

, ¹⁰

DUTLEY TOX LIBRARY MAY AL PUBIGRADUATE SCHOOL MO TEREY, CALIFOR TA 93943-5002

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

CONTROLLED DIFFUSION COMPRESSOR BLADE WAKE MEASUREMENTS

by

John William Dreon, Jr.

September 1986

Thesis Advisor:

Raymond P. Shreeve

Approved for public release; distribution is unlimited.

T230361

And the second se

10.00

SECURITY CLASSIFICATION OF THIS PAGE					
8	REPORT DOCUM	IENTATION	PAGE		
1a REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	AVAILABILITY O	F REPORT	
2b DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved	l for publ	ic releas	e;
			ution is u		
4 PERFORMING ORGANIZATION REPORT NUMBER	S)	5 MONITORING	ORGANIZATION R	EPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION	b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
Naval Postgraduate School		Naval Postgraduate School			
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)			
Monterey, California 9394	3-5000	Monterey	, Califor	nia 93943	3-5000
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	Bb. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION N	JMBER
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBER	15	
		PROGRAM ELEMENT NO	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO
Dreon, John W., Jr. 13a TYPE OF REPORT Master's Thesis 16. SUPPLEMENTARY NOTATION	ERED	4. DATE OF REPO 1986 S	RT (Year, Month, eptember	Day) 15 PAGE 1 3	8
17. COSATI CODES	18 SUBJECT TERMS (C		a if norsenny and	d identify by bla	ck number)
FIELD GROUP SUB-GROUP					
	Controlled		1	ssor Blad	e
19. ABSTRACT (Continue on reverse if necessary ai	Wake Measu		elocity P	rofiles	
A Controlled-Diffusion compressor stator blade-element design was re-tested in a subsonic cascade wind tunnel to obtain data with which to assess viscous computational prediction methods. Tests were conducted near design and toward stall conditions at Mach 0.28 and Reynolds number of 774000. Loss coefficient, diffusion factor and AVDR were determined by mass averaging pneumatic pressure probe survey measurements. Wake velocity profiles were measured from 0.12 to 1.77 chordlengths down- stream. Concentration was placed on the verifications of accuracy by careful calibration, multiplicity and exchange of survey probes. Cylin- drical probes were found not to measure wake yaw angles as accurately as conical probes. Experimental results showed that losses were dependent on Reynolds number and that all blade-element performances were independent of the downstream axial location at which they were determined. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT STUNCLASSIFIED/UNLIMITED SAME AS RPT DICLOSERS 220 NAME OF RESPONSIBLE INDIVIDUAL Raymond P. Shreeve ABME OF RESPONSIBLE INDIVIDUAL					
DD FORM 1473, 84 MAR 83 APR	edition may be used un	til exhausted		CLASSIFICATION	
	All other editions are of 1	solete	\$		nting Office: 1986—606-24.

. . .

Approved for public release; distribution is unlimited. Controlled Diffusion Compressor Blade Wake Measurements

by

John William Dreon, Jr. Lieutenant, United States Navy B.S., University Of Virginia, 1978

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1986

ABSTRACT

A Controlled-Diffusion compressor stator blade-element design was re-tested in a subsonic cascade wind tunnel to obtain data with which to assess viscous computational prediction methods. Tests were conducted near design and toward stall conditions at Mach 0.28 and Reynolds number of 774000. Loss coefficient, diffusion factor and AVDR were determined by mass averaging pneumatic pressure probe survey measurements. Wake velocity profiles were measured from 0.12 to 1.77 chordlengths downstream. Concentration was placed on the verifications of accuracy by careful calibration , multiplicity and exchange of survey probes. Cylindrical probes were found not to measure wake yaw angles as accurately as conical probes. Experimental results showed that losses were dependent on Reynolds number and that all blade-element performances were independent of the downstream axial location at which they were determined.

1 . 5

TABLE OF CONTENTS

I.	INTRODUCTION			
II.	TEST	FACILITY	16	
	A. R	ECTILINEAR CASCADE	16	
	B. I	NSTRUMENTATION	16	
	с. с	D BLADING AND CASCADE CONFIGURATION	23	
III.	EXPER	IMENTAL PROCEDURES	27	
	A. P	REPARATION	27	
	в. т	EST PROCEDURES	27	
IV.	RESUL	TS AND DISCUSSION	32	
	A. C	ASCADE PERFORMANCE AND FLOW QUALITY	32	
	B. R	ESULTS OF WAKE SURVEYS	37	
	С. В	LADE SURFACE PRESSURE DISTRIBUTIONS	45	
V.	CONCL	USIONS AND RECOMMENDATIONS	51	
APPENI	DIX A:	FLOW QUALITY AND CASCADE PERFORMANCE DATA	53	
APPENI	DIX B:	BLADE SURFACE PRESSURE DISTRIBUTIONS	114	
APPENI	DIX C:	BLADE SURFACE PRESSURE COEFFICIENTS AND REYNOLDS NUMBER	119	
APPENI	DIX D:	PNEUMATIC PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY	123	
LIST OF REFERENCES			136	
INITIA	AL DIS	TRIBUTION LIST	137	

LIST OF TABLES

I.	MEASUREMENT UNCERTAINTY	24
II.	TEST BLADE COORDINATES	26
III.	CASCADE DESIGN PARAMETERS	26
IV.	PROGRAM OF PROBE SURVEYS	29
۷.	CASCADE PERFORMANCE FORMULAS	30
A.1	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6250	56
A.2	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6250	58
A.3	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6251	60
A.4	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6252	61
A.5	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6259	62
A.6	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6258	63
A.7	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6255	64
A.8	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260	65
A.9	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260	67
A.10	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6261	69
A.11	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6263	71
A.12	BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6265	73

A.13	MASS AVERAGED REFERENCING COEFFICIENTS	75
A.14	YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 1 β1=40.3°	76
	YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-2 β1=40.3°	76
	YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-6 β1=40.3°	77
A.17	YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 1 β1=43.4°	77
	YAW PROBE OUTLET AIR ANGLE MEASUREMENTS STATION 2-6 β1=43.4°	78
A.19	DATA FILE NAMES AND STATION IDENTIFICATION	79
B.1 (CENTER BLADE DATA β1=40.3° Re=774000	115
	AADJACENT BLADES βl=40.3° Re=774000	116
B.3 (CENTER BLADE DATA β1=43.4° Re=774000	117
B.4	ADJACENT BLADES β1=43.4° Re=774000	118
D.1	PNEUMATIC PROBES (UNITED SENSOR CORP.)	124
	RESULTS OF CYLINDICAL PROBE VERIFICATION CHECK	127

•

LIST OF FIGURES

1.	Cascade Wind Tunnel Test Facility	17
2.	Plexiglas Wall With Slots And Probe Traverse	18
3.	Cascade Test Section Schematic	19
4.	Probe Surveying Stations	21
5.	Cascade Geometry, and Definition of Angles	22
6.	CD Blade Pressure Tap Locations	25
7.	Comparison of Loss Coefficient From Integration Over Two Blade Passages	33
8.	Comparison of Diffusion Factor From Integration Over Two Blade Passages	34
9.	Comparison of AVDR From Integration Over Two Blade Passages	35
10.	Loss Coefficient Vs Inlet Air Angle	36
11.	Outlet to Inlet Velocity Vs Blade to Blade Displacement	38
12.	Outlet to Inlet Velocity Vs Blade to Blade Displacement	39
13.	Outlet Air Angle Vs Blade to Blade Displacement at Station 2-6 for β_1 =40.3°	42
14.	Outlet Air Angle Vs Blade to Blade Displacement at Station 2-2 for β_1 =40.3°	43
15.	Outlet Air Angle Vs Blade to Blade Displacement at Station 2-6 for β_1 =43.4°	44
16.	Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys at Six Stations	47
17.	Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys at Six Stations	48

18.	Blade Surface Pressure at Midspan for $\beta_1=40.3^\circ$	49
19.	Blade Surface Pressure at Midspan for $\beta_1=43.4^\circ$	50
Al.	Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=40.3^\circ$ Re=774000	80
A2.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	81
A3.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	82
A4.	Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=40.3^\circ$ Re=774000	83
A5.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	84
Аб.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	85
A7.	Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=40.3^\circ$ Re=774000	86
Α8.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	87
A9.	ΔPt/Q1REFBAR Vs Blade to Blade Displacement β1=40.3° Re=774000	88
A10.	Q/Q1REFBAR Vs Blade to Blade Displacement β_1 =40.3° Re=774000	89
All.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	90
A12.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	91
A13.	Q/Q1REFBAR Vs Blade to Blade Displacement \$1=40.3° Re=774000	92
A14.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	93
A15.	$\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta 1=40.3^{\circ}$ Re=774000	94

A16.	Q/Q1REFBAR Vs Blade to Blade Displacement β1=40.3° Re=774000	95
A17.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	96
A18.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=40.3° Re=774000	97
A19.	Q/Q1REFBAR Vs Blade to Blade Displacement β1=43.4° Re=774000	98
A20.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	99
A21.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	100
A22.	Q/Q1REFBAR Vs Blade to Blade Displacement \$1=43.4° Re=774000	101
A23.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	102
A24.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	103
A25.	Q/Q1REFBAR Vs Blade to Blade Displacement β1=43.4° Re=774000	104
A26.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	105
A27.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	106
A28.	Q/Q1REFBAR Vs Blade to Blade Displacement β1=43.4° Re=774000	107
A29.	ΔPs/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	108
A30.	ΔPt/QlREFBAR Vs Blade to Blade Displacement βl=43.4° Re=774000	109
A31.	Comparative Plots of Beta2 Vs Blade to Blade Displacement	110
A32.	Comparative Plots of Beta2 Vs Blade to Blade Displacement	111

•

A33.	Test BD6250 β1=40.3°	112
A34.	Test BD6260 β1=40.3°	112
A35.	Test BD6261 β1=43.4°	113
A36.	Test BD6263 31=43.4°	113
Dl.	Probe Calibration Tunnel	129
D2.	Cylindrical Probe Showing Tip and sensing ports	130
D3.	Conical Probe Showing Tip and Sensing Ports	131
D4.	Yaw Probe	132
D5.	Comparative Plot of Loss Coefficint Vs Blade to Blade Displacement	133
D6.	Comparative Plot of Diffusion Factor Vs Blade to Blade Displacement	134
D 7 .	Comparative Plot of AVDR Vs Blade to Blade Displacement	135

LIST OF SYMBOLS

English Letter Symbols

AVDR	- Axial Velocity Density Ratio
С	- Chord
cp	- Specific heat at constant pressure
CP	- Coefficient of pressure
D	- NASA diffusion factor
hi	- Spanwise depth of control volume
ki	- $\left[\int_{0}^{s} \rho_{i} V_{i} \cos \beta_{i} dx\right] / \left[\int_{0}^{s} \rho_{ref} V_{ref} \cos \beta_{i} dx\right]$
М	- Mach number
Р	- Pressure, in H ₂ O
R	- Gas constant
Re	- Reynolds number
s _{1,2}	- Integration limits (position)
Т	- Temperature
V	- Free stream velocity
Vt	- Limiting velocity $(V_t = \sqrt{2c_pT_t})$
Wi	- Relative velocity
х	- Dimensionless velocity, $(X=V/\sqrt{2c_pT_t})$
x	 Position of probe in blade to blade direction
У	- Position of probe in axial direction
Z	 Position of probe in spanwise direction

Greek Letter Symbols

α	- Yaw angle
β	- Probe pressure coefficient
Γ	- Probe pressure coefficient
γ	- Ratio of specific heats, stager angle
Δ	- Change in a quantity
ρ	- Density
μ	- Viscosity
φ	- Flow pitch angle
Ω	- Loss coefficient parameter
σ	- Solidity
Θ	- Probe pressure coefficient
ω	- Loss coefficient

0

.

Subscripts

1,2,3,4 5	- Probe pressure port number when sub- scripted to P eg. (P1)
23	- Average of ports 2 and 3 static pressure measured by a probe
ave	- Arithmatic average
atm	- Atmospheric
bar	- Mass averaged quantity
i	- Traversing plane ;inlet (i=1) outlet (i=2)
ref	- Referenced to plenum
S	- Static
t	- Total
u	- In the blade to blade direction

ACKNOWLEDGMENT

I would like to take this opportunity to thank the many people affiliated with the Naval Postgraduate School for the valuable help and assistance they gave in enabling me to complete this study. I would like to thank Dr. Greg Walker, University of Tasmania for his personal and professional evaluation in refining the calibration process. Special thanks are due to Dr. R. P. Shreeve, Director of the Turbopropulsion Laboratory, who gave unstintingly of his time and talent in this endeavor. To these two men can be applied the passage -- wisdom I learned and parted ungrudgingly.

I. INTRODUCTION

A design procedure for Controlled Diffusion (CD) compressor blading which is based on numerical optimization methods was developed by Nelson L. Sanger of NASA Lewis Research Center [Ref. 1]. The underlying concept in this and other CD design methods is that by controlling the diffusion of the air flow over the suction surface of the blading, boundary layer seperation can be avoided [Ref. 2]. This, in in principle, allows the design of blading with greater loading per stage, or a reduction in the number of blades for a given stage loading. Both features will be exploited in advanced compressors in future turbojet engines.

As a verification of the design procedure, Sanger redesigned an existing stator blade row to use CD blading in place of Double Circular Arc (DCA) shapes. Subsequently, the scaled-up mid span section of the redesigned blade was built and tested in the rectilinear cascade at the Naval Postgraduate School. Detailed testing of the blading was conducted at an inlet Mach number of approximately 0.2 and Reynolds Number of 4.7 to 6.9×10^5 . Inlet flow angle was varied to encompass design and off design conditions. The test program was reported by Koyuncu [Ref. 3] and a comparison of test and computational results was reported by Sanger and Shreeve [Ref. 4].

In the present study a series of tests to obtain detailed wake data at various positions downstream of the trailing edge of Sanger's CD cascade was conducted in a wind tunnel containing 20 blades. The positions ranged from 0.12c to 1.77c (chord=5.01 in.), for a total of six positions. The inlet flow angle was set approximately to the design condition (40.3° vice 39.8°) and then nearer to stall (43.4°). A calibrated United Sensor Corporation five hole conical probe was used to obtain the downstream flow field developement for one blade passage. Two United Senor Corporation cylindrical probes were used to survey far upstream and downstream over three blade passages. A special yaw probe was used to reference and verify wake yaw angle measurements and probes were exchanged to verify measurement accuracy.

In the present report, the facility, proceedures, significant results and conclusions are described in Sections II through V. A complete documentation of the probe survey data is given in Appendix A and of the blade surface pressure data in Appendix B. The evaluation of the blade surface pressure coefficients and Reynolds number are described in Appendix C, and proceedures followed to define and reduce measurement uncertainties, are given in Appendix D.

II. TEST FACILITY

A. RECTILINEAR CASCADE

A schematic diagram of the Rectilinear Subsonic Cascade Wind Tunnel facility is shown in Fig. 1. A detailed description of its design and operation was given in an earlier thesis [Ref. 5]. Flow inlet conditions were investigated in detail by McGuire [Ref. 6]. While uniform on average, the inlet flow contains periodic wakes due to variable inlet guide vanes which are spaced one inch apart in the blade to blade direction.

For the present wake measurements a third probe traverse was added to the cascade. Slots were machined into the removeable plexiglas North wall at five stations downstream of the test blading trailing edge. A heavy aluminun angle extrusion was attached to both support the traverse and insure stiffness of the plexiglas wall while the cascade was in operation (Fig. 2). The test section dimensions (Fig. 3) were changed slighty from those in Ref. 3.

B. INSTRUMENTATION

A total of four pneumatic survey probes were used. These were United Sensor Corporation probes of the five hole type. Two cylindrical probes were used to measure data needed to determine the inlet conditions and the mixed out flow

Figure 1. Cascade Wind Tunnel Test Facility.

Figure 2. Plexiglas Wall With Slots and Probe Traverse

conditions far downstream from the blade row. The inlet probe was located 1.8 chord lengths (1.8c) ahead of the blade row. The outlet probe was 1.77c after the blade row. A conical probe was used to collect wake measurements close to the blade row. Measurements were made at 0.12c, 0.27c, 0.47c, 0.66c, and 1.185c (Fig. 4). The fourth yaw probe was design to determine flow angle in a 2D shear layer (Fig. 5). The probes were calibrated in a seven inch diameter free jet using the methods and software developed by Zebner [Ref. 7] and Neuhoff [Ref. 8].

Tunnel or plenum stagnation pressure was measured with a tube suspended in the plenum chamber. An Iron-Constantan thermocouple, similarly suspended in the plenum, measured stagnation temperature. Wall static pressure was recorded from two centrally located taps in the two rows of static taps provided in the South wall. One tap was located upstream and the other downstream of the cascade of blades. The two rows of static taps were connected to a water manometer, used to monitor the cascade's static pressure distibution. The static pressure is made uniform in the blade to blade direction by adjusting the inlet guide vanes and outlet tailboards.

A Hewlett Packard Data Acquisition System (HP-3052) and Hewlett Packard Interface Bus (HP-98034 HP-IB) was used to collect data. The system was controlled by a HP-9845A computer.

Figure 4. Probe Surveying Stations

Cascade Geometry, and Definition of Angles. Figure 5. Measurement uncertainties are listed in Table I. Uncertainties are discussed in detail in Appendix D.

C. CD BLADING AND CASCADE CONFIGURATION

The controlled diffusion test blades were from the midspan section of a CD stator blade and one was manufactured with pressure taps (Fig. 6). The coordinates for the blades were supplied by Sanger and are listed in Table II. Twenty cast aluminum blades were made with a span of ten inches to fit the test section of the rectilinear cascade. The instrumented blade was positioned in the center to serve as the test blade. The fixed geometrical parameters for the cascade are given in Table III. In the tests to be reported, only the inlet air angle was varied.

TABLE I

MEASUREMENT UNCERTAINTY

Item	Description	Method	Reading Uncertainty
х	Blade to Blade dimension	Position Potentiometer	<u>+</u> 0.01 in.
Z	Spanwise dimension	Machine divided scale hand adjustment	<u>+</u> 0.05 in.
Y	Axial dimension	Hand held Micrometer	<u>+</u> 0.01 in.
β1	Inlet flow (yaw) angle	Angle Potent- iometer	<u>+</u> 0.2 deg.
β2	Outlet flow yaw angle	Angle Potent- iometer deg	<u>+</u> 0.2 deg.
Ptref	Plenum Total pressure	Static tap in plenum chamber V≃O	<u>+</u> 0.05 in H ₂ O
Р	Pressure	Scanivalve transducer	<u>+</u> 0.05 in H ₂ O
Patm	Atmospheric pressure	Mercury manometer	<u>+</u> 0.01 in Hg

TABLE II

X-COORD.	Y-COORD.	Z-COORD.
0.0	0.045	0.045
0.022		0.084
0.057	0.002	
0.222	0.044	0.196
0.444	0.101	0.307
0.666	0.155	0.403
0.888	0.207	0.488
1.110	0.255	0.561
1.332	0.299	0.621
1.554	0.330	0.663
1.776	0.350	0.691
1.998	0.359	0.705
2.220	0.359	0.708
2.442	0.352	0.701
2.664	0.342	0.681
2.886	0.331	0.650
3.108	0.317	0.610
3.330	0.301	0.563
3.552	0.281	0.510
3.774	0.257	0.453
3.996	0.227	0.393
4.218	0.191	0.332
4.440	0.146	0.270
4.662	0.089	0.208
4.884	0.019	0.145
4.925	0.004	
4.964		0.122
5.010	0.062	0.062

TEST BLADE COORDINATES (INCHES)

TABLE III

CASCADE DESIGN PARAMETERS

Number of Blades	20
Blade Spacing (inches)	3.0
Solidity	1.67
Thickness (% chord)	7.0
Stagger Angle	14.303

III. EXPERIMENTAL PROCEDURES

A. PREPARATION

Prior to testing, with one wall removed, the adjustable sidewalls and inlet guide vanes (IGV's) were set for the required flow angle. The probe position scales were set to zero with the downstream probes axially downstream of the instrumented blade trailing edge. The upstream scale's zero position was set based on the expected inlet flow angle to the leading edge of the instrumented blade. The cascade was then closed. On starting, the flow adjustments were made to the IGV's and tailboards to obtain nearly uniform wall static pressure distributions both upstream and downstream in the blade-to-blade direction. The pressure distribution downstream of the blades was at atmospheric. The inlet flow dynamic pressure was set to give a Mach number equal to 0.28

B. TEST PROCEDURE

With the flow stabilized, the surface pressures on the instrumented blades were recorded and surveys were made first with the two cylindical probes at stations 1 and 2-6. The probes were spaced three inches apart (one blade passage) to avoid the lower probe wake from interfering with the upper probe measurements. Measurements were taken while traversing the two probes over three blade passages.

Samples were taken at 0.1 inch intervals. The two surveys overlapped over two blade passages. Surveys were then made at five axial stations downstream of the blades using the conical probe. The surveys were conducted over a three inch segment of the cascade and were centered on the instrumented blade. Samples were taken at 0.1 inch intervals outside the blade wake and 0.05 inch intervals inside the wake. Finally the yaw probe was used to obtain an independent flow angle measurement. The data from the yaw probe were recorded by hand. Samples, rather than complete surveys were taken from inside and outside the wake.

Tests were conducted with near design inlet air angle $(\beta_1=40.3^\circ)$ and at one off-design condition toward stall $(\beta_1=43.4^\circ)$. A summary of probe surveys is given in Table IV.

Once collected the data was reduced using the formulas given in Table V and Appendix C.

TABLE IV

PROGRAM OF PROBE SURVEYS

Station	Nominal Air	Inlet Angle
	<u>40°</u>	<u>44°</u>
l	Cylin (l) Yaw Cylin (2)	Cylin (l) Yaw Cylin (2)
2-1	Conical	Conical
2-2	Conical Yaw	Conical
2-3	Conical	Conical
2-4	Conical	Conical
2-5	Conical	Conical
2-6	Cylin (2) Yaw Cylin (l)	Cylin (2) Yaw

V NCE FORMULAS	Programmed Expression	$ \left[\begin{array}{ccc} - \ \overline{C}p_1 \end{array} \right] \begin{array}{c} \int ^{S} _{O} Cp_{t_1} & k_1 & dx & - \ \overline{AVDR} \int ^{S} _{O} Cp_{t_2} & k_2 & dx \\ \int ^{S} _{O} Cp_{t_1} & k_1 & dx & - \ \int ^{S} _{O} Cp_1 & k_1 & dx \end{array} \right] $	$1 - \frac{\cos\overline{\beta}_1}{\cos\overline{\beta}_2} + \frac{\cos\overline{\beta}_1(\tan\overline{\beta}_1 - \operatorname{AVDR}(\tan\overline{\beta}_2))}{(1 + \operatorname{AVDR})\sigma}$	$\int_{0}^{S} \left(\frac{Pt_{2}}{Pt_{ref}} \right) \left(\frac{X_{2}}{X_{ref}} \right) \left(\frac{1-X_{2}}{1-X_{ref}}^{2} \right) \frac{\gamma}{1-1} \cos \beta_{2} dx$ $\int_{0}^{S} \left(\frac{Pt_{1}}{Pt_{ref}} \right) \left(\frac{X_{1}}{X_{ref}} \right) \left(\frac{1-X_{1}}{1-X_{ref}}^{2} \right) \frac{\gamma}{r^{-1}} \cos \beta_{1} dx$
TABLE V CASCADE PERFORMANCE FORMULAS	General Expression	(Note 1) $(\overline{c}_{p_{t_1}} - \overline{c}_{p_{t_2}}) / (\overline{c}_{p_{t_1}} - \overline{c}_{p_1})$	$1 - \frac{W_2}{W_1} + \frac{\Delta W_u}{2\sigma W_1}$	h1/h2
	Parameter	Loss Coefficient w	Diffusion Factor D	Axial Velocity Density Ratio AVDR

TABLE V (CON'T)

Static Pressure Rise Coefficient ^{Cp} static	<u><u>F</u>2 - <u>F</u>1 <u>F</u>t1 - <u>F</u>1</u>	$\frac{1}{AVDR} \int_{0}^{S} Cp_{2} k_{2} dx - \int_{0}^{S} Cp_{1} k_{1} dx$ $\int_{0}^{S} Cp_{t_{1}} k_{1} dx - \int_{0}^{S} Cp_{1} k_{1} dx$
Loss Coefficient Parameter N	$\frac{\omega}{\omega}\cos^3\beta_2$ $\frac{20\cos^2\beta_1}{1}$	$\frac{\omega \cos^3 \overline{\beta}_2}{20 \cos^2 \beta_1}$
Incidence Angle i	$\beta_1 - \gamma - \phi/2$	$\overline{\beta}_1 - \gamma - \phi/2$
Deviation Angle δ	$\phi/2 - \gamma + B_2$	$\phi/2 - \gamma + \overline{B}_2$
Note 1: "Barred" guar	guantities are average values	es are average values computed over a selected internation

- computed over a selected integration d. interval--usually one blade space.
- Derivation of programmed expression is given in Reference 1. Note 2:

IV. RESULTS AND DISCUSSION

A. CASCADE PERFORMANCE AND FLOW QUALITY

The cascade performance was calculated from surveys measured at the midspan in the blade to blade direction. No surveys were made in the spanwise direction since uniformity in the spanwise direction was verified by Koyuncu [Ref. 3]. Loss coefficient, diffusion factor and AVDR were obtained from integration of the surveys made upstream and downstream of the blading. In order to examine the consistency of the measurements, the integrations were performed over different intervals. Performance parameters are shown (Figs. 7 through 9) for integration performed over two different blade passages at inlet air angles of (nominally) 40.3° and 43.4°. It can be seen that over the two separate intervals of integration, the value obtained for loss coefficient, diffusion factor and AVDR are in very close agreement for both test inlet angles. At 43.4°, the values are barely distinguishable from each other. The uniformity, periodicity and quality of the flow can be seen in the detailed survey data and plots given in Appendix A. Verification of the accuracy of the probe measurements was made by exchanging probes as described in Appendix D.

A comparison of the results obtained for loss coefficient is made with Koyuncu's data (Fig. 10). The

Figure 7. Comparison of Loss Coefficient From Integration Over Two Blade Passages. (Upper plot $\beta_1=40.3^\circ$, Lower plot $\beta_1=43.4^\circ$)

Figure 8. Comparison of Diffusion Factor From Integration Over Two Blade Passages. (Upper plot $\beta_1=40.3$, Lower plot $\beta_1=43.4^\circ$)

Figure 9. Comparison of AVDR From Integration Over Two Blade Passages. (Upper plot $\beta_1=40.3^\circ$, Lower plot $\beta_1=43.4^\circ$)

present data are slightly lower than the single curve drawn through Koyuncu's data, however the data were obtained at a somewhat higher Reynolds number. At positive angles of incidence an effect of Reynolds number on the loss coefficient is suggested by the combined data.

B. RESULTS OF WAKE SURVEYS

Composite plots of the downstream (wake) surveys are shown in Fig. 11 and Fig. 12 for inlet air angle of 40.3° and 43.4° respectively. The velocity is shown referenced to the mass-averaged velocity upstream. The blade to blade position of each survey is referenced to the trailing-edge of the instrumented blade. The velocity scales are displaced in the y-direction in proportion to the axial displacement of the survey stations shown in Fig. 4.

1. Wake Velocity Decay

The wake decay downstream of the blading is qualitatively as expected. The centerline velocity at station 2-1 is 30% of inlet velocity compared to 80% outside the wake. This is due to the fact that the trailing edge of the blade is quite blunt. At station 2-6 the velocity has increased to 72% and is approaching a mixed out condition.

2. Velocity Profiles

Differences in individual velocity profiles in the blade to blade direction can be most clearly seen at station 2-1. The pressure side has a steep velocity gradient while

Figure 11. Outlet to Inlet Velocity Vs Blade to Blade Displacement (β_1 =40.3°)

Figure 12. Outlet to Inlet Velocity Vs Blade to Blade Displacement. $(\beta_1=43.4^\circ)$

the suction side has a more gradual variation. The wake thickness was significantly increased at β_1 =43.4°. The adverse pressure gradient on the suction side results in an increase in the surface boundary layer thickness and subsequent reduction in wake velocity gradient.

3. Wake Path

The displacement of the wake centerline from the blade trailing edge centerline can be seen in Figs. 11 and 12. At the farther downstream stations the displacement becomes more noticable. At β_1 =43.4° the wake centerline displacement is almost linear but not so at 40.3°. The cascade was design to give an outlet air angle of zero. The displacement of the wake centerline at station 2-6 (1.771 chord lengths) implies an average deviation angle (δ) at β_1 =40.3° of δ =1.94° and for β_1 =43.4°, δ =3.23°. However it is interesting to note that at the design inlet condition the wake centerline appears to move axially between 0.2 and 0.8 chordlengths downstream.

4. Yaw Angle Measurement

Both cylindrical and conical probes gave measurements of yaw angle distribution in the blade to blade direction. When relatively large excursions in yaw angle were recorded within the blade wake, the fourth probe, which was specifically designed to measure yaw angle correctly within a two-dimensional wake, was used to verify the observation at the specific stations as listed in Table IV.

The yaw angle probe was very carefully nulled in the calibration free jet, and the null setting referenced to horizontal using a reference bar on the probe shaft and precision spirit level. The reference was reestablished when the probe was mounted on the cascade. Thus the absolute uncertainty in the yaw angle measured with the yaw probe in the cascade was less than 0.4°. Since the absolute reference for the cylindrical and conical probes was not mantained in some of the measurements, these measurements were adjusted such that equal angles were measured outside the blade wakes on the pressure side. It was then possible to examine the distribution of yaw angle measured through the blade wakes.

Figures 13 and 14 show comparisons between the cylindical and yaw probe measurements at station 2-6, and the conical and yaw probe measurements at station 2-2 respectively at β_1 =40.3°. It is seen that whereas the cylindrical probe indicates an excursion of almost \pm 1.5° in yaw angle far downstream, the yaw probe registered no more than \pm 0.75°. Closer to the blades (station 2-2) the conical probe indicated \pm 2.3° and this was reasonably well confirmed by the yaw probe.

The exagerated indication of yaw angle given by the cylindrical probe is seen again in the results at $\beta_1=43.4^{\circ}$ (Fig. 15). It is noted that while few points are shown here for the yaw probe measurements, points representing larger excursions were not passed during the manual traverse. Thus

Figure 13. Outlet Air Angle Vs Blade to Blade Displacement at Station 2-6 for β_1 =40.3°. (US Corp. 5 hole cylindrical probe and yaw probe.)

Figure 14. Outlet Air Angle Vs Blade to Blade Displacement at Station 2-2 for $\beta_1=40.3^\circ$. (Conical probe and yaw probe.)

Figure 15. Outlet Air Angle Vs Blade to Blade Displacement at Station 2-6 For $\beta_1=43.4^\circ$. (Cylindrical probe and yaw probe.)

the cylindrical probe indicated a variation of \pm 1.8° whereas the yaw probe showed no more than + 0.5°.

Data for yaw angle from the cylindrical and conical probe surveys are given in Table A.1 through Table A.12. Note that the negative of β is given in some cases. Data for the yaw probe measurements are given in Table A.14 through Table A.18.

5. Integration To Obtain Performance

Each of the cone probe surveys could be used in conjunction with survey data from station 1, to establish the blade element performance. The adopted procedures of referencing all survey measurements to plenum supply and atmospheric conditions allowed that upstream and downstream surveys to be carried out separately, as long as no change was made to the cascade geometry.

The results for blade element performance based on surveys at stations 2-1 to 2-6 at β_1 =40.3° and β_1 =43.4° are shown in Fig. 16 and Fig. 17 respectively. Extremely consistent results are noted with one exception at β_1 =43.4°. An inconsistently low value of AVDR was obtained from the cylindrical probe at station 2-6. More measurements are required to examine the one inconsistency.

C. BLADE SURFACE PRESSURE DISTRIBUTIONS

Surface pressure coefficients are shown plotted in Fig. 18 and Fig. 19 for $\beta_1=40.3^\circ$ and $\beta_1=43.4^\circ$ respectively.

The data are given Appendix B in Table B.l through Table B.4. The pressure coefficients were calculated using Eq. (C-5) of Appendix C.

•

Figure 16. Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys At Six Stations. $(\beta_1=40.3^\circ)$.

Figure 17. Loss Coefficient, Diffusion Factor and AVDR From Probe Surveys at Six Stations. $(\beta_1=43.4^\circ)$

Figure 18. Blade Surface Pressure at Midspan for $\beta_1=40.3^\circ$. (M1=0.272)

Figure 19. Blade Surface Pressure at Midspan for $\beta_1=43.4^\circ$. (M1=0.274)

V. CONCLUSIONS AND RECOMMENDATIONS

Probe surveys were carried out at various stations from 0.12 to 1.77 chordlengths downstream of Sanger's CD compressor cascade at two air inlet angles (near design and toward stall), which resulted in the following conclusions:

- 1. Blade element performance parameters did not depend significantly on the location of the survey station. One possible exception was found in AVDR at $\beta_1=43.4^\circ$ which dropped by 2.5% at the most downstream position.
- The data obtained were consistent with those obtained earlier by Koyuncu at a somewhat lower Reynolds number [Ref. 3]. Considered together with Koyuncu's data, the loss coefficient appears to decrease with increasing Reynolds number.
- 3. Complete wake velocity profiles were otained which were asymetric near the blade trailing edge. Increasing deviation angles (from 1.9° to 3.4°) were traced out by the paths of the wake as the inlet air angle was increased from 40.3° to 43.4°. The width of the wake also increased substantially.
- 4. The conical probe measured yaw angle variations through the wake which were confirmed by a yaw probe. The cylindrical probe recorded yaw angle variations which were much larger than those indicated by the yaw probe.
- 5. Blade surface pressure distributions were obtained which did not show anomalies near the trailing edge which had appeared in Koyuncu's data. The differences were attributed to the elimination of pneumatic leaks.

Recommendations for future tests include the following

modifications:

1. All probes should be calibrated by varying pitch and yaw together as described in Appendix D. This may increase the general accuracy of yaw angle measurements when small pitch angles are present.

- Only conical probes need be used in the downstream position to avoid yaw angle inaccuracies in the wake exhibited by the cylindrical probe.
- 3. Modifications to the cascade computer reduction programs need to be incorporated to automate the inclusions of yaw angle referencing procedures and procedures which result from the first recommendation.
- 4. Computer-controlled, automatic probe drives should be installed to greatly reduce the present labor and energy costs involved in acquiring data.

APPENDIX A

FLOW QUALITY AND CASCADE PERFORMANCE DATA

A1. CALIBRATED PROBE SURVEY DATA

Survey data for different stations in the cascade are tabulated in Tables A.1 through A.12. and shown in Figs. Al. through A36. Values listed include flow angles (-3 is shown) and nondimensionalized dynamic pressure, static pressure, total pressure and velocity. The notation is as follows:

Local dynamic pressure	Q/Qlrefbar
Local static pressure	[Ps-Pslrefbar]/Qlrefbar
Local total pressure	[Ptlbar-Pt)/Qlrefbar
Local velocity	X/Xlrefbar

The tabulated quantities are derived in such a way that they are independent of supply fluctuations during the probe surveys. Dimensional quantities can be obtained for code verifcation purposes by substituting for the upstream reference conditions denoted by subscript "lrefbar", the average obtained by multiplying the mass average ratio of upstream local to reference conditions (subscript "bar") by the ensemble average of the cascade reference conditions (subscript "refave") recorded during the survey. i.e., ()lrefbar = ()bar ()refave. Note that 'reference

conditions' are T_{ref} and P_{ref} (measured in the plenum), and P_{atm} (corrected barometric pressure) from which a reference dimensionless velocity, X_{ref} is calculated from the isentropic relationship

$$X_{ref} = (1 - (\frac{P_{atm}}{P_{ref}})^{(\frac{\gamma-1}{\gamma})})^{1/2}$$
 (A-1)

The required reference quantities for the inlet air angle are given in Table A.13.

Notes: 1) The quantitity 'Q' is the difference between stagnation and static pressure, and is reference to plenum pressure, i.e.,

$$Q_{\text{bar}} = \frac{\overline{P_{\text{t}} - P}}{P_{\text{ref}}}$$

2) The subscript "2bar" denotes downstream mass averaged local to reference conditions.

A2. YAW PROBE SURVEY DATA

Yaw probe surveys were conducted at selected stations listed in Table IV. Data recorded manually, are listed in Tables A.14 through A.18.

A3. DATA STORAGE

All data were stored on magnetic tape. Table A.19 identifies the storage file names with the survey station and test parameters.

	BLADE TO B	LADE PROBE	E DATA AT I	MIDSPAN DA	TA FILE BD	6259
Upper	Plane: Bet	a1=40.3	Re=774000	3 X1ave=.1	211 Qlave:	=21.26
Point	Loc(in)	-Beta	Q	Ps-Ps1bar	Pt1bar-Pt	×
				Qirefbar		
****				*******		******
1	-6.04	-1.59	.5536	.3397	.1008	.7480
2	-6.00	-2.19	.5836	.3316	.0785	.7680
З	-5.90	-2.21	.6267	.3283	.0375	.7958_
4	-5.80	-2.20	.6539	.3248	.0132	.8128
5	-5.70	-2.19	.6616	.3266	.0035	.8181
6	-5.60	-1.60	.6658	.3287	0028	.8213
7	-5.40	-1.71	.6674	.3305	0063	.8243
8	-5.30	-1.69	.6648	.3290	0022	.8214
9	-5.20	-1.68	.6629	.3292	0004	.8207
1.0	-5.10	-1.70	.6671	.3307	0062	.8238
11	-5.00	-1.70	.6602	.3318	0002	.8196
12	-4.90	-1.70	.6623	.3296	0002	.8201
13	-4.80	-1.72	.6611	.3298	.0009	.8187
14 15	-4.70 -4.61	-1.68	.6573	.3323	.0022	.8180
15		-1.70 -1.71	.6478	.3311	.0133	.8122
17	-4.50 -4.41	-1.69	.6533 .6494	.3278 .3315	.0109 .0112	.8145 .8125
13	-4.31	-1.71	.6466	.3320	.0135	.8110
19	-4.20	-1.73	.6477	.3338	.0135	.8126
20	-4.11	-1.57	.6473	.3325	.0123	.8126
21	-4.01	-1.37	.6520	.3285	.0115	.8147
22	-3.91	-1.36	.6467	.3339	.0115	.8108
23	-3.81	-1.14	.6567	.3201	.0150	.8093
24	-3.71	21	.6384	.3194	.0345	.7968
25	-3.61	25	.6174	.3183	.0571	.7832
26	-3.51	14	.5805	.3168	.0963	.7598
27	-3.41	.20	.5434	.3207	.1303	.7358
28	-3.31	97	.5207	.3192	.1550	.7202
29	-3.21	-1.19	.5205	.3195	.1549	.7195
30	-3.11	-1.71	.5522	.3216	.1204	.7421
31	-3.01	-2.32	.5951	.3201	.0780	.7708
32	-2.91	-2.32	.6329	.3207	.0389	.7952
33	-2.81	-2.32	.6533	.3192	.0194	.8084
34	-2.71	-1.94	.6651	.3257	.0008	.8192
35	-2.61	-1.69	.6623	.3281	.0013	.8179
36	-2.51	-1.69	.6670	.3280	10034	.8213
37	-2.41	-1.69	.6655	.3310	0049	.8209
38	-2.31	-1.70	.6661	.3273	0018	.8199
39	-2.21	-1.71	.6621	.3287	.0009	.8184
40	-2.10	-1.68	.6675	.3255	0014	.8225
41	-2.00	-1.70	.6625	.3277	.0016	.8180
42	-1.90	-1.68	.6607	.3274	.0036	.8168
43	-1.80	-1.68	.6569	.3299	.0050	.8146

•

-1-1	-1.70	-1.70	.6577	.3271	.0070	.8147
45	-1.60	-1.69	.6627	.3255	.0034	.8186
45	-1.50	-1.69	.6606	.3262	.0049	.8171
47	-1.40	-1.69	.6635	.3264	.0017	.8190
43	-1.30	-1.69	.6659	.3212	.0045	.8198
49	-1.20	-1.69	.6618	.3265	.0034	.8167
59	-1.10	-1.70	.6625	. 3260	.0032	.8185
51	-1.00	-1.68	.6666	.3202	.0048	.8203
52	90	-1.22	.6507	.3313	.0100	.8113
53	80	86	.6376	.3318	.0229	.8023
54	70	62	.6171	.3331	.0426	.7910
55	61	24				
			.5791 .	.3319	.0826	.7648
56	50	01	.5371	.3321	.1253	.7370
57	40	48	.5096	.3330	.1524	.140.
58	30	-1.70	.5038	.3329	.1585	.7144
59	21	-2.10	.5243	.3320	.1385	.7275
69	10	-2.57	.5626	.3305	.1009	.7538
ϵ_{1}	0.00	-2.82	.6068	.3296	.0566	.7840
62	.10	-2.57	.6365	.3274	.0285	.8013
63	.20	-2.56	.6550	.3269	.0101	.8131
64	.30	-1.83	.6615	.3280	.0022	.8166
65	.41	-1.85	.6649	.3270	0002	.8192
66	.51	-1.84	.6647	.3285	0016	.8200
67	.61	-1.83	.6647	.3269	0000	.8195
68	.71	-1.85	.6670	.3267	0021	.8204
69	.82	-1.85	.6672	.3290	0046	.8221
70	. 92	-1.84	.6664	.3263	0010	.8179
71	1.02	-1.82	.6696	.3269	0049	.8231
72	1.12	-1.83	.6682	.3267	0033	.8217
73	1.22	-1.84	.6679	.3276	0039	.8218
74	1.32	-1.84	.6658	.3293	0035	.8214
75	1.43	-1.86	.6660	.3304	0048	.8218
76	1.53	-1.84	.6658	.3298	0040	.8210
77	1.63	-1.46	.6659	.3303	0046	.8207
78	1.63			.3291		.8217
79		-1.46	.6684		0059	
	1.83	-1.44	.6573	.3323	.0023	.8165
88	1.93	-1.47	.6625	.3332	0040	.8188
81	2.03	-1.46	.6589	.3312	.0017	.8152
82	2.22	-1.45	.6597	.3266	.0055	.8168
83	2.24	-1.45	.6416	.3329	.0177	.8068
84	2.34	23	.6173	.3347	.0408	.7905
85	2.45	25	.5822	.3304	.0810	.7671
86	2.55	.23	.5440	.3342	.1162	.7418
87	2.65	74	.5176	.3347	.1426	.7238
88	2.75	-1.47	.5026	.3432	.1494	.7138
89	2.85	-2.18	.5301	.3347	.1299	.7325
90	2.96	-2.32	.5667	.3383	.0890	.7577
91	3.06	-2.31	.6069	.3379	.0483	.7847
92	3.16	-2.58	.6387	.3310	.0225	.8038
93	3.26	-2.59	.6529	.3285	.0106	.8125

Lower Plane: Beta1=48.3Re=774000Xiave=.1211Diave=21.26PointLoc(in)-Beta0Ps-PsibarPtibar-PtX1-3.05-59.97.9833.002900481.00252-3.03-40.11.9938.002900481.002532.94-40.08.9847.002700901.00284-2.65-40.10.9809.004600401.00145-2.74-40.11.9784.005600251.00096-2.63-40.10.9715.011600121.00339-2.22-40.11.9798.005000331.03389-2.22-40.11.9799.007500331.033810-2.12-40.09.9934.010401231.036311-2.02-40.10.9749.009700281.003812-1.91-40.10.9749.009700281.037813-1.82-40.08.9728.0008.0010.970614-1.71-40.12.9645.0126.0055.937615-1.62-40.10.9749.009700281.00312-1.91-40.10.9749.00970028.003013-1.22-40.02.9652.0059.0100.970614-1.71-40.12.9645.0126.0097.903314-1.021 <th></th> <th>BLADE</th> <th>TO BLADE PR</th> <th>OBE DATA AT</th> <th>MIDSPAN D</th> <th>ATA FILE B</th> <th>D6250</th>		BLADE	TO BLADE PR	OBE DATA AT	MIDSPAN D	ATA FILE B	D6250
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lower	Plane:	Beta1=40.3	Re=77400	0 Xiave=	.1211 Qia	ve=21.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Point	Loc(ir	n) -Beta	Q	Ps-Ps1bar	Pt1bar-Pt	×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Qirefbar	Qirefbar	Qirefbar	Xinefbar
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * * * * *	******		* * * * * * * * * * *	********	********	*****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-3.05	-39.97	.9833	.0029	0048	1.0025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-40.11			0053	1.0028
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-40.08	.9847 `	.0057	0090	1.0033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0040	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0116		1.0005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0050		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
35 .40 -40.35 .9728 .0040 .0049 .9973 36 .51 -40.35 .9746 .0043 .0028 .9989 37 .61 -40.35 .9763 .0067 0013 1.0004 38 .72 -40.34 .9827 .0032 0045 1.0020 39 .81 -40.34 .9818 .0057 0060 1.0026 40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.37 .9783 .0035 0001 .9999							
36 .51 -40.35 .9746 .0043 .0028 .9989 37 .61 -40.35 .9763 .0067 0013 1.0004 38 .72 -40.34 .9827 .0032 0045 1.0020 39 .81 -40.34 .9818 .0057 0060 1.0026 40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
37 .61 -40.35 .9763 .0067 0013 1.0004 38 .72 -40.34 .9827 .0032 0045 1.0020 39 .81 -40.34 .9818 .0057 0060 1.0026 40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
38 .72 -40.34 .9827 .0032 0045 1.0020 39 .81 -40.34 .9818 .0057 0060 1.0026 40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
39 .81 -40.34 .9818 .0057 0060 1.0026 40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
40 .91 -40.36 .9800 .0080 0064 1.0025 41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
41 1.01 -40.34 .9807 .0040 0032 1.0013 42 1.12 -40.37 .9783 .0035 0001 .9999							
42 1.12 -40.37 .9783 .00350001 .9999							
		1.22	-40.36	.9775	.0030	.0012	.9998

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6250

44	1.32	-40.35	.9766	.0016	.0035	.9988
45	1.42	-40.36	.9750	.0078	0012	.9989
46	1.53	-40.35	.9790	.0059	0033	1.0007
47	1.62	-40.36	.9821	.0080	0087	1.0023
48	1.73	-40.36	.9939	0001	0128	1.0075
49	1.82	-40.35	.9929	.0004	0123	1.0064
50	1.94	-40.35	.9935	.0039	0164	1.0083
51	2.08	-40.37	.9836	.0038	0060	1.0023
52	2.13	-40.36	.9849	.0038	0073	1.0042
53	2.24	-40.37	.9804	.0003	.0008	1.0009
54	2.33	-40.36	.9755	.0100	0038	1.0002
55	2.43	-40.62	.9799	0012	.0028	1.0005
56	2.53	-40.72	.9789 '	0002	.0029	1.0004
57	2.64	-40.73	.9823	.0017	0026	1.0024
58	2.75	-40.72	.9835	.0024	0045	1.0032
59	2.84	-40.72	.9865	0007	0045	1.0033
60	2.95	-40.73	.9859	0007	0039	1.0033
61	3.05	-40.72	.9797	.0019	0000	1.0019
62	3.15	-40.73	.9848	0019	0015	1.0028
63	3.25	-40.75	.9792	.0003	.0021	1.0003
64	3.34	-40.73	.9778	0004	.0042	.9990
65	3.44	-40.72	.9825	.0008	0019	1.0019
66	3.55	-40.73	.9814	.0031	0031	1.0025
67	3.65	-40.74	.9856	.0014	0056	1.0040
68	3.75	-40.72	.9836	.0025	0047	1.0924
69	3.87	-40.72	.9740	.0063	.0015	.9993
70	3.96	-40.73	.9773	.0034	.0010	.9966
71	4.05	-40.75	.9693	.0051	.0066	.9963
72	4.16	-40.74	.9665	.0034	.0121	.9944
73	4.25	-40.73	.9648	.0033	.0140	.9939
74	4.37	-40.73	.9613	.0070	.0140	.9932
75	4.46	-40.71	.9592	.0062	.0169	.9924
76	4.57	-40.72	.9682	.0051	.0087	.9962
77	4.68	-40.86	.9762	.0044	.0011	.9209
73 79	4.78 4.38	-40.87	.9740 .9772	.0036 .0059	.0042 0015	.9981 1.0317
80	4.97	-40.88 -40.86	.9763	.0039	.0009	1.0003
81	5.09	-40.87	.9735	.0018	.0065	.9972
82	5.18	-40.88	.9736	0045	.0126	.9986
83	5.30	-40.87	.9687	.0037	.0096	.9974
84	5.40	-40.88	.9695	0012	.0136	.9967
85	5.50	-40.86	.9781	0037	.0072	1.0001
86	5.59	-40.87	.9832	0037	.0018	1.0028
87	5.69	-40.85	.9825	0009	0001	1.0026
88	5.80	-40.85	.9877	.0002	0067	1.0061
89	5.89	-40.87	.9894	.0003	0086	1.0061
90	6.00	-40.87	.9883	.0017	0088	1.0063
91	6.11	-40.88	.9847	.0029	0062	1.0056
92	6.21	-40.60	.9791	.0002	.0022	1.0013
93	6.30	-40.60	.9754	0006	.0070	.9992

.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BLADE TO	BLADE PROBE	Е ДАТА АТ	MIDSPAN DA	TA FILE DC6	251
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cone	Probe: Bet	a1=40.3	Re=774000	X1ave=0.1	211 Qlave=	21.26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Point	Loc(in)	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*****	*******	*****	· * * * * * * * * *			******
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1.65	-1.77	.7130	.2695	.0078	.8376
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.55	-1.79	.7127	.2691	.0086	.8368
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.45	-1.94	.7160	.2651	.0092	.8379
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.35	-1.73		.2637	.0075	.8384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-1.25	-1.78		.2643	.0069	.8399
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ч.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.05			.2623		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
29 .45 .19 .7323 .2516 .0060 .8346 30 .55 .04 .7358 .2496 .0043 .8370 31 .65 .10 .7349 .2490 .0058 .8358 32 .75 .50 .7367 .2469 .0061 .8368 33 .85 .41 .7388 .2463 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8387 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0042 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7529 .2329 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
30 .55 .04 .7358 .2496 .0043 .8370 31 .65 .10 .7349 .2490 .0058 .8358 32 .75 .50 .7367 .2469 .0061 .8368 33 .85 .41 .7388 .2463 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8382 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0042 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7529 .2329 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
31 .65 .10 .7349 .2490 .0058 .8358 32 .75 .50 .7367 .2469 .0061 .8368 33 .85 .41 .7388 .2463 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8387 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7529 .2329 .0034 .8424							
32 .75 .50 .7367 .2469 .0061 .8368 33 .85 .41 .7388 .2463 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8387 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
33 .85 .41 .7388 .2463 .0046 .8382 34 .95 .41 .7404 .2446 .0046 .8387 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0042 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
34 .95 .41 .7404 .2446 .0046 .8387 35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0042 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
35 1.05 -1.82 .7433 .2397 .0066 .8388 36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
36 1.15 -1.64 .7424 .2401 .0070 .8384 37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
37 1.25 -1.81 .7433 .2395 .0068 .8391 38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
38 1.35 -1.69 .7454 .2395 .0046 .8401 39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
39 1.45 -1.73 .7465 .2380 .0049 .8407 40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
40 1.55 -2.70 .7489 .2363 .0042 .8407 41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
41 1.65 -2.56 .7506 .2341 .0046 .8405 42 1.75 -2.56 .7529 .2329 .0034 .8424							
42 1.75 -2.56 .7529 .2329 .0034 .8424	- 41						
43 1.85 -2.63 .7555 .2320 .0016 .8436	42	1.75	-2.56	.7529		.0034	.8424
	43	1.85	-2.63	.7555	.2320	.0016	.8436

.

	benbe to	DENDE NO.		IIDOLINA DI	INT FILE DO	_'
Cone I	Probe: Bet	a1=40.3	Re=774000	X1ave=0.1	211 - 01a ^r e	=21.26
Point	Loc(in)	-Beta	Q Q1refbar	<u>Ps-Psibar</u> Qirefbar	<u>Ptibar-Pt</u> Qirefbar	
*****	*****	****	*****			
1	-1.65	-2.44	.7411	.2384	.0101	.8311
2	-1.55	-2.61	.7392	.2349	.0155	.8284
3	-1.45	-2.49	.7413	.2349	.0135	.8296
4						
	-1.35	-2.39	.7409	.2354	.0133	.8299
5	-1.25	-2.52	.7417	.2361	.0118	.8302
6	-1.15	-2.55	.7416	.2346	.0133	.8297
7	-1.05	-2.55	.7433	.2352	.0111	.8302
8	95	-2.61	.7430	.2356	.0110	.8302
9	85	-2.56	.7418	.2367	.0111	.8291
10	75	-3.36	.7404	.2353	.0140	.8274
11	65	-3.61	.7373	.2390	.0134	.8261
12	55	-3.40	.7358	.2409	.0131	.8252
13	50	-3.58	.7354	.2405	.0139	.8244
14	45	-3.33	.7360	.2419	.0118	.8250
15	40	-3.90	.7384	.2407	.0106	.8263
16	35	-3.98	.7366	.2366	.0164	.8249
17	30	-5.25	.7173	.2362	.0367	.8135
18	25	-4.81	.5969	.2338	.1625	.7427
19	20	-5.41	.4486	.2338	.3138	.6437
20	15	-5.40	.3172	.2446	.4363	.5425
	10		.2553		.4363	.4368
21		-5.18		.2499		
22	05	-5.33	.2827	.2462	.4696	.5116
23	0.00	-5.02	.4061	.2406	.3502	.6126
24	.10	97	.7027	.2259	.0620	.8042
25	.15	95	.7434	.2319	.0141	.8275
26	.20	89	.7494	.2325	.0075	.8300
27	.25	-1.90	.7464	.2346	.0085	.8269
28	.30	-1.79	.7461	.2339	.0094	.8265
29	.35	-2.02	.7484	.2330	.0080	.8278
30	.45	-1.93	.7486	.2319	.0088	.8280
31	.55	-1.84	.7511	.2310	.0072	.8290
32	.65	-1.81	.7529	.2284	.0079	.8300
33	.75	-1.78	.7545	.2283	.0064	.8309
34	.85	-2.01	.7574	.2254	.0062	.8321
35	.95	-1.98	.7570	.2245	.0076	.8319
36	1.05	-1.95	.7607	.2221	.0062	.8332
37	1.15	-1.95	.7596	.2201	.0094	.8319
38	1.25	-1.97	.7611	.2201	.0077	.8329
39	1.35	-2.50	.7613	.2205	.0072	.8329
40	1.45	-2.40	.7615	.2204	.0071	.8327
41	1.55	-2.28	.7642	.2206	.0041	.8344
- I	1.00	2.20		.2200	.0041	.0044

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6252

	BLADE TO	BLADE PROB	E DATA AT	MIDSPAN DF	TA FILE DC6	259
Cone	Probe: Bet	a1=40.3	Re=77400	0 X1ave=0.1	211 Qiave=	21.26
Point	Loc(in)			<u>Ps-Psibar</u> Qirefbar		X Xirefbar
* * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * * * *		
1	-1.60		.6640	.3215	.0062	
2	-1.50	-1.91	.6659	.3155	.0102	.8244
3	-1.40	-2.05	.6680	.3171	.0064	.8248
4	-1.30	-1.90	.6704	.3183	.0028	.8273
5	-1.20	-2.28	.6711	.3171	.0033	.8273
6	-1.10	-2.16	.6707	.3191	.0018	.8273
7	-1.00	-2.26	.6720	.3166	.0029	.8268
8	90 80	-3.09	.6708	.3191	.0016	.8263
9		-2.76	.6701	.3209	.0006	.8267
1.0	70	-2.78	.6703	.3176	.0036	.8252
11	60	-2.96	.6700	.3170	.0045	.8250
12	50	-3.07	.6711	.3191	.0013	.8267
13	40	-3.58	.6616	.3110	.0192	.8187
14	30	-3.33	.5913	.3078	.0943	.7750
15	20	-3.45	.4460	.3085	.2417	.6742
16	15	-3.23	.3925	.3058	.2988	.6316
17	10	-3.29	.3728	.3085	.3161	.6152
18	05	-3.16	.3948	.3070		.6326
19	0.00	-2.25	.4486	.3063	.2414	.6746
20	.05	-2.01	.5228	.3069	.1651	.7271
21	.10	-1.77	.5887	.3150	.0898	.7706
22 23	.15 .20	-2.14	.6465 .6708	.3070	.0386	.8074
23 24	.20	-1.98 -2.12	.6708	.3067 .3103	.0141 .0037	.8212
24		-1.98	.6767	.3133		.8256 .8250
25	.35 .45	-2.50	.6702	.3235	.0010 0022	.8230
20	.45	-3.11	.6736	.3201	0023	.8229
28	.65	-2.55	.6708	.3241	0034	.8199
29	.75	-2.77	.6664	.3254	0002	.8169
30	.85	-2.65	.6650	.3298	0032	.8161
31	.95	-2.46	.6643	.3278	0004	.8141
32	1.05	-2.72	.6609	.3312	0003	.8131
33	1.15	-2.11	.6692	.3216	.0008	.8172
34	1.25	-2.55	.6720	.3175	.0019	.8184
35	1.35	-2.57	.6709	.3196	.0010	.8174
36	1.45	-2.54	.6737	.3162	.0015	.8183
37	1.55	-2.73	.6768	.3176	0031	.8213
38	1.65	-1.38	.6707	.3219	0011	.8151

	BLADE TO	BLADE PROB	SE DATA AT	MIDSPAN DA	TA FILE DC:	5258
Cone P	Probe: Bet	a1=40.3	Re=774000	Xiave=0.1	211 Qiave:	=21.26
Point	Loc(in)	- Beta	Q	Ps-Ps1bar	Pt1bar-Pt	×
			Qirefbar	Qirefbar	Qirefbar	Xirefbar
*****		********		* * * * * * * * * * * *		
1	-1.60	-1.77	.7065	.2740	.0102	.8229
2	-1.40	-1.57	.7066	.2738	.0102	.8236
3	-1.30	-1.60	.7064	.2755	.0087	.8238
4	-1.20	-1.69	.7075	.2750	.0080	.8246
5	-1.10	-2.16	.7051	.2776	.0080	.8242
6	-1.00	-2.13	.7075	.2765	.0065	.8250
7	90	-2.16	.7062	.2760	.0084	.8245
8	80	-2.14	.7067	.2766	.0073	.8244
9	70	-2.02	.7043	.2770	.0094	.8232
10	60	-2.01	.7052	.2765	.0090	.8238
11	50	-2.15	.7009	.2744	.0154	.8214
12	40	-2.73	.6766	.2742	.0406	.8083
13	35	-2.95	.6489	.2713	.0719	.7914
14	30	-3.01	.6014	.2697	.1221	.7628
15	25	-3.21	.5494	.2683	.1766	.7294
16	20	-3.03	.5019	.2677	.2257	.6978
17	15	-3.23	.4654	.2695	.2611	.6722
18	10	-3.27	.4460	.2714	.2788	.6586
19	05	-2.33	.4595	.2687	.2678	.6675
20	0.00	-2.29	.4943	.2686	.2326	.6921
21	.05	-1.72	.5457	.2685	.1802	.7273-
22	.10	-1.98	.6076	.2708	.1147	.7674
23	.15	-1.75	.6540	.2703	.0676	.7953
24	.20	-1.73	.6836	.2738	.0337	.8133
25	.25	-1.86	.6999	.2748	.0161	.8219
26	.30	-2.10	.7051	.2759	.0097	.8248
27	.40	-2.05	.7071	.2771	.0064	.8256
28	.50	-1.87	.7109	.2762	.0033	.8274
29	.60	-2.22	.7070	.2764	.0072	.8255
30	.70	-1.82	.7116	.2779	.0010	.8288
31	.80	-2.26	.7113	.2784	.0008	.8287
32	.90	-1.95	.7107 .	.2772	.0026	.8283
33 34	1.00	-2.48	.7097	.2795	.0013	.8286
34	1.10	-2.21	.7096 .7087	.2767	.0042 .0031	.8272
30	1.20 1.30	-2.36		.2788		.8274
35		-2.37	.7071	.2787	.0048	.8266 .8281
	1.40	-1.73	.7095	.2795	.0016	
38	1.50	-2.37	.7089	.2784	.0032	.8279

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6258

	BLADE TO	BLADE PROI	BE DATA AT I	MIDSPAN DA	TA FILE DCG	255
Cone	Probe: Bet	a1=40.3	Re=774000	X1ave=0.1	211 Qlave=	21.26
Point	Loc(in)	- Beta		Ps-Ps1bar		X
* * * * * *	* * * * * * * * * * * *	* * * * * * * * * * *	Q1refbar *******	Q1refbar		
1	-1.65	-1.72	.7271	.2483	.0146	.8212
2	-1.55	-1.87		.2499	.0113	.8226
3	-1.45	-1.72	.7311	.2461	.0127	.8226
4	-1.35	-1.79	.7312	.2464	.0123	.8225
5	-1.25	-1.90	.7319	.2492	.0088	.8241
6	-1.15	-1.88	.7339	.2448	.0112	.8228
7	-1.05	-1.84	.7312	.2476	.0111	.8223
8	95	-2.33	.7318	.2442	.0138	.8215
9	85	-2.30	.7341	.2455	.0101	.8232
10	75	-2.45	.7333	.2413	.0151	.8214
11	65	-2.36	.7305	.2428	.0166	.8206
12	55	-2.38	.7184	.2389	.0329	.8128
13	45	-2.66	.6784	.2391	.0737	.7909
14	35	-2.88	.6246	.2359	.1321	.7590
15	30	-3.38	.5935	.2321	.1677	.7391
16	25	-3.27	.5699	.2332	.1907	.7246
17	20	-3.30	.5445	.2318	.2180	.7074
18	15	-3.15	.5348	.2340	.2258	.7026
19	10	-2.54	.5370	.2357	.2217	.7043
29	05	-2.63	.5544	.2336	.2062	.7145
21	0.00	-2.33	.5783	.2294	.1860 -	.7281
22	.05	-2.17	.6092	.2315	.1523	.7480
23	.10	-1.99	.6464	.2315	.1141	.7699
24	.15	-2.06	.6781	.2319	.0812	.7882
25	.25	-1.70	.7211	.2319	.0372	.8112
26 27	.35	-1.90 -2.04	.7393	.2335	.0168	.8213
28	.45 .55	-2.04 -1.90	.7463 .7480	.2368 .2357	.0063 .0057	.8255 .8269
29	.65	-1.93	.7502	.2347	.0045	.8265
30	.75	-2.23	.7486	.2366	.0042	.8266
31	.85	-1.69	.7482	.2342	.0070	.8257
32	.00	-1.97	.7497	.2331	.0065	.8258
33	1.05	-2.01	.7475	.2340	.0078	.8246
34	1.15	-1.76	.7490	.2324	.0079	.8249
35	1.25	-1.82	.7466	.2335	.0093	.8239
36	1.35	-1.67	.7465	.2325	.0104	.8235
37	1.45	-1.89	.7435	.2396	.0064	.8221
38	1.55	-1.94	.7379	.2423	.0096	.8176
39	1.65	-1.92	.7360	.2461	.0076	.8171

READE TO READE PROBE DATA AT MIDSPAN. DATA FILE DOG255

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260

Upper	Plane:	Beta1=43.43	Re=774000	X1ave=.1	216 Q1ave:	=21.05
Point	Loc(in	a) - Beta	Q Qlrefbar	<u>Ps-Ps1bar</u> Q1refbar	<u>Pt1bar-Pt</u> Q1refbar	X Xirefbar
*****	*******	**********				
1	-6.02	-3.08	.5462	.3391	.0592	.7407
2	-6.06	-3.09	.5643	.3370	.0427	.7515
3	-5.88	-3.08	.5920	.3376	.0139	.7700
4	-5.68	-2.22	.6070	.3382	0020	.7809
5	-5.58	-1.87	.6083	.3901	0053	.7829
6	-5.48	-1.87	.6101	.3902	0072	.7839
7	-5.38	-1.85	.6078	.3889		
8	-5.28				0036	.7819
		-1.87	.6067	.3901	0037	.7822
9	-5.18	-1.87	.6090	.3371	0030	.7827
10	-5.08	-1.86	.6028	.3897	.0008	.7791
11	-4.98	-1.63	.6024	.3394	.0015	. 1795
12	-4.88	-1.63	.5963	.3906	.0066	.7751
13	-4.78	-1.49	.5979	.3388	.0067	.7762
14	-4.68	-1.47	.5988	.3885	.0060	.7758
15	-4.58	-1.50	.5920	.3890	.0125	.7707
16	-4.49	99	.5941	.3888	.0106	.7729
17	-4.38	-1.00	.5927	.3890	.0118	.7715
18	-4.29	99	.5912	.3909	.0114	.7708
19	-4.19	77	.5886	.3901	.0148	.7688
20	-4.09	25	.5823	.3898	.0215	.7644
21	-3.99	26	.5674	.3902	.0364	.7546
22	-3.89	.56	.5395	.3900	.0651	.7361
23	-3.79	.81	.5099	.3885	.0967	.7155
24	-3.69	.82	.4623	.3882	.1454	.6812
25	-3.60	.81	.4327	.3858	.1780	.6588
26	-3.49	14	.4104	.3854	.2011	.6420
27	-3.39	-1.48	.4150	.3846	.1971	.6456
28	-3.29	-1.46	.4355	.3873	.1736	.6619
29	-3.19	-2.60	.4762	.3853	.1343	.6908
30	-3.09	-2.61	.5226	.3851	.0871	.7237
31	-2.99	-2.61	.5586	.3869	.0487	.7478
32	-2.90	-2.59	.5867	.3852	.0217	.7660
33	-2.80	-2.11	.5969	.3899	.0066	.7751
34	-2.69	-1.62	.6021	.3913	0002	.7793
35	-2.59	-1.63	.6049	.3899	0016	.7803
36	-2.49	-1.62	.6072	.3889	0030	.7817
37	-2.39	-1.64	.6060	.3888	0017	.7809
38	-2.29	-1.62	.6041	.3902	0011	.7798
39	-2.19	-1.61	.6025	.3897	.0011	.7788
40	-2.09	-1.62	.6038	.3901	0007	.7798
41	-1.99	-1.58	.6026	.3887	.0020	.7785
42	-1.89	-1.63	.6003	.3897	.0033	.7778
43	-1.79	-1.62	.6026	.3869	.0038	.7784
-						

				•		
44	-1.69	-1.62	.6021	.3855	.0056	.7775
45	-1.59	-1.62	.6007	.3864	.0062	.7764
46	-1.49	-1.14	.6001	.3863	.0069	.7764
47	-1.39		.5976	.3895	.0063	.7759
		-1.12				
48	-1.29	81	.5965	.3908	.0061	.7756
49	-1.19	79	.5891	.3904	.0140	.7696
50	-1.09	27	.5763	.3903	.0272	.7613
51	99	.21	.5529	.3903	.0512	.7456
52	89	.21	.5211	.3888	.0850	.7238
53	79	.72	.4792	.3885	.1280	.6944
54	69					
-		.31	.4451	.3859	.1653	.6687
55	60	.31	.4199	.3876	.1892	.6500
56	50	-1.38	.4141	.3864	.1963	.6453
57	40	-1.38	.4232	.3863	.1872	.6515
58	30	-2.83	.4604	.3790	.1567	.6763
59	20	-2.82	.5058	.3791	.1104	.7088
60	10	-2.81	.5457	.3817	.0670	.7361
61	.00	-2.83	.5755	.3794	.0389	.7547
62	. 11	-2.67	.5970	.3772	.0192	.7679
63	.20	-1.88	.6100	.3772	.0059	.7767
64	.30	-1.86	.6153	.3760	.0017	.7792
65	. 41	-1.84	.6176	.3756	0004	.7803
$\epsilon\epsilon$.52	-1.63	.6191	.3731	.0007	.7800
ê7	.61	-1.63	.6216	.3724	0011	.7815
						.7822
68	.72	-1.39	.6230	.3720	0022	
69	.82	-1.38	.6236	.3711	0019	.7821
70	.92	-1.39	.6244	.3706	0023	.7823
71	1.02	-1.40	.6262	.3722	0057	.7837
72	1.12	-1.40	.6241	.3705	0018	.7820
73	1.22	-1.40	.6273	.3717	0062	.7844
74	1.33	-1.15	.6275	.3696	0044	173BE
75	1.43		.6272	.3693	0038	.7829
		-1.13				
76	1.53	-1.15	.6259	.3690	0022	.7813
77	1.63	90	.6261	.3679	0014	.7811
78	1.73	91	.6244	.3671	.0013	.7790
79	1.83	28	.6164	.3693	.0072	.7744
8.9	1.93	02	.6042	.3662	.0227	.7658
81	2.04	.31	.5843	.3652	.0441	.7525
82	2.14	.48	.5505	.3642	.0797	.7308
83	2.24	.81	.5077	.3629	.1246	.7014
84	2.34	.81	.4680	.3595	.1684	.6731
85	2.45	19	.4416	.3614	.1934	.6541
86	2.54	19	.4258	.3597	.2111	.6421
87	2.65	-2.22	.4387	.3589	.1988	.6514
83	2.75	-2.22	.4700	.3587	.1673	.6736
8.9	2.85	-3.07	.5103	.3559	.1290	.7005
99	2.95	-2.84	.5508	.3577	.0859	.7271
91	3.05	-2.83	.5861	.3559	.0517	.7492
92	3.16	-2.36	.6130	.3536	.0264	.7653
9 3	3.25	-2.35	.6224	.3530	.0174	.7709

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE BD6260 Lower Plane: Beta1=43.43 Re=774000 X1ave=.1216 01ave=21.05 Point Loc(in) - Beta Q Ps-Ps1bar Pt1ban-Pt X Qirefbar Xirefbar Qirefbar Qirefbar .9715 .0090 .9947 1 -3.05 -43.20 .0015 2 -3.01 -43.20 .9708 -.0025 .9928 .0137 3 .0066 -2.90-43.21 .9762 -.0010 .9960 4 -2.70-43.20 .9809 .0021 -.0014.99999 5 -2.61 -43.20 .9804 .0065 -.00521.0011 ϵ -2.49-43.20 .9826 .0067 -.0077 1.0021 7 -2.39 -43.21 .9845 .0045 -.00751.0023 \otimes -2.29 -43.21 .9807 .0076 -.0066 1.0016 9 -2.18 -43.20 .9799 .0049 -.0030 1.0000 19 -2.08 -43.21 .9798 .0050 -.0031 1.0004 -2.0011 -43.20 .9799 .0047 -.0029 1.0013 -1.90 .0035 12 -43.20 .9826 -.00451.0021 -1.7913 -43.19.9827 .0021 -.0032 1.0023 14 -1.69-43.21 .9859 .0012 -.0057 1.0026 -1.6015 -43.43 .9840 .0010 -.0034 1.0008 16 -1.48-43.46 .9797 .0032 -.0012.9396 17 -1.39-43.47.9812 .0020 -.0016 .9398 -43.21 .9746 -1.29.9968 18 .0008 .0065 19 -1.19.9738 -43.20 .0008 .0073 .9960 .9745 -1.09-43.47 .9960 20 __0006 .0067 -.99 -43.46 .9749 -.0006 .0076 21 .9962 .0050 22 -.90 -43.47.9773 -.0005 .9976 -.79 23 -43.47 .9796 -.0005.0026 .9983 24 -.71 -43.46 .9852 -.0019-.00181.0006 25 -.59 -43.45.9852 -.0026 -.00111.0000 .9843 26 -.48 -42.96 -.0024-.0003 1.0001 0.0 40 40 0000 0014 0000 27 2 2 З 3

27	38	-43.46	.9833	0014	0003	.9995
28	29	-43.47	.9813	0014	.0018	.9995
29	20	-43.46	.9821	0039	.0035	.9983
30	09	-43.44	.9822	0045	.0038	.9988
31	01	-43.46	.9841	0050	.0024	.9995
32	.10	-43.48	.9852	0040	.0003	.9998
33	.19	-43.46	.9803	.0027	0013	1.0005
34	.29	-43.48	.9803	.0049	0035	1.0015
35	.40	-43.46	.9806	.0022	10011	1.0007
36	.50	-43.48	.9818	.0014	0016	1.0012
37	.59	-43.46	.9788	.0014	.0016	.9997
38	.70	-43.46	.9767	.0026	.0026	.9988
39	.80	-43.47	.9801	.0018	0001	1.0005
40	.89	-43.46	.9788	.0034	0004	1.0000
41	1.01	-43.49	.9850	.0003	0038	1.0025
42	1.11	-43.44	.9845	.0031	0060	1.0033
43	1.21	-43.46	.9913	.0011	0110	1.0055

67

	1 01	10 15	0010	0.004	04.00	
44	1.31	-43.45	.9913	0001	0100	1.0048
45	1.40	-43.46	.9878	0014	0050	1.0027
46	1.51	-43.33	.9860	0019	0027	1.0025
47	1.61	-43.34	.9817	.0022	0023	1.0018
48	1.71	-43.45	.9825	.0018	0026	1.0026
49	1.81	-43.46	.9836	.0001	0020	1.0016
50	1.91	-43.58	.9874	0021		
					0038	1.0036
51	2.00	-43.58	.9923	0028	0083	1.0058
52	2.10	-43.58	.9941	0026	0103	1.0064
53	2.19	-43.58	.9968	0017	0141	1.0078
54	2.31	-43.47	.9999	0054	0136	1.0083
55	2.40	-43.46	.9960	0038	0111	1.0070
56	2.51	-43.47	.9975	0043	0123	1.0073
57	2.60	-42.94	.9981	0109	0062	1.0066
53	2.70	-43.20	1.0002	0180	0012	1.0030
59	2.80	-43.48	1.0008	0166	0032	1.0036
60	2.90	-43.48	.9996	0169	0017	1.0032
61	3.00	-43.46	1.0015	0193	0013	1.0028
62	3.11	-43.46	1.0029	0221	.0001	1.0025
63	3.18	-43.46	1.0078	0206	0066	1.0058
64	3.30	-43.48	1.0090	0226	0059	1.0053
65	3.40	-43.49	1.0077	0243	0028	1.0042
66	3.48	-43.47	1.0095	0270	0019	1.0035
67	3.59	-43.47	1.0065	0268	.0010	1.0020
68	3.69	-43.46	1.0074	0288	.0020	1.0022
69	3.80	-43.47	1.0084	0298	.0021	1.0020
70						
-	3.89	-43.73	1.0097	0298	.0007	1.0023
71	3.99	-43.70	1.0068	0295	.0034	1.0014
72	4.10	-43.72	1.0089	0298	.0014	1.0018
73	4.20	-43.72	1.0092	0295	.0009	1.0025
74	4.29	-43.47	1.0110	0341	.0036	1.0022
75	4.39	-43.48	1.0075	0355	.0087	.9999
76	4.49	-43.47	1.0036	0352	.0133	.9970
77	4.59	-43.73	1.0035	0378	.0151	.9965
78	4.70	-43.73	1.0038	0401	.0171	.9953
79	4.80	-43.72	1.0052	0394	.0149	.9966
89	4.90	-43.73	1.0072	0418	.0153	.9962
81	5.00	-43.73	1.0157	0441	.0087	.9994
82	5.11	-43.74	1.0167	0442	.0078	1.0003
83	5.21	-43.72	1.0213	0454	.0042	1.0015
84	5.30	-43.72	1.0216	0482	.0066	1.0010
85	5.41	-43.46	1.0262	0492	.0029	1.0035
86	5.51	-43.46	1.0225	0504	.0079	1.0913
87	5.62	-43.47	1.0227	0511	.0084	1.0809
88	5.71	-43.46	1.0237	0532	.0094	1.0008
89	5.81	-43.47	1.0256	0567	.0111	.9998
90	5.90	-43.58	1.0302	0584	.0079	1.0016
91	5.99	-43.48	1.0352		.0060	1.0032
92				0617		
	6.08	-43.47	1.0432	0630	0009	1.0061
93	6.20	-43.48	1.0426	0630	0004	1.0054

.

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6261

Cone Probe: Beta1=43.43 Re=774000 X1ave=0.1216 Q1ave=21.05

Point	Loc(in)	- Beta	Q	<u>Ps-Psibar</u>	<u>Pt1bar-Pt</u>	X
			Qirefbar	Qirefbar	Qirefbar	X1refbar
*****				********		
1	-2.63	89	.6757	.3135	.0023	.8189
2	-2.53	68	.6758	.3170	0014	.8186
3	-2.43	-1.28	.6757	.3185	0027	.8202
4	-2.33	-1.30	.6760	.3146	.0008	.8183
5	-2.23	-1.10	.6772	.3149	0007	.8191
e	-2.13	-1.34	.6767	.3171	0023	.8195
7	-2.03	-1.10	.6748	.3174	0007	.8186
8	-1.93	-1.34	.6758	.3159	0002	.8196
9	-1.83	-1.36	.6746	.3147	.0022	.8179
10	-1.73	-1.28	.6745	.3144	.0025	.8180
11	-1.63	-1.36	.6755	.3114	.0046	.8178
12	-1.53	-1.45	.6748	.3131	.0036	.8181
13	-1.48	-1.54	.6756	.3107	.0051	.8193
14	-1.43	-1.48	.6743	.3110	.0062	.8180
15	-1.38	-1.52	.6745	.3106	.0064	.8188
16	-1.33	-1.94	.6757	.3090	.0067	.3184
17	-1.28	-1.90	.6748	.3082	.0085	.8182
18	-1.23	-2.07	.6759	.3084	.0071	.8185
19	-1.18	-1.93	.6753	.3081	.0081	.8184
20	-1.13	-1.80	.6761	.3085	.0068	.8195
21	-1.03	-2.51	.6772	.3075	.0067	.8195
22	93	-2.49	.6796	.3056	.0062	.8201
23	83	-2.70	.6798	.3054	.0062	.8203
24	73	-2.90	.6809	.3053	.0051	.8222
25	63	-5.12	.6824	.3044	.0045	.8223
26	53	-4.86	.6777	.3042	.0094	.8205
27	43	-5.44	.6627	.3018	.0272	.8115
28	38	-5.84	.5963	.3007	.0964	.7716
29	33	-6.26	.5008	.2938	.1958	.7069
30	28	-6.62	.3820	.3019	.3134	.6176
31	23	-6.42	.2756	.3067	.4163	.5244
32	18	-7.55	.1821	.3146	.5026	.4268
33	13	-7.45	.1180	.3192	.5626	.3440
34	08	-3.60	.1069	.2872	.6057	.3275
35	03	.83	.1010	.3094	.5983	.3177
36	0.00	2.18	.1768	.3138	.5038	.4195
37	.02	1.59	.2268	.3210	.4513	.4757
38	.02	1.59	. 4964	.3047	.1943	.7034
39	.12	1.44	.6650	.2957	.0301	.8120
40	.17	.06	.6862	.3041	.0009	.8243
40	.22	48	.6811	.3095	.0009	.8219
41	.22	48 38	.6776	.3106	.0032	.8194
	.37	-1.22	.6762	.3132	.0032	.8178
43	• Sr	-1.22	.0102	· 3132	.0020	.01(0

44 45	.47	-1.51 -1.12	.6744 .6758	.3157	.0014 .0000	.8186
46	.67	-2.15	.6747	.3134	.0035	.8172
47	.77	-2.27	.6775	.3122	.0018	.8197
48	.87	-1.77	.6792	.3116	.0006	
49 50	.97	-1.75	.6797	.3116	.0000	.8201
50	1.07	-1.86	.6791	.3103	.0019	.8195
51	1.17	-1.96	.6771	.3149	0007	.8202
52	1.27	-2.02	.6795	.3117	.0001	.8205
53		-2.19	.6840	.3088	0016	.8230
54	1.47	-2.22	.6834	.3110	0032	.8240
55	1.57	-2.40	.6821	.3110	0018	.8210
56	1.67	-3.14	.6870	.3091	0049	.8249

Cone	Probe:	Beta1=43.43	Re=774000	X1ave=0.1	216 Q1ave:	=21.05
Point	Loc(i	n) - Beta	<u>Q</u>	<u>Ps-Psibar</u>	Pt1bar-Pt	X
			Q1refbar	Qirefbar	Qinefbar	

1	-1.66		.6305	.3585	.0036	.8038
2	-1.56		.6287	.3590	.0049	.8027
3	-1.46		,6278	.3592	.0057	.8007
4	-1.36		.6304	.3582	.0040	.8032
5	-1.26		.6282	.3571	.0073	.8019
6	-1.16		.6303	.3590	.0033	.8040
7	-1.06		.6280	.3581	.0065	.8007
8	96		.6279	.3589	.0059	.8019
9	86		.6312	.3589	.0025	.8036
19	76		.6289	.3623	.0014	.8025
11	71		.6307	.3613	.0006	.8032
12	66		.6289	.3615	.0022	.8035
13	61		.6280	.3581	.0066	.8020
14	56		.6236	.3592	.0099	.7987
15	51		.5968	.3574	.0392	.7810
16	46	5 -4.57	.5490	.3573	.0882	.7508
17	41	-3.84	.4781	.3562	.1615	.7024
18	36		.3991	.3572	.2407	.6420
19	31	-4.30	.3279	.3598	.3103	.5824
20	26	5 -2.84	.2736	.3640	.3609	.5319
21	21	-2.75	.2423	.3631	.3935	.5004
22	16	-2.56	.2459	.3634	.3895	.5037
23	11	-1.00	.2836	.3568	.3581	.5406
24	06	85	.3453	.3538	.2986	.5971
25	03	.02	.4087	.3502	.2380	.6496
26	0.00	60	.4415	.3471	.2077	.6739
27	.04	28	.5123	.3479	.1349	.7268
28	.09	.05	.5721	.3481	.0737	.7673
29	. 14	-1.12	.6132	.3527	.0271	.7935
30	.19	86	.6288	.3572	.0067	.8033
31	.24	-1.48	.6311	.3612	.0003	.8041
32	.29	-1.68	.6302	.3625	0000	.8029
33	.34	-1.70	.6300	.3634	0008	.8050
34	.39		.6290	.3647	0010	.8048
35	.44	4 -1.76	.6302	.3645	0020	.8067
36	.54	4 -1.94	.6297	.3655	0026	.8056
37	.64	-1.86	.6325	.3601	0.0000	.8058
38	.74	4 -2.01	.6346	.3601	0022	.8059
39	.84		.6339	.3595	0008	.8061
49	.94		.6342	.3606	0023	.8067
41	1.04		.6347	.3597	0019	.8042
42	1.14		.6370	.3598	0044	.8090
43	1.24	-2.14	.6352	.3605	0032	.8082

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6263

44	1.34	-1.95	.6377	.3698	0060	.8883
45	1.44	-1.90	.6361	.3536	0022	.8055
46	1.54	-1.86	.6382	.3562	0020	.8073
47	1.64	-2.23	.6367	.3589	0031	.8070

BLADE TO BLADE PROBE DATA AT MIDSPAN DATA FILE DC6265

Cone Probe: Beta1=43.43 Re=774000 X1ave=0.1216 Q1ave=21.05

Point	Loc(in)	- Beta	Q Q1refbar	<u>Ps-Psibar</u> Qirefbar	<u>Ptibar-Pt</u> Qirefbar	X Xirefbar
*****		********		wireruar *********		
1	-1.66	-2.07	.6279	.3573	.0074	.7938
2	-1.56	-2.10				.7919
_			.6282	.3567	.0077	
3	-1.46	-1.89	.6312	.3539	.0075	.7934
4	-1.36	-1.95	.6334	.3546	.0046	.7954
5	-1.26	-2.10	.6326	.3542	.0057	.7934
6	-1.16	-1.75	.6335	.3544	.0047	.7957
7	-1.06	-1.95	.6329	.3528	.0067	.7945
8	96	-2.31	.6341	.3509	.0075	.7932
9	86	-2.95	.6285	.3497	.0145	.7898
10	81	-2.62	.6206	.3462	.0260	.7837
11	76	-2.63	.6084	.3426	.0421	.7765
12	71	-2.86	.5918	.3400	.0617	.7640
13	66	-3.03	.5694	.3385	.0861	.7495
14	61	-2.93	.5433	.3366	.1145	.7320
15	56	-2.84	.5110	.3349	.1493	.70,97
16	51	-3.37	.4828	.3320	.1808	.6892
17	46	-3.23	.4531	.3308	.2123	.6672
18	41	-3.30	.4338	.3303	.2324	.6539
19	36	-3.12	.4184	.3306	.2477	.6403
29	31	-2.92	.4135	.3277	.2557	.6360
21	26	-2.56	.4268	.3259	.2438	.6461
22	21	-2.37	.4474	.3262	.2227	.6616
23	16	-1.95	.4760	.3251	.1947	.6817
24	11	-2.05	.5067	.3241	.1644	.7023
25	06	-1.46	.5393	.3237	.1315	.7257
26	01	-1.51	.5722	.3238	.0979	.7461
27	.04	-1.67	.5994	.3258	.0681	.7627
28	.09	-1.76	.6182	.3255	.0492	.7746
29	. 14	-1.93	.6365	.3267	.0292	.7853
30	.19	-1.78	.6459	.3285	.0179	.7900
31	.24	-1.76	.6547	.3267	.0106	.7936
32	. 29	-1.61	.6580	.3241	.0098	.7947
33	.34	-1.75	.6617	.3241	.0061	.7958
34	.39	-1.68	.6649	.3221	.0047	.7963
35	.44	-2.16	.6648	.3224	.0045	.7963
36	. 49	-1.96	.6663	.3246	.0008	.7978
37	.54	-1.97	.6643	.3201	.0074	.7944
38	.64	-2.05	.6696	.3218	.0001	.7988
39	.74	-1.99	.6668	.3198	.0051	.7963
40	.84	-2.07	.6697	.3206	.0013	.7992
41	.94	-2.07	.6697	.3174	.0046	.7958
42	1.04	-2.01	.6702	.3180	.0034	.7964
- 43	1.14	-2.12	.6728	.3163	.0025	.7974
· - ·	4 + 4 7	2.12	.0120	.0105	.0020	+ 1 2 C *

44	1.24	-2.03	.6726	.3168	.0022	.7991
45	1.34	-1.85	.6734	.3159	.0022	.7980
46	1.44	-1.83	.6738	.3157	.0020	.7969
47	1.54	-2.05	.6752	.3136	.0028	.7983
48	1.64	-2.28	.6756	.3154	.0005	.7977

MASS AVERAGED REFERENCING COEFFICIENTS

UPPER PLANE DATA FROM FILE BD6250 LOWER PLANE DATA FROM FILE BD6250 INTEGRATION FROM: -1.5 TO: 1.5

CONSTANTS STORED IN FILE: RC6250 $(\dot{B}_1 = 40.3)$

REFERENCING COEFFICIENTS Xbar: 1.16122425638 Qbar: 5.03683922698E-02 Pbar: .945564416077 Ptbar: .995930691973 X2bar: .929704325305 Q2bar: 3.23871320901E-02 P2bar: .96210329247 Pt2bar: .994491548307 Xrefave .104238333333 Prefave 422.104827957 Trefave: 533 REYNOLDS No.: 774034.927767

UPPER PLANE DATA FROM FILE BD6260 LOWER PLANE DATA FROM FILE BD6260 INTEGRATION FROM: -1.5 TO: 1.5

CONSTRNTS STORED IN FILE:RC6260 $(\beta_2=43.4)$ REFERENCING COEFFICIENTS Xbar: 1.21130001999 Qbar: .050044645165 Pbar: .945638612489 Ptbar: .995683281476 X2bar: .91003448075 Q2bar: .028898669595 P2bar: .964630545141 Pt2bar: .99352997777

Xrefave .100412986022 Prefave 420.529365591 Trefave: 529

REYNOLDS No.: 773766.692672

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 1	β ₁ =40.3°
Blade to Blade Position (in)	Angle (ß2 deg)
-1.5 -1.0 -0.5 0.0 0.5 1.0	40.4 40.6 40.6 40.6 40.7 40.7

TABLE A.15

40.7

.

1.5

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 2-2 $\beta_1=40.3^\circ$ Angle (ß2 deg) Blade to Blade Position (in) -1.5 0.8 -1.0 0.2 -0.5 -0.4 -0.3 -1.8 0.0 2.7 0.3 0.8 0.5 0.8 1.0 0.8 1.5 0.4

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 2-6	β ₁ =40.3°
Blade to Blade	Angle (β ₂ deg)
-1.5	1.6
-1.0	1.6
-0.5	0.9
-0.25	1.1
0.0	1.6
0.25	1.8
0.5	2.1
1.0	2.1
1.5	1.8

TABLE A.17

.

YAW PROBE INLET AIR ANGLE MEASUREMENTS

	3 ₁ =43.4°
Blade to Blade Position (in)	Angle (β ₂ deg)
-10 -8.0 -5.0 -3.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 4.0 6.6	43.55 43.5 43.55 43.2 43. 43. 43. 43. 43. 43. 43. 43. 43. 43.

YAW PROBE OUTLET AIR ANGLE MEASUREMENTS

Station 2-6	β ₁ =43.4°
Blade to Blade Position (in)	Angle (ß2 deg)
-5.95	1.6
-4.9	2.0
-4.45	1.6
-4.1	1.2
-3.7	0.6
-3.2	1.0
-2.1	1.8
-1.5	1.6
-1.1	1.2
-0.1	0.8
1.5	1.6
2.8	1.3
3.2	1.8
4.0	2.2
5.0	1.0

.

Station	Raw Data Name		Reduced Data Name	
	40.3°	43.4°	40.3°	43.4°
1	BW6250	BW6260	BD6250	BD6260
2-1	BC6251	BC6261	DC6251	DC6261
2-2	BC6252	-	DC6252	-
2-3	BC6259	BC6263	DC6259	DC6263
2-4	BC6258	-	DC6258	-
2-5	BC6255	BC6265	DC6255	DC6265
2-6	BW6250	BW6260	BD6250	BD6260
Blade	IW6250	IW6260	ID6250	ID6260

DATA FILE NAMES AND STATION IDENTIFICATION

Q/Q1REFEAR

STATION 1 (0) STATION 2-6 (*)

Figure Al. Q/QIREFBAR Vs Blade to Blade Displacement $\beta_1 = 40.3$ Re=774000

Figure A2. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure A3. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

.

Figure A4. Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure A5. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

APt/Q1FEFBAR

STATION 2-1

Figure A6. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

•

0-01REFBAR

Figure A7. Q/QIREFBAR Vs Blade to Blade Displacement $\beta_1{=}40.3~R{=}774000$

AP=/Q1PEFBAR

Figure A8. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure A9. APt/QIFEFBAR Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure A10. Q/Q1REFBAR Vs Blade to Blade Displacement β_1 =40.3 Re=774000

△P=/Q1REFBAR

٠

STATION 2-3

•

Figure All. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

•

∆Pt/Q1REFBAR

Figure Al2. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure Al3. Q/QIREFBAR Vs Blade to Blade Displacement $\beta_1{=}40.3~Re{=}774000$

APS/GIPEFBAR

Figure A14. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

APt/Q1REFBAR

ມ. 1-

ī

Ø

Ľ٦

л. Т

ພາ 1

Figure A15. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure Al6. Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

Figure A17. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=40.3$ Re=774000

∆Pt/Q1REFBAR

Figure A18. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_{1=40.3}$ Re=774000

STATION 1 (-) STATION 2-6 (*)

' Figure A19. Q/Q1REFBAR Vs Blade to Blade Displacement β_{1} =43.4 Re=774000

∆Ps/Q1PEF BAR

STATION 1 (D) STATION 2-6 (+)

Figure A20. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

Figure A21. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

Figure A22. Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

APs/Q1REFBAR

STATION 2-1

Figure A23. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

∆Pt/Q1REFBAR

Figure A24. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

•

Figure A25. Q/QIREFBAR Vs Blade to Blade Displacement β_1 =43.4 Re=774000

.

AP=/Q1REFBAR

STATION 2-3

Figure A26. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Lisplacement $\beta_1=43.4$ Re=774000

Figure A27. 4Pt/QIEEFBAR Vs Blade to Blade Displacement $\beta_{1=43.4}$ Re=774000

Figure A28. Q/Q1REFBAR Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

Figure A29. $\Delta Ps/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

STATION 2-5

Figure A30. $\Delta Pt/QIREFBAR$ Vs Blade to Blade Displacement $\beta_1=43.4$ Re=774000

Figure A31. Comparative Plots of Beta2 Vs Blade to Blade Displacement. (Angle measurements corrected to average yaw probe reading at station 2-2 on pressure side of blade.)

Figure A32. Comparative Plots of Beta2 Vs Blade to Blade Displacement. (Angle measurements corrected to average yaw probe reading at station 2-6 on pressure side of blade.)

113

Figure A36.

Test BD6263 31=43.4°

APPENDIX B

BLADE SURFACE PRESSURE DISTRIBUTIONS

Surface pressure coefficients for the instrumented blades are given in Table B.1 through Table B.4. The tables give the pressure tap locations, coefficient of pressure given by Eq. (C-5) in Appendix C (using upstream and downstream reference conditions), local Mach number and nondimensional velocity.

. TABLE B.1

CENTER BLADE DATA

Beta=40.3 Re=774000

XZC	YZC	Cp1	Cp2	Mach	Svel
****	*****	* * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * *

PRESSURE SIDE CENTER BLADE

.0007	.0054	.3498	.0202	.2206	.0982
.0160	.0019	.3380	.0021	.2225	.0990
.0319	.0066	.3822	.0701	.2151	.0957
.0479	.0112	.3584	.0334	.2191	.0975
.0358	.0215	.3301	0101	.2238	.0996
.1218	.0303	.3272	0145	.2243	.0998
.1956	.0452	.3523	.0240	.2201	.0980
.2695	.0576	.4374	.1550	.2055	.0915
.3433	.0663	.4561	.1838	.2021	.0900
.4192	.0716	.4351	.1515	.2059	.0917
.4930	.0736	.3937	.0878	.2131	.0949
.5669	.0727	.3833	.0718	.2149	.0957
.6407	.0678	.4140	.1190	.2096	.0933
.7146	.0601	.4045	.1044	.2112	.0940
.7294	.0487	.4223	.1318	.2081	.0927
.8293	.0411	.4343	.1502	.2060	.0917
.3683	.0327	.4318	.1464	.2065	.0919
.9082	.0230	.4125	.1167	.2099	.0934
.9481	.0123	.3494	.0196	.2206	.0982
.9880	.0006	.2060	2011	.2435	.1082
SUCTION SIDE	E CENTER BL	ADE			
.0160	.0227	6576	-1.5299	.3540	.1564
.0319	.0310	5209	-1.3196	.3386	.1497
.0479	0000				
	.0389	4268	-1.1747	.3276	.1449
.0858	.0389 .0563	4268 4439	-1.1747 -1.2011	.3276 .3296	.1449 .1458
.0858					
	.0563	4439	-1.2011	.3296	.1458
.1218	.0563 .0710	4439 4558	-1.2011 -1.2194	.3296 .3310	.1458 .1464
.1218 .1956	.0563 .0710 .0970	4439 4558 5045	-1.2011 -1.2194 -1.2943	.3296 .3310 .3367	.1458 .1464 .1489
.1218 .1956 .2695	.0563 .0710 .0970 .1170	4439 4558 5045 5422	-1.2011 -1.2194 -1.2943 -1.3524	.3296 .3310 .3367 .3410	.1458 .1464 .1489 .1508
.1218 .1956 .2695 .3433	.0563 .0710 .0970 .1170 .1309	4439 4558 5045 5422 4569	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211	.3296 .3310 .3367 .3410 .3311	.1458 .1464 .1489 .1508 .1465 .1394 .1342
.1218 .1956 .2695 .3433 .4192	.0563 .0710 .0970 .1170 .1309 .1399	4439 4558 5045 5422 4569 3209	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118	.3296 .3310 .3367 .3410 .3311 .3148	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277
.1218 .1956 .2695 .3433 .4192 .4930	.0563 .0710 .0970 .1170 .1309 .1399 .1432	4439 4558 5045 5422 4569 3209 2233	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735	.1458 .1464 .1489 .1508 .1465 .1394 .1342
.1218 .1956 .2695 .3433 .4192 .4930 .5669	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412	4439 4558 5045 5422 4569 3209 2233 1089	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277
.1218 .1956 .2695 .3433 .4192 .4930 .5669 .6407	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412 .1339	4439 4558 5045 5422 4569 3209 2233 1089 0013 .0908 .1607	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857 5200 3783 2708	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735 .2605 .2503	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277 .1214 .1157 .1112
.1218 .1956 .2695 .3433 .4192 .4930 .5669 .6407 .7146	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412 .1339 .1209	4439 4558 5045 5422 4569 3209 2233 1089 0013 .0908 .1607 .1861	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857 5200 3783	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735 .2605 .2503 .2465	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277 .1214 .1157
.1218 .1956 .2695 .3433 .4192 .4930 .5669 .6407 .7146 .7884	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412 .1339 .1209 .1021	4439 4558 5045 5422 4569 3209 2233 1089 0013 .0908 .1607	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857 5200 3783 2708	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735 .2605 .2503	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277 .1214 .1157 .1112
.1218 .1956 .2695 .3433 .4192 .4930 .5669 .6407 .7146 .7884 .8283	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412 .1339 .1209 .1021 .0895	4439 4558 5045 5422 4569 3209 2233 1089 0013 .0908 .1607 .1861	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857 5200 3783 2708 2317	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735 .2605 .2503 .2465	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277 .1214 .1157 .1112 .1096 .1082 .1070
.1218 .1956 .2695 .3433 .4192 .4930 .5669 .6407 .7146 .7884 .8283 .8683	.0563 .0710 .0970 .1170 .1309 .1399 .1432 .1412 .1339 .1209 .1021 .0895 .0755	4439 4558 5045 5422 4569 3209 2233 1089 0013 .0908 .1607 .1861 .2061	-1.2011 -1.2194 -1.2943 -1.3524 -1.2211 -1.0118 8617 6857 5200 3783 2708 2317 2008	.3296 .3310 .3367 .3410 .3311 .3148 .3027 .2880 .2735 .2605 .2503 .2465 .2434	.1458 .1464 .1489 .1508 .1465 .1394 .1342 .1277 .1214 .1157 .1112 .1096 .1082

TABLE B.2

ADJACENT BLADES

Beta=40.3 Re=774000

XZC	YZC -	Cp1	Cp2	Mach	Xvel
******	******	*******	****	******	****
PRESSURE SI	DE LEFT BLA	DE			
.1218 .4192 .8283	.0303 .0716 .0411	.4448 .4292 .3314	.1664 .1425 0081	.2041 .2069 .2236	.0909 .0921 .0995
SUCTION SID	E LEFT BLAD	E			
.1218 .4192 .8283	.0710 .1399 .0895	2627 3104 1181	9222 9956 6998	.3077 .3136 .2892	.1363 .1389 .1283
PRESSURE SI	DE RIGHT BL	ADE			
.1218 .4192 .8283	.0303 .0716 .0411	.4773 .4424 .3449	.2164 .1628 .0128	.1982 .2046 .2214	.0883 .0911 .0985
SUCTION SID	E RIGHT BLA	DE			
.1218 .4192 .8283	.0710 .1399 .0895	4980 3468 .3366	-1.2844 -1.0517 0001	.3359 .3180 .2227	.1486 .1408 .0991

TABLE B.3

0

CENTER BLADE DATA

Beta=43.4 Re=774000

X/C	Y/C	Cpi	Cp2	Mach	Xvel
*******	* * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	*****	******

PRESSURE SIDE CENTER BLADE

.0007	.0054	1328	9028	.2903	.1288
.0160	.0019	.6264	.4196	.1670	.0745
.0319	.0066	.5628	.3087	.1803	.0804
.0479	.0112	.5187	.2319	.1890	.0842
.0858	.0215	.4580	.1263	.2004	.0892
.1218	.0303	.4364	.0886	.2043	.0910
.1956	.0452	.4386	.0924	.2039	.0908
.2695	.0576	.5018	.2025	.1922	.0856
.3433	.0663	.5164	.2279	.1894	.0844
.4192	.0716	.4892	.1806	.1946	.0867
.4930	.0736	.4481	.1089	.2022	.0900
.5669	.0727	.4351	.0863	.2045	.0911
.6407	.0678	.4572	.1248	.2005	.0393
.7146	.0601	.4437	.1014	.2030	.0904
.7884	.0487	.4579	.1261	.2004	.0893
.8283	.0407	.4684	.1443	.1985	.0884
		.4647	.1378	.1991	.0887
.8683	.0327				
.9082	.0230	.4396	.0942	.2037	.0907
.9481	.0123	.3813	0074	.2140	.0953
.9880	.0006	.2460	2430	.2362	.1050
OUCTION (LODE			
SUCTION :	BIDE CENTER B	LHDE			
.0160	.0227	-1.5235	-3.3252	.4422	.1940
.0319	.0310	8514	-2.1545	.3747	.1653
.0479	.0389	5648	-1.6554	.3431	.1517
.0858	.0563	4652	-1.4819	.3315	.1467
.1218	.0710	4457	-1.4478	.3292	.1457
.1956	.0970	4409	-1.4396	.3287	.1454
.2695	.1170	4312	-1.4226	.3275	.1449
.3433	.1309	3342	-1.2537	.3158	.1399
.4192	.1399	2022	-1.0237	.2993	.1327
.4930	.1432	1040	8528	.2865	.1271
.5669	.1412	.0036	6652	.2719	.1207
.6407	.1339	.0953	5056	.2589	.1150
.7146	.1209	.1707	3743	.2478	.1101
.7384	.1021	.2186	2909	.2405	.1069
.8283	.0895	.2371	2586	.2376	.1057
.8683	.0755	.2530	2309	.2351	.1046
.9082	.0733	.2656	2090	.2331	.1037
.9481				16031	- LUUI
.9380	.0407 .0206	.2732	1957 1834	.2319	.1032

TABLE B.4

. .

ADJACENT BLADES

Beta=43.4 Re=774000

X/C	YZC	Cp1	Cp2	Mach ************	Xvel
********	*****	********	****	****	****
PRESSURE SII	E LEFT BLAD	E			
.1218 .4192 .8283	.0303 .0716 .0411	.4510 .4497 .4109	.1141 .1118 .0441	.2016 .2019 .2088	.0898 .0899 .0930
SUCTION SIDE	E LEFT BLADE				
.1218 .4192 .8283	.0710 .1399 .0895	0884 1191 .0107	8256 8790 6529	.2845 .2885 .2709	.1262 .1280 .1203
PRESSURE SII	E RIGHT BLA	DE			
.1218 .4192 .8283	.0303 .0716 .0411	.5392 .4862 .3887	.2677 .1753 .0056	.1850 .1952 .2127	.0824 .0869 .0947
SUCTION SIDE	E FIGHT BLAD	E			
.1218 .4192 .8283	.0710 .1399 .0895	4592 2050 .3820	-1.4715 -1.0236 0062	.3308 .2997 .2138	.1464 .1328 .0952

APPENDIX C

BLADE SURFACE PRESSURE COEFFICIENTS

AND REYNOLDS NUMBER

C1. COEFFICIENT OF PRESSURE

The compressible coefficient of pressure on the blades in a cascade is conventionally defined as:

$$C_{\rm P} = \frac{P - P_{\rm I}}{1/2 \ \gamma \ M_{\rm I}^2 \ P_{\rm I}} \tag{C-1}$$

where P is pressure, M is Mach number and the subscript l denotes upstream conditions. In previous work carried out in the rectilinear cascade C_P was defined incompressibly using bars to denote mass averaged quantities as:

$$C_{P} = \frac{\frac{P}{Ptref} - \frac{P_{1}}{Ptref}}{\frac{P}{Ptref} - \frac{P_{1}}{P}}$$
(C-2)

where the referenced total pressure was measured in the tunnel plenum and the mass averaged upstream quantities were

derived from upstream probe survey data. This data was taken immediately before the surface pressures were recorded.

In the present work the definition in Eq. (C-1) was used rather than that in Eq. (C-2). Mass averaged quantities were again introduced and local measurements were divided by tunnel reference conditions derived from plenum and atmospheric pressures as outlined by Duval [Ref. 9]. The development of the revised C_P is as follows:

Dividing Eq. (C-1) by reference conditions and using massed averaged quantities upstream,

$$C_{p} = \frac{\frac{P}{P_{tref}} - \frac{P_{l}}{P_{tref}}}{\frac{1}{2} \gamma \frac{M_{l}^{2}}{M_{ref}^{2}} - \frac{P_{l}}{P_{tref}}} \cdot \frac{1}{M_{ref}^{2}} (C-3)$$

It can be shown that the Mach number can be written in terms of the dimensionless velocity, X as:

$$M^{2} = \frac{\chi^{2}}{1 - \chi^{2}} \left(\frac{2}{\gamma - 1}\right)$$
(C-4)

Substituting this term into Eq. (C-3) the definition for C_P . becomes:

$$C_{p} = \frac{\frac{P_{1}}{P_{tref}} - \frac{P_{1}}{P_{tref}}}{\frac{\gamma}{\gamma - 1} \frac{P_{1}}{P_{tref}} \frac{X_{1}^{2}}{X_{ref}^{2}} \frac{1 - X_{ref}^{2}}{1 - X_{1}^{2}}} (C-5)$$

The expression for C_p in Eq. (C-5) was used in the present data reduction. Again, the barred quantities are obtained from upstream probe surveys.

C2. REYNOLDS NUMBER

The Reynolds number was determined from the average flow conditions going into the blading. Reynolds number was defined as:

$$R\bar{e} = \frac{1}{\Delta s} \int_{1}^{s_2} \frac{\rho V c ds}{\mu}$$
(C-6)

where $\Delta s = s_2 - s_1$ is an interval in the blade to blade direction. The static density, ρ , can be written as:

$$\rho = \rho_{t} (1 + \frac{\gamma - 1}{2} M^{2})^{-(\frac{1}{\gamma - 1})}$$
 (C-7)

Substituting for Mach number using Eq. (C-4):

$$\rho = \rho_{t} (1 - x^{2})^{\left(\frac{1}{\gamma - 1}\right)}$$
(C-8)

In terms of X and stagnation quantities, the density can be written as:

$$\rho = \frac{P_{t}}{R T_{t}} (1 - X^{2})^{\left(\frac{1}{\gamma - 1}\right)}$$
(C-9)

With the dimensionless velocity X defined as

$$X = -\frac{V}{V_t}$$
 (C-10)

and

$$c_p = \frac{R \gamma}{\gamma - 1}$$

$$V_{t} = \sqrt{2 c_{p} T_{t}} = \left(\frac{2 R \gamma T_{t}}{\gamma - 1}\right)^{1/2}$$
 (C-11)

Hence by substitution

$$\rho V = \frac{P_{tref}}{R T_{t}} (1 - X^{2})^{\left(\frac{1}{\gamma-1}\right)} X \left(\frac{2 R \gamma T_{t}}{\gamma-1}\right)^{\left(\frac{1}{2}\right)}$$

(C-12)

.

and using Eq. (C-12) into Eq. (C-6)

$$Re = \frac{c}{\Delta s} \int_{1}^{s_{2}} \left(\frac{2\gamma}{R T_{t} (\gamma - 1)} \right)^{1/2} \left(\frac{P_{t} X (1 - X^{2})}{\mu} \right)^{(\gamma - 1)} ds$$
(C-13)

APPENDIX D

PNEUMATIC PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY

D1. SCANIVALVES AND TRANSDUCERS

The Scanivalves incorporated 2.5 PSI (69 inches of water) differential transducers. Prior to their use, the Scanivalves were cleaned using Freon and dry nitrogen to eliminate small uncertainties found in the zero differential outputs. Following the cleaning procedure, repeatability of zero was maintained to within 1/100th inch of water. The experiments expected to involve measurements ranging to 20 inches of water pressure differential or 29% of the transducers' full range. Checks of the linearity of the transducers were made over the anticipated operating range using a 36 inch water manometer graduated in tenths of an inch. The transducers were found to be linear to within 0.36% of the calibration range.

D2. PROBE CALIBRATION

Three probes, identified in Table D.1 were individually calibrated using the seven-inch free-jet calibration tunnel (Fig. D1). The conical probe was calibrated differently from the cylindrical probes. A fourth probe was used to measure yaw angle at the upstream position (station 1), the first

downstream position (station 2-1), and the far downstream position (station 2-6). Each of the calibration processes will be described separately.

TABLE D.1

PNEUMATIC PROBES (UNITED SENSOR CORP.)

PROBE NUMBER	TYPE			
USP100	Five Hole Cylindrical (DA	-125)		
USP200	Five Hole Conical (DC	-125)		
A 847-1	Five Hole Cylindrical (DA	-125)		

1. Cylindrical Probes

The cylindrical probes (Fig. D2) were held fixed at zero yaw angle and were calibrated at five different velocities and seven different pitch angles. Velocities ranged from 150 to 350 feet per second. Pitch angles ranged \pm 6°. The derived calibration surface expressions gave an accuracy of fit to the calibration data from -2.3% to 1.6% for velocity and from -0.6° to 0.7° for pitch angle. These were maximum errors and typical deviations were \pm 1% velocity and \pm 0.5° pitch.

2. Conical Probe

The conical probe (Fig. D3) was calibrated from 100 to 350 feet per second. At each velocity the probe was calibrated for \pm 4° pitch in increments of 2° with yaw angle set at zero, and for \pm 4° in yaw angle in increments

of 2° with pitch angle set at zero. Two sets of calibration surface approximations were derived. First, surfaces for reduced velocity (X) and pitch angle (ϕ) were derived in terms of the pressure coefficients (β) and (Γ), as was used in all previous work, where:

$$\beta = \frac{P_1 - P_{23}}{P_1}$$
(D-1)

$$\Gamma = \frac{P_4 - P_5}{P_1 - P_{23}} \tag{D-2}$$

The individual subscripts above denote the probe pressure ports, and the two-symbol subscripts denote the arithmetic average of the pressures individual ports. Second, surfaces for reduced velocity (X) and yaw angle (α) were derived in terms of β and 0 where:

$$\Theta = \frac{P_2 - P_3}{P_1 - P_{23}} \tag{D-3}$$

The surface expressions for the velocity and pitch angle gave an accuracy of fit of -2.2% to 0.5% for the velocity and $\pm 0.2^{\circ}$ for the pitch angle. The surface expression for the yaw angle gave an accuracy of fit of -0.15° to 0.4° in the yaw angle described by:

$$\alpha = \alpha(\beta, 0) \tag{D-4}$$

The data from the conical probe were reduced similarly to those from the cylindrical probes and similarly to all previous work, except that the surface approximation in Eq. D4. was used to correct the yaw angle recorded by the data aquisition system after the probe had been adjusted to balance P_2 and P_3 as closely as possible. These procedures overcame the problem of insensitivity in the angle adjustment in regions of low dynamic pressure (near-wake). Corrections ranged from zero outside the wake to a maximum of 3° at the second station downstream of the test blading.

3. Yaw Probe

The upper cylindrical probe measured a greater flow angle change through the blade wake than did the conical probe at stations near the blades. A special yaw probe sensitive to tranverse gradients (Fig. D4) was built. It was used to measure flow angle only. The probe was nulled in the calibration free jet and otherwise not calibrated.

D3. PROBE VERIFICATION TEST

The two cylindrical probes were checked by first conducting detailed surveys in their normal positions. Then the positions of the two probes were exchanged and the surveys repeated at the same operating conditions. A summary comparison of the downstream velocity distribution to the mass-average upstream distribution when the probes were exchanged is shown in Table D.2. The results of integrating

the two sets of surveys over two different blade passages to obtain blade element performance parameters are shown in Fig. D5.- D7. Since the loss coefficient, diffusion factor and AVDR involve either differences between or ratios of of downstream to upstream quantities, these results are a convincing verification of the accuracy of the measurements.

TABLE D.2

RESULTS OF CYLINDRICAL PROBE VERIFICATION CHECK

Quantity	Difference In Measurement
Loss Coefficient	7.318
	/.318
Diffusion Factor	3.3%
AVDR	0.578%
Inlet Air Angle	-0.48°
Outlet Air Angle	0.71°

D4. YAW ANGLE

Several corrections to the flow angle indicated by the probe were necessary. The flow out of the calibration tunnel was found not to be horizontal but was directed downward at an angle of $\pm 0.05^{\circ}$. The cascade was at a slope of $\pm 0.2^{\circ}$. The probe mounts allowed an attachment error of $\pm 0.7^{\circ}$ and the uncertainty in the vernier reading on the probe mounts was $\pm 0.2^{\circ}$. In order to use a common reference on the cascade and on the calibration tunnel, the conical probe yaw angle scale

was set with reference to horizontal using a precision level and a reference bar on the probe shaft. When this procedure was followed, the yaw angle uncertainty was reduced to $\pm 0.4^{\circ}$. For tests in which the leveling procedure was not followed, the yaw angle measured by the cone probe outside the wake on the pressure side was set equal to the measurement obtained using the yaw probe, for which the leveling procedure had been strictly adhered to.

Figure D1. Probe Calibration Tunnel

Figure D2. Cylindrical Probe Showing Tip and Sensing Ports

Figure D3. Conical Probe Showing Tip and Sensing Ports

Figure D4. Yaw Probe

Figure D5. Comparative Plot of Loss Coefficient Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the same flow conditions.)

Figure D6. Comparative Plot of Diffusion Factor Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the same flow conditions.)

Figure D7. Comparative Plot of AVDR Vs Blade to Blade Displacement. (Two 5 hole cylindrical probes were exchanged in position and compared in the same flow conditions.)

LIST OF REFERENCES

- 1. NASA Technical Memorandum 82763, The Use of Optimization Techniques to Design Compressor Blading, by Nelson L. Sanger, Lewis Research Center, Cleveland, Ohio, 1982.
- 2. Hobbs, D.E. and Weingold, H.D., "Development of Controlled Diffusion Airfoils For Multistage Compressor Applications," Journal of Engineering For Gas Turbines and Power, Volume 106, April 1984, pp. 271-278.
- Koyuncu,Y., Report of Tests of a Compressor Configuration of CD Blading, M.S. Thesis, Naval Postgraduate School, Monterey, California, March 1984.
- 4. Sanger, N. L., and Shreeve, R.P., "Comparison of Calcu lated and Experimental Cascade performance for Controlled-Diffusion Compressor Stator Blading," Journal of Turbomachinery, Volume 108, Number 1, July 1986, pp. 42-50.
- 5. Rose,C.C. and Guttormson, D.L., Installation and Test of a Rectilinear Cascade, M.S. Thesis, Naval Postgraduate school, Monterey, California, 1964.
- 6. McGuire, A.G., Determination of Boundary Layer Transition and Separation On Double Circular Arc Compressor Blades In A Large Subsonic Cascade, M.S. Thesis, Naval Postgraduate School, Monterey, California, September 1983.
- 7. Naval Postgraduate School Contract Report NPS67-80-001CR, Procedures and Computer Program From Approximation of Data (With Application To Multiple Sensor Probes), by H. Zebner, 1980.
- Naval Postgraduate School, Turbopropulsion Laboratory Technical Note, 82-03, Computer Software For The Calibration Of Pneumatic And Temperature Probes, by F. Neuhoff, 1982.
- 9. DuVal, D. A., Evaluation Of a Subsonic Cascade Wind Tunnel For Compressor Blade Testing, M.S. Thesis, Naval Postgraduate School, Monterey, California, September 1980.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
2.	Library, Code 0142 Naval Postgraduate School Monterey California 93943-5002		2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5002		1
4.	Director, Turbopropulsion Laboratory, Code 67 Sf Department of Aeronautics Naval Postgraduate School Monterey, California 93943-5002		12
5.	Mr. George Derderian Naval Air Systems Command Code AIR-931E Department of the Navy Washington, D.C. 20360		1
6.	Dr. A. D. Wood, Code 12D Office of Naval Research 800 N. Quincy Street Arlington, VA 22217		1
7.	Nelson Sanger NASA Lewis Research Center Mail Stop 5-9 21000 Brookpark Road Cleveland, Ohio 44135		2
8.	Dr Greg J. Walker Civil and Mechanical Engineering Dept. The University Of Tasmania Box 252C GPO Hobart Tasmania, Australia 7001		1

9. LT John W Dreon, Jr 9205 New Hampshire Ave #103 Silver Spring, Maryland 20903

.

.

.

LUDLEY FOOT LIBRARY NAVALE CATE SCHOOL MONTEN ATE SCHOOL MONTEN ATE SCHOOL

220173

Thesis D7368 c.l

Dreon Controlled diffusion compressor blade wake measurements.

220173

Thesis D7368 Dreon c.1 Controlled diffusion compressor blade wake measurements.

