ are never crossed as

may occur in Cx. lens combinations. Fig. 202 shows the equivalent points

and optical centre of a bi-concave lens.

Fig. 203. Fig. 204.

In periscopic Cx. or Cc. lenses (Figs. 203 and 204) both E^ and E^
generally lie outside the lens on the Cx. side of the PCx., and on the Cc.

side of the PCc, but in some cases the one point may be outside, and the

other still within the lens ; moreover the optical centre 0 lies outside the

equivalent points. A ray directed to E^ appears, after refraction, to proceed

from £'2, its course A B within the lens being on a line connecting the

optical centre 0, the point of incidence A of the ray at the first surface, and

the point of emergence B at the second surface. The position of 0 is therefore

determined by producing B A to cut the principal axis.

In plano-Cx. and Cc. lenses (Figs. 205 and 206) the only point on the

curved surface parallel to any point on the plane surface is at the vertex,

through which passes the principal axis. Therefore E-^, the first equivalent

point, and 0, the optical centre, coincide at the curved surface.

All the secondary axes proceeding from the various points of a body are
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directed towards E-^, and after refraction appear to diverge from E^, but they

cut the principal axis at 0, either actually or virtually, as in periscopic

lenses.

The terms nodal or principal points are sometimes applied to the equiva-

lent points ; but it is better to reserve the latter term for points that possess

the functions of both the former, as they do in lenses where the first and last

media—usually air—are similar. Nodal and principal points are discussed

in the chapter on Compound Refracting Systems.

The Effect of Thickness.—This is clearly shown in the foregoing

diagrams, and it may be said that a thick lens differs only from a thin one

in that it has a plate-like power of laterally displacing all incident light. In

other words a thin equivalent Cx. lens can be transformed into a thick lens

by splitting it in the refracting plane and cementing the two halves to the

opposites sides of a parallel plate. The consequence is that a thick Cx. has

a weaker equivalent power than a thin one of similar curvature and /x, while a

thick Cc. has a stronger equivalent power than a thin one.

Fig. 207. Fig. 208.

Course of Rays through Thick Lenses.—Fig. 207 represents a thick Cx.

lens in front of which is the object A B. Any ray A P parallel to the axis,

takes the course Q A' after refraction, and passes through I\. The secondary

axis A Ey directed to proceeds from E.^ parallel to its original course,

and a third ray A B, passing through F^, is refracted as S A' parallel to the

axis. All three rays meet in the image point A\ so that B'A' is the complete

eal image of A B. Any other ray A T directed towards the first equiva-

ent plane at T emerges from the second at X and directed toward A' such

that E^T = E^ X.

The construction in the case of thick Cc. is shown in Fig. 208. It is so

obvious as not to need any special description.

Direct Formulss for a Single Thick Lens in Air.—We will now proceed to

find the back focal length or effectivity, the equivalent focal length, and the

positions of the equivalent points in terms of the radii, thickness and index

of the lens. Let

Fe be the equivalent focal length.

Ej and Eg be the first and second equivalent points.

T be the distance between E^ and Eg (the optical interval).
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7\ and y-g be the radii of curvature of respectively the first and second

surfaces.

A and B be the first and second surfaces at the principal axis,

ft be the index of refraction of the glass.

t be the thickness of the lens on the axis.

Fig. 209 represents a thick bi-convex lens ; let R Q be a ray incident at

Q and parallel to the principal axis A B ; this will be deviated towards the

axis by the first surface, and would, if not interc*epted by the second surface,

cross A B in D, but is brought to a nearer point by the further refracting

effect of the second surface. Then, from definition, D is the posterior focus

of the first surface, F^, the principal focus of the lens as a whole, and B F,, the

back focal distance. Let F^iJ be produced backward to meet E Q prolonged

in F. Now a plane perpendicular to the axis, dropped through P, will

locate the second equivalent plane and, where it cuts the axis, the second

equivalent point F^. All the refraction of incident light from the direction

FiQ (parallel or otherwise) appears to take place on F F^. The distance

F^ Fy^ is, therefore, the equivalent focal length, since it is the focal length of

Qr
t

D

/

Fig. 209.

the single thin lens which, if placed in the plane of F^, would have the same

effect as the original thick lens as a whole.

The distance of F^, the principal focus of a lens, measured from the

second surface B, is determined by the sum of the anterior focal powers

l/F^ and 1/F[ of the two surfaces respectively, that of the first being modi-

fied by t/fx, the thickness of the lens, and the index of refraction of the

medium through which the light travels, before it meets the second surface.

That is

l/F,=:l/(F,-///x) + l/Fl

Substituting in the formula 1) for F^, and rV(/x -1) for F^ we get

1 1 1 /^-l

F, - V(/x - 1) - V/^
+ V(/x -l)-f.r^-t{i.-l)-^ r,

^ fx(fi-l) + r^-t{iM-l )//x)

so that _ /xr^rg -tr^(fi-l)
^ - ^ ^ - - ^ (;x - 1 )

(r, + -til. -I)/h)
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Similarly the back focus from the other surface is

1/F, = 1/(F:-///x)+1/F.

which becomes
/^-^i^"2

~^'^\([^~^)
^« = /x(/x-l)(r, + r2 -/(/x-l)//x)

These expressions give the back focal distance Fj,. It remains now to find

similar formula3 for the equivalent focal length and the positions of the

equivalent points relative to the poles A and B of the surfaces.

In Fig. 209, since the ray E Q is presumed to lie close to the axis, the

arcs Q A and C B may be taken as straight lines giving two pairs of similar

triangles CF^B^w^ PF,,E^, CDB and QDA. Then it follows that

E^F^/B F, = P E^/C B = Q A/C B = A D/B D
so that E2F^ = BF,,x AD/BD

But ^2 is the equivalent focal distance, B is the back focal distance,

A D the posterior focus of the first surface, and B D is this quantity less the

thickness t. On substituting these values, therefore, in the above equation

we get as the expression for the equivalent focal length

_-n. /Xj^a -Zr^ (/x-1) /xTj ^/ /XTj

"~
2^"~/^(/>^-r)(ri + r,-/(/x-l;7fc)^/x-l • V-1

which, when worked down, becomes

Fp - EoFr =

The distance of F^ from the pole B of the second surface, is found by

subtracting the back from the equivalent focal distance, which in terms

similar to those already used is

^ /x(ri + r2-/(/x-l)//x)

and the corresponding distance of F-^ ; from A is

E
1 /x(ri + r2-/(/x-l)//x)

Now if, as is convenient, we calculate the quantity N which enters into the

various formula, that is

N = ri + r2-^(/x-l)//.

we have F^=(/.^'f)N

The back surface focal distances from the first and second surfaces

respectively are

from A - f^L2:zJ''i (^ zl'^ t> _ ^

tromA- (^_i)/,^,T homB- (^-l)/.N
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The distances of the first and second equivalent points measured iimards

from respectively the first and second surface on the principal axis are found

from

The equivalent thickness T, i.e. the distance between the equivalent

points, is

T = ^-(E, + E,)

It should be noted that the formula for is the same as for F of a thin

lens, except that the quantity /(/x - l)//x enters into it.

An approximate formula (accurate when /x=l-5) is

F.=
(/x-l)(7-, + r2-//3)

Example of a Bi-Cx. Lens.—If }\ and rc^ = 10 cm. and 6 cm. respectively,

/X = 1 -5, / 3 cm., then

10x6 60 60 _
^ ^ ^ -5 (10 + 6 - 3 X -5/1 -5) = ^1:16 - 1 )

~ 7-5 " ^

10x3 30
~

1 -5 x (16 - 1

)

" 22-5 " ^
'^^

^ 1^3 1^8^_

^^^~l-5x(16-l)~22-5~
^

T= 3 -(1-333 + -8) = -86 cm.

is anteriorly 8 - 1-333 = 6-66 from A, and posteriorly 8 - -8 = 7*2 cm.

from B. The optical centre is located at

3 X 6/(10 + 6) = 1-125 cm. from B, and 1-875 cm. from A.

A thin lens of same radii and /x has

10x 6 60 ^

-0 X (10 + 6) 8

Thus we see that in a hi-Cx. thick lens the trite or equivalent focal length is

longer than that of the corresponding thin lens, but its back focal length is shorter.

In the case of the thick lens F=S cm. from but 7 '2 cm. from B, while if

the lens were thin so that ^ = 0, would be 7*5 cm. from B. If two Cx.

lenses be made of the same glass and similar curvatures, but the one thicker

than the other, the thicker lens is actually the weaker, although its effec-

tivity is greater, i.e. its back focal distance is shorter.
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Example of a Bi-Cc. Lens.—In Fig. 210 let 7\ and r^^ -10 cm. and

6 cm. respectively, /x=l-5 and ^ = 3 cm.

10x(-6) 60

•5 X (
- 10 - 6 - 3 X -o/l-S) ~ -5 X ( - 17)

= -7-06 cm.

-10x3 ^ -6x3
^i = r5-xT-T7) =

l'l^
^^=l-5 x (^7) =

*^

T=3-(M8--7)=M2 cm.

Although the true focal length is the same, if the surface B faces the

Fig. 210.

light, i^lies 8'88 cm. from A, while if ^i" faces the light F is 9-36 cm. from

B. If the lens were thin F= 7*5 cm., so that increased thickness causes a Cc. to

have a greater equivalent power, but a smaller effectivity.

Example with a Plano-Cx. Lens.—Let r^ (Fig. 211) that of the curved

surface = 6 cm.
;

r^ of the piano = oo
;
|a=l-5, and ^ = 3 cm. Then since

= oc, and this quantity occurs in the upper and lower part of the formula,

we can omit it from our calculations as well as the other quantities in the

7

Fig. 211. Fig. 212.

bracket containing this value. The formula therefore simplifies to that used

for a thin lens, viz. Fe= /'^/(/x - 1)

Ei= 6 x 3/1-5 00 = 0, E2=3/l-5 = 2 cm.

Fh = 6/-5 = 12 cm. T = 3-2 = lcm.

is at the curved surface, and is 2 cm. in front of the plane surface. In

the above example, when the Cx. surface is exposed to the light, F lies

12-2 = 10 cm. behind the plane, and 13 cm. behind the curved surface.

When the plane surface is so exposed, F lies 12 cm. behind the curved and

15 cm. behind the plane surface.
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Example with a Plano-Cc. Lens.—If i\ (Fig. 212]

surface = oo, as before stated, it may be neglected.

Cc. = 6 cm., /X = 1 -5, and t = 3 cm.

that of the plane

Let that of the

El = 3/1 -5 = 2 cm.

Fe= -6/-5= - 12 cm.

E2 = 6 X :3/l-5 00 = 0.

T = 3 -2 = 1 cm.

U-^ is 2 cm. from the plane surface, and is at the Cc. surface. If the

curved surface faces the light the focal distance is 12 + 2 = 14 cm. in front of

the piano and 11 cm. from the curved surface. When the light is incident

on the plane surface, F lies 12 cm. from the curved and 9 cm. from the plane

surface.

Example of a Positive Meniscus.—In a periscopic Cx. lens (Fig. 213) let

7\ and ^2 the Cx. and Cc. surfaces respectively be + 6 cm. and - 10 cm.,

/X = 1 -5 and ^ = 3 cm.

6x(-10) -60
^^"•5 (6-10-3X -S/l-d) •5+ (-5)

= 24 cm.

Ei = 6x3/l-5x -5= -2-4 cm., -10x3/l-5x -5 = 4 cm.

r
/

1

I\

Fig. 213. Fig. 214.

being negative must be reckoned outwards, so that the distance of both

equivalent points are reckoned the same way, the first outwards from the Cx-

surface, the second inwards from the Cc. E-^^ is 2-4 cm. and E^\^ 4-3 =
1 cm. outside the Cx. surface. In this example T = 3- (- 2'4 + 4)=l"4 cm.

In some cases, with a periscopic Cx. lens, the one equivalent point lies

within the Cx. surface, as in Fig. 214. The positions oiE-^^ and depend on

the curvatures of the two surfaces ; the more nearly equal the two curva-

tures, the more are E^ and E^ displaced towards the Cx. surface or beyond

it. The distance of varies very considerably as the one or the other

surface is exposed to the light.

Example of a Negative Meniscus.—In a periscopic Cc, as in Fig. 215, let

i\ and 0^ the Cx. and Cc. surfaces respectively = +10 cm., and —6 cm.,

/>t = 1 -5 and t = 3 cm.

10x( -6) -60
* E =

.f^^o'_ q Zs X -5/1 -5)
~ -5 X (3)

Ei= 10x3/1-5x3 = 6-66 cm., - 6x3/1-5x3=- -4 cm.

40 cm.

That is, the distance of both equivalent points are reckoned the same way.
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inwards from the Cx. surface, and E^, being negative, outwards from the

Co. surface. The first is 6*66 - 3 = 3-66 cm. outside the Cc. surface, and the

second is 4 cm. outside it. T = 3 - (6*66 - 4} = -33 cm.

As with the Cx. in some cases, the one equivalent plane of a Cc. meniscus

lies within the Cc. surface (Fig. 216). Also, the difference in the distance is

very marked as E^ or E^^ is taken as the first equivalent point.

Special Cases.—Certain special cases of menisci are considered in the

following articles.

Afocal Lenses.—In a meniscus when r of the Cx. is longer than that of

the Cc. surface Fh= go if

? 1 + r^ = t{ix- I)/IX, or t = ix {}\ + r^)/(fi - 1)

Fig. 215. Fig. 216.

Thus, in order that F= go when i\ = - 1, ?-2= + 3, and /x= 1*5.

^=1-5 (_l + 3)/-5-6 cm.

This is the principle of the Steinheil cone (Fig. 217), which is practically

a fixed focus opera-glass.

li r^= +10 and / = 3 when y^. = 1 -5, then (Fig. 218) must be - 9 in order

that Fe = CO.

Fig. 218 illustrates the form of the icorked globular or coquille of the

—

^

Fig. 217. Fig. 218. Fig. 21! Fig. 220.

optical trade, where a true afocal effect is required. It is evident that to

secure this condition the radius of the Cc. surface must be slightly shorter

than that of the Cx. by an amount equal to approximately a third the thick-

ness of the lens, Fp being infinite when r^-\-r^ = t{iJi — l)/fj.. F^ is positive

when ^1 + 7'2 is less than /(/x - l)//x and negative when 7\ + is greater than

/(/X- l)/fx. That is to say, when the Cc. surface has the shorter radius, F is

positive or negative according as / is sufficiently great or small respectively

;

and that, when t is of certain value, the power of the Cx. surface neutralises

that of the Cc.
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Concentric Lenses.—If r^-\-r2 = t (r^ being negative) i.e. if r^—t^r^i so

that the two centres of curvature coincide, F is negative. Thus (Fig. 219)

let r^=10 cm., - 6 cm., t = 4: cm., and /x= 1-5. Then

F.=

E,

10 6)

•5 (10- 6-4 X -5/1 -5)" -5 (2-666)

60
/-T.7rv = - 45 cm.

10; E,= 6; T = 4-(10-6) = 0.

The principal points coincide at the common centre of curvature.

If the glass be thin (Fig. 220), and the centres coincide, the concave

radius is shorter ; we then get a slightly concave effect, as is found in the

ordinary u7iworked globular or coquille.

If i\, the radius of the Cx., is shorter than r^^ that of the Cc. Fj, is posi-

tive ; but if t is greater than F of the first surface, the light is brought to a

focus within the lens, and, after crossing, diverges to the Cc. surface.

Fig. 221. Fia. 222. Fig. 223.

EcLui-Curved Lenses.—If (Fig. 221), F^ is positive. Thus, let

f.= +10 cm., i\= —10 cm., t=2> cm., and /x=:l-5. Then

^ 10x0-10)
^^"•5 (10 - 10-3 X -5/1 -5)

100
•5

= 200 cm.

Ej or Eg = r/(/x — 1), in this case 10/- 5 = 20 cm.

If t is greater than F of the Cx., this being towards the light, F lies in

front of the second surface. If / is very small Fi. = go.

The Sphere.—In a sphere (Fig. 222), t^^^t^ '^^^ ^=the diameter = 2r.

Let ix= 1*5, and r= 6 cm., so that /= 12 cm.

6x6 36
9 cm.-H-.5

(6 + 6- 12 X •5/l-5)~-5(8)

E^ or E.2 = 6x 12/1-5x8-6 cm. T- 12 - (6 + 6) = 0.

Therefore, the equivalent planes of a sphere coincide and pass through the

centre of curvature C, as in Fig. 222. The formulae, in the case of a sphere,

simplify to

F, = /xr/2 (/X- 1), and F, = r (2 -/x)/2 (/x- 1)
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When the /x of a sphere is 1-5, F„=l*5 r, and Fb=-5 r. Calculations

with a sphere are similar to those of any other thick lens when the object

is situated outside the sphere. If, however, the object be within the sphere,

the calculations are similar to those connected with a single surface.

The Hemisphere.—With the hemisphere (Fig. 223) the Cx. surface to

the front, FE = r/(/x-l), Ej^ ^ f-^// cc = 0, Eg^/Z/x; from the Cx. surface

FB = FE = r/(/x - 1) ; from the plane surface F^ = r//x (/x - 1). When /x^TS,

FE = 2r ; Fb= 2r from the Cx., and l§r from the plane surface.

other Calculations.—What radius must be given to a DCx. lens so that

Fe = 5 cm. when /x= 1*5 and '75 cm. Substituting the known values we

have

^ ^ •5""(¥'^^5^-757l ^) " -5 (2r--25) ^ r--125
then

r2_5^.= --625.

Adding to both sides of the equation (5/2)^= 6*25

r2-5r + 6-25- - •625 + 6-25

Extracting the square root of each side gives

r-2-5=±2-35

so that ?• = 2-5 + 2-35 = 4-85, or 2-5 - 2-35 = '15, of which -15 is the impossible

answer. Therefore the required radius is 4*85 cm.

The Equivalent Power and Points of a Thick Lens by the Dioptric

System.

Let be the radius of the first, and that of the second surface, let Dj. be

the equivalent dioptric power, and E^ and E2 the equivalent points. Then

^ ^ 1 00 (/. - 1 )
(r^ + 1 )//x) ^ lOON (/x-1)

El = 7i///xN, E2 = 7y//xN, T = / - (E, + E2)

If the distances are expressed in terms of a metre

^ ^ (/^-l) (r
i + r,-/(/x-l)//x) ^ N (/X - 1)

Calculations of a Thick Lens in Terms of the Foci of its Surfaces.

Instead of expressing the constants of a thick lens in air directly in terms

of its radii and index, we may deduce some simpler formuloe involving only

the foci of the two surfaces.
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Let and represent respectively the anterior and posterior focal dis-

tances of the first surface, and and represent respectively the anterior

and posterior focal distances of the second surface. Let t be the thickness of

the lens ; then

Using the same diagram as for finding the direct formula3 given previously,

we see that D, as shown on page 215, serves as a virtual object for the second

surface B of radius rg, and the distance B Fj,, which is the second back focus

F,,, is the final image distance with respect to I) the virtual object.

Let B D= u and B F^ = v. Now the expression connecting the conjugate

foci of the second surface B is

l/v + [i/u=([x-l)/r^

But I//2' = {fJ^- 1)A'2' ^^^^ ^AD-t =f\ -
1, the latter expression being

reckoned a negative distance.

Therefore \/c - ix/{f, -t)^ 1///

whence 1 1 iJ^f^ -rf^-i

But /^/2' = F''2/(/^-l)=//

Therefore .Uih-^)

The corresponding back focus from A, by similar reasoning, is

Equivalent Focus.—In Fig. 209 P is the second equivalent plane and

the second equivalent point. As before we may consider C B as being

sensibly straight.

Then E^F^/B F, = P E^/C B = Q A/C B = A D/B D

and E2F3= AI)xBF,/BD

But Al)=/2, BF,=:F„ andBL)=/2-/;

Therefore ^ ^ Uif- - 1
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It is imporfcant to notice that f^f^ =fif\, so that Fe may be taken as

when the light is incident first on the surface B.

Equivalent Points.—The distances of Ej^ and Eg from the surfaces A and

B are found by deducting from the equivalent focal length the respective

back foci. Thus

TT — T? _ — /l/i'' /i (/i
~
0 _ /i^ _

Similarly

^ "
" "7i' +^2 - <

"A' +A - < "/i' +/2 -

«

Example.—Let 10 cm., and r^=^ cm., /it= 1-5, / = 3 cm. ; then

/i = 10/(1-5-1) = 20 cm. 1-5 X 10/(1-5-1) = 30 cm.

//= 1-5x6/(1-5-1) = 18 cm. /2 = 6/(1-5 - 1) = 12 cm.

When light is incident first on the surface A

fJi 30x12

and when incident on B

/i// 20x18
//+/2-'^^18 + 30-3~^

the equivalent foci, of course, being the same in either case.

The equivalent points Ej^ and E^ are distant from A and B respectively

/J 20x3
Ei=y^.4_, = -45--l'33cm.

F
12x3

^

1^2=/^^+/^_-rT5~= ^

Thus the back foci from A and B are respectively 8 - 1*33 = 6*66 cm.,

and 8 - -8 = 7-2 cm.

Combination of Thick Lenses.

Two Thick Lenses in Combination.—Let A be the first and B the second

lens of a combination of two thick convex lenses separated by an interval.

Let and be the radii of curvature of and and those of B.

Let and be, respectively, the actual thicknesses of A and B.

Let B^ and be, respectively, the first and second equivalent points

of A.
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Let E^' and E.^ be, respectively, the first and second equivalent points

of B.

Let and 7\ be, respectively, the equivalent thicknesses of A and B.

Let and be, respectively, the focal lengths of A and B.

Let d be their distance apart, this being the distance between their most
adjacent equivalent points, i.e., the distance between Eg and E\.

Let E and E' be, respectively, the first and second equivalent points of

the combination.

Let F be the equivalent focal distance of the combination.

Let T be the equivalent thickness of the combination.

The equivalent focal distance F of two combined lenses is obtained from
the formula

Fj + F.-r/- N^

which is the same as that previously proved for two thin lenses in combina-

tion. This illustrates the great utility of the equivalent planes in simplify-

ing all thick lens calculations, since, provided we measure from the

equivalent planes, a combination can in every way be treated as a simple

sy stein.

Similarly the distance of -E", the first equivalent point of the combination,

measured from E^, the first equivalent point of A, is

+ N

The distance of E' , the second equivalent point of the combination,

measured from E^ , the second equivalent point of i>, is

"Fi + F^-^- N •

The distance T=E E\ between the equivalent points of the combination,

is determined by the following

T==^^ + T, + T2-(E + E') or T = T^ + T^ - ^^VN.

As an example let

7--^=10 cm., ^2=8 era., and ^^ = 2 cm.

r\ = 9 cm., r\=^7 cm,, and t^=^'2 cm.

^=1-5 and (i= 2*5 cm.

Then, when calculated, we obtain

Fi = 9-23 cm., E^=-769 cm., E2='615 cm., T^^-Gie cm.

F, = 8-26 cm., E\ = -783 cm., ^2^-609 cm., T2=-608 cm.

15
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and for the combination

F =

E =

E' =

9-23 X 8-26 76-2398

9-23 + 8-26 -2-5" 15
"

9-23 X 2-5 23-075

9-234-8-26 - 2-5~ 15
~

8-26 X 2-5 20-65
1

= 5-08 cm.

1-538 cm.

1-377 cm.

or

9-33 + 8-25- 2-5 ~ 15

T = 2-5 + -616+ -608 - (1-538 + 1-377)= -81 cm.

T= -616 + -608 -2-5V15- 1-224 - 6-25/15 = -81 cm.

The combination is of 5*08 cm. focal length and its equivalent planes are

81 cm. apart.

Example with a Convex and a Concave Lens.—Let Fj^=+12 in.;

^2= - 10 in. ; d = 5 in.
;
Tj = -5 in. , - '

Fig. 224.

To ='2 in. ; then combined we obtain

(Fig. 224)

+ 12x(-10) -120
^= +12-10-5 - -3 =+^^^"-

E = 12x5/-3 = -20in. E'= - 10 x 5/ - 3 = 16-66 in.

T = 5 + -5 + -2 -
( - 20 + 1

6
-66) = 9-03 in.

or T = -5 + -2 - 5V _ 3 = -7 - 25/ - 3 = -7 - ( - 8-33) = 9-03 in.

Coincidence of E and E'.—In order that E and should coincide, d can

be found, for two Cx. or two Cc. lenses, by the following formula.

d =
J(T, + T,f + 4 {F, + F,) (T, + T^) - (T, + T^)

Taking as an example a combination where F3^ = 9 in., F2=8 in., Tj

•2 in., and T2 = -3 in.
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V(-2 + -3)2 + 4 X (9 + 8) X (-2 + -3) - (-2 + '3)

2

, x/-25 + 34--5 5-8524 --5 ^ .

d = ^ =
2 =2-6762m.

When the lenses are 2*6762 in. apart T = 0.

To find Fp of more than Two Lenses.—AVhen more than two lenses

are in combination the equivalent cardinal points of two of them are deter-

mined, and then this combination is again combined with the third lens, or

with another equivalent lens as the case might be. Thus, if there are four

lenses, A B C D, the equivalent of A and B, also of C and D, are found

separately, and these two equivalent combinations again merged into a single

one, or the focal length of such a combination can be found directly by the

Gauss equation given later.

The Equivalent Power and Points of Two Thick Lenses by the

Dioptric System.

Let Dj^ and be the powers of the two lenses, T^^ and Tg their respec-

tive optical thicknesses, and d the distance in cm. between the adjacent

equivalent planes of the two lenses.

D = Di + D2-DiD///100

If d is expressed in terms of a metre

D = J)^ + J)^-J)^J)^d

The first equivalent plane E of the combination is distant from Ej of the

first lens

The second equivalent plane E^ of the combination is distant from Eg of

the second lens

^D^IV J)^T),d_D,d
~D2(D7+D2-DiD///100)- Dp ~ D

C = f/-hT, + T2-(E + E')

Conjugate Foci.—It should be noted that, once the equivalent points and

ioci have been located, calculations of conjugate foci with thick lenses are

the same as with thin lenses provided all measurements are taken from the

adjacent equivalent planes.

Let /j be the distance of the object from E^^, be the distance of the

image from Eg, and F the focal length of the combination. The relative
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sizes of image and object li^ and are proportional to their distances from

their adjacent planes, i.e., the image from the second and the object from the

first ; so that

l/¥=\/f, + \/f, and h,/f, = h,/f.

Thus let A B be the object 3 cm. long and placed 30 cm. in front of Ej

of a combination whose Fy = 6 cm. ; then

l/f^ = 1/6 - 1/30 = 4/30, so that = 7*5 cm. from

k.^=^3 X 7-5/30= -75 cm.

Let 0 be 20 cm. from the surface A of the lens calculated on page 224.

To find the distance of the conjugate image from B, the distance is 20 cm.

from A and therefore 20+ 1-33 = 21-33 cm. from i/^, and since is 8 cm. we
have l//2= 1/8 - 1/21*33, whence f2=l2-8 cm. Now is measured from

U^j which is '8 cm. from B. Therefore the distance of the image from the

second surface of the lens is 12-8 --8= 12 cms. The calculation for the

corresponding thin lens would be I//2 = 1/8 - 1/20, whence 13-33 cm.,

and as both surfaces are considered coincident with the optical centre, the

distance of the image, in this case, from the lens is 1-33 cm. more than when
a thickness of 3 cm. exists. Similar calculations can be made for any type-

of thick lens or lens combination.

Construction.—In constructing images formed by a thick lens (Figs. 20T

and 208) or system of lenses, the equivalent planes and points must be made
use of in place of the single refracting plane and the optical centre of a thin

lens. The course of any ray incident on the plane of is continued from a

point on the plane of F^ equally distant from the principal axis, the rays

being presumed to pass over the optical interval B^E.-, without further

deviation.

As described on page 214, the construction is made by drawing a ray

parallel to the axis 10 the first equivalent plane and continuing its course

from the first equivalent plane through
;
drawing another ray to Ej^ and

continuing it from E^ parallel to its original course. These two rays meet

at A', which is the image of A. B'A' is to A B as B' E^ is to BE^
Similar constructions serve for other forms of thick lenses, also for systems

of lenses where the equivalent points are crossed, or where they lie outside

the lenses.

Planes of Unit Magnification.—At a distance equal to 2 F measured from

E-^ anteriorly, and from E^ posteriorly there are two points and and

their corresponding planes on the principal axis termed the ,\//niniefrical j)oiiifs

and planar, which present the following properties (Fig. 225) : (1) An object

point situated in the one symmetrical point has its image at the other :

(2) any point ./ or B on the one symmetrical plane has its image A' or //,.
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respectively, on the other symmetrical plane at an equal distance from the

principal axis. Thus, when an object A B is situated at the one symmetrical

plane, its image B\-l' is situated at the other, and the two are of equal size
;

these are the planes of unit magnification for real images.

The planes of unit virtual magnification for thick lenses and lens systems

lie in the equivalent i^lan es themselves. Jn other words the equivalent planes

are images of each other.

Construction for the Course of a Ray.—This is similar to those employed

for other surfaces. Let A B (Fig. 226) be a ray incident at B. Draw the

Fig. 225.

normal from Cj and with B as centre describe a circle ; construct the sines of

the angles of incidence and refraction by the method previously shown, and
trace B D, the course of the ray after the first refraction. To D draw the

normal from C,, and with Z> as a centre describe a circle ; construct the

Fig. 226. Fig. 227.

second pair of sines of the angles of incidence and refraction, and trace DF,
the final course of the ray on emergence.

In Fig. 227 there is shown another construction. If A B is the incident

ray, from C draw the normal C C to B and the tangent B Q to B. Then
F Q may be regarded as the refracting surface, which is divided off as pre

viously shown for a surface. B D is the course of the ray after the first

refraction, and at D the process is repeated, the emergent ray being i^.

Either method serves for lenses or spheres.



CHAPTEE XIX

COMPOUND REFRACTING SYSTEMS

The Nodal Points.

The literal meaning of the word node is " knot," and is applied to the

point or points on the principal axis of any system through which the

secondary axes pass. Thus the optical centre of a thin lens, and the equiva-

lent points of a thick lens, or system bounded by air or media of the same

optical density, have the properties of nodal points. If, however, the first

and last media are different^ then the equivalent points, although retaining

their original property of locating the planes of refraction, no longer act as

the crossing or nodal points of the secondary axes. Instead, we have a

second point or pair of points—the nodal points—displaced towards the

denser medium if the system is positive and towards the rarer if it is

negative.

This can be illustrated very well in the case of a single refracting surface.

Here the refracting plane P is at the vertex of the surface, but the nodal point,

i.e. the centre of curvature C, is in the denser medium if the surface is

convex, and in the rarer if concave. Also we know that the difference

between the foci and is equal to the radius, that is, to the distance of

the nodal point from the refracting plane, and, in addition, the ratio of F-,^ to

F2 is also the ratio of the indices of the first and last media. The same

occurs when a thin lens is bounded, say, on one side by air and on the other

by some medium denser than air. Since all the refraction is presumed to

take place in the refracting plane, the position of the latter does not alter,

but the posterior focus becomes lengthened. Then we know that the

distance of the single nodal point from the refracting plane is F2 - F,^.

For example, suppose a thin 10" Cx. lens L L (Fig. 228) of /x 1*5 to be

bounded on one side by air and on the other by water whose index is 1-33

;

the effect is to lengthen the posterior focus to 20 in., and the anterior to

15 in. Therefore the distance of the nodal point N through which the

secondarj^ axes now pass is Fg - F,^ = 20 - 15 = behind the refracting

plane L L, which remains unchanged.

Thick Lens bounded by Different Media.—Precisely the same arguments

apply to a thick lens bounded by different media, but here, since the thick-

ness cannot be neglected, the equivalent planes change their position more

230
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or less as well as being separated from the nodal points. The latter are now
two in number such that from E^ and to Eg are both equal to the

difference -

As an example, suppose the case of the crystalline lens of the eye with

the cornea and aqueous removed (Fig. 229). Let /x^ = 1, = 1'45,

/X3 = 1-33 =10 mm. = 6 mm., and t, the thickness of the crystalline,

3^6 mm. If light passes from one medium into another and finally into a

third, when the thickness of the central medium cannot be ignored, and the

L

Fig. 228.

bounding surfaces are curved, we have a combination of a thick lens separating

different media. Such a combination exists in the present example. In

these circumstances a direct, if rather complicated formula can be deduced.

Let and be the radii of curvature, and /x^, /x^, and /x^ the three refractive

indices. Then

J.
W2

1 (/x^ - fx^) + (/X2 - /x^) - t (/X2 - /xj) (/X2 - /XgV/Xg

Fig. 229.

Let the denominator of the above be called Q (in the case of a thick lens

the corresponding quantity was called N, but as the latter is applied to the

nodal point itself, another symbol here prevents confusion.) Then

Fi = /Xi7V2/Q F2 = /X2r,?2/Q

El = [i^^r^ (/X2 - /X3)//XgQ from A. Eg = i^^^f^t (/x^ - /x^)//x^Q from B.

Here, the first and last media being different, F,^ does not equal Fg, but

F-^/Fg = /x^Z/Xg. The back surface focal distances can be obtained by deducting

El from Fj^ and Eg from Fg.
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Working from the given data we find

F,=: 15-93 and F, = 2M8
E,- -79 from A and E^, = 2-37 from B

The distances of the nodal points from the equivalent points are

Ni = F2-Fi = 21-18 -15-93 -5-25 from E^

N2:-F2-F3 = 21-18 -15-93 = 5-25 from Eg

or Nj is 6-04 mm. from A, and Ng is 2-88 mm. from B

The equivalent thickness or optical interval T = -44 mm., and the same

interval exists between Nj^ and Ng.

Course of Light through Thick Lens System bounded by Different

Media.—When a refracting body consists of more than one curved surface

and is bounded by different media, it has, on its principal axis, six cardinal

points, namely, two focal points, two principal points, and two nodal points.

These are sometimes called the Gauss points, and with their aid the course of

(^

\

L

Fig. 230.

a ray can be traced through any compound system of lenses and media. To
illustrate the course of light we cannot do better than take the case of the

eye itself, which consists of three surfaces S-^, and S^, separating four

media /x^, /Xg, /Xg, and /x^, the first being air and the last vitreous (Fig. 230).

As calculated on page 240, the distances from are

Ei = l-96mm., E2 = 2-39mm., Ni = 6-96mm., N2 = 7-39mm.

EiFi = 15mm., E3F2 = 20mm., EiNi = E2N2= 5 mm., T = -43mm.

Let be the principal axis. F-^ and F^ are, respectively, the first and

second focal points, G^i/and L T are their corresponding planes.

and are, respectively, the first and second principal points,

and P2 t^^i^ corresponding planes. N-^ and are^ respectively, the first

and second nodal points. E^F-^ is the first, and Ec^F^^ the second principal

focal distance.

Rays which in are parallel to the principal axis meet, after refraction,

in /X4 at the second principal focal point F^.

Rays which diverge from F^, the first principal focal point, are after

refraction, parallel to the principal axis in /x^.
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Rays which are parallel to the principal axis in /x^, meet, after refraction,

in at the first principal focal point

Rays which diverge from F^, the second principal focal point, are after

refraction, parallel to the principal axis in fx-^.

A ray directed towards the first principal point, appears after refraction,

to proceed from the second, but the direction after refraction is not parallel

to its original course.

A ray directed to the second principal point appears, after refraction, to

proceed from the first. The two principal points are the images of each

other.

A ray directed to the first nodal point, after refraction, appears to

come from the second, and its direction is parallel to its original course.

A ray directed to the second, appears, after refraction, to come from

the first.

In the case of a single refracting surface a ray directed to its nodal point

passes through without deviation ; but where, in a compound system, there

are two nodal points, a ray must be directed to the first in order to appear

to come from the second, or vice versa. The two nodal points are the images

of each other.

Rays which in /x^ are parallel to each other, on any secondary axis are,

after refraction, brought to a focus at some point situated on L T, the second

focal plane.

Rays which diverge from a point on GH^ the first focal plane, are after

refraction, parallel to each other in /x^.

Rays which are parallel to each other on any axis in /x^ are, after refrac-

tion, brought to a focus at some point on G H, the first focal plane.

Rays which diverge from a point on L T, the second focal plane, are, after

refraction, parallel to each other in /Xj^.

A ray directed to any point on F-^, the first principal plane, appears after

refraction, to proceed from a corresponding point situated on F^, the second

principal plane. These two points are on the same side of the axis and

equally distant from it. A ray directed to a point on P^, the second principal

plane, after refraction, appears to proceed from a corresponding point on F^^

the first, equally distant from the axis. Therefore every point on the one

principal plane has its image on the other.

The first principal focal distance of a compound system is E-^F-^, the

distance between the first principal point and the first principal focus. The

second principal focal distance E^F^ is that between the second principal

point and the second principal focus.

Ej^E., = NjNg.—The distance which separates the two principal points

is equal to that which separates the two nodal points.

N;^Fj^ = EgF^.—The distance N^F^ between the first nodal point and

the first principal focus is equal to the distance E^F,, between the second

principal point and the second principal focus.
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NgFg = EiFj^.—The distance N^F^, between the second nodal point and

the second principal focus, is equal to E^F-^, the distance between the first

principal point and the first principal focus.

E2F,-E,F, = E,N, = E2N,

E^F^ and E^F^ bear to each other the same relationship as the indices

of refraction of the first medium and /^.^ of the last medium.

Fi//^i = F2//x4, or Fj/Fg-z^.i/zx^, or F^/x^^Fg/^j

If the first medium be air and the last medium be vitreous, with an index

of refraction of 1*33, then : Y.^^ : : 1 : 1-33.

Coincidence of E and N.—Therefore it follows that, if the first and last

media through which rays pass, when refracted by a compound dioptric

system, are of the same indices of refraction, the two principal focal distances

will be equal, and the nodal and principal points coincide. When these points

possess the properties of both ][)rincipal and nodal pomts, as they do in lenses

in media of the same density, they are generally termed equivalent ipoints.

~
... W

Fig. 231.

Construction of Image.—In Fig. 231 let P^Pg equivalent planes,

N-j^N^2 nodal points, F^F^ the principal foci, and AB any object in the

rarer medium.

A ray AF-^^ parallel to the axis is refracted at Pg through F^.

A secondary axis AN^ passes on emergence from parallel to its

original course.

A ray passing through P^ is, after refraction, parallel to the axis.

Where these rays meet in A^ is the image of A, so that B\F is the

complete image of A B. As will be seen the construction, with the exception

of the displacement of N-^ and N^, is the same as for any ordinary thick lens

or system in air.

Thus we see that, provided the six cardinal points are known, the most

complicated system can be reduced to the simplicity of a single thin lens. If

the first and last media are the same, or have the same optical density, the

equivalent and nodal points coincide so that the relative sizes of image and

object are as their distances from the equivalent points ; when the media

are different the relative sizes of image and object depend upon their

distances from the nodal points. In both cases, however, the simple formulae

for single thin lenses, and single refracting surfaces, may be used for calcu-
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lating conjugate foci, provided all measurement are taken from the appro-

priate equivalent points.

The Gauss equation, set out in the next chapter, afibrds a means of

calculating the position of the cardinal points for any system.

Negative System bounded by Different Media —This never occurs in

practice so that no special discussion is necessary. To anyone who has,

however, grasped the principles of a positive system a negative combination

would present no additional difficulty.

Combination ofTwo Systems when fx-^ differs from /x^.—Let and be the

anterior and posterior focal distances of the first system, and F^^" and Fg',

those of the second system. E^ and Eg pertain to the first, and E/ and Eg'

to the second system. The distance d between the two systems is that

between Eg and E/, i.e. between the two most adjacent points. Let Q be

the distance between F^' and Fg, that is, Q = Fg + Fj^' - d. F^ and Fp are

the anterior and posterior focal lengths of the combined system, and P2

are the principal points, and N^ and Ng are the nodal points.

F, = F,F//Q F, = FgFgVQ
P^ = F^d/q from E^ Pg = F^'d/Q from E'.

Ni - Fp - F^ + Pj from E^ Ng = Fp - F., + Pg from E^, and T = Pg- P^

Fp - F, = P, - Ni = Pg - Ng, P^F, = NgFp, PgFp = N,F,

Such a system as the above is found in the eye, taking the two com-

ponents independently ; or in a lens placed in front of the eye, the latter, as

a whole, being the second system.
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THE GAUSS EQUATION

By the aid of the Gauss equation every optical system can be so simplified

that all problems of conjugate foci, etc., can be worked by the formulae

applicable to single thin lenses. The calculations in the case of more than

two surfaces are necessarily long, but they always involve the solution of a

continued fraction, so that the difficulties are purely arithmetical.

In using the equation, which serves for any number of surfaces, media

and thicknesses, the pencils of light are presumed to be axial and small ; in

other words, aberration is neglected. In order to keep the formulae as sym-

metrical as possible and avoid a mixture of signs, the following conventions

must be observed, namely, (1) all distances measured to the left of a surface

are negative, and to the right positive
; (2) all thicknesses are considered

negative, and therefore, on substituting actual values, it will be necessary

to use the minus sign.

Thick Lens.—The following formulae are deduced from the consideration

of the lens having positive radii of curvature according to the above con-

vention, i.e. a periscopic with the concave surface turned towards the right.

Let /Xj^ be the refractive index of the surrounding medium, /Xg that of the

lens, t the axial thickness, the radius of the first surface, and r^ that of

the second. Let u be the object distance, v-^ the image distance formed by

refraction at the first surface, and v the final image distance after refraction

at the second. The fundamental equation connecting u and i\ is

i^2/%-/^lM=(/^2-/^l)/^l

but in order to simplify the formulae (/^2-/^i)A'i replaced by while

/Xg/Vj and ix-^l'ii are replaced by l/v^ and l/u respectively. These last two are

termed reduced expressions, i.e. actual distances divided by the /x's of the

media to which they pertain. Similarly in the expression connecting t\ and
given later, {1^-1^2)!'^ ^^^^ ^^re replaced by Fg and Ijv respectively,

while / is also employed reduced, being divided by the /x in which it is

measured. Consequently the values subsequently found are similarly reduced

and must be multiplied by the /x, in which each occurs, in order that their

true values may be arrived at.
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On working out this continued fraction in (3) we get

which, for the sake of brevity, is usually written

Cu + B

(1)
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The fundamental formula reduced becomes

l/v^-l/u = F^, or l/v, = F, + l/u'

whence 1

The expression connecting v-^ and v is

/^lA' - IhK^'i + 0 = (f^i - l^-i)h'2

which, in reduced terms, becomes

lA;-l/(^'i-f-/) = F2, or \iv = Y^+\l{v^ + t)

whence 1

Substituting in (2) the value oi in (1) we have

^=^r (^)

t + -

(2)

,
n^l±lH^^

'-'^(FiF2^; + F,+Fo) + F.J+l •
' '

•

(5)^ Aw+B ....
where A = F^F^^^- F^h- F^ ; B = F2/+1

C = F,/+1; D = t

No. (5) connects v and u when both are finite distances. If u is at co

the quantities D and B disappear and it cancels, so that the focal length

measured from the second surface is

v^CjK (6)

The value of v in equation (6) is the hack focal distance as measured from

the ])ole of the second surface.

If V is at oc, then A ?< + B=0, so that by transposition the focal length

measured from the pole of the first surface is

W--B/A (7)

Before proceeding further an expression for the total magnification M
produced by the lens must be found.
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Let ra-^ be the magnification due to the first surface, and that due to

the second ; then the total magnification M is m^^ x m^.

In Fig. 232 let A B he an object in front of the first surface, and B'A'

its corresponding image. A ray from A meeting the vertex in x will be

refracted to A' such that i and r are the angles of incidence and refraction

respectively. Then
„,^ = A'B7AB

But i and r being small, ABju may be considered equal to sin i, and

A'B' lv-^ = ^m r, and sin r/sin i=
/*i//^2"

Therefore = A'B'/AB =
/^l^'l//^2^

But u/u^ and vJtL^ are reduced quantities and therefore to preserve our

notation the refractive indices must be omitted, so that.

Similarly the magnification m., of the second surface is

A

6^ 1

B

< u —>W

—

-

—

-V——

^

Fig. 232.

Therefore the total magnification

M = vju X vl{v^ + /)

But from (1)

And from (1) and (2)

Therefore

V

1

V^^=l/(Fl^^+l)

1

F,^ + 1 " u {Y^Y^t + F, + F.) + ¥J + 1

1
= ^7(F,F2^+F7+ F^) + Yf+ 1

1

^AlTTB • (8)

Now let the magnification be + 1, i.e., let virtual image and object be

equal in size. Then Aw + B—

1

whence 2i= P^ = (l-B)/A (9)

this distance being measured from the first surface.
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On substituting this value of u in (5), the corresponding value of v is

p C-BC+AD C-1

because it can be shown that AD-BC = -1. This distance is measured

from the second surface.

These planes of unit virtual magnification denote the equivalent planes,

and the points Pj and where they cut the axis are the equivalent points. If

it were possible to place a small object in the one plane, then its virtual

image, identical in all respects to the object, would be situated in the other.

If the magnification be - 1, then the corresponding values of ?/ and v

will locate the symmetrical planes, where object and real image are equal in size.

To find, therefore, the equivalent focal distances, the values of (9) and

(10) must be added to those of u and v in (5) ; thus

C - 1 _ C(^^ + (
l-B)/A) + D

^ + ~
A" ~ A {u + ( 1 - B)/A) + B

which simplifies to A=l/v-l/// (11)

This expression (11) should be compared with that of a simple thin lens

for the focal length in terms of u and v. Then ii u= cc

v=l/A (12)

and if 00 u^ -IjK (13)

The principal focal distance given in (12) and (13) are equal when the

first and last /^'s are of equal optical density. The values are reduced and

must be multiplied by the in which each occurs, so that when in air they

are unchanged.

As a simple example, let 'i\ = 6, r.^ = 8, /x = 1 -5, /x^ = 1 (air), and ^ = 1 ; then

1 1

I 1

F2 +— -0625,

t+ T- --666 +
F.+- -0833 +

^

^11 u

which works out to -9445 - -666

Then, if it = 00

^"•1423% + -9584

C -9445
V= A = -rr.^.. = o*d3A~-1423~

Also - B - -9584
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The equivalent focal distance

1/A=1/'1423 = 7'02

Multiple Surfaces.—The Gauss equation may be applied to an optical

system having any number of surfaces surrounded by corresponding media

of different densities and thicknesses. The equation

_Cu + D

is universal, although the various values become more complicated as the

number of surfaces is increased, but the problem always takes this form,

involving the solution of a continued fraction.

Suppose the case of the eye having three surfaces, Fj, Fg and F5 with

thicknesses and t^, with the following data ?\ = 8, 7-3 =10, r- = Q, /2=3-6,

f =3-6, /x,= l-333, /x3=l-45, /x^=l-333. Then

1 7\ 8

3
^.^ 10

^ IJ^^-fj^:^ l'333 -l-45
5- - « --0195.

The reduced value of

-3-6/l-333= - 2-7007

and that of = - 3-6/1 -45= -2-4828

Then we have

1 1__^
^-'"F. + l ^'~-0195+"l

f, + l - 2-4828 + 1

F„ + l -0117+1

/2+I - 2-7007 + 1

F.+- -0416 +
^

which becomes, when worked out,

_ -7586 2i- 5-1050

-0668 «7+ -8689

That is A = -0668, B=-8689, C = -7586, D= -5-1050.

The anterior F= -fxJA= - l/-0668= - 15 mm.

The posterior F = f^JA = 1 -333/-0668 = 20 mm.

P^ = /x^(l -B)/A=-1311/-0668-l-96 mm. from ?

^

P.^:^;x^(C- 1)/A= --3128/-0668= -4-81 mm. from

or 7-2 - 4-81 = 2-39 mm. from )\.
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The nodal points and Ng, found by subtraction, are, respectively,

6-96 and 7-39 mm. from Neglecting the intervals between Pj and

and that between Nj and Ng, we have P at 2*2 mm. and N at 7*2 mm. from

the cornea.

When working with the Gauss equation two things must be borne in

mind
;

firstly, the convention as to signs upon which the symmetry of the

formulae depend ; and secondly, the use of reduced instead of absolute dis-

stances in order to simplify the formulae by the inclusion of the refractive

indices in other terms. Thus v, the final image distance, is always multiplied

by the index of the last medium to give the absolute values of the second

principal focus and the second equivalent point. On the other hand u

which, in the final expression, denotes the anterior focus and first principal

point is, except in very rare cases, already reduced, the first medium gener-

ally being air. In fact, the same may be said of v, as a difference in the

indices of the first and last media occurs only in the case of the eye, and in

certain instruments as, for instance, the immersion objective of the microscope.

The calculation of a continued fraction for three surfaces being compli-

cated, the results obtained may be checked by the following, which is the

continued fraction worked down.

UN + R
V = U (FgNTF^gi^^ + Fj + + F5R + \^\t, + 1

N = F,F3y, + F,/, + F,^, + F3^,+ l

^^-^Ah + h + h

where

and

16



CHAPTER XXI

CURVATURE SYSTEM

The various formulae in connection with mirrors, prisms and lenses may
also be deduced from a consideration of the actual paths of the waves them-

selves. The folloAving are elementary examples of the application of this

method, which is by some writers preferred to the " ray " theory as repre-

senting the actual physical change in shape and direction undergone by the

waves in refraction and reflection.

Plane Surface.

—

A B (Fig. 233) is a plane wave front incident obliquely

on the surface CD. \i 11^= \ and }x^= 1"5 the part of the wave which enters

at B travels in the same time to F only 2/3 of the distance A E. With B as

centre and B Fas radius describe a small arc, a tangent E F from E showing

the inclination of the wave front in the dense medium. At the second

Fig. 233. Fig. 234.

surface a similar construction shows the wave front G H after emergence,,

i^'ff being 1-5 times

Course of a Wave through a Prism at Minimum Deviation.—Let

CBD (Fig. 234) be a prism on which is incident the plane wave AB at

angle of incidence i. The portion B of the wave meeting the base of the

prism is retarded to a greater extent than A^ the portion in air, so that when

the whole wave enters the prism it takes up the position CM, r being the

angle of refraction.

Since the deviation is supposed to be minimum, the total refraction is

symmetrical with respect to the surfaces CB and CD, so that CM bisects

the principal angle. The wave is then incident on the second surface at the

angle u, and on emergence it is swung over still more towards the base so
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that, when completely clear of the prism, it has the position ED making

the angle of emergence e with the second surface, e being equal to i.

Curvature.—The unit of the dioptric curvature system is a curvature

having a radius of 1 metre, and the curvature of any wave may be denoted

and measured by it. • Thus if light diverges from | M or 50 Cm. the wave
is said to have a divergence of 2 D ; at some other distance, say 2 M, the cur-

vature would be '5 D, and so on. Thus if It denote the actual curvature of

a wave it may be expressed either as the reciprocal of its radius r in metres,

or simply in diopters D. Then Pi = \/r or D. Now we have seen, from

the spherometer formula, that for shallow curvatures r = d'^/2s, where d is

the semi-chord and s the sagitta of the corresponding arc of radius r. In

other words, provided the chord remains constant, the radius is inversely

proportional to the sag and vice versa, while the curvature of the arc is

directly propmiional to the sag on the same chord. Thus we may say that 1/r or

R oc s, or s cc E or 1/r. It will be seen that the "curvature" formulae

are identical with the "ray" formula3, only that, with the exception of /x,

Fig. 235. Fig. 236.

all the symbols employed in the one are the reciprocals of those used in the

other, and vice versa.

Cc. Mirror-Plane Incident Wave.

—

Let FOR (Fig. 235) be any Cc. mirror

on which is incident the plane wave FQR. If the aperture be small the

points P and R of the wave front first meeting the mirror may be considered

to be reflected back to M and N while the central point Q is travelling to

the vertex 0. When Q has arrived at 0 the contour of the reflected wave is

MON ; it remains to find the curvature of M 0 JV.

Now since PM = OQ, OQ^Q T smd we have T 0=2 0Q. But, since

the curvature of an arc may be taken as proportional to the sag for equal

chords, T Q represents the curvature F of the reflected wave MON, and

0 Q the curvature C of the mirror. Thus TO = 2Q 0, or F = 2 C. In other

words the curvature of the reflected wave is double that of the mirror, so

that the focal distance OF is half the radius 0 G.

Cc. Mirror - Divergent Wave. — Let PSR (Fig. 236) be a wave

diverging from a near object f-^ ; then while the vertex S of the wave

is travelling to 0, the extremities P and R are reflected to P' and PJ

respectively such that T Q = S 0. Then P'OE' is the reflected wave con-
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verging towards /g. 0 Qis the mirror sag, and since T Q = S 0 we have

TO = 2S0 + QS= 2Q0 - QS.

Let be the curvature of the object wave FSB, F^ that of the image

wave P'QB\ while C is the curvature of the mirror, and F its focal curva-

ture or power. Then Q S = F^, 0 Q = C, T 0 = F„ and = 2 C. There-

fore TO = 2 QO - QS, or F^ = 2C - F^, so that^^ + F^ = 2 C = F, i.e.

the focal power of a Cc. mirror is equal to the sum of the object and image

curvatures, and this is the formula for expressing conjugate foci. It will be

noticed that C, the mirror curvature, is the mean of the object and image

curvatures ; thus C = {F^ + F^I2.

Convex Mirror-Plane Incident Wave.—Let M N (Y\g. 237) be a plane

wave incident on the Cx. mirror POPi. 0 is now the first incident point,

and this is reflected to (/, while M and N are travelling to P and it, so that

P Q'Pi, is the reflected wave, which can be shown to have a curvature double

that of the mirror, as with a Cc. In other words, since QQ' = 2 0 Q,

F = 2C.

Convex Mirror-Divergent Wave.—When the wave is divergent from a

near object (Fig. 238), the incident wa^ e is FOPif, and the reflected

wave PQ'R such that OQ' = OT + OQ.

QQ' = OQ-hOQ' = OQ-t-(OQ + OT) = 20Q + OT
that is F2 = 2C-i-Fp or Fg-F-fFi

In other words the image curvature is equal to the sum of the object and

mirror curvatures, because both are divergent in efl"ect. Employing the

usual convention as to signs this expression would be written as for a Cc.

mirror, i.e., Fj -f Fg = 2 C = F, the negative sign being employed when
substituting the value of F.

Single Surface-Cx.—Let M N (Fig. 239) be a plane wave incident on the

single Cx. refracting surface PQR such that PQ'E is the refracted wave
convergent towards the posterior principal focus F^,. Let C be the curvature

of the surface, F^ that of the refracted light, and /x the index of the medium,
the first being air. Then we have Q S = /x Q Q'. But

Q,Q; = C-F, and Q S=C
C = (C - F,> or F,,, = C (/X - l)//x
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Similarly an expression can be found for the anterior principal focus of

the same surface MQN. Here (Fig. 240) the plane wave advances from the

denser medium to meet the surface as M N, the retarded wave convergent

towards the anterior focus Fp,, being PQR. Then Q' S = Q Q'. But

q;S = F, + C, and 0Q' = C

Therefore F., + C-/xC.

and F., = C(/x-l)

For a concave surface the formulaB are the same, C being negative.

> ^
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Fig. 239.
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Fig. 240.

Conjugate Foci-Single Cx. Surface.—Let (Fig. 241) be any near object

from which diverges the wave MN to the surface PQU^ and let /g be the

image formed by the image wave P QU. Let T Q = F^, Q S = C and

Q'S = F^. Then
TS = /xQQ'=/x(SQ-SQ')

and TS = TQ+QQ' + Q'S

/x(C-F2) = Fi + (C-F) + F2 or /xC-/xF2 = Fi + C

that is Fi + zxFg-C (/X- 1)

Fig. 241.

Similar formulae may be deduced for a concave surface only here C and F2

are negative.

Thin Convex Lens.—With a lens the curvature of each surface is like-

wise represented by their respective sags, so that in the case of a double Cx.

(Fig. 242) QS represents the sum of the sags Cj^ and Cg. Let MN be a

plane wave incident on the lens
;
then, owing to the greater axial thickness,

the centre of the wave is retarded more than the periphery, the resulting
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wave front taking the form P S R converging to the focus F^. Let T be the

united sags of the lens surface and wave fronts ; then T = Cj^ + Cg + F.

But
T = /xQS = /.(Ci + Co)

C, + C, + F = /x(C, + C,)

whence F = (C, + C2) (/x- 1)

M F

Fig. 242.

In other words the power F of the lens is the product of the united

curvatures and the refractivity of the glass.

Similar formulae in the case of conjugate foci and for concave lenses can

he deduced on the same lines ; in numerical examples, of course, C^ and C2

of concave lenses are reckoned negative.

0



CHAPTER XXII

COLOUR

Primary and Secondary Colours.—There are six or seven distinct colours

which can be identified in the solar spectrum, but it was shown by Young,

and confirmed by Helmholtz, that every shade of colour in nature can be

obtained from the mixture of red, green and violet in certain proportions,

whereas these three colours cannot be produced by mixing other colours,

For this reason red, green and blue-violet are termed the primary colours,

while the other spectrum colours are secondaries. Thus red and green, in

varying proportions, produce orange or yellow, while green and violet

produce blue or indigo.

Complementary Colours.—If two spectrum colours, when combined, form

white light, they are said to be complementary to each other. Hence a

complementary colour may be defined as that which, when united with another,

produces white light. The complement of a primary colour is that secondary

colour which results from the mixture of the other two primaries ; the comple-

ment of a secondary colour is that primary colour which is not contained

in it.

Spectrum Colour. Complement.

Red. Green-Blue.

Orange. Blue.

Yellow. Blue- Violet.

Green. Purple-Red.

Blue. Orange.

Indigo. Orange-Yellow.

Violet. Green-Yellow.

The purple-red is not in the visible spectrum, it being a combination of

red and violet. A graphical representation of this table will be found on

page 250, where the primary colours of pigments and their complements

are discussed.

The nomenclature applied by various authorities to primary and secondary

colours differs considerably, but they are here employed as nearly as possible

in their popular meaning.

Colour Sensation.—According to Young and Helmholtz, there exist in

the eye three sets of nerves which convey to the brain the three primary
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colour sensations of red, green and violet respectively. Each set of nerves

conveys, however, not only the sensation of its special colour, but also to a

slight extent that of the other two. By stimulating one or more of these

nerves, in varying proportions, all colours can be mentally appreciated.

Stimulation of all three produces the sensation of white, and of none of

them black. Fig. 243 represents diagramrnatically the range of the three

colour sensations; the first curve is that of the "red" nerve; the second is

that of the "green" nerve, while the third is that of the "violet" nerve.

It is thought, however, that the "red" nerve is not stimulated by waves

beyond E or the "green" by those beyond C on the one side and G on

the other, while the limit of the " violet " nerve is about D. Thus it will

be seen that the primary nerve centres have, according to the Young-Helm-
holtz theory, a sufficient latitude of perception to enable every conceivable

secondary colour or combination to be appreciated by the brain.

Colours of Light.—Spectrum red and green will, if mixed in certain pro-

portions, produce a sensation of yellow. If spectrum red, green and blue-

Abcd c h
1

1

1 , .,_ -n

R D Y G B I V
Fig. 243.

violet be mixed in the right proportions white light is formed. If the

wave-lengths of red and green be added together the mean will give the

wave-length of yellow. Thus, taking the wave-length of orange-red as 656

and that of blue-green as 518, then 656 4-518=1174, and 1174/2 = 587.

Again, taking the wave-lengths of red, green and blue respectively, the sum
divided by three will give the wave-length for the brightest part of the

yellow, which is the nearest approach to white light which the spectrum

affords; thus 748 -h 527 -h 486 = 1761, and 1761/3 = 587. The quantity of

light of one colour necessary to mix with any other to produce white light,

or a third colour, does not appear to follow any definite law, but the propor-

tions usually remain the same for difi'erent observers
;
occasionally, however,

the amount is found to be very different, even among persons who are not

colour blind to standard tests. Colours which do not appear in the spectrum

are those formed by a combination of two or more non-adjacent wave-

lengths, the resultant effect on the eye being, in general, that colour corre-

sponding to the mean wave-length of the components. Purple does not
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appear, since it is a mixture of the extremes—red and violet—nor do many
other colours, as brown or pink.

The following table, according to Helmholtz, shows the effects produced

by the addition of any two spectrum colours.

Colour. Violet. ludigo. Cyan Blue. Blue-Green Green.
Greenish-
Yellow.

Yellow.

Red

Orange

Yellow

Purple

Dark rose

Light

Dark rose

Light
rose

AVhite

Light
rose

White

Light

White

Light
yellow

Light

Whitish-
yellow

Yellow

Greenish

Golden
yellow

Yellow

Orange

Greenish-
rose

White Light
green

Light
green

Green
yellow

yellow
Green

Blue-green
Cyan blue

Light
blue

Deep blue

Indigo

green
Sea blue

Sea blue

green
Blue

green

Brightness of Colour.—In a prismatic spectrum the red appears fuller

than the violet because the former is more crowded together, while the latter

is spread out ; this is not the case to the same degree in a diffraction spectrum,

in which the extent of colour is about equal on either side of the green-

yellow. The latter is the brightest part of the spectrum to the human eye,

and in general the intensity rises from zero, at the extreme red, rapidly to the

yellow and then, dropping off again, but more slowly, to zero at the extreme

violet.

Colours in Pigments.—The primary colours in pigments (paints or

colouring matter) are so-called red, yellow and blue; any other colour is

obtained by mixing two primaries.

The primaries and their complements are shown in Fig. 244, from which

it will be seen that the jyrimaries ofjngments are the complements of the primaries

of light. Thus 1, 6 and 10 are the primaries of light, and 4, 7 and 12 are

the primaries of pigments. Although the primaries of pigments are popu-

larly known as red, yellow and blue yet the actual tints are not quite those

usually associated with the terms.

Mixing Colours.—The fundamental diflerence in the results obtained by

mixing spectrum lights and pigment colours lies in the fact that the former

is an additive, and the latter a suhtractive process. In other words, the

colouration due to mingled lights is due to the sum of the separate wave

lengths, while the resultant colour given off by a mixture of pigments is that

remaining after each j)ignient has absorbed a certain wave or series of wave-

lengths. The tendency of added lights is to give increased illumination and

to approximate it to white, while with pigments the mixture tends towards

black.
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Thus, when the primaries of light, i.e. red, green and blue-violet, are

mingled—projected, say, from three separate lanterns—the white screen

reflects all three impartially to the retina, where their superposition produces

tlie sensation of white. With pigments, however, the final colour is due to

that remaining after each pigment, in a certain mixture, has absorbed from

the incident white light its own complement. In this way the primary

colours of pigments are those capable of absorbing the three primaries of

white light, i.e. red, green and blue-violet, whose respective complements are

green-blue (peacock blue), purple-red, and yellow. These last three are

therefore the primaries of pigments because, when mixed in the right pro-

portion they (theoretically) produce black. In practice, however, owing to

the inevitable impurities of pigments, and the impossibility of combining the

correct proportions, the result is a dark grey. For the same reasons, it is

Fig. 244.

impossible accurately to match the spectrum colours by means of pigments,

and this is especially the case towards the violet end ; in fact we cannot
imitate violet by any known pigment or combination of pigment colours.

The additive effect can be roughly imitated by painting yellow and blue

sectors alternately on a disc which, when rapidly rotated, gives the impression

of white if the proportions of colour are correct. Here the yellow and blue

alternately impinge so rapidly on the retina that the sensations caused by
alternate sectors have not time to fade away, and therefore become mentally
mingled, and give rise to the sensation of white. The experiment must,
however, be carried out in white light, but even then the effect is generally

far from pure owing to the inevitable muddiness of the pigments. By
increasing the number of sectors, and repeating the six spectrum colours in

proper proportion all round the disc, a still better white is secured.
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In some instances the result of a pigment mixture may be surprisingly

different from the result of mingling lights of corresponding colours, If

blue and yellow lights are mingled in the right proportion on a white screen

they cause the sensation of white. If blue and yellow pigments are com-

bined, the blue absorbs red, the yellow absorbs violet, so that green is

produced by such a mixture. Eose red and blue-green are complementary

colours which, added to one another, produce white in the case of coloured

lights (additive effect), but neutralise each other, i.e. produce black in the

case of pigments (subtractive effect). Additive effect can also be produced

by the mixture of pigment or coloured powders, where absorption does not

occur, but both pigments or powders reflect light. Especially is this so if

the two colours are not complementary, or tending to be so ; thus red and

yellow combined in pigment make orange as they do in the case of lights.

Or using the illustration above of blue and yellow pigments combined

making green, a blue pigment reflects violet and green, yellow reflects red

and green, so that if the two pigments be mixed, there is reflected a certain

quantity of violet and of red, and a double quantity of green. The red, the

violet, and a portion of the green combine to form white light, so that there

is a residue of green light, which gives the nature of the colour to the

mixture of the two pigments.

Qualities of Colours.—Colours in pigments possess three qualities, viz.,

tone, brightness and purity. Tone or hue is that quality which differentiates

between the various colours—say, red and orange ; it depends on wave-

length. Brightness, intensity, or luminosity is that quality which represents

the strength of a colour ; it depends on the amount of light reflected ; one

which reflects little light is a dark colour, and one which reflects much light

is a light colour. Fullness, saturation, tint, or purity is that quality which

represents the depth of a colour ; the less the admixture of Avhite or black

the purer is the colour. Red mixed with white forms pink, whereas red

mixed with black makes a kind of maroon. Yellow or orange become straw

or brown according as it is mixed respectively with white or black.

Colours of Bodies.—A substance is said to be of certain colour when it

reflects or transmits rays of certain wave-lengths and absorbs the rest of the

spectrum. Thus an object which absorbs the violet and green and reflects

the red waves appears red ; if it absorbs red waves and reflects green and

violet it has a blue colour. A green body absorbs all but the green waves
;

one which is orange in colour reflects red and green and absorbs violet. The

colour reflected by a body is usually the same as that which it transmits, but

some bodies transmit the complementary colour to that which they reflect.

A body which reflects light of all wave-lengths is called white ; a body

which has affinity for all the colours, so that all are absorbed and none

reflected, is called black. No body, however, is of a nature so chemically

pure as to absorb entirely or reflect all the incident light. An absolutely
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black body does not exist in nature ; eA^en those coated with lamp-black and

soot reflect some lights which renders them visible, and allows of their form

and solidity being recognised ; on the blackest velvet still blacker shadows

can be cast. Similarly there is no object which reflects all the light it

receives
;
pure, fresh snow, which is the whitest of all bodies, absorbs some

30 per cent, of the light it receives, and white paper 50 or 60 %.

Colour does not depend entirely upon the body which reflects it, but is

also a quality of the illuminating light itself. In order to appear of a

certain colour, the object must receive that colour in the light and reflect it,

and at the same time absorb all the other colours. Dark colours reflect

little light, and slight diff'erences between them are hardly appreciated in

dull illumination
;
similarly, light colours reflect much light, and slight

differences are hardly noticed in very bright illumination. The proportion

of light reflected varies with the nature and colour of the body. Approxi-

mately a coloured body reflects 20 to 50 % of the light which falls on it.

White, grey and black are, in efiect, the same and really represent

varying degrees of luminosity, the only difference between them being

in the total amount of light reflected. By all three the treatment of the

different wave-lengths is the same, i.e. there is no selective property as with

coloured bodies, but the extent of the light absorption varies in the three

cases.

Coloured Bodies and Lights.—The real colour of a body is that which it

exhibits in white sunlight ; it often appears of a diff'erent colour in ordinary

artificial light. This is due to the fact that some particular colour usually

predominates in artificial light, and therefore the mental standard of white

is temporarily shifted towards that colour. Thus ordinary gas-light—not

incandescent—contains an excess of red and yellow, while blue and violet are

the prevailing colours in the electric arc. In this waj^, the nearer the colour

of a body approaches to that of the illuminant the whiter will it—the body
—appear; on the other hand should the colour of the body be comple-

mentary to that of the illuminant it will appear darker than it would if

viewed in white light. Should the light be of a colour exactly correspond-

ing to that which the body absorbs, none will be reflected and the body
will consequently appear black.

Of course a white body seen by coloured light is really coloured although

it is generally interpretated mentally as white. It certainly is so accepted

if the colouration of the luminant is not excessive ; thus by gas light a white

paper is actually reddish-yellow, but we still call it white. As the illumina-

tion becomes progressively feeble all bodies lose their distinctive colours, the

latter being replaced by shades varying from light grey to black, and in a

very dull illumination all appear equally a dark grey. Painting and match-

ing colours is always difficult in artificial light since the latter is not white

;

for example, some blues and greens can barely be distinguished by gas light,

and still less by lamp or candle light.



COLOUR 253

Shadows from Coloured Lights.—A shadow cast by a body when the

light is coloured appears to be tinged with the colour complementarj^ to that

of the light. This is due to contrast, because the illuminated ground is

coloured by the light, although this fact may be hardly appreciated.

Coloured G-lass.—Pure neutral or smoke glass absorbs part of all the

colours of white light ; if not exactly neutral some one colour penetrates it

more than the others, and gives a distinct tint to a light seen through it. A
glass of definite colour, as red or green, transmits not only its distinctive

colour, but also some of the adjacent colours ; thus green transmits some

yellow and blue. Spectrum blue blocks out both the red and violet ends of

the spectrum, and transmits blue, green and a little yellov/. Cobalt blue

transmits blue and red, but blocks out green and yellow. Orange, amber,

yellow and green-yellow glass absorb the violet and ultra-violet light.

Smoke glass absorbs a certain quantity of all the colours and therefore to

some extent reduces the visual acuity, but it is usually more transmissive to

one certain colour—generally red. White crown, and still more, flint glass

is absorptive for ultra-violet light, while pebble is specially transmissive

for it.

All colours are profoundly modified when viewed through coloured glass,

as they are by coloured lights. If a coloured body be viewed through a

coloured glass which absorbs the rays reflected by the body, the latter

appears black. Thus a red body appears black through a green glass of the

proper shade, the red rays reflected by the body not traversing the glass.

If the ground be black, the object is barely distinguishable from the ground,

or may not be at all, as in the " Friend " test.

A body viewed through a glass of the same colour appears almost white,

or at least is indistinguishable from a white object seen through the same

glass. Thus with red letters on a white ground, seen through red glass, the

white background becomes coloured the same as the letters, so that the

whole field is of uniform tint ; here the colour of the glass is temporarily the

mental standard of 'white. On looking at a red object on a green ground,

through a piece of red glass, one sees a white object on a black ground, but

if on a black ground the object appears redder. Similar phenomena result

with other colours.

Superposition of Coloured Glasses.—When two coloured glasses are

placed together we have an example of the subtractive process similar to

that seen in the mixture of pigments. The first glass eliminates from

incident white light all but its own colour, and if the second glass is the

same as the first, no further alteration takes place, except a slight reduction

in intensity. If the second glass is not of the same colour as the first, a

certain amount of absorption by subtraction takes place in the second, and the

more nearly complementary are the two glasses the more nearly will the

whole of the incident light be cut off'. For example, if a blue-green and a
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red, or an orange and blue glass, be placed together, the light transmitted

by the one is absorbed by the other, and the combination is rendered opaque.

Cobalt glass transmits red and blue, ordinary green glass transmits blue and

green ; on the two being placed together original white light transmitted

appears blue, since the blue is transmitted by each, but the remaining

colours absorbed. If three pieces of coloured glass corresponding to the

summits of the three curves of red, green and blue-violet be superimposed,

since each absorbs some of the components of white light, the three will

absorb the whole of the visible spectrum, and no light whatever can be seen

through the combination.

The natural colours of objects may be imitated by applying the above

facts to photography. Three separate photographs are taken of an object

or landscape, made up of any number of colours and shades, each through a

glass selected to match as nearly as possible one of the three primary colours.

A positive is taken from each on a film or paper, stained with the colour

complementary to the colour of the glass used for that particular negative,

and the three prints are superposed. This may be done either by laying the

films exactly over each other and looking through them as a transparency,

or each colour may be printed on the same piece of paper, and examined as

an opaque object. In this way an approximate facsimile in colour of the

original object can be obtained.

Transmissiveness of Coloured Glasses.—For the method of measuring

this, and the photometry of coloured lights, see Chap. II.

The quantity of light absorbed depends directly on the thickness of the

glass, and consequently no ordinary lens which varies in thickness owing to

its curvature can have the same depth of tint all over. When a certain tint

is selected, by trial with the coloured glasses of the test case, and lenses are

required similarly tinted, a modification is necessary. The lens should be

ordered of a lower tint if Cx. and of a higher if Cc, the former being thick

and the latter thin at the centre. The variation from the No. of the trial

glass would necessarily depend on the strength of the lens required.

Equality of tint can be obtained by employing a piano Cx. or Cc. lens

cemented to a piano coloured glass. For a sphero-cylindrical combination

equality can be obtained by cementing a thin piano spherical and a thin

piano cylindrical to the two sides of a thin piano coloured glass ; or if one

of the components be weak, in comparison with the other, by employing

coloured glass for the weaker and white for the stronger, both being pianos

and cemented together. In this way practical equality of tint can be

obtained.

Since the proportion of incident light transmitted depends on the thick-

ness of the glass, it is not easy to express variations, but approximately the

transmission varies inversely as the square of the thickness. Thus a standard

No. 4 pure smoke glass transmits 1 /5 of the incident light ; a second No. 4

placed behind the other, transmits 1/5 of that transmitted by the first—i.e.
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1/5x1/5 = 1/25 of the total light, originally incident on the first glass, is

transmitted by the two together.

Tinted glasses for spectacle work are usually numbered 1 to 6 or A to F.

They vary considerably with respect to the quality and quantity of light

transmitted, but approximately rhey transmit light as follows :

—

Tint.
No. 1

or A.

No. 2 No. 3

or B. or C.

No. 4

or D.
No. 5

or E.

No. 6

or F.

Percentage of light f

transmitted \

Smoke
Blue...

60
80

50 30
70 50

20
25

10

20

9
-J

4

The O.S. Standard Colour Glasses for spectacle work are :

—

1 2 3 4 5 6 7 8 9 10

Percentage of light

)

transmitted /
80 60 50 40 30 20 10 5 2-5 1-25

The Eye and Colour.—White, being the sensation produced by the mix-

cure of all colours, is the sensation of greatest luminosity. It is the standard

of colour sensation, but this standard may be displaced, as when coloured

illumination is used, or coloured glasses looked through, or by colour fatigue

as when the eye is saturated with a certain colour by gazing at it for some

time.

Black may be described as a sensation caused by want of colour, but it is

very different from what is seen, or rather not seen, in the area occupied by

the blind spot, as the head of the optic nerve of the eye is called. The latter

is incapable of conveying any sensation of light at all, the resultant absence

of sensation being quite different from black, which produces a distinct sen-

sation. That is why the area occupied by the blind spot is unnoticed when
we look at the sky, or other extended bright field. Of the specific colours,

the human eye is most sensitive to yellow, whether seen in the spectrum or

by reflected light. A yellow body will be seen longest as light is reduced

and it can be seen further, although its colour may not be distinguishable.

Generally speaking, as a characteristic and recognised colour, red is the most

persistent of all
;
owing to its long wave-length it can be recognised at a

greater distance than others, it freely penetrates haze, fog or smoke glass,

while the penetration of other colours follow more or less in the order of the

spectrum. For this reason red is employed as the danger signal, while blue-

green is employed as the contrast signal on railways and ships. The sun

appears redder at sunrise and sunset than at midday, also in fog, the blue-
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violet end of the spectrum being absorbed ; the colour of light seen through

a thick impure smoke glass is generally a brilliant red.

Grreen, which prevails in nature, fatigues the eye least of all the colours

;

then blue-grey, purple, yellow, orange and red, the last being the most

fatiguing ; billiard and card tables are covered with green cloth, and blinds

are usually painted that colour. The sea and sky are blue, red and orange

occurring in nature only in patches^ or occasionally as at sunset ; the eye is

able to bear those colours best which are most widely distributed in nature,

and most likely in consequence of it.

With respect to light, in general, it is more satisfactory the nearer it

approaches white, but if coloured lights are used for illumination they

should be pale and largely diluted with white. Thus pink and pale orange,

or pale green, are pleasant, but the same colours, pure and saturated, would

prove extremely fatiguing to the sight.



CHAPTER XXIII

CHROMATIC ABERRATION

Dispersion.

Dispersion or Chromatism.—When white light suffers refraction, the

component waves are refracted to different extents, so that the various

colours become separated, producing what is known as dispersion. This is

due to the fact that the shorter waves, with rare exceptions, are retarded,

by the refracting medium, more than the longer waves. Reflection, unlike

refraction, is not accompanied by dispersion, this fact rendering reflecting

sometimes preferable to refracting instruments. A body is said to be chromatic

if it causes dispersion, and achromatic if it does not.

Velocity of Light and Colour.—The velocity of light in free ether is

the same for all colours, and is taken as being so also in air, although this is

not quite the case, blue being retarded slightly more than red in its passage

through the atmosphere. If be the velocity in air (about 300,000 km.

per second) and \^ that in a denser medium, then VyVg = /x. Suppose in

a medium /x^=l-5, /x,-=l-51, /Xe = l-49. Then V„ = 300"000/l -5 - 200,000

km., = 300,000/1-51 = < 200,000 km., and Ve - 300,000/1-49 =>
200,000 km. per sec.

Dispersive Index.—Each refracting medium has what may be termed an

index of dispersion, which represents the differences between the indices of

refraction of the lines A and H of the spectrum. Thus, water has an index

of refraction for the line A of 1 -321^9, and for the line H of 1*3434; now
1 -3434 - 1-3289 = -0145, which is the index of dispersion of water. Mean
dispersion is represented by the difference between the indices of refraction

of the lines C and F, i.e. between orange-red and blue, and partial dispersion

is that between the /x's of any two given lines of the spectrum.

The table on p. 258 gives in the third column the mean dispersion, and

in the fourth column the total dispersion of the visible spectrum.

The dispersion of various kinds of glass differs with the materials

used in their manufacture, and is independent of their refracting power,

some media of high mean refraction having low dispersion and vice versa

;

generally, however, high refractivity and high dispersivity accompany each

other.

257 . 17
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TABLE OF DISPERSIONS.

Mean. Total.

vv arei /^c
== 1-3317 = 1-3378 UUD i

.

Alcohol /^c
== 1-3621 /^K

== 1-3683 -0062 -0149

Pebble -014

Canada Balsam •021

Tourmaline -019

Crown Glass if /^c
== 1-5376 /^F

== 1-5462 -0086 -018

Flint Glass if )«c
== 1-6199 = 1-6335 -0136 -026

Diamond ... /^c
== 2-4102 /^F

== 2-4355 -0253 -056

V or the Ratio of Refractivity to Dispersion.—Since refractivity and

dispersion are more or less independent of each other, neither the total nor

the mean dispersion indicates the optical properties of a medium ; for this

we must take the ratio between the mean refractivity and the mean disper-

sion, which ratio is termed the refractive efficiency, denoted by the symbol v

(nu), and is expressed by

Here (/Xq-I) is the mean refractivity for yellow light {D line) of the

medium, i.e. it is the /x of the medium less the /x of air= 1, while /Xp-z^c is

the mean dispersion between the C and F lines of the spectrum produced by
the particular substance. The formula, therefore, gives us a value which, when
compared with the corresponding v of another medium, will show which of

the two has the higher refractivity as compared with its mean dispersive-,

power. A high value of v denotes a high mean refractivity and a relatively

low dispersion, while a low v indicates the reverse, i.e. a low refractivity and;

a relatively high dispersion. Thus if, in a variety of flint glass, /x^ = 1 -6,.

/Xp = l'61, and /Xc=l-59 the efficiency is

1-6-1 __;6 _
''"l-ei -l•59~-02

""^^•

Take also a sample of crown where /x^ = 1-525, /Xj, = 1-532 and

/xe = 1-523

-525
''^•009^^^ (approx.)

These values of v, i.e. 30 and 60, show that in the former glass the dis-

persion is relatively twice as great as in the latter glass ;
or, as it is better

expressed, the crown has twice as much mean refractivity than the flint for

the same amount of dispersion. Thus if two glasses have the same /x, but

different mean dispersions, the one with the lower dispersion has the higher v.

If two glasses have the same dispersion but different /x's, the one with
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the higher /x has the higher v. In general crown glass has a higher v than

flint. The formula enables us to calculate the components of an achromatic

prism or lens, and by its aid glasses can be tabulated in the order of their

efficiencies, so that a selection can be easily made.

The /x„ of water is 1-3336, and its mean dispersion is -0061, so that the

V is nearly 55. With air /x = 1*00029, and the mean dispersion is -0000029,

so that i'= 100 approx.

Expression for m.—Calculations with respect to chromatism are some-

times based on oj (omega), the dispersive power, which is the reciprocal of

and is therefore

/Xp - /Xc
w-=

f D - 1

5 and A.—The difference between the indices of refraction of the F and

C lines, i.e., fx^, - /x^, is sometimes represented by the symbol 8, and the

difference between and (i.e. the i^'s of two different media), by the

symbol A.

Achromatism of a Parallel Plate.—When light is incident obliquely on

a parallel plate of any medium, no colouration of the object is noticed

Fig. 245.

because, although dispersion occurs at the first surface, it is neutralised

by that of the second.

Let A B (Fig. 245) represent a beam of parallel light incident on a

plate having parallel surfaces. At B dispersion takes place, so that violet is

deviated the most and red the least, and were it possible for the eye to

receive the beam before it leaves the plate, the object would appear deviated

and tinged with colour just as with an ordinary prism. At the second

surface, however, all the dispersed rays are rendered parallel to each other

and therefore, by their overlapping on the retina, produce the sensation of

white. In other words the appearance of the object, so far as dispersion is

concerned, is the same as though viewed direct. Thus it will be seen that,

in order to cause chromatism or dispersion, a medium must have the power

of altering the angiilar deviation of the various colours with resjDCct to each other.

Achromatic Prism or Lens.—When a prism or lens is said to be achrom-

atised its action is similar to that of a plate, while the course of light, as a

whole, is changed.



260 GENERAL AND PRACTICAL OPTICS

Chromatism of a Prism.

Crown and Flint Glass.—Flint glass has a greater refracting power than

crown, but its dispersive power is proportionally still greater ; the relative

refractivities are approximately I'l : 1 and their dispersivities 1*4 : 1. A flint

prism of 10° and a crown of 11° have each a deviating angle of about 6° but

the spectrum of the flint glass is considerably the longer. If spectra of the

same lengths be required, the crown glass prism must be stronger than the flint.

Real and Virtual Spectra.—Since a prism refracts the violet waves

most and red the least, the real spectrum projected on to a screen exhibits

violet nearest the base and red nearest the edge of the prism, as shown in

Fig. 246, where L is the source of light. If the light be received by the eye,

the rays are projected back to form a virtual spectrum, and the violet is then

nearest the edge and the red nearest the base. Thus, a disc of light viewed

through a prism, base down, exhibits blue above and red below.

The light from a white body, refracted by a prism, causes a series of

A

separate images of the body, each characterised by a distinctive spectrum

colour. These overlap in the centre so that a white virtual image is seen,

but the ultimate displacements of blue at the one end, and of red at the

other, cause a fringe of blue to appear on that border which is nearest the

edge of the prism, and a red-orange fringe on that nearest the base. If the

body is black or dark, as compared with its background, the red-orange

fringe is towards the edge and the blue fringe towards the base of the prism,

these resulting from the dispersion of the light from the space or body
surrounding the black. Thus a window bar viewed in daylight, through a

prism base down, is blue at the bottom and reddish-yellow on top, but if

viewed in artificial light at night the colours are reversed.

Dispersion of a Prism.—The wave-front of a beam of light, incident on

a prism, is retarded sooner at the base than at the edge, so that the beam is

deviated towards the base of the prism, and since the retardation is greater

as the wave-length is shorter the blue is, as stated above, more deviated

towards the base than the red. Thus when a beam of white light is refracted

by a prism, its various components are separated, and form a band of colours

called the spectrum. The extent of the dispersion A-aries with the medium

Fig. 246.
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of which the prism is formed, with the angle of the prism, and with the

angle of incidence of the light, but the dispersion is not a minimum when the

mean ray—yellow—suffers minimum deviation. The dispersion of a prism

can be determined by a spectrometer, the difference betw^een the /^'s for the C
and F lines being the mean dispersion. In this case the minimum deviation

may be obtained for each colour before calculating its index. The position

of the prism must be that of minimum deviation for the D line in order that

the deviation of the colours, on either side of the yellow, may be observed

when the mean deviation is minimum.

The Refraction Spectrum.—In order to produce a spectrum by refrac-

tion the light should be admitted through a small horizontal aperture A
(Fig. 247), preferably about 20 mm. long by -5 to 1 mm. wide placed parallel

to the edge of the prism P. The light, being thus admitted, is incident on

a prism placed in its path in the position of minimum deviation. The
resultant spectrum, how^ever, is said to be impure because there is an over-

lapping between adjacent colours, but if an achromatic bi-convex lens L of,

say, 36" F is 72^^ from the slit and close to the prism, a sharp pure spectrum

WE is formed on a screen situated 72'' beyond the lens. If the prism be

placed base up the violet is above and the red below. All the different

colours are seen well defined, but the red end of the spectrum is somewhat

crowded, while the blue is spread out.

Pure Spectrum.—A spectrum is said to be ^^i^r^ when the individual

colours are isolated to the greatest possible extent, this being secured by

having an extremely fine aperture as a source, and an achromatic condensing

lens. The effect of the lens is to project a real image of the slit, while that

of the prism is to produce, from this single white image, an innumerable

series of others corresponding to every different wave-length, and these,

lying side by side, result in the ordinary pure spectrum. Actually it is

impossible to obtain a theoretically pure spectrum since the source must

always be of some definite magnitude, and therefore a certain amount of

overlapping always takes place between adjacent colours. The purity, how-

ever, reaches a very high standard in the spectroscope where, in addition to

the finest possible slit, the light received by the prism from the collimator is

parallel, so that prismatic distortion is eliminated.

Fig. 247.
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The Spectroscope (Fig. 248) is used for viewing and comparing spectra

produced by prisms, and consists of horizontal circle, mounted on a stand, to

which are attached a telescope T and a collimator C, both of which can be

rotated around the circle. The collimator C is a tube having at one end a

Cx. lens and at the other a narrow slit parallel to the refracting edge of the

jjrism F. The distance between the slit and the lens is equal to F of the

latter, so that light, entering the slit, is rendered parallel by the lens

before reaching the prism. In the centre of the circle there is a small

table B on which the prism is placed.

The Spectrometer is a spectroscope with the addition of a horizontal

scale of degrees on which the position of the moveable telescope can be

indicated, and to which, for accurate readings, a vernier or reading micro-

scope is attached. This enables the principal angle, the deviating angle, and

the dispersion of a prism to be measured.

In order to measure the deviating angle of a prism, C and T are brought

into line (Fig. 248) so that the image of the slit appears in the centre of the

Fig. 248. Fig. 249.

field of view, the objective of the telescope forming a real image of the slit

in the focal plane of the ocular, through which it is viewed, and a reading is

taken on the circle. The prism is then placed in position, and the telescope

must be rotated to T until the image of the slit can again be seen. The
angular distance through which T is moved is the deviating angle of the

prism, care being taken that the deviation is a minimum. This can be done

by slightly rotating the prism backwards and forwards until a position is

found when the slightest movement in either direction increases the

deviation.

The principal angle of a prism is measured by turning the prism until its

edge splits into two halves the beam of light issuing from the collimator

(Fig. 249). The telescope is rotated to T until the image of the slit is seen

reflected from the one surface, and then turned to T to receive the image

from the other surface of the prism. Half the angle through which the

telescope has been rotated gives the principal angle of the prism.

The mean refraction is indicated when the yellow of the spectrum lies on
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the wire placed in the focus of the ocular. When the principal angle and

mean deviating angles are known, the refractive index of the glass, of which

the prism is made, can be calculated by the method given elsewhere.

The deviation of a prism, for any colour, can be determined by bringing

that colour on to the cross wire and by this means, the total, mean or

partial dispersion of the medium, of which a prism is made, can be deter-

mined.

The spectrum produced by a given source can be studied and, if neces-

sary, the spectra from two sources can, by suitable arrangement, be formed

side by side for comparison. For very accurate determination of refractive

index and dispersion, various incandescent gases are employed, which give

line spectra, instead of a white source producing a continuous spectrum.

The DiiFraction Spectrum is purer than that of refraction, and is referred

to in Chap. XXVIL

Refraction and Dispersion.—Refraction by a simple medium is, so far as

known, always accompanied by dispersion or chromatism, and even when a

Flint
Glass.

B C

Crown
Glass.

Water.

B C F

Fig. 250.

prism or lens is, as is termed, fully achromatised by one or more other

prisms or lenses, some dispersion still obtains. Although two or even three

colours may be ^brought to a common focus, this can never be done for every

colour of the spectrum, and, as will be seen further on, with two lenses only

two colours can be brought to a common focus, the coincidence of the others

being merely approximate. This want of coincidence of all the colours is

due to irrationality of the spectrum, which may be defined as the irregularity

of sequence of the principal colours in any two spectra produced by difierent

media.

If we take a number of prisms of different substances, but of the same

angle, it will be found that those having the higher refractive index usually,

but not of necessity, possess the longer spectra These different spectra can

be made of the same length by altering the angles or the position of the

prisms, or by adjusting the position of the screen. If (Fig. 250) the spectra

be placed one under the other so that the B lines at the red and the H lines

at the blue correspond in position, it will be found that the intermediate
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lines do not do so. This fact renders it difficult to fix the exact position

of lines in the spectrum, since a special scale has to be made for each

spectroscope.

Anomalous Dispersion.—In glass, water and most substances, the order

of refrangibility is from the red through the orange, yellow, green, blue,

indigo to violet, which is the most refrangible, but certain substances have

the property of refracting the normally more refrangible rays less, and

the less refrangible more (Fig. 251). This is called anomalous dispersion.

The substances which exhibit this peculiarity possess what is termed surface

colour, i.e., they have a different colour when viewed by reflected light to

what they have by transmitted light. As they reflect only a certain colour,

the complementary colours are transmitted, and their spectra exhibit an

absorption band of more or less considerable dimensions, it being tlie space

which would have been occupied by the reflected colour had it been trans-

mitted. Such substances are termed dichroic.

Most metals, except gold and copper, as well as many of the aniline

products, possess this abnormal dispersion, the order of colours being

Fig. 251.

changed. Moreover, Kundt found, in the aniline products, the dispersion

abnormally increased on the red side of the band, but diminished on the

Adolet side ; so that in the case of fuchsin, for example, the red end, usually

so short, is actually more extended than the violet end.

Recomposition of Dispersed Light.—To recombine the spectrum of a

prism in order to form white light we may adopt several methods, as

follows :

1. Employing a prism of equal dispersive power. This is placed in the

path of the dispersed light, having its base turned in the opposite direction

to that of the first prism. (Newton's method.)

2. A series of plane mirrors may be so arranged that each receives a

different portion of the spectrum ; from each the light is reflected to the

same part of a screen, where the colours are re-combined.

3. Receiving the dispersed light on a concave mirror, from which it is

reflected on to a screen, and then by rapidly oscillating the mirror or the

screen the impression of white light is produced. Or the prism or the

screen may be oscillated or rotated to produce a similar effect without

the interposition of the concave mirror.
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Any mechanical arrangement of rotation or oscillation by which the

colours of the spectrum, whether produced by dispersion or by transmission

through coloured glasses, or by reflection from pigments, are caused to

successively enter the eye with sufficient rapidity, produces the impression

of white. Different colour sensations result while others are still existing,

and the combination of all results in a sensation of white or grey. Colour

tops, or discs divided into sectors of different colours, are examples of

this method.

Achromatic Prism.

Angular Dispersion.—The deviating angle of a prism is that of the mean
ray (D line), and is expressed (in the case of thin prisms) hy d = V (/x - 1),

where P is the refracting, and d the deviating angle. Now, since the red

ray suffers less, and the blue greater refraction than the D line, their

angular deviations are respectively

r/c = P(/Xc-l), andf/, = P(/x,-l)

d^ and d^- being the deviating angles, and /x^ and /Xj, being the indices of

refraction for red and blue light respectively. The angular dispersion of

the prism expressed in degrees is

P(;«,-l)-PO.,-l) = P(ft-/x,)

But, as before stated, it is not sufficient merely to know the mean or

angular dispersion of a medium ; we must know the amount of dispersion

which, in any particular case, accompanies a given amount of deviation,

that is, we must know its v value. Suppose the v of a crown prism is 60, and

that of a flint 30, then since v of the crown is twice as great as that of the

flint we know that, for a given deviation, we have twice as much dispersion

in the flint as in the crown. If two prisms of equal deviating angles were

worked from the glasses, the spectrum of the flint would be approximately

double the length of that of the crown.

Similar Prisms.—If two similar prisms, A and B (Fig. 252) are placed in

opposition—base to edge—their angles, refractive indices, and dispersions

being the same, both the deviation and dispersion are neutralised, and all

the rays emerge parallel to their original course.

In Fig. 253 let the principal angle of a crown prism of /x = 1*54 be 11*3°,

and that of a flint prism of /x = 1-61 be 10°. Their deviating angles are the

same, namely, 6-1°. If in the crown fx^ = 1-534, fXp = 1-554, and in the flint

fjLc = 1'586, /Xp = 1*62, their dispersive angles between blue and red are

11-3 X (1-554 - 1-534) = -226° for the crown, and 10 x (1-62 - 1-586

= '34° for the flint. The resultant angular dispersion is therefore

-34 - -226 = -114° = 6' 50". Thus, while no deviation of the mean yellow

ray occurs, the red and blue are separated by an angle of nearly V".
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Achromatised Prism.—If a crown prism of 3°d and /x = 1-54, and a

flint of 2°d and /x = 1-61 (Fig. 254), having efficiencies of 45 and 30 respec-

tively, be placed in opposition, they neutralise each other's dispersion, while

there remains 1° deviation. Such prisms are said to be achromatised, i.e.,

they constitute an achromatic prism which causes deviation without disper-

sion. The principal angle P of the crown is 3/-54 = 5-55°, and of the flint

2/ -61 ^ 3-28° Here, as will be seen from Fig. 254, every ray is deviated to

the same extent, and the recombination of light is secured as with an ordinary

parallel plate.

To Calculate an Achromatic Prism.—In order to calculate the data for

an achromatic prism, let d represent its deviating angle, and P the principal

angle. Let d-^^ v-^ and P^ be those of the crown and dc^, and P2 those of

the flint components respectively.

Now we have d = d^ d^, and since they have to be in opposition we
can regard d^ as positive and d<^ as negative. In order that achromatism

may result we must have

d^v^ = - f/pVj or d-yv^ + d^v^ = 0

Fig. 252. Fig. 253, Fig. 254.

To obtain the values of the two components d-^ and dcy, we must divide

d, the deviating angle of the required achromatic prism, in proportion to the

values of and that is

d. = , and d. =

It should be noticed that the deviating, not the principal angle, of the final

prism is divided in the ratio of the vs, because P is dependent upon d and

the mean refpactive index. We find the principal angles of the tw^o

components from I*^ = dj{fjij^- 1) and 1*.^ = djdj^^ - I), which, however, hold

good only for thin prisms ; if strong, P-^ and Pg must be found by the exact

formulae previously given.

As an example, an achromatic prism of 5°d is needed, the glasses of the

component parts being

Crown ... ... 1-53 /Xc= 1-527 /Xp= 1-536.

Flint ... ... /Xo=l-63 /xc= 1-624 /Xp:= 1-644.
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''i ^ rSSG ~r527 " -009
^

1-63-1 -63

1-644 - l-624~-()2 ~
^'^

5 X 58-9 294-5 _ 10-7

58-9-3K5-27ir=10-^°d, and -
.^^3

0°

5 x 31-5 157-5 5-7

^^2 = 31-5-58-9'" -27-4^ ~
'

^2=.63=-y

10-7°-5'7° = 5°d.

To find the Achromatising Prism.—The power of the flint prism dry

of 1^2, which will neutralise the dispersion of a given crown of f/^ and is

calculated from

Thus, let the crown be 10-7°d, 1^2 = 31*5, and ^^ = 58*9, then

fZ2= 10-7 X 31-5/58 9 = 5-7°d

and d^ + d^=10'7 - 5*7 = b° = d

Chromatism of a Lens.

The eftect of dispersion, when the refracting body is a lens, is to bring

the more refrangible blue and violet to a focus sooner than the less refran-

gible red and orange. This different focalisation of the various colours is

termed chromatism, and the confusion of the image caused by it, chromatic

aherratioii. The defect, which is made apparent by a fringe of colour on the

edge of the real or virtual image projected by the lens, is due to the nature

of light, and not to the nature of the lens, although its degree varies with the

power of the lens and the kind of glass of which it is made. Indeed, lenses

being prismatic in nature produce similar chromatic phenomena to prisms.

If a horizontal white line (Fig. 255) be observed through the marginal

portion of a convex lens, a blue-violet fringe will be seen on the side towards

the edge of the lens, and a red-orange on the other, the blue being projected

back above the red. Viewed through the periphery of a concave, the colours

are reversed. Looking at a black line, the fringes are seen in the opposite

order to those on a white line, for the reason given in connection with a

prism. The centre of the image, whether virtual or real, of a white object,

appears white, because the different colours are superposed, so that only at

the extremities, where certain colours are not combined with others, is

chromatism apparent.
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Longitudinal and Lateral Aberrations of Colour.—In Fig. 256 a parallel

beam of light from a point source is refracted by a convex lens ; the various

coloured rays meet at different distances behind the lens, the violet focussing

at V, the yellow at Y, and the red at JR. If a screen be held at V, the

diffusion patch has a reddish-yellow fringe ; the red and orange rays, being

convergent to a more distant point R, impinge on the screen outside the

blue and violet. If the screen be placed at B, the fringe becomes blue-violet,

since these rays, having already met at /^and crossed, impinge on the screen

outside the red and orange. The distance KB is the longitudinal aberration,

and the diameter a b of the disc of confusion in the plane where the extreme

violet and red rays cross each other, is the lateral aberration ; this plane is

very nearly that of F X, where the yellow light is brought to a focus.

Circle of Least Confusion.—At F, the focus of the most luminous yellow

light the circles of diffusion formed by the red and blue are practically of the

same size, and therefore no coloured fringe is appreciable.

F of the Various Colours.—The index of refraction of a given medium

refers to that of the D (sodium) line, which is situated in the yellow or most

Fig. 255. Fig. 256.

luminous part of the spectrum. With such a medium, if /x„ = 1*54, the index

of refraction for the red (line A) might be 1'53 (/x^ = 1-53), while for

the violet (line H) it might be 1*56 (//„ = 1-56). Suppose a thin double

convex lens of 10 in. radius, then

—

1'2

(ri + ?

that is, IQx 10

(10 + 10)x

2) (/^D
-

_ 100

54^10-8

1)

9-26

which is the mean focal length as well as that for yellow light. But instead

oi ix= 1-54 we must emxjloy /x^ = 1-53 and /x^ = 1*56 in order to find the

focal lengths and Fh for red and violet light respectively; thus

F^ = 9-43 in. and Fh = 8-93 in.

The difference in the focal lengths of a lens for red and blue light may

be illustrated with a cobalt-blue glass (chromatic disc), which transmits red

and blue light, but absorbs the central part of the spectrum, or by focussing

with a convex lens light which is rendered monochromatic by being passed
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through respectively standard red and blue glass. The difference in the

focal distances with these two coloured lights is sufficiently well marked to be

appreciated.

Achromatic Lens.

Chromatism can be remedied by making the lens a combination of two

different kinds of glass, so chosen that, while the dispersion of the positive

component is neutralised by that of the negative one, there shall still be

some positive converging power left, so that a real image may be formed.

Such a combination is termed an achromatic lens, and usually consists of a

fiint concave and a crown convex. If a concave achromatic combination is

required, as occurs sometimes in practice—for instance, in the telephoto

lens—then the concave is of crown and the convex of flint.

Spectrum Lines Combined.—By an achromatic lens two selected lines of

the spectrum, usually the C and F (orange-red and blue) are brought to a

focus at the same distance
;
by uniting these with a third component a third

line could also be focussecl at the same distance, but for all practical pur-

poses if the C and F lines, which lie near the more central and luminous part

of the spectrum, are combined, the combination is one in which chromatism

does not cause any appreciable blurring of the image, at least for visual

purposes, in which critical definition is not essential. In photographic lenses

the lines D and G ov D and H are usually selected in order to unite the

violet, which is the most chemically active part of the spectrum, with the

visual focus. For astro-photographic purposes, in which vision is of little

consequence, the lines F and H (or beyond) are brought together.

Expression for Chromatic Aberration. - Let i\ and represent the two

radii, and the focal length of a thin lens for the D line. Then, if F^ and

Fh represent the focal lengths, and /x^ and /x^ the indices for extreme red

and violet respectively, the chromatic focal difference may be expressed by

y _y ^'l'^'2
^'1^2

(^'1 + ^-2) (/^a-1) (/^h- 1)

If instead of (/^h - 1) (/^a - I) there be substituted (p^^—lY^ as may be

done without sensible error, then

-p _-p ^ V2_(/^H - /^O F„ (/Xh - fl^)

v= ^ "

—

^
is the refractive efficiency,

l^H ~ i^A

/^H -/^A • .1 rw= — , IS ohe dispersive power.
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Both of these are similar to those found in the case of a prism. Then
the longitudinal aberration is - Fh = F^/v = F^ w.

As an example let Fj, = 10 in., /x^= 1*60
; fx^^ 1-61 and /^„ = 1*625, then

^ ^ 10 X (1-625 -1-60) _ -025

The lateral chromatic aberration of a lens = diameter of lens/2v.

Similar calculations can be used for a thick lens.

Calculation for an Achromatic Combination.—To calculate an achromatic

combination for two lenses in contact, let F and C be the two lines of the

spectrum which have to be brought to the same focus. Let F be the focal

length of the required combination.

Fj and are the focal length and efficiency of the crown component, and

Fg and those of the flint; is negative, and 1/F = l/F^ + l/F^. In

order that the achromatism to be eliminated

l/FiH-l/Fi,^l/F,H-l/F2,

or F-|^ A ~ E-[ H Fg A ~ I* 2 H

But F^ A - Fi H = F^/vj, and F2 a - F2 „ = F2/ v.y, and without serious error,

FiaFih = Fi^, and F2aF2h = F2^, so that the last equation can be written

F,/v,F,^ = F,/v,F,^

1/v^Fi = I/V2F2, or v^Fi = - v^F^

That is F^v^ + F^v^^O

The two components l/F^ and l/Fg are obtained by dividing 1/F pro-

portionally to the two efficiencies v-^ and v.^ ; that is

L_

and ^ _ 1 X ^2 ^2

F,-Fv,-v^-F{v,-v,)

or F^ = F (i/j - v^)/Vj, and Fg = F (I'g - t^^Vvg

As an example, let a positive achromatic lens of 6J in. focal length be

required ; if the indices of refraction for the various lines are /x^ = 1-527,

fjL^ = 1-53, fjip = 1-536 for the crown, and /x^ = 1-630, /x^ = 1-635, /Xp = 1*648

for the flint

1-530- 1 -530

""i ~ 1 -536 - 1 -527 ~ -009
'~ ^^'^^

1-635- 1 1-635 ^= 35-282-1-648-1-630" -018

and v,'-v, = 58-89~35-28= ±23-61
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Then - 6-5 x 23-61/58-89 = + 2-61 in.

and = 6-5 x - 23-61/35-28 = - 4-358 in.

therefore 1/F= 1/2-61 - 1/4-358 = l/6i or F = 6i

which is positive and therefore convex.

To find the Achromatising Cc—The F of a Cc. of r., which, with a

given Cx. of j'^, will make the combination achromatic, is found from

Taking the same figures as in the previous example, if the Cx. has

F = 2-61 in., then

Fg = 2-61 X 58-89/35-28 = 4-358

Dioptral Formulae.

With dioptral lenses an achromatic combination is calculated from the

following formulai. Let D represent the power of the combination, Dj^ and

Dg the powers respectively of the Cx. and Cc, i'^^ and i'., the respective

efhciencies of the crown and flint lenses, v.^ being negative.

In order to achromatise each other the relationship must be J)^v^ = -

or + D2 vi = 0. The two components must equal 1), that is D = + Dg.

To obtain the values of Dj and Dg, which together equal D, we must divide

the latter proportionally to v-^ and v^, that is

D,=^ and D,=
^^^

Taking the same glasses as in the previous example where = 58*89,

V2 = 35-28 and F = 6^^ or D = 6

Di = 6 X 58-89/23-61 = 14-97, and 0^ = 6 x 35-28/23-61= -8-97

I)i + D2= + 14-97-8-97= +6 = 1)

Students should note the similarity of these formuhe with those for cal-

culating achromatic prisms.

To find the Achromatising Cc.—Since the powers of the two component

lenses are proportional to their efhciencies, if = 60 and = 50, a + 6 D and

a - 5 D will make an achromatic + 1 D.

If D, the power of the convex, is known, and it is needed to calculate the

concave required to make it achromatic, the formula3 are

Vi/i'2 = LVD.3, or D2 = IWvi
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As in the foregoing example, if the crown is + 14:'97, the flint con-

cave is

14-97 X 35'28/58-88 = 8-97

Illustrating Example.—As an example, give an equi-cx. lens of crown

glass whose radius of curvature is 10 in., there is needed to calculate the

radius of curvature of a flint Cc. so that the two combined make an

achromatic combination.

If in the crown fM^ = 1*5175 and /Xp -/x^^ -0087, then

_ /x,-l -5175

''l-/Xp-/Xe~-0087~^'^

If in the flint ftp = 1*571 and fj^^—i^c^ -01.327, then

,
_/^° -_i__ -57^_43

^2-^p_^^-.01327 ~*'^

jT = -ol / 5 X [j-^ + yqj
= gTgg.) for the convex,

and 1 _ 1 43 43 1

9-662 59 "570-058 ^13^257
concave,

then 11 1 3-595

F ~ 9-662 13-257 ~ 128-089 ~ 35-63

or F = 35-63 ins.

for the combination,

Now, the radii of curvature of the two adjacent surfaces must be equal,

that is, 10 in. Therefore ?•, the second radius of the Cc, is found from

-13-257=
-l^*-

(-10 + r)*571

Whence /•= -31*15 in.

Second Illustrating Example.—A plano-Cx. achromatic combination is «

required of F = 20 in. Let the glasses be

/Xc = 1-535, /Xjj=l-54, /Xp = 1-555 for the crown, and /Xc = l*59, /Xj5=l-60,

/Xp= 1-63 for the flint.

Then v^^ -54/-02 = 27, and •60/-04 = 15

Now Fi- 20 x 1 2/27 = 8-88 Cx., andF2 = 20x -12/15 = 16 Cc.

The combination will therefore be

^ -16x8-88
^^=_16 + 8-88=+2^

If the one surface of the concave is piano, Fg = r/(/x - 1), so that

r = - 16 X '6 = - 9-6 in. for the curved surface of the negative lens.
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Since the Cx. must have one surface of radius 9*6 in.

8-88 =
rx9-6 9-6 r

•54x(r + 9-6)~-54r + 5-184

whence / = 9-6 (approx.), so that the positive lens is a double convex, the

combination consisting of a double convex lens and a plano-concave.

Illustrating the Dioptral Formulae.—To work such a calculation by
diopters, since 20 in. = 2 D we have Dj = 2 x 27/12 = 4-5 for the crown,

and = 2 X - 15/12 = - 2-5 for the flint.

For a piano r = - 1)/D in terms of a metre, so that r = -6/- 2-5 =
- -24 M., or -24 cm.

Since (/x-l)(r + /)

That is 1-08 r = -1296 + -54 r, whence -54 r = '1296, or r = -24 M. or

24 cm.

As shown previously, the lens is a double convex of 24 cm. or 9*6 in.

radius.

Lens Combinations.—A combination of lenses having only one achroma-

tised component is not as a rule perfectly achromatic, so that in order that

the whole combination may be achromatic, the achromatised component

must be suitably overcorrected.

Achromatism of a Single Lens.—A single lens cannot be achromatic for

a real image ; but when it is used as a mitgnifier the virtual image is really

composed of a series of images formed by every different colour which, being

contained within the same visual angle, combine on the retina to form a

single impression. This image, however, appears coloured at the edges,

owing to the chromatic effects of spherical aberration, which is greater for

blue than for red. Then, if spherical aberration is eliminated, as in the

Huyghen eyepiece, the virtual image is colourless.

Separated Lenses.—If the lenses are not in contact the conditions for

achromatism are different. Two lenses made of the same material can be

rendered achromatic, for virtual images only, by being separated by a proper

distance, which is the case with- Huyghen's eye-piece. Those rays which

pass through the thin part of the field lens pass through a thicker portion of

the eye lens, but as the violet is relatively nearer to the axis than the red,

and so is less refracted, all the components of white light form the same

visual angle on emergence. Thus, two Cx. lenses of equal v separated by a

substituting, we get for the second radius of the crown

4-5 =
•54 X (-24 + r) _ •1296 + -54 r

•24 r ^ "^^247

18
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distance equal to (F-^ + form an achromatic combination for virtual

images.

Chromatic Difficulties.—Although a combination of lenses may bring

different coloured rays to the same focus, the images are not necessarily of

the same size. Furthermore, a combination achromatic for an axial pencil

of light need not be so for oblique pencils. Finally, if a lens be achroma-

tised for light proceeding from a given plane, it may not be so for light

proceeding from other planes. Conversely, if a positive and a negative lens

neutralise for the D line, the two, being of different dispersions, may not

neutralise for red or violet.

Irrationality of Dispersion.—One of the difficulties in optics is to find

different glasses so that all the lines of the spectrum will nearly coincide.

Thus, if we select two kinds of glass for an achromxatic prism or lens, so that

the C and F, or D and H, lines coincide, it will be found that other lines

will not. This defect is called irrationality of dispersion, and the spectrum

which remains in an achromatic lens or prism is called residual or secondary.

As before stated, it suffices, for practical purposes, to unite two certain lines

of the spectrum according to the use to which the lens is put. With
modern glasses and by careful selection it is often possible to unite prac-

tically three spectrum lines with two glasses, but a formula for this purpose

cannot be made.

Apochromatic Lens.—A combination which actually unites three lines of

the spectrum is termed apochromatic ; for such a lens at least three different

sorts of glasses must be employed, the residual spectrum still left being so

small as to be negligible. For such a combination 1/F = l/F^ + l/Fg -H

I/F3, and FjVj + Y^v^ + F3V3 = 0.



CHAPTER XXIV

ABERRATIONS OF FORM

Prismatic Aberrations of Form.

Small Light Pencils.—A pencil of light parallel before refraction is

parallel after refraction hy a prism ; even if divergent or convergent, any

difference may be neglected provided the pencil of light be small and the

axial ray suft'ers minimum deviation ; such a pencil may be considered as

respectively coming from, or meeting at, a single point. Although, in prisms

of small angle, the effects of al)erration due to the form of the prism can be

ignored, considerable distortion of the image is produced by strong prisms,

and this is increased by nearness of the object, largeness of the object, and

abnormal position of the prism.

Large Light Pencils.—In Fig. 257, which is purposely exaggerated for

sake of clearness, let a wide pencil of light diverge from a point L, of which

Fig. 257.

LE is the central ray, presumed to suffer minimum deviation, and L D, LF,
L P, and L Q extreme rays. Since L D, LE, and L F are incident on the

surface of the prism at different angles in the base-apex plane, they suffer

unequal deviation towards M, 0 and iV respectively, and if L ^ is at minimum
deviation, the others cannot be also. After refraction at both surfaces,

therefore, L D and L F are deviated relatively more than L E, and cut this,

when produced backwards, in M' and ; L F being more deviated than

LB, iV' is nearer the prism than HF. Again, the incidence of rays such as

L Q and LP in a plane parallel with the axis also differs, but to a much
lesser extent than the incidence in the base-apex plane

;
notwithstanding,

the refracted rays TX and R Y, when produced backwards, meet in 0\
275
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which is nearer to the prism than the original source L. These two in-

equalities of incidence are the origin of coma in a lens, while together they

are the genesis of radial astigmatism, and for oblique incidence, of distortion

as well.

Thus rays in the pencil emanating from a point do not have a point focus,

there being two focal lines, the one nearer the prism being parallel to the

axis, and the other parallel to the base-apex plane of the prism. The circle

of least confusion, which lies between 0' and N\ may be regarded as the

focus. These defects blur the image and cause it to appear nearer than it

actually is, and if the prism is in such a position that L F or L D suffers

minimum deviation, the whole of the pencil is rendered still more divergent

and the image is still more distorted and nearer.

Distortion due to Inclination.— If the base-apex line is vertical, say edge

upwards, the vertical magnitude of a square object, whether near or distant,

appears increased when the edge of the prism is nearer to it than the base.

This results because light from the bottom of the object is incident more

nearly at minimum deviation than that from the top, so that the latter

appears drawn upwards, the effect rapidly increasing as the inclination of

the prism is increased. The vertical dimension is lessened if the base is

nearer the object, because here the light from the bottom is more deviated,

that from the top being more nearly at minimum deviation. Again, the

effect increases with the inclination, as does also the total deviation of the

image in both cases. This distortion is somewhat analogous to that produced

by a lens, since both are due to the same causes.

Distortion due to Thickness.—Distortion is also caused by the greater

thickness of the glass through which the oblique pencils pass from the extremi-

ties of an object. These pencils suffer more deviation than the central pencils,

and therefore appear to come from points relatively higher and more distant

from the centre than those nearer to the centre of the object viewed. Thus

a straight line, parallel to the edge, appears curved with its convexity towards

the base. A square objec: has its two sides, which are parallel to the edge

of the prism, concave to the latter direction.

Distortion due to Position of Base-Apex Line.—If a prism be rotated

around its base-apex line— i.e. if, say, a vertical prism, edge upwards, be

rotated horizontally, so that one side of the prism is nearer the object than

the other—the image is lengthened diagonally on the side nearer the object

;

it is drawn out more towards the edge than the base, so that a square object

appears as a distorted parallelogram.

Distortion due to Size of Object.—If a narrow pencil of light from the

centre of an object enters the eye through a prism, and suffers minimum
deviation and but little aberration, the pencils from other points cannot do

so ; the peripheral portions of a large object are blurred compared with the

centre.
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Lens Aberrations of Form.

Apart from chromatism, the image formed by a spherical lens suffers

from five distinct aberrations due to its shape, and these must be severally

corrected before the lens is capable of forming a geometrically perfect image
of an object. The first is spherical aberration, the second coma, the third

radial astigmatism, the fourth curvature of the field, the fifth distortion.

The first three errors mentioned are 'point aberrations, and lenses corrected

for them are called stigmatic as distinct from astigmatic, the literal meaning
of which is " without a point "

; a lens corrected for spherical aberration is

termed aplanatic (not wandering). The last two errors are aberrations of a

plane, and lenses free from them are termed rectilinear or orthoscojnc.

Spherical Aberration.

Since a lens may be regarded as consisting of an infinite number of

prisms whose angles of inclination increase with the distance from the axis,

it follows that the deviation effected by the various zones of a lens depends

Fig. 258.

on this distance. In a Cx. lens the varying inclination of the different parts

of the two surfaces of each meridian causes parallel light to converge, but,

actually, the refraction of a spherical lens is such that light from a point is

not brought to a focus at a single point, the rays transmitted by the marginal

zones of the lens meeting sooner than those transmitted nearer the centre,

as depicted in Fig. 258.

Each zone of a lens has its own focal length, varying from the principal

focus F, for rays refracted in the zones immediately surrounding the prin-

cipal axis, to a point where rays A and B passing through the most external

zones, meet the axis. The inability to unite in a single point all the rays

diverging from an object point on the principal axis is called spherical aberra-

t'mi, which is due, not to the fact that the deviating power is greater towards

the periphery, for that is a natural property of a lens, but to the fact that

the deviating power increases too rapidly towards the periphery, with the

result that wave fronts are not truly spherical after refraction.

Minimum Deviation.—In Fig. 259 the opposite points D and E of the

lens constitute a portion of a prism G K H, and the ray A D, incident such

that its point of incidence D and its point of emergence E are equi-distant



278 GENEEAL AND PRACTICAL OPTICS

from the edge, therefore sufiers minimum deviation. The deviation of the

ray A B C is not minimum, and is relatively more bent from its course than

the ray A D. It is mainly owing to the departure from minimum deviation

incidence of the light at the periphery that the deviating power there is

unduly increased and spherical aberration produced.

Central and Peripheral Refraction.—If a piece of black paper, the same

size as a lens, be divided by cutting out a disc one half of the diameter, there

will be a ring and a disc of equal widths. By gumming first the ring and

Fig. 259.

then the disc on to the lens we can observe the result of central and

peripheral refraction separately. When the peripheral part of the lens

(Fig. 260) is blocked out only the central area of the lens is effective, and

parallel rays, as a whole, meet slightly within F, When the central portion

of the lens is covered (Fig. 261) and only the periphery acts on the light,

the latter, as a whole, meets still further within F.

Fig. 260. Fig. 261,

Circle of Least Confusion.—When the whole lens is exposed to the light

(Fig. 258), the converging circles of confusion from the central, and the

diverging circles from the peripheral area, are of about the same mean
diameter at C, where the illumination is greatest and the disc of light of

minimum size. At any point either nearer or further the disc is larger than

at (7, but the greatest concentration of light occurs at F, where the image of

a luminous point is a bright spot surrounded by a halo caused by the

diverging light from the periphery of the lens.
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The distance of the image from a Cx. lens in the three cases where the

periphery only, the centre only, or the whole of the lens is effective, can be

shown by experiment, the object being a bright flame placed behind a small

aperture covered by a piece of yellow glass in order to make the light more

or less monochromatic.

Longitudinal and Lateral Aberration.—The distance between the

extreme foci is called the longitudinal aberration ; the diameter of the disc

A B (Fig. 258), caused by the overlapping of the rays refracted by the

margin of the lens when the screen is held in its theoretical focus, is called

the lateral aberration. The lateral aberration increases more rapidly than

the longitudinal with an increase in the aperture of a lens, the latter varying

as the square of the aperture, and the form.er as the cube of the aperture.

Influencing Factors.—The definition of an image depends on the small-

ness of the circles of confusion of which it is constituted, and these circles

are dependent on the degree of spherical aberration. The latter is proportional

to the incidence of the light, the aperture, form, index, and thickness of the

lens ; as these factors are changed spherical aberration is increased or decreased.

Fig. 262. Fig. 263.

Influence of Form.—The degree of spherical aberration is least when the

rays in general are, after refraction at the first surface, more nearly parallel

to the bases of the virtual prisms of which the lens is formed, so that the

total refraction is approximately divided between the two surfaces, and

therefore the angles of incidence and emergence are equal.

Best Form of Single Lens.—As a general rule, for parallel light, the

more curved the front and tha less curved the back surface of the lens, the

smaller is the spherical aberration (Fig. 262) ; as the object is nearer the lens

and the light becomes more and more divergent less curvature is needed for

the front, and more for the back surface ; in these cases an approach to

minimum deviation at the periphery of the lens is obtained. A very high

degree of spherical aberration results if the less curved surface is exposed

to parallel light (Fig. 263), or the more curved surface to light diverging

from the focus of the lens, since a considerable departure from minimum
deviation for peripheral rays then occurs. Since the incidence varies with

distance of the object, spherical aberration depends not only on the form of a

given lens but also on the distance of the luminous point from that lens.
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The curvatures needed for a lens having minimum aberration varies with

the index of refraction of the glass, the difference between the two radii of

curvature increasing directly with [x. A plano-convex, or better, the crossed

lens, with its more curved surface turned to the light, is the form of single

lens which gives the best definition for objects at extreme distances. The
same lens turned the other way is the best for very near objects, while the

double convex is the best when the incident rays diverge from twice the

focal distance, for then, object and image being equi-distant from the lens»

the incident and emergent rays form equal angles with the two surfaces. If

used for all distances the double Cx. is perhaps the best form of single lens.

The term crossed is applied to a lens having unequal radii of curvature,

it being usually a bi-Cx. or bi-Cc. whose radii are 6 : 1 approximately. To
obtain minimum spherical aberration the radii of the two surfaces of the lens

should be in the ratio of 1 + 2 /a, and 1 — 2 /x + 4//x. These quantities, when
/x==l-5, are as 6 is to 1. AVhen /x= 1*686, the value of 1 —2 /x+4//x is 0, so

that the one surface should be piano, and if the index is higher the lens must

be a meniscus, this quantity being then negative.ABC J> E

+4,5- -t-1,07

Fig. 264.

A Numerical Expression for Longitudinal Aberration is sometimes

given, as below, for parallel light and thin lenses, where /j.= 1-5. The values

are in terms of d^ F, where d is the semi-diameter of the lens.

1-07

M7
1-67

2-07

4-5

A crossed Cx. (Fig. 264) with the more curved surface to the light

A plano-Cx., with the curved surface to the light

An equi-Cx. ...

A crossed Cx. with the less curved surface to the light ...

A plano-Cx. with the plane surface to the light ...

These values would vary with the index of refraction, and for different

distances of the source of light ; also with the thickness of the lens if this

cannot be neglected. The aberration of course increases with the diameter

or power of the lens.

Least Time.—Since light travels in a straight line it takes the least

possible time to reach a given point, and this principal of least time holds

good for refraction. Thus, various rays diverging from a point in air and

passing into another denser medium must arrive at the same point, at the same

time, if a focus is to be obtained. With a lens, disregarding spherical aber-
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ration, this occurs because although the distance from A to 5, and thence to

is greater than from A to C and F (Fig. 265), yet the distance traversed

in the denser medium is greater in the case of A C F. The law of refraction

/Xj^ sin i = /x2 sin r is in accordance with the principal of least time. If a lens

is corrected for spherical aberration all rays diverging from an object point

must reach the same image point and in the same time, no matter what course

they take. In other words the optical length (which is the actual distance

of travel multiplied by the of the medium in which this takes place) must

be the same for all rays between the object and image points.

7

X

Fig. 265.

Let the distance of from any point on the refracting surface (Fig. 266)

be d^, and the corresponding distance of F be ; then d-^ [jl-^ + do is the

optical length of any ray diverging from A and refracted to F, so that for

A X, A B and A C to meet at F it would be necessary that d^ + d^ fx^ be

a constant for any incidence of the light, i.e. A IJ
fj.^ + B F fx^ = A C fx^ +

C F fx^ = A X ix-^ + XF [x^. As this cannot occur with spherical surfaces,

spherical aberration may be said to be due to the fact that all the rays

diverging from a point on the axis cannot reach the same point in a given time,

or rather that, within a given time, the rays reach different points of the axis.

Fig. 266.

In the case of a lens the influence of the two surfaces has to be con-

sidered, since each ray travels in three different media. If be its course

in the first medium /x^, d^ its course in the second medium ju^, and d^ its

course in the third medium /Xg, then d^ [x^ + d^ /x^ + d^ /x.^ would need to be

equal for each ray in order that all rays diverging from an object- point may
meet, after refraction, at a single image-point.

Influence of Thickness.—A ray A B traversing a thick lens (Fig. 267) is

retarded in the denser medium, and can only reach, in a given time, a point

G on the principal axis which lies nearer to the lens than H, the point
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reached by a similar ray passing through a thin lens. Thus, spherical

aberration increases with the thickness of the lens.

Remedies.—A theoretical remedy would be found if the speed of the

light could be increased, or the refractive power of the lens decreased at the

periphery. This would necessitate the lens being made of a medium whose

index of refraction decreases as the distance from the principal axis increases,

which occurs in the crystalline lens of the eye ; or the lens would need to

have less curvature at the periphery than at the centre, i.e. one having some

conic curve. If the lens be ground down to a smaller size so that only the

central area is left, or what amounts to the same thing, if a stop or diaphragm

is used in combination with the lens, the marginal rays are cut off and

spherical aberration is consequently lessened. In general, also, the aberra-

tion is reduced by increasing the number of refracting surfaces. Thus there

may be employed two positive lenses, in place of one, by which the

curvatures are diminished for the same refractive power, or the positive

and negative components of a system separated by an interval, by which

the positive power of the combination is increased. This last method is

sometimes made use of in photographic and microscopic lenses.

Since the defect depends on curvature, a Cx. having a high /x and low

curvature may be combined with a Cc. so that, in an achromatic combination

of given focal length, the two surfaces in contact being similar, the aberration

of the front surface of the convex is neutralised by that of the back surface

of the concave. This method of neutralising the aberration by means of a

compensating Cc. is the only true practical means of correcting a lens.

Aplanatic Lens.—A lens, or lens combination, corrected for spherical

aberration is termed aplanatic, but no combination of lenses can be rendered

entirely aplanatic for all distances of the object, nor can it be for other than

monochromatic light ; but by employing a stop, as is done in most optical

instruments, and a judicious choice of form, it may be rendered so for

practical ^purposes. A single surface may be aplanatic and also a single

spherical lens, but only for one distance of object (vide Chap. XXV.).

Positive and Negative Aberration.

—

Positive aberration obtains when the

marginal rays come to a focus before the central, negative aberration if the

central rays come to a focus before the marginal.

A

Fig 267.
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Under and Over Correction.—A lens combination which partially

neutralises the positive aberration is under-correded, and if it more than

neutralises the positive, it produces negative aberration, and is said to be

over-corrected. In photographic lenses it may happen that spherical aberration

is completely eliminated for the axis and periphery, while it may still occur

in the intermediate zones.

The Oblique Aberrations.

A beam of light diverging from a point on the principal axis would, on

passing through a lens corrected for central chromatic and spherical aberra-

tion, meet again as a point on the principal axis. When, however, the

luminous point is situated on a secondary axis, further aberrations are

introduced by the oblique incidence of the light, these being the point

aberrations coma and radial astigmatism, and the plane and line aberrations

curvature offield and distortion.

If a bright point of light be placed obliquely below the axis of a lens and

a white screen moved behind it, we shall find that the image is blurred at all

distances, the image assuming various triangular, comet-shaped, cup-shaped,

and pear - shaped figures, which are the result of coma. If coma be

reduced by placing a fairly small diaphragm in front of the lens and the

screen is held within the focus, and slowly drawn away, the image is seen to

form a symmetrical ellipse, and then successively a horizontal line, a hori-

zontal ellipse, an irregular circle, a vertical ellipse, a vertical line, and

finally broadens out into a blurred patch. These lines result from radial

astigmatism.

Coma.

Coma is an aberration produced by the unequal refracting effect of the

different parts of the various meridians of a lens, on an oblique pencil of

light ; it is spherical aberration for oblique light. Instead of a point image

of a point object, situated on a secondary axis, there results a blurred halo

of confusion partly surrounding a bright point, and extending therefrom in a

direction away from the axis.

Let d and e (Fig. 268) be rays proceeding from a distant point on an

oblique axis A B. The ray e meets the surface of the lens sooner than d,

and since c departs more from minimum deviation than does d, the ray e e'

cuts the axial ray at e" sooner than does d cV at d".

The confusion disc produced by coma presents various forms, as before

stated, but it is usually more or less pear- or comet-shaped, the narrow

brilliant part being directed towards the principal axis. It is, therefore,

non-symmetrical, and in this respect differs from the confusion discs of

spherical and chromatic aberration, which are always symmetrical with

respect to the axis of the beam of light.
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Influencing Factors.—Coma is directly proportional to the obliquity of

the incident light to the principal axis. It is enhanced in a lens of large

aperture, and, in general, whatever tends to increase spherical aberration

tends also to increase coma.

Remedies.—Coma is reduced in a lens of such form as will cause the

incidence of the rays, passing through any meridian of the lens, to be more
equal. Thus it is less marked in piano and meniscus lenses than in doubles,

for the reason that, in such lenses, less refraction takes place at the second

surface. The chief remedy for coma is reduction of the effective aperture of

the lens by the employment of a stop, the latter being placed a short distance

from the concave surface of the meniscus.

The Sine Condition.—In order that coma be eliminated from a lens, the

sines of the angles a and a' formed by an incident ray with the axis, before

e

Fig. 268.

and after refraction, should have a constant ratio; that is, sin«/sinff' = a

constant (Fig. 268).

Radial Astigmatism.

Radial Astigmatism is an aberration which results from the unequal

refraction of different meridians of a lens on an oblique pencil of light

;

instead of a point image of a point object situated on a secondary axis, there

is produced two line foci through which pass all the rays contained in the

pencil.

For every oblique axis there are two principal meridians or planes ; the

first is that containing the oblique axis and the principal axis, and is termed
the sagittal plane ; the second is that at right angles to the sagittal, and is

called the meridional plane. The astigmatism is essentially the distance

between the focal lines produced by the difference in the eftective power of

the lens in the meridional and sagittal planes of incidence.

When a luminous point is oblique to the principal axis, the effective

aperture of the lens is an ellipse in which the sagittal plane of incidence

corresponds to the short diameter, and the meridional plane to the long

diameter. In the meridional plane the light has to traverse a greater thick-

ness of the lens, and is more oblique than an axial pencil ; it is, therefore,
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rendered more convergent, and has its focus nearer the lens than the focal

plane, thus forming the second focal line B. FJ (Fig. 269). In the sagittal

plane the light has also a greater thickness to traverse than an axial pencil

would have, and it is still more oblique than in the meridional plane. It,

therefore, has its focus still nearer the lens, and forms the first focal line

TT. Consequently radial astirjmatism is due to the increased angles of incidence

of oblique light and increased effective thickness of the lens.

In Fig. 269 let a pencil of light be incident on a lens from a distant point

A, situated on the secondary axis A X, and let it be presumed to be the

central lower point of a body facing the lens ; then SS' is the sagittal and

MM' the meridional plane, in this case S S' being vertical and MM' hori-

zontal. All rays in a sagittal plane as a and c, h and d, meet in points along

the line T T\ which is the first or tcmgential focal line whence, diverging in

one direction and converging in the other, they continue to the second or

radial focal line R R' ; R is the meeting point of c and d, while R' is that of

Fig. 269.

a and h. Thus the tangential line is the focus of the sagittal plane, while the

radial line is that of the meridional plane, each focal line being at right angles

to the plane of which it is the focus.

The radial line is nearer to the lens than the focal plane on the principal

axis, and the tangential is still nearer, the distance between them being the

astigmatism. Between the two focal lines there is a position where the

cross- section of the refracted light is most nearly circular, and this may be

regarded as the mean focus of the oblique pencil of light. The calculation

for the distances of TT and Ph R' are shown in Chap. XIII., where they are

termed F^ and respectively.

To illustrate oblique refraction, let Fig. 270 represent the focal plane of

a Cx. lens viewed from behind. Rays parallel to the principal axis and

directed before refraction to the points a h c and d^ are refracted towards

and meet in the point F. If the rays are parallel to an oblique axis, as

represented in Fig, 269, a meets c in T and h in Fi\ while d meets c in T' and
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h in Pi, but T T\ as already stated, lies nearer the lens than B R', and both

are nearer than F.

Radial astigmatism has been illustrated with the light diverging from a

point on the lower edge of an object, so that the resulting tangential focal

line is horizontal and the radial line is vertical. If the luminous point is to

the right or left of the object, the tangential line is vertical and the radial

line horizontal ; if the sagittal plane is oblique both lines are oblique, there

being a pair of astigmatic lines at right angles for each secondary axis.

The tangential and radial lines of the numberless secondary axes consti-

FiG. 270.

tute curved surfaces (Fig. 271), both within the principal focal plane; these

curved surfaces meet at the principal axis in the focal plane, where the two

focal lines fuse into a point image. The circles of least confusion form a

surface 0 0' concave towards the lens lying between R R' and T V and this

may be regarded as the focal plane of an ordinary lens.

Influencing Factors.—Radial astigmatism is in direct proportion to the

obliquity of the incident light, and is greater as the lens aperture is larger.

Fig. 271.

It is also greater with certain forms of lenses than others, and, in general,

the more nearly a lens is of double Cx. form the more marked it is.

Remedies.—Anything that tends to equalise the effective thickness of the

lens and the angles of incidence in all meridians will reduce radial astig-

matism. Thus a meniscus lens combined with a stop to cut off the extreme

peripheral rays is the primary remedy, especially if the stop be placed some

little distance— about a fifth the focal length—on the concave side. This

has the effect of shortening both focal lines and throwing them back so that

the circle of least confusion lies more nearly in the foca] plane
;
by still
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further displacing the stop away from the lens both lines may even be

thrown behind the focal plane. In addition, by combining glasses of high

refractive power and low dispersion with those of opposite quality certain

conditions are fulfilled which, besides eliminating chromatism, correct astig-

matism over a wide area. With the newer varieties of optical glass a degree

of correction is secured which was not possible with the older kinds, wherein

refractivity and dispersion were more or less proportional.

Sphero-Cyl. Lens.—There is a difference between the astigmatism of a

sphero-cylindrical and the radial astigmatism of a spherical lens, inasmuch

as the former occurs when the object point lies on the principal axis and is

due to the varying curvature of the lens ; while in the latter the curvature is

equal in all meridians and it is due to the oblique incidence of the light, the

direction of the focal lines varying with the position of the object point.

Curvature of the Field.

Curvature of the Field.—If ^ be a point on the lower extremity of an

object the light diverging from it, after refraction by the lens, forms two

focal lines and between them is situated the circle of least confusion, which

may be regarded as the focus of the rays diverging from A. On the surface

containing the circles of least confusion the sharpest representation of the

periphery of the object is formed, and since the etTective power of a lens is

greater as the light is more oblique, this surface forms a portion of a sphere

with its concave surface towards the lens. The image of a convex object

would be still more curved than that of a flat object, but a concave object

might be so placed as to neutralise curvature of field. (See Figs. 269 and 271.)

While curvature of field is partly due to the same cause which produces

radial astigmatism, i.e., the increased power of a lens for oblique light, it is

not entirely so, for if 7' T were made to coincide with R R' there would still

be curvature. Even if the peripheral foci were at the same distance from

the optical centre (or second equivalent point) as the focus on the principal

axis they would form radii of a circle and curvature would still remain.

Thus, a sphere has equal refracting eff'ect on rays from any point and is

therefore entirely free from astigmatism, but the field is nevertheless curved.

Therefore, if the image formed by a lens is projected on to a flat screen,

either the centre or the periphery may be focussed sharply, but it is impos-

sible to obtain both defined at the same time.

Condition for a Flat Field.—In order that an achromatic combination of

two lenses may form a fiat image, the condition (known as the Petzval con-

dition) which must be satisfied is that F-^/Xj^^ - Fg/x^, or F^/x^ +F., = 0,

where /x^ and F^ refer to the crown, and /Xg and F., to the flint components

respectively. In order that this shall not controvert the condition for

achromatism, the crown, with less dispersion, must have a higher refractive
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index than the flint, a condition which has already been referred to in the

section on radial astigmatism, and in this case vjv^ = i^^jii^.

Remedies.—The field can be flattened by placing in front of the lens a

stop which, by narrowing the beam, determines at what particular point on

a secondary axis the focus, as represented by the disc of least confusion,

shall be formed. A distance, dependent on the form of the lens, can be

found at which curvature is a minimum, this, for single lenses, generally

being about one-fifth the focal length.

If a Cx. and a Cc. of equal power be separated to have convex efl'ect,

the distance may be so adjusted as to make the image flat. The oblique

rays, after refraction by the convex, meet the concave nearer to the periphery,

and the diverging efl'ect is thereby increased ; therefore the final convergence

is to a point further away, for oblique pencils, than would be the case after

refraction by a single Cx. lens, whose power is equal to the eff'ective power

of the combination.

Curvature is said to be under-corrected, or 'positive, when the image is

concave towards the lens, and negative if, by over-correction, the image

becomes convex. The image is flat if the focal length of each oblique pencil

is equal to F/cos e, e being the angle which the oblique axis makes with the

principal axis.

An almost perfectly flat and undistorted virtual image is obtained with

two equal plano-convex lenses placed with their convex surfaces facing each

other, or by two plano-convex lenses whose respective focal distances are as

1 and 3, both curved surfaces facing the same way. Such combinations

represent, respectively, the Ramsden and Huyghenian eye-pieces.

Distortion.

Distortion is an aberration in the magnification of the image. There are

several forms of distortion known to photographers, but the only kind,

dependent on the lens itself, is curvilinear distortion, which results because

certain natural defects of a lens due to its prismatic formation cause the peri-

pheral image points to be relatively further from or nearer to the axis than

their corresponding object points. Distortion of the image is a natural con-

sequence of refraction ; even a near object seen through a thick plate appears

distorted, or one viewed through a prism, a square appearing to have its two
sides, parallel to the edge and base, curved with its concavity towards the

edge of the prism. Similarly a square object (Fig. 272) seen through a

Cx. lens has its virtual image concaved outwards, termed pincushion or posi-

tive distortion (Fig. 273). If viewed through a Cc. lens it appears convex
outwards

—

barrel or negative distortion (Fig. 274). The image is drawn out

in the first, and compressed in the second case towards the periphery. The
real image of a square formed by a Cx. lens of full aperture is barrel-shaped.

Causes of Distortion.—Distortion is chiefly the result of spherical

aberration, which causes too great a deviation for peripheral pencils of light,
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but the effect may be varied considerably by alteration of the position of the

stop.

Another, but lesser factor, also contributes to distortion, and must be

considered. In the formation of a real image each of the incident rays

leaves the second equivalent plane at the same distance from the principal

axis that it meets the first equivalent plane, so that the refracted rays meet,

on the secondary axis, at a point nearer the principal axis than they would

if the secondary axis were undeviated as in a lens infinitely thin. As the

distance of the object point from the principal axis increases so the dis-

proportion between the distance of the object and image points from the

principal axis also increases.

Distortion is therefore an inherent fault of the lens, and is the direct

result of spherical aberration and of the increased thickness of glass when the

light refracted by it is incident obliquely. The degree of distortion varies

directly with the thickness of the lens and the obliquity of the light.

Further, any arrangement of the stop, or separation of the components

of a lens system, which causes the light forming the image to be refracted

3

\

Fig. 272. Fig. 27; Fig. 274.

by a portion only of the lens, or of one of the component lenses, will produce

distortion.

Influence of a Stop.—A diaphragm is used with a single lens, or com-

bination, in order to diminish spherical aberration, coma, astigmatism and

curvature of field. This accentuates and brings into prominence distortion,

so that rectilinear lines of the object near the margin appear curved in the

image.

When a stop is in front of a Cx. lens the efi'ective area of the lens for an

oblique pencil lies mainly on the opposite side of the principal axis to that

of the object point, so that the mean focus lies between R and ii^ (Fig. 275)

nearer to the axis than if the whole lens were effective. Thus the natural

negative distortion of a Cx. lens is enhanced.

When a stop is behind the lens (Fig. 276) the effective area of the latter

for an oblique pencil is chiefly on the same side of the lens as the object

point, so that the mean focus lies between B and i^g more distant from the

principal axis than if there were no stop. The consequence is that the

natural distortion of the lens is not only corrected, but positive distortion is

19
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produced. The distortion is due to the lens and not to the stop, for if a

combination be corrected for distortion the stop may be in front of the lenses,

between the lenses or behind them, and no distortion ensues.

Remedies.—Distortion is eliminated by employing a combination of

lenses with the stop placed between the two components. Then those oblique

rays which pass through the one side of the front element must pass through

Fig. 275. Fig. 276.

the other side of the back element and, vice versa, so that the distorting effect

of the front lens is neutralised by that of the back lens.

Separation of the component parts of a lens system can be utilised for

the correction of distortion, and in single lenses it may be reduced somewhat
by altering the thickness of the lens and the curves.

The Tangent Condition.—A chief my X C ov Y C (Fig. 277) is one which

passes through C, the centre of the stop. If it be produced forwards and,

X

Y

s

/

\/

y

Fig. 277.

after refraction, be produced backwards the point of intersection p is a,

chief point.

When the chief points thus formed all lie in a plane perpendicular to the

axis, i.e., the refracting plane, the chief rays when produced back to the axis

will meet in a single point C". The lens is then said to be spherically

corrected with regard to the stop.

Each chief ray makes with the principal axis, before refraction, some
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angle h, and, after refraction, some angle h\ and when the foregoing con-

ditions obtain, tan &'/tan & = a constant for every chief ray ; the image will

then be uniformly magnified throughout, i.e. the image will be free from

distortion when the tangent condition is fulfilled, as in Fig. 277.

Aberrations in General.

In the brief description of the aberrations contained in the foregoing

articles certain points are worthy of special note. All the aberrations of a

single lens are reduced by the use of a stop with the exception of distortion,

which is generally increased, or anyhow made more apparent. The con-

struction of a good lens also largely depends upon the use of meniscus com-

ponents without which a wide stigmatic field would be impossible, while,

needless to say, crown and flint glasses are essential for achromatism. The

nature of the corrections depends largely upon the use to which the lens is

to be put, but on the whole, the designer of a photographic objective has a

harder task than the maker of telescope and microscope objectives. Of all,

perhaps, the photographic objective must be the most generally perfect,

since it is required to produce a flat, stigmatic and undistorted image over a

wide field whose diameter is not infrequently equal to the focal length of the

lens. To secure this a kind of compromise must be eff'ected between central

and peripheral definition, since the type of lens—the crossed and piano

—

giving the best central correction for spherical aberration and chromatism,

is useless for eliminating the oblique aberrations.

If a first-class photographic lens designed for wide angled work be

examined, it will be found to contain at least one deeply periscopic com-

ponent, and in all rectilinear objectives both are of meniscus shape. For

extreme wide angle work the periscopic type must be still further deepened

until we find, in the Hypergon of Busch, a lens consisting of two thin

hemispheres with a stop at their common centre. Generally, therefore, the

smaller the angular field the flatter are the curves required to produce it.

In the telescope, prism binocular and opera glass only a narrow angular

field—not exceeding a few degrees—is required, and therefore the oblique

aberrations may be comparatively ignored, and all the attention centred on

the correction of spherical aberration and chromatism, which may be done

to an exceedingly high degree of perfection. Thus any good telescope or

opera-glass objective will be found to be, as a whole, either piano Cx. or

bi-Cx. with the greater curvature towards the light, which is practically

parallel in all cases.

Rather more care must be bestowed on the microscope objective since

here some correction must be given to flatness of field and coma, so that it

may be said to occupy an intermediate position between the telescope and

photographic objectives, and here, the object being near F, the objective is a

piano Cx. lens, or, at any rate, the bottom component is plano-convex,

having its piano surface directed outwards.
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Again, in visual optics, the deep periscopic and toric is now recognised as

being far superior to the double in that the field of sharp definition is greatly

extended by the elimination of most of the oblique aberrations.

A plano-Cx. condenser is turned the one way or the other according as

the source is near or distant and according as the beam of light projected is

large or not.

Spherical aberration is a defect of the image on the principal axis, and,

therefore, for best definition it is necessary to distinguish between point

objects and objects of definite size. Thus the eye lens of an ocular is

always piano Cx. with the curved surface towards the object to be viewed,

which is the real image formed by the objective, and notwithstanding that

this object lies in the focal plane of the eye lens. This is because the object

viewed is of definite size and not merely a point on the axis.

Aberrations of a Cc. Lens.—Although in the foregoing articles Cx. lenses

have been used in diagrams and examples, it must not be forgotten that

Fig. 278.

Cc. lenses suffer from precisely similar aberrations. They are, of course,

opposite to what would be produced in the virtual image of a Cx., e,g. the

distortion of the virtual image with a Cc. is barrel, whereas it is pincushion

with a Cx., so that when two lenses are neutralised in the ordinary way
their aberrations are also practically neutralised, unless the lenses are very

thick or of deep periscopic form.

Aberrations of a Mirror.—If the angular aperture of a spherical mirror

be large, rays which diverge from a point 0 on the principal axis (Fig. 278)

do not meet in a single conjugate image point after reflection. This is due

to spherical aberration, so that the image consists of a series of imperfectly

formed foci in the shape of a curve, called a caustic, illustrated in Fig. 278.

Those rays, however, immediately round the principal axis, having a diver-

gence of only a few degrees mutually unite in a single point, which is taken

as the geometrical image since at this spot, i.e. the focus, the condensation of

light is greatest. Those rays making larger and larger angles with the axis
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are reflected to cut the latter in points nearer and nearer to the vertex of the

mirror, and their intersection one with another gives rise to the increase of

illumination forming the caustic curve, to which every ray is tangential.

Caustics by reflection can readily be seen when light from a lamp or the sun

falls obliquely on to a cup half filled with milk or tea.

Caustics may, of course, be virtual as well as real, which occurs when the

object point is either within F of a Cc, or in front of a Cx. mirror. Their

eff'ect, however, is never noticed because the pupil of the eye acts as a small

stop and limits the divergence of the rays to a minute angle. Thus practi-

cally only one point on a virtual caustic may be viewed from one position,

and the image thus seen apparently moves when the position of the eye is

altered because a new pencil, apparently diverging from another point on the

caustic, now enters the eye.

Mirrors suffer also from coma, radial astigmatism, curvature of the field,

and distortion, but, as before stated, not from chromatic aberration. The
two astigmatic focal lines of a small oblique pencil of parallel light at an

angle of incidence i, are distant F cos i and F/cos i from the mirror.



CHAPTER XXV

CONICS AND APLANATIC REFLECTION AND REFRACTION

Conic Sections.

Conic sections, or conies, deal with the figures—and their peculiar pro-

perties—obtained by sections, in any direction, through a right circular cone.

In this chapter we shall discuss only those geometrical properties of conies

as are necessary for the consideration of the optical properties of media

having curves which, in section, belong to this class, as distinct from the

usual spherical surface.

The cone is generated by the revolution of a line B B' (Fig. 279) around

a fixed point A, where it intersects a fixed straight line a a\ As IJ B' is

revolved around A the figures traced out constitute the surfaces of two similar

cones B A B" and B' A B"\ of which A is the common apex or vertex, and

a

Fig. 279.

a a' is the common axis. Any section C at right angles to the axis of the

cone is circular ; if the section is through ^ it is a point ; a section through

A along the surface is a liiie. Any section, as SE, oblique to aa\ is

elliptical ; any section, as S P, parallel to a generating line, is parabolic ; any
section, as SB, which, if produced, would cut B" B'", is hyperbolic. These

last three are true conies.

Let DAE (Fig. 280) be a conic section of which A is the vertex, and

L L\ a line cutting the vertex, and symmetrical to the two sides, is the axis.

P is a fixed point called the focus, and i? is a fixed line perpendicular to

the axis, called the directrix. In all conic curves there is constant ratio,

294
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called the eccentricity, for every point F on the curve, between d-^^ the distance

of the point from F, and d^, its perpendicular distance from B T X. Thus

d-^/d^ represents the eccentricity. If d-^ is smaller than dc^, so that djd^< 1,

the curve is that of an elVi])se ; if d^ is greater than d^^ so that djd^> 1, the

curve is that of a hyperhohi ; if d^ = d^, so that d^/d^ = 1, the curve is that

of a parabola.

The Ellipse.

On the line LU (Fig. 281) erect the directrix R TX ; take any point F
and divide FT at A so that AF/AT equals the eccentricity. Pis any point

5^R

r (

\

F L'

X V
Fig. 280.

on the curve such that F P/P R = A F/A T = d^/d^ = the constant eccen

tricity, which is less than unity. F^ is another point on the axis such that

PF + Pr is & constant equal to A B (Fig. 282).

Fig. 282 illustrates the closed elliptical curve of which A and B are the

two vertices, F and F' the foci, and C the centre. The chief property with

which we are concerned here is that just mentioned, viz. PF + PF'=AB =

Fig. 281. Fig. 282.

a constant. The bounding curve A P D B is the perimeter, A B is the long,

or major, axis, and that at right angles through C the short, or minor,

axis. It will be seen that the ellipse cuts the major axis in two points

A and B.

Construction.—An ellipse may be constructed by putting stout pins

through two points, as F and F' in Fig. 282, which become the two foci, and

passing over them a suitable length of slack thread. A pencil held upright

and pressed against the thread outward from the foci, as P or D, on being

inoved around, describes the ellipse on paper.

If the two axes or the contour of the ellipse are known, to find F and F'
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we have DF^DF, and DF+DF'^AF + AF = AF+BF'=3.
constant, so that D F = AC. With a pair of compasses measure A C and

connect D with the long diameter A B by lines whose lengths are equal to

A C ; these lines cut A B in the foci F and F\ The distance of each focus

from the one extremity of the minor axis equals half the major axis.

There is no exact method by which the perimeter of an ellipse can be

calculated, but the following formula gives it with a fair degree of exactitude.

Let (X and b be respectively the long and short axis, and P be the perimeter

;

then

When the length of the one axis a is known, that of the other, 5, is found

from

If the two axes are equal the figure becomes a circle, so that the peri-

Fig. 283.

meter of the ellipse is analogous to the circumference of a circle. Since

the circumference of a circle equals tt times the diameter, the diameter

of the circle whose circumference is equal to the perimeter of a given

ellipse is

diameter

An ellipsoid is a solid body generated by the revolution of an ellipse

about one of its axes ; it is prolate when formed on the major axis, and oblate

when formed on the minor axis.

The Hyperbola.

On the line L L' (Fig. 283) erect Fi T X' and take any point F' on L U.

Divide F' T at V so that V'F'IV'T equals the eccentricity. Take V so

that VFJVT = V'F'/Vr, and mark so that VF = VF. Take T so that

71= V'T% and erect E TX. The point C is [midway between V and V'1

In the hyperbola Fand V are the two vertices, F and F' are the two foci,
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Cis the centre, LT is the transverse axis, andi^ TX dndR'rX' are the two
directrices.

F is any point on the curve such that FP/PJP = VF'/Y'T = d^/cl, =
a constant more than unity. The distance F F ~ P rk constant, and is

equal to
; this latter is the property of the hyperbola with which we

are chiefly concerned.

Construction.—To the right extremity A of a rod FA (Fig. 284), fasten
a string whose length .S' is somewhat less than that of the rod. Draw the

Fig. 284.

axis L U, take F and F' as the foci, and put stout pins thi'ough them

;

attach the other end of the string to F\ Then a pencil P pressed against
the lower edge of the rod, the string being kept taut, will trace the
hyperbola as the rod is rotated around F. If the string be lengthened to

2 FA - S, the other branch of the hyperbola can be traced.

The Parabola.

On the line LL' (Fig. 285) erect E T X, and divide F T at F such that
VF = V T. In the parabola V is the vertex, F is the focus, L L' is the

X
Fig. 285. Fig. 286.

axis, and PiTX Vhq directrix. The parabola may be regarded as a special

case of either an ellipse or hyperbola whose one vertex and focus is at oo,

P is any point on the curve such that FP/RP = VF/VT = d^/d.^ = 1,

which is the chief property of the parabola Avith which we have to

deal here.

Construction.—Fix a string on a rod as for the hyperbola, but let the

length S be exactly equal to A B. Draw the axis L L\ take some point F
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as the focus and put a stout pin through it ; at 7" erect the directrix, and

attach the string to the pin at F. The pencil, used as for the hyperbola,

traces the curve as i>\ the base of the rod, is gradually passed along the

directrix at T and at right angles thereto.

Aplanatic Reflection and Refraction.

We have seen that reflection or refraction at single spherical surfaces is

always accompanied by more or less spherical aberration ; it is possible, how-

ever, to conceive surfaces that are aplanatic, i.e. capable of producing a point

image of a point object situated on the principal axis ; such surfaces are, in

general, one of the three conic sections briefly described in the foregoing

article.

Since light takes the shortest possible path in its course through any

medium, if we make the optical length of all rays diverging from the object

point equal, the image point will be aplanatic ; therefore it is convenient to

apply the principal of least time in order to determine the nature of the

surface in each particular case. As briefly pointed out in Chapter XXIY, the

Fig. 287. Fig. 288.

optical length of any ray is its actual distance multiplied by the /x of the

medium in which it is travelling.

Reflection.

Cc. Surface-Real Conjugates within oo.—Let it be required to construct

a mirror (Fig. 287) capable of producing an aplanatic image, of some point

within 00 on the principal axis. Then if d^' . . . and d^ d^' ... be the

incident and reflected rays, d{ + d^ must equal d^' + d^\ and likewise for

any other incident reflected ray. Thus, in general, d-^ + d^ = 3i, constant, so

that the mirror must he an ellij)Soid of revolution loith and
f.j

as the foci.

The object could, of course, be at f^ and the image at f-^. The mirror is,

however, aplanatic only for these two points, aberration appearing imme-

diately the object point is displaced from either. For every pair of conju-

gates a diff'erent curve is needed, so that ellipsoidal mirrors have no practical

utility, as their limited application never occurs.

It should be noted that spherical mirrors of any aperture are aplanatic

if the light diverges from, or converges to, a point at the centre of

curvature.
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Cc. Surface-One Conjugate at oo.—If the object point be at oo (Fi^;. 288)

the curve of the reflecting surface becomes that of a parabola of which F is the

focus. Here the directrix RTX represents a plane wave interrupted by the

mirror, and in order that all points on such a wave may meet at a single

point, they must be converged to F in precisely equal times, so that, as

before, + d.^ = d^' + d^\ etc. If the object point be at F^ the light is

reflected as a parallel beam.

Parabolic mirrors are employed in reflecting telescopes for bringing rays

from an infinitely distant object, such as a star, to a sharp focus. Also for

projecting a parallel beam of light, as in lighthouse and optical lanterns,

microscopic reflectors, etc. Such mirrors possess the advantage over refrac-

tors in that all light waves are equally projected, and therefore chromatic

aberration does not occur. For this reason also they are preferred to refrac-

tors for the photography of celestial bodies.

Cc. Surface-Virtual Conjugate.—Let (Fig. 289) be the object point,

and /g its virtual image ; the latter is then aplanatic if d( — d^^ d^' — d^\

etc. be a constant. This results if the curvature of the mirror is that of a

Fig. 289. Fig. 290.

hyperbola^ f^ and being the foci. If the virtual object point be at f^ and

the image at /j the same curvature is required. Like the ellipsoidal, the

hyperbolic mirror is of no practical value.

Cx. Surface.—An aplanatic convex reflecting surface for a near object

must be hyperbolic (Fig. 290), while for parallel light it must be parabolic.

Refraction.

The refracting surface which could be aplanatic for light of a certain

wave-length could not be so for other wave-lengths. The conditions to be

fulfilled for aplanatism in refraction is the same as for reflection, that is, all

the rays diverging from an object point must reach the image point at the

same time. It is, however, much more complicated than in reflection for

whereas in the latter the light before and after contact with the surface is in

the same medium, this is not the case in refraction, the velocity of the light

diff"ering before and after contact with the refracting surface.

Single Cx. Surface-Near Objects.—Let (Fig. 291) be an object point

in air ; its real image f^ in the denser medium will be aplanatic if the

distances d^' + ixd^\ d^' -f \id^' etc. be equal. The light travels along
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d-l' etc. at a velocity V^, while it travels along d^^ d^' etc., at a lessened

velocity V^- The curvature of the surface, where d-^ + /xd^ is a constant, is

that of a Cartesian oval. If were the object in the dense medium, and j\

the image in air the same conditions apply.

Single Cx. Surface-One Conjugate at oo.—If the object point (Fig. 292)

be at oo, again the condition for aplanatism is that d^ + /x d^, d{' + /x d"^

etc. be a constant ; the curve must then be that of an ellipsoid, i.e. all points

on a plane wave R TX must be retarded so that they reach the focus in the

same time that each point would have travelled to RTX if uninterrupted.

Fig. 291. Fig. 292.

If the object be at /g, so that the light is projected parallel, the same surface

is required.

Single Co. Surface.—If j\ is the virtual image of j\ (Fig. 293) it is

aplanatic if d^ - jjl d^, d^' — \x d^ etc. is a constant, and the curvature of

the surface for this condition is also that of a Cartesian oval. If however

dj = fi d^ the curve is spherical.

Cx. Spherical Surface.—If a luminous point be situated within the dense

medium of a single convex refracting surface (Fig. 294), a position on the

axis can be found such that the virtual image is aplanatic. The distance of

Fig. 293. Fig. 294.

from the surface must be r + r/fx, or r (jx + I)//x, and therefore the image

is formed at r + fxr, or r(/x + 1). As the distances of and are

respectively r/[x and fxr from C, the magnification is f^/f^ = /x^. This prin-

ciple is made use of in Abbe's homogeneous immersion objective employed

in high power microscopes.

In this case the bottom lens of the objective is a hemisphere whose plane

surface is towards the object, and when immersed in cedar oil of the same

index as that of the glass the whole forms a single refracting body as

shown in Fig. 294. The object is then placed at f-^,
and its aplanatic image
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is formed at f^, which in turn serves as an object for the remainder of the

objective components.

Aplanatic Lens.— If, in a Cc. periscopic lens (Fig. 295), the object at

faces the concave surface, the virtual image at is aplanatic whend\ = ixd^\

In this case )\ the radius of the first surface must be +1), while that of

the second surface must be (/^ + {t being the thickness), for then lies

in the centre of curvature of the second surface ; = both measured
from the first surface.

Example.—Let /i-=15 cm., t^2 cm., and /x=l-5 ; then

15/(1-5 + 1) = 6 cm., and r2 = (15 + 2)/l-5= 11'33 cm.

After refraction at the first surface we have

1 -V/a = - -5/6 - 1/15 = - 4-5/30

Therefore -i-5f.,= 45, or = - 1

0

An aplanatic Cx. meniscus results when the object faces the Cc. surface

(Fig. 296) if = and = /x(/j + t)/{fx +1). In this case the rays from

Fig. 295. Fig. 29d.

are normal to the first surface, and d-^ is constant, as is also d.,, for all rays

;

/g lies in the aplanatic point of the second surface corresponding to the value

of given in Fig. 294 illustrating the case of the single surface.

Example.—Let /i= 15 cm., / = 2 cm., and /x= 1-5
; then — 15 cm.,

=1-5(15 + 2)/(l -5 + 1) - 25-5/2-5

so that ^2 = 10*2 cm.

If there are two unknown quantities and t, values must be found for

them so that //-/i
= both measured from the second surface.

These are the only cases where aplanatism can be obtained with lenses
;

there is no case for parallel light, nor for double Cx. and Cc. lenses, but, as

explained under spherical aberration, this can be minimised by employing

certain forms of lenses and a stop.

Curvature.— If a surface is spherical its curvature is 1/r, and this applies

also to all curved surfaces other than spherical. In the case of the former

the curvature is equal at all points on the surface, but this is not so with

conic and other curves. The curvature at any point on any refracting or

reflecting surface is determined by drawing to it a normal from the axis, the

length of this line being the radius of curvature of that particular point.



CHAPTER XXVI

POLARISATION AND PEBBLES

Polarised Light.—The beam of light transmitted by ahomogeneous medium,

such as air or glass, is ordinary in the sense that it consists of waves whose

transverse vibrations lie in every direction across the line of travel, whereas

the vibrations of polarised light are confined to certain directions only. The

polarisation of light may be plane, circular, or elliptical. The plane of polari-

sation of plane-polarised light is that plane from which the vibrations are

eliminated, the latter being executed at right angles to the plane of

polarisation. Suppose a rope attached to a wall and vibrated at the free

end ; vibrations or waves will run along the rope in any plane. If, how-

ever, the rope be passed between two upright sticks all vibrations will be

Fig. 297.

stopped except those in the vertical plane. The former illustrates ordinary

unpolarised light, and the latter plane polarised light waves.

Polarisation by Reflection.—At a certain angle of incidence, which varies

with the /X of the medium, the reflected and refracted beams L and R
(Fig. 297) from the glass surface A B are at right angles to each other. The
vibrations of the incident light which are perpendicular to the surface pene-

trate it and are transmitted, while some of those parallel to the surface are

reflected. The reflected beam is thus polarised, the vibrations being confined

to a plane parallel to the reflecting surface, while the plane of polarisation

is perpendicular to the surface, and is therefore the same as the plane of

incidence of the light.

302
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The angle of incidence necessary to obtain polarisation of the reflected

beam is found by the equation /x = tan P, where P is the polarising angle.

Thus P differs with the optical density of a medium, the polarising angle of

water being 53° that of glass about 57°, and that of a diamond 68°.

Differently coloured rays have different polarising angles, so that white light

is never completely polarised by reflection. The polished surfaces of metal

have no polarising effect.

Polarised reflected light can be best obtained from a sheet of glass

blackened on the further side, and, of course, suitably placed with respect to

the incidence of the light. The blackening is not essential, l;)Ut it prevents

reflection from the second surface of the glass.

Polarisation by Refraction.—The light, incident at the polarising angle

on a transparent body, which is refracted and transmitted at right angles to

the reflected beam, is partially polarised, the plane of polarisation being at

right angles to that of the polarised reflected light. Pure polarised refracted

light can only be obtained when a beam is transmitted obliquely through a

bundle of thin glass plates bound together, so that, by repeated reflection

,

all light polarised in the opposite direction is got rid of.

Double Refraction.—Most crystals polarise light owing to double refrac

tion, notably calcite (Iceland spar), quartz, and tourmaline. A light wave in

air or in any homogeneous body vibrates in every direction across its line of

propagation, and its velocity is uniform and inversely proportional to what

is termed the optical density of the medium. In a crystal, owing to its

molecular structure, the retardation of waves, when incident obliquely to

the axis of crystallisation, is greater in one direction than in another, so

that the rays are transmitted along two separate paths, the one ray being

called ordinary, and the other the extraordinary ray.

The separated waves caused by double refraction differ in that one of

them is spherical and the other elliptical. The ray corresponding to the

spherical wave is said to be ordinary, because it obeys the ordinary laws of

refraction of light in homogeneous media, but the e.ctraordinary ray conforms

to no fixed law, since it is not at right angles to the wave front, nor does

the refracted ray lie in the same plane as the incident and normal to the

point of incidence. Both rays are polarised in planes at right angles to each

other and travel at unequal speeds, except in the direction of what is known
as the optic axis, where both waves have the same velocity and where no

double refraction occurs. In planes at right angles to the optic axis there is

also no double refraction in the ordinary sense, but the waves are retarded

unequally, the one travelling more slowly behind the other.

Rock Crystal or Pebble.—Rock crystal or quartz is a pure, usually

colourless, crystalline variety of silica, which occurs in nature in the form of

a hexagonal (six-sided) prism, terminating in a six-sided pj^ramid. Its

average index of refraction (/x ^ 1-54) is about the same as that of ordinary
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crown glass, but lower than that of flint glass, its dispersion (/x^ - /Xa)= '014

being lower than either. When cut into a slab or ground to form a lens, it

is more usually styled a pebble. It is much harder than glass, more brittle,

and a better conductor of heat, and it transmits much more readily than glass

the ultra-violet rays which lie outside the visible spectrum. Its density is

2*65, that of glass being from about 2*4 to 3'4.

The relative scarcity and greater difficulty of working pebble makes it

comparatively dear. Its low dispersive power and freedom from liability to

become scratched seem to be its sole advantages, so that, all being con-

sidered, pebble is not superior to good optical glass for spectacle lenses,

although perhaps for simple spherical convex lenses which are frequently

put on and off, and therefore specially liable to become scratched in the

centre, it is sometimes to be preferred. As lenses, the pebble should be

quite clear and free from striae, specks, and flaws, and should be axis cut.

Axis-Cut Pebble.—Axis-cut pebble is that which is cut into slabs at right

angles to its line of crystallisation, so that when the surfaces receive their

spherical curvatures, the axis of the crystal coincides with the principal axis

of the lens. Axis-cut is more expensive than non-axis-cut pebble, because

in cutting it there is not so good an opportunity of utilising those parts of

the crystal which are free from flaws, as when the slabs are cut without

regard to any particular direction.

To Recognise Pebble.—Pebble is recognised by {a) feeling colder to the

tongue than glass, {b) by the fact that on account of its hardness a file makes

no impression on it, and (c) by the polariscope test. By the latter the

diff'erence between axis-cut and ordinary pebble can also be seen. As
supplied to the optical trade pebble is usually quite colourless, and when in

the form of a lens it has a sharper ring than glass.

Double Refraction in Pebble.—Pebble possesses the property of double

refraction, the refractive index for the ordinary ray being 1-548 and for the

extraordinary ray 1*558, and since the index is higher for the extraordinary

than for the ordinary way, pebble is described as a positive crystal. It is

because the difference in the /x's of the two rays is so small that double

refraction by a pebble spectacle lens is not appreciable, the images being too

close together to be seen double, the more so since the substance of the lens

is thin.

Tourmaline.—Tourmaline cut parallel to its axis reduces an incident

beam of light to two sets of polarised waves, the one in the plane of the axis

of the crystal, the other at right angles to it. By a curious property of

tourmaline the former (the ordinary ray) is absorbed almost immediately,

and the latter (the extraordinary ray) only is transmitted, so that all the

emergent plane polarised light is vibrating in the plane parallel to the

axis. The plane of polarisation of a tourmaline plate can be determined

by analysing the light polarised by reflection from a plate of glass. If
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held at the proper angle, the position of complete or partial extinction is

found when the axis of the tourmaline is at right angles to the surface of

the glass, that is, in the plane of incidence of the light.

Iceland Spar.—Spar or calcite, like quartz and tourmaline, has the power

of double refraction, but since the ordinary wave has a higher index than

the extraordinary, it is termed a negative crystal. The index of the ordinary

ray is 1-659 and that of the extraordinary 1-486, so that the comparatively

large difierence between the indices causes a corresponding high degree of

double refraction, enabling the doubling of objects to be plainly seen through

slabs only a few mm. in thickness,

Nicol Prism.—This is a device whereby a beam of pure polarised light is

obtained by transmission through a piece of spar. The latter is cleaved

obliquely to its axis, and the two segments recemented by balsam whose

index of refraction is 1-54, or about midway between the indices of the two

rays. Now the angle of cleavage with the axis is so arranged that, when
the ordinary ray is incident on the layer of balsam, it does so at an angle

greater than the critical angle for indices of 1-659 and 1-540, and is there-

fore totally reflected to one side. On the other hand, the extraordinary

ray, whose index is lower than that of the balsam, is transmitted, and

constitutes a plane polarised beam of light which is, however, only half the

intensity of the original beam. On account of the scarcitj^ of spar Nicol

prisms are now expensive to make, and are largely replaced by reflecting

polariscopes of some form or other.

The Pebble Tester.—The simple polariscope consists of two plates of

tourmaline cut parallel to their axes and suitably mounted. These plates

are sometimes fitted to the ends of a wire spring like a pair of sugar tongs

and called a pincette. If the two plates are placed in such a position that

their axes are parallel, the plane polarised beam of light transmitted by the

first plate will traverse the second, and if a polariscope, so fixed, is looked

through, green or brown light—due to the colour of the tourmaline—can be

seen. The combination looks much more opaque than would pieces of glass

of the same intensity of colour, because half the light received by it is

quenched. The outer plate which polarises the light is called the polariser,

and the second plate—the one near the eye—is called the analijser. If, now,

the analyser be rotated, while still looking through the instrument, the light

will be found to become less and less bright, until, when it has been turned

through a quarter-circle, the two axes being then at right angles to one

another, the plane polarised beam transmitted by the polariser is stopped by

the analyser. If the axis of the polariser is, say, horizontal, it can transmit

only waves whose vibrations are horizontal, while the analyser can transmit

only those whose direction is vertical
;
consequently all the light is blocked

out. So long as the two axes are oblique to one another, some light passes

through both plates.

20



306 GENERAL AND PRACTICAL OPTICS

It is in the position of extinction of the two plates that the polariscope

serves as a pebble tester, so that if required for that purpose, it should be

looked through and the one plate rotated until the darkness is complete.

Unless this is done it is useless for the work, although even if it cannot be

made quite dark there is an appreciable difference in the quantity of light

transmitted by glass and by pebble placed between the plates, as explained

in the following paragraph. Fig. 298 shows the two tourmalines with their

axes parallel, Fig. 299 with their axes oblique, and Fig. 300 with their axes

at right angles.

Recognition of Pebble by Polariscope.— If an ordinary glass lens, being

homogeneous in nature, is placed between the two plates of the polariscope,

it has no effect on the plane polarised beam of light transmitted by the

polariser, and nothing can be seen through the instrument. A pebble placed

in the instrument, by virtue of its double refracting nature, so twists or

rearranges the vibrations of the beam transmitted by the first tourmaline

plate that the light is incident on the second plate in directions other than

at right angles to its axis, and part of it is transmitted. Hence with a

pebble tester a pebble can be distinguished from glass, since, when a pebble

Fig. 298. Fig. 299. Fig. 300.

placed between the tourmalines, light is seen, while none is seen when glass

is so placed.

Also most crystals, when viewed through a polariscope, present

arrangements of colour which are characteristic of them. If a pebble cut

parallel to the axis of the crystal (non-axis cut) is placed between the dark

tourmalines and rotated there are found two positions in which no light

passes ; the one is where the axis of the pebble is parallel to, or in the same
line with, the axis of the polariser, and the other is where it bears the same

relation to the axis of the analyser. In either case, the polarised beam of

light received by the pebble cannot be made to vibrate so as to be transmitted

by the analyser.

Recognition of Axis-Cut Pebble.—A ray of light transmitted by quartz,

cut perpendicular to its axis (axis-cut pebble) is not bifurcated. Such pebble

possesses the property of rotating the plane of polarisation, so that the

vibrations transmitted from the polariser are no longer at right angles to the

axis of the analyser. The amount of twisting undergone by the plane of

polarisation is proportional to the thickness of the quartz, and, provided

monochromatic light were used, extinction could again be obtained by^
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rotating the analyser through a sufficient angle. With white light, however,

this is impossible, as the rotation of the plane of polarisation depends also

upon the wave-length, i.e. colour of the incident ray, and therefore the angle

of extinction differs for each wave-length. In addition, light transmitted

obliquely through the polariscope and pebble undergoes double refraction at

the latter, and a kind of interference (too complicated to be gone into here)

is set up between the ordinary and extraordinary rays having effects some-

what similar to Newton's rings. These are caused by the unequal oblique

distances travelled by the two rays within the pebble, and a series of brightly

coloured rings are seen (if white light be used) crossed by two dark brushes

at right angles to each other. If the analyser be now turned so that its axis

is parallel to that of the polariser, the rings will be seen to change to their

complementary colours, and clear spaces are substituted for the dark brushes

previously formed. A white cloud is the best source in these experiments.

When the pebble is cut nearly, but not quite, perpendicular to its axis,

coloured arcs of circles (incomplete rings) are seen ; the light also cannot be

blocked out, no matter what its position between the plates of tourmaline,

because the axis cannot be made parallel to that of either the polariser or

analyser. The intensities of the colours and the sizes of the arcs are both

dependent on the nearness of the section of the pebble to that of right angles

to the axis, i.e., on its nearness to axis-cut.

Advantage of Axis-Cut Pebble.—Rock crystal which is axis-cut is prefer-

able for lenses to that which is non-axis cut, because in the former there is

no double refraction for light parallel to the axis.

Unannealed Glass.—Glass which is unannealed, or has been subjected to

pressure, strain, or twisting, polarises light and therefore acts in the polari-

scope somewhat similarly to a pebble, in that light is transmitted and colours

are seen ; but the effects produced by unannealed glass can never be

mistaken for those of crj^stals since the patterns of colours, even if not

irregular, as is generally the case, are totally unlike those caused by any

kind of crystal. *



CHAPTER XXVII

PHENOMENA OF LIGHT

Interference.—If from two adjacent points of light and (Fig. 301)

waves of light are propagated, the crests and troughs of the waves from P^

will coincide with those from P^ along certain lines marked and they

reinforce each other, thus causing doubly increased wave motion. Between

these lines, marked i), the crests from the one source coincide with the

troughs of the waves from the other, with the result that the wave motion

is neutralised at these spots owing to the interference of the one set of waves

with the other. Alternate lines of light and darkness, known as interference

bands or fringes, are in this way produced. The light bands are along lines

so situated that any point on them is a whole number of wave-lengths from

and Pg- The dark bands are along lines so situated that any point on

them is one half wave-length further from the one source than the adjacent

Trough. ^ ^ Crest

Fig. 301.

white band. The shorter the waves which interfere with each other, the

less is the distance between the light and the dark bands. If, as in white

light, there are waves of different lengths, the interference bands, instead of

being alternately light and dark, take the form of coloured bands which are

alternately red, blue, and white, the latter occurring where all the various

colour bands coincide.

It must be remembered, however, that in order to secure interference

between the light from two sources, the latter must be exactly similar, giving

out waves of precisely the same length, amplitude and sequence. For

preference the sources should be the duplicated images of a single source

obtained by means of a double prism or other device. In addition the

sources must be as small as possible—in fact the smaller they are the finer
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are the interference bands—and also they must not be separated by too great

a distance ; otherwise the bands are so narrow as to be indistinguishable

except with artificial magnification.

The colours of thin films, such as soap bubbles, layers of grease on water,

etc., are due to interference. Part of the light is reflected from the outer,

and part from the inner, surface of the film, and the light reflected from the

two surfaces is not in the same phase—i.e., the portion of the wave reflected

from the inner surface has to travel over a greater distance than that from

the outer surface. If the thickness of the film, therefore, be such that the

inner wave emerges half a wave-length, or any odd number of half wave-

lengths, behind the outer wave, the two portions of the original waves will

interfere, and darkness will result at that spot for that particular wave-

length. Should, how'ever, the inner wave emerge in the same phase, i.e., a

whole wave-length or any number of wave-lengths behind the outer wave,

reinforcement will take place.

Newton's Rings.—When two plane, or two similarly curved, surfaces,

the one convex and the other concave, are placed in contact, the film of air

contained between them is of equal thickness, but if the one surface is not

truly plane, or of exactly similar curvature to the other, the film of air is of

varying thickness, and colours, due to interference, as explained above, are

exhibited. This constitutes a method of determining a true plane or a

uniform curvature. If a convex surface is placed in contact with a plane, or

another convex surface, the film of air contained between them must be of

gradually increasing thickness. At the centre the film is very thin, and a

central black spot results, which is surrounded by a series of alternately

bright and dark rings if monochromatic light is employed, or by coloured

rings if the incident light is white. These are termed Newton's Rings. If

the rings are viewed by transmitted light the centre is bright and the sur-

rounding rings are alternately bright and dark, or of colours which are

complementary to those seen by reflected light.

The width and regularity of the rings afford a very delicate test for

similarity between two curves, and is made use of for testing the surfaces of

the components of high-class photographic objectives, etc. The standard

curve is called a test jMe on to which is placed the surface to be tested. The

absence of coloured rings shows true contact over the whole of the surfaces,

but the pres' nee of rings proves a difterence in curvature and the lens is

rejected as incorrect
;
complete absence of any rings is, however, rare, and

the surface is considered satisfactory if the rings are very wide and of a dull

colour.

Diffraction.—When light reaches the edge of a body owing to its

undulatory motion some of the waves bend round the edge of the obstacle

and penetrate the shadow cast by it. This phenomenon is known as diffrac-

tion. If monochromatic light is admitted through a small aperture the

edge of the shadow is characterised by a series of alternate light and dark
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bands or rings, parallel to the edge of the shadow. These bands become less

and less distinct as they are progressively further away from it, and they

are broader in proportion to the length of the waves. If the source of illu-

mination be white light, the diffraction fringes of the different colours over-

lap and a series of coloured fringes are seen. It is essential that the aperture

be narrow, or small, since otherwise the unimpeded waves su out-number the

retarded ones that the diffraction effect is more or less lost—in other words

the diffraction effects are lost in the general penumbra (q.v.).

Diffraction bands can also be seen by looking through a narrow slit, at

say, the filament of an electric glow lamp, the slit being parallel to the

filament. If a very fine obstacle, such as a hair or thin wire, be placed

between the light and a screen, a series of fringes can be seen both within

and beyond the geometrical shadow. If the obstacle be circular, such as a

small round patch on a piece of clear glass, the shadow is seen surrounded by

alternate light and dark rings, or, if the source be sunlight, by a series of

spectra. These bands encroach on the shadow, at the centre of which a

bright dot can be seen. Of course, especially favourable conditions must be

chosen to view the diffraction bands on account of the necessary smallness of

the source, and the consequent loss of light. A star seen through a per-

fectly corrected telescope, and small objects seen by the microscope, appear

bordered by one or more faint rings. Owing to diffraction, there is a limit

to the possible magnifying power of a microscope, since the higher the power

of the objective, the smaller the lenses, and consequently the more marked

the diffraction phenomena.

The colours of many beetles and of mother-of-pearl are caused by diffrac-

tion and interference phenomena, and are not due to pigmentation at all

;

here the wing-cases of the beetles, or the mother-of-pearl, are very finely

striated, which causes them to act like irregular diffraction gratings.

Diffraction Grating.—A large number of very fine equidistant lines

—

some thousands to the inch—ruled parallel to each other on a plate of glass

or metal forms a diffraction grating.

Diffraction Spectrum.—Dispersion can be obtained by reflection from, or

transmission through, a glass diffraction grating, or by reflection from a

metal grating ; the transmitted or reflected light forms a series of spectra

which can be thrown on a screen, or be examined by a telescope, and the

finer and closer the lines the purer will be the spectrum obtained.

The lines of the grating scatter a small portion of the original waves into

fresh and regular series, of which some are quenched by interference.

Unlike the spectrum obtained by prismatic refraction, the colours as the

direct result of interference are evenly distributed in accordance with their

wave-lengths, so that the red end is not condensed, nor the violet end dis-

persed, while the red and orange occupy more, and the blue or violet occupy

less space thaii in a refraction spectrum ; also the most luminous part is

more nearly in the centre. Such diffraction gratings afford an accurate



PHENOMENA OF LIGHT 311

means by which to measure the wave-lengths of light and the relative

positions of the Fraunhofer lines.

Fig. 303 represents a portion of a highly magnified section of a glass

grating, Q and B being the clear spaces between the lines. The distance

Q B, equal to one ruling and one space, forms a grating element.

Imagine parallel light falling on the grating from the direction L ; the

bulk of the light passes through uninterrupted, so that an eye placed some-

where in the neighbourhood of will see the original source very much as it

would through a piece of plane glass. On moving the eye to one side, so

that the direction of view is oblique to the grating, colours will commence to

appear, these being in the regular spectrum sequence from violet, which

makes the smallest angle with the surface, to red, which makes the greatest.

A short interval with no colour will occur after the red, but on increasing

the obliquity of the eye to the grating, a second series of colours, in the same

order as the first, but more drawn out and fainter, will be observed. This is

shown diagrammatically in Fig. 302. The first, FGIi, is the primary

spectrum ; V G' R' is the secondary spectrum, beyond which are others,

Fig. 302. Fig. 303.

provided the grating is not too fine
;
usually only the primary and secondary

spectra can be seen from a grating having about 15,000 lines to the inch. As
previously stated, it is by the reinforcement of the wavelets diverging from

the grating spaces along certain lines oblique to the surface, aided by certain

amount of interference, that the spectra are produced.

In Fig. 303 consider a certain direction QP oblique to the normal L L\
making with the latter the angle a

;
or, conversely, suppose the grating itself

be tilted through that angle with respect to the incident light. Then the

wavelets diverging from Q and R will either reinforce or interfere with each

other according as Q P is an even or odd numher of half wave-lengths—in other

words, as the difference in the paths of travel of the wavelets is an even or

odd number of half wave-lengths. Let P Q be equal to the smallest possible

even number, i.e. tivo, of half wave-lengths. Then in the direction P Q there

will be reinforcement for that particular colour, giving rise, in the eye or

observing telescope, to an image of the original source if the light be mono-

chromatic, or to a spectrum if white light be employed. Now
P Q = Q R sin a, or w; = E sin a,

where w is one wave-length of the light in question, and E is a grating
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element. The element E is known, and the angle a can be found by means

of a revolving telescope as in the ordinary spectrometer (q.v.) ; therefore the

wave-length to is easily calculated from the above formula.

Example.—Let the grating have 15,000 lines to the inch, and suppose

the angle a for a particular part of the spectrum, say the yellow [D) line, to

be 20°. 15,000 lines to the inch corresponds to 25-4/15,000 mm. to every

grating element E, and sin 20°= -342. Therefore w= 25-4 x -342/15,000

= •000579 = 579 /x/x, which corresponds very closely with the D line of the

spectrum from which the observation was taken.

If the secondary spectrum be employed to obtain the necessary data for

the above calculation, tv v/ill then represent two wave-lengths, so .that

vj = E sin a/2

the result being the same as in the example given, but a is rather more than

40°, since sin a must be exactly twice as great.

It should be observed that no spectrum is formed when the eye or the

observing telescope is normal to the grating, the various reinforcing and

interfering wavelets overlapping to form white. As will be seen from the

formula, the number of spectra formed is smaller as E is smaller, i.e. as the

number of lines to the inch is greater, and vice versa.

By the employment of metal gratings, specially in the form of concave

mirrors which focus the spectra direct on to a screen or photographic plate,

increased intensity of light is secured. In all such experiments the most

suitable source is a fine slit, brightly illuminated, placed parallel to the

rulings, the spectrum consisting of an innumerable number of diffracted images

of the slit ranged side by side, and representing, as nearly as is possible, a

separate image for every wave-length.

Luminescence.

This is the general name given to the property of a body by which,

without sensible rise of temperature, it becomes luminous.

The luminosity of phosphorus, fungi, and decaying vegetable matter is

caused by oxidation. Chemical action also (or physiological action) is the

cause of the light emitted by shell and deep-sea fishes, fire flies, glow worms,

beetles, insects, animalculse, and the bacteria found in putrefying vegetable

and animal matter. Thus the brilliant light observed on tropical seas at

night is due to numberless luminescent organisms. The light emitted by
various insects is found of almost every colour in one or other species.

Luminescence can also be produced by heating fluorspar, quinine, etc., by

applying friction to quartz or cane-sugar in the dark, or by cleaving a slab of

mica. Fused boric acid or even water when rapidly crystallised or frozen

may exhibit this phenomenon.
When a high tension current is passed through a vacuum tube, Rontgen

rays are produced, and the walls of the tube emit a greenish luminescence
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which is assumed to be due to minute electrified particles striking the wall

of the tube with immense velocity and producing light and heat by their

impact, the colour of the luminescence depending on the nature of the glass.

Radium is found to shine perpetually in the dark, and bodies exposed to the

radiation of radium become themselves radio-active, i e. luminescent for a

time. Luminescence also includes the following phenomena.

Phosphorescence is the term frequently given to the foregoing phenomena

of luminescence, but it is more properly applied to the property of a body of

being luminous in the dark after exposure to lujlit. Some diamonds, fluorspar

and various minerals possess this property ; chloride or sulphide of calcium

or barium, preserved from air in a sealed glass, will shine brilliantly for a

long time.

Phosphorescence is excited by rays of high refrangibility, higher than

those which produce the phosphorescent light, although the latter may be

found of every colour of the spectrum. Phosphorescence is supposed to be

due to the absorption of light, and its later radiation, as light of longer

wave-length, after the exciting action has been removed.

Fluorescence.—Fluorescence is the property possessed by certain bodies

of absorbing ultra-violet waves, invisible to the eye, and of emitting, by

radiation, light of longer wave-lengths by which they appear self-luminous.

This property was first discovered by Stokes in fluorspar, and so named by

him fluorescence. The emission of light ceases immediately the original

source of light is cutoft', and in this fluorescence differs from phosphorescence.

The phenomenon is not confined to the ultra-violet rays, for if a solution

of chlorophyll be placed in a dark room and a beam of white light allowed to

fall on it, the surface of the solution emits a red fluorescent light. A solution

of quinine emits a pale bluish colour in the presence of daylight. The

fluorescence increases if the solution is held in the violet end of the spectrum,

and is visible when held beyond the limits of the visible spectrum, the

invisible ultra-violet rays exciting fluorescence and becoming changed into

visible blue- violet rays. Similar eff'ects may be seen with uranium glass,

which fluoresces a brilliant green when placed in ultra-violet light. A thick

plate of violet glass placed in front of a beam of light from the electric arc

will cause the same phenomenon, ^sculine (the juice of the horse-chestnut

bark), barium, and many other substances are fluorescent, and so are also

the cornea, crystalline lens, and bacillary layer of the retina.

It has been said that the ozone of the atmosphere is fluorescent, and, by

converting the ultra-violet into visible rays, makes the sky appear blue.

Fluorescence is generally taken to be the absorption of invisible light

and its radiation as visible light vjldle the eaxitimj cause is 2)rese7it.

Calorescence is the name given by Tyndall to the conversion of the

invisible infra-red waves into visible light. This he achieved by focussing an

electric light, by a reflector, on to some platinum foil after passing it through

substances opaque to visible, but transparent to infra-red light.
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Some Optical Phenomena.

Blueness of Sky.—-If the air were absolutely transparent and of uniform

density, light from the sun would reach the earth without any loss, and the

sun, moon, and stars would be set in a sky which would appear black both

during the day-time and at night. The air, however, contains a great quan-

tity of aqueous vapour, and the blue colour of the sky is said to be due to

reflection from the minute particles of this vapour suspended in the higher

layers of the atmosphere. Tyndall showed that when mastic is thrown into

water the minute insoluble particles of the mastic emit a deep blue colour

similar to that of the unclouded sky. If a cloud of smoke be blown into the

air, the smoke particles reflect the short blue waves more freely, and the

cloud assumes a blue tint, and if a white screen be held, in bright sunlight,

behind the smoke, the screen assumes a reddish brown hue. Large quan-

tities of so-called cosmic dust also are held in suspension in the air, and this

is believed, by some scientists, to be a cause. By some the blue of the sky

is said to be due to polarisation by oblique reflection from particles of

vapour, salt, etc., in the air
;
by others it is thought to be caused by

fluorescence of the ozone.

Aerial Perspective.—If two objects, one light and the other dark, be seen

at a considerable distance, they lose some of their contrast, the light object

becoming darker by absorption of its reflected light by the intervening air,

and the dark object becoming lighter by the superadded light diffused

through the air. This causes what is known as aerial perspective. If the

air is clear and the added light is blue, distant hills throw deep shadows of a

purple blue colour in bright sunshine.

The Horizon.—When the sun is low down on the horizon its light has to

pass through a thicker layer of atmosphere filled with dust particles and

moisture ; some of its blue and violet rays are absorbed or reflected, and it

thus appears reddish, and for the same reason it appears red in a fog.

Near the horizon, the sun and moon appear larger than when higher in

the heavens because they are mentally projected beyond the horizon, as

compared with terrestrial objects, whereas when seen in the zenith this

cannot be done, as they stand alone
;
they are not really larger as measure-

ments with a telescope show. They also appear slightly flattened vertically,

when near the horizon, and appear a trifle higher up than they really are,

owing to the refraction of the air and the greater obliquity of the light from

their lower edges.

Refraction diminishes the dip of the horizon and so slightly increases its

apparent distance. The distance of the horizon can be computed approxi-

mately from d= s/l-b A, where h is the height in feet of the observer above

the sea or earth level, and d is the distance in miles.

Mirage (Fata Morgana).—If the layers of the air are of markedly

unequal density, as is sometimes the case in hot climates, especially on a
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desert where the warmest layers are the lowest, the phenomenon known as

the mirage may be seen. Light from objects above, on its passage to the

earth, traverses layers of air which become gradually less refracting, the

angles of incidence accordingly increasing so that the light becomes more and

more parallel to the surface, until at length the critical angle is reached,

beyond which refraction changes to reflection. The light is then reflected in

the contrary direction, and ascends to reach the observer's eye as if proceed-

ing from a point below the ground, and objects appear inverted. This is

shown in Fig. 304, where light from an object 0, on reaching the eye at E,

appears to come from M below the level of the ground.

_ _ - - - ' Wot iand 0 Cold waJet

M
Fig. 304. Fig. 305.

If the lowest strata of air are the densest, as in Fig. 305, they give rise

to the same phenomenon, but the mirage M is in the contrary direction,

so that a landscape, or a ship at sea, may appear above the horizon. This

occurs in very cold climates.

Scintillation.—The twinkling of a star is due to irregularities in the

atmosphere causing variations in the path of the waves, which partially

interfere. This produces variations in the apparent brightness and colour of

a source of light, subtending a very small angle at the eye, such as a star. It

is not observed in the case of a planet, because this has a real magnitude.

V
'

Fig. 306. Fig. 307.

The Rainbow.—A rainbow is visible when the sun is behind the observer

and a shower of rain in front of him, or it may be seen in the spray of a

waterfall. Since the sun's rays falling on the raindrops are parallel, the

course of light through all the drops must be the same, and it is therefore

sufficient to trace the course of a ray through a single drop. Let a pencil of

rays from the sun meet the drop at ^4 (Fig. 306). On entering it is

refracted and dispersed towards B and C at the back of the drop, thence

reflected to D E, where it is refracted to emerge in the directions V U which

make an angle with the entering ray. The emergent dispersed light thus
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diverges to the observer's eye, and the various colours, being unequally

refracted, are projected back as R' V\ so that the outside of the bow is red

and the inside blue -violet. The extent of the bow depends on the position

of the sun ; when the latter is at the horizon the bow forms a semi-circle to

an observer at sea-level. As the sun rises the arc sinks so that its centre

is below the horizon, and is smaller.

A secondary larger, broader, and fainter, rainbow is generally seen con-

centric with the primary. The rays from the sun to a point A (Fig. 307)

undergo refraction and are reflected twice at B C and B' C, and again re-

fracted at D E. In the emergent light violet is below and red above ;
these,

being reversed on projection, as V and Fi\ the secondary bow is blue on the

outside and red within.

Eclipses.—A total eclipse of the sun occurs when the moon is so situated

that some portion of the earth lies in the umbra of the shadow cast by it

;

the eclipse is partial to those portions of the earth in the penumbra of the

shadow. An eclipse of the moon occurs when the moon lies in the shadow

cast from the sun by the earth.



CHAPTER XXVIII

GENERAL EXPERIMENTAL WORK

In order to grasp the various formuhe and the theories underlying them,

the student should perform for himself the simpler experiments connected

with general optics. Most of the following can be done with quite rough or

improvised apparatus, and a complete optical bench, meeting all requirements,

can be obtained at a very moderate cost.

The Optical Bench.—An optical bench should preferably be scaled in

cm. and mm. and be about 2 M long, thus enabling fairly weak lenses,

mirrors, etc., to be tested. In addition there should be

(1) A frosted lamp at the zero end of the scale.

(2) A collimator consisting, for preference, of a pinhole fixed in the focal

plane of a Cx. lens, the lamp being placed behind the pinhole when the

collimator is in use.

(3) A screen of ground glass and another, interchangeable with it, of

opaque stiff white card having a centi-al aperture equal in diameter at least

to the collimating lens.

(4) A plate with an aperture of same definite size—say 20 mm.

—

with fine cross wires, to serve as an object, when the lamp is placed

behind it.

(5) Three or four carriers for lenses and mirrors—one of these should be

universal and capable of holding any diameter lens from the smallest up to

one of, say,

(6) Two or three clips on a single stand capable of taking lenses in con-

tact or combinations of separated lenses. This should also be capable of a

horizontal rotation round the support as a vertical axis.

(7) A small horizontal astronomical telescope with adjustable eye-piece.

All should be on movable stands and adjustable as to height, since axial

alignment is essential in most experiments.

Parallax is the term applied to the apparent displacement of an object due

to the observer's position. We generally employ the term to indicate the

apparent change in the position of one object, in relation to that of another,

when the observer changes his point of view. Let an object A be in front

of an upright pencil P, and another object B be behind P, and all three in

the same straight line in front of the observer. Now on moving the

317
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head to, say, the right, a gap will be visible between P and A and another

between P and B ; also A will be to the left of P, and B to the right of P. If

there are two comparatively near small objects P and X, seen close together

in the same direct line, the distance of the one P being known, if the head

be moved sideways—(«) X is actually in the same plane as P, i.e., coincident

with it, if no gap between them results
;

(h) X is nearer than P if X has

apparently moved in the opposite direction to the observer's head
;

(c) X is

more remote than P if X has moved in the same direction. By placing P

respectively nearer, or further away, a position can be found for it such that

parallax between them is said to be destroyed, since no apparent separation

results from any degree of movement on the part of the observer ; the dis-

tance of P then equals that of X. This principle is utilised for locating the

position of virtual images formed by mirrors and lenses.

The Refractive Index of Solids.

Plate Method.—A parallel plate (Fig. 308) of the medium, say glass, is

placed on a sheet of white paper on a drawing board or other smooth surface.

Fig. 308. Fig. 309.

A pin is then stuck in any position and a second pin is placed close to

the side of the plate and sufficiently to the left of so that a line P-^ P^

makes a fairly large angle i with the normal NN\ Now observe through

the plate the pins P-^P^ which will appear displaced towards the right.

Stick two more pins Pg and P^ in the board such that all four appear in one

straight line. Draw the trace of the plate with a fine pencil, remove it and

the pins, and with a compass, with P^ as centre describe any circle—the

larger the better—provided it falls within Pg. Where this cuts the course

of the ray in Q and M dro ,> the perpendiculars Q N d^iid MN\ the

latter being the sines of i and r respectively; then = QN/MN'. This

method is only approximate unless carefully done and therefore three

or four readings for different values of i should be taken and the mean result

extracted.

Displacement Method.—The refractive index of a transparent body, such

as glass, can be roughly found as follows :—Make a dot d (Fig. 309) on the

back of the block of glass ; then find such a position for a pin P, placed
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vertically in front of the glass, that on moving one's head from side to side

the virtual image of the pin, reflected from the front surface, appears to be

l)ehind that surface at such a distance P' that, owing to absence of parallax,

it coincides with the virtual image of the dot seen through the glass. In

this case the apparent thickness of the glass is F' S which = F S. Then /x =
dS/FS.

Microscopic Method.—The refractive index can be more accurately deter-

mined by means of a low power microscope in the following way. A fine

line is focussed and the plate is then placed above the line. Now the

microscope must be raised in order that the line be clearly seen, since

the rays proceeding from it are divergent as if from a point nearer to

the objective. The distance that the microscope objective has to be

raised equals the distance between the real position of the line and its

apparent position when seen through the plate. Let t he the thickness of

the glass, and d the distance that the objective has to be raised ; then

[X ^ t/{t — d). The necessary measurements can be made fairly accurately

l)y means of a mm. scale, some point on the tube being taken as an index.

Li some cases a fixed scale with a vernier attached to the microscope, or the

Fig. 310.

scale on the millhead of the fine adjusting screw can 1)e used. Thus, if the

thickness of the plate be 1 mm. and the object-glass has to be raised -38 mm.
/x=l/-62 = l-61

Bench Method.— Should the medium be in the form of a fairly large

body with two parallel surfaces, the index may be found on the bench as

follows. Take any Cx. lens L (Fig. 310) of convenient strength and project

an image of the cross wires D on to the screen S, such that S is somewhere

near the second symmetrical plane
;
carefully note the position of V. Then

introduce the medium M, whose index is to be tested, between L and D, when

the image on *S' will be found out of focus owing to the apparent vertical

displacement of D. In order again to secure a sharp focus on aS' the disc must

be drawn back to some point whose position is also read from the bench.

Then, if t be the thickness of the medium and d the distance between F) and

i)'—the apparent displacement—we have, as for the microscope, /x = t/[t — d).

To secure accurate results the image on *b' must be well defined, and there-

fore a small achromatic lens should be used in the experiment. This method

serves equally well for liquids if they are enclosed in a tank whose glass sur-

faces are parallel and whose thickness is very small compared with the depth

of the liquid itself.
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Prism Method.—This is the most accurate of all if a spectrometer is

available. The principal and deviating angles being measured as described

in Chapter XXIII, the refractive can be found from

sin {(P + 6^)72}

^~ sin(P/2)

where P is the principal angle of the prism, and d is the angle of minimum
deviation. If the incident light is allowed to fall perpendicularly on to one

of the surfaces the formula becomes simplified to /x = sin (P + 6<?)/sin P. If

white light be used a spectrum will, of course, be formed, but the index for

any particular colour can be obtained by bringing the cross wire of the teles

cope over that particular colour. Thus the mean index is calculated from

the yellow {D line) and the mean dispersion from the difference between the

indices of blue-violet {F line) and orange red (C line). Hence v, the effec-

tivity, may be obtained (Chapter XXIII).

Example.—Given a certain prism whose principal angle P is found to be

59° 57' and the angle of minimum deviation d for the D line is 40° 21'

then
(P + d)/'2 = (59° 57' + 40° 21' )/2 - 50° 9', and P/2 = 29° 58'

so that /x = sin 50° 97sin 29° 58' = •76772/-49949 = 1 -536

B C B C

Fig. 311, Fig. 312.

Approximate Prism Method.— If a spectrometer is not available, the value

of P and d can be found roughly as follows. Place the prism (Fig. 311) on the

drawing-board and turn the apex towards a window. Now look into

the surface A B, which acts as a plane mirror, and select the image of a

vertical window bar
;
get the image as near as j^ossible to the apex A and put

the pin P^^ in position so that it is in line with A. Do the same with the other

surface A C. Draw the trace of the prism, remove it and the pins ; then

the angle formed by the lines A and F^ A (i.e. F^ A F^) is twice the

principal angle and an ordinary protractor is used to measure it.

To find the deviating angle d, erect, in any convenient position, two

pins P-^ and F^ (Fig- 312), place the prism with one side in contact with F^
;

then on looking through the prism somewhere in the direction V, the pins

will appear displaced towards A. Secure minimum deviation by rotating

the prism both ways, and finally erect two other pins F^ and F^ such that all
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four appear in one line. Then, by making the necessary tracings and con-

nections with a fine pointed pencil, the angle of minimum deviation d can be

measured on a protractor.

Lens Method.—If the substance be in the form of a thin lens, its focal

length and radii can be measured, as described elsewhere, and then

rr'

Critical Angle.—Should it be possible to measure C, the critical angle of

a medium—but generally this is neither easy nor accurate—the refractive

index is then /x = 1/sin C. Such a method might be suitable for a substance

like butter for which other methods are not suitable. A special apparatus

—

a refractometer—would be required.

Polarising Angle — /x of an Opaque Solid.—Let ^ 5 be a ray incident on

a smooth or polished body N and reflected in the direction B C. It the angle

P

Fig. 313.

of incidence A B P be the polarising angle of the medium N, any light

transmitted or absorbed is refracted in the direction B D Sit right angles to

B C. If the polarising angle of an opaque body be known, its refractive

index is the tangent of that angle ; in Fig. 313, if the angle of incidence

is i, then the angle of refraction r = 180 — (90 + ^) = (90° — i). Now

/X = sin i/sin r = sin i/sin (90 — ^) = sin i/cos i = tan i

and since i = p, the polarising angle, then /x = tan p.

The polarising angle can l^e fairly accurately found as follows. Arrange

a small source of light that can be conveniently raised and lowered on the

one side, and on the other side similarly arrange a piece of tourmaline from

a pebble tester, the axis being vertical. Then on raising or lowering equally

both source and tourmaline a position will be found where the reflected

image is entirly cut ofl". Measure the distance d from the point of reflection

to the vertical pla7ie of the tourmaline, and also the height h of the latter

above the horizontal. Then /x ^ tan p = h/d.

21
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The /X of Metals.—By making exceedingly thin prisms of less than one

minute of arc, Kundt successfully determined the refractive indices of a

number of the metals. Thus, if an incident ray fall perpendicularly on to

one of the surfaces of such a prism, the refractive index can be quite approxi-

mately arrived at by the formula /x = d/F + 1 . The results showed a refrac-

tive index for silver, gold, copper, magnesium, and sodium as being less than

that of a vacuum, and this, no doubt, accounts for the absence of a polarising

angle in some substances. The red rays in some cases were found to be

more refracted than the blue, so that metals form good examples of anomalous

dispersion. The refractive indices of the metals were found to be propor-

tional to their electric conductivities, i.e. those metals which were the best

conductors had the lowest refractive index, and vice versa.

The Refractive Index of Liquids.

In general, experiments similar to those for learning the indices of solids

can be employed for liquids, but the arrangement is different in some

instances. In all cases, however, the calculations are the same.

Displacement Method.—The liquid is placed in a bowl at the bottom of

which is some small object d. Above the surface S a pinhead or other con-

venient object P is placed and is raised or lowered until its image, formed by

reflection from the surface, apparently coincides, from the absence of parallax,

with the image of d at P'. Measure d S and P S and proceed as with a

solid.

Microscope Method.—With the microscope first focus the bottom of a

small tank, and secondly its image when the liquid has been poured in.

Thirdly focus the surface of the liquid, which generally has some conspicuous

dusk specks floating about. The difference between the third and first

readings gives the real depth, and that between the second and third the

apparent depth. Proceed as with a solid.

Prism Method.—The liquid is placed in a special hollow glass prism of

which each refracting surface consists of a plate with parallel sides. The

index is then found as with a solid.

Lens Method.—Take a small quantity of the liquid and place it between

a thin plate of glass and a Cx. lens of known radius and focal length ; the

liquid then forms a plano-Cc. lens. If now F of the combination be found,

that of the Cc. Fg can be learnt. Its radius is also known, it being that of

the Cx. lens, so the refractive index /x can be calculated from l/Fg = 1/F —

1/Fi, and /X = (r -f F2)/F2.

Polarising Angle.—Care being taken to keep the surface of the liquid

perfectly clear and steady, the method is the same as with a solid.

Critical Angle.—As with a solid.

Bench Method.—As described on page 319.
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Plane Surfaces.

Movement.—A piano spectacle glass can be determined with sufficient

accuracy by observing an object (preferably crossed lines) through it while

rotating and moving the glass. If the glass has no power due to curvature

the image will app*ear stationary
;
moreover, if the surfaces be true planes

no distortion or irregular movements can be detected. If the glass be held

obliquely to the eye, so that the direction of vision forms a small angle with

the surface, any unevenness of the surface becomes more apparent.

Contact.—If one surface be a plane, this can be determined by applying

to it a straight edge, or another piano-glass, and observing whether there is

contact throughout when holding the applied surfaces against a bright

background. Real contact between two surfaces is also quite easily felt.

Spherometer. —A plane surface may also be tested by the spherometer

(q.y.).

Whitworth Plane.—By contact with a Whitworth true plane surface,

which has been smeared with some red putty powder, and observing whether

any portion has or has not taken an impression.

Newton's Rings.—The absence of rings between a known plane surface

and the one tested is the most accurate method, which is described generally

in Chap. XXVII. See also Reflection tests and Telescopic tests.

Reflection Tests.—A plane surface can be distinguished from a curved

one by viewing the reflected image from a bright source of light. If a plane,

it acts precisely as a plane mirror, while if a sph. or cyl., the image is altered

in size or distorted. If the object viewed is a square, then a Cx. surface will

cause it to appear compressed vertically, i.e. in the direction of view, so

that it has the appearance of a horizontal rectangle, while a Cc. surface

causes vertical extension, giving the appearance of a vertical rectangle. In

every instance the lens should be held as close and oblique to the eye

as possible.

As the lens is rotated, while still viewing the reflected image, there is no

change in the appearance of the latter if the surface is sph. or plane, whereas

if cyl. the image does change. If the object viewed be of some definite

shape, say a vertical window bar, it is seen quite distinctly when the axis of

the cyl. is in line with the direction of view, whereas it is indistinct when
the axis is oblique to the plane containing the eye and the bar. The image

is most indistinct when the axis is at right angles to the line of vision, the

general image being drawn out if the surface is Cc, and compressed if Cx.,

as with sph. surfaces. This is an extremely delicate test for locating the

.axis of a cyl.
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Focal Length of Cc. Mirrors.

Direct Focalisation.—On the optical bench parallel light is obtained

from the collimator C (Fig. 314), and passed through the perforated screen

S on to the mirror M whose focal length is to be measured. The mirror is

slightly tilted and moved to and fro until the image of the pinhole is

thrown sharply on to the screen at F. The distance M F is the required

focal length.

Conjugate Focalisation.—If the cross wires be substituted for the colli-

mator such that a real conjugate image be formed on the screen we have

1/F = + I//2, where is the distance of the cross wires, and is the

conjugate distance M S oi the screen, to the mirror.

Symmetrical Planes.—An especially rapid and accurate way to find F is

to use the cross wires and the disc containing them as both object and

screen. The mirror is advanced towards S until the image of the wires

appears sharply on the surrounding disc, which must then be at the centre

of curvature. The radius of curvature is thus directly measured, and equals

Parallax.—If an object be placed within F, the virtual image can be

located as described under convex mirrors, and the focal length found from

the conjugates, care being taken to reckon the distance of the image as a

negative quantity.

The Spherometer.—See this method for Cx. mirrors.

Projection Method.—Arrange a collimator and perforated screen (Fig.

315) as for a Cc. mirror, the screen being between C and M. On aS' describe

a circle 0N concentric with the central aperture and of twice the diameter

of C, the collimator lens. The action of the mirror being divergent it will

reflect the parallel beam as a cone apparently diverging from F. Move the

mirror to and fro until the projected area of illumination on S exactly fills

the circle 0 N. Then the distance of screen to M equals F of the mirror.

Parallax Method.—Take two rather stiff wires or knitting needles (Fig.

316) and place one Pj represented by the arrow in front of M such that its

virtual image is i, seen on looking into the mirror from the same side as Fy
Behind M place a second needle P^ ^^^^ it approximately coincides

Fig. 314. Fig. 315.

2F, i.e., F = /•/2.

Focal Length of Cx. Mirrors.
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with / seen in the mirror. Now move the head from side to side, and if

there is apparent separation between the virtual image I of and the

actual pin the latter must be moved towards or from the mirror until all

parallax disappears. Then if P^M be f-^,
and P^ M be /g, we have, since

f.y

is a negative quantity, 1/F 1//^ + ( - l/f.^.

Convergence towards C. of C.—Setup the cross Avire D (Fig. 317) and in

front of it place any convex lens L so that the latter projects a real image

at a distance L C greater than the radius of the mirror ; the distance L C is

measured. On interposing M and moving it to and fro a position will be

found where the image of the wires is received back on to the disc D.

1 In

Fig. 316.

4^

When such is the case the convergent light from L must be incident on M
directed towards the centre of curvature (' because it has returned along its

own path. Then the radius of the mirror is the distance M C\ between the

mirror and the real image formed by the lens, and 31 (J = L C - L M. M
must be slightly tilted to throw the image to the one side of the disc

containing the cross wires.

Spherometer (cl.v.).—The radius of the reflecting surface of a Cx. (or Cc.

glass mirror) can be found approximately with the spherometer, but the

results are uncertain on account of the amalgam coating. If, however, it

Fig. 317.

has truly parallel surfaces and is thin, the radius of the front surface may
be taken to be that of the second or reflecting surface. The latter is slightly

shorter in a Cx. (and longer in a Cc.) mirror than when the front surface is

measured.

Single Thin Convex Lenses.

Direct Focalisation.—The power of an unknown Cx. lens can be obtained

by measuring the distance between the lens and its principal focus. Set up

the collimator C (Fig. 318), and in front of, and near to it, place the

unknown lens L. On the other side of L place the screen S, and move the

latter to and fro until the image F of the collimator aperture is sharpest
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possible ; then L F is the principal focal length. If the lens is weak, or very

strong, indirect focalisation (q.v.) is needed. Instead of the collimator, any

distant bright source as a window or artificial light, can be employed. As F
is short, the image is small, sharp, and bright, so that this method serves

very well for fairly strong Cx. sphericals, but is uncertain for weak or very

strong ones.

To focalise a periscopic Cx. lens the distance of the optical centre from

the lens must be obtained. The distance from the lens to the screen should

be taken first with the one face, and then with the other, turned towards the

source of light. The mean of the two measured distances is the true focal

length. With ordinary periscopic spectacle lenses, the distance of F, from

the lens itself, is sufficiently exact in practice.

Indirect Focalisation.—If the lens is weak and therefore of long F the

image on the screen is large and indistinct, and the exact principal focal

distance is difficult to determine. If F is very short, the exact distance also

becomes hard to determine with accuracy. For these we employ indirect

focalisation. The procedure is to combine, with the unknoiun lens, another

Fig. 318.

hiotu7i lens ; find the focal length of the combination, and then deduct from the

Ijower of the combination that of the unknown lens ; thus

¥ = l-¥, °' I>2 = D-I>i

where F and D are, respectively, the focal length and the power of the two

lenses combined, F^ and those of the added lens, and Fg and Dg are those

of the unknown lens. The approximate power to be added can be found

experimentally, and it is better to divide this power between a pair of lenses,

placing one on either side of the unknown lens.

A very strong Cx. lens should be combined with a Cc. lens of sufficient

power to lengthen the focal distance to a reasonable extent. For instance,

it is difficult to determine whether F = 2 in. or 2^ in. ; but if the lens ])e

focalised with, say, a Sin. Cc, the diff'erence between the one and the

other is much more marked, it being then about 1 in. Thus if F = 9 in. and

Fi = - 3 in.

1/F2= 1/9 - ( - 1/3) = 4/9 ; the lens is 2
J in. Cx.

or D2 = 4-5-(-13)=l7-5, or say+18.

If F = 6 in. and F^ = - 3 in., then

l/F2=l/6-(-l/3) = 3/6; the lens is 2 in. Cx.

or 6-5 -(-13) = 19-5, or say + 20.
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To focalise a weak Cx. lens a sufficiently strong Cx., say + 5 D,, should

be combined with it. Thus, if F = 6 in. and = 7 in. the unknown lens is

1/6 - 1/7 = 1/42 Cx. If D = 6, and = 5, then = 6 - 5 = + 1.

Conjugate Focalisation.—Using the cross wires D (Fig. 319) as an object,

and placing the lens Z at a reasonable distance from it, a real conjugate

image may be formed on the screen aS'. If the distance of the object from
the lens be and the distance of its image on the opposite side be f^, then

the power of the lens is

l/F=l//i+l//,

Suppose be 10 inches from the lens, and at 15 inches ; then

1/F= 1/10 + 1/15 =1/6, or F = 6 in.

It is easier to convert each distance into diopters, and calculate by

D = c?i + t^2

^
/, .

Fig. 319.

Thus, if c/j is 25 cm. and is 20 cm., the lens is

100/25+ 100/20 = 4 + 5 - 9 D.

This method only serves for fairly strong Cx. spherical lenses, but can

be applied to weak Cx. lenses by adding another Cx., and calculating as

shown in indirect focalisation.

Symmetrical Planes.—(Donders.)—The method of symmetrical planes is

rapid and accurate, and depends on the principle that when image and object

are identical in size, the distance of 0 and I from the lens is 2 F, and the

total distance between them is four times the focal length of a thin lens. It

is a special case of conjugate focalisation^ and the cross wires constitute

the object.

The lens is placed midway between D and *S, which are moved equally

towards or away from the lens until the image on the screen is sharp and of

equal size to the aperture of D. The experiment is made more accurate if the

screen is scaled, and equal movements of the two is facilitated if the carriers

are connected by a band suitably arranged for moving them equally. If the

lens is weak it should be placed between a pair of strong Cx. lenses, if very

strong between a pair of Cc. lenses, in order to obtain the symmetrical
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conjugate foci. The calculation then required is the same as given in indirect

focalisation. The distance between the symmetrical planes divided by 4

gives F of a thin periscopic Cx. lens.

Single Thin Concave Lenses.

Indirect Focalisation.—The unknown Cc. is combined with a known
stronger Cx. spherical, or, better, placed between a pair of Cx. lenses, in

order to obtain a real focus. The calculation involved is the deduction of

the unknown Cx. from the combined power measured.

Thus if F = 25 cm. and 10 cm. we get for the Cc.

1/25 - 1/10= - 15/250 = - 1/16, or - 6 D.

If r=: 15'' and = the Cc. is 1/15-1/5= -1/7-5.

If D = 4 and 0^ = 10, the Cc. is 4- 10 = -6 D.

Conjugate Focalisation can be employed for a Cc. by combining it with

a stronger Cx. Thus, if = 10'', = 15", and = 5", we find the Cc. to be

of 30" F, for 1/10 + 1/15=1/6 and 1/6-1/5= -1/30.

Or more easily by diopters; \etd^=-bO cm., d2^'20 cm., and D;^=10.

Then the Cc. is 100/50+100/20 = 2 + 5 = 7, and 7-10= -3D.

Fig. 320. Fig. 321.

Projection Method.—This is similar to the projection method for Cx.

mirrors.

A parallel beam from C (Fig. 320) is allowed to fall on the unknown Cc.

lens, and is diverged by the latter as if proceeding from F, If now >S' be

moved back until the luminous area exactly fills the marked circle MN—
which is twice the diameter of C—then the focal length of the lens is equal

to L S, the distance of lens to screen.

Parallax Method.—This is similar to the method for Cc. mirrors, with

the exception that both object and image are on the same side of the lens,

while the observer must be on the opposite side. A long pin P-^ (Fig. 321) is

set up, and its virtual image / is observed through the lens. A second

locating longer pin is now taken and moved to and fro until, on moving
the head, there is an absence of parallax between them, Pg, seen above the

lens, apparently coinciding with / seen through the lens. Then, if F\ to L
be /j, and P^ to L be f^, the latter being a negative quantity,

1/F= !//, + (- 1/4)

Locating the virtual image with a Cc. lens is more difficult and confusing

than with a Cx. mirror because the observer sees two objects and two
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images. If, however, it be remembered that the more distant image must he

made to coincide with the nearer object pin, no mistake can be made. The
actual pin seen above the lens, and the image of seen through it, must
be ignored.

Reflection.—The Cc. surfaces of a negative lens may be employed as

positive mirrors for measuring their radii of curvature. The image is,

however, rather faint, and therefore if the disc holding the cross wires is not

already white, a piece of white paper should be stuck to one side of the

aperture. The distance of lens to disc is equal to the radius of curvature,

and as the focal length of a double Cc. crown lens is very nearly equal to

the radius, the measured distance can be taken as the required focal length.

If the index of the glass is exactly 1-5, then F is exactly equal to the radius,

but should the index be known to be other than 1-5, F can be calculated

from the lens formula. More properly each svn^face should be calculated

separately since the lens may not be a double Cc. sph., the refractive F of a

lens surface being approximately = 2 r. If parallel light is employed, as it

should be, we get F by reflection, and this equals y/2 fur each surface. In

this case F of each surface by refraction equals 4 F by reflection. For

example, if with parallel light F is found to be 4" for the one surface, and at

8'' for the other, the lens is 1/16 + 1/32 = 1/10 nearly.

Cylindrical and Sphere- Cylindrical Lenses.

Cx. Cyls. and Sph.-Cyls.—If a Cx. plano-cyl. be at its principal focal

distance in front of a screen, parallel light from a point source refracted by

it forms on the screen a bright line which corresponds to the direction of

the axis of the cyl. By finding the distance at which the line is sharpest

and brightest the focal length of the lens can be directly determined. The

procedure is the same as for Cx. sph. lenses.

If a Cx. sph. -cyl. be held in front of a screen, parallel light, refracted by

it, forms on the screen a line at the focal distance of the sph., and another

at the focal distance of the united powers of the sph. and cyl. ; the first is

at right angles to the cyX. axis, and the latter corresponds to it. By finding

these two lines, and measuring the distance between the lens and the screen

for each, the focal length and powers of the two principal meridians of the

lens can be learnt. Thus, suppose the two distances are 50 and 33 cm.,

then the combination is -f 2 D and + 3 D, or + 2 S. o + 1 C. If the focal

distances are 10 and 8 inches the lens is 1/10 Cx..S. ol/40 Cx. C, since

1/8-1/10=1/40.

Conjugate focalisation can also be employed, using, as before, a point

source of light ; when both powers are very weak or strong, or the one very

weak compared with the other, indirect focalisation is indicated.

Cc. Cyls. and Sph.-Cyls.—With negative cyls. a Cx. sph. of sufficient

power must be added to render the whole positive. The two principal



330 GENERAL AND PRACTICAL OPTICS

powers are then calculated, and the added sph. deducted from each to give

the powers of the unknown lens.

The projection method (q.v.) is applicable to Cc. cyls. and sph.-cyls., the

size of the luminous disc being twice the diameter of the lens in the two

principal meridians. The luminous disc is elliptical in shape, so that it

suffices to measure its long and short axes.

The reflection method (q.v.) can also be employed, the principal meridians

corresponding to the directions of the wires. The image of the one wire is

seen parallel to the cyl. axis, and twice the measured radius equals F. The

other surface, if sph., must be measured separately.

Indirect Focalisation.—The procedure is (a) find the two foci, of which

the weaker power is the sph.
;

{h) deduct the weaker from the stronger,

giving the cyl.
;

(c) deduct the added power from the sph. Or, alterna-

tively, {a) find the two powers, {h) deduct the added power from each, so

that (c) the weaker power is the sph. and the stronger less the weaker is

the cyl. Examples of both procedures are given in the following.

Examples.—The added lens is 10'' Cx., and the first focal lineFj is found

to be at and the second Fg at 8''. Then the cyl. is 1/7 - 1/8 = 1/56, and

the sph. is 1/8 - 1/10 = 1/40, the lens being 1/40 Cx. S. o 1/56 Cx. C. Or,

by diopters, the cyl. is 5-75 — 5= +-75 D, the sph. is 5 — 4 = 1 D, the lens

being + 1 S. o + "75 C.

A +4 D is added to an unknown lens and the foci are found at 33 and

50 cm. The actual powers of the lens are therefore 100/33 — 4= — ID, and

100/50 — 4 =—2 D, which is equivalent to — lS.o-1 C. or any trans-

position of the same.

If the two focal distances at 15 and 33 cm. and the added lens = + 5 D,

the actual powers are 100/15 = 6-5 — 5= and 100/33 = 3 — 5= -2, the

lens being +1*5 Co — 2 C. or a sph. -cyl. possessing similar powers.

If the two foci are at 10 and 6 in., when the added lens is 8" Cx., the

combination is 1/10 Cx. S. o (1/6 - 1/10) = 1/15 Cx. C. and 1/10-1/8 =
- 1/40. The lens is - 1/40 S. o + 1/15 C.

Telescope Tests.—More accurate results can be obtained with lenses if

the telescope be employed in their focalisation. This is really the reverse of

the usual procedure, as will be seen from Fig. 322. The collimator C is

reversed, so that its lens faces the lamp and the pinhole P is away from it.

The telescope is adjusted for parallel light by pulling the eye-piece well out,

and gradually pushing it in, until some distant object is seen sharply through

it ; the eye-piece is then fixed and the telescope T replaced on the bench.

The lens to be measured is placed in a clip between P and T and moved to

and fro until the image of P is seen sharply through T. Then the distance

L P, from pinhole to lens, will be the focal length of the lens, since only

parallel light can have emerged from L to enter the telescope and give rise

to a sharp image therein. With a cyl. the image will be a line ; with a
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sph.-cyl. there will be two line images at different distances. As in the

other tests, a known sph. must be added, if the unknown lens is too strong,

too weak, is negative, or the difference between the princij)al powers insuffi-

ciently marked to give accurate results. The smaller the pinhole used in

this experiment the sharper will be the lines obtained.

For plane surfaces the telescope is adjusted for infinity. Abeam of light

rendered parallel by a collimator is allowed to fall obliquely on the surface

to be tested and is, after reflection, received in the telescope.

If now, on looking through the telescope, the image seen of the source of

light is sharp, the surface is a plane. If the surface is Cx., the eye-piece of

Fig. 322.

the telescope must be pulled out, and if Cc, pushed in, in order to get a sharp

image. If the surface is irregular, a sharp image cannot be obtained at any

spot. The presence of astigmatism, whereby one portion of the image is

better defined than the other, is the surest proof of convexity or concavity

of a surface.

Thick Lenses and Combinations of Thin or Thick Lenses.

Symmetrical Plane Method for a Positive Combination.—To find ex-

perimentally the equivalent focal length of a thick Cx. lens or combination,

T - - -

Fig. 323.

it is necessary to locate the equivalent planes, since the focal distances are

the distances between these planes and the principal foci.

Let the system of lenses be suitably mounted (Fig. 323). Parallel

light from the collimator C is refracted by it, and the principal focus i^,, is

formed on the screen S, 'whose position on the bench is noted. Now substitute

the cross wires D for the collimator and move them about until the image

formed on drawn back to aS", is the same size. Then is the second

symmetrical plane, and is therefore at 2F from some plane—the '2nd equivalent

plane—not yet located. But the distance between '2F and F^, i.e. the difference in
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the bench readings of the j^osition ofS' and S is the equivalent focal length. There-

fore measuring from towards the lens a distance equal to F, the second

equivalent plane is located. If the combination be turned round, and the

process repeated, F will, of course, be found to have the same value, and the

first equivalent plane can be located. In some combinations and E^

will be found to be crossed, as illustrated in Fig. 323.

Rotation—Positive Combination.—This is, perhaps, the quickest and

most accurate method of all for finding the equivalent focal length and

equivalent points of a combination, especially a fixed system such as a photo-

graphic objective.

Since the secondary axes govern the position and size of the image, and

since they all pass out of the system through the second equivalent point, it

is obvious that if the combination be rotated horizontally around a vertical

axis immediately beneath E^ the image from originally parallel light will remain

stationary. If the system be rotated around any point other than Ec^, the

image will move. Allow the light from the collimator (Fig. 324) to fall on

the lenses so that the screen S locates F,,. The combination is mounted in

A
Fig. 324.

a special carrier capable of longitudinal adjustment from and towards S, and

also rotation round the vertical axis A. Then, by a combination of lateral

swing and longitudinal movement of the lenses a position can be found where

the image on S is motionless. Finally adjust >S to secure the sharpest

possible image ; then the distance from ^ to >S on the bench is the equiva-

lent focal length, and the prolongation of A upwards locates the second

equivalent plane E'g. By reversing the combination in the carrier E^ can be

similarly found.

This method is especially easy with photographic objectives on account

of their wide angle of sharp definition ; with uncorrected lenses, however,

only a small rotation will be found possible before the image rapidly becomes

confused from oblique aberration.

Conjugate Foci Method for a Positive Combination.^—^Since F^ = AB,
where A and B are the distance of 0 and I beyond F, respectively, on the

one and the other side of the lens system, this enables the focal length to be

experimentally determined. Thus focus parallel light on the screen, and

mark F^^ (Fig. 325) ;
repeat the process on the other side and similarly mark
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I\. Then place the cross wires at a convenient distance j\ so that its image
is, say, ; measure F^f^ = B, also the distance f^F^ = J, and calculate from

F = V A B.

The Gauss Method for a Positive Combination.—Let u be the angle

subtended at the lens by any two distant objects (Fig. 326) A and iJ, one of

which B is situated on the principal axis. This angle can be measured by
means of a theodolite, and therefore the angle u' subtended by the image

Fm. 325.

B'A' at the second equivalent point C is also known, since it is equal to u.

Then
tan u = hyC B' or C B' = F = h'/tan v'

The image it can be directly measured on the screen. Since this method
is independent of the position of the equivalent planes, these are not shown
in the figure, C being the 2nd equivalent point. If u = 45° (Fig. 327), then

since tan = I, F = h, i.e., the size of the image B'A' is equal to the focal

length of the lens.

Thin Lens Method for Cx. System.—If a single thin lens is found which

gives on a screen an image equal in size to that formed by a combination,

Fig. 326. Fig. 327.

the focal distance of the former is that of the latter ; also the place at

which the single lens is situated determines the second equivalent point of

the combination. If the latter is turned so that the original back lens faces

the light, the spot at which the single thin lens must be placed in order to

give a similar image to that of the combination, fixes the position of the first

equivalent point.

L. Laurance's Method for a Positive Combination.— Focus sharply for

parallel light to locate the principal focus F^_ ; then move the screen back to

(Fig. 328) which is n inches from F (say 1/3 of its focal length). Move the
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cross wires in front of the lens until its image is sharply focussed on the

screen at and mark its position P. Again withdraw the screen to f^^
which is exactly one (or more) inches further back, so that it is now n' inches

from F ; shift the wires to P' until the image is once more in focus at f^.
Measure the distance P P' through which the object has been moved ; call

it d. Then
' d n n

n' — n

If n' be exactly 1 in. longer than n, then n' - n = 1, and therefore need not

be regarded. Further if ?i = 1 and n' = 2, the calculation simplifies to

F = sj 2d. This is the true focal length, since it is independent of the

position of the equivalent planes, which can be found by measuring the focal

distance backwards from the principal focus. Thus supposing d = 3-5",

F = V 2 X 3-5 = 2-65'' approx.

Rotation—Negative Combination.—The rotation method also serves for

a negative combination, but in this case the virtual image formed of originally

n

w
1

Fig. 328.

parallel light must be observed ; to do this the combination must be placed

between the telescope and the collimator. Focus carefully on the Anrtual

image formed by the lens by drawing out the eye-piece, and get the image

on the vertical cross wire of the telescope. Rotate the combination as de-

scribed for a positive combination until the image seen through the telescope

is stationary and sharp. Remove the combination from the carrier and bring

up some object until its image is also seen clearly in the telescope. Then
the distance of this object to the standard which originally held the Cc.

system will be the focal length of the latter.

J. R. Dallmeyer's Method for a Negative Combination.—Take an

achromatic positive lens and focus the image of the cross wires on a screen
;

measure the size of the image formed and let it be m (Fig. 329). Place the

negative lens, whose focus is to be found, a short distance within the con-

vergent beam of the positive lens, i.e., between it and the screen. Focus the

image formed by the combination and measure its distance Z) from the back
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surface or flange of the negative lens ; measure the size i/i-^ of the image

formed. The size of v/?^ compared with the size of the image produced by

the positive lens alone is M = mjm.
Now move the negative a little nearer the positive lens (which latter

must be kept in a fixed position) and focus a second time on the screen ;

measure the distance D' of the screen from the back of the negative lens or

its flange. The size of the image in.^ compared with the size of m is

mjm. Then the focal length F of the negative lens is

F =
D'-D
M'-M

This equation is independent of the position of the equivalent planes,

and therefore will hold true for any negative combination of lenses.

The Radius of Deep Curves and the Focal Length of Very Strong Lenses.

Curved Surfaces—Reflection.—If the object be sufficiently distant com-

pared with that of the image, as is the case with mirrors of small radius,

Fig. 329.

when the object is, say, a metre distant, then the radius /• of the curved

surface bears to the distance of the image from the pole of the mirror, the

relationship of r = '2F, where F is the focal distance and the distance of the

image. Let h-^ and be the sizes of, respectively, the object and the image,

and the distance of the object from the mirror.

Then

while is its focal length.

The radius of curvature, of strongly curved lenses and mirrors, whether Cx.

or Cc, can be measured by employing an instrument like the ophthalmometer.

The distance between the two objects being known, that between the two

images can be measured by a micrometer scale placed in the focus of the

eye-piece of the telescope, f-^ is the distance of the objects from the curved

surface, is the distance between them, is here the distance between the

two images, as seen in the micrometer, and F is the distance between the
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objective and the micrometer. The relative size of the image formed at

and that formed at the micrometer is as f-^ : F, so that the above formula

must be multiplied by /i/F, and we then obtain

Curved Surfaces—Gauges.—The radius of small convex lenses is also

determined by accurately made gauges, or more generally by glass cups of

known curvature, usually known as test-plates. When the curvature of the

lens to be gauged does not correspond to that of the cup, interference rings

are exhibited, while these are not shown if the two curves exactly correspond
;

or they are faint, and of slight brilliancy of colour, if the curves nearly

correspond. A total absence of colour is, however, in practice, rarely

found.

Curved Surfaces—Dr. C. V. Drysdale's Method.—Dr. Drysdale explains

a method of determining the radius of curvature of small surfaces as follows;

Jm.

Fig. 330. Fig. 331. Fig. 332. Fig. Fig. 334.

A microscope has a portion removed from the tube so that light, from a

distant source placed at the side, enters the aperture and falls on a trans-

parent reflecting surface M inclined at 45°, so that part of the light is trans-

mitted down the tube towards, and through, the objective, by which it is

brought to a focus at F as in Fig. 330. If, then, the reflecting surface of

a mirror or lens is placed at the focus of the objective, the light is reflected

back and seen by the observer, in the field of the eye-piece, as an image of

the source. This position or distance of the objective from the reflecting

surface is then marked on some part of the microscope. The tube of the

latter must be racked upwards, if the surface examined is Cc. (Fig. 331) or

downwards if Cx. (Fig. 332), until the image can again be clearly seen.

The focus of the objective now coincides with the centre of curvature of the

reflecting surface, for the light passing through the objective is incident on

the reflecting surface normally and is reflected back along its original course.

The distance between the first and second positions of the microscope objec-

tive, when the image is clearly seen, is the radius of curvature. The eye-

piece is arranged for parallel light by separation of the components, the



GENERAL EXPERIMENTAL WORK 337

adjustment being made by turning the reflector so that the light admitted is

reflected towards the eye-piece. The curvature of any zone of the surface

can be obtained by using a suitable diaphragm.

A later improvement made by Dr. Drysdale on the arrangement of the

instrument used in the above method consists of an illuminator immediately

above the microscope objective and a lens above the illuminator, which serves

as the objective of the telescope and obviates the necessity of separating the

eye-piece lenses.

Focal Length—Dr. C. V. Drysdale's Method.—By a similar use of the

microscope the focal length of small lenses can be found. Employing no

objective in the microscope and a plane mirror behind the lens to be tested,

this mirror is moved to and fro until the image is sharp in the field of the

eye-piece. The mirror is then at the focal length of the lens, the light con-

verged by the latter being reflected back and refracted again as parallel.

The lower focal point is thus found, as in Fig. 333.

Replacing the objective (Fig. 33-J-), the lens is moved further back to such

a position that it is at its focal length behind the focal point of the objective.

Then the light converged by the objective and refracted by the lens is

parallel, and falling on the mirror, is again reflected as parallel, to be

refracted by the lens to meet at the focal j^oirit of the objective, by which it

is again refracted as parallel light. The image is sharp in the field of the

eye-piece, and the upper focal point is found as in Fig. 334.

The two focal points l)eing marked, the back surface focal lengths are

obtained. If, now, the mirror be moved a given distance A downwards, and

the objective moved upwards by a distance B until the image is clear, we

obtain the equivalent focal length from F,.- = ^A B, where A and B are the

distances of the conjugates beyond F,, on each side.

Dr. Drysdale has also made an experimental microscope in which the

lens under examination can be oscillated around its second equivalent point.

This enables the focal length to be determined, and further, by this means,

aberrations can be easily detected.

22



CHAPTER XXIX

PRACTICAL SUBJECTS AND CALCULATIONS

The Vernier.

—

F (Fig. 335) is an attachment to instruments where great

precision of linear or angular measurement is required, and it obviates the

necessity of the division of the main scale into very minute parts. It con-

sists of a short scale which slides along the main scale S to which it is

attached.

The F is the same length as a definite number of divisions of S, but

contains one division more. Thus, if V is divided into 10 parts, these equal

nine divisions of S, or if V has 30 divisions they correspond to 29 of S.

Thus each division of V is smaller than each division of S by a fraction

whose denominator is the number of divisions of viz., 1/lOth or l/30th,

respectively, in the examples just quoted. The greater the number of

divisions of V the more accurate are the readings, but also the more difficult

is its use.

The scale itself may be divided into whole terms of measurement, as

2

M M 1 M m' llllllil
I'lVi'i'i'iil

1? io

1 2

1 1 M 1 1 I 1 1 1 1 1 1 11 M
1 1

1

I 11 1

yd ' S I

Fia. 335. Fig. 336.

mm. or degrees, or more commonly into main fractions of such terms as

J mm. or | degrees. Such whole terms, or main fractions thereof, are read

from the ^S' itself, the measurement being the last beyond which the zero of

the V has passed. The minute measurement is obtained from the F by

finding that cUvmon mark of the F corresimidmg to, or in exact line with, a

division mark of S. Thus, if 10 F = 9 >S, and the third division mark of V
is in line with a division of S, the exact measurement is 3/10 more than the

whole number indicated by >S itself . If F has 60 parts and the 33rd is in

line with an S division, the fractional reading is Jf plus the whole division

indicated on S.

Fig. 336 illustrates a reading on a scale *S' directly divided to inches and

tenths of inches with a vernier F whose 10 divisions 9 of the scale. The
length of an object 0 whose one extremity is at zero of ^S' is '65 in., the

5th division of /^coinciding with a division of the scale. The "60 in. is read

338
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from the scale itself, where the right-hand extremity of 0 lies between the

6th and 7th division of >S'; the balance '05 in. is read from the V. The limit

of accuracy is in.

As another example, let the scale be divided to inches and tenths of

inches, and let 25 F = 24 *S. If the zero of F showed 5 in. and six spaces

of ~jj in., plus a certain distance when the fourth division of V is in line with

a scale mark, the total measurement would be 5 + + ^lo or 5-616 in.

The accuracy of the reading is carried to -^Ijy in.

Instruments have been made with the F divisions longer than those of *,S',

so that, say, 9 V = \0 S. The /^divisions are then on the near side of the

zero, and are read backwards. Verniers for fine straight rules are usually

made so that 10 V = 9 S, thus measuring to mm. For box sextants

and small surveying instruments 30 V = 29 S, so that J° divisions are sub-

divided to minutes. For barometers the readings are usually taken to

y\j mm. when 10 F = 9 S, or to in. when 25 F = 24 aS. For marine

sextants and theodolites 60 F = 59 S, measurements being taken to 1/10 of

20' or of 10', giving limits of accuracy of, respectively, 20'' or 10" in the

case of these two instruments.

The Four Leg Spherometer.—This is an instrument for ascertaining the

radius of curvature of a spherical surface. The most accurate form consists

of three legs arranged around a common centre, so that their points describe

an equilateral triangle, a fourth leg m the centre moving up and down, by

means of a fine screw, the head of which supports a round horizontal plate.

The latter has its edge almost touching a vertical scale divided into mm. or

•5 mm. as the case may be, and the plate itself is usually divided into

100 parts. The elevation or depression, therefore, of the central leg, from

the plane of the other three, can be read with considerable accuracy.

Generally the pitch of the thread is so arranged that two complete revolu-

tions of the plate lowers or raises the central leg 1 mm., and as the plate

itself is divided in 100 parts, the elevation or depression of the leg can be

read to an accuracy of -005 mm.
Now if two chords of a circle intersect at right angles the product of their

respective parts are equal. Thus in Fig. 337 A B and C D are at right

angles, and the line A B is divided into two equal parts d and d, so that

S X a = d X d = d'^

But ft=2r-S, so that (^•- = S (2r-S)

Whence r/'-^ + S--^

Now the sagitta, generally referred to as the [sag of the curve for any

particular chord A B, is measured by the central leg of the spherometer, and

d by the distance between the central leg and an outside leg. Therefore r,

the radius of curvature, is found from the above formula.
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Fig. 338 shows a plan of the instrument, C being the central leg, and

A"", Fand Z the three fixed legs ; the distances C X, C Y, C Z = d, and the

angles X C E and Z C E are each 60°. Let E be the distance between any

two of the fixed legs, say X and Z ; then

E/2 = sin 60°, or E = = x/3

whence d = E/VS

Substituting in the previous formula the value of d in terms of E we get

(E/V3)2 + S2 EV3+S2
2S 2S

that is E24-3S2

6S"'

This formula is applied when, instead of dj between a fixed and the

central leg, being taken, the distance E between two adjacent fixed legs is

measured.

When the sagitta S is very small compared with r (as is nearly always

Fig. 338.

the case), the quantity involving S^ in the formulae may be neglected, and
they become respectively

r = d'^/2S and EV6S

As an example of the application of the spherometer in calculating the

powers of surfaces, suppose the distance between the movable and a fixed leg

be 24 mm., and all four legs are brought into contact with a Cx. surface

when the central leg is elevated 2*5 mm. Then, using the simplified

formula,

242 576

2~xl^ "5^ ^ ^ (aPP^ox.

)

Now the focal length of the surface of a thin lens bounded by air is given

by the formula F = r/(/x - 1), or the dioptral power D by 1000 (fx - l)/r.

Therefore, supposing /x to be 1-6,

D=1000(l-6-l)/115 = 5-25 D (approx.)
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The Lens Measure used in the optical trade, is a mechanical instrument,,

based on the construction of the spherometer. Projecting from the top of a

small watch-like case are three metal pins, the centre one of which projects

beyond the other two, and is moveable. This latter acts on a spring con-

nected with a pointer which indicates on a dial the dioptral number, or focal

length, of the lens. The dial is graduated from known curves whose powers

are calculated on an index of 1'52, this being the average /x of the glass used

in ophthalmic lenses.

When the surface of a lens is pressed on the pins, until arrested by the

two side ones, the central pin becomes depressed, and causes the pointer to

revolve and indicate the power of the lens (as represented by its curvature)

in diopters. Care must be taken that the plane of the lens is at right angles

to the plane of the pins ; it is also important to see that the pointer indicates

zero when a plane glass is applied to the instrument. The surface is sph.

if, on rotating the lens, while pressed against the pins, the index remains

stationary^ and it is a piano if zero is then indicated by the pointer. If the

index moves to different positions, when the lens is rotated, it indicates a

cyl. or toroidal surface, the maximum power being shown by the highest

number attained. The axis of a cyl. is indicated when the index points to

zero^ while the base curve of a toric is indicated by the lowest power regis-

tered. The maximum curvature of a cyl., and the highest and lowest

curvatures of a toric, are, of course, spherical ; the intermediate curvatures,

although elliptical, are indicated as if they were spherical, but in all cases

the power shown by the lens measure in an intermediate meridian is the

same as that obtained by calculation, viz. D cos"^ a, where a is the angular

distance between the meridian of greatest power D and the meridian

measured.

If the lens be a sph. -cyl., cross-cyl. or toric, the power of each surface is

distinct from the other. But when both surfaces are sph., the power of the

one must be added to that of the other to obtain the dioptral number of the

lens ; thus with - 3 D on each surface, the lens is — 6 D. If the one surface

is H- 2*75 and the other - 1, the lens is -f 1*75 D sph.

Should, however, the lens measure be used on a lens not having an index

for which it is graduated, the powers registered will naturally be wrong.

This can be rectified, provided the lens index is known, in the following way.

Let D.2 be the true power of the lens, and that given by the lens

measure, which is scaled for an index of /x^
; let be the index of the lens.

Then

Or, knowing that the measure is gauged for /x = 1*52, we can write

2 ~ -SS
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Thus supposing the reading is 5 D, and the lens index to be 1-6; Dg,

the true power of the surface measured, is

^ 5 X -6
' = 5-75 (approx.)

Surfacing tools or discs are those employed for grinding the curvature

of lenses
;
they must, of necessity, be gauged for some given refractive index,

//-I,
usually 1-52. Now if used on glass whose index /Xg is higher or lower

than this, the lens produced would be respectively stronger or weaker than

the indicated power. Let D^^ be the power of the surface produced if the

index is /x-^, and that produced if the index is [jl^
;
then, as above.

The dioptral tool that should be employed to produce a given

surface power Dg, when the glass is of /x^ and the tool is gauged for jx-^, is

found from

Thus suppose the tools are made for glass of /x^ = r52, and a lens of

10 D has to be made of glass of /x^ = 1*54, we should employ a tool of

10 X •52/-54 = 9-5 D.

If focal lengths are indicated we have

Fi(,.l-1)=F,(;U,-1)

Blank Discs for Lenses.—When a lens of certain power and diameter is

required to be worked, it is essential that some idea of the thickness of the

necessary blank be obtained in order to avoid undue labour in grinding it

down if too thick, or failure to obtain the necessary finished lens if the blank

is too thin.

The spherometer formula affords a ready means of calculating the

minimum thickness required. S, the sag in the original formula, we can

now call t the thickness of the disc, and in place of d we can write c/2 which

is half the diameter of the lens ; r is the radius, and F and D have the usual

significance. Therefore
(c/2)V2r

This formula gives the minimum thickness, and about 1 mm. must be added

for the bevel of a Cx., or the central thickness of a Cc. lens ; t varies directly

with the size of the lens, and inversely with r. If the radii of the surfaces

are given, each is calculated for separately and the two quantities found added

together. With sufficient accuracy the radius of a piano Cx. or Cc. lens is

half the focal length, and that of a double Cx. or Cc. is equal to the focal

length. If, say, a lens of 10 Cm. F were needed in piano Cx. form,

r = 5 Cm. ; if the lens were double Cx. each r = 10 cm. ; therefore if we con-
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sicler F instead of r, the thickness is the same for both forms of lenses.

Then, all measurements being in mm., we have

t = (('/2)V2r - 6-V8r = cV4 F = D/4000

These formulae serve for all lenses no matter how the powers are distributed

^provided both surfaces are Cx. or both Cc. For periscopics the surface of greater

power only need be reckoned for, but a slightly greater added thickness than

1 mm. is then desirable. The long diameter of an oval lens must be taken for c.

Examples.—Required a + 20D. double Cx. lens of 37-5 mm. diameter,

that is, ordinary test case size. Then

,
37-5^ 37-5^x20

that is 6 + 1 = 7 mm. total thickness of disc.

Suppose a glass without power be required of a radius of 20 cm. and
diameter 30 mm.

;
then, the lens being periscopic,

3Q2
/= ;^QQ-^= '56 mm. or say a total of 2 mm.

For ordinary spectacle lenses the approximate thicknesses are

1 eye ... 1 + 300/F, or I + -3 D.
|

0 eye ... 1 + 350/F, or 1 + -35 D.

00 eye ... 1 + 400/F, or 1 + -4 D.
|
000 eye ... 1 + 450/F, or 1 + 45 D.

Lens Sizes.—American standard eyes, with their axes, and length of wire

needed to make a standard eye wire in mm., are given in the following

:

No. Axes. Wire. No. Axes. Wire. No. Axes. Wire.

4 33-8 X 24-5 93-5 1 36-5 X 27-5 103-5 000 40-9x31-9 117-5

3 34 X 26 95-9 0 37-8 X 28-8 107-5 000^ 42-5 X 33-5 122-3

2 35 X 25-5 98-6 00 39-7 X 30-7 113-8
i

0000 44-3x36 128-2

Jumbo ... 46x38 .. 134-3

OPTICAL SOCIETY STANDARDS.

No. Length of Periphery.

Corre-
sponding
American

No.

Long Diameters.

1

2

3

4

5

6

92-5 mm.
94-5 92-5 + 2
97-5 = 94-5 + 3

101-5 = 97-5 + 4

106-5 ^101-5 + 5
112-5 =106-5 + 6

4

3

2

1

0

00

Oval.

33-5

34
35
36-5

38
40

Long
Oval.

35
35-5

36-5

38
39-5

41-5

Round
Oval.

31
31-5
32- 5

34
35-5

37 5

Pantos.

34
34- 5
35-5

37
38-5

40-5

i Oval.

36
36-5
37-5

Round.

29-5

30
31
32-5

34
36
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This numeration, on the same basis of measurement, applies to all shapes

of eyes for spectacles and eye-glasses, the ratio of the long to the short axis

of the oval lens being approximately 1*3 to 1, and that of the long oval

1-5 to 1.

Power of Cement Bifocals.—The power of the segment or wafer in a

cement bi-focal is that which, added to the main lens, gives the power

required for reading. The index of refraction of the Canada balsam, by
means of which the wafer is joined to the main lens, is practically the same

as that of the glass, so that it need not be considered.

The free surface of the segment must be the total reading power less the

power of the free surface of the main lens. The power of the contact sur-

face of the segment must be equal to that of the contact surface of the main

lens, but of opposite nature, so that no power results from them. Suppose

the two powers be + 2 for distance and + 3 for reading (Fig. 339). If the

main lens is double Cx. with + 1 on each surface, the segment would need

to be - 1 on the contact and + 2 on free surface. If for the same powers

the main lens is periscopic Cx., the two surfaces would probably be + 3*25

Fig. 339. Fig. 340. Fig. 341. Fig. 342.

and — 1*25 (Fig. 340). The wafer would then be + 1'25 on the contact

surface, and — "2b on the other, the wafer being placed on the Cc. side of

the main lens. If placed on the Cx. side, the contact surface of the wafer

must be — 3-25, and the free surface -h 4*25 D (Fig. 341).

If the main lens is — 5 D Cc. and the reading power is — 2-5, then the

segment requires to be a + 2*5 on the contact surface and piano on the

other (Fig. 342). If the main lens is — 7 periscopic Cc. with, say, + 1*25

on the one surface^ the segment, if placed on the Cc. side, is + 8-25 on

the contact, and - 6*25 on the free surface, for a reading power of - 5 D.

When the main lens is a plano-cyl. the segment is attached to the

plane surface. When the main lens is a sph.-cyl. the segment is attached

to the spherical surface. Thus with, say, + 3 Sph. ^ + 2 Cyl. with an

addition of + 2 for reading, the wafer must have powers of — 3 and + 5.

Centering of Cement Bifocals.—The added segment is always Cx., the

lower part being weaker if the upper is Cc, and stronger if the upper is Cx.

If the wafer is itself centered, the prismatic effect due to decentration of the

main lens remains. For a properly centered lo^er, the segment of the bifocal

must have a prismatic effect contrary to that of the main lens where they
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are united. This is obtained by decentering the segment to the requisite

extent. AVhen the main lens is Cx. the prismatic effect of its lower portion

is base up, so that the wafer must be base down, its thick part being at the

edge of the main lens. If the latter is Cc. its prismatic effect is base down,

and therefore the segment must be base up, i.e., its thin part must be at the

edge of the main lens.

In Fig. 343 A is the geometrical and optical centre of the main lens, and

B is the optical centre of the reading position ; the distance A B is usually

about 8 mm., but may vary. Let D-^ be the total power of the main lens,

and C^ be the distance A B. Let I)^ be the power of the segment by itself,

and Co its needed decentration in cm. Now, in order that there be no

prismatic effect at B it is necessary that D^^ C^ = Cg, so that the formula

for calculating the needed decentration of the segment is

is the power of the spherical, or the vertical power of a cyl., or

sphero-cyl., whose principal meridians are vertical and horizontal.

Fig. 343.

Examples.—Let the upper be +4'5 D. and the lower + 6 ; the segment is

+ 1*5, so that

C2 = 4-5 X '8/1 -5 = 2-4 cm., the thick part dotvn.

Let the upper be - 3-5 and the lower - 1, the segment being + 2*5; then

C._, = 3-5 X •8/2*5= 1-1 cm., the thick part up.

The amount of decentering is often very large, and demands either that

the blank from which the segment is taken be of extra large dimensions, or

the segment be ground on a prism.

It is necessary to place the optical centres of the loivers each 1*5 mm., or

so, inwards in order to allow for convergence when reading. If the main lenses

are Cx. their prism action is base out, and that of Cc.'s in. To neutralise

this the segments must be decentered in if the main lenses are Cx., and

decentered out if they are Cc, such horizontal decentration being considered

apart from the placing of the centres of the wafers 1 '5 mm. m from those of

the uppers. The difference between the centres in each eye for distance and

reading varies with the interpupillary distance, but 1-5 mm. is a good

average distance. In all cases the actual amount of decentering of the wafer

required, so that the optical centre of the lower may be in a certain position
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—which position should be marked by a dot—can be obtained by sliding

the segment over the main lens while viewing the small crossbar as described

for centering.

Inset Bifocals.—To calculate the curvature of the segment, let be the

distance power of the whole lens, and D2 the reading power ; let /x-^ be the

index of the main lens, and fx^ the higher index of the segment. The radius

of curvature of a surface, separating two dense media, when the focus is

finally in air, is

r = F(/x2-/x,)=100(/x2-/x,;/D

The following calculation is necessary for finding the tool which, made
for producing a certain dioptric power D when the index is /x^, shall give to

the internal surface of the segment of /Xg the necessary power Dg, after allow-

ing for the powers obtained from the two outer surfaces and D5 (Fig. 344).

Let D3 be the outer power of the surface containing the segment, the

outer power of the segment, Dg the power of the surface not containing the

A B C D E
Fig. 344.

segment, and Dg the power of the internal segment surface between the two
glasses. Then = - (D^ + D^)

The lens may be of various forms, as shown in Fig. 344.

^^ D , (
/x,-l) ^ (D,-D,-D,) (/x,-l)

Now being of higher although of the same curvature as D3, which

is known, is of greater power such that D^ = D^ {l^2~^)/il^i~^)' Therefore

The values of Dg, D3 and Dg and those of the two /a's being known, this

equation serves for all forms, whether Cx. or Cc, shown in Fig. 344. For a

sph.-cyl. form A is used and disappears from the equation ; for a plano-cyl.
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form B is employed and D3 disappears. Thus for a plano-cyl. of form A
having = - 1-5, and 0^ = 0, the being 1-52 and 1-65, we find

Ox (1-52- l)-[- 1-5 (1-65 -1)] +-975_^ .

1-65 -1-52 ^ ^ •13
""''^''^

Let Dj= + -5 and +2*25, made periscopic so that i-l*25 and
D5 = — 75

;
using form (D) we get

[ + 2-25-(--75)] •52-(U25 x -65) '7475

1-65- 1-52 ~ -13 ~ ''^

If the /x's are 1-52 and 1-65, D = 4 (D2-D5)-5 D3 for forms 6', D and

^; D = 4 D2-5 D3 for form A; D = 4 (Dg- D5) for form B.

If the /x's are 1-5 and 1*6, D = 5 (Dg — D^) — 6 D3 for forms C, and E

;

D = 5 D2 - 6 D3 for form A; D = 5 (Dg - D5) for form B.

The disc selected must be rather thicker than for ordinary lenses, especi-

ally if the segment is of high power. Having insets of known powers the

selection of a suitable blank and the curvatures of the two outer surfaces

are as follows. Let the two /x's be 1*65 and 1*52 so that for a given curva-

ture producing D3 we have D^ = 5 ^3/4, i.e. is 1/4 stronger than D3, and

J)^ — J)^ = DJ^. Now part of the additional power for reading is obtained

from D4— D3, and part from D^3, i.e. \)^ — D^= (D^ — D3) + Dg; therefore the

powers needed on the two surfaces are D3 = 4 (D2 — Di — Dg), and D5 = Dj^ — D3.

It is preferable to select a disc such that Dg is higher than the addition

needed for reading, and in that case D3 is Cc. if D^^ is Cx. In all cases it is

advisable to calculate two or three combinations in order to arrive at the

most suitable. A Cc. curvature on the surface of should be avoided ; other-

wise there is danger of working through to the segment. If Dg = Dg —
the surface D3 is piano; therefore for sph.-cyls. select Dg = D2 — l*25Dj,

the cyl. being ground on to the side of Dg, and the sph. on that of D3.

The proportional increase of power of over D3 is found from

(/^2-/^i)-(/^i-l)

(/-i-l)

so that if the two /x's are other than those given above, the factor 4 in the

value of D3 would vary accordingly.

As examples, for D-^=^ +'2"2b, and D2=-l-3*5 select Dg=l'5; then

D3 = 4x (1-25 -1-5)= -1, and 0^ = 2-25 + 1 = +3-25.

For Di= -3-5,andD2= -2-25 select Dg = 2-5
;
thenD3 = 4x (1-25-2-5)

= - 5 and T>^= -3-5 + 5 = 1-5.

For +6 S. O -2 C. with +8 sph. for reading, Dg= +8-1-25 x 6 = -5.

For -10 S. O -3 C. with -7 sph. for reading Dg=— 7 + 1*25

x 10=5-5.

To Construct Test Types after Snellen.—Each letter at a certain distance
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d must subtend an angle of b' and each limb of such letter an angle of 1'.

In small angles as these, the arc, chord, sine and tangent may be considered

equal. The general formula is then

S = raan V

where S is the size of the letter, d is the distance in mm., and V is the

visual angle. Since tan 5' = -001455 and tan 1' = "000291, for use at any

metric distance, the diameter of each letter, being square, is the same each

way and is obtained from

S= 1000 X •001455-1-455 d {d being in M. and S in mm.).

The diameter of each limb is similarly obtained from '291 d, but it is

quite accurate to divide the letter dimension by 5 in order to obtain the

limb dimension.

If the letters and distances are in Imperial measure, the diameter of

letter in inches = 12 x -00145 = '0174 d {d being in feet).

Thus for 6 M. the tj^pes are 6 x 1-455 = 8-75 mm., those for 12 M. are

17 "5 mm., and so on for every other distance. If the visual angle is other

than 5' the required size of type in mm. is

S = M x -000291 X visual angle in minutes of arc.

The size of types can also l^e deduced from circular measure. The
radian = 57*3° = 3438', the arc subtending it being equal to the radius or, in

this case, the distance ; if an angle is smaller the arc, subtending it, is propor-

tionately smaller, so that

y/3438 = S/d^ or S=V^/3438

Suppose the types be required for 18 M. under a visual angle of 4' ; then

S = 4 X 18000/3438 = 21 mm. (approx.)

To Construct Tangent Scales.—For prism diopters the card must be

scaled so that each division shall be 1 cm. for each M distance at which it is

used, e.g. the divisions are each 2 cm. for 2 M., 6 cm. for 6 M. and so on.

For distances and spaces in Imperial measure each division is 2*4 inches for

20 ft., and for other distances in proportion.

In order that equal divisions should accurately indicate equal increase of

angular deviating power of prisms, the scale should be on an arc at the

centre of which the prism is held. This, in fact, was the basis of the Centrad

notation which, however, owing to the inconvenience of such an arrange-

ment, did not come into general use.

For Degrees of Deviation.—The divisions should be d tanl°, d tan2° etc.,

where d is the distance at which the chart is used ; that is, the successive

spaces should increase in size from zero, since equal increases in the angles

of deviation correspond to greater increases in the tangents ; but for small
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angles the error is negligible, so that it is customary and sufficiently accurate

to make each division in cm. = 1*745 d, where is the distance in metres.

Thus for use at 3 M. each division would be 3x 1*745 = 5-25 cm. approx.

and so on for every other distance. For distances in Imperial measure the

divisions are -01745 x 12 = -21 in. for each foot; that is, 4*2 in. for 20 ft.

For Degrees.— If /x is taken as 1*5 the division should be '875 cm. for

each M. ; if /x= 1 52, they should be '9 cm. ; if /x= 1*54 they should be '94 cm.

In practice the ^ scale serves for degrees.

Combined Scale.—A scale as shown in Fig. 148 can be made to indicate

both prism diopters and degrees of deviation. If used at 2 M. the numbers

give degrees of deviation, at 3*5 M. they indicate prism diopters, the divisions

being each 3*5 cm. Thus if a given prism at 2 M. indicates, say, 4 it is a

4°d ; if held at 3*5 M. it will indicate 7^, which is the equivalent of 4°d.

Mirror for Reversed Test Types.—The necessary size S of the mirror

depends on the size C of the chart, and the distances M and d respectively of

chart and subject from the mirror ; it should be just large enough to be

Fig. -34.5.

filled entirely by the image of the chart. S/C = + M) so that

S = C6?/(f/ + M). If, as is generally the case, f/ + M = 6 M., the subject and

the chart being at the same distance, i.e. 3 M. from the mirror, the latter is

just one half the size of the chart in both dimensions.

Confusion Discs.—The size of a disc of confusion C (Fig. 345) depends

on its distance h from the focus, the distance / from the lens to F, and on A
the aperture of the lens ; thus A/C=//6, or C = A h/f.

For instance, with a +4 D lens the disc of confusion at 15 cm. from the

lens, which is 25 — 15 = 10 cm. from F, is 10/25 of A. It would be the same

size at C if 35 cm. from the lens, and also 10 cm. from F. If C is 40 cm.

from A, then (77^ = 15/25. In these cases the source of light is presumed

to be distant. If the source of light is not large the same calculation gives

very approximately the diameter of the whole cone of light. If the object

is near, the conjugate distance ^ must be taken instead of F.

If a screen be held close behind a Cx. lens facing a distant bright source,

the emergent light is similar in size to the lens aperture, and it becomes

smaller as the screen is receded, the minimum being reached at the focus,

after which it ac^ain increases in size.

With cylindrical lenses the two diameters must be calculated, the con-
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fusion disc being elliptical. These two dimensions C and C at any distance

are found from
C = Aft/Fi and C' = Ah/F^

where a and b are the distances respectively from and F.,.

Thus what is the size of the confusion disc formed at 30 cm. by a

+ 4 S. o + 2 C. Ax. 90°, the diameter of the lens A being 5 cm. 1 Now
Fi= 16-66, and ri = 30 - 16-66 = 13-33 cm.; F2 = 25, and /) = 30-25 = 5 cm.,

so that

C = 5 X 13-33/16-66 = 4 cm. and C' = 5 x 5/25 = 1 cm.

The disc is 4 cm. horizontally and 1 cm. vertically. The size and dis-

tance of the circular disc where C and 6" are equal are shown in "The
Interval of Sturm," Chap. X., and from the above we find at 20 cm. both

dimensions to be 1 cm. It is difficult to show the two diameters in one

diagram, but a separate one for each clearly shows the principles involved.

Reflecting Refractors.—If a lens be used so that light refracted by the

first surface is reflected back from the second surface, and again refracted by

the first we have a reflecting refractor, known as a Mangin mirror.

A Cx. surface is a positive refractor and a negative reflector, while a Cc.

surface is a negative refractor and positive reflector, but the second surface

of a lens, used in this way, if Cx. as a refractor, becomes Cc. as a reflector

and is positive in both cases ; if the second surface of the lens is a Cc. re-

fractor, it becomes a Cx. reflector, and is negative in both cases.

To calculate the focal length of a reflecting lens it is necessary to add the

reflective power of the second surface to the refractive power of the first

surface as the light enters and emerges. The lens is treated as thin, and ?'

is the radius of curvature of a piano or double Cx. or Cc. F is the resultant

focal length.

For a piano Cx. or Cc. with the plane surface as a reflector

1 /x-1 /x-1 2(/x-l)

F- r + r - r ""2(/x-l)

For a piano Cx. or Cc. with the curved surface as a reflector

1 2// „ r

F-r ^-2^

For a double Cx. or Cc.

1 /x-1 2/x a-1 4a-2
4/x — 9.

For doubles of unequal radius and periscopic lenses, 7\ being the radius

of the first, and that of the second or reflecting surface, we get
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1 /X— 1 2/x [jL—\ 2/x (rj^ H-rg) — 2/'2

T.— + .7" + ,.
= ~. or

the — sign being prefixed when or has a diverging effect.

Since a curved surface has more reflecting than refracting power, the

effect of a Cx. or Cc. periscopic may be positive or negative as the one or the

other surface faces the light. In order that incident parallel light emerge as

parallel it is necessary that

or approximately — 3 /^ i.e. when the radius of the reflecting surface is

equal to the posterior focal length of the first surface, parallel light retraces

its own course ; or the power of the mirror must equal twice the powder of

the lens, that is, 2/^2 = 2 (/x— 1) + l/r^) care being taken that the proper

signs be affixed for converging and diverging effects.

When /x= 1-5, let F' be tl.e focal length and D' the dioptric power of the

lens
;
then, used as a reflecting refractor, a piano Cx. or Cc. with the piano

surface reflecting

F = y=FV2 or D = 2D'

With a piano Cx. or Cc. with the curved surface reflecting

F=.r/3-F76 or D = 6IK

With a double Cx. or Cc.

F = r/4 = FV4 or D = 4D'

The above formula? show^ that, in all cases, the power of the w^hole system

is equal to the power of the reflector plus twice the power of the lens. As a

reflector a surface has about four times as much power as it has as a refractor,

so that 1/F = 2/Fi + 6/F2, or I) = 2 + 6 D^, where F^ and refer to the

first, and F^ and D.^ to the second surface. Thus with a lens of Dj^ = +1 and

!)., = +2, we have D = + 14; if D^, +4 and D2= —2, we get D = — 4 ; if

this lens were turned the other way D = + 20.

Images Formed by cyl. Lenses and Mirrors.—Hitherto the formation of

images by cyls. has only been considered so far as the production of focal

lines from point sources is concerned. Nevertheless, a piano cyl. can

produce an image of sorts, although naturally very ill defined and distorted,

from an ordinary object ; such images, even when real, are best examined by

the eye, because the pupil of the latter acts as a stop, and cuts down the

excessive confusion caused by the absence of point foci.

Cx. cyl.—The real image produced on a screen by a piano Cx. cyl. is

made up of focal lines approximately equal to the axial diameter of the lens

;
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in consequence the real image is an infinite number of streaks parallel to

the axis. Viewed from behind by the eye, the image seen is partly real,

partly virtual, is equal in size to the object along the axis, and may be

diminished, magnified, or of the same size across the axis. With the axis,

say, horizontal, the image is not laterally reversed, but is inverted ; with the

axis vertical the image is reversed but not inverted. When the object is

within F the image is wholly virtual, there is neither reversal nor inversion,

there being unit magnification along the axis, and enlargement across it.

Co. cyl.—Here the image is always virtual, is equal in size to the object

along the axis, and diminished across the axis. There is neither reversal nor

inversion.

Cyl. Mirrors.—Remembering that a Cc. cyl. mirror acts similarly to a

Cx. cyl. lens, and a Cx. cyl. mirror to a Cc. cyl. lens, what has been said in

the foregoing paragraphs with regard to lenses applies equally to mirrors.

Optical Glass.

Glass is a hard, generally transparent or translucent substance, made by

the fusion of silica with potash, soda, lime, lead and other substances, such

as pearlash, arsenic, manganese, saltpetre, chalk, etc. It is brittle, sonorous,

ductile when heated, and fusible only at a very high temperature. It is

usually not soluble, but is acted on by hydrofluoric acid, and is a very bad

conductor of heat. There are many varieties of glass, and the process of

manufacture, as regards the ingredients used and the treatment after

complete fusion of the various components, depends on the nature of the

glass produced.

If suddenly cooled, glass becomes extremely brittle owing to the state of

tension produced by the cooling of the outer portions while the inner are

still in a molten condition
;
annealing tends to reduce brittleness. Glass

used for optical purposes must be homogeneous, i.e., of equal density and

refractive power throughout, and perfectly transparent ; it is therefore care-

fully mixed and gradually cooled. It should also be free from air bubbles,

striae and colour for spectacle lenses, although a few air bubbles, if small,

may be of little or no consequence in a camera lens. The solid block of glass

is usually polished on two sides, so as to allow of the detection of defects,

and from it clear discs of appropriate size are cut.

Lenses are made of crown glass, which contains lime, or of flint glass,

which contains lead. Flint has generally a higher refractivity and chroma-

tivity ; the greater the proportion of lead in the glass the greater, usually,

are the refractive and dispersive powers. It is denser, heavier, and softer

than crown, and is almost perfectly colourless. Crown glass has the

advantage of low3r dispersion and is harder, so that it does not so easily

become scratched, but it is more brittle than flint. It has sometimes a
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decided greenish tint, due to the presence of iron. The pinkish tint found

in some glass results from the admixture of manganese.

According to its component ingredients and manufacture, the indices of

refraction of glass vary for the various lines of the spectrum. The mean ,a of

different kinds of glass made for optical purposes can be taken as 1*574, that

of the crowns being 1-524, and of the flints U624.

The following may be taken as very rough examples of the proportions

of the materials entering in the manufacture of optical glass :

—

Flint Glass (100 parts).—Silica 50, lead 30, potash 10, other in-

gredients 10.

Crown Glass (100 parts).—Silica 70, soda 10, lime 10, other in-

gredients 10.

In the following table some examples (not actual kinds) are given to

illustrate the refraction, dispersion and specific gravity of different kinds of

optical glass, and the method generally employed in arranging them in the

order of their v values or elhciencies.

TABLE OF OPTICAL GLASSES.

Dispersion.

Description.
Specific

GravityMedium.
C - F = 5m A-D D-F F-G

Very light Crown 1-48 66 •0073 •0050 •0055 •0040 2^25

Light 1-50 62 •0081 •0055 •0065 •0045 2^50

Ordinary ,,
1-52 60 •0087 •0060 •0070 •0050 2^75

Heavy
Very heavy ,,

1-56 55 •0102 •0065 •0075 •0055 3

1-60 52 •0115 •0070 •0085 •0065 3-5

Very light Flint 1-54 48 •0123 •0075 •0090 •0070 3

Light 1-58 43 •0135 •0085 •0095 •0080 3^25

Ordinary
,,

1-62 40 •0155 •0095 •0115 •0100 3-50

Heavy 1-68 35 •0194 •0105 •0130 •0110 4

Very heavy „ 1-85 24 •0354 •0185 •0280 •0250 5-5

REFRACTIVE INDK

Air • • /^D
= LOOO

Ice . . /Xj, = 1-310

Water (distilled) .. /Xd = 1-336

Sea-water .. fX^ = 1-343

Blood /^E
= L354

Albumen /^F
= 1-360

Absolute Alcohol ... /Xo= 1-366

Oil of Bergamot .. /Xn = 1-464

Olive Oil ... ix^= 1-470

S OF VARIOUS MEDIA.

Oil of Cassia ... /^H
= 1-618

Oil of Fennel l^D
= L544

Anilin Oil /^D
= 1-580

Oil of Cloves ... /^D = 1-533

Oil of Cinnamon /^H
= 1-508

Cedar Oil (Lens immer-

sion oil) /^D = 1-512

Naphtha /^E = 1-475

Turpentine /^E
= 1-478

23
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REFRACTIVE INDICES OF A^ARIOUS MKBlA— Continued.

Glycerine 1-460 Rock Crystal Pebble

Gum Arabic ... /^E
= 1-512 (ordinary ray) = 1-544

Spermaceti H^F
= 1-444 Rock Crystal Pebble

Bisulphide of Carbon . .

.

/^U = 1-687 (extraordinary) = 1-553

Alum /^D
= 1-457 Tourmaline (ordinary

Sugar ... f^D
= 1-535 ray) f^D = 1-636

Rock Salt /^D = 1-555 Tourmaline (extraordi-

Salt Solution /^E
= 1-375 nary) f^D = 1-620

Phosphorus .

.

/^D
= 2-224 Iceland Spar or Lalcite

Diamond /^D
= 2-470 (ordinary ray) ... f^V = 1-659

Chromate of Lead /^U
= 2-500 Iceland Spar or Calcite

to 2-970 (extraordinary

)

= 1-486

Canada Balsam (liquid) 1-520 Felspar = 1-764

„ „ (hard) 1-535 Fluor Spar = 1-434

REFRACTIVE INDICES OF SOME METALS (KUNDT).

Red. Vellow (D.). Bkie.

Silver 0-27
Gold 0-38 0-58 1-00
Copper 0-45 0-65 0-95
Platinum 1-76 1-64 1-44
Iron ... 1-81 1-73 1-54
Nickel 2-17 2-01 1-85

Cobalt 2-61 2-26 2-16

The Transmissiveness of various transparent media to different parts of

the visible and invisible spectrum varies considerably. Thus crown and
flint glass are comparatively opaque to heat rays and equally transparent to

light rays, but while crown is rather opaque to the ultra-violet, flint is ex-

ceedingly so. Most crystals, as fluor spar and pebble, are exceedingly trans-

parent to the ultra-violet, and fluor spar also to the infra-red rays. Rock
salt and iodine are very transparent, while alum is very opaque, to the infra-

red rays.

Opacity.—The cause of opacity may be said to be due to the restraining

influence exerted by bodies—or rather, their composition—on the passage
through them of waves of certain lengths. The light is not, however, lost,

but is converted into some other form of energy—perhaps generally heat

—

but the rise in temperature would be slight. It is due to the infra-red or

heat radiations accompanying light that an opaque body becomes markedly
heated when exposed to general radiation. A rise due to opacity to ethereal
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vibration must, however, be distinguished from that caused by the nature of

the surface, i.e., its absorptive power, which has a much more powerful

influence in raising the temperature of a body. Thus polished and blackened

metal may be equally opaque, but the latter would be rendered much the

hotter by freer absorption of heat. In fact it would be difficult to eliminate

the factor of absorption in the measurement of the rise of temperature

produced by opacity to light.
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LENS SCALE

Of the Approximately Eelative Values of Lenses Numbered by

THE Dioptric System and by Focal Length in Mm. and Inches.

1

No. of Cc.
Diopters. Focal Length 12 Wctl XJK^lX^ Lll 111 '

Olrl Tilno-liaVi S-trcfATnV^XLL JJJXX^XiOll Oj'oIjC/XXX.

Refractive Power. in Mm. Inches. I (These Nos. have a very
Uncertain Value.)

0*125 C3AAA OOA

0*25 4000 1 fiA 0000
0"375 2666 100
0*50 2000 80 000
0'625 loUU CA 00
0*75 1 ooolooo
0*875 1143 48 0

1"00 1000 40
1'125 OQ Oooo ob 1

1'25 800 DO

1*375 OA

1 "50 boo zb
1*625 616 24 oz

1*75 zz
1*875 533 21
2*00 500 20 2^
2125 470 19
2*25 444 1 olo

o
O

2*375 421 17
2-50 400 16 3i
2"625 ool io

275 363 14 4

300 333 13 4i
3*25 308 12 5

3*50 286 11 6

4*00 OKA 10 7

4*50 222 9 8

5*00 200 8 9

5*50 182 7 10
6*00 166 6i

—
6*50 154 6 11

7*00 142 5^ —
750 133 5i
8*00 125 5 12
8-50 118 4|

4i

13

900 111 14
9*50 105 4i 15

10*00 100 4 16
10*50 95 3|

3i

17
11*00 90 18
12*00 83 3i 19
1300 77 3 20
14*00 71 2i 21
16-00 62 21

2i

22
18-00 55 23
20 00 50 2 24
22*00 45 li
26*00 38
32*00 31
40*00 25

356
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METRIC MEASURE.

1 Kilometre (K.) = 1000 metres = ^ mile. The K. = 1 billion /x/x.

I Metre (M.) = 10 decimetres = ^oVo Kilometre = 39*37 inches.

1 Decimetre (Dm.) = 10 centimetres = iV Metre = 3*937 inches.

1 Centimetre (cm.) = 10 millimetres = Metre = 0*3937 inch.

1 Millimetre (mm.) =1000 microns = toW Metre = 0*03937 inch.

1 Micron (/x) = 1000 micromillimetres = roW nim. = .25:100 inch.

1 Micromillimetre (/x/x) = 10 Angstrom units = ttoo^tooo mm. = 25:400:000 inch.

1 Angstrom unit (A.) = i\) /x/x= loioo /^ = io:ooWo-o mm.

To convert mm. to inches multiply by *03937 or divide by 25*4.

,, cm. to inches multiply by -3937 or divide by 2*54.

„ ,, M. to inches multiply by 39*37 or divide by -0254.

M. to feet multiply by 3*28 or divide by *3048.

Approximate Conversions.

Feet to M. multiply by 3 and divide by 10,

Feet to cm. multiply by 30.

Inches to cm. multiply by 2| or multiply by 10 and divide by 4.

Inches to mm. multiply by 25 or multiply by 100 and divide by 4.

M. to feet multiply by 10 and divide by 3.

M. to inches multiply by 40.

Cm. to inches divide by 2J or multiply by 4 and divide by 10.

Mm. to inches divide by 25 or multiply by 4 and divide by 100.

Equivalents of Standards of Measurement..

1 millimetre (mm.) ... ... ...

1 English inch, also U.S. and Russian

1 Paris inch ...

1 Prussian inch, also Danish and Norweg

1 Austrian inch

1 Swiss inch ...

1 Swedish inch

1 English inch

1 Paris inch ...

...= *03937 English inch.

...= -03694 Paris inch.

... = -03824 Prussian inch.

. . . = -03796 Austrian inch.

... = 25-4 mm.

... = 27-07 „

ian = 26-15
,,

... = 26-3 „

...=30

... = 29-7 „

... = -94 Paris inch.

. . . = 1-07 English inches.
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COMMERCIAL NOTATION FOR OPERA GLASSES AND
TELESCOPES.

The French inch is divided into 12 lignes or lines, in which the diameter

of the object glass of ordinary opera glasses and small telescopes is expressed.

Lines 5 6 7 8 9 10 11 12 13 ul15 16 17 18
19j20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M.M. )
(approx.) f

11 13 15 17 20 •22 24 26 29 31 33 3( 38 40 43j45 47 49 52 54 56 58 61 63 65 67 70 72 74 76 78 81 83 85 87 90

THE GREEK ALPHABET, WITH THE ENGLISH EQUIVALENTS
AND THE PRONUNCIATION OF THE LETTERS.

Aa . . alpha a li . . . iota . .

.

i . . rho . .

.

r

BP . . . beta ...h Kk . .. kappa... k So- 9 . . sigma s

. . gamma g (hard) AX. .. lamda... I Tt . . . tau . .

.

t

AS . . delta. . . d Mfx. ..mu m Yv . . upsilon u or y
E€ . . . epsilon e (short) Nv . ..nu n ^(fy . . phi . .

.

ph
. . zeta ... z • . . xi X . chi ... ch (hard)

. . eta ... e (long) Oo . . . omicron 0 (short) . . . psi . .

.

. . theta th ..pi 12 w . . . omega 0 (long)

SINES, TANGENTS, ETC.

Small Angles.—The sin or tan of 1°= "01745; those of any angle

smaller than 1° can be found roughly by subdividing -01745. Thus the sin

or tan of l' = -0003; of 5'=-00145; of 10' = -0029; of 15'- -00435, and so

on. The cosine of these small angles may be taken as 1.

For an angle intermediate to those in the table, the value of the sine or

tangent may be found by adding to the next lower the proportional difference

between the next higher and lower values. Thus suppose sin 14° 40' be

needed; now sin 14° 30' = -2504, and sin 15°= -2588. The difference for

30' = -2588 - -2504 = -0084 so that

sin 14° 40' = -2504 + -2.504 + -0028 = -2532

For the cosine and cotangent, which decreases as the angle increases, the

proportional value of the intermediate angle must be subtracted from the

next higher. Thus

cos 52° 18' = -6157 - (-6157 - -6088) x |§ = -6157 - -0041 = -6116
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0-9171 0-9135 0-9100 0-9063 0-9026 0-8988 0-8949 0-8910 0-8870

0-88-29 0-8788 0-8746 0-8704 0-8660 0-8616

0-S572

0-8526

0
8480

0-8434 0-8387 0-8339 0-8290 0-8241 0-8192 0-8141 0-8090 0-8039 0-7986 0-7934 0-7880 0-7826 0-7771 0-7716 0-7660 0-7604

0
7547

0-7490 0-74:31 0-7373 0-7314 0-7254 0-7193 0-7133 0-7071

1
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2-3559 2-2998 2-2460 2-1943 2-1445 2-0965 2-0503 2-0057 1-96-26 1-9210 1-8807 1-8418 1-8040 1-7675 1-73-21 1-6977
1-6643

!

1-6319

i

1-6003

1

1-5697 1-5399 1-5108 1-48-26 1-4550 1-4281 1-4019 1-3764 1-3514 1-3270 1-3032 1-2799 1-2572 1-2349 1-2131 1-1918 1-1708 1-1504 1-1303 1-1106 1-0913 1-0724 1-0538 1-0355 1-0176 1-0000

Tangents.

1
0-4245 0-4348 0-4452 0-4557 0-4663 0-4770 0-4877 0-4986 0-5095 0-5206 0-5317 0-5430 0-5543 0-5658 0-5774 0-5890 0-6000 0-6128 0-6-249 0-6371 0-6494 0-6619 0-6745 0-6873 0-7002 0-7133 0-7265 0-7400 0-7536 0-7673 0-7813 0-7954 0-8098 0-8-243 0-8391 0-8541 0-8693 0-8847 0-9004 0-9163 0-9325

0-9490
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0-9657
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0000 t

j

1
0-3907 0-3987 0-4067 0-4147 0-42-26 0-4305 0-4384 0-4462 0-4540 0-4617 0-4695 0-4772 0-4848 0-4924 0-5000 0-6075 0-5150 0-5225 0-5299 0-5373 0-5446 0-5519 0-5592 0-5664 0-5736 0-5807 0-5878 0-5948 0-6018 0-6088

.

0-6157 0-6225 0-6-293 0-6361 0-6428 0-6494 0-6561 0-6626 0-6691 0-6756 0-6820 0-6884 0-6947 0-7009 0-7071
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J
1-0000 1-0000 0-9998 0-9997 0-9994

u

yyyu

0-9986 0-9981 0-9976 0-9969 0-9962 0-9954 0-9945 0-9936 0-9925 0-9914 0-9903 0-9890 0-9877 0-9863 0-9848 0-9833 0-9816 0-9799 0-9781 0-9763 0-9744 0-9724 0-9703 0-9681 0-9659 0-9636 0-9613 0-9588 0-9563 0-9537 0-9511 0-9483 0-9455 0-9426 0-9397 0-9367 0-9336 0-9304 0-9272 0-9239 i

Cotangents.

1
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1

1
0-0000 0-0087 0-0175 0-0262 0-0349 0-05*24 0-0612 0-0699 0-0787 0-0875 0-0963 0-1051 0-1139 0-1228

0-1317

1

0-1405 0-1495

0
1584

0-1673 0-1763 0-1853 0-1944 0-2035 0-2126 0-2217 0-2309 0-2401 0-2493 0-2586 0-2679 0-2773 0-2867 0-2962 0-3057 0-3153 0-3249 0-3346 0-3443 0-3541 0-3640 0-3739 0-3839 0-3939 0-4040 0-4142

1

1
0-0000 0-0087 0-0175 0-0262 0-0349 0-0523 0-0610 0-0698 0-0785 0-0872 0-0958 0-1045 0-1132 0-1219 0-1305 0-1392 0-1478 0-1564 0-1650 0-1736 0-1822 0-1908

0
1994

0-2079 0-2164 0-2250 0-2334 0-2419 0-2504 0-2588 0-2672 0-2756 0-2840 0-2924 0-3007 0-3090 0-3173 0-3256 0-3338 0-3420 0-3502 0-3584 0-3665 0-3746 0-3827

j

oooooooooooooooooooooooooooooooooooooooooooooo
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TABLE OF SINE SQUARED AND COSINE SQUARED.

Read downwards from 0° to 45° and upwards from 45° to 90".

Degrees. Sin. 2
Cos.'-^ Degrees. Degrees. Sin. 2 Cos.2 Degrees.

0 000000 1 000000 QO 1 59A4.fiL O^UttU ft47S54 67
11 000^0<^ tjVi}\JtJ-± ov 94. 1 fi54.05 8S459500^0 u0 66

2 001 91 ft\J\J L ^ LO QQft7ft9
fj tJO 1 o ^ oo 95 1 78591J ( oo t/ X 891 4090 -J X TtW 1/ 65

o OOoT'^p; QQ79fi'iW 1 ^KJO K7 ^o <
^

96 1 Q91 Q5X O—1 X t/O 807805o\j 1 oyjfj 64
At 00iiM79UU-±0 i -J QQ^Sl 9^^

iJ oO L ^O oo 97 90fil 1 f\L Lxj 79S8841 0 OOOrt 63UO

tj \J\J 1 OOk) W L'± oo
!

98ZiO 9 904-SO 779560 62U -J

au 01 0Q90 QJ^QOJ^Ouovyjoyj 1on 9Q 9S50S1jLiOOxJO X 764969 61U X

7 ^f<^^ 4-1U oo L^ L oo
j

so 950000—lOxjyjyjyj 750000 60
fto 01 VOxJlJ^o J^9 SIO 1 985995^i\JO 4JO 7S47751 Ot: 1 10 59

Q iJ i OO O O L S9 9J^07Q4. 71 9906 58

1

0

0*^01 ^7 V\jVO\jO SOou SSoo 9Qfi5SQ.J UyJOOiJ 70S41

1

57
1

1

i/ D O «J i/U 7Q S4- SI 9A050 X .jUUO 687.S95 56

1 9J. ^ Oi^l R'^O LOO UOxjO L 1 78
1 o OO S9f)01 70 ii X ( 670983 55

0^0f^9i=l\JO\J\) 77 OU '^4.54.QQ 654501 54

14 058516 941484 76 37 362163 637837 53

lo 066977 A O O A £1 O933023 75 38 0 ^7 Ark 0379086 /J 0AO 1 /<520914 02

16 075995 923005 74 39 396018 603982 51

17 085498 914502 73 40 413192 586808 50

18 095481 904519 72 41 430467 569533 49

19 106015 893985 71 42 447695 552305 48

20 116964 883036 70
i

465124 534876 47

21 128450 871550 69 ! 44 482608 517392 46

22 140325 859675 68
i

45 500000 500000 45

Degrees. COS.2 Sin. 2 Degrees. Degrees. Cos.

2

Sin.2 Degrees.

USEFUL DATA.

The circumference of a circle = 27rr. The diameter of a circle = C/7r.

The area of a circle = 7r?-2. The surface of a sphere = Trd"^.

The volume of a sphere = 7rf/3^6. The area of a triangle = Per x base/2..

The length of an arc= "01745^ x No. of degrees.

The area of a sector of circle = area of circle x degrees of arc/360.

The area of a circular ring = 7r/4 x {d^ — d^).

The perimeter of an ellipse = 7t J{a^ + 6^)/2. The area of an ellipse = irah/4.

The value of 7r = 3-14159 or approx. 22/7.

The radian is an angle subtended by an arc equal to its radius = 360/27r =u

180/7r = 57-3°.
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.
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.
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.
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,, combinations .. 193,203,331
,, concentric .. .. .. 221

,, crossed .. .. .. .. 280
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periscopic .. .. .. 142
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Nicol 305

,, oblique 168

ophthalmic .. .. .. 163
,, reflecting .. .. 55

,, resultant .. .. .. 169
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,, index of . . . . . . 48

I

,, laws of . . . . . . 48

Refractive efficiency . . . . 258, 269

, ,
index, liquids . . . . 322
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J. & H. TAYLOR,
rTDanufactuving ©pticians,

Birmingham : DIOPTRIC WORKS, ALBION STREET,

London : 33, KIRBY STREET, HATTON GARDEN,

l^eg to announce the issue of their new Catalogue, in which will be

found

"THE FINEST WORK IN THE WORLD.'

^he book also contains a mine of information useful to the

practical man.

'^he following Standard IVorks are also published by the firm :

THE KEY TO SIGHT TESTING (Second Edition).

lOs. 6d. (Postage 5d.).

GEOMETRICAL OPTICS. 2s. 6d. (Postage 3cl.).

THE MANIPULATION AND FITTING OF OPH-
THALMIC FRAMES. 4s. 6d. (Postage 3d.).

THE RECOGNITION OF OCULAR DISEASE
{Written for Opticians), 7s. 6cl. (Postage 4d.).

TAYLOR'S MONTHLY,
Journal of practical information in Optics, will be forwarded free

every month upon receipt of business card and request.



ORTHOPS SPECIALITIES

BO
••" '!? -"30 ™^ ORTHOPS CHART.

'"^SS^^ ^^^^S^'* ^ complete self-contained chart designed for the

.10^^ ^^Si'"
"^^^^ modern system of sight testing. Every detail

gQ^g ^SaO heen determined or calculated with a definite

^^9^ B D E object, and on scientific principles.

Z P N O

THE ORTHOPS
NEAR MUSCLE-TEST.

7 dllllllllllli \
generally recognized that a complete

;(4lillliullHllii>Vi.
, , J f ,

1 L 1 .1knowledge or the muscular imbalance cannot be

obtained from the distance-test alone. The

f
Orthops near muscle-test, which has been de-

1 2 3 4 5 signed to afford such a near test at the customer's

ordinary reading point, is small and inexpensive,

and no refractionist should be without it. It is employed in the ordinary way

with the Maddox rod or groove, enabling the imbalance for distance and near

to be compared almost simultaneously.

THE ORTHOPS TRIAL-FRAME.

This frame combines all the simplicity and rapidity in use of the best variety

of drop frame combined with all the necessary facial adjustments. In it the clumsy

and painful hook sides have been abolished in favour of long powerful straight

sides which keep the frame firmly yet comfortably in place. It is hand-made,

and therefore light and rigid ; it holds three lenses in each eye, and the broad

swinging bridge adapts itself to any type of nose.

THE ORTHOPS FRAME AND FACE-RULE.

This well-known rule is practically unique in that with it facial and frame

measurements can be taken with equal ease and accuracy. Made m boxwood or

xylonite. Full descriptive pamphlet on application.

Orthops Specialities can be obtained from all Wholesale Optical

Houses.



ORTHOPS SPECIALITIES

THE ORTHOSCOPE.
An instrument forming a fixed Ophthalmoscope, capable of giving, with the

ordinary size of pupil, a perfect picture of the fundus. The field of view is three

inches in width, and the magnification ten diameters. For a small extra charge

the Orthoscope can be adapted for efficient retinoscopy.

THE ORTHOPS POINTER.
A handy instrument enabling far and near points to be measured with quickness

and accuracy. An essential in the testing-room.

THE ORTHOPS RETINOSCOPE.
Specially designed to increase the illumination in cases of high ametropia, etc.,

where the reflex is very dull and sluggish, and therefore practically invisible with

the ordinary plane or concave mirror.

THE ORTHOPS RECORD-BOOK.
Complete in every detail for the practical refractionist, and without the mass

of confusing spaces for unnecessary da^a so frequently four d in record-books.

THE ORTHOPS TANGENT-SCALE.
A conveniently arranged scale for giving measurements in either prism-diopttrs,

degrees, or degrees of deviation.

THE ORTHOPS OPHTHALMIC BRACKET.
An ideal bracket, giving all the necessary positions, but having the minimum
number of joints. Rigid and well made, complete with reflector, cover, and ins

diaphragm.

Orthops Specialities can he obtained from all Wholesale Optical

Houses.
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buy British
cases.

They are within the reach of all,

and a postcard will bring Samples.

WILLMOTTS, LTD., EVESHAM, Worcs.

OPTICAL CASE PATENTEES AND MANUFACTURERS.

London" Office and Showrooms :

55, HATTON GARDEN, LONDON, E.G.

'telephone: Holborn, 5096.
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"DUPLEX" CASES.
(Patent No. 3240/13.)

Designed to accommodate two pairs of eye-glasses, or two pairs of spectacles,

or one of each.

The accompanying illustration indicates how a diagonal partition separates the

overlapping two pairs of glasses, with the most important result that

THE DUPLEX** CASE IS CAPABLE OF CONTAINING
TWO PAIRS OF GLASSES WHILE BEING SCARCELY

MORE BULKY THAN A SINGLE CASE.

As every optician knows, customers complain of the inconvenience of carrying two

cases when, as very frequently happens, they require to have about them two pairs

of glasses.

THE DUPLEX** CASE REMOVES
THIS CAUSE OF COMPLAINT.

In many an instance two pairs of glasses would be purchased if they could be

carried conveniently.

THE DUPLEX** CASE ALLOWS THIS TO BE DONE.

Surely no optician will neglect the opportunity of selling two pairs of glasses

instead of one.

THE DUPLEX ** CASE VERY STRONGLY
OFFERS THIS OPPORTUNITY.

'* Duplex " cases are made in various qualities and in two sizes—for two pairs

of eye-glasses or for two pairs of spectacles.

They can be obtained from all wholesale opacal houses, or direct from the

manufacturers :

WILLMOTTS, LTD., EVESHAM, Worcs.

And 55, HATTON GARDEN, LONDON, E.G.

5



THE "DEFIANCE"
(In 1/10 12-Kt. Gold-filled, and 10-Kt. Solid Gold),

FINGER-PIECE MOUNTING
Is the neatest mounting ; the last word in this type of Spectacle Ware.

Made with Platinum-lined Guards, Shell Guards, Cork Guards,

and our special No. 70 Guards.

Manufactured solely by the

BAY STATE OPTICAL COMPANY
ATTLEBORO, MASS., U.S.A.,

And 42, GRAY'S INN ROAD, LONDON, W.C.,

And obtainable from all the Leading Wholesale Houses.

^.B.—'^o save needless correspondence we beg to notify the '^rade that the

" T)efiance " <^ounling can be supplied through the recognized whole-

sale houses only.



The " HARLEY " Roll Top Trial Case.

yldvanlages :

{a) LENSES MORE ACCESSIBLE.

(/.) NO LID IN THE WAY.
(c) CONTENTS BETTER DISPLAYED.

No. 10712/1. With Skeleton Tray No. 1

No. 10712/2. With Skeleton Tray No. 2

No. 10712/3. With Skeleton Tray No. 3

11 7 6

10 17 6

10 2 6

Full particulars as to the contents of these Trays from

{RAPHAEL'S, LTD., Optical Works,

HATTON GARDEN, LONDON, E.G.

Manufacturers of Optical Jlppliances of all kinds.

PRICE LIST UPON RECEIPT OF TRADE CARD.



No. 10961.

THE NEW FORM

COMBINATION

PERIMETER
DEVISED BY

DR. ETTLES.

Can be used as a hand or table

instrument.

WATCH PATTERN
LENS MEASURE.
A new and ingenious idea.

Neat and accurate.

Nickel Plated or Oxydized.

No. 10961, 15s. each.

Instructions sent with each Instrument.

PRICE COMPLETE, WITH

COLOURED DISCS,

No. 10831,

£1 . 7s. 6d. each.
No. 10831.

TO BE OBTAINED FROM ALL WHOLESALE OPTICAL HOUSES,

Or from RAPHAEL'S, Ltd., Optical Works, Hatton Garden, London, E.G.



THE

WORTH-BLACK AMBLYOSCOPE.

No. 10833.

This is an improved instrument for fusion training
; it trains an

amblyopic eye to see.

It was originally devised by Dr. Worth with horizontal adjustment

only. The vertical adjustment was afterwards devised and added by

Dr. Black of Milwaukee.

PRICE COMPLETE, WITH SET OF 12 PICTURES,

No. 10833. £1 18s. each.

J^APHAEL'S, LTD., Optical Works,

HATTON GARDEN, LONDON, E.G.

^M^anufacturers of Optical Jippliances of all ^/nJs.

PRICE LIST UPON RECEIPT OF TRADE CARD.
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THE "PROTRACTOMETER"

The'PROTRACTOMETER"

A new form of Optical Protractor for the checking and setting of spectacle

lenses. Exceptionally useful for Bi-focal lenses.

It has an ivorine surface, and is mounted on metal, size 6f in. x 6 in.

No. 11561, Price 2s. each.

TO BE OBTAINED FROM ALL WHOLESALE OPTICAL HOUSES,

Or from RAPHAEL'S, Ltd., Optical Works, Hatton Garden, London, F.C.
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The "INTERNATIONAL" CURLSIDE RULE.
(Rcgd. No. 622908.)

No. 10959.

Price 2/6
each.

TO BE OBTAINED FROM ALL WHOLESALE OPTICAL HOUSES.
Write for Illustrated 'Pamphlet explaining its use to

RAPHAEL'S, LTD., OPTICAL WORKS. HATTON GARDEN. LONDON, E.G.
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OPTICAL BENCHES.
INVALUABLE TO STUDENTS.

By means of either of our Benches the experiments

essential to Students and found in the Examination

Papers, become much easier to understand and are easily

performed. They indelibly fix the fundamental laws of

optics in the mind.

No. 1 BENCH
(As Illustration)

This Model is the one demonstrated bj

Wm. Ettles at the Northampton Institute

It is made of solid mahogany, two metres long

and graduated in millimetres. With the outfit an

Six Metal Bases, with Stems and Adjusting Screw;

to regulate height and centre. Price £4 4s.

No. 2 BENCH.

A cheaper but thoroughly serviceable Bench, one metre long, and graduated in millimetres. The Bench anc

Stands are made of Solid Walnut, with Brass Stems, adjustable for height. There are six Bases and tht

necessary Accessories to form the complete outfit as given below. Price £1 15s.

No. 1 BENCH has the following Outfit : No. 2 BENCH has the following Outfit :

6 Metal Bases 6 Wooden Bases

1—Collimator, with Achromatic Object Glass 1—Single Lens Holder

2— Double Lens Holder 2—Two Supplementary Lens Clip Holders

3—Lamp Holder for 1-eye Spectacle Lenses

4—Screen with Cross Wires 3—Glass Screen

5—Universal Lens Holder 4—Nodal Point Fitting

6—Focussing Screen 5—Telescope (Galileon)

7—Nodal Point Fitting 6—Double Lens Holder

8—Telescope with Cross Wires, and Achro- 7—Cross Wire Screen

matic Object Glass and Huyghenian 8—Collimator with Single Lens

Eyepiece. 9—Standard Rod
9—Standard Rod 10—Plane Mirror

List of Students' Requisites sent on application.

{RAPHAEL'S, LTD., Optical Works,

HATTON GARDEN, LONDON, E.G.
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