
ITAVAS PUEIGRADUAIE ESFOOL
IHOTIEPEY, CELIFORITIA 930

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

CONTROLLED DIFFUSION COMPRESSOR

 BLADE WAKE MEASUREMENTSby
John William Dreon, Jr.
September 1986

Thesis Advisor:
Raymond P. Shreeve

Approved for public release; distribution is unlimited.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A Controlled-Diffusion compressor stator blade-element design was re-tested in a subsonic cascade wind tunnel to obtain data with which to assess viscous computational prediction methods. Tests were conducted near design and toward stall conditions at Mach 0.28 and Reynolds number of 774000. Loss coefficient, diffusion factor and AVDR were determined by mass averaging pneumatic pressure probe survey measurements. Wake velocity profiles were measured from 0.12 to 1.77 chordlengths downstream. Concentration was placed on the verifications of accuracy by careful calibration, multiplicity and exchange of survey probes. Cylindrical probes were found not to measure wake yaw angles as accurately as conical probes. Experimental results showed that losses were dependent on Reynolds number and that all blade-element performances were independent of the downstream axial location at which they were determined.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT XXUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS	21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a NAME OF RESPONSIBLE INDIVIDUAL Raymond P. Shreeve	22b TELEPHONE (Include Area Code) $(408) 646-2593$	C2C. OFFICE SYMBOL Code 67Sf

Approved for public release; distribution is unlimited. Controlled Diffusion Compressor Blade Wake Measurements

```
                                    by
                                    John William Dreon, Jr.
        Lieutenant, United States Navy
        B.S., University Of Virginia, 1978
        Submitted in partial fulfillment of the
        requirements for the degree of
MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING
    from the
    NAVAL POSTGRADUATE SCHOOL
        September 1986
```


ABSTRACT

A Controlled-Diffusion compressor stator blade-element design was re-tested in a subsonic cascade wind tunnel to obtain data with which to assess viscous computational prediction methods. Tests were conducted near design and toward stall conditions at Mach $\dot{0} .28$ and Reynolds number of 774000. Loss coefficient, diffusion factor and AVDR were determined by mass averaging pneumatic pressure probe survey measurements. Wake velocity profiles were measured from 0.12 to 1.77 chordlengths downstream. Concentration was placed on the verifications of accuracy by careful calibration ,multiplicity and exchange of survey probes. Cylindrical probes were found not to measure wake yaw angles as accurately as conical probes. Experimental results showed that losses were dependent on Reynolds number and that all blade-element performances were independent of the downstream axial location at which they were determined.

TABLE OF CONTENTS

I. INTRODUCTION 14
II. TEST FACILITY 16
A. RECTILINEAR CASCADE 16
B. INSTRUMENTATION 16
C. CD BLADING AND CASCADE CONFIGURATION 23
III. EXPERIMENTAL PROCEDURES 27
A. PREPARATION 27
B. TEST PROCEDURES 27
IV. RESULTS AND DISCUSSION 32
A. CASCADE PERFORMANCE AND FLOW QUALITY 32
B. RESULTS OF WAKE SURVEYS 37
C. BLADE SURFACE PRESSURE DISTRIBUTIONS 45
V. CONCLUSIONS AND RECOMMENDATIONS 51
APPENDIX A: FLOW QUALITY AND CASCADE PERFORMANCE DATA 53
APPENDIX B: BLADE SURFACE PRESSURE DISTRIBUTIONS 114
APPENDIX C: BLADE SURFACE PRESSURE COEFFICIENTS AND REYNOLDS NUMBER 119
APPENDIX D: PNEUMATIC PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY 123
LIST OF REFERENCES 136
INITIAL DISTRIBUTION LIST 137

LIST OF TABLES

I. MEASUREMENT UNCERTAINTY 24
II. TEST BLADE COORDINATES 26
III. CASCADE DESIGN PARAMETERS 26
IV. PROGRAM OF PROBE SURVEYS 29
V. CASCADE PERFORMANCE FORMULAS 30
A. 1 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6250 55
A. 2 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6250 58
A. 3 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6251 60
A. 4 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6252 61
A. 5 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6259 52
A. 6 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6258 53
A. 7 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6255 54
A. 8 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260 55
A. 9 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260 67
A. 10 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6261 59
A. 11 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6263 71
A. 12 BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6265 73
A. 13 MASS AVERAGED REFERENCING COEFFICIENTS 75
A. 14 YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION $1 \beta l=40.3^{\circ}$ 76
A. 15 YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-2 $31=40.3^{\circ}$ 76
A.. 16 YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-6 Bl=40.3 ${ }^{\circ}$ 77
A. 17 YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION $1 \quad \beta l=43.4^{\circ}$ 77
A. 18 YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-6 $\mathrm{Bl}=43.4^{\circ}$ 78
A. 19 DATA FILE NAMES AND STATION IDENTIFICATION --- 79
B.l CENTER BLADE DATA
$\mathrm{Bl}=40.3^{\circ} \mathrm{Re}=774000$ 115
B. 2 AADJACENT BLADES
$\mathrm{Bl}=40 \cdot 3^{\circ} \quad \mathrm{Re}=774000$ 116
B. 3 CENTER BLADE DATA $\mathrm{Bl}=43.4^{\circ} \quad \mathrm{Re}=774000$ 117
B. 4 ADJACENT BLADES Bl=43.4² $\operatorname{Re}=774000$ 118
D.l PNEUMATIC PROBES (UNITED SENSOR CORP.) 124
D. 2 RESULTS OF CYLINDICAL PROBE VERIFICATION CHECK 127

LIST OF FIGURES

1. Cascade Wind Tunnel Test Facility 17
2. Plexiglas Wall With Slots And Probe Traverse 18
3. Cascade Test Section Schematic 19
4. Probe Surveying Stations 21
5. Cascade Geometry, and Definition of Angles 22
6. CD Blade Pressure Tap Locations 25
7. Comparison of Loss Coefficient From Integration Over Two Blade Passages. 33
8. Comparison of Diffusion Factor From Integration Over Two Blade Passages. 34
9. Comparison of AVDR From Integration Over Two Blade Passages. 35
10. Loss Coefficient Vs Inlet Air Angle 35
ll. Outlet to Inlet Velocity Vs Blade to Blade Displacement 38
11. Outlet to Inlet Velocity Vs Blade to Blade Displacement 39
12. Outlet Air Angle Vs Blade to Blade Displacement at Station $2-6$ for $\beta_{1}=40.3^{\circ}$ 42
13. Outlet Air Angle Vs Blade to Blade Displacement at Station $2-2$ for $\beta 1=40.3^{\circ}$ 43
14. Outlet Air Angle Vs Blade to Blade Displacement at Station $2-6$ for $\beta_{1}=43.4^{\circ}$ 44
15. Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys at Six Stations 47
16. Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys at Six Stations 48
17. Blade Surface Pressure at Midspan for $B_{1}=40.3^{\circ}$ 49
18. Blade Surface Pressure at Midspan for $\beta_{1}=43.4^{\circ}$ 50
Al. Q/QlREFBAR Vs Blade to Blade Displacement $\beta_{1}=40.3^{\circ} \quad \mathrm{Re}=774000$ 80
A2. \triangle Ps/QlREFBAR Vs Blade to Blade Displacement $\beta l=40.3^{\circ} \quad \operatorname{Re}=774000$ 81
A3. $\triangle \mathrm{Pt} / \mathrm{Q}$ R REFBAR Vs Blade to Blade Displacement $\mathrm{Bl}=40.3^{\circ} \quad \mathrm{Re}=774000$ 82
A4. Q/QlREFBAR Vs Blade to Blade Displacement $B_{1}=40.3^{\circ} \quad \operatorname{Re}=774000$ 83
A5. \triangle Ps/QlREFBAR Vs Blade to Blade Displacement $\beta l=40.3^{\circ} \quad \operatorname{Re}=774000$ 84
A6. \quad Pt/QlREFBAR Vs Blade to Blade Displacement $B l=40.3^{\circ} \quad \operatorname{Re}=774000$ 85
A7. Q/QlREFBAR Vs Blade to Blade Displacement $B_{1}=40 \cdot 3^{\circ} \quad \mathrm{Re}=774000$ 36
A8. $\triangle P s / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=40.3^{\circ} \quad \operatorname{Re}=774000$ 87
A9. $\triangle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $\mathrm{Bl}=40.3^{\circ} \quad \mathrm{Re}=774000$ 88
Al0. Q/QlREFBAR Vs Blade to Blade Displacement $\beta_{1}=40.3^{\circ} \quad \operatorname{Re}=774000$ 89
All. $\triangle P s / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=40.3^{\circ} \quad \operatorname{Re}=774000$ 90
Al2. $\triangle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=40 \cdot 3^{\circ} \quad \mathrm{Re}=774000$ 91
Al3. Q/QlREFBAR Vs Blade to Blade Displacement Bl=40.3 $\quad \mathrm{Re}=774000$ 92
 Bl=40.3 \quad Re=774000 93
Al5. $\triangle \mathrm{Pt} / \mathrm{QlREFBAR}$ Vs Blade to Blade Displacement Bl=40.3 $\quad \operatorname{Re}=774000$ 94
Al6. Q/QlREFBAR Vs Blade to Blade Displacement Bl $=40.3^{\circ} \quad \operatorname{Re}=774000$ 95
Al7. $\triangle \mathrm{Ps} / \mathrm{QlREFBAR}$ Vs Blade to Blade Displacement $\beta l=40 \cdot 3^{\circ} \quad \operatorname{Re}=774000$ 96
Al8. $\triangle \mathrm{Pt} / \mathrm{QlREFBAR}$ Vs Blade to Blade Displacement Bl=40.3 $\mathrm{Re}=774000$------------------------------- 97
Al9. Q/QlREFBAR Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \mathrm{Re}=774000$ 98
A20. $\triangle \mathrm{Ps} / \mathrm{Q}$ REFBAR Vs Blade to Blade Displacement $\mathrm{Bl}=43.4^{\circ} \quad \mathrm{Re}=774000$ 99
A2l. $\triangle P t / Q 1 R E F B A R$ Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 100
A22. Q/QlREFBAR Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 101
A23. $\triangle P s / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 102
A24. $\triangle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta 1=43.4^{\circ} \quad \mathrm{Re}=774000$ 103
A25. Q/QlREFBAR Vs Blade to Blade Displacement $\mathrm{Bl}=43.4^{\circ} \quad \mathrm{Re}=774000$ 104
A26. $\triangle \mathrm{Ps} /$ QlREFBAR Vs Blade to Blade Displacement Bl=43.4 $\quad \mathrm{Re}=774000$ 105
A27. $\triangle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 106
A28. Q/Q1REFBAR Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 107
A29. $\triangle P s / Q l R E F B A R$ Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \operatorname{Re}=774000$ 108
A30. $\triangle \mathrm{Pt} / \mathrm{Q}$ lREFBAR Vs Blade to Blade Displacement $\beta l=43.4^{\circ} \quad \mathrm{Re}=774000$ 109
A31. Comparative Plots of Beta2 Vs Blade to Blade Displacement 110
A32. Comparative Plots of Beta2 Vs Blade to Blade Displacement 111
A33. Test BD6250 $31=40.3^{\circ}$ 112
A34. Test BD6260 Bl $=40.3^{\circ}$ 112
A35. Test BD6261 $31=43.4^{\circ}$ 113
A36. Test BD6263 Bl=43.4 113
Dl. Probe Calibration Tunnel 129
D2. Cylindrical Probe Showing Tip and sensing ports 130
D3. Conical Probe Showing Tip and Sensing Ports 131
D4. Yaw Probe 132
D5. Comparative Plot of Loss Coefficint Vs Blade to Blade Displacement 133
D6. Comparative Plot of Diffusion Factor Vs Blade to Blade Displacemen 134D7. Comparative Plot of AVDR Vs Blade toBlade Displacemen135

LIST OF SYMBOLS

English Letter Symbols

AVDR	- Axial Velocity Density Ratio
c	- Chord
${ }^{C} p$	- Specific heat at constant pressure
C_{p}	- Coefficient of pressure
D	- NASA diffusion factor
h_{i}	- Spanwise depth of control volume
k_{i}	$-\left[\int_{0}^{s} \rho_{i} V_{i} \cos \beta_{i} d x\right] /\left[\int_{0}^{s} \rho_{r e f} V_{r e f} \cos \beta_{i} d x\right]$
M	- Mach number
P	- Pressure, in $\mathrm{H}_{2} \mathrm{O}$
R	- Gas constant
Re	- Reynolds number
$\mathrm{s}_{1,2}$	- Integration limits (position)
T	- Temperature
V	- Free stream velocity
V_{t}	- Limiting velocity ($\mathrm{V}_{\mathrm{t}}=\sqrt{2 \mathrm{C}_{\mathrm{p}} \mathrm{T}_{t}}$)
w_{i}	- Relative velocity
X	- Dimensionless velocity, ($\left.X=V / \sqrt{2 c_{p} T_{t}}\right)$
x	- Position of probe in blade to blade direction
Y	- Position of probe in axial direction
z	- Position of probe in spanwise direction

a - Yaw angle
$B \quad$ - Probe pressure coefficient
I - Probe pressure coefficient
γ - Ratio of specific heats, stager angle
$\Delta \quad-\quad$ Change in a quantity
$\rho \quad$ - Density
$\mu \quad$ - Viscosity
ф - Flow pitch angle
$\Omega \quad$ - Loss coefficient parameter
$\sigma \quad$ - Solidity
0 - Probe pressure coefficient
$\omega \quad$ L Loss coefficient

Subscripts

```
l,2,3,4 - Probe pressure port number when sub-
23 - Average of ports 2 and 3 static
    pressure measured by a probe
ave - Arithmatic average
atm - Atmospheric
bar - Mass averaged quantity
i - Traversing plane ;inlet (i=l) outlet (i=2)
ref - Referenced to plenum
s - Static
t - Total
u - In the blade to blade direction
```


ACKNOWLEDGMENT

I would like to take this opportunity to thank the many people affiliated with the Naval Postgraduate School for the valuable help and assistance they gave in enabling me to complete this study. I would like to thank Dr. Greg Walker, University of Tasmania for his personal and professional evaluation in refining the calibration process. Special thanks are due to Dr. R. P. Shreeve, Director of the Turbopropulsion Laboratory, who gave unstintingly of his time and talent in this endeavor. To these two men can be applied the passage -- wisdom I learned and parted ungrudgingly.

I. INTRODUCTION

A design procedure for Controlled Diffusion (CD) compressor blading which is based on numerical optimization methods was developed by Nelson L. Sanger of NASA Lewis Research Center [Ref. l]. The underlying concept in this and other $C D$ design methods is that by controlling the diffusion of the air flow over the suction surface of the blading, boundary layer seperation can be avoided [Ref. 2]. This, in in principle, allows the design of blading with greater loading per stage, or a reduction in the number of blades for a given stage loading. Both features will be exploited in advanced compressors in future turbojet engines.

As a verification of the design procedure, Sanger redesigned an existing stator blade row to use $C D$ blading in place of Double Circular Arc (DCA) shapes. Subsequently, the scaled-up mid span section of the redesigned blade was built and tested in the rectilinear cascade at the Naval Postgraduate School. Detailed testing of the blading was conducted at an inlet Mach number of approximately 0.2 and Reynolds Number of 4.7 to 6.9×10^{5}. Inlet flow angle was varied to encompass design and off design conditions. The test program was reported by Koyuncu [Ref. 3] and a comparison of test and computational results was reported by Sanger and Shreeve [Ref. 4].

In the present study a series of tests to obtain detailed wake data at various positions downstream of the trailing edge of Sanger's $C D$ cascade was conducted in a wind tunnel containing 20 blades. The positions ranged from 0.12 c to 1.77 c (chord=5.01 in.), for a total of six positions. The inlet flow angle was set approximately to the design condition (40.3 vice 39.8°) and then nearer to stall $\left(43.4^{\circ}\right)$. A calibrated United Sensor Corporation five hole conical probe was used to obtain the downstream flow field developement for one blade passage. Two United Senor Corporation cylindrical probes were used to survey far upstream and downstream over three blade passages. A special yaw probe was used to reference and verify wake yaw angle measurements and probes were exchanged to verify measurement accuracy.

In the present report, the facility, proceedures, significant results and conclusions are described in sections II through V. A complete documentation of the probe survey data is given in Appendix A and of the blade surface pressure data in Appendix B. The evaluation of the blade surface pressure coefficients and Reynolds number are described in Appendix C, and proceedures followed to define and reduce measurement uncertainties, are given in Appendix D.

II. TEST FACILITY

A. RECTILINEAR CASCADE

A schematic diagram of the Rectilinear Subsonic Cascade Wind Tunnel facility is shown in Fig. l. A detailed description of its design and operation was given in an earlier thesis [Ref. 5]. Flow inlet conditions were investigated in detail by McGuire [Ref. 6]. While uniform on average, the inlet flow contains periodic wakes due to variable inlet guide vanes which are spaced one inch apart in the blade to blade direction.

For the present wake measurements a third probe traverse was added to the cascade. Slots were machined into the removeable plexiglas North wall at five stations downstream of the test blading trailing edge. A heavy aluminun angle extrusion was attached to both support the traverse and insure stiffness of the plexiglas wall while the cascade was in operation (Fig. 2). The test section dimensions (Fig. 3) were changed slighty from those in Ref. 3.

B. INSTRUMENTATION

A total of four pneumatic survey probes were used. These were United Sensor Corporation probes of the five hole type. Two cylindrical probes were used to measure data needed to determine the inlet conditions and the mixed out flow

\square
Figure 1. Cascade Wind Tunnel Test Facility.

1
Figure 2. Plexiglas Wall with Slots and Probe Traverse

conditions far downstream from the blade row. The inlet probe was located 1.8 chord lengths (1.8c) ahead of the blade row. The outlet probe was l.77c after the blade row. A conical probe was used to collect wake measurements close to the blade row. Measurements were made at $0.12 c, 0.27 c$, $0.47 \mathrm{c}, 0.66 \mathrm{c}$, and 1.185 c (Fig. 4). The fourth yaw probe was design to determine flow angle in a 2D shear layer (Fig. 5). The probes were calibrated in a seven inch diameter free jet using the methods and software developed by Zebner [Ref. 7] and Neuhoff [Ref. 8].

Tunnel or plenum stagnation pressure was measured with a tube suspended in the plenum chamber. An Iron-Constantan thermocouple, similarly suspended in the plenum, measured stagnation temperature. Wall static pressure was recorded from two centrally located taps in the two rows of static taps provided in the South wall. One tap was located upstream and the other downstream of the cascade of blades. The two rows of static taps were connected to a water manometer, used to monitor the cascade's static pressure distibution. The static pressure is made uniform in the blade to blade direction by adjusting the inlet guide vanes and outlet tailboards.

A Hewlett Packard Data Acquisition System (HP-3052) and Hewlett Packard Interface Bus (HP-98034 HP-IB) was used to collect data. The system was controlled by a HP-9845A computer.

STA 2-3
S'PA 2-2

0.265 C

SirA 2-1

0.123 c

1.84 c

Figure 4. Probe Surveying Stations

Figure 5. Cascade Geometry, and Definition of Angles.

Measurement uncertainties are listed in Table I. Uncertainties are discussed in detail in Appendix D.
C. CD BLADING AND CASCADE CONFIGURATION

The controlled diffusion test blades were from the midspan section of $a C D$ stator blade and one was manufactured with pressure taps (Fig. 6). The coordinates for the blades were supplied by Sanger and are listed in Table II. Twenty cast aluminum blades were made with a span of ten inches to fit the test section of the rectilinear cascade. The instrumented blade was positioned in the center to serve as the test blade. The fixed geometrical parameters for the cascade are given in Table III. In the tests to be reported, only the inlet air angle was varied.

TABLE I

MEASUREMENT UNCERTAINTY

Item	Description	Method	Reading Uncertainty
X	Blade to Blade dimension	Position Potentiometer	$\pm 0.01 \mathrm{in}$.
Z	Spanwise dimension	Machine divided scale hand adjustment	$\pm 0.05 \mathrm{in}$.
Y	Axial dimension	Hand held Micrometer	$\pm 0.01 \mathrm{in}$.
β_{1}	Inlet flow (yaw) angle	Angle Potentiometer	$\pm 0.2 \mathrm{deg}$.
β_{2}	Outlet flow yaw angle	Angle Potentiometer deg	$\pm 0.2 \mathrm{deg}$.
Ptref	Plenum Total pressure	Static tap in plenum chamber $\mathrm{V} \simeq 0$	$\begin{array}{ll} +0.05 & \mathrm{in}^{+0} \\ \mathrm{H}_{2} \mathrm{O} \end{array}$
P	Pressure	Scanivalve transducer	$\begin{array}{ll} +0.05 & \mathrm{in}^{2} \\ \mathrm{H}_{2} \mathrm{O} \end{array}$
Patm	Atmospheric pressure	Mercury manometer	$\pm 0.01 \text { in } \mathrm{Hg}$

Figure 6. CD Blade Pressure Tap Locations.

TABLE II

TEST BLADE COORDINATES (INCHES)

X-COORD.	Y-COORD.	Z-COORD.
0.0	0.045	0.045
0.022		0.084
0.057	0.002	
0.222	0.044	0.196
0.444	0.101	0.307
0.666	0.155	0.403
0.888	0.207	0.488
1.110	0.255	0.561
1.332	0.299	0.621
1.554	0.330	0.663
1.776	0.350	0.691
1.998	0.359	0.705
2.220	0.359	0.708
2.442	0.352	0.701
2.664	0.342	0.681
2.886	0.331	0.650
3.108	0.317	0.610
3.330	0.301	0.563
3.552	0.281	0.510
3.774	0.257	0.453
3.996	0.227	0.393
4.218	0.191	0.332
4.440	0.146	0.270
4.662	0.089	0.208
4.884	0.019	0.145
4.925	0.004	-----
4.964	-----	0.122
5.010	0.062	0.062

TABLE III

CASCADE DESIGN PARAMETERS
Number of Blades 20
Blade Spacing (inches) 3.0
Solidity
1.67

Thickness (\% chord) 7.0
Stagger Angle 14.303

III. EXPERIMENTAL PROCEDURES

A. PREPARATION

Prior to testing, with one wall removed, the adjustable sidewalls and inlet guide vanes (IGV's) were set for the required flow angle. The probe position scales were set to zero with the downstream probes axially downstream of the instrumented blade trailing edge. The upstream scale's zero position was set based on the expected inlet flow angle to the leading edge of the instrumented blade. The cascade was then closed. On starting, the flow adjustments were made to the IGV's and tailboards to obtain nearly uniform wall static pressure distributions both upstream and downstream in the blade-to-blade direction. The pressure distribution downstream of the blades was at atmospheric. The inlet flow dynamic pressure was set to give a Mach number equal to 0.28

B. TEST PROCEDURE

With the flow stabilized, the surface pressures on the instrumented blades were recorded and surveys were made first with the two cylindical probes at stations 1 and 2-6. The probes were spaced three inches apart (one blade passage) to avoid the lower probe wake from interfering with the upper probe measurements. Measurements were taken while traversing the two probes over three blade passages.

Samples were taken at 0.1 inch intervals. The two surveys overlapped over two blade passages. Surveys were then made at five axial stations downstream of the blades using the conical probe. The surveys were conducted over a three inch segment of the cascade and were centered on the instrumented blade. Samples were taken at 0.1 inch intervals outside the blade wake and 0.05 inch intervals inside the wake. Finally the yaw probe was used to obtain an independent flow angle measurement. The data from the yaw probe were recorded by hand. Samples, rather than complete surveys were taken from inside and outside the wake.

Tests were conducted with near design inlet air angle $\left(B 1=40.3^{\circ}\right)$ and at one off-design condition toward stall $\left(\beta_{1}=43.4^{\circ}\right)$. A summary of probe surveys is given in Table IV. Once collected the data was reduced using the formulas given in Table V and Appendix C.

TABLE IV
PROGRAM OF PROBE SURVEYS

Station	Nominal Air 40°	Inlet Angl 44°
1	$\begin{aligned} & \text { Cylin (1) } \\ & \text { Yaw } \\ & \text { Cylin (2) } \end{aligned}$	$\begin{aligned} & \text { Cylin (1) } \\ & \text { Yaw } \\ & \text { Cylin (2) } \end{aligned}$
2-1	Conical	Conical
2-2	$\begin{aligned} & \text { Conical } \\ & \text { Yaw } \end{aligned}$	Conical
2-3	Conical	Conical
2-4	Conical	Conical
2-5	Conical	Conical
2-6	$\begin{aligned} & \text { Cylin (2) } \\ & \text { Yaw } \\ & \text { Cylin (1) } \end{aligned}$	$\begin{aligned} & \text { Cylin (2) } \\ & \text { Yaw } \end{aligned}$

TABLE V

TABLE V (CON'T)

A. CASCADE PERFORMANCE AND FLOW QUALITY

The cascade performance was calculated from surveys measured at the midspan in the blade to blade direction. No surveys were made in the spanwise direction since uniformity in the spanwise direction was verified by Koyuncu [Ref. 3]. Loss coefficient, diffusion factor and AVDR were obtained from integration of the surveys made upstream and downstream of the blading. In order to examine the consistency of the measurements, the integrations were performed over different intervals. Performance parameters are shown (Figs. 7 through 9) for integration performed over two different blade passages at inlet air angles of (nominally) 40.3° and 43.4°. It can be seen that over the two separate intervals of integration, the value obtained for loss coefficient, diffusion factor and AVDR are in very close agreement for both test inlet angles. At 43.4°, the values are barely distinguishable from each other. The uniformity, periodicity and quality of the flow can be seen in the detailed survey data and plots given in Appendix A. Verification of the accuracy of the probe measurements was made by exchanging probes as described in Appendix D.

A comparison of the results obtained for loss coefficient is made with Koyuncu's data (Fig. 10). The

Figure 7. Comparison of Loss Coefficient From Integration Over Two Blade Passages. (Upper plot $\beta_{1}=40.3^{\circ}$, Lower plot $\beta_{1}=43.4^{\circ}$)

Figure 8. Comparison of Diffusion Factor From Integration Over Two Blade Passages. (Upper plot $\beta_{1}=40.3$, Lower plot $\beta_{1}=43.4^{\circ}$)

Figure 9. Comparison of AVDR From Integration Over Two Blade Passages. (Upper plot $\beta_{1}=40.3^{\circ}$, Lower plot $\beta_{1}=43.4^{\circ}$)

present data are slightly lower than the single curve drawn through Koyuncu's data, however the data were obtained at a somewhat higher Reynolds number. At positive angles of incidence an effect of Reynolds number on the loss coefficient is suggested by the combined data.

B. RESULTS OF WAKE SURVEYS

Composite plots of the downstream (wake) surveys are shown in Fig. 11 and Fig. 12 for inlet air angle of 40.3° and 43.4° respectively. The velocity is shown referenced to the mass-averaged velocity upstream. The blade to blade position of each survey is referenced to the trailing-edge of the instrumented blade. The velocity scales are displaced in the y-direction in proportion to the axial displacement of the survey stations shown in Fig. 4.

1. Wake Velocity Decay

The wake decay downstream of the blading is
qualitatively as expected. The centerline velocity at
station $2-1$ is 30% of inlet velocity compared to 80% outside the wake. This is due to the fact that the trailing edge of the blade is quite blunt. At station $2-6$ the velocity has increased to 72% and is approaching a mixed out condition.
2. Velocity Profiles

Differences in individual velocity profiles in the blade to blade direction can be most clearly seen at station 2-1. The pressure side has a steep velocity gradient while

BETA-40. 3
$R E=774000$

Figure ll. Outlet to Inlet Velocity Vs Blade to Blade Displacement ($\beta_{1}=40.3^{\circ}$)

Figure 12. Outlet to Inlet Velocity Vs Blade to Blade Displacement. $\left(\beta_{1}=43.4^{\circ}\right)$
the suction side has a more gradual variation. The wake thickness was significantly increased at $\beta_{1}=43.4^{\circ}$. The adverse pressure gradient on the suction side results in an increase in the surface boundary layer thickness and subsequent reduction in wake velocity gradient.
3. Wake Path

The displacement of the wake centerline from the blade trailing edge centerline can be seen in Figs. ll and 12. At the farther downstream stations the displacement becomes more noticable. At $\beta_{1}=43.4^{\circ}$ the wake centerline displacement is almost linear but not so at 40.3°. The cascade was design to give an outlet air angle of zero. The displacement of the wake centerline at station 2-6 (1.771 chord lengths) implies an average deviation angle (δ) at $\beta_{1}=40.3^{\circ}$ of $\delta=1.94^{\circ}$ and for $\beta_{1}=43.4^{\circ}, \delta=3.23^{\circ}$. However it is interesting to note that at the design inlet condition the wake centerline appears to move axially between 0.2 and 0.8 chordlengths downstream.
4. Yaw Angle Measurement

Both cylindrical and conical probes gave
measurements of yaw angle distribution in the blade to blade direction. When relatively large excursions in yaw angle were recorded within the blade wake, the fourth probe, which was specifically designed to measure yaw angle correctly within a two-dimensional wake, was used to verify the observation at the specific stations as listed in Table IV.

The yaw angle probe was very carefully nulled in the calibration free jet, and the null setting referenced to horizontal using a reference bar on the probe shaft and precision spirit level. The reference was reestablished when the probe was mounted on the cascade. Thus the absolute uncertainty in the yaw angle measured with the yaw probe in the cascade was less than 0.4°. Since the absolute reference for the cylindrical and conical probes was not mantained in some of the measurements, these measurements were adjusted such that equal angles were measured outside the blade wakes on the pressure side. It was then possible to examine the distribution of yaw angle measured through the blade wakes. Figures 13 and 14 show comparisons between the cylindical and yaw probe measurements at station 2-6, and the conical and yaw probe measurements at station 2-2 respectively at $\beta_{1}=40.3^{\circ}$. It is seen that whereas the cylindrical probe indicates an excursion of almost $\pm 1.5^{\circ}$ in yaw angle far downstream, the yaw probe registered no more than $\pm 0.75^{\circ}$. Closer to the blades (station 2-2) the conical probe indicated $\pm 2.3^{\circ}$ and this was reasonably well confirmed by the yaw probe.

The exagerated indication of yaw angle given by the cylindrical probe is seen again in the results at $\beta_{1}=43.4^{\circ}$ (Fig. 15). It is noted that while few points are shown here for the yaw probe measurements, points representing larger excursions were not passed during the manual traverse. Thus

Figure 13. Outlet Air Angle Vs Blade to Blate Displacement at Station $2-6$ for $\beta_{1}=40.3^{\circ}$. (US Corp. 5 hole cylindrical probe and yaw probe.)

EETRC

```
STATION 2-2 ( CONICRL o ) STATION 2-2 ( YAN \(\square\) )
```


BLADE TO BLADE DISPLACEMENT

Figure 14. Outlet Air Angle Vs Blade to Blade Displacement at Station $2-2$ for $\beta_{1}=40.3^{\circ}$. (Conical probe and yaw probe.)

EETAC
STATION 2-6 (CYLINDRICFL 0) STATION 2-E (YAN \square)

Figure 15. Outlet Air Angle Vs Blade to Blade Displacement at Station $2-6$ For $\beta_{1}=43.4^{\circ}$. (Cylindrical probe and yaw probe.)
the cylindrical probe indicated a variation of $\pm 1.8^{\circ}$ whereas the yaw probe showed no more than $\pm 0.5^{\circ}$.

Data for yaw angle from the cylindrical and conical probe. surveys are given in Table A.l through Table A.l2. Note that the negative of β is given in some cases. Data for the yaw probe measurements are given in Table A.l4 through Table A.l8.
5. Integration To Obtain Performance

Each of the cone probe surveys could be used in conjunction with survey data from station 1 , to establish the blade element performance. The adopted procedures of referencing all survey measurements to plenum supply and atmospheric conditions allowed that upstream and downstream surveys to be carried out separately, as long as no change was made to the cascade geometry.

The results for blade element performance based on surveys at stations $2-1$ to $2-6$ at $\beta_{1}=40.3^{\circ}$ and $\beta_{1}=43.4^{\circ}$ are shown in Fig. 16 and Fig. 17 respectively . Extremely consistent results are noted with one exception at $\beta_{l}=43.4^{\circ}$. An inconsistently low value of AVDR was obtained from the cylindrical probe at station $2-6$. More measurements are required to examine the one inconsistency.
C. BLADE SURFACE PRESSURE DISTRIBUTIONS Surface pressure coefficients are shown plotted in Fig. 18 and Fig. 19 for $\beta_{l}=40.3^{\circ}$ and $\beta_{l}=43.4^{\circ}$ respectively.

The data are given Appendix B in Table B.l through Table B.4. The pressure coefficients were calculated using Eq. (C-5) of Appendix C.

Figure 16. Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys At Six Stations. ($\mathrm{B}_{1}=40.3^{\circ}$)

Figure l7. Loss Coefficient, Diffusion Factor and AVOR From Probe Surveys at Six Stations. $\left(B_{1}=43.4^{\circ}\right)$

EETA-40.3
$F E=? 74000$

PERCENT CHORD

Figure 18. Blade Surface Pressure at Midspan for $B_{1}=40.3^{\circ}$. $\left(M_{1}=0.272\right)$

Figure 19. Bladu Surface pressure at Midepan for $\beta_{1}=43.4^{\circ} \cdot \quad\left(M_{1}=0.274\right)$

V. CONCLUSIONS AND RECOMMENDATIONS

Probe surveys were carried out at various stations from 0.12 to 1.77 chordlengths downstream of Sanger's CD compressor cascade at two air inlet angles (near design and toward stall), which resulted in the following conclusions:

1. Blade element performance parameters did not depend significantly on the location of the survey station. One possibie exception was found in AVDR at $\beta_{l}=43.4^{\circ}$ which dropped by 2.5% at the most downstream position.
2. The data obtained were consistent with those obtained earlier by Koyuncu at a somewhat lower Reynolds number [Ref. 3]. Considered together with Koyuncu's data, the loss coefficient appears to decrease with increasing Reynolds number.
3. Complete wake velocity profiles were otained which were asymetric near the blade trailing edge. Increasing deviation angles (from 1.9° to 3.4°) were traced out by the paths of the wake as the inlet air angle was increased from 40.3° to 43.4°. The width of the wake also increased substantially.
4. The conical probe measured yaw angle variations through the wake which were confirmed by a yaw probe. The cylindrical probe recorded yaw angle variations which were much larger than those indicated by the yaw probe.
5. Blade surface pressure distributions were obtained which did not show anomalies near the trailing edge which had appeared in Koyuncu's data. The differences were attributed to the elimination of pneumatic leaks.

Recommendations for future tests include the following
modifications:

1. All probes should be calibrated by varying pitch and yaw together as described in Appendix D. This
may increase the general accuracy of yaw angle measurements when small pitch angles are present.
2. Only conical probes need be used in the downstream position to avoid yaw angle inaccuracies in the wake exhibited by the cylindrical probe.
3. Modifications to the cascade computer reduction programs need to be incorporated to automate the inclusions of yaw angle referencing procedures and procedures which result from the first recommendation.
4. Computer-controlled, automatic probe drives should be installed to greatly reduce the present labor and energy costs involved in acquiring data.

APPENDIX A

FLOW QUALITY AND CASCADE PERFORMANCE DATA

Al. CALIBRATED PROBE SURVEY DATA
Survey data for different stations in the cascade are tabulated in Tables A.l through A.12. and shown in Figs. Al. through A36. Values listed include flow angles (- β is shown) and nondimensionalized dynamic pressure, static pressure, total pressure and velocity. The notation is as follows:

Local dynamic pressure Q/Qlrefbar
Local static pressure [Ps-Pslrefbar]/Qlrefbar
Local total pressure [Ptlbar-Pt)/Qlrefbar
Local velocity X/Xlrefbar
The tabulated quantities are derived in such a way that they are independent of supply fluctuations during the probe surveys. Dimensional quantities can be obtained for code verifcation purposes by substituting for the upstream reference conditions denoted by subscript "lrefbar", the average obtained by multiplying the mass average ratio of upstream local to reference conditions (subscript "bar") by the ensemble average of the cascade reference conditions (subscript "refave") recorded during the survey. i.e., () lrefbar $=($) bar ()refave. Note that 'reference
conditions' are Tref and Pref (measured in the plenum), and Patm (corrected barometric pressure) from which a reference dimensionless velocity, $\mathrm{X}_{\text {ref }}$ is calculated from the isentropic relationship

$$
\begin{equation*}
X_{\text {ref }}=\left(1-\left(\frac{P_{a t m}}{0}\right)^{\left(\frac{\gamma-1}{\gamma}\right)}\right)^{1 / 2} \tag{A-1}
\end{equation*}
$$

The required reference quantities for the inlet air angle are given in Table A.13.

Notes: 1) The quantitity ' Q ' is the difference between stagnation and static pressure, and is reference to plenum pressure, i.e., $Q_{\text {bar }}=\frac{\overline{P_{t}-P}}{P_{\text {ref }}}$
2) The subscript "2bar" denotes downstream mass averaged local to reference conditions.

A2. YAW PROBE SURVEY DATA
Yaw probe surveys were conducted at selected
stations listed in Table IV. Data recorded manually, are listed in Tables A. 14 through A. 18.

A3. DATA STORAGE
All data were stored on magnetic tape. Table A. 19 identifies the storage file names with the survey station and test parameters.

TABLE A． 1
ELADE TO BLAIE PROEE IIATA AT MIIGFMH IRTA FILE EIEこらか

1	－6．04	－1．59	． 5536	． 3397	． 1008	． 7450
2	－6．00	－2．17	． 5836	． 3316	． 0785	．TE35
3	－5．90	－2．21	． 6267	． 3283	． 0375	－ 755
4	－5．80	－2． 20	． 6539	． 3248	． 0132	． 3123
5	－5．70	－2．19	． 6616	． 3266	． 0035	． 8181
6	－5．60	－1．60	． 6658	． 3287	－． 0028	． 2213
\bar{i}	－5．419	－1．71	． 6674	． 3305	－． 0.663	． 8243
8	－5．39	－1．69	． 6648	． 3290	－． 01022	． 8214
3	－5． 20	－1．68	．6529	． 3292	－． 0064	． 8207
1．1］	－5．10	－1．70	． 6671	． 33 Q 7	－． 0062	． 8238
11	－5．00	－1．70	． 6602	． 3313	－． 0002	． 8175
$1 こ$	－4．70	－1．70	． 6623	． 3296	－． 006 c	． 8261
13	－4．80	－1．72	． 6611	． 3298	． 0009	． 8187
$1+$	－4．70	－1．68	． 6573	． 3323	． 0022	． 8180
15	－4．61	－1．70	． 6478	． 3311	． 0133	． 8122
15	－4．50	－1．71	． 6533	． 3278	． 0109	． 8145
17	－4．41	－1．6．9	． 6494	． 3315	． 0112	． 8125
13	－4．31	－1．71	． 6466	． 3320	． 0135	.8110
19	－4．20	－1．73	． 6477	． 3338	． 0105	.8126
29	－4．11	－1．57	． 6473	． 3325	． 0123	． 8126
21	－4．01	－1．37	． 6520	． 3285	． 0115	． 8147
22	－3．91	－1．36	． 646 ？	． 3339	． 0115	． 8108
23	－3．81	－1．14	.6567	． 3201	． 0150	． 8093
24	－3．71	－． 21	． 6384	． 3194	.0345	． 7968
25	－3．61	－． 25	． 6174	． 3183	． 0571	． 7832
25	－3．51	－． 14	． 5805	． 3168	． 0963	． 7598
27	－3．41	.20	． 5434	． 3207	． 1303	． 7358
28	－3．31	－． 97	． 5207	． 3192	． 1550	． 7202
29	－3．21	－1．19	． 5205	． 3195	． 1549	． 7195
30	－3．11	－1．71	． 5522	． 3216	． 1204	． 7421
31	－3．01	－2．32	． 5951	． 3201	． 0780	． 7708
32	－2．91	－2．32	． 6329	． 3207	． 0389	． 7952
33	－2．81	－2．32	． 6533	． 3192	． 0194	． 8084
34	－2．71	－1．94	． 6651	． 3257	． 0008	． 8192
35	－2．61	－1．69	． 6623	． 3281	． 0013	． 8179
36	－2．51	－1．69	． 6670	． 3280	－． 0034	． 8213
37	－2．41	－1．69	． 6655	． 3310	－． 0049	． 8269
38	－2．31	－1．70	． 6661	． 3273	－． 0018	． 8199
39	－2．21	－1．71	． 6621	． 3287	.0099	． 8184
49	－2．10	－1．68	． 6675	． 3255	－． 0014	． 8225
41	－2．616	－1．70	． 6625	． 3277	． 0016	． 8180
42	－1．90	－1．68	． 6607	． 3274	． 0036	.8168
43	－1．8日	－1．68	． 6569	． 3299	． 0050	.8146

TABLE A． 1 CON＇T

4.1	－1．70	－1．78	． 6577	． 3271	． 0070	． 314
45	－1．60	－1．67	． 6627	． 2255	． 0034	． 8186
45	－1．505	－1．69	． 6506	． 3262	． 0949	． 817
47	－1．40	－1．67	． 6635	－3264	． 0017	． 813
43	－1．30	－1．67	． 6559	． 3212	． 0045	． 8198
47	－1．20	－1．67	． 6518	． 3.65	． 0034	． 180
513	－1．10	－1．70	． 6525	－ 356	． 0.032	． 18
51	－1．00	－1．68	． 6666	． 3202	－ 0.18	－ 6 －
52	－． 90	－1．22	． 6507	． 3313	． 0100	． 8113
53	－． 30	－． 86	． 6376	． 3318	． 0223	．802
54	－． 70	－． 62	． 6171	． 3331	． 942 F	－ 910
55	$-. \epsilon 1$	－． 24	． 5791	． 3319	． 0826	－TE4E
515	－． 50	－． 01	． 5371	． $3: 321$	． 1253	－ 376
51	－． 40	－． 48	． 5096	． $3: 30$	． 153.1	． 1 ！
$5: 3$	－． 30	-1.70	． 5038	． 3.29	． 1585	．$\overline{1} 1+4$
5	－． 21	－2．10	． 5243	． 3520	． 1385	．アごく
E． 9	－． 10	－2．57	． 5626	． 3305	． 1009	． 538
$E 1$	0.00	－2．82	． 6068	． 3296	． 056 F	． 7348
E2	． 10	－2．57	． 6365	． 3274	．0285	.8013
$E 3$.20	－2．56	． 6550	． 3269	． 0151	． 8131
6.4	． 30	－1．83	． 6615	． 3280	． 0022	． 8156
6.5	． 41	－1．85	． 6649	． 3270	－．0002	.8192
65	． 51	－1．84	． 6647	． 3285	－． 0016	． 8206
$6 \cdot 7$	． 61	－1．83	． 6647	． 3269	－． 0000	．8195
68	． 71	－1．85	． 6670	． 3267	－．0021	． 82204
$6 \cdot$	． 82	－1．85	． 6672	． 3290	－．0046	． 8221
78	． 92	－1．84	． 6664	． 3263	－． 0010	．817\％
$\overline{7}$	1．02	－1．82	． 6696	． 3269	－．0049	． 8231
\bigcirc	1． 12	－1．83	． 6682	． 3267	－． 0033	． 8217
$\overline{7}$	1.22	－1．84	． 6679	． 3276	－． 0039	． 8218
74	1.32	－1．84	． 6658	． 3293	－． 0035	． 8214
75	1.43	－1．86	． 6660	． 3304	－． 0048	． 8218
アた	1.5%	－1．84	． 6658	． 3298	－． 0040	． 8210
7	1.53	－1．46	． 6659	． 3303	－． 0046	． 82817
76	1.73	－1．46	． 6684	． 3291	－． 0059	． 8217
7	1.83	－1．44	． 6573	． 3323	． 0023	． 8165
E日	1.93	－1．47	．6E．25	． 3332	－． 0040	． 8188
81	2.03	－1．46	． 6589	． 3312	． 0017	.8152
82	2.22	－1．45	． 6597	． 3266	． 0055	.8168
$8: 3$	2.24	－1．45	． 6416	． 3329	.0177	.8068
84	2.34	－． 23	． 6173	． 3347	． 0408	． 7905
85	2.45	－． 25	． 5822	． 3304	． 0810	.7671
86	2.55	． 23	． 5440	． 3342	． 1162	． 7418
$8 \overline{7}$	2.65	－． 74	． 5176	． 3347	． 1426	． 7238
88	2.75	－1．47	． 5026	． 3432	． 1494	． 7138
89	2.85	－2．18	． 5301	． 3347	． 1299	． 7325
90	2.96	－2．32	． 5667	． 3383	． 0896	． 7577
91	3.06	－2．31	． 6069	． 3379	． 0483	． 7847
92	3.16	－2．58	． 6387	． 3310	． 0225	.8038
93	3.26	－2．59	． 6529	． 3285	． 0106	． 8125

TAFLE A． 2
blaite to elfige froge data ft Miggfar dita file biegsg

1	－3． 05	－39．97	． 9833	． 6.92	－． 0048	1．65ご
\cdots	－3． 13	-40.11	． 9838	． 6029	－． 9053	
E	－2．94	－40． 28	． 9847	．505	－． 0090	1．0933
4	－2．85	－46．10	． 9809	． 8946	－． 61040	1.0914
5	－2．74	－40．11	． 9784	－ 2.156	－． 5025	1．9619
E	－2．63	-40.10	． 9748	－ 0.51	． 6069	． 9.95
\bar{i}	－2．43	－40．09	． 9715	－ 1116	－． 1012	1．4995
E	－2．32	－40．11	． 9798	－ 6.95	－． 01033	1.0933
\square	－2．22	－40．11	． 9799	－ 46	－． 1058	1．0．938
1 18	－2．12	－49．89	． 9834	． 6194	－． 6123	1． 5.92
11	－2． 02	-40.10	． 9785	． 1114	－． 0083	1．6930
12	－1．91	-40.10	． 9749	． 0697	－． 1028	1． 9010
13	－1．82	－40．08	． 9728	－ 6180	． 1010	－ショ9
14	－1．71	-40.12	． 9645	． 1126	． 0050	－ 9 ご0
15	－1．62	-40.10	． 9655	． 8110	． 6055	－ヨゴー
1 －	－1．51	－461． 89	． 9652	－Q区59	． 10.9	
17	－1．41	－40．35	． 9651	． 51830	． 0691	． 3 －65
18	－1．30	－40．33	． 9668	． 0106	． 0047	． $7 ⿰ 习 习 6$
13	－1．21	－40．32	． 9680	． 0136	． 9004	． 9593
$2 \underline{1}$	－1．11	－40．49	． 9746	． 1125	－． 0954	1.0931
21	－1．01	-40.46	． 9749	． 0098	－． 0030	1． 90.01
2	－． 91	-40.46	． 9747	.0072	－． 0021	1.0013
23	－． 81	－40．09	． 9910	－． 0117	.0018	1.0003
24	－． 70	－40．24	． 9874	－． 0138	－0076	． 9970
25	－ 60	－40．20	． 9868	－． 0123	． 0068	． 9759
26	－． 49	-40.20	． 9992	－． 0129	． 0038	． 3979
27	－． 39	－40．21	． 9757	－． 132	－． 0016	1.0914
28	－． 30	－40．21	1.0015	－． 0132	－． 0076	1.0940
27	－． 20	－40．38	1.0036	－． 0155	－．0075	1.0043
30	－． 10	－40．33	1.0004	－．0097	－． 0100	1.0042
31	－． 01	-40.36	． 9957	－． 0097	－． 0051	1.0026
3.	． 10	－40．35	． 9903	－． 0084	$-.0007$	1.0906
33	． 20	－40．36	． 9813	－． 0056	． 6058	． 9968
34	． 30	－40．34	． 9694	． 0041	． 9084	． 9750
35	． 40	－40．35	． 9728	． 0040	． 0049	． 9973
36	． 51	-40.35	． 9746	． 0043	． 0028	． 9989
37	． 61	－40．35	． 9763	． 0867	－．0013	1.0004
38	． 12	－40．34	． 9827	． 0032	－． 0045	1.8020
39	$\cdot 81$	-40.34	． 9818	． 0057	－． 0060	1.0026
48	． 91	－40．36	． 9800	． 0080	－． 0064	1.0025
41	1.01	－40．34	． 9807	． 0040	－． 0032	1.0013
42	1.12	-40.37	． 9783	． 0035	－． 0001	． 9999
43	1.22	－40．36	.9775	． 0030	.0012	． 9998

44	1.32	－40．35	． 9766	． 0016	． 0.035	． 9988
45	1.42	－40．36	． 9750	． 0078	－．0012	． 9789
46	1.53	－40．35	． 9790	． 0057	－． 0033	1.0007
47	1.62	－40．36	． 9821	． 0080	－． 0087	1.0523
45	1．73	-40.36	． 9939	－． 0001	－． 0128	1.0575
43	1.82	－40．35	． 9929	． 0004	－． 0123	1.9964
5 5	1.34	－40．35	． 9935	． 0037	－． 0164	1.0083
51	2.88	－40．37	． 9836	． 05138	－． 0060	1.0023
52	2.13	－40．36	． 9849	． 0038	－． 0073	1.0042
53	2.24	－40．37	． 9804	． 0003	.0008	1.0599
54	2.33	－40．36	． 9755	． 8190	－． 0038	1．0062
55	2.43	－40．62	． 9799	－．0012	． 0028	1．0065
5	2． 53	－40．72	． 9789	－． 0002	． 1029	1.0004
$5 i$	2.64	－4日． 73	． 9823	． 5017	－． 0026	1．9524
58	2．75	－40．72	． 9835	． 1024	－． 0045	1.9532
59	2.84	－40．72	． 9865	－．0017	－．0045	1.0532
6 O	2.95	－40．73	． 9859	－． 0007	－． 0039	1．093
61	3.05	－40．72	． 9797	． 61019	－． 00604	1．6519
62	3．15	－40．73	． 9848	－．0019	－． 0015	1．0日28
63	3．25	－40．75	． 9792	－ 1203	－ 1021	1．9603
6.4	3.34	－40．73	． 9778	－． 01094	.0042	－ヲジu
E．	3.44	－40．72	． 9825	． 0008	－． 0019	1．619
E	3.55	－40．73	． 9814	． 0931	－． 9031	1．0925
$E T$	3.55	－40．74	． 9856	－ 6 园14	－． 0056	1． 5.949
ES	3．75	－40．72	． 9836	－シ®ご	－． 0.947	1． 504
$6 \cdot$	3．87	－40．72	.9740	－ 4 ¢53	． 0015	－ 3 y
70	3.76	－40．73	． 9773	． 6634	． 01010	－コごた
71	4.195	-40.75	． 9693	－セ6ら1	－ 5066	－ゴロら
てき	4.15	－40．74	． 9665	－b634	． 6121	． 7344
73	4.25	－40．73	． 9648	． 0033	． 0140	． 3939
74	4.37	－40．73	． 9613	． 0070	． 0140	． 9332
75	4.46	－40．71	． 9592	． 0062	． 0169	－ 9724
76	4.57	－40．72	． 9682	－ 0 －51	． 0087	－ 9 ごこ
77	4.68	－40．86	． 9762	－ 0 － 44	． 6111	－ヲッツ
72	4.78	－40．87	． 9740	－ 0 － 36	． 0942	－ 931
73	4.88	－40．88	． 9772	． 0059	－． 0015	1.0317
86	4.97	－40．86	． 9763	． 0.044	． 0009	1． 1903
81	5.08	－40．87	． 9735	． 0018	－ 0065	． 9772
82	5.18	－40．88	． 9736	－．0045	． 0126	． 9786
85	5.30	－40．87	． 9687	.0037	． 0096	． 9774
84	5.40	－40．88	． 9695	－．0012	． 0136	． 9967
85	5.50	－40．86	． 9781	－． 0037	． 0072	1.0061
86	5.59	－40．87	． 9832	－． 0037	． 0018	1．0028
87	5.69	－40．85	． 9825	－． 0009	－．0001	1．002
88	5.80	－40．85	． 9877	． 0002	－． 0067	1．0日も1
89	5.89	－40．87	． 9894	． 0003	－． 0086	1．0061
96	6.00	－40．87	． 9883	． 0017	－． 0088	1． b － 63
31	E． 11	－40．88	． 9847	． 0029	－． 0062	1．005 6
9	E． 21	－40．60	． 9791	． 0002	． 0022	1.0013
95	E． 30	－40．60	.9754	－．0006	． 0070	． 9992

table A． 3

ELADE TG ELADE FROBE IHTR AT MIISFH DATH FILE IC6251

Coris Probe：Betal＝40．3 Re＝77400日 X1 awe＝0．1211 Q1 aツミ＝21．26

1	－1．65	－1．77	． 7130	． 2695	． 0078	． 8375
2	－1．55	－1．79	． 7127	． 2691	． 0086	． 8368
3	－1．45	－1．94	． 7160	． 2651	． 0092	． 8379
4	－1．35	－1．73	． 7190	． 2637	． 0075	． 8384
5	－1． 25	－1．78	． 7191	． 2643	．0069	． 8397
\square	－1．15	－1．66	． 7204	． 2647	． 0051	.8413
$\overline{7}$	－1．65	－1．53	． 7222	． 2623	． 0056	． 8407
8	－．95	－1．93	． 7231	． 2613	． 0057	． 8402
7	－． 85	－1．82	． 7233	． 2605	． 0063	． 8402
19	－． 75	－1．73	． 7249	． 2608	． 0043	.8413
11	－． 55	－1．85	． 7207	． 2649	． 0046	． 8390
12	－． 45	． 52	． 7198	． 2626	． 0078	． 8367
13	－． 40	－3．30	． 7192	． 2631	． 0079	． 8350
14	－． 35	－2．88	． 7192	． 2622	． 0088	.8343
15	－． 30	－3．90	． 7123	． 2613	.0167	． 8294
15	－． 25	－3．28	． 6053	． 2651	． 1226	． 7653
17	－． 20	－4．03	． 4209	． 2668	． 3090	． 6373
18	－． 15	－4．02	． 2391	． 2821	．47ア7	． 4812
13	－． 10	－3．86	． 1199	． 2820	．5977	． 3408
20	－． 05	． 20	． 0765	． 2796	． 6237	． 3058
21	0.00	2.02	． 2685	． 2793	． 4508	． 5093
22	.05	2.01	． 5670	． 2581	． 1689	． 7377
23	． 10	2.06	． 7164	． 2500	． 0238	． 8284
24	． 15	2.10	． 7289	． 2579	． 0032	． 8358
25	． 20	2.17	． 7288	． 2547	． 0064	． 8340
26	． 25	2.05	． 7255	． 2565	． 0080	． 8323
27	． 30	2.20	． 7345	． 2456	． 0097	． 8360
28	． 35	． 29	． 7268	． 2549	． 0083	． 8322
29	． 45	． 19	． 7323	． 2516	． 0060	． 8346
30	． 55	.84	． 7358	.2496	． 0043	． 8370
31	． 65	． 10	． 7349	． 2490	． 0058	． 8358
32	． 75	． 50	． 7367	． 2469	． 0061	． 8368
3 B	．85	． 41	． 7388	． 2463	． 0046	． 8382
34	． 85	． 41	． 7404	． 2446	． 0046	． 8387
35	1． 15	－1．82	． 7433	． 2397	． 0066	． 8388
35	1.15	－1．64	． 7424	． 2401	． 0070	． 8384
$3{ }^{7}$	1.25	－1．81	． 7433	． 2395	． 0068	． 8391
3	1.35	－1．69	． 7454	． 2395	． 0046	． 8401
37	1.45	-1.73	． 7465	． 2380	． 0049	.8407
49	1.55	-2.70	． 7489	． 2363	． 0042	.8407
41	1.65	－2．56	． 7506	． 2341	． 0046	． 8405
42	1.75	－2．56	． 7529	． 2329	． 0934	． 8424
43	1.85	－2．63	． 7555	． 2320	．0016	． 8436

table A. 4

obe: Ertal=46.3			RE= 37406			
Foirit	Loc (in)	- Beta	0	Fs-PS1bar	Ftitar-Ft	\because
			Q1refbar	Q1refbar	Q1refbar	人1refbar

1	-1.65	-2.44	. 7411	. 2384	. 0101	. 8311
2	-1.55	-2.61	. 7392	. 2349	. 0155	. 8284
3	-1.45	-2.49	. 7413	. 2349	. 0135	. 2296
4	-1.35	-2.39	. 7409	. 2354	. 6133	. 8299
5	-1.25	-2. 52	.7417	. 2361	. 8118	. 6362
6	-1.15	-2.55	. 7416	. 2346	. 8133	. 8297
7	-1.05	-2.55	. 7433	. 2352	.0111	. 8362
8	-. 95	-2.61	. 7430	. 2356	. 0115	. 5302
7	-. 85	-2.56	. 7418	. 2367	. 0111	. 8291
16	-. 75	-3.36	. 7404	. 2353	. 0140	. 8274
11	-. 65	-3.61	. 7373	. 2398	. 0134	. 8261
1Σ	-. 55	-3.40	. 7358	. 2409	. 0131	. 82.52
13	-. 50	-3.58	. 7354	. 2405	. 0139	. 8244
14	-. 45	-3.33	. 7360	. 2419	. 0118	. 8250
15	-. 40	-3.90	. 7384	. 2407	. 0106	. 8263
$1 E$	-. 35	-3.98	. 7366	. 2366	. 016.4	. 8249
17	-. 30	-5. 25	. 7173	. 2362	. 0367	. 8135
18	-. 25	-4.81	. 5969	. 2338	. 1625	. 7427
19	-. 20	-5.41	. 4486	. 2338	. 3138	. 6437
20	-. 15	-5.40	. 3172	. 2446	. 4363	. 5425
21	-. 10	-5.18	. 2553	. 2499	. 4936	. 4368
22	-. 05	-5. 33	. 2827	. 2462	. 4696	. 5116
23	0.00	-5.02	. 4061	. 2406	. 3502	. 6126
24	. 10	-. 97	. 7027	. 2259	. 0620	. 8042
25	. 15	-. 95	. 7434	. 2319	. 0141	. 8275
26	. 20	-. 89	. 7494	. 2325	. 0075	. 8300
27	. 25	-1.90	. 7464	. 2346	. 0085	. 8269
28	. 30	-1.79	. 7461	. 2339	. 0094	. 8265
29	. 35	-2.02	. 7484	. 2338	. 0080	. 8278
30	. 45	-1.93	. 7486	. 2319	. 0088	. 8280
31	. 55	-1.84	. 7511	. 2310	. 0072	. 8290
32	. 65	-1.81	. 7529	. 2284	. 0079	. 8300
33	. 75	-1.78	. 7545	. 2283	. 0064	. 8309
34	. 85	-2.01	. 7574	. 2254	. 0062	. 8321
35	. 95	-1.98	. 7570	. 2245	. 0076	. 8319
36	1.05	-1.95	. 7607	. 2221	. 0062	. 8332
37	1.15	-1.95	. 7596	. 2201	. 0094	. 8319
38	1.25	-1.97	. 7611	. 2201	. 0077	. 8329
39	1.35	-2.50	. 7613	. 2205	. 0072	. 8329
40	1.45	-2.40	. 7615	. 2204	. 0071	. 8327
41	1.55	-2.28	. 7642	. 2206	.0041	. 8344

thble A． 5
blade tg blaie froee drta at Migfan inta file Ingesg
Cone Frobe：EEtal＝40．3 Re＝774000 K1まいE＝0．1211 Q1ave＝21．26 Point Lec（in）－Beta $\frac{Q}{\text { Q1refbar }} \frac{F E-F \equiv 1 b a r}{\text { Q1refbar }} \frac{\text { Ptitar－Ft }}{\text { Q1refbar }} \overline{\text { K1reftar }}$

1.	－1．60	－2． 20	． 6640	． 3215	． 00162	． 8243
2	－1．50	－1．91	． 6659	． 3155	．01日2	． 8244
3	－1．40	－2．05	． 6680	． 3171	． 0064	． 8248
4	－1．30	－1．90	． 6704	． 3183	． 0128	． 8273
5	－1．20	－2．28	． 6711	． 3171	． 0033	． 8273
ε	－1．10	－2．16	.6707	． 3191	． 0018	． 2273
$\overline{7}$	－1．00	－2．26	． 6720	． 3166	． 0029	．8268
ε	－． 90	－3．09	． 6708	． 3191	． 0016	． 8263
9	－． 80	－2．76	． 6701	． 3209	． 01006	． 8257
1 19	－． 70	－2．78	.6703	． 3176	． 0036	． 8252
11	－． 60	－2．96	． 6700	． 3170	． 0045	． 8250
12	－． 50	－3．07	． 6711	． 3191	． 0013	.8267
12	－． 40	－3．58	． 6616	． 3110	． 0192	． 8187
14	－． 30	－3．33	． 5913	． 3078	． 0943	． 7754
15	－． 20	－3．45	． 4460	． 3085	． 2417	． 6742
16	－． 15	－3．23	． 3925	． 3058	． 2988	． 6316
17	－． 10	－3．29	． 3728	． 3085	． 3161	． 6152
18	－． 05	－3．16	． 3948	． 3070	． 2953	． 6326
19	0.00	－2．25	． 4486	． 3063	． 2414	． 6746
20	． 05	－2．01	． 5228	.3069	． 1651	． 7271
21	． 10	－1．77	． 5887	． 3150	． 0898	． 7706
22	． 15	－2．14	． 6465	.3070	． 8386	． 8074
23	． 20	－1．98	． 6708	． 3067	． 0141	． 8212
24	． 25	－2．12	．6773	． 3103	． 0037	． 8256
25	． 35	－1．98	．6767	． 3137	． 0010	． 8250
26	． 45	－2．50	． 6702	． 3235	－． 0022	． 8219
27	． 55	－3．11	． 6736	． 3201	－． 0023	． 8229
28	． 65	－2．55	． 6708	． 3241	－． 0034	． 8199
29	． 75	－2．77	． 6664	． 3254	－． 00002	.8169
30	． 85	－2．65	． 6650	． 3298	－． 0032	． 8161
31	． 75	－2．46	． 6643	． 3278	－． 0004	． 8141
32	1． 1.3	－2．72	． 6609	． 3312	－． 0003	． 8131
33	1.15	－2．11	． 6692	． 3216	． 0008	.8172
34	1.25	－2．55	． 6720	． 3175	． 0019	． 8184
35	1.35	－2．57	． 6709	． 3196	． 0010	． 8174
35	1.45	－2．54	． 6737	． 3162	． 0015	． 8183
37	1.55	－2．73	． 6768	． 3176	－．0031	.8213
38	1.65	－1．38	． 6707	． 3219	－．0011	． 8151

thble A. 6
blaile to blade probe ifta at midsfan dath file mige
Cone Probe: EEtal=40.3 Re=7ア4000 K1.ave=0.1211 Q1ave=21.26

Foint	Loc《in)	- Eeta	Q	Fs-Fsityr	Ft16ar-Ft	8
			Q1refbar	Qureftar	Qurefbar	Kıreftar
1	-1.60	-1.77	. 7065	. 2740	. 0102	. 8229
2	-1.40	-1.57	. 7066	. 2738	. 0102	. 8236
3	-1.30	-1.60	. 7064	. 2755	. 0087	. 8238
4	-1.20	-1.69	. 7075	. 2750	. 0480	. 8246
5	-1.10	-2.16	. 7051	. 2776	. 0080	. 8242
6	-1.00	-2.13	. 7075	. 2765	. 0065	. 8250
7	-. 98	-2.16	. 7062	. 2760	. 0084	. 8245
8	-. 80	-2.14	. 7067	. 2766	. 0073	. 8244
9	-. 70	-2. 62	. 7043	. 2770	. 0094	. 8232
10	-. 60	-2.01	. 7052	. 2765	. 0090	. 8238
11	-. 50	-2.15	. 7009	. 2744	. 0154	. 8214
12	-. 40	-2.73	. 6766	. 2742	. 0406	. 8083
13	-. 35	-2.95	. 6489	. 2713	. 0719	. 7914
14	-. 30	-3.01	. 6014	. 2697	. 1221	. 7628
15	-. 25	-3.21	. 5494	. 2683	. 1766	. 7294
16	-. 20	-3.03	. 5019	. 2677	. 2257	. 6978
17	-. 15	-3.23	. 4654	. 2695	. 2611	. 6722
18	-. 10	-3.27	. 4460	. 2714	. 2788	. 6586
19	-. 05	-2.33	. 4595	. 2687	. 2678	. 6675
20	0.00	-2. 29	. 4943	. 2686	. 2326	. 6921
21	. 05	-1.72	. 5457	. 2685	. 1802	. 7273
22	. 10	-1.98	. 6076	. 2708	. 1147	. 7674
23	. 15	-1.75	. 6540	. 2703	. 0676	. 7953
24	. 20	-1.73	. 6836	. 27.38	. 0337	. 8133
25	. 25	-1.86	. 6999	. 2748	. 0161	. 8219
26	. 30	-2.10	. 7051	. 2759	. 0097	. 8248
27	. 48	-2.05	. 7071	. 2771	. 0064	. 8256
28	. 50	-1.87	. 7109	. 2762	. 0033	. 8274
29	. 60	-2. 22	. 7070	. 2764	. 0072	. 8255
36	. 70	-1.82	. 7116	. 2779	. 0010	. 8288
31	. 80	-2.26	. 7113	. 2784	. 6008	. 8287
32	. 90	-1.95	. 7107	. 2772	. 0026	. 8283
32	1.00	-2.48	. 7097	. 2795	. 0013	. 8286
34	1.10	-2.21	. 7096	. 2767	. 0042	. 8272
35	1.20	-2.36	. 7087	. 2788	. 0031	. 8274
36	1.30	-2.37	. 7071	. 2787	. 0048	. 8266
37	1.40	-1.73	. 7095	. 2795	. 0016	. 8281
38	1.50	-2.37	. 7089	. 2784	.0032	. 8279

TABLE A. 7
blade to blade probe iffa at midspir unta file icezss

Cone Frobe: Eetal=40.3 Re=7740日0 X1. 3 ve=0.1211 Q1ave=21.26

Point	Loc(in)	- Beta	$\frac{Q}{\text { Q1reftar }}$	$\frac{P s-P s 1 b a r}{\text { Q1refbar }}$	$\frac{\text { Ftibar-Pt }}{\text { Q1reftiar }}$	$\frac{x}{x 1 r e f b a r}$
*****				*	+	**************
1	-1.65	-1.72	. 7271	. 2483	. 8146	. 8212
2	-1.55	-1.87	. 7288	. 2499	. 0113	. 8226
3	-1.45	-1.72	. 7311	. 2461	. 8127	. 8226
4	-1.35	-1.79	. 7312	. 2464	. 8123	. 8225
5	-1.25	-1.90	. 7319	. 2492	. 0088	. 8241
6	-1.15	-1.88	. 7339	. 2448	. 0112	. 8228
7	-1.05	-1.84	. 7312	. 2476	. 0111	. 8223
8	-. 95	-2.33	. 7318	. 2442	. 0138	. 8215
9	-. 85	-2.30	. 7341	. 2455	. 8181	. 8232
10	-. 75	-2.45	. 7333	. 2413	. 0151	. 8214
11	-. 65	-2.36	. 7305	. 2428	. 0166	. 8206
12	-. 55	-2.38	. 7184	. 2389	. 8329	. 8128
$1: 3$	-. 45	-2. 56	. 6784	. 2391	. 0737	. 7989
1.4	-. 35	-2.88	. 6246	. 2359	. 1321	. 7590
15	-. 30	-3.38	. 5935	. 2321	. 1677	. 7391
15	-. 25	-3.27	. 5699	. 2332	. 1907	. 7246
17	-. 20	-3.30	. 5445	. 2318	. 2180	. 7074
18	-. 15	-3.15	. 5348	. 2340	. 2258	. 7026
19	-. 10	-2.54	. 5370	. 2357	. 2217	. 7043
29	-. 05	-2. 53	. 5544	. 2336	. 2062	. 7145
21	0.00	-2.33	. 5783	. 2294	. 1860	. 7281
22	. 05	-2.17	. 6092	. 2315	. 1523	. 7489
23	. 10	-1.99	. 6464	. 2315	. 1141	. 7699
24	. 15	-2.06	. 6781	. 2319	. 0812	. 7882
25	. 25	-1.70	. 7211	. 2319	. 0372	. 8112
25	. 35	-1.90	. 7393	. 2335	. 0168	. 8213
27	. 45	-2.04	. 7463	. 2368	. 0063	. 8255
28	. 55	-1.90	. 7480	. 2357	. 0057	. 8269
29	. 65	-1.93	. 7502	. 2347	. 0045	. 8265
319	. 75	-2.23	. 7486	. 2366	. 0042	. 8266
31	. 85	-1.69	. 7482	. 2342	. 0070	. 8257
32	. 95	-1.97	. . 7497	. 2331	. 0065	. 8258
33	1.95	-2.01	. 7475	. 2340	. 0078	. 8246
34	1.15	-1.76	. 7490	. 2324	. 0079	. 8249
35	1.25	-1.82	. 7466	. 2335	. 0093	. 8239
36	1.35	-1.67	. 7465	. 2325	. 0104	. 8235
37	1.45	-1.89	. 7435	. 2396	. 0064	. 3221
33	1.55	-1.94	. 7379	. 2423	. 0096	. 8176
39	1.65	-1.92	. 7360	. 2461	. 0076	. 8171

TABLE A. 8
elfide to elfide frobe iata at midspan ifta file eigega

Point	Lor (in)	- Eeta	$\frac{Q}{\text { Q1refbar }}$	$\frac{F \equiv-F=16 a r}{01 r e f t b a r}$	$\frac{F^{2} \cdot 16 a r-F t}{\text { Q1refoar }}$	$\frac{8}{\text { R1refbar }}$
*	*******	******	-			
1	-6.62	-3.03	. 5462	. 3391	. 0592	. 7497
2	-6. 65	-3.09	. 5643	. 3370	. 0427	. 7515
3	-5.63	-3.08	. 5920	. 3376	. 613.	. 7704
4	-5.68	-2.22	. 6070	. 3382	-. 6020	. Pen
5	-5.53	-1.87	. 6083	. 3301	-. 0053	. 7828
E	-5.43	-1.87	. 6101	. 3392	-. 61072	. 783
$\overline{7}$	-5.38	-1.85	. 6078	. 3389	-. 01635	.7813
ε	-5.28	-1.87	. 6067	. 3981	-. 0.0937	. 7822
9	-5.18	-1.87	. 6090	. 3371	-. 0030	. 7827
19	-5.08	-1.85	. 6028	. 3897	. 6068	. 7 P91
11	-4. 93	-1.63	. 6024	. 3394	. 9615	. 95
$1{ }^{\circ}$	-4.88	-1.63	. 5963	. 3796	. 1006	.7351
13	-4.73	-1.49	. 5979	. 3388	. 0065°	. 5762
14	-4.69	-1.47	. 5988	. 3885	. 0066	. 77.53
15	-4.58	-1.50	. 5929	. 3890	. 6125	. 7707
16	-4.47	-. 99	. 5941	. 3888	.010E	. 7727
17	-4.33	-1.00	. 5927	. 3899	. 0118	. 7715
12	-4.29	-. 99	. 5912	. 3909	. 0114	. 7703
19	-4.19	-. 77	. 5886	. 3901	. 0148	. 7688
20	-4.09	-. 25	. 5823	. 3898	. 0215	. 7644
-1	-3.99	-. 26	. 5674	. 3902	. 0364	. 5546
22	-3.89	. 56	. 5395	. 3900	. 0651	. 7361
23	-3.79	. 81	. 5099	. 3985	. 0967	. 7155
24	-3.69	. 82	. 4623	. 3882	. 1454	. 5812
$こ 5$	-3.60	. 81	. 4327	. 3858	. 1780	. 5583
- 6	-3.47	-. 14	. 4104	. 3854	. 2011	. 642 C
\therefore	-3.39	-1.48	. 4150	. 3846	. 1971	. 6456
¢8	-3.29	-1.46	. 4355	. 3873	. 1736	. 6619
こ9	-3.17	-2. 60	. 4752	. 3853	. 1343	. 6908
30	-3.09	-2.61	. 5226	. 3851	. 0871	. 7237
31	-2.97	-2.61	. 5586	. 3869	. 0487	. 7478
32	-2.90	-2.59	. 5857	. 3852	. 0217	. 766 J
33	-2.80	-2.11	. 5969	. 3899	. 00066	. 7751
34	-2.69	-1.62	. 6021	. 3913	-. 0002	. 7793
35	-2.59	-1.63	. 6049	. 3899	-. 0016	. 7803
36	-2.49	-1.62	. 6072	. 3889	-. 0030	. 7817
37	-2.39	-1.64	. 6060	. 3888	-. 0017	. 7809
38	-2.29	-1.62	. 6041	. 3902	-. 0011	. 7798
39	-2.19	-1.61	. 6025	. 3897	. 0011	. 7788
40	-2.99	-1.62	. 6038	. 3901	-. 0007	. 7798
41	-1.99	-1.58	. 6026	. 3887	. 0020	. 7785
42	-1.89	-1.63	. 6003	. 3897	. 0033	. 7778
43	-1.79	-1.62	. 6026	. 3869	. 0038	. 7784

TABLE A． 8 COH＇T

44	－1．69	－1．62	． 6021	． 3855	． 0056	． 7775
45	－1．59	－1．62	． 6007	． 3864	． 0062	． 7764
4ϵ	－1．49	－1．14	． 6001	． 3863	． 0063	． 7764
47	－1．39	－1．12	． 5976	． 3895	．9063	－ 7759
48	－1．29	－． 81	． 5965	． 3908	.0061	． 7756
4%	－1．19	－． 79	． 5891	． 3904	． 0140	． 7696
50	－1．09	－． 27	． 5763	． 3903	． 9272	.7613
51	－． 99	． 21	． 5529	． 3903	． 0512	． 7456
52	－． 89	． 21	． 5211	． 3888	.0850	． 7238
53	－． 79	． 72	． 4792	． 3885	． 1280	． 6944
54	－． 69	． 31	． 4451	． 3859	． 1653	． 6687
55	－． 60	． 31	． 4199	． 3876	． 1892	． 6590
56	－． 50	－1．38	． 4141	． 3864	． 1963	． 6453
57	－． 40	－1．38	． 4232	． 3863	． 1872	． 6515
58	－． 30	－2．83	． 4 E04	－Sr 79	． 1557	． 6763
5\％	－． 20	－2．82	． 5058	．$\because 891$	． 1104	－ T －8
60	－． 10	－2．81	． 5457	－E¢17	． 0670	． 731
61	． 93	－2．83	． 5755	． 5794	． 6389	． 7547
62	． 11	－2．67	． 5970	－ミフマス	－ 91.92	．TETG
63	． 20	－1．88	． 6100	－ミ゙アで	． 01059	－アアヒア
64	． 30	－1．86	． 6153	．הr．6も	.0017	
$\epsilon 5$	． 41	－1．84	． 6176	．3－56	－． 00134	－アらず
$E E$	． 5	－1．63	． 6191	．-31	． 000 F	－－86
E	． 51	－1．63	． 6216	．ST24	－．0011	－ 715
68	． 72	－1．39	． 6230	－Ar＇20	－． 01022	－アジく
69	． 82	－1．38	． 6236	．3r11	－．0019	－ 18.1
76	． 92	－1．39	． 6244	． 3706	－． 0023	． 7823
71	1.02	－1．40	． 6262	． 3722	－． 0057	． 7837
72	1.12	－1．40	． 6241	． 3655	－．0018	． $78 こ ゙ 6$
73	1.22	－1．40	． 6273	． 3717	－．0062	． 7844
74	1．33	－1．15	． 6275	． 3696	－． 13044	
75	1.43	－1．13	． 6272	． 3693	－． 0038	－ 1 －
アシ	1.53	－1．15	． $6 こ 59$	． 3690	－． 0022	． 7813
「フ	1.53	－． 90	． 6261	． 3679	－．0014	． 7811
78	1.73	－． 91	． 6244	． 3671	． 0013	． 7396
\because	1.83	－． 28	． 6164	． 3693	． 0072	． 7744
EO	1.93	－． 02	． 6042	．3662	． 0227	． 7658
81	2.04	． 31	． 5843	． 3652	． 0441	． 7525
\＆2	2.14	． 48	． 5505	． 3642	． 0797	． 7308
$\varepsilon 3$	2.24	． 81	． 5077	． 3629	． 1246	． 7014
84	2.34	． 81	． 4680	． 3595	． 1684	．ET31
85	2.45	－． 19	． 4416	． 3614	． 1934	． 6541
85	2.54	－． 19	． 4258	． 3597	． 2111	． 6421
E？	2.65	－2．22	． 4387	． 3589	． 1988	． 6514
ε	2.75	－2．22	． 4700	． 3587	． 1673	． 6736
8	2.85	－3．07	． 5183	． 3559	． 1290	． 7005
4	2.95	－2．84	． 5508	．3577	． 0859	． 7271
91	3.05	－2．83	． 5861	． 3559	． 0517	． 7492
92	3.16	－2．36	． 6130	． 3536	． 0264	． 7653
93	3.25	－2．35	． 6224	． 3530	． 0174	． 7709

TABLE A． 9
bLADE TO BLRIE PROEE DRTA RT MIDSFAH DATA FILE EDE26G

Poirit	Loc（in）	－Beta	$\frac{Q}{\text { Q1reftar }}$	$\frac{F s-F s 1 b a r}{Q 1 r e f b a r}$	$\frac{P t 1 b a r-F t}{\text { Q1reftar }}$	$\frac{z}{\text { K1reftar }}$
1	－3．05	－43．20	． 9715	． 0015	． 0090	．9747
2	－3．01	－43．20	． 9708	－． 0025	． 0137	． 9728
3	－2．90	－43．21	． 9762	－． 0010	． 0066	． 9760
4	－2．76	－43．20	． 9809	． 0021	－． 0014	． 9797
5	－2．61	－43．20	． 9804	.0065	－． 0052	1.5611
E	－2．43	－43．20	． 9826	.0007	－． 0057	1.0921
7	－2．39	－43．21	． 9845	． 0045	－． 0005	1．002
E	－2．29	－43．21	． 9807	． 0076	－．00E	1．5以
9	－2．18	－43．20	.9799	.0049	－． 0030	1． 5 可回
16	－2．198	－43．21	． 9798	.0050	－． 0031	1． 2194
11	－2．100	－43．20	． 9799	． 0047	－． 0029	1．日勺13
12	－1． 30	－43．20	． 9826	． 0035	－． 0045	1．0121
13	－1．73	－43．19	． 9827	． 0021	－． 0032	1．0152
14	－1．69	－43．21	． 9859	． 8012	－． 0057	1．6ら2も
15	－1．50	－43．43	． 9840	． 2010	－． 0934	
15	－1．48	－43．46	． 9797	． 0.132	－． 01012	－ 3796
17	－1．37	－43．47	． 9812	.0020	－．061	－ヨ 39
18	－1．29	－43．21	． 9746	． 0008	． 0065	－ 9768
17	－1．19	－43．20	． 9738	． 0008	． 0073	． 9760
26	－1．09	－43．47	． 9745	． 00006	． 0067	． 9.960
21	－． 99	－43．46	． 9749	－． 0006	． 0078	． 9762
22	－． 90	－43．47	． 9773	－． 8005	． 00505	．97？
25	－． 79	－43．47	． 9796	－． 00035	． 065	． 938
24	－． 71	－43．46	． 9852	－．0019	－．0018	1． 51308
25	－． 59	－43．45	． 9852	－． 0026	－．0011	1．0000
25	－． 48	－42．96	． 9843	－． 0024	－．0003	1．01901
27	－． 38	－43．46	． 9833	－．0014	－． 0003	． 9795
2%	－． 29	－43．47	． 9813	－．0014	． 0018	． 9795
2%	－． 20	－43．46	． 9821	－． 0039	． 0035	． 9983
30	－． 09	－43．44	． 9822	－． 0045	． 0038	． 9988
31	－． 01	－43．46	． 9841	－． 0050	． 0024	． 9795
32	.10	－43．48	． 9852	－．0040	． 0003	． 9998
33	． 19	－43．46	． 9803	． 0027	－． 0013	1.0005
34	． 29	－43．48	． 9803	． 0049	－． 0035	1．0015
35	． 40	－43．46	． 9806	． 0022	－．0011	1.0007
35	． 50	－43．48	． 9818	． 0014	－． 0016	1．0612
37	． 59	－43．46	． 9788	． 0014	.0016	． 9997
35	． 70	－43．4E	． 9767	． 0026	． 0026	． 9988
35	． 80	－43．47	． 9801	． 0018	－． 0001	1.0005
45	． 89	－43．46	． 9788	． 0034	－． 0004	1.0000
41	1.01	－43．49	． 9850	． 0003	－． 0038	1.0025
42	1.11	－43．44	． 9845	． 0031	－．0060	1.0033
43	1.21	－43．46	． 9913	． 0011	－． 0110	1.0055

taEle A． 9 CON＇t

44	1.31	－43．45	． 9913	－． 0501	－． 0100	1.0043
45	1.40	－43．46	． 9878	－．0914	－． 0050	1.0027
46	1.51	－43．33	． 9850	－．0019	－． 0027	1.0025
47	1.61	－43．34	． 9817	－0922	－． 0023	1.0018
43	1.71	－43．45	． 9825	． 0918	－． 0026	1.6026
$4{ }^{\prime}$	1.81	－43．46	． 9836	． 0901	－． 0020	1.0016
513	1.91	－43．58	． 9874	－． 0921	－． 0038	1.0036
51	2.00	－43．58	． 9923	－．0928	－． 0983	1.0053
52	2.10	－43．58	． 9941	－．0926	－． 8103	1.0064
53	2.19	－43．58	． 9968	－． 0017	－． 0141	1.8078
54	2.31	－43．47	． 9999	－． 0054	－． 8136	1.0983
5.5	2.40	－43．46	． 9960	－． 0038	－． 0111	1.0079
55	2.51	－43．47	． 9975	－． 0043	－． 0123	1.0073
57	2.60	－42．94	． 9981	－． 0109	－． 0062	1.0065
53	2．7日	－43．20	1.0102	－． 0180	－． 0012	1.0030
$5 \cdot 7$	2．80	－43．48	1.0068	－．0166	－． 0032	1.0035
613	2.90	－43．48	． 9996	－． 0169	－． 0017	1.0932
61	3．96	－43．46	1.0015	－． 0193	－． 0013	1.0923
62	3.11	－43．46	1.0029	－． 0221	． 0001	1.0025
63	3.18	－43．46	1.0078	－． 0296	－．00E6	1.0053
54	3．30	－43．48	1.0090	－．02こ6	－． 0057	1.0953
55	3.40	－43．49	1.0077	－． 0243	－． 0028	1.0042
55	3.48	－43．47	1.0095	－． 0270	－．0019	1.0035
57	3.59	－43．47	1.0065	－． 0268	． 0618	1.0020
59	3．6．9	－43．46	1.0074	－． 0288	． 0020	1.0922
67	3.80	－43．47	1.0084	－． 0298	． 0021	1.0020
70	3.89	－43．73	1.0097	－． 0278	． 0097	1.0023
71	3.99	－43．70	1.0068	－． 0275	． 0034	1.0014
72	4.16	－43．72	1.0089	－． 0238	． 0.014	1.0918
75	4.28	－43．72	1.0092	－． 0295	． 0069	1.0925
74	4．2゙ヲ	－43．47	1.0110	－． 0341	－ 0936	1.01922
$7{ }^{7}$	4.37	－43．48	1.0075	－． 0355	． 0987	． 9797
アE	4.49	－43．47	1.0036	－． 0352	． 0133	． 9770
77	4.57	－43．73	1.0035	－．0378	－ 151	． 9 FES
78	4．76	－43．73	1.0038	－． 04131	． 171	． 9753
77	4． 56	－43．72	$1.005 ?$	－． 0374	． 0149	． 9366
89	4.90	－43．73	1.0072	－． 0418	． 1153	． 9762
81	5.90	－43．73	1.0157	－． 0441	． 0087	． 7334
82	5．11	－43．74	1.0167	－． 0442	． 9073	1.0003
85	5.21	－43．72	1.0213	－． 0454	． 0042	1.01915
84	5．3日	－43．72	1.0216	－． 0482	． 0066	1． 81916
85	5.41	－43．46	1.0262	－． 0492	． 0029	1．0935
8	5.51	－43．46	1.4225	－． 0504	． 0079	1．1918
87	5.62	－43．47	1.0227	－． 0511	－ 1984	1．510
85	5.71	－43．46	1.0237	－． 0532	． 3894	1． 41968
87	5.81	－43．47	1.0256	－． 0507	． 0111	． 7798
95	5.90	－43．58	1.0302	－． 0584	． 0079	1.61916
91	5.99	－43．48	1.0352	－． 0617	． 0060	1.9932
92	6.08	－43．47	1.8432	－． 0630	－． 0009	1.0961
93	6.20	－43．48	1.0426	－． 0630	－．0004	1．0054

TABLE A. 10
blaide to blade frobe iata at midsfan dhta file incezel

Foint	Log(in)	- Beta	Q	Ps-Psibar.	Ptibar-Pt	$\%$
			Q1refbar	Q1refbar	Q1refoar	Xireftar
1	-2.63	-. 89	. 6757	. 3135	. 0023	. 8189
2	-2.53	-. 68	. 6758	. 3170	-. 0014	. 8186
3	-2.43	-1.28	. 6757	. 3185	-. 0027	. 8202
4	-2.33	-1.30	. 6760	. 3146	. 0008	. 8183
5	-2.23	-1.10	. 6772	. 3149	-. 0007	. 8191
ϵ	-2.13	-1.34	. 6767	. 3171	-.0023	. 8195
7	-2.03	-1.19	. 6748	. 3174	-. 0007	. 8186
ε	-1.93	-1.34	. 6758	. 3159	-. 0002	.8196
9	-1.83	-1.36	. 6746	. 3147	. 0922	. 8179
10	-1.73	-1.28	. 6745	. 3144	. 0925	. 8180
11	-1.63	-1.36	. 6755	. 3114	. 0046	.8178
12	-1.53	-1.45	. 6748	. 3131	. 0036	. 8181
13	-1.48	-1.54	. 6756	. 3107	. 0051	. 8193
14	-1.43	-1.48	. 6743	. 3110	. 0062	. 8180
15	-1.38	-1.52	. 6745	. 3106	. 0064	. 8188
16	-1.33	-1.94	. 6757	. 3090	. 0067	. 3184
17	-1.28	-1.90	. 6748	. 3682	. 0085	. 8182
18	-1.23	-2.07	. 6759	. 3084	. 0071	. 8185
13	-1.18	-1.93	. 6753	. 3081	. 0081	. 8184
21	-1.13	-1.80	. 6761	. 3085	. 0068	. 8195
21	-1.03	-2.51	.6772	. 3075	. 0067	. 8195
22	-. 93	-2.49	. 6796	. 3056	. 0062	. 8201
23	-. 83	-2.78	. 6798	. 3054	. 0062	. 820.3
24	-. 73	-2.90	. 6809	. 3053	. 0051	. 8222
25	-. 63	-5.12	. 6824	. 3044	. 0045	. 8223
26	-. 53	-4.86	.67ア7	. 3042	. 0094	. 3205
27	-. 43	-5.44	. 6627	. 3018	. 0272	. 8115
$2 E$	-. 38	-5.84	. 5963	. 3097	. 0964	. 716
29	-. 33	-6.26	. 5008	. 2938	. 1958	. 7969
30	-. 28	-6. 62	. 3820	. 3019	. 3134	. 6176
31	-. 23	-6.42	. 2756	. 3057	. 4163	. 5244
32	-. 18	-7.55	. 1821	. 3146	. 5026	. 4268
33	-. 13	-7.45	. 1180	. 3192	. 5626	. 3440
34	-. 98	-3.60	. 1069	. 28.2	. 6057	. 3275
35	-. 03	. 83	. 1010	. 30134	. 5983	. 3177
36	0.00	2.18	. 1768	. 3138	. 5038	. 4195
37	. 02	1.59	. 2268	. 3210	. 4513	. 4757
36	. 97	1.44	. 4964	. 3047	. 1943	.7834
37	. 12	1.48	. 6650	. 2955	. 0301	. 8184
4 T	. 17	. 06	. 6862	. 3041	. 0009	. 3243
41	. 22	-. 48	. 6811	. 3095	. 0007	. 8219
42	. 27	-. 38	. 6776	. 3106	. 8032	. 8174
43	37	-1.22	. 6762	. 3132	. 0020	3178

table a. 10 con't

44	.47	-1.51	.6744	.3157	.0014	.8186
45	.57	-1.12	.6758	.3156	.0000	.8191
46	.67	-2.15	.6747	.3134	.0035	.8172
47	.77	-2.27	.6775	.3122	.0018	.8197
48	.87	-1.77	.6792	.3116	.0906	.8197
49	.97	-1.75	.6797	.3116	.0000	.8201
50	1.07	-1.86	.6791	.3103	.0019	.8195
51	1.17	-1.96	.6771	.3149	-.0007	.8202
52	1.27	-2.02	.6795	.3117	.0001	.8205
53	1.37	-2.19	.6840	.3088	-.0016	.8230
54	1.47	-2.22	.6834	.3110	-.0032	.8240
55	1.57	-2.40	.6821	.3110	-.0018	.8210
56	1.67	-3.14	.6870	.3091	-.0049	.8249

trble A. 11
elfide tig blade frube irta ft mifsfan dhta file icezes
Cone Probe: Retal=43.43 Re=77400日 X1ave=0.1216 Q1ave=21.05
Point Loc(in) - Beta $\frac{Q}{Q 1 r e f b a r} \quad \frac{P s-P s i b a r}{Q 1 r e f b a r} \frac{\text { Ftibar-Fit }}{\text { Q1refbar }} \frac{X}{\text { X1reftar: }}$

1	-1.66	-2. 15	. 6305	. 3585	. 0936	. 8638
2	-1. 56	-2.09	. 6287	. 3590	. 0049	. 8027
3	-1.46	-2.23	. 6278	. 3592	. 0057	. 3007
4	-1.36	-2.17	. 6304	. 3582	. 0040	. 8032
5	-1.26	-2.34	. 6282	. 3571	. 0073	. 8019
E	-1.16	-2.24	. 6303	. 3590	. 0033	. 8949
7	-1.86	-2.41	. 6280	. 3581	. 0.1065	. 8007
8	-. 96	-2.40	. 6279	. 3589	. 0059	. 8817
9	-. 86	-2.51	. 6312	. 3589	. 0025	. 8936
19	-. 76	-2.96	. 6289	. 3623	. 0014	. 8025
11	-. 71	-3.21	. 6307	. 3613	. 0006	. 81032
12	-. 66	-3.24	. 6289	. 3615	. 0022	. 8035
13	-. 61	-3.14	. 6280	. 3581	. 0066	. 8020
14	-. 56	-3.80	. 6236	. 3592	. 0099	. 7987
1.5	-. 51	-3.59	. 5968	. 3574	. 0392	. 7810
16	-. 46	-4.57	. 5490	. 3573	. 0882	. 7508
17	-. 41	-3.84	. 4781	. 3562	. 1615	. 7024
18	-. 36	-3.71	. 3991	. 3572	. 2407	. 6420
17	-. 31	-4.30	. 3279	. 3598	. 3103	. 5824
29	-. 26	-2.84	. 2736	. 3640	. 3609	. 5319
21	-. 21	-2.75	. 2423	. 3631	. 3935	. 5004
22	-. 16	-2.56	. 2459	. 3634	. 3895	. 5037
23	-. 11	-1.00	. 2836	. 3568	. 3581	. 5406
24	-. 06	-. 85	. 3453	. 3538	. 2986	. 5971
25	-. 03	. 02	. 4087	. 3502	. 2380	. 6436
26	0.00	-. 60	. 4415	. 3471	. 2077	. 6739
27	. 04	-. 28	. 5123	. 3479	. 1349	. 7268
28	. 09	. 05	. 5721	. 3481	. 0737	. 7673
29	. 14	-1.12	. 6132	. 3527	. 0271	. 7935
30	. 19	-. 86	. 6288	. 3572	. 0067	. 8033
31	. 24	-1.48	. 6311	. 3612	. 0003	. 8041
32	. 29	-1.68	. 6302	. 3625	-. 0000	. 8029
33	. 34	-1.70	. 6300	. 3634	-. 0008	. 8050
34	. 39	-1.35	. 6290	. 3647	-.0010	. 8048
35	. 44	-1.76	. 6302	. 3645	-. 0020	. 8067
36	. 54	-1.94	. 6297	. 3655	-. 0026	. 8056
37	. 54	-1.86	. 6325	. 3601	0.0000	. 8058
38	. 34	-2. 81	. 6346	. 3601	-.0022	. 8059
39	. 84	-1.96	. 6339	. 3595	-. 0008	. 8061
45	. 34	-2.01	. 6342	. 3606	-. 0023	. 8067
41	1.94	-1.79	. 6347	. 3597	-. 0019	. 8042
42	1.14	-2.03	. 6370	. 3598	-. 0044	. 8090
43	1.24	-2.14	. 6352	. 3605	-. 0032	. 8082

THELE A. 11 COH'T

44	1.34	-1.95	.6377	.3508	-.0060	.81983
45	1.44	-1.90	.6361	.3536	-.0022	.8155
45	1.54	-1.86	.6382	.3552	-.0020	.8173
47	1.64	-2.23	.6367	.3539	-.0031	.8070

TABLE A． 12
ELADE TI bLADE FRÖE IIATA AT MIISFAH IATH FILE IIG626．5
Cone Probe：Betal＝43．43 Re＝774000 x1 ヨue＝0．1216 Q1ave＝21．05

Poirit	Loc（in）	－Beta	$\frac{Q}{\text { Q1refbar }}$	$\frac{\text { Ps-Fsitar }}{\text { Q1reftar }}$	$\frac{\text { Ft1tar-Ft }}{\text { G1refbar }}$	$\frac{x}{x 1 r e f t a r}$
1	－1．66	－2．07	． 6279	． 3573	． 0074	． 7938
2	－1．56	－2．10	． 6282	． 3567	． 0077	． 7919
3	－1．46	－1．89	． 6312	． 3539	． 0075	． 7934
4	－1．36	－1．95	． 6334	． 3546	． 0046	． 7954
5	－1．26	－2．10	． 6326	． 3542	． 0057	． 7934
6	－1．16	－1．75	． 6335	． 3544	.0047	． 7957
7	－1．96	－1．95	． 6329	． 3528	． 0067	． 7.945
8	－． 96	－2．31	． 6341	． 3509	． 0075	． 7932
9	－． 86	－2．95	． 6285	． 3497	． 0145	． 7898
10	－． 81	－2．62	． 6206	． 3462	． 0260	． 7837
11	－． 76	－2．63	． 6084	． 3426	． 0421	． 7765
12	－． 71	－2．86	． 5918	． 3400	． 0617	． 764 C
13	－． 66	－3．03	． 5694	． 3385	． 0861	． 7475
14	－． 61	－2．93	． 5433	． 3366	． 1145	． 7320
15	－． 56	－2．84	． 5110	． 3349	． 1493	． 76.97
15	－． 51	－3．37	． 4828	． 3320	． 1808	． 6892
17	－． 46	－3．23	． 4531	． 3308	． 2123	． 6672
18	－． 41	－3．30	． 4338	． 3303	． 2324	． 6539
19	－． 36	－3．12	． 4184	． 3306	． 2477	． 6403
29	－． 31	－2．92	． 4135	． 3277	． 2557	． 6360
21	－． $2 \underline{1}$	－2．56	． 4268	． 3259	． 2438	． 6451
$2 こ$	－． 21	－2．37	． 4474	． 3262	． 2227	． 6616
23	－． 16	－1．95	.4760	． 3251	． 1947	． 6817
24	－． 11	－2．05	． 5067	． 3241	． 1644	． 7023
25	－． 06	－1．46	． 5393	． 3237	． 1315	． 7257
26	－．01	－1．51	． 5722	． 3238	． 0979	． 7461
27	． 04	－1．67	． 5994	． 3258	． 0681	． 7627
28	． 09	－1．76	． 6182	． 3255	． 0492	． 7746
29	． 14	－1．93	． 6365	． 3267	． 0292	． 7853
35	． 19	－1．78	． 6459	． 3285	． 0179	． 7900
31	． 24	－1．76	． 6547	． 3267	． 0106	． 7936
32	． 29	－1．61	． 6580	． 3241	． 0098	． 7947
33	． 34	－1．75	． 6617	． 3241	． 0061	． 7958
34	． 39	－1．68	． 6649	． 3221	． 0047	． 7963
35	． 44	－2．16	． 6648	． 3224	． 0045	． 7963
36	． 49	－1．96	． 6663	－ 3246	． 0008	． 7978
37	． 54	－1．97	． 6643	． 3201	． 0074	． 7944
38	． 64	－2．05	． 6696	． 3218	． 0001	． 7988
37	． 74	－1．99	． 6668	． 3198	． 0051	． 7963
4 C	． 84	－2．07	． 6697	． 32 日6	.0013	． 7.792
41	． 94	－2．07	． 6697	． 3174	． 0046	． 7958
42	1.64	－2．01	． 6702	． 3180	． 6053	． 7964
43	1.14	－2．12	． 6728	． 3163	． 0025	． 7974

table a. 12 COH'T

44	1.24	-2.03	.6726	.3168	.0022	.7991
45	1.34	-1.85	.6734	.3159	.0022	.7980
45	1.44	-1.83	.6738	.3157	.0020	.7967
4	1.54	-2.05	.6752	.3136	.0028	.7983
43	1.64	-2.28	.6756	.3154	.0005	.7977

TABLE A. 13
MASS AVERAGED REFERENCING COEFFICIENTS

```
UPPER PLAHE DATA FROM FILE ED6250
LOWER PLANE DATA FROM FILE BD6250
INTEGRATION FROM: -1.5
    TO: 1.5
CONSTRNTS STORED IN FILE:RC6250 ' (自1=40.3)
REFERENCIHG CDEFFICIENTS
Kbar: 1.16122425638
Qbar: 5.03683922698E-02
Pbar: . 945564416077
Pttar: .995939691973
X2bar: .929>04325305
Q2bar: 3.23871320901E-02
P2tar: .95210329247
Ftzbar: . 994491548307
Xrefave . 104238333333
Frefave 422.104827957 Trefave: 533
REYHOLDS NO.: 774034.927767
UPFER PLAHE IIATA FROM FILE BD6260
LOWER PLAHE IIATA FROM FILE BDE260
INTEGRATION FROM: -1.5
    TO: 1.5
COHSTRNTS STGRED IN FILE:RC5260 (\beta
REFERENCING CUEFFICIENTS
Xbar: 1.21130001999
Qbar: .050044545165
Pbar: .945638612489
Ptbar: .995683281476
X2t.ar: .91003448075
Q2bar: .028898669595
P2tar: .964630545141
Ft2bar: .99352997777
Xrefave.100412986022
Frefave 420.529365591 Trefave: 529
REYNOLDS No.: 773766.692672
```


TABLE A. 14

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 1	$\beta_{1}=40.3^{\circ}$
Blade to Blade Position (in)	Angle (β_{2} deg)

-1.5	40.4
-1.0	40.6
-0.5	40.6
0.0	40.6
0.5	40.7
1.0	40.7
1.5	40.7

TABLE A. 15
YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 2-2	$B_{1}=40.3^{\circ}$
Blade to Blade	Angle (B_{2} deg)
Position (in)	0.8
-1.5	0.2
-1.0	-0.4
-0.5	-1.8
-0.3	2.7
0.0	0.3
0.3	0.8
0.5	0.8
1.0	0.4

TABLE A. 16

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS
Station 2-6 $\quad \beta_{1}=40.3^{\circ}$
Blade to Blade Angle (β_{2} deg)
-1.5
-1.0
1.6
$-1.0 \quad 1.6$
$-0.5 \quad 0.9$
-0.25
1.1
0.0
0.25
1.6
0.5
1.8
1.0
2.1
1.5
2.1
1.8

TABLE A. 17
YAW PROBE INLET AIR ANGLE MEASUREMENTS

```
    Station l }\quad\mp@subsup{\beta}{1}{}=43.4\mp@subsup{4}{}{\circ
Blade to Blade Angle ( \beta2 deg)
Position (in)
    -10 43.55
    -8.0
    -5.0
    43.5
    43.55
-3.0
-1.5
-1.0
43.2
43.
-0.5
0.0
0.5
1.0
1.5
4.0
6.6
```

43.55
43.5
43.55
43.2
43.
43.
43.6
43.
43.
43.
43.
44.
43.

TABLE A. 18
YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station $2-6$	$\beta_{1}=43.4^{\circ}$ Blade to Blade Position (in)
Angle $\left(\beta_{2} \mathrm{deg}\right)$	
-5.95	1.6
-4.9	2.0
-4.45	1.6
-4.1	1.2
-3.7	0.6
-3.2	1.0
-2.1	1.8
-1.5	1.6
-1.1	1.2
-0.1	0.8
1.5	1.6
2.8	1.3
3.2	1.8
4.0	2.2
5.0	1.0

TABLE A. 19
DATA FILE NAMES AND STATION IDENTIFICATION

Station	Raw Data Name	Reduced Data Name		
	40.3°	43.4°	40.3°	43.4°
1	BW6250	BW6260	BD6250	BD6260
$2-1$	BC6251	BC6261	DC6251	DC6261
$2-2$	BC6252	-	DC6252	-
$2-3$	BC6259	BC6263	DC6259	DC6263
$2-4$	BC6258	-	DC6258	-
$2-5$	BC6255	BC6265	DC6255	DC6265
$2-6$	BW6250	BW6260	BD6250	BD6260
Blade	IW6250	IW6260	ID6250	ID6260

```
Q,QIREFEAR
```

 STATION \(1 \quad\left(\begin{array}{l}0 \\ \text { STATION } \\ 2-6(H)\end{array}\right)\)

Figure Al. Q/QlREFBAR Vs Blade to Blade Displacement $B 1=40.3 \quad R 0=774000$
$\triangle P_{s} / Q 1 R E F B A R$
STATION 1
STRTION $2-6\binom{0}{$ ST }

BLHDE TO BLADE DISPLACEIENT

Figure A2. $\angle P s / Q 1 R E E^{\prime} B A R V s$ Blade to Blade Displacement $B_{1}=40.3 \quad \mathrm{Re}=774000$

Figure A3. $\triangle P t / Q 1 R E F B A R$ Vis Blade to Blade Displacement $\beta_{1}=40.3 \quad \operatorname{Re}=774000$

QくはREFEFR
STATION 2-1

Figure A4. Q/QlREFBAR Vs Blade to Blade Displacement $B_{1}=40.3 \quad \operatorname{Re}=774000$

Figure A5. \triangle Ps/QlREFBAR Vs Blade to Blade Displacement $B_{1}=40.3 \quad \operatorname{Re}=774000$

$$
\text { STHTIM } 2-1
$$

Figure A6. $\triangle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $\mathrm{Bl}_{\mathrm{l}}=40.3 \mathrm{Re}=774000$

O．G1REFEAR
STATION こーこ

Figure A7．Q／QlREFBAR Vs Blade to Blade Displacement $\beta_{1}=40.3 \quad \mathrm{Re}=774000$

```
\(\triangle F=\) QIFEF ERR
```

$$
\text { STATIOH } 2-\Xi
$$

Figure A8. $\Delta P s / Q 1 R E F B A R$ Vs Blade to Elade Displacement $\beta_{1}=40.3 \quad \mathrm{Re}=774000$
$\triangle F t / Q 1$ REF ERF
STATIOH $2-2$

1agure A9. BPt/Q1fLEBAR Vs Blade to Blade Displacerienc $B_{1}=40.3 \quad R e=774000$

Figure Alo. Q/QlREFBAR Vs Blade to Blade Displucemernt. $\beta_{1}=40.3 \quad \mathrm{Re}=774000$

Figure All. $\triangle P s / Q 1 R E F B A R$ Vs Blade to Blade i)isplacemen: $B_{1}=40.3 \quad \mathrm{Re}=774000$

$\Delta F t / Q 1 F E F E F R$

STATIOH $2-3$

Figure Al2. $\angle P t / Q l R E F B A R$ Vs Blade to Blade Displacement $B_{1}=40.3 \quad \mathrm{Re}=774000$

```
Q-IREFERR.
```

$$
\text { STRTIOH } 2-4
$$

Figure Al3. Q/QlREFBAR Vs Blade to Blade Displacement $\beta_{1}=40.3 \quad \mathrm{Re}=774000$
$\triangle F=$ IFEF ERR

$$
\text { STFITIM } 2-4
$$

Figure Al4. $\triangle P s / Q 1 R E F B A R$ Vs Blade to Blade Displacement $\mathrm{B}_{\mathrm{l}}=40.3 \quad \mathrm{Re}=774000$
$\triangle F_{t} / Q 1 F E F E F R$

> STATIOH 2-4

blaie to blade digFlicemerit

Figure Al5. $\triangle P$ t/QlREFBAR Vs Blade to Blade lisplacement $B_{1}=40.3 \quad \operatorname{Re}=774000$

QU1REF EFR

Figure Al6. Q/QlREFBAR Vs Blade to Blade Displacement: $B_{1}=40.3 \quad \mathrm{Re}=774000$

Figure Al7. $\triangle P S / Q 1 R E E B A R$ Vs Blade to Blade isplacement. $\mathrm{B}_{\mathrm{L}}=40.3 \quad \mathrm{Re}=774000$
$\triangle F+Q 1$ FEF 日FR

$$
\text { STATIOH }-5
$$

tigure Al8. $\Delta P t / Q 1 R A P B A R$ Vs Blade to Blade jisplacement $\dot{\square}=40.3 \quad \mathrm{Re}=774000$

blade to blade displacement

Figure Al9. Q/QlREFBAR Vs Blade to Blade Displacement: $B_{1}=43.4 \quad \mathrm{Re}=774000$

ELFDE TO 日LADE DISFLGGEMEHT

Figure fi20. $\angle P S / Q 1 R E F B A R$ Vs Blade to Blade wisplaceme it $\beta_{I}=43.4 \quad \operatorname{Re}=774000$


```
STFTION 1 (友)
```


blade to 日lade disflacement

Figure A2l. $\triangle P$ / $/$ QlREFBAR Vs Blade to Blade Displacemerit $B_{1}=43.4 \quad \operatorname{Re}=774000$

Q IREFEAR

$$
\text { STATION } 2-1
$$

Figure A22. Q/QlREFBAR Vs Blade to Blade Displacement $B_{1}=43.4 \quad \mathrm{Re}=774000$
$\triangle P s / Q 1$ REF GRR

$$
\text { STATIOH } 2-1
$$

Figure A23. $\triangle P s / Q 1 R E F B A R$ Vs Blade to Blade Displacement $\beta_{1}=43.4 \quad \mathrm{Re}=774000$
$\triangle F t / Q 1 R E F B R R$

$$
\text { STATION } 2-1
$$

Figure A24. $\triangle P$ P/QlREFBAR Vs Blade to Blade Uisplacement $\beta_{1}=43.4 \quad R e=774000$
2. G1REF EAR

STATION 2-3

Eigure A25. Q/QlREFBAR Vs Blade to Blade Displacement $\beta_{1}=43.4 \quad \operatorname{Re}=774000$
$\Delta F=/$ O1FEF BRR
STATION $2-3$

Figure A26. $\angle P s / Q 1 R E F B A R$ Vs Blade to Blade Lisplacement $\beta_{1}=43.4 \quad \mathrm{Re}=774000$

AFtノQ1REFERR
STATION ご 3

ELADE TO BLADE DISFLFGEMEMT
figure A27．LPt／Q1FEFBAR Vs Blade to Blade Displacement $B \mathrm{~B}=43.4 \quad \mathrm{Re}=774000$

12 O 1 REF EAR

$$
\text { STATION } 2-5
$$

Figure A28. Q/QlREFBAR Vs Blade to Blade Displacemenr $\beta_{1}=43.4 \quad R e=774000$

$\Delta F=$ Q1FEF ERR

$$
\text { STHTION } 2-5
$$

Figure A29. $\triangle P s / Q 1 R E F B A R$ Vs Blade to Blade Displacenent $B_{1}=43.4 \quad \mathrm{Re}=774000$

$\triangle F t / Q 1 F E F$ GRR

$$
\text { STATION } 2-5
$$

Figure A30. $\Delta \mathrm{Pt} / \mathrm{QlREFBAR}$ Vs Blade to Blade Displacement $\beta_{1}=43.4 \quad \operatorname{Re}=774000$

Figure A3l. Comparative Plots of Beta 2 Vs Blade to Blade Displacement. (Angle measurements corrected to average yaw probe reading at station 2-2 on pressure side of blade.)
 $R E=774000$

blade to blade displacement

Figure A32. Compararive Plots of Beta2 Vs Blarle to Blade Displacenent. (Angle measurement:; correctel
to average yaw probe reading at station $2-6$ on pressure side of blade.)

Inlet wall static taps

Outlet wall static taps

Figure A33. Test $\operatorname{BD} 6250 \quad \mathrm{~B}_{1}=40.3^{\circ}$

Figure A35. Test BD6261 $\mathrm{S}_{1}=43.4^{\circ}$

Figure A36. Test BD6263 $\mathrm{\beta}_{1}=43.4^{\circ}$

APPENDIX B

BLADE SURFACE PRESSURE DISTRIBUTIONS

Surface pressure coefficients for the instrumented blades are given in Table B.l through Table B.4. The tables give the pressure tap locations, coefficient of pressure given by Eq. (C-5) in Appendix C (using upstream and downstream reference conditions), local Mach number and nondimensional velocity.

TABLE B． 1

CEHTER BLADE IATA
Bet $=40.3 R E=774005$
\therefore C Y／C Cp1 Cp2 Mach

PRESGURE SIIE EEHTER BLAIE

－ 0 回可	． 0.954	． 3498	．02日シ	．2295	． 5332
－ 016	－ 01019	． 3380	． 0021	． 2225	． 0970
－0519	．0966	． 3822	． 0701	.2151	－ 0957
． 0479	． 0112	． 3584	． 0334	． 2191	． 5975
－ 935	． 9215	． 3301	－． 0101	． 2238	． 0975
． 1218	． 13303	． 3272	－． 0145	． 2243	． 0978
－1756	． 1452	． 3523	． 0240	． 2201	． 9308
． 2595	． 19576	． 4374	． 1550	． 2055	． 0915
． 3433	． 0663	． 4561	． 1838	． 2021	． 09919
． 41 ¢2	． 0716	． 4351	． 1515	.2059	． 0917
． 4730	． 0736	． 3937	． 0878	． 2131	． 0949
－56に？	．0727	． 3833	． 0718	． 2149	． 0957
． 5407	． 1.678	． 4140	． 1190	.2096	． 0933
－P14E	． 9601	． 4045	． 1044	． 2112	． 0940
－ $3: 5$	． 1987	． 4223	． 1318	． 2081	． 0927
－ 35	． 1411	． 4343	． 1502	． 2066	． 0917
－ 3583	． 19327	． 4318	． 1464	． 2065	． 0919
． 95 S2	． 1230	． 4125	． 1167	． 2099	． 0934
． 3481	． 1123	． 3494	.0196	． 2206	． 0982
－ 7 E8	． 13006	． 2060	－． 2011	． 2435	． 1692

SUCTIDH SIIE CENTER ELADE

． 9160	． 19227	－． 6576	－1．5299	． 3540	． 1554
． 0319	． 1310	－．5209	－1．3196	． 3386	．1497
．0473	． 0389	－． 4268	－1．1747	． 3276	． 1449
－0358	． 19563	－． 4439	－1．2011	． 3296	． 1458
． 1218	． 0710	－． 4558	－1．2194	． 3310	． 1464
． 1756	.0970	－． 5045	－1．2943	． 3367	． 1489
－2¢¢5	． 1170	－． 5422	－1．3524	． 3410	． 1508
． 3433	． 1309	－． 4569	－1．2211	． 3311	． 1465
． 4192	． 1399	－． 3209	－1．0118	． 3148	． 1394
． 4930	． 1432	－． 2233	－． 8617	． 3027	． 1342
． 5669	． 1412	－． 1089	－． 6857	． 2880	． 1277
． 6407	． 1339	－． 0013	－． 5200	． 2735	． 1214
． 7146	． 1209	． 0908	－． 3783	． 2605	． 1157
． 7884	． 1021	． 1607	－． 2708	． 2503	． 1112
． 8283	． 0895	． 1861	－． 2317	． 2465	.1096
． 8683	． 0755	． 2061	－． 2008	． 2434	.1082
． 9082	． 0593	． 2240	－． 1733	． 2407	． 1070
． 9481	． 0407	． 2349	－． 1566	． 2390	． 1063
． 9880	． 9206	． 2416	－． 1462	． 2380	.1058

suction side left blade

.1218	.0716	-.2627	-.9222	.3077	.1363
.4192	.1399	-.3104	-.9956	.3136	.1389
.8283	.0895	-.1181	-.6998	.2892	.1283

fressure side right blfde

.1218	.0303	.4773	.2164	.1982	.0893
.4192	.0716	.4424	.1628	.2046	.0911
.8283	.0411	.3449	.0128	.2214	.0985

suction side right blade

.1218	.0710	-.4980	-1.2844	.3359	.1486
.4192	.1399	-.3468	-1.0517	.3180	.1408
.8283	.0895	.3366	-.0001	.2227	.0991

TABLE B． 3

CENTER BLADE DATA

Beta＝43．4 Re＝774000

x / c
Y / C
Cpl
Cp2
Mach
Xuel

PRESSURE SIDE CENTER BLADE

． 6097	． 19054	－． 1328	－． 9028	.2903	． 1288
－¢156	． 0017	． 6264	． 4196	． 1670	． 0745
． 1319	． 0.06	． 5628	． 3087	． 1803	． 0804
． 8479	． 0112	． 5187	． 2319	.1896	． 0842
－ 685	． 0215	． 4580	． 1263	.2004	． 0892
． 1218	． 0303	． 4364	． 0886	.2043	． 0510
． 1.55	． 13452	． 4386	． 0924	． 2039	． 0908
－ごき5	． 0.576	． 5018	． 2025	． 1922	． 0856
． 3433	． 0663	． 5164	． 2279	． 1894	． 0544
． 4172	． 19716	． 4892	． 1806	． 1946	． 0857
． 43 30	． 0736	． 4481	． 1089	． 2022	． 0900
． 5659	． 0727	． 4351	． 0863	． 2045	． 0911
． 6.497	． 9678	． 4572	． 1248	． 2005	． 0893
． 7146	． 9601	． 4437	． 1014	． 2030	． 0904
－ 7334	． 0487	． 4579	． 1261	． 2004	． 0893
． 8233	． 0411	． 4684	． 1443	． 1985	． 0884
． 863	． 0327	． 4647	． 1378	． 1991	． 0887
．9082	． 0230	． 4396	． 0942	． 2037	． 0908
．9481	． 0123	． 3813	－．0074	． 2140	.0753
．9880	． 0006	． 2460	－． 2430	． 2362	． 16150

SUITTION SIDE CENTER BLADE

.0160	.0227	-1.5235
.0319	.0310	-.8514
.0479	.0389	-.5648
.058	.0563	-.4652
.1218	.0710	-.4457
.1956	.0970	-.4409
.2595	.1170	-.4312
.3433	.1309	-.3342
.4192	.1399	-.2022
.4930	.1432	-.1040
.5669	.1412	.0036
.6407	.1339	.0953
.7146	.1099	.1707
.7384	.0895	.2136
.883	.0755	.2371
.8683	.0593	.2530
.0982	.0407	.2656
.9481	.0206	.2732
.6380		.2803

． 0160
0319
.0389
． 0563
.0970
.1170
.1309
． 1432
． 1.339
1209
.1707
.2136
． 2371
.2530
． 2656
.2803

.4422	.1946
.3747	.1653
.3431	.1517
.3315	.1467
.3292	.1457
.3287	.1454
.3275	.1449
.3158	.1399
.2993	.1327
.2865	.1271
.2719	.1207
.2589	.1156
.2478	.1151
.2465	.1069
.2376	.1057
.2351	.1946
.2331	.1037
.2319	.1032
.2308	.1626

SUCTION SIIE LEFT BLADE

.1218	.0710	-.0884	-.8256	.2845	.1262
.4192	.1399	-.1191	-.8790	.2885	.1286
.8283	.0895	.0107	-.6529	.2709	.1264

PPESSUFE SIDE RIGHT BLADE

.1218	.9303	.5392	.2577	.1850	.5894
.4192	.0716	.4852	.1753	.1952	.9859
.8283	.0411	.3887	.0056	.2127	.0947

SUCTIGN SIIE FIGHT BLADE
.1216
.0710
$-.4572$
$-1.47 .5$
.3368
.1484
.419 . $1399 \quad-.2050$
-1.0235
.2777
. 132 B

- 8283
.0895
.3820
-. $006{ }^{\circ}$
. 2138
.5952

APPENDIX C

BLADE SURFACE PRESSURE COEFFICIENTS

AND REYNOLDS NUMBER

Cl. COEFFICIENT OF PRESSURE

The compressible coefficient of pressure on the blades in a cascade is conventionally defined as:

$$
\begin{equation*}
C_{P}=\frac{P-P_{1}}{1 / 2 \gamma M_{1}^{2} P_{1}} \tag{c-1}
\end{equation*}
$$

where P is pressure, M is Mach number and the subscript 1 denotes upstream conditions. In previous work carried out in the rectilinear cascade C_{p} was defined incompressibly using bars to denote mass averaged quantities as:

$$
\begin{equation*}
C_{P}=\frac{\frac{P}{P_{t r e f}}-\frac{\overline{P_{1}}}{P_{t r e f}}}{\frac{\overline{P_{t r e f}-P_{1}}}{P_{\text {tref }}}} \tag{c-2}
\end{equation*}
$$

where the referenced total pressure was measured in the tunnel plenum and the mass averaged upstream quantities were
derived from upstream probe survey data. This data was taken immediately before the surface pressures were recorded.

In the present work the definition in Eq. (C-l) was used rather than that in Eq. (C-2). Mass averaged quantities were again introduced and local measurements were divided by tunnel reference conditions derived from plenum and atmospheric pressures as outlined by Duval [Ref. 9]. The development of the revised C_{P} is as follows:

Dividing Eq. (C-l) by reference conditions and using massed averaged quantities upstream,

$$
C_{P}=\frac{\frac{P}{P_{\text {tref }}}-\frac{\overline{P_{1}}}{P_{t r e f}}}{1 / 2 \gamma \frac{M_{1}^{2}}{M_{\text {ref }}^{2}} \frac{P_{1}}{P_{\text {tref }}}} \cdot \frac{1}{M_{\text {ref }}^{2}} \quad(C-3)
$$

It can be shown that the Mach number can be written in terms of the dimensionless velocity, X as:

$$
\begin{equation*}
M^{2}=\frac{x^{2}}{1-x^{2}}\left(\frac{2}{\gamma-1}\right) \tag{c-4}
\end{equation*}
$$

Substituting this term into Eq. (C-3) the definition for C_{p} becomes:

$$
C_{P}=\frac{\left(\frac{P}{P_{\text {tref }}}-\frac{\overline{P_{1}}}{P_{\text {tref }}}\right)\left(\frac{1-x_{\text {ref }}^{2}}{x_{r e f}^{2}}\right)}{\frac{\gamma}{\gamma-I} \frac{P_{1}}{P_{\text {tref }}} \frac{x_{1}^{2}}{x_{\text {ref }}^{2}} \frac{1-x_{\text {ref }}^{2}}{1-x_{l}^{2}}} \quad(C-5)
$$

The expression for C_{P} in Eq. (C-5) was used in the present data reduction. Again, the barred quantities are obtained from upstream probe surveys.

C2. REYNOLDS NUMBER
The Reynolds number was determined from the average flow conditions going into the blading. Reynolds number was defined as:

$$
\begin{equation*}
R \bar{e}=\frac{1}{\Delta S} \int_{S_{1}}^{S_{2}} \frac{\rho V C \mathrm{~d}}{\mu} \tag{c-6}
\end{equation*}
$$

where $\Delta s=s_{2}-s_{1}$ is an interval in the blade to blade direction. The static density, ρ, can be written as:

$$
\begin{equation*}
\rho=\rho_{t}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\left(\frac{1}{\gamma-1}\right)} \tag{c-7}
\end{equation*}
$$

Substituting for Mach number using Eq. (C-4):

$$
\begin{equation*}
\rho=\rho_{t}\left(1-x^{2}\right)^{\left(\frac{1}{\gamma-1}\right)} \tag{c-8}
\end{equation*}
$$

In terms of X and stagnation quantities, the density can be written as:

$$
\begin{equation*}
\rho=\frac{P_{t}}{R T_{t}}\left(1-x^{2}\right)^{\left(\frac{1}{\gamma-1}\right)} \tag{c-9}
\end{equation*}
$$

With the dimensionless velocity X defined as

$$
\begin{equation*}
x=\frac{V}{V_{t}} \tag{C-10}
\end{equation*}
$$

and

$$
c_{p}=\frac{R Y}{Y-I}
$$

$$
V_{t}=\sqrt{2 C_{p} T_{t}}=\left(\frac{2 R \gamma T_{t}}{\gamma-1}\right)^{1 / 2} \quad(C-11)
$$

Hence by substitution

$$
\begin{equation*}
\rho V=\frac{P_{t r e f}}{R T_{t}}\left(1-x^{2}\right)^{\left(\frac{1}{\gamma-1}\right)} x\left(\frac{2 R \gamma T_{t}}{\gamma-1}\right) \tag{1/2}
\end{equation*}
$$

and using Eq. ($C-12$) into Eq. ($C-6$)
$\operatorname{Re}=\frac{c}{\Delta s} \int_{s}^{s} 2\left(\frac{2 \gamma}{R T_{t}(\gamma-1)}\right)^{1 / 2}\left(\frac{\left.P_{t} X\left(1-x^{2}\right)^{\left(\frac{1}{\gamma-1}\right)}\right) d s}{\mu}\right.$

APPENDIX D

PNEUMATIC PROBE CALIBRATION AND

MEASUREMENT UNCERTAINTY

Dl. SCANIVALVES AND TRANSDUCERS

The Scanivalves incorporated 2.5 PSI (69 inches of water) differential transducers. Prior to their use, the Scanivalves were cleaned using Freon and dry nitrogen to eliminate small uncertainties found in the zero differential outputs. Following the cleaning procedure, repeatability of zero was maintained to within $1 / 100$ th inch of water. The experiments expected to involve measurements ranging to 20 inches of water pressure differential or 29% of the transducers' full range. Checks of the linearity of the transducers were made over the anticipated operating range using a 36 inch water manometer graduated in tenths of an inch. The transducers were found to be linear to within 0.36% of the calibration range.

D2. PROBE CALIBRATION
Three probes, identified in Table D.l were individually calibrated using the seven-inch free-jet calibration tunnel (Fig. Dl). The conical probe was calibrated differently from the cylindrical probes. A fourth probe was used to measure yaw angle at the upstream position (station l), the first
downstream position (station 2-1), and the far downstream position (station 2-6). Each of the calibration processes will be described separately.

TABLE D.I

PNEUMATIC PROBES (UNITED SENSOR CORP.)

PROBE NUMBER
USP100
USP200
A 847-1

TYPE
Five Hole Cylindrical (DA-125)
Five Hole Conical (DC-125)

Five Hole Cylindrical (DA-125)

1. Cylindrical Probes

The cylindrical probes (Fig. D2) were held fixed at zero yaw angle and were calibrated at five different velocities and seven different pitch angles. Velocities ranged from 150 to 350 feet per second. Pitch angles ranged $\pm 6^{\circ}$. The derived calibration surface expressions gave an accuracy of fit to the calibration data from -2.3% to 1.6% for velocity and from -0.6° to 0.7° for pitch angle. These were maximum errors and typical deviations were $\pm 1 \%$ velocity and $\pm 0.5^{\circ}$ pitch.
2. Conical Probe

The conical probe (Fig. D3) was calibrated from 100
to 350 feet per second. At each velocity the probe was calibrated for $\pm 4^{\circ}$ pitch in increments of 2° with yaw angle set at zero, and for $\pm 4^{\circ}$ in yaw angle in increments
of 2° with pitch angle set at zero. Two sets of calibration surface approximations were derived. First, surfaces for recuced velocity (X) and pitch angle (ϕ) were derived in terms of the pressure coefficients (β) and (Γ), as was used in all previous work, where:

$$
\begin{align*}
& \beta=\frac{P_{1}-P_{23}}{P_{1}} \tag{D-1}\\
& \Gamma=\frac{P_{4}-P_{5}}{P_{1}-P_{23}} \tag{D-2}
\end{align*}
$$

The individual subscripts above denote the probe pressure ports, and the two-symbol subscripts denote the arithmetic average of the pressures individual ports. Second, surfaces for reduced velocity (X) and yaw angle (α) were derived in terms of β and 0 where:

$$
\theta=\frac{P_{2}-P_{3}}{P_{1}-P_{23}}
$$

The surface expressions for the velocity and pitch angle gave an accuracy of fit of -2.2% to 0.5% for the velocity and $+0.2^{\circ}$ for the pitch angle. The surface expression for the yaw angle gave an accuracy of fit of -0.15° to 0.4° in the yaw angle described by:

$$
\begin{equation*}
\alpha=\alpha(\beta, 0) \tag{D-4}
\end{equation*}
$$

The data from the conical probe were reduced similarly to those from the cylindrical probes and similarly to all previous work, except that the surface approximation in Eq. D4. was used to correct the yaw angle recorded by the data aquisition system after the probe had been adjusted to balance P_{2} and P_{3} as closely as possible. These procedures overcame the problem of insensitivity in the angle adjustment in regions of low dynamic pressure (near-wake). Corrections ranged from zero outside the wake to a maximum of 3° at the second station downstream of the test blading.
3. Yaw Probe

The upper cylindrical probe measured a greater flow angle change through the blade wake than did the conical probe at stations near the blades. A special yaw probe sensitive to tranverse gradients (Fig. D4) was built. It was used to measure flow angle only. The probe was nulled in the calibration free jet and otherwise not calibrated.

D3. PROBE VERIFICATION TEST

The two cylindrical probes were checked by first conducting detailed surveys in their normal positions. Then the positions of the two probes were exchanged and the surveys repeated at the same operating conditions. A summary comparison of the downstream velocity distribution to the mass-average upstream distribution when the probes were exchanged is shown in Table D.2. The results of integrating
the two sets of surveys over two different blade passages to obtain blade element performance parameters are shown in Fig. D5.- D7. Since the loss coefficient, diffusion factor and AVDR involve either differences between or ratios of of downstream to upstream quantities, these results are a convincing verification of the accuracy of the measurements.

TABLE D: 2

RESULTS OF CYLINDRICAL PROBE VERIFICATION CHECK

Quantity

Loss Coefficient
Diffusion Factor
AVDR
Inlet Air Angle
Outlet Air Angle

Difference In Measurement
0.578%
-0.48°
0.71°

D4. YAW ANGLE
Several corrections to the flow angle indicated by the probe were necessary. The flow out of the calibration tunnel was found not to be horizontal but was directed downward at an angle of $+0.05^{\circ}$. The cascade was at a slope of $+0.2^{\circ}$. The probe mounts allowed an attachment error of $+0.7^{\circ}$ and the uncertainty in the vernier reading on the probe mounts was $\pm 0.2^{\circ}$. In order to use a common reference on the cascade and on the calibration tunnel, the conical probe yaw angle scale
was set with reference to horizontal using a precision level and a reference bar on the probe shaft. When this procedure was followed, the yaw angle uncertainty was reduced to $\pm 0.4^{\circ}$. For tests in which the leveling procedure was not followed, the yaw angle measured by the cone probe outside the wake on the pressure side was set equal to the measurement obtained using the yaw probe, for which the leveling procedure had been strictly adhered to.

Figure Dl. Probe Calibration Tunnel

Figure D3. Conical Probe Showing Tip and

Figure D5. Comparative Plot of Loss Coefficient Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the sane flow conditions.)

Figure D6. Comparative Plot of Diffusion Factor Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the sane flow conditions.)

Figure D7. Comparative Plot of AVDR Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the same flow conditions.)

1. NASA Technical Memorandum 82763, The Use of Optimization Techniques to Design Compressor Blading, by Nelson L. Sanger, Lewis Research Center, Cleveland, Ohio, 1982.
2. Hobbs, D.E. and Weingold, H.D., "Development of Controlled Diffusion Airfoils For Multistage Compressor Applications," Journal of Engineering For Gas Turbines and Power, Volume 106, April 1984, pp. 271-278.
3. Koyuncu,Y., Report of Tests of a Compressor Configuration of CD Blading, M.S. Thesis, Naval Postgraduate School, Monterey, California, March 1984.
4. Sanger, N. L., and Shreeve, R.P., "Comparison of Calcu lated and Experimental Cascade performance for Controlled-Diffusion Compressor Stator Blading," Journal of Turbomachinery, Volume 108, Number l, July 1986, pp. 42-50.
5. Rose,C.C. and Guttormson, D.L., Installation and Test of a Rectilinear Cascade, M.S. Thesis, Naval Postgraduate school, Monterey, California, 1964.
6. McGuire, A.G., Determination of Boundary Layer Transition and Separation On Double Circular Arc Compressor Blades In A Large Subsonic Cascade, M.S. Thesis, Naval Postgraduate School, Monterey, California, September 1983.
7. Naval Postgraduate School Contract Report NPS67-80-001CR, Procedures and Computer Program From Approximation of Data (With Application To Multiple Sensor Probes), by H. Zebner,1980.
8. Naval Postgraduate School, Turbopropulsion Laboratory Technical Note, 82-03, Computer Software For The Calibration of Pneumatic And Temperature Probes, by F. Neuhoff, 1982.
9. Duval, D. A., Evaluation Of a Subsonic Cascade Wind Tunnel For Compressor Blade Testing, M.S. Thesis, Naval Postgraduate School, Monterey, California, September 1980.

No. Copies

1. Defense Technical Information Center 2 Cameron Station
Alexandria, Virginia 22304-6145
2. Library, Code Ol42 2
Naval Postgraduate School
Monterey California 93943-5002
3. Department Chairman, Code 67 1
Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5002
4. Director, Turbopropulsion Laboratory, 12 Code 67 Sf
Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5002
5. Mr. George Derderian 1
Naval Air Systems Command
Code AIR-931E
Department of the Navy Washington, D.C. 20360
6. Dr. A. D. Wood, Code l2D 1
Office of Naval Research 800 N. Quincy Street Arlington, VA 22217
7. Nelson Sanger 2
NASA Lewis Research Center
Mail Stop 5-9
Cleveland, Ohio 44135
8. Dr Greg J. Walker 1Civil and Mechanical Engineering Dept.The University of TasmaniaBox 252CGPO HobartTasmania, Australia 7001
9. LT John W Dreon, Jr 3
9205 New Hampshire Ave \#103
Silver Spring, Maryland 20903

220173

Thesis D7368
c. 1

Dreon
Controlled diffusion compressor blade wake measurements.

220173

Thesis
D7368 Dreon
c. 1

Controlled diffusion compressor blade wake measurements.

Controlled diffusion compressor blade wa DUDLEY KNOX LIBRARY

