THE DEVELOPMENT OF A LABORATORY TECHNIQUE FOR MODEL CONSTRUCTION
 WILLIAM MANVILLE JOHNSON, JR. AND DANIEL NELSON SHOCKEY

Library

U. S. Naval Postgraduate School

Monterey, Californix.


```
-2+2

THE DEVELOPMENT OF A LABOFAGORY TECYNIUUE IOR MODEL CONSTRUCIION

\author{
Submitted to the Faculty of RUNSSETAEIG POLYMTCYNIC INGMTUTE in pertial fulfillment of the requirements for the degree of MASTER OF CIVJL EJJGINEURING
}

\author{
By \\ WILLIRM KANVILLE JORNSON JR. DANIEL NELSON SKOCKEY
}

TROY, NEA YORK
JUWIE, 1951

Tlosis
Erst

\section*{
}
70 TwMan men man
 gosela walan -ilek
SCKIOMLEDGMKHIS
INIROLLCTION. ..... 1
Part I
CONEIDEPATIOE OF MPEMIfS 10 BE USEU ..... 3
Part II
ALUKTMEM MODULEE CTECK ..... 5
A. Electric Strain Ouge Equipment ..... 5
1. Ceneral ..... 5
2. Operating procodure ..... 6
3. Calibration Checi ..... 7
B. Preparation of ©amiss. ..... 8
C. Explanation of the ciace bountinc frocedure ..... 9
D. Check of Mounteu cares. ..... 10
E. Tostine of Samiles and Kesults ..... 11
P. Conclusions on "IN" Check. ..... 17
Pert III
FABRICATIOE OF IEST BEAMS ..... 21
A. Aluminum. ..... 21
1. Proparation of haterial ..... 21
2. Jigs ..... 22
3. Chock of the Loading Device. ..... 28
4. Techniques of Joininc Flaņes to Web ..... 36
C y yon


\section*{\(7 \pi\) \% \(\mathrm{F}=\mathrm{F}\)}
 a...................


 8........................................

 11......................... 71..................................

\section*{II}



w.................................................4.4. .
W....................s.

a. Eutecrod welding ..... 36
b. Aluminum Soldering. ..... 45
c. Furnace Erazing ..... 59
B. Steel ..... 61
1. Preparation of Meterial. ..... 61
2. Jiç. ..... 62
3. Techiques of Joining ilanies to Nebs ..... 62
a. Sllver solderlne ..... 62
b. Furnace Brazing ..... 67
Part IV
CHECK OF BEAM \(\operatorname{HIL}\) SY ELECTRIC STHAIM (ffUES ..... 73
A. Location of Geges ..... 73
B. Loading and Results ..... 73
C. Conclusions ..... 81
Part V
COHSTRUCTIKG AND WHENTIG A RIGID IHAME ..... 82
A. Purpose. ..... 82
B. Desien ..... 82
C. Construction. ..... 84
D. Mounting. ..... 86
E. Computations ..... 91
F. Loed Tests and Pesults ..... 98
Enastiv
18
III. ...................... . ................................ ..... 
 ..... 
 ..... 
* 

\(\qquad\) ..... then.
-....... .......... ..... ..... 4.+1 . . . .... alr. 1
. . m. ......... ..............

\section*{Part VI}
DISCUSSION ..... 103
Part VII
CONCLUSIONS ..... 105
LIET OF FTGURES
Ficure 1 Nodulus Check ..... 12
Figure 2 Nethod of Loadne ior＂E＂Check． ..... 13
Ficure 3 Timo vs＂e＂，52S0 Aluninum Unhoetea． ..... 18
Figure 4 time va＂e＂， 5250 Nluminum heated． ..... 19
Figuro 5 J1咨㗕1 ..... 24
Pigure 6 J18部。 ..... 26
Ficure 7 JiE 出 Modified ..... 29
Fleure 8 Jig t3 Mooflied ..... 30
Figure 9 Verticel Loedine Frame ..... 31
Figure 10 Method of Loading for Beam Tests and Form of Computations ..... 33
Figure 11 Loeding Yoke and Deflection Dinl Holder． ..... 34
Figure 12 Method of Weldine． ..... 38
Figure 13 Shear end Tension Test Specimen ..... 40
Figure 14 Beam \＃11 on Horizontal Loacifen Frame ..... 58
Picuro 15 Furnace \(\operatorname{Frazed}\) Aluminum Bean． ..... 60
F1gure 16 Fumace Brazed Steal Bonm ..... 68


\section*{LIST OF NIGURES}
Figuro 17 Types of Beams Constructed ..... 72
Figure 18 Alladin Soldered Beam \(\# 11\), Showing Strain Gage Location ..... 74
Figure 29 liorizantal loading Frame ..... 76
Figure 20 Rield Frame Showing Location of Strein Gates. 83
Fisure 21 Rifich Hrane Bage Detzila ..... 85
Figure 22 Ricid Prame Showint Location of Splices, and Splice Detail ..... 87
Figure 23 Rigid Frame on Horizontal Loading Levice ..... 88
Figure 24 Rigid Freme Peak Detail ..... 89
Figure 25 Rigid Frame Knee and Base Detail ..... 90
Figure 26 Diagram for Solution of Conjugato Structure ..... 92
Figure 27 Diagram for Solution of Deflections by Virtuel Work ..... 95

\section*{\(+\infty-\infty \times 1212\)}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} & *5 Yeady \\
\hline  & B4 menty \\
\hline  &  \\
\hline  & I3 -1wis \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & 20 muxt \\
\hline  & cis mindix \\
\hline  & 4e squatr \\
\hline  & AE \#ters \\
\hline  & ase arager \\
\hline  & V6 mirint \\
\hline
\end{tabular}
\(\qquad\)

\section*{ACKMOWLELCMEXLS}

The authors wish to express their thanks to professor J. S. Kinney who suceested the topic for this thesis, and who rendered invaluable advice, encouregement, and assistance throughout the work.

Appreciation is also expressed to Professors J. F. Throop and R. I. Trathen who macie mechanical, laboratory, anc shop equipment available, and to professor f. N. Nippes of the Hetallurey Department, who ave technical advice and permitted the use of heat treating equipment.

\section*{Lrucuadtionel}










\section*{INTRODUCTION}

Prosent diey structural design is based upon theorycomposed of numerous assumptions, some of which have been proved rigidiy by experimental data while others heve been shown to be adequate only so long as a large enough sarety factor is introduced. The strength and stability of the majority of our structures which have been built in the last thlity years attest the overall adoquacy of the theory belne usod. Howover, as stated above, this theory is pedied in numerous places with hich safety factors to insure aciequacy in instances where experimental data is lackinc. Or course, Information wich is lackine could be obtained by trial and error -- building a structure, loading it, end observing whether or not the atructure supported the loads to which it wes subjected. If a person lived long enough and had unlimited resources, he mieht obtain some very important information in this way. However, as has been done in the past and as will probebly be done in the future, desifners heve attempted to make models of the structures they wished to investigate and, by subjecting those models to loads which simulated the actual loading, learn something about the action of the prototype. Mociel snalysis has proved very useful in some instances.

In the field of risid framos, for exmple, little is known about the stresses at the knoes. Practically all the information we have at this time came from the results of some full and quarter scale tests conducted several years ago by the U. S. Bureau of Standerds, fehigh and Columbia Universities,


























and the University of Illinois. These tests were very expensive, and are not likely to be repeated for checking purposes in the near future. The results of these tests disagreed radically with the stresses predicted by thoory. Although a new theory was evolved, to date it has not been checked. The small scale testing that has been done up to this time has not yielded, in eneral, satisfectory results. In an effort to help solve this problem, E. J. Scullen designed and constructed at Rensseleer Polytechnic Institute In 1950, as a master's thesis, model testing frame which could accommodato intermodiate scale models (approximately one twenty-fifth to ono firtcenth scale.) It was hoped that by testing intermediate scale models, accurate information could be obtained at much less exponse than by testing large scale models.

The object of our thesis, then, was to dovelop a technique for constructine the intemediate scale models. The prime requirement of any technique would be to produce a model which could be oxpected to simulate the action of its prototype. The technique should be inexpensive. It should be simple, so that master craftsmen are not required to build the model. The technique should facilitate rapid construction of model. Last of all, the technique should be flexible, londing itself to the fabrication of models of varied shapes.

In the attainment of the object as presented above, the authors constmuted many different nodels and tested these models by verious moans to detemnino thoir suitability for model analysis.













 . DDxization 4. 4 (2)






 - Dojula solvat bo plapiong jo midpolidar? pat of




\section*{I. CONSIDERATION OF MARERIALS TO BE UELD}

The problem of building a suitable model for laboratory analysis is a matter not only of the techniques and methods that might be used, but also a matter of what material should be used. Therefore, it is necessary first of all to look at the various materials readily available, and from these, to pick one or two that seem to possess the greatest possibilities for success.

Those materials which scemed to us to offer the best possibilities were: aluminum, steel, plastic, and wood. An understanding of the problem of using the loeding frame with the hich loads which it will be desirable to apply will bring to mind a question about the foasibility of using wood and plastic. Wood, of course, is readily available, but the difficulty of fabricating suitable models such that reasonable values could be predicted for their prototypes is a major problem. Also, knowing that eventually it will be desirable to build welded structures, the making of suitable joints with wood that would resemble welded joints presents a problem of questionable solution. The possibility of using plastic is oqually as difficult as using wood, not only because of the problem of putting joints tocether and the low loads plastics are capable of carrying, but of ereat importance is the fact that residual, stress froe models are very difficult to make. This then brings us to aluminum and steel. These two metals were chosen in preference to other metals due to the





 .trapalit intis seit


















great deal of information that is know about thom, such that the problem of making models mi ht be simplificed by using techniques alraady recognized as acceptable. It was decided to use aluminum first, primarily because of a ready supply on hand, along with the fact that the equipment available was bost suited for honding that material. The most recognizod characteristics of aluminum are its light woicht, resistance to corrosion, and higis strength, which make it nishly desirable for this work. However, thore are several properties of aluminum which tend to hindor the possibility of success. These are: (I) the fact that the melting point of aluminum is very close to the welding temperature such thet reat care is noedod to avoid melting the parent matorial while woldint, and; (2) the coofficient of thermal expansion of 2 luminum is sifghty more than twice that of cest iron or stoel with the resulting effect that care must be taken to conaider expansion and to control it carofully in order to avold distortion. Secondly, we decided to try steel as a material for a possible second method oven if aluninum should work out. This would prove to be very helpful, if successful, since with the highor strength of steel it would be possible to build models which would be capeble of carrying the full load of the loadine frame.

Thus, with this in mind wo started with aluminum as our first material and proceeded as the followino pages indicate.











 L-:
 an mil luxy is bab bil \(t\) abll muentictia al malledm to








\section*{}


\section*{II. ABUNEINLM MODULUS CIHECK}

In the fabrication of models from aluminum by brazing, soldering, or welding it is nocessary to heat the aluminum, the temperature required dopending upon the method used. Aluminum alloye which derive their strength from alloyine end subsequont tomporine* are annealed by rohooting (if the reheating tomperature is hich onough and lose thoir strength. Aluminum alloys which derive their strontth from alloyine alone are not approciebly changed by heating them to temporatures below their melting points. of the dloys testod, 61STG 1e one of the formar, wille 5250 is one of the latter. We were interested in inding out what happened to these alloys, with respect to thoir structural stronsth, specifically their moduli of elasticity, when they were heated to temperatures required for brazing, soldering, or welding. As stated In Tio Aluminum Compeny of Anerica's Iiterature, "Alcoa Aluminum and Its Alloys," and "Weldrg and Brazine Alcoa Aluminum," the results of heatino these alloys could be detemmed for each asse only by individual tests. Wo, therefore, olected to test virious heated and unhoated samples by usine electric strain bage equipment.
A. Electric Strain Vace Equipment**
1. Gemeral

The olectric strain Eago equipmont used was

\footnotetext{
* Enelneoring Pryaical lictallamgy (Chapter 4) - Hejor
* For a detalled description and for operation proceduro, see Baldwin instruction book, bulletin 312, ontitied "Type L Portable strain Indicator."
}

\section*{}
 .




















> Iñáy .I




composod of, essentially, bonded wire strain daces, type sfo-4, and an eloctric indicating device for measuring strains, in micro-inches, produced in those strain eases by some type of loading applied to the material upon which the dages were mounted. Tho indicatint device, Baldwin Type i, indicates strains lesultine from the loadine by measurine the chance in electrical resistanco produced in tho bonded egeg. Loading to the indicator are two sets of wires, one set irom the active case and one set from the compensatine Eace. The activo gace is mounted on the test piece or model which is to be loaded; the compensating gege is mounted on a piece of the same material as that on which the activo gage is mounted, is placed noar the active gege, but is not loaded. The purpose of the componsating gage is to correct the strain reading for temperature provailing in the vicinity of the active gege.
2. Operating Procedure
2. Check calibration of inaicatind device if equipmont is beine usod for the firgt time. \(\because\) b. Chock batteries; if tho pointor remains in tho red part of the dial, now betteries are noeded.
c. Connect leads from compensating and sctive gages to their respective teminals.
* Soe Calibration Check Procodure below.














 - cik wifon





. Dinion


d. Tum battory switch to on position, and allow 10 seconds for tube warm-up.
e. Set the correct value of gafe factor, as suppliod by the cage manufacturer, on the gage factor dial.
f. Bring the pointer to zero, and read the indicator dial. This is the zero reading.民. Losd the test pioce, bring the pointer to zero, and read the indicator dial. This is the loaded readine. The difference betweon the zero reading and the loaded roading is the strain produced in the test pleco by the load, in microinches.

For best results, we hot soldered jnints in connecting lead wires to \(\mathrm{f} \mathrm{a}_{\mathrm{E}} \mathrm{E}\), and make both load wires to any one gace the same longth. Also, place the compensating gage as near as possible to the active gage.
3. Calibration Check

If the indicating equipment is beine used for
the first time, it is best to check its calibration before using it. A briof check procedure follows:
a. Connect the active and compensating jages to the equipment as above, and sot the gage factor C1al.
b. Take a zero reading.
c. Connect a resistor of known value, \(\left(R_{c}\right)\), in parallel with the active eage. A resistor of



 . Lexi coxenf






 . + +18*:
 *

 theme mitis+alk 4 , ?




 . 2 E 1 B


about 500,000 ohm is satisfactory. d. Road the indicator dial, and subtract the zero reading from this second reading to obtain \& value in mioro-inches which wo will call "e". e. If \(F_{\text {fic }}\) designates the resistance of the active eqge, which is approximately 120 ohms, then \(R_{c}\) referred to in "c" above equale Fg divided by e times the gege factor, \(G\).
\[
\text { ie, } R_{C}=\frac{R_{E}}{(e)(G)}
\]

This computed value of Re should equel the value of the known resistor.
B. Proparation of Semplos

Strips of 6IST6 aluminum about 9 inches long and
about 1 inch wide were cut from shoet aluminum 0.091 inches thick. The cutting was done on a metal cutting bandsaw. The edees of the pieces were sanded to remove cutting burrs. Similar strips 0.271 inches thick were cut from 5250 stock. Two samples each of \(3 I S T C\) and 5250 were then heated with an oxy-acetylene torch, with an effort boing made to simulete the wolding and solderine tomperatures. As an index to the correct temperature, the pleces were heated until the flame impinging upor the eluminum became tintea with yellow. This was an arbitrary temperature measuring index (which later proved inaccurate) adopted after observing the flame while actually joining pleces of aluminu. The heatod pieces were then alr cooled.











\[
+1+\infty+20.101210+2
\]




 A ist has + 4+







Anothor strip of 6lsT6 was heated in an electric
furnace to the actual temporature required for wolding, then allowed to cool in air.

An electric strain eqge of the SR4 typo was then mountod on the centerine of each piece at about its mid-lencth.
C. Explanation of the Gage Mountins Procedure
1. Clean the surface upon which the fage is to be mounted. For this purpose, light srinding or sanding with emery cloth may be employed.
2. Decrease the surface with carbon tetrachloride (acetono may be used).
3. Mount the fiage:
a. Scribe Ines to indicate gace orientation.
b. Cont test surface with a layer of Duco household cement and allow it to dry about 20 minutes. c. Coat test surface with a second liberal coat of Duco coment and allow it to dry until it becomer slightly tacky.
d. Press gage into position with proper orientation and gradually press out the excess cement with the fincers. Watch the comers of the gage particularly.
Q. Keop a slight pressure on the gage until the comont will hold tire gege to the surfece (about 3 minutes roquired).
f. Cure the greso:
(1) Cure gages under a slight prossure - about


















\[
\cdot 26-1-2 d=91
\]


\(\qquad\) thase mity 70.1


1 pound will be suificiont.
(2) Directly on top of the cage, place a layer of waxed peper, then a piece of sponge mabber, then the weicht. Mis combination allows the slicht pressure of the weight to hold the gage in place while curing. (3) Allow cages to cure at roon temperature for at least 24 hourg. If curing is taking plece fin an atmosphere of high humidity, allow a longer cuinng time.
(4) As an altomative to (3) above, an infra-red heating bulb may be placed near the gaces, such that a temperature of \(150^{\circ}\) is maintained, in which cese only about 5 hours curing time is required.
4. Cover eagos with light coating of Ceresin wax to keep out moisture. (If tosting is being conductod in a laboratory, in all probability no wax coating will be required.)
D. Chock of Mounted Gages

After bades have veen cured, it is necessary to check them before straining them. The resistence of a strain gage should be about 120 olms. The leakege resistance to ground should be infinite. By using an onmeter, check the above reaistences. The gace resistance, in order to be satisfactory, should be within 2 ohms of 120 ohns. The resistance to ground should be at least 50 megohns.








\[
\cdot \cos +\sin _{2}-x_{4}-x_{1}+30 L d e
\]



 . Aerlonow ne anlt wais is trame











E. resting of Samples and Fesults (See Fibures 1 and 2) The samples were loadod as cantilevers, ono end being hold with a "C" clemp to a risid eupport while the other end recelved the load.

Logaing was accomplished by suspending an empty beer can, into which shot wss placed, fron a kmife edge which rested In a deep scribe mark et the end of the test pieco. Loads were varied by varying the amount of shot placea in the can. The shot was weighed on a laboratory balance for accuracy. Reprosentatlvo results of these tosts are shown on the next few pages.


 - Dant out Bullioliry








Modulus Check


Figure 1


\section*{Form of Computations for "E" Check}

Computations:
\(I=\frac{b h^{3}}{12}\)
\(f=\frac{M C}{I}=\frac{(P)(I)(h / 2)}{\left(\frac{b h^{3}}{22}\right)}-\frac{6 P L}{b h^{2}}\)
I \(=K \frac{\operatorname{stress}}{\text { Strain }}-K \frac{f}{\theta}=\frac{6 p I^{2}}{\frac{6 h^{2}}{6}} \pi\)

Terms Defincd:
I, moment of inertia, inches \({ }^{4}\)
b, wiath of test ploce, Inckes
\(h\), thickness of test plece, Inches
\(f\), bending stress in extrome fiber of test pioce, lbs/inch2
e, unit atrein indicated by \(\mathrm{SR}-4\) gage, micro-inchos/inch
E, a number proportional to tho nodulus of elasticity
L, distance from point of aplicetion of load to the center of the strain bate, inches

N, bending moment, inch lbs.
K, a constant which corrects tre strain indicated by the SF-4 gace to the value actually existing at the extreme fibor of the test piece.

P, loed appliad, pounds

\[
\begin{aligned}
& \text {; woulibhnoma } \\
& -14=I
\end{aligned}
\]








\[
\begin{aligned}
& \text { Th }
\end{aligned}
\]

\section*{Heated Glsmg Alwainura}

Dimensions of Test piece:
\(b=0.817\) inchos
\(I=5.21 \times 20^{-5}\) inches 1
\(h=0.091\) inch
\(L=5.34\) inches
\(E=\frac{P}{e}(.00460)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{3, 10 s .} & \multicolumn{5}{|l|}{Strain Roading} \\
\hline & Zexo & Loaded & e & E & \(f\) \\
\hline . 25 & 0924 & 1043 & 119 & 8.73 & 1165 \\
\hline . 50 & 0924 & 1161 & 237 & 9.82 & 2330 \\
\hline . 75 & 0923 & 1281 & 358 & 9.78 & 3490 \\
\hline 1.00 & 0923 & 1400 & 477 & 0.78 & 4660 \\
\hline *1.25 & 0923 & 1510 & 506 & 9.78 & 5340 \\
\hline \%1.50 & 0923 & 1637 & 714 & 9.80 & 7000 \\
\hline
\end{tabular}
* Strains recorded are those oxisting 10 minutes after the loed was applied. Immediately upon applying the load, the strain wes somewhet hicher, but gradually decreased to the above valuos. After 10 minutes, thers was no sienificant chanco in the strain revding.


 +




\section*{Unkontod Glseg Aluninum}

Diransions of test piece:
\(\mathrm{b}=0.837\) iriches
\(I=5.35 \times 10^{-5}\) inches 4
\(h=0.0915\) inctos
\(L=5.375\) inches
\(E=\frac{p}{e}(.00457)\)

\section*{Stroin Resdine}
\begin{tabular}{|c|c|c|c|c|c|}
\hline P, Ibs. & Sero & Innded & - & If & \(f\) \\
\hline .25 & 1493 & 1617 & 119 & 9.60 & 1143 \\
\hline . 50 & 2497 & 1735 & 238 & 3.60 & 2281 \\
\hline . 75 & 1435 & 1853 & 357 & 9.60 & 3430 \\
\hline 1.00 & 1494 & 1970 & 476 & 3.60 & 4570 \\
\hline *1.25 & 1493 & 2036 & 533 & 9.62 & 5700 \\
\hline 38.50 & 1493 & 2201 & 708 & 9.68 & 6860 \\
\hline
\end{tabular}
* Streins recorded are those exieting 10 minutes after the load was applied. Immediatoly upon applying the load, the strain was somewhat higher, but gracually decreased to the above values. Aftor 10 minutes, there was no significant change in the strain reading.






\(\qquad\)
P. Comolustons Mn Circt:

As shom on the procedine rages, the torch horting Of the 61STG strips chen Consistent, stable etrain roadings were obtained as long as the stresses were below about 5000 psi. For strosses above about 5000 psi , strains fluctuated with time.

Stressine of tho \(52 S 0\) strips, hoated and unhented, produced strains which varied radically with time, oven at low values of stress. As shown on ficures 3 and 4, this variation eppears almost linear on a senf-loc graph plot. This action appeara similar to crsep, only in a reversed direction, the test plece seaming to gain strength (i.e., become strained less) the loneor the load of constant value remains on it. The allthors consulted with nombers of the Metallurgy Departmont in an effort to explain this action, but were unable to find a satisfactory answer.

The suthors concluied from the rosilts of the above tests thet \(52 s 0\) definitely would not be sultable for a morel material, but thet sists would probably be satisfactory.

In an effort to detemine the cause of poor results in veams \#l through \#7, strips of 61576 were pleced in an electric fumace to find out the actual tempereture required for fusion. It was determined that \(1125^{\circ} \mathrm{F}\). Wes recuired for fusion of the perent metel with the eutecrod filler. The temperature left the metal in a very soft distorted condition after being heated for about 15 minutes. When an effort wes made to subjoct a strip to a ilexural load, it collapsed.




 Ah．i








 4 y 4 y






 Rットリ




Thus, it was impossible to get strain reading with any meaning from these pieces. The authors concluded that, since these strips had boen rendered useless for structural purposes by the temperature requirea for insion, at least in the vicinity of the weld when a torch was being used to supply the heat, a similar condition of softness and distortion existed. It vas seen, then, that the amount of torch hesing eiven the GISTG strips, es determined arbitrarily by the slicht discoloration of the flame as it impinged upon the surface of the aluminum, was in reality considerably below the temporature required for fusion during welding with eutecrod. This accounts for the closeness of the valves of "E" as determined in the provious test. (The actual temperature was probably near that required for soldering with the olladin rod.) Nelding was then discarded as a method of making aluminum models, end our efforts were concentrated upon the lower tomperature alladn soldering mothod.

















\section*{inf. Fabricamion or test brams}

The two meterials used for the making of the test beans were steel and aluminum, with the reasons for this choice as dictated in part I. This section is dedicated to the methods and techniques used, and the problems encountered in the fabrication of the test beans. It is divided into tro sub parts based on the materisi used.

\section*{A. Aluminum}

Aluminum was our first choice for the reasons previously explained. It is best perhaps to begin with the ways the matorial was prepared.
1. Preparation of Material

The eluminum for the beans was obtained from sheet aluninum of the 61ST6 type, and of veryine thicknesses. A metal cutting bandsew was used to obtain the desired sizes, with great care being taken to insure that straight pieces were obtained. Of interest at this point, would be the fact that it is necessary to be certain that a sharp blade is used in the saw if a straight cut is to be obtained. The sawed edges were next fround down to a smooth finish on a disc sandwhoel and burrs left from this sanding were taken off with a belt sander. This process insured that the extreme edge was not only clean, but also smooth such that close fitting tolerances were obtained when joining ploces. In the making of wide-flange beams in which the web of the beam is butted acainst the middle of the flange, it is felt by the authors




 - iana Ghodar enth milmitag agnLestit of

 . bovelyesd dav Inavision Calvai= 7u-44mert.t














that even the thin aluminum oxide present at the joint should be cleaned off. This was acconpllshed by using a finc emory doth and cleanine the center of the flange along which the wob would touch. The surfacos of the web near the edges were Elso cloaned up for a short distance, using emery cloth, to Insure that the fillet of joining material would have a good surface on which to adhere.
2. Jiss
paking a jis to hold the pleces tocether vilile joining them was one of the most difficult problems encountered. We will explain not only the most successful method used, but also the others that were tried. It can bo easily understood that the problem of jigeine is not just one of holuing the materials, but also a problem of holaing them extremely accurately in their correct relation to each othor. For example, in the making of wide-flance beams it is necossary that the web be hold oxactly in the contor of the ilango. The problen of jleving is applicable to all the difierent methods of joining the materinis; therofore, it is only nocessary to presont it once.

At the beginning, the most important problen of jigging seemed to be one of boing able to insure thet the pieces were held in exact olicnment. It was with this in mind that the first jiE was made.

This \(j i g\) was constructod usine threo pieces of aluminum angle, lined with asbestos alons the outside afainst






 +14










 . ition 41



which the main material would be held, as shown in Fieure 5 . Angle \(A\) and antle \(B\) were clamped together to hold the flance securely. Then angle \(C\), which was a cut down angle to eive the maximum torch clearance, was used in conjunction with ansle A to hold the web securely. As can be soen in the sketch, this method not only gave assurance that the web and the flange were at right angles, but also afforded clear access for measurement to insure that the web was at the midpoint of the flange. The several disadvantages that bocame apparent in using this mothod were as follows: (I) in spite of the asbeetos lining, too much heat was lost through contact with the motsl jie, such that the heating of the piece was irregular and thus the wolding tomperature, which is very critical. was hard to reeulate; (2) the two pieces which were to be joined were both held clamped together, and although of the some material, thoy warpod because of the unequal expansion due to locallzed heating; and (3) most important, as thero was no support for the upper part of the flane, there Wes a tendency for it to distort to one side or the other due to the concentrated heating near the centerline. Therefore, In the method of welding usinig outecrod, es will bo explained lator, the temperntures required are too hich; however, in the soldoring method, with the slighty lower temperaturos, it micht be possible to use the above procedure. The method finally used, as will be explained, scems to be a much nore practical way of solving the problem.
- Foujh


























\section*{Jig 1}


The second jiE was made with the idea in mind of being able to support both flenges end the web at the same time to overcone any tendency of these nembers to warp due to lack of support. We then constructed a \(j 1 \xi\), the cross section of which is shown in Fleure 6. The two ankles were made sbout 30 inches long, which of course limitea the leneth of boan it wes posslble to make. The angles were lined with asbestos and one was fixed to a base plate to prevent moverent. the other engle was made a sliding variety which wes held in place by clamping it to the fixed ande with "C" clamps to provide the pressure needed to hold the beam while welding it. The correct location of the web was obtained by usine a plece of sheet aluninum bent on brake such that it held tho web up betweon the two flanges as shown in the sketch. In the process of welding, the two upper welds were placed, the boam was turned over, and the two other welds were placed. This method, at first, seerad to be the solution to all jlecing problems; however, one of the problems oncountered in the first jig was present alonc with a new one. The old problem was that of controlling the hoat, and stili hadn't been solved. The new problem wes es follows. In cleaping the two angles together we tried to put just enough pressure to cause the joints to be tight, but not really forced tocether. This appearea fine from the standpoint of expansion, but still proved inadequate. From the sketch it can be seen that there is no easy way to provide support on top of the wob, and still leave room in


























\[
\text { Jig } \# 2
\]


Figure 6
which to use the acetylene torch. Therefore, due to no top support, end the fact that the wob was bound to be held by the flences with more pressure in some places then otrers, there was a definite tendency for the web to rise off its support and buckie upwarda when the heat was applied. The flances reemed to stay in line, but the method resulted in a beam whose web was not exactly centered between the flenges. mherofore, this beam could not be expected to check according to the deflection theory being usea.
Our third desien, wish eventually lod to our
final and very successful method, cane as an effort to olfninate the defocts that were noted in our previous jifs. Ifrst of all we wented to eliminate the heat loss due to contect of other materials with trose we were welaine. It was also nocessary to find some way to support the fignees and web such that they would bo held in the proper orientation with respect to each other. Those problems were solved by using l-inch by 1-inch stoel ancle cut in \(3 / 4-1\) nch leneths. Tho flence and the web wero hela at richt sneles by clamping pieces of the angle to both the web and the fiance elong one side leaving the other free for weldine. Then by adjusting the location of the ancle on the flance the web could be placed in the proper location. This arranemont of ancles was inado along the whole length of the beam, the vela beine placed down the free side. However, the ilance and the web, which were clomped rieidly togetier, distorted aue to the heating. This resulted in beans which would not check out.



 Ne. . W L























Finally, wo used the same method as deacribed in the previous parafiaph, but clamped ono pioco of anclo to each side of the Ilanee, directly opposito each other, loaving enough clearance betweon the anyles to insert the vob and hold it firm and perpendicular. (Soo fieuros 7 anc 8.) The pairs of ancles were placoa about one foot apart.

A clump prevontine the web and fiango irom soparatinc, but allowing loncitudinal movement, was placed slong the beam at ench set of ancles. The whole beam was then supported on pedestals placed at the mid-point between tho angles. This was cone such that the beam reaction at the support would koop the joint between tho weh and the flance ticht. The woldins was cione next, welding first on one sine or the wob for a longin of about 8 inches, then on the other gide of the reb. It is important not to wela any closer than 2 snches to the anfles. The purpose of weluinc on the opposite silue finmodiately was to utilize the hoat thot had already boon put into the pieces. This ajso minimized distortion, since stresses resulting from heating on both sides of the web tended to be cancellod out. After the whole beum was welded this way, it was necosaary to take off the ancles and clamps and weld up the remainine spaces. This mothod éve us consistent results on ell beans constzucted, as the resulta in tho following sections will indicato.
3. Check of the Loading Device

It was felt by the authors thet a cieck of the vertical loadine freme (sce lifure 8) was nocessary in order








```

 *)
    ```


















Bean
Support


Jig \#3 Modified


Figure 8

Vertical Loading Frame

to insure that accurate results would be obtained. Therefore, en extruded "T" berm was obtained and subjected to a load test on tho loadine frame. The method used to check our procedure consisted of loeding the beam and comparing the actual and computed deflections. This set up is shown in Figure 10 .

The beam, when in the loeding frame, was supported on knife edees which werc rounded on the undermoth 3 ide so that no restraint was placed on them. The losd consisted of lead shot placed in a bucket. It was applied to the beam by moans of a knife edge, attached to a yoke (see figure 11) which supportod the bucket. The deflection was messured by a \(1 / 10,000\) of on inch direct meading diel, placed uncierneath the mid-point of the span. The dial holder is shown in pirure 11 end wes made auch that it would also serve as a dial holder for teking readings on the horizontel loading freme.

A comparison of the actual deflections, under losd, with the deflections computed by conventional formulae show an sverage difference of \(1.4 \%\). This check wes considered close enough to gllow the use of this vertical londing frame for future model testa.
to insure that accurate resulte would be obtained. Therefore, an extruded "Tr" beem wes obtained and subjected to a load test on the loadine freme. The method used to check our procedure consisted of loading the beam and comparine the sctual and computed deflections. This set up is shown in pieure 10 . The beam, when in the loeding frame, was supported on knife edces which were rounded on the undernonth side so that no restraint was placed on them. The losd consisted of lead shot placed in a bucket. It was applied to the beam by means of a knife edge, attached to a yoke (see Figure 11) which supported the bucket. The deflection was measured by a \(1 / 10,000\) of an inch direct reading dial, placed underneath the mid-point of the span. The dial holder is shown in pigure 11 end was made such that it would also serve as a dial holder for taking readings on the homizontal loading freme.

A comparison of the ectual deflections, under load, with the deflections computed by conventional formulae shom an suerage difference of 1.4 . This check was considered close enong to allow the uso of this vertical londing frame for future model teats.






















Comoutetions:
Homent of Inertia,
I flance \(\left.=\frac{2\left(b t^{3}\right.}{(12}+b t c^{?}\right) \quad, \quad I\) web \(\frac{t(d-r t)^{3}}{1 ?}\)

I Total equals I flange + I web.

Deflection,
\[
D=\frac{P L^{3}}{48 \Sigma I}
\]

D- Deflection in inches
L- Span lencth in inches
B- Wodulus of slasticity
I- Moment of Inertin
P- Lord in coun:s

Stress
\(\mathrm{f}=\frac{\mathrm{Mc}}{\mathrm{I}}\)
f- Stress in psi
M- Moment in inch-oounas
I- koment of Inerti?
c- As shown above

Loading Yoke and Deflection
Dial Holder


Figure 11

Extrudod "pl" Bean
(3eam \#1)
\begin{tabular}{ll} 
Dimensions of ECam & \(b=1.21\) inches \\
(See Figure 10) & \(t=.128\) inches \\
& \(t=.87\) inches \\
& \(d=34\)
\end{tabular}

Noutral Axis wes computca to be . 227 Ancles above the bese.
Moment of inertie (I) \(=.0758\) inches 4
Deflection \((D)=5.18 \mathrm{P}\left(10^{-3}\right)\)
Stross \((f)=245\) ?

\section*{DIal Reading}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lond & Zoro & Ioraded & Act. Dor. & Comb. Daf. & Sif. & Stress \\
\hline 1.6 & . \(0^{\text {m }} 5551\) & . 08330 & . 00801 & . 00830 & 0 & 551.0 \\
\hline 2.16 & . 07566 & . 08679 & . 01123 & . 01123 & . 45 & 745.0 \\
\hline 3.0 & . 07555 & . 02270 & . 01 C04 & . 01555 & 2.05 & 2035.0 \\
\hline 4.0 & . 07560 & . osros & . 02153 & .02073 & 3.72 & 1380.0 \\
\hline 5.0 & . 07560 & .210150 & . 222000 & .02590 & .38 & 1720.0 \\
\hline 7.0 & . 07561 & . 12092 & . 03641 & . 03600 & . 32 & 2320.0 \\
\hline 9.0 & . 07561 & . 12314 & . 04753 & . 04070 & 1.76 & 3100.0 \\
\hline 11.0 & . 07561 & . 13320 & . 05759 & . 055700 & 1.02 & 3800.0 \\
\hline 13.0 & . 07561 & . 11352 & .00821 & .06730 & 1.33 & 4480.0 \\
\hline 15.0 & . 07561 & .15482 & . 07928 & . 07775 & 1.93 & 5180.0 \\
\hline
\end{tabular}

\section*{ace(U) Jacura 0 |r| -ma |}
moll te anshonde ior. Musty iral

 (foth+ic. * |ay meromizio
daty y is (memis
sublionet List
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Exvent & -17 & . \(\quad 7\) &  & Letal & ceot & Le61 \\
\hline m, r & = & 1-x \({ }^{1}\) & Whan & Thllu. & (6) 8 \% & 8.5 \\
\hline 8.817 & 8 t . & -410. & will. & truas. & 4180. & 31.2 \\
\hline D. & - & 48ix. & 100.In. & aclue. & curs. & 0.5 \\
\hline 0. 18.5 & + \(\quad\). & -1.4. & dusso. & Wall 6 & Qurn. & 0.1 \\
\hline a. \(0^{3}\) & B6. &  & cubis. & Wiel. & Ruls. & 0.1 \\
\hline 2.0 \(5 \cdot 1\) & \(\pm\). & mbeda. & Lbatu. & reath. & Lunc. & D.* \\
\hline D. 200 & ST. & chas. & serob. & Antar. & F4.750. & A. \\
\hline 10.4"-5 & E.. 1 & Exista. & cevel. & ar 1 . & 10-7. & a. 21 \\
\hline II.Lus. & is. & samic. & cillys. & 8 813. & Lut. & 0.51 \\
\hline w.hid & dil 1 & atres. & null. & 84615 & (1)\%m. & 7.31 \\
\hline
\end{tabular}
4. Technique of Toining Flanges to Veb

Thore were three methods used by the authors in fabriceting models from gluminum. They were eutecrod welding, soldoring, and furnaco brazing. It is in this section that we will discuss the three methods and the results of the tests run on the models constructed by each method.
a. Eutecrod Welding
(I) Weldine difficulties

The difficulty in welding with eutecrod is the high temperature required for fusion, which approaches the melting temperature of aluminum. In actual practice the two temperatures differ only by about 50 degrees and great care must be exercised not to bridge this differential. The parent material will warp and disintegrate vary quickly when the melting point is approached. Another important point to consider is that, in the vicinity of the wela, the yield strength of the material has decreased conslderably, resulting in the material no longer being homogeneous. these two facts are very important and rust be considered in view of the final resulte desired. (2) Flux

The Ilux used was supplied by the eutecrod company to be used in conjunction with their rod. It is a powder that is mized with

+ Mishar cons



 matconiste. intaron (1)















xur




Water to form a paeto, which is spread on the joint to be weldod. Caro must be exercisod in applyinc the indux, insuring that only the surfaces at the joint aro covored. This is trug because, if too much is used, the flux allows the eutecrod to pun as ft Melts, covering a weld area that is too large. mhis pointi is rot ossontial in makine a bood Weld but it rpposis to belp.
(3) Method of woldine (noo Maurs 13)

The actuai method usod in weldine is similan to that usod in any torch wolaing, Witi a nodificetion The bic chance adoptiod was in the Tay the seat from the torch was aprlied to the foint. Fation then dizooting the Eiame almont porgendicular to the joint, Fe found it better to shoot the flara paral1ej. to the folnt, Featine with the side of the firme. Using this mothos, it wes found that there was better control of tho hoat, givine ofiective prehating with less chence of overbaatine. File rest of the weldine procedine is the geme, 1.9. foedinc in welding rod as the temporature gets high onough, and movine rione, fast enough to give an evon fillot.



 sact ot -


 . .J.














 ב-7.

\author{
Method of Welding
}


Figure 12
(4) Test Samples and Fesults In order to be sure of the amount of load eutecrod welding would sustain, a series of test sumples were made. They were of the form as show in Fieure 13 with the dimensions and results as shown below.

Shoar test
\[
\begin{array}{ll}
a=1 & \text { inch } \\
L=2 & \text { inchos } \\
b=3 / 4 & \text { inch } \\
h=.091 & \text { inch }
\end{array}
\]

Under a load (P) of 1590 pounds, the parent material broke across the \(3 / 4\) inch dimension. Tension test
\[
\begin{array}{ll}
a=1 & \text { inch } \\
b=3 / 4 & \text { inch } \\
h=.091 \text { inch }
\end{array}
\]

Under a load ( \(P\) ) of 980 pounds, the weld broke. The results of these tests were definite proof that any welds made with eutecrod were sufficiently strong to withstend more load than the paront material, and therefore, strong onough to carry the losds we would use.
sdLapmi




. Weina arom ve *iluzers hoa isent cends


\[
\begin{aligned}
& \text { Thal abent } \\
& \begin{aligned}
\tan 1 & =v \\
\text { sont } 265 & =1
\end{aligned}
\end{aligned}
\]






```

Who r an: Trnston Mlast Sycelurn

```


Shear Trest


Tensior Test

Figure 13
(5) Aluminum welded beam tests and results

\section*{Beam \#\&}

Beam fif was constructea, usine the eutecrod woldine method, In \(31_{6}\) \#f. It was tested on the vertical loading framo with tho results as fiven below.
\begin{tabular}{ll} 
Dimensions of Bearn & \(b=2.0\) inches \\
(See Ficure lo) & \(t=0.093\) inches \\
& \(c=1.32\) inches \\
& \(d=2.73\) inches \\
& \(I_{s}=24\)
\end{tabular}

Moment of Inertia (I) \(=.7750\)
Deflection \((D)=.0371 \times 10^{-3} \mathrm{P}\)
Stress \((f)=10.2 P\)

Dial Reading
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Losd & Zero & Loried & Act. Def. & Comp. Def. & \% Difi. & Stress \\
\hline 10 & . 2800 & . 2831 & . 0031 & . 00037 & 87.0 & 102.0 \\
\hline 26.6 & . 2800 & . 2845 & . 0045 & . 0010 & 78.0 & 272.0 \\
\hline 35.0 & . 2821 & . 2850 & . 0038 & . 0013 & 66.0 & 357.0 \\
\hline 50.6 & . 2823 & . 2875 & . 0052 & . 0019 & 63.0 & 516.0 \\
\hline 60.0 & . 2826 & . 2882 & . 0056 & .002? & 61.0 & 612.0 \\
\hline 75.6 & . 2828 & . 2901 & . 0077 & . 0028 & 62.0 & 771.0 \\
\hline 85.0 & . 2829 & . 2916 & .0087 & . 0032 & 63.0 & 867.0 \\
\hline 100.6 & . 2831 & .2928 & . 0097 & . 0037 & 62.0 & 1020.0 \\
\hline 110.0 & . 2832 & . 2936 & . 0104 & . 0041 & 61.0 & 1121.0 \\
\hline 125.6 & . 2836 & . 2946 & . 0110 & . 0047 & 57.0 & 1280.0 \\
\hline 135.0 & . 2839 & . 2949 & . 0110 & . 0050 & 55.0 & 1379.0 \\
\hline 150.6 & . 2838 & . 2976 & . 0137 & . 0056 & 59.0 & 1537.0 \\
\hline
\end{tabular}

2. 1 104



\[
\begin{aligned}
& 4-0.01=(9) \text { sereal }
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load & Zero & Losded & Act. Def. & Comp. Def. & O Dif & Stress \\
\hline 160.0 & . 2844 & . 2981 & .0137 & . 0059 & 57.0 & 1631.0 \\
\hline 185.0 & . 2849 & . 2997 & .0148 & . 0068 & 54.0 & 1889.0 \\
\hline 215.5 & - 2850 & . 3004 & .0154 & . 0080 & 48.0 & 2195.0 \\
\hline
\end{tabular}

Beam \#4 was warped and distorted which accounts for the high percentage error. These high errors indicate that the whole method was entirely inadequate for a simple laboratory technique. The next attempt at eutecrod welding was Bean \#7.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lexil & .1711 & \(+201 \cdot 12\) & .1114.201 & arimas & 18, \({ }^{3}\) & -i.. 5 \\
\hline c. 24at & 0.72 & E96\%. & TESU. & ters. & 14 n , & 0.645 \\
\hline 6. 28.1 & B.12 & 186. & iscel. & Prue. & usps. & 8.415 \\
\hline 0. 0.514 & 10.14 & 1240.5. & 14N. & +660. & 6030. & d. 32 \\
\hline
\end{tabular}





Bean \#7 was constructed using the outecrod welding mothod in \(j i g\). It was tested on the vertical loading frame with the results es follows:
\begin{tabular}{cl} 
Dimensions of Beam & \(b=1.03\) inches \\
(See Figure 10) & \(t=0.03\) inches \\
& \(c=1.55\) inches \\
& \(d=1.16\) inches \\
& \(L=12\)
\end{tabular}

Moment of Inertis (I) \(=.0455\)
Deflection \((D)=.0791 \times 10^{-3} \mathrm{P}\)
Stross \((f)=36.2 p\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load & Zero & Loraied & Act. Def. & Comp. Def. & \% Diffo & Stress \\
\hline 1.6 & . 2337 & . 2341 & . 0004 & .000127 & 67.5 & 58.0 \\
\hline 5 & . 2337 & . 2347 & . 0010 & . 000396 & 60.4 & 181.0 \\
\hline 12.2 & . 2337 & . 2357 & . 0020 & . 000963 & 52.0 & 442.0 \\
\hline 19.85 & . 2335 & . 2364 & . 0029 & . 00157 & 48.3 & 719.0 \\
\hline 27.85 & . 2338 & . 2373 & . 0035 & . 00220 & 37.0 & 1005.0 \\
\hline 35.7 & . 2338 & .2379 & . 0041 & . 00283 & 31.0 & 1290.0 \\
\hline 42.65 & . 2340 & . 2389 & . 0049 & . 00337 & 31.2 & 1540.0 \\
\hline 51.3. & . 2340 & .2400 & . 0060 & . 00403 & 32.8 & 1850.0 \\
\hline 58.85 & . 2341 & . 2410 & . 0069 & . 00465 & 32.6 & 2130.0 \\
\hline 66.35 & . 2343 & . 2416 & . 0073 & . 00525 & 28.7 & 2400.0 \\
\hline 74.65 & . 2341 & .2428 & . 0087 & . 00590 & 32.2 & 2750.0 \\
\hline 110.00 & . 2339 & . 24770 & . 0130 & . 00870 & 33.1 & 3980.0 \\
\hline 160.0 & . 2340 & . 2518 & . 0175 & . 01265 & 28.0 & 5800.0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline bexpd & . 4818 & .19.ives & .2xa \(\cdot 1515\) & Maban & 0783 & Bact \\
\hline \(\square .+4\) & 6. Pa & TP600. & \$000. & 1abs. & 5062. & 4. 5 \\
\hline  & 1.60 & teluos. & 2000. & 7151. & That. & 6 \\
\hline 0.511 & D.26 & 20.650. & map. & -ses. & P088. & *. \(\mathrm{S}_{\text {L }}\) \\
\hline 0.957 & c. \({ }^{\text {a }}\) & milo. & uenot. & 24\%. & csers. & 49, 81 \\
\hline 0.0par & 0.98 & 02000. & 1500. & TVET. & 689. & 14.73 \\
\hline 1.0726 & 0.58 & k-u. & 2430. & 415 & Lus. & 7. 25 \\
\hline 8.203 & 1.2s & 0060. & 6800. & mus. & vixas. & 13.5t \\
\hline Q.tand & . 51 & 84300. & 0000. & U102\% & undms. & 2.4ll \\
\hline 19, \(=12\) & \%.40 & sukce. & N0. & spa. & Lexs. & Un.05 \\
\hline 4.PMP \({ }^{\text {P }}\) & 5., 5 & 1610. & 1.005. & aske. & U59. & 06. 20. \\
\hline c.cara & 8.25 & OSi0E. & 7100. & 0974. & 62es. & is. VT \\
\hline 4.0081 & 4. 0 & areve & 0810. & UPO5. & sars. & 00.0 .15 \\
\hline 11.0005 & 7. \({ }^{8}\) & Diabe. & 6759. & SMSIV. & cesid. & 0.001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load & Zoro & Londed & Act. Def. & Comp. Def. & \% DIff. & tress \\
\hline 185.0 & . 2343 & . 2540 & .0197 & . 01462 & 25.8 & 6700.0 \\
\hline 235.0 & . 2350 & . 2603 & . 0253 & . 01860 & 26.5 & 8500.0 \\
\hline 259.8 & . 2362 & . 2644 & . 0282 & . 0205 & 27.4 & 9370.0 \\
\hline 283.0 & . 2362 & . 2680 & . 0318 & . 0223 & 29.91 & ,500.0 \\
\hline
\end{tabular}

The readings taken on Beam \#7 were consigtently better than those on Bean \#4, but tho percentase error was still much too high to accept this method as a way for buildine models. It appears that, due to the localized heating, there is a definite zone of softening in the area of the weld which caused the beam to act irregularly.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ponal & . cke \(^{2}\) & . \(70^{-6.0083}\) &  & bebic.t &  & +ug \\
\hline P. 927 & 4, 39 & 20.10. & \% 16. & visi. & Licil & 9.018 \\
\hline 0.DOIl & 8.11 & Somus. & 1234. & snas. & cise. & 9.0158 \\
\hline 4.0.70 & +.r & dolb. & 4900. & phes. & 1 & . 41 \\
\hline 0.008 & 15.15 & cheo. & 851. & mess. & bses. & 0.638 \\
\hline
\end{tabular}






b. Aluminum Solderines

Tho method of using aluminum solder as a means of constructing our model beams was inveaticated at the same time as the eutecrod mothod. Tho two mothods are very similar, and their similarities alone with the differences will be presentied in this section.
(1) Charactoristics of Soldar

Alladin soldering is not as strong as eutecrod welding. Iowever, once the limitations were discovered, it was possible to use it with considerale succes. The solder melts at a much lower temperature than does welding rod. This most important charecterm istic makes it much orsier to use since the melting point of the parent material is not approsched. However, since there is no direct fusion of material, the strength of the joint is dofinitely decreased. The sample pull test results will indicate this much more clearly. The rod used was an aliadin rod. This particular rod requirod no flux. Therefore, it was nocessary to insure that all oxides were cleaned orf the aluminum prior to solderine. In addition, a reducing flame was used to prevent the fomation of any oxides while soldering.
burtaneint monimbis a















 Is minnte mid, (whader Se meleon darsk war . bretopasa furtiolisaf et outot sad









The method of cleaning the aluminum was the same as that outlined under eutecrod welding. of the two size rods available, the \(1 / 16^{n}\) rod was preferred to the \(1 / 8^{\prime \prime}\) rod due to the size of the sections being joined. There was only one difficulty encountered, other than those mentioned under eutecrod welding. It was noticed that the solder already placed tended to ball up in some places alonis the joint when placing solder on the opposito sicie. This occurred only in a few locations, howover, and was patched up easily by roheating and soldering. (2) Method of Soldering

The tochinique of heating the joint in preparation for solderine was the same as outlined under the method of eutecrod welding. Since the solder requires a lower temperature than eutecrod, the size of the flame used was considerably smaller. The pressure settines on the cylinder regulators were 5 lbs. and 2 lbs . for oxygen and acotylene rospectively. The main difference in soldering is when the illler rod is adied. As the torch is held in position for heating the joint, it is best to hold the filler rod in the outer fringe of the flame to keep it












 blatacult zo maldak ईW!













in soft concition. Then, when the reflected flame tums orance, quickly remove the torch and wipe the filler rod alone the joint. It will be poesible only to mun the joint for about 1 to 2 inches, es the metel cools quickly. Towever, in our method of viging the torch to preheat es well as weld, it will be necessary just to heat the foint a second or two until it will he hot enovell acain to make another run. This procedure is continued until the whole length of weld is completed. (3) Tost Semples and Posults (see ILgure 13) A series of tests on samples, similar to those run \(u s i n_{k}\) outecrod, were run using solder. Since thore is quite a range of temperatures at which the solder will flow and still not afrect the parent material, We ran two sample tests. The first vas on a modol soldered at a very high temperature such that there was almost fusion. The second was run at the lowest possible temperature such that there was no fusion. The results of these two tests were considered as limits of the possible atrength a soldered joint would take. In all future tosts, we kept our horizontal shear dofinitely below that indicated by the Lowest test.


















 -7. . Five 1h.




 HED H2: . isel riemor -i3 at betibisut lual

Test fil (Eusion of material and solder noted)
Shoar test \(\quad a=1\) inch
\(L=2\) inches
\(b=3 / 4\) inch
\(h=.091\) inch
Under a load (P) of 1176 pounds the solder falled in shear

Tension test a \(=1\) inch
b - 3/1 inch
\(h=.091\) inch
Under a lood (P) of 85 pounds, the solder failed.

Test *R (Low temperature)
Shear test \(\quad a=1\) inch
\(L=2\) inches
\(b=3 / 4\) inch
\(h=.081\) inch
The load built up to 50.5 pounds, then the solder yioldeci sucionly within the joint, althouch ro cracks were vislble. It was impossible to make the specimen take any more load. The horizontal shoar was 12.6 lbs./ inch.

The suthors concluded from these tests that if the alladin solder method were to be used it would be nocessary to keep the loads down such that the horizontel shear would be less than 12 lbs./inch, except where we were interested in the beam bohavior at hicher loads.




```

Efel im twas?

```


                                    .001807

                        Ravi \(4=a \quad\) Hial thedr
bilosel + ent
    (00) it 1
    siont 200. " of





                                thent






        14.2.sbel

(4) Aluminum soldered beam tests and results

\section*{Bean \#2}

Bear \#2 wes constructed usine the alladin solder method in Jie \#1. It was tested on the vertical loaded frame.
\begin{tabular}{ll} 
Dimension of Beem & \(b=1.03\) inches \\
(See Fieure 10) & \(t=.064\) inches \\
& \(c=.55\) inches \\
& \(c=1.16\) inches \\
& \(d=1\).
\end{tabular}

Moment of inertia (I) \(=.0455\)
Deflection \((D)=.1256 \times 10^{-3} \mathrm{p}\)
Stress \((f)=42.3 \mathrm{P}\)

\section*{Dial fieading}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Loed & zero & Lordea & Act. Def. & Comp. Def. & \% Diff. & Stress \\
\hline 15.1 & . 600 & . 5075 & . 0025 & . 0019 & 24.0 & 640.0 \\
\hline 45.75 & . 600 & . 5025 & . 0075 & . 0057 & 24.0 & 1940.0 \\
\hline 84.0 & . 600 & . 5860 & . 0140 & . 0105 & 25.0 & 3580.0 \\
\hline 100.60 & . 800 & . 5835 & . 0165 & . 0126 & 23.0 & 4260.0 \\
\hline 116.35 & . 600 & . 5810 & . 0190 & . 0146 & 23.1 & 4930.0 \\
\hline 131.6 & . 600 & . 5785 & . 0215 & . 0165 & 23.1 & 5570.0 \\
\hline 150.6 & . 600 & . 5742 & . 0258 & . 0196 & 24.0 & 6640.0 \\
\hline 160.35 & . 600 & . 5725 & . 0275 & .0200 & 24.0 & 7060.0 \\
\hline 274.65 & . 600 & . \(5 \% 02\) & . 0201 & . 0219 & 24.8 & 7400.0 \\
\hline 188.75 & . 600 & . 5684 & . 0326 & . 0237 & 25.0 & 7999.0 \\
\hline 202.75 & . 600 & . 5658 & . 0342 & . 0255 & 25.5 & 8560.0 \\
\hline 210.85 & . 600 & . 5632 & . 0368 & . 0265 & 27.9 & 8960.0 \\
\hline
\end{tabular}

The error in Beem \#Z was bolleved to heve resulted from the fact that the beam was warped and untrue. We, therefore, constructed bean \#3.

\[
9 x \operatorname{lin}+i l
\]




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & 3 untián & 1050 & \\
\hline  & .1+18 & - Lez.eser & .2an.ilu & Solatis & Haz & -9ni \\
\hline 6.040 & 0.418 & 0100. & 14505. & 19, 3. & ines. & 6. 31 \\
\hline 0.06-12 & S.10 & Twot. & N00. & 3503. & 68. & 18\%.45 \\
\hline 0. 0.318 & 3. \({ }^{\text {a }}\) & sale. & 0 HNO & c \({ }^{\text {c }}\). & 000. & 0.88 \\
\hline 6. ans & 3. 56 & debe. & dots. & 10, 5 . & 80. & 85.008 \\
\hline 8.2.4.4 & 2. 65 & Bsic. & Oito. & 0t6: & D01. & 15.2E5 \\
\hline 7.07tily & 1. \({ }^{\text {d }}\) & vabe. & 31. & 8AF\%. & (EA). & 1.485 \\
\hline 9.0.04d & (1..6s & 20140. & -135. & E40. & 00s. & 7. 515 \\
\hline 0.046 & d.ect & sewt. & 8076. & 1893. & pos. & 85. 30.5 \\
\hline 9.000\% & A. ka & 9 cos . & buic. & Etona. & 505. & 85. 185 \\
\hline 9.1515 & 8. 25 & Trou, & N100. & tupa. & 20 cm . & 35.132 \\
\hline II. These & 3.85 & tase. & 7880. & 1380. & the. & 68.745 \\
\hline 0.0.54 & -.72 & vens. & Tal60. & 1+385. & opa. & 80.049 \\
\hline
\end{tabular}

\section*{}
 . St mail biblbugivmog

Beam \#3 was constructed using the alladin soldoring
mothod in Jig \#l. It was testod on the vertical loading frame.

> Dimensions of Beam \((\) See ligure 10)
\begin{tabular}{ll}
\(b=1.03\) & inches \\
\(t=064\) & inch \\
\(c=1.55\) & inch \\
\(d=15\) & inches \\
\(\mathrm{L}=23\) & inches
\end{tabular}

Moment of Inertia (I) \(=.0452\)
Deflection \((D)=.558 \times 10^{-3} p\)
Stress \((f)=73.2 \mathrm{P}\)

Dial Reading
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load & zero & Loaded & Act. Def. & Comp. Def. & \% Diff. & Stress \\
\hline 1.6 & . 1559 & . 1568 & . 0009 & . 0008 & 11.0 & 117.0 \\
\hline 5.0 & . 1554 & . 1601 & . 0047 & . 0023 & 40.3 & 360.0 \\
\hline 12.2 & . 1554 & . 1649 & . 0095 & . 0068 & 28.4 & 893.0 \\
\hline 19.8 & . 1553 & . 1692 & . 0139 & . 0111 & 20.1 & 1455.0 \\
\hline 27.8 & . 1555 & . 1741 & . 0186 & . 0159 & 15.0 & 2040.0 \\
\hline 35.70 & . 1556 & . 1789 & . 0233 & . 0199 & 14.6 & 2610.0 \\
\hline 43.50 & . 1556 & . 1839 & . 0283 & .0243 & 14.2 & 31.90 .0 \\
\hline 51.25 & . 1563 & . 1883 & . 0330 & . 0286 & 13.3 & 3750.0 \\
\hline 58.75 & . 1575 & .1978 & . 0403 & . 0328 & 18.5 & 4300.0 \\
\hline 83.75 & . 1605 & . 2440 & . 0835 & . 0418 & 49.3 & 6130.0 \\
\hline
\end{tabular}

Beam \#3 was made considerably longer than Boam *2. This, along with the fact that a zero reading was taken after each load, had a noticeable affect on the results. While these results were better, it was decided to try a new method. we next built beam \#5.

4．）mane



satif xo sach hay－m
（0t trisid＊an）


4．1．0． 2 （2）＊ットロ！
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{810121} & \multirow[b]{2}{*}{．2am} & \multirow[b]{2}{*}{291．\({ }^{\text {ar }}\)} & \multirow[b]{2}{*}{． 2001.131} & \multicolumn{2}{|l|}{3ntsaelt fata} & \multirow[b]{2}{*}{51504} \\
\hline & & & & Sevest & brt & \\
\hline 8．Pは & 9．．7 & F20． & 00．0． & Paxis． & 404． & 6.1 \\
\hline 0．045 & 6． 5 （ 3 & 1200． & n500． & Dus． & salic． & 0.8 \\
\hline 0.600 & ＊，00s & usod． & 3sow． & Hkst． & 200er． & 2．35 \\
\hline ．． 20015 & 5.05 & wito． & stio． & must． & 2301． & 4.05 \\
\hline  & 0．e．1 & taxin． & stus． & savt． & 1384. & 8． 62 \\
\hline c． 0 ber & 6．\({ }^{\text {a }}\) & 44.50 & 5020. & nivi． & \＄245． & 407． 68 \\
\hline 0．0115 & 2． 15 & cisc． & 8309． & selat． & B401． & 64．58 \\
\hline 0.0076 & 3.35 & seaw． & o280． & 60－1． & bals． & 89.28 \\
\hline 8．0048 & 3.05 & Ubsar． & 20.80. & aveI． & erde． & 850．98 \\
\hline P．051\％ & 4．3b & 1abo． & 0800． & diss． & sost． & \(2 \mathrm{C} \cdot 3 \mathrm{Br}\) \\
\hline
\end{tabular}





\section*{Beam \#5}

Beam \#5 was constructed using the alladin soldering method in Jig \#2. It was tested on the vertical loading frame.
\begin{tabular}{ll} 
Dimensions of Beam & \(b=2.0\) inches \\
(See Figure 10) & \(t=.091\) inches \\
& \(c=1.28\) inches \\
& \(d=2.75\) inches \\
& \(L=33\) inches
\end{tabular}

Moment of Inertia (I) =.7715
Defloction \((B)=.097 \times 10^{-3} \mathrm{P}\)
Stress \((f)=13.7 p\)
Dial Reading
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Loed & Zoro & Loaded & Act. Def. & Comp. Def. & DIff. & Streas \\
\hline 1.6 & . 09037 & . 09056 & . 00019 & . 00016 & 15.8 & 21.9 \\
\hline 5.0 & . 09041 & . 09110 & . 00069 & . 00048 & 30.4 & 68.5 \\
\hline 13.0 & . 09041 & . 09193 & . 00143 & . 00126 & 11.9 & 178.0 \\
\hline 20.5 & . 09041 & . 09337 & . 00296 & . 00199 & 32.8 & 280.0 \\
\hline 27.7 & . 09062 & . 09395 & . 00333 & . 00269 & 19.2 & 379.0 \\
\hline 34.65 & . 09041 & . 09505 & . 00464 & .00336 & 27.6 & 473.0 \\
\hline 42.50 & . 09060 & . 09619 & . 00559 & . 00412 & 26.3 & 583.0 \\
\hline 50.25 & . 09060 & . 09752 & . 00692 & . 00487 & 29.6 & 689.0 \\
\hline 58.05 & . 09081 & . 09870 & . 00789 & . 00563 & 33.2 & 795.0 \\
\hline 65.20 & . 09090 & . 09959 & . 00869 & . 00632 & 27.3 & 895.0 \\
\hline 73.60 & . 09102 & . 10072 & . 00969 & . 00713 & 26.7 & 1010.0 \\
\hline 81.90 & . 09113 & .10169 & . 01056 & . 00794 & 24.8 & 1120.0 \\
\hline
\end{tabular}

Beam \#5 was made longer than Beam \#3, and of larerer section. We made these changes to discover if perhaps length or size of section had a major effect on the results. The irregular results proved nothing other than it didn't appear to be acting as a beam. We next built beam \#6.
A) prowe

 . \(\cdot=r\) r
\[
\cos \sin 01 \text { Is M }
\]




 .dy mapil ai fut zea *5

> chil 20 segthameto
> iox manest mis
\[
\begin{aligned}
& \text { I. } 1.5 t=(t)=\operatorname{secta}
\end{aligned}
\]

\section*{i30am \#6}

Beam \#6 was constructed using the alladin soldering method in Jig \#2. It wns tested on the vertical loading frame.
Dimensions of Beam
\((\) See Figure 10)
\begin{tabular}{ll}
\(b=2.01\) & inches \\
\(t=0.091\) & inches \\
\(c=2.96\) & inches \\
\(d=26\) & inches \\
\(L=26\) & inches
\end{tabular}

Moment of Inertia \((I)=.424\) Deflection \((D)=.0864 \times 10^{-3} P\) Stress (I) \(=15.7 \mathrm{P}\)

\section*{Dial Reading}
\begin{tabular}{llllllll} 
Load & Zero & Lorded & Act. Def. Comp. Dof. & Diff. & Stress \\
1.6 & .05533 & .05543 & .00010 & & .00014 & 40.0 & 25.1 \\
10.0 & .05545 & .05626 & .00081 & .00085 & 4.9 & 157.0 \\
18.4 & .05546 & .05645 & .00199 & .00157 & 21.1 & 289.0 \\
25.9 & .05550 & .05834 & .00284 & .00221 & 22.2 & 407.0 \\
33.65 & .05580 & .05968 & .00388 & .00287 & 26.0 & 528.0 \\
41.65 & .05605 & .06040 & .00435 & .00355 & 18.4 & 653.0 \\
48.80 & .05608 & .06110 & .00502 & .00417 & 16.9 & 765.0 \\
64.55 & .05610 & .06384 & .00774 & .00557 & 28.0 & 1010.0 \\
73.80 & .05665 & .06533 & .00868 & .00636 & 26.8 & 1158.0
\end{tabular}

Beam 46 didn't eliminate the errors although the percentage orror was less than that occurring in beam \#5.

 . + Esc?





Beam \#8 was constructed, using the alladin solder method in Jig 紟. It was tested on the vertical loading frame.
\begin{tabular}{cl} 
Dimensions of Beam & \(b=1.03\) inches \\
(See Figure 10) & \(c=.55\) inches \\
& \(d=1.16\) inches \\
& \(t=. .063\) inches \\
& \(L=24\)
\end{tabular}

Moment of inertia (I) \(=.0454\)
Deflection \((D)=.634 \times 10^{-3} \mathrm{p}\)
Stress \((f)=76.7 \mathrm{P}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Loed & Zero & Loaded & Act. Def. & Comp. Def. & \% Diff. & Stross \\
\hline 1.6 & . 2825 & . 2835 & .001 & . 00101 & 1.0 & 122.5 \\
\hline 5.0 & .2825 & . 2857 & . 0032 & .00317 & . 94 & 383.0 \\
\hline 12.2 & . 2825 & . 2912 & . 0087 & . 00773 & 21.5 & 931.0 \\
\hline 19.85 & . 2825 & . 2864 & . 0159 & . 0126 & 9.35 & 1520.0 \\
\hline 27.85 & . 2830 & . 5023 & .0198 & . 0177 & 10.60 & 2130.0 \\
\hline 35.70 & . 2850 & . 3077 & . 0247 & . 0227 & 8.10 & 2740.0 \\
\hline 43.50 & . 2833 & .3130 & . 0300 & . 0276 & 8.00 & 3330.0 \\
\hline 51.25 & . 2835 & .3183 & . 0350 & . 0325 & 7.13 & 3930.0 \\
\hline 58.75 & . 2835 & . 3234 & . 0399 & . 0373 & 6.52 & 4500.0 \\
\hline 65.30 & . 2835 & . 3286 & . 0451 & .0408 & 9.53 & 5050.0 \\
\hline 74.20 & . 2841 & . 3341 & . 0503 & . 0470 & 6.50 & 5680.0 \\
\hline 82.35 & . 2840 & .3399 & . 0558 & . 0521 & 6.71 & 6320.0 \\
\hline 90.65 & .2847 & .3459 & . 0619 & . 0575 & 7.1 & 6950.0 \\
\hline
\end{tabular}

The percentage error as indicated in beam \#8 averages
less than 10 percent. This indication that our methods and

\section*{6. 6 2an}


\[
\begin{aligned}
& \text { ( } 0 \text { otwit soll) } \\
& \text { Abyd. }=(1) \text { sil sanal io terubll }
\end{aligned}
\]



techniques were improving convinced us that wo should continue with our tests with only slight chancos in our methods. It should be noticed that the beam is 24 inches long and of such a section that a large deflection is obtained. It is felt that a larce deflection is necessary so that any errors that do occur are not a significant part of the deflection. It should also be noted that the horizontal shear on this veam reached \(36.2 \mathrm{lbs} . /\) inches whion is considerably above the absolutely safe value as determined by test. Therefore, in any future teats, a horizontal shear maximum of 10 Ibs ./inch can be assumed to be absolutely safe. With the above considerations in mind we constructed veam \(\%\).













\section*{Boam \#9}

Boam \#f was a "q" boan constructed using the alladn solder method in \(\mathrm{Ji}_{\mathrm{t}}+3 \mathrm{modifiod}\). It was tested on the vertical loadine frame.
\begin{tabular}{rl} 
Dimensions of Beam & \(b=1.453\) inches \\
(See Figure 10) & \(c=.8244\) inches \\
& \(d=1.0938\) inches \\
& \\
& \(t=.091\) inches \\
& \(L=54\).
\end{tabular}
worent of inertia (I) \(=.02375\)
Deflection \((D)=1.38 \times 10^{-2} \mathrm{P}\)
Stress (f) \(=468 \mathrm{P}\)
Horizontal Shear (H) \(=\frac{V Q}{I}=.623 \mathrm{P}\)
The neutral axis was computed to be . 268 inches above the base.

\section*{Dial Roading}
\begin{tabular}{llllllll} 
Load & Zero & Loaded & Act. Def. & Cozp. Def. & Diff. Stress \\
1.6 & .16340 & .18820 & .0248 & .0221 & 10.9 & 747.0 \\
2.0 & .16340 & .19210 & .0287 & .0276 & 3.8 & 935.0 \\
3.0 & .16340 & .20710 & .0437 & .0414 & 5.24 & 1405.0 \\
4.0 & .16340 & .22010 & .0567 & .0552 & 2.45 & 1870.0 \\
5.0 & .16340 & .23420 & .0708 & .069 & 2.54 & 2340.0
\end{tabular}

The error in beam \(\frac{1}{\psi} 9\) was notas great as that in beam \(\%\). The horizontal shoar at 5 2bs. was 3.115 1bs./inches. We stopped loading at 5 lbs . as we wanted to put another flange on the "T" beam to see the effect. Thorefore, we soldered a flange on beam \(\# 9\) to get beam \#10.


 .sart pubens taotrer
 matc. to mioditarol \{01 mus 10 in





. 7 Kach anl







Beam \#lo is beam \#9 with another flange soldered on.


Moment of inertia (I) \(=.08873\)
Deflection \((D)=3.7 \times 10^{-3} \mathrm{P}\)
Stress \((f)=90.3 \mathrm{P}\)
Eorizontal Shear (H) \(=.408 \mathrm{P}\)
\begin{tabular}{llllllll} 
Load & Zero & Loaded & Act. Def. & Comp. Def. & O Diff. & Stress \\
1.6 & .1320 & .1382 & .0062 & & .0059 & 4.8 & 144.5 \\
2.0 & .1319 & .1397 & .0078 & .0074 & 5.1 & 180.5 \\
3.0 & .1320 & .14285 & .01085 & .0111 & 2.3 & 271.0 \\
4.0 & .1320 & .1469 & .0149 & .0148 & 0.6 & 361.0 \\
5.0 & .1320 & .1500 & .0180 & .0185 & 2.8 & 451.0 \\
6.0 & .1320 & .1541 & .0221 & .0222 & 0.4 & 542.0 \\
7.0 & .1320 & .1580 & .0260 & .0259 & 0.4 & 631.0 \\
8.0 & .1320 & .1620 & .0300 & .0296 & 1.3 & 722.0 \\
9.0 & .1320 & .1658 & .0338 & .0333 & 1.5 & 811.0 \\
10.0 & .1320 & .1697 & .0377 & .0370 & 1.9 & 903.0 \\
18.0 & .1321 & .1998 & .0678 & .0666 & 1.8 & 1628.0
\end{tabular}

The small amount of difference between computed and actual deflections as ovidenced by the percentage error was considered excellent. The horizontal shear obtainod was 7.35 lbs./inches at 18 Ibs. In view of the results, it was decided to construct a bean of lareor cross section, to see if there would be any effect on the accuracy.

\section*{0py niak}


> (6) exach velt
> somed. - (2) slitwer! is Rhouk
\[
\begin{aligned}
& 3 \mathrm{Z} .00=(11 \mathrm{pand})
\end{aligned}
\]





 , suefcolat gas re fortho

\section*{Beam \#11}

Beam \#ll was constructed usine the alladin soldor method in Jig 苔3 modified. It was tasted on the vertical loading framo.

\(b=1.234\) inches
\(c=1.193\) inches
\(d=2.477\) inches
\(t=54 \quad\) inches
\(L=54 \quad\) inches

Moment of Inertia (I) \(=.4128\)
Doflection (D) \(=.798 \times 10^{-3} \mathrm{P}\)
Stress \((f)=40.5 \mathrm{~F}\)
Horizontal Shear (H) \(=\cdot 1623 \mathrm{P}\)

\section*{Dial Reading}

\begin{tabular}{lllllll}
10 & .0965 & .1041 & .0076 & .0080 & 5.3 & 404.0 \\
15 & .0965 & .1083 & .0118 & .0180 & 1.7 & 616.0 \\
20 & .0965 & .1122 & .0157 & .0160 & 1.9 & 807.0 \\
25 & .0965 & .1164 & .0189 & .0199 & 0.0 & 1015.0 \\
30 & .0967 & .1208 & .0243 & .0239 & 1.6 & 1215.0 \\
35 & .0967 & .1250 & .0283 & .0279 & 1.4 & 1417.0 \\
40 & .0967 & .1290 & .0323 & .0319 & 1.2 & 1620.0 \\
45 & .0968 & .1333 & .0366 & .0359 & 1.9 & 1823.0 \\
50 & .0969 & .1380 & .0412 & .0399 & 3.2 & 2020.0 \\
55 & .0969 & .1419 & .0450 & .0439 & 2.4 & 2230.0
\end{tabular}

The results of Beam \#ll proved that our methods and tochniques of constructinc models were satisfoctory. This beam was made with the idea in mind of using it for checking stresses and calibrating the horizontal loading frame. (See Figure l4.)

These tests are explained in section IV.

\section*{I5 tand}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 298326 & , 1181-1 &  & \(\therefore 200.101\) & 0080] & 2xes & bary \\
\hline b.10s & 6.5 & 8000. & 5200.0. & ga013. & Powo. & 8 \\
\hline 0.46 & 18.3 & atio. & a 010. & 01.05. & उ<0w. & Of \\
\hline 10. 18.18 & \%. 1 & ärs. & ifras. & Sast. & savor. & as \\
\hline B.Man & 1.1 & [日]. & rato. & (10)5. & saus. & 00 \\
\hline 5.1101 & . & W 20. & 1050. & sact. & 3800. & 38 \\
\hline A. IpaL & . . 1 & 2cio. & E190. & 1035. & T¢T\%. & 45 \\
\hline C.tast & \(\therefore .1\) & 19. & vas. & gras. & Taig. & 14 \\
\hline 0.415 & 1.L & \(0 \times 20\). & 120. & gevis. & Mer. & De \\
\hline D. Ams & 17.5 & vose. & 5060. & E.5.5. & Sivar. & ab \\
\hline U.080] & 4.5 & woto. & Eno. & Dosis. & Qabo. & co \\
\hline b.oert & +. 1 & DSAO. & 0040. & PCOS. & 89P0. & ad \\
\hline
\end{tabular}






Beam \#ll on Horizontal
Loading Frome


Figure 14
c. Furnace Brazing

The third method of constructing beams by furnace brazing was not successful. The fumace usod was the same one that was mentioned in the "E" check discussion.

Tho beam constructed was 24 inches lons, \(1-1 / 2\) inches deep, .091 inches thick and the flances were 1-1/4 inches wide. The beam was held toEether in the mancr discussed for Jie \(\# 3\) modified, with clamps holding tho flanges together. The joining material used was eutecrod. In order to get a thin foll, the eutecrod was rolled to a thickness of about . 008 inchos. It was inserted in the joint and held in place by the clamping action of the "C" clamps. Flux was placed along all the surfaces that were to be joined. The furnace tempereture used was 11250 Fe This was the temperature, found from tests, that was nocessary for the materials to fuze. The jigged bean was placed in the fumaco and allowed to remain for 15 minutes. At the end of the required tine, the fumace was shut off and allowed to cool before inspecting the beam.

The whole beam was completely distorted and warped. (See Flgure 15.) The flonges were weldod to the web for only about 2 inches at one end. It was impossible to test the beam because of its condition.


 . To fienabiels stosido











 sen teal ;eless mort bumat, orushanaplet sody










Furnace Brazed Aluminum Beam


This metiou is impractical for use with aluminum. Tie eutecrod will not flow by itself until a temporature of about \(1125^{\circ} \mathrm{F}\). is reached. This temperature is above the melting point of the elloy used, and tho Leam will not ovon support its own weight. Thus, with the jicuing system used, the weight of the clamps alone caused the whole keam to be pulled out of shape. Therefore, the autiors felt it a waste of time to attempt any further teste.
B. Steol.

For the fabrication of stool models, we selected hot rolled strip steel, \(1-1 / 2\) inches wide and 0.056 inches thick. This particular size material was selected from the available stock at a local stecl yard bocause it nould require the least cuttine in the fabrication of modol. Hot rollod strip was chosen in proference to cold rolled strip because of its beine relatively free of residual stresses.
1. Preparetion of Meterial

A hacksaw was used to cut the strip stecl into the desired lengths. The rounded edges of the pieces were Eround flat on mechanical disc sander. Next, the scale on the edees and sides, where the pleces were to be joined, was removed by using emery cloth which gave a bright surface. Care should be exercised in erinding the odes to insure that a smooth, flat surface is obtained. Irregularitios will cause a poor joint.










\[
.250 \mathrm{dy} .7
\]






 Inpurnet To aolievapryl .t







2. J1Es

Jigs used for making steel models were the same as those used for making aluminum models, as given in section III-A-2 above; consequently, thoy noed not be discussed again in this section.
3. Techniques of Joining Flanges to Webs a. Silver solderinc with an oxyacetylene torch In joining the pieces of steel togother to form a model, we wanted a strong joint, which could be obtained without heating the steel into its critical rance. Heating to a low temperature was desirable also to avoid large expansions and accompanying distortions. Silver soldering seemed to possess all of the above desirable characteristics. The "Easy Flow" solder we usea flowed freely at 11750 F., which is woll below stecl's critical temperature, and it possessed a tencile strength of approximately 65,000 psi.
(1) Joint thickness

In the "Welding Kendbook" of the American Welding Society, a graph is shown oxpressing the strength of a soldered butt joint, using silver solder to join stainless steel, as a function of the joint thickness. With a joint thickness of 0.003 inches, the joint strength was \(117,000 \mathrm{psi}\). while with a
\[
1+1-2015
\]


 - Motioge shay ox













\[
\operatorname{dan} 0.0_{8}
\]








thicknoss of 0.024 inchos, the strength was 47,000 psi. This shows the desirability of having a close fitting joint between the pieces being joined.
(2) Keating and fluxing

Before trie joint was heated, a coating of flux* was painted on the surfaces to be joined, its purpose boing to prevent oxidation of the solder and steel surfaces being joined, to dissolve any oxides that might fom durine leatinc, and to assist the flowIng of the alloy. The flux also serves as a temperature indicator, in that the joint should be hoated until the flux remains fluid ift the torch flame is removed for an instant.

The models we made consisted of tee and wide-flange sections. In joining the wob to the flange, the torch was held in a position so that the ilame (a slightly reducine flame was used) was approximately parallel to the axis of the joint being soldered. (See pigure 12.) By directing the flame in this manner, the material in the vicinity of the torch tip was hoated to tho soldorine tomporature,
* A Borax and Boric Acid mixture.


 . Strilel apldad tanell










 (Anateal

 molkinos a mi bics now detel wid : citast as
 ont cif fasimul ciedoninesing bit fe9ne wave




whils the material away from the torch tip in the direction of the flame became preheated to a relatively high temperature. Whon the correct temporature was reached, as indicated by the fluid flux, the silver solder rod was touched to the joint. The solder flowed freely along the joint until the joint became too cool. By moving the torch slowly and applying solder from the rod at about every inch, a strong joint was obtalned throughout the length of the pieces.

If the joint is dirty, or if the flux is rubbed off at a point along the joint, no anount of heating will cause the solder to adhere to the pieces. In this ovent, wait until the pioces cool, clean and reflux the spot, thon releat end solder it.
(3) Test samples and rosults

In order to check the strength of the silver solder joint in shear and tonsion, test samples of joints were prepared and tested. (See Figure 13.)

Shesr test
\(a=1\) inch
\(L=1\) inch
\(b=3 / 4\) inch
\(h=.056\) inch
Two inches of joint tested in shoar was









 unentid fole to itsuer mbs suodguonid
 ing , araiol, bild mode intay a is tha beithes ut inlibe ait atato LII" spurana 30 tawom









stroncer than the parent metal, while one inch tested in tension broke at 2830 pounds. The strongth of tho joint was scen to be more then sufficient for our purposes.



 ,
(4) Boam tests and results

\section*{Beam \# 12}

Beam \#l2 was a "TT" boam constructed by using silver solder rod and an oxyactelylone torch, in Jigy \#z. It was tested on the verticel loading frame with the results as Eiven below:
\begin{tabular}{ll} 
Dimensions of bean & \(b=1.5\) inches \\
(See Fieure 10) & \(t=0.056\) inches \\
& \(d=1.56\) inches \\
& \(L=22\)
\end{tabular}

The noutral axis was computed to be .417 inches above the base.
```

Moment of Inortia (I) = .0905
Doflection (D) =.0817 P x 10.3
Stress (f) = 69.3 P
Dial Reading

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Loed & Zero & Loaded & Act. Defo & Comp. Def. & \% Diff. & Stress \\
\hline 10 & . 4107 & . 4132 & .0015 & . 00082 & 83.0 & 690.0 \\
\hline 25 & . 4110 & . 4141 & .0031 & . 00204 & 52.0 & 1735.0 \\
\hline 50 & . 4110 & . 1170 & . 0060 & . 00408 & 47.0 & 3470.0 \\
\hline 75 & . 4107 & .4186 & . 0083 & . 00612 & 45.5 & 5200.0 \\
\hline 100 & . 4108 & . 4220 & . 0112 & . 00817 & 37.1 & 6930.0 \\
\hline 125 & .4110 & . 4242 & . 0132 & . 01020 & 29.4 & 8670.0 \\
\hline 150 & . 4111 & . 4259 & . 0148 & . 01223 & 21.0 & 10400.0 \\
\hline
\end{tabular}

This beam was distorted from heating. The web wes not exactly centered on the flange. The joint, however, appeared to be very cood.

\section*{nd! ints in. vaney mon lal}
\[
\text { ble } c a=7
\]


 : wulud arris

\[
\begin{aligned}
& \text { acha. }=\{f \mid \text { witand le toaph }
\end{aligned}
\]
\[
\begin{aligned}
& 48.18=\{1!\text { N wema } \\
& \text { pachown cafd }
\end{aligned}
\]


 . Deng yiey no ad
b. Fumace Brazing (Soe Plgure 16)

In an efiort to ovorcome the distortion of the material boing joined rosulting from localized heating with a torch, fumace brazing was tried. The bonding alloy was gilver solder, in the form of a thin foll or shect 0.005 inches thick. The pleces to be joined were prepared as stated in section III-A-I. Plux was applied to the surfaces for the purpose previously stated. Finally, strips of the foll were inserted in the joint between the pioces to be united, and tho whole assembly clamped rigidly tocether. The pieces could be clamped rifidy together since there would be no differential expansion between tho model components while in the furnace. The assembly was then insorted in the furnace.
(1) The fumace The furnace used was a Linaberg type, bolonging to the Metalluriy Department. It was an automatically controlled, electric fumace, equipped with a blower for circulating the air within it. prior to inserting the model, the tomperature was raised to \(1175^{\circ} \mathrm{F}\).

The model was left in the fumace for
15 minutes at the \(1175^{\circ}\) temperature, then





















 - 102711

251 n20.0.4. ant at alef iure fobon ज्ञात



Figure 16
taken out and allowed to cool in air.
(2) Patching the model

The model referrod to in the above paraGraph was a wide-flange section, about 22 inches long. Near one end, the flance was not joined to the web for a distance of about 2 inches. It is presumed that this bad joint was caused by an uneven web which allowed too lare an oponine to be filled by the solder. This spot wes patchod by placing another strip of foil in the opening, fluxing it, and reheating the area with a torch. See following paces for the results of the testing of these models.
taken out and allowed to cool in air.
(2) Patching the model

The model referrod to in the above paraEraph was a wide-flange section, about 22 inches lone. Near one end, the flance was not joined to the web for a distance of about 2 inches. It is presumed that this bad joint was caused by an uneven web which allowed too large an opening to be filled by the solder. This spot was patched by placins anothor strip of foil in the openine, fluxine it, and rehoating the aroa with a torch.

See followine paces for the results of the testing of these models.












(3) boan lost and results

Berm \#13

Boam \#13 was a "I" beam fabricated by furnace brazing with silver solder using Jie \#3 modified, and clemping the pioces rigidy together with "C" clamps. It wes tested on the vertical loading frame with the following results.
Dimensions of Beam
\(b=1.5\) inches
(See Fleure 10)
\(t=.056\) inches
\(\mathrm{d}=1.56\) inches
\(L=16\) inches

The neutral axis was computed to be . 417 inches above the base.
```

Moment of Inertia (I) =.0905
Deflection (D) =.0315 P \times 10-3
Stress (f) = 50.4 %

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load & zero & Loaded & Act. Def. & Comp. Def. & \% Diff. & Stross \\
\hline 10 & . 1520 & . 1476 & . 0044 & . 00315 & 28.5 & 504.0 \\
\hline 35 & . 1581 & . 1478 & . 0103 & . 0110 & 6.8 & 1765.0 \\
\hline 60 & . 1600 & . 1478 & . 0122 & . 0890 & 55.0 & 3030.0 \\
\hline
\end{tabular}

The erratic results were thought to have been caused by buckling of the web as the loed wes applied. The beam showed very little distortion, and the joint appeared sound.







- rand est








Beam \#ll was a wide flange soction which was furnace brazed using silver solder. Jigeing method \#3 modified, with the assembly clamped rigidy together, wes used.

Dimensions of Beam (See Figure 10)
\(b=1.5\) inches
\(t=.056\) inches
\(\mathrm{d}=1.61\) inches
\(\mathrm{L}=22\) inches

Monent of Inertia (I) \(=.1172\)
Deflection \((D)=.0631 \mathrm{P} \times 10^{-3}\)
Stress \((f)=37.8 \mathrm{P}\)
\begin{tabular}{rccccccc} 
Load & Zero & Loaded & Act. Def. & Comp. Def. & & Dipf. & Stress \\
110 & .18440 & .19490 & .0150 & & .00695 & 33.8 & 4160.0 \\
185 & .18450 & .20180 & .01730 & & .01169 & 32.0 & 6980.0 \\
60 & .18530 & .19130 & .00600 & & .00380 & 36.5 & 2270.0
\end{tabular}

This beam appeared to be distortion free and unwarped throughout its length. The joint, after it was patched, appeared to be satisfactory. The cause of the bad test results could be attributed only to the imperfect joint, Which, even after beine patched, probably was not strong enough.


\(\qquad\)

mone in aeclancelts
(Du medol|
\(\sin 12=(1)\) a locoul 16 armeot
 15.アF= (2) nusなe







Types of Beams Constructed


Figure 17
IV. Check of Beam \#ll by Flectric Strain Gages

Beam \#ll was found to be very satiafactory when loaded on the vertical loading frame. The average variation between the computed and actual deflections of this model under loed wes less than two percent. It could be presumed, then, that as a whole the model was ecting as a wide-flange beam should. However, in order to chock this bean further and in particular to ind out something about the stress distribution at various sections along its length, geveral SR-4 electric strain gages were mounted on \(1 t\).
A. Location of Gages

A total of 11 ceges were mounted on the web and flange of the beam as show in Figure 18. Geges \#l and \#4 were located at a distance of one boam dopth away from the centerline of the boem, where the load was applied. According to the St. Venant principle, the stress at this section should be as given by the elastic theory. Grges \(\# 2, H 3\), 45 , \#6, and \#7 were placed at a distance of three beam dopths away from the load on one side of the mid-point while gages \#8, \#9, \#10, and \#11 wero placed at a liko distance on the other side of the mid-point. By locating the gages at these sections and placine some on the flange and others at differont distances from the noutral axis on the wob, we attompted to obtain a representative set of stress values.
B. Loading and Rosults

As stated previously, this beam had already been checked on the vertical loading frame. Since it was antici-








 Bnous 20 antimool is












 athusol lon yatbiat .ll


\(\infty\)
or
\(\because] \quad \square^{-1}\)
\(-7\)
10
Neutral Axis

Figure 18
pated that models made by our tecrinque would bo tested eventually on the horizontal loading frame, it was neceasary first of all to check the action of the horizontal loadng frame. (See pigure 19.) It vias feared that there would be some friction losses caused by the chenee in direction of applicetion of the load over a pulley.

Beam \#ll was placed upon the loading frame in a horizontal position with steel ball bearings, sendwiched between glass plates, supportine 1t. (Soe Figure 14.) The same loading yoke that wes used for vertical loading was supported at the center of the bean on ball bearings. The flanges at the end of the bearn were pushed snugly against the vertical knife edge supports, making sure that the flances were boaring along their whole longth against the knifg odges. A load of known value was applied, then, at the end of a steel cable, which passed over the pulley and was attached to the yoke. The results of this loading are shown below:

\section*{Dial Reading}
\begin{tabular}{llllllll} 
Load & 2ero & Loaded & Act. Def. & Comp. Def. & \& Diff. & Stress \\
10 & .0745 & .0826 & .0081 & & .0080 & 1.25 & 405.0 \\
20 & .0745 & .0900 & .0155 & & .0160 & 3.1 & 810.0 \\
30 & .0745 & .0979 & .0234 & & .0240 & 2.5 & 1215.0 \\
40 & .0745 & .1058 & .0313 & .0320 & 2.2 & 1620.0 \\
50 & .0745 & .1138 & .0393 & .0400 & 1.75 & 2025.0
\end{tabular}

















\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 360218 & . 1419 &  & . 205.218 & bebeal & H2日 & b190t \\
\hline 0, 105 & M 2.1 & cesob. & shio. & 8 Rin . & assc. & QS \\
\hline 6.ama & 1.6 & 0F-8. & anis. & sous. & abro. & 0 O \\
\hline D. 5185 & a. & 0404. & 1280. & byeo. & 3090. & 05 \\
\hline 8.cavi & 9. 8 & 0.5s. & S200. & csol. & aspo. & 03 \\
\hline D.alces & 48. & nqua. & ¢ 21. & ast. & 8980. & C8 \\
\hline
\end{tabular}

Horizontal Ioading Frame


Figure 19

A comparison of the actual and computed deflections shows that the friction losses are neclicible since the actual differences are no eroater than those occurring with vertical loading. These encouraging results showed that the horizontal loadine frame, with all of its advantages in accomodating lare models and in tre ease of applyinc diversified loads, could be used for future tests.

Loads from the en-4 gages were connocted with the indicating device, and values of etreins read for alferent loads. The results of these loadings are shown on the next few paces.





 -a/ast andaf vol baso ad biwos




Form of Computations for strosses at "arious Sections Along Beam f11

Computationa:
\[
\begin{aligned}
& \text { Section at "d" distance from the center (See Flgure 18) } \\
& \text { II }=\left(\frac{p}{2}\right)(24.5)=12.25 \mathrm{P} \quad I=.4128 \\
& \text { Computed } f=\frac{1 / c}{I}=\frac{(12.25, p)(c)}{.4128}=29.6 \mathrm{pc} \\
& \text { Actual } f=\text { er }=e \times 10^{-7}
\end{aligned}
\]

Section at 3 "d" distance from the center
\(M=\left(\frac{p}{2}\right)(19.56)=9.78 \quad 3\)
Computed \(\mathrm{f}=\frac{\mathrm{Mc}}{\mathrm{I}}=\frac{(9.78 \mathrm{P})(\mathrm{c})}{.4128}=23.7 \mathrm{Pc}\)
Actual \(f=e \mathrm{E}=\mathrm{e} \times 10^{-7}\)

Terms Defined:
I, moment of inextia, inches \({ }^{4}\)
M, bending moment, inch lbs.
P, load, Ibs.
f, stress, lus./inch \({ }^{2}\)
c, Gistance from noutral axia of beam to center of gage
e, strain inciicated by sR-4 gage, micro-inches/irach
E, mociulus of elasticity of aluminum, lbs./incli \({ }^{2}\)
Values of c :
\begin{tabular}{lll} 
gage 1, 1.238 & gage 5, . 88 & gage 9, 1.238 \\
gage 2. 1.238 & gage 6, .45 & gage 10, .88 \\
gage 3, 1.238 & gage 7, 0 & gage 11, .93 \\
gage 4, .47 & gage 8, 1.238 &
\end{tabular}
 in mos

18waisalosias:

\[
y+5 \cdot=r \quad 4-1|=(5)| r \mid=1
\]
\[
\beta \rightarrow 0 L=0=\ln =1 \text { Lacisa }
\]

4 n

Bend 2mal neral

 .4nty swant :4
2-9n2l).bic geaegas 32



40. 19 anocar

BKKl. 8 - 8 ank
15. s. \(3^{3}\) whik
252.1 ; 4 " \(=0=\)
213. 498 5abs
20. , 22 Nad
\[
\begin{aligned}
& 9 \text { or } 8 \mathrm{a}^{2} \\
& 54.5 \times 3-4 \\
& \text {-4. } 5 \text {, } 5 \text { mars } \\
& 24 . \quad i^{2}+5=3
\end{aligned}
\]
\[
\begin{aligned}
& -5 \cdot 8.8=\left(8(, 4)\left(\frac{1}{1}\right)=1\right.
\end{aligned}
\]
\[
p=10 \mathrm{lbs} .
\]

Gage
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}

Zero \(\quad 0622011307321900 \quad 0370136114531052188407980260\) Lorded \(059800910709188703501351145210221860 \quad 07790273\) \(\begin{array}{llllllllllll}\text { - } & 24 & 22 & 23 & 13 & 20 & 10 & 1 & 30 & 24 & 19 & 13\end{array}\) \(\begin{array}{lllllllllllllllll}\text { Act. } 1 & 240 & 220 & 230 & 130 & 200 & 100 & 10 & 300 & 240 & 190 & 130\end{array}\) \(\begin{array}{llllllllllllll}\text { Comp. } & 1 & 367 & 293 & 293 & 138 & 207 & 106 & 0 & 293 & 293 & 209 & 220\end{array}\) \% Diff. \(34.524 .921 .5 \quad 5.8 \quad 3.4 \quad 5.7 \quad 2.418 .1 \quad 9.041 .0\)
\[
P=20 \mathrm{lbs}
\]

Gage
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}

Zero
06220113073219000370136114531052188407980260
Loaded 05610064068618710332134014540998183507610288 \(\begin{array}{llllllllllll}\text { • } & \begin{array}{lllllll}61 & 49 & 46 & 29 & 38 & 21 & 1\end{array} & 54 & 49 & 37 & 28\end{array}\) \(\begin{array}{llllllllllllllll}\text { Act. f } & 610 & 490 & 460 & 290 & 380 & 210 & 10 & 540 & 490 & 370 & 280\end{array}\) \(\begin{array}{llllllllllll}\text { Comp. f } & 735 & 587 & 587 & 277 & 415 & 213 & 0 & 588 & 588 & 417 & 441\end{array}\) \% Diff. \(17.016 .521 .7 \quad 4.7 \quad 8.5 \quad 1.4 \quad 8.216 .711 .236 .4\)
\[
r=301 \mathrm{bs}
\]

Gace
Zero
Loaded 05200035066218580312132814530368180807430300
\begin{tabular}{lrrrrrrrrrrr} 
• & 93 & 78 & 70 & 42 & 58 & 33 & 2 & 84 & 76 & 55 & 40 \\
Act. f & 930 & 780 & 700 & 420 & 580 & 330 & 20 & 840 & 760 & 550 & 400 \\
Comp. f & 1100 & 880 & 880 & 417 & 625 & 320 & 0 & 881 & 881 & 626 & 662 \\
\% Diff. & 15.5 & 11.3 & 13.6 & 0.7 & 7.2 & 3.1 & & 4.6 & 13.7 & 12.1 & 39.7
\end{tabular}






 \(\operatorname{code} 58=1\)






\[
100 t \operatorname{pr}=7
\]
\(\qquad\) Sy数






\[
I=40 \text { Ihs. }
\]

Gage
\begin{tabular}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}

Zero \(\quad 06220113017321900 \quad 0370136114531052188407980260\)
Loaded 04980009064018400292131714521022186007790273 \(\begin{array}{llllllllllll}- & 124 & 104 & 92 & 60 & 78 & 44 & 1 & 30 & 24 & 19 & 13\end{array}\) \(\begin{array}{lllllllllllll}\text { Act. f } & 1240 & 1040 & 920 & 600 & 780 & 440 & 10 & 300 & 240 & 190 & 130\end{array}\) \(\begin{array}{llllllllllll}\text { comp. f } & 1470 & 1175 & 1175 & 555 & 831 & 426 & 0 & 293 & 293 & 209 & 220\end{array}\)

\[
p=50 \text { 1bs. }
\]
\begin{tabular}{llllllllllll} 
Gage & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}

Zero 06242115073119000564135514511052159407980260
Loaded 04611934062018290273130114490906176307090329 \(\begin{array}{llllllllllll}* & 163 & 131 & 111 & 71 & 91 & 54 & 2 & 146 & 121 & 89 & 69\end{array}\) \(\begin{array}{llllllllllllllll}\text { Act. f } & 1630 & 1310 & 1110 & 110 & 910 & 540 & 20 & 1460 & 1210 & 890 & 690\end{array}\) Comp. f \(1838 \quad 1470 \quad 1470 \quad 6951040 \quad 533 \quad 0 \quad 1470147014421102\)






 0.18 0.0 1.11 8.6
 . 4 20 1
\[
\cdot a<t \text { 08 }=1
\]
I2 if 8 O \(\quad 8 \quad 3 \quad 8 \quad 1 \quad 8 \quad 8 \quad 8 \quad 1\)




 8.758 .011 .015 .0

\section*{C. Conclusions}

In general, the differonce between the comuted and actual values of stress bocomes less as the loed is increased. This indicates that for hifher stresses, errors introduced by slight inaccuracies in construction have reduced offect. The difference between values of stress indicated by cauen 2 and 3 shows that the odge of the flange participates less in resiating the losd then the conter of the flango. Mhis was probably due to a slicht buckling of the flangs at its outer edge. Gages 4 and 6, which were located on the web midway between the neutral axis and the flance, gave consistently Eood results. This was due, it was thoueht, to their location away from the point where the woo and flange wero joined. Gages 5 and 10, located on the web near the flance, ceve good results, but a little less accurately than eages 4 and 6 . The difference between stresses at fages 8 and \(y\) was caused by the knife edge of the loading yoke not bearlng evenly across the top flange. This caused ono side of the flane to assume more load than the other. No reason can be given for the large discrepancy between the computed and actunl stresses eiven by eqge 11, unless 1 t was due to a defective Eage.

An overall comparison of computed and actual strosses Indicated that the model was acting satisiactorily. The stress distribution closely approximated that Eiven by the flexural theory.





















\section*{.encla}

\section*{}


V. Conetructicu asic nestime a dicid srame

The construction and testing of a ridid frome was considered as the culmination of all the work done on this thesis. A rifid frame is one that is constmicted to resist moment at the joirts. The mothod of buildine a joint to resist moment may be either by riveting or welaing. It is in this section that wo discuss how we constructed and tosted a wolded rigid frame.
A. Purpose

The task of constructing a rigid frame was undertaken for two main reasons. The first, and most important to us, was to investigate the soundness of our techniques and methods in building models other than plain stralght beams. Our last tests of beams were very successful, however, the beans were all of the same design. Thus, in order to be certain that the techniques and muthods were sound, we built the rield Irame as shown in Figure 20. It would have been possible to constmuct a differently shapod model to test, but it was for the reason mentioned below that made us decide in favor of a rigid frame. As evidenced by the tests run on rieid frames, as mentioned in the introduction, there was still rnuch to be learned, perticularly about the stresses at the knees. Therefore, by building a rifia freme, we hoped not only to prove that our techniques were sould, but also to advance, perhaps, the understanding of stresses at knoes in rigid erames.

\section*{B. Design}

The design of the frame was not completely an





 \(. \Delta=\mid I^{\prime \prime}\)
\(\square\)

\section*{350y…}















 ailaect. 5


Figure 20
arbitrary one. Te atitonptra to build a frane that, although not an exact copy of a larec structure, was similar in most ways to on that mieht possibly be built. The inportant foature that influencea our leslen was the limit we placed on the amount of horizontal shear trat wo would allow. Althouch our sample teats indicated thet we could co to about 12 Ibs./Inch, wo triod to stry down lower than 813 s ./inch to be sure that no lam would wo dono to tho wolds. Therefore, wo desiened the framo to five us a maximum deflection with the span beinc used, along with the lovest possiblo horizontal shoar for any Eiven loaci.

\section*{C. Construction}

The ricid frame wes constructed usine the alladn solder method. It mes held and supported as indicated in the discussion under jigeine \({ }^{\prime \prime} 3\) modified.

The bese deteil of the leys is indicated in ligure 21. Since there are several ways of testing the frame, it was necessary to develop a base detail that would ecommodate any desired method. Therefore, a plece of aluminum plate about l/4 inch thick was welded to the lusse of each leg. Two holes were drilled through each plate so that different types of base attachments could be usea. The particular attachment we used was a simulated pin on cach lę. This was accomplished by bolting a plece of steel bar, rounded on the bottom, to the plate. When the rigid frame was mounted on the horizontal loading frame, the steel bar was inserted into a slotted plate mounted on the loading freme. This slot supported the bar at the bottom and along the sides.









 . binc mavil cue loz quale















 . usbie ede nonfe due inagyad wh?

Rigid Firame Base Detalls


Since tio iunctio ot tie irane was \(C\) ft., it was inprac= tices to cuit tho Inanues anc wob in onc piece. rfierefore, It was necessary to devise a metriod for aplicing. It was felt that the best way to insure tho maximura strencth was to stacer the splices. Tho location of these splioes ane shown in Picure 22. In makinu a splice, tio ends of the material shouls be prepared as show in Fiture 22. This Is a recognized netrod for butt joints as rocommended by the Aluminum Company of America. The splices wero made using alladin solder, care being usec not to apply too much heat, such that the pleces beine joined would warp at the splice.

\section*{D. Mountins}

The irame was mounted on the horizontal loading
frame in the same way that beam \#ll was mountod. (Noe ligures 23, 24 and 25.) The foum support points used wore under the two knees, and one on each side of the load point. Lateral support was providel by two pound weignts placed on the irmane above tine support points. It should bo noted heje thet great care must bo taken to insure that tho boam is supported correctly at the bases. It is important to have both the bottom of the steel bar and the side of the steel bar bearing along the wkole length of the support, or the readings taken will be inaccurate.











Ailloman id











\author{

}

Notches \(-3 / 16^{\prime \prime}\)
apert: \(1 / 1\) en \(^{\text {deep }}\)


Rdgid Frame showthe locetior of Sullers and Sylico Detali.
Fisure 22

Rigid Frame on Horizontal

\section*{Loading Device}


Rigid Frame Peak Detail

E. Computations
1. Solution for Deflection of Rigid Frame by the Conjugate Structure Method for a Pinned Base.

See Figure 26
(a) \(D_{A}=M x x=(20)(341 P)(2)=13640 P\)
(b) \(\mathrm{d}_{\mathrm{H}}=\mathrm{Mxx}=(72)(8)(2)+(2)(455)(18)+(2)(228)(20)=26632\)
\[
H_{A}=\frac{13640 \mathrm{P}}{26632}=.513 \mathrm{P}
\]
(c) \((60.9 \mathrm{P})(6.25)+(65.75)(60.9 \mathrm{P})+(37 \mathrm{P})(72)-(51.7 \mathrm{P})\) \((30.25)-(51.7 P)(41.75)-72 \theta_{E}=0\)
\[
\frac{3333 \mathrm{p}}{72}=\theta_{\mathrm{E}}=46.25 \mathrm{P}
\]
\[
\begin{aligned}
\frac{E I D_{B}}{2}= & (46.25 \mathrm{P})(12)-(37.0 \mathrm{P})(4)+(60.9 \mathrm{P})(2.08)- \\
& (51.7 \mathrm{P})(8.16)=111.8 \mathrm{P} \\
D_{D}= & D_{B}=\frac{(2)(111.8)}{\left(10^{7}\right)(.4)}=.0000559 \mathrm{P} \\
E I D_{C}= & (46.25 \mathrm{P})(36)+(51.7 \mathrm{P})(5.75)-(60.9 \mathrm{P})(29.75)- \\
& (37 \mathrm{P})(36)=1182 \mathrm{P} \\
D_{C}= & \frac{1182 \mathrm{P}}{\left(10^{7}\right)(.4)}=.000296 \mathrm{P}
\end{aligned}
\]



\[
\hat{i n}=1^{8} 25-(34 \cdot 25)(5+.20)-(02.06)
\]
\[
139 . D=y^{2} 0=\frac{9.8583}{25}
\]
 3 3.12L \(=(65.1)(98.14)\)
\(488006000 \cdot=\frac{10 \cdot 20118)}{(1, \cdot)(\sqrt{5} 02)}=e^{4}=\pi^{9}\)

\[
\begin{aligned}
& 3.98(5=55)(5 \times 5) \\
& 5 \text { aus000. }=\frac{9.8(1) L C}{(1.1101)}=0^{d}
\end{aligned}
\]
\[
\begin{aligned}
& 09 \text { ncoask pal }
\end{aligned}
\]

\section*{Diagran for solution of Conjurete Structure}

(b)


2. Crock íviution foz Ioflection of Hibid Irame by Intecration Usint tho Method of Virtuel iork
\[
D_{C}=2\left(\frac{598 P}{I I}\right)=2 \frac{(598 P)}{\left(10^{7}\right)(.1)}=.000290 p
\]
\[
\begin{aligned}
& E I D_{c}=\int \operatorname{lnc} d x \\
& E I D_{c}=\int_{0}^{12}(.513 p x)(.513 x) d x \\
& \int_{0}^{37.93}\left[\begin{array}{l}
\left.[.513 p)(12+x \sin a)-\frac{p}{2}(x \cos a)\right] \\
{[(.513)(12+x \sin a)-.5(x \cos a)]}
\end{array}\right. \\
& =.264 p \int_{0}^{12} x^{2} d x+\int_{0}^{37.93}(38.1 p-3.85 p x+ \\
& \left..0974 P x^{2}\right) d x \\
& =152 P+1441 p-2760 P+1765 P \\
& =598 \mathrm{P}
\end{aligned}
\]


\[
\text { wh }\left(x_{0}+4+P N T\right.
\]
\[
5 \operatorname{moy}+1 \quad \text { bere }-213 \Delta 1-161=
\]
\[
\text { N FME }=
\]

\[
\begin{aligned}
& \text { - } 1=\alpha-251
\end{aligned}
\]
3. Corroctions to Deflections fesultine from Novement of Base.

It wes noted that the base defloctad a slicht anount when the structure was loadod; therefore, it was necessary to correct previously computed deflections for this movement. This was accomplishod by interpolating between the deflections resulting from a pinned base and a base on rollers to obtain the correct deflections.
a. Solution for horizontal aiflection at \(E\), with \(E\) on rollers. (SOe lifure 27.)
\[
\begin{aligned}
& D_{\mathrm{E}}=\int \frac{1 m d x}{E I} \\
& \frac{E I}{2} D_{E}=\int_{0}^{37.93}(P / 2)(.949)(x)(12 \\
& D_{\mathrm{E}}=\frac{(2)(6820)(\mathrm{P})}{(.4)\left(10^{7}\right)}=.00341 \mathrm{P}
\end{aligned}
\]
\[
\frac{E I D E}{2}=\int_{0}^{37.93}(P / 2)(.949)(x)(12+.316 x) d x=6820 P
\]
b. Solution for vertical deflection at \(C\) with \(E\) on rollers. (Soe Fifure 27.)
\(D_{C}=\int \frac{M \max }{E I}\)
\(\frac{E I D}{2} C=\int_{0}^{36} \cdot 25 \mathrm{P} \times{ }^{2} \mathrm{dx}=3888 \mathrm{P}\)
\(D_{C}=\frac{(2)(3888 p)}{(.4)\left(10^{7}\right)}=.001944 \mathrm{P}\)
c. Sample correction for any load P.
\begin{tabular}{lcc} 
& \(\mathrm{D}_{\mathrm{C}}\) & \(\mathrm{D}_{\mathrm{E}}\) \\
Base pinned & .000296 P & 0 \\
Actual Conditions & Z & R \\
Base on rollers & .001944 P & .00341 P
\end{tabular}








\[
\frac{-1}{2-1}+x x^{2}
\]





\[
9 \operatorname{cis}=\cos ^{2} t=00 \cdot{ }_{0}^{a b}=0 / 2 \frac{72}{9}
\]
\(4>w i 06 \cdot=\frac{(9 \text { ghatila }}{\left.T^{Y} 01\right)(D .1}=n^{2}\)
.9 buct kois 201 allomita eituesl . 4


Diaprom for jolution of ceflactions by irtual ork

\(R\) is the sum of the outward deflections at the bases, as determined by mechanical dials. \(Z\) is the corrected deflection at \(C\), arrived at by interpolation.

The corrected deflection at the knee is arrived at by applying the movement of the base directly to the computed value at the knoe.
4. Computations for stresses at various sections alone the frome. (soe Flguro 20.)

On the lee, 1.5 d from kneo:
\[
\begin{aligned}
& M=(.513 \mathrm{P})(8.30)=4.27 \mathrm{P} \\
& f^{\prime}=\frac{M c}{I}=\frac{(4.27 \mathrm{P})(\mathrm{c})}{.40}=10.60 \mathrm{Pc}
\end{aligned}
\]

On the firder, 1.5 d from knee
\[
\begin{aligned}
B= & .513 \mathrm{P}\left[(3.75)\left(\frac{12}{37.93}\right)+12\right]-\left(\frac{P}{2}\right)(3.75) \\
& \left(\frac{36}{37.93}\right)=4.99 \mathrm{P} \\
\mathrm{f}= & \frac{M C}{I}=\frac{(4.99 P)(c)}{.40}=12.5 \mathrm{PC}
\end{aligned}
\]

On the eirder 1.5 d from 0 :
\[
\begin{aligned}
M= & (.513 \mathrm{P})\left[(34.55)\left(\frac{12}{37.93}\right)+12\right]-(\mathrm{P} / 2)(34.55) \\
& \left(\frac{36}{37.93}\right)=4.60 \mathrm{P} \\
\mathrm{~S}= & \frac{M c}{I}=\frac{(4.60 \mathrm{P})(\mathrm{c})}{.40}=11.5 \mathrm{Pc}
\end{aligned}
\]
5. Correction to stresses resultine from movement of bese.

Due to the movement of the base it was necessary to apply a correction to the stresses computed in section 4


 - .asbiderbive bu




pomi |evel it a.f incor! Mas no
\[
1+\cdots+=\left(\frac{a 5}{\operatorname{win} \cdot 5 t}\right)
\]
\[
x a \cdot I=\frac{\operatorname{coc} \cos \cdot \Delta 1}{8 n}+\frac{\pi}{T}=?
\]

 . wasd lo


\[
\begin{aligned}
& \text { coc. } 2=1 \cdot \mathrm{x}=1 \\
& 50 \pi \cdot 61=\frac{1011}{n 6} \cdot 2-\frac{41}{4}=2
\end{aligned}
\]
\[
\begin{aligned}
& 489.1=(65.936+820 .)=3 \\
& 0 q 3 d .01=\frac{(2)(4-1) \cdot+1}{(14)}=\frac{21}{3}=3
\end{aligned}
\]
above. The mannor in whicle the stresses were corrected is shown below.

Bese Pinned
\(\mathrm{H}_{\mathrm{E}}\)
.513 P
\(Y\)
0
\(\mathrm{D}_{\mathrm{E}}\) 0 Q
.00341 P
\(Q\) is the average of the outward defloction at the two bases. \(Y\) is the corrected value of horizontal reaction ( \(F_{E}\) ) due to movement of the bases. The corrected stresaes are obtained by multiplying the computed values, as obtsined in section 4 above, by \(\frac{Y}{.513}\).
4 111.8.


 - vellid sur to jímavion


F. Lobd Tests and Results
1. Deflections
a. Deflections at C

Dial Reading
\begin{tabular}{|c|c|c|c|c|c|}
\hline Load & Zoro & Loadea & Act. Def. & Corr. Def. (z) & \% Diff. \\
\hline 20 & .1085 & . 11225 & . 00375 & . 00333 & 10.6 \\
\hline 20 & . 1095 & . 1166 & .0071 & . 00683 & 3.2 \\
\hline 30 & . 2095 & . 1212 & . 0117 & . 01036 & 12.9 \\
\hline 40 & . 1090 & .1250 & . 0160 & . 01443 & 0.8 \\
\hline 50 & . 1090 & . 2.290 & . 0200 & . 01796 & 11.3 \\
\hline
\end{tabular} b. Deflection at \(B\) or \(D\)

Dial Reading
\begin{tabular}{llllll} 
Load & Zero & Loeded & Act. Def. & Corr.Def. & \\
10 & .04085 & .04185 & .0010 & & .000609
\end{tabular}
c. Sun of the Deflections of the two bases
\begin{tabular}{ll}
\(\frac{\text { Load }}{10}\) & \(\frac{\text { Defloction }}{\text {.0009 }}\) \\
20 & .0020 \\
30 & .0031 \\
40 & .0054 \\
50 & .0066
\end{tabular}

2. Etresses
\[
P=102 \mathrm{bs} .
\]

Gace Zoro

Loadea e

Act. 1
Corr. \(f\) of Diff.
07.
1.018.
\[
P=201 \mathrm{bs} .
\]

Gage
Zero
Loaded e

Act. f \(\begin{array}{lllllllllll}270 & 280 & 380 & 130 & 110 & 260 & 80 & 220 & 180 & 100\end{array}\) Corr. f \(\begin{array}{lllllllllll}280 & 280 & 304 & 136 & 136 & 301 & 102 & 260 & 260 & 118\end{array}\) \% DIff. \(3.5 \quad 0 \quad 7.8 \quad 4.4 \quad 19.1 \quad 14.5 \quad 21.6 \quad 18.2 \quad 30.8 \quad 15.2\)
\[
P=30 \mathrm{lbs} .
\]
\begin{tabular}{lllllllllll} 
Gage & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}
Zero
Loaded
\begin{tabular}{lrrrrrrrrrr} 
& 42 & 42 & 43 & 18 & 20 & 38 & 13 & 43 & 31 & 16 \\
Act. f & 420 & 420 & 430 & 180 & 200 & 380 & 130 & 430 & 310 & 160 \\
Corr. f & 419 & 419 & 457 & 204 & 204 & 457 & 150 & 389 & 389 & 178 \\
\% Diff. & .2 & .2 & 5.9 & 11.7 & 1.9 & 16.9 & 16.1 & 10.5 & 20.3 & 10.1
\end{tabular}
- WI OF *


Bat
ตe*5 -



 \(-246 O E=1\)


3290






\[
.2010 \delta>12
\]
Q8 \(2+3 \quad 6 \quad 3 \quad 4 \quad 3 \quad B \quad 1\)


\section*{}





\[
p=40 \mathrm{lbs} .
\]

Gace
zero
Loaded \(\begin{array}{lllllllllll}\text { Act. } 1 & 580 & 530 & 530 & 230 & 270 & 490 & 170 & 510 & 390 & 210\end{array}\) Corr. \& \(\quad \begin{array}{llllllllll}557 & 557 & 604 & 270 & 270 & 604 & 205 & 517 & 517 & 236\end{array}\) \% Diff. \(4.14 .212 .214 .8 \quad 0 \quad 18.817 .0 \quad 1.3 \quad 24.611 .0\)
\[
P=50 \mathrm{Ibs} .
\]

Gege
\begin{tabular}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}
zero \(\quad 0219187411980768022016981998133010721981\)
Loeded 0149180612630796018616342018139310231953
\begin{tabular}{lrrrrrrrrrr} 
& 70 & 68 & 65 & 28 & 34 & 64 & 20 & 63 & 49 & 28 \\
Act. f & 700 & 680 & 650 & 280 & 340 & 640 & 200 & 630 & 490 & 280 \\
Corr. f & 696 & 696 & 756 & 337 & 337 & 755 & 256 & 645 & 645 & 295 \\
\% Diff. & .6 & 2.3 & 14.0 & 10.9 & .9 & 15.3 & 21.3 & 2.3 & 24.9 & 18.6
\end{tabular}
\(.0012 \mathrm{DE}=\)

over boseraz 3.4 nk 1). Fr en \(.3127 \%\)
\[
\cdot \mid 5 E \quad C s=5
\]

rim
 nest
 ax is ed de bi le les na lib of



3. Conclusions

In the process of testine our beams and the rifid frame on the horizontal losding device, we carne across a method of loading that eliminates the possibility of the veam twistine due to tho eccentricity of the load.

It was necessary to have some mothod for centering the load since any twisting causes errors in the values of the stresses. The vey this was cione for the rifid freme is indicatod bolow.

Creces \(\$ 2\) and \$2 wore mounted, one on each side of the loaded flaneo noar the Inad point. Tho loading yoke was then adjustoa so that the stresses indicatea by these eages wore as nomr equel es possible. When these stresses are equal, the yoke is spplying the loed correctly to the frame. By using this metroc, the percentage orror for all atrain gages was leas.

Althouch tho differences between the observed and calculated stresses and doflections for the rieid frame were greater than for beam number 11, they were still considered satisfactory. There wore many more sources of error in the construction of a riejic frame. Posaibilitios for inaccuracies were introduced in the fabrication of other than a straight model, in splicine, end in the construction of the base detail. The baso detail, in particular, introducod complications. It should be noted thet corrections to both the derlections and stresses had to be made to compensate for horizontal movement of the base, which was orieinally desiened for no movement.
```

8-iveLrna .-

```






 .antibil Dshasiontel













 in , aco er ent




In icreral, the suthors felt that the results indicate the overall solincmess of the tecliniques and mothods usod.
VI. Discussion

In writing this thesis, we bave attempted to break it down into sections so that each division was a subject in itsolf. This method allowed us to gather the results from oach tost and to present them along with the material from which they were doduced. Therefore, it will not be neceasary for us to mention tho rosulis wo have already listoa. There are, however, several iteras of a ceneral nature that are of interest as an overall result of each mothod atternpted.

The wolding of aluminum using outecrod was very difficult. It took woeks of practice for us to become proficient enough to wold the aluminum without fear of completoly melting the parent material. Also, the heating of the aluminum to a high temperature annealed it so that a large furnace for heat treatment would be required to temper it. We, therefore, conclude that eutecrod wolding is impractical for building models in the laboratury.

From the tests we have run, wo feel that the construction of accurate models by soldering is practical. It is definitely possible to construct models and to obtain reasonable results with close accuracy. The major fault with soldering is that Low loads must be spplied in order to stay within the required limits of horizontal shear. Although the mociels constructed were near perfect, the allowable stress was never developed, and it was, therofore, impossible to ascertain the effects of high stresses.














 - लielribat tele il sembor arlicland








rhe results fros the tosto mun on tho sems constructod With steol and silver aoider wove not Betisfactory. The beans obtained from the fumace method seaned absolutely porrect. Wo have no e.planation for the poor results obtained, other than verliaps that the joint was not perfectly soldered although it apseared to be so. In view of the hich loads the horizontal lo\&dind frame is capable of handline. we feel that the investication of steel should be continuod. It is definitely the feeling of the authors that a small amount of work with the steel inethod would produce very satisfying results.

 Ari Is in lerwen Abilusinion ey mori Lowiebion nowl






 . ibicors ankrelseo

\section*{VII. Conclusions}
A. Aluminum soldering, using alladin rod to form the joint betwoen model components, which are assombled in accordence with jiEeing method number 3 modified, is suitable for model construction.
B. Aluminum welding as a mothod of joining model components is not reasible bocause of the amount of time required to becone proficient in welding, and because of the uncontrollable warpine and diatortion attendant witr it.
C. Furnace brazing aluinum, using outecrod as the filler material, is not possible.
D. With further work and dovelopment, a method of silver soldering stoel to fabricate models suitable for high stresses could be evolved.
sombaras.ay













```

