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ABSTRACT

Moments of inertia were experimentally determined and the longitudinal and

lateral/directional static and dynamic stability and control derivatives were estimated for a

fixed wing Unmanned Air Vehicle (UAV) High fidelity, non-linear equations of motion

were derived and tailored for use on the specific aircraft. Computer modeling of these

resulting equations was employed both in Matlab/Simulink and in Matrixx/Systembuild.

The resulting computer model was linearized at a specific flight condition, and the

dynamics of the aircraft were predicted. Several flight tests were conducted at a nearby

airfield and the behavior of the aircraft was compared to that of the computer model The

longitudinal dynamics as depicted by the short period mode were found to be almost

identical with those predicted by the nonlinear computer model. The phugoid mode was

also observed and found to be in close agreement. In the lateral/directional dynamics,

flight test was employed to improve the model and the parameters were modified to obtain

a better match. Ultimately a reasonably accurate nonlinear model was achieved as required

for purposes of control and navigation system design



VI



TABLE OF CONTENTS

I. INTRODUCTION 1

A. MISSION NEED 1

B EVOLUTION OF AN AIRCRAFT 2

C REQUIREMENT FOR MODELING 2

D STATEMENT OF OBJECTIVE 3

II AIRCRAFT EQUATIONS OF MOTION DEVELOPMENT 5

A. NOTATION 5

B COORDINATE SYSTEMS 6

C. EULER ANGLES 7

D DERIVATION OF EQUATIONS OF MOTION 8

1. Linear Equations 9

2. Angular Equations 9

3. State Equations 9

4. External Forces and Moments 9

a. Gravitational Forces 10

b. Propulsive Forces and Moments 10

c. Aerodynamic Forces and Moments 10

5

.

Complete Equations ofMotion 13

III. THE AIRCRAFT 15

A GENERAL DESCRIPTION 15

B STABILITY DERIVATIVES 16

C MOMENTS OF INERTIA 21

IV. COMPUTER MODELING 27

A BASIC NONLINEAR MODEL 27

1

.

Basic Simulink Model 27

vn



2. Basic Systembuild Model 29

B LINEARIZATION OF DEVELOPED MODEL 32

V. FLIGHT TESTING 35

A LONGITUDINAL DYNAMICS 35

B LATERAL DIRECTIONAL DYNAMICS 40

1. Steady Heading Sideslips 40

2. Dutch Roll/Spiral Response 44

VI CONCLUSIONS AND RECOMMENDATIONS 47

A. CONCLUSIONS 47

B RECOMMENDATIONS 48

APPENDIX A FILES FOR STABILITY AND CONTROL DERIVATIVES 49

A FLIGHT CONDITION 49

B. FROG DATA 50

C PHYSICAL CALCULATIONS 53

D NONDIMENSIONAL DERIVATIVES CALCULATIONS.. 56

E DIMENSIONAL DERIVATIVES CALCULATIONS 63

F STABILITY AND CONTROL DERIVATIVES 66

APPENDIX B MOMENTS OF INERTIA CALCULATIONS 69

APPENDIX C MATLAB FILES OF EQUATIONS OF MOTION 71

A. ABMAT.M 71

B. FROG_DAT.M 76

APPENDLX D NUMERICAL LINEARIZATION RESULTS 79

APPENDIX E. ADDITIONAL SUPERBLOCK DIAGRAMS 81

APPENDLX F. FLIGHT TEST RESULTS 87

LIST OF REFERENCES 103

INITIAL DISTRIBUTION LIST 105

Vlll



ACKNOWLEDGEMENT

I would like to express my appreciation to the staff and faculty of the Naval

Postgraduate School for making my education an outstanding experience. A very special

thanks to all the people who contributed to this thesis in their own individual way.

I want to thank in particular Dr. I. I. Kaminer for his guidance, his boundless

patience, and his valuable teaching. He provided me with the motivation to get through

this project and made it a worthwhile experience. I want to express my appreciation to Dr.

R. M. Howard. His professional counsel and guidance was indeed invaluable and has been

a driving factor towards the completion of this work.

I would to like to thank LCdr. Eric Hallberg for his significant help and for

developing the tools necessary for an outstanding avionics laboratory. He has been one of

the persons who contributed in the success of the flight tests. Also a very special thanks to

Mr. Don Meeks for his help in my experimental work and his remarkable abilities as a pilot

during the flight tests.

IX





I. INTRODUCTION

A. MISSION NEED

Unmanned Aerial Vehicles (UAVs) are becoming an increasingly important part of

the armed forces operations During various military missions the UAVs have the

capability to collect intelligence and target for gunfire support, gather battle damage

assessment, as well as perform many other tasks. The real benefit in using unmanned

aircraft lies in the fact that no lives are jeopardized when a UAV crashes or is lost to

enemy fire.

Past success with UAVs in the Persian Gulf War has indicated their usefulness in

obtaining timely intelligence during military conflicts and it was during Desert Storm that

the first-ever combat tests of Unmanned Aerial Vehicles that were obtained by U.S. forces

[Ref 1]. An example of an effective UAV, the Pioneer remotely piloted vehicle (RPV),

has served in numerous fleet and ground operations since 1987 [Ref. 2].

Another advantage of UAVs over manned aircraft is their cost which is only a

small fraction of the cost of a manned airplane. Thus they have become an integral part of

modern warfare since many missions such as electronic deception, visual identification,

laser designation of targets and bomb damage assessment deep in the enemy territory can

be performed without endangering any lives or risking any expensive aircraft. They can be

launched from practically any type of platform making them ideal for use in the Navy.

They are also usually very hard to be detected with radar or infrared systems due to their

small size, composite materials and low noise and speed. UAVs are also not limited by the

pilot "g" tolerance or fatigue.



B. EVOLUTION OF AN AIRCRAFT

For any type of aircraft the first step in obtaining an accurate mathematical model

is to determine stability and control derivatives. These derivatives will impact the flying

characteristics and will be used to size control surfaces, design flight control systems and

program devices such as simulators.

Three approaches can be taken toward completing this goal. The first and easiest

method requires the knowledge of the geometry and inertial properties of the aircraft and

employs simple calculations to obtain the derivatives within reasonable accuracy.

The second method involves the use of wind tunnels. However, the results will

have to be refined after several scale, interference and dynamic effects are taken into

account. This method is much more complicated than the previous one, but usually more

accurate.

The final approach which is the most time consuming and costly but with the most

promise and precision is flight testing Dynamic flight test data is used through techniques

such as parameter estimation to accurately estimate the stability and control derivatives.

Of course limitations in availability of data and noisy measurements can cause serious

problems in the successful resolution of all the derivatives of interest.

C. REQUIREMENT FOR MODELING

For the aeronautical controls engineer the goal is to develop a dynamic aircraft

model and verify its accuracy. This model will then be used to design a control system for

the UAV.

The first step in this process is to develop the high fidelity nonlinear model of the

aircraft based upon the predicted flight dynamics involving the stability and control

derivatives. This is done as follows:

• The equations of motion are developed and the sum of all forces and moments

involved are obtained allowing for an easy conversion into a block diagram

representation.



• The nonlinear model has to be verified through flight testing and if necessary

some computer aided parameter estimation technique should be incorporated to

obtain accurate results.

Next the feedback controller is designed through an iterative process employing

various methods with the design requirements of response time, overshoot and command

and control loop bandwidths being the adjusting knobs to create the desired controller.

Flight test is done in three phases:

• On a laboratory stand allowing only a restricted degree of freedom in movement

to avoid any damage to the aircraft.

• During a flight with an experienced pilot ready to take over with manual control

in the case of any problem.

• Autonomous flight with the aircraft in full operation.

D. STATEMENT OF OBJECTIVE

Over the last several years the Avionics Lab of the Naval Postgraduate School has

undertaken the complicated task of developing and implementing control systems for

UAVs. Two models have undergone progress up to the point of conducting flight testing.

The first one was the Bluebird which was a conventional aircraft and the second one was

the Archytas vehicle with a ducted fan propulsion system. The latest vehicle to be used is

the Frog unmanned aerial vehicle, a small conventional aircraft acquired as a test bed for

designing and testing guidance, navigational and control systems. The objective of this

work is to obtain realistic modeling through aerodynamic parameters of the aircraft and

through the acquisition of sufficient flight test data to verify the nonlinear model which

could be used for purposes of analysis and design guidance, navigation and control

systems Ultimately these guidance, navigation and control systems along with a Global

Positioning System aided autoland capability will allow for fully autonomous operations.





II. AIRCRAFT EQUATIONS OF MOTION DEVELOPMENT

A. NOTATION

First it is necessary to present the notation used throughout this report which is

consistent with the previous developments [Refs. 6-8] Consider Fig. 2 1

{A[ is the coordinate system with basis vectors xa.va^a

aPq is the position of point Q expressed in
J
A}

A
V(j the velocity of point Q measured and expressed in {A}.

B
(
A
V<j) the velocity of point Q, measured in {A} and expressed in {B}

.

BR is the transformation matrix from {B} to {A}.

a
Q.b is the angular velocity of the (B| coordinate system with respect to {A}

and expressed in {A}.

b
(
a
Q.b) is the angular velocity of {B} with respect to {A} but now expressed in

N^

{A}

Ap

,<•'
BO

Figure 2.1 Relative Position of Coordinate Systems
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B. COORDINATE SYSTEMS

The following coordinate systems and assumptions will be used for the derivation

of the equations of motion:

{U} is the tangent plane coordinate system attached to the Earth.

{B} is the body fixed coordinate system.

{W} is the wind axis coordinate system.

All sensors are located at the eg. (This can be relaxed; however, it is used for

simplification).

The mass of the aircraft remains constant.

For the vector u its derivative with respect to {B} is jt

(u) and with respect to.

(U}is(«)

The {B} coordinate system is right-handed with X aligned with the thrust axis. All rates p,

q, r are defined positive when clockwise looking in the positive axis direction. The {W}

coordinate system has X aligned with the wind incident on the aircraft. Thus a is the angle

formed by the body x-y plane and the positive Xw axis. The angle |3 is formed by the body

x-z plane and the positive Yw axis.

For simplification the following definitions are introduced.

ug is the velocity of point Q, measured and expressed in {U}

.

v>bo is the velocity of origin of {B}, measured and expressed in {U}.

v)b is the acceleration of {B} with respect to {U}, measured and expressed in

{U}.

bvq is the velocity of point Q, measured in {U} and expressed in {B}

Ob the angular velocity of {B}, measured and expressed in {U}

.

b
g>b is the angular velocity of {B}, measured in {U} and expressed in {B}

represents the appropriate size matrix with all elements zero.

/„ is the identity matrix of dimension n.



C. EULER ANGLES

Using the three Euler angles 0, and *F corresponding to roll, pitch and yaw the

rotation between any two coordinate systems can be defined For our case of a

conventional aircraft the 3-2-1 order of rotation is used. The singularity point for this

order arises at = 90°. Thus the transformation from inertial coordinates {U} to body

coordinates {B} can be carried out as shown in Fig. 2. 2. Therefore the direction cosine

matrix is expressed in terms of the Euler angles as:

cos¥ cos sin SP cos -sin0

cos *F sin sinO - sin¥ cos <t> sin0sinOsin vF + cos lFcos<I> cos sinO
cos xFsin0cosO + sin

vFsinC> sin cosO sin *¥ - cos *¥ sinO cos0cosO

(2.1)

Next the kinematic differential equations for the change in Euler angles are given:

P

q
r

1 -sin©

cosO cos sinO
-sinO cos© cos <5

(2.2)

The matrix on the right hand side is invertible for all * nil and so the Euler angle rates

can be obtained:

0) 1 sinOtan© cosOtan©

cosO -sinO

sinO sec© cosOsec©

P

q

r

(2.3)

Therefore the time history of the Euler Angles is obtained integrating equation (2.3).



Fig.2.2 Z-Y-X Euler Angles Rotation Sequence

D. DERIVATION OF EQUATIONS OF MOTION

For the general body with six degrees of freedom the equations of motion can be

derived in two parts In the first part is the determination of the equations of motion for a

rigid body and only the linear and angular momenta is considered In the second part all

the forces are examined and more specifically aerodynamic, gravitational, and thrust forces

are taken into account. It is in the modeling of the aerodynamic and propulsive forces

where the stability and control derivatives come into picture



1. Linear Equations

These are derived based upon the Newton's Law, F=ma. However since the

measurements are resolved in the body {B} coordinate system the equations are also

resolved in the {B} coordinate system Therefore, using Coriolis theorem we obtain:

BF=tnj
t
\)B+mBG>BXB UB (2.4)

2. Angular Equations

To derive the angular momentum equations Euler's Law of preservation of

momentum is employed. Again the equations are written in the {B} body coordinate

system for the position of the eg. of the vehicle. Thus we get [Ref 8]:

3NBo = h B®b+b (Hb x (h b
&b) (2.5)

3. State Equations

Having developed the equations of motion, both linear and angular, the next step is

to assemble them in a state space form Thus after rearranging and normalizing we get:

i

(Ob

-b gsb*
b ubo

-1 B

+ ^' m
1 B)rB l b

g)b x (iB
BaB ) + rB l bn

(2.6)

4. External Forces And Moments

It is necessary to examine now the external forces and moments acting on the

rigid body and distinguish between aerodynamic, propulsive, and gravitational forces:

BF
BN

Bp- ,B p ,B f1 grav~ -» prop' 1 a

BN +B N**prop^ •<' aero

(2.7)



a. Gravitational Forces

These act on the body and have to be rotated by the appropriate rotation

matrix from the tangent to the body coordinate system. This matrix is defined using the

Euler angles:

Br- -B Dr grav —U-K

mg
(2.8)

b. Propulsive Forces And Moments

These are computed directly in the {B} coordinate system and are:

Bf1 prop —

Tx
Ty (2.9)

and:

3Nprop

Ti

Tm (2.10)

where these values depend on the aircraft configuration and are known.

c Aerodynamic Forces AndMoments

The derivation of these forces and moments depends upon the nominal

operating point about which they have to be found using a Taylor series expansion. The

partial derivatives of the forces and moments with respect to the aerodynamic variables

u/U,a, fi,p,q,r are introduced to get the Taylor series expansion [Ref 15]:

Fa bFx>x' + hFx'x' + 6FAA + Fq (2.11)

10



Similarly for the moments:

Naero = §Nx/x' + hNx>x' + bNAA +Nq (2.12)

In the above formulae the x' is the state vector:

u

P

a
pb_

2U
qc_

2U
rb_

2U

(2.13)

and also:

x' = P

d
(2.14)

Finally for the control vector:

A =
8 e

6a

(2.15)

Combining all the terms together and introducing the matrix of non-dimensional stability

derivatives differentiated with respect to the terms x',x', A we get:

§c_

dx'

Cl» Cl$ Clo. ClP CLq Clt

Cyv Cyp CVa Cyp Cyq Cyr

(--Do Cz)p Cz)a (-Dp (-Dq (-Dr

C/u C/p C/a Clp Clq Clr

C r

Cmf$ C
C„p C

*-- rim {-- oto L a

^- np t~-n<7 ^r

(2.16)

11



dCThe term — is similar to the previous term, however, only the terms with respect to a, P

are computed leaving a 6x2 matrix. Also the matrix of the derivatives with respect to the

control inputs elevator, rudder and ailerons is.

ClZe Cn>r ClSq

Cygg Cyhr Cyba

dC _ Code Cobr Co5a
dA

Clde Cl8r Cl8a

L- m8e »-- mdr ^ mba

^ nhe t> rfor ^ n&a

(2.17)

Finally the matrix of the constant coefficients is:

Cfo —

Cdo

Cyo

Clo

Clo

L mo

(2.18)

The above values refer to the values of the coefficients at the trimming point and not to

the values at a = 0° [Ref. 10]. Also the stability and control derivatives are found in the

wind axis coordinate system and it is necessary to transform them from {W} to {B}. The

rotation matrix is given below:

WR-
cosa cosP -cosa sinP -sina

sin P cos p

sina cosP -sina sinP cosa
(2.19)

The aerodynamic forces and moments are premultiplied by this matrix. In addition in order

to be consistent with the way lift and drag are defined as positive we have:

12



f aero —

-D

Y

-L

and Nnero =

I

m
n

(2.20)

Finally the most commonly used vector:

x =

u

V

w

p

q
r

(2.21)

is introduced and the complete final expressions for the aerodynamic forces and moments

are given:

Bfr a qS wR o

o U {CF +dC/dx' M'x + dC/dx' M'x + dC/dAA} (2.22)

where M and M map from x to x' and from x to x' respectively. The above expression

can now be substituted into the general equation 2.6.

5. Complete Equations Of Motion

All equations presented above 2.8, 2.9, 2.10, 2.22, have to be substituted in the

general equation 2.6 to get the state space form. After introducing the terms:

wT--
wR o

o U and Mr =
m

B
IB

we get the complete set of equations of motion which in the state space form are the

following [Ref. 8]:

13



B
©5

X"
1

{[

co5 x

B T- x (B t (BtB
/iTfflax^/J©* +/>*))

+

Mj l *TqS%M'] VBO
b
(Ob

+ MJ l

{

B
F,grav

+

B
F,prop

'N.prop

ecf$T+wTqS(CFo + ^-A)}] (2.23)

Pbo =r R bVbo

A = S(A)bG)b

X = h-M-jlBwTq~S^rM'.

(2.24)

(2.25)

(2.26)

where P is the position vector of the aircraft, and 5(A) is the matrix of kinematic

differential equations based upon the Euler angles.

14



III. THE AIRCRAFT

A. GENERAL DESCRIPTION

The Frog unmanned aerial vehicle, shown in Figure 3.1, is a high-wing

tricycle-gear radio-controlled airplane. It is constructed of wood, foam, composites and

metal. It is powered by a two-stroke, air-cooled engine with a shaft horsepower of 5.6 hp.

It is controlled by a Futaba flight control transmitter operating on a frequency of 72 MHz

To enhance reliability, a factory variant of the control system is available that provides

direct control from a transmitter that transmits on 407.275 MHz and this configuration

could be used in the event that the primary relay should fail when the aircraft is over the

horizon. Table 3.1 describes the physical characteristics of the Frog.

Length 8.125 ft

Height 1.75 ft

Wing Airfoil (est.) NACA2415

Horizontal Stab. Airfoil (est.) NACA 0010-34

SwingWref) 17.5 ft
2

s. 3.175 ft
2

Sv 0.9818 ft
2

c 1.66 ft

c, 0.968 ft

b 10.58 ft

b, 3.313 ft

15



bv 1.25 ft

AR 6.37

AR, 3.46

ARV 1.59

vH 0.485

Vv 0.0235

V 0.0022

1, 4.44 ft

lv 4.44 ft

Table 3.1. Specifications

B. STABILITY DERIVATIVES

The flight condition for which the aircraft model was obtained is described in Table

3.2. Based upon these values the initial estimates of the stability derivatives were made

using the physical characteristics of the aircraft such as airfoil data, geometric

measurements, relative positions of aircraft components, mass and weight [Refs. 11-14].

Theoretical or quasi-theoretical methods taken from the literature were used for

calculating these constants thus forming the basis for the first parts of longitudinal and

lateral stability determinations [Ref 12]. These methods are regarded as the most suitable

for light aircraft with a typical configuration.

Weight 67.73 lbs.

16



^xx 12.52 slug*ft
2

*YY 8.43 slug*ft
2

*ZZ 18.55 slug*ft
2

Velocity 60 mph/88 f7sec

Altitude 800 ft MSL

Air Density 0.002327 slugs/ft
3

Center Of Gravity 34.5% ofmac.

c 0.4295

A Atrim 5.25°

Elevator^ 5.14°

Table 3.2 Flight Condition/Aircraft Configuration

Matlab programs [Ref 21] written for the physical and derivative calculations are

presented in Appendix A Next the nondimensional stability and control derivatives are

shown in Table 3.3 and dimensional stability and control derivatives estimated are shown

in Table 3.4.

17



cL 0.2866 cD 0.0614

Cu 4.3034 Coo 0.0499

c 1.3877 c -3.7115
Ladot Madot

^Ma -0.5565 CD.
0.23

Cl, 3.35 ^Mq -8.8818

^Lde 0.3914 c 0.0676Dde

C , -1.0469 c* -0.31mde

C* 0.0575 c -0.0509

C
yp

0.0000 c* -0.0537

ĉ1P -0.3702 c. 0.1151

cm -0.0669 c„ 0.1119

Cyda 0.0000 ^nda -0.0272

Cy. 0.1810 ^ydr 0.0926

^ndr -0.0388 c
ldr

0.0036

cDq 0.0000 c*

Table 3.3 Nondimensional derivatives

18



x„ -0.1045 /sec x
4

14.9485 ft/sec

x
de

-5.0602 ft/sec
2 z

u
-0.7312 /sec

z. -326.9292 ft/sec
2 z,

t
0.9804 ft/sec

»dot

z, 2.3667 ft/sec Zde -29.3185 ft/sec
2

H, 0.0000 /ft*sec M, -17.2801 /sec
2

M„, -1.0869 /sec M, -2.6010 /sec
»dot

M
de

-32.5049 /sec
2 YB -23.2196 ft/sec

2

YP
0.0000 ft/sec Y

r
0.5181 ft/sec

Ya. 0.0000 ft/sec
2 Y* -6.9323 ft/sec

2

Lb -6.7831 /sec
2

Lp -2.9653 /sec

L
r

0.8964 /sec L,u 24. 1120 /sec
2

L* 0.4849 /sec
2 NB 5. 1744 /sec

2

NP
-0.2903 /sec N

r
-0.3619 /sec

N* -2.4467 /sec
2 N* -3.4927 /sec

2

Table 3.4 Dimensional derivatives

19
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Fig. 3.1 Frog Drawing
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C. MOMENTS OF INERTIA

When developing a mathematical model of the UAV it is critical to have accurate

moments of inertia. Direct calculation of a model's moments of inertia by consideration of

the contributions made by individual parts is rather impractical and inaccurate because the

model's parts are too small and light and the distances too short to yield anywhere near

accurate values for the moments of inertia [Ref 5]. That is why testing is employed to

determine the moments of inertia more precisely in practice. Any changes that might occur

in a model's moment of inertia due to addition or substraction of equipment or structure

could be calculated directly thereafter

Moment of inertia is a measure of a rotating body's resistance to acceleration and

can be computed by taking the product of the mass of each part of the aircraft and the

square of the distance from the aircraft's center of gravity. There are two approaches to

obtaining the moments experimentally, each employing the principle of the compound

pendulum and each giving the same answer. One method involves hanging the model from

a single point in the ceiling on two wires or cords, one well forward of the center of

gravity and the other well aft. Thus a compound pendulum is obtained. Another technique

is to make the center of gravity of the model itself the pivot point and complete the

compound pendulum by hanging a bob weight below it on a pair of fairly stiff wires or

lightweight (wooden) struts. Needless to say that the friction at the pivot point should be

held to a minimum. Next by giving a small, gentle push in the appropriate direction and

timing its oscillations, the oscillatory period (T) is determined which is simply the total

number of seconds divided by the total number of cycles (one cycle is one complete swing,

to and fro). It should be mentioned that the greater the number of cycles (at least 20-30)

and the longer the suspension the greater the timing accuracy, which is vital.

Using the period exhibited and the principles described above the moments of

inertia were calculated [Refs. 5, 22]. In order to calculate the moments about all three

axes, the model was hung and swung three different ways, each time about the axis of

21



interest. It was hung by chain and swung as pictured in Figures 3.2, 3.3, 3.4.

Specifications for the geometry of each test can be found in Appendix B

Reference 23 provides equation 3.1 for calculating the moment of inertia for a

swinging model:

/ =^~-P^—zr —

—

(31 )

where W is the weight, Z is the distance from the pivot point to the center of gravity, p is

the period, and g the gravitational constant. M, S are subscripts referring either to the

model or the support.

It was determined that swinging just the support (chains), in the configuration it

would be in when supporting the model would not be possible, since the chains would not

maintain their positions without the model in place. Equation (3.1) was modified in order

to treat the chains as long slender rods and to calculate their moments of inertia as such

[Ref. 22]. The new form of equation is:

I=-^—Pu+s--g--Z^r-
(3.2)

where Ls is the length ofthe chain and the summation is taken over all chains (four in this

case). In particular, two long and two short chains, all with a weight per unit length o.

After all the appropriate substitutions were made:

J _ [WM±2<£>(LsHORT+LiX)NG )]Z.MJrS ^2 WM%M 2a> / j 3
, J 3 \ /"J -2\

y - ^2 PM+S g 3JV^SHORT +L'LONG) \A-*)

Having the equation in this form all variables are fixed except Zm+s, Zm, Pm+s Therefore

for each configuration these three variables were measured and all necessary calculations

were made. Three periods were timed during the swing tests and the tests were repeated

ten times. The moments of inertia calculated are shown in Table 3 2
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Fig. 3.2 1^ Test
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Fig. 3.3 I^Test
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Fig. 3.4 lm Test
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IV. COMPUTER MODELING

In Chapter II the full nonlinear equations of motion were developed and in Chapter

III the complete set of stability and control derivatives were obtained Now the next step

is to develop the model of the aircraft on a computer. This model should be in a generic

format and should accept values for derivatives from a generic input file Thus by simply

changing the input data for any aircraft the model could be used for a different aircraft.

For this report two already existing models was employed, the first one developed

by DR. Kuechenmeister implementing the equations of motion in Matlab and Simulink

[Ref. 6] and the second one in Systembuild [Ref. 19]. These models have been validated

by inputting the appropriate data for a well known aircraft, such as the Cessna 172 and

comparing the results of the model to existing data. It was found that the results from the

numerical linearization are quite close and therefore the equations used in the model are

considered to be correct [Ref. 6].

A. BASIC NONLINEAR MODEL

1. Basic Simulink Model

The basic nonlinear model was constructed by implementing the state derivative

equations in SIMULINK. This model is shown in Figures 4. 1 and 4.2 below. In this model

the Matlab function blocks abmat.m and frogdata.m are used to input the equations of

motion and the stability and control derivatives, respectively. Notice that the force due to

thrust since no previous measurements existed, was assumed to be equal to drag. It was

decided to follow this simplified approach at this stage since no sufficient information was

given about the engine in terms of torque or propeller parameters. In the previous works

the term of thrust was computed from an assumed propeller efficiency and the given

horsepower of the engine [Refs. 6, 7] However it has been found [Ref. 4] that especially
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the value of horsepower of the engine given from the manufacturer is far from accurate

and is not attained in flight. A more detailed description of the procedure for determining

the shaft power from ground torque tests and wind tunnel tests for propeller

characteristics is given in [Ref. 4]. Therefore the propulsive forces were:

Fprop -
D

ST (4.1)

and for the propulsive moments using the position of the propeller from the center of

gravity we obtained that:

NpROP^PenfD-ST (4.2)

where BPeng is the position of the engine in {B} body coordinate system. In Appendix C

all the input values are found in file Frogdat m and the file Abmat.m for the equations of

motion.

Fig. 4.1 Equations of Motion Implementation
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Next the Simulink diagram for the block of nonlinear equations of motion of Figure 4.1 is

presented in Figure 4.2. In this model the airspeed and the flight path angle have been

selected as outputs since they will be used later in the trimming and linearization of the

model.

Q-

&
otatavMnd
(u)to(b)

m

-m
Stop Fen

-M3

-

Fig. 4.2 Nonlinear Equations of Motion Block

2. Basic Systembuild Model

The state derivative equations were also implemented on Systembuild in a similar

manner. Xmath/Systembuild is a software program similar to the Matlab/Simulink

software program developed by Math Works Inc. It is suitable for both the classical

input/output control techniques and the modern state-space representations. Specifics can
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be found in [Ref 19] and the Xmath and Systembuild Core manuals. With Systembuild

using a hierarchical method of organization, based on the Superblock concept any model

can be drawn and tested. Therefore the nonlinear equations of motion were implemented

as shown in Figures 4.3. All the Superblock diagrams are presented in Appendix E.

In the superblock of the Integrators the derivatives of the state vector are

integrated to obtain linear, angular velocity, the Euler angles and position in cartesian

coordinates. The dynamics are implemented in the superblock "DynamicsEuler" and the

data for the specific aircraft is input to the superblock of "Aeroforcesandmoments"

inside the superblock of "DynamicsEuler". Thus the differential equations of the linear,

angular and Euler angles equations are obtained in the corresponding superblocks which

produce the derivatives of the state vector. Moreover the same assumptions concerning

the thrust applied by the engine were made as in the Matlab/Simulink model
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Fig. 4.3 Frog Systembuild diagram
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B. LINEARIZATION OF DEVELOPED MODEL

The linearization process started with the trimming of the equations of motion at

the nominal flight condition of VT = 88/// sec and y = 0. Furthermore it was also selected

that for a cruise condition the bank angle should be (j) = and sideslip (3 = Therefore the

complete set of the nine equations of motion were solved for the rest of the state vector

and input vector which were unknown in trim using the "trim" command in Matlab:

x = [ 88 0.1593 0.0018 ]'

i/ = [ -0.0431 0.9805 ]'

then the output will be (airspeed/sideslip):

yo = [88,or

Next the linearization was obtained in Matlab using the "linmod" command and the

matrices A, B, C, D were found along with the eigenvalues of the A matrix and are

presented in Table 4.1.

Eigenvalues Damping Freq.(radVsec)

0.0474 -1.0 0.0474

-1.0

-0.0293+0.5597i 0.0522 0.5604

-0.0293-0.5597i 0.0522 0.5604

-0.1964+2.4972i 0.0784 2.5049

-0.1964-2.4972i 0.0784 2.5049

-3.2691 1.0 3.2691
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-3. 7591+3. 5964i 0.7226 5.2024

-3.7591-3.5964i 0.7226 5.2024

Table 4.1 Eigenvalues of Linearized model

The complete numerical results of the linearization process are presented in Appendix D.

It is easy to identify the various modes of the longitudinal and lateral/directional dynamics

of the aircraft [Ref 24], The two pairs of complex eigenvalues:

Xsp = -3.7591 ±3.5964/

and:

XP = -0.0293 ±0.5597/

correspond to the short period and phugoid modes respectively. It may be noted that the

short period is very highly damped and with a natural frequency of 5.2024 radl sec. It is

therefore within the satisfactory boundaries of the short period "thumbprint", although the

response initially could be a bit abrupt. The phugoid mode is very lightly damped

(C = 0.0522) as expected and with a very low natural frequency of 0.5604 radl sec

.

In the lateral/directional dynamics the dutch roll mode can be easily identified with

the following pair of complex eigenvalues:

k = -0.1 964 ±2.4972/

and has a damping ratio and natural frequency:

Qd-r = 0.0784, On = 2.5049 radl sec

The dutch roll damping is characterized as low to moderate and therefore the response is

apparent but should not give serious difficulty in maneuvers. The value of the natural
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frequency in dutch roll is moderate to high and in some cases the airplane may become

oversensitive.

We also observe that the roll response has a stable eigenvalue of:

X = -3.2691

and therefore has a time constant of

:

T = 1/^ = 0.3059 sec

for time to half amplitude

Finally the only unstable mode is the spiral with an eigenvalue:

^spiral = 0.0474

with a time constant of 21 .097 sec which is considered as rather low Due to a rather large

derivative of Np the spiral mode is divergent and may affect the flying qualities of the

aircraft since it could result in difficulty in lateral trimming for wings level flight.
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V. FLIGHT TESTING

The primary goal of this research was to investigate the flying qualities of the UAV

Frog. The nonlinear model which has been developed cannot be used to design any useful

and realistic controller unless flight testing verified its accuracy. It is therefore desirable:

• To correlate the analytic parameter estimates with flight test data.

• To more accurately refine the parameter estimates for purposes of control

system analysis and design.

It seems wise, therefore, to use flight-test data, at the very least, as a verification tool of

aircraft stability and control derivatives. Ultimately a more sophisticated computer-aided

parameter estimation routine will be incorporated that will lead to the accurate extraction

of the stability and control derivatives.

Flight tests were conducted using the UAV Frog at an outlying field near the

Naval Postgraduate School. These tests involved transporting the Sun Sparc 2

workstation Intrepid, the luggable PC AC 100, the communication box, the RF antenna,

the portable generator, and the airplane to the field. All the appropriate connections and

necessary steps are described in [Ref 19]. Before any flight test could be conducted, all

the calibrations of actuators and sensors were ensured. The actual flight test was then

commenced and data collection was initiated. The data saved was finally converted to a

format suitable to be analyzed in Xmath. One of the benefits of the Matrix software was

the ability to collect and analyze flight test data during the flight testing process. For a

complete description of all steps see [Ref. 19].

A. LONGITUDINAL DYNAMICS

Due to limitations in time and resources one dynamic mode of the longitudinal

dynamics was mostly studied The short period mode of an airplane is the one of the two

modes of the longitudinal dynamics and concerns the pitching motion of the plane about
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the center of gravity with little or no airspeed variation, characterizing the ability to return

to the trim angle of attack following some disturbance. The other longitudinal mode, the

long period mode or phugoid is a gradual interchange between potential and kinetic

energy. The phugoid is in general slow and controllable by the pilot while the short period

is not and therefore subject to tight specifications. Since the short period is the mode

affecting most of the longitudinal flying qualities, it was singled out for study.

To evaluate the aircraft performance the instrumentation measured the following

critical parameters:

angle of attack, a

pitch rate, q

elevator deflection, 5 e

Also the airspeed could only be obtained through the GPS data recordings since no

accurate airspeed measurement unit was installed when the tests took place. It has also

been found that the pendulums used to measure the angles give accurate results only

during steady state conditions and could not be relied during any kind of maneuver,

therefore their measurements are not presented.

The measured and recorded elevator deflection was the input to the nonlinear

model of the aircraft in Matrix,^ and the outputs consisting of angle of attack and pitch rate

were plotted versus the flight test results. Five individual runs were conducted during the

flight test, and for each run an elevator doublet was applied [Ref.24]. To excite the short

period mode only, the goal was to have as little deviation as possible in pitch attitude from

trim at the end of the doublet. The technique used was as follows:

trim

apply 5-10° nose down, then apply 5-10° nose up

release and record the aircraft's response

In Figure 5.1 the results for the first run are presented. The full results for all runs can be

found in Appendix F.

36



10

5

-5

10
10

Time-seconds

15 20

60

40 ;

20

-20

-40

-60

Asimulation

flight test! M

^fSW^W^

. i

10

Time-seconds

15 20

Fig. 5.1 Nonlinear model response plotted over flight test data/ First maneuver

37



It is apparent that there is a close agreement between the flight test data and the

response of the nonlinear model. In both cases the short period damping was quite high,

resulting in an absence of overshoot while the initial response is very slow since the natural

frequency has a moderate value [Ref. 24]. (In some cases the peaks of the aircraft's

response in both angle of attack and pitch rate look like they have been cut off and this

could be identified as mostly a sensor problem ) As another aside a constant bias of

OLbias = 15° in angle of attack was added in all cases due to a difference in trim values.

Nevertheless the close agreement verifies the values of the longitudinal parameters

calculated previously analytically. It is therefore, a valid nonlinear longitudinal model for

purposes of control system analysis and design [Ref. 25].

Although the short period mode was mostly pursued, for comparison reasons

mainly, the response of the aircraft in airspeed and altitude was plotted versus the one

obtained from the nonlinear model. The GPS data was employed since no accurate

information was obtained for airspeed and altitude from the Inertial Measurement Unit.

From the Systembuild model it was easy to extract the airspeed and altitude. Due to the

much lower frequency the GPS data exhibits a step behavior. In Figure 5.2 the altitude and

airspeed variations are plotted for both the flight test and the simulation for the first

maneuver, while the full set of plots are presented in Appendix F. It was found that they

are in a relatively close agreement and thus the longitudinal nonlinear model is verified for

the phugoid mode as well.

For even more accurate predictions of the longitudinal control and stability

derivatives a computer aided parameter estimation program should be incorporated once a

full state vector could be measured in flight. This will provide the ability to estimate the

parameters in the presence of state noise; however, a more accurate and comprehensive

data acquisition system should be employed for this purpose [Refs. 17, 18]
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B. LATERAL DIRECTIONAL DYNAMICS

1. Steady Heading Sideslips

To study the behavior of the aircraft in terms of the lateral/directional dynamics as

well as to evaluate the fidelity of the nonlinear computer model a series of steady heading

sideslip maneuvers were conducted. By measuring the control deflections and forces that

are required to hold the aircraft away from trim the equal and opposite forces that tend to

stabilize the plane can be found. During this steady maneuver the yaw and roll rates are

both zero and therefore their contributions are also zero. The relations governing this

maneuver are:

CrB P + Cy&rd r + CY5ad a = -CL sin(4>) (5.1)

C„
pp + C„8r5r +CBSfl

= (5.2)

C/„P + C/8r8 r + C/8.=0 (5.3)

During the flight test the following parameters were recorded:

• sideslip, p

• airspeed

• rudder deflection, 5 r

• aileron deflection, 8

Using the measured values of rudder, aileron deflections and bank angle for various

values of sideslip, the plots of deflection, bank angle versus sideslip were obtained in

Figure 5.3. The response was found to be fairly linear as expected and the slopes of these

lines were extracted. The same slopes were also computed from the theoretically

calculated values of the derivatives using the above equations 5.1-5.3 and found to be in

quite close agreement with the exception of the slope <J)/f3:
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Ratio Flight Test Theoretical

&V(3 1.286 1.303

S a/(3 0.265 0.255

w 1.353 0.441

Table 5.1- Sideslip Results

Based upon the results for the slopes from the flight testing the values of the (3

derivatives were calculated from equations 5.1-5.3. This yielded improved values of the

Cr
p

, C/„, C„
9

derivatives: -0.70017, -0.05254 and 0.057085 respectively and in Table

5.2 the old and the improved values are presented. With these values the steady heading

sideslip maneuvers were simulated in the nonlinear model and the response was compared

to the actual aircraft behavior in Figure 5.4 while the full set of these plotted responses can

be found in Appendix F. It is easily seen that the simulation is in quite good agreement

with the flight test data. Gust effects are not modelled and may provide some discrepancy

in the analysis. It is also apparent that the level of electronic noise is quite significant in

both the response of the aircraft and the control inputs and to avoid unrealistic inputs to

the model the control input data was processed by deleting any spikes caused by noise.

However this is a steady state response and in general there is an acceptable match

between the nonlinear model and the plane's response.

Derivative Old value New value

CV(5 -0.31 -0.70017

C/p -0.0509 -0.05254

t-np 0.0575 0.057085

Table 5.2- Sideslip derivatives comparison
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2. Dutch Roll/Spiral Response

To further investigate the fidelity of the computer model the dutch roll mode was

excited in flight testing by applying a rudder doublet and after the plane settled for some

time applying an aileron doublet, leading to the spiral response. The same response was

obtained from the model and the results in terms of the roll rate and yaw rate are

presented in Figure 5.5 and in Appendix F. It was found that adjustment of the damping

derivatives: Cip , Cir , C^and C„ r
was necessary to get a relatively close match between

the responses. Initially the computer model was much less damped than the actual aircraft

and with a different period. By adjusting these derivatives through an iterative process the

behavior of the computer model was improved, however, further processing is required to

achieve a better agreement. The response in terms of the bank angle is not shown since the

pendulums used in the inertial navigation unit are not trustworthy. Another problem was

that no channel was available during this maneuver to record the sideslip P since this is not

obtained as one of the IMU parameters. After adjusting, the improved values of the

damping derivativesC/,, C/r , C^and C„r are: -0.3702, 0.4476, -0.1074 and -0.1338

respectively. It was found that it was necessary to decrease them (more negative) in order

to make the nonlinear model more damped and match it with the actual plane's response

Derivatives Old values New values

C; -0.3702 -0.3702

Ci, 0.1119 0.4476

Cn, -0.0537 -0.1074

c„. -0.0669 -0.1338

Table 5.3 Damping Derivatives Comparison

44



100

-100

Time-seconds

Time-seconds

i::::::::::::±:::::::::::t:::a:::::j

10 15 20 25

Time-seconds

Time-seconds

Fig. 5.5 Angle Rates Response in Rudder/Aileron Doublet

45



46



VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A determination of the moments of inertia through the compound pendulum

analysis was done with reasonable results Future changes to the configuration of the

aircraft could be accounted for by adjusting for the contribution of each individual

component added or removed

Initial estimates of stability and control derivatives were made by means of

conventional aircraft-design-type methods. Taking into account characteristics such as

lift-curve slopes, geometry and weight parameters measured the derivatives were

estimated in Matlab with programs which allow for any future changes or for considering

different flight conditions.

A high fidelity nonlinear model of the Frog was implemented in Matrixx

/Systembuild using the superblock diagram structure. This structure allows for changes to

be easily made and requires little or no programming ability, other than some familiarity

with this software. One significant benefit of this product is the ability to collect and

analyze data even during the flight testing process. This allowed us to make changes and

record different data in the field without having to dismantle the equipment The real-time

data acquisition allowed to convert the data of the flight test to a form suitable for analysis

purposes. Since all inputs and outputs could be recorded at each time step thus the data

was scrutinized after each test.

Longitudinal flight tests supported with a great success the fidelity of the

parameters estimated both in short period and in phugoid modes. The results of the

simulation were almost identical to the flight testing data and were both dictated by the

strong damping and the limited response. In the lateral-directional tests the comparison

between the simulation and the flight test can be described as quite promising, the

response is also very stable with the exception of the spiral which however does not
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represent a serious problem since it has a time to double of about 20 seconds However,

the pilot should be aware of this tendency of the aircraft to avoid trim problems.

B. RECOMMENDATIONS

It is recommended that the stability and control derivatives be calculated for other

flight conditions. This could be done in a quick and accurate way using the same programs

in Matlab. Some wind tunnel testing would also verify these calculations and explore some

non-linear flight conditions like flight at high angles of attack.

The purchase of a portable Unix based workstation would be a wise step towards

the integration of the Matrixx/Systembuild as an essential tool for flight testing and design.

It is currently necessary to transport a full size Sun workstation to the test site. Doing so

because of the large size and the sensitivity of the hardware the equipment is jeopardized

during the transport process.

A formal nonlinear parameter estimation approach should be incorporated into the

flight test program. However several aspects that currently are not known, such as data

acquisition of all desired information, data filtering and sensor behavior should be

addressed prior to initiating parameter estimation.

The nonlinear model created in Systembuild is a perfect platform for designing

control, guidance and navigation systems which will be implemented, flight tested and

improved using the capabilities of Matrixx . Stepping through the rapid prototype design

process the design of the controller is significantly simplified.
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APPENDIX A: FILES FOR STABILITY AND CONTROL

DERIVATIVES

A. FLIGHT CONDITION

% File for Frog data which change with flight condition

% frogfcl.m

% Last Update: 02 JAN 97

g = 32.174;

Wlmg = 30.42,

Wrmg = 32.13,

Wng = 5.18;

% Acceleration due to gravity

% Weight on left main in lbs

% Weight on right main in lbs

% Weight on nose gear in lbs

Umph = 60,

Ufps = 88.0;

rho = .002327,

% Flight speed in miles per hour

% Flight speed in feet per second

% Air density in slugs/(cubic ft)

Ixx= 12.52;

Iyy = 8.43,

Izz=18 55,

lxz = 0:

% Moment of inertia about x-axis

% Moment of inertia about y-axis

% Moment of inertia about z-axis

% Assumed!!!!!!!!!!!!!!!!!!!!!!!

LD=7, % Lift to drag ratio

thetanaut =0; % Initial pitch angle
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B. FROG DATA

% File for Frog data which are fixed

% frog.m

% Last Update: 02 Mar 97

ac = 271; % Aileron chord in ft.#

ai =2.625, % distance from centerline to

% inner edge of aileron in ft.#

alpha01 = -2*pi/180, % a.o.a. for zero lift (radians)#

ao = 4.417; % distance from centerline to

% outer edge of aileron in ft.#

b= 10.58; % Span of wing in ft#

bt =3.3125, % Span of horizontal tail in ft.#

bv=1.25; % Height of vertical tail in ft.#

cbar= 1.66, % Mean aerodynamic chord (m.a.c.)

% in feet#

CLalphaafw =5.87649; % Lift curve slope ofwing

% airfoil (NACA 2415) in per

% radian#

CLalphaaft =5.72958; % Lift curve slope of horizontal

% tail airfoil (NACA 0010-34) in per

% radian#

CLalphaafV = 2*pi; % Lift curve slope of vertical

% tail airfoil (flat plate) in per

% radian#

CMac = -.045, % Coefficient of moment about

% aero. ctr.#

ct =0.968; % m.a.chord of horizontal tail in ft.
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c4tail =5.9086, %5 8306, % Location of quarter chord of

% horizontal tail in feet from

% proptip

c4wing =1.3108, %1. 2483, % Location of quarter chord of

% wing in feet from proptip

da0dde=625, % Section flap effectiveness

% for 33% flap (elevator)

% Abbott and Doenhoff p. 190

da0ddr=675, % Section flap effectiveness

% for 38% flap (rudder)

% Abbott and Doenhoff p. 190

deda = .4, % Downwash angle derivative

% estimated from Perkins/Hage

Df= 1.0416, % Depth of fuselage in ft.

e0 = 0, % Assumed epsilon naught

ee=8, % Assumed span efficiency factor

g = 32.174; % gravitational constant

hac=241, % Location in percent chord of

% aero. ctr. (NACA 2415)

it = (4.5+2)*pi/180, % Incidence angle of hor. tail

lewing = 8958; % Location of leading edge of wing

% in feet from proptip

letail =5.667, % Location of leading edge of

% horizontal tail in feet from

% proptip

mg =19.5/12, % Location ofmain gear in ft

% from proptip

ng=-5/12, % Location of nose gear in ft
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% from proptip

S= 17.5; % Reference (wing) area in sq ft

Sr=. 501736; % Rudder area in sq. ft

St =3.17448, % Horizontal tail area in sq ft .#

Sv =0.98177, % Vertical tail area in sq. ft #

Wf=.75, % Width of fuselage in ft.#

ybar = b/4, % Spanwise location ofmac.

#

zv=416, % Vert, tail height to mac.

% (estimated)

Zwf = .5833; % Vertical height ofwing

% above fuselage C.L. in ft.
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C. PHYSICAL CALCULATIONS

% File to calculate physical considerations

% physfrog.m

% Last Update: 04 FEB 97

% Load frog data

frog

% Load flight condition data

fcfrog

% Calculate aircraft weight

W = Wlmg + Wrmg + Wng;

% Calculate aircraft mass

m = W/g;

% Calculate aspect ratio of wing

AR = bA2/S;

% Calculate aspect ratio of nor. tail

ARt = btA2/St,

% Calculate aspect ratio of vert, tail

ARv = bvA2/Sv,

% Calculate longitudinal center of gravity

h = ((ng*Wng + mg*(Wlmg+Wrmg))/W-lewing)/cbar,
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% Calculate "tail length" from e.g. to horizontal tail a.c.

% same for horizontal and vertical

It = c4tail - (lewing + h*cbar),

lv = It;

% Calculate "tail length" from c/4 wing to c/4 tail

ltprime = c4tail - c4wing,

% Calculate hor. tail volume coefficient

VH = lt*St/(S*cbar);

% Calculate vert, tail volume coefficient (yaw)

W = lv*Sv/(b*S),

% Calculate vert, tail volume coefficient (roll)

Vprime = zv*Sv/(b*S);

% Unit antisymmetrical angle of attack for outer and inner

% edge of aileron (See Smetana p. 141)

antisymo = ao/(b/2);% 0.83497

Cldatauo =625;

antisymi = ai/(b/2);% 0.49622

Cldataui = .248,

cacw = ac/cbar;%0. 16325

tau = .48;

% for yawing moment due to aileron, see p. 142, Smetana

eta = ai/(b/2),%0.49622 AR=6.3963
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K = -.175;

% for side force due to rudder deflection, see Smetana p. 145

vratio = Sr/Sv;% 0.51 1052

taur = .675;

% for rolling moment due to sideslip, See Raymer, Fig. 16.21, p. 439

ClBwCL = -.04,
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D. NONDEVfENSIONAL DERIVATIVES CALCULATIONS

% File to calculate nondimensional derivatives

% ndderiv.m

% Last Update: 12 FEB 97

% Load Frog data with flight condition

phfrog

% Calculate coefficients of lift and drag

CL = W/(.5*rho*UfpsA2*S),

CD = CL/LD,

D=CD*(.5*rho*UfpsA2*S),

% Calculate lift curve slope ofwing in per radian

CLalphaw = CLalphaafw/(l+CLalphaafw/(pi*ee*AR)),

% Calculate lift curve slope of horizontal tail in per radian

CLalphat = CLalphaaft/(l+CLalphaan7(pi*ee*ARt));

% Calculate lift curve slope of vertical tail in per radian

CLalphav = CLalphaafv/(l+CLalphaafV/(pi*ee*ARv)),

% Calculate change in hor. tail lift with change in elevator

dcLtdde = daOdde * CLalphat, % per radian

% Calculate change in vert, tail lift with change in rudder

dcLvddr = daOddr * CLalphav, % per radian
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% Calculate zero lift pitching moment

CMO = CMac + VH * CLalphat * (it + eO),

% Calculate CMalpha in per radian

CMalpha = CLalphaw*((h-hac)-VH*(CLalphat/CLalphaw)*(l-deda)),

% Calculate change in aircraft lift with change in elevator

CLdelta = dcLtdde*(St/S), % per radian

% Calculate change in aircraft pitching moment w. chng in elevator

CMde = - 1 *VH*dcLtdde; % per radian

% Calculate angle of attack and elevator angle for trimmed flight

%
% CM = CMO + CMalpha*alpha + CMde*de

% CI = CLalphaw* alpha + CLdelta*de

%
%
%

|
CLalphaw CLdelta

|

|
alpha

|
|

CL |

%
| 111 = 11

% |_CMalpha CMde
|

|_de_| |_-CM0

%
% A * X = C

°/o

A =
[ CLalphaw CLdelta

CMalpha CMde };

C = [ CL

-1*CM0];
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X = inv(A)*C,

atrim = X(l,l) % trim a.o.a. in radians

etrim = X(2, 1

)

% trim elevator in radians

% Calculate change in yawing moment with change in rudder

% "rudder power"

% assumes VF/Vinfinity = 1

Cndr = - 1 *W*dcLvddr, % in per radian

% Calculate CnB contribution from vert, tail

% CnB = CLalphav*W*(W/Vinfii%)A2*(l-dsigma/dbeta)

% assumes W/Vinfinity = 1 and dsigma/dbeta =

CnB = CLalphav*W;% in per radian

% Calculate change in rolling moment with change in sideslip

% First calculate dihedral contribution from wing

% Raymer p. 439

ClBwf= -1.2*sqrt(AR)*Zwf*(Df+Wf)/bA2,

ClBw = ClBwCL*CL+ClBwf,

% Next calculate contribution from fin

% ClBv = -l*Clalphav*Vprime*(VFA^infinity)A2*(l-dsigma/dbeta)

% Assume W/Vinfinity = 1 and dsigma/dbeta =

ClBv = - 1 *CLalphav*Vprime, % in per rad

% Combine ClBg and ClBv into C1B

C1B = ClBw + ClBv, % in per rad
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% Calculate "aileron power", Clda

% See Smetana pp. 139-141

Cldatau = Cldatauo - Cldataui,

Clda = Cldatau*tau, % in per radian

% Calculate change in yawing moment w. aileron deflection

Cnda = 2*K*CL*Clda, % in per radian

% Calculate side force due to yaw

% By Smetana p. 107

CyB = -.31, % in per radian

% Calculate side force due to rudder

Cydr = CLalphav*taur*Sv/S, % in per radian

% Calculate side force due to aileron

% By Smetana, p. 138

Cyda = 0,

% Calculate rolling moment due to rudder

Cldr = Cydr*zv/b, % in per radian

% Calculate change in drag due to change in elevator

% Smetana pp 95-100

% Using Figure 25 at 6 degrees aoa

CDde = ((. 16-.03)/(20*pi/180))*St/S; % in per radian
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% Calculate change in drag with change in aoa

% Smetana pp. 64-65

% Assuming dCDO/dalpha is negligible

CDalpha = 2*CL*CLalphaw/(pi*ee*AR), % in per radian

% Calculate change in pitching moment w.r.t alphadot

% Smetana pp. 78-81, etat assumed = 1

CMalphadot = -2*CLalphat*deda*(ltprime/cbar)* ...

(lt/cbar)*(St/S); % in per radian

% Calculate change in lift with pitch rate

% Smetana pp. 82-85

% Neglecting wing contribution, assuming etat = 1

CLq = 2*(lt/cbar)*CLalphat*(St/S); % in per radian

% Calculate change in lift with alphadot

% Smetana pp. 75-76

CLalphadot = -1 *CMalphadot/(lt/cbar); % in per radian

% Calculate change in pitching moment w. pitch rate

% Smetana pp. 87-88

% Assuming etat = 1

CMq = -2*(cbar/4-h*cbar)*abs(cbar/4-h*cbar)*CLalphaw/(cbarA2)

2*(lt/cbar)A2*CLalphat*(St/S), % in per radian

% Calculate roll damping

% Smetana pp. 122-125 % Clp(a0:2pi)=-0.475

% Neglecting contribution from vertical tail
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Clp = -.475*(AR+4)/(2*pi*AR/CLalphaw+4); % in per radian

% Calculate change in yawing moment due to rolling

% Smetanapp 126-129

% Neglecting contribution from vertical tail

Cnp = -1 *CL/8, % in per radian

% Calculate change in side force with yaw rate

% From Schmidt p. 3-23

% Assume etat = 1

Cyr = 2*W*CLalphav, % in per radian

% Calculate change in rolling moment w. yaw rate

% Schmidt p. 3-24

% Tail contribution

Clrv = (zv/b)*Cyr; % in per radian

% Wing contribution

Clrw = CL/4; % in per radian

% Total

Clr = Clrv + Clrw, % in per radian

% Calculate yaw damping

% Schmidt p. 3-25

% Tail contribution

Cnrv = -1 *(rv/b)*Cyr, % in per radian

% Wing contribution from Smetana p. 136

CDO = CD-CLA2/(pi*ee*AR);

Cnrw = -.02*CLA2-.3*CD0, % in per radian
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% Total

Cnr = Cnrv + Cnrw; % in per radian

% The following 3 derivatives are negligible and taken to be

CDq = 0, % in per radian

Cyq = 0; % in per radian

Cyp = 0, % in per radian

% A few misc. calculations

% Static Margin/Neutral Point

statmar = CMalpha/(-l *CLalphaw),

hn = statmar + h
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E. DIMENSIONAL DERIVATIVES CALCULATIONS

% File to calculate dimensional derivatives

% frogdder.m

% Last Update: 12 FEB 97

% Run nondimensional derivative program

ndfrog

% Calculate dynamic pressure

qbar - 5*rho*UfpsA2; % ft lbs

Malpha = CMalpha*qbar*S*cbar/Iyy, % per secondA2

Mq = CMq*(cbar/(2*Ufps))*qbar*S*cbar/Iyy,

% per second

Malphadot = CMalphadot*(cbar/(2*Ufps))*qbar*S*cbar/Iyy,

% per second

Xu = -2*CD*qbar*S/(m*Ufps), % per second

Zu = -2*CL*qbar*S/(m*Ufps); % per second

Zalphadot = CLalphadot*(cbar/(2*Ufps))*(qbar*S/m),

% ft per second

Zq = CLq*(cbar/(2*Ufps))*(qbar*S/m), % ft per second
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Mu = 0; % per ft second

Xde = -1 *CDde*qbar*S/m; % ft per secondA2

Zde = - 1 *CLdelta*qbar* S/m, % ft per secondA2

Mde = CMde*qbar*S*cbar/Iyy; % per secondA2

Xalpha = (CL - CDalpha)*qbar*S/m, % ft per secondA2

Zalpha = - 1 *(CLalphaw+CD) *qbar* S/m; % ft per secondA2

YB = CyB*qbar* S/m, % ft/secondA2

LB = ClB*qbar*S*b/Ixx; % l/secondA2

NB = CnB *qbar* S *b/Izz, % 1 /secondA2

Yp = Cyp*b*qbar*S/(2*Ufps*m); % ft/sec

Yr = Cyr*b*qbar*S/(2*Ufps*m); % ft/sec

Lp = Clp*(b/(2*Ufps))*qbar*S*b/Ixx, % 1/sec

Np = Cnp*(b/(2*Ufps))*qbar*S*b/Izz; % 1/sec

Lr = Clr*(b/(2*Ufps))*qbar*S*b/Ixx;% 1/sec
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Nr = Cnr*(b/(2*Ufps))*qbar*S*b/Izz, % 1/sec

Ydr = -1 *Cydr*qbar*S/m, % ft/sec
A2

Yda = 0, % ft/sec
A2

Ldr = Cldr*qbar*S*b/Ixx, % l/sec
A2

Lda = Clda*qbar*S*b/Ixx; % 1/sec
A2

Ndr = Cndr*qbar*S*b/Izz; % l/sec
A2

Nda = Cnda*qbar*S*b/Izz, % l/sec
A2

Malphaprime = Malpha + Malphadot*(Zalpha/Ufps),

Mqprime = Mq + Malphadot;

Mdeprime = Mde + Malphadot*(Zde/Ufps),
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F. STABILITY AND CONTROL DERIVATIVES

% File to get values of dimensional and nondimensional derivatives

% Last Update. 04 FEB 97

% Run programs to calculate derivatives

ddfrog

% Nondimensional Derivatives

CL

CD

CDO

CLalphaw

CMalpha

CDalpha

CLalphadot

CMalphadot

CLq

CMq

CLdelta

CDde

CMde

CyB

CnB

C1B

Cyp

Cnp

Clp

Cyr
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Cnr

Clr

Cyda

Cnda

Clda

Cydr

Cndr

Cldr

CDq

Cyq

% Longitudinal Dimensional Derivatives

Xu

Xalpha

Xde

Zu

Zalpha

Zalphadot

Zq

Zde

Mu

Malpha

Malphadot

Mq

Mde

% Lateral/Directional Dimensional Derivatives

YB
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Yp

Yr

Yda

Ydr

LB

Lp

Lr

Lda

Ldr

NB

Np

Nr

Nda

Ndr

68



APPENDIX B: MOMENTS OF INERTIA CALCULATIONS

For the formula:

_ Wm+1<»(,Lshort+Lu>ng)¥m+s Jl wmzm 2coxr3
, r 3 x

FM+S g J^K^SHORT +l-LONG)4n l

the following data were used for the calculation of the

Constant values:

Weight of the model,

Weight of the unit length chain,

Length of short chain,

Length of long chain,

Gravitational constant

moments of inertia

WM = 67.73 lbs.

(o = 0.061887 lbs/ft.

LSHORT = 13.5//.

Lwng = 15//.

g = 32. 1472 ftls
2

.

(adjusted for latitude and elevation)

Variable values:

Ixx

<YY-

fzz

Distance from pivot to center of gravity

of model and support,

Distance from pivot to center of gravity

of model,

Average period of model and support,

Distance from pivot to center of gravity

of model and support,

Distance from pivot to center of gravity

of model,

Average period of model and support,

Distance from pivot to center of gravity

of model and support,

Distance from pivot to center of gravity

of model,

Average period of model and support,

ZM+s= 13.91166//

ZM = 14 ft.

Pm+s = 4. 1847^ sec

ZM+s =13.91166 ft.

ZM =\4ft.

/W = 4. 16475 sec

^+5=13.41775^.

Za/=13.5//.

/V+s = 4.1455 sec.
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APPENDIX C: MATLAB FILES OF EQUATIONS OF MOTION

A. ABMAT.M

% File for modelling the nonlinear equations of motion

% Last Update: 21 JAN 1997

function accel = abmat(x)

% calculates the accelerations (angular and linear) due to

% aero forces, w X v; gravity.

% Variables brought from workspace:

% x = combination vector [contrl inputs, state variables, euler angles]

% (da, de, dr, dtrt, u, v, w, p, q, r, phi, theta, psi)

% Variables called from function "frogdata"

% rho = air density

% b = wing span

% c = wing cord

% s = wing area

% Cfo = Steady state force term

% Cfu = Stability derivative for control inputs

% m = airplane mass

% lb = inertia tensor matrix (body frame)

% To = Thrust scale term

% Pe = Engine position matrix

% get the aircraft data
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[uO,wO,rho,Cfx,Cfo,Cm,Cfxdot,s,b,c,m,PeJo,Ib] = frog_data,

% seperate the combined vector into seperate elements

u = [x(l);x(2);x(3)];

dm = x(4),

state = [x(5), x(6); x(7); x(8); x(9); x(10)],

lambda = [x(l 1), x(12); x(13)];

%%%%%% calculate velocity wrt the airmass and form state vector

%%%%%% that will be used to calculate the aerodynamic forces/moments

statel = [state(l)-uO; state(2); state(3)-w0; x(8); x(9); x(10)];

%%%%%% calculate total velocity, vt

vt = (state(l)
A2 + state(2)

A2 + state(3)
A
2)
A
.5;

% calculate qbar

qbar=.5*rho*(vtA2),

% calculate Ml

Ml = diag([l/vt, 1/vt, 1/vt, (.5*b)/vt, (.5*c)/vt, (5*b)/vt]);

% calculate M2

M2 = diag([0, 0, (,5*c)/(vt
A
2), 0, 0, 0]),
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% calculate Sprime

Sprime = diag([-l, 1, -1, b, c, b]*s);

% calculate Mu

Mu = inv([eye(3)*m,zeros(3);zeros(3),Ib]);

% calculate Tw2b

alpha = state(3)/vt,

beta = state(2)/vt;

Tl = [cos(alpha), 0, sin(alpha), 0,1,0, -sin(alpha), 0, cos(alpha)],

T2 = [cos(beta), -sin(beta), 0, sin(beta), cos(beta), 0, 0,0,1];

Tw2b = [Tr*T2', zeros(3), zeros(3), T1'*T2'];

% calculate Chi

Chi = eye(6) - Mu*Tw2b*qbar*Sprime*Cfxdot*M2,

% calculate Propulsion matrix

Prop =
[ eye(3);

0,-Pe(3),Pe(2),

Pe(3),0,-Pe(l),

-Pe(2),Pe(l),0];
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% calculate gravity vector and rotation matrix

Rot = [1, 0, -sin(lambda(2)),

0, cos(lambda(l)), cos(lambda(2))*sin(lambda(l));

0, -sin(lambda(l)), cos(lambda(2))*cos(lambda(l))];

Ru2b = [Rot,zeros(3)],

g=[0;0; 32.174];

FgU = m*g,

% put the components due to gravity, thrust, and control surface deflections

% together for their contribution to x-dot

thrust = Prop*To*dtrt;

gravity = Ru2b*FgU;

ctrl=qbar*(Tw2b*(Sprime*(Cfo + (Cfu*u))));

xdotu=(Mu *(ctrl+thrust+gravity))

;

% calculate rotation matrix

omegax = [0,-state(6),state(5),state(6),0,-state(4),-state(5),state(4),0],

wxlb = (-inv(Ib))*(omegax*Ib),

Rot = [-omegax, zeros(3), zeros(3), wxlb],

% rotation component of xdot (w X v)
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xdotrot = Rot* state,

% state vector feedback component xdot

xdotcfx =qbar*(Mu*(Tw2b*(Sprime*(Cfx*(Ml *statel)))));

% add three components of xdot together and premult by inv(Chi)

xdot= inv(Chi) *(xdotrot+xdotcfx+xdotu)

,

% calc accel that a strap-down IMU would measure

xdotb=xdot-xdotrot-Ru2b*g,

% put together for the return vector

%accel=[xdotb( 1 );xdotb(2),xdotb(3),xdot],

%%%%%%%%%%%%%%%%%%%%%%%% /o%/o%%/o%%% /o/o%%%%%%%

%%%%%%

% return xdot only

accel=xdot,
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B. FROG_DAT.M

% File for inputting all aircraft data for equations of motion

% Last Update: 21 JAN 1997

function [uO,wO,rho,Cfx,Cfo,Cfu,Cfxdot,s,b,c,m,Pe,To,Ib] =frog_data

uO = 88,

w0 = 0,

% Sea level- std day

rho = .0023769,

% derivative matrix due to state variables

% rows: [CD CY CL CI Cm Cn]

% col: [u v w p q r]

Cfx = [0 0.23 0,

0-31000.1151,

4.3034 3.35 0,

-.0509 0-.3702 0.il 19;

0-0.5565 0-8.8818 0;

.0575 -.0537 -.0669];

% derivative matrix due to control inputs

% rows: [same as above]

% col: [elev rud ail]
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Cfu = [0676 0,

0926 0;

.3914 0;

0.0036.1810,

-1.0469 0,

-.0388 -.0272],

% derivative matrix due to x-dot

Cfxdot = [000000,

0,

1.3877 0,

0,

0-3.7115000,

0];

% steady state force vector

Cfo = [0614, 0, .4295, 0; 0, 0],

% physical dim.

%WT =67.73 LBS.

m = 2.1051;

s=17.5,

b= 10.58,

c= 1.66;
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% engine data

Pe = [17.63/12; 0,-14.92/12],

To = [9.6757 ,0,0],

% inertia tensor matrix

lb = [ 12.52 0, 8.43 0, 18.55];
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APPENDIX D: NUMERICAL LINEARIZATION RESULTS

% Numerical results from linearization of equations of motion

% Last Update: 20 FEB 97

% The state vector at trim will be:

x=[ 87.9999; 0.0000, 0.1593; 0.0000; 0.0000, 0.0000, 0000; 0.0018, 0.0000]'

% the inputs at trim are:

u=[ -0.0431; 0.0000, 0.0000, 0.9805]'

% while the outputs are as defined:

y =[0.0000, 88.0000]'

% Then the matrices ofthe linear model are the following:

A=[ -0.1014 0.0000 0.1722 -0.1532 0.0000 -32.1739

0.0000 -0.2183 0.0000 0.1593 -87.4705 32.1739 0.0000

-0.7162 0.0000 -3.7510 84.6195 -0.0002 -0.0578

0.0000 -0.0682 0.0000 -3.0280 0.0000 0.9165 0.0000 0.0000

0.0412 0.0000 -0.1532 -3.7244 0.0000 0.0007

0.0000 0.0599 0.0000 -0.3002 0.0000 -0.3683 0.0000 0.0000

1.0000 0.0000 0.0018 0.0000 0.0000

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0]
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B =[-5.1184 4.5963

0.0000 7.0847

-29.6178

0000 0.4995 24.6412

-32.8288 -1.4271

0.0000 -3.5636 -2.4685

0]

C=[ 0.0000 -0.0114

1.0000 0.0000 0.0018

1.000

0]

D=[0 0,0 0]

% The eigenvalues of the A matrix are:

Eigenvalue Damping Freq. (rad/sec)

0.0474 1.0000 0.0474

1.0000

-0.0293 + 0.5597i 0.0522 0.5604

-0.0293 - 0.5597i 0.0522 0.5604

-0.1964 + 2.4972i 0.0784 2.5049

-0.1964-2.4972i 0.0784 2.5049

-3.2691 1.0000 3.2691

-3.7591 +3.5964i 0.7226 5.2024

-3.7591- 3. 5964i 0.7226 5.2024
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E. ADDITIONAL SUPERBLOCK DIAGRAMS
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APPENDIX F: FLIGHT TEST RESULTS
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