
DEVELXDPMENT OF A NATURAL LANGUAGE INTERFACE
TO A SLEEP EEG DATABASE

BY

CHONGTAI KIM

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1990

ACKNOWLEDGEMENTS

This work would have been impossible without the

guidance, endurance, and a long period of support of my

adviser. Dr. Jack R. Smith. I sincerely appreciate his

advice, comments, and thoughtful instructions during my

graduate life.

Dr. Jose Principe helped me a great deal with his kind

advice and guidance. He enabled me to convey the result of my

research to readers of this dissertation. Dr. Antonio Arroyo's

interest and comments clarified my work. I would like to thank

Dr. John Staudhammer for his kindness and helpful comments.

I also appreciate Dr. Sharma Chakravarthy ' s enthusiasm and

helpful comments on my work.

Discussion with Tae-whan Yoon encouraged me very much.

I thank Margaret Green and Russ Walters for their editorial

assistance with this dissertation. Thanks are also due to

Seung-hun Park and Haan-go Choi for their encouragement and

cooperation for years in the Sleep EEG Research Lab at the

University of Florida.

Especially, I would like to thank my parents and my

family for their endless love and endurance.

11

TABLE OF CONTENTS

page

ACKNOWLEDGEMENTS ii

ABSTRACT V

CHAPTERS

1 INTRODUCTION 1

2 PREVIOUS NATURAL LANGUAGE QUERY SYSTEMS ... 8

2 . 1 The Conventional Approaches 9

2 . 2 Problems in the Conventional
Approaches 16

2 . 3 The Knowledge-Based Approach 19

3 A MODEL FOR A NATURAL LANGUAGE QUERY
SYSTEM 22

3.1 The Overall Structure for the Model ... 23
3.2 Representing Domain Concepts 27
3.3 Parsing Natural Language Requests 29
3.4 Inferential Analysis 44
3.5 Query Translations 49
3 . 6 Database Mapping 57
3.7 User-Friendly Design 60
3.8 Summary 72

4 SEEGER: A SLEEP NATURAL LANGUAGE QUERY
SYSTEM 74

4.1 The Overall Structure of SEEGER 75
4.2 A Sleep Representational System 81
4.3 A Sleep Database System 88
4.4 Conceptual Coverage 92
4.5 Linguistic Coverage 103
4.6 Implementation 112

5 EVALUATION OF SEEGER 115

5.1 Test Descriptions 115
5.2 Performance Summary 116

iii

5.3 The Sleep Database 130

5.4 Timing 132

6 SUMMARY, CONCLUSIONS AND GUIDELINES FOR FUTURE
DEVELOPMENT 135

6.1 Summary 135

6.2 Conclusions 138

6.3 Guidelines for Future Development 141

APPENDICES

A USER'S GUIDE TO SEEGER 144

B REQUESTS FROM USERS IN THE TEST OF SEEGER . . 154

C DEVELOPER'S GUIDE TO SEEGER 158

REFERENCES 162

BIOGRAPHICAL SKETCH 167

IV

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

DEVELOPMENT OF A NATURAL LANGUAGE INTERFACE
TO A SLEEP EEG DATABASE

BY

CHONGTAI KIM

May, 1990

Chairman: Dr. Jack R. Smith
Major Department: Electrical Engineering

A natural language (NL) system called SEEGER (Sleep

EEGer) has been developed to retrieve information from a sleep

database without requiring any database expertise or computer

programming knowledge of the operator. A new knowledge-based

structure for building a NL system has been developed and

designed into SEEGER. It provides a more convenient method for

incorporating domain knowledge than the previous approaches

to building NL systems. In addition, it provides a more

efficient database mapping method for those NL requests that

rely on bottom-up parsing more often than top-down parsing.

SEEGER handles ungrammatical input, makes inferences, and

disambiguates some complicated word senses. It engages in an

interactive dialogue to correct spelling errors, to clarify

ambiguous or incomplete queries, and to enter a synonym when

V

a word is not in the lexicon. The database is then retrieved

by retrieval query created from SEEGER. The sleep database has

been designed to contain information about subject record,

channel recording, epoch summaries of waveform occurrences in

EEG/EOG/EMG, sleep stage parameters, and night parameters. It

has been implemented with the commercially available dBASE IV

database management system.

SEEGER is now in the experimental stage, and it was

evaluated using four users familiar with sleep data analysis.

It gave correct answers at the performance level of 63%,

achieving the preliminary design goal. The entire program has

been written in about 10,000 lines of LISP. The system

performance was analyzed in terms of the elements of the

syntactic variations, semantic complexities, and interactive

dialogues based on the test results. These tasks show that

future improvements can lead to a sleep NL system performing

at the level of a data processing technician, but it would

take at least two man-years of effort, assuming the developers

already possess some background in artificial intelligence

programming. SEEGER has been implemented in a personal

computer; it requires 6 megabytes of system memory and 15

megabytes of hard disk storage for the LISP environment and

dBASE IV. Finally, the guidelines for future development are

suggested.

vi

CHAPTER 1

INTRODUCTION

An automatic sleep waveform analyzing system (Smith,

1986; Principe & Smith, 1986; Chang, 1987) detects the most

commonly occurring waveforms in the human sleep

electroencephalogram (EEC) , electrooculogram (EOG)
,

and

electromyogram (EMG) . It produces a large amount of data which

requires further reduction. Sleep clinicians or researchers

have diverse purposes for utilizing the sleep data. One of the

most flexible and convenient ways to manage sleep data is

through the use of a database management system (DBMS) . It

provides efficient storage and manipulation of data, but

knowledge about the database (DB) structure and formal query

language is required in order to manipulate the database. The

user has to learn the formal query syntax as well as DB file

names and DB attribute names. Unless he uses the database

often, he is likely to forget them. It imposes an unacceptable

time commitment to most sleep clinicians or researchers.

Menu systems are much simpler to learn than DB query

systems. They present the user with a sequence of fixed

choices easy to recognize and to move through the options. It

1

2

is simpler and easier than the syntactic construction of a

query language. However, it would not be adequate, in

prescribed choices, to accommodate the variety of tasks that

the sleep clinician might want to perform.

The main purpose of this research is to develop a NL

interface (SEEGER) performing at the level of a data

processing technician who provides the data in a sleep

database for the sleep clinician or researcher. A natural

language interface to the sleep database can solve the problem

of training requirements for programming languages, DB

structures, and formal DB syntax. An automatic language

analysis program takes a NL request as input and transforms

it into the machine ' s internal form which represents the real

world content. This content is converted to the query language

and then evaluated using the database. Therefore, automatic

query language generation makes training unnecessary and

enables the sleep clinician/researcher to access the

information efficiently and effectively.

A great deal of research has already been done in

building natural language interface (NLI) to DB query systems.

The NLI systems have been developed to incorporate more and

more knowledge and support intelligent language-processing

tasks. In addition, considerable effort has been expended to

isolate domain-independent components in order to enhance the

portability to new domains. The approaches to building the NL

query systems can be considered as different choices of what

3

knowledge is to be applied and in what manner and how it is

to be interpreted. Many systems produce an intermediate stage

that is called "intermediate representational language" (IRL)

in order to refer to the language in which sentence meaning

is expressed.

In the semantic-grammar-based approach, NL questions are

transformed directly into a query language (QL) or a query

form without using any intermediate stage. All knowledge

sources are incorporated into a grammar so that a very large

number of grammars are required to cover more general

syntactic variations.

The domain-independent IRL-free approach transforms

directly NL input into a QL without using an IRL stage. It has

the same mapping style as the semantic-grammar-based approach,

but the knowledge sources are stored in a lexicon. The direct

transformation of NL strings into a QL causes the problem of

inference which occurs at the level of conceptual content.

The domain-independent IRL approach constructs three

separate representations: a syntactic construction, an IRL

expression, and a QL. It utilizes the modular approach in

which syntax and semantics are separable. This approach shifts

the burden of determining sentence meaning to subsequent

semantic interpretation. But semantic analysis faces the

problems of prepositional phrase attachment, noun phrase

meaning, pronouns, and ellipses.

4

The knowledge-based (KB) approach transforms a NL request

into an IRL expression directly without its independent

syntactic construction. The advances in representational

strategies, knowledge structures, and expectation-based

parsing techniques make it possible to incorporate much more

domain-specific knowledge into a specific application than is

possible in the previous approaches. Syntactic, semantic,

pragmatic, and contextual types of information are utilized

in an integrated fashion to build an IRL during parsing. The

inferential analysis is performed on the IRL to infer the

implicit information. This IRL is independent of the physical

DB structure and is translated into a QL.

A new model for a knowledge-based approach has been

developed in this dissertation. It provides a more convenient

method for incorporating domain knowledge than the previous

approaches to building NL systems. In addition, it provides

a more efficient database mapping method for those NL requests

that rely on bottom-up parsing more often than top-down

parsing. As a general model, it was applied to build a sleep

NL query system that is SEEGER.

A word meaning is combined with other word meanings so

that a whole meaning structure of the sentence is formed.

Hence, it is necessary for the word meaning to be represented

in terms of the domain concepts. The representational system

of the sleep domain is represented in a semantic network

called "ISA-hierarchy . " It reflects the property of the

5

concepts to be classified and the operations to be performed

on it. The top concept is classified into four categories:

entities, actions, states, and relationships. These are

further broken down successively into their subordinate

classes until each item arrives at a primitive component that

cannot be further analyzed. Thus, the word meaning is

represented into a set of primitive units.

The goal of the conceptual analysis in the knowledge-

based approach is to map NL input into a Conceptual Dependency

(CD) (Schank & Abelson, 1977) representation of its meaning.

It is based on the integrated approach in which syntax and

semantics are jointly applied in order to construct the

meaning representation without an independent syntactic phase.

The knowledge of how to process words is written in the form

of "demons." Demons are primarily used to link a fragmentary

structure into another in the working memory or are used to

disambiguate word senses. A noun group is processed

independently to decide the boundary, the head of a noun

group, and then finally the meaning of the noun group

constituent. At the end of a sentence, a single final

structure will be constructed to represent the meaning of a

sentence.

The representation produced by the parser is a meaning

representation of what was explicitly stated in the user's

requests. The inferential analysis is applied to the level

of meaning representation by a set of rules. It specifies

6

implicit information explicitly, removes unnecessary

information, and shifts the meaning of concepts by combining

or expanding concepts.

Since there is a large gap between the meaning

representation and its retrieval query, an intermediate stage

of transformation is needed. The meaning representation is

first transformed into a set of linear specifications. This

involves grouping the same kind of features into one place.

Some patterns in the linear forms are replaced with other

patterns that can be transformed into the underlying DB

language. The set of linear specifications are transformed

into a target DB query language using a domain-to-database

mapping table.

The sleep DB contains information about subjects, channel

recording, 30-second or 60-second epoch-wise summaries of

waveform occurrences in EEG/EOG/EMG, and stage-wise and night-

wise parameters. The sleep DB is consulted by retrieval

queries from SEEGER or edited by a menu-driven system. The

menu-driven system is used to add new subject data or update

the existing data in the DB. The epoch-wise, stage-wise, and

night-wise data of a new subject are supplied from the sleep

waveform analyzing system and added in the DB automatically.

Naive or infrequent users often need to be guided with

an interactive dialogue to minimize user frustration. This

facility requires a considerable domain-specific knowledge.

Context-sensitive spelling correction is performed to correct

7

misspelled words quickly and easily. When a word cannot be

found in the lexicon, the user can enter a synonym. When there

is an ambiguity or missing information, a clarification

dialogue is initiated. Finally, the user is given an

opportunity to verify the system's interpretation.

The goal of this dissertation is to develop a model of

a knowledge-based query system. An experimental system has

been designed and implemented based on a new knowledge-based

approach, and it was evaluated by four casual users. Chapter

2 describes the approaches of the previous NL query systems.

Their structures for applying knowledge and their limitations

are discussed. Chapter 3 describes a new model for a

knowledge-based NL query system. It includes the conceptual

parsing, the inferential analysis to obtain the meaning of NL

input, the transformation of the meaning representation into

query retrieval, and the user-friendly design. Chapter 4

describes the design and implementation of SEEGER, a NL system

based on the model of Chapter 3 . The system structure and a

sleep DB system are included. The elements covering a variety

of syntactic and semantic facilities for sleep domain are

discussed along with the current implementation of SEEGER.

Chapter 5 describes the evaluation of SEEGER. It includes the

test description and a summary of SEEGER 's performance.

Chapter 6 contains the summary, conclusions, and the

guidelines for future development.

CHAPTER 2

PREVIOUS NATURAL LANGUAGE QUERY SYSTEMS

A great amount of research has been done in building NLIs

to database (DB) query systems. Although there is no general

agreement on research goals and methodology in natural

language processing (NLP) ,
the main line of development in NLP

has been in the incorporation of more different sources of

knowledge in support of intelligent language-processing tasks.

Therefore, NLIs have been built in a direction to incorporate

more knowledge so that users will not require specialized

training to be able to use the system. In addition, a

considerable effort has been made to isolate domain-

independent components in order to enhance the portability to

new domains.

In Section 2 . 1 the approaches taken by the previous NLIs

are described in a view of what knowledge is applied and in

what manner, providing an evolutionary trace of the NLI

systems. Problems encountered with the previous NLI systems

are discussed in Section 2.2. Section 2.3 describes the

current existing knowledge-based approach.

8

9

2 . 1 The Conventional Approaches

A NLI system should utilize at least three different

kinds of knowledge to accomplish its task: syntactic

knowledge, domain-specific knowledge (or semantic knowledge)

,

and knowledge of database structure. Domain-specific knowledge

includes lexical knowledge, world knowledge, and contextual

knowledge. All the NLI systems discussed in this chapter have

the goal of producing a query language. A query language is

either a formal database language or an intermediate form

prior to a formal database language. The approaches to

building the NLI systems can be considered as different

choices of what knowledge is to be applied and in what manner,

and how it is to be interpreted. The NLI systems have taken

one of the following approaches: LUNAR-Like, semantic-grammar-

based, or domain-independent. The characteristics of each

approach are described below.

2.1.1 LUNAR-like Approach

This approach takes two separate procedures: syntactic

and semantic analysis as shown in Figure 2.1.

NL

Input
Syntax

Syntactic

Construction
Semantics

QL
^

Figure 2.1. The Structure of LUNAR-Like Approach

10

A domain-independent grammar produces a syntactic construction

which is translated directly into a query language without any

intermediate stages. It is not transportable to other

databases or applications.

One of the earliest and widely known systems is Woods's

LUNAR (Woods, Kaplan, & Nash-Webber, 1972) . It was the first

NLI to real world problems. It allows geologists to

conveniently access the chemical analysis data on lunar rocks

obtained from the Apollo-11 mission. LUNAR translates NL

questions into a query language in the following two separated

steps: 1) syntactic analysis using an augmented transition

network (ATN) parser to produce a syntactic construction or

a parse tree, 2) semantic interpretation to map the syntactic

construction into a query language. The ATN grammar (Woods,

1970) is independent of a specific domain and transferable to

other applications. All of the domain-specific information is

contained in the lexicon and the semantic interpretation

rules. The lexicon entries contain a variety of syntactic,

semantic, and morphological information about the words. In

LUNAR, semantic knowledge and database structure knowledge are

merged into one in the semantic rules.

In a LUNAR-Like approach, a new set of semantic rules

must be rewritten for a new database as well as a new domain

since database structure knowledge and domain-specific

knowledge are combined into the semantic rules.

11

2.1.2 Semantic-Grammar-Based Approach

In this approach, NL questions are transformed into a

query language directly without any intermediate stages as

shown in Figure 2.2. As a domain-specific approach, a grammar

is designed for just one application use. The main

characteristic of a semantic grammar (Burton, 1976) is that

it intentionally embodies all knowledge sources into a

grammar. It classifies words and phrases into a combination

of syntactic, semantic, and database knowledge. Thus, a

semantic interpretation can be performed during the parse

without additional stages of processing. There are two typical

examples: LADDER and PLANES.

Figure 2 .

2

Input

Syntax
&

Semantics

QL

A

I

Semantic Grammar

The Structure of Semantic-Grammar-Based Approach

LADDER (Hendrix, Sacerdoti, Sagalowicz, & Slocum, 1978)

provides NL access to a distributed DB of Navy ship

information. The system used LIFER (Hendrix, 1977) as a

development tool. LIFER compiles a set of user-defined grammar

rules into a semantic grammar because the specific semantic

entities are incorporated directly into the grammar. This

12

system can translate a query into an equivalent program

language or a query language.

PLANES (Waltz, 1978) answers NL questions from a large

relational DB consisting of maintenance and flight records of

Navy aircrafts. The parsing mechanism of a sentence or phrase

is based on an ATN formalism. That is, one state of ATN at the

top level calls each ATN subnetwork repeatedly during analysis

of a sentence. A subnetwork recognizes a phrase or basic

meaning unit. But the basic unit is mapped directly into a

part of a query language. The notion of direct mapping of a

subnetwork is the same as that of semantic grammar. Therefore,

syntactic, semantic and database knowledge is imbedded in each

ATN subnetwork so that new subnetwork grammars must be

rewritten for other domains.

In a semantic grammar approach, all knowledge sources are

incorporated into a grammar and there is no separate semantic

interpretation phase in order to obtain a query language. A

grammar is not transportable and can only be applied to one

application.

2.1.3 Domain-Independent Approach

Since the late 1970s, many NLIs have been developed as

transportable domain-independent systems to minimize

development costs. This approach isolates the domain-dependent

information, providing modular design and greatly enhancing

the portability to new domains. Many systems produce an IRL

13

of a question in terms of the concepts of a domain,

independent of the DB structure. The systems in this approach

can be divided into two systems, depending on the mapping

methods: systems without IRL (or IRL-free systems) and systems

with IRL (or IRL systems)

.

2 . I . 3 . I The IRL-free systems . The systems in this

approach transform NL questions directly into a query language

as shown in Figure 2.3. This mapping style is the same as that

of the semantic grammar systems, but the knowledge sources are

stored in a different place. The knowledge is stored at the

lexicon in the IRL-free systems, but all knowledge sources are

stored at the grammar in the semantic grammar systems.

Figure 2 .

3

ATN Grammar
I

NL

Input

Lexicon

The Structure of IRL-free Domain-Independent
Approach

In this approach, the linkage between natural language

strings and query language code is defined in a lexicon.

Typically a dictionary has two parts, the domain-independent

14

lexicon and the domain-specific lexicon. The first defines

words and phrases which have the same query language linkage

for any application. A domain-specific word or phrase is

defined as its corresponding field name, field value, or

database file from the underlying database. Synonyms are also

defined in the lexicon. Therefore, domain-specific knowledge

is mainly composed of database structure knowledge.

INTELLECT, previously called ROBOT (Harris, 1977) , one

of the commercially available NL query systems, has a domain-

independent grammar based on ATN and translates input words

into references to fields, files, or key words to a query

language. COOP (Kaplan, 1979) and EUFID (Templeton & Burger,

1983) also used this approach.

This approach can be transportable to other applications.

Since a grammar in this approach is doma in- independent , it

involves defining a new domain-specific lexicon to support a

new target database.

2. 1.3. 2 The IRL systems . The IRL systems construct at

least three separate representations of NL questions: a

syntactic construction, an IRL expression, and a query

language as shown in Figure 2.4.

NL

Input
Syntax

Syntactic
Semantics

IRL
DB

InterpreterConstruction

QL

Figure 2.4 The Structure of IRL Domain-Independent Approach

15

It is an IRL expression that represents the meaning of

a sentence. It is necessary for an IRL to be decoupled from

the underlying database because there may be NL sentences for

which no corresponding language exists.

PHLIQAl (Scha, 1982) focused on the formal definition of

representations. It used the formal logic language for a

syntactic construction, IRL, and a query language. The

representation of each step is shifted to the next step

representation by the mapping rules of the formal logic.

CHAT (Warren & Pereira, 1982) translates a sentence into

a "first-order logic," and then a logic form in PROLOG. This

system used the Prolog language since it allows efficient

implementation

.

Ginsparg (1983) developed a portable NLI at Bell

Laboratories. The meaning of a sentence is represented in a

case frame form rather than a logic form, and then it is

translated into a query language by a set of DB mapping rules.

TEAM (Grosz, 1983) was designed to interact with two

different kinds of users: a database person to acquire DB

information and an end user to retrieve information from the

DB. The knowledge acquisition is performed automatically by

interactions with a database person, rather than hand-built

by programmers. The intermediate stages are expressed in a

logical form.

16

The systems in this approach produce an IRL expression

which is independent of any database as well as any domain.

It is therefore possible for them to construct an IRL more

expressive than a query language.

2 . 2 Problems with the Conventional Approaches

As discussed in the last section, there have been several

different approaches to designing NL query systems. The

limitations of each approach are described here. Their

limitations are due to the lack of knowledge or the lack of

mechanism to incorporate various knowledge sources. The

problems in the domain- independent approach are illustrated

with specific sentences.

2.2.1 LUNAR-Like Approach

This approach encounters the same problems as the domain-

independent approach since it uses a domain-independent ATN

parser.

2.2.2 Semantic-Grammar-Based Approach

This approach has built the successful NLI systems such

as LADDER and PLANES in the restricted subject area. All

knowledge sources are encoded in a grammar to guide the

interpretation of NL questions. It provides capabilities for

handling ellipses, ungrammatical input, pronouns, paraphrases,

spelling corrections, etc. In addition, many ambiguities can

17

be avoided during parsing by storing all the allowed patterns

in a grammar.

A new grammar must be rewritten for a new application.

It can be useful to build a restricted NLI quickly. The main

limitation is that a very large number of grammar rules are

reguired to cover more syntactic variations. In other words,

it is very difficult to capture important syntactic

generalizations in a semantic grammar. Adding more rules

requires a high level of training and a considerable effort

for interface developers as well.

2.2.3 Domain-Independent Approach

There are two controversial NLP theories: modular and

integrated. The domain-independent approach is based on

modular theory, and the knowledge-base approach is based on

integrated theory. The modular approach says that syntax and

semantics are separable and an autonomous level of syntactic

representation must be computed. This position was supported

by Chomsky (1965) ,
Woods (1970) ,

Winograd (1972) , and Marcus

(1980) . In contrast, the integrated approach advocates that

syntax and semantics be applied jointly in integrated fashion

and no independent syntactic representation is constructed.

This was advocated by Schank (1973), Riesbeck (1975), Birnbaum

(1986), and Riesbeck and Martin (1986).

Birnbaum (1986) criticized the theory of the modular

approach because it lies not in a goal-directed functional

18

view of language but rather in a descriptive view of language

taken by linguistics. He said that ATN models are not true

process models for language analysis because they are heavily

dependent on arbitrary choice of search and backtracking. It

is impossible to correctly determine how constituents of

utterance are related using syntactic information alone.

Marcus's nondeterminism (Marcus, 1980) also fails to address

the problem of ambiguity.

The syntactic analysis in the IRL domain- independent

systems is mainly performed by ATN or its descendant parsers.

This approach shifts the burden of determining sentence

meaning to subseguent semantic interpretation. Semantic

interpretation transforms a syntactic construction into an IRL

expressed in the concepts such as objects, relations, and

predicates of domain model. But semantic analysis faces the

problems of prepositional phrase attachment, noun phrase

meaning, scope determination, pronouns, and ellipses. Several

different strategies (Perrault & Grosz, 1986) have been

proposed.

Grosz (1982) addressed the problems of the lack of

inferential capabilities in TEAM. In PHLIQAl, Scha (1982)

described that an extensive set of domain-specific rules is

reguired due to the large gap between lexicon and database.

Warren (1982) found in CHAT that there is a very large gap

between IRL in logic form and database due to the absence of

explicit facts in the database.

19

The IRL-free systems mostly have only database structure

knowledge as a domain knowledge in the lexicon. The IRL

systems were not incorporated with appropriate inferential,

pragmatic knowledge of underlying domain because it seems very

difficult to accommodate a mechanism to do it. This very

limited domain-specific knowledge causes some severe problems

in the domain-independent approach.

2.3 The Knowledge-Based Approach

Since the 1970s a great deal of progress has been made

toward representational strategies (e.g., logic, semantic

network, semantic primitives), knowledge structures (e.g.,

scripts, plans, goals, MOPs)
,

and expectation-based parsing

techniques used to build more recent NLIs: EXPLORER (Lehnert

& Shwartz, 1983), EASYTALK (Shwartz, 1987). The KB approach

transforms NL requests into an IRL expression directly without

its syntactic construction as in Figure 2.5.

NL

Input

A

I

Lexicon

Figure 2.5 Knowledge-Based Approach

This is based on the notion that sentences with identical

meaning will have the same underlying conceptual

20

representation, regardless of differences in grammatical form

or language used. Syntactic, semantic, pragmatic, and

contextual information are utilized in an integrated fashion

to build an IRL during parsing. The inferential analysis is

performed on the IRL to infer the implicit information. This

IRL is independent of physical structure and is translated

into a QL.

EXPLORER is a commercial NL query system for oil

exploration which accesses oil well databases and generates

maps. These maps are complicated objects, derived from a

database and generated dynamically as actual physical maps.

EXPLORER was designed to simulate the technician who uses the

database to generate maps of particular geographic regions

detailing the contour information of the formations within the

region as well as the characteristics of the wells within the

region. EXPLORER exploits a conceptual parser (Dyer, 1983)

,

combining syntactic and semantic information, along with

scripts (Schank & Abelson, 1977) relevant to this domain of

oil maps in order to produce an instantiated script as a

request representation. The system analyzes an input request

and constructs the interpretation by filling the slots in a

script or frame. It naturally offers the user an option of

inheriting many specifications from the previous map request.

EASYTALK is a commercial NLI system for a business

accountant database. It was designed to automate transaction

processing for wholesale distributors. It enables the user to

21

generate reports on an ad hoc basis by simply typing a request

for information in English. The report is then stored and

accessed through a menu of user-defined reports. This system

uses a conceptual parser to obtain a CD representation of

requests and then navigates the appropriate relational tables

and columns to generate an efficient retrieval query.

The parser used in EXPLORER and EASYTALK allows the rules

(or demons) to deal explicitly with information structures

representing the current state of the parser. A major problem

of the parser is the 'traffic control' of rules (Winograd,

1983) to be activated. To the degree that the parser allows

many different rules to be operating in parallel, the parser

leads to complex unexpected interactions and can be difficult

to debug and understand. In the database mapping process, the

KB systems use a set of rules in order to obtain the retrieval

queries from the parsing output. But if the structure type of

the parsing output is diverse, the number of rules becomes too

large to manage. The development cost of KB systems is also

very high for a given application (Schank & Shwartz, 1985).

The effort to build KB NL query systems will require many more

man-years than that of developing portable domain-independent

systems.

CHAPTER 3

A MODEL FOR A NATURAL LANGUAGE QUERY SYSTEM

This chapter describes a new model for a knowledge-based

NL query system. In this model, the parser maps NL input

directly into a Conceptual Dependency (CD) representation of

its meaning without any independent syntactic analysis phase.

A word or phrase, which constitutes lexical items in the

lexicon, is defined with a set of primitive units. Some

lexical items also contain their own processing information

in the form of rules called demons. The parser reads NL input

from left to right, processing the word definitions and demons

in the memory such that a well-formed meaning structure is

built. The meaning structure produced by the parser is what

was explicitly stated in NL questions. Implicit information

will be expressed explicitly by means of the inferential

analysis. In this way, the entire meaning of NL questions can

be represented.

In this model, the CD representation is transformed into

a set of linear specifications which groups the common

features into the same place. The linear forms are augmented

by a set of rules in order to provide a complete form for

22

23

database mapping. A set of domain concepts are then

transformed into a target database expression through a

concept-to-database function table.

The following section describes briefly the overall

structure for a proposed knowledge-based NL query system

model. Section 3.2 describes a domain concept representation

scheme to represent word meaning and domain knowledge. The

most important part of the model is the parser, described in

Section 3.3. The inferential process is discussed in Section

3.4. The query transformation is discussed in Section 3.5 and

in Section 3.6, and a user-friendly design for an interactive

dialogue is described in Section 3.7. Finally, this model is

summarized, and the differences from other systems are

discussed in Section 3.8.

3.1 The Overall Structure of the Model

The structure of the proposed knowledge-based system is

shown in Figure 3.1. The components of the structure are

described briefly below, and their details are explained in

the following sections in this chapter.

3.1.1 Conceptual Parser

The Conceptual Parser (CP) in this model maps NL input

into a CD representation of its meaning in the same manner as

other knowledge-based systems. The CP, as the integrated

approach, is in contrast to syntactic parsers which are in the

24

Figure 3.1 The Overall Structure of a Knowledge-Based
Natural Language Query Model

25

modular approach. In the modular approach a separate syntactic

structure is built by means of a grammar such as ATN. But the

CP does not use any explicit grammar. The knowledge about

syntax (i.e., word order) is encoded in the form of demons

along with other processing information. Word senses are

defined in a declarative form into lexical items in a lexicon.

Thus, the lexicon contains demons and word sense definitions.

The CP reads NL input from left to right, processing word

definitions and demons in the working memory so that a final

meaning representation is obtained. The details are described

in Section 3.3.

3.1.2 Inferential Analyzer

The output produced by the CP represents the meaning of

what was explicitly stated in user requests. However, many

requests are expressed with missing information or in

ambiguous utterances. Some requests can be understood based

on a wide range of information such as contextual components,

dialogue conventions, world knowledge, etc. Hence, missing

information or what is to be clarified in ambiguous utterances

can be inferred.

In this model, the inference is applied to the level of

meaning representation by a set of inferential rules. Most

inferential rules are domain-dependent contextual rules which

embody a lot of domain-specific knowledge. Section 3.4

describes the Inferential Analyzer in detail.

26

3.1.3 Translator

In this model, a NL question has been transformed into

a meaning structure (MS) via the conceptual parsing and the

inferential analysis. The MS is independent of the physical

structure of the database. It should be transformed into the

retrieval routine of the underlying database. But the MS

consists of domain concepts in the form of a tree structure,

and DB language is a non-procedural language.

In this model, since there is a gap between the MS and

the target DB language, the MS is first transformed into a set

of linear forms of the domain concepts in this model. Then the

set of linear forms is augmented by the database knowledge and

domain knowledge. Section 3.5 discusses the Translator in

detail

.

3.1.4 Database Mapper

In this model, the set of linear specifications is

transformed into a target DB query language by means of a

table of mapping functions. This transformation is called

"database mapping." The domain-to-database mapping table

contains the actual database attribute names as well as

access-path information. That is, the mapping table is a

function whose input is a domain concept and whose output is

a list of its associated DB files and matching attribute

names. Section 3.6 describes the DB Mapper in detail.

27

3.1.5 User-Friendly Design

One of the most important requirements in NLI systems is

that it interacts in a friendly way with the user to minimize

user frustration. Naive or infrequent users often need to be

guided with an interactive dialogue to formulate a complete

query

.

In this model, if there are any typographical errors in

a sentence, the system suggests the most likely correct word

to the user. When there are any ambiguities or missing

information, a clarification dialogue is initiated. Once the

system has formulated the query unambiguously, the user will

be given an opportunity to verify the system's interpretation.

Section 3.7 discusses a user-friendly design in detail.

3.2 Representing Domain Concepts

In knowledge-based systems, parsing is a process of

representing the meaning of the sentence in terms of domain

concepts. A word meaning is combined with other word meanings

so that a whole meaning structure of the sentence is formed.

Hence, it is necessary for the word meaning to be represented

and stored in the system's memory so as to be used during

parsing.

How can we represent the meaning of a word in a formal

way? Representation can be considered as a process by which

a formal, language-independent structure is assigned to the

28

items of meaning (Schank, 1973). The meaning can be broken

down into certain key items within an application domain. The

key item is called the "primitive unit" since it is a

fundamental component and its meaning is not further analyzed.

Thus, the word meaning is composed of a set of primitive

units. The choice of a key item is based on the level of

detail by which all phenomena of natural language interactions

can be covered. This meaning assigning process of a word is

called a "conceptualization" (Cullingford, 1986; Schank,

1973) .

There are four reasons why a formal representation scheme

is needed. First, it assigns a unique formal structure to an

identical meaning. That is, there should be only one formal

structure for any number of sentences if they have an

identical meaning. Second, formal structures are necessary for

inferences by which implicit information can be expressed

explicitly. Third, formal structure can be used to generate

natural language strings. Finally, it can be used to represent

the system's own knowledge of its domain. The first two

reasons are equal to the axiom of the Conceptual Dependency

theory (Schank & Abelson, 1977) . Thus, designing a good

representational scheme is important for building a NLI

system.

Cullingford (1986) suggested three representational

criteria: 1) coverage—all the entities and phenomena in the

domain can be represented, 2) economy—the smallest set of

29

primitive types has been chosen, and 3) orthogonality—the

primitive types are designed to minimize the overlap between

the inferences. These are informal criteria for what

representation content constitutes a good representational

system.

3 . 3 Parsing Natural Language Requests

This section describes the evolution of the Conceptual

Parser and then its structure and operations in detail. The

notion of the Conceptual Parser in this model is based on the

McDYPAR (Micro-version of DYPAR) (Dyer, 1983) with additional

features: noun group parsing, based on the noun group

processing method developed by Gershman (1979) , morphological

analysis, based on the algorithm used by Winograd (1983),

phrase and synonym handling, conjunction and elliptic

analysis, and spelling correction. They are incorporated in

the Conceptual Parser to expand the McDYPAR.

3.3.1 Background of the Conceptual Parser

As described in Chapter 2, there have been two different

approaches of parsing NL sentences. One is the syntactic

parser advocated by the syntactic autonomous camp and the

other is the conceptual parser advocated by the integrated

camp. The goal of the syntactic parser is to obtain the

parsing tree (or syntactic structure) of a sentence and then

interpret the meaning of the sentence from the parsing tree.

30

This parser thus separates the syntactic and semantic parts

of the analysis into two consecutive stages and pays more

attention to the syntactic part at the expense of semantics.

In contrast, the conceptual parser takes a sentence as

input and produces the meaning representation of the sentence

at one pass. It has no independent syntactic analysis phase

since meaning is a primary issue at the earliest stage, and

syntax can be used to aid in obtaining a meaning. This

analysis pays attention only to the words and expression

relevant to the tasks.

The basic ideas of the conceptual parser were first

developed in the MARGIE system (Riesbeck, 1975) which makes

inferences and paraphrases from NL sentences. In the MARGIE

parser, the parsing knowledge is encoded in small executable

programs, called "requests," which are stored in the

dictionary entries. These requests are then used to connect

the semantic representation of the word into a representation

of the whole sentence.

The next conceptual parser was ELI (Riesbeck, 1978) . ELI

was an attempt to show how requests could be used both to

disambiguate words and to connect structures by making the

parser extremely top-down. Thus, a conceptual structure was

only accepted for processing if it satisfied prior

expectations. This parser was expanded by the addition of the

Noun Group Processor program to handle complex noun groups and

post-nominal modifiers in ELI-2 (Gershman, 1979)

.

31

The Conceptual Analyzer (CA) (Birnbaum & Selfridge, 1981)

tried to make homogeneous the kinds of processing performed

by ELI and by Noun Group Processor. In ELI, all the requests

are kept in one list and everything in the list is tested when

new input arrives. In many cases, more than one request is

activated at the same time, and hence these requests have the

same recency. Such a set is called a "request pool" and an

ordered list of request pools was used for flexible control

strategies in CA. Almost everything in ELI is controlled in

top-down manner, but this top-down control is augmented by

better bottom-up control so that more variable input texts are

acceptable in CA.

The above parsers were extended and improved in DYPAR

(Dyer, 1983) which models expectations by means of processes

called demons rather than requests. DYPAR-style demons are

less constrained than ELI-style requests. The parser used in

this model is an extended version of McDYPAR (Dyer, 1983) with

additional features such as noun group processing,

morphological analysis, phrase and synonym handling, etc.

3.3.2 Data Structures of the Conceptual Parser

During language analysis, the parser in this model uses

a memory to hold the structures being processed, which is

called the "working memory" (WM) . The parser brings up the

f^39^®ritary structure of words in the WM one at a time and

then integrates them in order to obtain a final representation

32

of input. Whenever the parser encounters a word or phrase, a

new node is created in the WM so that it is appended to the

last one. The node thus is a place to hold one structure of

a lexical item and its associated demons. The parser traverses

every node to test which demons want to fire. In this way an

input sentence will be processed by the parser to obtain the

meaning representation. The components of the parser will be

described below.

3. 3. 2.1 Lexicon . In this model, the lexicon is a place

to hold all the lexical items to be used for language

analysis. A lexical item is either a word or a phrase which

contains a syntactic category, word senses, demons, and a

synonym. The designing of the lexicon is a process to acquire

all knowledge around the words being entered.

A systematic way to design the lexicon is suggested by

Cullingford (1986). It involves collecting all sentences or

sentence fragments which sample as large a fragment as

possible of knowledge content of the domain of interest. The

lexicon design is based on the observation that many words

have a limited number of special meanings in particular

contexts. For example, the verbs such as "show, list, or

display" probably have a common meaning in database access

systems. The word "subject" in the sleep domain, for example,

indicates a patient or a sleeping person rather than a topic.

In this model, the lexicon is designed in this way, and it is

considered to be very useful for a domain-specific approach.

33

In this model, the lexical item has the following format

for a word:

(3.1) (WORD
POS
DBF
SYNONYM
DEMONS
Ml

Mn
PHRASES

and for a phrase

(3.2) (EXPRESSION
WORDS
POS
DEF
SYNONYM
DEMONS
Ml

Mn

word
part-of-speech
lisp-expression
word or phrase
sequence-of-demons
lisp-expression

lisp-expression
list-of-phrase)

phrase
list-of-words
part-of-speech
lisp-expression
word or phrase
sequence-of-demons
lisp-expression

lisp-expression)

A lexical entry is made up of a group of "segments." Each

segment begins with a key word (e.g. POS, DEF, DEMONS, etc.).

The segment is optional and may appear in any order. POS,

PHRASES and SYNONYM segments are proposed to expand the

McDYPAR, and the semantics of each segment are described

below:

POS: The syntactic category of an entry is used for noun
group processing. The noun group processor determines
when to start and leave noun grouping mode with this
syntactic category.

DEF: The sense of a entry is placed here if it is
unambiguous. If it is ambiguous and has n number of
senses, this segment should be NIL, and the senses are
placed in segments Ml through Mn.

34

DEMONS: This segment contains the processing or parsing
knowledge associated with this entry. The expectation
demons of a verb are given in DEF segment, but other
demons will be given here.

Ml, Mn : The first or n-th sense of an ambiguous word or
phrase is placed here. The DEF segment should be NIL, and
a disambiguation demon should be given in the DEMONS
segment

.

PHRASES: A list of all phrases starting with the word is
contained here. When this segment is given, the parser
tries to match words to see whether a phrase is used in
input sentence.

WORDS: A list of words comprising a phrase is placed
here.

SYNONYM: If there is a synonym of an entry, it is defined
by the lexical entry with the word definition. If this
is defined, other segments such as DEF, DEMONS, Ml, or
Mn are unnecessary.

3 . 3 . 2 .

2

Working memory . In CA, there are two separate

lists: one is a short-term memory called CONCEPT-LIST which

is a place to hold a list of semantic nodes, the other is

called REQUEST-LIST which is a place to hold the active

requests

.

In this demon-based parser, there is one list (i.e., the

WM) which is a place to hold linked semantic nodes while

demons are attached under the relevant nodes. In this model,

the WM is a short-term memory in the form of queue in which

word meanings and associated demons are stored. A node of the

queue is called a "semantic node." Since the WM is a doubly-

linked queue, it is convenient to search the existing semantic

nodes in either direction as well as to insert or delete any

semantic nodes. When the parser encounters a word or phrase.

35

a new semantic node is added in the WM, and its associated

demons are added at a place called "demon agenda" under this

node. In this model, at the end of a sentence one final

independent structure representing the meaning of the sentence

will be formed in the WM and then used for the inferential

processing.

3 . 3 . 2 .

3

Demons . In this model, the knowledge of how to

process words is written in the form of demons. During NL

analysis, demons are generally used for the following

purposes: 1) to bind a filler with another structure in the

WM, 2) to disambiguate word senses, 3) to determine pronoun

referents, and 4) to add another demon dynamically in the WM.

A demon, as a test-action pair, is an active process

which waits until the condition part is satisfied, whereupon

the action part is executed and deactivated. Demons have the

following form in this model:

(3.3) (DEMON
(PARAMS
(KILL
(TEST
(+ACT
(-ACT

name
sequence-of-parameters)
lisp-expressions)
lisp-expressions)
lisp-expressions)
lisp-expressions)

)

A demon consists of a group of segments like the lexicon

entry syntax. The semantics of each segment are described

below:

PARAMS: This is a place to hold a list of variables which
are used in other segments. When a demon is interpreted
(i.e., tested, deactivated, or executed), its arguments
are bound to its parameters.

36

KILL: This segment is evaluated before the TEST or the
ACT segment. If its result is non-NIL, the demon is
"killed" or deactivated (i.e. removed permanently from
the demon list of the semantic node and never considered
during demon interpretation)

.

TEST: If its evaluated result is non-NIL, or this segment
is missing, then the +ACT segment is fired. Otherwise,
the -ACT is fired. If its result is NIL, and the -ACT
segment is missing, then the demon remains alive.

+ACT: After this segment is evaluated, the demon is
automatically killed.

-ACT: If there is a -ACT, and it is evaluated, then the
demon is automatically killed.

3.3.3 Control Structure of the Conceptual Parser

The parsing mechanism is based on the integrated approach

in which syntax and semantics are jointly applied in order to

construct the meaning representation without a separate

syntactic phase. In this model, it will be performed via two

stages: "word tasks" and "demon tasks."

The overall algorithm of the parser in this model is

given below:

STEPl Examine next lexical entry from input - word
tasks.

STEP2 Interpret demons - demon tasks.
STEP3 If there is no more input, then terminate

parsing a sentence. Otherwise loop back to
STEPl.

3. 3. 3.1 Word tasks . The basic control algorithm of the

word tasks is described informally as follows:

STEPl Look at next word. If a phrase beginning with
the word is recognized in the lexicon then go
to STEPS, otherwise go to STEP2

.

37

STEP2 If the word is recognized in the lexicon then
go to STEPS, otherwise go to STEPS.

STEP3 If the root and suffix of the word are
recognized in the lexicon by morphological
analysis then go to STEPS, otherwise go to
STEP4

.

STEP4 Run the spelling correction routines (described
in Section 3.7 so that the word is replaced
with a new word and then go back to STEPl.

STEPS Create a new semantic node and tokenize the
conceptualization and then add it to the WM.
If the word or phrase is unambiguous (i.e., the
entry has the DEE segment) then bind the node
with its conceptualization and spawn its
associated demons. Otherwise, set the node to
NIL and spawn disambiguation demons under its
semantic node.

There are three basic kinds of morphological structure

(Winograd, 1983): affixation (e.g., un-, re-, -ify, -ation,

etc.), compounds (e.g., lighthouse, hummingbird, etc.), and

modified forms (e.g., take, took; goose, geese; etc.). These

morphological phenomena show a high degree of irregularity and

idiosyncrasy so that only a few of them are handled more

systematically by rules and everything else must be stored in

the dictionary.

In this model, when a word is not recognized in the

lexicon, morphological analysis will try to break up the word

according to the spelling rules. For instance, these rules

separates the word "running" into its root "run" and its

suffix "-ing" so that it is not necessary to have a separate

word entry in the lexicon for the inflectional ending of the

word.

38

The morphological analysis in SEEGER is designed to

handle a number of inflectional endings: "-n't" for negative,

"~'s" and for possessive, "-s" and its variants for

plural nouns and singular third person verbs, "-ing" and "-

ed" for verb forms, "-est" for the superlative, and "-er" for

comparative. It does not cover all inflectional word endings,

but could easily be expanded to manipulate other cases.

Exceptional words do not need to be included in the analysis

program. The word "has," for example, is directly defined in

the lexicon and morphological rules are never applied in

trying to find it. If the root is found in the lexicon, its

syntactic category is checked to see if the ending is

appropriate. There should be negative, "-ing, -ed, and -s"

forms with a verb root, plural and possessive forms with a

noun root, superlative and comparative forms with a adjective

root. The syntactic category of a word is changed when the

ending is taken into account. For example, a word with a

possessive suffix changes a noun class into a adjective class.

This syntactic information is kept in the semantic node when

the parser encounters a word.

In this model, the conceptualization in the lexicon is

represented as a tokenized form in the WM in which all the

fillers as well as a top level are named as a new global

symbol. For example, the word "Jones" for a subject name has

the following conceptualization:

(3.4) (PERSON LASTNAME (JONES)
GENDER (MALE)

)

39

When the parser encounters this word a new semantic node

(e.g., notated as "CONIO") is added in the WM, and it has the

following tokenized CD form:

(3.5)
CONIO: (PERSON LASTNAME LASTNAMEll GENDER GENDER12)
LASTNAMEll: (JONES)
GENDER12: (MALE)

where PERSON is a head pattern and LASTNAMEll, GENDER12 are

the tokenized fillers for their slots LASTNAME, GENDER,

respectively. The filler named LASTNAMEll binds the CD form

"(JONES)" so GENDER12 does "(MALE)." For another example, a

verb "show" has the following conceptualization in the

lexicon:

(3.6) (RETRIEVE ACTOR * <== (EXPECT ' *SYS* 'BEFORE)
TO * <== (EXPECT '*USER* 'AFTER)
INST * <== (PREPOS 'LOCREL ' POBJ 'AFT)
OBJ * <== (EXPECT 'ENTITY 'AFT))

It will be tokenized as follows in the WM:

(3.7)
(RETRIEVE ACTOR ACTORll TO T012 INST INST13 OBJ OBJ14)

When a filler is indicated by a symbol the parser will

make up a name based on its preceding slot (e.g., the slot

name ACTOR plus a seguentially incrementing number 11) and

the demon followed by an arrow ("<==") is spawned under this

semantic node. When a conceptualization which satisfies the

expectation of the demon is found during demon interpretation.

40

it will be bound to the tokenized filler. The tokenization of

a conceptualization provides a convenient way to change and

bind a structure simply. A lot of structure modifications will

take place during the inferential analysis after parsing.

3 . 3 . 3 .

2

Demon tasks . The algorithm of the demon tasks

is described as follows;

STEPl Traverse a node from the last node in the WM.

STEP2 Get all active demons under the current node
and go to STEP3

.

STEP3 Take one demon from the demon agenda and go to
STEP4

.

STEP4 If KILL part is true, kill the demon. If TEST
part is true then execute +ACT part and then
kill the demon. If TEST part is NIL and there
is a -ACT part then execute -ACT part and then
kill the demon. Otherwise, the demon remains
in the demon agenda. Go to STEPS.

STEPS If no more demons remain in the demon agenda
go to STEP6, otherwise go to STEP3

.

STEP6 If any node to traverse remains, traverse the
preceding node and then go to STEP2. Otherwise,
go to STEP?.

STEP? If demon interpretation becomes quiescent
(i.e., there is no firing of any demon during
latest STEPl through STEPS) stop the demon
tasks, otherwise go to STEPl.

To spawn a demon is to add an instantiation of the demon

to the demon agenda under the semantic node in the WM. The

procedure to spawn a demon occurs in one of the following

three cases: first, when there are any expectation demons in

the conceptualization of the word in a sentence, the demons

41

are spawned during the word tasks; second, when there are any

explicit demon definitions in the lexicon entry, it will be

spawned during the word tasks; and finally, demons can be

spawned dynamically in the course of executing the action part

of a demon during the demon tasks. For example, the

instantiation (e.g., DEM0N16) of the demon "(EXPECT 'ENTITY

'AFT)" in the conceptualization (3.6) has the following form:

(3.8) (EXPECT C0N15 0BJ14 ENTITY AFT)

where C0N15 is the semantic node holding the demon agenda and

OBJ14 is the filler to be filled by means of the demon. The

two arguments (i.e., C0N15 and 0BJ14) are added to the

expression in the demon of the conceptualization. The instance

of the demon then knows the semantic node where it is located

and the other semantic node where it will be bound. The demon

EXPECT expects an entity, i.e., the parser will search the WM

for a semantic node with the concept pattern of an entity

class in the following direction. The spawning of the above

demon is performed during the word tasks and the search will

be executed during the demon tasks.

Killing a demon is to remove the demon from the demon

agenda. A demon is killed either when the action part of the

demon is performed or when the KILL part of the demon is

tested as true. Each demon definition has an optional KILL

part. Thus, a demon is responsible for its own life. A demon

with a KILL part is mainly used to disambiguate word senses.

42

For instance, a word has three word senses such as Ml, M2, M3

and three demons Dl, D2, D3 where Dl, D2 , D3 are defined to

disambiguate the word sense Ml, M2, M3 respectively. Each

demon must have its KILL part which tests whether the semantic

node is bound to any sense. When the parser encounters the

word, the semantic node is set to NIL, and the demons Dl, D2,

and D3 will be spawned. If the demon Dl is fired so that the

word sense Ml is bound to the node, the demon Dl will be

killed immediately since the action part is performed. The

demons D2 and D3 will be killed since their own KILL parts

are evaluated as true. Therefore, a demon communicates

indirectly with other demons through a shared argument.

3.3.4 Noun Group Parsing

The parser described up to now has difficulty in

processing a noun group (NG) correctly for more than one noun.

The empty filler holding an entity expectation demon might be

bound to the incorrect conceptualization. For example,

consider a sentence "Show me sleep stage time." The demon of

the OBJ slot of "show" conceptualization in (3.6) expects an

entity node. The OBJ slot demon searches the WM for an entity

class node. It will bind the conceptualization of "sleep"

prematurely rather than that of "time."

In this model, in order to prevent the parser from

building an incorrect structure, a whole noun group is

processed in a different way. When the parser gets into a noun

43

group, it adds each node for word/phrase in the WM and spawns

associated demons without running demon tasks until the noun

group ends. When the parser arrives at the end of the noun

group, demon tasks will be executed within the noun group pool

until it becomes quiescent. At this point, the noun group

diagnostic function checks whether there is only one unbound

top node which corresponds to a noun group head. Then, it will

go back to the normal processing mode. For example, in the

following sentence "Show me sleep stage 1 time." the parser

will go to the noun group mode when it looks at the phrase

"sleep stage." The lexical item for a phrase "sleep stage" has

the following entry in the lexicon;

1) the syntactic category is noun,
2) the conceptualization with the demon of a sleep

stage number expectation is (STAGE NUMB * <==
(EXPECT 'NUMBER 'AFT))

3) there are two demons;
DEMONl; If it is in the NG mode, and the NG end

is not a number (e.g., "sleep stage 1

time")
,
then attach the modifier REL to

the conceptualization to the NG end.
DEM0N2; If it is in the NG mode and either it is

the NG end or the NG end is a number
(e.g., "sleep stage 1" or "sleep stage"),
then do nothing.

and at the end of the NG processing the NG structure will have

the following form;

(3.9) (TIME REL (STAGE VAL (NUMBER VAL (1))))

where the NG head is "time" and the phrase "sleep stage 1"

modifies the NG head.

44

In this model
,

a NG is processed to decide the boundary

and the head of the NG based on Gershman's work (1979). A NG

constituent belongs to one of the following syntactic classes:

adjective, adverb, noun, name, number, determiner, date,

pronoun, unit. The NG is processed from left to right as long

as the following conditions are satisfied:

(1) Each word/phrase which is not specifically expected
must belong to one of the classes mentioned above.

(2) No word can precede a determiner.
(3) Adjective and adverb cannot be preceded by noun,

name pronoun, or number.
(4) Name and pronoun cannot be preceded by noun, unit,

or number.

3.4 Inferential Analysis

The inferential process involves transformation of a

meaning representation into an adequate one before performing

the guery translation module in Section 3.5. Four types of

domain-specific inferential rules are used in this model:

specification, omission, concretion, and substitution

inferences.

3.4.1 Specification Inferences

Domain-specific knowledge is crucial to interpret NL

guestions correctly. For instance, the following ambiguous

questions can be given in a sleep database dialogue:

(3.10) Show me all subjects from 30 to 40.
(3.11) Show me all subjects from 1988 to 1989.
(3.12) show me all subjects from 34598 to 34600.

45

A sleep clinician would infer that (3.10) refers to subject

ages, (3.11) refers to recording dates, and (3.12) refers to

subject numbers. A domain-specific inferential rule will be

applied to the phrase containing two numbers.

The following requests contain an implicit numerical

comparison for a sleep parameter.

(3.13) Show me subjects who have K-complex.
(3.14) Show me epochs with K-complex in Jones's record.

where the sleep parameter "K-complex" means "K-complex greater

than 0." An inference rule adds a numerical condition

explicitly if a parameter has no numeric specification when

it is said with a possessive type of verbs (e.g., have,

contain, include) or prepositions (e.g., with, of).

3.4.2 Omission Inferences

Natural language requests are often entered with

redundant information. The redundant information should be

removed since it is not necessary for database mapping

processing. Consider the following requests:

(3.15) Show me all subjects in the database.
(3.16) Show me all subjects you have.
(3.17) What is sleep stage time in the record of Jones.
(3.18) What is sleep stage time from the Jones's record.

The phrase "in the database" in (3.15) and the phrase "you

have" in (3.16) are redundant expressions and will be removed.

46

The phrase "the record of Jones" in (3.17) and the phrase "the

Jones's record" in (3.18) will be reduced to "Jones."

A quantity request often includes duplicate words as in

the following queries:

(3.19) Show me total recording time of Jones.
(3.20) How long is the total time in bed for Jones?

A word "total" is verbose in (3.19) and (3.20) since the

concept "recording time" or "time in bed" is an aggregate

attribute in the database. The concept itself contains the

quantity information implicitly. Hence, an omission inference

rules will remove the verbose concept "total."

Since these inference rules are applied to the

intermediate meaning representation of a sentence, one rule

can be applied to cover a wide range of syntactical

expressions. For example, one rule is applicable to two cases

(3.17) and (3.18)

.

3.4.3 Concretion Inferences

Some concepts are so vague or ambiguous that it is very

difficult to be specific at the parsing time. The actual

content of a concept can be determined by these inferential

rules. For example, a concept "time" can have several

different meanings in a sleep database dialogue:

(3.21) Show me time when K-complex occurred.
(3.22) Show me first time of sleep stage 2.
(3.23) Show me time of each sleep stage.
(3.24) Show me sleep stage 2 time .

47

(3.25) Show me total minute of alpha time.
(3.26) When did K-complex occur?
(3.27) When was Jones recorded?

where (3.21), (3.25) and (3.26) refer to "epoch number,"

(3.22) refers to "sleep latency," (3.23) and (3.24) refer to

"sleep stage time," and (3.27) refers to "recording date." The

above underlined words are defined as the concept "time" in

the lexicon and then will be inferred to be a specific concept

based on contextual information. The more specific concepts

will be selected based on the contextual information from the

ISA-hierarchy of the domain concepts in SEEGER.

The same vague concepts also exist in verbs such as

"take" or "use." The following requests show the same problem

about a concept "take" in the sleep domain:

(3.28) Who was taken on 2/5/89?
(3.29) Who took REM sleep more than 20%?

A sleep clinician would easily infer that the word "take"

means to "record" in (3.28) and "possess" in (3.29). In a

domain-specific approach words have very restricted meaning

in the context of specific application.

When the meaning of words is difficult to decide on the

sentence level by the conceptual parser, the concretion

inference rules can operate on the hierarchy to determine the

more specific meaning of the word.

48

3.4.4 Substitution Inferences

A concept can be often expressed in a set of concepts

with the same meaning. In addition, a set of concepts can be

expressed in another set of concepts which is in the canonical

form with the same meaning. For instance, consider the

following request in a sleep database dialogue:

(3.30) Show me alpha data.
(3.31) Show me information about alpha.

where "alpha data" or "information about alpha" means to be

either "alpha time" or "alpha count" since its value is stored

in the sleep database as an attribute name of either "alpha

time" or "alpha count". The substitution inference rules will

replace all the identical meaning phrases (e.g., alpha data,

alpha activity, alpha information) with "alpha." Then, the

concept "alpha" will be clarified as either "alpha time" or

"alpha count" by the user in a clarification dialogue.

Some phrases are replaced with more clearly expressed

phrases as in the following example:

(3.32) Show me total arousal time.
(3.33) Show me total time of arousal.

A phrase "arousal time" or "time of arousal" will be inferred

as "epoch number where any arousal occurred" which is in the

canonical form with the same meaning. Since this inferential

process is performed on a CD representation of a sentence.

49

3 . 5 Query Translations

Although other KB systems such as EXPLORER and EASYTALK

obtain the retrieval query of the underlying database via the

DB mapping rules, the proposed model gets the retrieval query

by means of a new method used below. When the types of NL

request rely on the bottom-up parsing more than top-down

parsing, the number of mapping rules are so enormous that it

is difficult to manage them. The augmentation of query

translation also provides various inferences at the level of

the linear expression rather than at the level of CD

representation

.

3.5.1 Translating to Linear Forms

Since there is a large gap between the meaning structure

of NL input and its retrieval query, an intermediate stage of

transformation is used in this model. This transformation

process is called "translation.” A CD representation produced

by the conceptual parser is in the form of tree structure and

is transformed into a set of finite linear specifications

called "virtual query language" (VQL) . This process involves

grouping the same kind of features into one place called a

"field." The VQL is expressed in the six fields which can be

easily converted into a target database language. The database

operations can be expressed in VQL but do not include all

features for every target database language. Rather, VQL

contains a set of core features rich enough to cover most of

50

the low- and medium-complexity queries and ignores

infrequently used complex database operations.

In this model, six fields for translation are used as

follows:

OUTPUT: a list of concepts to be retrieved

CONDITION: a list of predicate expressions in logical
relationship

FUNCTION: a list of expressions in functional
relationship

GROUP: a list of concepts to be grouped

ORDER: a list of concepts to be sorted

RELATION: a list of logical relationships between the
expressions given in the field

The tree structure representation of a sentence is processed

by the translator that applies translation functions to each

node from the top concept. For instance, consider the

following sentence:

(3.34) Show me the sleep stage 1 time.

The conceptual parser produces the following meaning

representation

:

(3.35) (RETRIEVE ACTOR (NIL)
TO (*USER*)
INST (NIL)
OBJ (TIME REL (STAGE VAL (NUMBER VAL (1)))))

The inferential analysis concretes the concept "time" to the

another concept "stage time" as follows:

51

(3.36)
(RETRIEVE ACTOR (NIL)

TO (*USER*)
INST (NIL)
OBJ (STAGE-TIME REL (STAGE VAL (NUMBER VAL (1)))))

The form in (3.36) is translated into the following form:

(3.37) (VQL (OUTPUT (STAGE-TIME))
(CONDITION ((STAGE = 1))))

The meaning representation in (3.36) has the top concept

RETRIEVE and it is translated by the function for the RETRIEVE

pattern. The function processes the expression in (3.36) in

the order of the ACTOR, TO, INST, and OBJ slot-filler pair.

The first three slot-pairs are neglected because they do not

provide any information for query formulation. Since the OBJ

slot is filled with an ENTITY class object, it will be

processed by the translation function for the ENTITY pattern.

The function inserts the head pattern STAGE-TIME into the

OUTPUT field and (STAGE = 1) in the CONDITION field by calling

the ENTITY translation function again to interpret the

expression (STAGE VAL (NUMBER VAL (1))). The label REL in

(3.36) is a marker to switch the field setting from the OUTPUT

field to the CONDITION field.

Let's consider another example. For a sentence "Show me

the sleep stage 1 and 2 time." the meaning representation is

in the following form:

52

(3.38)
(CONJ CONI (RETRIEVE ACTOR (NIL)

TO (*USER*)
INST (NIL)
OBJ (STAGE-TIME REL

(STAGE VAL (NUMBER VAL (1))))
CON2 (RETRIEVE ACTOR (NIL)

TO (*USER*)
INST (NIL)
OBJ (STAGE-TIME REL

(STAGE VAL (NUMBER VAL (2)))))

This is translated into two sets of VQL as follows:

(3.39) (VQLl (OUTPUT (STAGE-TIME))
(CONDITION ((STAGE = 1))))

(VQL2 (OUTPUT (STAGE-TIME)

)

(CONDITION ((STAGE = 2))))

The coordinate structure generates more than one VQL. They are

combined into one final VQL. It will be as follows:

(3.40) (VQL (OUTPUT (STAGE-TIME))
(CONDITION ((STAGE = 1) (STAGE =2)))
(RELATION

((AND CONDITION STAGE)
))

)

where the RELATION field informs that two elements of the

CONDITION field are in the coordinated relationship.

3.5.2 Augmenting the Translation

The translation output so far is not so complete as to

be mapped into a target database language. It is augmented to

form a complete set of VQL. Some patterns in VQL cannot be

directly transformed into the target database language since

there are no matching attribute names, attribute values, or

database key words. It is replaced with other patterns that

53

can be transformed. The replacement can be done by applying

contextual knowledge in a domain. Four types of augmentation

are used in this model:

1) quantifier replacement
2) default unit filling and input value scaling
3) question type transformation
4) validity check

3 . 5 . 2 .

1

Quantifier replacement . It replaces a

quantifier with its equivalent specifications in terms of the

domain concepts. For example, a sentence "Show me sleep stage

1 time for all subjects." has the universal quantifier "all."

The VQL will be translated in the following form:

(3.41) (VQL (OUTPUT (STAGE-TIME))
(CONDITION ((STAGE =1)))
(FUNCTION ((QUANTIFIER SUBJECT ALL))))

While the quantifier in the FUNCTION field is removed, all

record numbers in the sleep database will be inserted in the

CONDITION field and their relationship is specified in the

RELATION field as follows:

(3.42)
(VQL (OUTPUT (STAGE-TIME)

)

(CONDITION ((STAGE = 1) (REC-NO = 34989)
(REC-NO = 35998) (REC-NO = 38797) ...))

(RELATION ((DISJ COND REC-NO))))

If a universal quantifier such as "each, all, or every"

appears in the query, the expression for the quantifier is

replaced with an appropriate expression in terms of the domain

concepts.

54

3. 5. 2. 2 Default unit filling and input value scaling .

A user often tends to leave out specifying a unit for a value.

He sometimes specifies a unit which is different from the unit

given in the database. For example, in a sentence

(3.43) Show me epochs for delta time is greater than 15.

the value "15" means "15 second" as a default unit. Thus, the

expression "(DELTA-T > 15 NIL)" in the CONDITION field is

converted into "(DELTA-T > 15 SECOND)" by filling in a default

unit. Consider another example

(3.44) Show me subjects whose total REM sleep is more
than 2 hours

.

the value of "total REM sleep" has the unit in minutes in the

database. The expression "(SLEEP-TIME > 2 HOUR)" in the

CONDITION field is scaled to "(SLEEP-TIME > 120 MINUTE)."

Hence, a default unit is specified if it is missing or adjust

the scale in order to make the same unit as given in the

database.

3. 5.

2

.

3

Question type transformation . NL query systems

have a single main goal of retrieving information from the

underlying database. If a user asks yes/no questions, the

question is transformed into an appropriate form to access the

database because users are considered to be interested in the

data rather than the answer "yes" or "no." For yes/no

55

questions there are no elements in the OUTPUT field. For

example, a yes/no question "Is Kimberley 20 years old?" has

the following translation:

(3.45)
(VQL (OUTPUT 0)

(CONDITION ((LASTNAME = KIMBERLEY) (AGE = 20))))

This translation needs to be augmented as follows:

(3.46)
(VQL (OUTPUT (LASTNAME AGE))

(CONDITION ((LASTNAME = KIMBERLEY) (AGE = 20))))

That is, the system will access information about "name" and

"age" for the given conditions rather than just give an answer

"yes" or "no." Hence, a yes/no question is transformed into

a question to access the database.

3. 5. 2.

4

Validity check . There may be NL questions for

which no corresponding target query language exists. Thus, a

VQL is validated before it is mapped into a target DB

language. Invalid VQLs are largely due to the user's

misconceptions about the domain or the capabilities of the

system. The system should remind the user of the limits of the

system's knowledge. There are several types of invalid NL

input:

1) A variety of user goals: NL query systems usually

assume that user's requests are limited to the database

content. But the following requests can be asked:

56

(3.47) What do you know?
(3.48) What kind of data do you know?
(3.49) What does sleep time mean?

The NL query systems should have the capabilities to

recognize various user goals in order to understand the

requests beyond the database content.

2) Numerical quantity of records: If a target database

is relational, it cannot handle the number of rows in

the records. For example, in the following request,

(3.50) Show me five subjects who were recorded on Jan.
1988.

only five rows of the records must be given but they

cannot be mapped into a relational database language.

3) Multiple DB queries: Some user's requests require the

answer to be given in the multiple DB queries due to the

DB structure. For example, the following requests,

(3.51) Show me sleep efficiency and total sleep stage
time.

should be divided into two individual queries since

"total sleep stage time" is given for each sleep stage,

but "sleep efficiency" is a single value regardless of

the sleep stage. If the system does not have capability

to handle multiple queries it must inform the user of

this lack.

57

4) Problem deduction capability; Although the required

information is contained in the database, NL requests

require problem deduction capabilities to provide its

answer. Consider the following requests:

(3.52) How many times did Kimberley wake up on the night
of 2/5/88?

(3.53) Give me the longest blocks of sleep stage 2 for
record 34689.

In the sleep database the requests cannot be answered

directly in a single query and must be deduced to simpler

multiple queries and/or the retrieval code. Both requests

need the retrieval code to recognize the segmentation of

the sleep data.

The items described here are illustration of invalid requests

when the facilities are not implemented. It requires a

considerable amount of knowledge to recognize a variety of

invalid input.

3.6 Database Mapping

DB mapping in this model is performed by converting

domain concepts in VQL into actual attribute names and

attribute values while storing access-path information related

to the database search. The access-path information is used

to find out involved database files, create joins, and

generate an optimal navigation path. The conversion from the

58

domain concepts to the actual DB fields is specified in the

domain-to-database mapping table. The mapping table contains

the information about the physical DB file names for access

and DB attribute names for the corresponding domain concept.

The expression in VQL is independent of the physical

structure of the underlying database. DB mapping procedures

convert the domain concepts in VQL into the target DB

language. If, for example, the target language is SQL, then

the VQL expression is transformed into the SQL query. Hence,

the mapping procedures should be designed to generate the

appropriate target DB language. For example, consider the

following sentence in the sleep database

(3.54)

Show me Kimberley's total number of arousals for
each sleep stage.

The VQL is given as

(3.55)
(VQL (OUTPUT (AROUSAL)

)

(CONDITION ((L-NAME = KIMBERLEY))
(FUNCTION ((SUM AROUSAL) (QUANTIFIER STAGE EACH))))

and is augmented for the sleep stage with the universal
quantifier as

(3.56)
(VQL (OUTPUT (AROUSAL)

)

(CONDITION ((L-NAME = KIMBERLEY) (STAGE = 0)
(STAGE = 1) (STAGE = 2) (STAGE = 3)
(STAGE = 4) (STAGE =5)))

(FUNCTION
((SUM AROUSAL)

)

)

(RELATION ((DISJ COND STAGE))))

59

The DB mapping procedures traverse the fields of the VQL in
(3.56)

and convert the domain concepts into the target DB

expression via the mapping table. The mapping table for the

above concepts is given as
(3.57)

AROUSAL —> ((EP_SUM) (AROUSAL EPOCH_NO)

)

L-NAME —> ((SUBJ_INFO) (LASTNAME)

)

STAGE — > ((EP_SUM STG_VAR) (SAC_STG EPOCH_NO)

)

and the join table between the DB files is given as their

primary attributes such as
(3.58)

SUBJ_INFO —> SUBJ_INFO . REC_NO
EP_SUM —> EP_SUM.REC_NO
STG_VAR — > STG_VAR.REC_NO

The target DB language is generated by the DB mapping

procedures in which the mapping table and the join table are

involved. Finally, the SQL language is given as

(3.59)
SELECT EP_SUM.REC_NO, SUM (AROUSAL)

, SAC STG, LASTNAME
FROM SUBJ_INFO, EP_SUM
WHERE (LASTNAME="KIMBERLEY” AND SAC_STG = 0 OR

LASTNAME="KIMBERLEY AND SAC_STG = 1 OR
LASTNAME=” KIMBERLEY AND SAC_STG = 2 OR
LASTNAME=”KIMBERLEY AND SAC_STG = 3 OR
LASTNAME="KIMBERLEY AND SAC_STG = 4 OR
LASTNAME=”KIMBERLEY AND SAC_STG = 5) AND

EP_SUM.REC_NO = SUBJ_REC . REC_NO
GROUP BY SAC_STG, LASTNAME, EP_SUM . REC_NO

,

where the two DB files are joined over the attribute REC_NO.

Finally, the generated DB language is executed in the

underlying database management system.

60

3.7 User-Friendly Design

Spelling corrections in this model are based on the

method proposed by Carbonell (1985) . This capability is a by-

product of the conceptual parsing. This model also handles

clarification dialogues for clarifying ambiguous terms and

semantically incomplete requests. This section also describes

how to paraphrase requests and when the system failure occurs

in the model.

3.7.1 Spelling Corrections

In this model, when the conceptual parser encounters an

unknown word during parsing NL input, the Spelling Corrector

first tries to find the most likely correct word from the

system dictionary. About 40% of all user errors are known as

misspellings (Carbonell, 1985). Most misspellings are caused

by one of the following reasons (Damerau, 1964)

:

1) transposition of two adjacent letters
2) one letter wrong
3) one letter extra
4) one letter missing

These context-free spelling rules generate a list of possible

candidate words. For example, in the following sentence

(3.60) Show me subjects recorded on sel 1987.

61

the word "sel" is a typographical error and its candidates

given by the above rules are "sex, sem, see, sec, and sep"

from the lexicon of the sleep NL DB access system.

After collecting a list of candidates, a context-

sensitive spelling check is performed by means of expectations

(Carbonell, 1984) . It is done by testing active expectation

demons to determine whether there is any one whose test part

is satisfied. That is, all active demons in the Working Memory
<

are tested in a "recency order" from the candidate list. If

there is one to be fired, it is considered as a plausible

word. In (3.60) the word "record" has the following tokenized

definition:

(3.61) (RECORD ACTOR ACTORl TO T02 CHANNEL CHANNEL!
PLACE PLACE4 DATE DATES INST INST6)

and the demons are simply described as

(3.62)
ACTORl: expect to have heard about the class TECHNICIAN

entities before
T02 : expect to hear about the class SUBJECT entities

next
CHANNEL!: expect to hear about the class WAVEFORM or

CHAN-NAME next
PLACE4: expect to hear about the class PLACE or CHAN-

PLACE along with a locational preposition next
DATES: expect to hear about the class NUMBER or DATE

along with a temporal preposition next
INST6: expect to hear about the class ELECTRODE along

with a configurational preposition next

The candidate words will be tested one by one for the pending

expectation demons in (3.62) . The word "sep" (abbreviation of

September) belongs to the class DATE so it will be bound in

62

the filler DATES. Therefore, the word is considered as a

possible correction and suggested to the user for approval as

follows

:

(3.63) By SEL, do you mean by SEP? (Y or N)

If the user response as "yes,” the misspelling word will be

substituted with a possible candidate. Otherwise, the Spelling

Corrector gives the user an opportunity to enter a synonym

word/phrase or a correct word.

3.7.2 Clarification Dialogue

Many requests, especially those generated by casual

users, are likely to require an interactive dialogue. Two

types of clarification dialogues are used in this model: 1)

clarifying terminology and 2) completing a query semantically.

3.7.2. 1 Clarifying terminology . It is necessary to

recognize and respond to any ambiguous or unknown terms

present in a request. Many systems have tried to resolve these

problems in several ways.

The LADDER system allowed the user to define a new term

or phrase with one that the system knows. It assumes that the

user already has enough knowledge about the system.

RENDEZVOUS (Codd, 1978) attempted to extract the meaning

from the user by means of a dialogue such as

63

(3.64)
USER: How many London parts are there?

RENDEZVOUS: The word 'LONDON' is unfamiliar. Is it one
of the follows:

1. Part Number 4. Part Weight
2. Part Name 5. Part City
3. Part Color 6. None of the above

The system has a list of key words. When the user enters

unknown words which are not in the key word list, it goes to

a clarification dialogue.

TEAM acquires the DB information and syntactic knowledge

through step-by-step interaction. This defining process can

be done with a database expert rather than end-users.

When there is a unknown word in a request, INTELLECT

engages in the following dialogue (Martin, 1985)

:

(3.65)
USER: What are the customer in poughkeepsie?

INTELLECT: I'm not familiar with the word "POUGHKEEPSIE."
If it is a word you expect to find in the database, hit
the RETURN key. Otherwise either fix its spelling or
enter a synonym for it.

USER: (press the ENTER key)

INTELLECT: What field should it appear in?

USER: city

As shown in (3.65), INTELLECT assumes that the unknown term

is a database value and waits until the user enters a synonym,

corrects its spelling, or verifies it through a paraphrase.

64

As described above, the users in the illustrated systems

are required to have prior knowledge about the system or about

the physical database structure.

In this model, a user is guided to select one of several

choices or just answer with "yes” or "no.” For example,

consider the following dialogue:

(3.66)
USER: Please show me alpha data.

COMPUTER: By ALPHA, do you mean
1) ALPHA TIME
2) ALPHA COUNT

Please choose one:

where the system is waiting for the user's response. The

system first tries to resolve ambiguous terms in the

contextual information by means of the conceptual parsing and

the inferential analysis. Then, the meaning structure or its

VQL is searched for any ambiguous concepts. Every concept is

tested as to whether it matches with the concept in the table

which contains all ambiguous concepts in the domain. The

concept "alpha data" in (3.66) is ambiguous in the sleep DB

access system and must be clarified as one of two concepts.

The table informs the system how to clarify it. The ambiguous

term will then be replaced with one the user selects.

Therefore, this interactive dialogue requires domain-specific

knowledge to accommodate naive users.

3 > 7 • 2 .

2

Completing a query semantically . Naive or

infrequent users are also likely to miss information that is

65

necessary to formulate a complete query. The "incomplete"

query means that the sentence ' s structure is complete

syntactically but not complete semantically. It is different

from the structural ellipsis which constitutes a fragmentary

sentence.

PLANES fills in missing constituents if there is any

missing one in a semantic grammar. For example, in the

following request,

(3.67) What maintenances were performed on the plane 3

in May 1971?

its semantic constituent is in the form of

(3.68) [QTYPE MAINTYPE MAINACTION PLANETYPE TIMEPERIOD]

The sentence in (3.67) matches all the semantic constituent

types in (3.68) as a complete query. But if the following one

is given as

(3.69) What maintenances were performed on plane 48?

and the TIMEPERIOD constituent has been missed from the

semantic constituent in (3.68). Since it cannot be completely

matched with the required semantic constituent, the missing

"time period" could be filled in from its discourse context.

EXPLORER (Lehnert & Shwartz, 1983) interprets requests

for oil exploration maps. The scriptal knowledge (Schank &

Abelson, 1977) about generating maps guides the user through

an interactive dialogue in order to specify all requirements

66

for a complete query. Like PLANES, unspecified information can

be drawn from the discourse context by inheriting

specifications from the previous request. This type of

interaction is critical to untrained users.

In this model, users are guided in the same manner as

above. The scriptal knowledge is used to examine the VQL for

any missing information to form a complete query. For example,

the system interacts with the user with the following response

after the disambiguation dialogue in (3.66):

(3.70) Is the subject Jones? (Y or N)

The user is queried to specify one of the subjects in the

database

.

3.7.3 Paraphrasing of Requests

Paraphrasing presents the system's interpretation of NL

questions to the user for approval. It should be phrased in

a NL string without introducing any ambiguities, and its

meaning should be easily recognized by a user.

The different ways of paraphrase in the various systems

are described in Finin, Joshi, and Webber (1986) . The QTRANS

system (Mueckstein, 1983) produces a paraphrase from the SQL

language before it is evaluated against the database. It

rearranges the SQL expression into another structure without

being too repetitive or introducing ambiguities.

67

In this model the paraphrase utilizes both virtual query

language (VQL) and SQL expression selectively. Most of SQL

expressions are translated except the WHERE part. Instead of

the WHERE part in SQL the CONDITION field in VQL is used. For

example, for the following request,
(3.71)

Show me Kimberley's total number of arousals for
each sleep stage.

the VQL is given as

(3.72)
(VQL (OUTPUT (AROUSAL)

)

(CONDITION ((LASTNAME = KIMBERLEY) (STAGE = 0)
(STAGE = 1) (STAGE = 2) (STAGE = 3)
(STAGE = 4) (STAGE =5)))

(FUNCTION ((SUM AROUSAL)
)

)

(RELATION ((DISJ COND STAGE))))

and its SQL language is mapped as

(3.73)
SELECT EP_SUM.REC_NO, SUM (AROUSAL)

, SAC_STG, LASTNAME
FROM SUBJ_INFO, EP_SUM
WHERE (LASTNAME="KIMBERLEY" AND SAC_STG=0 OR

LASTNAME="KIMBERLEY" AND SAC_STG=1 OR
LASTNAME=" KIMBERLEY" AND SAC_STG=2 OR
LASTNAME=" KIMBERLEY" AND SAC_STG=3 OR
LASTNAME="KIMBERLEY" AND SAC_STG=4 OR
LASTNAME=" KIMBERLEY" AND SAC_STG=5) AND
EP_SUM . REC=SUBJ_REC . REC_NO

GROUP BY SAC_STG, LASTNAME, EP_SUM.REC NO.

The NL string in the paraphrase is phrased in the order of the

output elements from the VQL, the condition parts from the

SQL, and sorting information from the SQL. It will be given

as

68

(3.74)
I understand your request to be:

"Find record number, total arousals, sleep stage, and
last name with sleep stage =0, 1, 2, 3, 4, or 5 for last
name KIMBERLEY."

Is it right? (Y or N)

where the NL string is stored in the DB mapping table.

After the user has approved the paraphrase, there is

little chance that interpretation errors will be introduced

later.

3.7.4 Error Handling

An error occurs when the system's interpretation of a NL

input diverges from the user's interpretation. It is important

to recognize and respond to the failures in a system. If the

system is able to respond to what constituent can be

interpreted or what constituent cannot be interpreted, it can

help the user to rephrase a request.

In this model, when the system fails in reaching an

interpretation of the input and is unable to proceed, it

assumes that an error has occurred. In the course of

transforming NL input into VQL and then into DB language,

errors may occur if there exists no corresponding

^®P^®sentation for the following stage. How to handle errors

at various situations in this model is described below.

—•7.4.1—Lack of vocabulary . No natural language system

can be expected to have a complete vocabulary. When there is

69

no correctly spelled word in the lexicon in this model, the

system initiates an interactive dialogue to acquire a synonym.

For example, consider the following dialogue:

(3.75)
USER: Give me total amount of arousals for Jones.

SYSTEM: I do not understand the word AMOUNT.
Would you like to

(1) Enter a correct spelling
(2) Propose a synonym
(3) Have me ignore the word
(4) Re-enter the entire request

Please choose one:

There are four optional selections (Shwartz, 1987) when there

is no word "amount" in the lexicon. It is self-explanatory

what each selection is meant to be. If the user enters a

synonym, the system can capture the synonym of the unknown

word and store it in the lexicon for later use. Even though

the system has failed due to lack of vocabulary, user's

requests can be interpreted correctly through the above

dialogue.

3 . 7 . 4 .

2

Failure to parse a noun group . A NG phrase

should be represented in one structure which contains its

whole meaning at the end of NG processing. In this model, if

there is more than one structure or none, it is considered

that a NG parsing error occurred. Noun group processing is

performed within a NG pool . When the NG pool arrives at the

quiescent point, the NG diagnostic function is called in order

to count the number of independent structures in the NG pool.

70

If there is more than one or none, a NG parsing error occurs.

This error is due to the missing or wrong piece of knowledge

in the lexical items if it is assumed that the user entered

a correct request. At this time the system responds to the

user that the system is unable to interpret the constituent

of the NG phrase.

3. 7. 4. 3 Failure to parse an entire sentence . Similar

to NG parsing, if there is more than one structure or none,

a conceptual parsing error occurs in this model. After

analyzing a whole sentence, the diagnostic function is called

to count the number of independent structures of the entire

sentence. For example, consider the following request which

is missing a word "on" in front of the date expression:

(3.76) USER: Who was recorded 2/5/88?

The meaning representation has the following form:

(3.77) (RECORD ACTOR (NIL)
TO (SUBJECT VAL (*?*))
CHANNEL (NIL)
PLACE (NIL)
DATE (NIL)

)

(DATE MONTH (5) DAY (2) YEAR (88))

There are two independent structures whose top concepts are

RECORD and DATE in (3.77) . In the primitive action RECORD, the

demon for the slot DATE expects to hear about the class DATE

along with a temporal preposition (e.g., on, in, etc.). Thus,

the demon remains active in the WM so that the concept DATE

71

remains in the WM without being linked to any other concept.

Finally, The system responds with the constituent that the

parser partially interpreted as follows:

(3.78)
SYSTEM: I cannot understand the entire request.

The constituent that I could understand is 'WHO WAS
RECORDED' and '2/5/88' of your request. Please try
to rephrase it.

3. 7. 4.

4

Failure to translate into a VOL . In this model,

an error occurs when there are meaning representations for

which no corresponding VQL exists. A meaning representation

is translated into a VQL by translation functions. Then, the

VQL is augmented as described in Section 3.4. Errors occur

during validity check of VQL augmentation. For example,

consider the following request:

(3.79) Show me 5 subjects who were recorded on 2/5/88.

If the target DB language is a relational DB, it cannot handle

the number of rows in the records. It will inform the user why

it cannot work. In this way, errors is explained to users for

each situation during the VQL validity check. The message

should be understandable to the user.

3 7 . 4 .

5

Failure to map into DB language . In this model,

error occurs when there is no VQL for which corresponding

DB language exists. Many errors due to the DB structure or DB

language are recognized during VQL validity check. An error

occurs when there are any concepts which cannot be mapped into

72

target database attributes or key words. It is checked to see

whether a mapped DB language expression is valid or not before

executed the underlying DB management system.

3 . 8 Summary

This chapter described a model for a knowledge-based NL

guery system. In this model, the user's request is transformed

into retrieval query via multiple transformation steps. The

input sentence is mapped into a Conceptual Dependency

representation of its meaning by the Conceptual Parser and

then is explicitly expressed by the Inferential Analyzer if

the CD representation contains implicit information. The

Translator converts the CD representation into a linear

expression which is then augmented to a complete form for

query formation. Finally, it is mapped into the target DB

language of the underlying database. The model also provides

an interactive dialogue facility for spelling corrections,

clarifying ambiguous concepts or semantically incomplete

requests, and paraphrasing user's requests.

This model has some differences from other knowledge-

based DB access systems using the conceptual parser. The DB

mapping method in this model is different from EXPLORER,

EASYTALK, and PEARL (Lehnert & Shwartz, 1982) which are the

only systems known in the literature. These systems transform

a CD representation of an input sentence directly into a QL

via the DB mapping rules to determine what fields and/or

73

aggregates of fields in the database should be displayed,

constrained, and sorted. These rules also contain information

to create joins between DB files and to generate an optimal

navigation path. This model transforms a CD representation of

an input request into a VQL expression as an intermediate

stage and then into the target DB language. If the types of

NL requests in any application domain are too diverse, the

questions are parsed in a bottom-up manner more often than in

a top-down manner. This frequently occurring bottom-up parsing

produces the various types of meaning structure. To facilitate

the transformation from the diverse meaning structures into

the target DB expression, the number of the rules is so

enormous a VQL expression should be used. The VQL expression

is a set of linear specifications of IRL and provides a more

convenient method to augment some DB mapping patterns.

There are some other systems that relate to this model

but use the different parsing techniques. The EUFID system

(Templeton & Burger, 1983) converts the parsing output into

a linear string of tokens which are then mapped into the

retrieval query similarly to this model. But EUFID used

context-free grammars to get the parsing output, and it has

no capability for augmenting the linear expression and

interactive dialogues. The FRED system (Jakobson, Lafond,

Nyberg
, & Piatetsky—Shapiro, 1986) maps the case frame parsing

output into a linear database query expression, and it does

not have the extensive augmentation capability that this model

has.

CHAPTER 4

SEEGER: A SLEEP NATURAL LANGUAGE QUERY SYSTEM

In order to perform at the level of a data processing

technician who provides the sleep data to a sleep clinician

or researcher, at least the following three capabilities are

required:

1. process requests for sleep data retrieval in a wide

range of syntactic variations,

2
.
process requests for sleep data retrieval in a wide

range of semantic complexities,

3 . engage in an interactive dialogue with the user for

ambiguous and incomplete requests.

No attempt has been made to build a sleep NL query system

before. SEEGER, as the first sleep NL query system, has been

designed and implemented for the purpose of achieving the

above capabilities (Kim, Principe, & Smith, 1988) .

The overall structure of SEEGER based on the new NL query

model of Chapter 3 is discussed in Section 4.1. Section 4.2

describes a proposed sleep representational system to

represent the sleep domain concepts. Section 4.3 contains a

74

75

proposed sleep database system. The elements to cover the

syntactic variations, and semantic complexities for a sleep

NL system are described and illustrated with the test requests

in Section 4.4 and in Section 4.5. Some of the elements for

the systematic evaluation of a NL system proposed by Tennant

(1981) are modified for a general knowledge-based NL system.

Section 4 . 6 discusses the implementation issues and system

requirements

.

4.1 The Overall Structure of SEEGER

The model of Chapter 3 is implemented into SEEGER and

shown in Figure 4.1. Since details were described in the

previous chapter, some features in SEEGER will be discussed

below.

4.1.1 Conceptual Parser

SEEGER has a lexicon of 636 lexical entries (i.e.,

vocabulary) composed of 455 words and 181 phrases. There are

a total of 84 demon definitions used in the lexical entries.

Each lexical entry contains a syntactic category for noun

group processing, word senses representing the meaning of the

entry, demons which keep processing information of the entry,

and a synonym. The domain-independent entries refer to

constraints (e.g., greater than, less than), sorting and

grouping (e.g., oldest, male), statistical terms (e.g., total,

average), grammatical indicators (e.g., comma, question mark)
,

76

Figure 4.1 The Overall Structure of SEEGER

77

etc. The sleep domain-specific entries refer to temporal

references (e.g., recording date, Jan., 1988), unit (hour,

minutes, second, %) , subject and recording information (e.g.,

subject#, name, date, montage, EOG) ,
sleep activities (e.g.,

alpha time), sleep stage (e.g., REM, NREM, stage time), sleep

parameters (e.g. sleep time, latency), etc. The meaning

definition is in a declarative form, and the demon is in a

rule form.

The word senses in SEEGER are designed based on the

"model corpus" (Cullingford, 1986) as a bottom-up approach.

This is a collection of sentences or sentence fragments that

sample as large a fragment as possible of the knowledge

content of the domain. A good corpus is the key to the domain

coverage. The corpus is annotated as the comment lines in the

lexicon module in order to help the sleep NL system developer

to design or modify the word meaning definitions.

4.1.2 Inferential Analyzer

The control mechanism of the Inferential Analyzer applies

a set of inferential rules to the CD representation of a

sentence. There are 47 inferential rules in SEEGER in order

to run several types of domain-specific inferences such as

specifications, omissions, concretions, and substitutions

described in Section 3.3. It specifies implicit numerical or

possessive references explicitly; removes redundant references

about quantity, possession, or data record; concretes the

78

temporal data at the various levels of detail; or transforms

the fragmentary structure (e.g., relative clause) into the

canonical form.

The rules are driven in order from the rule list that

holds a set of rules. An inferential rule is defined in the

following form:

(4.7) (RULE rule-name
(ISA class-name)
(PARAMS list-of-parameters)
(IF lisp-expression)
(THEN lisp-expression)

)

where "class-name" is used to classify the whole rules into

several groups in order to deal with the relevant rules in a

control loop. If there is any rule whose IF part is true, its

THEN part is executed so the output of the parser is modified.

A set of rules are applied repeatedly until it becomes

quiescent (i.e., no rule is executed in a loop). Hence, the

control mechanism is designed to be executed in the same way

as the demon task control mechanism in Section 3.2.

4.1.3 Translator

The meaning structure via the inferential analysis is

transformed into a set of linear specifications which is a

VQL. The transformation is performed by the set of translation

functions. There are 21 translation functions in SEEGER. The

meaning structure in the slot—filler format is decomposed by

the functions designated in terms of the head patterns. The

79

translation functions insert the appropriate patterns into the

fields while decomposing the meaning structure.

The augmented rules are applied to the VQL. There are 14

augmentation rules in SEEGER. The rules replace the universal

quantifier for sleep stage and subject with its corresponding

specifications, fill in the missing temporal unit, scale the

numeric input to the system's time unit, transform a yes/no

question type into a form to access data, or validate a query

expression about the numerical quantity of records, multiple

DB queries, or DB record segmentation. The rules are driven

by a pattern matching mechanism. The patterns in the fields

are tested to see whether there exist any matching patterns

corresponding to the variables in a rule pattern. A

unification algorithm (Charniak, Riesbeck, McDermott, &

Meehan, 1987) is used to find the matching patterns. The

patterns in the VQL are augmented as described in Section 3.4.

4.1.4 Database Mapper

The augmented VQL is transformed into the retrieval query

in the SQL format of dBASE IV as described in Section 3.5. The

domain concepts in the fields are mapped into the

corresponding DB expressions which are physical DB attributes,

DB files, operators, functions, etc. There are 82 domain

concepts at the mapping table in SEEGER. The concepts are

relevant to subject record, channel recording, epoch summary,

stage summary, and night summary. They also contain the

80

database access-path information of the physical DB files. The

SQL expression is stored into a file for the evaluation in

dBASE IV.

4.1.5 Interactive Dialogues

There are 20 concepts to be clarified in SEEGER. They are

stored in a form of table. As an epoch summary parameter, each

concept can be either a time activity or a count activity. It

is converted into an unambiguous concept, or it calls a

function that allows the user to select one among the

candidates. Seven clarification functions lead the user to

select a concept of either "time" or "count" for alpha, beta,

delta sigma, theta; either REMI (in-phase REM) or REMO (out-

of-phase REM) for REM activity; high, medium, or low for EMG

level

.

To formulate a complete query, SEEGER tries to find

whether the user's request includes the subject information

such as subject name, record number, etc. If subject

information is not specified in the request, SEEGER guides the

user to select one of the subjects in the sleep database.

4.1.6 Report Generator

The Report Generator holds the evaluated output from the

dBASE IV database management system and shows it to the user

one screen at a time. The SQL expression as a source code is

compiled to generate an object code and then executed to store

81

the output in a file automatically without the user's

interaction. It also enables the user to quit examining the

output at any moment. The whole output can be sent to the

printer by selecting the options.

4.2 A Sleep Representational System

A representational system proposed for a sleep EEG domain

is shown in Figure 4.2. Many terms used here are based on the

manual by Rechtschaffen and Kales (Rechtschaffen & Kales,

1968) . The taxonomy of the domain concepts is represented in

a semantic network of an ISA-hierarchy . The ISA-hierarchy of

a domain reflects the property of the concepts to be

classified and the operations to be performed on them. The top

concept of the domain is classified into four main categories:

entities, actions, states, and relationships. These are

subdivided into a number of their subordinate types. There are

a total of 237 sleep domain concepts in the ISA-hierarchy. The

organization of four main categories will be described.

4.2.1 Entities

The entities or objects of the sleep domain are

classified into three subordinate entities: animate entities,

physical objects, and abstract objects.

The animate entities (e.g., the system, user, subject or

patient, technician) engage in actions. The system and a user

engage in a dialogue. For example, if a user enters a request

82

Entity:
Animate entity: system, user, subject, technician
Physical object:

person: subject, technician
man-made object:

polygraph, electrode, printer, screen, computer
place: central, frontal, occipital, eye, chin

Abstract object:
waveform:

EEG: alpha, beta, delta, theta, sigma,
artifact, arousal, K-complex

EOG: REM, SEM
EMG

activity:
time activity:

alpha time, beta time, delta time, sigma
time, theta time, artifact time

count activity:
alpha count, beta count, delta count,
sigma count, theta count, SEM, REMI, REMO,
K-complex, arousal

sleep stage:
stage 0, stage 1, stage 2, stage 3, stage
4 ,

stage 5

EMG level: high, medium, low
number
time:

time point:
recording date, epoch number, latency

time span:
recording time, sleep time, stage time,
epoch length

unit:
time: hour, minute, second, epoch
proportion: %

frequency: hz
voltage: microvolts

Actions: retrieve, sleep, record, detect, score

State:
attributional stative
physical configuration
abstract stative

Relationship:
logical: conjunction, disjunction, junction, negation
numerical: largest, larger, equal, smaller, smallest
configurational: part-of

Figure 4.2 The Representational System of Sleep EEG Domain

83

"Can you give me total alpha time?" the word "you" designates

the system and is defined as "(*SYS*)" in the lexicon. The

word "me" indicates the user who is defined as "(*USER*)." A

sleep technician or clinician records or scores the data of

sleeping subjects.

The physical objects are the "Picture Producers" (PPs)

defined by Schank (1975) . The PPs are conceptual entities

which tend to produce an image in the mind of a listener.

There are three sub-entities: person, man-made object, and

place. In the sleep domain, a subject or patient is a "person"

whose data are recorded during sleep. Since the class

"subject" has more than one super-class such as person and

animate entity, it is called the "tangled" ISA-hierarchy . For

example, a subject named "Kimberley" will be defined in the

lexicon as

(4.1) (SUBJECT LASTNAME (KIMBERLEY)
GENDER (FEMALE))

where LASTNAME, GENDER are role names and KIMBERLEY, FEMALE

are the fillers of the roles respectively. "Man-made objects"

are substantial things which have been manufactured by humans

for their own use, such as polygraph, electrode, printer,

screen, computer, etc. in the sleep domain. "Places" are the

body parts of a subject on which electrodes are located for

recording the sleep signals (e.g., frontal, central, and

occipital on the scalp for EEG signals, eyes for EOG signal,

chin for EMG signal, etc.).

84

Many entities of the sleep domain belong to abstract

objects. They are divided into five groups: waveforms,

activities, numbers, time, and units. The electrical signals

from electrodes attached to the subject body are recorded and

measured. The technical details are available in Smith (1986)

and Chang (1987) . The EEC signal from the human brain is

measured to detect several waveforms, i.e., alpha, beta,

delta, theta, sigma, artifact, arousal, and K-complex. The EOG

signal captures the eye movements in which REM (Rapid Eye

Movement) and SEM (Slow Eye Movement) waveforms are detected.

The EMG signal from the chin or muscle areas is used to

indicate tonic muscle activity during sleep. The detected

waveforms or features are further processed in an epoch-by-

epoch approach so that four types of activity are produced:

1) time activity such as alpha time, beta time, delta time,

sigma time, theta time, or artifact time, 2) count activity

such as alpha count, beta count, delta count, sigma count,

theta count, SEM, REMI (in-phase REM) , REMO (out-of-phase

REM), K-complex, or arousal, 3) sleep stage such as sleep

stage 0, stage 1 or stage 5 (or REM sleep), and 4) EMG level

such as high, medium, or low level. One of the frequently

referred entities is a number because most of the sleep

database elements are composed of numbers. The sleep database

also contains a collection of temporal events which take place

at a point of time or at a certain period of time. The

temporal representation used here handles only the limited

85

types of time specifications. The specifications here are

defined to represent the words and the inference rules enough

in the sleep DB query system. The system represents a point

of time (e.g., recording date, epoch number) and a duration

of time (e.g., total sleep time, recording time, stage time).

There are several units to represent a time duration (e.g.,

hour, minute, second, epoch), a proportion (e.g., %) , a

frequency scale (e.g., Hz), a voltage scale (e.g., microvolt),

etc.

4.2.2 Actions

NL questions in a sleep NL system can be represented as

either an actional event or a stative event. The actional

event is expressed in terms of primitive classes of actions.

The verbs, for example, "give, list, show, display, and find"

have an identical meaning in the sleep DB query system. This

is represented as a primitive act RETRIEVE and defined in the

dictionary as the following conceptualization:

(4.2) (RETRIEVE ACTOR W
TO X
OBJ Y
INST Z)

where W, X, Y, and Z are empty slots to be filled.

Subjects or patients sleep at night and their data are

recorded by a sleep clinician or technician. The waveforms are

detected and the sleep stages are scored. The primitive acts

86

such as SLEEP, RECORD, DETECT, SCORE are necessary to cover

events that may be entered by the user.

4.2.3 States

The stative event in a sleep NL system is described in

terms of attributes of entities, relationships among entities,

or changes in these attributes and relationships. To represent

a query as a stative event, there are three primitive

statives: attributional stative (S-ATTR)
,

physical

configuration (P-CONFIG) ,
and abstract configuration (A-

CONFIG) . The attributional stative represents the attribute

value of an entity. An attribute "gender" of subjects, for

example, can be asked in a guery "Who are female?" and it has

the following CD form:

(4.3) (S-ATTR CON (PERSON VAL (*?*))
ATTR (GENDER VAL (FEMALE))

The abstract configuration represents the non-physical

relationship among the entities. For example, in a sentence

"How many channels does Jones have?" the abstract

configuration of possession between two entities can be

represented as the following form:

(4.4) (A-CONFIG REL (POSSESS)
CONI (CHANNEL NUMREL (GRPNUM VAL (*?*)))
C0N2 (PERSON L-NAME (JONES)

GENDER (MALE)))

The physical relationship P-CONFIG is used to represent the

locational relation among entities.

87

4.2.4 Relationships

The state in a sleep NL system is expressed in terms of

relationships among the entities and/or the actions. There

are three subordinate relationships: logical, numerical, and

configurational relationships.

As a logical relationship, conjunction for the word

"and," disjunction for "or," or the junction for "," are used

in English. For instance, a sentence "Show me alpha time and

beta time?" is expressed in the following CD form:

(4.5) (CONJ CONI (RETRIEVE ACTOR NIL
TO (*USER*)
OBJ (ALPHA-T)
INST NIL)

C0N2 (RETRIEVE ACTOR NIL
TO (*USER*)
OBJ (BETA-T)
INST NIL)

)

where the logical relation CONJ is used to coordinate two

separate events.

Numerical relations are often used to compare two

entities. There are several types of comparative relations

such as GE (greater than or equal)
, GT (greater than)

, LE

(less than or equal), LT (less than), and EQ (equal). For

example, a query "sigma count is greater than 2" has the

following form:

(4.6) (A-CONFIG REL (GT)
CONI (SIGMA-C)
CON2 (NUMBER VAL (2)))

88

where two entities are on a comparative relationship of

abstract configuration.

The configurational relationship is expressed between two

entities such as POSSESS in (4.4) and GT in (4.6).

4.3 A Sleep Database System

A new sleep database system is designed as a menu-driven

system that is used to edit sleep data. The menu-driven system

allows users to add new subject data to the sleep database and

examine or update the existing sleep database. The data in the

sleep database can also be retrieved by means of retrieval

query generated from SEEGER.

The sleep database has been implemented under the dBASE

IV database management system (DBMS) . The menu-driven system

has been written in the dBASE language of dBASE ly, and the

retrieval query from SEEGER is generated from SEEGER in the

SQL (Structured Query Language) of dBASE IV.

4.3.1 The Characteristics of the Sleep EEG Data

The information about sleep activities is obtained from

the sleep waveform analyzing system (Chang, 1987)

.

As a

feature extraction system, the sleep waveform system analyzes

the sleep EEG/EOG/EMG signals from the human brain during

sleep and detects the waveforms of interest. The EEG signal

from the central scalp is used to detect the waveform

89

occurrences of alpha, beta, delta, theta, sigma, artifact,

arousal, and K-complex. The two EOG signals from the left and

right eyes are used to detect REM (Rapid Eye Movement) and SEM

(Slow Eye Movement) occurrences. The EMG signal from the chin

is used to measure the amplitude level of muscle activity. The

waveform occurrences are further processed and summarized

during an epoch which is a 30 or 60 second interval. These

epoch-wise summary data are composed of four types of

activities: time activities, count activities, EMG level, and

sleep stage as described in section 3.1. The processed epoch

summary data are stored in a file.

The information about subjects or patients includes

record number, recording date, age, sex, first name, middle

initial, and last name. The record number is a unique

identifier of the record.

The recording information includes channel number,

channel place (e.g., Al, A2
,

C3, C4 ,
chin), and channel

description (e.g. ,
EEG, EOG, EMG)

.

The sleep stage-wise parameters represent the information

with respect to the sleep stages. It includes sleep stage

time, sleep latency, and percent of sleep for each sleep

stage. They are obtained from the deduction of the epoch

summary data. For example, the sleep stage 1 time is obtained

by counting the number of epochs with sleep stage 1, and then

it is scaled to the appropriate time unit. The sleep latency

is obtained by selecting the first epoch number of each sleep

90

stage from the epoch summary data and then scaling to the

appropriate time unit.

The night-wise parameters as a single value include sleep

time, recording time (i.e, time in bed), sleep efficiency,

NREM time, and epoch length. The sleep time, NREM time, and

sleep efficiency are obtained from the stage-wise parameters.

4.3.2 The Structure of a Sleep EEG Database

The proposed relational sleep database is organized as

shown in Figure 4.3. There are five database files: SUBJ_INF0,

CHAN_INFO, EP_SUM
,

STG_VAR

,

NGT_ VAR. Each file has its

attributes corresponding to the columns in a table. As

relational databases (Date, 1986) ,
all DB files have a field

"record number" as a primary key. The "join" operation between

the DB files is performed on the primary key. The physical DB

structure information is stored in the DB mapping table of

SEEGER. The domain concepts are mapped into the corresponding

DB attribute names and the DB file names.

4.3.3 A Menu-Driven System

SEEGER retrieves information from the database, but it

cannot edit the database. A menu-driven system is developed

to add new subject data or edit the existing sleep data. It

allows the user to get into each sleep DB file and do the

followings

:

1. add a record
2. modify a record

91

DB file

SUBJ INFO

EP SUM

CHAN INFO

STG VAR

NOT VAR

Attribute Description

REC NO record number
LASTNAME last name
FIRSTNAME first name
SEX sex
AGE age
REC DATE recording date
EP_LEN epoch length

REC NO record number
EPOCH NO epoch number
ALPHA T alpha time
ALPHA C alpha count
BETA T beta time
BETA C beta count
DELTA-T delta time
DELTA C delta count
SIGMA T sigma time
SIGMA C sigma count
THETA T theta time
THETA C theta count
ARTIF T artifact time
SEM C SEM count
REMI C REMI count
REMO C REMO count
EMG LEVEL EMG level
AROUSAL arousal
K CMPLX K-complex
SAC STG computer-scored sleep stage
HUM_STG human-scored sleep stage

REC NO record number
CHAN NO channel number
CHAN NAME channel name
PLACEMENT electrode placement

REC NO record number
SAC STG computer-scored sleep stage
STG TIME total stage time
LATENCY latency
PERC_STG percentage sleep stage

REC NO record number
NREM TIME total NREM time
SLP TIME total sleep time
NREM PERC NREM percentage
EFFICIENCY sleep efficiency

Figure 4.3 The Structure of Sleep EEC Database

92

3. delete a record
4. examine a record at any place
5. list records
6. group records by setting conditions
7. count the records.

The primary purpose of the menu system is to add new

subject data. Data for one subject can be inserted by the

following sequential steps:

1. enter subject information
2. enter the name of epoch summary file
3. enter channel information.

In the second step new subject data are automatically entered

into the three DB files: EP-SUM file, STG_VAR file, and

NGT_VAR file.

4.3.4 Interface to SEEGER

SEEGER generates a retrieval query in the SQL form and

stores it into a file. The database management system compiles

the query file and evaluates it using the sleep database and

then stores the result in a file. SEEGER then reads the

evaluated output and shows it to the user.

4.4 Conceptual Coverage

The conceptual coverage of the natural language system

is the range of concepts that are covered in the system. Three

factors were considered in defining the conceptual coverage.

First, the concepts are specific to the domain. The concepts

93

in the sleep domain are related to sleep data, data recording

events, data retrieval events, numeric comparison, etc.

Second, the concepts should be so broad as to cover all

conceivable language phenomena in a domain. Third, the

concepts should be represented at a sufficient level of

detail. These three are essential criteria for a good

representational system.

The taxonomy of the conceptual coverage for a sleep NL

system is based on the test results and the elements proposed

by Tennant (1981) and listed in Figure 4.4. Content of two

elements (i.e., domain concept representation and inference)

is modified, and one new element (i.e., conceptualization of

word) is added to the Tennant's list for knowledge-based NL

systems. Each element will be described below.

4.4.1 Domain Concept Representation

The representational system of the sleep domain is shown

in Figure 4.1. The taxonomy of the domain concepts is

represented in a semantic network in an ISA-hierarchy . The

ISA-hierarchy of a domain reflects the property of the

concepts to be classified and the operations performed on

them. The top concept of the domain is classified into four

main categories: entities, actions, states, and relationships.

These are subdivided into a number of their subordinate types.

Although Cullingford (1986) suggested three criteria for a

good representational system as described in Chapter 3 , there

94

1. Domain concept representation
entity
action
state
relationship

2. Conceptualization of word
3. Capability of the system

retrieval of sleep data
problem deduction

data segmentation
exceeding the limits of discourse

4. Inference
specification inference: number
omission inference
concretion inference: time
substitution inference

5. Knowledge about DB
DB values, fields, files
DB model
DB mapping

nested query
multiple query
expensive query trap

6. Logical propositions
negation
disjunction
conjunction
quantification: universal and existential

7. Quantitative propositions
numerical quantifiers
comparatives

8. Numerical functions
ordinality
cardinality

9. Discourse objects
sentence
topic of conversation

10. Extensions
new concepts - synonym
clarifying of terms
altering a formal database

updating content

Figure 4.4 Conceptual Taxonomy for SEEGER

95

is no objective way to evaluate the concept representational

system.

4.4.2 The Conceptualization of Word

This is a knowledge encoding process into the words in

the lexicon. It is based on the notion that the word in a

restricted domain has a limited number of meanings. The wrong

or missing word senses was one of the most serious problems

of SEEGER. Consider a word with missing word definitions in

the following request:

(4.8) Where was the highest sem count for record 34989n?

The word "where" was only encoded as "a place for electrode,"

but it means "epoch number" here.

4.4.3 Capability of the System

SEEGER is able to retrieve the sleep DB data or their

aggregates. The aggregate functions include counting of the

number of records, summing the values, average of the values,

minimum of the values, and maximum of the values.

Although the required information is contained in the

database, it cannot be extracted with a single query. For

example, in the following sentences

(4.9) Show me longest stage 2 period from record 34989n.
(4.10) Give me the ending epoch number of the longest

contiguous block of stage 2 for 34989n.

96

the phrase "longest block of sleep stage 2" can be resolved

by the problem deduction for data block segmentation. The

system must develop a plan for answering the request which

deduces the problem to simple multiple sub-problems. SEEGER

currently has no problem deduction capability.

It is assumed that the user will confine his discourse

to the system capabilities. If it cannot get through the

interpretation of the user's requests, SEEGER considers that

an error has occurred. If SEEGER encounters an unknown word,

it assumes that the user misspelled the word and tries to find

a possible candidate. If one is found, it will be suggested

to the user for approval. Otherwise, it will give the user an

opportunity to enter a correct word or enter a synonym.

4.4.4 Inferences

SEEGER, as a knowledge-based system, uses an intermediate

meaning representation that is based on the conceptual content

rather than on the literal content of a request. It has the

facility for inferential analysis in terms of conceptual

content. It shifts the meanings into an appropriate form for

the retrieval code via multiple steps of transformations.

One of the most complicated concepts is "time" in the

sleep domain due to the data characteristics. Consider, for

example, the following requests:

(4.11) Show me time that Jones was recorded.
(4.12) When was Jones recorded?
(4.13) How long was Jones recorded?

97

The above meanings can be easily obtained via inferential

analysis such as "recording date" for (4.11) and (4.12), and

"recording time" for (4.13). There are different levels of

detail in the time data. For example, in the following

sentences

(4.14) Show me total time that K-complex has occurred.
(4.15) Show total time that Jones was at sleep stage 2.

the phrase "total time" means "the number of epochs" in both

(4.14) and (4.15). But it will be inferred as "sleep stage

time" in (4.15) since the attribute is already in the sleep

database and its value can be quickly retrieved.

The following concept association will be implicit in the

following requests:

(4.16) Who has sleep stage 4 more than 20%?
(4.17) Who has sleep stage 4 more than 2 hours?

The phrase "sleep stage" means "percent sleep stage" in (4.16)

and "sleep stage time" in (4.17). It will be inferred by means

of the unit about time or proportion.

Some of the time concepts will be defined clearly in the

lexicon. For example, "arousal time" in the lexicon is defined

as "epoch number whose arousal occurred."

The implicit meaning of a number can be inferred by

domain-specific knowledge (Shwartz, 1982). In the following

requests, for example.

98

(4.18) Show me all subjects from 20 to 35.

(4.19) Show me all subjects from 1987 to 1988.
(4.20) Show me all subjects from 34500 to 34570.

SEEGER will infer that (4.18) refers to subject age, (4.19)

refers to recording year, and (4.20) refers to record number.

A missing inference rule caused a request to be

misinterpreted in the following:

(4.21) What was the name of the record on 2/5/89?

The phrase "name of the record” refers to "record number,” but

it was misinterpreted as "subject name.”

4.4.5 Knowledge About the Database

SEEGER 's goal is to produce retrieval queries. To

transform a meaning representation into a query language, it

is necessary for the system to know about the database.

4. 4. 5.1 Database elements . The knowledge about the data

elements in the DB plays an important role to guide NL

analysis in NL query systems. In SEEGER, the ISA-hierarchy of

the domain concepts contains the classes of database values.

There is a limited number of nominal data in the sleep DB

because most of them are numbers, and they will be

automatically defined. During the system initialization, the

subject information such as record number, name, sex, and age

is retrieved from the DB and stored in the system's memory.

For example, the subject JONES is defined as

99

(4.22) (WORD JONES
POS NAME
DEF (PERSON LASTNAME (JONES)

GENDER (MALE))

)

and stored in the system's memory like a word in the lexicon.

Since the record number can be either a number or a string,

all record numbers are stored into the "Record List" in order

to be recognized immediately during the parsing. This

automatic definition is made for the first names and last

names, and it is not necessary to code manually for changing

data elements.

4. 4. 5. 2 Database model . It is usually assumed that a

user's request is correct. Thus, it is necessary to recognize

and respond to the user's misconceptions about the domain or

the database. The COOP system (Kaplan, 1979) detects a user's

presuppositions in the request if the evaluated query returns

an empty response. For example, in the following request

(4.23) Show me Kimberley's total arousals on 2/5/89.

if the result were empty (i.e., the total arousals is zero),

COOP would check whether the presupposition (i.e., existence

of is any record on 2/5/89 for Kimberley) is valid or not. If

there were any misconceptions on the user's part, the system

would respond as follows:

(4.24)

I don't know any record on 2/5/89 for Kimberley.

100

SEEGER assumes that the user's request is correct and

currently does not check any presuppositions.

4. 4. 5.

3

Database mapping . It is necessary to perform

a validity check before the DB language is generated. There

may be NL requests for which no corresponding target DB

expression exists. Some requests may require nested

expressions or multiple queries. For example, the following

request

(4.25) Show me sleep efficiency and total sleep stage
time.

should be divided into two separate individual queries since

"total sleep stage time" is given for each sleep stage, but

"sleep efficiency" is a single value regardless of the sleep

stage. A query involving a join of two DB files may require

a long time to execute. If it takes a long time for a query

to execute, the system should inform the user of how long the

query will take. SEEGER currently does not support nested

expressions, multiple queries, or an expensive query trap.

4.4.6 Logical Propositions

The predicates that were not explicitly specified are

assumed to be logically ANDed. Though the logical

relationships between predicates are explicitly uttered in the

NL sentences, the relationships sometimes depend on the

physical DB structure. For example, in the following sentences

101

(4.26) Show Kimberley's arousal time in sleep stage 2.

(4.27) Show me arousal time in sleep stage 1 and 2.

the two-predicate relationship between "last name is

Kimberley" and "sleep stage is 2" is ANDed by default in

(4.26), but the logical relationship between "sleep stage is

1" and "sleep stage is 2" in (4.27) is ORed in the DB language

expression.

The logical negation of a predicate is handled in limited

cases. For instance, in the following sentences

(4.28) Who is not older than 20?
(4.29) Who has no sleep stage 4?

the negative predicate of "age > 20" is modified into a

positive predicate "age <= 20" in (4.28). But (4.29) can be

handled with a negative EXISTS predicate in the DB languagfe.

4.4.7 Quantitative Propositions

Numerical quantification is uttered as either a noun head

or a modifier of a noun phrase. The number is handled as a

modifier in the phrase "3 sigma counts" or "sleep stage 3" but

as a noun head in the phrase "20 seconds, 2 0 minutes, or sigma

is 3." It cannot handle a specific number of rows in the

records such as

(4.30) Show me 5 subjects recorded on 2/5/88.

since the target SQL language does not support this facility.

102

4.4.8 Numerical Functions

Counting the number of rows of the records, summation of

DB value, and averaging of DB values are handled in SEEGER.

The cardinality or ordinal ity is supported in the SQL

language. But one inference rule shifts the meaning in the

phrase such as "first epoch number of sleep stage 1" to "sleep

latency of sleep stage 1."

4.4.9 Discourse Objects

Discourse objects include objects described in the

previous discourse and sentences themselves (e.g., what was

my last question?) . Like most other systems, each question is

considered as a query onto itself. It does not maintain the

topic of conversation. For instance, in two consecutive

sentences

(4.31) Show me male subjects between 20 to 30 years old.
(4.32) Was any of them recorded on 2/5/88?

The word "them" in (4.31) refers to the restricted set of

subjects described in (4.32). SEEGER does not store the

objects generated from the answer. SEEGER has no capability

to recognize discourse objects.

4.4.10 Extensions

Synonyms can be added by users during interaction

occurring due to the lack of vocabulary. For example, in the

103

following interactive dialogue

(4.33)
User: How much alpha did Kimberley have in stage 1?
SEEGER: I don't understand the word MUCH.

Would you like to: (1) Enter a correct spelling
(2) Propose a synonym
(3) Ignore the word
(4) Reenter the entire request

Enter a selection —> 2

Enter a word —> many
OK . .

.

SEEGER allows the user to define the synonym. SEEGER has no

capability for users to define a new word or concept. It

cannot support requests to clarify the terms. It cannot update

or delete the data from database through NL questions.

4 . 5 Linguistic Coverage

The linguistic coverage of a NL system is a description

of the ways in which concepts can be expressed. Three factors

were considered in the syntactic facilities for SEEGER. First,

the variety of phrases expected from users is deeply related

to the domain. In SEEGER, it is expected that many verbs will

be "be, have," and a retrieval type (e.g., list, give, show).

Many expressions are expected about numerical functions and

temporal references due to the sleep data features. It is

unlikely to use many adverbs and adverbial phrases. Second,

there is a variability among the users. People have their own

idiosyncratic ways of expressing themselves. Some of the

requests will be ungrammatical due to the user's carelessness

104

or informal linguistic style. Third, any system at the current

state of technology will have limitations. Most systems

provide no clues as to whether the problem is due to spelling,

an unknown word, a wrong construction, or a reference to an

unknown concept.

The elements in Figure 4 . 5 cover a wide variety of

syntactic facilities for a sleep NL system. They are based on

the test results and the elements proposed by Tennant (1981)

.

4.5.1

Reference to Concepts

4. 5. 1.1 Reference by name . A name constitutes a word

or phrase in the lexicon as a lexical item. SEEGER accepts the

name as a reference to the concept like other systems.

4 . 5 .

1.2

Reference by description . There are many ways

to describe concepts such as noun modifiers, prepositional

phrases, clauses, etc. Some structure constructed from the

description will be processed via inferential analysis in

order to synthesize the concepts or to concrete the concepts

as described in Section 3.3.

The noun pronominal modifier described here precedes a

noun and is processed as a noun group in SEEGER. The meaning

of determiners is ignored in SEEGER since it was considered

that person-number disagreements are common in informal

reguests. The identifiers in SEEGER are record number, subject

name, and sleep stage. Consider, for example, the noun

modifiers in the following request:

105

1. Reference to concepts
by name (alpha, alpha time)
by description

noun pronominal modifiers
determiners (a, an, the)
adjective (male, female)
identifier (record# 34589 . stage REM ,

name Carter)

quantifiers (each, every, all)
noun-noun modifier (sleep stage 1 time)
genitive (Kimberley's arousal)

noun postnominal modifier
participle (subject recorded on 2/5/89)
infinitive clause
relative clauses
prepositional phrase

anaphoric reference
pronouns (he, she, they, it, I, you, one)
antecedents and referents (the last subject)

2 . Wording for brevity
ellipsis (What is the record# of Jones? age?)
non-anaphoric omissions (REM sleep > 10 seconds)
relying on the domain knowledge

(Show me epochs with K-complex [greater than 0].)
3

.

Syntactic forms
basic types
special structures

dates (2/5/89, Feb 5, 1989, Feb. 5, 1989)
person name (Lisa J. Kimberley)
percentage of stage time (% stage 1, stage 1%,

percent stage 1)
mathematical expressions (total recording time -

sleep stage 0 time)
sentence

fragmentary (how many subjects?, data available?)
4. Negations

not, no, never, only, other than, except
5. Conjunction

clause
prepositional phrase
noun phrase
prenominal modifier
other structures

6. Ill-formed sentence
missing a word or preposition
misplacement of symbol

Figure 4.5 Linguistic Taxonomy For SEEGER

106

(4.34) Show me the sleep stage 1 time.

The modifier "the sleep stage 1" is a combination of

determiner ("the")

,

noun-noun ("sleep stage")

,

and identifier

("1") modifiers. The above noun group will be processed to be

represented into one structure such as

(4.35) (TIME REL (STAGE VAL (NUMBER VAL (1))))

The noun postnominal modifier follows a noun and is not

processed as a noun group in SEEGER, but its structure is

attached to the noun group. Relative clauses in SEEGER are

handled based on the individual relative pronouns. For

example, in the sentence

(4.36) Show me subject who is older than 50.

the word "who" is recognized as a relative pronoun since it

is neither an imbedded sentence (e.g., Tell me who is ...),

nor a question pronoun (e.g., Who is ...). The preceding

ANIMATE entity (i.e., subject) is copied and modified by the

class ACTION or STATE (i.e., is) which comes after "who." The

overall structure is

(4.37)
(RETRIEVE ACTOR (NIL)

TO (*USER*)
OBJ (SUBJECT REL (S-ATTR CON (SUBJECT)

ATTR (AGE > (NUMBER VAL (50))))))

107

The relative clause is connected to the preceding ANIMATE

entity with the slot REL. Other types of relative clauses

without pronouns are given as

(4.38) Show me all subjects you have.

If there are two independent head patterns in the class of

ACTION or STATE, the latter is linked to the preceding entity

in the same way as (4.37).

Prepositional phrase (PP) attachment is a problem

encountered in pure syntactic parsers. SEEGER determines the

attachment in top-down and bottom-up manners. If there are any

expectations that will be fired along with a PP, the PP will

be bound to the slot. Otherwise, it will be attached to a

preceding noun group. For example, in the sentences

(4.39) Who was recorded EMG waveform on 2/5/88 from the
chin?

(4.40) Show me recording time in Jones's record.

both "on 2/5/88" and "from the chin" in (4.39) are attached

to the verb "recorded" by means of the expectation demons. The

PP "in Jones's record" in (4.40) has no place to be bound by

expectation. It will be bound the preceding entity "time."

4.5. 1.3 Anaphoric reference . Anaphoric reference in

SEEGER is considered only for pronouns. The pronouns can be

resolved in the same manner as the word sense disambiguation.

The entities uttered in the previous and current sentences are

stored in the Pronoun Buffer (PB) . When a pronoun is

108

encountered in a sentence, a function draws the candidate

referents matching semantic content from the PB. SEEGER only

handles the pronoun referring to the entity class, but it

cannot handle the referent to a clause or a sentence.

4.5.2 Wording for Brevity

4. 5. 2.1 Ellipsis . Ellipsis is resolved at the level of

the conceptual structure. If there is a fragmentary sentence,

elliptic expansion is tried first. For example, consider the

two consecutive guestions

(4.41) Find Kimberley's total alpha time of sleep stage
1 .

(4.42) How about sleep stage 2?

the meaning structure of (4.41) is given as

(4.43)
(RETRIEVE ACTOR (NIL)

TO (NIL)
OBJ (ALPHA-T QUANTIFIER (TOTAL)

POSSBY (PERSON LASTNAME (KIMBERLEY)
GENDER (MALE)

)

PG-REL (STAGE VAL (NUMBER VAL (1)))))

Since the top concept of (4.42) is STAGE, the meaning

structure of (4.41) is searched for the concept STAGE in the

bottom-up manner. Once it is found, conversation exchange

(Cullingford, 1986) is performed. That is, all upper and lower

level structure is copied to the structure of (4.42). If is

SEEGER considers that the sentence is fragmentary

without the retrieval type of verb such as "show."

109

4 . 5 . 2 .

2

Non-anaphoric omission . Since numeric

comparisons are expected in the sleep NL system, a symbol is

accepted instead of a phrase. For example, the symbol is

allowed to replace "greater than" or "larger than." Other

symbols such as ">=, =, <, and <=" are accepted as well.

4. 5. 2.

3

Reiving on the domain knowledge . People tend

to leave out unnecessary information that is required for

query formulation. For example, the request such as

(4.44) Show me epochs with sigma spindles at sleep stage
REM.

really means

(4.45) Show me epochs with sigma spindle [greater than
0] at sleep stage REM.

rather than

(4.46) Show me epochs and sigma spindle at sleep stage
REM.

The phrase "greater than 0" can be inferred from the knowledge

about sleep data. Other types of incomplete query have been

described in Section 3.6.

4.5.3

Syntactic Forms

Three types of sentence structures are expected in a

sleep NL system: declarative, interrogative, and imperative.

If the sentence is a yes—no type of question, the question is

110

transformed to supply the data rather than just answer in

"yes” or "no" since it is assumed that the users are

interested in the data behind the answer. SEEGER also accepts

a single sentence.

Dates can be expressed in different forms. To specify a

recording date in the sleep database, the following forms, for

example, are accepted: "2/5/89, 2/5/1989, February 5, 1989,

Feb 5, 1989, Feb. 5, 1989, Feb. 1989, 1989," etc.

A fragmentary sentence in a noun phrase will be processed

as an acceptable input, such as

(4.46) How many subjects?
(4.47) data available?

It will be inferred as the retrieval verb "show me" is

omitted.

4.5.4 Negation

The negative requests may contain explicit negative words

such as "not," "no," and "never" or may contain the implicit

negatives "only," "except," and "other than." This is a one

of the features poorly handled in NL systems since it is a

very difficult problem. The relational DB language also does

not support a complement of a set of data. The current

implementation of SEEGER only interprets explicit negation and

generates a DB language for a valid request.

Ill

4.5.5 Conjunction

The scope of the conjunction is a difficult problem for

any parser. The conjunction is considered as a coordination

of events at the conceptual level in SEEGER. Consider the

following sentences:

(4.48) Show me subject# and age of John.
(4.49) Show me subject# of John and Lisa
(4.50) Show me subject# of John and age of Lisa.
(4.51) Show me subject# of John and show me age of Lisa.

The preceding concept and following concept of "and" are

examined. If they are at the same semantic categories in the

ISA-hierarchy
, a conversation exchange is performed on both

the preceding concept and the following concept in the same

manner as the elliptic expansion described above. Otherwise,

the bottom-up search at the preceding concept is performed in

the same manner as ellipsis. For example, (4.50) and (4.51)

will have the following final structure as

(4.52)
(CONJ CONI (RETRIEVE ACTOR (NIL)

TO (*USER*)
OBJ (SUBJ-NO PG-REL

(PERSON FIRSTNAME (JOHN))
GENDER (MALE)

))

)

CON2 (RETRIEVE ACTOR (NIL)
TO (*USER*)
OBJ (AGE PG-REL (PERSON FIRSTNAME (LISA))

GENDER (FEMALE)))))

Two events are joined as shown above. Other words "or" or ","

are handled in this way. The logical proportion of "and" or

"or" in the request does not necessarily correspond to the

112

logical meaning in the database. For instance, in the

following sentences

(4.53) Find Kimberley's total alpha time of sleep stage
1 and sleep stage 2

.

the conjunction "and" in (4.53) corresponds to the disjunction

in the conditional relation of the sleep database.

This conjunction handling in SEEGER is limited but many

questions can be analyzed. But in the following sentence "Show

me subject# and age of John and Lisa." two separate

coordinations cannot work at the current implementation.

4.5.6 Ill-Formed Input

Some requests were ill-formed because the users missed

a preposition or misplaced an apostrophe such as

(4.54) Who was recorded 2/5/89?
(4.55) What is Hykomens ' record number for 2/5/89?
(4.56) Show me Kimberleys record number.

The user missed the preposition "on" in (4.54), misplaced the

apostrophe as "Hykomen's" in (4.55)

,

and missed the apostrophe

as "Kimberley's" in (4.56). SEEGER cannot handle any of them

currently.

4.6 Implementation

SEEGER was written in Golden Common LISP and runs on a

286-based AT personal computer under DOS 3.2. I believe that

113

LISP is more appropriate than any other programming language

such as PROLOG or C. PROLOG (Clocksin & Hellish, 1984) is

designed specifically to support logic formalisms so it

provides certain classes of inference as a natural by-product

of a logic representation. Thus, it is easier for simple

theorem provers to be developed and written. But in order to

build a SEEGER-like system reguiring various types of

knowledge structures and complex control mechanism, LISP is

more flexible than PROLOG. LISP is also more convenient for

symbol manipulation than C.

The sleep EEG database has been built under dBASE IV

Database Management System (DBMS) on the same computer. The

dBASE IV DBMS provides not only the dBASE language used to

create and update the sleep database, but the SQL (Structured

Query Language) used to retrieve the information from the

sleep database through SEEGER. There are five DB files as

discussed in Section 4.3. The epoch summary file occupies

about 200 kilobytes of storage for five subjects. But other

DB files (i.e. subject record, channel recording, sleep stage

summary, or night summary DB file) take close to 2 kilobytes

of storage for five subjects. Although any number of subject

records can be added to the sleep DB, it will take a longer

time for a guery to search the epoch summary file. The SQL

language of dBASE IV is known as slow and awkward because of

internal translation from SQL to dBASE language eguivalents

and handling of special SQL catalog files. This causes the SQL

114

expression from SEEGER to be executed slowly. A SQL-based DBMS

is desired to be used in order to reduce the execution time.

The entire program has been written in about 10,000 lines

of LISP. The system requires 6 megabytes of system memory for

the SEEGER program and the LISP environment. The system also

requires 15 megabytes of hard disk storage for the Golden

Common LISP environment, dBASE IV, the SEEGER program, and

the sleep database.

CHAPTER 5

EVALUATION OF SEEGER

SEEGER is an experimental natural language interface to

a sleep EEG/EOG/EMG database. It has been designed and

implemented based on the NL query model as described in

Chapter 3. SEEGER has been tested on 79 requests by four

novice users who are sleep clinicians or researchers familiar

with sleep data analysis. Since there is no existing sleep NL

query system to compare with SEEGER, SEEGER 's performance is

discussed regarding the interactive dialogues, system

failures, sleep database, and timing. The results show that

the preliminary design goal is met, and they provide

information on what is needed to improve the system.

5.1 Test Descriptions

Four users tested SEEGER. The first user was a hospital

sleep technician, the second user was a sleep researcher

interested in drug efficacy, the third user was a sleep system

developer, and the fourth was a sleep researcher. All of them

are familiar with the sleep EEG area and have experience with

sleep data analysis. In other words, they are familiar with

115

116

the domain of discourse. They had never used SEEGER before.

Before the test, they were given the written user's guide to

SEEGER described in Appendix A. It briefly describes the

introduction of the system, a sample dialogue, and the terms

related to sleep EEG data available in the database. They were

not required to read through the user's guide.

The users were not given any specific problems to solve.

Instead, they were told to solve any problems they had in mind

since they were expected to have some problems they would like

to solve from their own perspective. This was intentional in

order to make the test more "realistic."

There were five records from three subjects in the sleep

database for test purposes. Five records consist of one

night's data from one subject and two night's data from the

other two subjects.

5.2 Performance Summary

The test was conducted with a total of 79 questions from

four users. Some of the questions were ill-formed due to a

missing preposition or a misplaced apostrophe indicating the

possessive case. Although an ill-formed input caused the

system to fail, the result was classified as an improper

response since a natural language system should be able to

respond to ill-formed questions appropriately. The results are

summarized in Table 5.1.

117

Table 5.1 Overall Test Results

Total number of requests 79

Interpreted correctly
Not interpreted properly

63.2%
36.8%

5.2.1 Performance Categories

The performance criteria are classified into three

categories suggested by Lehnert & Shwartz (1983) as follows:

IF: The request is interpreted correctly at the first
try.

IW: The request is interpreted correctly after one or
more interactions.

NI: The request is never interpreted correctly.

In the category IF, the requests were interpreted correctly

and the correct paraphrase was presented to the user without

any interactions. The category IW includes requests which were

interpreted correctly by means of interactive dialogues. In

the category NI, a system error is fatal in the sense that the

user does not or cannot recover from the error. It happens

when the requests failed in the course of interpretation, or

the requests were interpreted incorrectly so the paraphrase

was different from the user's intention. A list of all the

requests from the users in the test of SEEGER is given in

Appendix B.

The results for the three categories are given in Table

5.2. In terms of performance categories, 37% of all requests

118

Table 5.2 Test Results for Each User

Number
of

Requests
IF IW NI Success

Rate

User 1 12 4 6 2 83.3%

User 2 38 15 9 14 63.2%

User 3 18 5 4 9 50.0%

User 4 11 5 2 4 63 . 6%

Total No. 79 29 21 29

Total % 36.7% 26.6% 36.7% 63 . 3%

119

were IF requests, and 27% of all requests were IW requests.

Both IF and IW requests are considered as fully functional.

The 63% success rate achieves the preliminary design goal of

performance level of 50 to 75 %. There are variations of

success rate among the users of 83%, 63%, 50%, and 64%. Every

user had his own behavior toward SEEGER. One was so curious

to know the system's capability that he often typed the same

question repeatedly. He continued to rephrase the question

until he found the correct answer or became discouraged due

to the system's repeated failures. Another user tried to

understand the system's capability from the help facility

(i.e., similar to the user's guide but contained in the

system)
,

so he entered requests that could be easily

interpreted. Most of the users rephrased the questions more

than once when SEEGER could not interpret the request.

Therefore, the success rate in this test varied because of the

users' disparate behavior and the system's spotty coverage of

the various types of questions.

5.2.2 Interactive Dialogues

The elements of interactive dialogue in the test are

classified in Table 5.3. Spelling corrections were made at

least once for every user. All ten misspelled words were

corrected since the correctly spelled words existed in the

lexicon. There were four words with one letter missing (e.g.,

"availabe, kimberly, recrd, gree," where "kimberley" was

120

Table 5.3 The Elements of Interactive Dialogues and
the Number of Occurrences for Each User

Elements Userl User2 Users User4 Total

Spelling error 1 2 6 1 10

Ambiguous concept 1 1

Incomplete request 5 9 14

Synonym definition 3 1 4

121

misspelled twice as "kimberly,” and "gree" is the misspelled

word of a subject name "greer”) ,
four words with one letter

extra (e.g., "reccord, mwe, fopr, withj”), and one word with

one letter wrong (e.g., "artefacts,” where it was corrected

as "artifacts" although "artefacts" is a correctly spelled

word) . There is an undesirable failure in the spelling

correction program of SEEGER. When there is any unknown word,

SEEGER considers the word as a misspelled one and first tries

to find a possible candidate. If one is found, SEEGER suggests

it although it is a correctly spelled word to the user. It

happened twice in the test (e.g. "take" was suggested as

"wake" since "take" was not in the lexicon) . This is

unavoidable if a spelling program is to facilitate the

friendly spelling correction.

Two users often entered reguests without specifying

subject information that is necessary to formulate a complete

query. But two other users always entered the requests

including the subject information such as the subject name,

record number, etc. That is, some users will try to maximize

efficient communication by minimizing the interactions with

the system. At the same time, other users will try to enter

a minimal request and let the system ask for more information

as needed.

The synonym definition and the ambiguous concept

clarification were rarely used. One user entered three

synonyms for one unknown word (e.g. "continuous" for

122

"contiguous," "uninterrupted" for "continuous," and "segment"

for "block") ,
but SEEGER could not recover from it since none

of them were known. Another user entered one known synonym,

and SEEGER recovered from its own recognition error (e.g.,

"many" was entered as a synonym of "much" in the request "how

much alpha did kimberley have in stage 1?") . The users mostly

wanted to enter an entirely new request when a correctly

spelled word was not recognized by SEEGER. I think the synonym

definition would work as a good facility provided the system

adequately covers the vocabulary in the user's request.

5.2.3 System Failures

The failed cases are classified by their causes in Table

5.4. The elements in Table 5.4 were described in detail in

the conceptual and linguistic coverage of SEEGER in Section

4.4 and in Section 4.5. Most of the failures occur during one

of the following processes: parsing a noun group, parsing an

entire request, translating into a VQL, and mapping into a

SQL. The system developer can find where the system failed by

either analyzing the intermediate results of each module or

setting a flag which enables more detailed messages to be

displayed. Misinterpretation of a request can be detected by

examining the paraphrase presented to the user.

One of the major causes of failures in SEEGER is missing

or incomplete word definitions in the lexicon. There were six

cases for the known words in the lexicon:

123

Table 5.4 The Elements of System Failures
and the Numbers of Occurrences

Elements of Failures Occurrences

Exceeding domain discourse
problem deduction 2

irrelevant to DB query 4

unknown concept 3

Word Meaning Definition 6
Inference rule 4

Ill-formed sentence 4

Conjunction 4

Query translation 1
Sentence form

PP+S+V+O 1

124

1) In the request "where are the highest sem count for

record 34989n" the word "where" asks about "epoch

number," but it was only encoded as a question about "a

place for electrode to be located" and misinterpreted.

2) In the request "how many nights are there" the word

"night" refers to "recording date," but it was encoded

as a concept "night." The request was failed during the

DB mapping because the concept did not exist in the

mapping table.

3) In the request "when was hykomen recorded" the word

"when" asks about "recording date" as well as "epoch

number." It was interpreted incorrectly because the word

has one definition of "epoch number."

4) In the request "how long did hykomen sleep on the

night of 02/05/89?" the word "sleep" was expected to be

used as a noun, but it is used as an action as well. A

noun group parsing error was given for the phrase

"hykomen sleep on the night of 02/05/89" because of the

two independent structures (i.e., "hykomen" and "sleep")

in the Working Memory.

5) In the request "go to theta" followed by the request

"show me delta time" the phrase "go to" is used to

continue the same request for "theta time" instead of

"delta time." The word "go" was just used to define the

phrase "go to bed" in the lexicon and had no other

definition for "go to" so the request failed during the

125

query translation.

6) In the request "how long before Kimberley to fall

asleep?" the word "before" was only expected to hear

about a number or a value, but another meaning should be

added to handle a request in which "before" is used along

with a concept representing the time duration (e.g., "how

long") . The request failed during parsing an entire

request.

There are also many unknown words (e.g., "now, take, taken,

as, hypnogram, leg, ending, contiguous, continuous,

uninterrupted, block, segment, much") . When there was any

unknown word, two different attempts were made: entering a new

request or trying a synonym definition.

To define the word meanings is one of the most difficult

tasks in developing SEEGER. With a bottom-up manner of

defining word meaning, the model corpus is built up by

collecting a set of representative sentences which contain

different knowledge items. This is the knowledge extraction

process undertaken by the SEEGER developer. When the corpus

has been collected, the word meaning is encoded into a set of

the primitive domain concepts through a "cut-and-try" process.

Primitive item selection is a matter of judgement, and many

different selections are possible. The basis of the choice is

the level of detail that SEEGER communicates with the user.

It is necessary to select appropriate items covering the

collected model corpus. The main reason for missing or

126

incomplete word definitions is that I did not realize what the

important knowledge items were, or I did not have enough

knowledge of what the users wanted to say. Practically, it

seems very difficult for the developer to know and codify all

the knowledge of what the users express even in a narrow

domain. The missing or incomplete knowledge items can be

obtained through hands-on interactions with the users.

Therefore, it is essential to have a testing phase for

feedback purposes with a set of potential users in order to

improve the performance.

Missing or incomplete inferential rules also led to wrong

interpretation. A missing rule caused a request to be

misinterpreted in the following requests:

1) In the request "what was the name of the record on

2/5/89?" was misinterpreted as "subject name" since the

word "name" was encoded as "subject name," and the phrase

"of the record" was removed by the omission rule. The

user intended the underlined phrase to be "record

number.

"

2) In the request "show me the lowest ema level on

kimberley" the noun group "lowest emg level" was

misinterpreted as "minimum emg level" instead of "emg

level is low." It requires a rule saying that "lowest"

means "low" when it is used along with "emg level."

3) In the request "list a summary of sleep stages for

greer" there was no rule to handle a concept "summary"

127

about a concept "sleep stage." The request failed during

the DB mapping.

Most of the inferential rules are specific to the sleep

domain. One of the modules requiring rich domain-specific

knowledge in SEEGER is the inferential rule module. Some

knowledge is more conveniently incorporated in the inferential

rules than in the individual word definitions. Many

inferential rules are integrated with the word definitions

when the model corpus is collected. A new rule should be

inserted in an appropriate order in order to prevent

misinterpretation of a request. But it is difficult for the

developer to anticipate all inferences involved in the user's

expression.

The user often entered the same question more than once

because SEEGER did not provide an appropriate message to

identify what was wrong. There was a sentence in which the

user missed a preposition (i.e., he missed a preposition "on"

in front of the date expression in the following sentence "Who

was recorded 2/5/89?") . SEEGER responded with inappropriate

message (i.e., "I cannot understand '2/5/89'.") since the word

"record" expected a date expression to be used along with a

preposition, so the data expression was left as an independent

structure in the Working Memory. This led him to enter another

ill-formed sentence (i.e., "Who was recorded 2/5/1989?").

Therefore, it is desirable for SEEGER to respond with all

partial constituents that were successfully interpreted (e.g..

128

"I understand 'Who was recorded' and '2/5/89'.") . It will help

the user recognize what is wrong in his request. One message

(i.e., "The DB language cannot handle a query with two

quantities: activity and night summary parameter.") was given

to the user but could not be understood because it was in

technical terms that he did not know. It is necessary to

respond with the terms easily understandable by the user. The

message often did not provide any relevant information (e.g.,

"I cannot interpret your request.") about the failed causes

due to the lack of internal knowledge. In general, artificial

intelligence (AI) programs do not know what they know, nor are

they aware of what they can do. This lack of internal

knowledge is one of the critical limitations in current AI

programs. I believe it will not be solved in the near future.

A good help system that offers guidance on rephrasing can

inform the user what it knows and reduce the main source of

frustration. The user also naturally adapts himself to the

system's capabilities and operations quickly.

Many facilities were not implemented in SEEGER because

they either required too much effort or were not expected to

be used. One is the simple problem deduction capability for

segmenting the data DB records. There were two cases (e.g.

"give me the ending epoch number of the longest contiguous

block of stage 2 for 34989n" and "show me the longest stage

2 period from record 34989n") . The data for the answer are in

the database, but the SQL language does not support extracting

129

the answer. This facility could be implemented by creating a

new database that provides the same information. It will

require a set of new concepts in the lexicon and in the DB

mapping module. Another problem was interpreting a sentence

whose structure started with a prepositional phrase followed

by a subject, a verb phrase (e.g. "for record 34989n show me

the number of arousals and the total wake time and total

artifact time") . This syntactic facility can be added without

difficulty.

There were four ill-formed requests due to the user's

carelessness

:

1) In the request "what is hykomens ' record number for

02/05/89" the apostrophe in the possessive form

"hykomens'" was misplaced.

2) In the request "show me kimberleys record number" an

apostrophe was missing in the word "kimberleys."

3) In two requests "who was recorded 02/05/89" and "who

was recorded 02/05/1989" a preposition was missing in

front of the date expression.

It is difficult to completely solve this problem because all

possible ill-formed requests cannot be anticipated. There

were three requests irrelevant to database queries (e.g.

"which subject has the best looking legs, give tst, give sws,

and what can I do now" where the last request was failed since

"now" was unknown—but it would be failed even if the word

"now" were known)

.

130

There were four failed requests:

1) what was the sleep efficiency and total arousals and

k-complex?

2) what was the sleep efficiency and the total arousals?

3) give sleep efficiency and give total sleep time and

give arousals.

4) list number of arousals and wake time and number of

artifact for record 34989n.

They failed because of the limited capability of the

coordinate "and." SEEGER was restricted to the handling of the

coordinate between the attributes in the same DB file. The

coordinate program should be modified to handle the above

requests. However, the request "show sleep efficiency and

total stage time" should be handled with two separate queries

because the stage time will be given for each sleep stage, but

the sleep efficiency will be given a single value.

There was one failed query translation since it was an

unexpected type of request in the translation procedure (e.g.,

"is hykomen in the database"). This failure can be easily

corrected.

5.3 The Sleep Database

There are five sleep DB files about subject record, epoch

summary, channel recording, stage summary, and night summary.

The data in the DB are retrieved by executing the SQL

expression generated from SEEGER. There are three different

131

levels of detail in the sleep data. First, the epoch summary

data are summarized from the waveform occurrences during an

epoch which is a 30 or 60 second interval. Second, the stage

summary data are time per sleep stage, sleep latency, and

percent of sleep. Third, the night summary data include sleep

time, recording time (or time in bed) , sleep efficiency, NREM

time, and epoch length.

Table 5.5 The Number of Requests for the Sleep
Database Access

Sleep
Database

Subject
Records

Epoch
Summary

Channel
Recording

Stage
Summary

Night
Summary

Total # 29 16 3 3 14

Out of a total of 79 requests, 65 requests are classified

by the DB access types in Table 5.5. The users requested the

data from a single DB file or a joined DB file. The subject

record file was joined with another file when the request

included a subject name (e.g., "how many arousals did

kimberley have"). As shown in Table 5.5, the subject

information was requested more often than any other

information. The night summary data were often asked as well.

The other five questions requested a join operation

between the epoch summary file and night summary file (e.g.,

"what is the sleep efficiency and the total arousals") . The

answer of the requests could be obtained by summing the values

of a column in the epoch summary file.

132

There were another seven requests which could not be

answered: one request could not be answered directly from the

DB (e.g., "show me a sleep stage hypnogram of record 35009");

three requests were irrelevant to the sleep DB (e.g., "show

me tst" and "which subject has the best looking legs")

;

and

three requests were too general (e.g., "show me, what can I

do now, data available")

.

Another two requests could not be answered since they

required a new type of database (e.g., "show me the longest

stage 2 period from record 34989n" and "give me the ending

epoch number of the longest contiguous block of stage 2 for

34989n")

.

To accommodate these requests, the new DB should

contain the information about the starting epoch number, the

contiguous sleep stage period, and sleep stage number.

5 . 4 Timing

The response time is divided into two elements: the time

of request interpretation and the time of DB execution. The

request interpretation time is the time taken to obtain the

interpretation result since NL input was entered. The response

is either the paraphrase or error message. The DB execution

time is the time until the result is displayed after the

paraphrase had been approved. It involves the time to load the

DBASE IV environment in the system, to compile the SQL

expression generated from SEEGER, to execute the compiled

object file using the sleep database, to store the executed

133

result into a file, and finally to show the result to the

user. The timing is summarized in Table 5.6.

Table 5.6 Average Timing for Request Interpretation
and DB Execution

Interpretation
Time

DB Execution
Time

10.4 seconds 47.1 second

There was a variation in the interpretation time from 2

to 38 seconds; the average interpretation time was 10 seconds.

The interpretation time was proportional to the number of

active demons in the Working Memory during parsing a request.

All active demons in the Working Memory are tested, executed

if the test is true, and then immediately deactivated after

it is executed. The testing of a demon mainly involves

searching the Working Memory and takes a large portion of the

interpretation time. The interpretation time is considered to

be acceptable since no user complained about the response

time.

The DB execution time varies from 26 seconds to 3

minutes. DB execution time mainly depends on the time taken

to search the DB files. The epoch summary file (approximately

40 kilobytes per subject) is so large that it requires a long

search time. If a SQL query is executed using a single DB

file, it takes about 28 to 50 seconds. But a join operation

134

in the epoch summary file usually takes close to 3 minutes.

It will be a serious problem for a large set of subject

records when a join operation is involved in the epoch summary

file. It also unnecessarily searches the whole file even

though a query retrieves the data for any specific subject.

The above problem would be resolved with a hierarchical type

of DB linked through a file name. Instead of placing the epoch

summary data for all subjects in one file, one file for one

subject should be assigned to store the epoch summary data.

Each subject epoch summary file would be connected through the

subject record file which contains the file name for each

epoch summary data. But this hierarchical DB will require a

complex SQL language when a query requires a search of all

subjects' epoch summary data. Therefore, it is desirable to

maintain two different types of epoch summary DB files for a

large number of subject records. It will reduce the DB

execution time drastically although SEEGER will need to

determine which DB file should be used for each type of query.

CHAPTER 6

SUMMARY, CONCLUSIONS AND GUIDELINES
FOR FUTURE DEVELOPMENT

Section 6.1 describes the summary of this dissertation.

Section 6.2 discusses the conclusions, and in the last section

the guidelines for future development are suggested.

6 . 1 Summary

This dissertation built and tested a sleep NL query

system whose goal is to perform at the level of a data

processing technician. A model for building a knowledge-based

NL query system has been developed and designed into SEEGER.

This model provides a more convenient method for incorporating

domain-specific knowledge than has been used in the previous

NL approaches because domain knowledge is crucial to

interpretation of NL requests. The proposed model also

provides an efficient database mapping method for those NL

requests that rely on bottom-up parsing more often than top-

down parsing. The domain concepts are represented in a

hierarchical manner, and they are used to encode the word

senses and the system knowledge. NL input is mapped into an

135

136

intermediate representation of its meaning, which is then

translated into the retrieval query of the underlying

database.

The proposed model is composed of the following

components: the Conceptual Parser that transforms NL input

directly into a Conceptual Dependency representation of its

meaning without using an independent syntactic phase; the

Inferential Analyzer that specifies implicit information

explicitly, removes redundant information, and synthesizes the

concepts, etc. ; the Translator that transforms the meaning

representation into a set of linear specifications; and the

DB Mapper that transforms the linear forms into the underlying

DB retrieval query.

The Conceptual Parser handles ungrammatical input,

performs complicated word sense disambiguation, expands

elliptic or fragmentary input, corrects misspellings quickly

and easily, etc. However, since many demons are allowed to be

operating in parallel in the Working Memory, it leads to

complex unexpected interactions which may cause an incorrect

assessment of the meaning structure of a sentence. One major

reason for the system failures was missing or incomplete word

meaning definitions and demons for existing words in the

lexicon. Thus, it is necessary to carefully implement demons

and word meaning definitions; moreover, it is essential to

have a feedback phase from a set of potential users in order

to collect a wide range of a model corpus.

137

The Inferential Analyzer provides a convenient method to

incorporate contextual inference rules specific to a domain.

Grouping of the rules invokes only relevant rules and avoids

irrelevant rule interactions. But the forward-chaining rule

interaction requires careful rule ordering when more rules are

added in order to avoid ordering conflict. Premature rule

triggering might lead to an incorrect interpretation by

modifying the meaning structure of a sentence.

The query translation from the meaning structure to a

VQL expression in the Translator provides an efficient

intermediate stage for database mapping. The augmentation of

query translation provides another type of inferences to VQL

expression. However, it will be difficult to accommodate

complicated queries or complex database operations into a VQL

because of the constraints given in the VQL schema.

The sleep EEG DB consists of the information about

subjects, recordings, epoch-wise summaries of waveform

occurrences in EEG/EOG/EMG, stage parameters, and night

parameters. The sleep DB is retrieved by retrieval query from

SEEGER. New subject data are inserted into the sleep DB by a

menu-driven system.

SEEGER was evaluated using four casual users who are

familiar with sleep data analysis and had never used SEEGER

before. Since SEEGER was designed to take a position that

casual users should be accommodated, it was evaluated using

casual users. The test was conducted for a total of 79

138

questions, and it gave correct answers at the performance

level of 63%, achieving the preliminary design goal. Since

there is a large amount of rules or knowledge involved in

language understanding, it is difficult for novice users to

evaluate a NL system extensively. The performance range is

dependent on several factors: the user's knowledge about the

system capabilities and domain, the quality of implementation,

the nature of problems that users try to solve, and the

formalism on the domain of discourse.

6.2 Conclusions

SEEGER was written in LISP. LISP is the primary language

used in artificial intelligence programs. It was adopted in

SEEGER since it is more convenient than C in order to

manipulate symbols used to represent the system or domain

knowledge, to define vocabulary, to communicate as

input/output language, etc. It also provides efficient and

flexible features such as recursion and functional language.

The test results showed that the speed of SEEGER written in

LISP on a 286-based personal computer is acceptable. One

shortcoming is that SEEGER requires a lot of system memory (at

least 6 megabytes) . I believe LISP is the most appropriate

language to date for a sleep NL query system.

dBASE IV is a dBASE-language-based DBMS rather than a

SQL-based one. It is convenient to build the menu-based system

that is used to add a new subject record. But the SQL language

139

of dBASE IV is known to be slow and awkward. Since SEEGER

performs the interface to dBASE IV through the SQL language,

I felt that the DB execution time was slow in the test. Thus,

dBASE IV is not appropriate for the purposes of SEEGER. It

would be better to select a SQL-based DBMS for a NL interface.

The proposed knowledge-based query model is designed to

incorporate more domain-specific knowledge and to provide an

efficient DB mapping. The conceptual parsing technique enables

more domain knowledge to be embodied than the previous ones

because it enables well-engineered programs to be built in a

specific domain. The inferential analysis and the VQL

augmentation provide a convenient mechanism to incorporate

domain-specific knowledge at the different meaning

representations. The VQL translation and the DB mapping also

efficiently transform the meaning representation into a target

DB language. This model is applied to building SEEGER and

achieved the preliminary design goal.

It is necessary to add additional knowledge in order to

improve the performance. A lexicon containing word definitions

is the major source of domain knowledge. Adding knowledge

usually starts with collecting a model corpus. Collecting a

model corpus is the knowledge extraction process, and a good

corpus is the major factor of determining how well the system

covers a user's request. Knowledge addition involves adding

or modifying word definitions, inferential rules, VQL

translation and augmentation, or concepts in the DB mapping

140

table, etc. The whole process should be integrated through a

"cut-and-try" process.

Understanding natural language requires considerable

knowledge about the subject. A system which truly understands

natural language should have a level of knowledge equivalent

to that of an expert system. Therefore, a NL developer must

be familiar with the application area because the process of

embodying knowledge requires the same level of domain

knowledge that the user employs.

Based on the test result as well as the elements of

syntactic coverage, semantic coverage, and interactive

dialogues, I feel it would be possible to build a sleep NL

system performing at the level of a data processing

technician, but it would take at least two man-years of

effort, assuming the developers already possess some

background in artificial intelligence programming. It would

be desirable to assign half of this development time to a

"test-and-tuning" cycle since it is essential to have a

testing phase with a set of potential users.

Although SEEGER focuses on the sleep EEG/EOG/EMG data,

it can be expanded to include other databases such as

respiration, heart rate, and other sleep variables. Those

databases will contain temporally occurring events and/or

their summaries. It would require a more complex temporal

reasoning. Furthermore, future research can incorporate more

knowledge so that the system can provide not only information

141

in the database, but also terminology explanation, sleep stage

scoring, modification of sleep data, etc. The proposed model

can also be utilized to build a NL system in any specific

domain.

6.3 Guidelines for Future Development

Based on the development experience and the test results

of the sleep NL query system, the following guidelines are

recommended for future development:

1. Expand the vocabulary. Modify the dictionary items which

are word meaning definitions and associated demons. It

includes modification of the existing dictionary items or

addition of new ones. Collect a good model corpus. Cooperate

with the potential user to cover a wide range of corpus, and

always annotate the reasons for modifying the corpus. Consider

what facilities or elements would be implemented or modified

and in what manner while collecting the corpus. This task will

often involve modifying other parts of SEEGER such as the

inferential rules, the query translation, or the DB mapping.

If a new concept is added, it should be incorporated into the

ISA-hierarchy of the domain concepts, the inferential rules,

the DB mapping tables, etc. Therefore, the whole process

should be integrated into the system through a "cut-and-try"

process.

142

2. Elaborate the error handling. The system should be able

to provide helpful information when an error occurs. The

current error handling needs improvement. Most of the system

failures occur at one of the following processes: parsing a

noun group (NG)
,
parsing an entire sentence, translating into

a VQL and augmenting it, mapping into a SQL query. If a

parsing error occurs (detected by the number of independent

structures in the Working Memory or in the NG pool) , explain

what constituents have been interpreted and/or what

constituents have not been interpreted. Expand the validity

check routine at the VQL augmentation while the model corpus

is collected. Present an error message to be understood easily

by the user.

3. Maintain both the relational DB and the hierarchical DB for

the epoch summary data. The epoch summary data should be

handled in a special way for a large set of subject records

because of the long DB search time. Two DB types should be

maintained for the epoch summary data: relational and

hierarchical. SEEGER should be modified in order to select

either of two DBs, depending on the type of SQL query. A

separate DB mapping routine should be added for the

hierarchical DB.

4. Handle extensive query language. The current DB mapping

only handles a single query. Expand the DB mapping

capabilities to handle nested SQL queries and multiple SQL

143

queries. The nested query enables some requests with negative

expression to be handled. The multiple query enables some

currently invalid requests to be handled. The multiple query

requires the execution of the sleep DB multiple times.

5. Enhance the VQL schema. The VQL schema is loosely

designed. Although low- and medium-complexity requests can be

handled with the current VQL schema, it could be enhanced in

order to handle queries requiring complex DB operation.

6. Use more uniform knowledge representation. It is difficult

to trace and debug the program since it was written in a

combination of several different forms such as procedures,

rules, tables, and declarative forms. It would be desirable

to represent the knowledge in the declarative forms and rules

if possible. It could be easier to maintain the program and

modify the knowledge.

APPENDIX A
USER'S GUIDE TO SEEGER

The database (DB) management system provides efficient

storage and management of data. But it requires the user to

learn a query language syntax and the DB's structure. SEEGER

(Sleep EEGer) is a DB front-end system to access a sleep EEG

DB using ordinary English queries. It allows sleep clinicians

to retrieve information without the need for any database

expertise. The user can enter queries about sleep information

in common English. The user will be guided by interactive

dialogue for an inadequate or ambiguous sentence. Once the

request has been analyzed, the system presents the paraphrase

of the request. Finally it generates the query language, runs

it in the database, and shows the result of the request.

Be aware that SEEGER is able to understand queries about

information in the database. Additionally, SEEGER allows the

user only to retrieve the data, not to modify or delete the

data in the database. To enter a query, just type a sentence

at the prompt and press the return key. Then read through the

system's response to aid in forming your question.

144

145

To help the user to know about the sleep DB content and

the way to interact with SEEGER, the following information is

provided on the next pages, 1) a sample dialogue, 2) the

content of sleep data, 3) the request types of sleep data, 4)

sleep terms understood by SEEGER and sample queries, 5)

getting started, and 6) when the system has failed.

1. A Sample Dialogue

A sample dialogue with SEEGER is show below (user input

in italics)

.

Ready—>Show me Kimberley’s total number of aruosals for each stage.

OK . .

.

By ARUOSALs, do you mean AROUSALs (Y or N) ? y

I understand your request to be:

"Display record number, total arousal, stage number, last name
with stage number = 0 and stage number = 1 and stage number
= 2 and stage number = 3 and stage number = 4 and stage number
= 5 for last name = KIMBERLEY."

Is it right (Y or N) y

running database, please wait

The initial user input was a request for the sum of a

sleep variable (i.e., arousal) for different sleep stages. The

user also specified a subject name (i.e., Kimberley). The user

146

misspelled "arousals" in this example, and the system

responded with a correct spelling. The system then responded

with a paraphrase which is a system's interpretation of the

user's request. After displaying a paraphrase the system goes

into a verification phase, offering the user the opportunity

to verify the request before the output is actually produced.

If you agree with the system's interpretation, it runs the

database. Otherwise, it starts again.

After running the database, the output is shown as below.

The arousal activity is summed for each sleep stage number.

Q U E R Y PARAPHR A S E
"Display record number. total arousal, stage number, last name
with stage number = 0 and stage number =

: 1 and stage number
= 2 and stage number = 3 and stage number = 4 and stage number
= 5 for last name = KIMBERLEY."

RECORD TOTAL STAGE LAST
NUMBER AROUSAL NUMBER NAME

34989N 68 0 KIMBERLEY
35008 16 0 KIMBERLEY
34989N 9 1 KIMBERLEY
35008 4 1 KIMBERLEY
34989N 6 2 KIMBERLEY
35008 4 2 KIMBERLEY
34989N 0 3 KIMBERLEY
35008 9 3 KIMBERLEY
34989N 0 4 KIMBERLEY
35008 0 4 KIMBERLEY
34989N 0 5 KIMBERLEY
35008 0 5 KIMBERLEY

1 1
! End of Record 1 1 1

147

At this point you can send the output to the printer or try

another request. The above request was sufficiently

specified for the system to interpret it without further user

interaction but many requests are likely to require an

interactive dialogue. For example, the following interaction

might take place with a new user.

Ready— > Give me delta.

OK . . .

By DELTA, do you mean
(1) delta time
(2) delta count

Enter selection = 1

Is the record number 35015N (Y or N) y
OK . . .

I understand your request to be;

"Display record number, epoch number, delta time in second for
record number = 35015N."

Is it right (Y or N)

Since the activity "delta" is ambiguous to the system,

the clarification dialogue is initiated to have the user

choose either "delta time" or "delta count." The user is given

a menu to select one. The system also offers the user an

option of inheriting a subject specification from a previous

request.

148

The user can start with a request using a verb (e.g.,

list, display, give, show, want, etc)

,

wh-question (what, how,

who, which, etc)

,

yes-no question (be, do, etc)

,

etc.

2 . The Content of Sleep Data

The SAC (Sleep Analyzing Computer) system detects the

waveforms normally occurring in sleep EEC, EOG, EMG data. The

detected features are further processed and stored in the

system memory. The data in the database is supplied by the SAC

system. The minimum time resolution of activity data (i.e.,

alpha, beta, delta, sigma, theta, artifact, SEM, REMO, REMI,

arousal, K-complex, sleep stage) provided by SEEGER is the

duration of an epoch . The epoch duration of 30 seconds or 60

seconds is selected by the user of the SAC system. The sleep

stage is scored automatically by an epoch-by-epoch approach

in the SAC. Each activity occurring is added during an epoch

duration in the manner of both "time" and "count" summations

by the SAC. The time summation means the summation of the

period of time that an activity occurred. The unit of "time"

activity is in seconds. The "count" means the number of

occurrences in which a burst of an activity separated from

another burst. For instance, "alpha time at epoch 10" means

the summation of the period that alpha waveform occurred

during an epoch immediately after the 9th epoch. "Alpha count

at epoch 10" means the number of occurrences in which isolated

alpha activities took place. Hence, each epoch is assigned a

149

single stage score and several summed activities. Note that

the temporal resolution of activity data available to the user

is an epoch duration.

3. The Request Types of Sleep Data

The quantity questions of activity data can be done by

one of the following functions:

1) count, e.g., how many subjects, the number of
subjects,

2) sum, e.g., total alpha time,
3) average, e.g., average delta time,
4) maximum, e.g., maximum artifact time,
5) minimum, e.g., minimum delta time.

The user can specify the temporal relationship for

quantity in two ways:

1) use of "epoch number," e.g., "Show total arousals from
epoch 1 to epoch 120."

2) use of "hour" or "minute,"
e.g. "Show total arousals for 2 hours from epoch 1."
or "Show total arousals for first hour."

The user can use a phrase (e.g., greater than, bigger

than, larger than, more than, smaller than, less than, etc)

as well as a symbol (e.g., >=, <=, >, <, =) for the

comparison of data.

The quantifier "each," "every," "any," or "all" can be

interpreted by SEEGER as "each stage," "every subject," etc.

4. Sleep-Related Terms Understood by SEEGER

and Sample Queries

The terms mentioned here are based on the Rechtschaffen

& Kales Manual, Sleep Journal (Vol 2, Number 1, 1979), and the

150

SAC Manual (Microtronics) . Refer to the SAC Manual for the

definition of waveforms (i.e., waveform detection criteria).

Some sample queries associated with the terms are illustrated

below. The terms are classified into five categories:

Subject Record

Record number, Name (first, last name). Sex, age.

1. Show me all subjects you have.
2. What is the record number of Jones?
3. Show the record number and recording date of Jones.
4. What is the subject name who is older than 30?
5. How many subjects are over 30?
6. Who is female subjects?
7. Show Jones's age.
8. How many subjects are in the database?
9. Tell me about subject names.

10. Give me all subject names.
11. Display subjects recorded on Jan, 1988.
12. List all subjects whose epoch length is 30 sec.
13. How long is the epoch in Jones's record?
14. What is the epoch duration of all subjects?

Channel Recording

Recording date. Recording time. Montage, Channel name, Channel
place, Channel number, EEG Channel, EOG Channel, EMG
Channel

.

1. Show me the montage of Jones.
2. How many channels does Jones have?
3 . What kind of channel does he have?
4 . Who has EMG channel ?

5. Show electrode position of Jones.
6. How many channels are used in the recording?

Sleep Activities

Epoch number or Epoch#, Alpha time. Alpha count. Beta time.

Beta count. Delta time. Delta count. Sigma time. Sigma count

(Spindle) , Theta time. Theta count. Artifact or Artifact time.

151

SEM (Slow Eye Movement) or SEM count, REMO (out-of-phase REM)

or REMO count, REMI (in-phase REM) or REMI count. Arousal,

K-complex.

1. Show alpha time, delta time, stage in Jones's record.
2. What is alpha count, beta count, and stage for Lisa.
3 . Show epoch number when REMO count occurred

.

4. Show epoch number, REMO, beta time for stage REM.
5. What is alpha time, stage from epoch 1 to epoch 20.

6. Show epoch number for spindle >= 4.

7. Show total (or average) alpha time, beta time, delta
time.

8. What is minimum (or maximum) alpha time?
9. What is total minutes of alpha time?

10. Show epochs which has more than 5 spindles.
11. Show me total alpha time, beta time for each sleep stage.

Sleep Stage

Sleep stage or stage or stage number, sleep stage 0 or stage

0 or stage awake, stage 1, stage 2, stage 3, stage 4, stage

5 or stage REM, REM sleep, NREM sleep, stage time, stage NREM.

1. Show total sleep stage time.
2. Show total sleep stage time for each sleep stage.
3 . What is the sleep stage 1 time?
4 . What is the time of sleep stage 1?

5. Show me epoch number, beta time for stage REM.

Sleep Parameters

Sleep time. Recording time or Time in bed. Sleep efficiency.

Percent stage 0, Percent stage 1, Percent stage 2, Percent

stage 3, Percent stage 4, Percent stage 5, Latency or Onset.

1. Who has stage REM time greater than 1 hour?
2 . Show percent stage 1

3. Show sleep time of all subject you have.
4. Show me sleep latency of sleep stage 2.
5. Who has sleep stage 3 or 4?
6. What is the first sleep stage 2 minute for kimberley?

152

5. Getting Started

The GCLISP Developer software and the DBASE IV package

have been installed on the system's hard disk. The SEEGER

program (written in LISP) and the Sleep Database (running

under DBASE IV) have also been installed in the hard disk. The

dialogue between the user and SEEGER will be recorded in a log

file.

To start the SEEGER program, follow these steps:

1. Turn on your computer, and the screen will display the

prompt "C:\>."

2 . Change to the directory where the GCLISP programs are

located by entering the following command:

cd qclisp2 <ENTER>

3. Start the GCLISP environment by entering the following

command

:

gclisplm <ENTER>

At this point, you should see the Lisp prompt

4. Load SEEGER program by entering the following command:

(load 'main)

Note the parentheses in the input to the GCLISP

environment above. This will take about 10 minutes.

5. Run the SEEGER program by typing the following

command

:

(seeger)

It will respond with the prompt "—>." The system

is now ready to accept your request.

153

To exit from the SEEGER program, follow these

instructions

:

1. Exit from SEEGER and return to the GCLISP environment

by typing the following command:

Ctrl-C (hold down the Ctrl key and hit C key)

2 . Exit from the GCLISP environment and return to the

DOS by typing the following command:

(exit)

6. When the System Has Failed

Since SEEGER is in the experimental stage, it might fail

at some point due to system errors. Two different types of

failure might happen. One occurs during interpretation of the

user's request due to LISP program errors. It happens before

the system displays the paraphrase to the user. The other

occurs during execution in the database due to database syntax

errors. This happens after the paraphrase.

To exit from the system failure , follow one of two steps:

1) when the failure occurs during interpretation, type

the following command:

Ctrl-C and then (seecier)

2) when the failure occurs while running the database,

type the following command:

quit <ENTER>

APPENDIX B
REQUESTS FROM USERS IN THE TEST OF SEEGER

IF: interpreted correctly at the first try
IW: interpreted correctly with interaction
II: interpreted incorrectly
NI: could not be interpreted

Requests from the First User

H 1V show me

IW -> show me channel info

NI -> what can I do now

H 1V data available

IW -> show me delta time

NI -> go to theta

IW -> show me all theta times

M 1 V tell me about the subjects name

IW -> what is the time in stage 2

H V tell me about subject names

IW -> show me all records availabe

IW -> show me sleep stages

154

155

Requests from the Second User

IF -> how many subjects are in the database

NI -> how many nights are there

NI -> is hykomen in the database

IF -> give me names

IF -> is the name hykomen present

II -> when was hykomen recorded

IF -> what date was hykomen recorded

NI -> who was recorded 02/05/89

NI -> who was recorded 02/05/1989

IF -> who was recorded on 02/05/88

IF -> what records are there for 02/05/89

NI -> what was the name of the reccord taken on 02/05/89

IF -> who was recorded on 02/05/89

II -> give me the name of the record for 02/05/89

IW -> how many arousals

IF -> how many arousals did hykomen have on 02/05/89

NI -> how long did hykomen sleep on the night of 02/05/89

IF -> show me the montage of hykomen

IF -> show me hykomen 's arousals

NI -> what is hykomens' record number for 02/05/89

IF -> what is hykomen 's record number for 02/05/89

IF -> what is the total number of arousals for 35009n

IW -> show total arousals

IW -> how many artefacts were there

IW -> what was the sleep efficiency

156

NI -> what was the sleep efficiency and total arousals and

k-complex

NI -> what was the sleep efficiency and the total arousals

NI -> give sleep efficiency and give total sleep time and give

arousals

IF -> give me sleep efficiency for record 35009n

IF -> give me record

NI -> give tst

NI -> give sws

IW -> give total sleep time

IW -> give total sleep time

IW -> give sleep efficiency and total sleep time

IW -> give total arousals

IF -> display sleep efficiency for record number 35009n

IW -> give sleep efficiency

Requests from the Third User

IF -> Give me a list of all female subjects please

IF -> I want to see a list of all subjects with rem latency

greater than 10 minutes

IW -> show mwe a list of subjects

NI -> show me a sleep stage hypnogram of record 35009

NI -> list a summary of sleep stages fopr gree

NI -> show me the lowest emg level on Kimberley

IW -> show me the greatest sigma count on Kimberly

NI -> show me Kimberleys record numbers

157

IW -> show me the record number for Kimberley

NI -> give me the ending epoch number of the longest

contiguous block of stage 2 for 34989n

II -> show me the longest stage 2 period from record 34989n

NI -> for record 34989n show me the number of arousals and the

total wake time and total artifact time

NI -> list numbers of arousals and wake time and number of

artifact for record 34989n

IF -> list the average rem latency for all subjects

IF -> list the average rem latency for all female subjects

IF -> show me the channel names for record 34989n

II -> where was the highest sem count for record 34989n

IW -> list the epoch withj the greatest sem count for recrd

34989n

Requests from the Fourth User

IF -> show me how many subjects

NI -> which subject has the best looking legs

IF -> who is the oldest subject

NI -> list subjects as male or female

IF -> which subjects are male

IF -> how long was Kimberley's longest rem period

NI -> how long did it take Kimberley to fall asleep

NI -> how long before Kimberley fell asleep

IW -> what was sleep onset for kimberly

IF -> how old is Kimberley

IW -> how much alpha did Kimberley have in stage 1

APPENDIX C
DEVELOPER'S GUIDE TO SEEGER

This guide introduces briefly the development environment

for SEEGER and the sleep database (DB) system. SEEGER was

developed under the Golden Common LISP (GCLISP) 286 Developer.

The sleep DB and the DB menu-driven system were developed

under the dBASE IV environment.

1. The SEEGER Program Development

The GCLISP 286 Developer provides software tools in order

to support the LISP programming needs. The following two

features will be used often:

1) The GCLISP interpreter: LISP code can be interpreted

and the developer will be able to see the results of

executing a portion of this code immediately, without

having to go through a tedious compilation process. An

error in a function or data objects could then be

corrected, and the correction tested. The GMACS editor

can be invoked here.

2) The GMACS editor: This is a full-screen display editor

modeled after EMACS. The developer can create, load.

158

159

delete, evaluate, and save LISP code in a file or buffer.

He can manipulate several files by saving in different

buffers and can exit to the GCLISP interpreter and re-

enter GMACS without disturbing the current environment.

The entire SEEGER program can be divided into the six

main groups;

1) Parsing

PARSEl.LSP: main function for SEEGER, initialization for
parsing, printing for tracing

PARSE2.LSP: word tasks (loading a word into the working
memory)

PARSE3.LSP; demon tasks (test, execute, or deactivate
demons)

PARSE4.LSP: utilities used by demons, macro-definitions
for word, phrase, and demons.

PARSES. LSP: searching the working memory, pretty-printing
the parsing output.

MORPH. LSP: analyzing word ending (morphological analysis)
DEMONS. LSP: demon definitions used in the LEX. LSP
DEMFUN.LSP: utilities called in the DEMONS. LSP
LEX. LSP: vocabulary definitions for SEEGER (words or

phrases)
NG.LSP: parsing a noun group
PRONOUN. LSP: finding referent.

2) Inferential Analysis

INFER. LSP: interpreting the meaning structure
RULE. LSP: rule control mechanism, rule definitions, rule

sets

3) Query Translation

TRANS. LSP: translating into VQL
AUGTR.LSP: augmenting VQL
DEDUCT. LSP: unification functions for pattern matching

4) DB Mapping

MAPPING. LSP: mapping into SQL
DBMAP.LSP: DB mapping table
DBINTERF.LSP: utilities for creating SQL files, running

DBASE IV, displaying DB execution results.

160

5) Interactive Dialogue

PARA.LSP: paraphrasing
CLARIFY. LSP: clarifying subject information, ambiguous

concepts
KB. LSP: ambiguous concept table
SPELL. LSP: spelling correction

6) Other Utilities

MACRO. LSP: macro definitions
WINDOW. LSP: window display for input/output communication
ERROR. LSP: error handling
COORD. LSP: coordinate handling
ELLIPSE. LSP: ellipsis handling

2 . The Sleep Database Development

Although dBASE IV provides many convenient features for

managing data in DB files, only two language (i.e., SQL and

dBASE) features are used for the sleep DB development. There

are five files in the sleep DB: SUBJ_REC.DBF (subject record),

CHAN_INF.DBF (channel recording), EP_SUM.DBF (epoch summary),

STG_VAR.DBF (sleep stage summary), and PARAM.DBF (night

summary) . These files are created and edited by the menu-

driven system.

The menu-driven system was written in dBASE language.

There are five files:

SLEEPDB.PRG: main menu for selecting submenu.
SUBJ_REC . PRG : subject record menu for editing data
CHAN_INF. PRG: channel recording information menu
EP_SUM.PRG: epoch summary menu
LIBRARY. PRG: utilities for examining, adding, deleting,

counting, grouping, and searching records

The epoch summary data are provided with a file from the

SAC (Sleep Analyzing Computer) system. This file is processed

161

into an input file form which can be added to the existing DB

file. This is done by the SUMMARY.COM command written in C.

The epoch summary data are further reduced into an appropriate

form for a sleep stage summary and a night summary by the

PARAM.COM command written in C. These input files are

automatically added to the existing DB files when the user

enters a file name containing a new subject epoch summary

data. The input data of a subject record and channel recording

should be entered by the user through the menu-driven screen.

To bring the subject information in the DB into the

system, SUBJECT. PRS in SQL is executed under dBASE IV during

the SEEGER initialization. This result is stored in

SUBJECT.TXT and then read into the system.

The SQL expression generated from SEEGER is stored in

SQL-F.PRS and then executed under dBASE IV. This result is

stored in SQL-F.TXT and then presented to the user.

REFERENCES

Birnbaum, L. A. (1986) . Integrated processing in planning and
understanding . Ph.D. Dissertation, Yale University.

Birnbaum, L. A. and M. Sel fridge (1981) . Conceptual analysis
of natural language. In R. Schank and C. Riesbeck, (Eds.),
Inside computer understanding; Five programs plus miniatures .

Lawrence Erlbaum, Hillsdale, NJ, 318-353.

Burton, R. R. (1976) . Semantic grammar: An engineering
technique for constructing natural language understanding
systems. Report 3453, ICAI Report 3, Bolt, Beranek and Newman,
Cambridge, MA.

Carbonell, J. G. (1985). The role of user modeling in natural
language interface design. In S. J. Andriole, (Ed.),
Application in artificial intelligence . Petrocelli Books,
Princeton, NJ, 213-226.

Chang, T. G. (1987) . Development of an expert system for
multichannel EEG signal analysis . Ph.D. Dissertation,
University of Florida.

Charniak, E., C. K. Riesbeck, D. V. McDermott, and J. R.
Meehan (1987) . Artificial intelligence programming . Lawrence
Erlbaum, Hillsdale, NJ.

Chomsky, N. (1965) . Aspects of the theory of syntax . MIT
Press, Cambridge, MA.

Clocksin, W.F. and C. S. Mellish (1984). Programming in
Prolog , Second edition, Spinger-Verlag, New York.

Codd, E. F. (1978). How about recently? (English dialog with
relational data bases using RENDEZVOUS version 1) , In B.
Shneiderman, Databases

:

Improving usability and
responsiveness , Academic Press, New York, 3-28.

Cullingford, R. E. (1986). Natural language processing: A
knowledge-engineering approach . Rowman & Littlefield, Totowa,
NJ.

162

163

Damerau, F. J. (1964). A technique for computer detection and
correction of spelling errors, Comm . ACM . Vol. 7, No. 3,

March, 171-176.

Date, C. J. (1896). An introduction to database systems, Vol.
1 ,

Fourth edition, Addison-Wesley ,
Reading, MA.

Dyer, M. G. (1983) . In-deoth understanding; A computer model
of integrated processing for narrative comprehension . MIT
Press, Cambridge, MA.

Finin, T. W.
,

A. K. Joshi, and B. L. Webber (1986). Natural
language interactions with artificial experts. Proceedings of
the IEEE . Vol. 74, No. 7, July, 921-938.

Gershman, A. V. (1979). Knowledae-based parsing . Ph.D.
Dissertation, Yale University.

Ginsparg, J. (1983) . A robust portable natural language
database interface. Proceedings of the Conference on Applied
Natural Language Processing . ACL, Santa Monica, CA, 25-30.

Grosz, B. J. (1982) . Transportable natural-language
interfaces: problems and techniques. Proceedings of the
Conference in the 20th Annual Meeting of the Association for
Computational Linguistics . Toronto, Ontario, 46-50.

Grosz, B. J. (1983). TEAM: a transportable natural language
interface system. Proceedings of the Conference on Applied
Natural Language Processing . ACL, Santa Monica, CA, 39-45.

Harris, L. R. (1977) . User oriented data base query with the
Robot natural language query system. International Journal of
Man-machine Studies . Vol. 9, 697-713.

Hayes, P. J. and J. G. Carbonell (1981) . Multi-strategy
construction-specific parsing for flexible data base query and
update. Proceedings of the 7th International Joint Conference
on Artificial Intelligence . Vancouver, British Columbia,
Canada, August, 432-439.

Hendrix, G. G. (1977) . The LIFER manual: A guide to building
practical natural language interfaces . AI Center Technical
Note 138, SRI International, Menlo Park, CA.

Hendrix, G. G. , E. D. Sacerdoti, D. Sagalowicz, and J. Slocum
(1978) . Developing a natural language interface to complex
data, ACM Trans, on Database Systems . Vol. 3, No. 2, June,
105-147.

Jakobson, G. , C. Lafond, E. Nyberg, and G. Piatetsky-Shapiro
(1986). An intelligent database assistant, IEEE Expert . Vol.
1, No. 2, Summer, 65-79.

164

Kaplan, S. J. (1979). Cooperative responses from a portable
natural language data base query system , Ph.D. Thesis,
University of Pennsylvania.

Kim, C., J. C. Principe, and J. R. Smith (1988). SEEGER: A
natural language interface to a sleep EEG/EOG database.
Proceedings of the ISMM International Symposium Mini and
Microcomputers . Miami Beach, Florida, Dec., 104-107.

Lehnert, W. G. and S. P. Shwartz (1982). Natural language data
base access with Pearl, Proceedings of the 9th International
Conference on Computational Linguistics . Prague,
Czechoslovakia, 121-128.

Lehnert, W. G. and S. P. Shwartz (1983). EXPLORER: a natural
language processing system for oil exploration. Proceedings
of the Conference on Applied Natural Language Processing . ACL,
Santa Monica, CA, 69-72.

Marcus, M. (1980) . A theory of syntactic recognition for
natural language . MIT Press, Cambridge, MA.

Martin, J. (1985). Fourth-generation languages . Prentice-Hall,
Inc., Englewood Cliffs, NJ., 213-225.

Mueckstein, E. M. (1983) . Q-trans: query translation into
English, Proceedings of the 8th International Joint Conference
on Artificial Intelligence . Karlsruhe, West Germany, Aug.,
660-662.

Perrault, C. R. and B. J. Grosz (1986) . Natural-language
interfaces. Annual Review of Computer Science . Vol 1, 47-82.

Principe, J. C. and J. R. Smith (1986) . SAMICOS: A sleep
analyzing microcomputer system, IEEE Trans. Biomed. Eng. . Vol.
33, No. 10, Oct., 550-559.

Rechtschaffen, A. and A. Kales (1968) . A manual of
standardized terminology, technigues and scoring system for
sleep stages of human subjects . Public Health Service, U.S.
Government Printing Office, Washington, D.C.

Riesbeck, C. K. (1975). Conceptual analysis. In R. Schank,
(Ed.), Conceptual information processing . North-Holland,
Amsterdam, 83-156.

Riesbeck, C. K. (1978). An expectation-driven production
system for natural language understanding. In D.A. Waterman
and F. Hayes-Roth, (Eds.)

, Pattern-directed inference systems .

Academic Press, New York, 399-413.

165

Riesbeck, C. K. and Martin, C. (1986). Direct memory access
parsing, In J. Kolodner and C. Riesbeck, (Eds.), Experience,
memory, and reasoning . Lawrence Erlbaum, Hillsdale, NJ

,
209-

226.

Scha, R. J. H. (1982) . English words and data bases: how to
bridge gap. Proceedings of the Conference in the 20th Annual
Meeting of the Association for Computational Linguistics ,

Toronto, Ontario, 57-59.

Schank, R. (1973) . Identification of conceptualizations
underlying natural language. In R. Schank and K. Colby,
(Eds.), Computer models of thought and language , W. H.

Freeman, San Francisco, 187-247.

Schank, R. (1975). Conceptual information processing , R.

Schank, (Ed.), Elsevier, North-Holland, New York.

Schank, R. and R. Abelson (1977). Scripts, plans, goals, and
understanding . Lawrence Erlbaum, Hillsdale, NJ.

Schank, R. and S. P. Shwartz (1985). The role of knowledge-
engineering in natural language systems. In S. J. Andriole,
(Ed.), Application in artificial intelligence . Petrol li Books,
Princeton, NJ, 193-211.

Shwartz, S. P. (1982). Problems with domain-independent
natural language database access systems. Proceedings of the
Conference in the 20th Annual Meeting of the Association for
Computational Linguistics . Toronto, Ontario, 60-62.

Shwartz, S. P. (1987). Applied natural language processing ,

Petrocelli Books Inc., Princeton, NJ.

Smith, J. R. (1986) . Automated analysis of sleep EEC data. In
L. D. Silva, S. V. Leeuwen, and A. Remond, (Eds.), Handbook
of electroencephalography and clinical neurophysiology . Vol.
2, Elsevier Science Publishing Co., Inc., New York, 131-147.

Templeton, M. and J. Burger (1983) . Problems in natural
language interface to DBMS with examples from EUFID,
Proceedings of the conference on applied natural language
processing . ACL, Santa Monica, CA, 3-16.

Tennant, H. R. (1981) . Evaluation of natural language
processors . Ph.D. Dissertation, University of Illinois at
Urbana-Champaign

.

Waltz, D. L. (1978). An English language question answering
system for a large relational database. Comm . ACM . Vol. 21,
No. 7, July, 526-539.

166

Warren, D. H. D. (1982). Issues in natural language access to

databases from a logic programming perspective, Proceedings
of the Conference in the 20th Annual Meeting of the

Association for Computational Linguistics , Toronto, Ontario,
63-66.

Warren, D. H. D. and F. C. N. Pereira (1982). An efficient
easily adaptable system for interpreting natural language
queries, American journal of computational linguistics , Vol.

8, No. 3, 110-122.

Winograd, T. (1972) . Understanding natural language . Academic
Press, New York.

Winograd, T. (1983). Language as a cognitive process; Syntax,

Vol . 1 . Addison-Wesley ,
Reading, MA.

Woods, W. A. (1970) . Transition network grammars for natural
language analysis. Comm . ACM . Vol. 3, No. 10, Oct., 591-606.

Woods, W. A., R. M. Kaplan, and B. Nash-Webber (1972) . The
Lunar sciences natural language information system: final

report. Report 2378, Bolt, Beranek and Newman, Cambridge, MA.

BIOGRAPHICAL SKETCH

Chongtai Kim was born on September 19, 1954, in Dae j on,

Korea. He received his B.S degree in electrical engineering

from Seoul National University in 1977. After graduation, he

worked for Agency for Defense Development for six years. Since

August 1983, he has been studying electrical engineering at

the University of Florida. He received the degree of Master

of Science in August 1985. Since then, he has been pursuing

the degree of Doctor of Philosophy at the University of

Florida.

167

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as

a dissertation for the degree pf Doctor of philosophy.

Jack R. Smith, Chairman
Professor of Electrical Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate^_in scope and quality, as
a dissertation for the degrpe'%T DgCt^or of Philosophy.

cipe. Cochairman
essor of Electrical

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Dt. John Staudhammer
Professor of Electrical Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Dr. A. Antonio Arroyo
Associate Professor of Electrical

Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Dr. Sharma Chakravarthy
Associate Professor of Computer and

Information Science

This dissertation was submitted to the Graduate Faculty
of the College of Engineering and to the Graduate School and
was accepted as partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

May 1990

Madelyn M. Lockhart
Dean, Graduate School

