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ABSTRACT

A general purpose software package was developed to

perform nonlinear constrained optimization of user-defined

engineering design problems of significant complexity using

desktop computers. The package, designated Microcomputer-

based Design Optimization Tool (MDOT), will accept nonlinear

functions of up to ten variables, which may be bounded, with

as many as fifty constraints. It was implemented on a

Hewlett-Packard Model 85 microcomputer with 32 Kbytes of

random access memory.

MDOT employs the method of feasible directions for con-

strained optimization, and a variable metric method for

unconstrained functions. It is interactive, provides for

monitoring the optimization progress, and can be interrupted

to restart from a new point in the design space. Typical

applications of MDOT are in the design of machine com-

ponents, composite laminates, and piping systems.
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NOMENCLATURE

The nomenclature defined here is that used in the text.

Definitions of parameters associated with the program code

accompany the code listings in Appendix B. Boldface charac-

ters denote vectors or matrices.

a One-dimensional search step length

D Inverse Hessian approximation update matrix

F Objective function

G Vector of inequality constraints

H Hessian matrix, or an approximation to its inverse

1 Vector of design variable lower bounds

m Number of inequality constraints

n Number of design variables

p Vector used in constructing D

q Iteration number

S Search direction vector

s Scaler used in constructing D

t Scaler used in constructing D

u Vector of design variable upper bounds

w Scaler used in constructing D

X Vector of design variables

y Vector used in constructing D

VF objective function gradient vector





ACKNOWLEDGEMENT

The author gratefully acknowledges the technical assist-

ance rendered by Professor G. N. Vanderplaats, the equipment

support provided by Pat Carroll and Vee Masuero of Hewlett-

Packard, and the patience of his lovely wife, Daphne.





I- INTRODUCTION

A. OBJECTIVE

This thesis presents, and describes the development of,

a computer software package: "Microcomputer-based Design

Optimization Tool" (MDOT). The motivation for this work

stemmed from the lack of available general purpose programs

capable of performing nonlinear constrained optimization of

engineering design problems of significant complexity using

desktop computers.

In a more general sense, MDOT is intended to help focus

attention on the versatility and computational power of

microcomputers. These machines are a potentially very

valuable resource which is just beginning to be tapped by

the engineering design community.

The remainder of Chapter I is devoted to an overview of

where microcomputers stand in engineering design , where

MDOT stands amid the optimization software currently avail-

able, and the implementation of MDOT. In Chapter II, a

general description of optimization concepts and methods,

and their application to engineering design, is presented.

In Chapter III, the program development of MDOT is de-

scribed, and flowcharts of the algorithms coded are pro-

vided. In Chapter IV, the test problems which were used to

validate MDOT are described, along with the solutions





obtained. Chapter V is a brief summary. Appendix A is the

MDOT user manual. Appendix B contains an annotated listing

of the MDOT program code.

B. OVERVIEW

There are desktop computers available today with memory

size and computational speed in excess of those of the

mainframes of just a few years ago. The fact that their

capabilities are not yet being fully exploited in the day-

to-day process of engineering design can be attributed in

part to the lack of available software. As Falk [Ref. 1:

p. 50] observes, "...engineer s... have little time or pa-

tience to do computer programming." Even among those engin-

eers who have the time and patience, there persists a reluc-

tance to program on microcomputers because of a perceived

lack of general purpose utility or under-estimation of the

capability of these machines.

Design optimization is a concept which, similar to the

desktop computer, has received "mixed reviews" from the

engineering disciplines. While there are few who would ques-

tion the virtue of seeking the "best" solution to a problem,

there are many who are reluctant to relinquish to a computer

what they see as the engineers' proprietary decisions in the

design process . Our whirlwind courtship of computer aided

design (CAD) is being tempered somewhat by a counter trend

back toward "human aided design".
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It was within the framework of these two ideas that the

development of MDOT was undertaken; not only to make avail-

able a useful interactive design optimization program, but

to demonstrate that a powerful general purpose problem sol-

ver can be implemented in a microcomputer. Little knowledge

of programming is required of the MDOT user. Problem entry

and program execution are convenient. The interactive fea-

tures of the code permit the design engineer to keep in

close touch with the progress of the problem solution and to

interrupt program execution to make parameter adjustments

based on engineering judgement.

The chief advantage that microcomputers enjoy over main-

frames is their low cost. Small computers are typically

purchased outright, so that their use incurs no additional

expense for connection or run time. Their major disadvantage

is comparatively slow computational speed, but it is doubt-

ful that engineering design ever progresses so rapidly as to

make it imperative that a solution be obtained in seconds

rather than minutes. In any case, this disparity is rapidly

disappearing with the development of 16 and 32-bit micro-

processor-based desktop computers [Ref. 2: p. 2].

C. OPTIMIZATION SOFTWARE CURRENTLY AVAILABLE

There are several powerful general purpose optimization

programs available, such as COPES/CONMIN [Ref. 3], which can

deal with a wide range of design problems. These programs

11





must reside in a mainframe computer, and their use can be

cumbersome, especially for the occasional user. At the other

extreme are those codes developed for use in computers with

limited memory. Typically these are special purpose programs

employing zero order or simple first order methods, such as

random search or steepest descent, capable of handling only

relatively small problems. They are convenient, but of lim-

ited usefulness.

The gap between these two categories requires that opti-

mization of the great number of general design and analysis

problems which are on a scale that could easily be handled

by small computers be done on a mainframe or not at all.

This often leads to over modeling , wherein a relatively

simple problem is unnecessarily made more complicated in

order to more fully utilize the machine capability or to

justify the expense of computer services. MDOT was developed

specifically to bridge this gap.

MDOT provides the design engineer with a convenient tool

for optimization of nonlinear problems in up to ten bounded

independent variables subject to as many as fifty inequality

constraints. All that is required is access to a desktop

computer, and today there are certainly few engineers who

lack this.

12





D. IMPLEMENTATION OF MDOT

The program development for MDOT was done on a Hewlett-

Packard model 85A microcomputer, which is built around an 8-

bit microprocessor. This particular machine is so often used

as a data aquisition system controller that its stand-alone

computational capability may frequently be overlooked. A

versatile, engineering oriented computer with high machine

precision, it is nonetheless on the low end of the memory

size scale with just 16 Kbytes. The computer's capabilities

were enhanced by the addition of a 16 Kbyte memory extension

module and three read-only-memory modules: the matrix, ad-

vanced programming, and printer/plotter ROMs. As configured,

there were just over 30 Kbytes of memory available for

programming.

MDOT was written in HPBASIC, which differs in some re-

spects from standard BASIC. As such, in its present form

MDOT is limited to use in the HP series 80 computers. With-

out much difficulty, though, the code could be translated

and run on almost any available hardware. Additional com-

ments concerning transferrability of the code are presented

in chapter III.

13





II. OPTIMIZATION

A. APPLICATION TO ENGINEERING DESIGN

Design has been described as the creative process

through which the engineering profession develops devices,

processes and systems to fill the needs of man [Ref. 4:

p. 170]. A "need" must first be defined in terms of specific

requirements which the design must meet. Then the engineer,

drawing on available resources, synthesizes proposed solu-

tions to meet these requirements. Many such designs may, and

usually do, exist. Thus there arises the subproblem of

finding the best of these designs, and the inherently iter-

ative nature of design.

Traditionally, the solution to this subproblem was

sought through comparitive analysis of a reasonable number

of alternative designs; a tedious and expensive procedure

for problems of even moderate complexity. The recent devel-

opment of a broad range of very useful CAD software has made

it possible to remove a good deal of the tedium, and, per-

haps to a lesser degree, the expense of engineering design.

For the most part, though, these tools have made no fun-

damental change in the approach taken to solve the design

problem. What they have done is redefined the phrase "a

reasonable number of alternative designs". By programming

14





the analysis and comparison tasks into a computer, the

engineer is able to consider many more possible solutions in

the same amount of time.

Optimization methods are a significant extension of the

CAD concept in that they enable the engineer to exploit the

capabilities of the computer over the entire scope of the

design process. In optimization, the computer is tasked not

only with analysis and comparison of previously selected

designs, but with selection of the designs to be considered

in subsequent iterations as well. Since this intermediate

design selection can be quite complex, closing the design

loop in the computer can lead to a considerable savings of

time and effort in the search for the optimum.

B. THE NATURE OF THE PROBLEM

Fundamental to the economical solution of the design

problem is that it be quantified and formulated mathematic-

ally to permit conceptual, rather than physical, manipul-

ation of resources. The design, then, is specified by ass-

igning values to a set of independent variables which repre-

sent its physical characteristics. The measure of goodness

of the design used for comparison with others is expressed

as some functional relationship between these variables. The

requirements placed on the design, as well as the physical

limitations of the design itself, define a region in the

multi-dimensional mathematical design space. The design must

15





reside inside this region to be acceptable. In the termin-

ology of optimization, the measure of goodness is the

objective function, the requirements and limitations are

constraints, and designs which fall within the region

bounded by the constraints are considered feasible. As

examples, the set of independent design variables might be

the cross-sectional dimensions of a structural element, the

objective function its weight, and the constraints its

maximum allowable stress and size limitations.

In general, the formulation of a design problem leads to

an objective and a number of constraints, all of which may

be linear or nonlinear functions, explicit or implicit in

many design variables which themselves are subject to limi-

tations, called bounds or side constraints. Stated mathe-

matically [Ref. 5: p. 9], the design optimization problem is

to

Minimize: F(X) objective function

Subject to:

Where

:

Gj(X)<0, j=1,m

1 iixi£u i 1 = 1 in

X S\A1 f Ap) • • • X_

J

T
1 = {1

-J

,l2j««»l n }

uT ={u-| ,u 2 , . . .un }

inequality constraints

side constraints

design variables

lower bounds on X

upper bounds on X

If in the problem formulation it is more convenient to

define the objective function as a quantity which is to be

16





maximized, such as efficiency or torque, then the above

statement may simply be modified to read "Minimize: -F(X)".

C. THE NATURE OF THE SOLUTION

Optimization is an application of mathematical theory

concerning identification of the extrema of functions. In

multivariable calculus, for example, the method of Lagrange

multipliers is developed, which provides a closed form

solution for the extremum of a constrained function. While

useful for demonstrating concepts and developing methods,

such analytical techniques are not practical for solving any

but the simplest of problems. Design optimization methods

involve numerical approximation techniques and iterative

search schemes. They are ideally suited .to, and in fact made

practical only through, the use of digital computers.

Many optimization algorithms have been developed around

widely varying strategies. Common to most are the three

basic tasks that make up one iteration of the solution loop:

1. Selection of a direction in the design space along

which to search.

2. A search for the most improved design in this

direction

.

3. Convergence testing to determine when the optimum

design has been found.

17





For unconstrained problems, these tasks are relatively

straightforward. Addition of a constraint set may, depending

on the sophistication of the method employed, complicate the

first two steps considerably.

Except in the case of zero order methods, selection of a

search direction involves calculation of partial deriv-

atives, for which general purpose optimizers use numerical

techniques, such as finite forward differences. At any point

in the design space, the negative of the gradient of the

objective function indicates the direction in which the

objective function is most rapidly decreasing. This may not

be the best direction in which to search, however, if the

objective function is highly nonlinear or if the design is

near one or more constraints. Efficient algorithms variously

employ constraint gradients, Hessian matrix approximations,

and previous iteration history information in addition to

objective function gradients to select the search direction.

Finding the best improved design along a line in the

specified direction is termed a "one-dimensional search",

because the objective and constraints are treated as func-

tions only of the "distance" along this line from the cur-

rent design point. Techniques employed in the one-dimen-

sional search include the golden section and Fibonacci

methods, polynomial approximations, and combinations of

these [Refs. 5,6]. If constraints are present, the best

improved design may not be the point on this line at which

18





the objective function is minimized. If a constraint is

violated, the design is infeasible, so the search algorithm

must seek the point at which the objective function is

minimized while remaining inside the feasible region.

Part of the optimization problem formulation is specifi-

cation of an initial design point from which to start the

solution process. For constrained problems, the possibility

exists that this initial design will be infeasible. To

provide for this, the search direction routine must find the

direction which will yield the shortest path to the feasible

region, and the one-dimensional search algorithm must allow

for the possible necessity of increasing the objective func-

tion in order to attain feasibility.

Convergence to a global optimum generally cannot be

guaranteed. Theory provides the Kuhn-Tucker conditions

necessary for the existence of an optimum, but these are

neither convenient to evaluate nor sufficient to define

optimality [Ref. 5: pp. 17-20]. In practice, convergence is

typically considered to be indicated by one or more of the

following:

1. Failure to find a search direction which will lead to

an improved design.

2. Given a direction, failure to find any significant

search step length to improve the design.

3. Finding no appreciable design improvement over a

specified number of iterations.

19





If the possibility of local minima exists, the optimi-

zation should be repeated from several different initial

designs. For constrained problems, the optimization process

may fail to find any feasible solution, in which case the

problem must be reformulated.

An iteration in the optimization solution, then, may be

summarized. Beginning from the current design point X q , a

search direction, S^, is determined. Then the one-dimen-

sional search is conducted to find the "distance", a, along

S^, which yields the best improved design. The design is

then updated as

X9 +1 = X^ + aS^

at which point the objective function is reevaluated and the

design checked for convergence.

Optimization algorithmic efficiency and convergence

behavior are affected by the mathematical characteristics of

the problem. As numerical methods, they are susceptible to

ill-conditioning. Truncation and round-off errors, which are

an unavoidable consequence of the use of digital computers,

aggravate this. Given an optimizer suitable to the problem

type, careful problem formulation, as discussed in Appendix

A, is the best insurance against poor optimizer performance.

20





III. PROGRAM DEVELOPMENT

A. BASIC CRITERIA

At the outset of the program development, four basic

criteria were established to be met by MDOT: utility, mini-

mization of required memory, user convenience, and reduction

of problem run time. At points where conflict existed

between them, these criteria were prioritized in the order

listed. Few such compromises were necessary, as the require-

ments were found to be generally complimentary.

The utility criterion meant that MDOT should be a

general purpose optimizer which could be applied to a wide

range of design problems. Minimization of memory was

dictated by the limitaions of microcomputers, and affected

not only algorithm selection and problem size, but many

aspects of the actual coding as well. User convenience

considerations drove the development of those portions of

the code which are interactive, and those involved with

problem entry and output options. Reduction of problem run

time was a factor throughout the development, most notably

in the incorporation of optimization progress display and

the interrupt/restart option.

21





B. MDOT ALGORITHMS

1. Algorithm Selection

Of the many optimization algorithms available, the

zero order methods, as well as the simpler of the first

order methods, were ruled out on the basis of their lack of

general purpose utility. Others, including linear and quad-

ratic programming types, were eliminated because of their

excessive memory requirements [Refs. 7,8]. Finally, the need

to reduce problem run time while retaining utility lead to

the selection of two algorithms, each capable of nonlinear

multidimensional optimization. The first is a variable

metric method which is used in MDOT for unconstrained opti-

mization, the second is a method of feasible directions, for

minimizing constrained functions.

The selection of the one-dimensional search strategy

to be employed was driven by the need to reduce problem run

time. There is a trade-off to be made between the precision

to which the search step length determination is made and

the time required for each optimization iteration. Both the

golden section and Fibonacci search methods can attain very

precise solutions, but to do so they become computationally

expensive. In MDOT the one-dimensional search routines were

designed to seek a less precise step length solution in

order to complete each iteration more quickly. The method

employed in both the optimizers estimates an initial step

length based on a reasonable change in objective function

22





magnitude. The golden section ratio is then used to estab-

lish bounds on the solution, which is finally refined by

polynomial approximation.

2. The Unconstrained Optimizer

From the derivation of the Kuhn-Tucker conditions,

it is known that if at some point X the objective function

F(X ) has a local minimum, then the gradient of the object-

ive at this point, 7F(I ), must vanish and the Hessian

matrix H must be positive definite. Combined with a second

order Taylor series expansion of F(X) about some point, say

X°, near the minimum, these conditions lead to an expression

for the direction from X° to X as

X* - X° = -H(X )
-1,7F(X )

In practice, determination of the Hessian matrix by finite

difference approximation, as well as inversion of the

matrix, would be computationally so expensive as to outweigh

the theoretical gain in algorithmic efficiency.

In variable metric methods, information gathered as

the optimization progresses is used to develop an approxi-

mation to the inverse of the Hessian matrix, which is then

used in determining the search direction. As such, these

first order methods have some convergence characteristics

comparable to those of second order methods. The algorithm

for the variable metric method is shown in Fig. 1.

23





Fig. 1 Algorithm for the Variable Metric Method
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The inverse Hessian approximation is initialized as

an n x n identity matrix. To begin each iteration, the

search direction is defined as

S^ = -HVF(X^)

After the one-dimensional search and design update, H is

modified as
H^ 1

= H^ + D^

where the form of the update matrix D determines which one

of a family of variable metric methods is being used. In

general, D is defined as

Dq . s+wt
pp

T + w-1 H^yCH^y) 1 - ^[H^yp^pCH^y) 1
]

s
2

t s

where

:

P

y

s

t

xq _ xq-1

VF(X^) -VF(X^ _1
)

p*y

y
THqy

Two forms of D, and thus two variable metric

methods, are available in MDOT. The first is the Davidon-

Fletcher-Powell method, where w is set equal to zero. The

second is the Broydon-Fletcher-Goldfarb-Shanno method, with

w equal to one [Ref. 5: pp. 92,93]. As the convergence

behavior of a given algorithm can be somewhat problem depen-

dent, this feature allows the MDOT user to compare the

results of two variations of unconstrained optimization.
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The one-dimensional search routine employed by MDOT

in the variable metric optimizer first finds bounds on the

unconstrained minimum of the objective function, then

refines the minimum by a three-point cubic polynomial

approximation.

3. The Constrained Optimizer

The addition of a set of constraints to the optimiz-

ation problem requires that more sophisticated techniques be

applied to its solution, particularly in the determination

of a search direction and the subsequent one-dimensional

search. As is the case for unconstrained optimizers, it is

generally the method used to find a search direction which

distinguishes the different constrained optimization algo-

rithms. In the method of feasible directions, a search

direction in which a finite step will reduce the objective

function is termed useable, while one which will avoid

constraint violation is called feasible. The direction find-

ing problem is then formulated as a sub-optimization task to

determine the best of the possible useable-feasible direct-

ions. MDOT employs the algorithm presented by Vanderplaats

[Ref. 5: pp. 163-170] for the solution of this sub-problem.

As shown in the flowchart of Fig. 2, the feasible

directions optimizer begins as a simple steepest descent

algorithm, provided the initial design is feasible. Opti-

mization thus proceeds quickly to a point where one or more

constraints are encountered.
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START

Specify Xo

q-

X- Xo

q* q
+ i

F- F(X)

Gj—Gj(X) j=l.m

Find set J of Gj>0

7F-*-VFCX)

VGj--VGj<X) j-1, J

NO YES

S-* -7F Find S

L-D Search

X-«- X+aS

NO
Exit

Fig. 2 Algorithm for the Method of Feasible Direct l ons
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On subsequent iterations the sub-optimization rou-

tine is used to determine search directions so as to satisfy

the fundamental requirement that the optimum design be

feasible. The constrained optimizer in MDOT will accept

initially infeasible designs. In this case, the direction

and search routines are modified so as to attain feasibility

as quickly as possible. Thus a feasible direction and step

length are sought which will overcome the constraint vio-

lations, even at the expense of increasing the objective

function. Once inside the feasible region, optimization

proceeds as before.

As in the unconstrained case, in the one-dimensional

search routine employed in MDOT for constrained optimiz-

ation, bounds on the solution are first established, fol-

lowed by refinement by polynomial approximation. Here, how-

ever, the search must be conducted for the zeros of the

constraint functions as well as for the minimum of the

objective. The step length selected is then the one which

yields the best feasible design. Provision must also be made

to ensure the design variables remain within their bounds

(side constraints). In MDOT, if at any time during the one-

dimensional search a design variable is found to exceed an

upper or lower bound, it is set equal to the value of the

violated bound.
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4. Program Logic

The relationships between the modules of MDOT are

depicted in Figs. 3 and 4 for unconstrained and constrained

optimization, respectively. The main program is named

"Autost" because this signals the HP-85 operating system to

load and run this program automatically when the computer is

powered up with the mass storage cartridge inserted in the

tape drive. All the other modules of MDOT are subprograms

which are called into memory and executed as needed by

Autost or another subprogram. Once entered into main memory,

a subprogram resides there for the duration of the optimiz-

ation unless a "SCRATCHSUB" instruction is executed.

Following is a brief description of the function of

each of MDOT's program segments:

Autost MDOT main calling program

LOGO Displays introductory (welcome) graphic

DEFALT Sets program parameters to default values

PROB Problem entry, evaluation of F and G

CCONT Control of constrained optimization

UCONT Control of unconstrained optimization

ACON Identification of active/violated constraints

GRAD Calculation of gradients of F and G

DIRECT Direction finding subproblem solver

FDSRCH Constrained one-dimensional search

VMSRCH Unconstrained one-dimensional search

NEWH Update approximation to H~'

29





Fig. 3 MCOT Organization - Unconstrainad

3D





Fig. A MDOT Organizction — Constrained
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CONV Convergence testing

PROG Optimization progress information

TERM Output of results of the optimization

The PROB subprogram is created by the user by

editing a skeleton problem entry code which is stored on the

tape. The edited version is then renamed and stored. Autost

queries the user for the problem name, which is then common

to all subprograms. Autost makes the first call to PROB in

order to select the appropriate optimization control rou-

tine. Thereafter, PROB is called any time an objective

function or constraint evaluation is required. Both LOGO and

DEFALT are called by Autost. LOGO generates a simple

"welcome" graphics display, and is scratched from memory

upon execution. DEFALT initializes a number of program para-

meters to their default values, as defined in Appendix B.

PROG is called upon completion of each iteration.

This subprogram generates the user selected optimization

progress indicators. Options include data and graphics

displays and printed output. Based on the progress inform-

ation provided, the user may elect to continue the optimiz-

ation, restart MDOT from a different initial design, or stop

and reformulate the problem. CONV is also called upon

completion of each iteration, to determine, based on the

convergence criteria set by DEFALT, whether the optimum

design has been found.
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TERM is called to end the optimization and generates

the output of results. Termination may be invoked by a

number of conditions in other than meeting convergence

criteria. If the optimizer exceeds a specified number of

iterations, if the components of the search direction vector

are all essentially zero, if no search step length can be

found to improve the design, or if there are an excessive

number of violated constraints, MDOT will terminate. In any

case, TERM will generate an output message to indicate the

condition upon which the decision to terminate was based,

and offer the user the option of editing and restarting the

program.

C. ADAPTATION OF MDOT TO OTHER SYSTEMS

Since MDOT is coded in HPBASIC, it is not immediately

tr ansferrable to hardware other than the Hewlett-Packard

series 80 desktop computers. Translation of the package,

either into another version of BASIC or into FORTRAN, is

certainly a "do-able" project which would significantly

expand the applicability of MDOT.

This section highlights those features of HPBASIC used

in MDOT which would have the greatest impact on this pro-

ject. They are: variable name assignment, SUBPROGRAMS,

matrix manipulations, and graphics.

The limitation of HPBASIC which most decreases the read-

ability of the code is that variable names are restricted to
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either one letter or a letter followed by a digit. One

result of this is that arrays of subscripted variables are

sometimes used where individual characteristic names might

otherwise be assigned. A feature of the language which helps

considerably, not only to overcome this limitation, but in

programming complicated algorithms, is the SUBPROGRAM.

Similar to a SUBROUTINE in FORTRAN, the SUBPROGRAM is

called when needed and variables may be passed either by

name or by value. In HPBASIC this allows for the use of the

same variable name to denote different parameters in sep-

arate program segments. MDOT makes extensive use of SUBPRO-

GRAMS. This feature is not available in all versions of

BASIC. Without it, the translation of MDOT would be more

difficult, but still possible through the use of functions

and subroutines, particularly if multi-character variable

names are permitted.

Matrix manipulation is convenient in HPBASIC. Operations

such as matrix multiplications, transpositions, dot pro-

ducts, and identifying extreme array elements are all

accomplished through simple "MAT" statements. This feature

is available in some of the other versions of BASIC, but not

in FORTRAN. Without it, additional subprogramming would be

required to perform these operations.

Graphics capabilities vary widely from one hardware

manufacturer to another, as do the coding instructions used

to execute the displays. It is likely that the graphics pro-
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graramed into MDOT would require major modification to make

them transferrable.

Two more details of the HPBASIC code are worthy of note:

program flags and the § symbol. Program flags are built-in

indicators which can be set to 1 or cleared to 0, and are

used in MDOT for conditional branching decisions. They could

easily be replaced by integer variables. The § symbol is

used to condense the code and thus conserve memory. It

simply separates multiple executable statements on one pro-

gram line. Without this feature, each statement must have

its own line number.

D. POTENTIAL FOR FUTURE GROWTH

Besides its obvious potential for expanded problem size

if implemented in a computer with a larger memory, there are

many refinements and additions which could be incorporated

into MDOT, either to enhance its general purpose utility or

to tailor it to a particular type of problem. Some modifi-

cations for improved utility might involve coding additional

algorithms, automatic design variable scaling, and the hand-

ling of equality constraints.

MDOT could be customized by modification of the problem

input subprogram, graphics display, output format, or the

algorithms themselves. Coupling of MDOT to an external CAD

or analysis code also presents many interesting and poten-

tially useful possibilities. One such configuration might be
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to use MDOT as a subprogram called to perform optimization

on localized aspects of a large scale design problem in

conjunction with a desktop computer CAD system [Ref. 91.
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IV. TEST CASES

Validation of an optimization program typically consists

of testing it on a battery of representative problems to

which the solutions are known [Ref. 10]. Based on the

results of such tests, a number of yardsticks exist by which

the optimizer is judged relative to others. These can be

grouped into three categories: stability, robustness, and

efficiency [Ref. 8: p. 75].

An optimizer is stable if, once a feasible design is

attained, the objective function remains non-increasing

until the optimum has been found. A robust optimizer is one

which yields a valid solution given a poor initial approxi-

mation. Efficiency refers either to the number of function

and derivative evaluations required in the solution or to

the problem run time. These two measures of efficiency are

closely related if comparing different optimizers run on the

same machine, since function and derivative evaluations are

typically costly operations.

To these measures of an optimizer's performance, a

fourth category should be added; that of utility. Given a

stable and robust optimizer, there are characteristics in

addition to its efficiency which should be considered in

determining its utility. Problem size and type solvable by
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the program are of fundamental importance, as is memory

storage required to run it. There are trade-offs involved

here in program development between the sophistication of

the algorithms used, speed of convergence, hardware

capabilities, cost of run time, and user convenience. The

utility of the optimizer is an indication of how these

trade-offs were made, and involves much more than just

efficiency.

A. UNCONSTRAINED TEST PROBLEM

Among the unconstrained test problems run on MDOT was

the so-called "banana" function:

F(X) = lOX^ - 20X., 2X2 + 10X2
2 + X-,

2 - 2X
1

+ 5

which has an optimum of F(1,1) = 4.0. This function derives

its name from the shape of the contours of constant objec-

tive function (Fig. 5). Although only two-dimensional, the

banana function is a good test of an unconstrained optimizer

because the objective function surface becomes a steep,

narrow, curved "valley" as the optimum is approached. An

inefficient optimizer will tend to "zig-zag" in such a

design space, resulting in slow convergence near the solu-

tion, while a non-robust optimizer will tend to terminate

prematurely.
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Results of the performance of MDOT on the banana

function are summarized below.

Initial design: X-j = -1.0

2X ° = 1.5

F° = 10.5

Optimum: X-,* = 0.95979

X2
* = 0.91442

F* = 4.002

MDOT arrived at this solution in about one minute, after 12

iterations and 66 function evaluations.

B. CONSTRAINED TEST PROBLEM

Among the constrained test problems run on MDOT was the

cantilevered beam problem posed by Vanderplaats [Ref. 3:

p. 8], as illustrated in Fig. 6. The objective function in

this case is the volume of the beam, for which a theoretical

optimum of 6603*9 is known. Results of the performance of

MDOT on this beam design problem are summarized below.

Initial design: X-, = 3.5

X2
° = 16.0

F° = 11200
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Cant i 1 evened Beam:

I

P=10. 000 lb

1=200 in
kb<

T
h

Design Variables:

ObJQctive Function:

Constraints:

WhGrQ:

b, h

VolumQ

Bonding Stross < 20,000 psi

Def lQction < 1.0 in

Ratio of h to b < 10.0

0. 5 < b < 5.

1.0 < h < 20.

Bonding Stress = Mc/I
Deflection = P1V3EI

Fig. 6 ConstrainQd Tost Problem
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Optimum: X^ = 1.8261

X 5
* = 18.174

F = 6637.5

G
1

= -0.024

G
2
* = -0.00656

G
3
* = -0.00522

MDOT arrived at this solution in about two minutes, after 11

iterations and 56 function evaluations.

With refinement of the algorithms, improvement could

likely be realized in the program performance. All variables

in MDOT are declared "SHORT", which in HPBASIC means they

are carried to 5 digits. In a machine "with just 64 Kbytes of

memory, this could be changed to "REAL", in which case 9

digits would be carried, with an attendant improvement in

the precision of the solution. The number of function eval-

uations, and thus the problem run time, could be decreased

by modification of the algorithms such that gradients are

not calculated in every iteration. Also, the efficiency of

the one-dimensional search routines could be improved by

distinguishing between linear and nonlinear constraint

functions.
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V. SUMMARY

Optimization is a useful tool in engineering design. The

desktop computer is the vehicle through which this tool can

be made widely available, convenient, and inexpensive. The

development of MDOT affirms the feasibility of implementing

a powerful general purpose optimization algorithm in a com-

puter with limited memory.

The applicability of MDOT could be expanded through con-

version to standard BASIC or translation to FORTRAN. It has

potential for growth in terms of versatility and problem

size, and lends itself to tailoring to suit a particular

class of problem. MDOT could be coupled with a microcomputer

CAD package to close the design loop in the computer.

MDOT has been validated by tests on a number of problems,

both constrained and unconstrained. Its performance is good,

and could be made better through refinement of the

algorithms. Specific modifications might involve the one-

dimensional search routines and the frequency of gradient

calculations.

As microcomputers continue to become more commonplace and

their capabilities continue to improve, emphasis will shift

away from the mainframes for the solution of problems which

are on a scale easily handled by smaller machines. Software

such as MDOT will both accompany and encourage this shift.
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APPENDIX A

MDOT USER MANUAL

1. INTRODUCTION

To avoid repetition, references to material presented in

the preceding chapters are made in this appendix. A useful

follow-on project would be to assemble a user manual for

MDOT independent of the background and developmental

material in the body of the thesis. Details of computer

operation have not been included here, as it is assumed that

the user is either familiar with the machine or has access

to the operating manual.

MDOT is currently available only on magnetic tape

cartridge for use in Hewlett-Packard series 80 computers. If

it is to be implemented in an HP-85A, the machine must be

configured with four enhancements: a 16 Kbyte memory exten-

sion module, a matrix ROM, advanced programming ROM, and a

printer / plotter ROM. No peripheral devices are required,

nor is extensive programming.

2. PROBLEM FORMULATION

Formulation of a well-posed problem, as discussed in

chapter II, is fundamental to the satisfactory performance

of an optimization program. First, the design variables must

be identified. These are the parameters of the problem which
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the optimizer will be permitted to change in its search for

the best design. The objective must then be a function of

these variables, and the minimum of this function is what

the optimizer will seek. Constraints may be imposed on the

design in two ways:

1.

2.

Upper and/or lower bounds (side constraints) may be

specified for any of the design variables.

General inequality constraints may be expressed as

functions of the design variables.

Side constraints are explicitly assigned when the initial

design estimate is entered into the problem subprogram.

Inequality constraints must be formulated as quantities

which are to be less than or equal to zero. Care should be

exercised to avoid redundant or otherwise unnecessary con-

straints. In MDOT, an unconstrained problem has neither side

constraints nor inequality constraints. MDOT has no pro-

vision for equality constrained problems.

The objective function can be any characteristic of the

design expressible mathematically in terms of the design

variables. It is important to keep in mind that it is the

minimum of this function which is sought. If the problem is

formulated around an objective which is to be maximized,

then it mu3t be entered in such a way that MDOT will seek to

minimize the negative of this objective.
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An important consideration during problem formulation is

the range of orders of magnitude of the design variables.

Optimizer performance is best in a design space in which the

contours of constant objective function are concentric hy-

perspheres, such that a given change in one variable has the

same effect on the objective as an equal change in any other

variable [Ref. 11, p. 17]. In practice, this is approximated

by scaling the design variables such that they are all of

the same order of magnitude, or nearly so. Some optimizers

do this automatically, MDOT does not.

Selection of the initial design point from which to

start MDOT will affect its performance and problem run time.

Any available information which will improve the initial

approximation should be used. If a constrained problem is

being entered, a check should be made to ensure the initial

design falls within the side constraints. Although MDOT is

equipped to handle initially infeasible designs, convergence

will likely be more rapid if the initial design is free of

violated inequality constraints. In some cases, initial

feasibility may be a difficult thing to build into the

problem formulation. MDOT will display the results of the

first design evaluation and indicate whether or not it is

feasible. At that time, the user may elect to proceed with

the optimization or edit the initial design and restart the

program.
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3. PROBLEM ENTRY

MDOT problem entry is accomplished by editing the PROB

subprogram. With this module loaded into memory and listed

on the CRT, modifications are made on the program lines

noted below.

Line 10:

The file name of the subprogram is changed to any

name up to 6 characters in length, except any of

those already assigned to MDOT files.

Line 100:

Just after the word DATA, two integers are added,

separated by a comma. The first is the number of

design variables, (N1), the second is the number

of inequality constraints, (N2). For unconstrained

problems N2 is always zero.

Lines 201-210:

Initial values of the design variables are en-

tered, beginning with X1 on line 201 and contin-

uing, one variable per line. If the problem is

constrained, each initial value is followed by the

lower and upper bounds assigned to the correspond-

ing variable. If no bound is to be specified, the

field is filled by an "N".
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Lines 231-398:

These lines are available for defining expressions

to be used in the design evaluation. These state-

ments will be executed prior to each objective or

constraint computation. Whenever the design vari-

ables are used in this, and the remaining sections

of the subprogram, they are expressed as X1,

X2, . . .XO.

Lines 400-459:

These lines are available for defining the object-

ive function, which must be assigned the variable

name F.

Lines 500-9000

These lines are available for defining the in-

equality constraint functions, which must be sub-

scripted variables named G(i), i=1,N2.

Depending on the complexity of the problem, the user may

elect to use any BASIC programming structures in this sub-

program. As examples, FOR-NEXT loops, FUNCTIONS, SUB-

ROUTINES, and even other SUBPROGRAMS could be used in the

problem formulation. With about 7.3 Kbytes of memory avail-

able for constrained problem entry, and twice that for

unconstrained problems, there is space available for con-

siderable programming. Variable names used may be any except

those included in the PR0B nomenclature, as defined in
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Appendix B. If subscripted variables are to be used, a DIM

(dimension) statement must be inserted near the beginning of

the subprogram. When problem entry is complete, the subpro-

gram is stored under the new file name.

Listings of the subprograms created for the test cases

of Chapter IV are included at the end of Appendix B, under

the names "BANANA" and "BEAM". Comparison of these listings

to that of PROB, which is the unedited version, will help to

illustrate the problem entry procedure for both constrained

and unconstrained cases.

4. PROGRAM EXECUTION

MDOT is started either by execution of LOAD "Autost" and

RUN commands, or by powering up the computer after inserting

the tape cartridge, as explained in section III.B.4. After

the "welcome" graphic, the user is queried as to the problem

file name, progress display options and output format

desired. Optimization then proceeds.

The user may choose to monitor the optimization closely,

or perhaps not at all. For example, if a constrained problem

is being run for the first time, the user may want to check

for rapidly changing design variables so that the option of

editing and restarting might be exercised. On the other

hand, if a problem known to be well-behaved is being re-run

with relatively minor changes, the user may elect to

"ignore" MDOT until the solution is obtained.
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Any of the values carried by the DEFALT subprogram, as

defined in the listing in Appendix B, may be changed. They

may be permanently modified by editing and re-storing

DEFALT. Alternatively, a default value may be changed during

program execution, whenever the edit option is invoked, by

reassigning its value from the keyboard. If the program is

restarted, though, DEFALT is recalled.
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APPENDIX B

ANNOTATED PROGRAM LISTINGS

In an effort to conserve memory, MDOT was coded without

remark statements. The program listings are therefore pre-

sented in an annotated format to aid in following the logic

flowpaths. Nomenclature common to two or more modules is

defined first, then the additional nomenclature unique to

each module immediately precedes the applicable segment of

the code listing. Numbers in parentheses in the function

descriptions refer to line numbers in the associated program

segment. Parentheses following a variable name in the nomen-

clature lists indicate vectors, while parentheses enclosing

a comma indicate two-dimensional arrays.

COMMON NOMENCLATURE

A1() Addresses in GO of violated and active constraints

A2() Values of constraints identified in A1()

C1() Vector of integer default values

C2() Vector of non-integer default values

D() Current objective function gradient

D1() Previous iteration objective function gradient

F Current value of objective function

FO Initial value of objective function
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F1 Previous iteration value of objective function

G() Vector of current constraint values

G1(,) Gradients of violated and active constraints

H(,) Approximation to the inverse of the Hessian

L() Vector of design variable lower bounds

N1 Number of design variables

N2 Number of inequality constraints

N3 Number of currently violated constraints

NU Number of currently active constraints

P$ Problem subprogram file name character string

P0-P3 Polynomial approximation coefficients

Q1 Iteration counter

Q2 Function evaluation counter

Q3 Convergence counter

Q4 Convergence counter

R1 Golden section ratio

R2 Golden section ratio

SO Search direction vector

X() Current design

XOO Initial design

XK) Previous iteration design

X90 Working vector of perturbed design variables
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PROGRAM FLAGS

Unless otherwise noted, the flags listed are set to a

value of 1 when the associated condition exists.

FLAG CONDITION

1 Maximum number of iterations has been exceeded

2 Number of violated constraints greater than N1+2

3 Search vector components are all essentially zero

4 No appreciable move parameter can be found

5 Convergence to optimum has occurred

6 Variable metric algorithm is to be restarted

7-8 Unassigned

9 Subprogram is to be exited without execution

10 Termination has occurred

11 Progress option select: 1 = data display
2 = graphic display
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Module: Autost

Calls: Autost calls all other modules of MDOT into

memory, then scratches those not needed for the

type of problem (constrained or unconstrained)

being run. For information transfer, Autost

calls: PROB (edited), UCONT, CCONT, LOGO, and

DEFALT.

Function: MDOT main calling program (10-370).

Interactive problem initiation (1000-1200).

Program loading (2000-2070).

Initial design display generation (3000-3130).

Design/default editing (4000-4260).

Nomenclature

:

A$ Interactive query response (string)

S$&A$ Concatenated string to call appropriate optimizer

D$ Display string ("FEASIBLE" or "INFEASIBLE"

)

B$ Display string ("C1(" or "C2(")

NO Working variable for editing default values

N Interactive query response (numeric)

K0 If = 0, indicates first problem of run
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10 ! Autos t. . . .

20 OPTION BASE 1

30 COM P* C 6 ] ,1 NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 , C 1 < 1 ) , SHORT
C2 ( 20

)

40 DIM S*E43,A*E 13,0*1: 103, B*C3D
50 SHORT X0 ( 1 ) , F0 , G ( 50 ) , L < 1 ) , U < 10 ) , N0
60 INTEGER IM, I , K0
70 S*="CONT"
30 GOSUE 2000
90 CALL "LOGO" @ SCRATCHSUB "LOGO"
100 CALL "DEFALT"
110 Ql , Q2 , Q3 , Q4 , N3 , N4 , K0=0
120 FOR 1=1 TO 11

130 CFLAG I

140 NEXT I

150 WAIT 1000 @ GOSUE 1000
160 CLEAR @ CALL P* ( )

170 REDIM X0(N1

)

1S0 IF N2=0 THEN 210
190 REDIM G(N2) ,L<N1 ) ,U(N1

)

200 GOTO 220
210 MAT G=ZER(1)@ MAT L=G@ MAT U=L
220 CALL PI- ( 1 , X0 ( ) , F0 , G ( ) , L ( ) , U ( ) )

230 GOSUB 3000
240 IF N2=0 THEN A*="U" ELSE A*="C H

250 CALL A*&S* ( X0 < ) , F0, G ( > , L < ) , U ( ) )

260 CFLAG 10 S CFLAG 9
270 CLEAR @ DISP @ DISP "Select option..." @ DISP <S DISP "

1) ED IT/ RESTART"
280 DISP @ DISP " 2) NEW PROBLEM" @ DISP £ DISP " 3) E

XIT"
290 INPUT N
300 ON N GOTO 320,310,360
310 SCRATCHSUB P* @ GOTO 100
320 GOSUB 4000
330 CALL PI- ( 1 , X0 ( ) , F0, G ( ) , L ( ) , U ( ) )

340 GOSUB 3000
350 GOTO 250
360 CLEAR
370 END
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1000 IF K0>0 THEN 1070
1010 K0=1
1020 CLEAR a DISP @ DISP "Select problem type for this ru
n of MOOT: " S DISP
1030 DISP " 1) Constrained" @ DISP a DISP " 2) line on
strained" a INPUT N
1040 ON N GOTO 1050, 1060
1050 SCRATCHSUB "UCONT" a SCRATCHSUB "VMSRCH" @ SCRATCHSUB "

NEWH" e GOTO 1070
1060 SCRATCHSUB "CCONT" a SCRATCHSUB "FDSRCH" @ SCRATCHSUB "

ACON" @ SCRATCHSUB "DIRECT"
1070 CLEAR a DISP a DISP "Have you created & stored your pr-

oblem?"
10S0 DISP a DISP " (Y or N; ENTER)" a INPUT A*
1090 IF AM"N" THEN 1120
1100 IF A*="Y" THEN 1160
1110 GOTO 1000
1120 CLEAR a DISP a DISP " Please refer to the" @ DISP

1130 DISP " MOOT USER MANUAL" a DISP
1140 DISP " for instructions..."
1150 GOTO 370
1160 DISP a DISP "Enter problem subprogram file name.
.

.
" a INPUT Pt-

1170 CLEAR a DISP a DISP "Select progress option..." a DISP
a DISP " 1) GRAPHIC DISPLAY"
1130 DISP a DISP " 2) DATA DISPLAY" a INPUT m CFLAG 11

1190 IF N=2 THEN SFLAG 11
1200 RETURN
2000 SFLAG 9 a DISP "Loading MOOT. .

.

"

2010 CALL "DEFALT" a CALL "CCONT" a CALL "UCONT" a CALL "ACO
N"
2020 D I SP a D I SP "Still loading MOOT . .

.

"

2030 CALL "GRAD" a CALL "DIRECT" a CALL "FDSRCH" a CALL "VMS
RCH"
2040 DISP a DISP "Almost finished..."
2050 CALL "NEWH" a CALL "CONV" a CALL "PROG" a CALL "TERM"
2060 CFLAG 9 a CLEAR
2070 RETURN
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3000 CLEAR @ DISP USING 3010 ; P*
3010 IMAGE 3/, 13X,6A
3020 DISP USING 3030 ; N1,N2
3030 IMAGE 1/,4X,2D," Design Var iab 1 as" , / , 4X , 2D, " Inequality
Constraints"
3040 DISP USING 3050 ; F0
3050 IMAGE 2/, IX, "Initial Design: F = " ,

K

3060 IF N2=0 THEN 3090
3070 IF AMAX(GXC2(3) THEN D*-=" FEASIBLE" ELSE D-* = " INFEA3IBLE
ii

30S0 DISP USING "UX,10A" ; D*
3090 GN KEY# 1,"EDIT" GGSUB 4000
3100 ON KEY# 4, "CONTINUE" GOTO 3130
3110 KEY LABEL
3120 GOTO 3120
3130 RETURN
4000 CLEAR @ DISP @ DISP "Select edit in q opt ion..." © DISP @
DISP " 1) DESIGN VARIABLES"

4010 DISP @ DISP " 2) DEFAULT VALUES" @ INPUT N
4020 ON N GOTO 4030,4140
4030 CLEAR @ DISP "Enter the address in X of the variable
to be changed" @ INPUT I

4040 DISP USING 4050 ; I,X0U)
4050 IMAGE 2/, IX, "current value: "

,
" X <

"
, K, " ) = ",K

4060 DISP @ DISP "Enter the new value..." S INPUT X0(I)
4070 CLEAR a DISP @ DISP "Editing complete ?" @ DISP "

(Y or N; ENTER)" £ INPUT A*
40S0 IF AI="N" THEN 4000
4090 IF Afc="Y" THEN 4110
4100 GOTO 4070
4110 Q1,Q2=0
4120 CALL P* ( 2, X0(

) ,F0,G( ) ,L( )
,U( ) )

4130 GOTO 230
4140 CLEAR @ DISP @ DISP "Select default array..." @ DISP @
DISP " 1) CIO integers"
4150 DISP @ DISP " 2) C2( ) reals" £ INPUT N
4160 CLEAR <2 DISP "Enter the address in C of the variable
to be changed" ® INPUT I

4170 IF N=l THEN N0=C1 ( I ) ELSE N0=C2(I)
41S0 IF N=l THEN B*="C1 (

" ELSE B*="C2<"
4190 DISP USING 4200 ; B*,I,N0
4200 IMAGE 2/, IX, "current value: ",3A,K,") = ",K
4210 DISP @ DISP "Enter the new value..." @ INPUT N0
4220 IF N=l THEN C1(I)=N0 ELSE C2(I)=N0
4230 CLEAR @ DISP @ DISP "Editing complete ?" @ DISP "

(

Y or N; ENTER)" @ INPUT Al-

4240 IF A*="N" THEN 4000
4250 IF At="Y" THEN 4260
4260 RETURN
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Module: LOGO

Called by: Autost

Function: Generate MDOT "welcome" graphic display on CRT,

Scratched from memory upon execution.
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1

10
20
30
40
50
60
70
30
90
1 00
110
120
1 30
140
150
1 60
170
130
1 90

UE "LOGO"
PEN 1 @ GCLEAR
SCALE 0, 10,0, 10
PEN -1 @ GCLEAR 7
PEN 1 @ GCLEAR 3
CSIZE 30 @ LORG 5 @ PEN -1

MOVE 5,5 @ LABEL "m"
CSIZE 6 @ MOVE 5,6.5 @ LABEL
WAIT 1000 @ PEN 1 © GCLEAR
CSIZE 12 @ LORG 2

MOVE 1

MOVE 1

MOVE I

CSIZE
MOVE 2
MOVE 2
MOVE 2
MOVE 2
SUBEND

e

LABEL
LABEL
LABEL
LABEL

LABEL
LABEL
LABEL
LABEL

M d
..

i.

Q
»

"t"

" i crocompujter—based
"esign"
'* ptimization"
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Module: DEFALT

Called by: Autost

Function: Set MDOT working parameters to their default val-

ues. DEFALT is called each time a new problem is

executed

.

Nomenclature

:

C1(1) Maximum number of iterations

C1(2) Consecutive iterations for convergence criteria

C1(3) Variable metric method select: = DFP, 1 = BFGS

C1(4)-C2(10) Unassigned

C2(1) Finite difference perturbation factor

C2(2) Minimum absolute finite difference step

C2(3) Violated constraint criterion (tolerance)

C2(4) Active constraint criterion (thickness)

C2(5) Push-off factor multiplier (theta zero)

C2(6) Maximum value of push-off factor

C2(7) Factor used in DIRECT when infeasible

C2(8) Factor used in step length estimate based on F

C2(9) Factor used in step length estimate based on X

C2(10) F convergence criterion (relative)

C2(11) F convergence criterion (absolute)

C2(12) Defined zero

C2( 13) Epsilcn, used to prevent division by zero

C2(14)-C2(20) Unassigned
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10 SUE "DEFALT"
20 OPTION EASE 1

30 COM P$ C 6 3 ,1 NTEGER Nl , N2 , N3 , N4 i Gl , Q2 , Q3 , Q4 , C 1 < 1 )

02 ( 20

)

40 MAT C1=ZER( 10)
42 MAT C2=ZER(20)

:l(l)=20 ! max
i

SHORT

44
46
48
50
52
54
56
53
60
©2
64
66
68
70
72
74

iterations
1 ( 2 ) =2 ! consec. c o ri v .

1 ( 3 ) = 1 ! w i n H update
2 ( 1 ) = . 1 ! fin. d i f f . mu 1 1

.

2 (2) =.001 ! mm. fin. step
2(3)=. 004 ! const, viol.
2(4)=-. 1 ! active const.
2 ( 5 ) = 1 ! push—off m u 1 1

.

2(6)=50 ! max. push-off
2 (7) =100000 ! Phi (DIRECT)
2 ( 8) =. 1 ! obj . mu 1 t

.

C2 ( 9 ) = . 1 ! d e s . v ar . mu 1 1

.

2( 10)=. 001
2(11)=. 00

1

2(12) =.001
C2< 13) =.0001

rn in r <& 1 F
nun abs F

z e f o

e p s i To n

100 SUBEND

61





Module: PROB

Called by: User

Function: Provide the user with a skeleton subprogram into

which the optimization problem is entered by

editing.

Module: PROB (edited)

Called by: Autost, GRAD, FDSRCH, VM3RCH

Function: Input the number of design variables and the

number of inequality constraints (90-100).

Input the intial design and side constraints

(130-210).

Evaluate the objective function and inequality

constraints (230-9000).

Nomenclature

:

K1 Flag to indicate first call or subsequent call

L$ String used in lower bound input

U$ String used in upper bound input

X1-X0 Design variable names used in problem input
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10 SUB "PROB" (Kl»X<),F,G<> t L<> f UO)
20 OPTION BASE 1

30 COM P% 1 61 ,1 NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , 04 ,01(1 ) , SHOP'
02 ( 20

)

35 SHORT X 1 , X2, X3, X4, X5, X6, X7, XS, X9, X0
40 DIM LIC6 3JJIC63
50 IF KIM THEN 220
90 READ N1,N2
100 DATA
105 IF K1=0 THEN SUBEXIT
130 FOR 1=1 TO Nl
140 READ X( I )

142 IF N2-0 THEN 170
144 READ L*,U*
150 IF LI="N" THEN L(I)=-1.E99 ELSE L ( I ) =VAL ( L*

)

1 60 I F Ul= "
N

" THEN U < I ) = 1 . E99 ELSE U ( I ) =VAL < U*

)

170 NEXT I

201 DATA
202 DATA
203 DATA
204 DATA
205 DATA
206 DATA
207 DATA
203 DATA
209 DATA
210 DATA
22 SUB 9 1

230 ! User—defined expressions
399 ! Objective function
499 0.2=02+1
500 ! CONSTRAINTS
9000 SUBEND
90 10 X 1 =X ( 1 ) (2 IF N 1 = 1 THEN RETURN
9020 X2=X(2) @ IF Nl=2 THEN RETURN
9030 X3=X(3) @ IF Nl=3 THEN RETURN
9040 X4=X(4) @ IF Nl=4 THEN RETURN
9050 X5=X(5) S IF Nl=5 THEN RETURN
9060 X6=X(6) © IF Nl=6 THEN RETURN
9070 X7=X(7) S IF Nl=7 THEN RETURN
9030 X3=X(S) @ IF Nl=3 THEN RETURN
9090 X9=X(9) @ IF Nl=9 THEN RETURN
9100 X0=X(10) @ RETURN
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Module: CCONT

Called by: Autost

Calls: TERM, PROG, ACON, GRAD, DIRECT, FDSRCH, CONV

Function: Control constrained optimization by the method of

feasible directions (Fig. 2).
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1 SUB " CCONT " ( X® ( ) , F0 ,G(},L() t UO)
20 OPTION BASE 1

30 COM P* C 6 3 ,1 NTEOER N 1 , N2

,

m , N4 , Q 1 , Q2 , Q3 , Q4 , C 1 ( 1 ) , SHORT
C2 ( 20

)

40 SHORT XI ( 10), X( 10) ,D( 10) ,G1( 12, 10) ,A2( 12) ,S( 10)
50 SHORT F , B0 , A0 , F

1

60 INTEGER Al (12)
70 IF FLAG(?) THEN SUBEXIT
30 REDIM XI <N1) ,D<N1

) ,G1 (N1+2,N1 >,S<N1 )

90 A0,F1,E0=0 @ F=F0
100 MAT S=ZER(N1)@ MAT X=X0
110 MAT Al=ZER(Nl+2)£ MAT A2=A1
120 Ql-Ql+1
130 IF QKCl(l) THEN 160
140 SFLAG 1 @ CALL "TERM" ( XO,F,G<) ) @ SUBEXIT
150 SUBEXIT
160 CALL "PROG" ( X0( ) , X <) , F/F0, F ) @ IF FLAG(9) THEM SUBEXI
T
170 CALL "ACON" ( G( )

, Al ( ) , A2 ( ) ) @ IF FLAG(9) THEN SUBEXIT
1S0 IF FLAG (2) THEN CALL "TERM" ( X(>,F,G<> )

1 90 I F FLAG (10) THEN SUBE X I

T

200 IF N3+N4#0 THEN REDIM G1<N3+N4,N1)
210 CALL "GRAB" ( X (

)
, F, D (

)
, G (

)
, Al (

)
, A2 (

)
, Gl

(
, ) ) © IF FLAG(

9) THEN SUBEXIT
220 IF N3+N4#0 THEN 240
230 MAT S=-B£ GOTO 360
240 CALL "DIRECT" ( D (

)
, Gl

(
, ) , Al (

)
, A2( ) , S ( ) , B0 ) @ IF FLAG<9

) THEN SUBEXIT
250 CFLAG 3
260 IF MAXAB(S) >C2( 12) ANB ABS( B0 ) >C2 ( 12 ) THEN 360
270 SFLAG 3
230 IF N3#0 THEN CALL "TERM" ( X(),F,G() )

290 IF FLAG (10) THEN SUBEXIT
300 IF MAXAB(A2X=C2( 12) THEN CALL "TERM" ( X(),F,G() )

3 1 I F FLAG (10) THEN SUBE X I

T

320 IF C2(4) >=-C2( 12) THEN CALL "TERM" ( X(),F,G() )

330 IF FLAG (10) OR FLAG(9) THEN SUBEXIT
340 C2(4)=C2(4) /3
350 GOTO 170
360 MAT S=( 1/MAXAB(S) )*S@ CFLAG 4
370 MAT X1=X@ F1=F
380 CALL "FBSRCH" ( X ( ) , L (

)
, U(

)
, F, B(

)
, G ( )

, Al (
) , A2 (

)

,
Gl

(
, ) , S

(

) , A0 )

390 IF FLAG(9) THEN SUBEXIT
400 IF FLAG(4) THEN 280
410 CFLAG 5
420 MAT X=( 1 )*X1+(A0)*S
430 CALL P* ( 2 t X(),F 4 G() )

440 CALL "CONV" ( X ( ) , X 1 ( ) , F, Fl ) @ IF FLAG(9) THEN SUBEXIT
450 IF FLAG(5) THEN CALL "TERM" ( XO,F,G<> >

460 IF FLAG (10) OR FLAG ( 9 ) THEN SUBEXIT ELSE GOTO 120
470 SUBEND
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Module: UCONT

Called by: Autost

Calls: GRAD, PROG, TERM, VMSRCH, CONV, NEWH

Function: Control unconstrained optimization by the

variable metric method (Fig. 1).

Nomenclature

:

K Indicates an iteration in which no move parameter

to improve the design was found

A One-dimensional search move parameter
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1 ® SUB " UCONT "
( X0 ( > , F»D ,0(),L(),UO)

20 OPTION BASE 1

30 COM P $ C 6 3 , I NTEGER N 1 , N2, N3 , N4 , Q 1 , Q2 , Q3 , Q4 ,' C 1 ( 1 ) , SHORT
C2 ( 20

)

40 SHORT X<10>,Xl(10),D<10),DH10)
f S<10>,H<10,10)

50 SHORT F,F1,A
60 INTEGER K
70 IF FLAG<9) THEN SUEEXIT
80 REDIM X(N1>, XI <N1) ,D<N1 ) ,D1(N1

)

90 MAT X = X0@ F=F0 @ K-0
1 00 CALL " ORAD " ( X •

)
, F , D (

)
, G ( ) )

110 MAT H=IDN(N1,N1 )

120 Q 1=0.1 + 1

130 CALL "PROG" ( X0< ) , X < > ,F/F0,F ) @ IF FLAG ( 9 ) THEN CUBE XI
T

140 IF QKCK1) THEN 170
150 SFLAG 1 e CALL "TERM" ( X(),F,G() )

160 IF FLAG (10) OR FLAG(9) THEN SUBEXIT
170 MAT S=H*D
130 MAT S=-S
190 MAT S=( 1/MAXAB(S) ) *S
200 MAT X1=X£ MAT D1=D@ F1=F
210 CALL "VMSRCH" ( X(),F,DO,S(),fi ) @ IF FLAG (9) THEN SUBE
XIT
220 IF A>C2(12) THEN 270
230 K-K+l
240 IF K<2 THEN 110
250 SFLAG 4 @ CALL "TERM" ( X(),F,G() )

260 IF FLAG ( 1 ) OR FLAG ( 9 ) THEN SUBE X I

T

270 MAT X=( 1 )*X+(A>*3
230 CALL "CONV" ( X(),XK),F,F1 ) & IF FLAG(9) THEN SUBEXIT
290 IF FLAG(5) THEN CALL "TERM" ( X(),F,G<) )

300 IF FLAGU0) OR FLAG(9) THEN SUBEXIT
310 IF FLAG(6) THEN 110
320 CALL "GRAD" ( X (

)
, F, D<

)
, G( ) ) @ IF FLAG ( 9 ) THEN SUBEXIT

330 CALL " NEWH " ( X ( ) , X 1 ( ) , D ( ) , D 1 <
)

, H ( , ) ) @ IF FLAG ( 9 ) THEN
SUBEXIT

340 GOTO 120
350 SUBEND
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Module: ACON

Called by: CCONT

Function: Determine the number of currently violated (N3),

and active (N4), inequality constraints.

Construct the A1() vector of the addresses in GO

of the active/violated constraint set.

Construct the A2() vector of the current values

of this set.

Violated constraint information is stored in the

first N3 rows of A1() and A2(), active constraint

information in the last N4 rows.
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1 © SUE " ACON " ( G (
)

, A 1 (
)

, A2 ( )

)

20 OPTION BASE 1

30 COM P* C 6 1 , I NTEGER N 1 , N2, N3 , N4 , Ql , Q2 , Q3 , (34 ,C1(10) , SHORT
02 ( 20 >

40 ON KEY# 1 GOTO 300
50 IF FLAG<9) THEN SUBEXIT
60 CFLAO 2 @ N3,N4=0
70 FOR 1=1 TO N2
30 IF 0(1) >=02 ( 3 ) THEN 1 1

90 IF G ( I ) >=02 ( 4 ) THEN N4=N4+

1

100 GOTO 120
1 1 N3=N3+

1

120 NEXT I

130 IF N3<=Nl+2 THEN 150
140 SFLAG 2 @ SUBEXIT
150 IF N3+N4=0 THEN SUBEXIT
160 NAT A1=ZER(N3+N4>@ NAT A2-A1
170 03,04=1
130 FOR 1=1 TO N2
190 IF G(I)>=02(3) THEN 250
200 IF G ( I )< 02 ( 4 ) THEN 230
210 Al ( N3-I-.J4 ) = I

220 A2(N3+J4)=G( I

)

230 04=04+1
240 GOTO 230
250 Al ( 03 )=I
260 A2 ( 03 ) =G ( I

)

270 03=03+1
230 NEXT I

290 GOTO 310
300 SFLAG 9 @ SUBEXIT
310 SUBEND
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Module GRAD

Called by: CCONT, UCONT

Calls: PROB (edited)

Function: Calculate the gradient of the objective function

by first forward finite difference approximation.

In constrained optimization, calculate gradients

of the active/violated inequality constraint set.

Nomenclature

:

F2 Intermediate function evaluation

N Design variable perturbation

70





1 SUB "GRAB" ( X < ) , F, D< ) , G< > , Al ( ) , A2< ) » Gl ( , >

)

20 OPTION BASE 1

30 COM PJ-C6] , INTEGER Nl , N2, N3, N4, Ql , Q2, Q3« Q4, CI ( 10 ) , SHORT
02 ( 20

)

40 SHORT F2, X9< 10) , N
50 ON KEY* 1 GOTO 210
60 IF FLAG (9) THEN SUBEXIT
70 FOR 1=1 TO Nl
80 MAT X9=X
90 N=C2( 1 )*ABS(X9< I )

)

100 IF N<C2(2) THEN N=C2 ( 2

)

110 X9(I)=X9(I)+N
120 CALL P* ( 2,X9<),F2,G() )

130 IF N2=0 THEN 180
140 IF N3+N4=0 THEN 180
150 FOR J=l TO N3+N4
160 Gl ( J, I ) = ( G ( Al ( J )

) -A2 ( J ) ) /N
170 NEXT J
130 D< I )=(F2-F)/N
190 NEXT I

200 GOTO 220
210 SFLAG 9 @ SUBEXIT
220 SUBEND
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Module: DIRECT

Called by: CCONT

Function: Solve the direction-finding subproblem in the

method of feasible directions.

Calculate constraint push-off factors (170-200).

Initialize working arrays for currently feasible

(2000-2080), or infeasible (1000-1090) designs.

Determine the direction vector SO, and the para-

meter B0 (300-700).

Nomenclature

:

A(,) Working array constructed from G1(,) and T()

B(,) Working array initialized as -A X A

B0 Kuhn-Tucker parameter

B2 Intermediate element value used in pivoting

B3 Intermediate element value used in pivoting

B9 Intermediate variable used in pivoting

C() Working vector

D0() Working vector initialized as D()

G0(,) Working array initialized as G1(,)

G9() Working vector used in constructing G0(,)

I9() Working vector of element indices

J9 Working integer scaler

K9 Working integer scaler

N9 Dimension of active/violated constraint set
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P()

TO

U()

Y()

Working vector

Vector of constraint push-off factors

Working vector

Solution vector, contains S() and BO
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10 SUB "DIRECT" (D< ) ,61 (
,

)
, Al ( ) , A2 (

) ,S< >,B0)
20 OPTION EASE 1

30 COM P* C 6 3 ,1 NTEOER N 1 , N2, N3 , N4 , Q 1 , Q2 , Q3 , Q4 , C 1 < 1 ) , SHORT
C2 < 20

)

40 SHORT B2,B3,B9,A< 13, 1 1
)

, T ( 12 ) , B< 13, 13) , P ( 1 1 ) , U< 13
)

, C ( 13)
,

Y ( 1 1
)

, D0 ( 1 > , 00 (12,10), 09 (10)
50 I NTEOER J9 , K9 ,19(13), N9
60 ON KEY* 1 OOTO 650
70 IF FLAG (9) THEN SUBEXIT
S0 N9=N3+N4
90 REDIM T(N9),P(N1+1

)
, Y(N1+1

)

100 FOR 1=1 TO N9
110 T ( I ) =02 (5)* (

1 -A2 ( I ) /C2 ( 4 )

)

A2
120 IF T(I)>C2(6) THEN T(I)=C2(6)
130 NEXT I

140 MAT P=ZER(N1+1)@ MAT D0=D
1 50 MAT D0= ( 1 / MA X AB ( D0 ) ) *D0
160 MAT 00=01
170 FOR 1=1 TO N9
130 MAT 09=00 ( I,

)

1 90 MAT 09= ( 1 /MAX AB ( 09 ) ) *G9
200 MAT 00 ( I ,

) =09
210 NEXT I

220 IF N3>0 THEN OOSUB 1000 ELSE OOSUB 2000
230 MAT B=A*TRN(A)
240 MAT B=-B
250 N=UBND ( B , 1

)

260 MAT I9=ZER(N)
270 A9,K9=0
230 FOR 1=1 TO N
290 IF C(I)>=0 THEN 330
300 B9=C(I )/B(I, I

)

310 IF B9<=A9 THEN 330
320 K9=I @ A9=B9
330 NEXT I

340 IF K9=0 THEN 540
350 J9=I9(K9)
360 I9(K9)=0
370 IF J9=0 THEN I9(K9)=K9
330 B2=B(K9,K9)
390 FOR 1=1 TO N
400 B ( K9 , I ) =B ( K9 , I ) / B2
410 NEXT I
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420 C(K9)=A9
430 B(K9,K9)=1/B2
440 FOR 1=1 TO N
450 IF I=K9 THEN 520
460 B3=B i I , K9

)

470 B < I , K9 ) =0
430 FOR J=l TO N
490 B ( I , J ) =B < I , J ) -B3*B ( K9 , J

)

500 NEXT J
510 C(I )=C( I )-B3*A9
520 NEXT I

530 GOTO 270
540 FOR 1=1 TO N
550 U ( I ) =0
560 J9=I9< I

)

570 IF J9<=0 THEN 590
530 U ( I ) =C ( J9

)

590 NEXT I

600 MAT Y=TRN<A)*U
610 MAT Y=P-Y
620 MAT S=Y(1:N1)
630 B0=Y(N1+1)
640 GOTO 660
650 SFLAG 9 @ SUBEXIT
660 3UBEND
1000 MAT C=ZER(N9)£ MAT U=ZER(N9)
1010 MAT A=C0N(N9,N1+1

)

1020 MAT A( , 1:N1)=G0
1030 MAT A( ,N1+1)=T
1040 MAT P(1:N1 )=D0
1050 MAT P=-P
1060 P(N1+1 )=C2(7)
1070 MAT C=A*P
10S0 MAT C=-C
1090 RETURN
2000 MAT C=ZER(N9+1)2 MAT U=ZER< N9+1

)

20 1 MAT A=CON ( N9+ 1 , N 1 + 1

)

2020 MAT A ( 1 : N9 , 1 : N 1 ) =G0
2030 MAT A( 1:N9,N1+1 )=T
2040 MAT A(N9+1, 1:N1 )=D0
2050 P(N1+1 )=1

2060 MAT C=A( , Nl+1

)

2070 MAT C=-C
2080 RETURN
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Module: FDSRCH

Called by: CCONT

Calls: PROB (edited)

Function: Perform one-dimensional search for constrained

optimization in the method of feasible

directions

.

Estimate initial search move parameter (1000-

1180).

Check for side constraint violations (2000-2050).

Establish bounds on solution, feasible (3000-

3340) or infeasible (4000-4360).

Refine solution by polynomial approximation,

feasible (5000-5240) or infeasible (6000-6580).

Nomenclature:

A Move parameter

A0() Working vector of move parameters

A() Working vector of move parameters

A1 Initial A based on change in objective function

A2 Initial A based on attaining feasibility

B(,) Array of constraint values during search

DO Dot product of DO and SO or G1(i,) and SO

G0() Working vector of constraint gradients

M() Working vector of maximum constraint values

Y() Working vector of objective function values
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1 SUE " FDSRCH " < X <

)

t L <) , U <> , F , D < ) , G < ) , A 1 < > , A2 < ) , Gl ( , ),S( > ,

A

)

20 OPTION EASE 1

30 COM Pi- C 6 3 ,1 NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 ,01(10) , SHORT
02 ( 20

)

40 SHORT X9<10),R1 1 R2,A1,A2,A<4),Y<4>,M<4) , B ( 4 , 50
)
,D0,G0< 10)

,P0,Pl,P2,B0, A0(51

)

50 INTEGER I,K
60 ON KEY# 1 GOTO 210
70 IF FLAG(?) THEN SUEEXIT
S0 RED IM X?(N1

)
,E<4,N2) ,G0(N1

)
, A0(N2+1

)

90 R1 = (3-SQR(5) )/2 «2 R2-2-R1
1 00 A , A 1 , A2 , A3 , A ( 1 ) =0 2 OFLAG 4

110 MAT M=ZER<4)2 MAT X?=XS Y(1)=F @ MAT B(1 J
)=G@ M(1)-AMAX<

G)
120 GOSUE 1000
130 A(2)=A @ GOSUE 2000
140 IF N3=0 THEN GOSUE 3000 ELSE GOSUE 4000
150 IF N3=0 THEN GOSUE 5000 ELSE GOSUE 6000
160 A=A(K)
170 IF A>02(12) THEN 190
130 SFLAG 4 @ SUEEXIT
1 90 F=Y ( K ) @ MAT G=E ( K ,

)

200 GOTO 220
210 SFLAG 9 @ SUEEXIT
220 SUEEND
1000 GOSUE'. 1050
1010 IF N3#0 THEN 1030
1020 A=A1 @ RETURN
1030 IF A2>2*A1 THEN A=2*A1 ELSE A=MAX(A1,A2)
1040 RETURN
1050 D0=DOT(D,S)
1 060 A 1 =02 ( S ) *AES ( F ) /AES ( D0

)

1070 FOR 1=1 TO Nl
1 0S0 A=02 ( 9 ) *AES ( X ( I ) ) / AES ( S ( I )

)

1090 IF A<A1 THEN A1=A
1100 NEXT I

1110 IF N3=0 THEN RETURN
1120 FOR 1=1 TO N3
1130 MAT G0=G1 ( I,

)

1140 D0=DOT(G0,S)
1150 A=-(A2(I)/D0)
1160 IF A>A2 THEN A2=A
1170 NEXT I

1180 RETURN
2000 MAT X=<1)*X?+<A)*S
2010 FOR 1=1 TO Nl
2020 IF X < I )< L ( I ) THEN X ( I ) =L ( I

)

2030 IF X < I ) >U < I ) THEN X ( I ) =U ( I

)

2040 NEXT I

2050 RETURN
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3000 M< 1 )=AMAX(G)
30 1 CALL P* ( 2 , X ( ) , F , G < ) )

3020 M<2)=AMAX(G>
3030 Y(2)=F
3040 MAT B(2, )=G
5050 IF Y ( 2 ) >Y ( 1 ) THEN 3070
306€> IF M(2X=C2(12) THEN 3150
3070 A ( 3 ) =A ( 1 ) +R 1 * ( A ( 2 ) -A ( 1 )

)

3030 A=A(3)
3090 GOSUB 2000
3100 CALL P* ( 2\X(),F,G<) )

3110 M(3)=AMAX<G)
120 Y(3)=F
130 MAT B(3, )=G

csl40 RETURN
150 A(3)=A(2)
160 Y(3)=Y(2)
170 M(3)=M<2)
130 MAT G=B<2,

)

190 MAT BC3, )=G
200 A ( 2 ) = ( 1 +R2 ) *A ( 3 ) -R2*A ( 1

)

210 A=A(2)
220 GOSUB 2000
230 CALL P* ( 2,XO,F,G() )

240 Y(2)=F
250 M(2)=AMAX(G)
260 MAT B<2, ) =G
270 IF Y ( 2 ) >Y ( 3 ) THEN RETURN
2S0 IF M ( 2 ) >C2 (12) THEN RETURN
290 A ( 1 ) =A (3

)

300 Y( 1 )=Y<3)
310 M( 1 )=M(3)
320 MAT G=B(3,

)

3330 MAT B ( 1 ,
) =G

340 GOTO 3150
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4000 M< 1 )=AMAX(G)
4010 CALL PI ( 2, X(

)
, F,G< ) )

4020 Y ( 2 ) =F
4030 M(2)=AMAX(G)
4040 MAT E ( 2 ,

) =G
4050 IF M(2) >M( 1 ) THEN 4030
4060 IF M(2) >0 THEN 4160
4070 IF Y(2XY( 1 ) THEN 4160
4080 A(3)=A(1)+R1*<A(2)-A< 1 )

)

4090 A=A < 3

)

4

1

00 GGSUE 2000
4110 CALL P* ( 2,XO,F,G() )

4120 Y ( 3 ) =F
4 1 30 M<3)=AMAX(G)
4140 MAT B<3, )=G
4150 RETURN
4160 A ( 3 ) =A ( 2

)

4170 Y(3)=Y(2)
4130 MAT G=B<2,

)

4190 MAT E ( 3 ,
) =G

4200 M ( 3 ) =M ( 2

)

4210 A ( 2 ) = ( 1 +R2 ) *A ( 3 ) -R2*A ( 1

)

4220 A=A(2)
4230 GOSUB 2000
4240 CALL P* ( 2, X < ) , F , G ( ) )

4250 Y ( 2 ) =F
4260 M(2)=AMAX(G)
4270 MAT B<2, )=G
4230 IF M ( 2 ) >M ( 3 ) THEN RETURN
4290 IF M(2) >0 THEN 4310
4300 IF Y(2)>Y(3) THEN RETURN
4310 A ( 1 ) =A ( 3

)

4320 Y( 1 )=Y(3)
4330 M ( 1 ) =M < 3 >

4340 MAT 6=6(3,

)

4350 MAT B(l, )=G
4360 GGTG 4160
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5000 P2= ( ( Y ( 3 ) -Y ( 1 ) ) / ( A ( 3 ) -A ( 1 ) ) - ( Y ( 2 ) -Y ( 1 ) ) / ( A ( 2 ) -A ( 1 / > > / >' A
C 3 ) -A ( 2 )

>

5010 P1=(Y(2)-Y( 1 ) )/(A(2)-A( 1 ) )-P2*(A< 1 ) +A ( 2 )

)

5020 A0 ( 1 ) =- ( P 1 / ( 2*P2 )

)

5030 PQR 1=1 TO N2
5040 P2=( (B<3, I )-B( 1,1) )/<A<3)-A( 1

)

>-<B<2, I >-B< 1,1) )/<A(2)-A
( 1 ) ) ) / ( A ( 3 ) -A ( 2 )

)

5050 P 1 = < B ( 2 , I ) -B ( 1 , I ) ) / < A < 2 ) -A ( 1 )
) -P2* ( A < 1 ) +A < 2 )

)

5060 P0=B ( 1 , I
) -P 1 *A ( 1 ) -P2*A ( 1 ) 2

5070 B0=P 1 '" 2-4*P0*P2
50S0 IF B0>0 THEN 5110
5090 A0 ( I + 1 ) =- ( P0 / P 1

)

5100 GOTO 5130
5 1 1 A0 ( I + 1 ) =MA X ( -P 1 +SQR ( B@ )

, -P 1 -SQR < BO )

)

5 1 20 A0 ( 1+ 1 ) =A0 ( I + 1 ) / ( 2*P2

)

5130 NEXT I

5140 A(4)=AMIN(A0)
5150 A=A(4)
5 1 6 G SUB 2
5170 CALL P* ( 2,X(),F,G() )

51S0 Y(4)=F @ MAT B(4,)=G
5190 M(4)=AMAX(G)
5200 K=

1

5210 FOR 1=2 TO 4

5220 IF Y(IXY(K) AND M(IX=C2(12) THEN K=I
5230 NEXT I

5240 RETURN
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6000 MAT A0=ZER(N3+1)
6005 IF AMIN(M)>0 THEN 6360
601 P2= ( < Y < 3 ) -Y ( 1 ) ) / ( A ( 3 ) -A ( 1 )

) - < Y ( 2 ) -Y ( 1 ) ) / < A < 2 ) -A ( 1 ) ) ) / (

A

( 3 ) -A ( 2 )

)

6020 P 1 = ( Y ( 2 ) -Y ( 1 ) ) / < A ( 2 ) -A ( 1 )
) -P2* < A ( 1 ) +A ( 2 ) )

6030 A0 ( 1 )- ( P 1 / ( 2*P2 )

)

6040 FOR 1=1 TO N3
6050 GOSUB 6490
6060 IF B0>0 THEN 6090
6070 A0 ( I + 1 ) =- ( P0 / P 1

)

6030 GOTO 6110
6090 A0 ( I + 1 ) =M I N ( -P 1 +SQR ( B<3 > , -P 1 -SQR ( B0 ) )

6 1 00 A0 ( I + 1 ) =A0 ( I + 1 ) / ( 2*P2

)

6110 NEXT I

6120 A(4)=AMAX(A0)
6130 MAT A0=IER<N2-N3)@ Jl=l
6140 FOR 1=1 TO N2
6150 FOR J=l TO N3
6160 IF I=A1(.J) THEN 6240
6170 NEXT J
6130 GOSUB 6540
6190 IF B0>0 THEN 6220
6200 A0 ( J 1 ) =- ( P0/PI)
6210 J1=J1+1 @ GOTO 6240
6220 A0 ( J 1 ) =M I N ( -P 1 +SQR ( B0 )

, -P 1 -SQR ( B0 )

)

6230 A0 ( J 1 ) =A0 ( Jl ) / < 2*P2

)

6235 .J1=.J1 + 1

6240 NEXT I
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6250 A(4)=MIN(A<4> , AHIN< A0)

)

6260 A=A(4)
6270 GOSUB 2000
62S0 CALL P* ( 2,XO,F,G<) )

6290 Y ( 4 ) =F @ MAT B < 4 , ) =G
6300 M<4)=AMAX(G)
6310 K=l
6320 FOR 1=2 TO 4
6330 IF Y(IXY(K) AND M<IX=C2(4) THEN K=I
6340 NEXT I

6350 RETURN
6360 P2= ( < M ( 3 ) -M < 1 ) ) / < A < 3 ) -A < 1 ) ) - ( M < 2 ) -M < 1 ) ) / < A ( 2 ) -A ( 1 ) ) ) / (

A

( 3 ) -A ( 2 )

)

6370 PI- ( M ( 2 ) -M < 1 ) ) / ( A ( 2 ) -A ( 1 )
) -P2* ( A < 1 ) +A < 2 )

)

6380 A ( 4 ) =- ( P 1 / ( 2*P2 )

)

6390 IF A(3XA(4) AND A(4XA(2) THEN 6420
6400 M(4)=2*M(2)
6410 GOTO 6460
6420 A=A(4)
6430 GOSUB 2000
6440 CALL P* ( 2 , X ( ) , F , G ( ) )

6450 M(4)=AMAX(G) @ Y < 4 ) =F @ MAT B<4, )=G
6460 M=AMIN(M)
6470 K=AMINROW
64S0 RETURN
6490 P2= ( ( B ( 3, A 1 ( I )

) -B ( 1 , A 1 ( I ) ) ) / ( A ( 3 ) -A ( 1 )
) - ( B ( 2 , A 1 < I ) ) -B ( 1

, Al ( I ) ) ) / ( A ( 2 ) -A ( 1 ) ) ) / < A < 3 ) -A ( 2 ) )

6500 P1=<B(2,A1 < I ) )-B( 1, Al ( I ) ) )/(A(2)-A( 1 ) >-P2*(A< 1 ) +A ( 2 ).

)

65 1 P0=B ( 1 , A 1 < I ) ) -P 1 *A < 1
> -P2* A ( 1

)

A2
6520 B0=P 1 -"2-4*P0*P2
6530 RETURN
6540 P2= < ( B ( 3 , I ) -B < 1 , I ) ) / ( A ( 3 ) -A ( 1 )

) - ( B ( 2 , I ) -B ( 1 , I ) ) / ( A ( 2 ) -A
( 1 ) ) ) / ( A ( 3 ) -A ( 2 )

)

6550 Pl = < B ( 2, I
) -B ( 1 , I ) ) / ( A ( 2 ) -A ( 1 )

) -P2* ( A ( 1 ) +A ( 2 )

)

6560 P0=B ( 1 , I ) -P 1 *A ( 1 ) -P2*A ( 1

)

s2
6570 B0=P1 '•2-4*P0*P2
6580 RETURN
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Module: VMSRCH

Called by: UCONT

Calls: PROB (edited)

Function: Perform unconstrained one-dimensional search in

variable metric method.

Establish bounds on the solution (100-350).

Refine the solution by polynomial approximation

(360-520).

Nomenclature:

A0 Move parameter

A() Working vector of move parameters

A1() Working vector of move parameters

DO Dot product of DO and S()

F9 Working value of objective function

Y() Working vector of objective function values

Y1() Working vector of objective function values
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10 SUB "VMSRCH" <X()
1
F,D()

J S(),A0)
20 OPTION BASE 1

30 COM P * C 6 3 ,1 NTEGER Nl , N2, N3 , N4 , Q

1

i Q2 , Q3 , 04 , C 1(10) , SHORT
C2 ( 20

)

40 SHORT DO, A 1 ( 1 1
)

, X? ( 10
)

, Y ( 4
)

, A< 4
)

, Rl , R2, PI , P2, P3, Yl (4) ,F9,
B
50 ON KEY* 1 GOTO 540
60 IP FLAG(9) THEN SUBEXIT
70 R 1 = < 3-SQR ( 5 ) ) / 2 S R2= ( 1 +SQR ( 5 ) ) /

2

30 MAT A=ZER(4>@ MAT Y=A
90 Y< 1 )=F @ F9=0
100 D0=DOT(D,S)
110 MAT A1=ZER(N1+1

)

120 MAT X9=X
1 30 A 1 ( 1 ) =02 ( S ) *ABS ( F ) / ABS ( DO

)

140 FOR 1=1 TO Nl
1 50 Al ( I +1 ) =02 ( 9 ) *ABS ( X9 ( I ) ) /ABS ( S ( I )

)

160 NEXT I

170 A(2)=AMIN<A1 )

130 MAT X9=< 1 >*X9+(A<2) )*S
190 CALL PI- ( 2,X9(),F9 )

200 Y(2)=F9
210 IF Y ( 2 ) >Y ( 1 ) THEN 3 1

220 A<3)=A(2) @ Y(3)=Y(2)
230 A ( 2 ) = ( 1 +R2 ) *A < 3 ) -R2*A ( 1

)

240 MAT X9=X
250 MAT X9=( 1 )*X9+(A(2) ) *S
260 CALL PI ( 2,X9(),F9 )

270 Y(2)=F9
230 IF Y ( 2 ) >Y ( 3 ) THEN 360
290 A(1)=A(3) @ Y(1)=Y(3)
300 GOTO 220
310 A(3)=R1*A<2>
320 MAT X9=X
330 MAT X9=( 1 )*X9+<A(3) )*S
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340 CALL P* ( 2,X9<),F9 )

350 Y(3)=F9
360 P3= < Y < 3 ) -Y ( 1 )

) * < A ( 2 > -A ( 1 ) ) / < A < 3 ) -A < 1
> - ( Y < 2 ) -Y ( 1 ) > * < A < 3 )

-

A ( 1 ) ) )

370 P3=P3/ ( A ( 2 ) -A ( 1 ) + ( A ( 3 ) -A ( 2 )
) *D0 ) / ( ( A ( 2 ) -A ( 1 )

) * ( A ( 3 ) -A ( 1

)

) * ( A ( 3 ) -A ( 2 ) )

)

330 P2= ( ( Y ( 2 ) -Y ( i ) ) / ( A ( 2 ) -A ( 1 )
) -D0 ) / ( A ( 2 ) -A ( 1 )

) -P3* ( 2*A < 1 ) +

A

(2) )

390 P 1 =D0-2*P2*A ( 1 ) -3*P3*A ( 1 )
-2

400 B=P2"2-3*P1*P3
410 IF B>=0 THEN 430
420 J=3 <2 GOTO 490
430 A ( 4 ) = ( -P2+SQR ( B ) ) / ( 3*P3

)

440 MAT X9=X
450 MAT X9=( 1 )*X9+(A(4) >*3
460 CALL P* ( 2,X9(),F9 )

470 Y(4)=F9
480 J=4
490 MAT Y1=Y( 1: J)
500 F=AMIN(Y1)
510 K=AMINROW
520 A0=A(K)
530 GOTO 550
540 SFLAG 9 @ SUBEXIT
550 SUBEND
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Module: NEWH

Called by: UCONT

Function: Update the approximation to the inverse of the

Hessian matrix used in determining the search

direction in the variable metric method.

Nomenclature

:

D0(,) Update matrix

P() Working vector initialized as X()-X1()

S Dot product of P() and Y()

T() Working vector

T1() Working vector

T2(,) Working array

T3(,) Working array

Y() Working vector initialized as D()-D1()
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10 SUE "NEWH" (XO,XK),D< >,D1< >,H< 5 ) )

20 OPTION. EASE 1

30 COM P* [63 ,1 NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 ,01(1 ) , SHORT
02 ( 20

)

40 SHORT D0( 10, 10) , Y< 10) ,P( 10) ,Ti ( 10) ,T2<10,10),T<1) ,S,T3< 10
,10)
50 ON KEY* 1 GOTO 230
60 IF FLA0C9) THEN SUEEXIT
70 REDIM D0(N1,N1 ), Y(N1 ) ,P(N1 ) ,T1 (Nl ),T2(N1,N1> , T3(N1,N1

)

S0 MAT P=X-X1
90 MAT Y-D-Dl
100 S=DOT(P,Y)
110 MAT T1=H*Y
120 MAT T2=T1*TRN(T1

)

130 MAT T=TRN(Y)*T1
140 MAT D0=P*TRN(P)
1 50 MAT D0= ( ( S+T ( 1 ) *C1 ( 3 ) ) /S'"-2 ) *B0
1 60 MAT D0= ( 1 ) *D0+ ( ( 1 ( 3 ) - 1 ) /T ( 1 )

) *T2
170 MAT T2=T1*TRN<P)
180 MAT T3=P*TRN<T1

)

190 MAT T2=T2+T3
200 MAT D0=<l)*D0+<-<CK3)/S> )*T2
210 MAT H=H+D0
220 GOTO 240
230 SFLAG 9 @ SUEEXIT
240 SUEEND
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Module: CONV

Called by: CCONT, UCONT

Function: Determine whether the design has converged to the

optimum in the last iteration.

Update convergence criteria based on iteration

history.
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10 SUB "CONV" <X( ) , XI (
) ,F,F1

)

20 OPTION BASE 1

30 COM P* C 6 3 , I NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3
f Q4 ,01(10) , SHORT

02 ( 20

)

40 SHORT X9< 10)
50 IF FLA0(9) THEN SUBEXIT
60 OFLAO 6
70 C2(3)-(C2<8>+ABS< (Fl-F) /Fl ) ) /2
80 MAT X9=X1-X@ MAT X9=X9/X1
90 02 ( 9 ) = ( 02 ( 9 ) +MAX AB ( X 9 ) ) /

2

100 IF ABS(F1-FXMIN(02( 13) ,C2( 11)*ABS(F1 ) ) THEN Q3=Q3+ 1 EU
E Q3=0
1 1 I F ABS ( F 1 -F ) / MAX ( ABS ( F 1 ) , . 0000 1 ) < 02 (10) THEN Q4=Q4+ 1 EU
E Q4=0
120 IF MAX(Q3,Q4) >=01 (2) THEN SFLAO 5
130 IF MAX(Q3,Q4)>0 THEN SFLAO 6
140 SUBEND
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Module: PROG

Called by: CCONT, UCONT

Function: Generate optimization progress information

output.

90





1 SUE " PROG " < X (
)

, X (
)
,Y , F

)

20 OPTION BASE 1

30 CON P* C 6 ] ,1 NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 ,01(10) , SHORT
02 ( 20

)

40 ON KEY# 1,"INTRPT" GOTO 300
50 IF FLAGC-?) THEN SUBEXIT
60 IF FLAG(ll) THEN 230
70 IF Q1>1 THEN 130
30 GCLEAR @ PEN 1 @ LORG 5
90 SCALE -2,21,-3.2,3.2
100 XAXIS 0, 1,0,20
110 YAXIS 0, 1,-3,3
120 FOR I =-3 TO 3
130 MOVE -.5,1 @ LAE'.EL I

140 NEXT I

150 MOVE 10,3 @ LABEL "Iteration History"
160 MOVE 10,2.7 @ LABEL PJ-

170 MOVE -3.1,5 @ LABEL "Kl to interrupt"
130 FOR 1=1 TO Nl
190 MOVE Ql , X ( I ) /X0 ( I ) @ LABEL I

200 NEXT I

210 MOVE Q1,Y @ LABEL "f"
220 SUBEXIT
230 IF Q1>1 THEN 270
240 CLEAR £ DISP USING "13X,6A" ; PI-

250 DISP "Iteration Objective Function"
260 KEY LABEL
270 DISP USING 230 ; Q1,F
230 IMAGE 3X,2D, 13X,K
290 GOTO 310
300 SFLAG 9 @ SUBEXIT
310 SUBEND
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Module: TERM

Called by: CCONT, UCONT

Function: Generate output of optimization results,
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10 SUB "TERM" (X(
)
,F,G( )

)

20 OPTION EASE 1

30 COM P*

C

61 , I NTEGER N 1 , N2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 ,01(10) , SHORT
02 ( 20

)

40 IF FLAG(?) THEN SUBEXIT
50 00SUB 1000
60 IF FLAO(l) THEN GOSUB 2000
70 IF FLA0(2) THEN GOSUB 3000
30 IF FLAG < 3) THEN GOSUB 4000
90 IF FLAGC4) THEN GOSUB 5000
100 IF FLAG < 5) THEN GOSUB 6000
110 IF FLAG(ll) THEN 150
120 PRINT @ PRINT S PRINT
130 GRAPH @ COPY @ SUBEXIT
140 PRINT £ PRINT @ COPY
150 SUEEND
1000 PRINT @ PRINT
1 1 PR I NT US I NO " 1 3 X , 6A " ; PI
1020 PRINT USING 1030 ; F
1 030 I MAGE 1 / , 3X ,

" OPT I MUM = "
, K

1040 FOR 1=1 TO Nl
1050 PRINT USING 1060 ; I,X(I)
1 060 IMAGE 1 / , 1 0X ,

" X
(

" , K
,

" ) = " ,

K

1070 NEXT I

10S0 IF N2=0 THEN 1130
1090 FOR 1=1 TO N2
1 1 00 PR I NT US I NO 1110 ; 1,0(1)
1110 IMAGE 1/, 10X, "G( ",K, " ) = " ,K
1120 NEXT I

1130 PRINT 2 PRINT @ PRINT "Termination based on:" @ PRINT
1140 SFLAG 10
1150 RETURN
2000 PRINT "Exceeded max. no. of iterations." @ RETURN
3000 PRINT "Excessive number of violated constraints." @
RETURN
4000 PRINT "Failure to find a direction to improve the desi
gn. " S RETURN
5000 PRINT "Failure to find a move parameter to improve the
design. " @ RETURN
6000 PRINT "Con verge nee" S RETURN
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Listings of the edited versions of PROB which were used

for the test cases presented in Chapter IV are included as

examples of MDOT problem input. The subprogram used to enter

the unconstrained test problem was renamed "BANANA", while

that edited for the constrained problem was renamed "BEAM".

94





( K 1 , X ( ) , F , G < ) , L ( ) , U ( ) )

N 1 , M2 , N3 , N4 , Q 1 , Q2 , Q3 , Q4 1 CI < 1 ) , SHOR

T

10 SUB "BANANA
20 OPTION BASE 1

30 COM P*C63 , INTEGER
C2 ( 20

)

35 SHORT Xl,X2,X3,X4 f X5,X6,X7,X8,X? 1 X0
40 DIM L*C63,U*C6J
50 IF K1>1 THEN 220
90 READ N1,N2
100 DATA 2,0
105 IF K1=0 THEN SUBEXIT
130 FOR 1=1 TO Nl

READ X(I )

IF N2=0 THEN 170
READ L*,U*
IF LI="N" THEN L(I)=-1.E99 ELSE L « I )=VAL ( L*

)

I F U-M " N " THEN U ( I ) = 1 . E?9 ELSE U ( I ) =VAL ( U* )

NEXT
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
GOSUB 9010
! User—defined expressions
1 Objective function
F=10*X1 -4-20*Xl"-2*X2+10*X2'-2+Xl
Q2=Q2+1

140
142
144
150
160
170
201
202
203
204
205
206
207
20S
209
210
220
230
399
400
499
500 !

9000
9010
9020
9030
9040
9050
9060
9070
90S0
9090
9100

I

-1

1.5

•2-2*Xl+5

CONSTRAINTS
SUBEND
xi=x( i ) e if
X2=X(2) @ IF
X3=X(3) S IF
X4=X(4) (2 IF
X5=X(5) @ IF
X6=X(6) @ IF
X7=X(7) @ IF
xs=x(S) e if
X9=X(9) @ IF
X0=X(10)

Nl = l

Nl=2
Nl=3
Nl=4
Nl=5
Nl=6
Nl=7
N1=S
Nl=9

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

@ RETURN
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10 SUB "BEAM" ( Kl , X ( ) , F, G(
)

, L (
)

, U< )

)

20 OPTION BASE 1

30 COM P*C63 .INTEGER
C2 ( 20

)

N 1 , N2 , N3 , N4 , Q 1 , 02 , 03 , Q4 ,01(10) , SHORT

35 SHORT XI, X2, X3,X4, X5, X6,X7, X3,X9, X©
40 DIM LtC6:,UJC63
50 IF K1>1 THEN 220
90 READ N1.N2
1 00
105
110
130
140
142
144
1 50
1 60
170
201
202
203
204
205
206
207
20S
209
210
220
230
301
302
399
400
499
500
50

1

502
503
9000
9010
9020
9030
9040
9050
9060
9070
90S0
9090
9100

G(N2)

DATA 2,3
IF K1=0 THEN SUBEXIT
REDIM L(N1 ) , U(N1 )

,

X(f
FOR 1=1 TO Nl
READ X ( I

)

IF N2=0 THEN 170
READ L*,U*
IF L*="N" THEN L(I)=-1.E99 ELSE
IF U*="N" THEN U(I)=1.E99 ELSE I

NEXT I

DATA 3.5, .5,5
DATA 16,1,20
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
GOSUB 9010
! User-defined
B=X1
H=X2

! Objective function
F=200*B*H
Q2=Q2+1
! CONSTRAINTS
G(1)=600/(B*H"2)-1
G ( 2 ) = 1 0666 . 7 / ( B*H"3 ) -

1

G(3)=H/10-B
SUEEND

L ( I ) =VAL ( LI-

)

.1(1) =VAL ( U *

)

expressi o n s

X1=X( 1

)

X2=X(2)
X3=X(3)
X4=X(4)
X5=X(5)
X6=X(6)
X7=X(7)
X3=X(S)
X9=X(9)
X0=X( 10)

IF
IF
IF
IF
IF
IF
IF
IF
IF

Nl = l

Nl=2
Nl=3
Nl=4
Nl=5
Nl=6
Nl=7
N1=S
Nl=9

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

@ RETURN
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