The University Library Leeds


Medical and Dental

> Library


## HANDBOOK

## PHYSIOLOGICAL LABORATORY

BY

## E. KLEIN, M.D. <br> -

ASSISTANT PROFESSOR IN THE PATHOLOGICAL LABORATORY OF THE BROWN INSTITUTION, LONDON, FORMERLY PRIVAT-DOCENT IN HISTOLOOY IN THE UNIVERSITY OF VIENNA;
J. BURDON-SANDERSON, M.D. F.R.S.

PROFESSOR OF PRACTICAL PHYSIOLOGY IN UNIVERSITY COLLEGE, LONDON;
MICHAEL FOSTER, M.A. M.D. F.R.S.
willow of, and pralector of physioloay in, trinity college, cambrider;

AND
T. LAUDER BRUNTON, M.D. D.Sc.

LECTURER ON MATERIA MEDICA IN THE MEDICAL COLLEGE OF ST. BARTHOLOMEW'S HOSPITAL, LONDON.

## EDITED BY

## J. BURDON-SANDERSON

## PLATES



LONDON
J. \& A. CHURCHILL, NEW BURLINGTON STREET

WOODFALL AND KINDER, PRINTERS, milford lane, strand, london.

605113


## LIST OF ILLUSTRATIONS.

## PLATE I.

Fig. 1. Simple Arrangement for warming an Object under the Microscope.
, 12. Similar but more complicated Apparatus.
2. Stricker's Warm Stage.
13. Rod for Heating Stage.
16. Object Support with Gas Chamber.

## PLATE II.

Fig. 3. Mode of warming an Object under the Microscope by means of Current of Hot Water.
,, 4. Capillary Pipette.
", 14. Stricker's Stage for warming a Preparation by Voltaic Current.

## PLATE III.

Fig.
5. Carbonic Acid Apparatus.
", 6. Microscope Stage with Stricker's Electrodes.

## PLATE IV.

Fig. 17. Injecting Syringe.
11. Support for Study of Circulation in Web of Frog's Foot.
20. Injecting Cannulæ.
21. Section Knife.
18. Nozzle of Injection Syringe.
19. Support for Studying Circulation in Mesentery.

PLATE V.
Fig. 22. Large Colourless Corpuscle of Newt.
23. Granular Corpuscle of Newt.

", 24. Action of different Reagents on Blood Corpuscles.

## PLATE VI.

Fig. 26. Action of Heat on Colourless Corpuscles of Human Blood.
", 7. Epithelial Cells from Trachea of Cat.

## PLATE VII.

Fig. 26. Epithelial Cells from Bladder of Rabbit.
", 27. Superficial C'ells of the Mame Prepration.
28. Superficial Cells of the same Preparation.
29. Jagged Epithelial Cells of Gum.

## PLATE VIII.

Figs. 30 and 32. Abdoninal Surface of Centrum Tendineum of Rabbit.
31.

Pleural
,
"
, ,
PLATE IX.
Fig. 33. Omentom of Guineapig treated with Silver.
34. Fenestrated Portion of Omcntum of Ape.

## PLATE X.

Fig. 35. Umentum of Ape, showing Groups of germinating Endothelial Cells.
37. Silver Preparation of Septum of Cisterna Lymphatica of Female Frog.

## PLATE XI.

Fig. 37. Germinating Endothelium of Pleural Mediastinum of Cat.
35. Mesogastrium of Frog covered with Ciliated gerninating Endothelium.

PLATE XII.
Fig. 39. Cornea of Frog treated with Lunar Caustic.
40. Horizontal Preparation of Cornea of Frog coloured with Chloride of Gold.

## PLATE XIII.

Fig. 41. Horizontal Preparation of Cornea of Rabbit treated with Lunar Caustic and Salt Solution.
42. Membrana Nietitans of Frog treated with Chloride of Gold.
43. Surface of Inflamed Mesentery of Ape.
44. ", " $"$ showing Branched Cells of Canalieular System filled "with Fat Globules.
45. Fat Cells, Omentum of Rat.

## PLATE XIV.

Figs. 46 and 47. Cells of Gelatinous Substance of Infra-orbital Fossa of Rabbit.

## PLATE XV.

Fig. 48. Cells of Parietal Peritoneum of Rabbit with Chronic Peritonitis.
49. ", of Submucous Tissue of Gravid Uterus of Sow.
50. " of Gelatinous Substanee of Infra-orbital Fossa of Rabbit being con-
verted into Fat-eells.

## PLATE XVI.

Fig. 51. Branched Cells of Omentum of Rabbit.

## PLATE XVII.

Fig. 52. Cells of Caudal Tendon of young Rat ; Silver Preparation.
" 53. " ", of full-grown Rat.
54. ", ", ", of young Rat; Gold Preparation.
, 55. Transrerse Section of Tendon from Tail of Rablit.
," 8. Conneetive Tissue Trabeculæ from Omentum of Guineapig.

## PLATE XVIII.

Fig. 56. Eiastic Fibres from Mescutery of Rubbit.
" 57. Intervertebral Cartilage of Tail of Rabbit.

PLATE XIX.
Fig. 58. Transverse Section of Epiphysis of Femur of Human Foetus.

## PLATE XX.

Fig. 59. Longitudinal Section of Epiphysis of Fenur of Human Fœtus.

PLATE XXI.
Fig. 60. Transverse Section of Diaphysis of Femur of Human Foetus.

## PLATE XXII.

Fig. 61. Vertical Section of Parietal Bone of a Child.

## PLATE XXIII.

Fig. 62. Longitudinal Section of Epiphysis of Metatarsal Bone of Rabbit.
PLATE XXIV.
Fig. 15. Diagram to illustrate the Course of a Ray of Light transmitted through a Muscular Fibre.
63. Longitudinal Section of Muscular Coat of Fallopian Tube of Sow.
64. Transition of Striped Muscular Fibre into Tendon in Tail of Rabbit.
65. Muscular Fibre of Hydrophilus Piceus.

## PLATE XXV.

Fig. 66. Section of Injected Muscle.
67. Smooth Muscular Fibre.
", 68. Striped Muscular Fibre of Frog
PLATE XXVI.
Fig. 69. Group of Ganglion Cells of a Sympathetic Nerve Trunk from Bladder of Rabbit.
70. Ganglion Cells with Spiral Fibres.

## PLATE XXVII.

Fig. 71. Ganglion Cells from Spinal Cord of Calf.
" 73. Superficial Intra-epithelial Network of Non-medullated Nerve Fibres from Cornea of Rabbit.
"
74. Sub-epithelial Nerve-plexus from Cornea of Rabbit.

## PLATE XXVIII.

Fig. 72. Branched Ganglion Cell from Spinal Cord of Calf.
„, 75. Nerves of Substantia Propria of Cornea of Rabbit.

## PLATE XXIX.

Fig. 76. Intra-epithelial Non-medullated Nerve Fibrils of Cornea of Rabbit.
," 77. Auerbach's Plexus from small Intestine of Human Foetus.

## PLATE XXX.

Fig. 7S. Sub-epithelial Nerve Branchings of Cornea of Guineap ig. 79. Non-medullated Nerve Fibres from Cornea of Rabbit.

## PLATE XXXI.

Fig. 80. Superficial Intra-cpithelial Network of Non-medullated Nerve Fibres, Cornea of Guineapig
,, 81. Non-medullated Nerve Fibres from Cornea of Frog.

## PLATE XXXII.

Fig. 82. Nerve Fibres of Substantia Propria of Cornea of Frog.
,2 83. Sub-epithelial and deep Intra-epithelial Nerve Fibrils from Cornca of Rabbit.

## PLATE XXXIII.

Fig. 84. Deep Intra-epithelial Network of fine Non-medullated Nerve Fibres of Cornea of Rabbit.
, S5. Superficial Intra-epithelial Nerve Fibres of Cornea of Rabbit.
", 86. Nerve Fibres and Corpuscles of Cornea of Frog.

## PLATE XXXIV.

Fig. 87. Non-medullated Nerre Fibres of a Capillary Blood-vessel.
,, 88. Nerve Fibres of Mesentcry of Frog.

## PLATE XXXV.

Fig. 89. Nerve Fibres and Capillary Blood-vessel from Tail of Tadpole.

## PLATE XXXVI.

Fig. 90. Plexus of Non-medullated Nerve Fibres round Capillary Blood-vessel from Mesentery of Frog. Tongue of Frog.
92. Plexuses of Non-medullated Nerve Fibres surrounding Bundles of Unstriped Muscle from Vagina of Rabbit.

## PLATE XXXVII.

Fig. 93. Distribution of Non-medullated Nerre Fibres from Base of a Gland of Membrana Nictitans of Frog.
9. Non-medullated Nerve Fibres surrounding sıall Artery of Tongue of Frog.

## PLATE XXXVIII.

Fig. 94. Sub-epithelial Non-medullated Nerve Fibres of Vagina of Rabbit.
", 95. Non-medullated Nerve Fibres in Adventitia of large Vcin from Mesentery of Frog.
96. Non-medullated Nerve Fibres in Adventitia of large Artery from Mesentery of Frog.

## PLATE XXXIX.

Fig. 97.: Sub-epithelial Non-medullated Nerve'Fibres of Membrana Nictitans of Frog.
98. Blood-vessels of Injected Mesenteric Gland of Guineapig.

## PLATE XL.

Fig. 99. Longitudinal Section of Branch of Pulnonary Artery from Lung of Guineapig.
,, 100. Transverse Section of Artery from Skin of Guineapig; Gold Preparation.
,, 101. Omentum of Rabbit, showing Devclopment of young Capillaries.
,, 102. Capillary Blood-vessel extending into a Branched Cell.

## PLATE XLI.

Fig. 103. Endothelium of a large Vein and Artery of Omentum of Rabbit; Silver Preparation.

## PLATE XLII.

Fig. 104. Endothelium of Capillary Blood-vessel of Omentum of Rabbit.

## PLATE XLIII.

Fig. 105. Capillary System of Mucosa from Injected Stomach of Rat.
106. Fat Tract from Injected Omentum of Guineapig.
,' 107. Superficial Capillary Meshwork of Mucous Membrane, Injected Uterus of Guineapig.

## PLATE XLIV.

Fig. 108. Superficial Arteries, dense Network of Capillaries, and deep Veins of Mucous Membrane of Stomach of Rat.
, 109. Masses of Tubercle from Injected Omentum of Guineapig.

## PLATE XLV.

Fig. 110. Blood-vessels of Striped Muscle from Injected Tongue of Rabbit.

## PLATE XLVI.

Fig. 111. Stomata of Mesentery of Frog.
112. Stomata of Septum Cisternæ Lymphaticæ Magnæ of Frog.

## PLATE XLVII.

Fig. 113. Germination of Endothelium round Stomata ${ }^{-}$of Mesentery of Guineapig affected with Chronic Inflammation.

## PLATE XLVIII.

Fig. 114. Stomata of Peritoneal Surface of Centrum Tendineum of Rabbit.
," 115. Stomata on a Lymph Vessel of Mesentery of Guineapig.

## PLATE XLIX.

Fig. 116. Germination of Endothelium on Mesentery of Guineapig affected with Chronic Inflammation; Silver Preparation.

## PLATE $L$.

Fig. 117. Lymph Capillaries of Peritoneal Serosa of Centrum Tendincum of Rabbit. 118. Lymph Vessels of Pleural Serosa of Centrum Tendineum of Guineapig.

## PLATE LI.

Fig. 119. Pleural Surface of Centrum Tendineum of Rabbit, showing ricb Network of Lymph Vessels.

## PLATE LII.

Fig. 120. Lymphatics of Centrum Tendineum of Rabbit.

## PLATE LIII.

Fig. 121. Lymphatics of Omentum of Rabbit ; Silver Preparation.

## PLATE LIV.

Fig. 122. Surfacc of Omentum of Rabbit, showing Distribution of Lymph Vessels Silver Preparation.

## PLATE LV.

Fig. 123. Pleural Side of Centrum Tendineum of Guineapig affected with Chronic Inflammation.

## PLATE LVI.

Fig. 124. Pleural Side of Centrum Tendineum of Rabbit ; Silver Preparation.

## PLATE LVII.

Fig. 125. Lymph Vessels of Pleural Side of Centrum Tendineum of Rabbit.

## PLATE LVIII.

Fig. 126. Artery and Lymphatic Vessel of Omentum of Rabbit; Silver Preparation. 127. Adenoid Tissue of Mesenteric Gland of Ox.

PLATE LIX.
Fig. 128. Natural Injection of Lymphatics of Centrum Tendineum of Rabbit.

## PLATE LX.

Fig. 129. Section of Medullary Substance of Mesenteric Gland of Ox.

## PLATE LXI.

Fig. 130. Alveolus from Section of Lung of Rabbit.
", 132. Section of Lung of Rabbit Injectecl.
", 133. Trabecule of Liver Cells of Guineapig.

## PLATE LXII.

Fig. 134. Section of Liver of Dog Injected from Vena Porte.
" 135. Section of Liver of Rabbit, the Portal Vein and Hepatic Duct of which are Injected.

## PLATE LXII.

Fig. 136. Section of Injected small Intestine of Rat.
" 137. ", , Villus of small Intestine of Cat.
" 138. ", "Filiform Papillae of Tongue of Rabbit.
" 139. ", ", large Bronchus of Human Foetus.

## PLATE LXIV.

Fig. 140. Injected Follicles of Section of Peyer's Patches from small Intestine of Rabbit.
,, 141. Section of Ileum of Dog.
PLATE LAV.
Fig. 142. Section of Acinus from Liver of Rabbit.
,, 143. Section of Injected Kidney of Rat.
," 144. Urinary Tubes of Pyramidal Substance of Injected Kidney of Pig.

## PLATE LXVI.

Fig. 145. Transverse Section of Injected Kidney of Rat.

## PLATE LXVII.

Fig. 146. Transverse Section of Pyramidal Substance of Kidney of Pig.
", 147. Preparation from Kidney of Pig showing a Helle's Loop.
," 148. Similar Preparation, showing Portion of Collecting Tube in Pyramidal Process.
" 149. Section of Malpighian Corpuscles of Kidney of Human Foetus.

## PLATE LXVII.

Fig. 150. Convoluted Tube of Kidney of Pig.
", 151. Section of Eyelash of newly-born Child.
" 152. Meibomian Follicle from Section of Human Eyelid.

## PLATE LXIX.

Fig. 153. Tubular Glands of Human Prostate.
", 154. Section of Cortical Substance of Kidney of Six Months' Human Foetus.
,, 155. Tubular Glands of Human Eyelid ; Vertical Section.

## PLATE LXX.

Fig. 156. Cornea of Rabbit ; Vertical Section.
,, 157. Diagram of Connective Substance of Retina.
", 158. ", Nervous Elements of Retina.


## PLATE LXXI.

Figs. 159-163. Blastoderm of Egg of Trout, Various Stages of Clcarage in.
,, 164. Germ of ligg of Trout in an early Stage of Clearage.
", 165. Blastoderm of Egg of Trout at the Third Day ; Vertieal Section.
", 166. Similar Preparation at the Sixth Day.;

## PLATE LXXII.

Fig. 167. Blastoderm of Egg of Trout, Twelfth Day; Vertical Section.
,, 169-172. Seetions of Eigg of Bufo Cinereus.

## PLATE LXXIII.

Fig. 168. Blastoderm of Trout's Egg at Fourteenth Day.
„ 173. Seetion through Rudiment of Einhryo of Bufo Cinercus.

## PLATE LXXIV.

Fig. 174. Seetion showing the Four Embryonal Conts of Ruseoni's Cavity.
175. Blastoderm of Fresh-laid Hen's Egg.
", 176. Blastoderm of Hen's Egg at Fifteenth Hour of Ineubation.
", 177. Seetion of Rudiment of Embryo at Twenty-sixth Hour after Incubation.

## PLATE LXXV.

Fig. 178. Seetion of Rudiment of Embryo at Thirty-sixth Hour.
", 179. ," Area Opaca and Area Pellueida at Thirtieth Hour.
", 180. Enbryo of Chiek at Thirtieth Hour ; Seetion of Cervieal Portion.

## PLATE LXXVI.

Fig. 181. Embryo of Chiek, Second Day, showing Development of the Heart.
,, 187. Development of Blood in Blastoderm of Chiek.

## PLATE LXXVII.

Fig. 182. Embryo of Chiek at Forty-eighth Hour ; Seetion of Posterior Part of Body. 183. Seetion of Auterior Cerebral Vesiele and Primary Optic Vesiele.

## PLATE LXXVIII.

Figs. 184-186. Transformation of Primary into Sceondary Optic Vesicle and Development of Crystalline Lens.
,, 188. Development of Blood in Chiek.

## PLATE LXXIX.

Fig. 190. Test Tube with Foot.
,, 191. Vessel for eolleeting Blood and keeping it at $0^{\circ} \mathrm{C}$.
,, 192. Coagulation of Blood of Frog in a fine Capillary Tube.
", 193. Cannula for Sehäfers' Experiment.
," 194. Object Glass for Studying Action of Induetion Shocks on Blood.

## PLATE LXXX.

Fig. 195. Absorption Spectra.
196. Hoppe-Seyler's Bottle for Preparing Fibrin.
197. Alvergniat's Pump.
198. Geissler's Mercurial Pump.

## PLATE LXXXI.

Fig. 199. Fraukland-Sprengel Pump.
,, 203. Needles for passing Ligatures under Vessels ; Brücke's Blunt Hook ; and Trephine.

## PLATE LXXXII.

Fig. 200. Frankland's Apparatus for Analysis of Gases by Absorption.

## PLATE LXXXIII.

Fig. 204. Czermak's Rabbit Support.
,, 201. Frankland and Ward's Apparatus for Analysis of Gases by Explosion.

## PLATE LXXXIV.

Fig. 202. Mercurial Kymograph.
,, 206. Normal Tracing obtained with Mercurial Kymograph.

## PLATE LXXXV.

Fig. 205." Fick's Spring Kymograph.
,, 207. Normal Tracing obtained with Spring Kymograph.
," 207a. Tracing obtained after Excitation of Vagus.
,, 208. Mechanical Arrangement of Sphygmograph.

## PLATE LXXXVI.

Fig. 209. End View of Block by which Sphygmograph rests on the Wrist.
," 209b. Breguet's Improvement.
", 210. Mode of Measuring Pressure.
,, 211. Arterial Schema.

## PLATE LXXXVII.

Fig. 212. Tracing obtained with Arterial Schema.
„ 213. Percussion Waves.
", 214. Tracings showing the Contractions and Expansions of an India-rubber Tube, along which Water is propelled in an Intermitting Stream.
215. Sphygmographic Tracings.
216. Dr. Caton's Fish Trough.

## PLATE LXXXVIII.

Fig. 217. Stage for Mesentery of Frog.
218. Cannulæ for Aorta and Vena Cava of Frog.
219. Diagram of Arrangement for Measuring Objects under Microscope.
220. Cannula for Injecting Liquid into a Vein.
221. Griffin's Blower and Expanding Regulator.

## PLATE LXXXIX.

Fig. 222. Sprengel's Blower.
," 223. Mercurial Breaker for Artificial Respiration.
", 224. Skull of Rabbit seen from Behind.
", 225. Excitor.
"" 226. Parts exposed in Rabbit by an Incision from Thyroid Cartilage to Root of Left Ear.

## PLATE XC.

Fig. 227. Carotid Artery of Rabbit and Parts in relation with it.
,, 223. Heart of Frog.
", 230. Cardiograph.
", 231. Marey's Tympanum and Lever.

## PLATE XCI.

Fig. 233. Coats' Apparatus.

## PLATE XCII.

Fig. 235. Tracings recording simultaneously Variations of Pressure in Right Auricle, Right Ventricle, and Left Ventricle.
, 236. Septum Auricularum of Frog.
", 237. Dissection of Vagus Nerve of Frog, right side.

## PLATE XCIII.

Fig. 240. Skctch illustrating Relations of Ganglionic Cord in Visceral Cavity of Frog.
, 241. Heart, Lungs, and great Vessels of Rabbit.
,, 242. Dissection of lower Cervical Ganglion of Dog.

## PLATE XCIV.

Fig. 243. Inferior Cervical Ganglion of Rabbit.
" 244. Tracing showing Effect of Electrical Stimulation of Vagus of Frog under the Influence of Nicotin.
,, 246. Respiratory Muscles of Frog.
,, 247. Recording Stethometcr.

## PLATE XCV.

Fig. 250. Pulley for recording Movements of Needle inserted in the Diaphragm.
," 251. Rosenthal's Apparatus with W. Müller's Valves.
", 252. Pettenkofer's Tube for Absorption of Carbonic Acid Gas.

## PLATE XCVI.

Fig. 257. Lever Kymograph.
,, 258. Tracing obtained with Lever Kymograph.

PLATE XCVII.
Fig. 265. Calorimeter.
", ", Galvanometer.
", ", Wooden Frame on which Galvanometer Wire is coiled.
". Magnets of Galvanometer.

## PLATE XCVIII.

Fig. 229. Tracing drawn by Lever applied to Apex of Heart of Frog.
", 232a. ", obtained with Cardiograph applied to Seat of Impulsc of Human
2326. ,, obtained with Cardiograph applied outside Scat of Impulse of Human Heart.
234. ," of Endocardial Pressure of Heart of Frog.
$238 a \& 8$. Tracings of Artcrial Pressure and Respiratory Movement of $\Lambda \mathrm{ir}$ in
Trachea before and after Section of both Vagi.
$239 a \& b$. Tracing of Arterial Pressure of Rabbit during Excitation of Peripheral End of Divided Vagus.
245. Tracing of Arterial Pressure during Excitation of Central End of Depressor Nerve.

## PLATE XCIX.

Fig. 246 bis. Tracing of Respiration of Frog.
,, 248. ,, obtained with the Stethometer.
249. $\because$ of Intra-thoracic Pressure.
253. Tracings of Respiration of Cat, before and after Section of both Vagi.

263a. Tracing of Arterial Pressure and Respiratory Movements in Second Stage of Asphyxia by Occlusion.
263b. Slow Asphyxia.

## PLATE C .

Figs. 259-61. Tracings of Respiratory Movements of Dog, before and after Curarization.
Fig. 262. Tracings of Artificial Respiration and Arterial Pressure, showing Traube's Curves with Vagi intact.
264. Effect of Single Injection of Air in a Curarized Dog after Discontinuance of Artificial Respiration.

## PLATE CI.

Figs. 254-55. Excitation of Central End of Vagus in the Rabbit.
Fig. 256. Excitation of Central End of Superior Laryngeal Nerve.

## PLATE CII.

Fig. 266. Diagram of Frog showing Lines of Incision necessary in various Observations.
,, 267. Diagram of Muscles of Leg of Frog.
,, 268. Nerve-Muscle Prcparation.

## PLATE CIII.

Fig. 269. Myographion of Pflüger.
,, 270. Moist Chamber, with Nerve-muscle Preparation.
", 270bis. Simple Spring Myograph of Marey.

## PLATE CIV.

Fig. 271. Ordinary Electrodes.
272. Non-polarizable Electrode in Bearer.
,' 273. Ends of Non-polarizable Electrodes.
274. Kronecker's Forceps.
", 275. Marking Lever.
", 276. Diagram of Apparatus for Studying the Effects of Electrotonus or Irritability.

## PLATE CV.

Fig. 277. Recording Tuning-fork.
278. Diagram of Museles of Thigh of Frog.
279. " "Muscle Curve.
, 2S0. Muscle in Trough bearing Levers, to show the Wave of Muscular Contraction.
251. Another ąrrangement of the Levers to show the Wave of Muscular Contraction.

## PLATE CVI.

Fig. 282. Diagram of the Curre of Tetanus.
283. Curve of Tetanus, slowing individual Contractions.
284. Curves illustrating increased Extensibility of a Muscle during Tetanus.
", 285. Muscles and Nerves arranged for the Experiment of the Rheoscopic Frog.

## PLATE CVII.

Fig. 286. Sir TV. Thomson's Galvanometer and Scale.
287. Galvanometer Shunt.
288. Diagram of "Natural" Current in Muscle.
289. Arrangement of Nerve on Non-polarizable Electrodes.
290. Diagram illustrating Electrotonus.

## PLATE CVIII.

Fig. 291. Muscle and Nerves arranged to show Usc of Electrotonic Changes in one Nerve as a Stimulus for another.
292. Apparatus to show the Effects of varying Tempcratures on a Muscle.
293. Induction Apparatus of Du Bois Reymond.
294. Scheme of Du Bois Reymond's Induction Coil.

## PLATE CIX.

Fig. 295. Diagram of Nervous System of Frog.
,, 296. Brain of Frog seen from above.
,, 297. Commutator.
PLATE CX.
Fig. 298. Rheochord.
299. Double Key.
," 300. Du Bois Reymond's Key.

## PLATE CXI.

Fig. 301. Creatine Crystals.
,, 302. Creatinine ,
" 303. Nitrate of Hypoxanthine Crystals.
,, 304. Hydrochlorate of Xanthine ,
,, 305. Uric Acid Crystals.

## PLATE CXII.

Fig. 306. Starch Granules.
,, 307. Nerves of Sub-maxillary and Sub-lingual Glands of Dog.
,, 308. Veins of Sub-maxillary Gland.

## PLATE CXIII.

Fig. 309. Nerves of Sub-maxillary Gland of Dog.

## PLATE CXIV.

Fig. 310. Parts exposed in Operations on the Sub-maxillary Gland.
,, 311. Gastric Canuula seen in Section, and Key.
," 312. Taurine Crystals.
,, 313. Hippuric Acid Crystals.
PLATE CXV.
Fig. 314. Cholesterin.
315. Bernard's Instrument for puncturing Fourth Ventricle.
316. Section of Rabbit's Head showing direction of Instrument in order to puncture the Fourth Tentricle.

## PLATE CXVI.

Fig 317. Cannula in temporary Pancreatic Fistula.
318. Diagram to show arrangements of Stitches in Thiry's Fistula.
320. Milk Globules.
321. Colostrum.

## PLATE CXVII.

Fig. 322. Urea.
323. Nitrate of Urea.
324. Oxalate
325. Blowpipe Flame.
326. Glass Tube drawn out to form a Pipette.
327. $\quad, \quad, \quad$ in order to seal it.
328. Deaker supported on Wire Gauze to prevent it from Cracking.
329. Apparatus to prevent Loss by Evaporation during prolonged Ebullition.

## PLATE CXVIII.

Fig. 330. Saucepan used as Water-bath.
331. Bunsen's Gas Regulator as modified by Geissler.
332. Water-bath for evaporating at a constant Temperature.
333. Use of Syphon in Washing Precipitates.

## PLATE CXIX.

Fig. 334. Screw-press.
335. Bunsen's Water Air-pump.
336. Plantamnur's Funnel for keeping Fluids Hot during Filtration.
337. Dialyser of Gutta-percha.

## PLATE CXX.

Fig. 338. Dialyser suspended in Water.
339. Hot-air Bath.
340. Beil-jar and Dish for drying and cooling Substances.
341. Method of drying Precipitates.
342. Platinum Triangle for Ignition.

343-4. Specific Gravity Bottles.
345. ", ",

PLATE CXXI.
Fig. 346. Measuring Flask.
,, 347. Test Mixer.

PLATE CXXII.
Fig. 348. Pipettes.
,, 349. Mohr's Burette.

## PLATE CXXIII.

Fig. 350. Stand for Burettes.
," 351. Elliptical Appearance of Surface of Liquid in Burette.
,, 352. Erdmann's Float.
,, 353. Saccharometer.

## Plate I.



FIr. x.-Simple armingement for warming an object under the microscope. It conslsts of a copper plate (c) with a central orifice which is cemented to a common oblect glass. From the edge of the plate a copper rod ( $g$ ) projects, the end of which cau be heated ly a spirit laup. p. $\sigma$.

FIG. 12-A similar bit, more complicated apparatns. The copper plate $b$ is squarc. The rod e projects from its ander surface (npler as seen in the drawing), and fits in a groove cut in the glass, The groove ends in a hole into which the pin d fits.


FIG. 2.-Stricker's warm stage (simple form). It consists of a hlock of black vuleanite about 3 inches long by $\mathrm{I}^{1 / 2}$ wide, and ${ }^{11}$ inch thick. The central chamber (b) is closed below by a glass plate, and surrounded at the top by a perforated copper dish (a), the orifice of which is of the same size as the chamber. The chamber is cylindrical. The cistern of the thermoneter survounds the chamber, as shown by the duttel line (d). Its capillary tuhe lies in a trough, one side of which is formed hy the back of the block aud the other by a metal plate screwed on to it, the form of which is shown in the figure. The tube $(c)$ leads iuto the chanher. A second tuhe leads from it through the projecting metallic arm shown at the top of the figure. This arm, which is of onc piece with the disk (a), is of such size that the rod, fig. 13, fits on to it. By means of this rod the clamber is heated in the way aircidy cxplained. In experincnts with gascs the gits entcrs by eand passes out through the projecting arm. 1. 14.


FIG. r. - A rod $\Omega$ ) intended to fit on the projeeting arm of fig. 2 by means of a spiral ( $f$ ). It answers the same purpose as $(g)$ in fig. 1 . A similar but mmeh lighter rod is nsed for fig. 12 .
FIG. 16. Object support of black vuleanite, measuring 3 inches hy r, with central gas chamber $a$. The gas euters and passes out by the tube $b b$. The bloek when in use is fixed with putty on to an ordinary objeet-glass, and the chumber closed at the top with a cover-glass.

Plate II.


Fic. 3.-Stricker's warm stage. In the vensel A B C the water is maintained at a constint level (indicated by the dotted line), and at boiling temperature. A, supply tube; B, waste tube; $C$, tube leading to the stage; $D$, tube by which the hot water leaves the stage, terminating in a conical droper, E; $F$, fnmel fon collecting the drops which fall from E ; C , waste. The rate of flow is determined hy varying the height of F , by means of the sliding screw on which it is supported. It admits of more exact adjustment hy means of a fine screw which works in the axis of the vertical column, on which the escape tube is supportel. This column is firmly fixed in the stage of the microscope; its axial screw termlnates above in a milled head, $k$.

Fig. 4.-Capillary pipette. p, 1r.


FIG. 14.-A slmilar atage by Stricker, in which the chamber $b$ is warmed by a voltaic current. ff are two copper plates to which Stricker's electrudes, represented in fig. G, are mpplied, c. A phatinum wire hy which these two phates are in communication. It coils ronnd the cistern of the thermoneter $d$. The electrodes are in commection with the upposite poles of a suitable battery, the elements of which must uresent it large surface.

Plate III.


FIG. 5.-Carbonic acid npparatns. A. Bottle containing hydrochloric acid. M. Bottle containing fragments of marble on a stratnu of bruken glass. V. Wash bottle. H. Ohject suplort, tig. 16. \&. T-tube which communicates with the gas apparatus by the tube $F$, which is guarled by a clip, ind in the opposite direction with $H$. By its stem it is in direct commmeation with the mouth of the operatur by a tube on which there is aiso a clip. When the first elip is closed, carbunic acid collects in at and drives back the hydrochloric acid into $A$; a current of aid can then be drawn through $G$ and $H$. If the clip on the mouth-tube is clused aud that un $F$ opened, carbonic acid pisses through II, p. 16.


F1G. 6.-Microscope stage on which the object-glass is held in nosition hy Strieker's clectrodes, Erach elactrode is insulated by being screwed into an ivory knob which is let into the stage plate of the microscope. The electrodes are connected (witl the interposition of a key) with the secondary coil of a ln Buis Reymond's induction ajnaratus. The key is represented open. The upper surface of the object-glass is covered witl tinfuil, leaving a suace, $\delta$, for the reception of the object. P. 17.


Fig. 17.-Injection syringe, one-third of the actual size.


FIG. If.-Support for the study of the circulation in the web of the frog. It must be so arranged that the large hole is just opposite the stage aperture of the microscope. (Sie description in text, p. 42.) It may also be used for the study of the tongue. For this purpose half of a ring of cork must befixed with briss pins round the hole on the side next tbe end of the board. To this cork the cormuin of the congue may be attached.


FIG. zo.-as $b$. Injection cannulas, actunl sizes.
FIG. 2I.-Section kuife. In the left-hand corner, transverse section of the blade.


FIG. 18.-Nozzle of injection syringe, actual size.
FlG. 19.-Support for studying the circulation in the mesentery of the frog. $a$. Board on which the frog lies. c. Glass disk on which the nesentery rests. $b$. Trough for the reception of the coil of intestine. $d$. Object-glass eovered with cork. [In the text, p. 108, $b$ and $c$ are transposed.]

## Plate V .



Fu. £2.-Common large colourless corpuscle of the newt. a to $h$. Successive forms assumed by the same cell in the course of an homr, in a preparation enclosed in oil, without the addition of any reagent. p. 3. (Hart nack: Ounlar, No. 3; Objective, Nu. 8.)


Fil: 23.- 1 grauular corpuscle in the savic preparation, a to $h$. Successive forms assumed by the sanme cell in the comrse of fiftuen minutes. [P. 5. (Ocular, No. 3; Objective, Nu. 8.)


Fic: 24. $-a$ and $b$. Colomred blond corpuscle of the newt, after the adition of 2 per cent. boracic acid. howing the zovid and ceood. C. Coloured corpuscle of hmman blow, after the addition of 2 per cent. timmin
 acetic acid. $c$. The same, treated with water, dud then subjected to the action of CO2, $f$. The winle. A suball Grantity of ( 02 has been mhled to it, after it hall been rendered pale by treatment with water. $g$. Colondess corpuscle of nowt's hosd, after the aldition of clibste acetic acid. $h$. Colourless corpuscle of human blood, after the addition of dilute acetic acid. pp. 13 - $\mathbf{1 5}$. (Oc., 3 ; Obj., 8.)

## Plate Vi.



Fifi, 25--0il prepmation uf human bleot, as observerl on the warm stage. A colomess hood corpuscle is seen, showing the changes of furm it has madergone in twenty minutes. p. 9. (Hartuack: Ocul., 3; Obi., 8.)


FIS. 7.- Various forms of epithelial cells from the trachea of a cat, after maceration in solution of bichromate of potish. Goblet cells are seen at the tup of the figure, to the left. p. 23. (Oc., 4, 01)j. 8.)

## Plate VII.



FIG. 26. Fipithelial cells from the urinary bladder of a rahbit, after naceration in solution of bichromate of potash. 1. 97 (Oc., 4 ; Obj. , 8.)


FIG. 27.-Epitheliu cells (adged cells) of the rete inalpighii from a pointed condyloma, maceratec in solution of biclironate of putash. The colls are ia varions stages of division. (Oc., 3; Ohj., 8.)


Fig. 28.-Superficial cells of the same prepration. Endogenons poliferation is seen at a and c. 1. 26. (Oc., 3; Olj., 8)

Fig. 29.-Jiggel cells of the midale layers of pavement epithelium from a vertical section of the gum of $a$ new-born infant, lardentei in chromic acid. (Oc., 3: Onj., 8.)

Plate VIII.





 lines of the interstitial substance of the endothelial cells; b. cell substance; c. unclens. (Oc., 3; Obj. 5.)


FIG. 32.-The same as fig. 30 , still nore intens 3 l y colonned. (Oc., 3; 0hj., 7.)

Plate IX.


Fil. 33-Omentum of guineapig treatcil with silver. A. One of the priucipal trabcoule, containiug bional. vessels and fat cehls. If Fenestrated portion, the triabeculie of which are covered with flat cuduthelinun. 1, 33, where it is referred to as fig. 8. (Oc., 3; Obj., 7 . Tulbe of the microscone not drawn ont.)


Fig. 34.-Fenestrated portion of omentum of an abe, silver memarntion of surface cmbohdium, showing the enduthelium which corcrs a principal trabecula (b). He re and there cells are seen which have germinative characters; and brancl ed cells. ar. Meshwork of bundles of filronts connective tissule. p, 29 .


F16. 35-A similar prephration fron the sane umentum as tig. 3h, showing gronps of gexminating embuthe In cells amongst the ordmary large enduthelial elements which cover the trabecult (b) (In Figs. $3+$ and 35, Oc. 3, Obj. 5. Tube half drawn out.)

 thelial elements of peritomeal surface having germinating characters. $b$. A free trabecula projecting atmo that surface, curered with germinatiag enduthelimm. c. Pigment cells. 1. 28. (Oc., 3; Ohj, 8. Tube not lrawn out.)

Plate XI.


FIG. 38.-Bud-shaped structure of mesogastrinm of frog, treated with silver, covered with ciliatel polyhedral germinating eniuthelium. In the gromul-substance of the hud-shaped structure are groups of young ammobid cells: and in addition to-these are sachole cells heset with cilia on their internal surface-i.e. that thrume towards the eavity of the vacule. There is also a large vicule cell, the wall of which has become elanged into endothelinu. (Oe., 3; Obj., 8.)


FIf: 37.--Silver preparation of fenestrated portion of anterion mediastiman in the eat. extensive germination of the endothelim: surrounding trabecule (normal). (Oc., 3; Whi., 7. )


Fli: \& - - forizontal prepara'ion of cornea of frog colonred with chloride of gold, sliowing the network of
 ( 1 lij ., 8.$)$

 a brimelied, flatritencl cornea corpuscle with its nuslens is seen; in two others are lacanae of the canalionlar



Plate XiII.


Fig. 43-Surface of chronically inflamed mesenterv of ape, peucilled and treated with silver. Caualicular system: Migratory cells are seen upon the flat branched cells, which, on account of their muclei and size, are probably not to be regar led as coluurless blood corpuscles. (Oc., 3; obj.. 8. Tuhe not drawn out.)


FIG. 44--The same preparation, showing the branched cells of the camalicular system filled with fat globules. (Oc., 3; Obj., 8.)
FIG, 41,--Horizontal preparation of cornea of rabhit, treated first with lumar canstic, and afterwards placed in 10 ber cent. saline solution. fround-substince clear, while the canalicular system is marked out by a dark granuar preciputate. This appearance, and that shown in fig. 39, have the same relation to each other as the mative to the negative of a photograph. p. 38. (Oc., 3; Obj., 7. T'ulve not. drawn out.)

## Plate XIV:



FIG, 46. Prebatinous substance of inirivorbital foss of mbbit, freshly fremared in semm. a. Bundles of connective tissue. $U$. Flat brauched cells, c. The same seen in protile. d. Cells of dumbtiul character


Fig. 47.-Cells of the same preparation seen from the surface. They appear as flat, branched cells with oblong nuclei. The protoplasm of the cells is distinctly fibrillated. (Oc., 3; Obj.. 9; immersiun in both these figures.)

## Plate XV.



 half (lyaw out.)


Fig. Sc.-l'encilled siser meparation of pillietal peritmenn from the lumbar region of it rabint with chanome beritonitis. Cells of the ennalichlitr system are seen (hmacherl connective tissuc corpuscies) with vituoles, in which are fat cells and gitugg amaboin cells. (Oc., 3; Obj., 8.)

## Plate XVI.



FIG. 51.-Preparation of surface of omentum of rabhit, pencilled and treatod with silver. a. The flat branched cells of the eanalicular system are visible as finely gramalar strictures; their matei are sharply defiued, and in seseral phaces are seen in the act of dividing. b. Nigratury colls, some of whind arse free, while others grow out from the flat cells of the camalicular system, like buist ; in one of the latter, the formation of a vacuole is seen at $c$. $d$. A racuole cell, the wall of which is alrcally changed into cudothelial eleme.sts. (Oc., 3; Obj., 9. Immersion.)


F1G. 52--Cithatal temdon of a younin rit, pencilled and treated with silver. The spaces ocempied ho the temalon cells are clear, while the intercellular interstitial substance is seen as dark liues.


Fowi. 5 之. Sunilar probatithou from a full grown rict. J. f.f. (Oe., 3 ; Whj, 7.)

 showing the armagenent, form and structure of the tendun cells. 11. 4t. (Oc., 2 ; (1hj., 8.)


FiG. 55-Transverse sec ion of tmblan from it croxs section of the tail of a rabbit. (Minnifying luwer about 250.)

## Plate XYIII.



FIf: 56. - Network of elastic fibres from the irswh mesentery of a rabhit, treated willi dilute acetic acid. In



FIG. 57 - Longitudinal section of intervertelral cartilage of the tail of a rablit. The proparation was





## Plate XIX.



Fif: 53 - Trimstrerse section of a portion of the epiphosis in the neighborionor of the diaphysis of the femme of a humman futhss, macerated in chamaic :wicl. This pritt is still cosered with hyaline gartilage. R. Superfial




Plate KX.


Fig. 59-Longitudinal section of eliphysis of the same preparation. A and B. Pure liyaline cartilage of the joint. C. Layers in which the cartilage cipsules are distinctly enlarged, i.e., where the intercellular subatance is dianinshed.
 order periphorally; the intercellular subtance still inrther diminishes and passes ower intobony trabeculat-the
 cipsules of the previons layer D, have precisely the pasition of ostooblasts. p. 49. (Oe.4, Ohi, 7. Tule nut drawn unt.)

$$
4
$$

1


Fit. 60. - Transverse section of the diaphysis of the femur in a hmman foetns, macerated with chromic acid. a. Cuncentric layer of comective tissue of perinstem. b. Bundles of comnective tissue of the periostema which run longitudinally, cut across. c. Loose layer of internal periostemm, rich in bood vessels and young cells, which is in course of transition into $d$, the trabecnle of lome, as well as into its rich medullary tissue. The latfer abounds in blood-vessels and cellular olonents and occupies the space aromal and between the trabecula. The cells of the loose tissue of interma periostemm mast he regurded as amalogens with the cells (bone corpuscles) found in the bone trabecule, with thuse (osteoblists) which he uph the bone trabeculie, and with those in the medullary tissue. In at similar maner the intercellulin substance of the loose internal periostenl layer (more or less distinct fibrous connective tissue) are continuous with that of the bone trilheculo, ind of the spaces hetween them, p. 50. (Oc., 3 ; Obj., 5. Trube half drawn out.)


FiG. 6 .--Vertical section of the parietal bone of the shinl of a child, macerated in chromic acid, showing the hone
 artificially occasioned by the yfelding of the lanelice of the bowe trabecula, p. 50, (Law power.)



Phate XXIV.


Fig. 63 -Longitudinal scetion of muscular enat of fillopinn tube in a sow. a. Connective tissue trineenlewhieh form the septa between the humles of mustiped muscular tilore. $b$. Transerse layer of unstripedmuscular fines, cht Reross. $\quad$. Connective tissue which contans the large blook-vessels, and separates the transerse musenlar layer form the longitudimal mascular layer $a$. e. Outermost, or serous, eovering of the fallopian tube. p. 53. Oe., 3: Ohj., 5.)
Fili 6. 4 -F resh isolated prepmation coveren in sermm from the tail of a mbibit, showing the transition of transrersely striped muscular filme into a conuective tissue bundle, i.e., into tendon. 1. 6r. (Oc., 2; Ohj.. 5.)


Fifr. 15-Diagran to illustrate the conlo of a rity of light transuitecal through it minseulat fibre. (see 1. 56.)

 u. Musenlar substmce. b. Entering non-mednllary nerve fibre. c. Doyere's prominence. 1.54. (0e., 3; (0hj. 7.)

Plate XIV.


FIf. 66. - Section of an injected muscle of the extremitics of a rat, showing the distribution of blood-vessels in the transversely striped musculir tissue. a. Arteriole. b. Vein. d. ('apillury between them. c. Muscular libre with transverse striz: (Oc., 3: Ohj., 5.)

FIc: 68. - Isol ited muscular fibre with transverse strixe from an obligue section of the tonghe of a frog coloured with chloride of gohl. The inuscle cells are distinctly shown, and three are visible, cach contalining severul nuclei. p. 61. (Oc., 3; Obj., 8.)


FIG. 67.-Isolated smouth muscular fibres of the small intestine of a ant, macerated in lifeliromate of potasli. The smbstance of the cells is longitudinilly striated, the nuclei are staflslialued ind well defined. 18. 52. (Oc., 3; (Obj., 7.)

PLati: NXVI。

 cell exhihits a nucleated cabsule. 1). 72 . ( $0<., 4$; Oljf., 8.)





Fife. 73.-Horizuntal section of cornea of rabbit coloured with chloride of gold, showing the superficial intratepithelial network of tine man-medulated nerve times, seen from the surface, 1. $7^{8 .}$ (Magnified 300 diann.)


FIG: fr. - Ganglion cell from teased preparation of spinal curd of calf, macerated in bichromate of potash.


 dial nerveplexns, with $u_{\text {, }}$ its coarse non-medulated nerve franks, and b, math bund es of non-medullated nerve fibres. p. 78. (Oc., 3; Obj., 7.)

Plate Xivili.

 brathched, with the excepton of at single bale ont-the anisecylinder process, which is alsu distinguished from
 stripes. 1), 69. (0c:. 3: Ohj.. 8.)


FIG. $75-$ Horizontal section of cornea of rabbit coionre: in chborde of gold, showing the nerves of the substuntia propria. a. Coarse non-utalullated nerve trunk. b. Fine non-medullted neve fibres. p. 78. Magnified 300 (liznn.)


Fus. 76. - Hurizantal section of cornea of mabhit eahomed in chloride of gold, showing at the comarser nom
 of the finest nerse fibrils. p. 78. (Magnified ion diana.)

 fibrillated substance, and is minde up of tribecnle of varmos thicknesses, which nite in large plicofls. Nucleus-lile elements (minformed ginglinn cells) and ginnolion sells are embected in the plexus, the whole of which is enclosed in a nucleated sheath. p. 73. (01., 2: Ohj. 7.)

## Plate XXX.



FIG. 79.-Horizontal preparation of cornea oi ralbit coloured with ehlorido of gold, a, Larger, b, smaller non-medullated nerve tibres; and $c$, the smallest fibrils oi the sub-epithelhal network. p. 78. (Oe., 3; Obj., ro. Immersion.)


FIG. 78.-Horizontal section of cornea of grineapig coloured in chloride of gold, showlag the sub-epithelial nerve branchings. $a$. Coarse non-medullated nerve trunk of the sub-epithelial plexus. b. Fine, and $c$ finer non-mednllited nerve filnes of the sub-epithelial network. 1.78. (Mignifiel 300 (lian.)

Pate NiNI.


FIc. 80.-IInrizontal preparation of corne:h of gnimeapig, slowing the superticial intra-epithelial network of non-








 network. al, Epithelial eells. p. 78 . (Magnifted 3 ow diam.)


Fuli, 82.-Similar preparation to fig. 8r. But showing better the nerve fibres of the substare of the enriea. a, $b$,

I. ITE XXXII.


 fibres. 10. 7 (0.., 3; Ohi.. 7. Trume not drawn mit.)




 trumks, herves of the first urler, b. Nome fibres oi the sechad omber. $r$. Nerve fibres of the third order. $k$. eornea corpuseles. 1) $7^{8}$. (Oc., 3: Obj.. 8.)

Phate XXXIV.

 non-medullatial nerve fibres to, $\ell$, capiblary blool-vessels. b. Coarsa non-medullated nerve fibres giving off fine



F'fr. 88. - Mesentery of frog treated with chloride of gold. c. Large trumk of mednlated nerve fibres, b. A single




FIf. 89. - Horizontal prep ration of the tail of the tadme treated with chioride of gold. a. Capilary blood-vessel

 is left, which shows the relative size of the meshes of the sub)-epithelial network。1. \& , (Oc., 3: Unj. . (irawn out.)

Plate NXXYI.


Fig, o.-Misentery of frog prepared in chloride of gold, showing the distribution of non-mednllated nerve fihreatuat capillary howit vessel, a. b. A coarse non-medultated nerve ifire giving off tiner hranches, which furm at pextronm the cinpillary. Some of these finer filires belung to the wall of the vessel. 13. 83. (00, fi 011.. 8.1


FiG. 9I. - Horizontill section wi tungue of frog treated with chloride of gold, slowing the distribution of nonmedullated nerve filnes to a capillary bluorles essel. $a$. (apillary sesset. b. Coarse non-mednlated nerve fibres. $c$ and $d$. Fine non-medullated nerve tibres forming a plexus which surromads the vessel like a sleath. $d$. Non-1nedullated nerve fibres in the wall of the vessel p. 83. (Oc. . 3: Oh)., 8.)


 obj., 8. J'ube not. elt:2wn out.)

Plate Nicivil.


 b. Conrse mon-mednlated nerve trank. \& Fine mon-medulated nerve tibres, which furn a plexns romal the gland.
 Obj. 8.)


FIG. 9.-Horizontitl section of tomgne of forg treated with charide of gohal, showing the distrilmtion of nom-medullated nerve thores to an arteriole. a. Minute artery giving off two capilaries. ('inchlar masenlin fibres are visible
 lated nuchated nerve fibres. (d. Fine mon-mednlated nerve fibres forming a plexus like a sheath aromm the vessel. Many of these contiin nuclei. [1p. 37 and 83 . (Oct., 3 ; Obj., 7.)

## Phate NXXVII.



Flf. of.-Hurizombal setion of mucous membrane of ragina of rahit stained with chloride of gohl, slowing the distribution of the mon metuliated nerves muler the surfice epithelinus. ar. Coarse nerve trunks. b. Outlines of the deepest. epithelial cells. c. Nun-medullated nerve fibres fominga plexus. In some places hranchlets may be seen, which, leaving the network, beeme inentified with the interstitial substance of the deepest epithelial cells. 8.3. (O., 3; Obj., 8. T'ule mot drawn out.)


FIG 95- - IImizontal preparation of mesentery of a froy treated with chlobide of gold. giving the surface view of a

 Oねう.. 7.)








## Plate XL



Fig: 99.-Longitudinal section of at brinch of the pulmonary artery, from the lung of a guinerpig, the bronchite of which were injected with dinte chromic achl. (\%. lutima. b. Circular layer of mastriped mustonlar filures, cht acruss c. Adventitic. p. 106 (Oc., 3; Obj. 7.)


Fli. 100.-Transverse section of an irtery from a vertical section of the skin of a ghinctpig, colonred with guld. a. Lumen of the vessel. b. Endothelinm seen in protile. c. Intima. d. (ircnlar museles, d. Adventitia. f. Celluliar clements of adventitia. 1. 106. (Oc.. 3; Obj. 7.)


FIG. 102.- A eapillitry blood-vessel, the cavity of which is extending into a branched eell. (Oc., 3 Obj., 7.)

Plate NLI.


Fid. 103.-Omentum of rabbit coloured in silver. a. One of the lirger arteries, showing the spindleshined embo thelium and transerse muscubir fibre. b. One of the larger veins, showing the endothelial elements, which are not so elongated as in the artery. c. Enclotheliun of one of the surfaces of the membrane, p. 105. (Uc.. 3 Uhj., 5.)


Plate XLII.


FIG ro4-Part of the same preparation as fig. ro3. $a$. Enduthelium of one of the surfaces. $b$. An arteriole branching into true eapillaries $d$, which are continued into a eapillary vein $c$. The endothelium is clearly shown in all the vessels. (Oc., 3 ; Ubj., 7.1

Plate XLIII.


FIfi. ros.-Vertieal section of mucosit ant subuntiosa of injected stonntel of a kith, showing the ricll capplary p. 126. (Oc., 3; Oh.,. 2.)


[^0]

FIG. ro6. - A fat tracl from the omentum of an injected gnineropir. $a$. Artery. b. Fein. ". Dense system of capillary vessels of true fatty tissue. (Oc., 2 ; Obj., 2.)

Plate: XLIV.


FIG. ro8. -Surface preparation of the mancons membrane of the stomach of a rat, injected; showing the superficial arteries, the dense network of capilliries, and the teep veins, which are pale. (Oc., 3 ; Obj., 2.)


FlG. $109 .-M a s s e s$ of tubercle fram the injected omentum of a ginineapig, artificially infected with tuberculasis (chronic inflammation of the serons membranes). A. Tuberiles partly nodular, bartly in tracts. a. Artery. b. Vein. Between these is a rich capilhary system, $c$, pemmeating the nasses of thbercle. pp. 28 and u5. (Oc., 3 Ol,j., 2.)
$+$



FIG. mix.-Mesentery of frog colonred in silver. a. Ordinary surface endothelinm. b. Endothelial cells surroundiug a simple true stoma. These cells hare the germinating character, are distinctly grauular, aud are not flat like those which surrouud them. p. 132. (Oc., 3; Ohj., 5. Tnbe nut drawn out.)


FIG. I12.-Septum cisternce lymphatica maynce of frog, colourd in silver. A. View of peritoncal surface. B. View of surtace of lymph sac. The stomatit, some of which are open, some collapsed, arc surrounded by germinating endothclium, which is ciliated if the subject is a female. p. niz. (Oc., 3; Ohj., 5.)

Plate XLfif.


Fig. 153.-Surface view of mesentery, coloured in silver, of a guineang aflected with cloronic inflame mation of the serons membrames from arificially induced tulureulosis. Probifenation of the surface
 wide uper. c. L'roliferithag enduthelinn, (l. Ordiuary surface enduthelinme stomata belonging to them are

Plate XLVIII


Fig. x15-Peritoneal surface of centrum tendinemm of rahint. treated with water and then coloured in silver. In the middle of the promation a lympla vesul, 1 , appars below the surfice euchethelimm, i.e., the system of lines of interstitial substance. On hoth sites of the lymph vessel are tendun trabeculie, $t$. The emathelina which covers the lympla chammels consists of smaller elements. Five true stomata are shown which pass through the "vertical lymph chamels" into the lymph vessel below. Two of the stomata are open, and three collapsed; all are surrounded by genninating endutheliun. 1. ins. (Oc., 3; Olj., 5. Tuhe not drawn ont.)


FIG. 14.-Similar preparation. c. A wide ymph vessel whech can be seen through the surface enduthelium $\alpha$. An artery, $d$, and a nerve (r:isk, $c$, pass through the lymph vessel (perivascular lymph vessel) $c$, and within the field of vision are ten du-tinctly npen true stomatib $b$. The surface endothelium bordering the stomata is germinating. P. 112, (Oc., 3, Ui. 5. 5)

## Plate Xlix.



Fif. 1r6.-Mesentery, coloured in silver, of guineapig affected in the same manner as in fig. riz. N. Surfice endothelium. $d$. The freely exposed upper wall of a lymph sinus, the endothelial marking of which is seen. On the periphery, however, answering to the free surface of the serons inembrane, two distinctly open true stomata, $b$, are shown. These communicate $i u$ an obligue dircetiou with tho lymph sinus. On the right a closed stoma can be seen. The cudothelimn, $c$, which borders the stomata is iu germination. ( 0 .., $3 ; 0)_{j}, 7$. )

Platil L.


Fig. 117.-Peritoneal surface of cevtrura tendiveum of rabbit, pencilled and colured in silver, showing the lymph capilaries of the ablominal serous coverins in the nelyhbourhoul of the large blood-vessels which pass through the daphragra. The sinuuts endothelinn of the lymph capillaries is distiactly shown. p. If. Oc., 3; ObJ., 4. Trube lalt (Irawil out.)


FIG. 1r8.-Plenal surface of centrum tendineum of guineapig, pencilled and coloured in silver, a. Lymph vessels of the pleural side, the larger trunks having spivde-shaped eudothelium, and being provided with valves. Only a fow capillaries are to be seen-that is to say, few vessels with siouous endothelium. B. Prinuipally lymph capillaties which run between the teudinous buudles. p. 1r.4. (Oc., 3; Ohj., 4. Tube not drawa out.)


Fig. ing.-Similar preparation of a rabuit. Rich netwozk of lymph vessels of the pleural side. a. Large truaks of lymph vessels, having spindle-shaped endothelium atd pruvided with va'ves. b. Lyuph capilarites c. Lymph capillaries which penetrate deeply, i.c., which bend towards the abdouital sade in order to run between the buadies of teadon. p. 14. (Oc., 3; Obj., z.)


FIG; 120-Lymphatics of centrman tendineum of rabhit, pencilled under water and then bathed in silver while artifitial respiratiull was being carried on. The lymph vessels are visible in the slightly-oluured ground as distinct and very simuns tubes, the endothelinu of which is sharply deffed. $a$. Tranks of lymph vessels of plearal side. b. Lymph capilanies which, as "straisht interf weitular lymph caphll nies,"


Plate LIII.


Fifi, z2r-Omentum of rabbit, pencilled and coloured in silver. a. Artery, b. Capillary blood-vessel.
 calfes, d. Lymphatic canaliculi of the gromnd subst mice; in most of them the nuclei of the cells coutained in them are seen. p. 145. (Oc., 3; Obj., 5. Tube half drawn out.)

Plate LiV.


FIG. 122.-Surface of omentum of rabbit, pencilled and culoured in silver, showing the distribution of the lymph vessels. $a$. Lymph vessels, showing their endothelinm. b. Valves, $c$. Indicates the position of vessel enclosed in a tract, the dernils of which, as well as those of the ground-substance $d$, are onitted. p. 115 .

Plate LV.


Ftir. 123. - Pleural side of pencilled centrum tendinemm of a glineapig, in which there was chronte infime. mation of the sprous membrames, in consequence of artificially iudnced tuherentosis. a. Lymph caphinties of the pleural serosa surrmulng an island of ground-substanca. ln the latter is the camalicular system, with the uncleated flat cells $b$, which it contains. These cells, in various plates, aro seen to he dividingi and most of them are branched, $c$. The enduthelinm of the lymph capillaries is distinctly seen in several plares to be in continuity with the cells of the camalicular system. (OC., 3i Obj., 7. Tube not drawn out.)


F1f: 124.-Pleural side of centrun tendinemm of rahbit, pencilled and enloned in silver. 1. Lymph capillaries, showing their endotuelium. The system of lymphatic canticnli, $c$, stands ont sharply from the dark coloured ground-substance of the pleural serosa; in many phaces the lacund of the cambicular system are separated from each other by mere lunes, and a trace of nuclens is to he scen; the placoid cell to which the nucleus belongs is not visille. At $t$, the canalicular sgstem is passing over into endutheliun of the lymph capillaries. p. 114. (Oc., 3: Obj., 7. Tube half drawil out.)


FIG. 125.-Similar preparation to fig 124. a. Tymph vessels with valses, pass ng aver fute b, lymula
capallaries. c. Islands of ground-substance showing the canalicular sy sten. p. Hit. (Oc., 3; Obj., 5.)

Ilate LVIII.


 -allenvid tissue. (0.., 3 : ODj., 7.)







FIG. 128.- Centrum tendineutw of rabbit, seen from the abdonfnal side. Berlin blne had been introduced iato the peritoneun by "natural iujection." b. Strisht interfascicular lymphatics between the bimdles of tendon of the abdominal side. (t. Lymph vessels of the pleural side, showing the valves, with corresponding dilatations. The last lymph vessels are us completely injected ns the first. ( $0 \mathrm{c}, \mathrm{a}$; 0 hj. . 4. Tine not drawn out.)

P'L.AT1: LL.L.


Fif: 529. - Section of medullaty substathee of umsuteric gland of ux, which has heen hardened in Mibller's lintide and then partially shation. The fignre shows the lymphatic eylinders contaning blomb vessels, sur-
 them. The blonk prices between the trabecole and the cylimers repestat the systen uf lymph kimses, the
 unt.)

$$
\begin{array}{r}
\because \\
\because \quad \\
\because
\end{array}
$$

$$
\therefore \quad \therefore \quad \therefore
$$

Plate Lij.


Fif. 130 - Alveolus from $a$ section of lung of rabbit, frozen atid coloured in silver. a. Inter alfeultr septa of elastic fibres. $b$. Epithelium of the alreulus, seen irom the surfilec. The epithelial cells are secu elgewise on the borders of the alveolus. 1. 120. (Oc., 3; Obj., 7.)


FIG. 133.-Scetion of liver of grimenpig linrdened in bichromate of potash, slowing the cylindrical trabeculie of liver cells. The spaces between the cylindrical cells correspund to capillary blood-vessels. The little penings between the constituent cells of a cylinder are capillary bile ducts cut_across. p,i26. (Oc., 3; Obj., 8.)

Plate LXil.


FIG. 134.-Horizontal section of liver of dog, the xena porte of which has been injected. a. Trunk of interlobular vessel. b. Trunk of intralobular vessel, or venc centralis. A dense system of capillary vessels is between them. p. ra6. (Oc., 3; Obj., 2.)


FIG. 135-Vertical section of liver of rahbit, the portal vein and hepatic duct of which are injected. a. Interlobular Howd-ressels. b. Interlobular bile ducts, forming a network. c. Intralobular capilliny bloul-vessels. d. Intralobular bile cilpillaries, $e$. Liver cells, the nuclei of which are deeply stained with carmine. 1. ra6. (Oc., 3; Obj., 5.) (Ser als) fig. 142.)

## Plate LXiII.


 system of enpillary vessels, which is developed from a central artery a, and termatutes in two peripheral reine, e. b. Mneosit. e. Portion of muscularis externa. 1. te4. (Oc., z; Ohj., z.)
FIG. 13\%.-Tertical section of a villus of the shiall intestine of a cat, hatrdened in chromic acid. a. Streaked
 muschatiof fines whieh lie nearest to the lymph vessels. i. Adenoid stroma of the villus in which lymph corpuscles lie. 11. 124. (Oe., 3; Ohj, 8.)


FIG. 138.-Transverse section of filiform papilli of tongue of rablit. as. Epithelial covering of panilie. b. Capillary loup of papille. c. Vessels of the mueosa. $d$. Vessels of longitudinal museles. p. 122. (Oc., 2; Obj., 2.)

FIG. r39.-Transverse section of large bronchus of hmman fietns, from a luns hartened in chromic aeid. a. Ciliated cylindrieal epithelium in layers. b. Mncosa. c. Bunlles of mustriped muscular firme. a. Submucous tissue, showing cross sections of glimd tahes. c. Portim of eartilaginons ring. fon the left, an artery eut through; on the right, below, a vein. $q$. Trimks of medullated nerve fibre cut through, $h$. Section of ganglion. p. 120. (Oe., 3; Obj., 4. Thbe nat drawn ont.)
(For figures of retina referred to in the text, see figs. 157 and 158.)

Plate LiviV.


FIG. x40.-Two injected folicles from transrerse section of Peyers patches wi suall intestine of rabbit. Ont of the plexns of large vessels which surroumls the follicle, numerums capillaries are developed, which tend towards the centre of the follicle, and for the most part turn back so ato to furm loops. 1. 125. (Oc., 3 ; Obj., 2.)


FIG. 14r.-Vertical section of portion of ileum of dog, hardened in chronic acid. a. Villus, showing its cylindrical epithelium with thick basat lorder. The stromat of the villus scons to consist of closely-packed lymph corposcles; between are bundies of unstriped muscular flore. b. Micosa with Lielserkuhnian crypts. c. Wuscularis mucose, with intermptions through which the summits of the follicles, d, project, in order to reach the epithelinm of the free surface. d. l'urtion of sub-mucosn. in which the fullicles are closely packed, and are partly fused together, so as to form it Peyer's patch. At the base of the follicles the lymph siuuscs, a, which surround them can be seen. f. Portion of circular muscular layer of the muscularis externa. $p$. $z$. Oc., 3; Obj., 2.)


Fig. rfz.-From a longitudiual section of the injected kidney of a rat. a. Arterial trunk. b. Venous tronk. c. Glomerulus. d. Vas atferens of the glomerulus. e. Vas efferens. f. Capillaries which twine romud the comwoluted thbes. \%. Capillary vessels of the pyramidal processes. p. r34. (Oc., 3; Obj., 4.)


Fig. 142-Section, parallel with the surface, of an acinns of the same preparation as fig. nis. a. Intratobular capillary bloul-vessel. b. Intralobular capillary lile duct. c. Liver cells. 1) 126. (Oc.,3; Ohj., 7.) (Sce also fig. 135. .)

Fuci. If4.-From a kidney of pig injected from the ureter, slowing the arrangencnt of the tubes in the pyrandal substance, a. Collecting tubes, b. Henle's loons. 1. 1.34. (Oc., 3; Ohj., 2.)

Plate LNYi.


FIG. 145 - Transverse section zeross the axis of the injected kidney of $a$ rat. At $A$ are seen the lmudles of



Fif. s 46 - Transverse sectinn of pyramidal substance of kidney of pig. the blood-vessels of which are injected. $\boldsymbol{a}$. Large collecting tuhe, cut wruss, lined with cylimirical epithelimm. b. Brimeln of collecting tulne, ent seross, lined with epithelium with shorter cylinders. c and d, Henle's loups cut acruss. e. Bluod-vissels cut across. 11. (onnective tissue grunnd-substance. 1). 130.

Fif. 147.-Teased prepration from a section of kidney of pig, hardeued in bielaromate of putash, slowing a Henle's luop. a. Membrana propria. b. Epithelitum.


Fla, I4.-The sane, showher a portion of a eolleeting tube in the pranidal processes of the corticalis. A

 a. (xlomernlus with (b) its mombranu moprit; and c, the epithelimm of polyhelrie cells covering the glomerulus. This epithelimn is continnons with $d$, the flattened epithelium which lies upon the inmer surface of the Bownan's eapsule, e. f. Convoluted ifrinary tube cut across. p. 132. (Sce also fig.. 155.)

Plate LiNVII.


FIf: 150.-Portinn of consuluted thbe of kidney of pig, prepared with bichromate of potash. The giannlat suhstinice whith fills the thas contitins muclei. minns of which are surrommed by areis the limits of which








FHi. 152. - lourton of a theibmian follicle from a vertical section of haman eyelid, hardened in chromic
 chamels with the principal duct. These acini are lomoded ly a liyer of polyhedrat cells, consisting of gramular protoplasm, which limes the membran propria. These cells are directly continums with the deep cell lager of the dhet. $e$. loblyedral cells filling the acinis, which are flattencil against each other, and


## Plate LAXI.



Fll: 153.-Tuhulive glands of haman prostate, hardened in chronic acid, showing the cylindrical epithelium whel covers them. 1. 137.
FIG. 154.-Section of cortical smbstance of kibhey of six months' hmman fretus, hardened in hichromate of
 contimution of bownan's capoule. At the point of section it appears ats if consisted of spindle-shaped elements placed tongether. $c$. The cpithelium of cylindrieal elements which covers the glomerulus. $d$. Epitheinn of pulyheltal cells which lines Bumanins capsule. $f$. Convoluted urinary tube cut throngh transversely. 1. 132. (Sice also fig. 14) )


Fif. 155 . - Vertical section of hmonn eyelid, showing the thbular glands which are embedded in that part of the conjunctiva phlebre, which is nearest the conjmetiva formicis. chboride of gold preparution, hardened in alcolol. 2 . Commective tissue gronnd-suhstance, rich in hranched cells, in which the tuhular glande (b) are emberded. These are shown ent throngh in warions directions. Where they are cut transrerselv, as at e, it is soen that the epithelinm corering them consists of cylindrieal nucleated cells. (Oc., 3; Obj., 8.)

## Plate LXX



FIf. 156.-Vertical section of comen of rilybit, larlened in chromic acid. a. Anterior layer of pavement epithelimm. b. Substumiu propria of the cornea, consisting of comective tissue fibres in more or less parahel bundics, hetween which are the consa corpuseles. These, in vertical scetions, appear spindle-shaped. c. The posterior lamina elastica, or Descemet's membrame, aud the endothelium of polyhedral cells, d, which covers it. 1. $13 \%$.


Fis. 157.-Diagman of the connective substance of the retina.

FIf. 158.-Diagram of the nerrous elpments of the retini (after M:x schultze). These two diagrams must he supposed to fit into one another in such a way that the nervons elements fill corresponding spraces in the connective substince. In 157, the lower line represents the limituns interna; the line 8 the limitans externa. 2. Lnyer of nerve filres. 3. Layer of ganglion cells. 4. Inner finely granular, or, more corrcetly, finely fibrillated layer which really forms an extremely close network of wery fine fibres into which, on the one hand, the processes of the ganglion cells penetrate; ont of which, on the other hand, the fibres of the inner gramular layer, 5 , proceed. The outer processes of the clemonts of this layer similarly terminate in a close finely filsillar network, 6 , the intermediate gramular layer or outer finely granular. or, more correctly, finely fibrillar latyer. Out of this proceed the inner processes of the outer granulin layer, 7 , which terminate as rods and concs, 9. D. 142.


## P1.ATE LAXI



Fil: randraz-Virriout stages of cleavage of the egg of the trout. a. Germ. b. Soction of yolk on which



FIG: 164-Germ in an carly stage of cleavage, seen in profile. a. Vitelline membrane. b. Germ. c. Yolk.


Fic. 165.-Vertieal section of blastoderm of the egg of a trout at the thited day. $a$. Germ, already sulit into a large number of elenents, in some of which the dark yolk granules cm be distinctly reengrized. 6. Yolk of the sancer-shaped depression, filled with fit clubules.


Ffa. ros.-Similar meparation, made at the sixth diny. The blastodem, which lies on the yolk like a eushion, consists, as in the previous flime, of subll, distinctly muclentel elcments. The feeper elements, those not so far mlvalued in cleavize, are larger, and still contain yolk granules.

Pleites Livif.


Fic. 167.-Similar preparation at the twelfth dity. The blastoderm his increased considerably in width, and shows at a a marginal thickening. Opmosite the thinner central portion, d, we blatodernis separated from the yolk, e, by a hullow space, the clemate citvity, b. It is still, however, colluceted with the yolk by colunins of echls, the subsgerminal processe's.


FIf. 169 172.-Sections of the egg of bufo cincerts, intendec to show the relations leetween the cleavage


 representing the uriginal mpuer pole of the egg. P. Orisinal lower pole of the egg, showing, especially in ry and 172, Ecker's Jobk phag. z. Elements of the margins of the cleange cavit.j fecutral golk mass of lieichert). They are larger, that is, less indoanced in cleazage, thitn the eloments in the dome of the eleavage
 cleavage earity towards the mper pole. Thes answer th the formative: elements of the tront's agg. linseonis eleft adramees between these clements, so that in 171 , where the eleft has leconice a cavity, they arc se[ariter] from the cleavage cavity hy a layer of formative clencents, 8 . In 172 , wwing to the allemation in its contre of gravity, tho egg has cluiaged its Iasition, the white pule leing now nemuly uppermost. I. I5\%.

Plate LNXilif.


FIG. I68.-Vertical section of peripheral part of blastodern of tront's ugg at the fourteenth dity. G. Marginat thekening. c. C'utal thin portion of blastoderm, showing superticially a liser of that temed elements, marlor

 the blastulerm; either fiom the subserminal processes, or from the luwer lityor, at, of the central 1 wrtion. f. Yolk of the satucer-shaped depression. \%. Viwenules (fiat glubules?).




 minder of the elearage cavity. 1). 153.


FIG. 174.-Section of the cover or dome of Ruseoni's cavity (Bufo) a. Curneal lager. b. Nervons loyer. c. Motorgerminative hayer. d. Epithelitl ghandular lager. e aud $d$ are the ofspring of fornative clements.


F1(: 175.-Vertical section of aportion of the area pellucida and area opaca of the blastoderm of a fresinlath hen's ego. In the suction corresponding to the area polhacida, the hastadern consists of two dispinct lasers, a the upper, and $b$ the lower; the later looser and consisting of larger elements. ce. Fomativ slements lying on the floor of the elearige earity $F$, whieh have origimated from the germ, aud ire filled with solk granules. 'lhese elenents are continnous with similur ones in the area opact.


FiG. 176. -Section of bastoderm of hens egos, at the fiftecuth hour of incubation. ( $\because$. Wer, and $L$ lower ayer. c. C'leavage cavity. $d$. Yolk rim. f. Formative elentents on the floor of the elcavige cavity. f. Similar elements which hatve already migrated in between the hayers of the blastoderm.


FiG. $77 .-$ Suction of commencing embryo at the twenty-sixth hour after incobation. a. Uprer, $b$ midulle, c under lager. d. Central portion of the middle hyer, which is here fund with the npper hayer. e. l'rimitive grouve. f. Dorsal rilges.

## Plate LXXV.




 $h, i, g$, are prodiacts of differentiation of the middle lisyer, I. 150 .


FIC: 179.-Section of area opeca, and a portion of arom pellucidu of hastoderm (cambill ent), at the thirtieth
 tralis. A. Lamina serosk. f. Ibloul-vessels. g. Elemeats which belong to the mitdle lityer, ind particularly to the lumina serosa. $h$. lolk of the imner jolk rim.


FiG. 180.-Tramsrerse section throngh the cervical part of an embryo of the chick at the thistieth hour of
 c. Lotmime swntralis. f. Lamina siroset. g Lower layer.

## PaTE $L E X V I T$



Fic. 181.-Section of embrya of chick at the heginning of the second day, in the neighbourhood of the heart. a. Chmer or coneal layer. b. Central emal of the eentral nerwous system. d. Tader or epithelial
 chedinulos. m. Fohd of ammios. $\%$. Plenroperitomeal cavity. II. Heart eavity. $h$. Endothelium of wall of heart. $\because^{\prime}$. Prupar wall of heart. A. Blood corpiscles.


Fll: 137. Transition of the inmative elements of the blastoderm into endothelial vesieles eontaining blond corpuscles (embgenoms develuphont of bloul curpusches). r. (forsely wrambar formative element in which
 ןerifheral zone, b, bexins tu he ditherstiatel from the rest of the cell. In 3. the peripheral nuclented layer of thely gianular frotollasm has become listinct from the contents, whin consist entirely of coloured bluod corphiscles, so that we have lefore ns a vesiole lined with endothelimm and filled with blood eorpuseles. The lining of flncly gramul: $r$ potoplasm, with its more or less reanlarly arranged nuclei, representa the cullothelinu of a futuro versel.


FTf. r8.-Section of the posterior part of the body of the entbryo of the chick at the forty eighth lionr.

 furrow. A. Ammiotic fuld. $l$. linoul vessuls.


 laver of germ. f. Thickenimg of the miner layer for the formation of the lens. If. Madle layer. he. Niormas opeicits. 11. 157.

## Plate LXXYIII.



FIGS. 18\&-186.-Various stages in the transition of the primary into the secondary optie vesicle, and the development of the lens at the end of the second and during the third day.
186. (t. Civity of seeumbary uptie vesicle. b. Rudinent of retiua. c. Rudiment of pigment epithelium of the choroid. d. Nervis opticus. e. Lens. f. Upper or eurneal hayer.
184. a. Primary optie resicle, aud $b$ its will. e. Vorvus opticus. a. Upper or eorueal layer. c. Beginuing of lens.
185. a. Primury optic vesicle. b. Saucer slaped eavity, which subsequently becomes the secondary optie vesicle. c. Nerus optieus. d. Onter wall, ath cimmer wall, of primary optie vesicle. f. Uper or eorueal layer. g. Rudiment of lens.


FIC. 188.-Other forms of elements, in whlch blood eorpuseles are produced. $a, a$, are the carities of vesicular structures, produced by the formation of vacuoles, in uriginally solid eclls. The wall of the vesiele $b$, which consists of nueleatel protoplasm, represents the enduthelium of the future vessel, for which reison these vesicles may be called endothelial vesicles. At d, blood corpuscles are detahing themselves from the inner portion of a vesicle. $f$. Shows an elenent of another kind, in which blood corpuscles are furned. It is a spindle-shaped or branched solid eell, the eentral portion of which becomes blood corpuscles, and the peripheral portiun enduthelium. b. Is an elcuent simblar to that in fig. 187.
These three varieties of formative elements of boul eorpuscles are in communication with eath other by solid uffisouts. They have this iu common, that in all a peripheral hyer of nucheated protoplasm is differentiated from the interior, which eontains a grenter or less mumber of blool colpuseles. The interiurs of neighhouring elements eventually beeome eontinuous with ench other by the offsloots or communicating threals above mentioned, whieh becume hollowed out, and thus give rise to a system of tubes, the blood-vessels.


FIG. 190.-Test tube, with foot, used for subsidence of small quantities of blood (§ 1 ).
FIG. Ior. - Vessel of tin plate for collecting blood and keeping it at $0^{\prime} 0 \mathrm{O}$ (§ 2).
FIG. 192.-Coagulition of blood of frog in a fine eapilliary tube. IItrtnack. (Ohj. 9; immersion. Oc. 3.) FIG. 193.- $a$. Cimmula for Schafer's experiment. $b$ slows the form into which it tube is drawn out far the preparation of an anterial cammula $(\$ g$ ) the tube is first severed at one of the constrictions, and then fled away in the direction of the oblique line. c. T-shaped arterial cannula; the horizontal tube is in communication with the manometer of the kymograph (§ 33).
FIG. 194.-Object-glass for sthdying the action of induction shocks on blood. The drop of blood to he examined is placed between the tinfoil points on the under surface of the fixed sfuare cover-plass. The chander is closed by placing a seconal ordintry ohject-glass below it (§ 13).

Phate LiNXi.




Fif: 203.- $\boldsymbol{\imath}$ and $b$. Needles for passins ligitares muler vessels or nerves. r. Briacke's blunt hook. d. TreHane. e, C'urved neerlle. $f$. Curved innl notched meedle.

Plate LNXXII.


FIG. 200.-Franklaud's apparatus for the analysis of gases by absorptiou (f 30). (From Suttun'w Volum. Analysis.)

Plate Lixilif.


Flit. a4.-('zeranak's rahbir support (\$ 3).


Fig. 20x.-Fiankland and Ward's apparatus for explosion (§ 3r). (From sutton's Volum. Analysis.)


Fif: 202, The mercmitisl kymograph. a. Vulcanite rod of floating piston, b. Tube which commmmiates with the pressure buttle. c. Tulse which communicates with the artery, $l$. Feeding cyliuder. I. Firstaxis, which revolves unce in a minte. 2. Second axis, which revolves ouce in ten seconds. 3. Third axis, ina secoul and a half (\$ 33). The instrument is furushed with other cylinders snitable for the reception of single bunds of glazed paper, the surface of which can be blackened after they are fixed on to the cylinders. by cansing the latter to revolve over the flame of a petrolemm lamp. These cylinders can be fitted on to bither of the axes 1,2 , or 3 , anfl are always used when it is necessary to emplog a rapidly-moving surfice, as, e.g. for tracing the curves of muscular contraction.


FIG. 206.-Normal tractig of arterial pressure obtained with the mercurial kymograph (r.b)bit!.


FIG, 205.-Fick's spring kymograph. A. C-spring. HB. Support. (\% Roul which commmmicates the movements of the spring to the lever $[1$, and thus to the writing-needle f 。 $K$. Lenden tulue by which the cavity of the spring is in commanication witl the artery.


Fif. 207. - Normul aterial tracing obtained with the spring kymngraph (dog under curare). Flg. auzt. - Tracing of same winala aiter exhanstion of vagns by repeated excitations; dicrotous pulse.


FIf. 208. - Mechanical arrangement of the sphyghographi (8 38).

Phate LNEANI.


Fif: zog.-End view of the block by which the sphygnugraph rests un the bone of the wrist, shawing the screw, (i, by which the pressure exercised by the spring on the artery cin be virical (\$ 39).
FIf: 20) b.-Breg,tet's improvement (§ 39).
Fif: zro.-Mode of meanaming pessure (§ 39).


FiG. 2 rr .-Schema for demonstrating the nature of the artcrial movements. A. Glass tuhe which represents the leart. B. The thbe by which A communicates with a cistern at a height of ten or twelve feet above it. (A much smaller hear of witer is sufficient.) C. The lever by which the two virlves f. and 1 are worked, the same act which shuts the one opening the other. F. Commencement of the experimental tabe, which is of black vulcanite. At $F$ the tube communicates with a long vertical tuhe of glitss, ouly part of which is seen: it is closed at the top, and usually shint off from $F$ hy a pinchcock. At $G$ the tuhe passes under the spring of the sphyginograph, the frame of which rests on a block (below a). By error, the tube has been driwn on the wrong side of the block. H. The blackened plate of the sphygmograph. To the left of it is seen the cylinder, with its needle for recording the time which intervenes hetween the opening and closing of the aurtic valve, $D$. L. A rod which is firmly fixed in the lever, and is connected by two cords, one of which is elastic with the cylinder (\$40).

Plate LXXXYiI.

$a$
Firs. 212n.-Tracings obtained with the arterial sel!ema (\$ to).

$b$


Fil: 213.-Perchasion wives (8 41.)


FIf: 244.-Tracings showing the contractions and expansions of an indiarubber tube, abong which water is propelleal in an internitting strean by squeezing with the hand at regular intervals of thme an elastic hag provided with valves, with which the tube is in communication; the bag thus represents the heart. The thret tracings are drawn simultaneonsly, and exhibit the expansive movements of the tube at three different. distances fronn the hag, the upper traciug being taken at the greatest distance ( $\$ \mathrm{f}$ ).


Fif. 215.-Sphygmographic tracing (5 42).

 at out $45^{\circ}$.

Plate LXXXYiil


FIf. 217.-Stage for mesentery of frog ( $\$ 44$ ).


FIG. 213.-C'ammlie for aurtit and vena come of frocr. The right-hand figure represents the arterial eamma. They are oi size suitable for large specimens of $h$. esculenti (\$ 46 ).


Fift, 219.-Ditgran of ammenenent for measuring objects seen maler the mierosenpe. a. Axis of tube of microscopes. b. 1risin. d. birettion in which the bheject is seen. $r$. Surface of drawinformot, which should be it it ilistanco of 10 inches ( 25 (exntinaters) fron the eye. The ingless of the prism leins equal, the angle « $b c=60^{\circ}(\$ 48)$.


FIG. 22x.-Crifin's blower int expambing regnator, as used for gis blow pipe. The blower is used for artificial respiration (ree § 49).


## Plate LAXiNi.



FlG. 222.-Sprengel's blower (\$ 49).
FIG. 225.-Excitur. The wires are of copper, with phathum points. Their sheaths nre made of lits of fexible catheter, and are bumd tusether with waxed silk (§51).
ELi, 226. - Parts exposed in the rabbit hy an incision extending from the chyroid cartilage to the root of the left ear. $\quad v j$. Wifureation of the jugubar sein; $p f v$, pasterior facial vein; $p a v$, posterior auricular vein; af l , anterior facial vein; $n$ a m , great anricular nerve, where it energes at the posterior edge of the sterno-mastoid muscle (§ 53).


Flli, 227.- Comutial artory of rabbit, alld parts in relation with it. c, firutial ;

 clase to its origin from the varns, it passes behind the carotid; $p$, Many ngeal artery ; $s$ me, elge of shermomastuid muscle; $t h$, thyroid artery; $s t h$. stornoliyod musele ; l, laryngeal intery the nerve which crosses it is the descendens moni (\$56).







V:la; zzo-The cardingragh (§ 601 .
 be raised wr depresser it will, by mems of the hittle mijnsting lever, the long arm of which is sech for

 sute.

Platie XCI.




 distended essiphigus, L, hulater, hy which the glass rul J is sulurited (§ (03).

$$
r
$$

$$
\begin{gathered}
\quad \because \\
\therefore \quad \therefore
\end{gathered}
$$

$$
\because
$$




FIG. 237.-Dissection of the parts in relatjon with the vagns nerve of the frog on the right side. The cesophagus ls distended with a glass tule abont haif twice 111 wialth. The uhject is represent: $B$, bulbus tortee . hyoid mnscle : $h . g$., hyoblussus muscle ; $\eta$, lowest of the three petrohyoid minscles; H, nhath nerve: (t, glossopharymgenl nerve; $r$, vagus ; $b$, hryns ; s\& $h \&$ oh., woint to the space occupied by the origins of the large minsele (stemohyoid) which comnects the hyoid with the sternum, as well as by the minolyyoid; buth of these muscles have beell cat away (§ 73).

FIti. 235.-Traings obtaned by recording simultatheously on the sane cylinder the variations uf pressure in
 the right auricle, right ventricle, innl left veln. tricle, respectively. The interval between ca:lı vertical line and the next corresponds to about a tenth of a second. The second vertical line is just before the completion of the systole of the auricles. The colltraction of the ventricles falls between the third and fourth lines. It ends between the seventll and eighth; consequently, fin the horse, the interval of time between the auricular systule and that of the ventricles is about $0^{\circ} 15$ see., and the duration of the ventriculir systole is rubout 0.4 sec . (After Cliau. veall ; sec § 67.)

FIG. 236. - Septum auricularum of frog. $a$, Muscular fibres ; $b$, endoeardiun: $c$, free edge of septum; dd, wall of ventricle; $e$, right cardiac branch of vagus; $f$, left branch: $\hbar_{\text {. anterlur }}$ luerve of septum ; $i$, postcrior nerve: $k k$. Bidder's ginglla; $\boldsymbol{l l}$, ganglia of ventricle; § 6g. (After Bidder,)

Plate XCIII.


FIG. 240.-Sketch to illustrate the relations of the ganglionic eord in the visceral cavity of the frog. The septum cisternce magnce having been divided on the right side, the right kidney is turned over towards the left, so as to expose the parts concealed by it, viz., the aorta and the ganglionic cord of the same side. The stomach and the first coil of intestine are also turned over, so that the posterior surface of the former orgin is wresented. In this way the origin of the mesenteric artery from the junction of the right and left aortee is brought into view. On its surface nervous filanents, which spring from the ganglionic cord, may be triced. These (nervi mesenterici) combine to form a plexus with similar flaments from the corresponding gathglion of the other side. (See fig. 295.) l, Liver; r l, right lung ; s, stomach ; $k$, kidney.

FIG. 24t.-Heart, lungs, and great vessels of the rabbit, with the nerves in relation with them. (After Ludwig, slightly altered.) V.e.d., V.e.s., Right aud left vence cavo superiores; the left rena eama is represented as if cut away, in order to show the nerves. G, canglion cervicale inferius: s, sympathetic; v. vagus; $d$, depressor. The dotted lines on each side indicate the position of the chrenie (§85).

FIG. 242-Disscction of the luwer cervien ganglion in the dog, and of the parts in relation with it. (After Schmiedeberg.) t , Recurrent nerve ; 2 , common trmak of the ragus and aympathetic; 3, phrenic; 4 (leading upwards and to the right from 8), ramus vertohralis; 5, commmacating banch letween inferior cervical ganglion (6) aul recurrent: 7 , trumk of sympathetie; 8, first thometic gimglion; 9, romus cardiac is superior: ir, trunk of vagus (\$ 8) ).

K

Plate XCIV.


Fth, 24.-Tracing (after Schmiedeberg) showing the effect of electrical stimulation of the vighs of a frog under the inn (\$81).


FIG. 243.-Dissection of inierior cervieal ganglion of rabbit. The pectoral mus. cles athl sterno-chavicular ligament have heen disided, and other more superticiat fiarts removed. The dutterd line indicates the midnle lime of the body. g 1, A lymphatie gland in contant with the alex of the lung : " $x$. sul-claviath artery ; ald, vertehmalartery; $\boldsymbol{v}$, vagus nerve: s. sympathetic: $\mu$, phrethe (8)81).

Fil, 2\&6.-Rexpiratory muscles of frog (after Ecker), smo. submentalis; !/ h. ge niohyoutens : $h$ g. hyo ghossun: $s$ m. submatillaris: s $m^{\prime \prime}$. anterior horn of the hyonil kone; $p h$, petrohy widei ; oh, omolyyoiders;


Fis. 247.-Recording Stethometer.
A. Tympannu; в, ivory knob; B'roi which carries the knob opposed to
 cates, on the one hand with the recording tympanum, on the other with an elastic hag $D$. The purpose of the latg is to enahle the observer to vary the quantity of air in the cavity of the tympana at will. The tuhe learlug to it is clused by a clip when the instrment. is in use. ( $\S 90$ ).

Plate XCY.


FIG, 25n.-Burwond Pabley for recording the movements of aneedle, inserted in the dithlimam. A light lever is attachel to the horizontal arm (\$91).
FIG. 251 - Bosent hal's apparatua, with Wr. Miiller's vialves (§ xit




Fl6. 257. - The lever kymogriph, fur recording the respimatory ind irterial movements simultaneonsly (f 105 )


FiG. $258 .-$ Tracing olditined with the lever kyuogtiph ( $\$ 105$ ).

Plate XCVII.


Fll: 265.-The catorimeter ( 1 In 6 ).


Fic. 265 bis. Galvanometer or multiplier, for thermo-electrie currents (Ing).
FIG. 265 , bis a.-Wooden frim ' on which the wire is coiled.
FIG. 265 , bis 8 . -The inagnets.

PLATE 98. Fig. 229.


Fig. 234.


Fig. 238.z.
Fig. 238.a
arp.
(ns:
Fig. 239 a


Fig. 239.3

Whomarlinh Fig. 24.5 .

Fig. $232 a$
Fig. 232 z



Platelog.
Fig. 259.


Fig. 260.

nort vespo

Fig. 261.
 !
incot.vesp

Fig. 262.


Fig. 264.



## EXPLANATION OF PLATES XCVIII. TO CI.

FIG. 229.- Trucing drawn by a lever applied directly to the apex of the heart of the frog.
FIG: 234.-Tracing of enducardial pressure of heart of frug, obtained by Coats' method.
Flls, 238 a and $b$. -Synchronons tracings of arterial pressure, and respiratury movement of air in tracheat, taken (a) immediately befure, and (b) one minute after, section of both vagi. The lever kymograph (fig. 257) was employed. Arterial pressure befure sectiou about $150 \mathrm{~m} . \mathrm{m}$., after section about $180 \mathrm{~m} . \mathrm{m}$. Pulse rate before section ro, after section 260 . Respirations before section 24 , after section ro. The chavacteristic violence of the expiratory movements after section is well shown.
Fle. 230.-a. Tracing of arterial pressure of rabbit, obtained with Fick's kymograph (fig. 205) during excitation of peripheral end of divided vagus, with feeble induced currents (secondary coil far removed from primary). Duration of excitation of nerve indicated by asterisks, $b$. The same, with secondary coil brought nearer.
Fli, 245.-Tracing of arterial pressure with Fiek's kymograph during excitation of the central eud of the depressor nerve (\$82).
Fli. 232.-a. Tracing obtained with the cardiograph, when the button is applied to the seat of impulse of the humsin heart. b. Trawing obtained when the button is applied either outside of the impulse or nearer the stermum. The line of sudden descent in $b$ coincides with that of suddeu ascent iu $a$. Buth are coincident with the sudden harlening of the ventricle, i.c., with the complete clusure of the mitral and tricuspid valves (\$60).
Flt: 246 bis.-Tracing of respiration of frog (§ 86).
Fig. 249.-Tracing of intrathoracie pressure ( $\$ 90$ ).
FIf. 248.-Tracing obtained with the stethometer when applied as in fig. 247. i, Inspiration; e, expiration. Inmediately after a, a noteh in e:tch of the curves occurs, the descending limb of which expressos the moment of cardiac impulse. Compme fig. 2326 (\$89).
FIf: 253.-Respiration of the cat before and after section of both vagi. The tracing expresses the variations of pressure which vecur in the air passages during each respiratory act. 110 the horizontal line is that drawn by the lever when at rest ; consequently, when the pressure in the air passages is less than that of the atmosphere the lever rises, when it is greater it falls. The sudden expiratory uovement which is the most, marked characteristic of the mode of breathing after section of both nerves commences at e (\$ 92).
FIf. 263n.-Tracing of arterial pressure and respiratory movements in the second stage of asphyxia by occlusion. a $p$, Arterial pressure ; $i$, respiration. Buth tracings express the movements of mercurial manometers ( $\$$ rog).
FIG. 263b.-Sluw asphyxia. The lower tracing expresses the movements of an elastic lag in communication with the trachea (\$ 180).
Figs. 259-261.-Tracings of respiratury movements of the dog before and after curarization (\$ ro5),
FIti. 262.-Tracings of artificial reapiration and arterial pressure, showing Traube's curver, ats seen with vagi intact (\$106).
FIM. 264. - Effect of a single injection of air in a curarized dog, after long discontinuance of artificial respiration (§ III).
FIGS. 254 and 255 - Excitation of the central end of the vagirs in the rablitit ( $\$ 8$ ros and ro3).
FIG. 256.-Excitation of the central end of the superior laryugcal nerve (\$ 194).

Plate CII

266.-Diagram of a frog, to show the lines of incision necessary in varions obervations.


Fic. 267.-Diagram of the mascles of the leg of a frog posterior surface. " triceps femmeris; $b$, bicess fenuris; $c$, semi-membramosus; $\boldsymbol{l}$, coccysen-ilitus ; e,, , tende achillis: $\%$ gistrocneintus : $h$, head of gastrocuemins: $k$. peronens (the mascle also marked $k$ in front of and partly hidhlen ly the preceding is the tihialis antions); l, reetus internus ; $m$, slatieus; $m$, maiformis: $r$, coces ; $\%$, ilimu ; $a^{\prime}$, rastus extermus.

Fifi. 268.-The nerve muscle preparation. $F$, ent of femmr ; N, sciatic nerve; $I$, temblu achillis: $t^{\prime}$, attrelment of smatler temdon of gastrocnemius ti) femur.


Plate CIII.


Flla, -oy.- Dy ygraphion of I'fliger. The moist chamber, which is suppurted ly the large pillar, and from which the thretul $h$ descends, is not shown. The lever a moves freely on the two pillars $u b$. At $f$ the rode $e$, liearing the movable style $d$, with its mowable counterporse $g$, swings eisily. At the oplposite cud of the lever is the lema commterpoise c. The milled liead on the side of one of the pillars $b$ rutates the lower of the two bars comneeting $b$ and $b$. A silk thread is carried from e to this bar. liy turning the milled he:ud the style buny thas be allowed to fall upon or remove away from the recording sultace as desired
 chitulx.r, with the merve-mascle preparatios), non-polixizahle - lectrodes, electrodebearer, and lever in bosition reaty fur ath alservitition. The Hitss cuver is not shown.


F゙ti: -70 bis. - Simple

--...

## Plate CIV.


 shielded.

FIG. 272, - A non-polarizable electrute in the hearer.


F゙10, 273. - Ents of non-pularizable electrules. A, with the clay plug b projectiog leyome the glass tulie; B, with the end af the glass tube closed and bent, a hole being drilled in the tube at $b^{\prime}$, to expose the plug; c, oblique end with the chay jlug flush with the glass tube.
Fili. 77.-K runecker's furcels.




$\therefore$, the primary coil, connectex throush the keyb with the cell b.

Plate CY.


Fu\&. 277.-The recording tuming fork.
 arc scen the pointen electrolen aud the clamp fastening the nuscle. At the other end of the muscle is the thread comnected with the levor.

FIf: 28 . - A ditferent disposition of the levers, inteuded to show the same thing. The levers sewn lelow the platform on to which the amscle is fistened, are counected with slips which piss round the musele at clifferent parts of its length.


FIG. 279. - Diagram of a iunscle curve astmwn ona trivelling surface. $c$, the line described by the point of the lever comuccted with the muscle: $a$, the line described by mationg lever; b, the liuedescribed by tho tuniug. furk. The vertieal line $m$ marks the noment of stinnlation, $m^{\prime}$ the leegimning, $m_{2}$ the naximmus, and $m .3$ the end of the contraction of the пиnsele.

Plate CVI.



FIf. 283.-Diagran of the curve of tetanas. $b$, the line drawn by the point of the lever commected with the nusce: $u$. the line of the marklug lever. The recorting surfice is smponsell to be mowing slowly. The line m marks the commencement of stimulation, and also of the contraction (the moventent wut beins sutticieutly rapid to show the latent perionl): $m$, the cessation of stimulation mal the commencenment of relaxation; ma, the return of the mascle to its furmer length. The straight line, which is the continuttion of $b$ from $n$ to $m 3$, is the line which would have been described by the mascle in the ahsence of all cuntraction.

Fic: 283.-Lower part of large figure. C'mrve of tetanus, slowing the individual contractions, Below are seen the vibrations of arecorling tuning-fork.

FIG. 284.-Upuer part of large figure. Curves illustrating the increased extensibility of a mosele during tetanns.


FIf. 285.-Mnscles and nerves of frog. arranged for the experinent of the " rlacoscopic frot."



Prncons

为
为





#### Abstract

$=$ $=$ $=$


Plate CVII.


Fll:. $280 .-$ sif W. Thumsons walvinometer and scale.


Fit; 289.-Arrangement of a mone mun-polarizable electrodes in a way best suiferl fire the demonstriation of the ataral eurrents in a nerve.

FII: 290.-D'agran illustrating electrotonus. or $\mu$, the polarizing electrodes: al', b $\boldsymbol{j}^{\prime}$, electrodes so placed as to show the effects of the natural current on a gat wanmeter at each end of the nerve when the polarizing eurrent is in the direction of the arrowe in the fignre: the natural current of $a a^{\prime}$ is increased, as shown by the positive sign, while that of $b b$ is decrea ecel, as shown hy the negativesign.

## Plate CVili.



FIG 293.-The inluction anparitus of In Bois Reymond, with the magnetic intemptor.

$\square$
$\square$ ［－4
$\square$


## Plate CIX.



Fig. 295-Diagrimm of the nervous system of a frog-anterior (oriuferior) view, 1, 2, 3, \&e., to 10 , (ranial nerves
 tympanic nerve, which, after joming witn the rumus eommunictur of the vagus, goes worm forme facial nerve. Jo, ganglion gisserii. XI-4, hrmaches of tenth pair ; $X$, communicating brinch with tympanic nerve; $X 2$ glussopharyugeal nerve; $X 3$, nerves to stomach and intestines; $X 4$, entaneous hraneh; $X$ d, ganglion of vagns
 nerves with whieh they communicate; $\mathcal{Y e}$, erural merve; $N i$, sciatic nenve. (After Feker, slightly altered.)
FIG. 296.-View of the brain of frog from abose, eularged, L.ol, olfactory lobes; II.c. cerebral hemispheres. G.p. pineal body; Th.o. optjc thalami ; L.op. optic lobes; C. cerebellum ; M.o. Medulla oblongata; S.rh. sinus rhomboidallis.

FIG. 297.-Commutator.

49 9
$\therefore i$,

## Plate CX.



Fig. 298.-The Rheochord. The diagram represents the end of the hard on which the resistance wires are stretched, $a, b, c, d, c, f, g$, are brass blucks which wonld, if it were nut for the wires, he insulated. From the block $b$ a germansilver wire (the comse of which is indicated by the dotted line), after thming romud an ivory pin at I, returns to $c$. From $c$ a similar wire of exactly the same length returns to $d$. From $d$ a wire three tines the length returns to $c ; e$ and $f$ are comnected by a wire five times as long. From each of the bocksand anditimm wires extend to the further end of the beard, a distance of more than a metre, which are insulated at their extremities. They are, however, inmetallic commection by means of a slide (" trivelling mercury enps ") shown in the diagram. Accurding to the distance of the slite from a and $b$, which can be measuretl by a scale on the board, the resist mace between $a$ and $b$ can he varied. When the slite is as fur as it will go, the resistance is equal to that between $b$ and $c$, ur $e$ and $d$. When the slide is pushed up to $a$, the total resistance of the rheochord is twenty times as great as between $b$ ard $c$. If phas (not shown in the dayratu) are inserted between euch block and its neighbour, the resistance is nil. (Sce D. 347.)

Fig. z99.-Double key.


Fic. 300,-Du Bois Reymond's key.


FIG. 3or.-Creatine.


FIG. 30s.-Creatinine.


FIG. 303-Nitrate of hypoxanthine.


FIG. 304.-Hydrochlorate of xathine.


FH6. 305.-Uric neid.
llate Cxil.


FIG. 306.-P, putato starch; W, wheat starch; \&, rice starch; A, arrowroot starch.


Fif: 307.-After Beruard. Nerves of the submaxillary and sublingual glands of the dog. N. Submaxillary ctand. O. Sublingual gland. J M. Wharton's duct, in which a camula has been placel. J L. Duct of the sublingnal gland, also furnished with a camulio. T, $s, s^{\prime}$. The lingual branch of the fifth nerve. F. The ficcial nerve. r. Cloorda tympani. g. The suhmaxillary ganglion. q. The superior cervical gauglion. P. Sympathetic twig massing from the gangliou to the submaxillary gland. $j$. Interual masillary artery. V. Vidian nerve, $l$. Branch of the lingual nerve ramifying in the brecenl mucum membrane.


FIG. 308.-After Bernard. Veins of the submaxillary gland. \%. Subnaxillary gland. $j$. Jugular wein, dividing
into two branches, $j^{\prime}$ and $j^{\prime \prime}$, which pass along the burders of the gland. . $d$. Anterior vein, aud $d^{\prime}$ postcrior vein, from the gland.


Flu: $\mathrm{m}_{\mathrm{M}}$.- After Bemand. Dissection of the merves of the smbmaxillary gland in the dog. G. Submaxillary glitul, frum which issues the huct K, acompmited at first by the lobules of the anhlingual ghand, which farther on laに $\operatorname{ta}$ separate duct. ( ('ommon carotid artery. I. Linglal artery. O. Artciy of the glimal. It springs from the facial attery heal its aigin from the external carotid. IH $H^{\prime}$. The hypoglossal nerve, cut across to expose the superior cervical ginglion which lies belleath it. V. The vagns. P. A sympathotle fiament, whlch is conneeted hume with the sumerior cervical ganglion, and joins the vagns lower down. D. Branch of the first cervical nerve
 superion cervial ganklion iorming the inter carotid plexns which aecompanies the extcrnal carotid artery. P. A

 moming anastomoses with the mylu-hyoid hothch of the fifth. U. The haghal nese, from the pusteriur aspect of
 flaments of the symbathetic. S. External dwision uf the spinal imcessury nerve.

## Plate CXIY.



FIG. 3ro. After Bernard. Anatomy of the parts exposed in onerations on the submaxillary gland. The posterior half of the dignstric muscle has been removed. M. Anterior half of the muscle drawn aside ly a hook. M. Insertion of the posterior half, which has been removed in order to expose the carotid artery. $t t^{\prime}$. Sympathetic flaments. (i. Shbmaxilhary gland drawn aside hy a hook in order to show its deep snrface. Ho. Smbaxillary and sublingaal ducts. J. Trunk of the external jugular vein. $J^{\prime}$. Branch of the jugular vein passing hehind the gland. $J^{\prime \prime}$. Branch of the jugular vein massing in front of the gland, cut across. D. A vein issming from the submaxillary gland. $t t^{\prime}$. Carutid artery accompanied by a sympathetic filanent on either side ; only one filament, $t$, $i_{s}$ distinctly shown in the engraving. F. Origin of the inferior artery of the gland. P. Hypoglossal nerve. L. Lingnal norve. T. Chorla tympani gring to the submaxillary gland. S S'. Mylohyoid muscle, cut across to slow the lingual nerve and the salivary ducts which lie belleath it. U. Masseter muscle covering the angle of the lower jaw. Z. Origin of the mylo-hyoid uerve, which is hidden hy the reflected digastric and my lo-hyoid muscles.


Fig. 3rı.-Gastric camula seen in section, and key. A, outer flange; b, inner flange; c, projecting points by which the outcr can he screwed round on the imer tuhe, so as to increase the distance between the flanges. D. D, is the key by which the tube is turned. It consists of a circle of metal, with two slits, D and D, into which the projections $C$ pass. It is attached by a cross-bar to a handle $E$, which is about six or eight inches long, thongh cut short in the engraving.


## Plate CXV.



FIf: 3r. - ("hulesterin.
FIG. 35 - Pointof the instrmanent med for pancturing the fond ventricle to produce diabetes,


FIG. 316.-After Bernard. Section of if rahit's hem, showing the directho tiaken ly the instrament in pmoncturing the fonth rentricle. ". cerelwellun : b, origin of the seventh nerve; c, suinal cord; d, origin of the
 canal; $i$, oxtremity of the instrument reating the mednlia, after having pissed throngh the cerebellum;


Pate CAVI.


Fin: 317. -Arrangement of the commit in a tempentry pancreatic fistula. A, the chief pancreatic duct of the dog directed transversely ; $\quad$, . insertion of the pancreathe ducts into the intestine; the insertion of the smaller duct is history up, and is marked by a line without a letter; ce, a branch of the barer duct within the

 letting ont the pancreatic juice which has acemmatated in the indiarmber bag; $V$, in imdiatrabler hag, tied to the outer end wi the canula, and need for collecting the juice.


Fifo. 318. -The lefthand diagram shows the method of stitching mp the end of the divided intestine sou as to fum a culoleosuc in Thiry's fistula. The right hand tisnreshows the method of stitching together the divided intestine. The two back clots in the middle oi the pieces already joined, indicate the position of the mesenteric vessels. The first stitch shone surromm these vessels and serve as a ligature fur them. Five or six similar atiteles at emblide wi f the first serve tu join the one edge, as slow n here. The two ends of intestine are then pulled into

 two ends af intestine are represented as entirely apart, hat the of lar half of the circmaference mast be maderstover to be already sewn together in the manner shawn in fig, zs.


Fl. з20. -Milk.


FIG. $3=1,-$ Cobostrmul.

Plate CNTH.

VII. 3z2.-Ureat.


Fli. 323.-Nitrate of urea.


Fiti. 321.-Owatate of ureis.


Fig. 325.-HIownip tame. a, reducing, $\quad$, oxidizing part of the flame.


Flf: 306.-Piece of glass drawn out to form a pipet te.


Fif: 327 - - A tube drawn out in order to scalit. The operation is completed by directing the point of a Dlownipe flane on the pmint ar, and drawing the two ends of the tube rapidy apurt.






 as any quantity bf liqual acemmaliatex in it, the flanc may be removed from muler F: at vacumb then forms in $E$, and the lifuid moshes back into it.

FIti. 330 - Sinucerun usel as it nater-hath,
Fut. 331.-Bunsen's gats regulatur as maditied lyy
 Geismer. $u$, is a wide gliss tule dividend inter two parts, an upper and lower, by a horizontal septum, from which a tule rmas down netrly to the bottom of the lower one. The upher division mul pirt oi the luwer me is filled with murcury. $b$, is a glitss tube passing through the eork of $u$ and eomnectedat $f$ ind " with the giss pilue and the burner. $c$, is in immer shass tube whese enders are luteal to those of $b$ at $f . \quad(l$, is a small hole in $c$ e allowing suflicient gis to pass through it toprevent the flame from being extinguished. The gals enters at $f$ and passes through the inner tuke $c$ to the limener by e, or vice versi?. The instrument is set hy warming it to the desired temperature, and then pushing down $b$ till the end of $c$ touches the meremry, The gas is theu prevented from passing through e, and onty euough passes through the hole a to kepp the flame ative, till, the instrument becoming cooler, the mereury contracis, and athows the gas again to pass throngh the lower end of c.


VIG. 3.j2-Water-hath for experiments on digestion, of for evaporating at a constant temperature. This consists of two prirts, the loth itself, $i$, and an apparatus, $a$, for keeping the water in the bath at it constant level. $a$, is a large thisk enntaiuing water, $b, c$, is a straight glass tulheopeu at both ends. $d, e_{2} f$, is a bent tuhe with limbs of equal length. The end, $c$, is put at the level at which the water in the bath, $i$, is to remain. Both ends, $d$ ind $f$, we about an inch below $c$, and thus form a syphon, the eftective difference bet ween whose limbs is the vertical distance between cand $d$, or ahout an inch. Whenever the watcr in $i$ falls below the level of $c$, the syphon acts, and water runs through it until the level in $i$ is as high as $c$, when it ceases. \%, is opposite a thermmmeter for ascertainiug the temperature of the biath. $h$, is a gas regulator. The one represented here differs somew hat from that in fig. 331, but is more expensive and has no advantige over the other. $i$, is the water-bath of galvanized zince or tin. The dotted line represents the lesel of the water. It is covered hy a harge phate perforated with holes, in which beakers coutaiuing digestive fluids or evaporating hasins can be pht. The centre whe is the lirgest, whe contains the tost-tube rack. When mot in une the holes are covered by phates of zine. The perforated plate itself ean be removed, and a large dialyer, fig. 3.37. put in its place, when digestion and dialysis are to he carried on at the same time. $l$, is a tin rack for hokding test-tuhes in which digestive fluids are placel. The holes in the uper phate of the rack are numbered, su that the tukes may he recognised without the necessity of attaching alahel to them. Those in the lower plate are unch smaller than in the upper, and serve only top pevent the thbes from slipping aside.


F1G. 333.-Use of the syphon iu washing lurecinitates by dec intation.

## Plate CXIX.

 $l$, a sumall cone of platinum finl to prevent the filter from being lroken. $m$, a plate of gromud glass. $n$, a beaker to receive the filtrate. $N$, a manometer to measure
 and $t$, a stamp, to give the proper shape to the cone, $l, p_{2}$ is a cone of porons earthenware used as a fumbel. $q$, is a piece of wide india-rubber tuling stretched over the funnel $r$, ant holding the cone $p$ air-tight. $r$, is $n$ fummel inserted into the stofper of a bell-jar. The bell-jar may either be exhansted by means of a tube in the stopper, like $j$, ur hy a thbilithre in the winle, as is supposed to be the case with that holding $r$.


Fig. 336-Plantamome's funnel for keeping fluids hot fluriug filtration. It may alsw he used ta keep liquidsat the freezing pint during filtation, by substitutiug ice for hot water. There are two kinds of these: fumbls, Oue of them las simply a wide ofening blowe, and a narrow one below, which is closed by it eark Harongh which the tule

 ice with which he fanmel is placed. The glass fnmel is therefore only indirectly suromuleat by the water or iee
 on the apparatus, and its temperature can thate the case when the other form is canployed.
facility and another put in itsplace, Whe thper figure shows the dialyzer with the paridhuent puper stretched FIf. 337. - Dialyzer of ghtti-perehic.

## Plate CXX.



FIG. 333.-Dialyzer suapended in water.


Fig. $340 .-$ Bell-jar and dish, containing sulphuric acid for drying and cooling substances.


FIG. 339.-Hut air luth for drying precipitates, ice.


FIG. 341.-Method of dryiug precipitates.


FIG. 342.


FIG. 344.


FIG. 345 .

## Plate CAXI



Fild. 346.-Measuring thask. (From Sutton's Handbook of Volumetric Analysis.)

FIC. 347.-Test mixer. (F゙rom Suttons Handbook of Volumetric Analysis.)


Fir. 348.-Pipettos. (From Sutton's Handbook of Volnmetric Analysis.)
Fil: 3 49. - Muly's hurette. (Fiom sinton's Handbouk of Volunetric Analysis.)

## Phate CXXif.



FIG. 350.




FIG. 351.

F19. 350-Froun Sizton's Handhook of Volumetric dialysis. The thrure th the left shows the chliptical appear. ance presented by it line round a burette or by the surfince of flnil in it, when the cye of the observer is above it. The figure to the right shows the curved surince of thid in a thbe. In reading off its level, the lower lorder of the lank zone must contide with the gralnation of the burette as in the figure, where the dark line stretehing across the tube indicates one of the graduated lines upon it.
FIG. 35x.-Erdmam's thoat. (From Shttun's Lianlhook of Volumetric Aailysis.)


Fif. 352-Stind for harettes. (Fron Sutton's Handhook of Tohmetric Analysis.)

 quartz plate romposed of two pieces. $p_{i}$ is a single plate of ratartz. $l$ aml $n$, wre the scale and vernitr of the compene sitor. $r$, the screw hy which the empensator is adjusted. $r$ and $r$ ', are the two guarta prisms of which the comsfensator consists. OO, is the space forenntaining the tube of fluid for camination.


[^0]:    FGG. 107.-Hurizontal meparation of mucons membrane of injected uterus of guincapig, slowing the superficial dense capillary meshwork, the arteries heneath, and the still deeper:
    

