

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A propos de ce livre

Ceci est une copie numérique d'un ouvrage conservé depuis des générations dans les rayonnages d'une bibliothèque avant d'être numérisé avec précaution par Google dans le cadre d'un projet visant à permettre aux internautes de découvrir l'ensemble du patrimoine littéraire mondial en ligne.

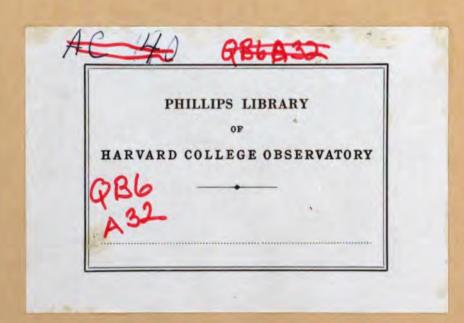
Ce livre étant relativement ancien, il n'est plus protégé par la loi sur les droits d'auteur et appartient à présent au domaine public. L'expression "appartenir au domaine public" signifie que le livre en question n'a jamais été soumis aux droits d'auteur ou que ses droits légaux sont arrivés à expiration. Les conditions requises pour qu'un livre tombe dans le domaine public peuvent varier d'un pays à l'autre. Les livres libres de droit sont autant de liens avec le passé. Ils sont les témoins de la richesse de notre histoire, de notre patrimoine culturel et de la connaissance humaine et sont trop souvent difficilement accessibles au public.

Les notes de bas de page et autres annotations en marge du texte présentes dans le volume original sont reprises dans ce fichier, comme un souvenir du long chemin parcouru par l'ouvrage depuis la maison d'édition en passant par la bibliothèque pour finalement se retrouver entre vos mains.

Consignes d'utilisation

Google est fier de travailler en partenariat avec des bibliothèques à la numérisation des ouvrages appartenant au domaine public et de les rendre ainsi accessibles à tous. Ces livres sont en effet la propriété de tous et de toutes et nous sommes tout simplement les gardiens de ce patrimoine. Il s'agit toutefois d'un projet coûteux. Par conséquent et en vue de poursuivre la diffusion de ces ressources inépuisables, nous avons pris les dispositions nécessaires afin de prévenir les éventuels abus auxquels pourraient se livrer des sites marchands tiers, notamment en instaurant des contraintes techniques relatives aux requêtes automatisées.

Nous vous demandons également de:


- + Ne pas utiliser les fichiers à des fins commerciales Nous avons conçu le programme Google Recherche de Livres à l'usage des particuliers. Nous vous demandons donc d'utiliser uniquement ces fichiers à des fins personnelles. Ils ne sauraient en effet être employés dans un quelconque but commercial.
- + Ne pas procéder à des requêtes automatisées N'envoyez aucune requête automatisée quelle qu'elle soit au système Google. Si vous effectuez des recherches concernant les logiciels de traduction, la reconnaissance optique de caractères ou tout autre domaine nécessitant de disposer d'importantes quantités de texte, n'hésitez pas à nous contacter. Nous encourageons pour la réalisation de ce type de travaux l'utilisation des ouvrages et documents appartenant au domaine public et serions heureux de vous être utile.
- + *Ne pas supprimer l'attribution* Le filigrane Google contenu dans chaque fichier est indispensable pour informer les internautes de notre projet et leur permettre d'accéder à davantage de documents par l'intermédiaire du Programme Google Recherche de Livres. Ne le supprimez en aucun cas.
- + Rester dans la légalité Quelle que soit l'utilisation que vous comptez faire des fichiers, n'oubliez pas qu'il est de votre responsabilité de veiller à respecter la loi. Si un ouvrage appartient au domaine public américain, n'en déduisez pas pour autant qu'il en va de même dans les autres pays. La durée légale des droits d'auteur d'un livre varie d'un pays à l'autre. Nous ne sommes donc pas en mesure de répertorier les ouvrages dont l'utilisation est autorisée et ceux dont elle ne l'est pas. Ne croyez pas que le simple fait d'afficher un livre sur Google Recherche de Livres signifie que celui-ci peut être utilisé de quelque façon que ce soit dans le monde entier. La condamnation à laquelle vous vous exposeriez en cas de violation des droits d'auteur peut être sévère.

À propos du service Google Recherche de Livres

En favorisant la recherche et l'accès à un nombre croissant de livres disponibles dans de nombreuses langues, dont le français, Google souhaite contribuer à promouvoir la diversité culturelle grâce à Google Recherche de Livres. En effet, le Programme Google Recherche de Livres permet aux internautes de découvrir le patrimoine littéraire mondial, tout en aidant les auteurs et les éditeurs à élargir leur public. Vous pouvez effectuer des recherches en ligne dans le texte intégral de cet ouvrage à l'adresse http://books.google.com

Digitized by Google

JOHN G. WOLBACH LIBRARY
HARVARD COLLEGE OBSERVATORY
60 GARDEN STREET
CAMBRIDGE, MASS. 02198

CATALOGUE

PHOTOGRAPHIQUE

DU CIEL.

CATALOGUE

PHOTOGRAPHIQUE

DU CIEL.

OBSERVATOIRE D'ALGER.

CATALOGUE PHOTOGRAPHIQUE

DU CIEL.

COORDONNÉES RECTILIGNES.

INTRODUCTION

PAR

M. CH. TRÉPIED,
DIRECTEUR DE L'OBSERVATOIRE.

PARIS,

GAUTHIER-VILLARS,

IMPRIMEUR-LIBRAIRE DE L'OBSERVATOIRE DE PARIS,

Quai des Grands-Augustins, 55.

1903

OBSERVATOIRE D'ALGER.

CATALOGUE PHOTOGRAPHIQUE

DU CIEL.

COORDONNÉES RECTILIGNES.

INTRODUCTION

PAR

M. CH. TRÉPIED,

I. — RELATIONS FONDAMENTALES ENTRE LES COORDONNÉES CÉLESTES D'UNE ÉTOILE ET LES COORDONNÉES DE SON IMAGE MESURÉES SUR LE CLICHÉ.

Définition des coordonnées curvilignes.

Prenons le centre optique de l'objectif photographique pour le centre O d'une sphère céleste (fig. 1) sur laquelle nous marquerons : 1° le pôle boréal P; 2° la trace A de l'axe optique prolongé vers la région d'observation; 3° la position M d'une étoile.

La plaque, supposée perpendiculaire à l'axe optique, est parallèle au plan tangent, à la sphère en A, et nous regarderons les coordonnées célestes du point A comme étant celles du centre de la plaque.

Traçons le cercle horaire PA et le grand cercle AQ qui lui est perpendiculaire; ces deux grands cercles, dont l'un a pour pôle π et l'autre π' , déterminent un système rectangulaire d'axes de coordonnées curvilignes (ξ, η) .

Posons

$$A p = \xi,$$
 $A q = \eta_1,$ $M p = \xi_1,$ $M q = \eta_1,$

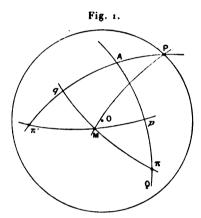
et regardons les ξ comme positifs vers l'est, les η comme positifs vers le nord.

Alger, Coord. rect.

L'ascension droite et la déclinaison α et δ de l'étoile M s'expriment aisément en fonction des arcs ξ_i , η et des coordonnées équatoriales ω_{\bullet} et ω_{\bullet} du centre de la plaque.

En effet, dans le triangle sphérique rectangle PMq, nous avons

$$PM = 90^{\circ} - \delta$$
, $Pq = 90^{\circ} - \mathfrak{D}_{\bullet} - \eta$, $\widehat{MPq} = \alpha - \Lambda_{\bullet}$


et l'application à ce triangle des formules fondamentales de la Trigonométrie sphérique nous donne immédiatement :

$$\sin \delta = \sin(\mathfrak{Q}_0 + \eta)\cos \xi_1,$$

$$\cos \delta \sin(\alpha - \mathcal{A}_0) = \sin \xi_1,$$

$$\cos \delta \cos(\alpha - \mathcal{A}_0) = \cos(\mathfrak{Q}_0 + \eta)\cos \xi_1.$$

L'arc de grand cercle ξ, qui entre dans ces formules n'est pas égal à l'abscisse curviligne ξ, mais il en diffère peu; de même l'ordonnée curviligne η n'est pas tout à fait égale

à l'arc de grand cercle η_i . Nous allons établir les deux relations distinctes qui existent entre ξ_i , η_i , ξ et η , en observant qu'une seule de ces relations nous sera nécessaire.

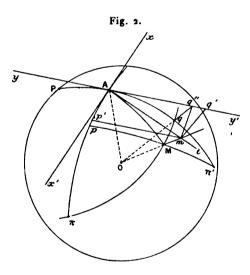
Les grands cercles AQ et AP étant rectangulaires, chacun d'eux passe par les pôles de l'autre. Dans les triangles sphériques rectangles $M\pi'q$, $M\pi p$, les angles en π' et en π ont respectivement pour mesure les arcs ξ et η . Il en résulte pour le triangle $M\pi'q$ les relations

$$\begin{aligned}
\sin \eta_1 &= \cos \xi_1 \sin \eta, \\
\cos \eta_1 \sin \xi &= \sin \xi_1, \\
\cos \eta_1 \cos \xi &= \cos \xi_1 \cos \eta.
\end{aligned}$$

Ces formules sont générales, c'est-à-dire, s'appliquent à toute position possible du point M, et comme le système (2) se reproduit identiquement lorsqu'on y permute à la fois les lettres ξ et η , ξ , et η , nous devons en conclure que le second triangle $M\pi p$ nous fournirait les mêmes relations.

Des formules (2) on déduit :

(3)
$$\begin{cases} \tan \xi_1 = \tan \xi \cos \eta, \\ \tan \eta_1 = \tan \eta \cos \xi. \end{cases}$$


Ainsi, connaissant l'ascension droite et la déclinaison du centre du cliché pour la photographie et, d'autre part, ayant mesuré sur la plaque les coordonnées curvilignes ξ , η de l'image d'une étoile, on aura par les formules (1) et par les relations (3) le moyen de calculer l'ascension droite et la déclinaison de l'étoile pour l'époque du cliché.

Les mesures faites sur la plaque ne donnent pas directement les coordonnées curvilignes ξ , η ; mais si l'on suppose le réseau parfait ou parfaitement connu dans tous ses éléments, c'est-à-dire, si les traits d'un même système sont rigoureusement rectilignes, équidistants, parallèles entre eux, et perpendiculaires à ceux de l'autre système, ou bien, ce qui revient au même, si l'on connaît exactement les positions relatives des traits du réseau et la figure de chacun d'eux, les mesures fourniront immédiatement ou permettront de conclure les coordonnées du point de la plaque où se forme l'image d'une étoile, par rapport à deux axes rectangulaires situés dans le plan de cette plaque et ayant son centre pour origine.

Il est donc nécessaire, avant d'aller plus loin, d'établir les relations entre les coordonnées rectilignes mesurées que nous appellerons x, y, et les coordonnées curvilignes ξ , η .

Relations entre les coordonnées rectilignes mesurées et les coordonnées curvilignes ξ, η.

Sur une figure analogue à la précédente (fig. 2), traçons en A les tangentes aux grands cercles AP, AQ, et, prenons-les pour axes de coordonnées rectilignes Ax, Ay, en regardant les x comme positifs vers l'est et les y comme positifs vers le nord.

Ces tangentes représentent les deux traits centraux du réseau. Cherchons le point de la plaque où se formera l'image M.

Le plan AOM coupe le plan tangent suivant la tangente At à l'arc AM; il en résulte que le point cherché est l'intersection m de At et de la droite OM. Alors, ce que nous mesurons sur la plaque, en supposant rectangulaires les deux traits centraux du réseau, ce sont les distances mp' et mq' du point m aux deux axes Ax, Ay, ou les longueurs respectivement égales Aq' et Ap'.

Il est aisé de voir que ces distances sont les tangentes des deux axes Ap et Aq dans le cercle ayant pour rayon la distance focale R de l'objectif.

Occupons-nous d'abord de Aq'. Prolongeons la droite Oq jusqu'au point q'' où elle rencontre yy' dans le plan tangent; Mq'' étant la tangente de l'arc Aq, il suffit de montrer que le point q'' coıncide avec q', ou, ce qui revient au même, que la droite mq'' est parallèle à xx'. Or, le parallèlisme de ces deux droites résulte de ce qu'elles sont les intersections du plan tangent en A avec deux autres plans OMq et OAq', lesquels contiennent une droite commune Oq' parallèle au plan tangent.

Il suit de là que la droite mq'' coıncide avec mq', c'est-à-dire que l'abscisse du point m sur le plan de la plaque est la tangente de l'arc Aq ou ξ dans le cercle de rayon R.

On démontrerait de la même manière que l'ordonnée du point m est la tangente de l'arc Ap ou η .

Ainsi, en désignant par x et y les coordonnées rectangulaires du point m dans le plan de la plaque, nous aurons

(4)
$$(x = R \tan \xi,) y = R \tan \eta,$$

et comme les coordonnées curvilignes sont celles qui entrent dans le calcul des coordonnées équatoriales α et δ d'une étoile [formules (1)], nous écrirons

(5)
$$\begin{cases} \xi = \frac{x}{R} + (\xi - \tan \xi), \\ \eta = \frac{\gamma}{R} + (\eta - \tan \eta), \end{cases}$$

formules auxquelles il faut joindre la première des relations (3), savoir

$$tang \xi_1 = tang \xi \cos \tau_1$$
.

Les variables x et ξ , y et η sont ici exprimées en parties du rayon, tandis que les mesures faites sur la plaque fourniront les valeurs de x et de y exprimées en tours de la vis micrométrique, c'est-à-dire au moyen d'une unité linéaire qui sera la cinquième partie de l'intervalle compris entre deux traits consécutifs du réseau. Or la valeur moyenne de ces intervalles est 5^{mm} ; l'unité de longueur sera donc le millimètre; et comme la valeur moyenne de R est

$$R=3^{m},43,$$

l'unité angulaire correspondante sera la minute d'arc.

En réalité, ce que nous appellerons l'échelle, c'est-à-dire la relation entre les valeurs de l'unité angulaire et de l'unité de longueur, ne sera pas constante; la valeur R variera en effet d'un cliché à l'autre, et il faudra la déterminer pour chacun des clichés en comparant aux coordonnées célestes d'un certain nombre d'étoiles de positions bien connues les coordonnées rectilignes mesurées de ces mêmes étoiles.

Dans ce qui va suivre, nous réserverons l'emploi des lettres x et y pour exprimer les valeurs des coordonnées reotilignes en parties du rayon et nous désignerons par X

et Y les coordonnées rectilignes d'une étoile telles qu'elles résultent des mesures faites sur la plaque, exprimées en minutes d'arc provisoires; c'est-à-dire que X et Y seront les nombres de minutes obtenus en supposant qu'à chaque tour de la vis de l'appareil de mesures correspond exactement une valeur angulaire d'une minute. Alors, pour l'expression de ξ et η en minutes provisoires, nous aurons

(6)
$$\begin{cases} \xi = X + \left(\xi - \frac{\tan \xi}{\sin t'}\right), \\ \eta = Y + \left(\eta - \frac{\tan \eta}{\sin t'}\right), \end{cases}$$

et les relations entre x et X, y et Y seront

$$x = tang \xi = X sin \iota',$$

 $\gamma = tang \eta = Y sin \iota'.$

Transformations diverses des formules fondamentales.

Reprenons les formules (1), savoir :

$$\begin{split} \sin\delta &= \sin\left(\mathfrak{Q}_0 + \eta\right)\cos\xi_1,\\ \cos\delta\sin\left(\alpha - \mathbf{A}_0\right) &= \sin\xi_1,\\ \cos\delta\cos\left(\alpha - \mathbf{A}_0\right) &= \cos\left(\mathfrak{Q}_0 + \eta\right)\cos\xi_1, \end{split}$$

en y joignant les relations

$$tang \xi_1 = tang \xi \cos \eta,$$
 $x = tang \xi,$
 $tang \eta_1 = tang \eta \cos \xi,$ $y = tang \eta.$

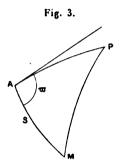
De l'ensemble de ces formules on déduit aisément

(7)
$$\begin{cases} \tan g(\alpha - \mathcal{N}_0) = x \cos \eta \operatorname{sec}(\mathcal{D}_0 + \eta), \\ \tan g \delta = \tan g(\mathcal{D}_0 + \eta) \cos (\alpha - \mathcal{N}_0), \end{cases}$$
$$\sqrt{1 + y^2} \sin \eta = y, \qquad \sqrt{1 + x^2 + y^2} \sin \xi_1 = x,$$
$$\sqrt{1 + y^2} \cos \eta = 1, \qquad \sqrt{1 + x^2 + y^2} \cos \xi_1 = \sqrt{1 + y^2}.$$

En observant que $\cos \eta$ et $\cos \xi$, sont toujours positifs, η et ξ , ayant toujours des valeurs moindres que $\frac{\pi}{2}$, et que d'après nos conventions $\sin \eta$ aura le signe de y, et $\sin \xi$ celui de x, on voit que les radicaux doivent être pris positivement.

Si, dans les seconds membres des formules fondamentales, on développe $\sin(\omega_0 + \eta)$ et $\cos(\omega_0 + \eta)$ pour y substituer ensuite les expressions de $\sin \eta$, $\cos \eta$, $\sin \xi_1$ et $\cos \xi_1$, on obtient

(8)
$$\begin{cases} \sqrt{1+x^2+y^2} \sin \delta &= \sin \Theta_0 + y \cos \Theta_0, \\ \sqrt{1+x^2+y^2} \cos \delta \sin (\alpha - A_{00}) = x, \\ \sqrt{1+x^2+y^2} \cos \delta \cos (\alpha - A_{00}) = \cos \Theta_0 - y \sin \Theta_0. \end{cases}$$


Ces formules, dont chacune est une conséquence des deux autres, déterminent soit $\alpha - \omega_0$ et δ en fonction des coordonnées x, y, et de la déclinaison ω_0 du centre de la plaque, soit, au contraire, les coordonnées x, y, en fonction de δ , ω_0 et de la différence $\alpha - \omega_0$. Pour ce dernier cas, on obtient, par élimination successive de y et de x

$$\begin{cases} x = \frac{\cos \delta \sin(\alpha - \lambda_0)}{\sin \delta \sin(\omega_0 + \cos \delta \cos \omega_0 \cos(\alpha - \omega_0))}, \\ y = \frac{\sin \delta \cos(\omega_0 - \cos \delta \sin(\omega_0 \cos(\alpha - \lambda_0))}{\sin \delta \sin(\omega_0 + \cos \delta \cos(\omega_0 \cos(\alpha - \lambda_0)))}, \\ \text{avec l'identité} \end{cases}$$

$$\sqrt{1 + x^2 + \gamma^2} [\sin \delta \sin(\omega_0 + \cos \delta \cos(\omega_0 \cos(\alpha - \lambda_0))] = 1.$$

Ces expressions des coordonnées x et y peuvent être mises sous une autre forme qui n'est pas sans utilité.

Considérons le triangle sphérique PMA (fig. 3) ayant pour sommet le pôle boréal du

ciel, le centre A de la plaque et la position M d'une étoile. En désignant par S la distance angulaire MA et par ϖ l'angle de position du point M, compté du nord vers l'est, nous aurons

(10)
$$\cos S = \sin \delta \sin \Theta_0 + \cos \delta \cos \Theta_0 \cos (\alpha - A_0),$$

$$\sin S \sin \varpi = \cos \delta \sin (\alpha - A_0),$$

$$\sin S \cos \varpi = \sin \delta \cos \Theta_0 - \cos \delta \sin \Theta_0 \cos (\alpha - A_0).$$

On voit qu'en tenant compte de ces relations, les formules (9) deviennent

Il est d'ailleurs facile d'établir directement ces expressions des coordonnées x et y en considérant le triangle sphérique rectangle MA p de la fig. 2. Pour toutes positions du point M par rapport aux axes des coordonnées curvilignes, ce triangle nous donne les formules

$$\cos S = \cos \xi \cos \eta_1,$$

$$\sin S \sin w = \sin \xi \cos \eta_1,$$

$$\sin S \cos w = \sin \eta_1,$$

et l'identité de ce système avec celui des relations (11) devient évidente lorsque l'on substitue à $\sin \xi$, $\cos \xi$, $\sin \eta_1$, $\cos \eta_1$, leurs expressions au moyen des coordonnées x et y.

Interprétation géométrique des relations fondamentales.

Projections des parallèles. — La première des relations (8), dans laquelle ne sigure pas la différence $\alpha - k_0$, représente la trace du parallèle de déclinaison δ sur le plan de la plaque. Cette trace est une section conique dont l'équation, par rapport aux axes Ax, Ay, est

(13)
$$x^2 \sin^2 \delta + y^2 (\sin^2 \delta - \cos^2 \Omega_0) - 2y \sin \Omega_0 \cos \Omega_0 + \sin^2 \delta - \sin^2 \Omega_0 = 0.$$

Le genre de la courbe étant déterminé par le signe de la différence $\sin^2 \delta - \cos^2 \Phi_{\bullet}$, on peut avoir l'un des trois cas suivants :

sin²
$$\delta$$
 — cos² \mathfrak{O}_{\bullet} > 0 ellipse,
< 0 hyperbole,
= 0 parabole.

Désignons par η' la valeur positive ou négative de la différence $\delta - \Phi_0$, c'est-à-dire posons

$$\delta = \Omega_0 + \eta'$$

on obtient alors pour l'expression de la différence $\sin^2 \delta - \cos^2 \omega_a$:

$$\sin^2 \delta - \cos^2 \Omega_0 = -\cos \eta' \cos(2\Omega_0 + \eta').$$

Les expressions générales des coordonnées x_0 et y_0 du centre de la courbe et celles des demi-axes a et b sont données en minutes d'arc par les formules

$$x_0 = 0, \quad y_0 \sin t' = -\frac{1}{2} \frac{\sin 2 (\theta_0)}{\cos \eta' \cos (2 (\omega_0 + \eta'))},$$

$$a \sin t' = \frac{\cos ((\theta_0 + \eta'))}{\sqrt{-\cos \eta' \cos (2 (\omega_0 + \eta'))}}, \quad b \sin t' = -\frac{1}{2} \frac{\sin 2 ((\theta_0 + \eta'))}{\cos \eta' \cos (2 (\omega_0 + \eta'))}.$$

Dans les applications à la Carte céleste photographique, la valeur absolue de η' reste toujours inférieure à 1°5′ et les valeurs attribuées à \mathfrak{D}_{\bullet} pour les différentes zones sont les suivantes :

$$-90^{\circ}$$
, -89° , ..., -2° , -1° , 0° , $+1^{\circ}$, $+2^{\circ}$, ..., $+89^{\circ}$, $+90^{\circ}$.

Dans ces conditions, tant que ω_0 reste, en valeur absolue, inférieure à 45°, la quantité $-\cos\eta'\cos(2\omega_0+\eta')$ reste négative quel que soit le signe de η' ; alors la projection d'un parallèle est, dans toute l'étendue de la plaque, une hyperbole. L'une des deux branches appartient au parallèle de déclinaison δ et l'autre au parallèle de déclinaison $-\delta$; mais, à l'exception de la zone de déclinaison nulle, une seule des deux branches est représentée sur le cliché; pour les zones boréales, cette branche est celle qui tourne sa concavité vers le nord.

Dans la zone équatoriale, la projection du parallèle est une droite qui se confond avec

l'axe des x pour le centre de la plaque, c'est-à-dire pour $\eta' = 0$; pour toutes les valeurs de η' différentes de zéro, la projection est une hyperbole dont les deux branches correspondent respectivement aux valeurs positives et négatives de η' .

Lorsque ©, atteint la valeur 45°, la projection du parallèle est, au centre de la plaque, la parabole qui a pour équation

$$y=\pm \tfrac{1}{2}x^2,$$

le signe + correspondant à une valeur positive de ω_o . Dans ce cas, et pour les valeurs négatives de η' , la projection est encore une hyperbole; mais pour les valeurs positives de η' , elle devient une ellipse.

Jusqu'à la région du pôle, la projection d'un parallèle est une ellipse dans toute l'étendue de la plaque, et enfin pour $\omega_0 = 90^{\circ}$, la projection est un cercle dont le rayon a pour valeur cot δ .

Ces conséquences, que les considérations géométriques les plus simples rendent d'ailleurs évidentes, sont résumées dans la série des figures suivantes (fig. 4, 5, 6, 7, 8).

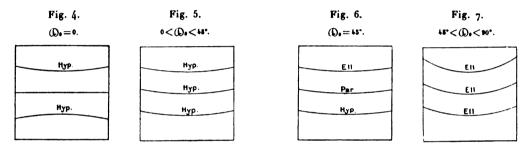


Fig. 8.
(D₀ = 90°.

Les figures se rapportent aux valeurs boréales de \mathfrak{G}_{0} ; pour les valeurs australes, il suffit de faire tourner chacune des figures de 180° dans son plan.

Projections des méridiens. — L'ensemble des deux relations

$$\sqrt{1+x^2+y^2}\cos\delta\sin(\alpha-\mathbf{A}_0) = x,$$

$$\sqrt{1+x^2+y^2}\cos\delta\cos(\alpha-\mathbf{A}_0) = \cos\Phi_0 - y\sin\Phi_0$$

représente, sur le plan de la plaque, la trace du méridien céleste faisant l'angle $\alpha - \iota_0$ avec le méridien central. Cette trace est la droite qui, par rapport aux axes Ax, Ay, a pour équation

(15)
$$x + y \sin \Theta_0 \tan g(\alpha - A_0) = \cos \Theta_0 \tan g(\alpha - A_0).$$

Elle est parallèle à la droite

$$x + y \sin \Theta_0 \tan g(\alpha - A_0) = 0$$

et rencontre l'axe des x en un point dont l'abscisse est

$$x_0 = \cos \Omega_0 \tan g(\alpha - A_0)$$
.

Lorsque le centre du cliché coıncide avec le pôle même, \mathcal{A}_0 n'est plus déterminée, non plus que les axes tels que nous les avons définis. Dans ce cas, on dirigera la partie positive de l'axe des x vers un point d'ascension droite arbitraire \mathcal{A}_m et la partie positive de l'axe des y vers le point dont l'ascension droite est $\mathcal{A}_m + 90^\circ$. Alors la projection du méridien d'ascension droite quelconque α sera la demi-directe passant par l'origine et faisant avec la partie positive de l'axe des x l'angle $\alpha - \mathcal{A}_m$.

Développements des différences $\alpha-\mathbb{A}_0$ et $\delta-\mathbb{Q}_0$ en fonction des coordonnées rectangulaires x, y et de la déclinaison \mathbb{Q}_0 du centre de la plaque.

1º Ascension droite. — En combinant la deuxième et la troisième des relations (8), on obtient

(16)
$$\tan g(\alpha - A_0) = \frac{x \operatorname{sec} \Omega_0}{1 - y \tan g \Omega_0},$$

d'où, en développant α - Ao suivant les puissances de sa tangente

$$\alpha - \mathcal{A}_0 = \frac{x \operatorname{s\acute{e}c} \Omega_0}{1 - y \operatorname{tang} \Omega_0} - \frac{1}{3} \frac{x^3 \operatorname{s\acute{e}c}^2 \Omega_0}{(1 - y \operatorname{tang} \Omega_0)^3} + \dots$$

$$(\alpha - \mathcal{A}_0) \cos \Omega_0 = x (1 - y \operatorname{tang} \Omega_0)^{-1} - \frac{1}{3} x^3 \operatorname{s\acute{e}c}^2 \Omega_0 (1 - y \operatorname{tang} \Omega_0)^{-2} + \dots,$$

puis

et, si l'on arrête les développements aux termes du sixième ordre en x et y:

(17)
$$(\alpha - \mathbf{A}_0) \cos \mathbf{Q}_0 = x$$

$$+ xy \tan g \mathbf{Q}_0$$

$$+ xy^2 \tan g^2 \mathbf{Q}_0 - \frac{1}{3} x^3 \operatorname{s\acute{e}c}^2 \mathbf{Q}_0$$

$$+ xy^3 \tan g^3 \mathbf{Q}_0 - x^2 y \operatorname{s\acute{e}c}^2 \mathbf{Q}_0 \tan g \mathbf{Q}_0$$

$$+ xy^4 \tan g^4 \mathbf{Q}_0 - 2 x^3 y^2 \operatorname{s\acute{e}c}^2 \mathbf{Q}_0 \tan g^2 \mathbf{Q}_0 + \frac{1}{5} x^5 \operatorname{s\acute{e}c}^4 \mathbf{Q}_0$$

$$+ xy^5 \tan g^5 \mathbf{Q}_0 - \frac{10}{3} x^3 y^3 \operatorname{s\acute{e}c}^2 \mathbf{Q}_0 \tan g^3 \mathbf{Q}_0 + x^5 y \operatorname{s\acute{e}c}^4 \mathbf{Q}_0 \tan g \mathbf{Q}_0.$$

Il est à noter que le développement de $(\alpha - \lambda_0) \cos \Phi_0$ ne devait contenir que des termes d'ordre impair en x, puisque la différence $\alpha - \lambda_0$ en vertu de la formule (15) change de signe avec x.

2º Déclinaison. — On déduit aisément des relations (8)

(18)
$$\sqrt{1+x^2+y^2}\sin(\delta-\Omega_0) = \cos\Omega_0(\sin\Omega_0+y\cos\Omega_0) \\ -\sin\Omega_0\sqrt{1+x^2+y^2-(\sin\Omega_0+y\cos\Omega_0)^2},$$
Alger, Coord. rect.

puis

$$\sin(\delta - \Theta_0) = \cos(\Theta_0) (\sin(\Theta_0 + y\cos(\Theta_0))(1 + x^2 + y^2)^{-\frac{1}{2}},$$

$$-\sin(\Theta_0)(1 + x^2 + y^2)^{-\frac{1}{2}} [1 + x^2 + y^2 - (\sin(\Theta_0 + y\cos(\Theta_0))^2]^{\frac{1}{2}}.$$

Si l'on effectue les opérations suivantes :

(a) Développement de
$$(t + x^2 + y^2)^{-\frac{1}{2}}$$
,

(b) Développement de
$$[1 + x^2 + y^2 - (\sin(\theta_0 + y\cos(\theta_0)^2)]^{\frac{1}{2}}$$
,

on aura sans difficulté le développement de $\sin(\delta - \omega_0)$; et l'on obtiendra ensuite, pour le développement de la différence $\delta - \omega_0$ elle-même, limitée aux termes du quatrième ordre en x et y:

(19)
$$\delta - \mathfrak{D}_0 = \gamma$$

$$-\frac{1}{2}x^2 \tan g \mathfrak{D}_0,$$

$$-\frac{1}{2}y^2 - \frac{1}{2}x^2y \sec^2 \mathfrak{D}_0,$$

$$+\frac{1}{4}x^4 \tan g \mathfrak{D}_0 (1 + \frac{1}{2}\sec^2 \mathfrak{D}_0) - \frac{1}{2}x^2y^2 \tan^2 \mathfrak{D}_0.$$

Il devait nécessairement se rencontrer des puissances paires de y dans le développement, par la raison que $\delta - \omega_0$, comme le fait voir la formule (17), ne change pas généralement de signe avec y. Cette circonstance n'a lieu en toute rigueur que pour une valeur nulle de ω_0 . Pour de très petites valeurs de ω_0 , le changement de signe de $\delta - \omega_0$ avec y ne peut être considéré comme ayant lieu que si les termes d'ordre pair, où tang ω_0 entre comme facteur, sont négligeables.

Dans le but de vérifier les développements en série (17) et (19), nous allons comparer aux résultats des formules rigoureuses les valeurs numériques que ces développements fournissent pour $(\alpha - \lambda_0)\cos \theta_0$, et $\delta - \theta_0$, dans le cas où l'on suppose

$$(0_0 = + 74^\circ), \quad \xi_1 = + 60', \quad \eta = + 60'.$$

Les formules rigoureuses

$$tang(\alpha - \lambda_0) = tang\xi_1 \operatorname{sec}(\Omega_0 + \eta),$$

$$tang\delta = tang(\Omega_0 + \eta) \cos(\alpha - \lambda_0)$$

donnent pour ce cas

$$\alpha - A_0 = 3^{\circ}51'29'', 71$$
 et $\delta = 74^{\circ}58'2'', 88$.

Les résultats de la comparaison sont contenus dans le Tableau suivant, où la lettre R se rapporte à l'emploi des formules rigoureuses et la lettre T à celui des développements en série. Les valeurs des différents termes sont exprimées en secondes d'arc.

$(a - \lambda b_{\bullet}) \cos(b_{\bullet})$	δ — (D ₀ .
Premier ordre + 3600,914 Deuxième ordre + 219,199 Troisième ordre + 8,528 Quatrième ordre - 0,067 Cinquième ordre - 0,046 Sixième ordre - 0,004	Premier ordre
T = + 3828,52 $R = + 3828,52$ $R - T = 0,00$	T = + 3,82,88 $R = + 3482,88$ $R - T = 0,00$

Les développements en séries (17) et (19) ne constituent pas le procédé pratique le plus commode pour calculer les ascensions droites et les déclinaisons des étoiles d'un cliché en partant des coordonnées rectilignes mesurées. Ainsi qu'on le verra plus loin, nous n'en ferons pas usage pour les calculs de ce genre, mais ils pourront servir pour d'autres questions. Par exemple, si l'on a besoin des dérivées partielles des fonctions $\alpha - \alpha_0$ et $\delta - \alpha_0$ par rapport aux variables α, γ, α_0 , comme le cas se présente dans la recherche des effets de l'aberration et de la réfraction différentielle, l'emploi de ces développements en séries sera très commode.

Autres développements de
$$\alpha - A_0$$
 et $\delta - \Phi_0$.

Dans le Bulletin du Comité international permanent pour l'exécution photographique de la Carte du Ciel (t. II, p. 10), M. Lœwy a donné, pour l'expression des différences $\alpha - \lambda_0$ et $\delta - \omega_0$, les formules suivantes :

$$(\alpha - \lambda_0) \cos \delta = \xi_1 + \left(\frac{\tan g \, \xi_1}{\sin \, i''} - \xi_1\right) - \frac{1}{6} \xi_1^3 (3 - \sec^2 \delta) \sin^2 i'' + \frac{3}{10} \xi_1^5 \sec^4 \delta \sin^4 i'',$$

$$\delta - \Theta = \eta_1 - \frac{1}{2} \xi_1^2 \tan g (\Theta_0 + \eta_1) \sin i'' \left[1 - \frac{1}{12} \xi_1^2 \sin^2 i'' - \frac{1}{6} \xi_1^2 \sin^2 i'' \tan g^2 (\Theta_0 + \eta_1)\right].$$

Dans ces formules, où nous n'avons fait que substituer nos notations ξ_1 et η aux notations x et y de M. Lœwy, le facteur par lequel est multipliée la différence $\alpha - \lambda_0$ n'est plus le cosinus de la déclinaison du centre de la plaque, mais celui de la déclinaison de l'étoile elle-même.

Le Tableau ci-dessous fait connaître les valeurs numériques des termes des différents ordres pour l'exemple déjà traité, ainsi que les résultats R-L de la comparaison de ces développements avec les formules rigoureuses.

$(\alpha - \delta_0) \cos \delta$.	$\delta - (\mathfrak{D}_{\mathfrak{g}}.$
Premier ordre + 3600,000	Premier ordre 3600,000
Troisième ordre $ \begin{cases} + & 2,169 \\ + & 0,365 \end{cases}$	Deuxième ordre 117,246 Quatrième ordre + 0,127
Cinquième ordre + 0,006	
$L = \overline{+3602,54}$	L = + 3482,88
R = + 3602,54 $R - L = 0,00$	R = + 3482,88 R - L = 0,00

Effets d'une erreur d'orientation du cliché sur les valeurs calculées des coordonnées rectangulaires d'une étoile.

Un changement d'orientation du cliché fait varier l'angle de position d'une étoile, mais non sa distance au centre. On obtiendra donc les effets d'une erreur d'orientation sur les valeurs des x et des y en partant des relations

$$x = tang S sin w,$$

 $y = tang S cos w,$

dans lesquelles on fera varier x, y et w, en laissant S constant. On trouvera ainsi

$$\Delta x = y \Delta \omega - \frac{1}{2} x \Delta \omega^2 + \frac{1}{6} y \Delta \omega^3 - \dots,$$

$$\Delta y = -x \Delta \omega - \frac{1}{6} y \Delta \omega^2 + \frac{1}{6} x \Delta \omega^3 - \dots,$$

ou bien, en exprimant les coordonnées ainsi que leurs variations en minutes d'arc, c'està-dire en remplaçant x par X sin 1' et y par Y sin 1':

(20)
$$\begin{cases} \Delta X = Y \Delta \varpi - \frac{1}{2} X \Delta \varpi^2 + \frac{1}{6} Y \Delta \varpi^3 - \dots, \\ \Delta Y = -X \Delta \varpi - \frac{1}{2} Y \Delta \varpi^2 + \frac{1}{6} X \Delta \varpi^3 + \dots \end{cases}$$

La valeur du changement d'orientation $\Delta \varpi$ reste exprimée en parties du rayon; elle atteindra bien rarement $\frac{1}{100}$, de sorte que le troisième terme sera toujours négligeable pour toutes valeurs de X et Y compatibles avec les dimensions du cliché, et il en sera de même, dans la plupart des cas, du second terme.

Nous donnerons toujours à $\Delta \varpi$ le signe de la différence :

Angle de position calculé - Angle de position observé,

et nous adopterons la lettre i pour désigner la correction $\Delta \varpi$. Ainsi, X et Y étant les coordonnées rectangulaires mesurées, les expressions des coordonnées X' et Y', corrigées pour l'erreur d'orientation, seront

(21)
$$\begin{cases} X' = X + iY - \frac{1}{i}i^{2}X, \\ Y' = Y - iX - \frac{1}{4}i^{2}Y. \end{cases}$$

Effets d'une erreur de centrage du cliché sur les valeurs calculées des coordonnées rectangulaires d'une étoile.

Le but de cette recherche est le suivant :

Lorsqu'on a voulu photographier une région du ciel, on s'est d'abord donné les valeurs Lo et Do pour l'époque 1900, du point vers lequel, pendant toute la durée de la pose,

devrait rester diriger la droite joignant le centre optique de l'objectif photographique à l'intersection des deux traits centraux du réseau. Ensuite on a supposé que, lorsque l'image photographique d'une étoile quelconque vient se former au centre du réseau, l'image visuelle de la même étoile se trouve dans le champ du pointeur en une position telle que, si l'on y amène la croisée des fils du micromètre, les lectures faites aux tambours des deux vis d'ascension droite et de déclinaison auront les valeurs l_0 et λ_0 déterminées par des expériences antérieures. Alors, choisissant dans la région de l'observation une étoile guide dont les coordonnées pour 1900 aient des valeurs connues α et δ , on a donné à la croisée des fils du micromètre une position caractérisée par les lectures l, λ et telle que les déplacements linéaires $l-l_0$ et $\lambda-\lambda_0$ correspondent aux différences $\alpha-\lambda_0$ et $\delta-\omega_0$. Mais il y a ici à prévoir l'influence de plusieurs sources d'erreur :

- a. Les erreurs qui affectent les valeurs admises pour les coordonnées α et δ de l'étoile guide;
 - b. Celles qui affectent les lectures initiales du micromètre l_0 et λ_0 ;
 - c. Les erreurs commises dans la réalisation des déplacements $l l_0$ et $\lambda \lambda_0$.

Pour ces diverses raisons, il arrivera que l'image photographique du centre du réseau, au lieu d'avoir l'ascension droite et la déclinaison fixées d'avance \mathcal{L}_0 et \mathcal{O}_0 pour 1900, aura, en réalité, des coordonnées équatoriales un peu différentes \mathcal{L}'_0 et \mathcal{O}'_0 . Alors les coordonnées rectangulaires d'une étoile d'ascension droite α et de déclinaison δ , pour lesquelles on eût trouvé des valeurs x et y en les calculant au moyen des différences $\alpha - \mathcal{L}_0$ et $\delta - \mathcal{O}_0$, auront des valeurs différentes x' et y' lorsqu'on en fera le calcul au moyen des différences $\alpha - \mathcal{L}'_0$ et $\delta - \mathcal{O}'_0$.

Nous poserons

$$\mathcal{A}'_0 = \mathcal{A}_0 + \Delta \mathcal{A}_0, \quad x' = x + \Delta x,$$

 $\mathcal{O}'_0 = \mathcal{O}_0 + \Delta \mathcal{O}_0, \quad y' = y + \Delta y,$

et la question qu'il s'agit de résoudre présentement consiste à exprimer les corrections Δx et Δy en fonction de $\Delta \lambda_0$ et $\Delta \Omega_0$.

On peut obtenir directement les expressions cherchées en différentiant les relations (9) par rapport à x, y, x_0 et x_0 ; mais on a des calculs plus élégants en passant par l'intermédiaire de la distance x_0 et de l'angle de position x_0 .

Partons des relations (11), savoir :

$$x = \tan S \sin w,$$

 $y = \tan S \cos w,$

et différentions-les par rapport à x, y, S et ω ; nous aurons

(22)
$$\begin{cases} \Delta x = \sin \varpi \sec^2 S \Delta S + \cos \varpi \tan S \Delta \varpi, \\ \Delta y = \cos \varpi \sec^2 S \Delta S - \sin \varpi \tan S \Delta \varpi. \end{cases}$$

Il faut maintenant faire usage des relations qui existent entre les variations ΔS , $\Delta \omega$, $\Delta \omega_0$

et $\Delta \mathfrak{D}_{\bullet}$. Pour cela, reprenons les formules (10):

$$\cos S = \sin \delta \sin (\theta_0 + \cos \delta \cos (\theta_0 \cos (\alpha - \lambda_0)),$$

$$\sin S \sin \varpi = \cos \delta \sin (\alpha - \lambda_0),$$

$$\sin S \cos \varpi = \sin \delta \cos (\theta_0 - \cos \delta \sin (\theta_0 \cos (\alpha - \lambda_0)),$$

et différentions-les par rapport aux quatre variables; il viendra

$$-\sin S \Delta S = \sin S \cos \varpi \Delta (\mathfrak{D}_0 + \sin S \sin \varpi \cos (\mathfrak{D}_0 \Delta \mathfrak{L}_0),$$

$$\cos S \sin \varpi \Delta S + \sin S \cos \varpi \Delta \varpi = -\cos \delta \cos (\alpha - \mathfrak{L}_0) \Delta \mathfrak{L}_0,$$

$$\cos S \cos \varpi \Delta S - \sin S \sin \varpi \Delta \varpi = -\cos S \Delta (\mathfrak{D}_0 - \sin S \sin \varpi \sin (\mathfrak{D}_0 \Delta \mathfrak{L}_0).$$

En combinant la première et la troisième des formules (23) on obtient par des transformations faciles :

(24)
$$\begin{aligned} \Delta S &= -\cos \varpi \Delta \Theta_0 - \sin \varpi \cos \Theta_0 \Delta A_0, \\ \sin S \Delta \varpi &= \cos \sin \varpi \Delta \Theta_0 + (\tan g \Theta_0 \sin S - \cos S \cos \varpi) \cos \Theta_0 \Delta A_0. \end{aligned}$$

On vérifie aisément ces deux dernières, car si on les ajoute après les avoir multipliées respectivement par les facteurs cos S sin ϖ et cos ϖ , on trouve

$$\cos S \sin \varpi \Delta S + \sin S \cos \varpi \Delta \varpi = -\cos \delta \cos (\alpha - \lambda_0) \Delta \lambda_0$$

ce qui est la deuxième des relations (23).

Les expressions de ΔS et de sin S $\Delta \varpi$ auxquelles nous venons de parvenir sont rigoureuses, quelles que soient les valeurs de S et de ϖ_0 , pourvu que l'on puisse négliger les variations du second ordre de ϖ_0 et de ϖ_0 . Dans nos clichés de la Carte photographique, la distance angulaire d'une image d'étoile au centre de la plaque ne dépassera jamais $65'\sqrt{2}$, soit 92'; alors, dans l'expression de sin S $\Delta \varpi$, on peut remplacer cos S par l'unité, sin S par S; les formules (22) deviennent donc

(25)
$$\begin{cases} \Delta x = \sin \omega \Delta S + S \cos \omega \Delta \omega, \\ \Delta y = \cos \omega \Delta S - S \sin \omega \Delta \omega; \end{cases}$$

c'est-à-dire, en substituant les expressions (24) de ΔS et de $\sin S \Delta \omega$:

(26)
$$\begin{cases} \Delta x = -\cos(\theta_0) \Delta_2 \theta_0 (1 - S\cos \theta \tan \theta_0), \\ \Delta y = -\Delta(\theta_0 - S\sin \theta \tan \theta_0)\cos(\theta_0) \Delta_2 \theta_0. \end{cases}$$

Nous avons enfin pour les expressions rigoureuses de x et y les développements :

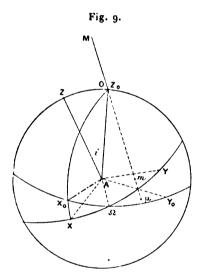
$$x = S \sin \varpi + \sin \varpi (\frac{1}{3}S^3 + \frac{2}{18}S^3 + \ldots),$$

$$y = S \cos \pi + \cos \varpi (\frac{1}{3}S^3 + \frac{2}{18}S^4 + \ldots);$$

et, en négligeant les termes qui contiennent la troisième puissance de S et les puissances

supérieures, nous obtenons les expressions définitives de Δx et Δy , savoir :

(27)
$$\begin{cases} \Delta x = -\cos(\partial_0 \Delta \cdot \mathbf{t}_0)(1 - y \tan \theta \cdot \partial_0), \\ \Delta y = -\Delta(\partial_0 - x \tan \theta \cdot \partial_0 \cos(\partial_0 \Delta \cdot \partial_0). \end{cases}$$


Influence d'un défaut de perpendicularité de l'axe optique sur le plan de la plaque.

Considérons une sphère (fig. 9) ayant un rayon égal à la distance focale R de l'objectif et pour centre le centre A de la plaque.

Soient

X, AY, le plan normal à l'axe optique AO pris pour axe des Z, ;

XAY le plan de la plaque déterminé, comme le serait le plan d'une orbite planétaire, par l'angle i qu'il fait avec le plan X_0 AY₀ et par la distance X_0 Q = θ_0 de son nœud ascendant au point X_0 . (L'angle i sera toujours voisin de 0° ou de 180°.)

Nous supposerons les points Z_0 et Z dans le plan de la figure; nous supposerons, de plus, que l'axe AX est orienté parallèlement au mouvement diurne et que l'axe AX_0 se trouve dans le plan Z_0 AX.

Si la plaque était normale à l'axe optique AO, l'image d'une étoile M se formerait en μ sur la droite MO; mais, sur la plaque inclinée, l'image de M se trouvera en un point m. Appelons:

x, y, z les coordonnées rectangulaires du point m par rapport aux axes AX, AY, AZ; x_m^0, y_m^0, z_m^0 les coordonnées du même point par rapport aux axes AX_0 , AY_0 , AZ_0 ; $x_\mu^0, y_\mu^0, z_\mu^0$ les coordonnées du point μ par rapport aux axes AX_0 , AY_0 , AZ_0 .

Les mesures faites sur le cliché ont donné x, y, et l'on a évidemment z = 0. On a aussi $z_{\mu}^{0} = 0$, mais la coordonnée z_{m}^{0} n'est pas nulle.

Le problème à résoudre consiste à former les expressions des différences $x_{\mu}^{0} - x$ et $y_{\mu}^{0} - y$.

Nous allons exprimer x_m^0 , y_m^0 , z_m^0 successivement en fonction de x, y, z, puis de x_μ^0 , y_μ^0 , z_μ^0 . 1° Expressions de x_m^0 , y_m^0 , z_m^0 en fonction de x, y, z. — En désignant par G, H, K, G', H', K', G'', H'', K'' les neuf cosinus des formules de transformation d'Euler, on doit avoir des expressions telles que les suivantes

(28)
$$\begin{cases} x_m^0 = G \ x + H \ y + K \ z, \\ y_m^0 = G' \ x + H' \ y + K' \ z, \\ z_m^0 = G' \ x + H'' \ y + K'' \ z, \end{cases}$$

qui, puisque z est nulle, se réduiront à

(29)
$$\begin{cases} x_m^0 = G \ x + H \ y, \\ y_m^0 = G' \ x + H' \ y, \\ z_m^0 = G'' \ x + H'' \ z. \end{cases}$$

Posons

$$(3o) X Q = \theta;$$

les neuf cosinus s'expriment immédiatement au moyen de neuf triangles sphériques ayant pour sommet commun le point Ω .

$$Triangle sph. \ X_0 X \otimes ... \qquad G = \cos(X_0, X) = \cos\theta \cos\theta_0 + \sin\theta \sin\theta_0 \cos i,$$

$$X_0 Y \otimes ... \qquad H = \cos(X_0, Y) = \sin\theta \cos\theta_0 - \cos\theta \sin\theta_0 \cos i,$$

$$X_0 Z \otimes ... \qquad K = \cos(X_0 Z) = \sin\theta_0 \sin i;$$

$$Triangle sph. \ Y_0 X \otimes ... \qquad G' = \cos(Y_0, X) = \cos\theta \sin\theta_0 - \sin\theta \cos\theta_0 \cos i,$$

$$Y_0 Y \otimes ... \qquad H' = \cos(Y_0, Y) = \sin\theta \sin\theta_0 + \cos\theta \cos\theta_0 \cos i,$$

$$Y_0 Z \otimes ... \qquad K' = \cos(Y_0, Z) = -\cos\theta \sin i;$$

$$Triangle sph. \ Z_0 X \otimes ... \qquad G'' = \cos(Z_0, X) = -\sin\theta \sin i,$$

$$Z_0 Y \otimes ... \qquad H'' = \cos(Z_0, Y) = \cos\theta \sin i,$$

$$X_0 Z \otimes ... \qquad H'' = \cos(Z_0, Z) = \cos\theta \sin i,$$

$$X_0 Z \otimes ... \qquad K'' = \cos(Z_0, Z) = \cos\theta \sin\theta_0.$$

En substituant les expressions de G, H, G', H', G", H" dans les formules (29), nous aurons

(32)
$$\begin{cases} x_m^0 = x(\cos\theta\cos\theta_0 + \sin\theta\sin\theta_0\cos i) + y(\sin\theta\cos\theta_0 - \cos\theta\sin\theta_0\cos i), \\ y_m^0 = x(\cos\theta\sin\theta_0 - \sin\theta\cos\theta_0\cos i) + y(\sin\theta\sin\theta_0 + \cos\theta\cos\theta_0\cos i), \\ z_m^0 = -x\sin\theta\sin i + y\cos\theta\sin i. \end{cases}$$

2º Expressions de x_m^0 , y_m^0 , z_m^0 en fonction de x_μ^0 , y_μ^0 , z_μ^0 . — Il s'agit de calculer par rapport aux axes AX_0 , AY_0 , AZ_0 les coordonnées du point m considéré comme étant l'inter-

section du plan XAY et de la droite O µ. Le plan de la plaque a pour équation

(33)
$$\alpha X_0 + \beta Y_0 + \gamma Z_0 = 0,$$

et les cosinus directeurs α , β , γ ont pour valeurs

(34)
$$\begin{cases} \alpha = \sin \theta_0 \sin \iota, \\ \beta = -\cos \theta_0 \sin \iota, \\ \gamma = \cos \iota. \end{cases}$$

En combinant l'équation (33) avec celles de la droite Oμ, qui sont

$$\frac{X_0}{x_0^0} = \frac{Y_0}{y_0^0} = \frac{Z_0 - R}{-R},$$

on obtient sans difficulté

(36)
$$x_{m}^{0} = \frac{-\gamma R x_{\mu}^{0}}{\alpha x_{\mu}^{0} + \beta y_{\mu}^{0} - \gamma R},$$

$$y_{m}^{0} = \frac{-\gamma R y_{\mu}^{0}}{\alpha x_{\mu}^{0} + \beta y_{\mu}^{0} - \gamma R},$$

$$z_{\mu}^{0} = \frac{(\alpha x_{\mu}^{0} + \beta y_{\mu}^{0}) R}{\alpha x_{\mu}^{0} + \beta y_{\mu}^{0} - \gamma R}.$$

Si l'on substitue à la place de x_m^0 , y_m^0 , z_m^0 les expressions (32), on a trois relations entré les quatre coordonnées x, y, x_μ^0 , y_μ^0 ; ces trois relations doivent se réduire à deux; on constate, en effet, qu'en multipliant la première par $\sin \theta_0$, la deuxième par $-\cos \theta_0$ et ajoutant les produits, on retombe sur la troisième.

3° Expressions des différences $x^0_{\mu} - x$ et $y^0_{\mu} - y$. — Nous allons d'abord calculer les différences $x^0_{\mu} - x^0_m$ et $y^0_{\mu} - y^0_m$.

Des relations (36), on tire aisément, en négligeant les carrés de $\frac{x_m^0}{R}$, $\frac{y_m^0}{R}$ et le produit de ces deux variables,

$$\frac{x_{\mu}^{0}-x_{m}^{0}}{x_{m}^{0}}=\frac{y_{\mu}^{0}-y_{m}^{0}}{y_{m}^{0}}=-\frac{\alpha x_{m}^{0}+\beta y_{m}^{0}}{\mathrm{R}\gamma}.$$

Si l'on regarde α , β , $\frac{x_m^0}{R}$ et $\frac{y_m^0}{R}$ comme des quantités du premier ordre, on voit que les différences $x_{\mu}^0 - x_m^0$ et $y_{\mu}^0 - y_m^0$ sont du second, et l'on aura, en mettant pour α , β , γ leurs expressions (34),

$$\left\{ \begin{array}{l} x_{\mu}^{0}-x_{m}^{0}=-x_{m}^{0}\tan i\left(\frac{x_{m}^{0}}{R}\sin\theta_{0}-\frac{y_{m}^{0}}{R}\cos\theta_{0}\right),\\ y_{\mu}^{0}-y_{m}^{0}=-y_{m}^{0}\tan i\left(\frac{x_{m}^{0}}{R}\sin\theta_{0}-\frac{y_{m}^{0}}{R}\cos\theta_{0}\right). \end{array} \right.$$

Maintenant, x_m^0 ne diffère de x, et y_m^0 que par des quantités du second ordre par rapAlger, Coord. rect.

port à i. Nous avons en effet, d'après les formules (32),

$$x_{m}^{0} = x[\cos(\theta - \theta_{0}) - 2\sin\theta\sin\theta_{0}\sin^{2}\frac{1}{2}i] + y[\sin(\theta - \theta_{0}) + 2\cos\theta\sin\theta_{0}\sin^{2}\frac{1}{2}i],$$

$$y_{m}^{0} = -x[\sin(\theta - \theta_{0}) - 2\sin\theta\cos\theta_{0}\sin^{2}\frac{1}{2}i] + y[\cos(\theta - \theta_{0}) - 2\cos\theta\cos\theta_{0}\sin^{2}\frac{1}{2}i],$$

et de la relation

$$tang \theta = tang \theta_0 \cos i$$
,

fournie par le triangle sphérique rectangle X Q X, on déduit

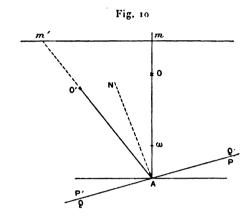
$$\theta - \theta_0 = -\sin 2\theta_0 \tan g^2 \frac{1}{2} i + \dots$$

Alors, si nous voulons ne tenir compte que de la première puissance de tang i dans les expressions de x^0_{μ} — x et de y^0_{μ} — y, nous pouvons, au lieu des formules (37), écrire

(38)
$$\begin{cases} x_{\mu}^{0} - x = -x \tan j \left(\frac{x}{R} \sin \theta_{0} - \frac{y}{R} \cos \theta_{0}\right), \\ y_{\mu}^{0} - y = -y \tan j \left(\frac{x}{R} \sin \theta_{0} - \frac{y}{R} \cos \theta_{0}\right), \end{cases}$$

ou ensin, si l'on exprime les coordonnées en minutes d'arc,

(39)
$$\begin{cases} X_{\mu}^{o} - X = -X^{2} \sin i' \tan g i \sin \theta_{o} + XY \sin i' \tan g i \cos \theta_{o}, \\ Y_{\mu}^{o} - Y = -XY \sin i' \tan g i \sin \theta_{o} + Y^{2} \sin i' \tan g i \cos \theta_{o}. \end{cases}$$


Telles sont les corrections qu'il faudrait appliquer aux mesures de X et de Y pour tenir compte d'un défaut de perpendicularité de l'axe optique sur le plan de la plaque. Ces corrections seraient toujours fort petites; pour des valeurs données de tang $i \sin \theta_0$ et tang $i \cos \theta_0$, elles auraient leur plus grand effet sur les bords du cliché, tout en demeurant encore bien au-dessous des erreurs des mesures. Si l'on suppose pour i la valeur d'une minute d'arc, on trouve que la correction de perpendicularité atteint, au plus, en grandeur absolue, 44 cent-millièmes de minute, c'est-à-dire o'', 026.

Il serait d'ailleurs illusoire de chercher à déterminer les inconnucs $\tan g i \sin \theta_0$ et $\tan g i \cos \theta_0$ par les étoiles de repère, à cause de la petitesse de leurs coefficients dans les équations (39). Ce qu'il y a de mieux à faire, c'est de réduire l'inclinaison i le plus possible, de façon à rendre absolument négligeable la correction de perpendicularité. On y parvient assez facilement de la manière suivante :

Une plaque de cuivre rectangulaire (fig. 10), supportant en son centre une lunette qui permet de viser à une courte distance, est mise dans le châssis à la place même ordinairement réservée pour la glace sensible. Dans les châssis construits par M. Gautier, une fenêtre rectangulaire pratiquée dans le couvercle, et que l'on peut ouvrir ou fermer au moyen d'un petit volet à charnière, laisse passer la lunette du viseur. Enfin, dans le plan focal de cette lunette se trouve un réticule ω formé de deux fils croisés et rendu mobile par deux vis.

On effectue alors les opérations suivantes :

- 1° On dispose, sur l'ouverture de l'objectif, deux fils croisés dont l'intersection marque le centre O de l'objectif;
- 2º On agit sur les vis qui commandent le réticule du viseur, de manière à faire coı̈ncider ω avec O, et l'on marque, sur un écran placé en avant de la lunette, le point m où la droite ω O rencontre cet écran;
 - 3º On retourne de 180º la plaque de cuivre PQ dans le châssis; PQ vient en P'Q' et la

droite AO prend la direction AO' symétrique de AO par rapport à la normale AN à la plaque. On marque sur l'écran le point m' où il est rencontré par la droite AO'. Alors on ramène Am' en Am en corrigeant pour moitié au moyen des vis commandant le réticule ω , et pour moitié avec les vis de rectification de la culasse qui porte le châssis.

Après quelques essais, on arrive sans difficulté à réduire à une ou deux minutes d'arc la valeur de l'inclinaison i.

Plusieurs déterminations faites à notre instrument nous ont montré que la valeur de i n'y dépassait pas une minute.

II. — THÉORIE GÉNÉRALE DES EFFETS DES QUATRE PHÉNOMÈNES : PRÉCESSION, NUTATION, ABERRATION, RÉFRACTION, SUR LES COORDONNÉES RECTILIGNES.

On se propose ici de réunir dans une même analyse le calcul de l'effet produit sur les coordonnées rectilignes d'un astre par un phénomène quelconque de nature à faire varier les coordonnées équatoriales de cet astre, soit que le phénomène consiste en un mouvement des axes de coordonnées (précession et nutation) ou bien en un changement du lieu apparent de l'astre par rapport aux axes considérés comme fixes (aberration et réfraction).

Nous nous servirons, dans cette recherche, des formules que nous avons établies pour exprimer les différences $\alpha - \lambda_0$ et $\delta - \omega_0$ en fonction des coordonnées rectangulaires x, y, et de la déclinaison du centre de la plaque. Ces formules écrites symboliquement

sont

(1)
$$\begin{cases} \alpha - \epsilon \mathbf{l}_0 = \mathbf{F}(x, y, (\mathbf{l}_0)), \\ \hat{\mathbf{l}} - (\mathbf{l}_0) = \Phi(y, x, (\mathbf{l}_0)). \end{cases}$$

Soient maintenant $\Delta \alpha$ et $\Delta \delta$ les effets de l'un des quatre phénomènes sur les coordonnées équatoriales d'une étoile; ces effets sont exprimés par des fonctions connues f et φ des coordonnées α et δ ; nous aurons donc pour l'étoile en question :

(2)
$$\begin{cases} \Delta x = f(x, \delta), \\ \Delta \delta = \varphi(x, \delta), \end{cases}$$

et de même pour l'étoile qui serait au centre de la plaque

(3)
$$\begin{cases} \Delta \cdot \mathbf{b}_0 = f(\cdot \mathbf{b}_0, \cdot \mathbf{b}_0), \\ \Delta \cdot \mathbf{b}_0 = \varphi(\cdot \mathbf{b}_0, \cdot \mathbf{b}_0). \end{cases}$$

Au moyen des formules (1), nous allons exprimer $\Delta \alpha$ et $\Delta \delta$ en fonction de x, y, A_0 et A_0 . La série de Taylor nous donne immédiatement

$$\Delta \alpha = f(\mathcal{A}_0 + F, \, (\mathcal{D}_0 + \Phi)) = f(\mathcal{A}_0, \, (\mathcal{D}_0) + F \frac{\partial f}{\partial \mathcal{D}_0} + \Phi \frac{\partial f}{\partial (\mathcal{D}_0)} + \dots,$$

$$\Delta \delta = \varphi(\mathcal{A}_0 + F, \, (\mathcal{D}_0 + \Phi)) = \varphi(\mathcal{A}_0, \, (\mathcal{D}_0)) + F \frac{\partial \varphi}{\partial \mathcal{D}_0} + \Phi \frac{\partial \varphi}{\partial (\mathcal{D}_0)} + \dots,$$

ou bien

$$\begin{pmatrix} \Delta z - \Delta_1 \mathcal{V}_0 = F \frac{\partial f}{\partial_1 \mathcal{V}_0} + \Phi \frac{\partial f}{\partial \omega_0} + \frac{1}{2} F^2 \frac{\partial^2 f}{\partial_0 \mathcal{V}_0^2} + F \Phi \frac{\partial^2 f}{\partial_0 \mathcal{V}_0} + \frac{1}{2} \Phi^2 \frac{\partial^2 f}{\partial (\mathcal{V}_0^2} + \dots, \\ \Delta \delta - \Delta_1 \mathcal{V}_0 = F \frac{\partial \varphi}{\partial_1 \mathcal{V}_0} + \Phi \frac{\partial \varphi}{\partial (\mathcal{V}_0)} + \frac{1}{2} F^2 \frac{\partial^2 \varphi}{\partial_0 \mathcal{V}_0^2} + F \Phi \frac{\partial^2 \varphi}{\partial_0 \mathcal{V}_0} + \frac{1}{2} \Phi^2 \frac{\partial^2 \varphi}{\partial (\mathcal{V}_0^2} + \dots.$$

Les différences $\Delta \alpha - \Delta A_0$ et $\Delta \delta - \Delta \Phi_0$ représentent les variations ΔF et $\Delta \Phi$ que subissent les seconds membres des formules (1) lorsque l'on y fait varier x, y et Φ_0 . Or on a

(5)
$$\int \Delta \mathbf{F} = \frac{\partial \mathbf{F}}{\partial x} \Delta x + \frac{\partial \mathbf{F}}{\partial y} \Delta y + \frac{\partial \mathbf{F}}{\partial \omega_{0}} \Delta \omega_{0}, \\
\Delta \Phi = \frac{\partial \Phi}{\partial x} \Delta x + \frac{\partial \Phi}{\partial y} \Delta y + \frac{\partial \Phi}{\partial \omega_{0}} \Delta \omega_{0};$$

par conséquent les relations (4) équivalent aux suivantes :

(6)
$$\left(\frac{\partial \mathbf{F}}{\partial x} \Delta x + \frac{\partial \mathbf{F}}{\partial y} \Delta y + \frac{\partial \mathbf{F}}{\partial \omega_{0}} \Delta \omega_{0} = \mathbf{F} \frac{\partial f}{\partial z \omega_{0}} + \Phi \frac{\partial f}{\partial \omega_{0}} + \dots, \right.$$

$$\left(\frac{\partial \Phi}{\partial x} \Delta x + \frac{\partial \Phi}{\partial y} \Delta y + \frac{\partial \Phi}{\partial \omega_{0}} \Delta \omega_{0} = \mathbf{F} \frac{\partial z}{\partial z \omega_{0}} + \Phi \frac{\partial z}{\partial \omega_{0}} + \dots \right.$$

Ces dernières relations résolvent de la manière la plus générale le problème proposé : elles permettent de calculer aisément Δx et Δy en poussant l'approximation jusqu'aux termes d'un ordre quelconque en x et y.

En résolvant les équations (6) par rapport à Δx et Δy on obtient

$$\begin{pmatrix}
\frac{\partial F}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial F}{\partial y} \frac{\partial \Phi}{\partial x}
\end{pmatrix} \Delta x = \begin{pmatrix}
F \frac{\partial f}{\partial A_{0}} + \Phi \frac{\partial f}{\partial \omega_{0}} + \dots \end{pmatrix} \frac{\partial \Phi}{\partial y} \\
- \begin{pmatrix}
F \frac{\partial \varphi}{\partial A_{0}} + \Phi \frac{\partial \varphi}{\partial \omega_{0}} + \dots \end{pmatrix} \frac{\partial F}{\partial y} \\
- \begin{pmatrix}
\frac{\partial F}{\partial \omega_{0}} \frac{\partial \Phi}{\partial y} - \frac{\partial F}{\partial y} \frac{\partial \Phi}{\partial x}
\end{pmatrix} \Delta \omega_{0}, \\
\begin{pmatrix}
\frac{\partial F}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial F}{\partial y} \frac{\partial \Phi}{\partial x}
\end{pmatrix} \Delta y = \begin{pmatrix}
F \frac{\partial \varphi}{\partial A_{0}} + \Phi \frac{\partial \varphi}{\partial \omega_{0}} + \dots \end{pmatrix} \frac{\partial F}{\partial x} \\
- \begin{pmatrix}
F \frac{\partial f}{\partial A_{0}} + \Phi \frac{\partial f}{\partial \omega_{0}} + \dots \end{pmatrix} \frac{\partial \Phi}{\partial x} \\
- \begin{pmatrix}
\frac{\partial \Phi}{\partial \omega_{0}} \frac{\partial F}{\partial x} - \frac{\partial F}{\partial \omega_{0}} \frac{\partial \Phi}{\partial x}
\end{pmatrix} \Delta \omega_{0}.$$

Nous nous proposons d'obtenir les expressions Δx et Δy jusqu'aux termes du deuxième ordre inclusivement en x et y.

F et Φ , $\frac{\partial F}{\partial x}$ et $\frac{\partial F}{\partial y}$, $\frac{\partial \Phi}{\partial x}$ et $\frac{\partial \Phi}{\partial y}$, $\frac{\partial F}{\partial \omega_0}$ et $\frac{\partial \Phi}{\partial \omega_0}$ sont des fonctions de x et y dont il faut calculer les développements.

Il suffira d'avoir égard aux termes du premier ordre dans le développement des quatre premières dérivées; mais les développements de $\frac{\partial F}{\partial \overline{\omega}_0}$ et $\frac{\partial \Phi}{\partial \overline{\omega}_0}$ devront être poussés jusqu'aux termes du second ordre.

Développement de F, Φ , $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, $\frac{\partial \Phi}{\partial x}$ et $\frac{\partial \Phi}{\partial y}$. — Puisque F et Φ s'annulent lorsque l'on donne simultanément à x et y les valeurs

$$x = 0$$
, $y = 0$

nous devons écrire :

(8)
$$\begin{cases} F = x \left(\frac{\partial F}{\partial x} \right)_{0} + y \left(\frac{\partial F}{\partial y} \right)_{0} + \frac{1}{2} \left[x^{2} \left(\frac{\partial^{2} F}{\partial x^{2}} \right)_{0} + 2 x y \left(\frac{\partial^{2} F}{\partial x \partial y} \right)_{0} + y^{2} \left(\frac{\partial^{2} F}{\partial y^{2}} \right)_{0} \right] + \dots, \\ \Phi = y \left(\frac{\partial \Phi}{\partial y} \right)_{0} + x \left(\frac{\partial \Phi}{\partial x} \right)_{0} + \frac{1}{2} \left[y^{2} \left(\frac{\partial^{2} \Phi}{\partial y^{2}} \right)_{0} + 2 y x \left(\frac{\partial^{2} \Phi}{\partial y \partial x} \right)_{0} + x^{2} \left(\frac{\partial^{2} \Phi}{\partial x^{2}} \right)_{0} \right] + \dots. \end{cases}$$

On trouve d'ailleurs, soit au moyen des développements en séries (17) et (19), soit au moyen des formules rigoureuses (8) de la première section et en ne négligeant que des termes du second ordre,

(9)
$$\begin{cases} \frac{\partial \mathbf{F}}{\partial x} = \sec(\mathfrak{D}_0 + y \tan g) \mathfrak{D}_0 \sec(\mathfrak{D}_0, \frac{\partial \Phi}{\partial x} = -x \tan g) \mathfrak{D}_0; \\ \frac{\partial \mathbf{F}}{\partial y} = x \tan g \mathfrak{D}_0 \sec(\mathfrak{D}_0, \frac{\partial \Phi}{\partial y} = 1; \end{cases}$$

il en résulte

(10)
$$\left(\frac{\partial F}{\partial x} \right)_0 = \sec \Omega_0, \qquad \left(\frac{\partial \Phi}{\partial x} \right)_0 = 0; \\ \left(\frac{\partial F}{\partial y} \right)_0 = 0, \qquad \left(\frac{\partial \Phi}{\partial y} \right)_0 = 1.$$

Développement de $\frac{\partial F}{\partial \omega_0}$ et $\frac{\partial \Phi}{\partial \omega_0}$. — En s'arrêtant aux termes du second ordre, on trouve immédiatement :

$$\begin{cases} \frac{\partial \mathbf{F}}{\partial (\mathbf{Q}_0)} = x \tan g (\mathbf{Q}_0 \operatorname{s\acute{e}c} (\mathbf{Q}_0 + xy \operatorname{s\acute{e}c} (\mathbf{Q}_0) (\tan g^2 (\mathbf{Q}_0 + \operatorname{s\acute{e}c}^2 (\mathbf{Q}_0)), \\ \frac{\partial \Phi}{\partial (\mathbf{Q}_0)} = -\frac{1}{2} x^2 \operatorname{s\acute{e}c}^2 (\mathbf{Q}_0). \end{cases}$$

Développement du coefficient de Δx et Δy dans les premiers membres des relations (7). — On voit, par les expressions (9), que ce coefficient contiendra un terme de l'ordre zero, et, comme les seconds membres des relations (7) ne contiennent aucun terme de ce genre, il suffira d'arrêter le développement du coefficient de Δx et Δy aux termes du premier ordre.

On aura donc simplement

(12)
$$\frac{\partial F}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial F}{\partial y} \frac{\partial \Phi}{\partial x} = \sec(\hat{v}_0 + y \tan g)\hat{v}_0 \sec(\hat{v}_0).$$

Expressions des dérivées partielles du second ordre des fonctions F et Φ. — En faisant usage des relations (9), on obtient, au degré d'approximation convenu,

(13)
$$\begin{cases} \frac{\partial^2 F}{\partial x^2} = o, & \frac{\partial^2 F}{\partial x \, \partial y} = tang \, \mathfrak{D}_0 \, sec \, \mathfrak{D}_0, & \frac{\partial^2 F}{\partial y^2} = o; \\ \frac{\partial^2 \Phi}{\partial x^2} = -tang \, \mathfrak{D}_0, & \frac{\partial^2 \Phi}{\partial x \, \partial y} = o, & \frac{\partial^2 \Phi}{\partial y^2} = o. \end{cases}$$

Il en résulte :

$$\left\{ \begin{array}{l} \left(\frac{\partial^2 F}{\partial x^2}\right)_0 = o, & \left(\frac{\partial^2 F}{\partial x \, \partial y}\right)_0 = tang(\theta_0 \, s\acute{e}c(\theta_0, \quad \left(\frac{\partial^2 F}{\partial y^2}\right)_0 = o; \\ \left(\frac{\partial^2 \Phi}{\partial x^2}\right)_0 = -tang(\theta_0, \quad \left(\frac{\partial^2 \Phi}{\partial x \, \partial y}\right)_0 = o, & \left(\frac{\partial^2 \Phi}{\partial y^2}\right)_0 = o. \end{array} \right.$$

Cela posé, les équations (7) qui déterminent Δx et Δy peuvent s'écrire comme il suit :

$$\begin{pmatrix}
\frac{\partial F}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial F}{\partial y} \frac{\partial \Phi}{\partial x}
\end{pmatrix} \Delta x = F \begin{pmatrix}
\frac{\partial f}{\partial c b_0} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial c b_0} \frac{\partial F}{\partial y}
\end{pmatrix} + \Phi \begin{pmatrix}
\frac{\partial f}{\partial (b_0)} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial (b_0)} \frac{\partial F}{\partial y}
\end{pmatrix} + \frac{1}{2} F^2 \begin{pmatrix}
\frac{\partial^2 f}{\partial c b_0} \frac{\partial \Phi}{\partial y} - \frac{\partial^2 \varphi}{\partial c b_0^2} \frac{\partial F}{\partial y}
\end{pmatrix} + F \Phi \begin{pmatrix}
\frac{\partial^2 f}{\partial c b_0} \frac{\partial \Phi}{\partial y} - \frac{\partial^2 \varphi}{\partial c b_0^2} \frac{\partial F}{\partial y}
\end{pmatrix} + \frac{1}{2} \Phi^2 \begin{pmatrix}
\frac{\partial^2 f}{\partial (b_0)^2} \frac{\partial \Phi}{\partial y} - \frac{\partial^2 \varphi}{\partial (b_0)^2} \frac{\partial F}{\partial y}
\end{pmatrix} + \dots - \Delta c b_0 \begin{pmatrix}
\frac{\partial F}{\partial (b_0)} \frac{\partial \Phi}{\partial y} - \frac{\partial \Phi}{\partial (b_0)} \frac{\partial F}{\partial y}
\end{pmatrix},$$

En tenant compte des développements (8) des fonctions F et Φ , et des expressions que nous avons données de leurs dérivées partielles du premier et du second ordre, par rapport à x, y et ω_0 , il est maintenant facile de séparer les termes du premier et ceux du second ordre dans les seconds membres des équations (15) et (16).

Termes du premier ordre des expressions de Δx et Δy . — Pour former ces termes, on doit:

- 1º Réduire à l'ordre zéro les coefficients de Δx et de Δy dans les équations (15) et (16);
- 2º Réduire au premier ordre les expressions (8) de F et Φ en tenant compte des relations (10) ct (11);
- 3º Réduire à l'ordre zéro les coefficients de F et de Φ , et au premier ordre ceux de $\Delta \Phi_0$ dans les équations (15) et (16).

On obtient ainsi:

$$\begin{cases}
\frac{\partial \mathbf{F}}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial \mathbf{F}}{\partial y} \frac{\partial \Phi}{\partial x} = - \operatorname{sec} \mathfrak{Q}_0, \\
\mathbf{F} = x \operatorname{sec} \mathfrak{Q}_0, \\
\Phi = y.
\end{cases}$$

On a ensuite, pour l'équation (15),

(18)
$$\begin{cases} \frac{\partial f}{\partial e^{\downarrow}_{0}} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial e^{\downarrow}_{0}} \frac{\partial F}{\partial y} = \frac{\partial f}{\partial \mathcal{N}_{0}}, \\ \frac{\partial f}{\partial (\mathcal{N}_{0})} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial (\mathcal{N}_{0})} \frac{\partial F}{\partial y} = \frac{\partial f}{\partial (\mathcal{N}_{0})}, \\ \frac{\partial F}{\partial (\mathcal{N}_{0})} \frac{\partial \Phi}{\partial y} - \frac{\partial \Phi}{\partial (\mathcal{N}_{0})} \frac{\partial F}{\partial y} = \frac{\partial F}{\partial (\mathcal{N}_{0})} = x \tan g \mathcal{D}_{0} \operatorname{séc} \mathcal{D}_{0}, \end{cases}$$

et, pour l'équation (16),

(19)
$$\begin{cases} \frac{\partial \varphi}{\partial c k_0} \frac{\partial F}{\partial x} - \frac{\partial f}{\partial c k_0} \frac{\partial \Phi}{\partial x} = \frac{\partial \varphi}{\partial c k_0} \operatorname{séc}(\mathfrak{Q}_0), \\ \frac{\partial \varphi}{\partial \omega_0} \frac{\partial F}{\partial x} - \frac{\partial f}{\partial \omega_0} \frac{\partial \Phi}{\partial x} = \frac{\partial \varphi}{\partial \omega_0} \operatorname{séc}(\mathfrak{Q}_0), \\ \frac{\partial \Phi}{\partial \omega_0} \frac{\partial F}{\partial x} - \frac{\partial F}{\partial \omega_0} \frac{\partial \Phi}{\partial x} = 0. \end{cases}$$

Il en résulte immédiatement :

$$\begin{split} & \sec (\Theta_0 \, \Delta x = x \sec (\Theta_0 \, \frac{\partial f}{\partial \omega_0} + y \, \frac{\partial f}{\partial (\Theta_0)} - x \, \tan g \, (\Theta_0 \, \sec (\Theta_0 \, \Delta (\Theta_0), \\ & \sec (\Theta_0 \, \Delta y = x \, \sec^2 (\Theta_0 \, \frac{\partial \varphi}{\partial \omega_0} + y \, \sec (\Theta_0 \, \frac{\partial \varphi}{\partial (\Theta_0)}, \\ \end{split}$$

ou bien

(20)
$$\begin{cases} \Delta x = x \frac{\partial f}{\partial \omega_0} + y \frac{\partial f}{\partial \omega_0} \cos \omega_0 - x \tan \omega_0 \Delta \omega_0, \\ \Delta y = x \sec \omega_0 \frac{\partial \varphi}{\partial \omega_0} + y \frac{\partial \varphi}{\partial \omega_0}. \end{cases}$$

Termes du second ordre des expressions de Δx et de Δy . — Pour former les termes du second ordre, il faut d'abord, au lieu des expressions (17), employer les suivantes :

puis, pour l'équation (15),

$$\begin{cases} \frac{\partial f}{\partial z b_0} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial z^0} \frac{\partial F}{\partial y} = \frac{\partial f}{\partial z b_0} - x \operatorname{tang} \Theta_0 \operatorname{sec} (\overline{\mathbb{Q}}_0 \frac{\partial \varphi}{\partial z b_0}), \\ \frac{\partial f}{\partial \Theta_0} \frac{\partial \Phi}{\partial y} - \frac{\partial \varphi}{\partial (\overline{\mathbb{Q}}_0)} \frac{\partial F}{\partial y} = \frac{\partial f}{\partial (\overline{\mathbb{Q}}_0)} - x \operatorname{tang} (\overline{\mathbb{Q}}_0 \operatorname{sec} \overline{\mathbb{Q}}_0 \frac{\partial \varphi}{\partial (\overline{\mathbb{Q}}_0)}), \\ \frac{\partial F}{\partial \Theta_0} \frac{\partial \Phi}{\partial y} - \frac{\partial \Phi}{\partial (\overline{\mathbb{Q}}_0)} \frac{\partial F}{\partial y} = x \operatorname{tang} \overline{\mathbb{Q}}_0 \operatorname{sec} \overline{\mathbb{Q}}_0 + xy \operatorname{sec} \overline{\mathbb{Q}}_0 (\operatorname{tang}^2 (\overline{\mathbb{Q}}_0 + \operatorname{sec}^2 (\overline{\mathbb{Q}}_0)), \end{cases}$$

et, pour l'équation (16),

$$\begin{cases}
\frac{\partial \mathring{\gamma}}{\partial \omega_{0}} \frac{\partial F}{\partial x} - \frac{\partial f}{\partial \omega_{0}} \frac{\partial \Phi}{\partial x} = \frac{\partial \mathring{\gamma}}{\partial \omega_{0}} (\operatorname{s\acute{e}c} \, \mathfrak{Q}_{0} + y \, \operatorname{tang} \, \mathfrak{Q}_{0} \, \operatorname{s\acute{e}c} \, \mathfrak{Q}_{0}) + x \, \operatorname{tang} \, \mathfrak{Q}_{0} \, \frac{\partial f}{\partial \omega_{0}}, \\
\frac{\partial \mathring{\gamma}}{\partial (\mathfrak{Q}_{0})} \frac{\partial F}{\partial x} - \frac{\partial f}{\partial (\mathfrak{Q}_{0})} \frac{\partial \Phi}{\partial x} = \frac{\partial \mathring{\gamma}}{\partial (\mathfrak{Q}_{0})} (\operatorname{s\acute{e}c} \, \mathfrak{Q}_{0} + y \, \operatorname{tang} \, \mathfrak{Q}_{0} \, \operatorname{s\acute{e}c} \, \mathfrak{Q}_{0}) + x \, \operatorname{tang} \, \mathfrak{Q}_{0} \, \frac{\partial f}{\partial (\mathfrak{Q}_{0})}, \\
\frac{\partial \Phi}{\partial (\mathfrak{Q}_{0})} \frac{\partial F}{\partial x} - \frac{\partial F}{\partial (\mathfrak{Q}_{0})} \frac{\partial \Phi}{\partial x} = x^{2} \, \operatorname{s\acute{e}c} \, \mathfrak{Q}_{0} (\operatorname{tang}^{2} \, \mathfrak{Q}_{0} - \frac{1}{2} \operatorname{s\acute{e}c}^{2} \, \mathfrak{Q}_{0}).
\end{cases}$$

En substituant les expressions (21), (22) et (23) dans les deux équations (15) et (16), on obtiendra sans difficulté les développements de Δx et de Δy jusqu'aux termes du econd ordre inclusivement.

Si l'on remplace Δω, par la fonction donnée φ et si l'on pose

$$a = \frac{\partial f}{\partial \omega_{0}} - \varphi \tan g \Theta_{0},$$

$$b = \frac{\partial f}{\partial \omega_{0}} \cos \Theta_{0},$$

$$r = \frac{1}{2} \frac{\partial^{2} f}{\partial \omega_{0}^{2}} \sec \Theta_{0} - \frac{1}{2} \frac{\partial f}{\partial \Theta_{0}} \sin \Theta_{0} - \frac{\partial \varphi}{\partial \omega_{0}} \tan g \Theta_{0} \sec \Theta_{0},$$

$$s = \frac{\partial^{2} f}{\partial \omega_{0} \partial \Theta_{0}} - \frac{\partial \varphi}{\partial \Theta_{0}} \tan g \Theta_{0} - \varphi \sec^{2} \Theta_{0},$$

$$t = \frac{1}{2} \frac{\partial^{2} f}{\partial \omega_{0}^{2}} \cos \Theta_{0} - \frac{\partial f}{\partial \Theta_{0}} \sin \Theta_{0},$$

$$a' = \frac{\partial \varphi}{\partial \omega_{0}} \sec \Theta_{0},$$

$$b' = \frac{\partial \varphi}{\partial \omega_{0}},$$

$$r' = \frac{1}{2} \frac{\partial^{2} \varphi}{\partial \omega_{0}^{2}} \sec^{2} \Theta_{0} - \frac{1}{2} \frac{\partial \varphi}{\partial \Theta_{0}} \tan g \Theta_{0} + \frac{1}{2} \varphi (1 - \tan g^{2} \Theta_{0}) + \frac{\partial f}{\partial \omega_{0}} \tan g \Theta_{0},$$

$$s' = \frac{\partial^{2} \varphi}{\partial \omega_{0} \partial \Theta_{0}} \sec \Theta_{0} + \frac{\partial \varphi}{\partial \omega_{0}} \tan g \Theta_{0} \sec \Theta_{0} + \frac{\partial f}{\partial \Theta_{0}} \sin \Theta_{0},$$

$$t' = \frac{1}{2} \frac{\partial^{2} \varphi}{\partial \Theta_{0}^{2}},$$

on aura

(26)
$$\Delta x = a \ x + b \ y + r \ x^2 + s \ xy + t \ y^2,$$
$$\Delta y = a'x + b'y + r'x^2 + s'xy + t'y^2.$$

On peut ainsi introduire dans les expressions de r, s, t, r', s', t', les coefficients a, b, a', b' des termes du premier ordre et leurs dérivées. Pour cela, des expressions générales de a, b, a', b', on tire

$$\frac{\partial f}{\partial \omega_0} = a + \varphi \operatorname{tang}(\mathbb{O}_0), \qquad \frac{\partial \varphi}{\partial \omega_0} = a' \cos(\mathbb{O}_0),$$

$$\frac{\partial f}{\partial \omega_0} = b \sec(\mathbb{O}_0), \qquad \frac{\partial \varphi}{\partial \omega_0} = b'.$$

Il en résulte

$$\begin{split} \frac{\partial^2 f}{\partial \omega_0^2} &= \frac{\partial a}{\partial \omega_0} + \frac{\partial \varphi}{\partial \dot{\omega}_0} \tan g \, \dot{\omega}_0, \\ \frac{\partial^2 f}{\partial \dot{\omega}_0 \partial \dot{\omega}_0} &= \frac{\partial a}{\partial \dot{\omega}_0} + \frac{\partial \varphi}{\partial \dot{\omega}_0} \tan g \, \dot{\omega}_0 + \varphi \, \text{sec}^2 \, \dot{\omega}_0 = \frac{\partial h}{\partial \dot{\omega}_0} \, \text{sec} \, \dot{\omega}_0, \\ \frac{\partial^2 f}{\partial \dot{\omega}_0^2} &= \frac{\partial b}{\partial \dot{\omega}_0} \, \text{sec} \, \dot{\omega}_0 + b \, \tan g \, \dot{\omega}_0 \, \text{sec} \, \dot{\omega}_0, \\ \frac{\partial^2 \varphi}{\partial \dot{\omega}_0^2} &= \frac{\partial a'}{\partial \dot{\omega}_0} \, \cos \dot{\omega}_0, \\ \frac{\partial^2 \varphi}{\partial \dot{\omega}_0 \partial \dot{\omega}_0} &= \frac{\partial a'}{\partial \dot{\omega}_0} \, \cos \dot{\omega}_0 - a' \, \sin \dot{\omega}_0 = \frac{\partial b'}{\partial \dot{\omega}_0}, \\ \frac{\partial^2 \varphi}{\partial \dot{\omega}_0^2} &= \frac{\partial a'}{\partial \dot{\omega}_0} \, \cos \dot{\omega}_0 - a' \, \sin \dot{\omega}_0 = \frac{\partial b'}{\partial \dot{\omega}_0}, \end{split}$$

Alger, Coord. rect.

d

En substituant ces expressions dans les formules (24) et (25), on obtient

$$r = -\frac{1}{2}(b+a') \operatorname{tang}(\mathfrak{D}_0 + \frac{1}{2} \frac{\partial a}{\partial \cdot \mathbf{b}_0} \operatorname{s\acute{e}c}(\mathfrak{D}_0),$$

$$s = \frac{\partial a}{\partial \mathfrak{W}_0},$$

$$t = \frac{1}{2} \left(\frac{\partial b}{\partial \mathfrak{D}_0} - b \operatorname{tang}(\mathfrak{D}_0) \right),$$

$$r' = \frac{1}{2} \varphi \operatorname{s\acute{e}c}^2 \mathfrak{D}_0 + \left(a - \frac{1}{2} b' \right) \operatorname{tang}(\mathfrak{D}_0 + \frac{1}{2} \frac{\partial a'}{\partial \cdot \mathbf{b}_0} \operatorname{s\acute{e}c}(\mathfrak{D}_0),$$

$$s' = \frac{\partial a'}{\partial \mathfrak{W}_0} + b \operatorname{tang}(\mathfrak{D}_0),$$

$$t' = + \frac{1}{2} \frac{\partial b'}{\partial \mathfrak{W}_0}.$$

Dans les formules (26) Δx et Δy représentent les *erreurs* des coordonnées mesurées; leurs *corrections* seront donc de signe contraire, c'est-à-dire que si l'on désigne par x' et y' les coordonnées corrigées, on aura, pour la correction à appliquer aux x et aux y, du fait de l'un des quatre phénomènes considérés dans cette analyse,

$$\begin{cases} x' - x = -(a \ x + b \ y + r \ x^2 + s \ xy + t \ y^2), \\ y' - y = -(a'x + b'y + r'x^2 + s'xy + t'y^2). \end{cases}$$

Nous avons maintenant à appliquer ces résultats généraux au calcul des effets produits par les quatre phénomènes : précession, nutation, aberration et réfraction. Mais auparavant il ne sera pas inutile de faire une remarque : c'est que les variations Δx et Δy équivalent, ou bien à une variation de l'angle de position de l'astre, ou bien à deux variations simultanées de son angle de position et de sa distance au centre de la plaque; car, si l'on différentie les relations

$$S \sin w = x$$
,
 $S \cos w = y$,

qui sont exactes jusqu'au terme du deuxième ordre inclusivement, on obtient

$$\sin \omega \Delta S + S \cos \omega \Delta \omega = \Delta x$$
,
 $\cos \omega \Delta S - S \sin \omega \Delta \omega = \Delta y$,

d'où l'on tire

$$\Delta S = \Delta x \sin w + \Delta y \cos w,$$

$$S \Delta w = \Delta x \cos w - \Delta y \sin w,$$

ou encore, aux termes près du troisième ordre,

(28)
$$\begin{pmatrix}
\Delta \omega = \frac{y \Delta x - x \Delta y}{x^2 + y^2}, \\
\frac{\Delta S}{S} = \frac{x \Delta x + y \Delta y}{x^2 + y^2}.$$

Si, dans l'application de ces formules à un phénomène déterminé, la relation entre Δx et Δy est telle que l'on ait

$$\Delta \varpi = \text{const.},$$

la correction des angles de position se confondra avec celle de l'orientation du cliché. Si l'on a

$$\frac{\Delta S}{S} = \text{const.},$$

la correction des distances se confondra avec la correction de l'échelle.

Il est évident, a priori, que la première de ces conditions se trouve réalisée dans la précession et la nutation différentielles, puisque l'effet de ces phénomènes consiste en un déplacement des axes de coordonnées et non des étoiles elles-mêmes. On le vérifiera d'ailleurs aisément sur les formules qui expriment ces effets; mais lorsque nous traiterons de l'aberration et de la réfraction différentielles, on verra que, dans ces deux cas, il se produit à la fois une variation de la distance et un changement de l'angle de position.

Précession et nutation différentielles.

1° Précession. — Soient m et n les constantes connues pour l'époque initiale 1900, 0; θ le temps écoulé depuis l'époque initiale jusqu'à l'époque Θ du cliché et exprimé en années, c'est-à-dire

$$0 = \theta - 1900$$
;

on a, pour le centre de la plaque,

$$f = \Delta \mathcal{N}_0 = (m + n \tan g \, \Theta_0 \sin \mathcal{N}_0) \theta,$$

$$\varphi = \Delta \Theta_0 = (n \cos \mathcal{N}_0) \theta,$$

$$\frac{\partial f}{\partial \mathcal{N}_0} = n \theta \tan g \, \Theta_0 \cos \mathcal{N}_0, \qquad \frac{\partial \varphi}{\partial \mathcal{N}_0} = -n \theta \sin \mathcal{N}_0,$$

$$\frac{\partial f}{\partial \mathcal{N}_0} = n \theta \sin \mathcal{N}_0, \qquad \frac{\partial \varphi}{\partial \mathcal{N}_0} = 0,$$

$$\frac{\partial^2 f}{\partial \mathcal{N}_0^2} = -n \theta \tan g \, \Theta_0 \sin \mathcal{N}_0, \qquad \frac{\partial^2 \varphi}{\partial \mathcal{N}_0^2} = -n \theta \cos \mathcal{N}_0,$$

$$\frac{\partial^2 f}{\partial \mathcal{N}_0 \partial \mathcal{N}_0} = n \theta \sin^2 \mathcal{N}_0 \cos \mathcal{N}_0, \qquad \frac{\partial^2 \varphi}{\partial \mathcal{N}_0 \partial \mathcal{N}_0} = 0,$$

$$\frac{\partial^2 f}{\partial \mathcal{N}_0^2} = n \theta \sin^2 \mathcal{N}_0 \cos \mathcal{N}_0, \qquad \frac{\partial^2 \varphi}{\partial \mathcal{N}_0 \partial \mathcal{N}_0} = 0,$$

$$\frac{\partial^2 f}{\partial \mathcal{N}_0^2} = 2n \theta \sin^2 \mathcal{N}_0 \cos \mathcal{N}_0, \qquad \frac{\partial^2 \varphi}{\partial \mathcal{N}_0^2} = 0,$$

et par suite, au moyen des expressions (24) et (25),

$$a = 0,$$
 $a' = -n\theta \operatorname{s\acute{e}c} \Omega_0 \sin \Omega_0,$ $b' = 0,$ $r = 0,$ $r' = 0,$ $s = 0,$ $t = 0,$ $t' = 0.$

Il en résulte que les termes du second ordre sont nuls et que les corrections $-\Delta x$ et $-\Delta y$ se réduisent aux valeurs suivantes :

(29)
$$\begin{cases} x' - x = n \theta y \operatorname{sec}(\mathbb{Q}_0 \sin \mathbb{Q}_0), \\ y' - y = -n \theta x \operatorname{sec}(\mathbb{Q}_0 \sin \mathbb{Q}_0). \end{cases}$$

En appliquant les relations (28), on voit qu'à l'époque, qui est celle où la photographie du cliché a été prise, l'effet de la précession différentielle sur chacune des étoiles de la plaque se réduit à un changement d'angle de position dont la valeur est constante pour toute l'étendue de cette plaque et a pour expression

(30)
$$\Delta w = n\theta \operatorname{s\acute{e}c} \mathcal{O}_0 \sin \mathcal{A}_0.$$

Il sera donc inutile d'en tenir compte, et nous le laisserons englobé dans la correction i de l'orientation du cliché. On a d'ailleurs, d'après les valeurs de Δx , Δy , et comme cela était évident a priori,

 $\frac{\Delta S}{S} = 0.$

La formule (30) peut servir pour ramener l'orientation d'un cliché de l'époque 1900, 0 à une autre époque Θ ; chacune des deux valeurs de l'orientation se trouvera ainsi rapportée à l'équinoxe moyen. Il va sans dire que, si le temps écoulé est assez considérable, on devra employer les valeurs des constantes m et n qui conviennent pour l'époque intermédiaire $1900 + \frac{1}{2}0$.

2º Nutation. — On trouvera quelque chose d'analogue pour la nutation, c'est-à-dire que les termes du second ordre seront nuls et que les corrections x' - x et y' - y prendront la forme

$$x'-x=y \Delta w,$$

 $y'-y=-x \Delta w.$

Si, ayant la valeur de l'orientation moyenne (c'est-à-dire rapportée à l'équinoxe moyen), pour la date Janvier o d'une certaine année, on voulait calculer la valeur de l'orientation vraie pour un jour quelconque de la même année, on aurait à appliquer la correction

$$\Delta \varpi = (n \operatorname{C} \sin A_0 + \operatorname{D} \cos A_0) \operatorname{s\acute{e}c} \mathfrak{D}_0 \qquad \text{(pr\'ecession et nutation comprises)},$$

qui, en posant

$$g \sin G = D,$$

 $g \cos G = nC,$

devient

(31)
$$\Delta w = g \sin(G + A_0) \sec(D_0.$$

Les nombres C, D, g et G sont ceux que la *Connaissance des Temps* donne pour tous les jours de l'année et pour minuit moyen, dans le but de réduire les positions moyennes des étoiles. La valeur de $\Delta \varpi$ obtenue par cette formule se trouvera exprimée en secondes d'arc.

ABERRATION DIFFÉRENTIELLE.

En désignant par k la constante de l'aberration; ω l'obliquité de l'écliptique; \odot la longitude vraie du Soleil, et posant

$$A = -k \cos \omega \cos \odot,$$

$$B = -k \sin \odot,$$

nous avons

$$f = \Delta \mathcal{N}_0 = (A \cos \mathcal{N}_0 + B \sin \mathcal{N}_0) \sec (\mathcal{O}_0,$$

 $\varphi = \Delta(\mathcal{O}_0 = (A \sin \mathcal{N}_0 + B \cos \mathcal{N}_0) \sin \mathcal{O}_0 + A \tan \varphi \cos (\mathcal{O}_0.$

Il en résulte, pour le calcul des termes du premier ordre,

$$\begin{split} \frac{\partial f}{\partial \omega_0} &= (-\operatorname{A} \sin \mathcal{A}_0 + \operatorname{B} \cos \mathcal{A}_0) \operatorname{s\acute{e}} \omega_0, \\ \frac{\partial f}{\partial \omega_0} &= (\operatorname{A} \cos \mathcal{A}_0 + \operatorname{B} \sin \mathcal{A}_0) \operatorname{tang} \omega_0 \operatorname{s\acute{e}} \omega_0, \\ \frac{\partial \varphi}{\partial \omega_0} &= -(\operatorname{A} \cos \mathcal{A}_0 + \operatorname{B} \sin \mathcal{A}_0) \sin \omega_0, \\ \frac{\partial \varphi}{\partial \omega_0} &= \cos \omega_0 (-\operatorname{A} \sin \mathcal{A}_0 + \operatorname{B} \cos \mathcal{A}_0) - \operatorname{A} \operatorname{tang} \omega \sin \omega_0, \end{split}$$

et, pour celui des termes du deuxième ordre,

$$\begin{split} \frac{\partial^2 f}{\partial \omega_0^2} &= -(\text{A}\cos\omega_0 + \text{B}\sin\omega_0) \text{s\'ec}\, \mathfrak{D}_0, \\ \frac{\partial^2 f}{\partial \omega_0 \partial \omega_0} &= (-\text{A}\sin\omega_0 + \text{B}\cos\omega_0) \text{s\'ec}\, \mathfrak{D}_0 \tan g\, \mathfrak{D}_0, \\ \frac{\partial^2 f}{\partial \omega_0^2} &= (\text{A}\cos\omega_0 + \text{B}\sin\omega_0) \text{s\'ec}\, \mathfrak{D}_0 (1 + 2\tan g^2\, \mathfrak{D}_0), \\ \frac{\partial^2 \varphi}{\partial \omega_0^2} &= (\text{A}\sin\omega_0 - \text{B}\cos\omega_0) \sin\omega_0, \\ \frac{\partial^2 \varphi}{\partial \omega_0 \partial \omega_0} &= -(\text{A}\cos\omega_0 + \text{B}\sin\omega_0) \cos\omega_0, \\ \frac{\partial^2 \varphi}{\partial \omega_0^2} &= (\text{A}\sin\omega_0 - \text{B}\cos\omega_0) \sin\omega_0 - \text{A}\tan g\omega \cos\omega_0, \end{split}$$

et, par suite, en faisant usage des expressions (24) et (25),

$$(32)$$

$$a = -A(\sin \mathcal{A}_0 \cos \mathcal{D}_0 + \tan g \omega \sin \mathcal{D}_0) + B \cos \mathcal{A}_0 \cos \mathcal{D}_0,$$

$$b = (A \cos \mathcal{A}_0 + B \sin \mathcal{A}_0) \tan g \mathcal{D}_0,$$

$$r = -\frac{1}{2}b,$$

$$s = -A(\sin \mathcal{A}_0 \sin \mathcal{D}_0 - \tan g \omega \cos \mathcal{D}_0) + B \cos \mathcal{A}_0 \sin \mathcal{D}_0,$$

$$t = \frac{1}{2}b,$$

pour la correction des x; on aura de même pour celle des y

(33)
$$\begin{cases} a' = -b, & b' = a, \\ r' = -\frac{1}{2}s, & s' = -b, & t' = \frac{1}{2}s. \end{cases}$$

Les corrections que devraient recevoir les coordonnées rectangulaires pour être affranchies de l'aberration différentielle sont donc les suivantes:

(34)
$$\begin{cases} x' - x = -\left[ax + by + sxy + \frac{1}{2}b(y^2 - x^2)\right], \\ y' - y = -\left[ay - bx - bxy + \frac{1}{2}s(y^2 - x^2)\right]. \end{cases}$$

Elles correspondent à une correction d'angle de position Δω et à une correction de distance ΔS déterminées par les formules générales (28), d'où l'on tire, au moyen de quelques transformations,

(35)
$$\begin{cases} \Delta w = -\left[b + \frac{1}{2}(by + sx)\right], \\ \frac{\Delta S}{S} = -\left[a + \frac{1}{2}(sy - bx)\right]. \end{cases}$$

Si l'on néglige les termes du second ordre en x et y, la correction $\Delta \varpi$ se réduit à la valeur constante -b, et $\frac{\Delta S}{S}$ à la valeur constante -a. Alors les effets de l'aberration différentielle peuvent être confondus dans la correction de l'orientation et dans celle de l'échelle. Mais cette conclusion ne serait plus admissible si les termes du second ordre contenus dans les expressions de x'-x et y'-y n'étaient pas négligeables. Dans ce cas, $\Delta \varpi$ et $\frac{\Delta S}{S}$, n'étant plus formés seulement d'un terme de l'ordre zéro indépendant de x et y, mais renfermant des termes du premier ordre en x et y, changent de valeur d'un point à l'autre du cliché.

Supposons les coefficients a, b, s évalués en parties du rayon; si l'on veut que les corrections (34) expriment des minutes d'arc, on les écrira comme il suit, en désignant par X et Y les valeurs mesurées des coordonnées rectangulaires :

(36)
$$\begin{cases} X' - X = -\left[aX + bY + sXY\sin t' + \frac{1}{2}b(Y^2 - X^2)\sin t'\right], \\ Y' - Y = -\left[aY - bX - bXY\sin t' + \frac{1}{2}s(Y^2 - X^2)\sin t'\right]. \end{cases}$$

Il est aisé de voir que, même dans les cas les plus défavorables, l'ensemble des termes du second ordre n'atteindra jamais deux dix millièmes de minute, c'est-à-dire un centième de seconde d'arc. Nous pourrons donc en toute sécurité nous en tenir aux termes du premier ordre et, par suite, considérer les effets de l'aberration différentielle comme compris dans la valeur de l'orientation et de l'échelle que nous déterminons au moyen des étoiles connues du cliché.

Réfraction différentielle.

Termes du premier ordre. — Nous nous occuperons d'abord exclusivement des termes du premier ordre. La base de cette recherche est la suivante :

Si nous désignons par \mathcal{A}_0 et \mathcal{O}_0 les quantités à ajouter aux coordonnées vraies \mathcal{A}_0 et \mathcal{O}_0 du centre de la plaque pour en obtenir les coordonnées apparentes affectées de la réfraction, nous avons, selon une théorie connue,

(37)
$$\begin{cases} \Delta \mathcal{A}_0 = f(\mathcal{A}_0, \mathcal{O}_0) = K \tan \zeta \sin q \sec \mathcal{O}_0, \\ \Delta \mathcal{O}_0 = \varphi(\mathcal{A}_0, \mathcal{O}_0) = K \tan \zeta \cos q; \end{cases}$$

ζ et q désignent la distance zénithale et l'angle parallactique vrai du centre de la plaque; K est une constante qui dépend de la distance zénithale, de la température et de la pression barométrique.

Les variables ζ et q sont liées à l'ascension droite et à la déclinaison du centre de la plaque par les relations

(38)
$$\begin{cases} \cos \zeta = \sin \lambda \sin \Theta_0 + \cos \lambda \cos \Theta_0 \cos (T - A_0), \\ \sin \zeta \sin q = \cos \lambda \sin (T - A_0), \\ \sin \zeta \cos q = \sin \lambda \cos \Theta_0 - \cos \lambda \sin \Theta_0 \cos (T - A_0), \end{cases}$$

où λ désigne la latitude du lieu et T l'heure sidérale du milieu de la pose.

En ce qui concerne les termes du premier ordre, les effets de la réfraction sur les coordonnées rectangulaires x et y sont exprimés immédiatement par nos formules générales (24), (25) et (27), d'où l'on tire

(39)
$$\begin{cases} x' - x = x \left(tang \, \Omega_0 \, \Delta \Omega_0 - \frac{\partial f}{\partial \dot{\lambda}_{00}} \right) - y \, \frac{\partial f}{\partial \omega_0} \cos \Omega_0, \\ y' - y = -y \, \frac{\partial \varphi}{\partial \omega_0} - x \, \frac{\partial \varphi}{\partial \dot{\lambda}_{00}} \operatorname{s\acute{e}c} \Omega_0. \end{cases}$$

Ici x'-x et y'-y sont les corrections que l'on doit appliquer aux coordonnées apparentes pour les affranchir de l'effet de la réfraction. Il faut, dans ces formules, substituer à $\Delta \Theta_{\bullet}$ l'expression K tang $\zeta \cos q$, et aux dérivées partielles $\frac{\partial f}{\partial z \log_0}$, $\frac{\partial f}{\partial z \log_0}$, $\frac{\partial \varphi}{\partial z \log_0}$, $\frac{\partial \varphi}{\partial z \log_0}$ les expressions que l'on obtient pour elles en différentiant les formules (1) et les formules (2).

Nous négligerons provisoirement la variation du coefficient K par rapport à ζ et nous désignerons par K_{\bullet} la partie de K indépendante de ζ . Alors on obtient sans difficulté, par la différentiation des formules (37),

$$\frac{\partial f}{\partial \omega_0} = \frac{\partial f}{\partial \zeta} \frac{\partial \zeta}{\partial \omega_0} + \frac{\partial f}{\partial q} \frac{\partial q}{\partial \omega_0}, \qquad \frac{\partial \varphi}{\partial \omega_0} = \frac{\partial \varphi}{\partial \zeta} \frac{\partial \zeta}{\partial \omega_0} + \frac{\partial \varphi}{\partial q} \frac{\partial q}{\partial \omega_0},$$

$$\frac{\partial f}{\partial \omega_0} = \frac{\partial f}{\partial \zeta} \frac{\partial \zeta}{\partial \omega_0} + \frac{\partial f}{\partial q} \frac{\partial q}{\partial \omega_0}, \qquad \frac{\partial \varphi}{\partial \omega_0} = \frac{\partial \varphi}{\partial \zeta} \frac{\partial \zeta}{\partial \omega_0} + \frac{\partial \varphi}{\partial q} \frac{\partial q}{\partial \omega_0},$$

c'est-à-dire

(40)
$$\begin{cases} \frac{\partial f}{\partial \omega_0} = K_0 \sec^2 \zeta \sin q \sec \Omega_0 \frac{\partial \zeta}{\partial \omega_0} + K_0 \tan \zeta \cos q \sec \Omega_0 \frac{\partial q}{\partial \omega_0}, \\ \frac{\partial f}{\partial \omega_0} = K_0 \sec^2 \zeta \sin q \sec \Omega_0 \frac{\partial \zeta}{\partial \omega_0} + K_0 \tan \zeta \cos q \sec \Omega_0 \frac{\partial q}{\partial \omega_0} + K_0 \tan \zeta \sin q \tan \zeta \cos q \sec \Omega_0, \\ \frac{\partial \varphi}{\partial \omega_0} = K_0 \sec^2 \zeta \cos q \frac{\partial \zeta}{\partial \omega_0} - K_0 \tan \zeta \sin q \frac{\partial q}{\partial \omega_0}, \\ \frac{\partial \varphi}{\partial \omega_0} = K_0 \sec^2 \zeta \cos q \frac{\partial \zeta}{\partial \omega_0} - K_0 \tan \zeta \sin q \frac{\partial q}{\partial \omega_0}; \end{cases}$$

puis, par la différentiation des formules (38),

$$-\sin\zeta \frac{\partial \zeta}{\partial \omega_0} = \cos\lambda \cos\Theta_0 \sin(t - \omega_0) = \cos\Theta_0 \sin\zeta \sin q,$$

$$-\sin\zeta \frac{\partial \zeta}{\partial \omega_0} = \sin\lambda \cos\Theta_0 - \cos\lambda \sin\Theta_0 \cos(t - \omega_0) = \sin\zeta \cos q,$$

$$\cos\zeta \sin q \frac{\partial \zeta}{\partial \omega_0} + \sin\zeta \cos q \frac{\partial q}{\partial \omega_0} = -\cos\lambda \cos(t - \omega_0),$$

$$\cos\zeta \cos q \frac{\partial \zeta}{\partial \omega_0} - \sin\zeta \sin q \frac{\partial q}{\partial \omega_0} = -\sin\zeta \sin q \sin\Theta_0,$$

$$\cos\zeta \sin q \frac{\partial \zeta}{\partial \omega_0} + \sin\zeta \cos q \frac{\partial q}{\partial \omega_0} = 0,$$

$$\cos\zeta \cos q \frac{\partial \zeta}{\partial \omega_0} - \sin\zeta \sin q \frac{\partial q}{\partial \omega_0} = -\cos\zeta.$$

On déduit de ces dernières

$$\frac{\partial \zeta}{\partial \omega_0} = -\cos \omega_0 \sin q,
\frac{\partial \zeta}{\partial \omega_0} = -\cos q;
\sin \zeta \frac{\partial q}{\partial \omega_0} = \sin \zeta \sin \omega_0 - \cos \zeta \cos \omega_0 \cos q,
\tan \zeta \frac{\partial q}{\partial \omega_0} = \sin q.$$

La troisième et la sixième des formules (41) peuvent servir à vérifier les expressions (42). Nous avons maintenant les éléments nécessaires pour former les dérivées partielles du premier ordre des fonctions f et φ . On trouve, pour ces dérivées,

$$\begin{cases} \frac{\partial f}{\partial c b_0} = -K_0 - K_0 \tan g^2 \zeta \sin^2 q + K_0 \tan g \zeta \cos q \tan g \phi_0, \\ \frac{\partial f}{\partial \phi_0} = -K_0 \tan g^2 \zeta \sin q \cos q \sec \phi_0 + K_0 \tan g \zeta \sin q \sec \phi_0 \tan g \phi_0, \\ \frac{\partial \phi}{\partial \phi_0} = -K_0 \tan g^2 \zeta \sin q \cos q \cos \phi_0 - K_0 \tan g \zeta \sin q \sin \phi_0, \\ \frac{\partial \phi}{\partial \phi_0} = -K_0 - K_0 \tan g^2 \zeta \cos^2 q. \end{cases}$$

Il en résulte finalement pour les termes de correction du premier ordre, en désignant par a_1 et b_1 , a'_1 et b'_1 les coefficients de x et y dans les expressions (27) de x'-x et y'-y,

$$\begin{cases}
 a_{1} = K_{0} + K_{0} \tan g^{2} \zeta \sin^{2} q, \\
 b_{1} = K_{0} \tan g^{2} \zeta \sin q \cos q - K_{0} \tan g \zeta \sin q \tan g \Theta_{0}; \\
 a'_{1} = K_{0} \tan g^{2} \zeta \sin q \cos q + K_{0} \tan g \zeta \sin q \tan g \Theta_{0}, \\
 b'_{1} = K_{0} + K_{0} \tan g^{2} \zeta \cos^{2} q; \\
 x' - x = a_{1}x + b_{1}y, \\
 y' - y = a'_{1}x + b'_{1}y.
\end{cases}$$

Les quantités que nous appelons ici a_1 , b_1 , a'_1 et b'_1 ne sont autre chose que les quantités a, b, a' et b' changées de signe.

Examinons maintenant les corrections d'angle de position et de distance dont l'ensemble équivaut aux corrections x'-x et y'-y. En faisant usage des relations :

$$(x^2 + y^2) \Delta \overline{\omega} = -(y \Delta x - x \Delta y),$$

$$(x^2 + y^2) \frac{\Delta S}{S} = -(x \Delta x + y \Delta y),$$

c'est-à-dire

$$(x^2 + y^2) \Delta w = y(x' - x) - x(y' - y),$$

 $(x^2 + y^2) \frac{\Delta S}{S} = x(x' - x) + y(y' - y),$

on obtient

$$\begin{array}{l} \left(\Delta \overline{\omega} = - \, \mathrm{K_0 \, tang} \, \zeta \sin q \, \mathrm{tang} \, (\mathfrak{D_0} - \mathrm{K_0} \left(\frac{xy}{x^2 + y^2} \right) \, \mathrm{tang^2} \, \zeta \cos 2 \, q - \frac{1}{2} \, \mathrm{K_0} \left(\frac{x^2 - y^2}{x^2 + y^2} \right) \, \mathrm{tang^2} \, \zeta \sin 2 \, q, \\ \left(\frac{\Delta S}{S} = - \, \mathrm{K_0} + \, \mathrm{K_0} \left(\frac{x^2 \sin^2 q + y^2 \cos^2 q}{x^2 + y^2} \right) \, \mathrm{tang^2} \, \zeta + \, \mathrm{K_0} \left(\frac{xy}{x^2 + y^2} \right) \, \mathrm{tang^2} \, \zeta \sin 2 \, q. \end{array} \right)$$

On voit que $\Delta \varpi$ et $\frac{\Delta S}{S}$ se composent chacune de deux parties qui sont de l'ordre zéro par rapport à x et y, dont l'une est constante pour tout le cliché, mais dont l'autre varie aux différents points du cliché. La partie constante de $\Delta \varpi$, à savoir — K_0 tang $\zeta \sin q$ tang ω_0 , et la partie constante de $\frac{\Delta S}{S}$, qui est K_0 , pourront être comprises, l'une dans l'orientation du cliché et l'autre dans la valeur de l'échelle; mais il sera nécessaire d'avoir égard à la partie variable de $\Delta \varpi$ et de $\frac{\Delta S}{S}$. On verra plus loin que nous tiendrons compte de ces termes variables en faisant usage d'une orientation et d'une échelle différentes pour la réduction des x et pour celle des y.

Nous avons, dans ce qui précède, traité le coefficient K comme une constante; mais, en réalité, K est fonction de la distance zénithale ζ. Nous admettrons, pour la valeur de la réfraction visuelle moyenne R_ν, l'expression

(46)
$$R_{\nu} = (58'', 315 \operatorname{tang} \zeta - o'', 065 \operatorname{tang}^{3} \zeta) \sin 1''.$$
Alger, Coord. rect.

Nous admettrons de plus que, pour passer de la réfraction visuelle à la réfraction photographique, il faut multiplier la première par le facteur 1,0156; alors nous aurons, pour la réfraction photographique moyenne exprimée en parties du rayon,

(47)
$$R_p = (59'', 225 \tan \zeta - o'', 066 \tan \zeta \sin \iota'',$$

ou bien

(48)
$$R_p = K \tan \zeta,$$

en posant

(49)
$$K = (59'', 225 - o'', 066 \tan g^2 \zeta) \sin \iota''.$$

Le produit 59", 225 sin 1" est ce que nous avons appelé précédemment Ko, et, pour abréger, nous désignerons par m le produit o", 066 sin 1"; alors l'expression de K deviendra

(50)
$$K = K_0 - m \tan g^3 \zeta.$$

Nous devons maintenant introduire dans nos formules les termes qui dépendent de la variation de K par rapport à ζ , c'est-à-dire des termes qui auront en facteur $\frac{dK}{dz}$. On voit aisément que les termes ajoutés aux quatre dérivées partielles du premier ordre des fonctions f et φ par rapport à \mathcal{A}_0 et \mathcal{Q}_0 seront les suivantes :

Termes ajoutés à
$$\frac{\partial f}{\partial \omega_0} \cdots \frac{dK}{d\zeta} \operatorname{tang} \zeta \sin q \operatorname{séc} \omega_0 \frac{\partial \zeta}{\partial \omega_0} = -\frac{dK}{d\zeta} \operatorname{tang} \zeta \sin^2 q,$$

$$\frac{\partial f}{\partial \omega_0} \cdots \frac{dK}{d\zeta} \operatorname{tang} \zeta \sin q \operatorname{séc} \omega_0 \frac{\partial \zeta}{\partial \omega_0} = -\frac{dK}{d\zeta} \operatorname{tang} \zeta \sin q \cos q \operatorname{séc} \omega_0,$$

$$\frac{\partial \varphi}{\partial \omega_0} \cdots \frac{dK}{d\zeta} \operatorname{tang} \zeta \cos q \frac{\partial \zeta}{\partial \omega_0} = -\frac{dK}{d\zeta} \operatorname{tang} \zeta \cos q \sin q \cos \omega_0,$$

$$\frac{\partial \varphi}{\partial \omega_0} \cdots \frac{dK}{\partial \zeta} \operatorname{tang} \zeta \cos q \frac{\partial \zeta}{\partial \omega_0} = -\frac{dK}{d\zeta} \operatorname{tang} \zeta \cos q \sin q \cos \omega_0,$$

$$\frac{\partial \varphi}{\partial \omega_0} \cdots \frac{dK}{\partial \zeta} \operatorname{tang} \zeta \cos q \frac{\partial \zeta}{\partial \omega_0} = -\frac{dK}{d\zeta} \operatorname{tang} \zeta \cos^2 q.$$

Il en résulte l'addition des termes suivants dans les expressions de x'-x et y'-y:

Pour
$$x' - x$$
... $x \frac{dK}{d\zeta} \tan \zeta \sin^2 q + y \frac{dK}{d\zeta} \tan \zeta \sin q \cos q$,
Pour $y' - y$... $y \frac{dK}{d\zeta} \tan \zeta \cos^2 q + x \frac{dK}{d\zeta} \tan \zeta \sin q \cos q$;

alors les expressions définitives de x'-x et y'-y, pour les termes du premier ordre en xet y seront, en laissant de côté les termes

- $Ky \tan g \zeta \sin q \tan g \Omega_0$, et + $Kx \tan g \zeta \sin q \tan g \Omega_0$

qui se confondront, comme on l'a déjà dit, avec la correction d'orientation,

$$\begin{cases} x' - x = \left(K + K \tan^2 \zeta \sin^2 q + \frac{dK}{d\zeta} \tan \zeta \sin^2 q\right) x \\ + \left(K \tan^2 \zeta \sin q \cos q + \frac{dK}{d\zeta} \tan \zeta \sin q \cos q\right) y, \end{cases}$$

$$(51)$$

$$\begin{cases} y' - y = \left(K + K \tan^2 \zeta \cos^2 q + \frac{dK}{d\zeta} \tan \zeta \cos^2 q\right) y \\ + \left(K \tan^2 \zeta \sin q \cos q + \frac{dK}{d\zeta} \tan \zeta \sin q \cos q\right) x, \end{cases}$$

formules dans lesquelles il faut prendre

(52)
$$\frac{dK}{d\zeta} = -2m \tan \zeta \, \text{séc}^2 \zeta.$$

Termes du second ordre. — Il nous reste à calculer les termes du deuxième ordre ou du deuxième degré en x et y. Notre méthode générale les fournit sans difficulté.

Nous avons à former les expressions suivantes d'après les formules (24) et (25):

Pour les abscisses :

Coefficient de
$$x^2$$
... $r = \frac{1}{2} \frac{\partial^2 f}{\partial A_0^2} \operatorname{s\acute{e}c} \mathfrak{O}_0 - \frac{1}{2} \frac{\partial f}{\partial \mathfrak{O}_0} \sin \mathfrak{O}_0 - \frac{\partial \varphi}{\partial A_0} \tan g \mathfrak{O}_0 \operatorname{s\acute{e}c} \mathfrak{O}_0,$

where xy ... $s = \frac{\partial^2 f}{\partial A_0} \frac{\partial \varphi}{\partial \mathfrak{O}_0} - \frac{\partial \varphi}{\partial \mathfrak{O}_0} \tan g \mathfrak{O}_0 - \varphi \operatorname{s\acute{e}c}^2 \mathfrak{O}_0,$

where $t = \frac{1}{2} \frac{\partial^2 f}{\partial \mathfrak{O}_0^2} \cos \mathfrak{O}_0 - \frac{\partial f}{\partial \mathfrak{O}_0} \sin \mathfrak{O}_0.$

Pour les ordonnées :

Coefficient de
$$x^2$$
... $r' = \frac{1}{2} \frac{\partial^2 \varphi}{\partial A_0^2} \operatorname{s\acute{e}c}(\mathbb{P}_0 - \frac{1}{2} \frac{\partial \varphi}{\partial \mathbb{Q}_0} \operatorname{tang} \mathbb{Q}_0 + \frac{1}{2} \varphi (1 - \operatorname{tang}^2 \mathbb{Q}_0) + \frac{\partial f}{\partial A_0} \operatorname{tang} \mathbb{Q}_0,$

$$xy... \quad s' = \frac{\partial^2 \varphi}{\partial A_0 \partial \mathbb{Q}_0} \operatorname{s\acute{e}c} \mathbb{Q}_0 + \frac{\partial \varphi}{\partial A_0} \operatorname{tang} \mathbb{Q}_0 \operatorname{s\acute{e}c} \mathbb{Q}_0 + \frac{\partial f}{\partial \mathbb{Q}_0} \sin \mathbb{Q}_0,$$

$$y^2... \quad t' = \frac{1}{2} \frac{\partial^2 \varphi}{\partial \mathbb{Q}_0^2}.$$

Si l'on emploie ces expressions de r, s, t, r', s', t', on aura à différentier par rapport à λ_0 et ω_0 les formules (40), en tenant compte des relations (38) par lesquelles ces variables sont liées à ζ et q.

XXXVI

On peut aussi faire usage des formules (26 bis), savoir :

$$r = -\frac{1}{2}(b + a') \operatorname{tang} \mathfrak{D}_0 + \frac{1}{2} \frac{\partial a}{\partial z b_0} \operatorname{s\acute{e}c} \mathfrak{D}_0,$$

$$s = \frac{\partial a}{\partial \mathfrak{D}_0}, \quad \text{ou bien} \quad s = \frac{\partial b}{\partial z b_0} \operatorname{s\acute{e}c} \mathfrak{D}_0 - b' \operatorname{tang} \mathfrak{D}_0 + \varphi \operatorname{s\acute{e}c}^2 \mathfrak{D}_0,$$

$$t = \frac{1}{2} \left(\frac{\partial b}{\partial \mathfrak{D}_0} - b \operatorname{tang} \mathfrak{D}_0 \right),$$

$$r' = \frac{1}{2} \varphi \operatorname{s\acute{e}c}^2 \mathfrak{D}_0 + \left(a - \frac{1}{2} b' \right) \operatorname{tang} \mathfrak{D}_0 + \frac{1}{2} \frac{\partial a'}{\partial z b_0} \operatorname{s\acute{e}c} \mathfrak{D}_0,$$

$$s' = \frac{\partial a'}{\partial \mathfrak{D}_0} + b' \operatorname{tang} \mathfrak{D}_0, \quad \text{ou bien} \quad s' = \frac{\partial b'}{\partial z b_0} \operatorname{s\acute{e}c} \mathfrak{D}_0 + a' \operatorname{tang} \mathfrak{D}_0 + b \operatorname{tang} \mathfrak{D}_0,$$

$$t' = + \frac{1}{2} \frac{\partial b'}{\partial \mathfrak{D}_0}.$$

Dans ce dernier cas, le calcul est un peu plus rapide; on obtient, pour les dérivées partielles de a_1 , b_1 , a'_1 , b'_1 , en se rappelant que l'on a posé

$$a_1 = -a$$
, $b_1 = -b$, $a'_1 = -a'$, $b'_1 = -b'$,

les expressions suivantes :

$$\begin{split} \frac{\partial a_1}{\partial \cdot \mathbf{b_0}} &= \ \ 2\,\mathrm{K}\, \mathrm{tang} \zeta \sin q \cos \mathfrak{D}_0 - 2\,\mathrm{K}\, \mathrm{tang}^2 \zeta \sin q \cos q \sin \mathfrak{D}_0 + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin^3 q \cos \mathfrak{D}_0, \\ \frac{\partial a_1}{\partial \cdot \mathbf{b_0}} &= -2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin^2 q \cos q, \\ \frac{\partial b_1}{\partial \cdot \mathbf{b_0}} &= -\,\mathrm{K}\, \sin \mathfrak{D}_0 + \mathrm{K}\, \mathrm{tang} \zeta \cos q \, \mathrm{sec}\, \mathfrak{D}_0 - \mathrm{K}\, \mathrm{tang}^2 \zeta \cos^2 q \sin \mathfrak{D}_0 + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin^2 q \cos q \cos \mathfrak{D}_0, \\ \frac{\partial b_1}{\partial \cdot \mathbf{b_0}} &= -\,\mathrm{K}\, \mathrm{tang} \zeta \sin q \, (\mathrm{I} + \mathrm{sec}^2 \mathfrak{D}_0) - \mathrm{K}\, \mathrm{tang}^2 \zeta \sin q \cos q \, \mathrm{tang}\, \mathfrak{D}_0 + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin q \cos^2 q, \\ \frac{\partial a_1'}{\partial \cdot \mathbf{b_0}} &= -\,\mathrm{K}\, \mathrm{tang} \zeta \cos q \, (\cos \mathfrak{D}_0 - \mathrm{tang}\, \mathfrak{D}_0 \sin \mathfrak{D}_0) \\ &- \mathrm{K}\, \mathrm{tang}^2 \zeta \sin \mathfrak{D}_0 (\cos^2 q - 2 \sin^2 q) + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin^2 q \cos q \cos \mathfrak{D}_0, \\ \frac{\partial a_1'}{\partial \cdot \mathfrak{D}_0} &= -\,\mathrm{K}\, \mathrm{tang} \zeta \sin q \, \mathrm{tang}^2 \mathfrak{D}_0 + \,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin q \cos q \, \mathrm{tang}\, \mathfrak{D}_0 + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin q \cos^2 q, \\ \frac{\partial b_1'}{\partial \cdot \mathfrak{D}_0} &= 2\,\mathrm{K}\, \mathrm{tang}^2 \zeta \sin q \cos q \sin \mathfrak{D}_0 + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \sin q \cos^2 q \cos \mathfrak{D}_0, \\ \frac{\partial b_1'}{\partial \cdot \mathfrak{D}_0} &= 2\,\mathrm{K}\, \mathrm{tang} \zeta \cos q + 2\,\mathrm{K}\, \mathrm{tang}^3 \zeta \cos^2 q. \end{split}$$

En substituant ces expressions ainsi que celles de a, b, a', b' dans les formules (26 bis), on obtient, pour les coefficients des termes du second degré en x et y de la réfraction

différentielle,

```
r = K \tan \zeta \sin q + K \tan \zeta \sin^3 \zeta \sin^3 q,

s = 2K \tan \zeta \sin^2 q \cos q,

t = K \tan \zeta \sin q + K \tan \zeta \sin q \cos^2 q;

r' = K \tan \zeta \cos q + K \tan \zeta \sin^2 \zeta \sin^2 q \cos \gamma,

s' = 2K \tan \zeta \cos q + K \tan \zeta \cos^2 q,

t' = K \tan \zeta \cos q + K \tan \zeta \cos^2 q.
```

Ici, dans les expressions de a_i , b_i , a'_i , b'_i et de leurs dérivées partielles, nous avons négligé la variation de K par rapport à la distance zénithale ζ .

Les corrections résultant de l'application de ces termes aux coordonnées rectilignes ne dépasseront jamais deux centièmes de seconde d'arc; on pourra donc toujours les négliger.

Dans le Chapitre où nous traitons des méthodes employées pour la détermination des constantes d'un cliché au moyen des étoiles de repère, on verra comment les termes du premier ordre sont englobés dans les corrections de l'orientation et de l'échelle, et comment sont construites nos Tables de réfraction.

III. — EXÉCUTION DES CLICHÉS, MESURES, RÉDUCTION DES MESURES ET DÉTERMINATION DES GRANDEURS PHOTOGRAPHIQUES.

Nous allons d'abord donner quelques détails sur les procédés que nous employons pour l'impression du réseau sur les plaques sensibles et pour la mise au point de la lunette photographique.

Impression du réseau. — En ce qui concerne l'impression du réseau, nous nous servons d'une lampe à pétrole et d'un miroir parabolique de o^m, 30 d'ouverture et de 2^m de foyer. La lampe est enfermée dans une boîte et celle-ci porte un petit diaphragme ne laissant passer que la lumière de la partie centrale et la plus brillante de la flamme. Le centre du diaphragme se trouve dans le plan focal du miroir et un peu en dehors de l'axe principal. Le châssis contenant le réseau et la plaque sensible, qui doit en recevoir l'impression, est introduit dans une monture établie à poste fixe sur un mur, et le miroir est orienté de manière que le faisceau réfléchi soit normal au plan du réseau et que le centre de la section déterminée par ce plan coïncide avec le centre même du réseau.

Mise au point de la lunette photographique. — La question de savoir si la mise au point serait faite pour le centre du cliché avait été examinée d'une manière incidente dans la Conférence internationale de 1889 à propos de cet article du programme de ladite Conférence : « Quel sera le maximum admissible de déformation des images stellaires? » On s'accordait à reconnaître qu'il était impossible de formuler aucune règle précise à cet égard, et qu'il suffirait d'énoncer la condition générale à laquelle on devrait s'efforcer de satisfaire, à savoir d'obtenir la plus grande uniformité possible pour la distri-

bution de la lumière dans les images des étoiles. En outre, comme la mise au point de la lunette influe certainement sur l'ellipticité des images, on demanda comment se ferait la mise au foyer. On pouvait, en effet, convenir de mettre au point pour le centre même du cliché, acceptant ainsi, pour les parties éloignées du centre, des allongements inévitables des images, allongements qui ne diminuent pas la précision des mesures s'ils présentent une symétrie suffisante par rapport à deux axes; ou bien on pouvait désirer ne pas exagérer les ellipticités, et, pour cela, répartir les défectuosités en mettant la lunette au foyer pour un point situé en dehors du centre de la plaque. La Conférence fut d'avis d'ajourner toute décision à cet égard et de ne résoudre la question que lorsque les Observatoires participants seraient en possession de leurs instruments. Mais, en fait, la question n'a jamais été résolue. En ce qui nous concerne, nous avons adopté, comme règle, de mettre au foyer pour un point situé sur le méridien central et à 40' de distance en déclinaison du centre du cliché. Nous avons reconnu, en effet, qu'on obtient par ce moyen une définition très uniforme des images dans tout le champ.

Le procédé que nous avons employé le plus souvent consiste dans l'examen de traces d'étoiles placées symétriquement par rapport au point qui vient d'être défini. Nous avons aussi, quand les circonstances le permettaient, fait usage des traces d'une étoile double dont les composantes avaient sensiblement le même éclat. Ce dernier procédé est certainement le meilleur, car il permet aisément de mettre au point avec une précision telle que l'incertitude ne dépasse pas o^{mm}, 25 sur une distance focale de 3^m, 43.

Orientation des plaques. — Nous laissons courir l'image d'une étoile sur une plaque ayant déjà reçu l'impression latente du réseau; après le développement, nous mesurons, en deux points également distants du méridien central, les distances de la trace de l'étoile au trait de déclinaison le plus voisin sur le réseau. Ayant ainsi l'inclinaison du réseau par rapport à la direction du mouvement diurne, il est facile de rectifier, s'il y a lieu, l'orientation du porte-châssis sur le corps de la lunette. Nous avons d'ailleurs reconnu que, hors le cas d'une très forte variation de température, il était parfaitement suffisant de vérifier l'orientation du châssis, comme la mise au point, de temps en temps, une fois tous les mois, par exemple.

Exécution des clichés. — Nous avons suivi à cet égard la résolution adoptée par la Conférence internationale de 1891, et ainsi conçue: « Pour les clichés du Catalogue, il y aura deux poses sur la même plaque, l'une montrant faiblement les images des étoiles de 11° grandeur, l'autre d'une durée deux fois plus grande, et la distance des deux images sera de $\frac{2}{10}$ à $\frac{3}{10}$ de millimètre. »

Les temps de pose employés ont été de 5 minutes et 2 minutes 30 secondes; en passant de la première pose à la seconde, on a toujours déplacé l'instrument en déclinaison. Pour les cas où devaient se trouver des étoiles brillantes sur le cliché, on a augmenté la distance des deux images afin d'éviter leur contact ou leur empiétement. Enfin, conformément à la proposition faite par M. Christie (Bulletin du Comité permanent, t. II, p. 63 et 64), nous avons effectué une pose supplémentaire de 20 secondes. Les mesures des coordonnées concernent exclusivement les poses de 5 minutes et 2 minutes 30 secondes; mais, au point de vue de la discussion du cliché, la pose supplémentaire de 20 secondes offre

des avantages dont le principal est le suivant : tous les clichés contenant certainement plusieurs étoiles d'un éclat égal ou supérieur à celui d'une 9°, on pourra, par une simple inspection, reconnaître si l'absence des étoiles de la grandeur limite 11 sur le cliché s'explique par l'existence de brumes dans l'atmosphère au moment de l'exposition ou par une condensation de vapeur d'eau sur l'objectif.

Toutes les opérations relatives à l'impression des réseaux, à l'exécution et au développement des clichés ont été effectuées par M. Renaux, astronome-adjoint, avec le concours d'un auxiliaire attaché à l'Observatoire.

Je ne puis me dispenser de dire ici tout ce que l'on doit à M. Renaux pour le zèle et pour l'habileté vraiment supérieure dont il a fait preuve dans l'accomplissement d'une tâche absorbante, difficile et d'une importance très grande. Voici d'ailleurs, suivant l'ordre chronologique, les noms des observateurs et des auxiliaires dont nous avons utilisé la collaboration pour le service de la photographie céleste depuis le commencement de l'année 1891 jusqu'à la fin de la présente année 1903 : MM. Rabourdin, Deshayes, Évrard, Villatte et Pluche.

MESURE DES CLICHÉS.

Les coordonnées de chaque étoile sont déterminées par deux observateurs différents. Le premier mesure toute une bande d'ascension droite sans quitter la machine; le second reprend cette même bande en sens inverse. Tous les deux mesurent d'abord les abscisses, puis les ordonnées. Le nombre total des pointés (traits du réseau et images de l'étoile) est de 8 pour chacune des coordonnées. Les choses sont combinées de telle sorte que toute image d'un trait du réseau ou d'une étoile, pointée par l'un des observateurs en vissant, est pointée par l'autre en dévissant. Dans ces conditions, nous avons trouvé qu'il n'existe point, pour nos observateurs, d'erreurs systématiques appréciables dépendant de la grandeur des étoiles.

Les mesures sont faites dans une seule position du cliché; les grandeurs photographiques sont estimées d'une manière indépendante par chacun des observateurs, suivant la méthode qui sera indiquée plus loin. Pour les étoiles les plus brillantes, cette méthode ne pouvant donner des résultats suffisamment exacts, les diamètres sont l'objet de mesures micrométriques directes.

Par de nombreuses expériences, nous avons trouvé que, pour aucun de nos couples d'observateurs, l'erreur probable ne dépasse o'', 12 pour la mesure d'une coordonnée.

Conversion des résultats bruts des mesures en abscisses et en ordonnées. — La distance de deux traits consécutifs du réseau ne correspond pas, en général, exactement à 5 tours de la vis micrométrique. Des Tables numériques ont été construites pour faciliter le calcul des corrections résultant de ces inégalités.

A ces corrections il faudrait ajouter celles qui proviennent des erreurs, soit progressives, soit périodiques de la vis, et des erreurs du réseau. Les deux vis d'ascension droite et de déclinaison de l'appareil qui nous a servi pour les mesures des clichés du Catalogue photographique ont été étudiées à diverses reprises par plusieurs observateurs, et nous

avons trouvé que, dans aucun cas, l'erreur ne dépassait o", o2; on peut donc la considérer comme entièrement négligeable.

En ce qui concerne les réseaux, ceux que M. P. Gautier nous a livrés sont d'une perfection telle qu'il nous a été impossible, malgré de nombreuses tentatives, d'en déterminer les erreurs avec une certitude suffisante. Non seulement l'erreur totale en chacune des intersections du réseau est très petite et atteint à peine quelques centièmes de seconde d'arc, mais on n'est jamais certain d'en avoir déterminé exactement le signe et, lorsqu'on cherche à évaluer l'erreur probable, on trouve qu'elle est une fraction notable, le tiers ou même la moitié de la quantité à déterminer.

Dans ces conditions, il nous a paru tout à fait illusoire d'appliquer aux coordonnées mesurées les erreurs provenant du réseau.

Nous avons, en outre, regardé la valeur du tour de vis ou de l'échelle comme constante dans toute l'étendue d'un cliché.

En conséquence, nous admettons que chacune des coordonnées X et Y, fournies au calculateur sous le nom de coordonnée mesurée, se trouve exprimée au moyen d'une unité de longueur qui est la cinquième partie d'un intervalle constant, celui de deux traits consécutifs du réseau.

Dès que les mesures d'un cliché sont achevées, et avant qu'il soit procédé à la réduction préalable, c'est-à-dire au calcul des moyennes et à la conversion des résultats bruts en abscisses et en ordonnées, les mesures sont transcrites sur un second registre. Les moyennes et les conversions sont alors effectuées d'une manière tout à fait indépendante sur le registre original et sur le registre de transcription.

Dans les fascicules aujourd'hui publiés de notre Catalogue photographique on trouvera, pour chacun des clichés qu'ils contiennent, et à la suite des notes concernant ce cliché, les initiales des observateurs qui ont fait les mesures, savoir :

B., Observateur BERTRAND.
C., D CROISÉ.
E., D EVRARD.
G., D GAULTIER.

Il convient maintenant d'indiquer les précautions prises dans le but d'assurer la plus grande exactitude possible aux Tableaux de coordonnées rectilignes qui forment le Catalogue photographique et d'après lesquels on a calculé les éléments des clichés. D'abord, les feuilles manuscrites de ces Tableaux ont toujours été préparées en double par deux calculateurs de l'Observatoire: MM. Gaultier et Thivin. L'une des copies a été faite d'après le registre original, l'autre d'après le registre de transcription; puis les deux copies ont été comparées entre elles avec l'attention la plus scrupuleuse. Lorsque ces Tableaux nous sont revenus de l'imprimerie en épreuves, nous n'avons donné le bon à tirer d'aucune feuille avant d'avoir fait replacer chacun des clichés originaux sous le microscope de l'appareil de mesures, et constaté, par un pointé rapide, que toute étoile cataloguée se trouvait bien, à un centième de minute près sur le cliché, à la place marquée par le Catalogue. Cette méthode de vérification est longue et pénible en raison du très grand

nombre d'étoiles auquel on doit l'appliquer, mais elle permet d'éliminer les erreurs matérielles les plus fréquentes et les plus à redouter, à savoir les erreurs portant sur le nombre des minutes d'arc ou sur le signe de l'une des coordonnées. MM. Gaultier et Pluche sont les observateurs dont nous avons généralement utilisé le concours pour l'exercice de ce contrôle. Nous avons, fréquemment aussi, mis à profit l'assistance de MM. Rambaud et Sy, aides-astronomes, soit pour les travaux de revision dont il s'agit, soit pour d'autres recherches concernant la précision des mesures photographiques.

Nous donnons, dans la suite de ce Mémoire, les méthodes employées à l'Observatoire d'Alger pour convertir les coordonnées mesurées en minutes d'arc, ainsi que pour tenir compte de l'erreur d'orientation de la plaque et pour déterminer la correction du centre du cliché.

Détermination des grandeurs photographiques.

Les grandeurs photographiques données dans le Catalogue des coordonnées rectilignes sont essentiellement des grandeurs relatives ou, pour parler d'une manière plus exacte, ce sont des diamètres exprimés en grandeurs stellaires d'après une échelle adoptée de diamètres correspondant à une échelle de grandeurs.

Cette échelle est la suivante, fondée sur les mesures photométriques des étoiles-types Kapteyn-Pritchard :

	Grandeur	•	Grandeur photographique. 9,59	
Diamètre.	photographique.	Diamètre.		
8,0	8,09	5″,0		
7,8	8,17	4,8	9,72	
7,6	8,25	4,6	9,85	
7,4	8,34	4,4	9,99	
7,2	8,42	4,2	10,14	
7,0	8,51	4,0	10,30	
6,8	8,61	3,8	10,46	
6,6	8,70	3,6	10,63	
6,4	8,80	3,4	10,82	
6,2	8,90	3,2	11,01	
6,0	9,01	3,0	11,21	
5,8	9,12	2,8	11,43	
5,6	9,23	2,6	11,67	
5,4	9,34	2,4	11,93	
5,2	9,46			

C'est l'échelle moyenne qui se trouve établie dans mon Mémoire sur la détermination des grandeurs photographiques des étoiles du Catalogue, faisant partie du Tome II du Bulletin du Comité permanent, pages 383 à 428.

Les diamètres des images stellaires n'ont pas été mesurés micrométriquement; ils ont été estimés par comparaison avec la distance des deux fils parallèles de l'un des couples de fil du micromètre, puis transformés immédiatement par l'observateur, et d'une manière pour ainsi dire intuitive, en grandeurs. Ceci demande quelques explications:

Si l'on suppose que l'intervalle des fils du couple employé conserve la valeur invariable

Alger, Coord. rect.

de 8",0, on voit, d'après le Tableau précédent, qu'à toute étoile dont l'image remplit exactement la distance des sils, l'échelle moyenne attribue la grandeur photographique 8,1; que toute étoile dont le diamètre est les $\frac{9}{10}$ de la distance des sils est considérée comme étant de la grandeur 8,4 et ainsi de suite. On a, en désinitive, le Tableau de correspondance que voici, en prenant pour unité l'intervalle invariable de 8",0:

Diamètre.	Grandeur photographique.	
1,0	8,1	
0,9	8,4	
0,8	8,8	
0,7	9,2	
0,6,	9,7	
0,5	10,3	
0,4	11,0	
1	. 11,5	

Le diamètre de ½, soit 2″,67 ou oum, 045, correspondant à la grandeur 11,5 dans les conditions de notre échelle moyenne, est ce que j'ai considéré comme la limite des images mesurables. Entre les limites o, 5 et ½, qui correspondent aux grandeurs 10,3 et 11,5, les images ne sont pas toujours parfaitement noires; alors il est probable que la grandeur n'est plus fonction du diamètre seul, mais il est certain que, dans tous les cas de cette nature, la détermination de la grandeur est sujette à de fortes incertitudes, quelle que soit la méthode employée.

L'expérience nous a montré que tout observateur, après s'être bien pénétré de cette correspondance entre les fractions de l'intervalle des fils et les grandeurs, arrive très facilement, en quelques jours d'exercice, à énoncer la grandeur par la simple comparaison de l'intervalle des fils avec l'image de l'étoile, intuitivement ramenée à la forme circulaire, quand, par suite de sa position excentrique sur le cliché, l'image de l'étoile présente un allongement sensible.

On a reconnu d'ailleurs que, dans l'intérieur d'un cercle de 50' de rayon, les allongements restent peu considérables. En dehors de ce cercle, ils augmentent rapidement, et l'incertitude des évaluations de grandeur croît en même temps; mais les étoiles de cette région éloignée du centre du cliché se retrouvent dans la région centrale du cliché adjacent, et, par conséquent, dans des conditions favorables pour l'évaluation de la grandeur.

Pour exercer les observateurs à l'application de cette méthode, on leur fait estimer sur un cliché les grandeurs de plusieurs centaines d'étoiles, dont les diamètres ont été préalablement mesurés avec beaucoup de soin, de manière à se procurer les éléments nécessaires pour calculer les grandeurs des étoiles et pouvoir ainsi contrôler les résultats obtenus par l'estime.

En comparant deux séries d'estimations faites sur un même cliché par le même observateur et d'une manière tout à fait indépendante, à plusieurs jours de distance, on a trouvé que, dans aucun cas, l'erreur probable d'une évaluation isolée ne dépassait ogr, 09; et ce résultat ne diffère pas sensiblement de celui que l'on obtient pour l'erreur probable

d'une grandeur calculée d'après les mesures micrométriques, avec un seul pointé sur chacun des deux bords des images stellaires dans la direction des deux axes de leur ellipse.

Dans ce qui précède, j'ai supposé que l'intervalle des fils auquel on comparait les diamètres des étoiles photographiées avait une valeur constante; il est à peine nécessaire de dire maintenant que l'on détermine la valeur de cet intervalle au commencement et à la fin de chacune des séries de mesures effectuées sur un cliché. Une Table permet ensuite de corriger les grandeurs en tenant compte de la différence entre la valeur actuelle de l'intervalle des fils et sa valeur théorique de 8″, o.

Les grandeurs ainsi corrigées sont celles que nous inscrivons sur les feuilles du Catalogue des coordonnées rectilignes. Pour obtenir leurs corrections relatives à la soirée de la pose, il nous faudrait avoir à notre disposition les grandeurs photographiques absolues d'un certain nombre des étoiles du cliché; nous n'en sommes pas encore là. Cependant, pour apprécier, dans une certaine mesure, l'influence de la soirée d'observation, et afin de préparer une base pour les discussions ultérieures, nos grandeurs photographiques relatives sont comparées aux valeurs correspondantes des zones d'Argelander; les résultats moyens de cette comparaison sont imprimés, dans le Catalogue, sous la désignation Δm à la suite des Notes concernant chaque cliché, et avec les initiales des observateurs.

Ce que nous appelons ici Δm est la moyenne des différences entre les grandeurs d'Argelander et les grandeurs estimées photographiquement. En désignant par m_a la grandeur d'Argelander pour une étoile du Catalogue, par m_p la grandeur photographique estimée de cette étoile, et par N le nombre des étoiles comparées, nous avons donc

$$\Delta m = \frac{\Sigma (m_a - m_g)}{N}.$$

Nous donnons également, avec le nombre N, l'erreur probable ε de la différence Δm , déduite au moyen de l'ensemble des valeurs individuelles $(m_a - m_p)$.

IV. — MÉTHODES EMPLOYÉES POUR LA DÉTERMINATION DES CONSTANTES D'UN CLICHÉ AU MOYEN DES ÉTOILES DE REPÈRE.

Nous allons d'abord rappeler un certain nombre de formules établies dans la première section de ce Mémoire.

Soient

- α, δ l'ascension droite et la déclinaison, pour 1900, d'une étoile dont l'image se trouve sur un cliché (α et δ étant corrigées, s'il y a lieu, du mouvement propre pour l'époque à laquelle a été photographié le cliché);
- Ao, Oo l'ascension droite et la déclinaison du centre du cliché pour l'époque 1900,0;
- X_c , Y_c les coordonnées rectangulaires vraies de l'étoile considérée, calculées au moyen des coordonnées équatoriales α , δ , A_0 , O_0 , et exprimées en minutes d'arc.

Les expressions rigoureuses de X_c , Y_c , en fonction de δ , ω_o , et de la différence $\alpha - \omega_o$, sont les suivantes

$$\begin{cases} X_c \sin i' = \frac{\cos \delta \sin(\alpha - \delta l_0)}{\sin \delta \sin \omega_0 + \cos \delta \cos(\omega_0 \cos(\alpha - \delta l_0))}, \\ Y_c \sin i' = \frac{\sin \delta \cos(0_0 - \cos \delta \sin(0_0 \cos(\alpha - \delta l_0))}{\sin \delta \sin(0_0 + \cos \delta \cos(0_0 \cos(\alpha - \delta l_0))}, \end{cases}$$

qui équivalent à celles-ci

(2)
$$\begin{cases} X_c \sin i' = \tan g (\alpha - \delta b_0) \sec \eta \cos (\Theta_0 + \eta_i), \\ Y_c \sin i' = \tan g \eta_i, \end{cases}$$

dans lesquelles on a posé

$$tang(\mathfrak{O}_0 + \tau_i) = tang\delta \, sec(\alpha - \mathfrak{J}_0).$$

Transformation de ces formules pour le calcul pratique des X_c et des Y_c.

1º Expression des X_c. — En posant

(3)
$$\lambda = \operatorname{s\acute{e}c} \eta \cos(\mathfrak{O}_0 + \eta),$$

nous avons

(4)
$$X_c \sin x' = \lambda \tan (\alpha - \lambda_0) = \tan (\alpha - \lambda_0) + (\lambda - x) \tan (\alpha - \lambda_0).$$

On a, d'ailleurs, identiquement

(5)
$$\tan g (\alpha - \mathcal{A}_0) = \alpha - \mathcal{A}_0 + [\tan g (\alpha - \mathcal{A}_0) - (\alpha - \mathcal{A}_0)].$$

Il en résulte

(6)
$$X_{c} \sin 1' = \alpha - \lambda_{0} + \tan \alpha (\alpha - \lambda_{0}) - (\alpha - \lambda_{0}) + (\lambda - 1)(\alpha - \lambda_{0}) + (\lambda - 1)[\tan \alpha (\alpha - \lambda_{0}) - (\alpha - \lambda_{0})].$$

La différence $\alpha - \lambda_0$ sera donnée en secondes de temps; exprimons-la par $(\alpha - \lambda_0)_s$ tandis que sa valeur en minutes d'arc sera représentée par $(\alpha - \lambda_0)'$. On aura

$$(\alpha - \lambda_0)' = \frac{1}{4} (\alpha - \lambda_0)_s$$

et la formule (6) montre qu'on obtiendra la valeur de X_c en minutes d'arc en ajoutant à $\frac{1}{4}(\alpha - \varepsilon V_0)_s$ les trois corrections suivantes

(7)
$$\begin{cases} \beta_1 = \frac{1}{\sin 1} \left[\tan g(\alpha - \mathcal{A}_0)' - (\alpha - \mathcal{A}_0)' \right], \\ \beta_2 = (\alpha - \mathcal{A}_0)' (\lambda - 1), \\ \beta_3 = \beta_1 (\lambda - 1), \end{cases}$$

c'est-à-dire que l'expression X_c en minutes d'arc sera

(8)
$$X_{c} = \frac{1}{4} (\alpha - \lambda_{0})_{s} + \beta_{1} + \beta_{2} + \beta_{3}.$$

La troisième correction $\beta_1(\lambda - 1)$ sera toujours négligeable.

La Table I, qui se trouve à la suite de cette Introduction et qui est commune à toutes les zones, donne la correction β_i en dix-millièmes de minute d'arc.

On verra un peu plus loin (p. xLVII et XLVIII) comment nous réduisons en Table le facteur $\lambda - 1$ de la correction β_2 et la correction β_2 elle-même.

2º Expression des Y_c. — La troisième des formules (2) peut s'écrire

(9)
$$tang \delta = tang(\mathfrak{O}_0 + \tau_i) \cos(\alpha - \mathfrak{A}_0);$$

par une théorie connue on en déduit pour δ la série suivante :

(10)
$$\hat{o} = \mathfrak{D}_0 + \eta - \frac{1}{\sin 1'} \tan g^{\frac{1}{2}} (\alpha - \mathcal{A}_0) \sin 2(\mathfrak{D}_0 + \eta) + \frac{1}{2 \sin 1'} \tan g^{\frac{1}{2}} (\alpha - \mathcal{A}_0) \sin 4(\mathfrak{D}_0 + \eta) - \frac{1}{3 \sin 1'} \tan g^{\frac{1}{2}} (\alpha - \mathcal{A}_0) \sin 6(\mathfrak{D}_0 + \eta) + \dots$$

Pour les zones d'Alger, c'est-à-dire depuis $\omega_0 = -2^{\circ}$ jusqu'à $\omega_0 = +4^{\circ}$, le premier terme du développement trigonométrique suffira toujours. Le deuxième terme ne deviendra sensible que pour des déclinaisons élevées; mais, même pour la déclinaison 80°, on pourra encore limiter le développement au deuxième terme.

En posant

(11)
$$d'_{1} = \frac{1}{\sin 1'} \tan g^{2} \frac{1}{2} (\alpha - \lambda_{0}) \sin 2(\Omega_{0} + \tau_{i}),$$

nous aurons, pour l'expression de la déclinaison E, la formule

$$\delta = \omega_0 + \eta - d_1'.$$

La correction d'_{\bullet} déterminée par la formule (11) se trouve évaluée en minutes et elle est toujours de même signe que $\omega_{\bullet} + \eta$.

Pour les zones d'Alger, la valeur absolue de d'_1 sera toujours inférieure à o', 05, c'està-dire à 3 secondes d'arc. Nous avons calculé une Table (la Table III) qui donne cette correction pour chaque minute de l'argument $(\alpha - A_0)'$ et pour chaque dizaine de minutes de l'argument $O_0 + \eta$ ou δ .

La formule (12) nous permet de donner une forme très simple et très commode à l'expression de Y_c. Nous avons d'abord, par la seconde des formules (2),

$$Y_c \sin \iota' = \tan g \eta$$
,

ce qui peut s'écrire

$$Y_c \sin i' = \eta + (\tan \eta - \eta).$$

En supposant η exprimé en minutes d'arc, puis faisant

$$\beta_1 = \tan \alpha_1 - \eta_1,$$

et substituant l'expression de n tirée de la formule (12), nous obtenons

$$Y_c = \delta - \mathfrak{O}_0 + \beta_1' + d_1'.$$

La correction β'_1 qui entre ainsi dans le calcul des Y_c a le signe de η ; elle a la même signification que la correction β_1 pour le calcul des X_c , mais elle a pour argument η au lieu de $\alpha - \lambda_0$. Or nous avons la relation

$$\eta = \delta - \mathcal{O}_0 + d_1 \quad \text{[formule (12)]};$$

mais, à cause de la petitesse du terme d'_i , nous prendrons simplement $\partial - \omega_0$ pour l'argument de la correction β'_i .

La même Table I, qui donne β_i avec l'argument $\alpha - A_0$ pour le calcul de X_c , fournira donc aussi β'_i avec l'argument $\delta - \Phi_0$ pour le calcul des Y_c .

Quant à la correction d'_{i} , on voit par la formule (11) qu'elle dépend des deux arguments $\alpha - \lambda_{0}$ et $\mathfrak{D}_{0} - \eta$. Or la quantité η est encore inconnue, puisqu'elle est liée à d'_{i} par la relation

$$\mathfrak{Q}_0 + \eta = \delta + d_1;$$

mais on pourra procéder par approximations successives. Négligeant d'abord d'_1 dans la relation précédente, nous entrerons dans la Table III avec l'argument horizontal δ et nous en tirerons une valeur approchée de d'_1 ; soit $(d'_1)_1$ cette valeur approchée.

Entrant de nouveau dans la Table, mais cette fois avec l'argument horizontal $\delta + (d'_4)_4$, nous obtiendrons une nouvelle valeur approchée $(d'_4)_2$, et ainsi de suite.

Pour les zones d'Alger, la première approximation obtenue avec l'argument δ suffira toujours. Examinons le cas pour des zones de déclinaison plus élevées, par exemple pour $\omega_0 = 24^{\circ}$.

Nous prendrons pour la différence $\alpha - \lambda_0$ et pour la déclinaison δ d'une étoile du cliché les plus grandes valeurs $(\alpha - \lambda_0)_m$ et δ_m compatibles avec la déclinaison du centre. Ces valeurs sont aisément déterminées par les formules

$$\tan g(\alpha - \mathcal{A}_0)_m = X_m \sin i' \cos \eta_m \operatorname{sec}(\mathbb{Q}_0 + \eta_i)_m,$$

$$\tan g \delta_m = \tan g(\mathbb{Q}_0 + \eta_i)_m \cos(\alpha - \mathcal{A}_0)_m,$$

dans lesquelles on fait

$$X_m = 65', \quad \eta_m = 65'.$$

On trouve ainsi

$$(\alpha - \lambda_0)_m = 1^{\circ} 11' 44'', 70, \quad \delta_m = 25^{\circ} 4' 42'', 91.$$

Calculons maintenant d'_{i} par la formule (11) en adoptant successivement pour l'argument $\mathfrak{D}_{0} + \eta$ sa valeur approchée δ_{m} et sa valeur exacte $(\mathfrak{D}_{0} + \eta)_{m}$. Nous trouverons :

Ainsi, dans le cas le plus défavorable, la différence entre les deux valeurs de d'_i n'atteint pas un dix-millième de minute. Il serait donc encore permis, pour cette zone 24° , de substituer l'argument δ à l'argument $\mathfrak{D}_0 + \eta$ dans le calcul de la correction d'_i .

Réduction en Table du facteur $\lambda - 1$ et de la correction β_2 . — D'après son expression résultant de la formule (3), le facteur $\lambda - 1$ est nul pour la zone équatoriale, c'est-à-dire pour $\omega_0 = 0$. Si l'on attribue à η les plus grandes valeurs compatibles avec les dimensions du cliché, on trouve que la valeur absolue de $\lambda - 1$ n'atteint jamais 0,00% dans la zone 4° et 0,095 dans la zone 24°.

Pour une zone déterminée, de déclinaison ϖ_0 , il est très facile de construire une Table des valeurs de $\lambda - \iota$, avec l'argument η variant de minute en minute. On en déduit ensuite une Table fournissant les valeurs du produit $(\alpha - \lambda_0)(\lambda - \iota)$, c'est-à-dire de la correction β_2 .

Nous avons fait ce travail pour les valeurs de ω_0 relatives à nos zones d'Alger. On en trouve les éléments dans le Tableau suivant qui donne les valeurs de $\lambda-1$ pour chaque dizaine de minutes de l'argument η depuis -70' jusqu'à +70'. Les valeurs de $\lambda-1$ sont exprimées en unités de la sixième décimale.

	Ф₀.						
<i>T</i> _i .	-2°.	— 1°.	0•.	+ 1°.	+ 2°.	+ 3°.	+ 4°.
- 70 [']	— 1320	— 508	0	+ 203	+ 103	— 305	— 1015
6о	1218	457	o	152	o	457	1218
50	1117	406	o	102	- 102	609	1421
40	1015	3 55	o	+ 51	203	761	1624
3о	914	305	o	o	305	914	1827
20	618	254	0	— 5ı	406	1066	2030
— 10	711	203	0	102	508	1218	2233
0	609	152	0	152	609	1 3 70	2436
+ 10	508	102	o	203	711	1523	2639
20	406	— 5ı	0	254	812	1675	2842
30	305	o	0	305	914	1827	3045
40	203	+ 51	o	355	1015	1979	32.18
5 0	- 102	102	0	406	1117	2132	3451
6о	o	152	o	457	1218	2284	3654

Valeurs du facteur $\lambda - 1$ en unités de la sixième décimale.

On voit par ce Tableau, comme on pouvait d'ailleurs le remarquer a priori d'après l'expression de λ , savoir :

- 5o8

- 1320

- 2436

- 3857

$$\lambda = \sec \eta \cos((\theta_0 + \eta)),$$

que le facteur $\lambda-1$ reprend la même valeur lorsqu'on change de signe à la fois η et ω_{\bullet} . Il en résulte que la Table des valeurs de la correction β_{2} , construite pour les valeurs positives de ω_{\bullet} , s'applique aussi aux valeurs négatives de ω_{\bullet} , pourvu que l'on change le signe de η . C'est ainsi que notre Table II, construite pour les valeurs de ω_{\bullet} ,

suffit pour toutes nos zones. Elle a pour argument vertical η et pour argument horizontal $(\alpha - A)'$; et elle est disposée de manière qu'il n'y ait presque point d'interpolation à effectuer dans le sens vertical.

En ce qui concerne les zones d'Alger, on peut prendre indifféremment pour l'argument vertical $\delta - \omega_0$ ou η sans que l'erreur commise atteigne jamais de ce chef un dix-millième de minute. Mais si l'on voulait appliquer le même procédé de calcul à des zones de déclinaison plus élevées, il ne serait plus permis, pour toutes les étoiles du cliché, de substituer l'argument $\delta - \omega_0$ à l'argument η . Dans ce cas, on commencerait par calculer les Y_c ; puis, au moyen de la correction d'_i qui entre dans l'expression de Y_c , on aurait, pour l'argument vertical de la Table II,

$$\eta = \delta - \Omega_0 + d_1'.$$

En résumé, le calcul des X_c et des Y_c donne lieu à l'emploi de trois Tables :

Table I, fournissant la correction β_1 ou β_1' qu'il faut appliquer aux arcs pour les ramener aux tangentes. Elle a pour argument $(\alpha - A)'$ dans le calcul des X_c et $\delta - \Phi_0$ dans le calcul des Y_c .

Les valeurs numériques des arguments sont choisies de manière que l'on n'ait aucune interpolation à effectuer.

Les nombres de la Table expriment des dix-millièmes de minute d'arc.

Enfin la correction β_1 ou β_1' doit toujours être ajoutée à la valeur absolue de $(\alpha - \lambda)'$ ou de $\partial - \omega_0$.

Table II des valeurs de la correction $\beta_2 = (\alpha - \lambda_0)'(\lambda - 1)$, qu'il faut appliquer à la différence $(\alpha - \lambda_0)'$ pour la réduire à X_c . Cette Table a pour argument vertical η ou $\delta - \mathfrak{D}_0$ et pour argument horizontal $(\alpha - \lambda_0)'$.

Elle est construite pour les valeurs positives de ϖ_0 et pour les valeurs positives de la différence $(\alpha - {}_{\circ} l_{\circ})'$.

Pour les valeurs négatives de $(\alpha - A_0)'$, il faut changer le signe de l'argument vertical $\partial - \phi_0$. Pour une valeur négative de $(\alpha - A_0)'$, il faut changer le signe du nombre fourni par la Table.

Table III. — Cette Table donne la correction d'_{i} qu'il faut appliquer à la différence $\hat{c} - \omega_{0}$ convertie en tangente pour la réduire à Y_{c} .

Elle a pour argument vertical $(\alpha - \mathcal{L}_0)'$ et pour argument horizontal $\mathcal{Q}_0 + \eta$ ou δ .

L'argument vertical croît de minute en minute, l'argument horizontal de dizaine en dizaine de minutes.

La correction d'_{\bullet} doit être prise de même signe que $\omega_{\bullet} + \eta$ pour la transformation des déclinaisons en Y.

Elle serait de signe contraire pour la transformation inverse des Y en déclinaisons.

Exemple des opérations à effectuer pour obtenir les valeurs des coordonnées rectangulaires relatives à l'une des étoiles de repère d'un cliché. — Les données sont supposées les suivantes:

Pour l'étoile de repère.....
$$z = o^h 8^m 27^s, 56$$
 $\delta = -2^o 4' 58'', o$
Pour le centre du cliché $\epsilon l_{00} = o^h 12^m$ $(\mathfrak{D}_0 = -1^o$

Calcul de Yc.

Calcul de X_c.

Conformément à la remarque faite plus haut, on a pris $\delta - \omega_0$ pour η .

En effectuant les calculs au moyen des formules rigoureuses, on trouve exactement les mêmes valeurs :

$$Y_c = -64',9893, X_c = -53',0886.$$

ÉQUATIONS RÉSULTANT DE LA COMPARAISON DES COORDONNÉES RECTILIGNES MESURÉES AUX COORDONNÉES RECTILIGNES CALCULÉES.

Les valeurs X et Y des coordonnées rectilignes qui sont fournies au calculateur sous le nom de coordonnées mesurées, ne sont pas les résultats bruts des mesures. Elles contiennent des corrections provenant :

- a. Des erreurs de division du réseau et des erreurs de la vis micrométrique s'il y a lieu;
- b. De ce que la distance de deux traits consécutifs du réseau, dans le sens des abscisses et dans celui des ordonnées, n'est pas exactement de cinq tours.

Ces corrections faites, chacune des coordonnées X et Y se trouve exprimée au moyen d'une unité de longueur qui est la cinquième partie de l'intervalle de deux traits consécutifs du réseau. Pour convertir les coordonnées en minutes d'arc, il faudra les multiplier par un certain facteur T qui, dans l'instrument d'Alger, a pour valeur moyenne

(15)
$$T = 0.989$$
.

En réalité, la valeur de l'échelle variera d'un cliché à l'autre, et nous aurons, pour un cliché quelconque, en désignant par τ la valeur de la différence T-1, qui convient spécialement pour ce cliché,

$$T = 1 + \tau.$$

Cela posé, chaque étoile de repère fournit deux équations telles que les suivantes :

(17)
$$\begin{cases} X_c = \Delta x + X(1+\tau) + iY(1+\tau), \\ Y_c = \Delta y + Y(1+\tau) - iX(1+\tau), \end{cases}$$

Dans ces équations :

 X_c , Y_c désignent les coordonnées rectilignes, calculées comme on l'a expliqué précédemment;

Alger, Coord. rect.

X, Y sont les coordonnées rectilignes mesurées, telles qu'elles sont fournies au calculateur après l'application des corrections indiquées plus haut sous les marques (a) et (b);

 $\Delta x, \Delta y$ sont des quantités inconnues qui dépendent des erreurs de centrage du cliché en ascension droite et en déclinaison. Mais ces quantités ne demeurent pas constantes dans toute l'étendue d'un cliché. Si l'on désigne par Δx_0 et Δx_0 les corrections qu'il faut appliquer algébriquement aux coordonnées théoriques x_0 et x_0 du centre pour obtenir ses coordonnées réelles x_0 et x_0 et x_0 , c'est-à-dire si l'on pose

(18)
$$\begin{aligned} (cb'_0 = cb_0 + \Delta b_0, & (b'_0 = (b_0 + \Delta b_0, \\ X' = x(1+\tau), & Y' = Y(1+\tau), \end{aligned}$$

on aura, comme on l'a vu dans la Section I de cette Introduction (page xvi),

ce sont les formules (26) de la page xvi dans lesquelles les produits S cos et S sin es sont remplacés par les valeurs égales Y' sin i' et X' sin i'.

Enfin i désigne la correction d'orientation. Le signe qu'on lui a donné est celui de la différence : Angle de position calculé — Angle de position observé.

On a supposé de plus que les termes $-\frac{1}{2}i^2X(1+\tau)$ et $-\frac{1}{2}i^2Y(1+\tau)$ étaient négligeables.

Les équations de condition fournies par les X et les Y sont donc

(20)
$$(X_c = (1 - Y' \sin i' \tan g \Theta_0) \cos \Theta_0 \Delta \Phi_0 + X(1 + \tau) + iY(1 + \tau),$$

$$(Y_c = \Delta \Theta_0 + X' \sin i' \tan g \Theta_0 \cos \Theta_0 \Delta \Phi_0 + Y(1 + \tau) - iX(1 + \tau)$$

ou bien

(21)
$$X_{c} = (1 - mY')\xi + X(1 + \tau) + iY(1 + \tau),$$

$$Y_{c} = \Delta(Q_{0} + m\xi X' + Y(1 + \tau) - iX(1 + \tau),$$

en posant, pour abréger l'écriture,

(22)
$$(m = \sin t' \tan g \theta_0,$$

$$(\xi = \cos \theta_0 \Delta \lambda_0.$$

Les coordonnées calculées X_c , Y_c qui forment les premiers membres des équations (21) sont des coordonnées moyennes pour l'époque 1900, tandis que les X et Y des seconds membres représentent les valeurs apparentes des coordonnées mesurées. Pour que les résultats du calcul fussent comparables à ceux des mesures, il faudrait donc transformer les X_c et Y_c en coordonnées apparentes pour l'époque du cliché, ou bien transformer les X et Y en coordonnées moyennes pour l'époque 1900. Supposons que l'on adopte ce dernier parti. Nous avons vu, dans la troisième Section de ce Travail, que les effets de la précession et de la nutation se réduisent à changer l'orientation et que l'effet de l'aberration équivaut à deux changements simultanés de l'orientation et de l'échelle. Désignons par Δi

le changement total de l'orientation et par $\Delta \tau$ celui de l'échelle; les expressions de Δi et $\Delta \tau$ seront

Précession et nutation. Aberration.

$$\Delta i = -g \sin(G + \epsilon k_0) \operatorname{séc}(k_0 - b \tan g (k_0) \dots (pages xxviii et xxx)$$

$$\Delta \tau = a \dots (page xxix)$$

Si l'on admet que les variations du deuxième ordre soient négligeables, les seconds membres des équations (21) se trouveront affranchis des effets des trois phénomènes considérés par la substitution de $i + \tau + \Delta \tau$ à la place de $i + \tau$ et par celle de $i + \Delta i$ à la place de i; mais nous n'effectuerons pas cette substitution dans les petits termes mY' et mX'. Posons

$$1 + \tau + \Delta \tau = 1 + \tau', \quad i + \Delta i = i';$$

les équations (21) deviennent alors

(23)
$$(X_c = (1 - mY')\xi + X(1 + \tau') + i'Y(1 + \tau'),$$

$$(Y_c = \Delta \Theta_0 + m\xi X' + Y(1 + \tau') - i'X(1 + \tau').$$

Les quantités $\mathbf{i} + \tau$ et i sont les valeurs de l'échelle et de l'orientation pour l'époque du cliché; $\mathbf{i} + \tau'$ et i' sont les valeurs des mêmes éléments pour l'époque 1900; on obtiendra ces dernières en résolvant le système des équations (23) pour l'ensemble des étoiles de repère, sans avoir besoin d'appliquer aux X et aux Y aucune correction du fait de la précession, de la nutation et de l'aberration différentielles. Et de même, lorsqu'au moyen des valeurs trouvées pour $\mathbf{i} + \tau'$ et i' on réduira les coordonnées rectilignes d'une étoile quelconque, mesurées sur le cliché, on aura immédiatement les valeurs moyennes de ces coordonnées pour l'époque 1900.

Nous attribuerons dorénavant à $1 + \tau$ et i la signification de $1 + \tau'$ et de i'.

Il nous reste à examiner le cas de la réfraction. Nous avons vu (p. xxv) que, pour tenir compte des termes du premier ordre de la réfraction différentielle, il faut appliquer les corrections suivantes aux coordonnées mesurées :

$$\begin{split} \mathbf{X}' - \mathbf{X} &= \left(\mathbf{K} + \mathbf{K} \, \mathrm{tang^2} \zeta \, \mathrm{sin^2} q + \frac{d\mathbf{K}}{d\zeta} \, \mathrm{tang} \zeta \, \mathrm{sin^2} q \right) \mathbf{X} \\ &+ \left(\mathbf{K} \, \mathrm{tang^2} \zeta \, \mathrm{sin} q \, \mathrm{cos} q \, + \frac{d\mathbf{K}}{d\zeta} \, \mathrm{tang} \zeta \, \mathrm{sin} q \, \mathrm{cos} q \right) \mathbf{Y}, \\ \mathbf{Y}' - \mathbf{Y} &= \left(\mathbf{K} + \mathbf{K} \, \mathrm{tang^2} \zeta \, \mathrm{cos^2} q + \frac{d\mathbf{K}}{d\zeta} \, \mathrm{tang} \zeta \, \mathrm{cos^2} q \right) \mathbf{Y} \\ &+ \left(\mathbf{K} \, \mathrm{tang^2} \zeta \, \mathrm{sin} q \, \mathrm{cos} q \, + \frac{d\mathbf{K}}{d\zeta} \, \mathrm{tang} \zeta \, \mathrm{sin} q \, \mathrm{cos} q \right) \mathbf{X}, \end{split}$$

formules dans lesquelles on doit prendre

$$K = (59'', 225 - o'', 066 \tan g^2 \zeta) \sin \iota'',$$

 $\frac{dK}{d\zeta} = -o'', \iota 32 \tan g \zeta \operatorname{séc}^2 \zeta \sin \iota''.$

Ces résultats s'accordent avec ceux que MM. H. Turner, Pr. Henry, B. Baillaud et d'autres astronomes encore ont obtenus par des voies très différentes de celle que nous avons suivie. Nous rappelons de nouveau que nous avons supprimé le terme

dans l'expression de X' - X, et le terme

dans celle de Y' — Y, parce que toute correction de la forme cY pour les abscisses et — cX pour les ordonnées peut être regardée comme comprise dans la valeur de i. Il résulte de là que, si nous posons

$$\rho = K + K \tan^2 \zeta \sin^2 q + \frac{dK}{d\zeta} \tan \zeta \sin^2 q,$$

$$\rho' = K + K \tan^2 \zeta \cos^2 q + \frac{dK}{d\zeta} \tan \zeta \cos^2 q,$$

$$\frac{1}{2}\omega = K \tan^2 \zeta \sin q \cos q + \frac{dK}{d\zeta} \tan \zeta \sin q \cos q,$$

nous devons appliquer la correction

$$\rho X + \frac{1}{4}\omega Y$$
 aux abscisses

et la correction

$$\rho' Y + \frac{1}{2} \omega X$$
 aux ordonnées.

Alors les équations (23), où nous écrivons $i + \tau$ et i au lieu de $i + \tau'$ et i' nous donnent

(25)
$$\begin{cases} X_c - X = \xi + X(\tau + \rho) + Y[(i + \frac{1}{2}\omega)(1 + \tau + \rho') - m\xi(1 + \tau)], \\ Y_c - Y = \Delta\omega_0 + Y(\tau + \rho') - X[(i - \frac{1}{2}\omega)(1 + \tau + \rho) - m\xi(1 + \tau)]. \end{cases}$$

En développant le coefficient de Y dans la première de ces équations et celui de X dans la seconde, on a

$$i(1+\tau) + i\rho' - \frac{1}{2}\omega(1+\tau) + \frac{1}{2}\omega\rho' - m\xi(1+\tau),$$

$$i(1+\tau) + i\rho - \frac{1}{2}\omega(1+\tau) - \frac{1}{2}\omega\rho - m\xi(1+\tau);$$

or, dans ces expressions, nous pouvons évidemment faire les changements suivants :

- 1º Négliger les petits termes $i\rho'$, $\frac{1}{2}\omega\rho'$, $i\rho$ et $-\frac{1}{2}\omega\rho$;
- 2º Remplacer τ par sa valeur moyenne τ_0 dans les coefficients de i et de $\frac{1}{2}\omega$. (Pour Alger, la valeur de τ_0 est -0.011.)

De cette manière, les équations (25) se trouvent remplacées par celles-ci :

(26)
$$\begin{cases} X_c - X = \xi + X(\tau + \rho) + Y(\iota + \tau_0)(i + \frac{1}{2}\omega - m\xi), \\ Y_c - Y = \Delta \mathcal{D}_0 + Y(\tau + \rho') - X(\iota + \tau_0)(i - \frac{1}{2}\omega - m\xi). \end{cases}$$

Les valeurs numériques de ½ω, ρ, ρ' sont données dans les Tables IV pour chaque degré de déclinaison ω₀ depuis — 2° jusqu'à + 4°, et pour chaque minute de l'angle horaire H depuis 23hom jusqu'à 1hom.

Ces valeurs sont exprimées en unités de la sixième décimale. Elles se rapportent à la réfraction moyenne

Baromètre =
$$0^m$$
, 760, thermomètre = + 10^o .

Soit C le coefficient météorologique, c'est-à-dire le facteur thermo-barométrique par lequel on doit multiplier la réfraction moyenne pour obtenir la réfraction vraie, et posons

(27)
$$\begin{cases} C\rho = \rho_{c}, & C\rho' = \rho'_{0}; \\ i - m\xi = i_{1}, & i_{1}(1 + \tau_{0}) = 1; \\ \frac{1}{2}C\omega(1 + \tau_{0}) = \frac{1}{2}\omega_{0}. \end{cases}$$

Nous aurons la forme définitive des équations à résoudre, savoir :

(28)
$$(X_c - X = \xi + X(\tau + \rho_0) + Y(I + \frac{1}{2}\omega_0), (Y_c - Y = \Delta(\theta_0 + Y(\tau + \rho_0') - X(I - \frac{1}{2}\omega_0).$$

Les inconnues qu'il s'agit de déterminer sont ξ , $\Delta \omega_o$, τ et I.

RÉSOLUTION DES ÉQUATIONS.

Soit n le nombre des étoiles de repère contenues dans le cliché. Nous aurons d'abord

(29)
$$\begin{cases} \xi = \sum \left(\frac{X_c - X}{n}\right) - \sum \frac{X}{n} \rho_0 - \sum \frac{Y}{n} \frac{1}{2} \omega_0 - \sum \frac{X}{n} \tau - \sum \frac{Y}{n} I, \\ \Delta(\hat{\nu}_0) = \sum \left(\frac{Y_c - Y}{n}\right) - \sum \frac{Y}{n} \rho_0' - \sum \frac{X}{n} \frac{1}{2} \omega_0 - \sum \frac{Y}{n} \tau + \sum \frac{X}{n} I. \end{cases}$$

Posant ensuite

(30)
$$\begin{cases} (X_c - X) - \sum \left(\frac{X_c - X}{n}\right) = z, & (Y_c - Y) - \sum \left(\frac{Y_c - Y}{n}\right) = \beta, \\ X - \sum \frac{X}{n} = a, & Y - \sum \frac{Y}{n} = b, \end{cases}$$

nous aurons, pour déterminer τ et I, un système de 2n équations de la forme suivante :

(31)
$$\begin{cases} a\tau + b\mathbf{I} = \alpha - a\rho_0 - \frac{1}{2}b\omega_0, \\ b\tau - a\mathbf{I} = \beta - b\rho_0' - \frac{1}{2}a\omega_0. \end{cases}$$

Traitées par la méthode des moindres carrés, ces équations donnent

(32)
$$\begin{cases} \tau \sum (a^2 + b^2) = \sum (a\alpha + b\beta) - \omega_0 \sum ab - \rho_0' \sum b^2, \\ I \sum (a^2 + b^2) = \sum (b\alpha - a\beta) + (\rho_0 - \rho_0') \sum ab + \frac{1}{2}\omega_0 \sum a^2. \end{cases}$$

Ayant ainsi calculé τ et I, on formera les expressions

(33)
$$\begin{cases}
\tau_x = \tau + \rho_0, & \tau_y = \tau + \rho'_0, \\
1 + \tau_x = T_x, & 1 + \tau_y = T_y, \\
I + \frac{1}{2}\omega_0 = i_x, & I - \frac{1}{2}\omega_0 = i_y,
\end{cases}$$

et l'on aura, pour les corrections du centre du cliché,

(34)
$$\begin{cases} \xi = \sum \left(\frac{X_c - X}{n}\right) - \tau_x \sum \frac{X}{n} - i_x \sum \frac{Y}{n}, \\ \Delta \omega_0 = \sum \left(\frac{Y_c - Y}{n}\right) - \tau_y \sum \frac{Y}{n} + i_y \sum \frac{X}{n}. \end{cases}$$

Enfin, pour une étoile quelconque du cliché, les coordonnées calculées X_c, Y_c s'obtiendront, en partant des coordonnées mesurées X, Y, au moyen des formules

(35)
$$\begin{cases} X_c = X + \xi + X\tau_x + Yi_x, \\ Y_c = Y + \Delta(\theta_0 + Y\tau_y - Xi_y). \end{cases}$$

En particulier, les formules (35) fourniront pour chaque étoile de repère les résidus $X_c - X'$ et $Y_c - Y'$ de la substitution des valeurs de ξ , $\Delta \varpi_0$, τ et I dans les équations de condition en désignant par X' et Y' les valeurs corrigées des coordonnées rectilignes X et Y.

On peut aussi prendre pour inconnues i_x et τ_x . Alors les équations qui déterminent ces inconnues sont

(36)
$$\begin{cases} \tau_x \sum (a^2 + b^2) = \sum (a\alpha + b\beta) - (\rho_0' - \rho_0) \sum b^2 - \omega_0 \sum ab, \\ i_x \sum (a^2 + b^2) = \sum (b\alpha - a\beta) + (\rho_0' - \rho_0) \sum ab + \omega_0 \sum a^2. \end{cases}$$

Ensuite on formera

(37)
$$\begin{cases} \tau_{y} = \tau_{x} + (\rho'_{0} - \rho_{0}), \\ i_{y} = i_{x} - \omega_{0}. \end{cases}$$

Telle est la méthode employée pour la détermination des constantes de nos clichés. Les calculs sont effectués par MM. Boinot, Maubant, Poirion et Pourteau, sous le contrôle de MM. Bossert et Schulhof à qui nous exprimons ici nos plus vifs remerciements pour leur précieuse collaboration.

CAS OU L'ON VEUT SUPPRIMER UNE ÉTOILE DE REPÈRE OU BIEN EN AJOUTER UNE NOUVELLE.

I. Voici le cas qui peut se présenter : L'examen des résidus $X_c - X$, $Y_c - Y$ a montré que la position adoptée de l'une des étoiles de repère ést défectueuse, soit qu'il existe une erreur matérielle dans le Catalogue auquel on a emprunté la position, soit que l'étoile ait un mouvement propre considérable et inconnu. On s'est assuré, d'ailleurs, que l'écart anormal en présence duquel on se trouve ne provient pas d'une erreur dans la mesure de X ou de Y. Dans ce cas, on a parfaitement le droit de ne pas faire concourir cetté étoile à la détermination des constantes, et la forme même des équations (32) ou (36) permet d'opérer la suppression de l'étoile d'une manière très simple, sans avoir à recommencer tous les calculs.

Considérons, par exemple, la quantité

(38)
$$\sum_{s}^{n} a \alpha = a_{1} \alpha_{1} + a_{2} \alpha_{2} + \ldots + a_{s} \alpha_{s} + \ldots + a_{n} \alpha_{n},$$

n désignant le nombre total des étoiles de repère et l'indice s se rapportant à l'étoile que l'on veut écarter. Il s'agit de calculer la variation $\Delta \sum_{i=1}^{n} \alpha \alpha$ résultant de la suppression de l'étoile s. Cette variation consiste :

- 1º Dans la disparition du produit $a_i\alpha_i$;
- 2° Dans le changement que subit chacun des n-1 autres produits analogues lorsque le nombre des étoiles de repère se trouve réduit de n à n-1.

On aura donc, en désignant par Δa et $\Delta \alpha$ les variations de a et de α ,

(39)
$$\Delta \sum_{s=0}^{n} (ax) = -a_s x_s + \sum_{s=0}^{n-1} \alpha \Delta a + \sum_{s=0}^{n-1} \alpha \Delta x + \sum_{s=0}^{n-1} \Delta a \Delta x.$$

Il faut maintenant calculer Δa et $\Delta \alpha$ en partant de la définition des quantités a et α , savoir :

$$a = X - \frac{1}{n} \sum_{1}^{n} X, \qquad z = X_c - X - \frac{1}{n} \sum_{1}^{n} (X_c - X).$$

Lorsqu'on supprime l'étoile s, on a, pour l'une quelconque des étoiles restantes,

$$a' = X - \frac{1}{n-1} \sum_{i=1}^{n-1} X_i, \quad \alpha' = X_c - X - \frac{1}{n-1} \sum_{i=1}^{n-1} (X_c - X);$$

Or on a

$$\sum_{1}^{n-1} X = \sum_{1}^{n} X - X_{s}, \qquad \sum_{1}^{n-1} (X_{c} - X) = \sum_{1}^{n} (X_{c} - X) - (X_{c} - X)_{s};$$

par conséquent, on a, pour Δa et $\Delta \alpha$, les valeurs constantes

et alors la formule (39) devient

(41)
$$\Delta \sum_{s}^{n} (az) = -a_{s}z_{s} + \frac{a_{s}}{n-1} \sum_{s}^{n-1} z + \frac{z_{s}}{n-1} \sum_{s}^{n-1} a + \frac{a_{s}z_{s}}{n-1}.$$

Nous avons, d'ailleurs,

$$\sum_{1}^{n-1} \alpha = \sum_{1}^{n} \alpha - \alpha_{s},$$

$$\sum_{1}^{n-1} \alpha = \sum_{1}^{n} \alpha - \alpha_{s},$$

ou bien

(42)
$$\sum_{i=1}^{n-1} a = -a_{i}, \qquad \sum_{i=1}^{n-1} a = -a_{i},$$

à cause des relations évidentes

$$\sum_{i=1}^{n} a = 0, \qquad \sum_{i=1}^{n} a = 0.$$

En substituant les expressions de $\sum_{1}^{n-1} \alpha$ et de $\sum_{1}^{n-1} \alpha$ dans la formule (41), on trouve immédiatement

(43)
$$\Delta \sum_{1}^{n} (az) = -\frac{n}{n-1} (az)_{s}.$$

Ainsi pour obtenir la correction de la quantité $\sum (\alpha \alpha)$, résultant de la suppression de l'étoile s, il suffit de multiplier par $\frac{n}{n-1}$ l'élément $(\alpha \alpha)$, de cette somme se rapportant à l'étoile et de retrancher algébriquement ce produit de la somme primitive.

Il est évident que la même règle s'applique à toutes les sommes qui concourent au calcul des inconnues par les formules (32) ou (36). On aura donc

$$\Delta \sum_{1}^{n} (az + b\beta) = -\frac{n}{n-1} (az + b\beta)_{s},$$

$$\Delta \sum_{1}^{n} (bz - a\beta) = -\frac{n}{n-1} (bz - a\beta)_{s},$$

$$\Delta \sum_{1}^{n} a^{2} = -\frac{n}{n-1} a_{s}^{2},$$

$$\Delta \sum_{1}^{n} ab = -\frac{n}{n-1} (ab)_{s},$$

$$\Delta \sum_{1}^{n} b^{2} = -\frac{n}{n-1} b_{s}^{2},$$

$$\Delta \sum_{1}^{n} (a^{2} + b^{2}) = -\frac{n}{n-1} (a^{2} + b^{2})_{s}.$$

Après avoir corrigé au moyen de ces formules les six quantités $\sum (a\alpha + b\beta)$, $\sum (b\alpha - a\beta)$, $\sum a^2$, $\sum ab$, $\sum b^2$, $\sum (a^2 + b^2)$, on calculera de nouvelles valeurs des éléments τ_x , i_x , τ_y et i_y par les formules (32) et (33), ou bien par les formules (36) et (37). Ensuite, les relations (34) fourniront les nouvelles valeurs de ξ et de $\Delta \omega_0$; mais, en appliquant ces relations, on n'oubliera pas que les valeurs de X, Y, $X_c - X$ et $Y_c - Y$

concernant l'étoile supprimée doivent être retranchées des sommes correspondantes $\sum X$, $\sum Y$, $\sum (X_c - X)$, $\sum (Y_c - Y)$, et que le diviseur n doit être remplacé par n - 1.

II. Si l'on voulait, au contraire, ajouter une étoile à celles qui ont servi pour le calcul des constantes, l'expression de la correction à faire subir à chacune des sommes se déduirait des formules (44) en changeant le signe et en remplaçant au dénominateur n-1 par n+1, l'indice s étant, d'ailleurs, considéré comme se rapportant à l'étoile supplémentaire. Pour le démontrer, considérons toujours la quantité

$$\sum_{1}^{n} a \alpha = a_1 \alpha_1 + a_2 \alpha_2 + \ldots + a_n \alpha_n;$$

la somme correspondante, après l'addition de l'étoile s, est

$$\sum_{1}^{n+1} (a'a') = a'_{1}a'_{1} + a'_{2}a'_{2} + \ldots + a'_{n}a'_{n} + a'_{s}a;$$

on a donc, pour la correction de la quantité $\sum_{i=1}^{n} (a\alpha)$,

$$\Delta \sum_{s}^{n} (\alpha x) = \alpha'_{s} \alpha'_{s} + \sum_{s}^{n} \alpha \Delta \alpha + \sum_{s}^{n} \alpha \Delta x + \sum_{s}^{n} \Delta \alpha \Delta x.$$

Les quantités a' et a' pour toutes les étoiles, s comprise, ont pour expression

(45)
$$a' = X - \frac{1}{n+1} \sum_{i=1}^{n+1} X_i, \quad \alpha' = X_c - X - \frac{1}{n+1} \sum_{i=1}^{n+1} (X_c - X_i),$$

tandis que les α et α correspondant aux n étoiles primitives ont été calculés par les formules

(46)
$$a = X - \frac{1}{n} \sum_{1}^{n} X, \quad \alpha = X_c - X - \frac{1}{n} \sum_{1}^{n} (X_c - X).$$

En remplaçant $\sum_{i=1}^{n+1} X$ et $\sum_{i=1}^{n+1} (X_c - X)$, dans les formules (45), par les quantités équivalentes

$$X_s + \sum_{1}^{n} X$$
 et $(X_c - X)_s + \sum_{1}^{n} (X_c - X)_s$

on obtient

$$\Delta a = a' - a = -\frac{1}{n+1} \left(X_s - \frac{1}{n} \sum_{i=1}^{n} X_i \right),$$

$$\Delta \alpha = \alpha' - \alpha = -\frac{1}{n+1} \left[(X_c - X)_s - \frac{1}{n} \sum_{i=1}^{n} (X_c - X) \right].$$

Si nous convenons d'appliquer les formules (46) à l'étoile supplémentaire, comme Alger, Coord. rect.

aux n étoiles primitives, nous écrirons

$$X_s - \frac{1}{n} \sum_{i=1}^{n} X = a_s, \quad (X_c - X)_s - \frac{1}{n} \sum_{i=1}^{n} (X_c - X) = a_s,$$

et alors il viendra

(47)
$$\Delta a = -\frac{a_s}{n+1}, \quad \Delta \alpha = -\frac{\alpha_s}{n+1};$$

il en résulte

$$\Delta \sum_{s}^{n} (a\alpha) = a'_{s}\alpha'_{s} - \frac{a_{s}}{n+1} \sum_{s}^{n} \alpha - \frac{\alpha_{s}}{n+1} \sum_{s}^{n} \alpha + \frac{n}{(n+1)^{2}} a_{s}\alpha_{s},$$

ou simplement

(48)
$$\Delta \sum_{s}^{n} (az) = a'_{s} a'_{s} + \frac{n}{(n+1)^{2}} a_{s} a_{s},$$

puisque les deux quantités $\sum_{n=1}^{\infty} \alpha$ et $\sum_{n=1}^{\infty} \alpha$ sont nulles.

Il ne reste plus qu'à exprimer a'_s et α'_s en fonction de a_s et de α_s respectivement par les relations

$$a_s = a_s - \frac{a_s}{n+1} = \frac{n}{n+1} a_s,$$

$$\alpha'_s = \alpha_s - \frac{\alpha_s}{n+1} = \frac{n}{n+1} \alpha_s;$$

on obtient alors

(49)
$$\Delta \sum_{i=1}^{n} (a\alpha) = \frac{n}{n+1} a_{\epsilon} \alpha_{\epsilon},$$

ce qui justifie la règle énoncée plus haut; mais, en appliquant cette règle, il faudra se rappeler que les quantités a_s et α_s doivent être calculées pour l'étoile supplémentaire comme les a et α ont été calculés pour les n étoiles primitives par les formules (46).

Modifications subies par les éléments lorsque le système des valeurs primitivement adoptées pour les coordonnées mesurées des étoiles de repère est remplacé par un autre système de valeurs des mêmes coordonnées.

Supposons que, pour passer du premier système au second, il faille appliquer aux abscisses les variations

$$\Delta X_1, \quad \Delta X_2, \quad \ldots, \quad \Delta X_n$$

et aux ordonnées les variations

$$\Delta Y_1, \quad \Delta Y_2, \quad \ldots, \quad \Delta Y_n.$$

Il s'agit de calculer les variations des quantités

$$\Sigma(a^2+b^2)$$
, $\Sigma(a\alpha+b\beta)$, $\Sigma(b\alpha-a\beta)$, Σab .

Or, des expressions

$$a = X - \frac{\Sigma X}{n}$$
, $\alpha = X_c - X - \frac{\Sigma (X_c - X)}{n}$,
 $b = Y - \frac{\Sigma Y}{n}$, $\beta = Y_c - Y - \frac{\Sigma (Y_c - Y)}{n}$,

on déduit, en faisant varier les X et les Y mais non les X_c et les Y_c,

$$\Delta a = \Delta X - \frac{\Sigma \Delta X}{n}, \qquad \Delta z = -\left(\Delta X - \frac{\Sigma \Delta X}{n}\right),$$

$$\Delta b = \Delta Y - \frac{\Sigma \Delta Y}{n}, \qquad \Delta \beta = -\left(\Delta Y - \frac{\Sigma \Delta Y}{n}\right),$$

et il en résulte immédiatement

(50)
$$\begin{pmatrix}
\Delta \Sigma (a^{2} + b^{2}) = 2 \Sigma a \Delta a + 2 \Sigma b \Delta b + \Sigma \Delta a^{2} + \Sigma \Delta b^{2}, \\
\Delta \Sigma (a \alpha + b \beta) = \Sigma (\alpha - a) \Delta a + \Sigma (\beta - b) \Delta b - \Sigma \Delta a^{2} - \Sigma \Delta b^{2}, \\
\Delta \Sigma (b \alpha - a \beta) = \Sigma (\alpha + a) \Delta b - \Sigma (\beta + b) \Delta a, \\
\Delta \Sigma a b = \Sigma b \Delta a + \Sigma a \Delta b + \Sigma \Delta a \Delta b.$$

On simplifie un peu ces expressions en y introduisant les valeurs modifiées de a et de b, c'est-à-dire

(51)
$$a'=a+\Delta a, \quad b'=b+\Delta b.$$

Alors on obtient les formules suivantes pour la correction des sommes dont dépend le calcul des éléments :

(52)
$$\Delta \Sigma (a^{2} + b^{2}) = \Sigma(\alpha + \alpha') \Delta a + \Sigma(\beta + b') \Delta b, \\
\Delta \Sigma (a\alpha + b\beta) = \Sigma(\alpha - \alpha') \Delta a + \Sigma(\beta - b') \Delta b, \\
\Delta \Sigma (b\alpha + \alpha\beta) = \Sigma(\alpha + \alpha') \Delta b - \Sigma(\beta + b') \Delta a, \\
\Delta \Sigma \alpha b = \Sigma b' \Delta \alpha + \Sigma \alpha \Delta b.$$

Modifications subies par les éléments lorsqu'on change les valeurs des coordonnées des étoiles de repère.

Dans ce cas, les a et b demeurent sans changements, mais les α et β subissent les variations

$$\Delta \alpha = \Delta X_c - \frac{\sum \Delta X_c}{n}, \quad \Delta \beta = \Delta Y_c - \frac{\sum \Delta Y_c}{n},$$

et l'on a les formules

(53)
$$\begin{pmatrix}
\Delta \Sigma (a^{2} + b^{2}) = 0, \\
\Delta \Sigma (a\alpha + b\beta) = \Sigma a \Delta \alpha + \Sigma b \Delta \beta, \\
\Delta \Sigma (b\alpha - a\beta) = \Sigma b \Delta \alpha - \Sigma a \Delta \beta, \\
\Delta \Sigma ab = 0.$$

Nous donnons ci-après deux exemples numériques, l'un pour le calcul des éléments d'un cliché, l'autre pour la rectification de ces éléments, rendue nécessaire par la suppression de l'une des étoiles de repère.

Exemple du calcul pour la détermination des éléments d'un cliché.

```
CLICHÉ N° 1531 A_0 = o^h o^m O_0 = -2^o

A_0 = o^h o^m O_0 = -2^o

O_0 = -2^o

O_0 = -2^o

O_0 = -2^o

O_0 = -2^o
```

*	2.	7.	13.	27.	32.	124.	38.	41.	56.
a — . l.a	205*68	- 173,80	- 13o,46	— 26,08	- 3,96	± 17,98	÷ {2,02	+ 71,48	+ 139,29
$\frac{1}{4}(z-\epsilon l_0)$			-32',6150						
β ₁ (Table I)			- 10		. 0		+ 1		
β2 (Table II)	+ 219	+ 11	+ 90		+ 1		- 17	86	199
$\delta - \Theta_0 \dots$	+18. 9.9	+57.28,4	+32.59,9						+ 3.44,1
$(\partial - (\partial_0)' \dots \partial_n)'$		+57,4733	+32,9983	+23,0450	56,5367	0,2100		+12,3700	+3,7350
β' ₁ (Table I)	+ 2	+ 53			+ 51	0			o
d_1' (Table III)	114		— 38	- 2		– 1	_ 5		- 60
$X_c \dots \dots$			-32,6070						34,7863
X	-52,9733	-45,1010	-34,0486		— 2,1397		+9,5487		+34,015 4
Y _c	+18,1538	+57,4736	-32,9955	•	+56,5418		+15,9029		+ 3,7290
Y	+17,2494	+57,0046	+32,2722		+56,1377			+11,5753	
$X_c - X_c - X_c$		+ 1,6498	+ 1,4416			-	+0,9517		+ 0,7709
$Y_c - Y \dots$	+ 0,9014		+0,7233		+ 0, 1011		÷ 0,7477		+ 0.9132
α	-	+ 0,7074	+0,4992	+ 0,1543	+ 0,2074		+ 0,0093	-	0,1715
β	- 0,0073	- 0,4427	- 0,1884	- o, 1819	- o,5076		- 0,1640	- 0,1184	- 0,0015
a		-51,5222	-40,4698	-14,0354	 8,5609	- 2,9447	+3,1275	+10,5864	+27,5942
$b \dots a^2 \dots a^2 \dots$	+14,3220		+29,3448		+53,2103		+12,2278	+ 8,6479	- 0,1116 761,5
$b^2 \dots b^2$	3527,8	2654,6	1637,8	197,0	73,3	8,7	9,8	112,1	• •
a^2+b^2	205, t	2924,4 5579,0	1,188	375,9	2831,3	13,3	149,5	74,8	0,0
$a^2 + b^2 \dots $ $a\alpha + b\beta \dots$	3732,9 $-38,398$		2 (98,9	572,9	2904,6 — 28,785	21,0	. 159,3 1,976	186,9	761,5
$bz-a\beta\ldots$			-25,731 + 7,025	- 5,092	-26,501				-4,732 $-0,022$
•					- 456		+ 0,627 + 38		- 0,022
<i>ao</i>	0.71	- 2,00	- 1100	— 2,z	- 4,0	-T 11	- 36	→ 92	3
*	61.	71.	74.	81.	105.	126.	142.	161.	163.
* 2 — cho	+ 158,25	+ 224,28	+ 245,53	- 231,90	- 85 ⁸ 82	+ 23,00	+ 66,11	+ 184,80	+ 215,53
_	+ 158,25	+ 224,28	+ 245,53 +61,3825	- 231,90 -57,9750	- 85 ⁸ 82	+ 23,00	+ 66,11	+ 184,80	+ 215,53
$\alpha = c b_0 \dots $ $\frac{1}{4} (\alpha - c b_0) \dots $ $\beta_1 \text{ (Table I)} \dots$	+ 158,25 +39',5625 + 18	+ 224,28 +56',0700 + 50	+ 245,53 +61,3825 + 65	- 231,90 -57,9750 - 55	- 85,82 -21',4550 - 3	+ 23,00 + 5',7725 0	+ 66,11 +16',5275 + 1	+ 184,80 +46',2000 + 28	+ 215,53 +53',8825 + 44
$z = cb_0 \dots$ $\begin{cases} (z = cb_0) \dots \\ \beta_1 \text{ (Table I)} \dots \end{cases}$ $\beta_2 \text{ (Table II)} \dots$	+ 158,25 +39',5625 + 18 - 218	+ 224,28 +56',0700 + 50 - 238	+ 245,53 +61,3825 + 65 - 116	231,90 57',9750 55 + 669	- 85,82 -21',4550 - 3 + 146	+ 23,09 + 5',7725 0 - 48	+ 66,11 +16',5275 + 1 - 145	+ 184,80 +46',2000 + 28 - 564	+ 215,53 +53',8825 + 44 - 581
$z - \varepsilon k_0 \dots$ $\zeta(z - k_0) \dots$ $\beta_1 \text{ (Table I)} \dots$ $\beta_2 \text{ (Table II)} \dots$ $\delta - (k_0 \dots \dots$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3	+ 224,28 +56,0700 + 50 - 238 +18.11,5	+ 245,53 +61,3825 + 65 - 116 +41.27,1	- 231,90 -57,9750 - 55 + 669 -53.44,1	$ \begin{array}{rrrr} & 85,82 \\ & -21,4550 \\ & & 3 \\ & + & 146 \\ & -6.45,7 \end{array} $	$\begin{array}{cccc} + & 23,09 \\ + & 5,7725 \\ & & 0 \\ - & & 48 \\ -22.33,2 \end{array}$	+ 66,11 +16',5275 + 1 - 145 -26.30,4	+ 184,80 +46',2000 + 28 - 564 -60.15,9	+ 215,53 +53,8825 + 44 - 581 -46,44,9
$z - cb_0 \dots$ $\frac{1}{3}(z - cb_0) \dots$ $\beta_1 \text{ (Table I)} \dots$ $\beta_2 \text{ (Table II)} \dots$ $\delta - (b_0 \dots$ $(\delta - b_0)' \dots$	+ 158,25 +39',5625 + 18 - 218 + 5.43,3 + 5,7217	+ 224,28 +56',0700 + 50 - 238 +18.11,5 +18,1917	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350	$ \begin{array}{rrrr} & 85,82 \\ & -21,4550 \\ & & 3 \\ & + 146 \\ & -6.45,7 \\ & -6,7617 \end{array} $	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483
$z - cb_0 \dots$ $\frac{1}{5}(z - cb_0) \dots$ $\beta_1 \text{ (Table I)} \dots$ $\beta_2 \text{ (Table II)} \dots$ $\delta - (b_0 \dots \dots$ $(\delta - cb_0)' \dots$ $\beta'_1 \text{ (Table I)} \dots$	+ 158,25 +39',5625 + 18 - 218 + 5.43,3 + 5,7217	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20	- 231,90 -57,9750 - 55 + 669 -53.44,1 -53,7350 - 43	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483 - 28
$z - cb_0 \dots$ $\frac{1}{3}(z - cb_0) \dots$ $\beta_1 \text{ (Table I)} \dots$ $\beta_2 \text{ (Table II)} \dots$ $\delta - (b_0 \dots \dots$ $(\delta - b_0)' \dots$ $\beta'_1 \text{ (Table I)} \dots$ $d'_1 \text{ (Table III)} \dots$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 0 - 25	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204
$ \alpha - \epsilon b_0 \dots $ $ \frac{1}{5}(\alpha - \epsilon b_0) \dots $ $ \beta_1 \text{ (Table I)} \dots $ $ \beta_2 \text{ (Table II)} \dots $ $ \delta - (b_0 \dots \dots $ $ (\delta - (b_0)' \dots \dots $ $ \beta'_1 \text{ (Table I)} \dots $ $ d'_1 \text{ (Table III)} \dots $	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 0 - 76 +39,5425	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 0 - 25 21,4407	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3 - 2 + 5,7677	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16 +16,5131	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288
$ \alpha - \epsilon b_0 \dots $ $ \frac{1}{5}(\alpha - \epsilon b_0) \dots $ $ \beta_1 \text{ (Table I)} \dots $ $ \beta_2 \text{ (Table II)} \dots $ $ \delta - (b_0 \dots \dots $ $ (\delta - (b_0)' \dots \dots $ $ \beta'_1 \text{ (Table I)} \dots $ $ d'_1 \text{ (Table III)} \dots $ $ X_c \dots \dots $ $ X \dots \dots $	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 0 - 76 +39,5425 +38,9497	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 0 - 25 -21,4407 -22,6292	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16 +16,5131 +15,7099	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670
	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 0 - 76 +39,5425 +38,9497 + 5,7141	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 0 - 25 -21,4407 -22,6292 - 6,7642	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875	+ 215,53 +53,8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715
	+ 158,25 +39',5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76 +39,5425 +38,9497 + 5,7141 + 4,8991	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735	+ 245,53 $+61,3825$ $+ 65$ $- 116$ $+41.27,1$ $+41,4517$ $+ 20$ $- 125$ $+61,3774$ $+60,9501$ $+41,4412$ $+41,1071$	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004	$\begin{array}{rrrr} & 85,82 \\ -21,4550 \\ -& 3 \\ +& 146 \\ -& 6.45,7 \\ -& 6,7617 \\ & 0 \\ -& 25 \\ -21,4407 \\ -22,6292 \\ -& 6,7642 \\ -& 7,8563 \end{array}$	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 163 +46,1464 +45,8241 -60,2875 -61,7422	+ 215,53 +53,8825 + 44 - 581 -46,44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699
$z - cb_0$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 0 - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273	- 231,90 -57,9750 - 55 + 669 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885	+ 23,09 + 5',7725 0 - 48 -22.33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223	+ 215,53 +53,8825 + 44 - 581 -46,44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618
	+ 158,25 +39',5625 + 18 - 218 + 5.43,3 + 5,7217 - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928 + 0,8150	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6048	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470	+ 184,80 +46,2000 + 28 - 564 -60,15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547	+ 215,53 +53',8825 + 44 - 581 -46.44,9 -46,7483 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984
	+ 158,25 +39',5625 + 18 - 218 + 5.43,3 + 5,7217 - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,3496	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6048 - 0,1661	+ 245,53 +61',3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644	- 85,82 -21,4550 - 3 + 146 - 6.45,7 - 6,7617 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201	+ 215,53 +53',8825 + 44 - 581 -46.44,9 -16,7483 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806
	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76 +39,5425 +38,9197 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,3496 - 0,0967	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6648 - 0,6661 - 0,3069	+ 245,53 +61',3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,8248	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430	+ 215,53 +53',8825 + 44 - 581 -46.44,9 -16,7483 - 28 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867
	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76 +39,5425 +38,9197 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,3496 - 0,0967 +32,5285	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6648 - 0,1661 - 0,3069 +49,1537	+ 245,53 +61',3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7,422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029	+ 215,53 +53',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458
	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,3496 - 0,0967 +32,5285 + 1,9717	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6648 - 0,6661 - 0,3069 +49,1537 +14,6461	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504 -10,7837	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 - 26,6963	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7,422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696	+ 215,53 + 53',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973
	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5,7217 o - 76 +39,5425 +38,9197 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,0967 +32,5285 + 1,9717 1058,1	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1753 +17,5735 + 0,4763 + 0,6648 - 0,6661 - 0,3669 +49,1537 +14,6461 2416,0	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797 2973,5	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278 4335,1	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504 -10,7837 844,0	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 - 1,5369 - 26,6963 2,1	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833 86,2	+ 184,80 +46',2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696 1552,6	+ 215,53 + 53',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973 2222,7
$z - \epsilon b_0$ $z - $	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5.7217 o - 76 +39,5425 +38,9197 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,967 +32,5285 + 1,9717 1058,1	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1753 +0,6048 -0,6661 -0,3069 +49,1537 +14,6461 2416,0 214,5	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797 2973,5 1457,7	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278 4335,1 3413,8	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504 -10,7837 844,0 116,3	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 -26,6963 2,1	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833 86,2 941,5	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696 1552,6 4182,2	+ 215,53 + 53',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973 2222,7 2600,8
$z - \epsilon b_0$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5.7217 o - 76 +39,5425 +38,9197 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,967 +32,5285 + 1,9717 1058,1 3,9 1062,0	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 - 0,4661 - 0,3069 +49,1537 +14,6461 2416,0 214,5 2630,5	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797 2973,5 1457,7 4431,2	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278 4335,1 3413,8 7748,9	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504 -10,7837 844,0 116,3 960,3	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 - 26,6963 2,4 712,7 715,1	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833 86,2 941,5 1027,7	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696 1552,6 4182,2 5734,8	+ 215,53 + 33',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973 2222,7 2600,8 4823,5
$z - cb_0$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5.7217 - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,967 +32,5285 + 1,9717 1058,1 3,9 1062,0 - 11,554	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 - 0,4661 - 0,3069 +49,1537 +14,6461 2416,0 214,5 2630,5 - 27,405	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797 2973,5 1457,7 4431,2 - 50,141	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278 4335,1 3413,8 7748,9 - 85,352	- 85,82 -21',4550 - 3 + 146 - 6.45,7 - 6,7617 - 0 - 25 -21,4407 -22,6292 - 6,7642 - 7,8563 + 1,1885 + 1,0921 + 0,2461 + 0,1804 -29,0504 -10,7837 844,0 116,3 960,3 - 9,094	+ 23,09 + 5',7725 0 - 48 -22,33,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 -26,6963 2,4 712,7 715,1 - 8,009	+ 66,11 +16',5275 + 1 - 145 -26,30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833 86,2 941,5 1027,7 - 11,581	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696 1552,6 4182,2 5734,8 -59,550	+ 215,53 + 33',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973 2222,7 2600,8 4823,5 - 51,807
$z - \epsilon b_0$	+ 158,25 +39,5625 + 18 - 218 + 5.43,3 + 5.7217 - 76 +39,5425 +38,9497 + 5,7141 + 4,8991 + 0,5928 + 0,8150 - 0,0967 +32,5285 + 1,9717 1058,1 3,9 1062,0 - 11,554 + 2,315	+ 224,28 +56,0700 + 50 - 238 +18.11,5 +18,1917 + 2 - 136 +56,0512 +55,5749 +18,1783 +17,5735 + 0,4763 + 0,6648 - 0,6661 - 0,3069 +49,1537 +14,6461 2416,0 214,5 2630,5 - 27,405 + 8,258	+ 245,53 +61,3825 + 65 - 116 +41.27,1 +41,4517 + 20 - 125 +61,3774 +60,9501 +41,4412 +41,1071 + 0,4273 + 0,3341 - 0,5151 - 0,5776 +54,5289 +38,1797 2973,5 1457,7 4431,2	- 231,90 -57,9750 - 55 + 669 -53,44,1 -53,7350 - 43 - 246 -57,9136 -59,4204 -53,7639 -55,5004 + 1,5068 + 1,7365 + 0,5644 + 0,8248 -65,8416 -58,4278 4335,1 3413,8 7748,9 - 85,352 + 21,329	- 85,82 -21,4550 - 3 + 146 -6.45,7 -6,7617 -0 - 25 -21,4407 -22,6292 -6,7642 -7,8563 +1,1885 +1,0921 +0,2461 +0,1804 -29,0504 -10,7837 844,0 116,3 960,3 -9,094 +2,587	+ 23,09 + 5',7725 0 - 48 -22,333,2 -22,5533 - 3 - 2 + 5,7677 + 4,8843 -22,5538 -23,7689 + 0,8834 + 1,2151 - 0,0590 + 0,3034 - 1,5369 -26,6963 2,1 712,7 715,1 - 8,009 + 2,041	+ 66,11 +16',5275 + 1 - 145 -26.30,4 -26,5067 - 6 - 16 +16,5131 +15,7099 -26,5089 -27,7559 + 0,8032 + 1,2470 - 0,1392 + 0,3353 + 9,2887 -30,6833 86,2 941,5 1027,7 - 11,581 + 1,156	+ 184,80 +46,2000 + 28 - 564 -60.15,9 -60,2650 - 62 - 163 +46,1464 +45,8241 -60,2875 -61,7422 + 0,3223 + 1,4547 - 0,6201 + 0,5430 +39,4029 -64,6696 1552,6 4182,2 5734,8	+ 215,53 + 33',8825 + 44 - 581 -46.44,9 -46,7483 - 28 - 204 +53,8288 +53,5670 -46,7715 -48,0699 + 0,2618 + 1,2984 - 0,6806 + 0,3867 +47,1458 -50,9973 2222,7 2600,8 4823,5 - 51,807 + 16,478

Détermination de T_x , T_y , i_x , i_y , ξ et $\Delta \mathfrak{D}_0$.

$$n = 18 \quad \frac{\sum (X_c - X)}{n} = + o',9424 \qquad \sum (a\alpha + b\beta) = -482,435 \qquad \tau_x = -0,010 669 \qquad \frac{\sum (Y_c - Y)}{n} = + o',9117 \qquad -(\rho'_b - \rho_b) \sum b^2 = -3,731 \qquad \rho'_0 - \rho_b = +0,000 177 \qquad -\tau_y \frac{\Sigma Y}{n} = + o',9117 \qquad -\tau_y \frac{\Sigma Y}{n} = + o',0307 \qquad -\tau_y \frac{\Sigma Y}{n} = + o',0307 \qquad -\tau_y \frac{\Sigma Y}{n} = + o',0407 \qquad -\tau_x \frac{\Sigma X}{n} = - o',0407 \qquad -\tau_x \frac{\Sigma X}{n}$$

Nous obtenons ainsi, pour les éléments du cliché, le système de valeurs suivant :

 $C(1+\tau_0)(\rho'-\rho) = \rho'_0 - \rho_0 = +0,000177$

$$i_x = +0,002641,$$
 $i_y = +0,002597,$
 $T_x = 0',989331,$ $T_y = 0',989508,$
 $\alpha_0 = 0^{h}0^{m}4^{o},02,$ $\delta_0 = -1^{o}59'2'',5.$

Au moyen de ces éléments nous avons corrigé les mesures des coordonnées rectilignes de nos étoiles de repère, et la comparaison de ces valeurs corrigées avec les coordonnées rectilignes, résultant des positions équatoriales adoptées pour les étoiles de repère, nous a fourni les résidus contenus dans Tableau qui suit.

Nous désignons par X' et Y' les valeurs corrigées des coordonnées rectilignes fondées sur les mesures; alors les résidus ont pour expression $X_c - X'$ et $Y_c - Y'$.

Tableau des résidus.

*.	2.	7.	13.	27.	32.	124.	3 8.	44.	56.
Χτ _x	+0,5652	+0,4812	+o,3633	+0,0812	+0;0226	-0,0371	-0,1021	-o,1815	-0,362g
$Yi_x \dots$		+0,1506							
ξ	+1,0032	•	•				·	·	
X'-X	+1,6140	+1,6350	+1,4517	+1,1433	+1,1741	+0,9642	+0,9411	+0,8523	+0,6477
$X_c - X' \cdot \cdot \cdot$	-o',0427	+o',0148	-o',o101	-o',o466	-o',o243	+0',0516	+0',0106	+0',0017	+0',1232
Υτ _γ	0 1810	-o,5981	0_3386	-0.2341	a 580a	+0 00=5	-0.1501	-0 1216	-0.0205
$-Xi_{y}$		+0,1171			•				
$\Delta(\hat{y}_0,\ldots,$	+0,9591	, 0,11/1	10,0004	4 0,0190	7 0,0050	0,0090	0,0240	0,0442	0,0003
Y' Y		+0,4781		±0 =448	±0 3757	 0 05=6	÷0 2=52	±0.7035	→0.8(13
$Y_c - Y' \dots$		-0',0091						• • •	•
	0,0110	0,0091	10,0144	0,0130	10,0204	0,0200	0,02,0	0,0002	10,0719
*•	61.	71.	74.	81.	105.	126.	142.	161.	163.
*· Χτ _x		71. —0,5939							
	-o,4157	-o,5939	-o,65o3	+o,634o	+0,2414	-0,0521	o,16 7 6	-o,489o	-o,5716
Χτ	-o,4157		-o,65o3	+o,634o	+0,2414	-0,0521	o,16 7 6	-o,489o	-o,5716
$X \tau_x \dots Y \iota_x \dots \dots$	-0,4157 +0,0129 +1,0032	-o,5939	-0,6503 +0,1085	+0,6340 -0,1466	+0,2{14 -0,0207	-0,0521 -0,0628	0,1676 0,0733	-0,4890 -0,1630	-0,5716 -0,1270
$X \tau_x \dots Y i_x \dots \xi \dots$	-0,4157 +0,0129 +1,0032 +0,6004	-0,5939 +0,0164	-0,6503 +0,1085 +0,4614	+0,6340 -0,1466 +1,4906	+0,2111 $-0,0207$ $+1,2239$	-0,0521 $-0,0628$ $+0,8883$	-0,1676 -0,0733 +0,7623	-0,4890 $-0,1630$ $+0,3512$	-0,5716 -0,1270 +0,3046
$X \tau_x \dots Y i_x \dots \xi \dots X' - X \dots$	-0,4157 +0,0129 +1,0032 +0,6004 -0',0076	-0,5939 +0,0,64 +0,4557 +0',0206	-0,6503 +0,1085 +0,4614 -0',0341	+0,6340 -0,1466 +1,4906 +0',0162	+0,2{14 -0,0207 +1,2239 -0',0354	-0,0521 -0,0628 +0,8883 -0',0049	0,1676 0,0733 +-0,7623 +-0',0409	-0,4890 -0,1630 +0,3512 -0',0289	-0,5716 -0,1270 +0,3046 -0',0428
$X \tau_x \dots Y i_x \dots Y i_x \dots X' - X \dots X_c - X' \dots X_c - X' \dots X_c \dots X_c$	-0,4157 +0,0129 +1,0032 +0,6004 -0',0076	-0,5939 +0,0164 +0,4557 +0',0206 -0,1814	-0,6503 +0,1085 +0,4614 -0',0341 -0,4313	+0,6340 -0,1466 +1,4906 +0',0162 +0,5823	+0,2{14 -0,0207 +1,2239 -0',0354 +0,0824	-0,0521 -0,0628 +0,8883 -0',0049 +0,2494	0,1676 0,0733 +-0,7623 +-0',0409 +-0,2912	-0,4890 -0,1630 +0,3512 -0',0289 +0,6478	-0,5716 -0,1270 +0,3046 -0',0428 +0,5044
$X \tau_x \dots Y i_x \dots Y i_x \dots X' - X \dots X_c - X' \dots$	-0,4157 +0,0129 +1,0032 +0,6004 -0',0076	-0,5939 +0,0,64 +0,4557 +0',0206	-0,6503 +0,1085 +0,4614 -0',0341 -0,4313	+0,6340 -0,1466 +1,4906 +0',0162 +0,5823	+0,2{14 -0,0207 +1,2239 -0',0354 +0,0824	-0,0521 -0,0628 +0,8883 -0',0049	0,1676 0,0733 +-0,7623 +-0',0409 +-0,2912	-0,4890 -0,1630 +0,3512 -0',0289 +0,6478	-0,5716 -0,1270 +0,3046 -0',0428
$X \tau_x \dots Y i_x \dots Y i_x \dots X' - X \dots X' - X \dots X_c - X' \dots X_c - X i_y \dots X$	-0,4157 +0,0129 +1,0032 +0,6004 -0',0076 -0,0514 -0,1012 +0,9591	-0,5939 +0,0164 +0,4557 +0',0206 -0,1844 -0,1443	-0,6503 +0,1085 +0,4614 -0',0341 -0,4313 -0,1583	+0,6340 -0,1466 +1,4906 +0',0162 +0,5823 +0,1544	+0,2{11, -0,0207 +1,2239 -0',0354 +0,0824 +0,0588	-0,0521 -0,0628 +0,8883 -0',0049 +0,2494 -0,0127	-0,1676 -0,0733 +0,7623 +0',0409 +0,2912 -0,0408	-0,4890 -0,1630 +0,3512 -0',0289 +0,6478 -0,1191	-0,5716 -0,1270 +0,3046 -0',0428 +0,5044 -0,1391
$X \tau_x \dots Y i_x \dots Y i_x \dots X' - X \dots X' - X \dots Y \tau_y \dots - X i_y \dots$	-0,4157 +0,0129 +1,0032 +0,6004 -0',0076 -0,0514 -0,1012 +0,9591 +0,8065	-0,5939 +0,0164 +0,4557 +0',0206 -0,1814	-0,6503 +0,1085 +0,4614 -0',0341 -0,4313 -0,1583 +0,3695	+0,6340 -0,1466 +1,4906 +0',0162 +0,5823 +0,1544 +1,6958	+0,2\(\)1\(\)4 -0,0207 +1,2239 -0',035\(\)4 +0,082\(\)4 +0,0588 +1,1003	-0,0521 -0,0628 +0,8883 -0',0049 +0,2494 -0,0127 +1,1958	-0,1676 -0,0733 +0,7623 +0',0409 +0,2912 -0,0408 +1,2095	-0,4890 -0,1630 +0,3512 -0',0289 +0,6478 -0,1191 +1,4878	-0,5716 -0,1270 +0,3046 -0',0428 +0,5044 -0,1391 +1,3244

Exemple du calcul de rectification des éléments par suite de la suppression d'une étoile de repère dont la position semble erronée.

En examinant les résidus de notre Tableau, nous voyons qu'une erreur notable doit affecter les coordonnées moyennes pour 1900 de l'étoile 56, à laquelle correspondent les résidus

$$+ o'$$
, $1232 = + o''$, 49 en ascension droite,
 $+ o'$, $0719 = + 4''$, 3 en déclinaison.

Alors, en faisant usage des formules établies à la page Lvi de ce Mémoire, nous aurons à effectuer les opérations très simples et assez rapides que voici pour rectifier les éléments du cliché:

$$n=18$$
, $n-1=17$, $\frac{n}{n-1}=1,059$.

Dans la colonne de l'étoile 56 (p. lx), nous prenons les valeurs de a^2 , b^2 , $a\alpha + b\beta$

 $b\alpha - a\beta$, $a^2 + b^2$ et ab:

$$a\alpha + b\beta = -4,732$$
 $b\alpha - a\beta = -0,022$
 $a^2 + b^2 = +761,5$
 $a^2 = +761,5$
 $b^3 = 0$
 $ab = -3$
En multipliant tous ces nombres

par le facteur $-\frac{n}{n-1}$, on
obtient:
 $+0,023$
 $-806,4$
 $-806,4$
 0
 $+3.$

Ces derniers nombres, ajoutés aux valeurs trouvées dans notre calcul primitif pour les sommes relatives à l'ensemble des étoiles de repère, nous donnent les nouvelles valeurs de ces sommes, savoir :

$$\Sigma(az + b\beta) = -477,425,$$

$$\Sigma(bz - a\beta) = +119,870,$$

$$\Sigma(a^{2} + b^{2}) = 44745,6,$$

$$\Sigma a^{2} = 23666,8,$$

$$\Sigma b^{2} = 21078,8,$$

$$\Sigma ab = -3582.$$

Maintenant, en prenant, pour la même étoile, les valeurs de X, Y, $X_c - X$ et $Y_c - Y$, c'est-à-dire

$$X = +34', o154,$$
 $Y = +2', 8158,$ $X_c - X = +0', 7709,$ $Y_c - Y = +0', 9132,$

et retranchant ces valeurs des sommes primitives de toutes les quantités analogues, nous avons, pour les valeurs corrigées des sommes de même espèce, relatives aux n-1 étoiles qui restent après la suppression de l'étoile 56, et pour les nouvelles moyennes de ces sommes :

$$\Sigma X = +81,5664, \qquad \frac{\Sigma X}{n-1} = +4,7980,$$

$$\Sigma Y = +49,8767, \qquad \frac{\Sigma Y}{n-1} = +2,9339,$$

$$\Sigma (X_c - X) = +16,1931, \qquad \frac{\Sigma (X_c - X)}{n-1} = +0,9525,$$

$$\Sigma (Y_c - Y) = +15,4983, \qquad \frac{\Sigma (Y_c - Y)}{n-1} = +0,9117.$$

Alors le calcul de rectification s'achève comme il suit :

$$\Sigma(a\alpha + b\beta) = -477,425 \qquad \Sigma(b\alpha - a\beta) = +119,870$$

$$-(\rho'_0 - \rho)\Sigma b^2 = -3,731 \qquad (\rho'_0 - \rho_0)\Sigma ab = -0,635$$

$$-\omega_0\Sigma ab = +0,158 \qquad \omega_0\Sigma a^2 = +1,042$$

$$Somme = -480,998 \qquad Somme = +120,277$$

$$\begin{split} \Sigma(a^2 + b^2) &= 44\,745,6 \\ \tau_x &= -0,010\,750 \\ \tau_y &= -0,010\,573 \end{split} \qquad \begin{aligned} \Sigma(a^2 + b^2) &= 44\,745,6 \\ i_x &= +0,002\,688 \\ i_y &= +0,002\,644 \end{aligned} \\ \frac{\Sigma(X_c - X)}{n-1} &= +0',9525 \\ -\tau_x \frac{\Sigma X}{n-1} &= +0',0516 \\ -i_x \frac{\Sigma Y}{n-1} &= +0,0309 \\ -i_x \frac{\Sigma Y}{n-1} &= -0,0079 \\ -i_x \frac{\Sigma X}{n-1} &= -0,0079 \\ -i_x \frac{\Sigma X}{n-1} &= +0,0127 \\ \text{Somme} &= \xi &= +0',9962 = +3^*,985 \\ \Delta \alpha_0 &= \xi \, \text{séc} \, \Omega_0 = +3^*,99 \end{aligned} \qquad \begin{aligned} \Sigma(a^2 + b^2) &= 44\,745,6 \\ i_x &= +0,002\,688 \\ i_y &= +0,002\,644 \end{aligned}$$

Le nouveau système d'éléments du cliché est donc :

$$i_x = + 0,002688,$$
 $i_y = + 0,002644,$
 $T_x = 0',989250,$ $T_y = 0',989427,$
 $\alpha_0 = 0^{\text{h o m } 3^{\text{o}}},99,$ $\delta_0 = -1^{\text{o}}59'2'',7.$

Expression de l'erreur probable d'une coordonnée rectiligne conclue, pour une étoile, en un point quelconque du cliché.

Nous supposerons que l'étoile en question ne fait point partie du groupe des étoiles de repère; nous désignerons par

 X_{μ} , Y_{μ} les valeurs des coordonnées, telles que les fournissent directement les mesures du cliché

X'_μ, Y'_μ les valeurs corrigées, conclues au moyen des formules

(54)
$$(X'_{\mu} = X_{\mu} + \xi + X_{\mu}(\tau + \rho_{0}) + Y_{\mu}(1 + \frac{1}{4}\omega_{0}),$$

$$(Y'_{\mu} = Y_{\mu} + \Delta \Omega_{0} + Y_{\mu}(\tau + \rho'_{0}) - X_{\mu}(1 - \frac{1}{4}\omega_{0}).$$

En éliminant les constantes ξ et $\Delta \omega_0$ par les relations (29) nous pouvons écrire

(55)
$$\begin{cases} X'_{\mu} = X_{\mu} + \Sigma \left(\frac{X_c - X}{n} \right) + \left(X_{\mu} - \frac{\Sigma X}{n} \right) (\tau + \rho_0) + \left(Y_{\mu} - \frac{\Sigma Y}{n} \right) (I + \frac{1}{2}\omega_0), \\ Y'_{\mu} = Y_{\mu} + \Sigma \left(\frac{Y_c - Y}{n} \right) + \left(Y_{\mu} - \frac{\Sigma Y}{n} \right) (\tau + \rho'_0) + \left(X_{\mu} - \frac{\Sigma X}{n} \right) (I - \frac{1}{2}\omega_0). \end{cases}$$

Les lettres X et Y désignent les coordonnées rectilignes mesurées des étoiles de repère; X_c et Y_c sont des valeurs tirées des Catalogues pour ces mêmes étoiles, et dans les formules (55) les signes Σ s'étendent à tout le groupe des étoiles de repère employées.

Les valeurs des coordonnées conclues se trouvent ainsi exprimées en fonctions des deux seuls éléments τ et I, lesquels sont déterminés (page LIII) par le système (31) des 2n équations de la forme

$$a\tau + bI = \alpha - a\rho_0 - \frac{1}{2}b\omega_0, .$$

$$b\tau - aI = \beta - b\rho_0 - \frac{1}{2}a\omega_0.$$

Les formules (55) nous font voir qu'il est un point du cliché où les corrections $X'_{\mu} - X_{\mu}$ et Y'_{\mu} - Y_{\mu} sont indépendantes des erreurs d'orientation et d'échelle ainsi que des effets de la réfraction différentielle; c'est le point pour lequel on a

$$X_{\mu} - \frac{\Sigma X}{n} = 0$$
 et $Y_{\mu} - \frac{\Sigma Y}{n} = 0$,

et les corrections, en ce point du cliché, ont pour expression

$$X'_{\mu}-X_{\mu}=\frac{\Sigma(X_c-X)}{n}, \qquad Y'_{\mu}-Y_{\mu}=\frac{\Sigma(Y_c-Y)}{n}.$$

Le point dont il s'agit, coïncidant avec le centre de gravité du système formé par les centres des images des étoiles de repère, est celui que M. Prosper Henry a désigné, par une heureuse abréviation, sous le nom de point invariable du cliché ('), relativement au système des étoiles de repère adopté.

Nous allons maintenant introduire dans les formules (55) les expressions des inconnues τ et I, tirées des équations (31); mais nous donnerons préalablement une autre forme aux seconds membres de ces dernières équations.

Nous poserons d'abord, pour chacune des étoiles de repère,

(56)
$$\begin{pmatrix} \alpha - a\rho_0 - \frac{1}{2}b\omega_0 = V, \\ \beta - b\rho_0' - \frac{1}{2}a\omega_0 = V', \end{pmatrix}$$

puis

(57)
$$(X_c - X - X\rho_0 - \frac{1}{2}Y\omega_0 = f,$$

$$(Y_c - Y - Y\rho'_0 - \frac{1}{2}X\omega_0 = f'.$$

Il en résultera

(58)
$$V = f - \frac{\Sigma f}{n}, \quad V' = f' - \frac{\Sigma f'}{n}.$$

Alors le système des équations d'où nous avons tiré les inconnues 7 et I prend la forme

⁽¹⁾ Voir, dans le Bulletin du Comité permanent (t. II, p. 359 et suivantes), le rôle important que joue ce point dans l'ingénieuse méthode développée par M. Pr. Henry pour la détermination des éléments d'un cliché. Alger, Coord. rect.

et, en tenant compte des identités $\Sigma a = 0$, $\Sigma b = 0$, on trouve immédiatement, pour déterminer les valeurs des inconnues τ et I,

(60)
$$(\tau \Sigma (a^2 + b^2) = \Sigma a f + \Sigma b f',$$

$$(1\Sigma (a^2 + b^2) = \Sigma b f - \Sigma a f'.$$

On a ensuite, pour les corrections du centre du cliché, et en désignant par X_g , Y_g les coordonnées $\frac{\Sigma X}{n}$ et $\frac{\Sigma Y}{n}$ du point invariable,

(61)
$$\left\{ \begin{split} \xi \Sigma(a^2 + b^2) &= \Sigma \left[\frac{1}{n} - (aX_g + bY_g) \right] f + \Sigma(aY_g - bX_g) f', \\ \Delta \Theta_0 \Sigma(a^2 + b^2) &= \Sigma \left[\frac{1}{n} - (aX_g + bY_g) \right] f' - \Sigma(aY_g - bX_g) f. \end{split} \right.$$

Il faut maintenant, pour avoir $X'_{\mu} - X_{\mu}$, substituer dans les formules (55) les expressions de τ et de I tirées des formules (60). Nous abrégeons les écritures en posant, relativement à chacune des étoiles de repère,

(61 bis)
$$\begin{cases} P = \frac{1}{n} + \frac{a(X_{\mu} - X_{g}) + b(Y_{\mu} - Y_{g})}{\Sigma(a^{2} + b^{2})}, \\ P' = \frac{b(X_{\mu} - X_{g}) - a(Y_{\mu} - Y_{g})}{\Sigma(a^{2} + b^{2})}. \end{cases}$$

$$Q = \frac{a(Y_{\mu} - Y_{g}) - b(X_{\mu} - X_{g})}{\Sigma(a^{2} + b^{2})} = -P',$$

$$Q' = \frac{1}{n} + \frac{b(Y_{\mu} - Y_{g}) + a(X_{\mu} - X_{g})}{\Sigma(a^{2} + b^{2})} = P.$$

Alors les expressions de $X'_{\mu}-X_{\mu}$ et de $Y'_{\mu}-Y_{\mu}$ se présentent sous les formes suivantes :

(62)
$$(X'_{\mu} - X_{\mu} = X_{\mu} \rho_{0} + \frac{1}{2} Y_{\mu} \omega_{0} + \Sigma P f + \Sigma P' f', (Y'_{\mu} - Y_{\mu} = Y_{\mu} \rho'_{0} + \frac{1}{2} X_{\mu} \omega_{0} + \Sigma Q f + \Sigma Q' f'.$$

Nous avons ainsi exprimé

$$X'_{\mu} - X_{\mu} - X_{\mu} \rho_0 - \frac{1}{2} Y_{\mu} \omega_0$$
 et $Y'_{\mu} - Y_{\mu} - Y'_{\mu} \rho'_0 + \frac{1}{2} X_{\mu} \omega_0$

au moyen des quantités indépendantes

$$f_1, f_2, \ldots, f_n; f'_1, f'_2, \ldots, f'_n,$$

pour lesquelles nous avons admis, a priori, la même erreur probable, car en résolvant les équations des types (31) ou (59), nous avons attribué le même poids à chacune des 2n équations sans faire aucune distinction entre les deux groupes fournis, l'un par la comparaison des abscisses et l'autre par celle des ordonnées. Un théorème connu nous

permet donc d'exprimer immédiatement les erreurs probables des coordonnées conclues X'_{μ} et Y'_{μ} . Soient

 ε l'erreur probable de l'une des quantités f;

 ε_x , ε_y les erreurs probables respectives de l'abscisse mesurée X_μ et de l'ordonnée mesurée Y_μ ;

 $\epsilon_{x'}$, $\epsilon_{y'}$ les erreurs probables respectives des coordonnées corrigées X'_{μ} et Y'_{μ} .

Nous aurons, par les formules (62),

(63)
$$(\epsilon_{x'}^{2} = (1 + \rho_{0})^{2} \epsilon_{x}^{2} + \frac{1}{4} \omega_{0}^{2} \epsilon_{y}^{2} + \epsilon^{2} (\Sigma P^{2} + \Sigma P'^{2}), \\ (\epsilon_{x'}^{2} = (1 + \rho_{0}')^{2} \epsilon_{y}^{2} + \frac{1}{4} \omega_{0}^{2} \epsilon_{x}^{2} + \epsilon^{2} (\Sigma Q^{2} + \Sigma Q'^{2}).$$

En développant les sommes de carrés contenues dans les seconds membres, effectuant les réductions qui se présentent, et tenant compte des identités $\Sigma a = 0$, $\Sigma b = 0$, on trouve

(64)
$$\begin{cases} \varepsilon_{x'}^{2} = (1 + \rho_{0})^{2} \varepsilon_{x}^{2} + \frac{1}{4} \omega_{0}^{2} \varepsilon_{y}^{2} + \frac{(X_{\mu} - X_{g})^{2} + (Y_{\mu} - Y_{g})^{2}}{\Sigma (a^{2} + b^{2})} \varepsilon^{2} + \frac{\varepsilon^{2}}{n}, \\ \varepsilon_{y'}^{2} = (1 + \rho_{0}')^{2} \varepsilon_{y}^{2} + \frac{1}{4} \omega_{0}^{2} \varepsilon_{x}^{2} + \frac{(X_{\mu} - X_{g})^{2} + (Y_{\mu} - Y_{g})^{2}}{\Sigma (a^{2} + b^{2})} \varepsilon^{2} + \frac{\varepsilon^{2}}{n}. \end{cases}$$

Le facteur $(X_{\mu} - X_{g})^{2} + (Y_{\mu} - Y_{g})^{2}$ exprime le carré de la distance du point invariable au point ayant pour coordonnées X_{μ} et Y_{μ} ; nous désignerons cette distance par $\Delta_{\mu,g}$, et nous représenterons de même par $\Delta_{r,g}$ la distance analogue pour l'une quelconque des étoiles de repère, c'est-à-dire que nous poserons

(65)
$$(\Delta_{\mu,g}^2 = (X_{\mu} - X_{g})^2 + (Y_{\mu} - Y_{g})^2, \\ (\Sigma_{\alpha,g}^2 = \Sigma(a^2 + b^2).$$

Nous remarquerons, en outre, que les quantités $1 + \rho_0$ et $1 + \rho'_0$ dissèrent très peu de l'unité et que les produits $\frac{1}{4}\omega_0^2 \varepsilon_x^2$, $\frac{1}{4}\omega_0^2 \varepsilon_r^2$ sont toujours très petits; alors nous pourrons écrire, avec toute l'exactitude désirable,

(66)
$$\begin{cases} \varepsilon_{x'}^2 = \varepsilon_{x'}^2 + \frac{\varepsilon^2}{n} + \varepsilon^2 \frac{\Delta_{\mu, g}^2}{\Sigma \Delta_{\mu, g}^2}, \\ \varepsilon_{y'}^2 = \varepsilon_{y'}^2 + \frac{\varepsilon^2}{n} + \varepsilon^2 \frac{\Delta_{\mu, g}^2}{\Sigma \Delta_{\mu, g}^2}. \end{cases}$$

Ainsi, lorsqu'on fait usage d'un système déterminé d'étoiles de repère pour corriger les mesures d'une étoile quelconque d'un cliché, l'erreur probable de l'abscisse ou de l'ordonnée conclue varie suivant la distance entre l'image de cette étoile et le point G du cliché qui coïncide avec le centre de gravité du groupe d'images formé par les étoiles de repère. Cette erreur probable est, dans tous les cas, exprimée par la formule (66).

Pour une étoile dont l'image coıncide avec le point G lui-même, on a simplement

$$\varepsilon_{i}^{2}=\varepsilon_{i}^{2}+\frac{\varepsilon^{2}}{n},$$

$$\varepsilon_y^2 = \varepsilon_y^2 + \frac{\varepsilon^2}{n}$$

C'est en ce point du cliché que, toutes choses égales d'ailleurs, on obtiendra la plus grande exactitude possible pour la position photographique d'une étoile.

Expressions des erreurs probables des inconnues τ , I, ξ et $\Delta \omega_0$. — Soient ε_{τ} , ε_{i} , ε_{ξ} , $\varepsilon_{\Delta \omega_0}$ les erreurs probables de ces quatre éléments. En faisant usage des formules (60) et (61), on trouve sans difficulté

(67)
$$\begin{cases} \varepsilon_1^2 = \varepsilon_i^2 &= \frac{\varepsilon^2}{\Sigma (a^2 + b^2)}, \\ \varepsilon_2^2 = \varepsilon_{\Delta(\mathbb{D}_0)}^2 = \frac{\varepsilon^2}{n} + \varepsilon^2 \frac{X_\beta^2 + Y_\beta^2}{\Sigma (a^2 + b^2)}. \end{cases}$$

La quantité $X_g^2 + Y_g^2$ n'est autre chose que le carré de la distance du point G au centre du cliché. En désignant cette distance par $\Delta_{0,g}$ et faisant usage comme précédemment de la notation $\Delta_{r,g}^2$ pour représenter la valeur de $a^2 + b^2$ convenant à l'une quelconque des étoiles de repère, nous écrirons

(68)
$$\begin{cases} \varepsilon_{\tau}^{2} = \varepsilon_{i}^{2} &= \frac{\varepsilon^{2}}{\Sigma \Delta_{r,g}^{2}}, \\ \varepsilon_{\xi}^{2} = \varepsilon_{\Delta(\xi)}^{2} = \frac{\varepsilon^{2}}{n} + \varepsilon^{2} \frac{\Delta_{0,g}^{2}}{\Sigma \Delta_{r,g}^{2}}. \end{cases}$$

On voit que l'erreur probable d'une détermination du centre dépend à la fois du nombre des étoiles de repère et de leur mode de distribution sur le cliché.

Il peut arriver que le point G coıncide avec le centre même du cliché. Alors on aura $\Delta_{0,g} = 0$, et l'erreur probable commune à ξ et $\Delta \Theta_0$ se réduit à

$$\epsilon_{\xi} = \epsilon_{\Delta(\xi)_{0}} = \frac{\epsilon}{\sqrt{n}};$$

elle ne dépend donc plus, dans ce cas particulier, que du nombre des étoiles de repère.

Détermination de ε . — Il nous reste à déterminer l'erreur probable ε au moyen des résidus des équations de condition.

Cette erreur probable ε est celle des quantités f ou f'; or, la somme des carrés des résidus de nos 2n équations de condition de la forme (31) et (59) ne nous donnera pas ε^2 , mais bien le carré de l'erreur probable des quantités que nous avons appelées V. Il est facile d'établir la relation qui existe entre ces deux erreurs probables.

Désignons la première par $\varepsilon_{f,f'}$ et la seconde par $\varepsilon_{\nu,\nu'}$, les doubles indices étant destinés à rappeler que nous avons attribué la même précision aux f et aux f', ainsi qu'aux V et

aux V'. Les relations entre les quantités V et f, V' et f' sont

$$V_{1} = f_{1} - \frac{\Sigma f}{n},$$
 $V'_{1} = f'_{1} - \frac{\Sigma f'}{n},$
 $V_{2} = f_{2} - \frac{\Sigma f}{n},$ $V'_{2} = f'_{2} - \frac{\Sigma f'}{n},$
 $V_{n} = f_{n} - \frac{\Sigma f}{n},$ $V'_{n} = f'_{n} - \frac{\Sigma f'}{n}.$

En réunissant dans le second membre de chacune d'elles les deux termes de chaque indice qu'il contient de manière à exprimer les V et V' par une somme algébrique de quantités indépendantes, et appliquant ensuite le théorème de la somme des carrés des erreurs, nous obtiendrons

$$\varepsilon_{\nu,\nu'}^2 = \left(\frac{n-1}{n}\right) \varepsilon_{f,f'}^2$$

ct, par suite,

$$\epsilon_{j,f}^{2} = \left(\frac{n}{n-1}\right) \epsilon_{\nu,\nu}^{2}.$$

Soient enfin

$$c_1, \quad c_2, \quad \ldots, \quad c_n,$$
 $c'_1, \quad c'_2, \quad \ldots, \quad c'_n$

les résidus des 2n équations de condition (59), nous aurons, puisque le nombre des inconnues est 2, et en désignant par Σv^2 la somme des carrés de tous ces résidus,

$$\epsilon_{\nu,\nu'}^2 = 0.6745 \frac{\Sigma v^2}{2n-2}$$

et, par conséquent,

(70)
$$\epsilon_{j,j} = 0.6745 \left(\frac{n}{n-1} \right) \frac{\sum v^2}{2n-2}.$$

Il est aisé de voir que les résidus v, v' ne sont autre chose que les résultats $X_c - X'$, $Y_c - Y'$ de la comparaison faite, pour les étoiles de repère, entre leurs coordonnées rectilignes tirées des Catalogues et les valeurs mesurées, après que ces dernières ont été corrigées par l'application des éléments du cliché. Considérons en effet, dans notre système (59), les deux équations

$$a_k \tau + b_k \mathbf{I} = \mathbf{V}_k,$$

$$b_k \tau - a_k \mathbf{I} = \mathbf{V}'_k$$

supposées fournies par l'étoile de repère dont le numéro est k. Les résidus, par rapport aux abscisses et aux ordonnées, seront

(71)
$$(v_k = V_k - a_k \tau - b_k I, (v'_k = V'_k - b_k \tau + a_k I.$$

A ces expressions des résidus nous avons à comparer celles des différences $X_{c,k} - X_k'$ et

 $Y_{c,k}-Y_k'$. Or, les formules (55) qui donnent les corrections $X_{\mu}'-X_{\mu}$ et $Y_{\mu}'-Y_{\mu}$ sont établies pour une étoile supposée en dehors du groupe des étoiles de repère; elles peuvent s'appliquer aussi à une étoile quelconque de ce groupe, seulement les facteurs $X_{\mu}-\frac{\Sigma X}{n}$, $Y_{\mu}-\frac{\Sigma Y}{n}$ représentent alors ce que nous avons appelé a et b pour cette étoile, c'est-à-dire a_k et b_k pour l'étoile de repère de rang k. Nous aurons par conséquent

$$X'_{k} - X_{k} = \Sigma \left(\frac{X_{c} - X}{n} \right) + a_{k} (\tau + \rho_{0}) + b_{k} (I + \frac{1}{2}\omega_{0}),$$

$$Y'_{k} - Y_{k} = \Sigma \left(\frac{Y_{c} - Y}{n} \right) + b_{k} (\tau + \rho'_{0}) - a_{k} (I - \frac{1}{2}\omega_{0}).$$

Il résulte de là

(72)
$$\begin{cases} X_{c,k} - X_k' = X_{c,k} - X_k - \Sigma \left(\frac{X_c - X}{n} \right) - a_k(\tau + \rho_0) - b_k(1 + \frac{1}{2}\omega_0), \\ Y_{c,k} - Y_k' = Y_{c,k} - Y_k - \Sigma \left(\frac{Y_c - Y}{n} \right) - b_k(\tau + \rho_0') + a_k(1 - \frac{1}{2}\omega_0). \end{cases}$$

Il suffit maintenant de se reporter aux formules (56) et de se rappeler la signification attribuée aux quantités α et β, pour vérifier que les relations (72) se réduisent à

(73)
$$\begin{cases} X_{c,k} - X'_k = V_k - a_k \tau - b_k I, \\ Y_{c,k} - Y'_k = V'_k - b_k \tau + a_k I; \end{cases}$$

c'est-à-dire

MARIA NA

$$\begin{cases} X_{c,k} - X'_k = v_k, \\ Y_{c,k} - Y'_k = v'_k. \end{cases}$$

Ainsi les résidus $X_c - X'$ et $Y_c - Y'$, dont nous avons donné le Tableau à la page LXII pour le cliché 1551, ne diffèrent en rien des résidus v et v' qu'on obtiendrait en substituant les valeurs des éléments τ et I dans les équations (59) appliquées à ce cliché.

Nous donnons ci-après les résidus pour les étoiles de repère de 33 clichés compris dans les zones 0° , -1° et -2° . Pour les abscisses, les résidus sont exprimés en secondes de temps, pour les ordonnées en secondes d'arc. On peut considérer les résidus des abscisses comme des différences d'ascension droite rapportées à l'équateur, c'est-à-dire $\Delta \alpha \cos \hat{c}$, et les résidus des ordonnées comme des différences $\Delta \hat{c}$ de déclinaison.

Tableau des résidus pour les étoiles de repère de 33 clichés des zones 0° , -1° et -2° .

$ZONE \ (Q = o^{\circ}.$	ZONE $\mathfrak{O} = 0^{\circ}$.	ZONE $(Q = o^{\circ})$.	ZONE $(\mathfrak{d} = \mathfrak{o}^{\circ})$.	ZONE
★. Δz cos δ. Δδ.	★. Δπ cos δ. Δδ.	★. Δz cos δ. Δδ.	★. Δz cos δ. Δδ.	★. Δz cos δ. Δδ.
Сыспе 1343.	Cutcué 1374 (suite).	Clicné 596 (suite).	Сысий 1371 (suite).	Сысий 1344.
8 -+o,*11o,".	11 -o,06 -o,6	91 -0,191,6	56 ÷o,*ot +2,″,7	$6 - o_1^* o_2 - o_1^* 3$
21 -0,15 +1,8	14 +0.01 -0.0	97 +0,07 0,0	57 - 0.19 - 3.0	10 +0,020,2
$36 \div 0, 11 \div 0, 4$	20 -0.28 -0.3	1000,12 -2,5	60 $-0,11 +0,5$	14 - 0.08 - 3.3
39 -0,221,8	33 + 0.10 - 0.0	105 -0,13 -0,3	610,01 +1,7	16 - 0, 10 + 0, 7
10 -0,07 +0,8	44 -0.17 +0.2	1080,010,6	62 -0.02 +2.0	17 -0,12 -1,1
.19 0,001,4	5i - 0.01 + 0.i	117 0,05 0,1		28 -0,16 -1,6
530,30 -0,5	71 -0.03 +2.2	118 -0.02 +0.2	Clicné 22.	39 - 0,17 - 2,6
55 -0,05 0,0	000.220.5	119 +0,04 +0,7	OBIORE AA.	12 0,00 +0,1
58 + 0.07 + 2.4	101 + 0.01 - 1.0		3 + 0.15 + 0.2	44 + 0.25 + 0.8
62 + 0, 11 - 0, 3	1000.071.0	Cricné 397.	27 + 0.02 - 0.6	47 - 0.10 + 2.5
64 + 0.03 - 1.2	122 +0.29 +1.0		31 + 0.08 + 0.6	48 + 0,22 - 0,5
65 + 0.24 - 0.0	133 -0,001,2	4 +0,05 -0,4	35 - 0.06 - 1.9	52 + 0.08 - 0.3
66 +0,10 -0,7	119	130,160,6	36 -0.07 -0.4	55 + 0.01 + 0.5
71 -0.26 +1.0 $76 -0.22 +0.8$	1300.012.0	29 0,000,7	37 -0.08 -2.3	65 0,00 $-1,5$
	100 0 13 3 0	31 - 0.05 - 1.8	39 + 0.03 - 1.5	69 + 0, 10 + 0, 1
79 +0,08 +0,3 83 -0,04 +0,4		33 + 0.01 - 0.3	8, 1+ 00, 0- 1	74 - 0.11 - 0.5
910,010,0	A ' 1900	69 -0.13 -1.5	47 + 0.07 + 2.1	82 -0.08 -0.2
100 +0,03 -0,0		72 —0,04 —1,7 71 —0,04 —0,9	49 -0,032,3	85 -0.06 -1.2
103 -0,073,7	7 0.01 0.0	71 -0.01 -0.9 $78 -0.01 +2.1$	54 + 0.07 - 0.3	
105 - 0.14 - 0.3	0 00 16	82 0,000,7	55 $-0.07 +0.8$	Сысий 1573.
107 - 0, 16 + 0, 1	80 0 00 0 0	84 - 0.03 + 2.0	56 + 0.02 - 0.4	
114 + 0.30 + 3.1	80 00 00	86 - 0.06 + 0.7	57 -0.05 +2.8	8 + 0.18 + 0.2
115 + 0,11 + 0,8		94 - 0.06 - 1.2	58 -0.03 -0.5	17 -0.06 -0.9
	1080,200,6	95 0,001,2	59 -0.2i -0.2	26 -0.02 -1.6
Сысие 1366.	122 +0,15 -0,2	104 + 0.06 - 1.5	60 + 0.13 + 0.3	33 - 0, 10 - 2, 4
GEICHE 1000.	127 -0,06 -0,8	114 -0,13 0,0	67 + 0.02 + 1.2	36 - 0.09 - 0.8
2 -0,05 -0,5	132 —0,01 —1,4	117 -0,02 -0,8		46 -0.03 +3.4
4 -0,17 -0,7	-/	132 + 0.08 - 1.2	Clicué 1434.	57 - 0.03 - 1.4
8 +0,10 +2,2				65 + 0.18 + 0.1
20 -0,17 0,0	, 160 -0,01 +0,5	Carcué 1342.	19 σ,00 -0,9	72 -0,082,1
27 + 0.01 - 2.1	166 +0,03 +0,1	Chicke 1972.	25 -0.06 +0.2	78 - 0, 10 + 1, 9
29 0,00 +1,3	;	14 -o, o3o, 9	48 + 0.21 - 0.6	90 +0,22 +0,9
33 + 0.21 + 0.6	Cricné 596.	26 -0,021,3	50 -0,01 +0,9	106 -0,01 -0,1
35 0,00 +3,0	•	460,013,2	66 + 0, 10 + 3, 0	107 + 0.01 + 1.1 113 - 0.11 + 0.2
37 0,00 -1,2		51 + 0.01 + 0.7	72 + 0.14 + 0.3	113 -0,11 +0,2 $115 +0,11 +0,8$
58 + 0.07 - 2.6	7 + 0.13 + 0.3	52 -0.02 -0.8	74 -0.01 +0.4	139 + 0.03 - 0.9
59 + 0.08 + 1.0		54 + 0,10 + 1,9	77 +0,04 - 0,1	150 - 0.01 - 2.0
74 - 0.09 - 0.5	160,010,3	66 -0.08 -0.5	79 -0.21 +2.4	160 ÷0,03 0,0
76 +0,19 +0,1		71 —0,10 +1,4	80 -0.26 -2.4	179 - 0,19 + 0,4
83 + 0.16 + 1.5			81 + 0.01 - 0.2	181 - 0.08 + 1.3
87 - 0, 10 + 0, 2	70 0 .	Clicné 4571.	89 -0,12 -0,3	183 + 0,181,8
93 - 0.05 - 1.0	C . * O	9 "	91 + 0,12 - 0,3	186 + 0,11 + 3,2
99 -0,1; -1,5		7 0,00 -1,0	101 +0,07 +2,6	194 - 0,10 - 1,5
1010,08 $+0,3$		170,193,1	120 0, 19 2, 3	J. 7
_	66 +0,04 -0,4	23 - 0,12 - 0,5	$128 -0.05 \div 0.1$	C
Clicné 1574.	71 -0,181,9	36 -0,07 -0,5	134 -0,03 -1,0	Сыспе 594.
5 +o;11 +4,"3	73 -0.08 -0.6 $74 -0.11 -3.1$	50 -0.08 -0.9 52 -0.03 +1.1	136 + 0.05 - 0.1 $140 - 0.09 - 2.3$	9 -0,04 -0,"1
-, - , - , -, -, -, -, -, -, -, -, -, -,	/4 0,11	02 ": U,UU ";" 1,1		<i>y</i> -,~4

Tableau des résidus pour les étoiles de repère de 33 clichés des zones 0°, — 1° et — 2° (suite).

ZONE $(0 = -1^{\circ})$.	ZONE $(0 = -1)^{\circ}$.	ZONE $(\mathfrak{d}) = -1^{\circ}$.	ZONE $(\emptyset = -2^{\circ})$.	ZONE
*. Δz cos δ. Δδ.	★. Δz cos ô. Δô.	★ . Δz cos δ. Δδ.	★. Δz cos δ. Δδ.	★ . Δz cos δ. Δδ.
Clicné 594 (suite).	Clicné 1577 (suite).	CLICHÉ 1378 (suite).	Сысие 1331.	Cliché 1376 (suite).
12 + 0.13 + 1.6	25 - 0.06 - 2.1	179 +0,03 -2,8	2 -0,16 -0,6	82 -0,27 -1,9
16 - 0.07 - 0.2	27 - 0.06 - 1.7	185 - 0.23 - 1.3	7 + 0.06 - 0.5	89 + 0.02 0.0
18 0.00 -1.2	42 + 0.03 + 1.2	, ,	13 - 0,03 + 1,0	93 -0,12 +0,3
24 -0,11 -1,6	45 +0,05 0,0		27 - 0.16 - 0.7	1.43 + 0.03 + 1.9
27 + 0.12 + 4.0	460,190,3	Clicné 20.	32 -0.08 +2.0	153 +0,01 +0,8
$28 \div 0,14 + 0,6$	62 -0,11 -1,0		124 + 0.18 - 1.6	
3t - 0.21 - 0.7	63 + 0, 12 + 1, 2	2 + 0,03 - 2,2	38 + 0.07 - 1.5	Clicné 17.
39 -0,12 -0,5	67 + 0.21 + 3.1	3 -0.06 0.0	44 + 0.04 + 0.1	6 -0.07 0.0
11 -0,10 -1,1	77 —0,16 0,0	4 + 0,19 + 1,7	6i + 0,0i + 0,9	, ,
$\frac{1}{2}$ -0.05 -1.4	80 - 0.05 - 1.5	7 -0.03 -0.8	71 + 0,12 - 1,2	10 +0,01 +0,9
44 0.00 -1.6	82 +0,10 -1,4	13 + 0.06 - 0.2	74 - 0,10 - 1,7	14 - 0, 17 + 1,5
47 + 0,12 + 0,6	85 -0,020,8	14 -0,09 -1,2	81 + 0.08 + 2.1	21 +0,16 +1,2
54 + 0.72 + 1.0	87 + 0.04 + 2.6	16 - 0,02 - 0,7	105 -0,12 -0,5	25 -0,09 -0,9
57 + 0.03 + 1.1	•	17 + 0.06 - 0.6	126 +0,01 +1,1	26 +0,11 +1,7
67 - 0.09 - 1.1	0 110	18 -0.04 +1.2	142 +0,12 +2,2	31 0.00 -3.2 $33 -0.00 -0.4$
70 -0,02 +0,2	Clicué 18.	19 -0,19 +1,2	161 -0,06 -2,1	, ,
	8 + 0.13 + 0.3	2i + 0.13 + 0.5	163 - 0, 12 - 1, 5	490,010,6
Сысив 28.	15 -0.09 -0.2	.28 -0.12 +0.3		500,060,9
CLICHE 20.	16 -0.09 -0.2	30 -0.08 +1.5	CLICHÉ 13.	Сысие 1430.
2 0,00 -1,2	21 -0.05 +0.3	32 +0.02 +0.5		GLICHE 1400.
6 + 0.03 - 1.4	24 + 0.10 + 1.3	34 -0.06 +0.5	2 —o,°o2 —1″.9	1 -0,20 -0,3
10 +0,11 +0,1	26 - 0.14 + 0.7	8, 1-80, 0+6	11 -0.02 +0.2	5 -0.02 +0.4
11 -0.07 -0.3	28 -0,04 +0,8	37 + 0.01 + 0.8	19 +0,010,9	8 -0.19 -2.5
17 + 0.04 + 0.3	29 +0,08 0,0	42 + 0.08 + 1.6	23 -0,010,1	9 -0,04 -4,4
20 +0,05 +0,7	31 + 0.09 - 0.1	55 -0.05 +0.2	24 + 0.06 + 1.8	13 + 0.05 + 2.1
24 + 0,15 + 1,1	43 -0,11 +0,1	57 + 0.09 - 2.4	26 - 0, 10 + 0, 6	17 + 0.07 - 1.0
34 + 0.03 - 2.5	44 0,00 +0,4		28 + 0.18 + 1.8	18 -0,06 -2,4
35 + 0.05 - 0.1	49 +0,03 -0,9	0 100	$34 \pm 0.07 -0.2$	21 -0,02 -1,2
37 - 0.17 + 0.5	49 10,00 0,9	Сысив 29.	35 - 0.04 - 1.4	25 + 0.05 + 0.1
52 -0.12 -0.6		. 10 77	40 + 0.09 - 0.5	30 -0,14 +3,2
54 + 0.04 - 0.5	Clicné 1578.	4 —o,06 —o,5	45 -0,18 +0,2	37 o,oo — o,7
57 - 0.21 - 2.8		7 0,00 -1,1	76 + 0.07 + 0.7	39 -0,11 -1,0
58 -0.08 +3.4	2 + 0,10 + 3,2	9 +0,03 +0,1	91 + 0,22 + 1,1	45 - 0.02 - 1.2
60 + 0.03 + 1.5	29 -0,24 -1,1	13 +0,04 +0,8	95 -0,32 -1,5	510,14 +2,1
62 + 0.05 - 1.2	33 + 0.02 + 0.9	15 —0,07 0,0		61 -0.02 -3.8
63 - 0.03 + 1.4	45 + 0.06 + 0.6	18 +0,12 +1,7	Clicné 1376.	63 + 0, 15 - 1, 2
65 - 0,03 - 1,3	$\frac{53}{2}$ +0,13 - 0,7	19 +0,062,7		69 -0.01 +3.8
66 + 0.02 - 0.3	61 -0,07 -0,1	21 -0,05 -2,6	4 +0,08 -0.5	78 + 0,22 + 3,2
68 + 0,12 + 2,8	67 +0,12 0,0	240,02 +1,3	8 + 0.03 - 1.9	101 —0,03 —0,6
,	77 -0.06 -1.5	28 —0,13 —0,3	16 +0,12 -0,1	119 +0,02 +0,5
C	87 + 0.26 - 2.3	31 + 0, 11 - 2, 0	28 -0.10 +0.5	124 - 0, 12 - 1, 0
Сыспе 1577.	108 +0,08 -0,5	32 -0.05 0.0	30 -0,04 +1,0	
/ 08.E 0#=	109 +0,02 +1,6	38 -0,04 +0,4	320,241,9	Cliché 3.
4 -0,15 -0,9	122 -0.04 +0.4	40 -0,04 +1,1	350,010,8	1 +0,04 +1,1
5 0,00 -0,7	1250,03 +3,2	41 + 0.05 - 0.4	$\frac{12}{12} - 0.05 - 1.6$	· ·
16 + 0, 19 - 2, 3	126 +0,06 0,0	43 + 0.23 + 1.3	49 -0,03 -2,8	4 + 0,11 + 0,6 9 + 0,11 - 0,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131 -0.20 +1.2 $138 -0.14 -0.7$	45 -0.10 +0.1 50 -0.06 +2.7	55 + 0.04 + 0.2 69 - 0.05 + 0.1	10 -0,17 -4,0
24 - 0,10 + 2,5	144 -0,01 0,0	50 -0.00 +2., $52 +0.04 +1.2$	73 -0.06 +0.7	11 -0,27 -1,1
~-, ~ , 1 ~ , 4 , 5			, 5 5,00 10,7	~1~/ -1.

Tableau des résidus pour les étoiles de repère de 33 clichés des zones 0° , -1° et -2° (suite.)

```
ZONE Q = -2^{\circ}.
                                     ZONE (0) = -2^{\circ}.
                                                        ZONE Q = -2^{\circ}.
                                                                          *. Δz cosδ. Δδ.
                  ¥. Δz cos δ. Δδ.
                                     ★. Δz cos δ. Δδ.
                                                        ¥. Δz cos δ. 4δ.
                                                                          ★. Δα cosδ.
CLICHÉ 3 (suite).
                  CLICHE 1431 (suite),
                                    CLICHÉ 1445 (suite).
                                                       CLICHÉ 1421 (suite).
                                                                          Сысне 1422 (suite).
                                                       174 -0,15 -0,4
   -0.11 - 3.11
                  101 -0,10 +0,2
                                         +0.18 -1.6
                                                                          130 + 0.01 - 1.77
   +o, 18
          -1,4
                  118
                     +0,08 -1,0
                                     73
                                         -0.03 +0.1
                                                       191
                                                           +0,04
                                                                    0,0
                                                                          145
                                                                              +0.03
                                                                                     -0,5
                                         +0.03 -0.6
    -o,13
                                                       213 + 0.03 + 1.4
          -1.2
22
                  123 + 0.04 + 0.1
                                     77
                                                                          1 18
                                                                              +0.04
                                                                                       0,0
23
    -0,21
           -1,2
                                         -0,09 -2,2
                                                            +0.04 -0.2
                                                                          182
                                                       217
                                                                              -0.10
                                                                                     -0.I
41
   -0,10
          --1.4
                                     92 +0,19 -0,9
                                                            +0,17 +0,3
                                                                          238
                                                       250
                                                                              -0,10
                                                                                      -2.1
                    Сысий 1436.
   +0,28
                                     94 -0,01 -2,0
42
          +2.6
                                                                              -0.02 +2.7
                                                                          253
   --0,22
           +3,9
49
                                                                          275
                                                                                0,00 -0,9
                     +0.02 -0.1
                                                          CLICHÉ 1112.
51
   -0.05
          -0,1
                                        CLICHÉ 1.
                   42 + 0.01 - 2.3
54
   -0.34
          +1.8
                   48
                      -0,14
                                                           -0.06 -0.1
                             -0,2
57
   -0,02
           +0,5
                                                                              Сысне 8.
                      -0,22
                                     15
                                         -0.14 + 0.5
                                                            -0,20
                   49
                              -0,6
                                                                   +2.4
   +0,05
59
           -2.5
                                                           --0,04
                                          0,00 -1,5
                      -0.14
                                                                   +0.8
                   70
                               0,0
                                     20
                                                        28
                                                                                     -o<u>"</u>,9
   -0,27
                                                                                0,00
                                                                           10
                     +0,11
                             +2,6
                                     23
                                         +0,29 -2,2
                                                           +0.05
                                                                   -o,9
64
   -0.13
           -3.2
                                                                           19
                                                                                0,00
                                                                                      -0,5
                   81
                      --0,12
                             --2,3
                                     30 -0,16
                                                -0,2
                                                        44
                                                           -0,14
67
     0.00
           --0.5
                                                                           26
                                                                              +0,11
                                                                                        0,0
                      +0.03
                                     38
                                         -÷-o,13
                                                -r,6
                                                           +o,08
                  9í
                             +\iota,8
                                                        47
                                                                   +0,1
69
    +0.14
           +i,0
                                                                           33
                                                                              -0,01
                                                                                      +0.í
                  138
                                     39
                      -0,02
                              -0.7
                                         -.0,02
                                                +0,6
                                                        49
                                                            +0,11
                                                                   -0,2
71
   -0,13
                                                                           3.4
                                                                              -0,09
                                        --0,04
                                     45
                  145
                     --0.02
                              +1.6
                                                +1.4
                                                        58
                                                           +0,10
                                                                     0,0
   +0.26
          -2.5
                                                                           36
                                                                              +0,01
                                                                                     +0.7
                      -0.04
                             -0.3
                                     47
                                         -0.01
                                                        61 + 0.20
                                                                   -o.6
                  150
   +0,29
          +2,0
                                                                           45
                                                                              +0.29
                  161
                     +0,26 +1,6
                                     56 —0,05
                                               -+0,8
                                                        64 - 0.03
                                                                   +0,4
                                                                           50
                                                                              -0,08
                                                                                     +0,4
                      -0,06 -1,1
                                     86
                                         +0.02 +0.2
                                                        72 -0,07
                                                                   +0,9
                                                                           51
                                                                              +0.03
                                                                                      +1.1
                                         -0,01
                                                        75
                                                            -0.05
                                                                   -0.4
  CLICHÉ 1431.
                                                                           53
                                                                              -o, 13
                                                            -0,01
                                                                   +0.7
                    CLICHÉ 1445.
                                                                           56
                                                                              +0,12
                                                                                      +0.2
                                                        96
                                                           -o,oí
                                                                   -1,3
   -0.07 + 0.3
                                       CLICHÉ 1421.
                                                                           75
                                                                              -0,05
                                                                                      +0.5
22
   +0.02 +0.6
                   11
                     -0.07 -0.8
                                                                              -0,02
           -0,9
39
    -0,06
                                         +0.03 -0.5
                                                          Сысие 1422.
                   15
                     -⊬o,o≨
                            --1,9
                                                                           87
                                                                              -0,01
57
    +0,13
           -1,4
                  21
                      --0,16
                                     18
                                        --0,17
                                                ---1,4
                                                                              +0.13
                             +0.0
                                                                           97
                                                                                     +0.0
58
   +0,07
            0,0
                   25
                     +0,18
                             +1,6
                                     21
                                         +0.08 +0.4
                                                        48
                                                           --0.19
                                                                   -1,0
                                                                              +0.03
                                                                          111
73
   --0,02
                             -ı,ı
                                                           +v,og
           -0.2
                   26
                     --0,03
                                                                    0,0
                                     26 -0,01 -0,1
                                                                              -0.03
                                                        49
                                                                          115
                                                                                      +1.1
76
   +0,02
                      -o,o5
                                                           --0,05
          +2,6
                   37
                             +0,3
                                     50 ·-- 0, 13 +0,5
                                                        51
                                                                  +0,3
                                                                          116
                                                                              -o,ı8
                                                                                      -0,9
77
   +0.11
                   43
           -1.0
                     +ი,ი5
                             +1,1
                                     74
                                         -0,13
                                                -0.3
                                                        61
                                                           −υ,ο3
                                                                   -0,6
                                                                          125 -0,01
                                                                                     +0.3
82
    -0,20
                   46
                      --0,08
                                                        86
                                                            -0,05
           +0.7
                              -0.6
                                           0.00 - 1.2
                                                                   +0.8
                                                                          127 -0,10
                                                                                     +0.8
                                     97
88
    -0.03
                                          -o,oı
           -0.6
                   48
                      -0.06
                                                        93
                              +0,1
                                    150
                                                -t,3
                                                            +0,17
     0,00
           +0,6
                     +0,02
                                    156 -0,12
                   50
                              +0.3
                                               +0,1
                                                       104
                                                            +0.08
```

Les résultats conclus pour chacun des 33 clichés sont donnés dans le Tableau suivant :

Les colonnes (1) et (2) contiennent les numéros des clichés et les nombres n d'étoiles de repère par cliché;

Dans les colonnes (3) et (4) on trouve la somme des carrés des résidus pour les abscisses et pour les ordonnées, la seconde d'arc étant prise comme unité dans les deux catégories de résidus;

Les nombres Σv^2 de la colonne (5) sont les sommes des nombres contenus dans les colonnes (3) et (4);

La colonne (6) donne l'erreur probable conclue, pour chacun des clichés, par la Alger, Coord. rect.

LXXIV

formule

$$\varepsilon_{\nu,\nu} = 0.6745 \sqrt{\frac{\Sigma_{\nu^2}}{2n-2}}.$$

On a, de plus, inscrit au bas du Tableau les sommes des nombres contenus dans les colonnes (2), (3), (4) et (5):

		Sommes d	ésidus.		
Cliché.	n.	Abscisses.	Ordonnées.	$\Sigma \varphi^2$.	€ _{0,0} /.
1343	24	124,92	46,55	171,47	:",30
1566	18	53,01	36,13	89, 14	1,09
1374	16	67,19	55,35	122,54	1,36
1536	13	29,81	7,15	36,96	0,84
596	22	57,65	49,21	106,86	1,08
597	18	19,76	28,24	48,00	0,80
1542	8	6,37	19,69	26,06	0,92
1571	11	26,78	36,56	63,34	1,20
22	18	33,19	35,56	68,75	0,96
1434	19	61,81	41,38	103,19	1,14
1544	18	55,26	33,52	88,78	1,09
1373	23	64,64	56,46	121,10	1,12
594	17	37,06	34,01	71,07	10,1
28	20	36,74	47,83	84,57	10,1
1577	19	55,82	49,43	105,25	1,15
18	12	21,22	10,79	32,01	0,81
1578	19	68,73	45,33	114,06	1,20
2 0	20	36,02	28,91	64,93	0,88
2 9	19	30,87	37,09	67,96	0,93
1551	17	40,23	33,43	73,66	1,02
13	14	56,18	17,55	73,73	1,14
1576	17	42,93	28,26	71,19	1,04
17	10	20,92	19,77	40,69	1,01
1430	21	53,62	114,43	168,05	1,38
3	23	173,61	106,94	280,55	1,70
1431	14	23,06	13,28	36,34	$\alpha, 8\alpha$
1436	13	42,55	27,90	70,45	1,16
1445	16	35,84	23,17	59,01	ი,ე5
1	11	34,04	16,18	50,22	1,07
1421	14	31,52	8,11	39,63	0,84
1112	14	32,81	13,19	46,00	0,90
1422	14	24,39	26,25	50,64	0,94
8	20	46,64	12,69	59,33	0,84
	552	1545,19	1160,34	2705,53	

Si l'on considère les résidus des abscisses et ceux des ordonnées séparément, on trouve les résultats que voici pour l'erreur moyenne $\sqrt{\frac{\sum \psi^i}{N}}$ d'un résidu, N désignant le nombre

COORDONNÉES RECTILIGNES. - INTRODUCTION, MÉTHODES ET TABLES. LXXV total 552 des étoiles de repère contenues dans les 33 clichés :

Abscisses. Ordonnées.
$$\sqrt{\frac{\Sigma \, v^2}{N}} \cdots \qquad \qquad 1'', 7 \qquad \qquad 1'', 5$$

Ainsi, comme nous l'avions supposé a priori, nos équations de condition sont représentées également bien par les valeurs des abscisses et par celles des ordonnées.

D'autre part, en examinant les erreurs probables e, e' dont les valeurs se trouvent dans la dernière colonne du Tableau ci-dessus et que nous avons obtenues pour chaque cliché, en réunissant les deux catégories de résidus (abscisses et ordonnées), on voit que l'accord est, en général, satisfaisant pour les différents clichés ('). Si l'on formait la moyenne de ces erreurs probables sans avoir égard au nombre d'étoiles sur lequel repose chacune des valeurs individuelles, on trouverait 1",06; mais il convient de procéder autrement. Soient:

$$\frac{(\Sigma v^2)_1}{2n_1-2}$$
, $\frac{(\Sigma v^2)_2}{2n_2-2}$, ..., $\frac{(\Sigma v^2)_{32}}{2n_{33}-2}$,

les moyennes des carrés des résidus pour chacun des 33 clichés considérés; nous avons combiné ces 33 moyennes en adoptant pour chacune d'elles un poids proportionnel à son diviseur; il en est donc résulté l'expression suivante de l'erreur probable finale :

$$\varepsilon_{\nu,\nu} = 0.6745 \sqrt{\frac{(\Sigma v^2)_1 + (\Sigma v^2)_2 + \dots + (\Sigma v^2)_{33}}{2 N - 66}}$$

Pour appliquer cette formule nous avons

$$(\Sigma v^2)_1 + (\Sigma v^2)_2 + \ldots + (\Sigma v^2)_{33} = 2705, 53,$$

 $2N - 66 = 1038,$

et l'on trouve, au moyen de ces valeurs,

$$\varepsilon_{\nu,\nu'}=1'',09,$$
 .

alors que la moyenne simple des erreurs probables avait donné 1", 06; nous adopterons 1", 1.

En se fondant sur cette valeur finale de l'erreur probable on peut examiner si les résidus de nos 33 clichés satisfont dans leur ensemble à la loi de fréquence des erreurs accidentelles. Dans ce but, nous présentons, en un Tableau, les résultats de la comparaison faite entre les nombres d'écarts réellement observés. Tous les résidus, au nombre de 1104, ont été utilisés dans cette discussion; nous les avons partagés en 18 groupes dont le premier contient tous les résidus depuis o", o jusqu'à o", 3 exclusivement, le deuxième tous les résidus depuis o", 3 jusqu'à o", 6 exclusivement, et ainsi de suite, comme il est indiqué

⁽¹⁾ Il y aurait une exception à faire pour le cliché n° 3 dont les mesures sont rendues alors incertaines par la faiblesse de l'impression des traits du réseau. Néanmoins nous n'avons pas cru devoir éliminer de la discussion les résultats fournis par ce cliché, qui ne pouvaient, d'ailleurs, modifier nos conclusions, à cause du grand nombre des étoiles empruntées aux autres plaques.

dans la première colonne du Tableau; la deuxième et la troisième colonnes contiennent les nombres absolus des écarts pour chaque groupe; les deux dernières colonnes indiquent à combien d'écarts pour 100 correspondent les nombres absolus:

	Abscisses et ordonnées réunies,							
Limites		d'écarts solu		e d'écarts ur 100				
des écarts.	calculé.	observé.	calculé.	observé.				
" "		2.	pour 100	pour 100				
0,0-0,3	162	164	14,6	14,9				
o,3 — o,6	157	187	14,1	16,9				
0,6 0,9	1.46	149	13,2	13,5				
0,9 1,2	131	124	11,9	11,2				
$\mathfrak{l},\mathfrak{2}-\mathfrak{l},\mathfrak{5}.\ldots.$	115	103	10,4	9,3				
1,5 — 1,8	97	93	8,8	8,4				
1,8 — 2,1	79	7 5	7,2	6,8				
2,1-2,4	62	50	5,7	4,5				
2,4-2,7	48	44	4,3	4,0				
2,7-3,0	35	35	3,2	3,2				
3 , o — 3, 3	25	29	2,3	2,6				
3,3-3,6	17	17	ι,6	1,6				
3,6-3,9	10	9	0,9	0,8				
3,9-4,2	9	12	0,8	1,1				
4,2-4,5	4	9	0,4	0,8				
4,5-4,8	4	2	υ,3	0,2				
4,8 — 5,1	2	1	0,2	1,0				
5,1-5,4	I.	1	0,1	0,1				
	1104	1104	100,0	100,0				

On voit, par ce Tableau, que l'accord entre les nombres calculés et les nombres observés est très satisfaisant; la plus grande discordance, qui a lieu pour le groupe o",3 — o",6, n'atteint pas tout à fait 3 pour 100. En conséquence, nous regarderons comme fondée notre conclusion relative à l'erreur probable des seconds membres de nos équations de condition, savoir

$$\epsilon_{\nu,\nu}=1'',$$
 10.

Il est maintenant facile d'évaluer numériquement l'incertitude affectant les coordonnées rectilignes que l'on tirera de notre Catalogue photographique après avoir appliqué les corrections résultant des éléments provisoires.

Soient:

- ε_μ l'erreur probable de la mesure d'une coordonnée;
- ε_{μ'} l'erreur probable de cette coordonnée réduite au moyen des éléments du cliché;
- n le nombre des étoiles de repère qui ont été employées pour le calcul des éléments;
- Δ_{μ} la distance entre l'image de l'étoile considérée et le point G du cliché dont les coordonnées sont $X_{\mathfrak{g}} = \frac{\Sigma X}{n}$ et $Y_{\mathfrak{g}} = \frac{\Sigma Y}{n}$;

 $\Sigma \Delta^2$ la somme des carrés de toutes les distances analogues pour tout l'ensemble des étoiles de repère; cette somme n'est autre que la quantité $\Sigma(a^2 + b^2)$, qui intervient dans le calcul des éléments.

On aura, d'après ce qui a été démontré à la page LXVII de ce Mémoire :

(75)
$$\varepsilon_{\mu}^{2} = \varepsilon_{\mu}^{2} + \frac{\varepsilon^{2}}{n} + \frac{\Delta_{\mu}^{2}}{\sum_{\Delta^{2}}} \varepsilon^{2},$$

expression dans laquelle on prendra pour &:

$$\varepsilon = \varepsilon_{\nu,\nu} \cdot \sqrt{\frac{n}{n-1}}$$
.

Si l'on suppose, pour le nombre d'étoiles de repère, n = 16, on aura, d'après ce qui précède, $\epsilon = 1'', 14$.

Nous avons calculé les valeurs numériques de $\epsilon_{\mu'}$ dans une hypothèse particulière qui est la suivante :

1º Les 16 étoiles de repère se trouvaient distribuées suivant les diagonales du cliché, symétriques deux à deux par rapport au centre, et à des distances respectives de 18', 36', 54', 72' de ce centre;

2º La mesure d'une coordonnée est sujette à l'erreur probable $\varepsilon_u = o''$, 12.

Dans ces conditions, voici la valeur de $\varepsilon_{\mu'}$ pour une étoile ne faisant point partie du groupe d'étoiles de repère et dont l'image est située à une distance Δ_{μ} du point G, qui, dans notre hypothèse, coıncide avec le centre même du cliché.

Δ_{μ} .	٤ _{μ′} .	Δ_{μ} .	εμ′.
o	0,309	50′	0,423
10	0,314	60	0,465
20	0,330	70	0,509
30	0,355	80	0,556
40	· o,386	90	0,605

On voit que l'erreur probable d'une position photographique peut varier du simple au double selon la région du cliché dans laquelle se trouve l'image de l'étoile. Il en est ainsi, du moins, tant que l'on ne fait concourir à la détermination des coordonnées de l'astre que les mesures d'un seul cliché. Mais, en vertu d'une résolution adoptée par la Conférence internationale de 1887, relativement à la distribution des plaques de la Carte en deux séries dont les centres correspondent à une déclinaison paire pour l'une et impaire pour l'autre, l'image d'une même étoile située au coin d'une plaque de la première série se retrouvera en un point voisin du centre d'une plaque de la seconde. Il est alors facile de voir que la moyenne de deux positions, conclues d'après les mesures de deux plaques, se recouvrant ainsi dans le quart de leur surface, jouira d'une précision sensiblement

constante, quel que soit le lieu occupé par l'image sur la partie commune aux deux clichés.

Admettons, en effet, pour simplifier:

- 1º Que les éléments des deux clichés reposent sur un même nombre n d'étoiles de repère, mais qu'aucune des n étoiles ayant servi à déterminer les éléments de l'un de ces clichés n'ait concouru à la détermination des éléments de l'autre, asin que nous puissions regarder comme absolument indépendantes l'une de l'autre les valeurs conclues, pour les coordonnées photographiques d'un même astre, au moyen des deux clichés associés;
- 2º Que, dans les deux clichés, les étoiles de repère se trouvent distribuées avec l'uniformité parfaite déjà supposée pour la construction du Tableau précédent, de telle sorte que le lieu moyen du groupe de ces étoiles, c'est-à-dire le point G, coïncide, sur chaque plaque, avec le centre de celle-ci;
- 3" Admettons, de plus, que la quantité $\Sigma(a^2 + b^2)$ ait la même valeur pour les deux clichés.

Dans ces conditions, et en vertu de la formule (75), le carré de l'erreur probable de la moyenne des positions conclues pour une étoile commune aux deux clichés aura pour expression

$$\frac{1}{2}\left(\varepsilon_{\mu}^{2}+\frac{\varepsilon^{2}}{n}\right)+\frac{1}{4}\frac{\varepsilon^{2}}{\Sigma\left(u^{2}+b^{2}\right)}\left(\Delta_{\mu}^{2}+\Delta_{\mu}^{\prime2}\right),$$

où Δ_{μ} représente la distance de l'étoile au centre de la première plaque et Δ'_{μ} sa distance au centre de la seconde.

Désignons maintenant par *l* le côté du carré commun aux deux plaques superposées, exprimé en minutes d'arc ('); nous avons évidemment

$$\Delta_{\mu}^2 + \Delta_{\mu}^{\prime 2} = 2 l^2 + 2 \Delta_{\mu} \Delta_{\mu}^{\prime} \cos(\Delta_{\mu}, \Delta_{\mu}^{\prime});$$

la valeur minimum de ce terme est l^2 , sa valeur maximum al^2 ; en se rappelant d'ailleurs que, selon notre hypothèse, la quantité $\Sigma(a^2 + b^2)$ est 38880 comme dans l'exemple traité antérieurement, on trouvera que l'erreur probable de la moyenne considérée demeure comprise entre les limites o", 28 et o", 33.

Ainsi, pour toute étoile commune à deux clichés qui se recouvrent comme ceux de nos deux séries paire et impaire, la moyenne des positions fondées sur les mesures de ces deux clichés aura une précision sensiblement égale à celle qu'une seule des deux plaques fournirait pour une étoile située au centre. Et l'erreur probable de cette moyenne différera peu de o", 30. On remarquera la concordance de ce résultat avec celui auquel M. Lœwy est arrivé, par des considérations bien différentes, dans le Mémoire servant de préambule au premier volume du Catalogue photographique de l'Observatoire de Paris.

⁽¹⁾ Nous regardons ici la partie commune aux deux plaques comme formant un carré de 60' de côté. Cela n'est rigoureusement vrai que pour la zone équatoriale. Voir, à ce sujet, les Commentaires des décisions prises par les Conférences internationales qui se réunirent à l'Observatoire de Paris en 1887, 1889 et 1891 pour l'exécution photographique d'une Carte du ciel, p. 12 à 17 (Paris, Imprimerie Gauthier-Villars, 1892).

CAS OU PLUSIEURS ÉTOILES DE REPÈRE SONT COMMUNES AUX DEUX CLICHÉS ASSOCIÉS.

Il arrivera, le plus souvent, que plusieurs des étoiles de repère, utilisées pour la détermination des éléments, seront communes aux deux clichés associés. Il importe donc d'examiner si cette circonstance est de nature à modifier d'une manière notable l'erreur probable de la moyenne des positions photographiques fournies par ces deux clichés.

Dans ce qui suit, nous appelons, comme précédemment, pour l'un des clichés :

 X_{μ} , Y_{μ} les coordonnées mesurées pour une étoile M dont on veut conclure la position photographique;

n le nombre des étoiles de repère ayant concouru à la détermination des éléments;

 X_1, X_2, \ldots, X_n et Y_1, Y_2, \ldots, Y_n les coordonnées mesurées des n étoiles de repère, $X_{c,1}, Y_{c,2}, \ldots, Y_{c,n}, Y_{c,1}, Y_{c,2}, \ldots, Y_{c,n}$ les coordonnées tirées des catalogues pour ces mêmes étoiles.

Les quantités P, P', Q, Q', dont les formules (61 bis) donnent les expressions, s'appliquent avec l'indice convenable à chacune des étoiles de repère, mais nous désignons par les lettres F, F' les seconds membres de nos équations de condition, c'est-à-dire en négligeant les termes très petits qui dépendent de la réfraction différentielle.

(76)
$$\begin{cases} F_{1} = X_{c,1} - X_{1}, & F'_{1} = Y_{c,1} - Y_{1}, \\ F_{2} = X_{c,2} - X_{2}, & F'_{2} = Y_{c,2} - Y_{2}, \\ & & & & & \\ F_{n} = X_{c,n} - X_{n}, & F'_{n} = Y_{c,n} - Y_{n}. \end{cases}$$

Sur la seconde plaque, associée à la précédente, les mesures ont fourni pour les coordonnées de l'étoile M les valeurs x_{μ} , y_{μ} ; pour celles des étoiles de repère, supposées en nombre n', elles ont donné les valeurs x_1 , x_2 , $x_{n'}$, y_1 , y_2 , $y_{n'}$, tandis que les coordonnées tirées des Catalogues sont $x_{c,1}$, $x_{c,2}$, ..., $x_{c,n'}$ et $y_{c,1}$, $y_{c,2}$, ..., $y_{c,n'}$.

Nous supposerons, en outre, formées des expressions analogues à celles du système (61 bis), soit

(77)
$$\begin{cases}
p = \frac{1}{n'} + \frac{a'(x_{\mu} - x_{g}) + b'(y_{\mu} - y_{g})}{\Sigma(a'^{2} + b'^{2})} = q', \\
p' = \frac{b'(x_{\mu} - x_{g}) - a'(y_{\mu} - y_{g})}{\Sigma(a'^{2} + b'^{2})} = -q,
\end{cases}$$

dans lesquelles x_g , y_g représentent les moyennes $\frac{\sum x}{n'}$, $\frac{\sum y}{n'}$ et a'_1 , a'_2 , ..., a'_n , b'_1 , b'_2 , ..., b'_n les coordonnées des étoiles de repère rapportées, sur le cliché, aux moyennes x_g et y_g , c'est-à-dire

(78)
$$\begin{cases} a'_{1} = x_{1} - x_{g}, & b'_{1} = y_{1} - y_{g}, \\ a'_{2} = x_{2} - x_{g}, & b'_{2} = y_{2} - y_{g}, \\ \dots & \dots \\ a'_{n'} = x_{n'} - x_{g}, & b'_{n'} = y_{n'} - y_{g}. \end{cases}$$

Enfin, nous désignons par f et f', pour le second cliché, les quantités correspondantes à celles que nous appelons F et F' pour le premier

(79)
$$\begin{cases} f_1 = x_{c,1} - x_1, & f'_1 = y_{c,1} - y_1, \\ f_2 = x_{c,2} - x_2, & f'_2 = y_{c,2} - y_2, \\ \vdots & \vdots & \vdots \\ f_n = x_{c,n'} - x_{n'}, & f'_{n'} = y_{c,n'} - y_{n'}. \end{cases}$$

Cela posé, les sommes des abscisses et des ordonnées corrigées $X'_{\mu} + x'_{\mu}$ et $Y'_{\mu} + y'_{\mu}$ de l'étoile M auront pour expressions :

(8o)
$$\begin{cases} X'_{\mu} + x'_{\mu} = X_{\mu} + x_{\mu} + \sum_{i=1}^{n} (PF + P'F') + \sum_{i=1}^{n'} (pf + p'f'), \\ Y'_{\mu} + y'_{\mu} = Y_{\mu} + y_{\mu} + \sum_{i=1}^{n} (QF + Q'F') + \sum_{i=1}^{n'} (qf + q'f'). \end{cases}$$

Mais supposons que parmi les n + n' étoiles de repère, il y en ait un nombre r, caractérisées par les indices $1, 2, \ldots, r$, qui soient communes aux deux clichés, alors les seconds membres de nos expressions (80) ne forment plus une suite de quantités indépendantes, car, si les mesures X_k , Y_k de l'une de ces étoiles sur le premier cliché sont bien indépendantes des mesures x_k , y_k se rapportant à la même étoile sur le second, l'indépendance n'existe pas pour les coordonnées calculées $X_{\epsilon,k}$ et $x_{\epsilon,k}$, ou $Y_{\epsilon,k}$ et $y_{\epsilon,k}$ qui sont empruntées à un même groupe de Catalogues, et entre lesquelles nous avons les relations

$$x_{c,k} = X_{c,k} - l,$$

$$y_{c,k} = Y_{c,k} - \lambda,$$

l et λ désignant respectivement l'abscisse et l'ordonnée du centre de la seconde plaque par rapport au centre de la première.

Ainsi, avant d'appliquer aux seconds membres des expressions (80) le théorème de la somme des carrés des erreurs, nous devons séparer les quantités réellement indépendantes. En effectuant cette séparation, nous obtiendrons

(81)
$$X'_{\mu} + x'_{\mu} = X_{\mu} + x_{\mu} + \sum_{i=1}^{r} (P_{k} + y_{k}) X_{c, k} + \sum_{i=1}^{r} (P'_{k} + p'_{k}) Y_{c, k}$$
$$- \sum_{i=1}^{r} P_{k} X_{k} - \sum_{i=1}^{r} P'_{k} Y_{k}$$
$$- \sum_{i=1}^{r} p_{k} (x_{k} + l) - \sum_{i=1}^{r} p'_{k} (y_{k} + \lambda)$$
$$+ \sum_{r=1}^{n} (PF + P'F') + \sum_{r=1}^{n'} (pf + p'f'),$$

COORDONNÉES RECTILIGNES. — INTRODUCTION, MÉTHODES ET TABLES. LXXXI et l'on aura pour $Y'_{\mu} + y'_{\mu}$ une expression toute pareille où les quantités P, P', p, p' se

trouveront remplacées par Q, Q', q, q'.

A présent nous sommes en état de former une expression correcte pour l'erreur probable E_{μ} de l'une des sommes $X'_{\mu} + x'_{\mu}$ ou $Y'_{\mu} + y'_{\mu}$.

Rappelons d'abord les notations déjà employées, savoir : ε_{μ} erreur probable d'une coordonnée mesurée, ε erreur probable de l'une des quantités F, F', f, f', et joignons-y la suivante : ε_c erreur probable d'une coordonnée empruntée aux Catalogues pour une étoile de repère. Nous avons conclu une valeur de ε au moyen des résidus de nos équations de condition appliquées aux mesures des étoiles de repère; nous pourrons donc prendre

$$\varepsilon_c = \sqrt{\varepsilon^2 - \varepsilon_{\mu}^2}$$

En faisant usage de cette relation on trouve aisément

(82)
$$E_{\mu}^{2} = 2 \epsilon_{\mu}^{2} + \epsilon^{2} \sum_{1}^{n} (P^{2} + P'^{2}) + \epsilon^{2} \sum_{1}^{n'} (p^{2} + p'^{2}) + 2 \epsilon_{c}^{2} \sum_{1}^{r} (P_{k} p_{k} + P'_{k} p'_{k}).$$

Si, comme nous l'avons fait précédemment, nous posons

$$\Delta_{\mu}^{2} = (X_{\mu} - X_{g})^{2} + (Y_{\mu} - Y_{g})^{2},$$

$$\Delta_{\mu}^{'2} = (x_{\mu} - x_{g})^{2} + (y_{\mu} - y_{g})^{2},$$

l'expression de E_u se réduit à celle-ci

contiennent un nombre r d'étoiles communes.

(83)
$$E_{\mu}^{2} = 2 \varepsilon_{\mu}^{2} + \varepsilon^{2} \left(\frac{1}{n} + \frac{1}{n'} \right) + \varepsilon^{2} \left[\frac{\Delta_{\mu}^{2}}{\Sigma (a^{2} + b^{2})} + \frac{\Delta_{\mu}^{'2}}{\Sigma (a^{'2} + b^{'2})} \right] + \varepsilon_{c}^{2} \sum_{i=1}^{r} (P_{k} p_{k} + P_{k}^{'} p_{k}^{'}).$$

Ainsi le terme $\varepsilon_c^2 \sum_{1}^{r} (P_k p_k + P'_k p'_k)$ représente la quantité dont varie le carré de E_{μ}^2 si les deux groupes de repères, au lieu d'être entièrement distincts l'un de l'autre,

Application numérique. — Nous avons pris un exemple analogue à celui qui est traité à la page LXXVI. Les repères, au nombre de 16 dans chacune des deux plaques associées, sont distribués systématiquement par rapport aux centres, et nous supposons $l=\lambda=+60$. Les quatre étoiles situées sur la moitié de l'une des diagonales communes ont concouru à la détermination des éléments des deux clichés, et leurs coordonnées respectives sur les deux plaques ont les valeurs suivantes :

$$X_1 = Y_1 = +12',$$
 $x_1 = y_1 = -48',$
 $X_2 = Y_2 = +24,$ $x_2 = y_2 = -36,$
 $X_3 = Y_3 = +36,$ $x_3 = y_3 = -24,$
 $X_4 = Y_4 = +48,$ $x_4 = y_4 = -12.$

Alger, Coord. rect.

k

Nous devrons donc faire dans l'expression de E_u

$$n = n' = 16$$
 et $r = 4$.

Dans ces conditions, voici les résultats obtenus pour l'erreur probable de la moyenne $\frac{1}{2}(X'_{\mu}+x'_{\mu})$ ou $\frac{1}{2}(Y'_{\mu}+y'_{\mu})$. Les calculs ont été faits pour deux hypothèses :

1° la somme $\Delta_{\mu}^2 + \Delta_{\mu}^{\prime 2}$ a sa valeur minimum l^2 , ce qui exige

$$X_{\mu} - X_{g} = Y_{\mu} - Y_{g} = \frac{1}{2}l;$$

2º la somme $\Delta_{\mu}^2 + \Delta_{\mu}^{'2}$ a sa plus grande valeur possible 2 l^2 , ce qui aura lieu si l'étoile M, dont on détermine la position photographique, se trouve au centre de l'une des plaques et, par suite, en un coin de l'autre.

Ajoutons que $\frac{1}{2}(E_{\mu})_{i}$ désigne l'erreur probable de la moyenne des deux abscisses ou des deux ordonnées conclues, abstraction faite du terme complémentaire

$$\varepsilon_c^2 \sum_{1}^{r} (P_k p_k + P_k' p_k')$$

de la formule (83), et que $\frac{t}{2}E_{\mu}$ est la ${\it valeur~complète}$ de l'erreur probable.

Première hypothèse. Seconde hypothèse.
$$\Delta_{\mu}^{2} + \Delta_{\mu}^{'2} = l^{2}. \qquad \Delta^{2} + \Delta_{\mu}^{'2} = 2l^{2}.$$

$$\frac{1}{2}(E_{\mu})_{1} = 0,290, \qquad \frac{1}{2}E_{\mu} = 0,346,$$

$$\frac{1}{2}E_{\mu} - \frac{1}{2}(E_{\mu})_{1} = +0,004, \qquad \frac{1}{2}(E_{\mu})_{1} - \frac{1}{2}E_{\mu} = +0,006.$$

Il résulte de là que l'erreur probable de la moyenne des deux positions conclues pouvait, pratiquement, se calculer comme si les groupes de repère ne contenaient aucune étoile commune.

Transformation des abscisses et des ordonnées en des différences d'ascension droite et de déclinaison avec le centre de la plaque.

Soient

 α_0 et δ_0 les coordonnées équatoriales corrigées du centre d'une plaque;

α et δ les coordonnées équatoriales d'une étoile dont les coordonnées rectilignes corrigées sont X' et Y'.

Nous allons montrer comment les Tables I, II et III, placées à la fin de cette introduction, permettent d'obtenir les différences $\alpha - \alpha_0$ et $\delta - \delta_0$.

On a, par la formule (8) du présent Mémoire (Section IV), et en supposant la diffé-

COORDONNÉES RECTILIGNES. — INTRODUCTION, MÉTHODES ET TABLES. LXXXIII rence $\alpha = \alpha_0$ exprimée en minutes d'arc,

$$\alpha - \alpha_0 = X' - \beta_1 - \beta_2,$$

$$\delta - \delta_0 = Y' - \beta_1' - d_1'.$$

La Table I donnera β_i et β'_i avec les arguments respectifs X' et Y'. Pour calculer β_2 on entrera dans la Table II avec les arguments X' et Y'.

Avec les arguments $\delta_0 + Y'$ et X' la Table III fournira d'_1 .

Théoriquement, les valeurs ainsi obtenues ne constituent qu'une première approximation, et, pour opérer en toute rigueur, il faudrait recommencer le calcul des corrections β_1 , β_2 , et d'_1 en prenant pour nouveaux arguments les valeurs approchées de $\alpha - \alpha_0$ et de $\delta - \delta_0$. Mais, pour nos zones $(-2^{\circ} + 4^{\circ})$ et même dans les cas les plus défavorables, l'erreur que l'on commet en substituant les arguments X' et Y' aux arguments X' = 0, on et X' = 0, on obtiendrait :

Première approximation....
$$(z - z_0)_1 = +64',7339$$
 $(\delta - \delta_0)_1 = +64',4390$
Seconde approximation..... $(z - z_0)_2 = +64',7347$ $(\delta - \delta_0)_2 = +64',4387$

L'erreur commise, dans ce cas extrême, serait donc seulement de o', 003 en ascension droite et de o'', 02 en déclinaison.

Exemples de calculs complets pour la conversion des X et Y mesurés en ascensions droites et déclinaisons.

X et Y désignent les valeurs mesurées des coordonnées; X' et Y' sont les valeurs corrigées au moyen des éléments du cliché.

		Сысий 1544.		Сысне 1531.				
	$i_x = +0,0$ $\tau_x = 0',9$ $\alpha_0 = 0^h 4'$	$89156 \tau_y =$	+0,004527 0',989320 -0°58'46",1	$i_x = +0,00$ $\tau_x = 0',9$ $\alpha_0 = 0^{h} 0^{m} 3$	$89250 \tau_y =$	+0,002644 0',989427 1°59'2",7		
Étoile.	49.	50.	51.	3 5.	36.	37.		
X	•	-54,4323 -53,8420 - 0,2349 -54,0769	-53,9992 -53,4137 - 0,2324 -53,6461	+ 4,5583 + 4,5093 + 0,1043 + 4,6136	+5,9671 $+5,9030$ $+0,0257$ $+5,9287$	+ 6,4151 $+ 9,3461$ $+ 0,0271$ $+ 6,3732$		
Υ Υτ _γ	-22,4169 $-22,1775$ $+0,2530$ $-21,9245$	-51,6785 $-51,1266$ $+0,2464$ $-50,8802$	$ \begin{array}{r} -51,1429 \\ -50,5967 \\ + 0,2445 \\ -50,3522 \end{array} $	+38,8050 +38,3947 - 0,0121 +38,3826	+9,5441 +9,4432 -0,0158 +9,4274	+10,0780 + 9,9714 - 0,0170 + 9,9544		
X'	+ 48 - 146 -55,3921 -3"41",57	-54,0769 + 44 - 222 -54,0947 -3 ^m 36*,38	-53,6461 + 43 - 220 -53,6638 -3 ^m 34,66	+ 4,6136 o + 10 + 4,6146 +o ^m 18',46 o ^b o ^m 3',99	$+5,9287$ o $+30$ $+5,9317$ $+0^{m}23^{s},73$	+6,3732 o + 33 + 6,3765 + o ^m 25',51		

Exemples de calculs complets pour la conversion des X et Y mesurés en ascensions droites et déclinaisons (suite).

Étoile.	49.	50.	51.	35.	36.	37.
Y'	-21,9245	-50,8802	-50,3522	+38,3826	+9,4274	+ 9,9544
-β' ₁ (Table I)	 3	+ 38	+ 37	- 17	0	0
$-d'_1$ (Table III).	 107	+ 136	+ 133	- 1	+ 2	+ 2
Δδ	21,9135	-50,8628	-50,3352	+38,3810	+9,4276	+ 9,9546
	— 21'54",8	-5o'51",8	-50'20",I	+ 38'22",9	+9'25",7	+9'57'',3
ò ₀	-o°58′46″, 1			$-1^{\circ}59'$ 2",7		
a	ohom 221,51	oh om 27°, 70	ohom 29", 42	0h 0m 22*, 45	0 ^h 0 ^m 2 ^{-s} , 72	oh om 291, 50
ô	-1°20′40″,9	-1°49′37″,9	— t°49′6″, 2	—1°20′39″,8	—1"49'37 " , o	1° 49′ 5″, 4

Nous allons donner maintenant les ascensions droites et les déclinaisons conclues pour 320 étoiles dont chacune est commune à deux clichés compris dans les zones -2° et -1° , conformément au Tableau ci-dessous de correspondance entre les ascensions droites des centres et les numéros des clichés :

		Zone	e — 2°		Zone — 1°				
Ascension droite du centre.	Numéro du cliché.	Nombre des étoiles communes.	Époque de la photographie.	Époque des mesures.	Ascension droite du centre.	Numéro du cliché.	des étoiles	Époque de la photographie.	Époque des mesures.
h m 0.0	1551		1897 Déc. 28	1898 Avril 20	ь m 0.4	1511	18	1897 Déc. 13	1 898 Avr il 18
0.8	13	9	V	1897 Fév. 6	0.12	1573	14	1898 Déc. 24	1899 Juin 24
0.16	1576 17	42 8	1898 Déc. 28	1899 Juin 15	0.20	594	19	1893 Nov. 20	1896 Déc. 14
0.24	1430	16	•	1900 Avril 12	0.28	28	13	1891 Déc. 4	1 897 J uin 15
0.40	1568	27	· ·	1899 Juin 14	o.36	595	13	1893 Nov. 20	1896 Déc. 15
0.48	1569	27	1898 Déc. 19	1899 Juin 17	0.44	1547	30	1897 Déc. 16	1898 Mai - 17
0.56	3	21	1891 Nov. 19	1897 Fév. 13	0.52	1620	21	V	1901 Janv. 4
1.4	4	22	1891 Nov. 19	1897 Fév. 16	1. 0	1577	20	1898 Déc. 31	1899 Juin 26

Dans ce Tableau, chaque nombre de la troisième colonne (étoiles communes) se rapporte à la comparaison du cliché dont le numéro se trouve sur la même ligne que ce nombre avec le cliché de l'autre zone dont le numéro est sur la ligne immédiatement supérieure.

Dans les Tableaux qui suivent, les grandeurs ont reçu la correction Δm donnée, pour chaque cliché, dans notre Catalogue photographique, et dont la signification est expliquée à la page xum de ce Mémoire.

B.E. 1844 49 9.9. 0. 1. 1. 2. 2. 1. 2. 2. 3. 3. 8 9.3 0. 6. 8. 9.1 1. 3. 7. 3. 7. 1. 3. 3. 1. 3.		Cliché.	*•	Gr.	& 1900,0.	© 1900,0.		Cliché.	⋆.	Gr.	. 1900,0.	(ð 1900,0.
4834 51 10,6 27,72 37,0 43 9 10,1 13,70 37,5 4844 51 10,8 0.0.29,62 -1.49.6,2 4.5 43 10 10,1 18,83 23,5 4844 52 10,1 0.0.41,96 -1.44.5,4 43 10 10,1 18,83 23,5 4844 53 10,4 0.1.2,21 -1.31.48,6 43 11,75 23,48 46,0 4844 54 9,9 0.1.12,01 -1.31.48,6 43 11,75 23,48 46,0 4844 54 9,9 0.1.11,47 -1.47.38,2 47,2 43 10,7,2,5,5 -0.59,15,1 43 18 10,7,2,3,5 -1.46,59,9 13,18,3 23,5 -1.46,69,9 13,16 60,3 37,4 60,3 37,4 60,3 38,1 1844 76 8,1 0.2,5,5 -1.40,65,9 13,18 18 10,7 0.7.26,56 -0.59,15,1 14,6 13,11 7,7 0.7.32,55 -1.46,59,9 13,11 7,7 0.7.32,55 -1.46,59,9 13,11 7,7 0.7.32,55 </th <th></th> <th></th> <th></th> <th></th> <th>0. 0.22,51</th> <th>-1.20.40,9</th> <th>11</th> <th></th> <th></th> <th>• , .</th> <th>o. 6. 9,27</th> <th></th>					0. 0.22,51	-1.20.40,9	11			• , .	o. 6. 9,27	
4831 37 11,0 29,50 5,4 43 10,1 10,1 18,83 23,5 4844 52 10,1 0 0.41,94 -1.44.5,4 4,5 43 10 10,1 18,83 23,56 -1.40.45,6 46,0 4844 53 10,4 0 1.2,21 -1.31.48,6 13 11 7,5 23,48 66,0 -1.40.45,6 46,0 4844 54 9,9 0 1.12,01 -1.33.47,6 13 18 10,1 26,53 11,5 4844 54 9,9 0 1.11,47 -1.47.38,2 13 18 10,1 20,55 -1.32,56 -0.59,15,1 14,5 4844 56 10,1 0 1.11,47 -1.47.38,2 1531 14 18 10,7 20,6 1531 10,3 10,1 0 8.41,18 -1.57,16,3 13 13 10,7 0 8.2,48 -1.57,16,3 13 13 10,1 0 8.41,18 -1.57,16,3 13 13 10,1 0 8.41,18 <												
1881 38 9.0 41,96 4,5 1844 53 10,4 0. 1. 2,21 —1.31.48,6 1854 54 9.9 0. 1.12,01 —1.33.47,6 1854 54 9,5 0. 1.11,47 —1.47.38,2 1853 44 8,4 11,45 38,1 1844 55 7,9 0. 1.11,47 —1.47.38,2 1853 50 10,6 36,15 14,6 1854 57 9,7 0. 2.18,68 —1.56.21,6 1853 50 10,5 0. 2.29,98 —1.35.18,2 1853 57 10,9 29,94 16,7 1844 59 8,2 0. 2.38,25 —1.54.18,2 1853 62 10,5 0. 2.39,11 —1.34.32,0 1854 62 10,6 0.3.40,99 —1.39.7,5 1854 62 10,6 0.3.40,99 —1.39.7,5 1854 63 8,3 0. 3.44,19 —1.41.48,6 1854 64 10,4 0. 3.10,99 —1.39.7,5 1854 66 10,5 0. 3.48,17 —1.50.1,6 1854 68 8,6 0. 4.5,64 —1.41.48,6 1854 68 8,6 0. 4.5,64 —1.41.48,6 1854 68 8,6 0. 4.5,64 —1.18.32,4 1854 72 10,4 0. 5.48,88 —1.416,8 B.C. 1873 103 10,1 0. 7.26,56 —0.59.15,1 1844 79 7,7 0. 7.32,55 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 26,53 —1.46.59,9 13 19 7,5 32,48 46,0 27,2 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1484 79 7,7 0. 7.32,55 —1.46.59,9 1487 10,4 0.9,4,14 10,1 0.10,14 10,1 0.10,14 10,1 0.10,14 10,1 0.10,1 0									•	•		•
1831 43 10,9 2,21 47,8 13 18 10,1 26,53 11,5 1844 54 9,9 0. 1.12,01 -1.33.47,6 13 18 10,1 26,53 11,6 59,9 11,98 47,2 13 19 7,7 0. 7.32,55 -1.46.59,9 60,3 1834 55 7,9 0. 1.11,47 -1.47.38,2 13 19 7,7 0. 7.32,55 -1.46.59,9 60,3 1834 50 30,61 11,45 -1.47.38,2 13 19 7,7 0. 23.2,63,3 32.36,3 37,4 18 1831 10,1 0. 1.36,21 -1.16.15,4 13 29,7 36,81 37,1 16,4 13 23 19,7 36,81 -1.57.16,3 33 37,4 15,6 133 23 7,9 7,10 0. 8.41,18 -1.57.16,3 13 23 7,9 7,10 25,4 13 23 7,9 7,10 -1.44.24,9 13 23 7,9 7,10 -1.44.24,9 13 23 7,9 7,10 -1.44.24,9 13 25 16						· · · · · · · · · · · · · · · · · · ·			•	-		
4884 45 9,5 11,98 47,2 43 19 7,5 32,48 60,3 4844 55 7,9 0. 1.11,47 -1.47.38,2 38,1 B.C. 1873 102 9,2 0. 8.36,82 -1.32.36,3 37,4 4844 56 10,1 0. 1.36,21 -1.16.15,4 13 12 9,8 41,17 16,4 4844 57 9,7 0. 2.18,68 -1.56.21,6 4873 106 8,4 0. 9. 7,13 -1.57.16,3 4844 58 10,5 0. 2.29,98 -1.35.18,2 4873 106 8,4 0. 9. 7,13 -1.72.5,4 4851 57 10,9 29,94 16,7 43 23 7,9 7,10 25,6 4844 59 8,2 0. 2.38,25 -1.54.18,2 4873 107 9,4 0. 9.13,21 -1.44-24,9 25,6 4851 60 10,5 0. 2.39,11 -1.34.32,0 48,1 3,3 0. 9.45,50 -1.41.38,5 45,9 39,1 4584 60 10,4 0. 3.10,99 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>									-			
4881 44 8,4 11,45 38,1 C. E. 13 21 9,7 36,81 37,4 4844 56 10,1 0. 1.36,21 -1.16.15,4 4873 103 10,1 0. 8.41,18 -1.57,16,3 4881 50 10,6 36,15 114,6 13 22 9,8 41,17 16,4 16,4 1884 57 9,7 0. 2.18,68 -1.56,21,6 1873 106 8,4 0. 9. 7,13 -1.7.25,4 16,4 1873 106 8,4 0. 9. 7,13 -1.7.25,4 18,7 16,4 1873 106 8,4 0. 9. 7,13 -1.7.25,4 18,2 1853 106 8,4 0. 9. 7,13 -1.7.25,4 18,2 1853 106 8,4 0. 9. 7,13 -1.7.25,4 18,2 1853 106 8,4 0. 9. 7,13 -1.7.25,4 18,2 1853 106 8,4 0. 9. 7,13 -1.7.25,4 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,2 18,3 18,2			-									
4384 50 10,6 36,15 14,6 43 22 9,8 41,17 16,4 4844 57 9,7 0. 2.18,68 -1.56.21,6 43 23 7,9 7,10 25,4 4844 58 10,5 0. 2.29,98 -1.35.18,2 4873 107 9,4 0. 9,13,21 -1.44.24,9 25,6 4844 59 8,2 0. 2.38,25 -1.54.18,2 4873 112 10,4 0. 9,45,50 -1.41.38,5 453 453 153 16,4 0. 9,45,50 -1.41.38,5 453 4573 112 10,4 0. 9,45,50 -1.41.38,5 453,4 39,1 4573 113 8,3 0. 9,45,50 -1.41.38,5 453,4 39,1 4573 113 8,3 0. 9,45,50 -1.41.38,5 453 4573 113 8,3 0. 9,45,50 -1.41.38,5 4573 113 8,3 0. 9,45,50 -1.41.38,5 4573 113 26 7,8 46,20 25,3 4573 114 9,5 0. 9,45,50 -1.41.38,5 45,3 4573 13 26						•	11				•	•
1831 56 9,2 18,70 20,6 13 23 7,9 7,10 25,4 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 24 9,6 13,16 25,6 13 12 10,4 0.9,45,49 39,1 13 25 10,0 45,49 39,1 13 26 7,8 46,20 25,3 13 26 7,8 46,20 25,3 13 26 7,8 46,20 25,3 13 26 7,8 46,20 25,3 13 26 7,8 46,20 25,3 13 27 9,9 55,86 37,4 13 27 9,9 55,86 37,4 13 27 9,9 55,86 37,4 13 27 9,9 55,86 37,4 13 27 9,9 55,86 37,4 13 28 9,9 55,91 6,0 13 28 9,9		1551		10,6	36,15	14,6						
4531 57 10,9 29,94 16,7 13 24 9,6 13,16 25,36 4544 59 8,2 0. 2.38,25 -1.54,18,2 1873 112 10,4 0. 9,45,50 -1.41,38,5 39,1 4546 60 10,5 0. 2.39,11 -1.34,32,0 13 13 25 10,0 9,46,22 -1.35,24,9 39,1 4531 61 10,4 0. 3.10,99 -1.38,52,3 13 13 26 7,8 46,20 25,3 4531 62 10,9 39,11 -1.34,32,0 13 26 7,8 46,20 25,3 4531 63 10,4 0. 3.10,99 -1.38,52,3 1573 114 9,5 0. 9.55,89 -1.23,36,4 4531 70 11,0 41,01 6,5 4573 115 9,5 0. 9.55,95 -1.21.5,0 4541 63 8,3 0. 3.44,19 -1.41.48,6 4573 118 10,4 0.10.36,15 -1.35.30,9		1551		9,2	18,70	20,6						• • •
1831 61 8,7 38,25 17,6 13 25 10,0 45,49 39,1 1844 60 10,5 0. 2.39,11 -1.34,32,0 1573 113 8,3 0. 9.46,22 -1.35,24,9 1851 62 10,9 39,11 31,3 13 26 7,8 46,20 25,3 1844 61 10,4 0. 3.10,99 -1.38,52,3 157,8 1573 114 9,5 0. 9.55,89 -1.23,36,4 1854 62 10,6 0. 3.40,99 -1.39,7,5 1873 115 9,5 0. 9.55,89 -1.23,36,4 1854 63 8,3 0. 3.44,19 -1.41,48,6 1873 118 10,4 0.10,8,96 -1.33,53,7 1854 64 10,3 0.348,17 -1.50,1,6 13 29 10,2 8,94 54,8 1854 66 10,5 0.354,85 -1.46,6,6 13 13 10,1 0.10,36,15 -1.37,58,0 1854 72 10,5		1551	57	10,9	29,94	16,7			•			
1831 62 10,9 39,11 31,3 13 26 7,8 46,20 25,3 1844 61 10,4 0. 3.10,99 -1.38.52,3 1144 9,5 0. 9.55,89 -1.23.36,4 1851 65 10,7 11,02 51,8 13 27 9,9 55,86 37,4 1844 62 10,6 0. 3.40,99 -1.39. 7,5 13 28 9,9 55,91 6,0 1844 63 8,3 0. 3.44,19 -1.41.48,6 1851 71 8,7 44,17 47,5 1381 10,4 0.10. 8,96 -1.33.53,7 1851 72 10,5 48,17 0,8 1851 73 11,0 54,84 5,5 1531 73 11,0 54,84 5,5 1344 68 8,6 0. 4.5,64 -1.18.32,4 1851 74 8,8 5,64 31,4 186. 1873 12 10,4 0.10.36,15 -1.37.58,0 13 31 10,7 37,36 21,3 1551 74 8,8 5,64 31,4 1854 70 8,6 0. 5.42,83 -1.37.40,2 13 5 10,4 47,51 40,1 150 150 150 150 150 150 150 150 150 15		1551	61	8,7	38,25	17,6		13	25	10,0	45,49	39,1
1881 65 10,7 11,02 51,8 13 27 9,9 55,86 37,4 1844 62 10,6 0. 3.40,99 —1.39. 7,5 1851 70 11,0 41,01 6,5 1851 71 8,7 44,17 47,5 1851 72 10,5 48,17 0,8 1851 73 11,0 54,84 5,5 1851 73 11,0 54,84 5,5 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 74 8,8 5,64 31,4 1851 75 10,4 0. 5.47,61 —1.16.40,2 13 5 10,4 0. 5.47,61 —1.16.40,2 13 5 10,4 0. 5.48,88 —1. 4.16,8 18.C. 1873 143 10,6 0.12. 4,35 —1.24. 7,3		1551	62	10,9	39,11	31,3		13	26	7,8	46,20	25,3
1881 70 11,0 41,01 6,5 13 28 9,9 55,91 6,0 1844 63 8,3 0. 3.44,19 -1.41.48,6 1851 71 8,7 44,17 47,5 13 29 10,2 8,94 54,8 1344 64 10,3 0. 3.48,17 -1.50. 1,6 1851 72 10,5 48,17 0,8 1351 73 11,0 54,84 5,5 13 31 10,7 37,36 21,3 1344 68 8,6 0. 4.5,64 -1.18.32,4 1851 74 8,8 5,64 31,4 1851 13,4 18,5 10,3 0.10.39,66 -1.31.19,4 18,4 18,5 10,4 47,51 40,1 18,4 18,5 10,4 47,51 40,1 18,4 18,5 10,4 47,51 40,1 18,4 18,5 10,4 47,51 40,1 18,4 18,5 10,4 47,51 40,1 18,4 18,5 10,4 47,51 40,1 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,5 10,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,6 11,4 18,9 10,4 10,1 18,96 11,3 1,3 10,4 10,1 18,96 11,3 1,3 10,4 10,1 18,96 11,3 1,3 10,4 10,1 18,96 11,3 1,3 10,4 10,1 18,96 11,3 1,3 11,8 10,4 0.10.8,96 -1.33.53,7 11,8 10,4 0.10.8,96 -		1551	65	10,7	11,02	51,8		13	27	9,9	55,86	37,4
1551 71 8,7 44,17 47,5 13 29 10,2 8,94 54,8 154,8 1544 64 10,3 0. 3.48,17 -1.50. 1,6 1551 72 10,5 48,17 0,8 1551 73 11,0 54,84 5,5 11,0 54,84 5,5 174 8,8 5,64 31,4 1551 74 8,8 5,64 31,4 1551 74 8,8 5,64 31,4 1551 74 8,5 5,64 31,4 1551 74 8,5 5,64 31,4 1551 74 8,6 0. 5.42,83 -1.37.40,2 1544 71 10,4 0. 5.47,61 -1.16.40,2 13 5 10,4 47,51 40,1 1644 72 10,4 0. 5.48,88 -1. 4.16,8 16. 16. 16. 16. 16. 16. 16. 16. 16. 16.		1551	70	0,11	41,01	6,5		13	28	9,9	55,91	6,0
1581 72 10,5 48,17 0,8 13 30 10,1 36,12 58,7 1544 66 10,5 0. 3.54,85 —1.46. 6,6 1551 73 11,0 54,84 5,5 13 31 10,7 37,36 21,3 1551 74 8,8 5,64 31,4 1551 74 8,8 5,64 31,4 156. 13 4 8,5 42,80 40,2 13 5 10,4 47,51 40,1 154 72 10,4 0. 5.48,88 —1. 4.16,8 156. 1573 143 10,6 0.12. 4,35 —1.24. 7,3			•	8,7	44,17	47,5		13	29	10,2	8,94	54,8
1551 73 11,0 54,84 5,5 13 31 10,7 37,36 21,3 1544 68 8,6 0. 4. 5,64 —1.18.32,4 1551 74 8,8 5,64 31,4 13 32 10,3 39,66 —1.31.19,4 13 32 10,3 39,66 20,2 154 70 8,6 0. 5.42,83 —1.37.40,2 1544 71 10,4 0. 5.47,61 —1.16.40,2 13 5 10,4 47,51 40,1 1544 72 10,4 0. 5.48,88 —1. 4.16,8 16 B.C. 1573 143 10,6 0.12. 4,35 —1.24. 7,3		1544	72	10,5	48,17	0,8		13	3о	10,1	36,12	58,7
B. E. 1544 70 8,6 0. 5.42,83 —1.37.40,2 B. G. 13 4 8,5 42,80 40,2 1573 136 8,4 0.11.45,40 —1.33. 3,9 15 1544 71 10,4 0. 5.47,61 —1.16.40,2 13 5 10,4 47,51 40,1 1544 72 10,4 0. 5.48,88 —1. 4.16,8 B. C. 1573 143 10,6 0.12. 4,35 —1.24. 7,3		1544	68	8,6		-1.18.32,4		13	31	10,7	37,36	21,3
1544 71 10,4 0. 5.47,61 —1.16.40,2 13 5 10,4 47,51 40,1 1544 72 10,4 0. 5.48,88 —1. 4.16,8 B.C. 1573 143 10,6 0.12, 4,35 —1.24, 7,3		1544	70	8,6	0. 5.42,83	-1.37.40,2		13 1573	3 ₂ 136	10,3 8,4	39,66 0.11.45,40	20,2
1544 72 10,4 0. 5.48,88 —1. 4.16,8 B.C. 1573 143 10,6 0.12. 4,35 —1.24. 7,3	B.G.	1544	71	10,4	o. 5.47,61	-1.16.40,2		1573	139	8,5	0.11.57,12	-1.37.24,2
		1544	72	10,4	o. 5.48,88	-1. 4.16,8	B.C. C.E.	1573	143	10,6	- '	•

	Cliché.	*•	G۰.	J 1900,0.	(£) 1900,0.		Cliché.	*•	G'.	ას 1900,0.	© 1900,0.
B. C. C. E.	1573 1576	148 6	10,9	0.12.14,91 14,82	-1.54.55,8 55,4	B. C. C. E.	1573 1576			o.14.25,30 25,23	-1.22'.37,1 36,9
	1573 1576	149 7	10,5 10,5	0.12.16,30 16,24	-1.42.38,3 38,2		1573 1576	179 28	9,2 9,4	0.14.25,55 25,44	-1.49. 0,1 0,4
	1573 1576	ι 5ο 8	8,4 8,6	0.12.18,07	-1.38. 8,3 8,4		1573 1576	180 29	10,4 10,5	0.14.26,02 25,94	-1.48.10,6 10,5
	1573 1576	151 9	10,7 10,7	0.12.20,10 20,03	-1.54.43,4 42,9		1573 1576	181 30	10,3 10,4		-1.35. 5,7 5,4
	1373 1376	152 10	10,9 10,7	0.12.24,17 24,07	-1.54. 6,1 5,6		1573 1576	182 31	10,5 10,5		-1. 1.39,4 38,9
	1573 1576	155 11	11,0	0.12.31,76 31,68	-1.34.39,8 $39,2$		1573 1576	183 32	8,7	36,59	-1. 6. 5,7 5,5
	1573 1576	156 12	10,5 10,6	0.12.32,09 31,97	1.34.56,0 55,6		1573 1576	184 33	10,9	45,73	
	1373 1376	157 13	10,5	33,99			1573 1576	185 34	10,7	7,49	
	1573 1576	158 14	10,0	34,31	-1.14.45,5 45,3		1573 1576	186 35	8,9	12,56	-1. 6. 6,7 6,4
	1573 1576	159 15	10,8	35,80			1573 1576	187 36	11,0	15,32	
	1573 1576	160 16	8,3	37,95			1573 1576	188 37	8,4	17,98	
	1573 1576	162	10,9	42,89	-1.20.11,6 11,5		1573 1576	189 38	8,4	22,34	
	1573 1576	164	10,7	56,47	-1.18.11,3 10,3		1573 1576	191 39	10,4	23,78	-1.17.58,3 57,8 -1.47.24,8
	1573 1576 1573	165 19 167	10,3	56,87	-1.53.42,1 42,1 -1.16.11,8		1573 1576 1573	40	10,8	21,21	24,1 -1.47.28,9
	1576	20	8,4	9,29	11,6 -1.36.12,5		1576	41	10,4	39,91	•
	1576 1573	21 169	10,5	11,41	12,1 —1. 1.48,8		1576 1573	42	7,9	42,62	32,8 1.36.20,9
	1576 1573	22 172	10,7	12,75	48,5 -1.47.52,6		1576 1573		10,5 9,5	5,14 0.16. 9,32	21,3 1.10.39,3
	1576 1573	23 173	8,8 9,6	· ·	52,5 -1.41.57,3		1576 1573				38,8 —1.31.32,4
	1576 1573	24 174			57,1 -1.38.46,8		1576 1573	198			31,9 —1.11.49,0
	1576 1573	25 177			46,0 -1. 7. 6,6	C.E.	1576 594	19			48,3 -0.57.18,7
	1576	26	10,5	1,69	6,5	C.E.	1576	72	10,5	44,27	18,4

	Cliché.	*•	Gr.	J 1900,0.	1900,0.	[]	Cliché.	*•	G۲.	J. 1900,0.	O 1900,0.
C. E. C. E.		42 42	8, t 7,9	0.15.42,62 .42,62	-1.25.32.8		594 17	6 í 5	10,1	0.21.45,00 44,98	-1.30.20,2 20,9
	594 1576	43 45	9,0 9,4	0.16. 9,22 9,28	-1.10.40,2 38,8		594 17	65 6	7,9 7,4	0.21.45,86 45,84	-1.28.56,3 57,4
	594 1576	44 49	9,1 8,2	0.16.21,57 21,61	-1,29.47,1 45,9		59 4 17	68	$\substack{8,7\\8,2}$	0.24. 3,16 3,10	-1.13. 4,8 5,4
	59 4 1376	45 51	10,5 10,3	0.16.37,30 37,38	-1.14.59,3 57,8		594 17	69 11	10,5 10,0		-1.31.28,7 . 29,4
	594 1376	46 53	10,1	54,93	-1. 1.20,0 19,0		594 17	70 12	9,9	11,33	
	594 1376	47 55	8,2	7,09	-1.29.58,0 57,6	C. E. C. E.	· 17	35 10	8,2	3,10	-1.13. 4,4 5,4
	594 1376	48 59	10,3	42,67	-1.12.29,2 28,2		28 17	12	9,9	11,33	-1.20.34,9 $36,5$
	594 1576	49 61	10,2	0,54	-1.28. 7,1 6,0		28 17	37 14	7,3	47,22	•
	594 1576 594	50 64 51	10,2	17,54	-1.54.41,3 40,9 -1.48.4,7		28 17	38 15	8,2	53,62	-1.50.36,9 37,6
	1576 594	65 52	10,2	17,87	-1.40. 4,7 4,2 -1.54.42,1		28 17	39 41	9,1	4,47	-2. 4. 6,3 6,4
	1576 594		10,5	18,21			28 17 28	40 16 43	9,8	15,60	-1. 2.59,0 $60,2$ $-1.29.57,1$
	1576 594	67 54	10,4	20,93			17 28	17	10,3	9,95	57,5 —1.10.49,3
	1576 594	69 55			42,9 -1.56.42,9	-	17 28	18 47	10,0	24,67	
	1576 594 1576	70 56			42,4 -2. 0.33,8		17 28	20 48	7,5 10,2	52,81 0.26.54,08	-1.47. 9,9
	594 1576	141 57 73	8,9 8,1 8,0	7,61 0.19.11,36 11,47	33,9 -1.47.43,9 43,3		17 28 17		9,9		-1.39.14,3
	594 1576	58 74			-1.25.56,2 55,1		28 17	5o	9,8 10,4	4,59 0.27. 7,60 7,60	13,8 -1.30.25,2 25,6
	594 1576	59 76	9,9 9,8	-	-1.33.40,9 40,1		28 17	52	•		-1.25. 9,0 8,8
C. E.	594 17	60 1	10,4 10,1	0.20.33,07 33,05	-1.55.20,9 22,0	C. E. B. G.	28 1430				-r. 5.34,6
	594 17	62 3	10,2	15,74	-1.44.28,4 29,5		28 1430	,54 5	7,4 6,3	0.28.22,06	-1. 9.35,0 35,8
	594 17	63 4		0.21.32,45 32,42	-1.41.42,7 43,5		28 1430	55 6	9,4 10,1	0.28.24,54 24,58	-1.47.19,0 19,2

	Cliché.	*•	G٠.	A 1900,0.	(D 1900,0.		Cliché.	*•	Gr.	ւե 1900,0.	(D 1900.0.
C. E. B. G.		56 7	9,4 9,6	o.28.26,91 26,94	-1.14.15,0 15,5	B. G. B. G.	595 1430	60 49		o.34.18,51 18,48	-1.16.41,3 41,1
	28 1430	57 8	$9,5 \\ 9,1$	0.28.55,24 55,22	-1.21. 6,6 6,9		593 1430	61 51	8,8 9,4	0.34.24,18 24,18	-1.31.47,4 47,3
	28 1430	58 9	10,2 9,2	0.29. 2,15	-1.4.47,8 $48,7$		595 1 4 30	62 54	9,9 9,9	0.34.36,79 36,76	-1. 4.54,5 54,6
	28 1430	59 12	10,2		-1.25.20,6 20,7		595 1430	63 118	•	0.35.10,28	-2. 1.11,3 11,3
	28 1430	60 13	7,5 8,7	0.29.49,00 48,98	-1.51.38,8 $39,3$		593 1 43 0	64 63	9,0 9,0	0.35.44,49 44,49	-1.30.41,4 40,8
	28 1430	61 15	9,0	6,71		B.G. B.C.	593 1568	64	8,9	44,54	
	28 1430	62 17	9,0	22,39	-1.38.13,0 13,3	B. G. B. G.		65 64	9,0	46,26	
	28 1430	63 18	5,4	24,70	-1. 3.16.9 16,6	B. G. B. C.	593 1568	65 2	10,1	46,28	•
	28 1430	64 20	11,0	41,83		B.G. B.G.	1430	66 125	8,8	3,91	
	28 1430	65 21	8,8	42,20		B. G. B. G.	1430	67 70	11,2	20,37	
	28 1430	66 25	8,9	17,19	-1. 7.56,0 56,4	B. G. B. C.		6 7	10,5	20,41	-1.34. 2,8 3,3
	28 1430	67 29	9,6	53,28			595 1568	68 5	7,8	25,85	-1.50.52,3 53,3
D. C.	28 1430 595	68 30	8,7	2,69	-1.24.54,6 54,9 -1.45.40,0		595 1568 595	70 6	10,3	43,35	-1.55.27,1 27,9 -1.47.35,5
B.G. B.G.	1430 595	51 29 53	9,6	53,28	40,6		1568 595	71 7 72	10,3	44,17	
	1430	34	11,1	26,45			1568	8	10,4	49,09	42,0 —1.48.13,6
	1430 595	3 ₇ 55	7,0	57,66	11,9 -1.30.16,6		1568 595	9 74	10,2	0,15	14,3 -1.45. 9,9
	1430 595	39 56	8,8 10,5	11,70 0.33.29,84	16,5 -1. 6.51,3		1568 595	10 75	9,8 10,1	0,98 0.37.49,54	10,5 -1.27.13,6
	1430 595	42 57	-		50,9 -1.43. 0,2		1568 595	12 76		•	13,8 -1. 1.53,1
	1430 595	45 58	-		0,0 -1.36.29,1		1568 593	13 78	-		53,9 -1.25.46,3
	1430 595 1430	46 59 48	11,1	13,23 0.34.16,81 16,84	28,9 -1.58.22,9 23,3		1568 595 1568	14 79 15	7,9 8,4	17,74 0.38.18,47 18,45	46,5 -1.26. 9,8

	Cliché.	*•	Gr.	A 1900,0.	© 1900,0.		Cliché.	*•	Gr.	A 1900,0.	© 1900,0.
B. G. B. C.	595 1568	80 72	9,8	o.38.45,80 45,87	-2. 1.44,0 44,6	C. E. B. C.	1547 1568	90 34	8,6 8,9		-1.21'. 0,8 0,8
	593 1 568	81 17	10,0		-1.33.23,9 $24,2$		1547 1568	96 36		0.41.26,91 26,93	-1.22.55,2 $55,1$
	593 1568	82 18	10,3	0.39. 0,11 0,13	-1.25.0,7 0,9		1547 1568	97 37	9,9 10,0		-1.57.16,2 15,3
	595 1568	83 19	10,1 10,0	0.39.10,07	-1. 7. 4,2 4,1		1547 1568	98 38	10,5 10,4		-1.48.20,3 19,4
	593 1368	84 20	8,8 9,1	• ,,	-1.15.56,2 56,5		1547 1568	100 40		0.41.54,05 54,02	—1.47.51,7 51,4
	595 1568	85 21	10,1 9,8		-1.47.41,5 41,4		1547 1568	102 41		0.42. 0,71 0,68	-1.38. 9,4 9,2
	593 15 68	86 22	8,3 8,7	0.39.24,31 24,40	-1.36.27,0 $27,8$		1547 1568	103 43		0.42. 4,73 4,69	-1.42. 8,7 8,4
	595 1568	87 23		0.39.32,20 32,25	-1.31.46,7 46,9		15 47 1568	107 44			-1. 1.45,8 46,8
	595 1368	88 25		0.39.35,29 35,33	$-1.31.49,5$ $50,\overline{5}$		1547 1568	108 45	$^{8,9}_{9,8}$		-1.42.57,1 56,4
	595 1568	89 27	10,0 9,8	0.39.53,34 53,40	-1.48. 6,8 6,9		1547 1568	109 47		0.42.31,80	-1.10. 9,3 8,8
	595 1568	90 28		0.39.57,25 $57,37$	-1.41.41,7 41,6		1547 1568	110 46		0.42.31,04 31,09	-1.55. 8,9 8,9
C. E. B. C.	1547 1568	3 32	8,4 8,2	0.40.31,42 31,44	-0.55.53,2 53,9		1547 1568	111 48	10,4	39,40	-1.22. 2,6 2,2
	1547 1568	8 35	9,7	52,24	-0.57. 5,1 5,8		1547 1568	112 49	9,8	43,15	
	1547 1568	17 39	10,4	47,96	-0.55.40,7 41,8		1547 1568	113 50	10,2	45,00	
	1547 1568	19 42	9,8	3,34			1547 1568	51	10,3	50,95	-1.34.52,9 52,9
	1547 1568	27	9,8	53,40	-1.48. 8,0 6,9		1547 1568 1547	52	8,0	13,04	-1. 2. 2,8 3,5 -1.19.48,1
	1547 1568 1547	84 28 86	10,1	57,37	-1.41.42,4 41,6		1547 1568 1547	53	10,4	13,40	48,0 —1.34.39,8
	1568 1547	29 87	10,0	17,99	-1.58.32,1 $30,6$ $-1.5.57,3$		1547 1547	54 121	9,9	28,17	39,3 —1.55.42,4
	1568 1547	3o 88	10,4	20,22	57,3 —1. 6.39,8		1568 1547	55 124	10,3	33,65	41,9
	1568 1547	31	10,4	29,62	39,9 -1.43.56,1	C.E.	1568	56	10,2	40,96	11,8 -1.52.43,4
	1568	33	7,9 Coord	37,69	55,8	B.C.	1569		10,2	36,86	42,4 l

Cliché	· *·	G۰.	& 1900,0.	(D 1900,0.	li	Cliché.	*•	Gr.	.b 1900,0.	(D 1900,0.
1347 1369			0.44.46, 42 46,38	-1. 6.44,5 43,8		1347 1369	80 22			-0.55.25,7 25,7
1547 1569		10,5 10,3		-1.30.11,8 11,0		1347 1369	161 24	8,2 8,4		-0.59.26,7 26,6
1547 1569	136 4		0.45.16,57 16,56	-1.38.36,0 35,1		1547 1569	162 25			-1.32.52,3 51,6
1547 1569		10,5 10,2		-1.54.22,2 21,0		1547 1569	163 26		0.47.53,75 53,78	-1.41.12,8 12,5
1547 1569	141 6	10,0 9,8	0.45.41,29 41,30	-1.24.52,2 $51,7$		1547 1569	164 27			-1. 2.38,5 38,4
1547 1569	63 7	10,3 10,5		-0.55.27,0 27,4	B. E. B. C.	16 2 0 1569	49 28	10,5 10,2		-1.33.40,5 41,4
1547 1569			o.45.55,59 55,55	-1.37.46,4 $45,7$		16 2 0 1569		10,8		-1.15.51,6 51,9
1547 1569	144 9	9,4 9,7		-1.32.52,6 $52,0$		16 2 0 1569			0.49. 6,41 6,44	-1.33.53,5 53,6
1547 1569	147	8,3 8,5	o.46. 9,54 9,55	-1. 4.46,9 46,4		16 2 0 1569		10,5 10,0		-1. 4. 4,0 4,4
1547 1569	118		0.46.16,93 16,94	-1.55.52,2 $51,3$		1620 1569	55 33		•	0.55.32,4 33,0
1547 1569	149 12			-1.49.43,1 42,3		1620 1569	57 34		0.49.51,43 51,44	-1.23.23,4 $23,3$
1347 1369	150 13	10,7 10,5	0.46.22,17	-1.37.44,0 43,4		16 2 0 1569			0.50.12,36 12,34	-1. 1.44,7 44,6
1547 1569	69 14			-0.56.35,г 34,7		16 2 0 1569	60 36			-1.18.45,0 44,4
15 47 1569	151 15		0.46.31,15 31,12	-1. t.51,8 52,0		1620 1569	61 37		0.50.15,38 15,47	-1.46.34,9 $34,7$
1547 1569	153 16	•	0.46.40,10 40,07	-1.55.44,5 43,7		16 2 0 1569		9,7 10,0		-1.16.43,6 44,0
1547 1569	154 17	9,0 9,9	0.46.49,35 49,32	-1.53.29,7 $28,9$		16 2 0 1569	63 39	10,5 9,8	0.50.29,49 29,59	-1.47.40,4 40,3
1547 1569	156 18	10,0	1,78	-1.37.45,0 44,3		1620 1569	64 40	10,3	33,66	-1.38.52,1 $51,8$
1347 1569	157 19	10,2	7,58	-1.20.30,3 29,7		1620 1569	65 41	8,6	39,75	-1.20.10,0 10,2
1547 1569	158 20	9,7	17,67	-1.39. 5,7 5,1		1620 1569	66 42	8,1	59,05	-0.55.45,5 45,5
1547 1569	159 21	10,2	29,03	-1. 7.44,4 43,7		1620 1569	68 44	9,4	11,27	-1.51. 7,7 7,0
1547 1569	160 23	10,5 10,0	0.47.46,82 46,82	-1.10.40,7 40,4		16 2 0 1569	69 45	10,8	0.51.27.45 27,45	-1. 6.50,3 49,4

	Cliché.	*.	G'.	A 1900,0.	(I) 1900,0.		Cliché.	*.	Gr.	J 1900,0.	© 1900,0.
B. E. B. C.		70 46	9,8	o.51.28,66 28,79	- 1.50,40,0 39,4	B. E. C. E.	1620 3	98 25	9,4 9,0	0.55.52,30 52,28	-1.25. 8,2
	1620 1569	71 47	10,6 10,1	0.51.29,86 29,87	-1. 9.36,7 35,6		1620 3	99 26	11,0 11,4		-1.47.24,0 21,4
	1620 1369	72 48	10,7 10,2	0.51.34,59 34,55	-0.58. 2,2		1620 3	100 27	11,2	0.55.59,34 59,34	-1.44.42,5 40,4
	16 20 1569	75 49	7,7 7,8	0.51.53,27 53,28	-1. 0.47,2 46,8		1620 3	28 201	10,8 9,3	0.56. 3,59 3,59	-1.40. 0,0 39.57,7
	16 2 0 1369	76 50	10,5 9,9	o.51.55,36 55,38	-1.14.19,4 18,1		16 2 0 3	104 29	11,0 11,3	•	-1.35.23,9 21,9
B. E. C. E.	3	77 3	11,4	43,41	-1.35.39,3 $39,5$	C. E. C. E.	1577 3	45 •22	8,8	42,88	-1.33.37,8 36,9
	1620 3	79 4	9,0	53,49	-1.17.17,7 17,9		1577 3	46 23	8,7	46,23	-1.24.30,0 29,1
	1620	82 9	7,4	13,38	-1.12.48,4 47,7		1577 3	47 24	11,3	50,10	
	1620 3	10	8,7	27,92	-1.44. 0,4 0,9		1577 3	48 25	9,0	52,28	-1.25. 7,7 7,1
	1620	84	8,6	29,07	-1.51.57,5 57,8		1577	31 52	10,3	31,26	•
	1620 3	85 12	9,1	37,12	-1. 6.25,4 24,1		1577	53 32	11,4	39,85	•
	1620 3 1620	86 13	9,3	41,10	- •		1577 3	54 33	10,3	41,32	
	3 1620	87 14 88	9,4	45,84	-1.13.58,4 57,6 -1.51.58,8		1577 3 1577	55 34 56	11,3	56,37	-1.39.25,6 25,7 -1.26.38,1
	3 16 2 0	15 89	10,4	56,09	57,9 -1.26.36,2		3 1577	35 57	9,2	56,38	•
	3 16 2 0	16	10,9	56,62			3 1577	36	11,5	59,44	39,2 $-0.59.43,7$
	3 1620		8,8	5,92	8,2		3 1577		11,5	3,86 o.57.13,34	42,5 -1.58.35,5
	3 1620	19 91			15,0 -1.42.40,0		3 1577	38 60		0.57.19,59	35,2 -1.26.41,8
	3 1620	95	9,1 8,0		39,1 -1.33.38,5		3 1577	39 61	10,3		41,5 -1.28.32,1
	3 1620 3	96 23	8,8 8,4 8,7	42,88 0.55.46,20 46,23	36,9 -1.24.30,4		· 3 1577 3	40 62 41	7,9 8,7	20,26 0.58.19,31 19,32	31,2 -2. 1.55,6 55,5
	16 2 0 3	97 24		,	29,1 -1.16. 9,6 7,5		3 1577 3	63 ['] 42		0.58.46,88 46,90	

Ascensions droites et déclinaisons pour 1900,0 d'étoiles communes à deux clichés (suite).

	Cliché.	*.	Gr. ͺ	A 1900,0.	(D 1900,0.		Cliché.	*.	G۲.	A 1900,0.	(D 1900,0.
C. E. C. E.	1577 3				-1.27. 9,6	C. E. C. E.					$-1.^{\circ}7.32,3$
G. E.	J	44	•	• • •	8,2	C. E.	4	11	•		31,9
	1577				-1.39.43,1		1577	83			-1.5.7,
	3	4)	11,5	31,19	42,1		4	12	8,0	14,24	6,8
	1577				-1.32.58,4		1577	84			-1.32.1,2
	3	46	11,5	48,55	$5_{7},5$		4	13	10,6	15,40	1,0
	1377	70	ю,6	0.59.50,95	-2.0.28,6		1577	85	8,0	1. 2.18,46	-2. 2. 0,4
	3	47	11,6	50,99	28,2		4	14	8,4	18,37	0,6
C. E.	1577	71	10,7	0.59.55,15	-1.26.58,6		1577	86	10,7	1. 2.20,75	-1.0.57,3
C. E.	4				57,6		4	15	11,4	20,82	56,9
	1577	73	10,2	1. 0.31,65	-1.23.22,4		1377	87	8,6	1. 2.27,57	-1.39.18,9
	4	3			21,0	li	4	16			18,2
	1577	74	9.7	1. 0.57,93	-2. 1. 1,0	11	1577	88	8,0	1. 2.28,20	-1. jo.55, I
	4	4	8,6		o,5		4	17	8,6		54,5
	1577	75	10.6	1. 1. 7.23	-1.23.36,3	İ	1377	89	9.7	1. 2.37,48	-1.13.28,8
	4	5	•	• •	35, 1		4	18			28,5
	1577	76	10.6	1. 1.17.50	1.13.19,1		1577	90	10.3	1. 2.30.61	-1.25.27,5
	4				18,4		4	19	•	39,56	• •
	1577	77	7.9	1. 1.18.52	-1.17. o,4		1577	91	8.0	1. 2.46.63	-τ.32. τ,3
	4	7			16.59,3		4	20			1,2
	1577	-8	10.0	1. 1.20.26	-1.22.24,0		1377	92	0.5	1. 2.51.36	-1.52.12,4
	4	8		•	23,2		4	21	• .	•	12,4
	1577	70	8 2	1 138 00	-2. 0.58,9		1577	94	•		-1.13.26,3
	4	יעי 9			-2. 0.58,9 58,9		4	94 22			25,9
	1577	80	•	• •	-1.28.21,9		1377	0.5	•	•	-r.57. 9,6
	10//	10	-	40,79			1011				9,4
	-		~ , -#	4~1/9	,5	11	•	~~	٠,٥	5,5/	719

En formant, d'après ces Tableaux, les différences d'ascension droite et de déclinaison pour chacune des 320 étoiles communes à deux plaques, nous avons obtenu l'erreur probable d'une différence ou d'une somme de coordonnées, et nous en avons conclu l'erreur probable de la moyenne des coordonnées empruntées à deux clichés:

	Erreur probable				
	d'une différence ou d'une somme.	de la moyenne de deux coordonnées.			
Ascensions droites	o",540 o",508	o",270 o",254			

Nous terminons cette discussion par un Tableau où la distribution réelle des écarts, suivant leurs grandeurs, est mise en regard de la distribution théorique, fondée sur la supposition des erreurs probables respectives o", 540 et o", 508:

Ascensions	droites		Déclinaisons						
Limites		d'écarts	Limites des	Nombre d'écarts pour 100					
des écarts.	calculé.	observé.	écarts.	calculé.	observé.				
o,oo — o,o3 o,o3 — o,o6 o,o6 — o,og o,og — o,12 o,12 — o,15 o,15 — o,18	pour 100 43,1 34,4 13,7 6,5 1,9 0,4	pour 100 35,9 31,3 19,4 11,9 1,5	$0,0 \leftarrow 0,3 \dots$ $0,3 \leftarrow 0,6 \dots$ $0,6 \leftarrow 0,9 \dots$ $0,9 \leftarrow 1,2 \dots$ $1,2 \leftarrow 1,5 \dots$ $1,5 \leftarrow 1,8 \dots$ $1,8 \leftarrow 2,1 \dots$ $2,1 \leftarrow 2,4 \dots$ $2,4 \leftarrow 2,7 \dots$	pour 100 31,0 26,5 19,3 12,1 6,5 2,9 1,2 0,4 0,1	pour 100 25,3 26,0 22,2 16,9 5,9 1,9 0,6 0,9				
•	100,0	100,0		100,0	100,0				

Voici la liste générale des Catalogues employés dans la détermination des positions moyennes des étoiles de repère pour les zones attribuées à l'Observatoire d'Alger:

```
Paris, 3 périodes (1843, 60 et 75).
Mayer (1753).
Bradley (1755).
                                  Greenwich (1872).
Lalande (1800).
                                 Goettingue (1875).
Lalande B (1800).
                                 Nicolaïef (1875).
                                 Gould (1875).
Piazzi (1800).
Weisse I (1823).
                                  Washington (1875).
Pond (1830).
                                 Romberg (1875).
Rümker (1836).
                                 Armagh II (1875).
Becker (1875).
Santini (1840).
Greenwich (1840).
                                 Munich J (1880).
                                 Greenwich (1880).
Munich II (1880).
Greenwich (1845).
Greenwich (1850).
Bonn, t. VI (1855).
                                 Karlsruhe (4885).
Kam (1855).
                                 Küstner (1883).
Poulkovo (1855).
                                 Dunsink (1885).
Radcliffe II (1860).
                                 Greenwich (1890).
Yarnall-Frisby (1860).
                                 Glasgow II (1890)
Santini (1860).
                                 Stone (1890) (Radcliffe III).
Goettingue (1860).
                                 Cincinnati (1890).
Greenwich (1860).
                                 Cincinnati (1893).
Greenwich (1864).
                                 Küstner (1890), mouvements propres de 335 étoiles.
Schjellerup (1865).
                                 Bossert (1900), mouvements propres.
Glasgow I (1870).
                                 Newcomb (1900), mouvements propres.
```

Nous indiquons ci-après le nombre moyen d'étoiles de repère employées dans chaque cliché pour la détermination des constantes en ce qui concerne les zones — 2°, — 1° et 0°:

On a considéré pour cette statistique 50 clichés de chaque zone; par conséquent, le nombre moyen de 25 étoiles repose sur 150 clichés; le nombre minimum d'étoiles de repère est 8 et le nombre maximum 71.

Le nombre moyen des Catalogues employés pour le calcul des positions moyennes d'une étoile est de 3 modernes correspondant à l'époque moyenne 1876.

Jusqu'à l'époque 1850 (de 1755 à 1845) les Catalogues n'ont servi qu'à déterminer

les mouvements propres; les positions moyennes sont donc, en général, basées sur les Catalogues de 1850 à 1895.

FORME DE LA PUBLICATION DU CATALOGUE PHOTOGRAPHIQUE DES COORDONNÉES RECTILIGNES.

Les coordonnées rectilignes des étoiles mesurées sur chacune des plaques d'une zone sont publiées sous la forme de Tableaux où l'on trouve sur une même ligne horizontale :

(a) un numéro d'ordre; (b) la grandeur photographique estimée de l'étoile; (c) l'abscisse X et l'ordonnée Y de cette étoile, exprimées en tours de la vis micrométrique de l'appareil de mesure. Les valeurs de X et de Y ont subi les corrections indiquées à la page xxxix de ce Mémoire.

En tête du Tableau relatif à chacun des clichés, nous donnons :

- 1º Le numéro du cliché et les coordonnées approchées du centre, au degré rond pour la déclinaison, à la minute ronde de temps pour l'ascension droite;
 - 2º La date à laquelle le cliché a été photographié;
- 3° L'angle horaire H du centre de la plaque à l'instant moyen de la pose, la température 0 de l'air extérieur, et la pression barométrique B réduite à cette température.

En ce qui concerne le classement des étoiles, la disposition commune aux Catalogues photographiques des quatre Observatoires français, Alger, Bordeaux, Paris, Toulouse, est la suivante :

Chaque Tableau de coordonnées rectilignes, bien qu'offrant au regard un ensemble continu, sans aucune division apparente, est, en réalité, formé de deux parties : la première contenant les ordonnées positives, la seconde les ordonnées négatives. Dans l'un et l'autre groupe, les valeurs des abscisses vont en croissant depuis — 65^t jusqu'à + 65^t.

Quand le numéro d'ordre d'une étoile est accompagné d'un astérique, cela indique le renvoi à des notes concernant certaines particularités rencontrées dans la mesure de cette étoile, par exemple : allongement normal ou déformation accidentelle des images, duplicité reconnue ou soupçonnée de l'étoile, difficultés résultant du contact d'une image avec l'un des traits du réseau.

Après le Tableau relatif à chaque cliché et après les notes, s'il y a lieu, on donne les éléments provisoires sous les notations :

- i° i_x , i_y constantes d'orientation comprenant les effets de la réfraction différentielle; ces constantes sont exprimées en parties du rayon avec six décimales;
- 2° τ_x , τ_y valeurs du tour de vis, comprenant également les effets de la réfraction différentielle. Ces éléments sont exprimés en minutes d'arc avec six décimales, ils correspondent à ce que nous avons appelé T_x et T_y dans ce Mémoire (pages LIII et LXI);
- 3° α_0 et δ_0 , coordonnées corrigées du centre de la plaque, au centième de seconde de temps pour l'ascension droite, et au dixième de seconde d'arc pour la déclinaison.

A la suite des éléments provisoires, nous donnons les valeurs des quantités Δm , N et ϵ , dont la signification est expliquée dans le Mémoire à la page xLIII; on y a joint les initiales des observateurs qui ont effectué les mesures du cliché.

On trouve ensin, dans un Tableau supplémentaire, sous une forme abrégée, mais suffisamment claire par elle-même, les coordonnées moyennes pour 1900,0 des étoiles de repère utilisées dans le calcul des éléments. Les coordonnées rectilignes de ces étoiles se distinguent immédiatement dans le Tableau général par leur numéro d'ordre qui est imprimé en caractères gras.

TABLES RELATIVES A LA DÉTERMINATION DES CONSTANTES ET AU CALCUL DE LA RÉFRACTION DIFFÉRENTIELLE.

Nous avons expliqué (p. xuv et suivantes) le mode de construction et d'emploi de nos Tables relatives à la détermination des constantes et au calcul de la réfraction différentielle. Il ne nous reste plus qu'à donner ces Tables elles-mêmes; on les trouvera ci-après.

TABLE I.

$$\beta_1 = \frac{\tan g(\alpha - \lambda_0)'}{\sin i'} - (\alpha - \lambda_0)'.$$

$$\beta_1' = \frac{\tan g\eta}{\sin i'} - \eta.$$
Argument $(\alpha - \lambda_0)'$.
Argument η ou $(\delta - \Omega_0)$.

0' 0 21' 1 0 22 2 0 23 3 0 24 4 0 25 5 0 26 6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0 18 2 38,5	βι.	$(\alpha - \mathcal{A}_0)'$.	β,.	(a — A ₀)'.	β1.	$(\alpha - \mathcal{A}_0)'$.	β _ι .
2 0 23 3 0 24 4 0 25 5 0 26 6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	3	40',5	19	52′,0	40	60',0	61
3 0 24 4 0 25 5 0 26 6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 0 37 17 1 38,0	3	41,0	20	52,5	41	60,3	62
4 0 25 5 0 26 6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	3	42,0	21	53,0	42	60,6	63
5 0 26 6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 t 37 17 1 38,0	4	43,0	22	53,5	43	61,0	64
6 0 27 7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	5	43,5	23	54,0	44	61,3	65
7 0 28 8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 t 37 17 1 38,0	5	44,0	24	54,3	45	61,6	66
8 0 29 9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 t 37 17 1 38,0	6	44,5	25	54,6	46	62,0	67
9 0 30 10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	6	45,0	26	55,0	47	62,2	68
10 0 31 11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	7	45,5	27	55,3	48	62,5	69
11 0 32 12 1 33 13 1 34 14 1 35 15 1 36 16 1 37 17 1 38,0	8	46,0	28	55,6	49	62,7	70
12	8	47,0	29	56,0	5o	63,0	71
13	9	47,5	3 o	56,5	51	63,3	72
14 1 35 15 1 36 16 1 37 17 1 38,0	10	48,0	3ι	57,0	52	63,6	73
15 1 36 16 17 37 17 1 38,0	1.7	48,5	32	57,3	53	64,0	74
16 t 37 17 1 38,0	12	49,0	33	57,6	54	64,3	7 5
17 1 38,0	13	49,5	34	58,0	55	64,6	76
17 1 38,0	14	50,0	35	58,3	56	65,0	77
	15	50,3	36	58,6	57		
	16	50,6	37	59,0	58		
19 2 39,0	17	51,0	38	59,3	59		
20 2 40,0	18	51,5	39	59,6	6o		

Les valeurs de β_1 et β_1' sont exprimées en dix-millièmes de minute d'arc. La correction doit toujours être ajoutée à la valeur absolue de $(\alpha - \mathcal{A}_0)'$ ou de $(\delta - \mathcal{Q}_0)$.

 $\mathfrak{O}_0 = + \, \mathbf{1}^{\bullet}.$,Pour \mathfrak{O}_0 négatif : changer le signe de l'argument $\eta.$

 $\beta_2 = (\lambda - I) (\alpha - \mathcal{N}_0)'.$ Pour $(\alpha - \mathcal{N}_0)'$ négatif : changer le signe du nombre β_2 .

7,			((z — ^l.,,)	'.			η,			(6	x — ef.º)	,	•	
ou 6—Ø₀.	+ 10'.	+ 20'.	+ 30′.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou 6—(₽₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-65',0 -64,7 -64,3 -64,0 -63,8 -63,5 -63,3 -63,0 -62,7 -62,3	+ 18 17 17 17 17 17 17 17	+ 36 36 35 35 35 34 34 33 33	+ 53 52 52 52 52 51 50 50 49	+ 71 70 69 68 68 67 66 66	+ 89 88 87 86 86 85 85 84 83	+107 106 105 104 103 102 102 101 100	+124 123 122 121 120 119 118 117 116 115	-50,8 -50,5 -50,3 -50,0 -49,7 -49,3 -49,0 -48,8 -48,5 -48,3	+ 11 10 10 10 10 10 10 9 9	+ 21 21 20 20 20 19 19 18	+ 32 31 31 30 30 29 29 28 28	+ 43 42 42 41 40 40 33 33 37	+ 53 52 52 51 50 49 48 48 48 47	+ 63 63 62 61 60 59 58 57 57	+ 74 73 72 71 70 69 68 67 66 65
$\begin{array}{c} -62,0 \\ -61,8 \\ -61,5 \\ -61,3 \\ -61,0 \\ -60,7 \\ -60,3 \\ -60,0 \\ -59,8 \\ -59,5 \end{array}$	+ 16 16 16 16 16 15 15 15	+ 33 32 32 31 30 30 30 30	+ 49 49 48 48 47 47 46 46 46	+ 65 64 64 63 62 61 61 60	+ 81 80 80 78 77 76 76 75	+ 98 97 96 96 95 94 91 91	+114 113 112 111 110 109 108 107 106	-48,0 -17,7 -47,3 -47,0 -46,8 -46,5 -46,3 -46,0 -45,8 -43,5	÷ 999999999999999999999999999999999999	+ 18 17 17 17 17 16 16	+ 27 27 26 26 26 27 27 25 24 24 24	+ 35 35 35 35 35 34 31 32 32	+ 46 45 41 43 43 42 42 41 40	+ 55 54 53 52 51 50 49 48 47	+ 64 63 62 61 60 59 58 57 56 55
-59,3 -59,0 -58,7 -58,3 -58,0 -57,8 -57,5 -57,3 -57,0 -56,7	+ 15 15 15 14 14 14 14 14	+ 30 29 29 28 28 28 28 27 27	+ 45 44 43 43 43 42 42 41	+ 60 58 58 58 57 57 56 56 55 54	+ 75 74 73 72 71 70 70 69 68	+ 89 88 87 86 85 85 84 83 82	+104 103 102 101 100 99 98 97 96	-45,3 -45,0 -44,7 -44,3 -43,8 -43,5 -43,3 -43,0 -42,7	+ 88 87 77 77 77	+ 15 15 15 14 14 14 14 13 13 13	+ 23 23 22 22 21 21 21 20 20 19	+ 31 30 29 29 28 28 27 26 26	+ 39 38 35 35 35 35 33 33 33	+ 465 443 442 441 40 39	+ 54 53 52 51 50 49 48 47 46 45
-56,3 -56,0 -55,8 -55,5 -55,3 -53,0 -54,7 -51,3 -54,0 -53,8	+ 13 13 13 13 13 13 13 13 12 12	+ 26 26 26 26 25 25 24 24	+ 40 40 39 38 38 37 37 37	+ 53 53 53 52 52 51 50 49 49	+ 67 66 66 65 65 64 63 62 61	+ 80 79 79 78 77 76 75 74 73 73	+ 94 93 92 91 90 89 88 87 86 85	-42,3 -42,0 -41,8 -41,5 -41,3 -41,0 -40,7 -40,3 -40,0 -39,8	+ 6666665555	+ 12 12 12 12 11 11 10 10	+ 19 18 18 18 17 17 16 16 15	+ 25 24 24 23 22 21 20 20	+ 32 31 30 30 29 28 27 27 26 25	+ 38 37 36 36 35 33 32 31	+ 44 43 42 41 40 39 38 37 36
-53,5 -53,3 -53,0 -52,8 -52,5 -52,5 -52,3 -52,0 -51,7 -51,3 -51,0	+ 12 12 12 12 11 11 11 11 + 11	+ 24 24 23 23 22 22 22 22 + 21	+ 36 36 35 35 34 34 33 + 32	+ 48 48 47 47 45 45 45 44 44 43	+ 60 59 58 57 57 56 55 55 + 54	+ 72 71 70 69 69 68 67 66 65 + 64	+ 84 83 82 81 80 79 78 77 76 + 75	-39,5 -39,3 -39,0 -38,7 -38,3 -37,8 -37,5 -37,3 -37,0	+ 55 55 54 44 44 44 44 44	+ 99998887777	+ 14 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.1	+ 19 19 18 17 16 16 15 + 14	+ 24 24 23 22 21 20 20 19 19	+ 29 28 26 25 24 23 22 + 21	+ 34 33 32 31 30 29 28 27 26 + 25

 $\mathfrak{O}_0 = + \, \iota^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument $\eta.$

 $\beta_2 = (\lambda - \iota) (\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

Les valeurs de 32 sont exprimées en dix-millièmes de minute d'arc.

7,			(2 — el.,)	' .			7,			(2 — d ₀)	' .		
ο u δ-Φ ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ου δ-Φ ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-36,7 -36,3 -36,0 -35,8 -35,5 -35,3 -35,0 -34,8 -34,5	+ 4333333333333333333333333333333333333	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 9 8 8 8 8 8 8 8 8	11 10 10 9	+ 17 16 15 15 14 13 12 12	+ 20 19 18 18 17 16 15 15 14	+ 24 23 22 21 20 19 18 17 16	-22',7 -22,5 -22,3 -22,0 -21,7 -21,3 -21,0 -20,7 -20,5 -20,3	4 4 4 5 5 5	8 8 8 8 9 9	11 12 12 13 13 14 14 15	- 15 16 16 17 17 18 19 19	- 19 19 20 20 21 22 23 24 24 25	- 22 23 24 24 25 27 28 29 30	- 26 27 28 29 30 31 32 33 34 35
-34,0 -33,7 -33,3 -32,7 -32,5 -32,3 -32,0 -31,7 -31,3	2 2 2 3 1 1		4 + 66 65 55 55 56 67 68 68 68 68 68 68 68 68 68 68 68 68 68	8 7 6 6 5 5 4 3	10 9 8 7 7 6 5	9 8 7 6	11 10 9 8 7	-20,0 -19,7 -19,3 -19,0 -18,7 -18,5 -18,3 -18,0 -17,7	5 6 6 6 6 6 6	10 11 11 12 12	16 17 17 18 18 18	23 23 24 24 25	31 32	32 33 34 35 35 36 37 38	39 40 41 42 43 44
-31,0 -30,8 -30,5 -30,3 -30,0 -29,8 -29,5 -29,3 -29,0 -28,7	+ 1		1 + 2 1 0 + 1 0 0 + 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 + 1 0 0 0 0 1 - 1 1 2	2 1 + 1 0 - 1 1 2	2 1 + 1 0 - 1 1 2	3 2 + 1 0 - 1 2 3	-17,0 -16,7 -16,5 -16,3 -16,0 -15,7 -15,3 -15,0 -14,7	77778888	13 14 14 14 14 15 15 15	20 21 21 21 22 22 23 23	28 29 29 30 31 31	34 34 35 36 37 37 38 39	41 42 43 44 45 46	47 48 49 50 51 52 53 54
-28,3 -28,0 -27,8 -27,5 -27,3 -27,0 -26,7 -26,3 -25,8		1 1 2 2 2	2 3 3 4 3 4	8 44 55 55 55 55 55 55 55 55 55 55 55 55	5 6 6 7 8	6 7 7 8 8 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	7 8 9 10 11 12 13	-14,3 -14,0 -13,7 -13,5 -13,6 -12,7 -12,3 -12,0 -11,7		3 16 3 17 9 17 9 17 18 9 18	24 24 25 25 26 26 27 27	33 33 34 34 35 35 36 37	41 41 42 42 43 44 45 46	49 50 50 51 52 53 54 55	57 58 59 60 61 62 63 64
-25,5 -25,0 -25,0 -24,8 -24,5 -24,6 -23,6 -23,6) 3 5 3 9 9 9	3 3 3 3 3 3	5 6 6	0 1	12 13 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	117 18 19 7 20 21 22 23 24	-11,8 -11,6 -11,6 -10,5 -10,6 -9,5 -9,5 -9,6	3 10 3 10 3 10 3 10 7 10 3 1	0 10 0 20 0 20 0 20 0 20 1 21	28 29 30 30 31 31 31 31	38 39 40 41 41 41 42 42	50 45 46 46 50 50 50 50 50 50	58 59 60 61 61 62 62 63 63	67 68 69 70 71 72 73 74

Alger, Coord. rect.

m

 $\mathfrak{O}_0 = + \, \mathfrak{1}^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer
le signe de l'argument $\eta.$

$$\begin{split} \beta_2 &= (\lambda - \iota) \, (\alpha - \varsigma l_0)'. \\ \text{Pour } (\alpha - \varsigma l_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

7,			(:	x — J.,)				7)			(:	x — •••)	'.		
ou 6-Ø•.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ου δΦ ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+60'.	+ 70'.
- 8,7 - 8,3 - 8,0 - 7,7 - 7,8 - 7,3 - 7,0 - 6,7 - 6,3 - 6,0	12 12 12	- 22 22 22 23 23 23 23 24 24	- 33 33 34 34 34 35 35 36 36 36	- 44 44 45 46 46 46 47 48 48	— 54 55 56 57 58 59 60 61	- 65 66 67 68 68 69 70 71 72 73	- 76 77 78 79 80 81 82 83 84 85	+ 3,5 + 5,7 + 6,0 + 6,3 + 6,5 + 6,7 + 7,0 + 7,3 + 8,0	19	- 36 36 37 37 37 38 38 38 38		- 72 73 74 74 75 76 77	- 90 91 93 93 93 94 95 96 97	108 109 110 111 112 113 114 115	126 127 128 129 130 131 132 133 134 135
- 5,7 - 5,5 - 5,3 - 5,0 - 4,7 - 4,5 - 4,3 - 3,7 - 3,3	13 13 13 13 13	— 25 25 25 26 26 26 26 26 27	39	- 50 50 50 51 52 53 53 54 54	- 62 63 64 65 65 65 66 67	- 74 75 76 778 78 78 81	- 86 87 88 89 90 91 92 93 93 94	+ 8,3 + 8,5 + 8,7 + 9,0 + 9,3 + 9,7 + 10,0 + 10,3 + 10,5	20 20 20	— 39 39 39 40 40 40 41 41 41	— 58 59 59 60 60 61 62 62	- 78 78 78 79 80 81 82 82	98 98 98 100 101 102 103 103		
- 3,0 - 2,7 - 2,3 - 2,3 - 2,0 - 1,7 - 1,3 - 1,0 - 0,7 - 0,5	14 14 14 15	27 28 28 28 29 29 29 30 30	- 41 42 42 42 43 43 44 44 45 45		69 70 70 70 71 72 73 74 75 75	- 82 83 84 84 85 86 87 88 89 90	- 96 97 98 99 100 101 102 103 104	+11,0 +11,3 +11,7 +12,0 +12,3 +12,5 +12,7 +13,0 +13,3 +13,7	21 21 21 21 21 21 22 22 22 22 22	- 42 42 43 43 43 43 43 44 44 45				125 126 127 128 129 130 131 132 133	146 147 148 149 150 151 152 153 154 155
- 0,3 0,0 - 0,3 + 0,7 + 1,0 + 1,3 + 1,5 - 1,7 + 2,0 + 2,3	16 16 16 16 16	- 30 31 31 32 32 32 32 33 33	49	- 60 61 62 63 63 64 61 65 66	- 76 76 77 78 79 80 80 81 81	91 92 93 94 95 96 96 97 98 98	-106 107 108 109 110 111 112 113 114 115	+14,0 +14,3 +14,5 +14,7 +15,0 +15,3 +15,5 +16,0 +16,3	23 23 23 23	- 45 45 45 46 46 47 47 47 47		- 89 90 90 91 92 93 93 93 94		-134 135 136 136 137 138 139 140 141	-156 157 158 159 160 161 162 163 164
+ 2,7 + 3,0 - 3,3 + 3,5 + 3,7 + 4,0 + 4,4 - 4,7 + 5,0 + 5,3	17 17 17 17	— 33 34 34 34 34 35 35 36 36 — 36	51 51 52 52 53 53	67 68 68 69 70 70	— 83 84 85 85 85 86 87 88 99	-100 101 102 102 103 104 105 106 107 -108	116 117 118 119 120 121 122 123 124125	+16,7 -17,0 +17,3 +17,5 +17,7 +18,0 +18,3 +18,7 -19,0 +19,3	24 25 25	- 47 48 48 48 49 49 50 50 - 50	— 71 72 72 73 73 73 74 75 — 75	- 94 95 96 96 97 97 98 98 99	-118 119 120 121 121 122 123 123 124 -125	— 142 143 144 145 146 147 148 149 — 150	-166 167 168 169 170 171 172 173 174 -175

TABLE II.

 $\mathfrak{O}_0 = + \, \mathfrak{1}^\circ.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument $\eta.$

 $eta_2 = (\lambda - \iota) (\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

3)			(a — .b.,)'.			7			(:	z — A,)	·.		
ου δ — Φ•.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ο u δ-Φ₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
+19,5 +19,7 +20,0 +20,3 +20,7 +21,0 +21,3 +21,5 +21,7 +22,0	25 25 25 25 26 26 26 26 26	51 51 51 52 52 52 53 53 53	76 76 76 76 76 77 78 78 79 79	-101 102 102 103 104 105 105 105	-126 126 127 128 129 130 131 132 132	156 157 158	-176 177 178 179 180 181 182 183 184	+33,5 +33,7 +34,0 +34,3 +34,7 +35,0 +35,2 +35,5 +35,7 +36,0	- 32 33 33 33 33 33 33 33 34 34	— 65 65 65 66 66 66 67 67	97 97 98 98 99 99 99 100		162 162 163 164 164 165 166 167 167	— 194 194 195 196 197 198 199 200 200	- 226 227 228 229 230 231 232 233 234 235
+22,3 +22,7 +23,0 +23,5 +23,5 +23,7 +24,0 +24,3 +24,5 +24,7	- 26 27 27 27 27 27 27 27 27 28 28	— 53 54 54 55 55 55 55 56	- 80 80 81 81 82 82 82 83 83 83	—107 108 109 109 109 110 111	—133 134 135 136 136 137 138 139 139	160 161 162 163 163 164 165 166 167	-186 187 188 189 190 191 192 193 194 195	+36,3 +36,7 +37,0 +37,3 +37,5 +37,7 +38,0 +38,3 +38,7 +39,0	- 34 34 34 34 35 35 35 35	- 67 68 68 68 69 69 70 70		-135 135 136 137 137 137 138 139 139	- 169 170 171 172 173 174 175	-202 203 204 205 206 206 207 208 209 210	- 236 237 238 239 240 241 242 243 244 245
+25,0 +25,3 +25,7 +26,0 +26,3 +26,5 +26,7 +27,0 +27,3 +27,7	- 28 28 28 28 28 29 29 29 29		- 84 84 85 86 86 87 87 87 87 88	—112 113 114 115 115 116 117	—140 141 141 142 143 144 145 146	168 169 170 171 172 173 174 175 176	-196 197 198 199 200 201 202 203 204 205	+39,3 +39,5 +39,7 +40,0 +40,3 +40,7 +41,3 +41,5 +41,7	- 35 35 36 36 36 36 36 36 37	— 70 71 71 71 72 72 73 73	—106 106 107 107 108 108 109 109		-176 177 178 179 179 180 181 182	-211 212 212 213 214 215 216 217 218 219	-246 247 248 249 250 251 252 253 254 255
+28,0 +28,3 +28,5 +28,7 +29,0 +29,3 +29,7 +30,0 +30,3 +30,5	- 29 29 30 30 30 30 31 31 31	— 59 59 60 60 60 61 61 62	— 88 89 89 90 91 91 92 93	-118 119 119 120 121 121 122 123 123	147 148 149 149 150 151 152 153 154		-206 207 208 209 210 211 212 213 214 215	+42,0 +42,3 +42,5 +42,7 +43,4 +43,4 +43,7 +44,0 +44,3 +44,5	- 377777773733838	- 73 73 74 74 74 75 75 76	-110 110 111 111 112 112 113 113		—183 184 184 185 186 187 188 189 189	-219 220 221 221 222 223 224 225 226 227	-256 257 258 259 260 261 262 263 264 265
+30,7 +31,0 +31,3 +31,7 +32,0 +32,3 +32,5 +32,7 +33,0 +33,3	- 31 31 32 32 32 32 32 32 32	- 62 62 63 63 63 64 64 64	- 93 93 94 95 95 95 95 96 97	-123 124 125 125 126 126 127 127 128 -129	—154 155 156 156 157 158 159 159 160 —161	-185 186 187 188 189 190 191 192 -193	-216 217 218 219 220 221 222 223 224 -225	+41,7 +45,0 +43,4 +45,7 +46,0 +46,3 +46,5 +46,7 +47,0 +47,3	— 38 38 39 39 39 39 39 39 — 39	- 76 76 76 77 77 78 78 78 - 78	-114 115 115 116 117 117		— 190 190 191 192 193 194 195 196 — 197	-228 228 229 230 231 232 233 234 235 -236	-266 267 268 269 270 271 272 273 274 -275

C

TABLE II.

 $\mathbb{O}_0 = + \, \iota^{\circ}$.

Pour \mathbb{O}_0 négatif : changer le signe de l'argument η .

$$\begin{split} \beta_2 &= (\lambda - 1) \, (\alpha - \alpha k_0)'. \\ \text{Pour } (\alpha - \alpha k_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

τ, ou			(:	z — clo ₀)	' .			η			(:	z — əb.,)	' .		
8—(P ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	8—(₽ ₀ .	+ 10'.	+ 20'.	+ 30'.	÷ 40'.	+ 50'.	+ 60'.	+ 70'.
-47,6 +48,0 +48,2 -48,5 -48,8 -49,0 +49,3 -49,6 +50,0	40 40 40 40 40 40 40 41	— 79 79 79 80 80 80 81 81	118 119 119 120 120 121 121	157 158 159 160 160 161 162 163		-237 238 239 240 240 241 242 243	-276 277 278 279 280 281 282 283 284	+59,0 +59,2 +59,5 +59,8 +60,0 +60,3 +60,6 +61,0 +61,2	- 45 46 46 46 46 46 46 46	— 90 90 91 91 91 92 92 92	-136 136 137 137 137 138 138 139	184 184 185	-226 226 227 228 228 229 230 231 232	-271 272 273 273 274 275 276 277 278	-316 317 318 319 320 321 322 323 324
+50,2 +50,8 +50,8 +51,0 +51,2 +51,5 +51,8 +52,0 +52,3 +52,3 +52,6 +53,0	41 - 41 41 41 42 42 42 42 42 42	81 - 82 82 82 83 83 83 84 84 84	126	163 —164 164 165 165 166 167 168 168	204	245 -246 -246 -247 -248 -249 -250 -251 -252 -253	285 -286 287 288 289 290 291 292 293 294 295	+61,5 +61,8 +62,0 +62,2 +62,5 +62,8 +63,0 +63,6 +64,0 +64,2	- 477744774478 - 447744774478488	93 	140 -140 140 141 142 142 143 143 143	—187 187 187 188 189 189 190 190	239 -233 233 234 235 236 236 237 238 239 239	279 280 281 282 283 283 284 285	325 -326 327 328 329 330 331 332 333 334 335
+53,2 -53,5 +53,8 +54,0 -54,3 +54,6 +55,0 +53,2 +55,5 +55,8	43 43 43 43 43	84 85 85 85 86 86 86 87 87		-169 170 171 172 172 173 173 174	-211 212 213 213 214 215 216 216 217 218	-254 255 255 256 257 258 259 260 261 261	-296 297 298 299 300 301 302 303 304 305	+64,5 +64,8 +63,0	48 48	96 97 - 97	144 145 —145	192 193 —193	240 241 —241	288 289 —289	336 337 —338
+56,0 +56,3 +56,6 +57,0 +57,2 +57,5 +57,8 +58,0 +58,3 +58,6	- 44 44 44 44 45 45 45 45 45	- 87 88 88 88 89 89 89 90	131 132 132 133 134 134 134 135 135	—175 176 176 177 177 178 179 180 —180	-218 219 220 221 221 222 223 223 224 -225	-262 263 264 265 266 267 267 268 269 -270	-306 307 308 309 310 311 312 313 314 -315								

 $\mathbb{O}_0 = +\ 2^{\circ}.$ Pour \mathbb{O}_0 négatif : changer le signe de l'argument $\eta.$

$$\begin{split} \beta_2 &= (\lambda - 1) \, (\alpha - \lambda_0)'. \\ \text{Pour } (\alpha - \lambda_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

τ,			(:	z — sb ₀)	' .			n			(:	x — 🔥)	′ .		
ou ĉ(₽₀.	+ 10'.	+ 20'.	+ 30'	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou δ-Φ ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-65',0 -64,8 -64,6 -64,4 -64,2 -63,8 -63,6 -63,4 -63,2	5 5 4 4 4 4	9 9 8 8 8 7	13 13 12 11	20 19 18 17 16 15	+ 26 24 23 22 21 20 19 18	+ 31 29 28 27 25 24 23 22 20 19	+ 36 34 33 31 30 28 27 25 24	-55',0 -54,8 -54,6 -54,4 -54,2 -54,0 -53,8 -53,6 -53,4 -53,2	6	11 12 12	15 16 17 17 18 18 18 20 20	20 21 22 23 24 24 25 26 27 28	25 27 28 29 30 31 32 33 34 35	30 32 33 34 35 37 38 39 40	— 36 37 39 40 41 43 44 46 47
-63,0 -62,8 -62,6 -62,4 -62,2 -62,0 -61,8 -61,4 -61,4	3 3 2 2 2 2 2 2	6 5 5 4 4 4	88 87 76 55	10 10 9 8	+ 15 14 13 12 11 10 9 8 7 6	14 13 12 11	+ 21 20 18 17 15 14 13 11 10	-53,0 -52,8 -52,6 -52,4 -52,2 -51,8 -51,6 -51,4 -51,2	8 8 8	15 16 16 17 17	- 21 22 23 23 24 24 25 26 26	— 28 29 30 31 32 32 33 34 35 36	— 36 37 38 39 40 41 42 43 44 45	47 49 50 51 52	
-61,0 -60,8 -60,6 -60,4 -60,2 -60,0 -59,8 -59,6 -59,4 -39,2		0 0	2 2 1 + 1 0 - 1 1	3 2 2 2 + 1 0 - 1 2	3 2 + 1 0 - 1	5 4 2 + 1 0 - 1 2	+ 76 44 3 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-51,0 -50,8 -50,6 -50,4 -50,2 -50,0 -49,8 -49,6 -49,4	10 10 10	19	— 27 28 29 29 30 31 31 32 32 33	- 36 37 38 39 40 41 42 43 43	46 47 48 49 50 51 52 53 54 55	56 57 59 60 61	— 64 65 67 68 70 71 73 74 76
-59,0 -58,8 -58,6 -58,4 -58,2 -57,8 -57,6 -57,4 -57,2	1 1 2 2 2 2 2 2	3 3 4 4 4 5	4 4 5 5 6 7 7 8	5 6 6 7 8 9 10	- 5 6 7 8 9 10 11 . 12 13	7 8	- 7 8 10 11 13 14 15 17 18	49,0 48,8 48,6 48,4 48,2 47,8 47,6 47,4 47,2	12 13 13		— 34 34 35 35 36 37 37 38 38	47 48 49 50 50 51	— 56 57 58 59 60 61 62 63 64	71 72 73 74 76	— 78 80 81 83 84 85 87 88 90 91
-57,0 -56,8 -56,6 -56,4 -56,2 -53,8 -53,6 -53,4 -55,2	3 4 4 4 4	6 7 7 8 8 8 8 9	10 10 11 11 12 13 13	14 14 15 16 17 18	— 15 16 17 18 19 20 21 22 23 — 24	- 18 19 20 22 23 24 25 27 28 - 29	- 21 22 24 25 27 28 30 31 - 34	-47,0 -46,8 -46,6 -46,4 -46,2 -46,0 -45,8 -45,6 -45,4	14 14 14	3o	- 40 40 41 41 42 43 43 44 45 - 45	55 56 57 58 59 59	- 66 67 68 69 70 71 72 73 - 75	80 81 83 84 85 87 88	92 94 95 97 98 99 101 102 104 —106

 $\mathfrak{O}_0 = + 2^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - 1) (\alpha - 4 - 4)'.$ Pour $(\alpha - 4 - 4)'$ négatif : changer le signe du nombre β_2 .

7,			(z — J.,)′.			75			(:	z — d.,))'.		
ou 6-Ø•.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou 6(D ₆ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70′.
-45',0 -14,8 -44,6 -44,4 -44,2 -44,0 -43,8 -43,6 -43,4 -43,2	— 15 16 16 16 16 16 17 17	— 31 31 32 32 33 33 33 34	— 46 47 47 48 48 49 50 51	61 62 63 64 64 66 67 68	77 78 79 80 81 82 83 84 85 86	- 93 44 95 95 95 103	-107 109 110 111 113 114 116 117 118	-35,0 -34,8 -34,6 -34,4 -34,2 -34,0 -33,8 -33,6 -33,4 -33,2	25 26 26 26 26 26 27 27 27 27	— 51 52 52 53 53 53 54	— 76 77 77 78 79 79 80 80 81		-127 128 129 130 131 132 133 134 135 136	-152 154 155 156 157 158 160 161 162 163	178 179 181 182 183 185 186 188 189
-43,0 -42,8 -42,6 -42,4 -42,2 -42,0 -41,8 -41,6 -41,4 -41,2	— 17 18 18 18 19 19	- 35 35 36 36 37 37 37 38 38		- 69 70 71 72 72 73 74 75 76	- 88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		-121 123 124 125 127 128 130 131 132 134	-33,0 -32,8 -32,6 -32,4 -32,2 -32,0 -31,8 -31,6 -31,4	- 27 28 28 28 28 29 29 29		- 82 83 83 84 85 86 86 87 88				192 193 195 196 197 199 200 200 203 203
-41,0 -40,8 -40,6 -40,4 -40,2 -40,0 -39,8 -39,6 -39,4 -39,2	- 19 20 20 20 20 20 21 21 21	— 39 39 40 40 41 41 42 42	- 58 59 59 60 61 62 63 63	77 78 79 80 80 81 82 83 84	- 97 98 99 100 101 103 104 105	-116 117 118 119 121 122 123 124 125	-135 137 138 139 141 142 144 145 146 148	-31,0 -30,8 -30,6 -30,4 -30,2 -30,0 -30,8 -30,6 -30,4 -30,4 -30,4	29 30 30 30 30 31 31 31	- 59 59 60 61 61 62 62 63	- 88 90 90 91 92 93 93 94	-118 118 119 120 121 122 123 124 124 125	-147 148 149 150 151 156 156 157	-176 178 179 180 182 183 184 185 187	-206 207 209 210 212 214 215 216 218 219
-39,0 -38,8 -38,6 -38,4 -38,2 -37,6 -37,6 -37,4 -37,2	- 21 22 22 22 22 22 23 23 23 23	- 43 43 44 44 45 45 46 46	- 64 65 65 66 66 67 68 69 69	- 85 86 87 88 88 89 90 91 92	- 107 108 109 110 112 113 114 115	-128 129 130 131 133 134 135 136 137	-149 151 152 153 155 156 158 159 160	-29,0 -28,8 -28,6 -28,4 -28,9 -27,8 -27,6 -27,4 -27,2	- 32 32 32 33 33 33 33 33 33	- 63 63 64 65 65 66 66 66	95 96 96 97 98 99 99	-126 127 128 128 130 131 132 132	—158 159 160 161 162 163 164 165 166	—189 190 191 193 194 195 199 200	-221 222 223 225 226 228 229 230 232 233
-37,0 -36,8 -36,6 -36,4 -36,2 -36,0 -35,8 -35,6 -35,4 -35,2	- 23 24 24 24 24 24 25 25 - 25	- 47 47 47 48 48 49 49 49 50 - 50	— 70 71 72 72 73 74 74 75 — 76	- 93 94 95 96 96 97 98 99	-117 118 119 120 121 122 123 124 125 -126	-140 141 142 143 145 146 147 148 150 -151	— 163 165 166 167 169 170 172 173 175 —176	-27,0 -26,8 -26,6 -26,4 -26,2 -26,0 -25,8 -25,6 -25,4 -25,2	- 34 34 34 35 35 35 35 - 35	- 68 68 69 69 777 - 778	-101 102 103 104 105 105 -106	-134 135 136 136 137 138 139 140 141 -142	168 169 170 171 172 173 174 175 176 177	-201 202 203 205 206 207 208 210 211	-235 236 237 239 240 242 243 245 246 -248

TABLE II.

 $\mathfrak{O}_0 = + \, \mathbf{2}^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

$$\begin{split} \beta_2 &= (\lambda - 1) \, (\alpha - \mathcal{I}_0)'. \\ \text{Pour } (\alpha - \mathcal{I}_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

20			(:	r — J.,)	'.			η,			((ı — ",	·.		
ou ô-Ø₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou 6—Ø₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-25',0 -24,8 -24,6 -24,4 -24,2 -24,0 -23,8 -23,6 -23,4 -23,2	- 36 36 36 36 36 37 37 37 37	71 72 72 72 73 73 74 74 74 75	107 108 109 109 110 110 111 112	— 142 143 144 145 146 146 147 148 149	-178 179 180 181 182 183 184 185 186	-214 215 216 217 218 220 221 222 223 224	-249 251 252 253 255 256 258 259 260 262	-15',0 -14,8 -14,6 -14,4 -14,2 -14,0 -13,8 -13,6 -13,4 -13,2	- 46 46 46 47 47 47 47 47 48	- 91 92 93 93 93 93 94 95 95	-137 138 138 139 140 141 141 141 142 143	- 183 184 184 185 186 187 188 189 190	-229 230 231 232 233 234 235 236 237 238	-274 275 277 278 279 280 281 283 284 285	-320 321 323 324 326 327 328 330 331 333
-23,0 -22,8 -22,6 -22,4 -22,2 -22,0 -21,8 -21,6 -21,4 -21,2	- 38 38 38 38 39 39 39	77 77 78 78 78	—113 114 115 116 116 117 118		—188 189 190 191 192 193 194 195 196	-226 227 228 229 230 232 233 234 235 236	-263 265 266 267 269 270 273 273 274 276	-13,0 -12,8 -12,6 -12,4 -12,2 -12,0 -11,8 -11,6 -11,4	— 48 48 48 49 49 49 49 50	95 96 96 97 97 97 98 98 99	- 143 144 144 145 146 146 147 147 148	—191 192 193 194 195 196 196 197	-239 240 241 242 243 244 245 246 247 248	-286 287 289 290 291 292 293 295 296 297	-334 335 337 338 340 341 342 344 345 347
-21,0 -20,8 -20,6 -20,4 -20,2 -20,0 -19,8 -19,6 -19,4 -19,2	- 40 40 40 40 41 41 41 41	80 80 80	—119 120 121 121 122 122 123 124	—158 159 160 161 162 163 164 165	-198 199 200 201 202 203 204 205 206 207	-238 239 240 241 242 244 245 246 247 248	-277 279 280 281 283 284 286 287 288	-11,0 -10,8 -10,6 -10,4 -10,2 -10,0 - 9,8 - 9,6 - 9,4 - 9,2		- 99 100 100 101 101 102 102 103 103		-199 200 201 201 202 203 204 205 206 206	-249 250 251 252 253 254 255 256 257 258	298 300 301 302 303 305 306 307 308 310	-348 349 351 353 354 356 357 358 360 361
-19,0 -18,8 -18,6 -18,4 -18,2 -17,8 -17,6 -17,4 -17,2	- 42 42 42 42 43 43 43 43	84 84 84	125 125 126 127 127 128 128 129 129	—166 167 168 169 170 171 172 173	-208 209 210 211 212 213 214 215 216 217	250 251 252 253 254 256 257 258 259 260	-291 293 294 295 297 298 300 301 302	- 9,0 - 8,8 - 8,6 - 8,4 - 8,2 - 7,8 - 7,6 - 7,1 - 7,2	52 52 52 53 53 53 53 53 53	-104 104 105 105 106 106 107	-155 156 157 157 158 158 159 160 160	-207 208 209 210 211 212 213 214 214	-259 260 261 262 263 264 265 266 267 268	-311 312 313 314 316 317 318 319 320 322	-363 364 365 367 368 370 371 372 374 375
-17,0 -16,8 -16,6 -16,4 -16,2 -16,0 -13,8 -13,6 -13,4 -13,2	- 44 44 44 44 45 45 45 45 45 45	- 87 88 88 88 89 89 90 90	131 131 132 133 133 134 135 136 136		-218 219 220 221 222 223 224 225 226 -227	-262 263 264 265 266 268 269 270 272 -273	-305 307 308 309 311 312 314 315 317 -318	$ \begin{array}{r} -7.0 \\ -6.8 \\ -6.6 \\ -6.4 \\ -6.2 \\ -6.0 \\ -5.8 \\ -5.6 \\ -5.4 \\ -5.2 \end{array} $	- 54 54 54 55 55 55 55 55 56	-108 108 108 109 109 110 110 111	-161 162 163 163 164 164 165 166 166	-215 216 217 218 218 218 219 220 221 222 -223	-269 270 271 272 273 274 275 276 277	-323 324 325 326 328 329 330 331 333	-377 378 379 381 382 384 385 387 388 -390

 $\mathfrak{O}_0 = +\ 2^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument $\tau_i.$

$$\begin{split} \beta_2 &= (\lambda - \iota) (\alpha - \iota k_0)'. \\ \text{Pour } (\alpha - \iota k_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

Ŋ			(:	z — d.,)	' .			7,			(:	x — eb.,)	·.		
ou 8(0 ₀ .	+ 10'.	+ 20'.	-+ 3 0′.	+ 40'.	+ 56'.	+ 60'.	+ 70'.	ο u δ-(ρ ₀ .	+ 10'.	+ 20'.	÷ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
- 5',0 - 4,8 - 4,6 - 4,4 - 4,2 - 3,8 - 3,8 - 3,4 - 3,2		-112 112 113 113 113 114 114 115 115	-168 168 169 170 170 171 171 172 173 173	-224 224 225 226 227 228 228 229 230 231	-280 281 282 283 287 285 286 287 288 289	- 335 337 338 339 340 341 343 344 346	-391 393 394 396 397 398 400 401 403 404	+ 5,6 + 5,6 + 5,6 + 5,6 + 6,2 + 6,4 + 6,8 + 6,8	— 66 66 67 67 67 67 68 68	-132 132 133 133 134 134 135 135 136	-198 199 199 200 201 202 202 203 203	-264 265 266 266 267 268 269 270 271	-330 331 332 333 334 335 336 337 338 339	-396 397 398 400 401 402 403 404 406 407	- 162 463 465 466 468 469 470 473 473
- 3,0 - 2,8 - 2,6 - 2,4 - 2,9 - 1,8 - 1,6 - 1,4 - 1,2	— 58 58 59 59 59 59 59 60 60	— 116 116 117 117 118 118 119 119	-174 174 175 176 176 177 177 178 179	-232 233 234 235 236 236 237 238 239	-290 291 292 293 294 295 296 297 298 299	-347 349 350 352 353 355 357 358	-405 408 410 411 412 413 415 417 418	+ 7,0 + 7,2 + 7,4 + 7,6 + 7,8 + 8,0 + 8,2 + 8,4 + 8,8	— 68 68 68 68 68 68 68 68 68 68 68 68 68	-136 136 137 137 138 138 138 139 139	-204 205 206 206 206 207 208 208 209	-272 273 274 274 275 276 276 277 278 278 278	- 344 344 344 344 346 346 346 349	-408 409 410 412 413 414 415 416 418 419	-476 477 479 480 482 483 184 486 487 489
$\begin{array}{c c} -1,0\\ -0,8\\ -0,6\\ -0,4\\ -0,2\\ +0,2\\ +0,4\\ +0,6\\ +0,8 \end{array}$	— 60 60 60 61 61 61 61 62 62	-120 120 121 121 121 122 122 123 123 123	-180 181 182 182 183 183 184 185	-240 240 241 242 243 244 244 245 246 247	-300 301 302 303 304 305 306 307 308 309	-359 361 362 363 364 365 367 368 369 370		+ 9,0 + 9,2 + 9,4 + 9,6 + 9,8 +10,0 +10,2 +10,4 +10,6 +10,8	- 70 70 71 71 71 72 72 72	—140 141 141 142 142 143 143 143	-210 211 211 212 213 213 214 215 216	-280 281 282 283 284 284 285 286 287 288	-350 351 352 353 354 356 357 358 359 360	-420 421 423 424 425 427 428 429 430 431	190 492 493 495 496 498 499 501 502 503
+ 1,0 + 1,2 + 1,4 + 1,6 + 1,8 + 2,0 + 2,4 + 2,6 + 2,8	- 62 62 63 63 63 63 63 63 64 64	-124 124 125 125 125 126 126 127 127	- 186 186 187 188 188 189 190 191	-248 249 250 251 252 253 254 255	-310 311 312 313 314 315 316 317 318 319	-371 373 374 375 376 377 380 381 382	-433 435 436 438 439 440 442 143 445 446	+11,0 +11,2 +11,4 +11,6 +11,8 +12,0 +12,2 +12,4 +12,6 +12,8	- 72 73 73 73 73 73 74 74 74	- 144 145 145 145 146 147 147 147	-216 217 218 218 219 219 220 221 221	-288 289 290 291 292 292 293 291 295 296	-361 362 363 364 365 366 367 368 369 370	433 434 435 436 437 439 440 441 442 443	-505 506 508 509 510 512 513 513 516 517
+ 3,0 + 3,2 + 3,4 + 3,6 + 4,0 + 4,2 + 4,4 + 4,6 + 4,8	65 65 65 65 65 66	129 129 130 130 131	— 192 193 194 194 195 195 196 197 — 197	- 256 256 257 258 259 260 260 261 262 263	-320 321 322 323 324 325 326 327 328 -329	—383 385 386 387 388 389 391 392 393 —395	452 453 454 456 457 459	+13,0 +13,2 +13,4 +13,6 +13,8 +14,0 +14,2 +14,4 +14,6 +14,8	75 75 76	149 149 150 150 151 151	-222 223 224 224 225 225 226 227 227 -228	300	-371 372 373 374 375 376 377 378 379 -380	-415 446 447 448 449 451 452 453 455 -456	-519 520 522 523 524 526 527 529 530 -532

TABLE II.

 $\Theta_0 = + 2^{\circ}$. Pour Θ_0 négatif : changer le signe de l'argument τ . $\beta_2 = (\lambda - 1) (\alpha - \lambda_0)'.$ Pour $(\alpha - \lambda_0)'$ négatif : changer le signe du nombre β_2 .

Les valeurs de 32 sont exprimées en dix-millièmes de minute d'arc.

r, ou			(;	z — " [,)	·'.			η			(;	z — ch,)	'.		
8 − (D ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'	+ 70'.	ou 8—Ø ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70′.
+15,0 -15,2 +13,4 +15,6 +15,8 -16,0 +16,2 +15,4 +16,6 +16,8	- 76 76 77 77 77 78 78 78		-229 230 230 231 232 232 233 234	-305 306 306 307 308 309 310 310 311	-381 382 383 384 385 386 387 388 389 390	457 458 460 461 462 463 464 466 467 468	-533 535 536 538 539 540 542 543 543 545	+25,0 +25,2 +25,4 +25,6 +25,8 +26,0 +26,2 +26,4 +26,6 +26,8	— 86 87 87 87 87 87 88 88 88 88	173 173 173 174 174 175 175 176 176	259 260 261 261 262 263 264 264	-345 346 347 348 349 350 351 352	-432 433 434 435 436 437 438 439 440 441	-518 519 520 521 523 524 525 526 527	604 606 607 608 610 611 613 614 615
+17,0 -17,2 -17,4 -17,6 +17,8 +18,0 +18,2 +18,4 -18,6 +18,8	- 88 79 99 99 99 98 88 88 88 88 88 88 88 88 88	-156 157 158 158 158 159 159 160 160	-235 235 236 236 237 238 238 239 239 240	-313 314 314 315 316 317 318 318 319 320	—391 392 393 394 395 396 397 398 399 400	- 469 470 473 473 475 476 478 478 478 480	-547 549 550 552 553 554 556 557 559 560	+27,0 +27,2 +27,4 +27,6 +27,8 +28,0 +28,2 +28,4 +28,6 +28,8	— 88 99 89 89 99 99 99 99 99 99 99 99 99	—177 177 178 178 179 179 180 180	-265 266 265 267 267 268 269 269 270	-353 354 355 356 357 358 359 360 360		-530 531 532 533 535 536 537 538 539	-618 620 621 622 624 625 627 628 629 631
+19.0 -19.2 -19.4 +19.6 +19.8 +20.0 +20.2 +20.4 +20.6 +20.8			-241 241 242 242 243 244 244 245 246	-321 322 322 323 324 325 326 326 327 328	— {01 402 403 404 405 406 407 408 409	- 181 182 484 485 485 487 488 490 491	-561 563 564 566 567 568 570 571 573 574	+29,0 +29,2 +29,4 +29,6 +29,8 +30,0 +30,2 +30,4 +30,6 +30,8	— 90 91 91 91 92 92 92 92		-271 272 272 273 274 274 275 275 276 277	-361 362 363 364 366 366 367 368 369	-452 453 454 456 456 457 458 459 460 461	-542 544 544 546 547 548 550 551 552 553	-634 634 635 637 638 640 641 643 644
+21,0 +21,2 -21,4 +21,6 +21,8 +22,0 +22,2 +22,4 +22,6 +22,8		-161 165 165 166 166 167 167 168	-247 248 248 249 250 250 251 251	—329 330 330 331 333 334 334 335 336	-411 412 413 416 416 417 418 419 420	- 493 494 496 498 498 500 503 504	-575 577 578 580 581 582 584 585 587	+31,0 +31,2 +31,4 -31,6 +31,8 +32,0 +32,2 +32,4 +32,6 +32,8	- 933 933 933 933 934 946 95	185 186 186 186 187 187 188 188	-277 278 278 279 280 280 281 281 282 283	-370 370 371 372 373 374 375 376 377	-462 463 464 465 466 467 468 469 470	-554 556 557 558 559 560 563 564 565	-647 648 650 651 652 654 655 657 658 659
+23,0 +23,2 +23,4 +23,6 +23,8 +24,0 +24,2 +24,4 +24,6 +24,8	81 85 85 85 85 86 86	168 169 169 170 170 171 171 172 172	-253 253 254 254 256 256 256 257 258 -258	-337 338 338 339 340 341 343 343 -344	- [21]	-505 506 508 509 510 511 513 514 515 -516	—589 591 592 594 595 596 598 598 599 601 —603	+33,0 +33,2 +33,4 +33,6 +34,0 +34,2 +34,4 +34,6 +34,8	- 955 955 955 966 966 -	-189 189 190 190 190 191 191 192 192 -193	-283 284 284 285 286 287 288 288 -289	-378 378 379 380 381 382 383 384 -385		-566 568 569 570 573 574 575 576 -578	-661 662 664 665 666 668 669 671 672 -674

Alger, Coord, rect.

 $(\mathfrak{O}_0 = + \, 2^{\circ}.$ Pour $(\mathfrak{O}_0 \text{ négatif}: \text{changer})$ le signe de l'argument η .

 $\beta_2 = (\lambda - 1)(\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

τ,			(:	a — : h,)	·'.			τ,			(:	z — - l.,)	·.		
ou ∂ (0₀.	÷ 10′.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou ∂(₽₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
+35,0 +35,2 -35,4 +35,6 +36,0 +36,2 +36,4 +36,6 +36,8		-193 193 194 194 195 195 196 196 196	-290 290 291 291 292 293 293 294 294	-386 387 388 388 389 390 391 392 392 393	483 484 485 486 487 488 489 490 491 492	-579 580 581 583 584 585 586 587 590	-676 677 678 680 681 683 684 685 687 688	+45,0 +45,2 +45,4 +45,6 +45,8 +46,0 +46,2 +46,4 +46,6 +46,8		-213 214 214 214 215 215 216 216 216 217	-320 321 322 322 323 323 323 324 325	- 126 427 428 429 430 430 431 432 433 434	533 534 535 536 537 538 539 540 541 542	- 640 641 643 643 644 646 647 648 650	716 748 749 750 753 753 755 756 757
37,0 37,2 37,4 37,8 38,0 38,4 38,6 38,8	99 99 99 99 100 100 100	-197 197 198 198 199 199 200 200	-296 296 297 297 298 299 300 300 301	-394 396 396 397 398 399 400 400	- 493 493 493 495 498 498 500 501 502	-591 592 593 595 596 597 598 599 601 602	-690 691 692 693 693 695 697 698 699 701	+47,0 +47,2 +47,4 +47,6 +47,8 +48,0 +48,2 +48,4 +48,6 +48,8	-109 109 109 109 110 110 110	-217 218 218 218 218 219 219 220 220 221	326 326 327 328 328 329 330 331 331	- 435 435 436 438 438 444 444 442	-5;3 5;4 5;5 5;6 5;7 5;8 5;9 5;5 5;1 5;2		-760 762 763 764 766 767 769 770 771 773
-39,0 -39,2 -39,4 -39,6 -39,8 +40,0 +40,2 +40,4 +40,6 +40,8		-201 201 202 202 203 203 203 204 204 205	-302 303 303 304 305 306 306 306 307			603 604 605 607 608 609 610 611 613	-704 703 706 708 709 711 712 713 715	+49,0 +49,2 -49,4 +49,6 +49,8 +50,0 +50,2 +50,4 +30,6 +50,8	-111 111 111 111 111 112 112 112 113		-332 332 333 334 334 335 336 337 338		-553 556 555 556 557 560 561 562 563	-664 665 668 669 670 671 673 674 675	776 776 777 779 780 782 783 783 786 786
+41,0 +41,4 +41,4 +41,6 +41,8 +42,0 +42,2 +42,4 +42,6 +42,8	-103 103 103 103 104 104 104 104	-205 206 206 206 207 207 207 208 208 209	-308 308 309 309 310 311 312 312 313	-410 411 412 412 413 414 415 416 416 417	-513 514 515 516 517 518 519 520 521 522	-615 616 617 619 620 621 622 623 625 626	-718 719 720 722 723 725 726 727 729 730	+51,0 +51,2 +51,4 +51,6 +51,8 +52,0 +52,2 +52,4 +52,6 +32,8		-225 226 226 227 227 227 228 228 228 229	-338 339 339 340 341 341 342 342 343 344	-451 452 453 453 454 455 456 456 457 458	-564 565 566 567 568 569 570 571 572	-676 677 679 680 681 682 683 685 686	789 790 792 793 795 796 797 799 800 802
+43,0 +43,2 +43,4 +43,6 +43,8 +44,0 +44,2 +44,6 +44,8	-105 105 105 105 105 106 106 106 106	-209 209 210 210 211 211 211 212 212 -213	-314 314 315 315 316 317 318 318 -319	118 419 420 420 421 422 423 424 425 126	-523 524 525 526 527 528 529 530 531 -532	-627 628 629 631 632 633 634 636 637 -638	732 733 734 736 737 739 740 742 743 743	+53,0 +53,2 +53,4 +53,6 +53,8 +54,0 +54,2 +54,4 +54,6 +54,8	-115 115 115 116 116 116 116 116 116	-229 230 230 231 231 231 232 232 233 -233	-344 345 345 346 347 347 348 348 349 -350	-459 460 461 462 463 464 465 465 -466	-574 575 576 577 578 579 580 581 582 -583	-688 689 691 692 693 694 696 697 698 -699	-803 804 806 807 809 810 811 813 815 -816

 $(\mathfrak{O}_0 = +\ 2^\circ.$ Pour $(\mathfrak{O}_0$ négatif : changer le signe de l'argument $\eta.$

$$\begin{split} \beta_2 &= (\lambda - I)(\alpha - \mathcal{A}_0)'. \\ \text{Pour } (\alpha - \mathcal{A}_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

τ,			(4	z — «•,)	' .			η			(:	z •.t. ₀)	<i>'</i> .		
ou 3(1) ₀ .	÷ 10′.	+ 20'.	+ 30′.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou 6—(0 ₀	+ 10'.	+ 20'.	-+- 30'.	+ 40'.	+ 50'.	+ 60'.	-i- 70′.
-55,0	——————————————————————————————————————			-46 ₇	——————————————————————————————————————	——————————————————————————————————————	——	+61′,0	——— —123	246		-491			
+55,2 +55,4	117	234 234	35 t 352	468 469	585 586	702 703	819 820	+61,2 +61,4	123 123	2.j6 2.j6		492 493	615 616	738 739 740	861
$+55,6 \\ -55,8 \\ +56,0$	117 118 118	235 235 236	352 353 353	470 470	587 588 589	704 706	822 823 825	+61,6 +61,8 +62,0	123 124 124	247 217	370 371 371	494 494	617 618 619	742	864 865 867
+36,2 +36,4	118	236 236	354 355	471 472 473	590 591	707 708 709	826 827	$^{+62,2}_{+62,4}$	124 124 124	248 248 248	372 373	495 496 497	620 621	743 741 745	868 869
$\begin{array}{c} +36,6 \\ +36,8 \end{array}$	119	237 237	355 356	474 474	592 593	710 712	829 830	$^{+62,6}_{+62,8}$	124 125	249 249	373 374	498 498	622 623	746 718	871 872
$\begin{vmatrix} +37,0 \\ +37,2 \end{vmatrix}$	110	-238 238	-356 357	-475 476	—594 595	-713 714	-832 833	$+63,0\\+63,2$	-125 125	-250 250	-374 375	-499 500	-624 625	-749 750	-874 875
57,4 +-57,6 57,8	119 119	238 239 239	358 358 359	477 478 478	596 597 598	715 716 718	83 í 836 837	$\begin{vmatrix} +63,4\\ +63,6\\ +63,8 \end{vmatrix}$	125 125 126	250 251 251	376 376 377	501 502 502	626 627 628	751 752	876 878 879
$+57.8 \\ +58.0 \\ +58.2$	120	240 240 240	359 360	479 480	599 600	719 720	839 840	$+61,0 \\ +64,2$	126 126	252 252	377 378	5o3 5o4	629 630	751 755 756	881 882
$\left {+58,4} \atop {+58,6} \atop {+58,8} \right $		2 (0 2 (1 2 (1	361 361 362	481 482 482	601 602 603	721 722 724	8.41 843 844	$+64,4 \\ +64,6 \\ +64,8$	126	252 253 253	378 379 380	505 506 50 7	631 632 633	757 759 760	884 885 887
+59,0	-121	-2.12	—362	—483	6o4	-725 -725 726	, ,	+63,0				′			-888
+59,2 +59,4 +59,6	121	2 (2 2 (3 2 (3	363 364 364	484 485 486	605 606 607	726 727 728	847 848 850		!	İ	l				
-59.8 -60.0	122 122	243 244	365 365	486 487	608 609	730 731	851 853								
+60,2 +60,4 +60,6	122	244 244 245	367	488 489 490	610 611	732 733 734	854 855 857								
+60,8		-245			—613	-736	—858								

 $\mathfrak{O}_0 = +$ 39. Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η . $\beta_2 = (\lambda - 1) (\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

ν,			(:	x — - l.,)	' .	•		т,			(:	r — "l.")	·.		
ou 3 — Ø₀.	-+ 10'.	+ 20'.	-i- 30'.	+ 40'.	÷ 50°.	+ 60'.	+ 70'.	ου δ-Φ.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	→ 50 ′.	+ 60'.	+ 70'.
-63',0 -64,8 -64,6 -64,4 -64,2 -63,8 -63,6 -63,4 -53,2	38 39 39 39 40 40 40	80	-114 115 116 117 118 119 120 121 122	-152 154 155 156 157 158 160 161 163	-191 192 194 195 197 198 200 201 203 204	-229 230 232 234 236 238 239 241 243 245	-267 269 271 273 275 277 279 281 284 286	-55,0 -54,8 -34,6 -34,4 -54,2 -54,0 -53,8 -53,6 -53,4 -53,2	53 54 54 54 55 55 55 55 56	—107 108 108 109 110 110 111	160 161 162 163 164 166 165 166 167	-213 214 216 217 218 219 220 222 223	-267 268 270 271 273 274 276 277 279 280	320 322 323 325 327 329 331 332 334 336	-373 375 377 379 382 384 386 388 390 392
-63,0 -62,8 -62,6 -62,4 -62,2 -62,0 -61,8 -61,6 -61,4 -51,2	41 42 42 42 43 43 43 43	84 85 85 86 86	130 131		206 207 209 210 212 213 213 216 218 219	-247 248 250 252 254 256 257 259 261 263	288 290 292 294 296 298 300 302 305 307	-53,0 -52,8 -52,6 -52,4 -52,2 -51,8 -51,6 -51,4 -51,2			169 170 171 173 173 174 175 176	-225 226 228 229 230 231 232 234 235 236	282 283 285 286 288 289 291 292 294	-338 340 341 343 347 347 349 350 352 354	-394 396 398 400 403 405 407 409 411
-61,0 -60,8 -50,6 -60,4 -60,2 -60,0 -39,8 -39,6 -59,4 -39,2	44 45 45 45 46 46 46 46	90 90	134 135 136 137 138		-221 222 224 225 227 229 230 232 233 235	-265 266 268 270 272 274 276 278 280 281	-309 311 313 315 317 320 322 324 326 328	-51,0 -50,8 -50,6 -50,6 -50,2 -50,0 -49,8 -49,6 -49,4 -49,2	59 60 60 60 61 61 61 62 62			-23- 23-8 24-1 24-1 24-1 24-1 24-1 24-8 24-8	-297 298 300 301 303 305 306 308 309	-356 358 359 361 363 365 367 369 371 373	-415 417 419 421 424 426 428 431 433 435
-59,0 -38,8 -38,6 -58,4 -38,2 -38,0 -57,8 -57,6 -37,4 -37,2	48 48 48 48 49 49 49	99			-236 238 239 241 242 243 243 248 250	-283 285 287 289 290 292 294 296 298 299	-330 333 335 337 339 341 343 345 347 349	-19,0 -48,8 -48,6 -48,4 -48,2 -48,0 -47,8 -47,6 -47,4 -47,2	- 62 63 63 63 64 64 65 65	-125 125 126 127 127 128 128 129 130	- 187 188 189 190 191 193 194 194 195	-250 251 252 253 254 256 257 258 259 260	-312 314 315 317 318 320 321 323 324 326	-374 376 378 380 382 383 385 387 389 391	-437 439 441 443 445 447 449 452 454 454
-57,0 -56,8 -56,6 -56,4 -56,2 -56,0 -53,8 -53,6 -33,4 -33,2	51 51 51 51 52 52 52 53	—100 101 102 103 103 104 105 —106		-201 202 203 204 206 207 208 209 210	-251 253 254 256 257 259 260 262 263 -265	301 303 305 307 308 310 314 316 318	-351 354 356 358 360 362 361 366 368 -370	-47,0 -46,8 -46,6 -46,4 -46,2 -46,0 -43,8 -43,6 -43,4 -45,2	- 65 66 66 67 67 68 68 - 68	-131 131 132 133 134 134 135 136 -136	-196 197 198 199 200 201 202 203 203 -205	-262 263 264 265 266 268 269 270 271 -272	-327 329 330 332 333 335 336 338 339 -341	-392 394 396 398 400 401 403 407 -409	458 460 462 464 466 468 470 473 475 477

TABLE II.

 $(D_0 = + 3^{\circ}.$ Pour $(D_0$ négatif : changer le signe de l'argument $\eta.$ $\beta_2 = (\lambda - 1) (\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

τ,			(3	ւ ^ե,	'.			, v			(:	z ~l _{*o})	·'.		
s —(P _u .	- +- 10′.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou S—(D ₀ .	+ 10'.	+ 20'.	+ 30'.	-+- 40' .	+ 50'.	+ 60'.	÷ 70′.
-45',0 -44,8 -44,6 -44,4 -44,2 -44,0 -43,8 -63,6 -43,4 -43,2	— 69 69 69 70 70 71 71	139 139 140	206 206 207 208 209 210 211 212 213 214	-271 275 276 278 279 280 281 282 284 285	-343 344 346 347 349 350 352 353 355	-411 413 415 416 418 420 422 424 425		-33,0 -34,8 -34,6 -34,4 -34,2 -34,0 -33,8 -33,6 -33,4 -33,2	- 84 84 84 85 85 85 86 86		-251 252 253 254 255 256 257 257 258 259	- 335 336 337 338 340 341 342 343 344 346	-419 420 422 423 425 426 428 429 431 432	-502 504 506 508 509 511 513 515 517	-586 588 590 592 594 596 599 601 603
-43,0 -42,8 -42,6 -12,4 -12,2 -12,0 -41,8 -41,6 -41,4 -41,2	72 73 73 73 73 74	144 145 146 146 147	-215 216 217 218 219 220 221 222 223	-286 287 288 290 291 292 293 291 296 297	-358 359 361 362 364 365 367 368 370 371	-429 431 433 434 436 438 440 443 445	-501 503 505 507 509 511 513 515 517	-33,0 -32,8 -32,6 -32,4 -32,2 -32,0 -31,8 -31,6 -31,4 -31,4	- 87 87 87 88 88 88 89 89 90		-260 261 262 263 264 265 266 267 268 269	-347 348 350 351 352 353 354 356 357 358	-131 436 437 439 440 442 443 445 146 448	-521 523 524 526 528 530 532 533 533 535	
-41,0 -40,8 -40,6 -40,4 -40,2 -40,0 -39,8 -39,6 -39,4 -39,2	76 76	150 150 151 151 152		-298 299 300 302 303 304 306 307 308 309	-373 374 376 377 379 381 382 384 385 387	-447 449 451 452 454 457 458 460 462	-522 524 526 528 530 533 535 537 539 541	-31,0 -30,8 -30,6 -30,4 -30,2 -30,0 -29,8 -29,6 -29,4 -29,2	— 90 90 90 91 91 91 92 92 93	—180 181 181 182 183 183 184 185	-269 270 270 270 272 273 274 275 276 2778	-359 360 362 363 364 366 367 368 369 370			
-39,0 -38,8 -38,6 -38,4 -38,2 -38,0 -37,8 -37,6 -37,4 -37,2	— 78 78 78 79 79 79 79 80 80	160	-233 234 235 236 236 237 238 239 240 241	-310 312 313 314 315 316 318 319 320 321	-388 390 391 393 394 396 397 399 400 402	- 466 467 469 471 473 475 476 478 480 482	-543 545 547 550 552 554 556 558 560 562	-29,0 -28,8 -28,6 -28,4 -28,2 -28,0 -27,6 -27,6 -27,4 -27,2	93 93 94 94 95 95 95 96		-279 280 281 281 282 283 284 285 286 287	-372 373 374 375 376 378 379 380 381 382		-557 559 561 563 565 566 568 570 572 574	
-37,0 -36,8 -36,6 -36,4 -36,2 -36,0 -33,8 -33,6 -33,4 -35,2	81 81 82 82 82 82 83	164 164 165 165 166	-242 243 244 245 246 247 248 249 -250	-322 321 325 326 327 328 330 331 332 -333	-403 405 406 408 409 411 412 414 415 -417	-484 485 487 489 491 493 494 496 498 -500	—564 566 568 571 573 575 577 581 —583	-27,0 -26,8 -26,6 -26,4 -26,2 -26,0 -23,8 -23,6 -23,4 -23,4	96 96 97 97 97 98 98 98 99		-288 289 290 290 291 292 293 294 295 -296	-384 385 386 387 388 390 391 392 393 -394	-480 481 483 484 486 487 489 490 492 -493		-671 673 676 678 680 682 684 686 688 -690

TABLE II.

 $\mathfrak{O}_0 = +$ 3°. Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .
$$\begin{split} \beta_2 &= (\lambda - 1) \left(\alpha - \epsilon k_0\right)'. \\ \text{Pour} \left(\alpha - \epsilon k_0\right)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

η,	_		(:	z l _•)	ı'.			7,			(:	z l.,))′.		
ο u δΦ•.	+ 10'.	⊹- 20′.	- 30′ .	+ 10'.	+ 50'.	+ 60'.	+ 70'.	ou 8(Q ₀	+ 10'.	+ 20'.	÷ 30′.	+ 40'.	- ₇ 50'.	69 ′.	70'.
-25,0 -24,8 -24,6 -24,4 -24,2 -24,0 -23,8 -23,4 -23,4	- 99 99 100 100 101 101 101 102		-297 298 299 300 301 302 303 303 304 305	- 396 397 398 400 401 402 403 404 106 407		-591 596 598 599 601 603 605 607 608 610	-693 695 697 699 701 704 708 710	-15,0 -14,8 -14,6 -14,4 -14,2 -13,8 -13,6 -13,4 -13,2		-228 229 230 230 231 231 232 233 233 233 234	-343 344 345 346 347 348 349 351		571 573 574 576 577 579 580 582 583 585	—685 687 689 691 692 696 698 700	-799 802 804 806 808 810 812 814 816
-23,0 -22,8 -22,6 -22,4 -22,2 -21,8 -21,6 -21,4 -21,4	102 103 103 103 104 104 104 106	-20 (20) 20) 20 (20 (20 7 20 8 20 8 20 9 20 9	306 307 308 309 310 311 311 312 313		-510 512 513 515 516 518 519 521 522 524	-612 614 616 617 619 621 623 625 626	-714 716 718 720 722 725 727 729 731 733	-13,0 -12,8 -12,6 -12,4 -12,2 -12,0 -11,8 -11,6 -11,4 -11,2		-231 235 236 236 237 237 238 239 239 240	-352 353 353 354 355 356 358 358 360	-469 477-2455 477-2455 477-80 477-80 477-80	— 586 588 589 591 592 594 595 597 598 600	-703 705 707 709 710 712 716 718 719	
-21,0 -20,8 -20,6 -20,4 -20,2 -20,0 -19,8 -19,6 -19,4 -19,2	—105 105 106 106 107 107 107 108	-210 211 211 212 212 213 214 214 215 216	-315 316 317 318 319 320 321 322 323 323		- 525 528 530 531 533 535 536 538 539	-630 634 635 635 640 641 643 645	-735 737 739 741 743 746 748 750 753	-11,0 -10,8 -10,6 -10,4 -10,2 -10,0 - 9,8 - 9,6 - 9,4 - 9,2	-120 121 121 121 121 122 122 122 123 123	-240 241 242 242 243 244 241 245 246	-361 362 363 363 364 365 366 367 368 369	-481 482 483 484 486 487 488 490 491	-601 603 604 606 607 609 611 612 614	721 723 725 727 728 731 733 734 736 738	-841 844 846 848 850 853 855 857 859
-19,0 -18,8 -18,6 -18,4 -18,2 -18,0 -17,8 -17,6 -17,4 -17,2	—108 109 109 109 110 110 111	-216 217 217 218 219 219 220 221 222	-324 325 326 327 328 329 330 331 332 332	-432 434 435 436 437 438 440 441 442 443	-541 544 545 547 548 550 551 553		-757 759 761 763 765 769 771 774 776	- 9,0 - 8,8 - 8,4 - 8,2 - 7,8 - 7,6 - 7,4 - 7,2	-123 124 124 124 125 125 125 125 126 126	-247 247 248 248 249 250 250 251 251 252	-370 371 372 373 374 376 376 378	-493 494 496 497 498 499 500 503 504	-617 618 620 621 623 624 626 627 629	740 742 743 745 747 751 752 754 756	
-17,0 -16,8 -16,6 -16,4 -16,2 -16,0 -13,8 -13,6 -13,4 -15,2	-111 111 112 112 113 113 113 114 -114	226	-333 334 335 336 337 338 339 340 341 -341	454	-556 557 559 569 562 563 565 566 568 -569	672 674 676 677 679 681	-778 780 782 784 786 788 790 792 797	7,0 -6,8 -6,4 -6,2 -6,9 -5,8 -5,4 -5,4	126 127 127 127 128 128 128 128 129 129	-253 253 254 254 255 256 256 257 257 -258	-379 380 381 382 383 383 384 385 386 -387	-505 506 508 509 510 511 512 514 515 -516	-632 633 635 636 638 639 641 642 644	772	

 (O₀ = + 3°.
 Pour (O₀ négatif : changer le signe de l'argument η. $eta_2 = (\lambda - 1)(\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

ν,		(a , L,)'•		ן א			(:	r ~l ₁₀)	·. ·		
ou 8- (D ₀ .	+ 10'. + 20'.	+ 30'. + 40'.	+ 50'+ 60'.	+ 70'.	ou ŝ—(₽₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	50 ′.	GO'.	70' .
- 5',0 - 4,8 - 4,6 - 4,4 - 4,2 - 4,0 - 3,8 - 3,6 - 3,4 - 3,2	131 261 131 262 131 262 132 263	389 519 390 520 391 521 392 522 393 524 394 525 395 526	649 778 650 780 652 789 653 784 655 785 656 785 656 785 659 791	908 910 912 914 916 918 921 923	+ 5,0 + 5,2 + 5,4 + 5,6 + 5,8 + 6,0 + 6,2 + 6,6 + 6,8	- 145 145 146 146 146 147 147 147	- 289 290 290 291 292 293 294 294 295	- 434 435 436 437 439 449 449 441 442	— 578 580 581 582 583 585 586 587 588 590	- 723 725 726 728 729 731 733 734 736 737	- 868 869 871 873 877 879 881 883 884	-1012 1014 1016 1019 1021 1023 1026 1028 1030
- 3,0 - 2,8 - 2,6 - 2,4 - 2,2 - 2,0 - 1,8 - 1,4 - 1,2	133 265 133 266 133 267 134 267 134 268 134 268 135 269 135 270	398 531 399 532 400 533 401 534 402 536 403 537 404 538 404 538	664 796 665 798 6667 800 668 802 671 805 671 805 673 807 674 809	929 931 933 935 935 937 939 942 944	+ 7,0 + 7,2 + 7,4 + 7,6 + 7,8 + 8,0 + 8,2 + 8,6 + 8,8	— 148 148 148 149 149 150 150 150	— 295 296 297 297 298 298 299 300 300 301	- 4445 4445 4445 4445 4450 4450	— 591 592 593 594 596 597 598 599 600	- 739 7443 7446 7446 745 757 757	888 890 892 893 895 897 899	-1034 1036 1038 1040 1042 1044 1047 1049 1051
$ \begin{vmatrix} -1,0\\ -0.8\\ -0.6\\ -0.4\\ -0.2\\ -0.2\\ +0.2\\ +0.6\\ +0.8 \end{vmatrix} $	136 272	409 546 410 548 411 548 412 549 413 550	679 814 680 816 682 818 683 820 685 822 685 826 687 824 6688 826	950 952 954 956 959 961 963	+ 9,0 + 9,2 + 9,4 + 9,6 + 9,8 +10,0 +10,2 +10,4 +10,6 +10,8	- 151 151 151 152 152 153 153 153 154	— 301 302 303 303 304 305 306 306 306 307	— 453 455 456 457 459 460 461	— 603 604 605 606 608 609 610 612 613	- 754 755 757 758 760 763 766 768	904 906 908 910 911 914 916 917 919	-1055 1057 1059 1061 1063 1068 1070 1072 1075
+ 1,0 + 1,2 + 1,4 + 1,6 + 1,8 + 2,0 + 2,2 + 2,4 + 2,6 + 2,8	- 139 - 277 139 278 139 278 140 279 140 281 140 281 141 281 141 282	- 416 - 554 416 553 417 556 418 558 419 559 420 560 421 561 422 562 423 564 424 565	694 833 6 696 835 6 697 836 6 699 838 700 840 702 842 703 844	972 974 976 978 978 980 982 984 986	+11,0 +11,2 +11,4 +11,6 +11,8 +12,0 +12,2 +12,4 +12,6 +12,8	156 156 156 155 155 154 154 154	- 308 308 309 309 310 311 312 312 313	— 461 462 463 464 465 466 467 468 469	- 615 616 618 619 620 621 623 624 625	- 769 771 772 773 778 780 781 783 783	- 923 925 926 928 930 932 934 935 937 939	1087
+ 3,0 + 3,2 + 3,4 + 3,6 + 4,0 + 4,2 + 4,4 + 4,6 + 4,8	142 284 142 284 142 285 143 285 143 286 143 287	425 567 426 568 427 570 428 571 429 577 430 573 431 574 432 576	709 851 711 853 712 854 714 856 715 856 717 866 718 862 720 863	993 995 997 999 1001 1003 1005 1007	+13,0 +13,2 +13,4 +13,6 +13,8 +14,0 +14,2 +14,4 +14,6 +14,8	— 157 157 158 158 158 159 159 159 — 160	- 314 314 315 316 317 318 318 318 - 319	- 4773 4773 4773 4775 4778 4778 -	- 627 628 630 631 632 633 631 636 637 - 638	- 7846 786 787 789 790 793 793 796 - 798	941 943 944 946 948 950 953 957	-1098 1100 1104 1106 1108 1110 1112 1114 -1117

(D₀ = + 3°.

Pour (D₀ négatif : changer
le signe de l'argument γ. °

$$\begin{split} \beta_2 &= (\lambda - 1) \left(\alpha - \mathcal{A}_0 \right)'. \\ \text{Pour } \left(\alpha - \mathcal{A}_0 \right)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

, ,		•	(z - · l .)	·.			7,			(:	z — .l.,)	·'.		
							ļ.								
∂- (₽₀.	+ 10'.	+ 20'.	30'.	-+ 40'·	-÷- 50'.	-i- 60'.	70'.	ou ∂ - (D ₆ .	10'.	20'.	30 ′.	+ 40'.	+ 50'.	÷ 66′.	70'.
13′,0 13′,2	— 16a 16o	- 3: o	— .18o	- 6 jo	— 800	- 959	-1119	-25,0 -25,2	- 175 175	- 350 351			- 876 877	-1051 1052	-1226 -1226
+15.4	161	321	481 482	641 642	801 803	961 963	1121	+25,2	176	351	527	703	879	1054	1230
+15,6	161	322	482	643	804	965	1126	-+25,6	176	352	528	703 705	889 889	1056 1058	1232 1234
+13,8 +16,0	161 161	322 323	483 484	644 646	806 807	967 968	1128	+25,8 +26,0	176 177	353 353	529 530	705 706	883	1060	1236
+16,2	162	323	485	617	89	970	.1132	-26,2	177	354	531	708	885	1061	1238
$+16,4 \\ +16,6$	162	32 j 32 j	486 487	648	810	972	1134 1136	$^{1} + 26,4$ $+ 26,6$	177 178	354 355	532 533	709 710	886 888	1063 1065	1240 1243
+16,8	163	325	488	6 (9 6 50	813 813	974 976		+26,8	178	356	533	711	889	1067	1245
-17,0	- 163	— 3 26	489	- 65 ₂	– 815	- 977	1140	27 ,0		- 3 56	- 534	- 712	- 891	— 1069	-1217
-17,2 $-17,4$	163 164	326 33-	490	653 654	816 818	979 981	11 (2 11 (5	+27,2 27,4	178 179	357 357	535 536	714 715	892 894	1070	1249
-17,6	164	328 347	(91 491	655	819	983	11(7	+27,6	179	358	537	716	895	10-4	1253
17,8	164	328	.192	656	821	985	1149	+27,8	179	359	538	213	897	1076	1255
-18,0 -18,2	164 165	329 329	493 494	658 659	822 824	986 988	1151	$^{+28,0}_{+28,2}$	180 180	359 36o	539 540	718 720	898 900	1078	12)7
18,4	165	330	494	66o	825	990	1155	+28.1	180	360	511	721	901	1081	1261
18,6	165	331	496	661	827	992	1157	$^{+}$ $+-28,6$	181	361	542	722	903	1083	1264 1266
-18,8	166	331	497	662	828	994	1159	+28,8	181	362	542	7 23	904		
$^{-19,0}_{+19,2}$	166 166	332 332	498 -499	664 665	- 83o 831	- 995	-1161 1163	29,0 29,2	181 181	- 36 ₂ 363	- 543 544	724 726	906 907	—1087 1088	t268 1270
19,4	167	333	499 200	666	833	997 999	1166	+29,4	182	363	545	727	909	1090	1272
+19,6	167	334	500	667	834	1001	1168	+29,6	182	361	546	728	910	1099	1274
-19,8 +20,0	167 168	33 í 33 í	501 502	668 670	836 838	1003	1170	$^{+29,8}$ +30,0	182 183	365 365	547 548	· 729 731	912 914	109 í 1096	1276
+20,2	168	336	503	671	839	1007	1175	+30,0	183	366	5.49	732 733	915	1098	1281
20,4	168	336	50 (672	84 ï	1009	1177	-30,4	183	367	550	733	917	1100	1283
-20,6 $-20,8$	169 168	337 337	505 506	674 675	842 844	1010	1179	+30,6 +30,8	18í 18í	367 368	551 552	734 736	918 920	1102 1103	1287
21,0	— 16 9	338	– 507	- 676	- 845	-1014	-1183	+31,0	- 18í	- 368	— 553	- 737	- 921	-1105	-1289
21.2	169	339	508	677	847	1016	1185	-+31,2	185	369	554	738	923	1107	1292
$^{+21,4}_{-21,6}$	170	339 340	509 510	678 680	8.48	1018	1187	+31,4 +31,6	185 185	370 370	554 555	739 740	92.í 926	1111	1294 1296
-21.8	170	3 io	511	681	850 851	1019	1109	+31,8	185	371	556	742	927	1112	1298
-22.0	171	341	512	682	853	1023	1194	+32.0	186	371	557	743	929	1114	1300
-22,2	171	342 342	512 513	683	854 856	1025	1196	$+32,2 \\ -32,4$	186 186	372 373	558 559	744 745	93a 93a	1116	1302 1304
-22,6	171	3,13	514	684 686	857	1027 1028	1198	+32,6	187	373	560	746	933	1120	1306
+22,8	172	3.43	515	687	859	1030	1203	+32,8	187	374	561	748	9 35	1121	1308
+23,0		- 314	- 516		— 86o	-1032	-1204	+33,0	- 187	$-\frac{374}{3-5}$	562 563	- 749	— 936 938	-1123 1125	-1310 1313
+23,2 -23,4	172 173	345 345	517 518	689 690	862 863	1034 1036	1208	$^{ }+33,2$ $^{ }+33,4$	188	375 376	563	750 751	939 939	1127	1315
-23,6	173	3,16	519	692	865	1037	1210	+33,6		376	564	752	941	1129	1317
+23,8	173	346	520	693	866	1039		+33,8	188	377	565	754 755	912	1130 1132	1319
$-24,0 \\ +24,2$	17í 17á	347 348	521 521	694 695	868 869	1041 1043	1215	$+34,0 \\ +34,2$	189 189	377 378	566 567	756	911 945	1134	1323
24,4	174	3 (8	522	696	871	1015		-34,4	189	379	568	757	917	1136	1325
+24.6	174	349	523	698	872	1046	1221	+31.6	190	379	569	758	9 <u>í</u> 8	1138	1327
+21,8	- 171	- 349	524	— 6 99	— 87í	— 10 j8	—1223 	+34,8	— 190 	— 38 0	— 57o	— 75o	— gōo	— 11 fo	- 1329

TABLE II.

 $\mathfrak{O}_0 = + 3^{\circ}$.

Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $eta_2 = (\lambda - 1)(\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre eta_2 .

Les valeurs de β₂ sont exprimées en dix-millièmes de minute d'arc.

η,			(:	z — "L.)) ′			η ou			(a — A,))'. 		
ου 6—ω ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	δ	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+70',
+35,0 +35,2 +35,4	— 190 191	- 381 381	- 571 572	- 761 762	- 952 953	-1142 1144	-133 ₂	$+45',0 \\ +45.2$	- 206 206	- 411 412	- 617 618	- 822 824	1028 1030	—1234 1235	
$+35,4 \\ +35,6 \\ +35,8$	191	38 ₂ 38 ₂	573 574	764 765	955 956	1145 1147	1336 1338	+45,2 +45,4 +45,6	206 207	412 413	619 620		1031	1237	
+36.0	192 192 192	383 384 384		766 767 768	958 959 961	1149 1151 1153	1341 1 3 43 1345	+45,8 +46,0 +46,2	207 207 207	414 414 415	620 621 622	827 828 830	1034 1036 1037	1241 1243 1244	1450
$+36,2 \\ +36,4 \\ +36,6$	192 193	385 385 38 6	577 578	770 771	962 964	1154 1156	1347 1349 1351	$+46,4 \\ +46,6 \\ +46,8$	208 208 208	415 416 417	623 624 625	831	1039 1040 1042		1454 1456
+36,8 +37,0	— 193	— 38 7	579 — 580	772 - 773	965 — 967	1158 1160	-1353	+47.0	— 2 09	- 417	- 626	- 834	—1043	-1252	—146 0
$\begin{vmatrix} +37,2\\ +37,4\\ +37,6 \end{vmatrix}$	194 194 194	387 388 388	581 582 583	774 776	968 970	1162 1163 11 6 5	1355 1357 1359	+47,2 $+47,4$ $+47,6$	209 209 210	418 418 419	627 628 629	836 83 ₇ 838	1045 1046 1048		1462 1464 1467
+37,8 +38,0	195 195	389 390	584 584	777 778 779 780	971 973 974	1167 1169	1362 1364	$ +47,8 \\ +48,0 $	210 210	420 420	629 630	839 840	1049 1051	1259 1261	1469
$ \begin{array}{r} +38,2 \\ +38,4 \\ +38,6 \end{array} $	195 195 196	390 391 391	585 586 587	780 782 783	976 977 979	1171 1172 1174	1366 1368 1370	+48,2 +48,4 +48,6	210 211 211	421 421 422	631 632 633	842 843 844	1052 1054 1055	1262 1264 1266	
+38,8	196	392	588	784	980	1176	1372	+48,8	211	422 423	634 635	845	1057 1058	1268 1270	1479 —1481
$\begin{vmatrix} +39,0\\ +39,2\\ +39,4 \end{vmatrix}$	— 196 197 197	— 393 393 394	— 589 590 5 91	- 785 786 788	- 982 983 985	1178 1180 1181	-1374 1376 1378	+49,0 $+49,2$ $+49,4$	- 212 212 212	424 424	636 63 ₇	848 849	1061	1271 1273	1483 1485
+39,6 +39,8	197 198 198	394 395 396	592 593	789 790	986 988	1183 1185 1187	1380 1383 1385	+49,6 +49,8 +50,0	213 213 213	425 426 426	638 638 640	850 851 853	1063 1064 1066	1275 1277 1279	1488 1490 1492
+40,0 +40,2 +40,4	198 199	396 397	594 595 596	792 793 794	990 991 993	1191	1387 1390	+50,2 +50,4	214 214	427 428	641 641	854 855	1068 1069	1281 1283	1495 1497
$+40,6 \\ +40,8$	199 1 9 9	398 398	596 597	795 796	994 99 6	1193 1195	1392 1394	$+50,6 \\ +50,8$	214 214	428 429	642 643	856 85 8	1071 1072	1285 1286	1499 1501
$+41,0 \\ +11,2$	— 200 200	- 399 400	- 598 599	— 798 799	- 998 999	-1197 1199	-1397 1399	+51,0 +51,2	- 215 215 215	— 429 430 431	- 644 645 646	- 859 860 861	— 1074 1075 1077	1288 1290 1292	-1503 1505 1507
$ \begin{array}{r} +41,4 \\ +41,6 \\ +41,8 \end{array} $	200 200 201	400 401 401	600 601 602	800 801 803	1001 1002 1004	1201 1202 1204	1401 1403 1405	+51,4 +51,6 +51,8	216 216	431 432	647 648	862 864	1078 1080	1294 1295	1509 1511
+42,0 +42,2 +42,4	201 201 202	402 403 403	6o3 6o4 6o5	804 805 806	1005 1007 1008	1206 1208 1210	1407 1409 1411	+52,0 +52,2 +52,4	216 217 217	432 433 434	649 650 650	865 866 867	1081 1083 1084	1297 1299 1301	1513 1516 1518
$+42,6 \\ +42,8$	202 202 202	404 404	606 607	808 809	1101	1211	1413	+52,6 +52,8	217	434 435	651 652	868 870	1086 1087	1303 1304	1520 1522
$+43,0 \\ +43,2$	- 203 203	— 405 406	608 608	- 810 811	—1013 1014	-1215 1217	-1418 1420	$+53,0 \\ +53,2$	- 218 218	- 435 436	653 654	872	—1089 1090	-1306 1308	-1524 1526
$\left {+43,4}\atop {+43,6}\atop {+43,8} \right $	203 203 204	406 407	609 610 611	812 814 815	1016 1017	1219	1422 1424 1426	$\begin{array}{r r} +53,4 \\ +53,6 \\ +53,8 \end{array}$	218 219 219	437 437 438	655 656 657	873 874 876	1092 1093 1095	1310 1312 1313	1528 1530 1532
[+44,0] +44,2	204 204	40 7 408 409	612 613	816 817	1019 1020 1022	1222 1224 1226	1428 1430	$ +54,0 \\ +54,2$	219 220	438 439	658 659	877 878	1096 1098	1315 1317	1534 1536
+41,4 +44,6 +44,8	205	410 410 — 410	614 615 — 616	818 820	1023 1025 1026	1229 1228	1432 1434 1436	+54,4 +54,6 +54,8	220 220 — 220	440 440 — 441		880	1101	1319 1321 —1322	1541
, 44,0	20,	4.0	1	021	1020	1201	.405	. 52,0		1	ļ	l	l	l	1

Alger, Coord. rect.

 $\mathfrak{O}_0 = +$ 3°. Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η . $\beta_2 = (\lambda - 1) (\alpha - \lambda_0)'.$ Pour $(\alpha - \lambda_0)'$ négatif : changer le signe du nombre β_2 .

												•			
1,			(:	a — J.,) .			τ,			(:	z — ,Ł,).		
ou	. 404	201	. 004		- 01			ou	400	901	. 00/	100			504
$\delta - \Omega_0$	+ 10'.	+ 20'.	+ 30′.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	6-(Do.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70′.
l										l				ļ	
$+55',0 \\ +55',2$	- 221	- 442	- 662	- 883			- 1546	+61',0			— 690				-1609
$\begin{bmatrix} +55,2\\ +35,4 \end{bmatrix}$	221 221	442 443	663 664	884 886	1106	1327 1328	1548 1550	+61,2 -61,4	230 231	460 461	691 692	921 922	1151	1381	1611
+35,6	222	443	665	887	1109	1330	1552	+61,6	231	462	692	923	1154		1616
$+55,6 \\ +55,8 \\ +56,0$	222	444	666	888	1110	1332	1554	+61.8	231	462	693	924	1156		1618
+56,0 +56,2	222 223	445	667 668	889	1112	1334 1336	1556 1558	$+62,0 \\ +62,2$	231 232	463 463	694 695	926	1157	1388 1390	1620 1622
-56,2	223	445 446	669	890 892	1115	1335	1560	+62,2 +62,4	232	464	696	927 928	1160	1390	1622
+56,6	223	446	670	893	1116	1339	1562	62,6	232	465	697	929	1162	1394	1626
-56,8	224	447	671	894	1118	1341	1565	+62,8	233	465	698	930	1163	1396	1628
+57,0	- 224	— 448	- 671	— 895	-1119	-1343	1567	+63,0	— 233	- 466	- 699	- 932	- 1165	-1397	— 163o
-57,2	224	448	672	896	1121	1345	1569	+63,2	233	466	700	933	1166	1399	1632
$\begin{vmatrix} +57,2\\ +57,4\\ +57,6 \end{vmatrix}$	224	449	673	898	1122	1346	1571	+63,4	234	467	701	934	1168	1401	1635
$\begin{bmatrix} +57,6 \\ +57,8 \end{bmatrix}$	225 225	449 450	674 675	899 900	1124 1125	1348 1350	1573 1575	$^{+}_{+63,8}^{+63,6}$	234 234	468 468	701 702	935 936	1169	1403 1405	1637
+58.0	225	451	676	900	1127	1352	1577	+64.0	234	469	703	938	1172	1406	1641
+38,2	226	451	677	902	1128	1354	1579	64,2	235	469	704	939	1174	1408	1643
+58,4	226 226	452	678	904	1130	1355	1581	-64,4	235	470	705	940	1175	1410	1645
+58,6 +58,8	220 227	452 453	679 680	905 906	1131	1357 1359	1583 1586	$\begin{vmatrix} -64,6\\ -64,8 \end{vmatrix}$	235 236	471 471	706 707	941 942	1177	1412	1647 1649
	1	,		3-5				1 1	1						
+59,0		- 454	 680	- 907	-1134	-1361	-1588	-63,0	- 236	- 472	– 708	- 944	1180	-1416	- 1652
+59,2 +59,4	227 227	454 455	681 682	908 910	1136	1363 1364	1590 1592		ı	l	į				
+59.6	228	455	683	910	1139	1366	1594								
+59.8	228	456	684	912	1140	1368	1596								l
+60,0 +60,2		457 457	685 686	914	1142	1370	1599								!
+60,2	229 229	457 458	687	915 916	1144	1372 1374	1601 1603	!			•				ļ
+60,6	229	459	688	917	1147	1376	1605								ŀ
+60,8	- 230	— 45 9	— 689	- 918	1148	-1378	- 1607								ļ
								1							

 $\mathfrak{O}_0 = + 4^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - 1)(\alpha - \lambda_0)'.$ Pour $(\alpha - \lambda_0)'$ négatif : changer le signe du nombre β_2 .

7)			(:	z — "h")	·'.			'n			(:	x — Jr.,)	۲.		
ou δ ₀ —Φ.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ου δ-(D ₀ .	+ 10'.	+ 20'.	+ 30°.	+ 40'.	+ 50'.	+ 60'.	+70'.
65,0 64,9 64,8 64,7 64,6 64,5 64,4 64,3 64,2 64,1	- 112 112 112 113 113 113 113 113 114	 223 224 225 225 226 227 227 	— 335 336 336 337 338 339 339 340 341	- 448 448 449 450 452 453 453 454	— 559 560 561 562 563 564 565 566 567 568	— 670 672 673 674 675 676 678 679 680	— 782 783 785 786 788 789 791 793 793	-60',0 -59,9 -59,8 -59,7 -59,6 -59,5 -59,4 -59,3 -59,2 -59,1	- 122 122 123 123 123 123 123 124 124	- 244 244 245 245 245 246 246 247 247	- 366 366 367 367 368 369 370 370	— 487 488 489 490 491 492 493 494 495	- 609 610 611 612 613 614 615 616 617	731 732 734 735 736 737 738 740 741 742	- 853 854 856 857 859 860 862 863 864 866
-64,0 -63,9 -63,8 -63,7 -63,6 -63,5 -63,4 -63,3 -63,2	- 114 114 114 115 115 115 115 115	- 228 228 229 229 230 230 230 231	- 341 342 342 343 344 344 345 345 346 347	- 455 456 457 457 458 459 460 461 461	- 569 570 571 572 573 576 576 578	- 682 684 685 686 687 688 690 691 693	- 796 798 799 800 802 803 805 806 808	-59,0 -58,9 -58,8 -58,7 -58,6 -58,5 -58,4 -58,3 -58,2 -58,1	- 124 124 125 125 125 125 125 126	- 248 249 249 249 250 250 251 251	— 372 372 373 374 374 375 375 377	- 496 496 497 498 499 500 501 502 503	- 619 620 621 622 624 625 626 627 628	743 745 746 747 748 749 751 752 753 754	— 867 869 870 871 873 874 876 877 879 880
-63,0 -62,9 -62,8 -62,7 -62,6 -62,5 -62,4 -62,3 -62,2 -62,1	— 116 116 116 116 117 117 117 117 117	 232 232 233 233 234 234 235 235 	- 347 348 349 349 350 351 352 353	— 463 464 465 466 467 468 469 470	- 579 580 581 582 583 584 585 586 587 588	- 695 696 697 698 699 701 702 703 704 706	- 810 812 813 815 816 817 819 820 822 823	-58,0 -57,9 -57,8 -57,7 -37,6 -57,5 -37,4 -57,3 -57,2 -57,1	— 126 126 126 127 127 127 127 127 128	252 252 253 253 253 254 254 255 255 255	— 378 378 379 380 381 381 382 383 383	- 504 505 505 506 507 508 509 510	- 630 631 632 633 634 635 636 637 638 639	756 757 758 759 760 762 763 764 765 766	- 881 883 884 886 887 888 890 891 893
-62,0 -61,9 -61,8 -61,7 -61,6 -61,5 -61,4 -61,3 -61,2	— 118 118 118 118 119 119 119 119	- 236 236 237 237 238 238 238 239 239	- 353 354 355 355 356 356 357 358 358 359	- 471 472 473 474 474 475 476 477 478	— 589 590 591 592 593 594 595 596 597	- 707 708 709 710 713 714 715 717	- 825 826 827 829 830 832 833 835 836 837	-57,0 -56,9 -56,8 -36,7 -56,6 -56,5 -56,4 -56,3 -56,2 -56,1	- 128 128 129 129 129 129 129 130 130	- 256 257 257 258 258 258 259 259 260	- 384 384 385 386 387 387 388 389 389	- 512 513 513 514 515 517 517 518 519	- 640 641 642 643 644 645 646 647 648	768 769 771 771 773 775 776 779	- 896 897 898 900 901 903 904 906 907 908
-61,0 -60,9 -60,8 -60,7 -60,6 -60,5 -60,4 -60,3 -60,2 -60,1	120 120 120 121 121 121 121	- 240 240 240 241 241 242 242 243 - 243	360 361 361 362 363 363 364 364 365	- 479 480 481 482 483 484 485 486 - 487	- 599 600 601 602 603 604 605 606 607 - 608	— 719 720 721 723 724 725 726 727 729 — 730	- 839 840 842 843 844 846 847 819 850 - 852	—56,0 —53,9 —53,8 —55,7 —55,6 —55,5 —55,4 —55,3 —55,2 —55,1	130 130 131 131 131 131 131	- 260 261 261 262 262 262 263 263 - 264	— 390 391 392 392 393 394 394 395 — 395	- 520 521 522 522 523 524 525 526 526	- 650 651 652 653 654 655 656 657 658 - 659	- 780 781 783 784 785 786 787 788 790 - 791	- 910 911 913 914 915 917 918 920 921 - 923

O₀ = +4°.
 Pour O₀ négatif : changer
 le signe de l'argument η.

$$\begin{split} \beta_2 &= (\lambda - 1) \, (\alpha - \mathcal{N}_0)'. \\ \text{Pour } (\alpha - \mathcal{N}_0)' \text{ négatif : changer} \\ \text{le signe du nombre } \beta_2. \end{split}$$

ŋ			(0	r — al.,)	·.			n			(;	z — J.,)	·.		
ou δ—Φ•.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ou 6—Ø•.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-55,0 -54,9 -54,8 -54,7 -54,6 -54,5 -54,4 -54,3 -54,2 -54,1	132 132 133 133 133	264 265 265 266 266 266 267 267	— 396 397 397 398 398 399 400 400 401	- 528 529 530 530 531 532 533 534 534 535	- 660 661 662 663 664 665 666 667 668 669	792 793 794 796 797 798 799 801 802 803	— 924 925 927 928 930 931 933 934 935	-50′,0 -49,9 -49,8 -49,7 -49,6 -49,5 -49,4 -49,3 -49,2 -49,1	- 142 143 143 143 143 143 144 144 144	- 284 285 285 286 286 286 287 287 287 288 288	— 426 427 428 428 429 430 431 431 432	- 569 570 571 572 573 573 574 575	— 711 712 713 714 715 716 717 718 719 720	858 859 860 861 863	995 996 998 999 1001 1002 1004 1005 1006
-54,0 -53,9 -53,8 -53,6 -53,5 -53,4 -53,3 -53,2 -53,1	135 135 135 135	269 269 269 270 270 271 271	- 402 403 403 404 405 405 406 406 407 408	- 536 537 538 539 549 541 542 543	- 670 671 672 673 674 675 676 677 678	- 804 805 807 808 809 810 811 813 814	938 940 941 942 944 945 947 948 950	-49,0 -48,9 -48,8 -48,7 -48,6 -48,5 -48,4 -48,3 -48,2 -48,1	— 144 145 145 145 145 145 145 146 146	- 288 289 289 290 290 290 291 291 292	- 433 433 434 434 435 436 437 437 438	- 577 578 578 579 580 581 582 583 584	721 722 723 724 725 726 727 728 729 730	869 870 871 872 874 875 876	
-53,0 -52,9 -52,8 -52,7 -52,6 -52,5 -52,4 -52,3 -52,2 -52,1	136 137 137 137 137 137	273 273 273 274 274 275 275 275	- 408 409 409 410 411 412 412 413 414	- 544 545 546 547 547 548 549 550 551	- 680 681 682 683 684 685 686 687 688	816 818 819 820 821 822 824 825 826	— 952 954 955 957 958 959 961 962 964 965	-48,0 -47,9 -47,8 -47,7 -47,6 -47,5 -47,4 -47,3 -47,2 -47,1	— 146 147 147 147 147 147 148 148	292 293 293 294 294 295 295 296	- 439 440 440 441 442 442 443 443 444	— 585 586 586 587 588 589 590 591 592	— 731 732 733 734 735 736 737 738 740	880 881 882	
-52,0 -51,9 -51,8 -51,7 -51,6 -51,5 -51,4 -51,3 -51,2	138 139 139 139 139 139 140	277 277 277 278 278 278 279 279		- 552 553 554 555 556 556 557 558 559 560	— 690 691 692 693 694 695 697 698 699	- 829 830 831 832 833 835 836 837 858 839	968 969 971 972 974 975	-47,0 -46,9 -46,8 -46,7 -46,6 -46,5 -46,4 -46,3 -46,2 -46,1	— 148 149 149 149 149 150 150	- 297 297 298 298 298 299 299 299 300 300	- 445 446 447 447 448 448 448 450 450		- 741 742 743 744 745 746 747 748 749	894 895 897 898 899 900	
-51,0 -50,9 -30,8 -50,7 -50,6 -50,5 -50,4 -50,3 -50,2 -50,1	140 141 141 141 141 141 142	281 281 281 282 282 283 283 283	421 422 422	— 561 562 563 564 565 565 566 567 — 568	— 701 702 703 704 705 706 707 708 709 — 710	842	984 985 986 988 989 991	-46,0 -45,9 -45,8 -45,7 -45,5 -45,4 -45,3 -45,1	- 150 151 151 151 151 152 152 152 - 152	— 301 301 302 302 303 303 303 304 — 304	— 451 452 453 453 454 454 455 456 — 456	- 601 602 603 603 604 605 606 607 608 - 608	— 751 752 753 754 755 756 757 758 759 — 760	903 904 905 906 908 909	—1052 1053 1055 1056 1057 1059 1060 1061 1062 —1064

TABLE II.

 $\mathfrak{O}_0 = +4^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - \iota)(\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

7)		(a — J)'.		J)			(4	z — J.,)	·.		
ou ô-(₽₀.	+ 10'. + 20'	. + 30°. + 40°	+ 50' 60'.	+ 70'.	ou δ-(Q ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-45',0 -44,9 -44,8 -44,7 -44,6 -44,5 -44,4 -44,3 -44,2	- 152 - 30 153 30 153 30 153 30 153 30 153 30 154 30 154 30 154 30	5 458 61 5 458 61 6 459 61 7 460 61 7 461 61 7 461 61	5 763 915 1 764 916 2 765 917 2 766 919 3 767 920 4 768 921 5 769 922	1067 1069 1070 1072 1073 1075	-40',0 -39,9 -39,8 -39,7 -39,6 -39,5 -39,4 -39,3 -39,2	— 162 163 163 163 163 163 164 164	— 325 325 326 326 327 327 328 328	— 487 488 489 489 490 490 491 492	- 650 651 652 653 654 655 655	- 812 813 814 815 816 817 818 819	975 976 977 978 979 981 982 983 984	-1137 1138 1140 1141 1143 1144 1146 1147
-44,0 -43,9 -43,8 -43,7 -43,6 -43,5 -43,4 -43,2 -43,2	154 30 154 30 155 30 155 31 155 31 155 31 156 31 156 31 156 31	8	5 771 925 771 926 773 927 974 928 975 930 1 776 931 777 932 778 933 3 779 934 4 780 936	1079 	-39,1 -39,0 -38,9 -38,8 -38,7 -38,6 -38,5 -38,4 -38,4 -38,2 -38,1	- 165 165 165 165 165 165 166 166 166	329 — 329 329 330 330 331 331 332 332 333	493 493 494 495 496 496 497 498 498 499	657 — 658 659 660 661 662 663 664 664 665	821	986 987 988 989 990 992 993 994 995 997 998	1150
-43,0 -42,9 -42,8 -42,7 -42,6 -42,5 -42,4 -42,3 -42,2 -42,1	— 156 — 31 157 31 157 31 157 31 157 31 158 31 158 31 158 31	3 — 469 — 62 3 470 62 4 470 62 4 471 62 5 472 62 5 473 63 6 474 63	5 — 782 — 938 5 783 — 939 7 784 — 941 785 — 942 786 — 943 9 787 — 944 9 788 — 945 9 789 — 948 1 789 — 948		-38,0 -37,9 -37,8 -37,7 -37,6 -37,5 -37,4 -37,3 -37,2 -37,1	- 167 167 167 167 168 168 168 168	— 333 333 334 334 335 335 336 336 337	- 500 500 501 501 502 503 503 504 504	- 666 667 668 668 669 670 671 672 673	- 833 834 835 836 837 838 839 840 841	- 999 1000 1001 1003 1004 1005 1006 1007 1009	-1165 1167 1168 1170 1171 1172 1174 1175 1177 1178
-42,0 -41,9 -41,8 -41,7 -41,6 -41,5 -41,4 -41,3 -41,2	— 158 — 31 159 31 159 31 159 31 159 31 159 31 160 32 160 32	7 476 63 8 476 63 8 477 63 8 478 63 9 478 63 9 479 63 0 479 63 0 480 64	4 793 952 5 794 953 6 795 954 7 796 955 7 797 956 8 798 958 9 799 959	1110 1111 1113 11114 1116 1117 1119	-37,0 -36,9 -36,8 -36,7 -36,6 -36,5 -36,4 -36,3 -36,2 -36,1	— 169 169 169 169 170 170 170	- 337 337 338 338 339 339 340 340 341	— 506 506 507 507 508 509 510 510	— 674 675 676 677 678 679 680 681	843 844 845 846 847 848 859 851 852	-1011 1012 1014 1015 1016 1017 1018 1020 1021	-1180 1181 1182 1184 1185 1187 1188 1190 1191
-41,0 -40,9 -40,8 -40,7 -40,6 -40,5 -40,4 -40,3 -40,2 -40,1	- 160 - 32 161 32 161 32 161 32 162 32 162 32 162 32 162 32	1 482 64 2 483 64 2 484 64 3 484 64 3 485 64 4 486 64	2 803 964 3 804 965 4 805 966 5 806 967 807 968 6 808 970 7 809 971 8 810 972	1124 1126 1127 1128 1130 1131 1133	-36,0 -35,8 -35,8 -35,7 -35,6 -35,5 -35,4 -35,3 -35,2 -35,1	— 171 171 171 171 172 172 172 172 172	— 341 342 342 343 343 344 344 344 — 345	- 512 513 514 514 515 515 516 517	- 682 683 684 685 685 686 687 688 689 - 689	— 853 854 855 856 857 858 860 861 — 862	-1023 1025 1026 1027 1028 1029 1031 1032 1033 -1034	1195 1197 1198 1200 1201 1202 1204 1205

 $\mathfrak{O}_0 = + \mathfrak{z}^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $eta_2 = (\lambda - 1)(\alpha - \lambda_{r_0})'.$ Pour $(\alpha - \lambda_{r_0})'$ négatif : changer le signe du nombre β_2 .

J)			((z — A.,)	·.			η,			(z — d,)	·.		
ou 6-Ø₀.	+ 10.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	0 u 0 o u	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 6 0 °.	+ 70'.
-35,0 -34,9 -34,8 -34,7 -34,6 -34,5 -34,4 -34,3 -34,2	173 173 173 173	- 345 346 346 346 347 347 348 348 348 349	- 518 519 520 521 521 522 523 523	— 690 691 692 693 694 694 695 696 697	— 863 864 865 866 867 868 869 870 871	-1036 1037 1038 1039 1040 1042 1043 1044 1045		-30',0 -29,9 -29,8 -29,7 -29,6 -29,5 -29,4 -29,3 -29,2 -29,1	— 183 183 183 183 184 184 184 184 185	— 365 366 366 367 367 367 368 368 369 369	- 548 549 549 550 551 551 552 553 554	731 732 733 733 734 735 736 737 737	914 915 916 917 918 919 920 921 922 923	1096 1098 1099 1100 1101 1102 1104 1105 1106	1289
-34,0 -33,9 -33,8 -33,7 -33,6 -33,5 -33,4 -33,3 -33,2	175 175 175 175 176 176 176	- 349 350 350 350 351 351 352 352 352 353	- 524 524 525 526 526 527 527 528 529 529	- 698 699 701 702 703 704 705 706	- 873 875 875 876 878 878 889 881 882	— 1048 1049 1050 1051 1053 1054 1055 1056 1057	-1222 1224 1225 1227 1228 1229 1231 1232 1234 1235	-29,0 -28,9 -28,8 -28,7 -28,5 -28,5 -28,4 -28,3 -28,2 -28,1	- 185 185 185 185 186 186 186 186	- 370 370 371 371 372 372 373 373	- 554 555 556 556 557 557 558 559 560	- 739 740 741 741 742 743 744 745 746	924 925 926 927 928 929 930 931 932	-1109 1111 1112 1113 1115 1116 1117 1118	1303 1305
-33,0 -32,9 -32,8 -32,7 -32,6 -32,5 -32,4 -32,3 -32,3 -32,1	177	- 353 354 354 355 355 355 356 356 357 357	- 530 531 532 532 533 534 534 535 535	— 707 707 708 709 711 711 712 713 714		1060 1061 1062 1063 1065 1066 1067 1068 1070		-28,0 -27,9 -27,8 -27,7 -27,6 -27,5 -27,4 -27,2 -27,1	— 187 187 187 188 188 188 188 188	- 374 374 375 375 376 376 377 377	- 560 561 562 562 563 563 564 565 565	747 748 749 750 751 752 753 754 755	934 935 936 937 938 939 940 941 942 943	1121 1122 1123 1124 1126 1127 1128 1129 1130	-1308 1309 1310 1312 1313 1315 1316 1317 1319 1320
-32,0 -31,9 -31,8 -31,7 -31,6 -31,5 -31,4 -31,3 -31,2 -31,1	179 179 179 180 180 180 180 180	- 357 358 358 359 359 360 360 361 361	- 536 537 537 538 538 539 540 540 541 541	- 715 716 716 717 718 719 720 720 721	— 893 894 895 896 897 898 900 901 902	—1072 1073 1074 1076 1077 1078 1079 1081 1082 1083	-1251 1252 1254 1255 1256 1258 1259 1261 1262 1264	-27,0 -26,9 -26,8 -26,7 -26,6 -26,5 -26,4 -26,3 -26,2 -26,1	— 189 189 189 190 190 190 191	- 378 378 379 379 380 380 381 381	- 566 567 568 569 570 571 571	756 757 758	- 944 945 946 947 948 950 951 952 953	113 , 1138 1139	-1322 1323 1325 1326 1327 1329 1330 1332 1333
-31,0 -30,9 -30,8 -30,7 -30,6 -30,5 -30,4 -30,3 -30,2 -30,1	181 181 182 182 182 182 182	- 361 362 362 363 363 363 364 364 365 - 365	- 542 543 543 544 545 545 546 546 547 - 548	— 723 724 724 725 726 727 728 729 — 730	- 904 905 906 907 908 909 910 911 912	- 1084 1085 1087 1088 1089 1090 1091 1093 1094	-1265 1266 1268 1269 1271 1272 1273 1275 1276 -1278	-26,0 -25,9 -25,8 -25,7 -25,6 -25,5 -25,4 -25,3 -25,2 -25,1	- 191 191 191 192 192 192 192 193	- 382 383 383 383 384 384 385 - 385	— 573 574 574 575 576 576 577 — 578	— 763 764 765 766 767 768 769 770 — 771	— 954 955 956 957 958 959 960 961 962	1146 1147 1149 1150 1151 1152 1154	1337 1339 1340 1342 1343 1344 1346

TABLE II.

 $\mathfrak{O}_0 = +4^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $eta_2 = (\lambda - 1)(\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre eta_2 .

							1	1	<u> </u>						
η,			((z — •b•)	·.			2)] .		(a — .t.,)	۰٬۰		
ou								ou							
δ-Φ.	+ 10'.	+ 20'•	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70′.	δ-W ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40′.	+ 50'.	+ 60'.	+ 70′.
-25',0 -24',9	— 193 193	- 386 386	- 579 579	— 772	964 965	-1157	—135o	-20',0 -19,9	- 2 03	- 406	- 609 610		- 1015 1016	1219 1218	-1421 1423
$\begin{bmatrix} -24,8 \\ -24,8 \end{bmatrix}$	193	387	580	772 773	966	1158 1160	1352 1353	-19,9 -19,8	203 203	406 407	610		1017	1219	1424
-24.7	194	387	58o	774	967	1161	1354	-19.7	204	407	611	814	1018	1222	1425
$ \begin{array}{c c} -24,6 \\ -24,5 \end{array} $	194 194	387 388	581 582	775	968	1162	1356 1357	$\begin{bmatrix} -19,6\\ -19,5 \end{bmatrix}$	201	408 408	611	815 816	1019 1020	1223 1224	1427 1428
-24.4	194		582	776 776	969 970	1165	1359	$\begin{bmatrix} -19, 5 \\ -19, 4 \end{bmatrix}$	204 204	408	613	817	1021	1225	1430
$ \begin{array}{c c} -24,3 \\ -24,2 \end{array} $	194	389	583	777	971	1166	1360	-19.3	204	409	613	818		1227	1431
-24,2 $-24,1$	195 195		583 584	778	972 973	1167	1361 1363	$\begin{vmatrix} -19,2\\ -19,1 \end{vmatrix}$	205 205	409 410	614 614	818 818	1023 1024	1228 12 2 9	1432 1434
-24,0	- 195		- 585	779 — 780	1	i			1		— 615		-1025	-123o	– 1435
-23.9	195	390 390	585	780	- 975 976	1170 1171	-1364 1366	$\begin{bmatrix} -19,0\\ -18,9 \end{bmatrix}$	- 205 205	— 410 411	616	821	1025	1231	1437
$ \begin{array}{r} -23,9 \\ -23,8 \end{array} $	195	391	586	781	977	1172	1367	-18.8	205	411	616	822	1027	1233	1438
$ \begin{array}{c c} -23,7 \\ -23,6 \end{array} $	196 196		587 587	78 <u>2</u> 783	978	1173	1369 1370	$\begin{vmatrix} -18,7\\ -18,6 \end{vmatrix}$	206 206	411	617 618	823 823	1028	1234 1235	1440
-23.5	196		588	784	979 980		1370	$\begin{bmatrix} -16,0\\ -18,5 \end{bmatrix}$	206	412	618	824	1030	1236	1442
$ \begin{array}{r r} -23,4 \\ -23,3 \end{array} $	196	392	588	784	981	1177	1373	-18.4	206	413	619	825	1031	1238	1444
-23,3	196	393 393	589 590	785 786	982 983	1178	1374	-18,3	206	413 413	619 620	826 827	1032	1239 1240	1445 1447
$\begin{bmatrix} -23,2\\ -23,1 \end{bmatrix}$	197		590 590	787	984 984		1376 1377	$\begin{vmatrix} -18,2\\ -18,1 \end{vmatrix}$	207 207	414	621	827	1034	1241	1448
$\begin{bmatrix} -23,0\\ -22,9 \end{bmatrix}$	- 197	- 394	- 591	— 788	— 985	-1182	-1379	-18,0	- 207	- 414	- 621	- 828	1035 1036	-1242 1244	-1450 1451
-22.8	197	394 395	591 592	789 789	986 987	1183	1380	$\begin{vmatrix} -17,9\\ -17,8 \end{vmatrix}$	207 208	415 415	622 622	829 830		1244	1451
-22,8 22,7 22,6 22,3	198	395	593	790	988		1383	-17,7	-208	415	623	831	1038	1246	1454
-22,6	198 198		593	791	989	1186	1384	-17,6	208	416	624	832	1039	1247 1248	1455 1457
-22.4	198		594 594	792 793	, 991	1188	1386 1387	$\begin{vmatrix} -17,5\\ -17,4 \end{vmatrix}$	208 208	416	624 625	83 ₂ 833	1040 1041	1240	1458
-22,4 -22,4 -22,3 -22,2 -22,1	198	397	595	793	992	1190	1388	-17.3	209	417	625	834	1042	1251	1459
-22,2	199		596		993	1191	1390	-17,2	209	417	626	835 836	1043	1252 1253	1461 1462
1 1	İ	398	596	79 ⁵	994	i	1391	-17,1	209	418	627			—1255	—1464
$\begin{bmatrix} -22,0\\ -21,9 \end{bmatrix}$	— 199 199		- 597 598	796 797	- 995 996	1194 1195	1393 1394	$\begin{vmatrix} -17,0\\ -16,9 \end{vmatrix}$	- 209 209	- 418 419	- 627 628	- 836 837	— 1046 1047	1257	1466
-21,8 -21,7 -21,6	199	399	598	797	997	1196	1396	-16.8	210	419	629	838	1048	1257	1467
-21,7	200 200	399	599	798		1197	1397	-16,7	210	419	629 630	839 840	1049 1050	1258 1259	1468 1469
-21,0 -21,5	200		599 600	799. 800	999	1199	1398 1400	$\begin{bmatrix} -16,6\\ -16,5 \end{bmatrix}$	210 210	420 420	63o	840 840		1259	1409
-21.4	200	400	601	801	1001		1401	-16.4	210	421	631	841	1052	1262	1472
$\begin{bmatrix} -21,3\\ -21,2 \end{bmatrix}$	200	401	601	108	1002		1403	-16,3	211	421	632 632	842 843	1053 1054	1263 1264	1474
$\begin{bmatrix} -21, 2 \\ -21, 1 \end{bmatrix}$	201 201	401 402	602 602	802 803	1003 1004	1203 1205	1404 1405	$\begin{vmatrix} -16,2\\ -16,1 \end{vmatrix}$	211 211	421 422	633	844	1055	1266	1477
-21,0					— 100 <u>5</u>	1	-1407	-16,0		- 422	- 633		-1o56		-1478
$\begin{bmatrix} -20,9\\ -20,8 \end{bmatrix}$	201 201	402 403	604 604	805 806	1006	1207	1408	$\begin{bmatrix} -15,9 \\ -15,8 \end{bmatrix}$	212	423 423	634 635	845 846		1268 1269	1479 1481
[-20,7]	202	403	605	806	1007	1 -	1410	$\begin{bmatrix} -15, 8 \\ -15, 7 \end{bmatrix}$	212	423	635	847	1059		1482
-20.6	202	404	605	807	1009	1211	1413	-15,6	212	424	636	848	1060	1272	1484
$\begin{bmatrix} -20,5 \\ -20,4 \end{bmatrix}$	202 202	404 404	606 607	808 809	1010		1414	$\begin{vmatrix} -15,5\\ -15,4 \end{vmatrix}$	212	424 425	636 637	849 849	1061	1273 1274	1485 1486
-20,3	202		607	810	1011	1213	1415	$\begin{bmatrix} -15,4\\ -15,3 \end{bmatrix}$	212	425	638	850		1275	1488
-20,2	203	405	608	810	1013	1216	1418	-15,2	213	426	638	851		1276	1489
-20,1	— 20 3	— 406	— 608	— 811	-1014	-1217	-1420	-15,1	- 213	- 426	— 639	- 852	-1065	-1278	-1491
•	•	•	•	•	1			ı		i	l	ı	•	•	

 $\mathfrak{O}_0 = +$ 4°. Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - 1)(\alpha - \lambda_0)'.$ Pour $(\alpha - \lambda_0)'$ négatif : changer le signe du nombre β_2 .

n]		(z — d.)'•			, r,			(a — d.,)'.		
ou								ou							
δ-@ _• .	+ 10'.	+ 20′.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	δ-ω ₀ .	+ 10'.	+ 20'.	+ 30′.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
-13',0 -14,9	- 213 213	426 427	640 640	853 853	-1066 1067	-1279 1280	1492 1494	-10',0 - 9,9	- 223 224	447 447	- 670 671	- 893 894	1117 1118	—1340 1341	—1563 1565
-14.8	214	427	641	854	1068	1281	1495	-9.8	224	447	671	895	1119	1342	1566
-14,7	214	428	641	855	1069	1283	1496	9,7	224	448	672	896	1120	1343	1567
-14,6 $-14,5$	214 214	428 428	642 643	856 857	1070	1284 1285	1498 1499	-9,6 -9,5	224	448	672 673	896	1121	1345 1346	t569 1570
-14.4	214	429	643	857	1071	1286	1501	-9.4	221 225	449 449	674	897 898	1123	1340	1572
-14,3	215	429	644	858	1073	1287	1502	-9.3	225	449	674	899	1124	1348	1573
-14,2 -14,1	215 215	430	644	859	1074	1289	1503	$\begin{bmatrix} -9,2\\ -9,1 \end{bmatrix}$	225	450	675	900	1125	1350	1574
-14,1 $-14,0$	— 215	43c — 43c	645 646	860 861	1075	1290	1505	'	225	450	675	900	1126	1351	1576
-13,9	215	- 430 431	- 646 646	- 861 862	-1076 1077	1291 1292	-1506 1508	$\begin{bmatrix} -9,0\\ -8,9 \end{bmatrix}$	- 225 226	— 451 451	- 676 677	— 901	-1127 1128	-1352 1353	-1577 1579
-13.8	216	431	647	862	1078	1293	1509	-8,8	226 226	451	677	902 903	1129	r354	1580
-13,7	216	432	647 648	863	1079	1295	1511	- 8,7	226	452	678	904	1130	1356	1582
-13,6 -13,5	216 216	432 432	649	864 865	1080 1081	1296	1512 1513	-8,6 -8,5	226 226	452 453	678	905 905	1131	1357 1358	1583 1584
-13,4 $-13,3$	216	433	649	866	1082	1298	1515	-8,4	220	453 453	679 680	905	1133	1359	1586
-13,3	217	433	650	866	1083	1299	1516	-8.3	227	454	680	907	1134	136ĭ	1587
$\begin{vmatrix} -13,2\\ -13,1 \end{vmatrix}$	217	434	65o	867	1084	1301	1518	$\begin{bmatrix} -8,2\\ -8,1 \end{bmatrix}$	227	454	681	908	1135	1362	1589
—13,1	217	434	651	868	1085	1302	1519		227	454	681	909	1136	1363	1590
-13,0 -12,9	- 217 218	- 434 435	- 65 ₂ 65 ₂	— 869 870	1086 1087	1303 1305	-1521 1522	$\begin{bmatrix} -8,0\\ -7,9 \end{bmatrix}$	- 227 228	- 455 455	- 68 ₂ 68 ₃	909	-1137 1138	1364 1365	1592 1593
-12.8	218	435	65 3	871	1088	1306	1523	[-7,8]	228	456	683	911	1139	1367	1594
-12,7	218	436	653	871	1089	1307	1525	-7,7	228	456	684	912	1140	1368	1596
-12,6	218 218	436 436	654 655	872	1090	1308	1526	-7,6	228	456	685	913	1141	1369	ι597
-12,5 -12,4	219	430	655	873 874	1091	1309	1528 1529	$\begin{bmatrix} -7,5 \\ -7,4 \end{bmatrix}$	228 229	457 457	685 686	913 914	1142	1370	1599 1600
-12,3	219	437	6 56	875	1093	1312	1530	-7,3	229 229	458	686	914	1144	1373	1601
-12,2	219	438	656	875	1094	1313	1532	-7.2	229	458	687	916	1145	1374	1603
-12,1	219	438	657	876	1095	1314	1533	- 7,1	229	458	688	917	1146	1375	1604
-12,0 -11,9	- 219 219	— 439 439	- 658 658	- 877	— tog6	-1316	-1535	-7,0	- 229	- 459	- 688	- 918	-1147	-1376	-1606
-11,9 -11,8	219	439 439	659	878 879	1097	1317	1536 1538	$\begin{bmatrix} -6,9 \\ -6,8 \end{bmatrix}$	230 230	459 460	689 689	919	1148	1378 1379	1607 1609
$\begin{bmatrix} -11,7\\ -11,6 \end{bmatrix}$	220	440	660	879	1099	1319	1539	-6,7	230 230	460	690	919	1150	138o	1610
$\begin{bmatrix} -11,6\\ -11,5 \end{bmatrix}$		440	66o	88o	1100	1320	1540	-6.6	230	460	691	921	1151	1381	1611
-11,3 -11,4	220 220	441 441	166 166	881 882	1101 1102	1322 1323	1542	$\begin{bmatrix} -6.5 \\ -6.4 \end{bmatrix}$	230	461	691	922	1152	1382	1613
-11,3	221	441	662	883	1102	1323	1543 1545	$\begin{bmatrix} -6,4\\ -6,3 \end{bmatrix}$	231 231	461 462	692 692	922 923	1153	1384 1385	1614 1616
-11.2	221	442	663	8 83	1104	1325	1546	-6.2	231	462	693	924	1155	1386	1617
-11,1	221	442	663	884	1105	1326	1547	- 6,1	231	462	694	925	1156	1387	1618
$\begin{bmatrix} -11,0\\ -10,9 \end{bmatrix}$	221 222	- 443 443	- 664 664	885 886	1106 1107	-1328 1329	-1549 1550	$\begin{bmatrix} -6,0 \\ -5,9 \end{bmatrix}$	- 231 232	- 463 463	- 69 í 69 5	- 926 927	-1157 1158	- 1389 - 1389	1620 1621
-10,8	222	443	665	887	1108	1330	1552	-5.8	232	464	695	927	1159	1391	1623
$\begin{bmatrix} -10,7\\ -10,6 \end{bmatrix}$	222 222	444 444	666 6 6 6	888 888	1109	1331	1553	-5,7		464	696		1160	1392	1624
-10,5	222	444	667	888 889	1111	1332	1555 1556	-5,6 $-5,5$	232 232	464 465	697	929 930	1161	1393	1626 1627
-10,4	223	445	667	890	1112	1335	1557	-5.4	233	465	697 698	930	1163	1395	1628
-10,3	223	445	668	891	1113	1336	1559	-5.3	233	466	698	931	1164	1397	163o
-10,2 $ -10,1 $	22 3	- 446 - 446	- 669 669	892	1114		1560	- 5,2	233	466	,	932	1165		
,		440	- 009	- 892	-1115	-1339	-1562	- 5,1	 2 33	— 466	— 700	— 933	-1166	—ı399	1633
•				•	•	•	, ,	'	•	•	,	•	•		,

 $\mathbb{O}_0 = +4^{\circ}$. Pour \mathbb{O}_0 négatif : changer le signe de l'argument η . $\beta_2 = (\lambda - 1) (\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

Les valeurs de β_2 sont exprimées en dix-millièmes de minute d'arc.

2)			(:	z — A ₀)	y'.			η			(:	x — eb,)	' .		
ou δ—Ø₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ου δ-(Ω ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
- 5,0 - 4,9 - 4,8 - 4,7 - 4,6 - 4,5 - 4,4 - 4,3 - 4,2 - 4,1	234	467 468 468 469 469 469 470	— 700 701 702 702 703 703 704 705 705 706	- 934 935 935 936 937 937 938 939 940	— 1167 1168 1169 1170 1171 1172 1173 1174 1175			0,0 + 0,1 + 0,2 + 0,3 + 0,4 + 0,5 + 0,6 + 0,7 + 0,8 + 0,9	- 244 244 244 244 245 245 245 245 245	- 487 488 488 489 489 490 490 491	- 731 731 732 733 733 734 734 735 736	974 975 976 977 978 978 979 981 981	-1218 1219 1220 1221 1222 1223 1224 1225 1226		1705 1707 1708 1709 1711 1712 1714 1715 1716
- 4,0 - 3,9 - 3,8 - 3,7 - 3,6 - 3,3 - 3,4 - 3,3 - 3,1	236 237 237	471 472 472 473 473 473 473 474 474	— 706 707 708 708 709 709 710 711 711	942 943 944 944 945 946 947 948 948			-1648 1650 1651 1653 1654 1655 1657 1658 1660	+ 1,0 + 1,1 + 1,2 + 1,3 + 1,4 + 1,5 + 1,6 + 1,7 + 1,8 + 1,9	246 246 246 246 246 247 247 247 247	492 492	737 738 738 739 739 740 741 741 742 742	983 983 984 985 986 987 988 989 990	1228 1229 1230 1231 1232 1233 1234 1235 1236	- 1474 1475 1476 1477 1479 1480 1481 1482 1483	1719 1721 1722 1724 1725 1726 1728 1729 1731 1732
- 3,9 - 2,8 - 2,7 - 2,7 - 2,3 - 2,3 - 2,2 - 2,1	239 239	477 478 478	713 713 714 714 715 716 716 717 717	950 951 952 952 953 954 955 956 956			-1663 1664 1665 1667 1668 1670 1671 1672 1674	+ 2,0 + 2,2 + 2,3 + 2,5 + 2,6 + 2,7 + 2,8 + 2,9	- 248 248 248 248 249 249 249 249 249	- 495 496 496 497 497 498 498 499	- 743 744 744 745 746 747 747 748 748	992 993 9 9 4 995 995 996			
- 2,0 - 1,9 - 1,8 - 1,7 - 1,6 - 1,3 - 1,4 - 1,3 - 1,2 - 1,1	240 240 240 240	- 479 480 480 481 481 482 482 483	- 719 719 720 721 722 723 723 724	— 958 959 960 961 962 963 964 965	-1198 1199 1200 1201 1202 1203 1204 1205 1206		-1677 1678 1680 1681 1682 1684 1685 1687 1688	+ 3,0 + 3,1 + 3,2 + 3,3 + 3,5 + 3,6 + 3,7 + 3,8 + 3,9	250 250 250 250 251 251 251 251 251 252	- 499 500 500 501 501 502 502 503 503	- 749 750 750 751 751 752 753 754 754	- 999 1000 1000 1001 1002 1003 1004 1004 1005	1248 1249 1250 1251 1252 1253 1255 1256 1257 1258		-1748 1749 1751 1753 1753 1756 1756 1758 1759
- 1,0 - 0,9 - 0,8 - 0,7 - 0,6 - 0,3 - 0,4 - 0,3 - 0,2 - 0,1	242 242 242 242 243 243 243	484 484 484 485 485 486 486 486	— 725 725 726 727 727 728 728 729 730 — 730	— 966 967 968 969 970 971 972 973 — 974	1209 1210 1211 1212 1213 1214 1215	-1449 1451 1452 1453 1454 1455 1457 1458 1459 -1460	—1691 1692 1694 1695 1697 1698 1699 1701 1702 —1704	+ 4,0 + 4,1 + 4,2 + 4,3 + 4,4 + 4,5 + 4,6 + 4,7 + 4,8 + 4,9	 252 252 252 253 253 253 253 254 	506 507	— 755. 756 756 757 758 758 759 760 — 761	-1007 1008 1008 1009 1010 1011 1012 1013 -1014	—1259 1260 1261 1262 1263 1264 1265 1266 1267 —1268	1511 1513 1514 1515 1516 1518 1519	1762 1763 1765 1766 1768 1769 1770 1772 1773 1775

Alger, Coord. rect.

 $\mathfrak{O}_0 = + \mathfrak{z}^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - 1) (\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

r, ou			(a - d.)	٧.			τ, ou			(:	2 – .b.))'.		
ô-Ø₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	δ-(D ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	-÷- 60'.	+ 70'.
$+5,0 \\ +5,1 \\ +8,0$	- 254 254 254	- 508 508	- 761 762	1015 1016	-1269 1270	-1522 1524	-1776 1778	+10′,0 +10′,1	- 264 264	- 528 528	- 792 793	1056	-1319 1320	1585	-1847 1849
$\begin{vmatrix} +5,2\\ +5,3\\ +5,4\\ +5,5 \end{vmatrix}$	254 255 255	508 509 509 510	762 763 764 764	1017 1017 1018 1019	1271 1272 1273 1274	1525 1526 1527 1529	1779 1780 1782 1783	+10,2 $ +10,3 $ $ +10,4 $ $ +10,5 $	264 265 265 265	529 529 529 530	793 793 794	1057 1058 1059 1060	1321 1322 1323 1325	1588	1850 1851 1853 1854
+5,6 + 5,7 + 5,8	255 255 255	510 510 511	765 765 766	1020 1021 1021	1275 1275 1276	1530 1531 1532	1785 1786 1787	$\begin{vmatrix} +10,6\\ +10,7\\ +10,8 \end{vmatrix}$	265 265 265	530 531 531	796 795 795 795	1060	1326 1327 1328	159ï 1592	1856 1857 1859
$\begin{vmatrix} +5,9 \\ +6,0 \\ +6,1 \end{vmatrix}$	255 256 256	511 512 512	767 - 767 768	1022 1023	1278 1279	1533 1535	1789 -1790	+10,9 +11,0	265 - 266	531 - 532	797 — 798	1063 1064	1329 -1330	-1596	
$\begin{vmatrix} + & 6,2 \\ + & 6,3 \\ + & 6,4 \end{vmatrix}$	256 256 257	512 513 513	769 769 770	1024 1025 1026 1026	1280 1281 1283	1536 1537 1538 1539	1792 1793 1795 1796	$\begin{vmatrix} +11,1\\ +11,2\\ +11,3\\ +11,4 \end{vmatrix}$	266 266 267 267	532 533 533 533	798 799 800 800	1064 1065 1066 1067	1331 1332 1333 1334	1597 1598 1599 1600	1863 1864 1866 1867
$\begin{vmatrix} +6.5 \\ +6.6 \\ +6.7 \end{vmatrix}$	257 257 257	514 514 514	770 771 772	1027 1028 1029	1284 1285 1 2 86	1541 1542 1543	1797 1799 1800	$\begin{vmatrix} +11,5\\ +11,6\\ +11,7 \end{vmatrix}$	267 267 267	534 534 535	801 802 802	1068 1069 1069	1335 1336 1337	1603 1604	1870 1870
$\begin{vmatrix} + 6.8 \\ + 6.9 \\ + 7.0 \end{vmatrix}$	257 258 — 258	515 515 — 516	772 773 — 773	1030 1030	1287 1288 —1289	1544 1546 —1547	1802 1803 —1805	$\begin{vmatrix} +11,8\\ +11,9\\ +12,0 \end{vmatrix}$	267 267 — 268	535 535 — 536	803 803 — 804	1070 1071 1072	1338 1339 —1340		1873 1874 -1876
$\begin{vmatrix} +7,1\\ +7,2\\ +7,3 \end{vmatrix}$	258 258 258	516 516 517	774 775 775	1032 1033 1034	1290 1291 1 2 92	1548 1549 1550	1806 1807 1809	$\begin{vmatrix} +12,1\\ +12,2\\ +12,3 \end{vmatrix}$	268 268 269	536 537 537	804 805 806	1073 1073 1074	1341 1342 1343	1609 1610 1611	1877 1878 1880
$\begin{vmatrix} +7,4\\ +7,5\\ +7,6\\ +7,7 \end{vmatrix}$	259 259 259 259	517 518 518 518	77 6 776 777 778	1034 1035 1036 1037	1293 1294 1295 1 29 6	1552 1553 1554 1555	1810 1812 1813 1815	+12,4 +12,5 +12,6 +12,7	269 269 2 69 26 9	538 538 538 539	806 807 807 808	1075 1076 1077 1077	1344 1345 1346 1347	1613 1614 1615 1616	1881 1883 1884 1886
$[+7,8 \\ +7,9]$	259 260	519 519	778 779	1038 1038	1297 1298	1556 1 5 58	1816 1817	$\begin{bmatrix} +12,1\\ +12,8\\ +12,9 \end{bmatrix}$	270 270 270	539 540	809 809	1078	1347 1348	1617 1618	1887
$ \begin{array}{r} +8,0 \\ +8,1 \\ +8,2 \\ +8,3 \end{array} $	- 260 260 260 260	- 520 520 520 521	— 780 780 781 781	-1039 1040 1041	1299 1300 1301	-1559 1560 1561	1820 1822	$\begin{vmatrix} +13,0\\ +13,1\\ +13,2\\ +13,3 \end{vmatrix}$	- 270 270 270	- 540 540 541	811 811 — 810	-1080 1081 1082	-1350 1351 1352	-1620 1621 1622	-1890 1891 1893
$\begin{vmatrix} +8,4\\ +8,5\\ +8,6 \end{vmatrix}$	261 261 261	521 521 522 522	782 783 783	1042 1043 1043 1044	1302 1303 130.j 1305	1563 1564 1565 1566	1823 1824 1826 1827	$\begin{vmatrix} +13,3\\ +13,4\\ +13,5\\ +13,6 \end{vmatrix}$	271 271 271 271	541 542 542 542	812 813 813 814	1082 1083 1084 1085	1353 1354 1355 1356	1623 1625 1626 1627	1894 1895 1897 1898
$\left { +8,7 \atop +8,8 \atop +8,9} \right $	261 261 2 62	522 523 523	784 784	1045 1046 1047	1306 1307 1308	1567 1569 1570	1829 1830 1832	+13,7 $+13,8$ $+13,9$	271 272 272	543 543 544	814 815 816	1086 1086 1087	1357 1358 1359	1628 1630 1631	1903 1903
$ \begin{array}{c c} + 9,0 \\ + 9,1 \\ + 9,2 \end{array} $	- 262 262 262	- 524 524 525		—1047 1048 1049	-1309 1310 1311	1571 1572 1574	- 1833 1834 1836	+14,0 +14,1 +14,2	272 272	- 544 544 545	- 816 817 817	—1088 1089 1090	1361	1633	-1904 1905 1907
$\begin{bmatrix} -9,3 \\ +9,4 \\ +9,5 \end{bmatrix}$	263	525 525 526	787 788 789	1050 1051 1051	1312 1313 1314	1575 1 5 76 1577	1837 1839 1840	+14,3 +14,4 +14,5	273 273 273	545 546 546	818 818 819	1090 1091 1092	1363 1364 1365	1636 163 7 1638	1911 1908 1908
$ \begin{array}{r} + 9.6 \\ + 9.7 \\ + 9.8 \\ - 9.9 \end{array} $	263 263	526 527 527 — 527		1052 1053 1054 —1055	1315 1316 1317 —1318	1578 1580 1581 —1582	1842 1843 1844 	$\begin{vmatrix} +14,6\\ +14,7\\ +14,8\\ +14,9 \end{vmatrix}$	273 273 274 — 274	546 547 547 — 548	820 820 821 — 821	1093 1094 1094 —1095	1366 1367 1368 —1369	1641 1642	, .

 $\mathfrak{O}_0 = + \, \mathfrak{z}^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer le signe de l'argument $\eta.$

 $\beta_2 = (\lambda - 1) (\alpha - A_0)'.$ Pour $(\alpha - A_0)'$ négatif : changer le signe du nombre β_2 .

η			(:	- J.)	' .			η			(:	z — A,)	'.		
ou				_				ou				_			
'u	_					- 1	_								- 1
δ-(D ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60′.	+ 70'.	δ-ω ₀ .	+ 10'.	+ 20′.	+ 30'.	+ 40′.	+ 50'.	+ 60'.	+70'.
+15,0	- 274	— <u>5</u> 48	— 822	—1096	-1370	—ı64. <u>í</u>	-1918	+20,0	— 28 <u>í</u>	– 568	— 85 3	-1137	-1421	1705	-1989
+15,1	274	549	823	1097	1371	1645	1920	+20,1	284	569	853	1138	1422	1706	1991
+15,2	274	549	823 824	1098	1372	1647	1921	+20,2	285	569	854	1138	1423	1708	1992
+15,3	275	549 550	824 825	1099	1373	1648	1922	+20,3	285	570	854 855	1139	1424 1425	1709	1993
$+15,4 \\ +15,5$	275 275	550	825	1099	1374 1375	1649 1650	1924 1925	$+20,4 \\ +20,5$	285 285	570 570	856	1140	1425	1710 1711	1995 1996
+15,6	275	551	826	1100	1376	1651	1927	$+20.5 \\ +20.6$	285 285	571	856		1427	1712	1998
+15,7	275	551	826	1102	1377	1653	1928	+20,0 +20,7	286	571	857		1 128	1714	1999
-+15,8	276	551	827	1103	1378	1654	1930	-20,8	286 286		857		1429	1715	2001
+15,9	276	552	828	1103	1379	1655	1931	-20,9	286		858		1430	1716	2002
+16,0	— 276	— 552 553	- 828 829	-1104	-1380	-1656	1932	+21,0			- 859 850		1431 1432	-1717 1718	-20 03
+16,1 +16,2	276	553	829	1105 1106	1383	1658 1659	1934	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	286 287		859 860		1433	1710	2005 2006
+16,2	277 277	553	830	1100	1383	1660	1935	$\begin{array}{c c} +21,2 \\ +21,3 \end{array}$	287				1433	1721	2008
+16,4	277	554	831	1107	1384	1661	1938	+21,4	287		861			1722	2000
+16,5	277	554	831	1108	1385	1662	1939	+21,5	287					1723	2011
+16,6	277	555	832	1109	1386	1664	1941	+21,6	287	575	862	1 .0	1437	1725	2012
+16,7	278	555	832	1110	1387	1665	1942	+21,7	288	575	863	1150		1726	2013
+16,8	278	555	833	1111	1388	1666	1914	+21.8	288	576	863	1151	1439	1727	2015
+16,9	278	556	834	1111	1389	1667	1945	+21,9	288		864	, 1152	1440	1728	2016
$+17,0 \\ +17,1$	- 278 278	- 556 557	- 834 835	-1112 1113	-1390 -1391	-1669 1670	-1947 1948	$+22,0 \\ +22,1$	- 288 288		- 865 865	1	-1441 1442	-1729 1731	2018 2019
17'9	279		836	1111	1391	1671	1949	+22,1	289		866		1443		2019
+17,2 +17,3	279		836	1115		1672	1951	+22,3		578	867			1733	2022
+17,4	279		837	1116		1673	1952	+22,4	289		867			1734	2023
+17,5	279		837			1675	1954	+22,5	289		868				
+17.6	279	559	838		1397	1676	1955	-22.6	289			1158		1737	2026
+17,7	280	559	839		1398	1677	1957	+22,7	290						
+17,8	280		839	1	1			+22,8	290						
+17,9	1		840	i	1400	1679	1959	$\left \right ^{+22,9}$			1	1160	1450		2030
+18,0 +18,1	- 280 280		- 840 841	-1121	-1401 1402	-1681 1682	-1961 1962	+23,0 +23,1	- 290 291						-2032 2033
+18.2	281				1 .	1		+23.2	291	l	872	1163		1744	2035
+18,3	281	561	842	1123		168.		+23,2 +23,3	29		873	3 1164			
+18,4	281		8 13	112		1686	1966	+23,4	29	1 582	873	3 1164	1455	1746	2038
+18,5				1125	1406			+23,5	291		874	116	1456	1748	
+18,6							1969	+23,6		583		1160		1749	
+18,7	282						1	+23,7	293		875	5 1167			
+18,8	282							+23,8	299					1751	2043
+18,9	i			Ì	1410		"	+23,9			1 '			'	
+19,0 +19,1				1120			-19 7 5 1976	+24,0 +24,1	0 — 29: 1 — 29:						
+19,2	283			1136				+24,9		- 1					
+19,3								+24,						175	2050
+19,4	283		3 849) 113:			1 0,0	+24,2	29	مہ اہ		9 117	1463		2052
+19,5	28	560	3 8 j	113				+24,	5 29	- 1			1460		
+19,6	3 28		7 85	1133				+24	3 29			1 117.			
+19,7	7 28.				1418	170		+24,					-1 :		
+19,8						170		+24,	3 29	4) 80					
+19,9	9 - 28.	≨ 56 8	85:	2 1136	6 -1420	170	í — 1988	+24,9	9 - 29	4 - 58	8 – 88	2 -117	7 - 147	1 - 176:	2059
l	I	I	l	l	ı	I	ŀ	11	1	1	ı	ı	i	Į.	i

 $\mathbb{O}_0 = +4^{\circ}$.
Pour \mathbb{O}_0 négatif : changer le signe de l'argument η .

ou $\delta - \mathbb{O}_{\bullet}$. $+ 10'$. $+ 20'$. $+ 30'$. $+ 40'$. $+ 50'$. $+ 60'$. $+ 70'$. $+ 20'$. $+ 20'$. $+ 20'$. $+ 30'$. $+ 40'$. $+ 50'$. $+ 60'$. $+ 70'$. $+ 20'$.	+30,0 +30,1 +30,2 +30,3 +30,4 +30,3 +30,6 +30,5 +30,6 +30,7 2 +30,8 3 +30,9 -31,1 -31,2 +31,2 -31,1 -31,2	+ 10'. - 305 305 305 305 306 306 306 306 306 307 307	+ 20'. - 609 610 610 611 611 612 613 - 613 613	914 915	1219 1220 1220 1221 1222 1223 1224 1224	1523 1524 1525 1526 1527 1528 1529 1531		2136 2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30,00 30,10 30	- 305 305 305 305 306 306 306 306 306 306	- 609 610 610 611 611 611 612 613	— 913 914 915 915 916 916 917 918 918	-1218 1219 1220 1220 1221 1222 1223 1224 1225	1522 1523 1524 1525 1526 1527 1528 1529 1531 1532	-1827 1828 1829 1830 1832 1833 1834 1835 1837	-2131 2133 2134 2136 2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	305 305 305 305 306 306 306 306 306 307	610 610 611 611 611 612 612 613	914 915 916 916 916 917 918 918	1219 1220 1220 1221 1222 1223 1224 1224	1523 1524 1525 1526 1527 1528 1529 1531	1828 1829 1830 1832 1833 1834 1835 1837	2133 2134 2136 2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	305 305 306 306 306 306 306 307	610 611 611 611 612 612 613	915 916 916 916 917 918 918	1220 1220 1221 1222 1223 1224 1224 1225	1524 1525 1526 1527 1528 1529 1531 1532	1829 1830 1832 1833 1834 1835 1837	2134 2136 2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 5 & +30,3 \\ +30,4 \\ +30,4 \\ 7 & +30,5 \\ 9 & +30,7 \\ 2 & +30,8 \\ 3 & +30,9 \\ \hline 5 & +31,0 \\ 7 & +31,2 \\ 9 & +31,3 \\ 9 & +31,3 \end{bmatrix}$	305 305 306 306 306 306 306 	610 611 611 612 612 613	916 916 916 917 918 918 919	1220 1221 1222 1223 1224 1224 1225	1525 1526 1527 1528 1529 1531 1532	1830 1832 1833 1834 1835 1837	2136 2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	305 306 306 306 306 306 — 307 307	611 611 612 612 613 — 613	916 916 91 7 918 918 919	1221 1223 1223 1224 1224 1225	1526 1527 1528 1529 1531 1532	1832 1833 1834 1835 1837	2137 2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 + 30,5 7 + 30,6 9 + 30,7 2 + 30,8 3 + 30,9 5 + 31,0 5 + 31,1 7 + 31,2 9 + 31,3	306 306 306 306 306 — 307 307	611 612 612 613 — 613	916 91 7 918 918 919	1222 1223 1224 1224 1225	1527 1528 1529 1531 1532	1833 1834 1835 1837	2138 2140 2141 2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+30,6 +30,7 2 +30,8 3 +30,9 5 +31,0 5 +31,1 7 +31,2 9 +31,3	306 306 306 306 — 307 307	611 612 613 - 613	917 918 918 919	1223 1224 1224 1225	1529 1531 1532	1835 1837	21 \$1 21 \$3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 2 & +30,8 \\ +30,9 \end{bmatrix} $ $\begin{bmatrix} +31,0 \\ -31,1 \\ -31,2 \end{bmatrix} $	306 306 — 307 307	613 613	918 919	122 í 122 í	153ï 1532	1837	2143
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	306 - 307 307	613 — 613	919	1225	1539		
$ \begin{vmatrix} +26,0 \\ +26,1 \\ +26,2 \end{vmatrix} = 297 \begin{vmatrix} -593 \\ 593 \\ 890 \end{vmatrix} = 1185 \begin{vmatrix} -1482 \\ 1483 \\ 1780 \end{vmatrix} = 207 \begin{vmatrix} -207 \\ 207 \\ 207 \end{vmatrix} = 207 \begin{vmatrix} -207 \\ 207 \end{vmatrix} $	$egin{array}{c c} & & & & \\ 5 & & +31,0 \\ 5 & & +31,1 \\ \hline 7 & & +31,2 \\ 7 & & +31,3 \end{array}$	- 307 307	– 613		İ	İ	1838	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	307		— 950	-1226			2144
+26,2 297 594 890 1187 1484 1781 207	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		613			1533	—1839	-21 j6
	$0 \pm \pm 31,3$	307		930		1534	18 (0	2147
		921	614		1228		1841	2148
l sold "'l a" il o" l a l land 'and l'		30 7 307	614 615		1		1814	2151
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		308	615	923		1538	1865	2153
+26,6 298 595 893 1190 1,488 1,785 208		308	615	923		1539	1846	2154
+26,7 298 596 893 1191 1489 1787 208.	$i \parallel \pm 31,7$	308	616	924	1232	1540	1848	2155
[+26,8] 298 596 894 1192 1490 1788 2086		308	616	924			1849	2157
$\begin{vmatrix} +26,9 \end{vmatrix} \begin{vmatrix} 298 \end{vmatrix} \begin{vmatrix} 596 \end{vmatrix} \begin{vmatrix} 895 \end{vmatrix} \begin{vmatrix} 1193 \end{vmatrix} \begin{vmatrix} 1491 \end{vmatrix} \begin{vmatrix} 1789 \end{vmatrix} \begin{vmatrix} 2089 \end{vmatrix}$	7 +31,9	308	617	925	1233	15 (2	1850	2158
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	· (- 309 309	- 617 618	- 926 - 926		-1543 1544	-1851 1852	- 2160 2161
$egin{array}{c ccccccccccccccccccccccccccccccccccc$		309	618	927		15(5		2163
[+27,3] 299 598 897 1196 1495 1794 209		309	618	927	1237	1546	1	2164
+27,4 209 508 808 1197 1496 1795 209		309	619		1237	1547		2165
$\left -27.5 \right $ 299 599 898 1198 1497 1796 2090		310	619	929		15.18	1857	2167
$\left +\frac{27,6}{37,6} \right = \frac{300}{599} \left -\frac{599}{899} \right = \frac{1199}{1498} \left -\frac{1498}{1798} \right = \frac{2099}{1498}$		310	620	929		1549		2168
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		310 310	620	930 930		1550 1551	1860	2170 2171
+27,8 300 600 900 1200 1500 1800 2100 -27,9 300 600 901 1201 1501 1801 210		310	621	931		1552	1862	2172
+28,0 $ -300 $ $ -601 $ $ -901 $ $ -1202 $ $ -1502 $ $ -1803 $ $ -210 $		- 311	— 621	— 932			-1863	-2174
$\begin{vmatrix} +28,1 \\ 301 \end{vmatrix} \begin{vmatrix} 301 \\ 601 \end{vmatrix} \begin{vmatrix} 902 \\ 1202 \end{vmatrix} \begin{vmatrix} 1503 \\ 1804 \end{vmatrix} \begin{vmatrix} 210 \\ 210 \end{vmatrix}$		311	622	932			1865	2175
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		311	622 622	933			1866 1867	2177
$ \begin{vmatrix} +28,3 \\ +28,4 \end{vmatrix} \begin{vmatrix} 301 \\ 301 \end{vmatrix} \begin{vmatrix} 602 \\ 602 \end{vmatrix} \begin{vmatrix} 903 \\ 904 \end{vmatrix} \begin{vmatrix} 1204 \\ 1205 \end{vmatrix} \begin{vmatrix} 1505 \\ 1506 \end{vmatrix} \begin{vmatrix} 1806 \\ 2106 \end{vmatrix} $		311	623	934 934	1245	1557	1868	21,0
$\begin{bmatrix} +26, 4 \\ -28, 5 \end{bmatrix}$ 301 603 904 1206 1507 1809 2110		312	623	935			1869	2181
+28,6 302 603 905 1207 1508 1810 211		312	623	935		1559	1871	2182
+28,7 302 604 905 1207 1509 1811 2113	+33,7	312	62.4	936	1248		1872	2184
+23,8 302 604 906 1208 1510 1812 211.		312	625	937	1249		1873	2185
+28,9 302 604 907 1209 1511 1813 2110		312	625	937		[1874	2187
$oxed{ \begin{vmatrix} +29,0 \\ +29,1 \end{vmatrix}} = 302 \begin{vmatrix} -605 \\ -907 \end{vmatrix} = 907 \begin{vmatrix} -1210 \\ -1211 \end{vmatrix} = 1815 \begin{vmatrix} -2111 \\ -2111 \end{vmatrix} = 1816 \begin{vmatrix} -2111 \\ -2111 \end{vmatrix}$		313 313	- 625 626		-1250 1251			-2188 2190
[+29,2] 303 606 909 1211 1514 1817 2126	5 +34.2	313	626			1		2191
+29,3 303 606 909 1212 1515 1818 212		313	626		1			2192
-29,4 303 607 910 1213 1516 1819 212	$3 \mid +34,4$	3,3	627	940	1254		1880	2191
+29.5 303 607 910 1214 1517 1821 212			627	941		1568	1882	2195
+29,6 304 607 911 1215 1518 1822 2120 20,7 304 609 011 1215 1518 1822 2120	$\frac{5}{3}$ +34,6		628					2197
$\begin{bmatrix} -29,7 \\ +29,8 \end{bmatrix}$ $\begin{bmatrix} 304 \\ 608 \end{bmatrix}$ $\begin{bmatrix} 608 \\ 912 \end{bmatrix}$ $\begin{bmatrix} 1215 \\ 1216 \end{bmatrix}$ $\begin{bmatrix} 1519 \\ 1520 \end{bmatrix}$ $\begin{bmatrix} 1823 \\ 212 \end{bmatrix}$ $\begin{bmatrix} 212 \\ 212 \end{bmatrix}$		314	628 628	942	1256 1257		1884	2198
$ \begin{vmatrix} +29.8 \\ +29.9 \end{vmatrix} = 304 \begin{vmatrix} 608 \\ -609 \end{vmatrix} = 912 \begin{vmatrix} 1216 \\ -1217 \end{vmatrix} = 1520 \begin{vmatrix} 1824 \\ -1521 \end{vmatrix} = 1826 \begin{vmatrix} -2136 \\ -2136 \end{vmatrix} = 2136 $	il	314 - 314	- 629		-1258	-1572	1	-2201
1 - 2 , 5 304 305 315 - 1217 - 1321 1020 - 2130] ",4	029	913	1 .250	1		

. TABLE II.

 $\mathbb{O}_0 = + 4^{\circ}$.
Pour \mathbb{O}_0 négatif : changer le signe de l'argument η .

 $\beta_2 = (\lambda - 1)(\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

7)			(:	x — A,	٠.			n,			(z — J.,)	··•		
6− Ø₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.	ου δ — (Ď ₀ .	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
+35,0 +35,1	— 315 315	- 629 630	- 944 945	-1259 1259	-1573 1574	-1888 1889	-2202 2204	+40,0 +40,1	- 325 325	- 650 650	- 974 975 976	—1299 1300 1301	1624 1625 1626	—1949 1950 1951	-2273 2275 2276
$\begin{vmatrix} +35,2 \\ +35,3 \\ +35,4 \\ +35,5 \end{vmatrix}$	315 315 315 316	630 630 631	945 946 946 947	1260 1261 1262 1263	1575 1576 1577 1578	1890 1891 1893 1894	2205 2207 2208 2209	+40,2 $+40,3$ $+40,4$ $+40,5$	325 325 326 326	650 651 651 652	976 976 977 977	1302 1302 1303	1627 1628 1629	1952 1953 1955	2278 2279 2280
$\begin{bmatrix} +35,6 \\ +35,7 \\ +35,8 \end{bmatrix}$	316 316 316	632 632 633	948 948 94 9	1263 1264 1265	1579 1580 1581	1895 1896 1897	2211 2212 2214	$\begin{vmatrix} +40,6\\ +40,7\\ +40,8 \end{vmatrix}$	326 326 326	652 652 653	978 979 979	1304 1305 1306	1630 1631 1632	1956 195 7 1958	2282 2283 2285 2286
$\begin{vmatrix} +35,9 \\ +36,0 \\ +36,1 \end{vmatrix}$	316 317 317	633 633 634	949 — 950 951	1266 1267 1267	1582 1583 1584	—1900 —1899	2215 2217 2218	$\begin{vmatrix} +40,9 \\ +41,0 \\ +41,1 \end{vmatrix}$		653 — 654 654	980 — 980 981	1306 1307 1308	1633 1634 1635	1959 —1961 1962	-2288 2289
$\begin{vmatrix} +36,2\\ +36,3\\ +36,4 \end{vmatrix}$	317 317 317	634 635 635	951 952 952	1268 1269 1270	1585 1586 1587	1902 1904 1905	2219 2221 2222	$\begin{vmatrix} +41,2\\ +41,3\\ +41,4 \end{vmatrix}$	327 327 328	654 655 655	982 982 983	1310 1310	1636 1637 1638 1639	1963 1964 1966 1967	2290 2292 2293 2295
$\begin{vmatrix} +36,5 \\ +36,6 \\ +36,7 \\ +36,8 \end{vmatrix}$	818 818 818 818	635 636 636 637	953 954 954 955	1271 1271 1272 1273	1588 1589 1590 1591	1906 1907 1908 1910	2224 2225 2226 2228	$\begin{vmatrix} +41,5\\ +41,6\\ +41,7\\ +41,8 \end{vmatrix}$	328 328 328 328	656 656 656 657	983 984 985 985	1311 1312 1313 1314	1640 1641 1642	1968 1969 1971	2296 2298 2299
$\begin{vmatrix} +36,9 \\ +37,0 \end{vmatrix}$	— 319 — 319	637 -637	955 — 956	1274 —1275	1592 1593	1911 1912	2229 2231	+41,9 $+42,0$ $+42,1$	328 - 329 329	657 — 658 658	986 987 987	1315 -1315 1316	1643 1644 1645	1972 1973 1974	2300 2302 2303
$\begin{vmatrix} +37,1\\ +37,2\\ +37,3\\ +37,4 \end{vmatrix}$	319 319 319 320	638 638 639 639	957 957 958 958	1276 1276 1277 1278	1594 1595 1596 1597	1913 1915 1916 1917	2232 2234 2235 2236	$\begin{vmatrix} +42,2\\ +42,3\\ +42,4 \end{vmatrix}$	329 329 330	659 659 659	988 988 989	1317 1318 1319	1646 1647 1648	1975 1977 1978	2305 2306 2308
$\begin{vmatrix} +37,5 \\ +37,6 \\ +37,7 \end{vmatrix}$	320 320 320	639 640 640	959 960 960	1279 1280 1280	1598 1600 1601	1918 1921	2238 2239 2241 2242	$\begin{vmatrix} +42,5 \\ +42,6 \\ +42,7 \\ +42,8 \end{vmatrix}$	330 330 330 330	660 661 661	991 991 990 990	1319 1320 1321 1322	1649 1650 1651 1652	1979 1980 1982 1983	2309 2310 2312 2313
$\begin{vmatrix} +31,8\\ +37,9\\ +38,0 \end{vmatrix}$	320 321 — 321	641 641 — 641	961 961 — 962	1281 1282 —1283	1602 1603 —1604	1922 1923 —1924	2244 -2245	+42,9 +43,0	33o 331	661 - 662	99 ² 99 ³	1323 —1323	1653 —1654	1984 —1985	2315 2316
+38,1 +38,2 +38,3	321 321 321 321	642 643 643	963 964 964 965	1284 1285 1285 1286	1605 1606 1607 1608	1925 1927 1928 1929	2246 2248 2249 2251	$\begin{vmatrix} +43,1\\ +43,2\\ +43,3\\ +43,4 \end{vmatrix}$	331 331 332 332	662 663 663	993 994 994 995	1324 1325 1325 1326	1655 1656 1657 1658	1986 1988 1989	2317 2319 2320 2322
$\begin{vmatrix} +38,4\\ +38,5\\ +38,6\\ +38,7 \end{vmatrix}$	322 322 322	643 643 644 644	965 966 966	1287 1288 1289	1611 1610	1930 1932 1933	2252 2254 2255	$+43,5 \\ +43,6 \\ +43,7$	332 332 332	664 664 665	996 996 997	1327 1328 1329	1659 1660 1661	1991 1992 1994	2323 2325 2326 2327
$\begin{vmatrix} +38,8\\ +38,9\\ +39,0 \end{vmatrix}$	322 322 — 323	645 645 — 646	967 968 — 968	1289 1290 —1291	1612 1613 —1614	1934 1935 —1936	2256 2258 	$\begin{vmatrix} +43,8\\ +43,9\\ +44,0 \end{vmatrix}$	333 333 — 333	665 665 666	997 998 — 999	1329 1330 —1331	1662 1663 —1664	1995 1996 —1997	2329 -2330
$\begin{vmatrix} +39,1 \\ +39,2 \\ +39,3 \end{vmatrix}$	323 323 323	646 646 647	969 969 970	129 2 1293 1293	1615 1616 1617	1938 1939 1940	2261 2262 2263	$\begin{vmatrix} +44,1\\ +44,2\\ +44,3 \end{vmatrix}$	333 333 334	666 667 667	1001 1001	1332 1333 1334 1335	1665 1666 1668 1669	1999 2000 2001 2002	2332 2333 2334 2336
$\begin{vmatrix} +39,4\\ +39,5\\ +39,6\\ +39,7 \end{vmatrix}$	324 324 324 324	617 648 648 648	971 971 972 972	1294 1295 1296 1297	1618 1619 1620 1621	1941 1942 1944 1945	2265 2266 2268 2269	+44,4 $+44,5$ $+44,6$ $+44,7$	334 334 334 334	667 668 668 669	1001 1002 1003	1336 1336 1337	1670 1671 1672	2003 2005 2006	2337 2339 2340
$+39,8 \\ +39,9$	324 - 325	649 649	973 - 974	1297	1622 1623	1946 —1947	2271 -2272	$+44,8 \\ +44,9$	335 — 335	— 669 — 669	1004 1004	1338 1339	1673 —1674	2007 —2008	2342 -2343

 $\mathfrak{O}_0 = +4^{\circ}.$ Pour \mathfrak{O}_0 négatif : changer lo signe de l'argument η .

 $\beta_2 = (\lambda - I)(\alpha - \delta_0)'.$ Pour $(\alpha - \delta_0)'$ négatif : changer le signe du nombre β_2 .

τ,			(:	z — «l.,)	··.			7)			(z — "Ł")	··.		
ou		001	201	101	-01	201		ou	401	201	001	1 , , ,	-01	201	•
—— (₽o.	+ 10'.	+ 20'.	+ 30′.	+ 40′.	+ 50'.	+ 60'.	+ 70'.	ô ₽.	+ 10'.	+ 20'.	+ 30'.	+ 10'.	+ 50'.	+ 60'.	+70′.
+45,0	- 335	— 670	-1005	- 134o	-1675	-2010	-2311	+50',0	- 345				-1725	-2070	2416
$+45,1 \\ +45,2$	335 335	670 671	1005 1006	1341 1341	1676 1677	2011 2012	23 (6 23 (7	$+50.1 \\ +50.2$	345 3 46	691 691	1036	1381 1382	1726 1727	2072 2073	2417 2418
-45,3	336	67 i	1007	1342	1678	2013	2349	-50,3	346		1037	1383	1728	2071	2420
+45,4	336	671	1007	1343	1679	2014	2350	+50,4	346	6 <u>9</u> 3	1038	1384	1729	2075	2421
$+45,5 \\ +45,6$	336 336	672 672	1008	1344 1345	1680 1681	2016	2352 2353	$+50,5 \\ +50,6$	346 346	692 693	1038	1384 1385	1730	2076 2078	2423 2424
+45.7	337	$\begin{array}{c} 672 \\ 673 \end{array}$	1000	1345	1682	2017	2354+		347	693	1039	1386	1732	20,0	2424
-47,8	337	673	1010	1346	1683	2019		-50.8	347	693	1040	1387	1733	2080	2427
-45,9	337	673	1010	1347	168 j	2020	2357 (+50,9	347	69 í	1041	1388	1734	2081	2428
+46,0	— 33 7	- 671	-1011	-1348	1685	2023	-2359	-51,0	- 347	- 691	-1011	-1388	-1736	-2083	-2430
+46,1	337	674 675	1011	1349	1686	2023	2360	+51,1	347	695	1032		1737 1738	2084	2431
$+46,2 \\ +46,3$	337 338	675 675	1012	1349 1350	1687 1688	202.j 202.j	2361 2363	+51,2 +51,3	348 348	695 695	1043 1043	1390 1391	1736	2085 2086	2 433 2 434
-46,4	338	676	1013	1351	1689	2027	2364	+51,4	318	696	1011	1392	1740	2087	2 (3)
+16,5	338	676	1014	1352	1690	2098	2366	+51,5	348	696	1044	1392	1741	2089	2437
$-46,6 \\ +46,7$	338 338	676 676	1014 1015	1353 t353	1691 1692	2029 2030	2367 2369	+51,6 +51,7	348 349	697	1045	1393 1 3 94	1742	2090 2091	2438 2440
$^{+46,8}$	339	677	1015	1354	1693	3031	2309	+51,7 +51,8	319	697 697	1046	1391	1741	2097	2440
-46, 9	3 39	678	1016	1355	1694	2033	2371	+51,9	349	698	1047	1396	1745	2094	2442
+47,0	-339	— 678	-1017	-1356	-1695	-2034	-2372	+52,0	- 319	- 698	-1017	1397	-1746	-2095	-2444
$+47,1 \\ +47,2$	339 339	678 679	1018	1357 1358	1696 1697	2035 2036	2374 2376	$+52,1 \\ +52,2$	349 350	699 699	1048 1049	1397 1398	1747 1748	2096 2097	2445 2447
+47,3	3 40	679	1019	1358	1698	2037	2377	-52,3	350	700	1049	1399	1749	2098	2448
+47,4	340	680	1019	1359	1699	2039	2378	+52,4	350	700	1050	1400	1750	2100	2,150
-47,5 -47,6	340 340	680 680	1020	1360 1361	1700 1701	2040 2041	2380 2381	$+52.5 \\ +52.6$	350 350	700 701	1050 1051	1401 1401	1751 1752	2101 2102	2451 2452
+47,7	340	186	1021	1362	1702	2042	2383	-52,7	351	701	1052	1402	1753	2103	2454
+47,8	341	681	1022	1362	1703	2044	2384	+52.8	351	70%	1052	1403	1754	2105	2455
+47,9	341	682	1022	1363	1704	2045	2386	+52,9	351	702	1053	1404	1755	2106	2457
$-48,0 \\ +48,1$	- 3 í í 34 í	-682 682	-1023 1024	-1364 1365	-1705 1706	2046 2047	-2387 2388	+53,0 +53,1	351 351	— 70 2 703	-1051 1051	-1405 1405	-1756 1757	-2107 2108	-2458 2460
+48,2	341	683	102	1366	1707	20 18	2390	+33,2	352	703	1055	1406	1758	2109	2461
+48,3	342	683	1025	1366	1708	2020	2391	+53,3	352	704	1055		1759	2111	2462
$+48,4 \\ +48,5$	3 12 3 42	684 684	1025 10 2 6	1367 1368	1709	2051 2052	2393 2394	+53,4 +53,5	352 352	704 704	1056 1057	1408 1409	1760 1761	2112	2464 2465
+48,6	342	684	1027	1369	1711	2053	2394 2396	+53,6	352	705	1057	1409	1762	2114	2467
+48,7	342	685	1027	1370	1712	2055	2397	+53,7	353	705	1058		1763	2115	2468
$^{+48,8}_{+48,9}$	343 343	685 686	1028	1370 1371	1713 1714	2056 2057	2398 2400	$\begin{bmatrix} +53,8 \\ +53,9 \end{bmatrix}$	353 353		1058	1411 1412	1764	2117	2469 2471
	·									'.			ĺ	1	
$^{+49,0}_{+49,1}$	- 343 343	— 686 687	-1029 1030	1373	-1715 1716	2058 2059	2401 2403	$ +54,0 \\ +54,1$	- 353 353		1060 1060		1766 1767	-2119 2120	
+49,2	343	687	1030	1371	1717	2061	2404	+34,2	354	707	1061	1414	1768	2122	2475
$^{+49,3}_{+49,4}$	344 344	687 688	1031 1032	1375 1375	1718	2062	2405	+54,3				1415	1769	2123 2124	1 17 %
+49,5	344	688	1032		1719	2063 2064	2407 2408	$+54,4 \\ +54,5$					1770	2124	
+49,6	344	689	1033	1377	1721	2066	2410	+54,6	354	709	1063	1418	1772	2126	2,181
+49,7	344	689		1378	1722	2067	2411	+54,7	355	, , ,		1 :	1773	2138	1
$^{+49,8}_{+49,9}$	345 - 345	689 — 690	1		1723 1724	2068 2069	2413 -2414	$ +54,8 \\ +54,9$	355 355		1061 1065	1419 		2129 -2130	2484 2485
! " *** "	049	- 090	1033	1.579	-1,21	-2009	2414	+01,0	,,,	- /10	-1003	- 1420	1 .,,,,	1 2.50	1 2403

 $\beta_2 = (\lambda - 1)(\alpha - \mathcal{A}_0)'.$ Pour $(\alpha - \mathcal{A}_0)'$ négatif : changer le signe du nombre β_2 .

Г							<u>-</u>	1							
יי ו			(z — "Ł _{°0})) ′ .			7,			(:	z — el.,) ·)'•		
ou								ou							
ŝ−ω₀.	+ 10'.	+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70′.	§−(₽₀.	+ i0'.	-+ 20'.	+ 30'.	+ 40'.	+ 50'.	+ 60'.	+ 70'.
+33',0	- 355	- 710	—106 6	1421	—1776	-2131	-2487	+60',0	— 365	— 731	1096	-1461	-1827	2192	—25 58
+35,1	355	711	1066	1422	1777	2133	2 188	+60,1	366	731	1097	1462	1828	2193	2559
+55,2 +55,3	356 356	711	1067	1423	1778	2134	2489	+60,2	366		1097	1463	1829 1830	2195 2196	2560 2562
+35,4	356	712 712	1067 1068	1423 1424	1779 1780	2135 2136	2491 2492	+60,3 +60,4	366 366	732 732	1098	1464 1465		2190	2563
[-35,5]	356	712	1069	1425	1781	2137	2494	+60.5	366	733	1099	1466		2198	2565
+55,6	356	713	1069	1426	1782	2138	2495	+60,6	367	733	1100	1466		2200	2566
[-55, 7]	357	713	1070	1427	1783	2140	2496	+60,7	367	734	1100	1467	1834	2201	2567
+55,8 +35,9	357 357	714 714	1071	1427	1784	2141	2498	+60.8	367 367	734 734	1101 1102	1468 1469	1835 1836	2202 2203	2569 2570
1			1071	1428	1785	2142	2 499	+60,9	,						·
+56,0 +56,1	- 357 357	- 715	-1072	-1429	-1786	-2143	-2501	+61,0	— 367	-735	-1103	-1470	-1837 1838	-2204 2206	-2572 2573
[+36,1]	358	715 715	1072	1430 1431	1787	2145 2146	2502 2504	+61,1 +61,2	368 368	735 736	1103	1470	1839	2200 2207	2575 2575
+36,3	358	716	1074	1431	1789	2147	2505 2505	+61,2	368	736	1103	1472	1840	2208	2576
-36,4	358	716	1071	1432	1790	2148	2506	+61,4	368	736	1105	1473	1841	2209	2577
+36,5	358	717	1075	1433	1791	2150		+61,5	368	737	1105	1474	18 12	2211	2579
+36,6 +36,7	358 359	717	1075	1434	1792	2151	2509	+61,6	369 369	737 738	1106	1474 1475	1843 1844	2212 2213	2580 2582
+36,8	359	717 718	1076	1435 1435	1793 1794	2152 2153	2511 2512	$ +61,7 \\ +61,8 $	36g	738	1106 1107	1475		2214	2583
+56,9	359	718	1077	1436	1795	2154	2513	+61,9	369	738	1108	1477	1846	2215	2584
$\left +37,0 \right $	- 359	- 719	—10 7 8	-1437	1796	-2156		+62,0	— 369	- 739	-1108	-1478	-1817	-2217	—2 586
[+37,1]	36o	719	1078	1438	1797	2157	2516	-62,1	370	739	1109	1479	1848	2218	2587
$\begin{vmatrix} +37,2 \\ +37,3 \end{vmatrix}$	36o 36o	719	1079	1439	1798	2158	2518	+62,2	370	740	0111	1 179 1 180		2219 2220	2589 2590
-37.4	36o	720 720	1080	1440 1440	1799 1800	2160 2160	2521 2521	+62,3 +62,4	370 370	740 740	1110	1481	1851	2221	2592
-57,5	360	721	1081	1441	1801	2162	2522	+52,5	370	741	1111	1482	1852	2223	2593
+57,6	361	721	1801	1442	1802	2163	2523	-62,6	371	741	1112	1483	1853	2224	2594
$ +37,7 \\ +37,8 $	361 361	721	1082	1443	1803	2164	2525	-62,7	371	742	1113	1483	1854	2225	2596
$\begin{bmatrix} -37, 8 \\ +37, 9 \end{bmatrix}$	361	722 722	1083 1083	1444 1444	1805	2165 2167	2526 2528	+62,8 +62,9	371 371	742 743	1113 1114	1484 1485	1855 1856	2226 2228	2597 2599
-58,0	— 361	— 723	— 108 4	-1445	-1807	—2 168	-2529	+63,0	- 372	— 743	-1114	—1486	— 185 ₇	-2229	-2600
+58.1	362	723	1085	1446	1808	2169	2531	+63,1	372	743	1115	1487	1858	223o	2602
-58,2	362	723	1085	1447	1809	2170	2532	+63,2	372	744	1116	1487	1859	2231	2603
+38,3 +38,4	362 362	724 724	1086 1080	1448	1810	2171	2533	+63,3	372	744	1116	1488 1489	1860 1861	2232 2234	2604 2606
+38,3	362	725	1087	1448 1449	1811 1812	2173 2174	2535 2536	$ +63,4 \\ +63,5 $	372 373	745 745	1117	1499	1862	2235	2607
+38,6	36 3	725	1088	1450	1813	2175	2538	+63,6	373	745	8111	1491	1863	2236	2609
+58,7	363	725	1088	1451	1814	2176	2539	+63,7	373	746	1119	1491	1864	2237	2610
+58,8 +58,9	363 363	726 726	1089 1089	1452 1452	6181 1816	2178 2179	2540 2542	$\left[^{+63,8}_{+63,9} \right]$	3 7 3 373	746 747	1119 1120	1492 1493	1865 1866	2238 2240	2612 2613
+59,0			Ĭ				_	1					1	-2241	2614
-59,0	- 363 364	— 727 727	—1090 —1091	-1453 1454	-1817 1818	-2180 2181	-2543 2545	+64,0 +64,1	— 374 374	- 747 747	-1120 1121	—1494 1495	1868	3242	2616
+59.2	364	728	1091	1455	1819	2182	2546 2546	+64,1	374 374	748	1121	1495		2243	2617
+59,3	364	728	1092	1456	1820	2184	2548	+64,3	374	748	1122	1496	1870	2245	2619
$+59,4 \\ +59,5$	364 364	728	1092	1 (57	1831	2185	2549	+61,4	373	749	1123	1 197	1871	2246	2620
+59,5 +59,6	364 365	729 729	1093 1094	1457 1458	1822 1823	2186	2550	$+64,5 \\ +64,6$	375 375	7 5 0 750	1124	1498 1499	1873 1874	2247 2248	2621 2623
+59,7	365	730	1094	1456		2187 2189	2552 2553	+64,0 +64,7	375 375	750	1124	1499	1875	2219	2624
+59.8	365	730	1005	1460	1825	2190	2555	+64.8	375	750	1125	1500	1876	2251	2626
+59,9	— 365	— 7 30	—1096	-1461	-1826	-2191		+64,9	3 7 3	751	1126	1501	1877	2252	2627
'	• !	'	, ,		1	•	,	+63,0	— 3 7 6	– 751	-1127	—1502	-1878	2253	-2629
												l 	<u> </u>	l	

TABLE III.

 $d'_1 = \frac{\tan g^2 \frac{1}{2} (z - \delta_0)'}{\sin z'} \sin z (\mathfrak{O}_0 + \eta). - \text{La correction est de même signe que } \mathfrak{O}_0 + \eta \text{ pour le passage des déclinaisons aux Y, et de signe contraire pour le passage des Y aux déclinaisons.}$

(a - cl.,)'.						Φ.	+η ou	δ.	-					(~ ! Y
(a - cho).	0.0′.	0°10′.	0° 20′.	0°30′.	0° 40′.	0°50′.	1.0%	1° 10′.	1°20′.	1•30′.	1°40′.	1•50′.	2•0′.	(z — •b•)'.
2' 34 56 77 88 90	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 1 1	0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 2	0 0 1 1 1 1 2 2	0 0 0 1 1 1 2 2 3	0 0 1 1 1 2 2 2 2 3 3	0 0 1 1 1 2 2 3 3	0 0 1 1 1 2 3 3 3 4	0 0 1 1 2 2 3 4	0 1 1 2 2 3 4 5	0 1 1 2 3 3 4 5	2' 3 4 5 6 7 8 9
11 12 13 14 15 16 17 18 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 2 2	1 2 2 2 2 2 3 3 3	2 2 2 3 3 4 4 4 5 5 5	2 3 3 4 4 5 6 6 7	3 3 4 4 5 5 6 7 8 9	3 4 4 5 6 7 7 8 9	4 4 5 6 7 8 9 10	4 5 6 7 8 9 10	5 6 7 8 9 10 11 12 14	5 6 7 8 10 11 12 14 15	6 7 8 9 11 12 14 15 17	6 7 9 10 11 13 15 17 18	11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29 30	0 0 0 0 0 0 0	2 2 2 3 3 3 3 4 4	44555566778	6 6 7 7 8 9 9	7 8 9 10 11 12 12 13 14	9 10 11 12 13 14 16 17 18	11 12 14 15 16 17 19 20 21 23	13 14 16 17 19 20 22 23 25	15 16 18 20 21 23 25 27 29 31	17 18 20 23 24 26 28 30 32 34	19 21 22 24 27 29 31 33 36 38	21 23 25 27 29 32 34 37 39 42	22 25 27 29 32 34 37 40 43 46	21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44555666777	8 9 10 10 11 12 13 14	12 13 14 15 16 17 17 18	16 17 19 20 21 22 23 25 26 27	20 22 23 25 26 27 29 31 32	24 26 28 29 31 33 35 37 39 41	29 30 32 34 36 38 41 43 45	33 35 37 39 42 44 46 49 52 54	37 39 42 44 47 49 51 55 58 61	41 43 46 49 52 55 58 61 64 68	45 48 51 54 57 60 64 6 7 71	49 52 55 59 62 66 70 73 77 81	31 32 33 31 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49	0 0 0 0 0 0	7 7 8 8 8 9 9 9	14 15 16 16 17 18 19 20 20	21 22 24 25 26 27 28 29 31 32	29 30 32 33 34 36 37 39 41	36 37 39 41 43 45 47 49 51 53	43 45 47 49 51 54 56 59 61 64	50 52 55 57 60 63 65 68 71 74	57 60 63 66 69 72 75 78 81 85	64 67 70 74 77 81 84 88 91	71 75 78 82 86 90 93 97 102 106	78 82 86 90 94 98 103 107 112 116	85 90 94 98 103 107 112 117 122	41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60	0 0 0 0 0 0 0	11 12 12 13 13 14 14 15	22 23 24 25 26 27 28 29 30 31	33 34 36 37 38 40 41 43 44 46	44 46 48 49 51 53 55 57 59 61	55 57 59 62 64 66 69 71 74	66 69 71 74 77 80 82 85 88	77 80 83 86 90 93 96 100 103	88 93 95 99 102 106 110 114 118	99 103 107 111 115 119 124 138 133	116 114 119 123 128 133 138 142 147	121 126 131 136 141 146 152 157 162	132 137 142 148 154 159 165 171 177 183	51 52 53 54 55 56 57 58 59 60
61 62 63 64 65	0 0 0 0	15 16 17 17	31 33 34 35 36	47 49 50 52 54	63 65 67 69 72	78 81 84 86 89	91 94 101 104 107	110 114 117 121 125	136 130 134 139 143	141 146 151 156 161	157 163 168 173 179	173 179 184 190 196	189 195 201 208 214	61 62 63 64 65

TABLE III.

 $d_1' = \frac{\tan g^2 \frac{1}{2} (\alpha - \mathcal{A}_0)'}{\sin \iota'} \sin 2(\mathcal{O}_0 + \eta). \quad - \text{ La correction est de même signe que } \mathcal{O}_0 + \eta \text{ pour le passage des déclinaisons aux Y et de signe contraire pour le passage des Y aux déclinaisons.}$

						.	+η ou	ô.						
(2 — ol.,)'.	2•0′.	2° 10′.	2°20′.	2•30′.	2° 40′.	2° 50′.	3°0′.	3° 10′.	3° 20′.	3°30′.	3° 40′.	3° 50′.	4°0′.	(α — J.,)'.
2 ['] 3 4 5 6 7 8 9	0 1 1 2 3 3 4 5	0 1 1 2 3 4 5 6	0 1 1 2 2 3 4 5 6	0 1 1 2 2 3 4 5 6	0 1 1 2 2 3 4 6	0 1 2 3 4 5 6	0 1 2 3 4 5 6 8	0 1 2 3 4 5	0 1 2 3 4 5 7	0 1 2 2 3 4 6 7	0 1 2 2 3 5 6 8	0 1 2 3 4 5 6 8	0 1 2 3 4 5 7 8	2' 3 4 5 6 7 8 9
11 12 13 14 15 16 17 18 19 20	6 7 9 10 11 13 15 17 18	7 8 9 11 12 14 16 18 20	7 9 10 12 13 15 17 19 21	8 9 11 12 14 16 18 21 23 25	8 10 11 13 15 17 20 22 24 27	9 10 12 14 16 18 21 23 26	9 11 13 15 17 20 22 25 28 31	10 12 14 16 18 21 23 26 29	10 12 14 17 19 22 24 27 31	11 13 15 17 20 23 26 29 32 36	11 13 16 18 21 24 27 30 34 37	12 14 16 19 22 25 28 32 35 39	13 15 17 20 23 26 29 33 37 41	11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30	22 25 27 29 32 34 37 40 43 46	24 27 29 32 34 37 40 43 46 50	26 29 31 34 37 40 43 46 50 53	28 31 34 37 40 43 46 50 53	30 33 36 39 42 46 49 53 57	32 35 38 41 45 49 52 56 60 65	34 37 40 44 48 52 56 60 64 68	35 39 43 46 50 54 59 63 68 72	37 41 45 49 53 57 62 66 71	39 43 47 51 55 60 65 70 75 80	41 45 49 54 58 63 68 73 78	43 47 51 56 61 66 71 76 82 87	45 49 54 58 63 69 74 79 85	21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40	49 52 55 59 62 66 70 73 77 81	53 56 60 64 67 71 75 • 79 84 88	57 61 65 69 73 77 81 86 90	61 65 69 73 78 82 87 92 96	65 69 74 78 83 88 93 98 103 108	69 74 78 83 88 93 98 104 109	73 78 83 88 93 99 104 110 116	77 82 87 93 98 104 110 116 122 128	81 87 92 98 104 110 116 122 128 135	85 91 97 103 109 115 121 128 135 142	89 95 101 107 114 120 127 134 141 149	93 99 106 112 119 126 133 140 148 155	97 104 110 117 124 131 139 146 154 162	31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50	85 90 94 98 103 107 112 117 122 127	93 97 102 106 111 116 121 127 132 137	100 104 109 115 120 125 131 136 142 148	107 112 117 123 128 134 140 146 152 159	114 119 125 131 137 143 149 156 162 169	121 127 133 139 145 152 159 166 173 180	128 134 141 147 154 161 168 175 183	135 142 149 155 162 170 177 185 193 201	142 149 156 164 171 179 187 195 203	149 156 164 172 180 188 196 204 213	156 164 172 180 188 197 205 214 223 232	163 171 179 188 197 205 214 224 233 243	170 179 187 196 205 214 224 233 243 253	41 42 43 44 45 46 47 48 49
51 52 53 54 55 56 57 58 59 60	132 137 152 148 154 159 165 171 177 183	143 149 154 160 166 172 179 185 191 198	154 160 166 173 179 186 192 199 206 213	165 171 178 185 192 199 206 213 221 228	176 183 190 197 205 212 220 227 235 243	187 194 202 209 217 225 233 242 250 258	198 206 214 222 230 238 247 256 265 274	209 217 225 234 243 252 261 270 279 289	220 228 237 246 255 265 274 284 294 304	231 240 249 259 268 278 288 288 298 309 319	242 251 261 271 281 291 302 312 323 334	252 262 273 283 294 304 315 326 338 349	263 274 284 295 306 317 329 341 352 364	51 52 53 54 55 56 57 58 59 60
61 62 63 64 65	189 195 201 206 214	204 211 217 225 252	220 227 235 242 250	236 243 251 259 268	252 260 268 277 286	267 276 284 294 304	283 292 301 311 322	298 308 318 328 329	314 325 335 346 357	330 341 352 363 374	347 355 368 380 392	361 373 385 397 416	377 389 402 415 428	61 62 63 64 65

Alger, Coord. rect.

Digitized by Google

TABLE III.

 $d_1' = \frac{\tan^2\frac{1}{2}(z-\lambda_0)'}{\sin t'}\sin z(\Omega_0+\eta). - \text{La correction est de même signe que } (\Omega_0+\eta) \text{ pour le passage des déclinaisons aux Y et de signe contraire pour le passage des Y aux déclinaisons.}$

				(D ₀ + r ₁	ou 8.				(z — ,l,,)'.
(a — ol. ₀)'.	4•0′.	4•10'.	4° 20′.	1°30′.	4• 10'.	4° 50′.	5°0′.	5° 10′.	(z — (v ₀).
2'3345567788910	0 1 2 3 4 5 7 8	1 2 3 4 5 7 9	1 1 2 3 4 5 7 9	1 1 2 3 4 6 7 9	1 1 2 3 4 6 8	1 2 3 4 6 8	1 1 2 3 5 6 8 10	1 1 2 3 5 6 8 11 13	2 ' 3 4 5 6 7 7 8 9 10
11 12 13 14 15 16 17 18 19	12 15 17 20 23 26 29 33 37 41	13 15 18 21 24 27 31 34 38 42	13 16 19 22 25 28 32 36 40	14 16 19 22 26 29 33 37 41 46	14 17 20 23 27 30 34 38 42 47	15 18 21 24 28 31 35 40 44 49	15 18 21 25 28 32 37 41 46 51	16 19 22 26 29 33 38 42 47 52	11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30	45 492 58 63 69 74 79 85	47 51 56 61 66 71 77 83 89	48 53 58 63 69 74 80 86 92	50 55 60 66 71 77 83 89 96	52 57 63 68 74 80 86 93 99	54 59 65 70 76 83 89 96 103	56 61 67 73 79 85 92 99 106	58 63 69 75 82 88 95 102 110	21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 38 39	97 104 110 117 124 131 139 146 154	101 108 115 122 129 137 144 152 160	105 112 119 127 134 142 150 158 167	109 117 124 132 139 148 156 164 173	113 121 129 137 145 153 163 170 179 189	117 125 133 141 150 158 167 176 186	121 129 138 146 155 164 173 182 192	125 134 143 151 160 169 179 189 199	31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50	170 179 187 196 205 214 224 233 243 253	177 186 195 204 213 223 233 243 253 264	184 193 203 212 222 232 242 253 263 274	191 201 210 220 230 241 251 262 273 284	198 208 218 228 239 250 261 273 283 295	205 215 226 237 247 258 270 281 293 305	212 223 234 245 256 267 279 291 303 316	219 230 241 253 264 276 288 301 313 326	41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60	263 274 284 295 306 317 329 341 352	274 285 296 307 319 331 343 355 367 380	285 296 308 320 332 344 356 369 382	296 308 320 332 344 357 370 383 396 410	307 319 331 344 357 370 383 397 411 425	318 330 343 356 369 383 397 411 425 440	329 342 355 368 382 396 410 425 440 455	339 353 367 381 395 409 424 439 454	51 52 53 54 55 56 57 58 59 60
61 62 63 64 65	377 389 402 415 428	392 405 418 432 445	408 421 435 449 463	423 437 451 466 480	439 453 468 483 498	454 469 484 500 516	470 486 501 517 534	485 501 518 535 552	61 62 63 64 65

TABLE IV.

Les valeurs de $\frac{1}{2}\omega$, ρ et ρ' sont exprimées en unités de la sixième décimale.

ω₀=— 2°.								Ø₀=−1°.					
II.	ίω.	Н.	½ω.	Н.	ρ.	ρ'.	Н.	½ω.	Н.	½ ω.	н.	ρ.	ρ'.
23. 1 23. 1 5. 6 77. 8 9. 10	64 63 62 61 60 58 57 56 55 54	0. 0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	± 0 1 2 3 4 5 6 7 8 9	-+ 287 287 287 287 287 287 287 287	+ 472 472 473 473 473 472 472 472 472 472 472	23. 1 2 3 4 5 6 7 8 9 10	61 60 59 58 57 56 54 53 52	h 0 1 2 3 4 5 6 7 8 9	+ 0 1 2 3 3 4 5 5 6 7 8 9	± 0 1 2 3 4 5 6 7 8 9	+ 287 287 287 287 287 287 287 287 287 287	+ 459 459 459 459 459 459 459 459 459 459
11 12 13 14 15 16 17 18 19 20	52 50 50 49 48 47 46 443 42	10 11 12 13 14 15 16 17 18	10 11 13 15 16 17 18 19	10 11 12 13 14 15 16 17 18	288 288 283 283 283 283 286 289 289 289	472 472 472 472 473 473 473 473 473	11 12 13 14 15 16 17 18 19	50 48 47 44 43 41 40	10 11 12 13 14 15 16 17 18	10 11 12 13 14 15 16 17 18	10 11 12 13 14 15 16 17 18	288 288 288 288 288 285 288 288 289 289	459 459 459 460 460 460 460 460 460
21 22 23 24 25 26 27 28 29 30	41 40 39 38 37 36 35 34 32 31	20 21 22 23 24 25 26 27 28 29	21 23 24 25 26 27 28 29	20 21 22 23 24 25 26 27 28 29	289 290 290 290 290 291 291 291 292 292	4773 4777 4777 4777 4777 4777 4775	21 22 23 24 25 26 27 28 29 30	39 38 37 36 35 34 33 31 30	20 21 22 23 24 25 26 27 28 29	20 21 22 23 24 25 26 27 28 29	20 21 22 23 24 25 26 27 28 20	289 289 290 290 290 291 291 291 291	460 460 460 461 461 461 461 461 462
31 32 33 34 35 36 37 38 39 40	30 29 28 27 26 25 24 23 22 21	30 31 32 33 34 35 36 37 38	31 32 34 35 36 37 38 39 40	30 31 32 33 34 35 36 37 38 39	293 293 293 294 294 295 295 295 296	475 4776 4776 4776 4776 4777 4777	31 32 33 31 35 36 37 38 39 40	29 28 27 26 25 24 23 22 21	30 31 32 33 34 35 36 37 38 39	30 31 32 33 34 35 36 37 38	30 31 32 33 34 35 36 37 38 39	202 203 293 293 294 294 295 295 296	462 462 462 463 463 463 463 464
41 42 43 44 45 46 47 48 49 50	20 19 18 17 16 13 13 12	40 41 42 43 44 45 46 47 48	42 43 44 46 47 48 49 50 51 52	40 41 42 43 44 45 46 47 48 49	296 297 297 298 298 299 300 301 301	7888 47777999 47777999 47788 47788 4444444444	41 42 43 44 45 46 47 48 49 50	19 18 17 16 15 14 13 12	40 41 42 43 44 45 46 47 48 49	40 41 43 44 46 47 48 49	40 41 42 43 44 45 46 47 48 49	296 297 297 298 298 299 299 300 300 301	464 465 465 465 466 466 466 467 467
51 52 53 54 55 56 57 58 23.59 0 0	98 76 5 43 2 1 0	50 51 52 53 51 55 56 57 58 0.59	54 55 56 57 58 60 61 62 63 64	50 51 52 53 54 55 56 57 58 ±59	302 303 304 304 305 306 307 307 308	481 482 482 482 483 483 484 484	51 52 53 51 55 56 57 58 23.59 0.0	98 76543 2 1 0	50 51 52 53 54 55 56 57 58 0.59	51 52 53 54 56 57 58 59 60	50 51 52 53 54 55 56 57 58 ±59	301 302 303 303 304 305 305 306 307	467 468 468 469 469 469 470 471

TABLE IV.

Les valeurs de $\frac{1}{2}\omega$, ρ et ρ' sont exprimées en unités de la sixième décimale.

(Ď₀= 0°.								(Ū₀ = + 1°.						
11.	½ω.	Н.	½ω.	11.	ρ.	ρ'.	Н.	½ω.	Н.	½ω.	Н.	ρ.	ş'.	
23. 1 22 3 4 5 6 7 7 8 9		h m 0. 0 1 2 3 4 5 6 7 8 9	+ 0 1 2 3 3 4 5 5 6 7 8 8	± 0 1 2 3 4 4 5 6 7 8 9	+ 7777777777777777777777777777777777777	+ 77774777777777	23. 1 23. 4 5 6 7 8 9		0. 0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6	± 0 1 2 3 4 5 6 7 8 9	+ 2××77777777777777777777777777777777777	+ 436 436 436 436 436 436 436 436 436	
11 12 13 14 15 16 17 18 19	4765 443 2 1 0 98 38	10 11 12 13 14 15 16 17 18	9 10 11 12 13 14 15 16	10 11 12 13 14 15 16 17 18	288 288 288 288 288 288 288 289 289 289	8888888888 444444444444444444444444444	11 12 13 14 15 16 17 18 19 20	45 43 43 43 43 43 43 43 43 43 43 43 43 43	10 11 12 13 14 15 16 17 18	9 10 11 13 13 14 15 16	10 11 12 13 14 15 16 17 18	288 288 288 288 288 285 285 285 289 289 289	436 436 436 436 436 437 437 437	
21 22 23 24 25 26 27 28 29	37 36 35 34 33 31 30 29	20 21 22 23 24 25 26 27 28	19 20 21 22 23 24 25 26 26 27	20 21 22 23 24 25 26 27 28 29	28g 28g 2go 2go 2go 2go 2go 2go 2go 2go 2go 2g	88899999999 4444444 444444	21 22 23 24 25 26 27 28 29 30	36 35 34 33 32 31 30 29 28	20 21 22 22 23 24 25 26 27 28 29	18 19 20 21 22 23 23 24 25 26	20 22 22 22 22 22 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	289 289 290 290 290 291 291 291 291	437 437 437 437 438 438 438 438 438	
31 32 33 34 35 36 37 38 39 40	27 26 26 25 24 23 22 21 20	30 31 32 33 34 35 36 37 38 39	28 30 31 32 33 34 35 36 37	30 31 32 33 34 35 36 37 38	292 293 293 293 294 294 295 295 295	450 450 450 450 450 451 451 451 451 452	31 32 33 34 35 36 37 38 39 40	26 25 24 23 22 22 21 20 19	30 31 32 33 34 35 36 37 38	27 28 29 30 31 32 33 34 35	30 31 32 33 34 35 36 37 38	292 293 292 293 293 294 294 294 295	439 439 439 439 439 439 439 440 440	
41 42 43 44 45 46 47 48 49 50	18 17 16 15 14 13 12 11	40 41 42 43 44 45 46 47 48 49	38 39 40 41 43 44 45 46 47	40 41 42 43 44 45 46 47 48	296 296 297 297 298 298 299 300 300	452 452 453 453 453 454 454 454 455	41 42 43 44 45 46 47 48 49 50	17 16 15 14 13 13 12 11	40 41 42 43 44 45 46 47 48	36 37 38 39 41 42 43 443	40 41 42 43 44 45 46 47 48	296 296 297 297 298 298 299 300 300	440 441 441 441 442 442 442 443	
51 52 53 54 55 56 57 58 23.59 0.0	8 8 7 6 5 4 3 2 1 0	50 51 52 53 54 55 56 57 58 0.59	50 51 52 53 54 55 56 57 58	50 51 52 53 54 55 56 57 58 ±59	301 302 302 303 304 304 305 305 306 307	455 455 456 456 456 457 457 457 458 458	51 52 53 54 55 56 57 57 58 23.59 0.0	8 76 55 43 2	50 51 52 53 54 55 56 57 58 0.59	46 47 48 49 50 52 53 54 55	50 51 52 53 54 55 56 57 58 ±59	301 302 302 303 304 304 305 306 306	443 444 444 444 445 445 446 446	

TABLE IV.

Les valeurs de $\frac{1}{2}\omega,\,\rho$ ct ρ' sont exprimées en unités de la sixième décimale.

				(1	P ₀ =+ 3°	•							
Н,	½ω.	11.	½ω.	Н.	ρ.	ρ'.	II.	½ω.	Н.	½ω.	Н.	ρ.	ş'.
23. 1 23. 1 2 3 4 5 6 7 8 9	53 54 55 55 54 54 47 46 45 44	h 0 1 2 3 4 5 6 7 8 9	+ 0 1 2 2 3 4 5 6 5 8	± 123456789	+ 287 287 287 287 287 287 287 287 287 287	+ 425 425 425 425 425 425 425 425 425 425	23. 1 23. 4 5 6 7 8 9		h 0 0 1 2 3 4 5 6 7 8 9	+ 0 1 2 3 4 5 6 6	+ 0 1 2 3 4 5 6 7 8 9	+ 287 287 287 287 287 287 287 287 287 287	415 415 415 415 415 415 415 415 415
11 12 13 14 15 16 17 18 19 20	43 42 40 39 38 38 37 36 35	10 11 12 13 14 15 16 17 18	8 9 10 11 13 13 14 15 16	10 11 12 13 14 15 16 17 18	288 288 288 288 288 288 288 288 288 289 289	425 426 426 426 426 426 426 426 426 426	11 12 13 14 15 16 17 18 19	41 40 39 38 37 36 35 34 33	10 11 12 13 14 15 16 17 18	8 9 10 11 11 12 13 14 15	10 11 12 13 14 15 16 17 18	288 288 288 288 288 288 288 288 288 289 289	415 416 416 416 416 416 416 416 416
21 22 23 24 25 26 27 28 29 30	34 33 32 31 30 29 28 28 27 26	20 21 22 23 24 25 26 27 28	17 18 19 20 20 21 23 23 24 25	20 21 22 23 24 25 26 27 28 29	289 289 290 290 290 291 291 291	426 426 426 427 427 427 427 427 427 427 427	21 22 23 24 25 26 27 28 29 30	32 31 30 30 29 28 27 26 25 24	20 21 22 23 24 25 26 27 28 29	16 17 18 19 19 20 21 22 23 24	20 21 22 23 24 25 26 27 28	289 289 289 290 290 290 291 291	416 416 416 417 417 417 417 417 417
31 32 33 34 35 36 37 38 39	25 24 23 22 21 20 20 19 18	30 31 32 33 34 35 36 37 38 39	26 27 28 28 29 30 31 32 33	30 31 32 33 34 35 36 37 38	292 292 293 293 293 294 294 295	428 428 428 428 428 428 429 429 429 429 429	31 32 33 34 35 36 37 38 39 40	24 23 22 21 20 19 19 18	30 31 32 33 34 35 36 37 38 39	24 25 26 27 28 29 30 30 31	30 31 32 33 34 35 36 37 38	292 292 293 293 293 293 294 294 294	418 418 418 418 418 418 419 419 419 419
41 42 43 44: 45 46 47 48 49 50	16 15 14 14 13 12 11	40 41 42 43 44 45 46 47 48	35 36 37 38 38 39 40 41 42 43	40 41 42 43 44 45 46 47 48 49	295 296 296 297 297 298 298 299 300	430 430 430 430 431 431 431 432 432	41 42 43 44 45 46 47 48 49 50	15 15 14 13 12 11 11	40 41 42 43 44 45 46 47 48	33 345 35 36 37 38 39 40	40 41 42 43 44 45 46 47 48	295 296 296 297 297 298 298 299 299	419 420 420 420 420 420 421 421 421 421
51 52 53 54 55 56 57 58 23.59 0. 0	8 76 5 43 2 2 1 0	50 51 52 53 - 54 55 56 57 58 0.59	445 46 47 48 49 51 52 53	50 51 52 53 54 55 56 57 58 ±59	300 301 301 302 303 303 304 304 305 306	432 432 433 433 434 434 434 434 435 435	51 52 53 54 55 56 57 58 23.59 0.0	76 66 54 33 24 10	50 51 52 53 54 55 56 57 58 0.59	43 445 445 447 449 450	50 51 52 53 54 55 56 57 58 ±59	300 301 301 302 302 303 304 304 305	422 423 423 423 423 423 424 424

TABLE IV.

Les valeurs de $\frac{1}{2}\omega$, ρ et ρ' sont exprimées en unités de la sixième décimale.

		(D ₀ =+ 4°	·.		
И.	½ω.	H.	<u></u> ω.	Н.	ρ.	ρ'.
23. 1 2 3 4 5 6 7 8 9 10		h m 0. 0 1 2 3 4 5 6 7 8 9	+ o 1 2 2 3 4 5 5 6 7	± 0 1 2 3 4 5 6 7 8 9	-+ 247 247 247 247 247 247 247 247 247 247	+ 406 406 406 406 406 406 406 406
11 12 13 14 15 16 17 18 19 20	39 38 37 36 36 35 34 33 32 31	10 11 12 13 14 15 16 17 18	8 9 10 11 12 13 14	10 11 12 13 14 15 16 17 18	288 288 288 288 288 288 288 288 288 288	406 406 406 406 406 406 406 407 407
21 22 23 24 25 26 27 28 29 30	31 30 29 28 27 27 26 25 24 23	20 21 22 23 24 25 26 27 28 29	15 16 17 18 19 19 20 21 22 23	20 21 22 23 24 25 26 27 28 29	289 289 289 290 290 290 291 291 291	407 407 407 407 407 407 407 408
31 32 33 34 35 36 37 38 39 40	23 22 21 20 19 19 18 17 16	30 31 32 33 34 35 36 37 38	23 24 25 26 27 27 28 29 30	30 31 32 33 34 35 36 37 38 39	292 292 293 293 293 293 294 294 294 295	408 408 408 409 409 409 409 409
41 42 43 44 45 46 47 48 49 50	15 14 13 12 12 11 10 9 8	40 41 42 43 44 45 46 47 48 49	31 32 33 34 35 36 36 37 38 39	40 41 42 43 44 45 46 47 48 49	295 296 296 296 297 297 298 298 298	410 410 410 411 411 411 411 411
51 52 53 54 55 56 57 58 23.59 0.0	765543 2 2 1 0	50 51 52 53 54 55 56 57 58 0.59	40 41 43 43 44 45 46 47 48	50 51 52 53 54 55 56 57 58 ±59	300 300 301 301 302 303 303 304 304	412 412 413 413 414 414 414

TABLE DES MATIÈRES.

I. — RELATIONS FONDAMENTALES ENTRE LES COORDONNÉES CÉLESTES D'UNE ÉTOILE	
ET LES COORDONNÉES DE SON IMAGE MESURÉES SUR LE CLICHÉ.	
Définition des coordonnées rectilignes	Pages. 1
Relations entre les coordonnées rectilignes mesurées et les coordonnées curvilignes \(\xi \) et \(\eta \cdots \cdots \)	111
Transformations diverses des formules fondamentales	v
Interprétation géométrique des relations fondamentales :	
Projections des parallèles	VII
Projections des méridiens	VIII
Développements des différences $\alpha - \mathcal{A}_0$ et $\delta - (\mathfrak{d}_0)$ en fonction des coordonnées rectangulaires x, y et de la déclinaison (\mathfrak{d}_0) du centre de la plaque :	
1° En ascension droite	1X
2º Déclinaison	1X
Autres développements de $\alpha - \mathcal{A}_0$ et $\delta - \mathcal{D}_0$	XI
d'une étoile	XII
Effets d'une erreur de centrage sur les valeurs calculées des coordonnées rectangulaires d'une étoile.	XII
Influence d'un défaut de perpendicularité de l'axe optique sur le plan de la plaque	XV
II Théorie générale des effets des quatre phénomènes : précession, nutation, aberration, réfraction, sur les coordonnées rectilignes.	
Effets produits sur les coordonnées rectilignes d'un astre par un phénomène quelconque de nature à faire subir aux coordonnées équatoriales de cet astre les variations $\Delta x = f(\alpha, \delta)$ et $\Delta \delta = \varphi(\alpha, \delta)$. Expressions générales des variations Δx , Δy des coordonnées rectilignes au moyen des fonctions f , φ et des fonctions $F(x, y, (0))$ et $\Phi(x, y, (0))$ qui représentent symboliquement les différences	XIX
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XX
en x et y	XXI
Expressions des dérivées partielles du second ordre des fonctions F et Φ	XXII
Termes du premier ordre des expressions de Δx et Δy	XXIII
Précession et nutation différentielles:	XXIV
1º Précession	XXVII
2° Nutation	xxvii
Aberration différentielle	XXIX
Réfraction dissérentielle	XXXI
Termes du premier ordre	XXXI
Termes du second ordre	XXXV
III. — Exécution des clichés, mesures, réduction des mesures et détermination	
DES GRANDEURS PHOTOGRAPHIQUES.	
Impression du réseau	XXXV

28820

	Pages.						
Exécution des clichés	XXXVIII						
Mesure des clichés	XXXIX						
Conversion des résultats bruts des mesures en abscisses et en ordonnées	XL						
Détermination des grandeurs photographiques	XLII						
IV. — MÉTHODES EMPLOYÉES POUR LA DÉTERMINATION DES CONSTANTES D'UN CLICHÉ							
AU MOYEN DES ÉTOILES DE REPÈRE.							
Transformation des formules générales pour le calcul pratique des X _c et des Y _c	XLV						
Réduction en Table du facteur λ - 1 et de la correction β2	XLVIII						
Exemple des opérations à effectuer pour obtenir les valeurs des coordonnées rectangulaires relatives							
à l'une des étoiles de repère d'un cliché	L						
Équations résultant de la comparaison des coordonnées rectilignes mesurées aux coordonnées rec-							
tilignes calculées	LI						
Résolution des équations	LV						
Cas où l'on veut supprimer une étoile de repère ou bien en ajouter une nouvelle	LVI						
Modifications subies par les éléments lorsque le système des valeurs primitivement adoptées pour							
les coordonnées mesurées des étoiles de repère est remplacé par un autre système de valeurs							
des mêmes coordonnées	LXI						
Modifications subies par les éléments lorsque l'on change les valeurs des coordonnées des étoiles de							
repère	LXI						
Exemple du calcul pour la détermination des éléments d'un cliché	LXII						
Exemple du calcul de rectification des éléments par suite de la suppression d'une étoile de repère							
dont la position semble erronée	LXIV						
Expression de l'erreur probable d'une coordonnée rectiligne conclue, pour une étoile, en un point							
quelconque du cliché	LXVI						
Expressions des erreurs probables des inconnues τ , I , ξ et $\Delta \Omega_0$	LXX						
Tableau des résidus pour les étoiles de repère de 33 clichés des zones o'', -1°, -2°	LXXIII						
Évaluation de l'incertitude affectant les coordonnées rectilignes que l'on tirera du Catalogue pho-							
tographique:							
Cas où l'on ne fait concourir à la détermination des coordonnées de l'astre que les mesures							
d'un seul cliché	LXXVIII						
Cas où l'on fait usage de la moyenne des positions fondées sur les mesures de deux clichés							
adjacents	LXXX						
Cas où plusieurs étoiles de repère sont communes aux deux clichés associés	LXXXI						
Transformation des abscisses et des ordonnées en des différences d'ascension droite et de décli-							
naison avec le centre de la plaque	LXXXIV						
Exemples de calculs complets pour la conversion des X et Y mesurés en ascensions droites et en							
déclinaisons	LXXXV						
Ascensions droites et déclinaisons pour 1900,0 de 320 étoiles communes à deux clichés	LXXXVII						
Liste générale des Catalogues employés dans la détermination des positions moyennes des étoiles							
de repère pour les zones attribuées à l'observatoire d'Alger	xcv						
Tables relatives à la détermination des constantes et au calcul de la réfraction dissérentielle	xcvi						

FIN DE L'INTRODUCTION.

PARIS. — IMPRIMERIE GAUTHIER-VILLARS, QUAI DES GRANDS-AUGUSTINS, 55.

Digitized by Google

JOHN G. WOLBACH LIBRARY HARVARD COLLEGE OSSERVATORY SO GARDEN STREET CAMBRIDGS, MARG. CEVEN

JOHN G. WOLBACH LIBRARY HARVARD COLLEGE OBSERVATORY 50 GARDEN STREET CAMBRIDGE, MASS. 02188

