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ABSTRACT

This thesis reports the results of an investigation of the

applicability of pagina and segmentation to memory

management in modified UNIX operating systems on the

PDP-11/50 minicomputer system at the Naval Postgraduate

School Signal Processing and Display Laboratory. Two memory

managers are specifically considered: a partitioned

segmented memory manager that was desianed and implemented;

and a simpler* segmented memory manager that was designed

based on the performance of the partitioned segmented memory

manager. Recommendations are given for future work.
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I. INTRODUCTION

The Naval Postgraduate School Signal Processing and

Display Laboratory [1] is used for research and education in

the areas of operating systems* computer graphics* signal

processing and hybrid computing. The laboratory's eauiDment

configuration is illustrated in Fig. 1 . The system is built

around two Digital Equipment Corooration PDP-11/50

processors that share some memory* some peripherals* and

access to a signal processing subsystem consisting of a

Computer Signal Processors Incorporated CSP 125 controller

with an array processor and an analog to digital converter.

The peripheral suite may be divided into two major groups:

the data acguisition group and the display group. The

display group consists of dynamic graphics disolay units

that are designed to support real-time* interactive

apDl i cat i ons . The data acquisition grouo consists of

terminals* disks* tapes* and unit record equipment that

serve the dual purposes of supoorting a healthy environment

for program development and providing for the acquisition of

data for the graphics and signal processing applications.

Choosing an operating system for the laboratory

presented significant challenges. Traditionally* real-time

operating systems have provided poor environments for

program development. The operating systems that are

10
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responsive to the aemands of orogram development have

provided very poor real-time and interactive environments.

When the equipment was acauired, no single PDP-11 operating

system met all the needs envisioned for the laboratory. It

would not have been surprising if the decision had been made

to support separate operating systems tailored to the

demands of the two areas. Because of the difficulties

inherent in maintaining and scheduling multiple operating

systems on one computer system, it was decided to attempt to

develop a unified operatinq system having specialized

subsystems to support both foreground real-time/ interactive

processing and background program development processing.

The baseline ooerating system selected was UNIX, a

time-sharing system develooed at Bell Laoo ra t o r i es . One of

the imoortant advantages of UNIX was that source code in a

high level language was furnished with the system. The

availability of source code and UNIX's excel lent suDPort for

program development promised a climate favorable to the

anticioated system moo i f i ca t i ons .

The UNIX system has Droved to be a good selection.

Several orojects designed to augment UNIX are in progress or

have been completed. One area of particular concern has

been memory management. Figure 1 reveals that the several

different types of memory in the configuration present some

unusual memory management Droblems; but the figure does not

reveal the complex memory management problems introduced by

the real-time applications/ esoecially those involving

12





direct memory access by display devices. Some of these

oroblems have been aporoached in earlier work 12.] f 13] , [4],

One area of interest that had not been investigated prior to

this thesis was the applicability of advanced memory

management techniques to the laboratory operating system.

This area was particularly attractive because the PDP-11/50

processors have a Memory Management Unit caoable of

supporting relocation* paging, and some segmentation.' The

purpose of this thesis is to present the results of an

investigation into the suitability of segmentation and

paging in the modified UNIX operating evironment at the

Naval Postgraduate School Signal Processing and Display

Labora t o ry

.

13





II. THE PDP-11/50

A. GENERAL ARCHITECTURE

The PDP-11/50 [51 is a powerful » medium scale/ general

purpose/ 16-bit minicomputer. It is well designed to

suoport multiprogramming or real-time aoo 1 i cat i ons . Its

features include a priority interrupt structure/ two general

purpose register sets/ and three processor states (Kernel/

Supervisor/ and User). Two of the most imoortant aspects of

the PDP-11 architecture are its inout/output scheme and its

dependence on orocessor stacks. Both of these have

important impacts on the memory management methods

considered in this thesis.

The most important comoonent of the PDP-11 input/outout

scheme is the UNIBUS. The UNIBUS is a high soeed/

bidirectional/ asynchronous bus that connects the CPU/

perioherals/ and memory. Devices attach to the UNIBUS with

hardware control and data registers that have simulated

locations assigned in the uppermost U,Q9b words of the

address space. This simplifies the programming of

peripheral devices because no special class of inout/output

instructions is required. Data and control information is

entered into or retrieved from the devices' registers as if

they were actual memory locations. The UNIBUS can be

controlled either by the CPU or by a oericheral device.

14





This makes it possible for the devices to access main memory

with almost no processor intervention. The arbitration unit

that assigns control of the UNIBUS to a requesting device or

CPU gives maximum priority to a direct memory access request

from a peripheral device. Because the PDP-11/50 does not

feature a lock and key memory protection scheme/ the

protection of the operating system from DMA devices is a

significant memory management problem.

A PDP-11 stack is an area of memory set aside under

program control for temporary storage/ subroutine linkage/

and interrupt service linkage. In concept/ it is a classic

"last-in/ first -out" stack of the tyoe described in ref,

(61. Each processor state has a register specifically

designed to be its processor stack pointer. The intructions

that are provided for standard PDP-11 routine linkage and

interrupt handling "push" and "poo" parameters/ linkage

information/ and status information/ using the current

processor stack. Other instructions are provided to

facilitate stack manipulation. Prooerly used/ stacks

provide automatic nesting of subroutines/ reentrancy/ and

recursion. They also help to decrease the overhead that is

inherent in linkage and interrupt processing. The only

major disadvantage of using stacks is that prooerly

controlling dynamically growing and shrinking stacks is a

significant memory management problem.

15





B. MEMORY MANAGEMENT FEATURES

1

.

Concept s

Even though the PDP-11/50 computer has a 16-bit word

length* its basic addressing logic uses an 18-bit direct

byte physical address. In the PDP-11/50 system's simplest

configuration; the two most significant bits of the 18-bit

address are not imolemented. The address space is limited to

32K words (32 * 1,024 words). The address space is used to

reference up to 28K words of main memory and the 4K words of

UNIBUS device registers. To expand main memory beyond 28K

bytes* the PDP-11 Memory Management Unit (MMU) must be added

to the configuration. This unit interprets 16-bit addresses

as virtual addresses from which it constructs 18-bit

physical addresses. Up to 124K words of main memory can be

made adaressable with the MMU.

2. Address Formation

With the MMU installed/ the PDP-11/50 supports two

32K word virtual address spaces for each of its three

processor states. Each state has an Instruction Space (I-

space) and a Data Space (D-space). Instruction fetches*

index words* absolute addresses* and immediate operands

reference I-space. All other references are to D-space.

The MMU constructs physical addresses using the information

in six sets of relocation and descriptor registers. The set

used depends on the orocessor mode and the type of address

reference. These registers and MMu control registers are

16





assigned simulated memory locations and may be accessed in

the same way as UNIBUS device registers. Each register set

consists of eight Page Address Registers (PARs) and eight

Page Descriptor Registers (PDRs). Address formation is

shown in Fig. 2. The MMU subdivides each 16-bit virtual

address into three fields: the displacement in block (DIB),

bits to 5; the block number (BN), bits 6 to 12; and the

active page field (APF), bits 13 to 15. The APF is used to

select a PAR. The twelve low order bits, or page address

field (PAF), of the PAR are added to the BN to form a 12-bit

physical page block number (PBN). The DIB is concatenated

with the PBN to form the 18-bit ohysical address. There are

two very important implications of this scheme: the basic

granularity of the memory is the 6 4 - b y t e block and a page

may begin on any block boundary in the memory. The conceot

of the page frame is not applicable to the PDP-11.

3 . Access Cont rol

The PDRs are used to control access to pages, to

SDecify their lengths, and to provide memory management

data. The format of a PDR is shown below.

15 14 8 7 6 5 4 3 2

XX PLF A IN XXXXX ED ACF

Figure 3. PDR Format

The fields in the PDR are: the access control field (ACF),

bits to 2; the expansion direction bit (ED), bit 3; the

written bit (W), bit 6; the accessed bit (A), bit 7; and the

17
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page length field (PLF), bits 8 to 14. Among access options

that may be specified in the ACF are: read only; abort on

write? read/write/ no aborts; and non-resident/ abort all

accesses. Because a page need not be a full 128 blocks in

length; the PLF and the ED bits are used to validate the

virtual BN before memory access is permitted. If the ED bit

is not set, the PLF is the page length in blocks minus one.

In this case/ any attempt to access this page with a B

N

greater than the PLF is aborted. The ED bit is to be set

when the page contains a stack extending downward from the

upoer end of the page's address range. If the ED bit is

set; the PLF is 128 minus the oage lenath in blocks. In

this case; any attempt to access this oage with a BN less

than the PLF is aborted.

The MMU provides a mechanism by which a Kernel mode

suoervisory routine may be invoked when a memory management

abort occurs. Enough information is preserved in MMU status

registers to describe the tyoe of abort and to identify the

offending instruction and address. This feature could be

used in a demand paged memory manager, for example; to

resolve oage faults.

The W and A bits provide page reference data for the

memory management software. The W bit is set if the page

has been modified since the PDR was loaded. The A bit is

set if the page has oeen accessed since the PDR was loaded.

Both bits are reset whenever the PDR is modified.

1
Q





III. THE UNIX TIME-SHARING SYSTEM

A. CONCEPTS

UNIX [7] is a terminal oriented, interactive* time-

sharing/ operating system developed at Bell Laboratories for

use on the PDP-11 family of minicomputers. Most of UNIX is

written in " C ,
" [8] a high level language also developed by

Bell Laboratories. A small part of UNIX is written in "as,"

[9] a Bell Laboratories variant of the PDP-11 assembler

language. Among the most significant of UNIX's features

are: a hierarchical file system, a device independent

input/output scheme, and mu 1 t i -t ask i ng

.

The basic unit of work under UNIX is the process. Each

process is an execution of a program file from the UNIX file

system. When UNIX "bootstraps" itself into memory at system

initiation time, it "handcrafts" the first two orocesses:

process and process 1. Process 0, which may be thought of

as an execution of UNIX, is the master control process.

Process 1 sets uo the system? all subseauent processes are

descendents of process 1.

All processes except process execute in User processor

state. If a process reauires service from UNIX, it

communicates its request by means of a system call. System

calls are mechanized by use of TRAP instructions which

20





interrupt the processor* change the processor state to

Kernel* and cause the apororiate service routine to be

executed. When the system call comoletes* it returns to the

calling process with the processor in User state.

A process creates descendents by use of the "fork"

system call. This system call creates an exact duplicate of

the calling orocess. The new process is referred to as a
«.

child process and the original crocess is referred to as a

parent process. The parent may continue to execute* perhaos

creating more children* or it may use the "wait" system call

to suspend execution until its child has completed

execution. The child may continue to execute the same

program as its parent or it may invoke a new program by use

of the "exec" system call. A child may also create children

of its own. 'When a child comoletes processing* it

terminates by means of the "exit" system call. Among other

actions* "exit" notifies the parent of the child's demise.

Process 1 begins its role as grandsire by creating one

child for each terminal in the system. Each child opens its

assigned terminal* sends a message request inq a user to log

in* and awaits a reoly . When a user successfully comoletes

the log in procedure* the child invokes a new program called

the Shell. The Shell interprets commands specified by the

user and creates children which invoke other Drograms to

carry out the user's commands. a hen the user logs off* his

teminal's Shell Drocess terminates. Process 1* which has

been patiently waiting for this to hapDen* is notified and

21





it creates a new child for the terminal. The new child

reopens the terminal and sends another log in reauest.

B. MEMORY MANAGEMENT

In conceot, the UNIX memory manager is a relocatable

partitioned memory manager CIO] with swapping and limited

segmentation. Each process has an image that must reside in

a contiguous partition while the processor is executing on

behalf of the process. The image remains in memory during

the execution of other processes unless it must be written

out (swapped out) to a direct access device to satisfy the

memory reguirements of a higher priority process.

Relocation and storage protection are accomplished with the

MMU. When the processor is executing on behalf of a

process* the memory management registers are loaded so that

the process can access only its own image and, if

applicable* a text segment shared with other processes.

Because a process executes in User mode* its adaress space

is the User address space; however, a part of the process's

image called the UVECTOR is established in Kernel D-space.

The UVECTOR contains process status information needed by

UNIX and the Kernel mode processor stack to be used while

the process is active. Not all process control information

is located in the UVECTOR. Information that must remain

addressable even when the process is not executing remains

resident for the life of the process in Kernel D-soace in a

control block called a PROC. If the process shares its text

22





with other processes* its PROC contains a pointer to yet

another control block resident in Kernel O-space. This

control block is called the TEXT. It contains information

that UNIX uses to control the sharing of the text segment.

APPENDIX A contains detailed information on the UVECTOR,

PROC, and TEXT.

A process's image is created when "fork" copies its

parent's image. Whenever a process uses "exec" to invoke a

new program, the process's i maoe is recreated according to

specifications in the program file to be executed. A

process's image differs depending on whether or not it

shares text. The image of a text sharing Drocess consists

of its UVECTOR, data, and User mode processor stack. The

shared text is established in memory independently of the

images of the processes sharing it. In the image of a non-

sharing process, the text is lumped together with, and

considered to be part of, the data. If the process shares

text, "exec" checks to see if a cooy of the text is

available in the system. If it is not, "exec" establishes a

cooy .

The User address soace of a text sharing process may be

established in two different ways: seoaratea instruction and

data spaces or combined instruction and data spaces. The

User address soace of a non-sharing process may only be

established with combined instruction and data soaces. If a

process's address soaces are combined, its I-space and D-

space are identical. A separation flag, determined by

23





"exec" from the file tyoe and kept in the process's UVECTOR/

controls the method used to establish the address space of a

text sharing process. If a process's address soaces are

separated^ its shared text segment is addressable beginning

at User I-space address and its data is addressable

beginning at User D-space address 0. If a combined process

has shared text* its shared text segment is addressable

beginning at address in both User I-space and User D-

space; and its data is addressable beginning at the first 4K

word boundary (page boundary) beyond the end of the text in

both User I-space and User D-space. If a combined process

does not have shared text/ its text is addressable beginning

at address in both User I-space and User D-space; and its

data is addressable beginning at the first word boundary

beyond the end of the text in both User I-soace and User D-

space. A process's stack is addressable extending downward

from the highest address in User 0-SDace or in I-space ana

D-space. The access control SDecified in the PDRs of shared

text pages is read only. All other pages/ including non-

shared text/ are read-write access.

There are two system calls that a process may use to

change the size of its image without invoking a new program.

These system calls are " b r k " and "sbrk" U 1 ] . These are

used to increase or decrease the size of the Drocess's data

area . They are used mainly in programs with storage

requirements that have great variations depending on input.

The size of a process's image may increase in another way.

2a





If its User mode processor stack grows beyond the space

initially allocated to it/ UNIX dynamically increases the

amount of memory provided,

C. INPUT OUTPUT SYSTEM

1. Standard Input/Output

The UNIX standard input/outout (I/O) system 112] is

designed to seoarate the user from aevice dependencies/ to

keep control blocks out of the User address space/ and to

preserve process re 1 oca t ab i 1 i t y . Two classes of devices are

supported under the standard I/O system: character-devices

and block-devices. Character-devices are read and written

one byte at a time using a UNIBUS device register as an I/O

port. Block-devices are read and written in 512 byte blocks

using direct memory access (DMA). UNIX Drovides the

expected system calls to create/ open/ access/ and close

files on both device types. It also provides buffer areas

in Kernel D-soace for character-device I/O queues and for a

pool of block device buffers.

When a process requests a write to a character-

device/ an I/O supoort routine (device driver routine) moves

the data to the device's outout queue or directly to the

device. »vhen a process requests a character-device read/

the device driver receives the data from the device and

moves it to the User address space.

25





When a block write is requested* the device driver

acquires a buffer from the pool in Kernel D-space* moves the

data from the User adoress space to the buffer/ and places

the buffer on the device's output queue. when a block read

is requested* the driver places the request in the device's

input queue* and acquires a buffer to which the device will

transfer the data when the request is honored. After the

device has transferred the data to the buffer* the driver

moves the data to the User address space.

The significance of standard I/O from the memory

management point of view is the way in which it localizes

DMA accesses to Kernel 0-soace. This is imoortant because a

DMA device must be given the ohysical address of the area

from which or to which the data will be transferred. In

Kernel D-space* virtual and ohysical addresses are

identical. All addresses used to move data between the User

address space and the Kernel D-space are virtual; no device

or routine needs to know the physical address of the

requesting process's I/O area. This means that standard I/O

is completely compatible with dynamic relocation of the

requesting process.

2. Raw Block-device Input/Output

Raw block-device I/O [12] is a scheme whereby I/O

takes place directly between the requesting process's memory

and the device. The advantages of this tyce I/O are that it

allows the use of blocks larger than 512 bytes and that it

26





avoids the overhead of movinq the data between the User

address space and the Kernel D-space. Although it might

seem that the data movinq overhead would be small, this is

not the case because the PDP-11 lacks a block-move

instruction. The only way to move a group of data words is

with a prooram loop. This means that several instructions

must be'fetched and executed to move each word of data or,

in some cases, to move each byte of data. The major

disadvantaqe of this type of I/O is that the block-device

must be given the physical address of the input or output

area in the User address space! thus, the requesting process

must be "locked" in memory during the I/O operation. This

prevents the memory manager and process controller from

making optimum use of system resources.

In practice, raw I/O does not have an important

effect on operating system performance because it is very

rarely used. It is important because future applications

will use it and because supporting it presents some

difficult memory management problems.

27





IV. MEMORY MANAGER DESIGN

A. SEGMENTATION

The fundamental problem addressed in this thesis is a

pragmatic one: how best to modify the UNIX memory manager in

order to make more complete use of the capabilities of the

available memory management hardware. Shared text is

already well segmented in UNIX, so the first step taken was

determining a good method of dividing the process image into

segments. The important considerations were that the

segments be logically seoarate and i naependen t 1 y managable

in main memory. It Droved to be possible and desirable to

use the natural division already discussed: U V E C T R , data

(including non-shared text)/ and the User Drocessor stack.

This division has the apoeal of being straightforward and of

being an efficient wav of cooing with the problem of

managing the dynamic size changes of the data and stack

areas

.

A study of the UNIX system showed that reestablishing

the process image when the data or stack changes size is a

major source of memory management overhead. Whenever either

the stack or the data changes size, the UNIX memory manager

has to acguire memory for an entire new image and copy the

UVECTOR, aata, and stack to it. The cost of this copying is

about 10 micro-seconds of orocessor time oer word if memory
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is available for the new image* and several seconds of

elapsed time if memory has to be acquired by swapping other

processes out of memory. If changing size were an

infrequent occurrence/ this cost would not oe excessive but

studies have shown that some of the most commonly used

H <• *. MDrograms change size often. Among these programs are: cc

the "C" language compiler; "ed*" the text editor; and "as/

the assembler. With the data and stack in " seoarate

segments* overhead is reduced because only the segment that

changes size has to be copied. If the segments were divided

into Dages/ only the last page of the segment would have to

be copied* reducing overhead even more.

There is another imoortant reason for establishing

separate segments for the data and the stack. Several

applications CI] planned for the Signal Processing and

Display Laboratory will require a memory manager that can

place a process's data segment in a specific area of main

storage. Specific placement will be required to reduce the

overhead of orocessor to processor and processor to device

communication and to orotect processes from aestruction by

errant operations by DMA devices. An example is a process

that reauires the CSP 125 array processor. The CSP 125 can

access only a portion of the memory available in the

laboratory system. Any Drocess that communicates with the

CSP 125 must* therefore* have its data segment olaced within

the memory that the CSP 125 can access.
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Another example is a real-time graphics orocess using

the Vector General 3D3I display unit. This DMA device

retrieves and interprets its display list forty times per

second. Instructions in the display list can cause the

device to store data anywhere within the 3 2 K word memory

segment containing the list. To protect the UVECTOR and

stack of the process using this device* the display list

must be isolated in a 32K word memory segment.

B. ALLOCATION OF MEMORY

After the method of segmentation was aecided/ the

specifics of the memory allocation technique were

considered. It was assumed at first that a paged segmented

memory manager [131 would be the best choice. After careful

consideration/ a partitioned segmented memory manager was

chosen. Partitioned segmentation is a variant of paged

segmentation first suggested by Randall [14] based on

simulation studies of simple segmentation and paged

segmentation. The differences between paged and partitioned

segmentation are: the basic auantum of storage allocated and

the method of physical address formation requi red.

The allocation quantum in oaqed segmentation is the page

frames an area of memory large enough to hold exactly one

virtual page. Each reauest for storage is the same size

(page size) and each free area is an integral multiple of

this size. This strategy reduces the loss of storage due to

external fragmentation because no area of free storage is
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ever too small to satisfy a request for a page of memory.

It also simplifies the memory allocation and deallocation

primitives because they need to respond to memory requests

of only one size. The disadvantage of paged allocation is

that even a partial virtual page is allocated a full page

frame. The unused memory in cage frames allocated to

partial pages causes a loss of usable storage called

internal fragmentation.

The basic idea behind partitioned segmented allocation

is the reduction of internal fragmentation. A partitioned

segmented memory manager allocates storage in a quantum that

is smaller than, but an integral divisor of, the page size.

The largest contiguous area allocated is eaual to the page

size? but/ when memory is allocated for a partial page, only

the smallest number of quanta larger than the size is

allocated. Internal fragmentation still occurs but the

average loss per partial oage is only half a quantum rather

than half a page frame. There are two disadvantages of

partitioned segmentation: the memory manager must be more

complex because it must respond to requests for a number of

different memory sizes; and external fragmentation will

occur .

Physical address formation in a paged segmented system

is simple because pages reside in memory at physical

addresses that are integral multiples of the page size.

Because the page size is always chosen as a power of two,

the ohysical address is formed from the virtual address by
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concatenating the virtual address's d i so 1 acemen t - i n-page

with the physical page frame number. In a partitioned

segmented system* oages are placed in memory at physical

addresses that are integral multioles of the quantum of

allocation. Because the quantum of allocation is chosen as

a power of two* the physical address is formed by adding the

physical page quantum number to the virtual address's

quant um-w i t h i n-page and then concatenating the virtual

address's di sp 1 acemen t -w i t h

i

n-quant um with the result.

Because the PDP-tl/50 mmij can support either a paged or

partitioned segmented memory manager* the important

consideration in deciding between the two memory managers

was: how the loss of storage utilization caused by external

fragmentation with a partitioned segmented memory manager

would compare to the loss of storage utilization caused by

internal fragmentation with a paged segmented memory

manager. A definitive answer to this question is not

possible unless both memory managers are tested; however* it

is easy to show that the storage losses with a paged

segmented memory manager would be unacceotaole in the UNIX

environment. The argument for this premise is based on the

very large C4K word) cage size imposed by the memory

management hardware* the extremely small number of page

frames available* and the small segment sizes that result

when the orocess image is divided into three segments. The

most important consideration is the comparison between

segment size and page size. If the segments were very large
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compared to the pages/ the percentage of partial pages would

be small and the resulting loss of utilization

insignificant. If the segments were small compared to the

pages* almost all pages would be partial pages and the

resulting loss of utilization would be high.

The UVECTOR segment is fixed in length at ,5K words.

The initial stack segment allocation for all processes is

.64K words. Stacks grow dynamically/ but observations have

shown that this is a rare occurrence. Estimates of the

average sizes of the text and data segments were determined

by examining the program files of 70 frequently used

programs. The mean text segment size was determined to be

1.9K words and the mean data segment size at the start of

execution was determined to be 2.2K. Data segments

frequently grow but the largest increase that has been

observed is about . 5 K words for one phase of the " C "

compiler. Even making the generous assumption that average

combined data and stack growth is .5K, these figures show

that the paged segmented memory manager would waste more

memory than it used productively. It would allocate four

pages (16K words) for the average shared text process of

which an average of 5.7K words would be used.

The segment size data is completely counter to

experience gained in large scale computer systems. It was

completely unexpected. Because the mean segment sizes

observed were all less than a page/ doubts were raised about

the desirability of selecting any memory management
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technique more coiddI icated than simple segmentation. In

spite of the doubts, it was decided to continue with

development of a UNIX with a partitioned segmented memory

manager CPSUNIX). It was believed that this effort would

best serve to explore all memory management options. Design

work was started/ however, on a version of UNIX with a

simple segmented memory manager CSUNIX). SUNlX was to be a

fall-back position if the oerformance of PSUNIX Droved to be

unsatisfactory.

When the partitioned segmented memory manager was

chosen, the only remaining design Question was the size of

the quantum of allocation. The 64-byte block, the smallest

quantum supported by the memory management hardware, was

selected. This choice was based on the practical

consideration that it reguired no change to the existing

UNIX memory allocation and deallocation Drimitives.
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V. MODIFICATIONS TO UNIX

A. OVERVIEW AND PHILOSPHY

Modifying the UNIX memory manager to oroduce PSUNIX was

a formidable task that reguired writing aoproximately 500

lines of new code and comprehending and modifying existing

programs totaling more than 1,800 lines of code. The

approach that was taken to this oroblem was to avoid putting

large sections of new code into existing orograms. The new

code that was needed to support the memory manager was

centralized in several small self-contained functions

(primitives). Wherever possible, changes to existing

routines were limited to removing calls to the old memory

management primitives and replacing them with calls to the

new memory management primitives. The goals of this

approach were to make the the general structure of memory

management in PSUNIX seem familiar to those who understood

the UNIX structure and to simplify debugging by localizing

new code. These goals were realized.

The changes made to implement PSUNIX can be divided into

five areas :

1. Control Block M g i f

j

ca t i ons

2. Memory Management Suoport Modifications

3. Swap Space Allocation Modifications
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4. Raw I/O Support Modifications

5. SuDport Program Modifications

Each of these areas is described in a subsequent section of

this chapter. SupDortinq documentation can be found in the

appendices. APPENDIX A contains detailed information on

control blocks related to memory management. APPENDIX 8

contains detailed documentation of memory management

routines found in UNIX, PSUNIX, and the proDosed simple

segmented version, SUNIX.

B. CONTROL SLOCK MODIFICATIONS

The only control blocks modified were the PROC (process

control) and the TEXT (shared text segment control). No new

control blocks were added exceot cage tables which are

allocated in temporary storage and used as work space during

memory allocation and deallocation. In UNIX, the PROC

contains the size and address of the image. In PSUNIX, the

PROC was expanded so that it could fulfill the same role as

the MULTICS [15] Segment Mao Table. The image size and

address were removed and the segment sizes and cage

addresses were added. In both versions of the operating

system, the TEXT performs the same function as an entry in

the MULTICS Active Segment Table. The onlv modification

required for PSUNIX was the addition of a page address

array. APPENDIX A provides detailed information on the

PROC, TEXT, and several other control blocks that are

important to memory management.
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C. MEMORY MANAGEMENT SUPPORT MODIFICATIONS

The basic form of the memory management modifications

has been presented in the previous chapter. APPENDIX B

provides complete documentation of the new memory management

primitives under the heading "oage.c." It also Drovides

documentation of the changes made to existing UNIX programs

that call these primitives. Functions of particular

interest are: "neworoc/ which creates a process's image by

copying the image of the process's parent; "exec/ which

recreates a process's image when the process invokes a new

program; "xalloc/" which establishes shared text segments;

"expand/ which changes a process's image size; " s c h e a >
"

which swaps processes into and out of memory; " x f r e e >
" which

removes shared text segments from the system; and "exit/ 1

which terminates processes and frees their resources.

D. SWAP SPACE ALLOCATION MODIFICATIONS

The UNIX method of controlling swao space is to allocate

it to a process when the process is to be swapped out and to

free it as soon as the process returns to memory. The

advantage of this is that it keeps the demand for swap space

at a minimum but the disadvantage is that it requires an

allocation and a deallocation whenever a process is swapped.

UNIX swap I/O is extremely efficient because the process

image is contiguous in memory. Tnis allows UNIX to swap a

process with one I/O operation.
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The PSUNIX method of controlling swap soace is to

allocate it to a process the first time the process is

swapped out and to allow the process to keep the swap space

when it returns to memory. A process loses its swap space

when it terminates or when one of its segments becomes too

large for the space that was allocated. In both versions of

the operating system/ the process is allocated a contiguous

area of swap space. This reduces the allocation overhead.

PSUNIX incurs the overhead of one I/O operation oer page in

the process's image. This means that PSUNIX has between

three and four times as much swap I/O overhead as UNIX for

the average process.

The programs concerned with swapping are documented in

APPENDIX B. Functions of particular interest are: "xswap,"

which swaps processes out of memory; "swap/" the swap I/O

call? "pswap/" a PSUNIX function that swaps several pages to

or from memory; and "prswap/" a PSUNIX function that returns

a swapoed process to memory.

E. RAW I/O SUPPORT MODIFICATION

As has been described previously/ raw I/O reouires a DMA

transfer directly from or directly to a process's address

space. The data is transferred to or from a contiguous area

of main memory. In PSUNIX this presents a serious problem

if the data area spans a page boundary because the pages

will probably not be contiguous. The only efficient

solution to this problem is to make the pages contiguous.
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The function M p h y s i o /
" which sets up raw I/O transfers/

was modified to determine if each transfer spans a page

boundary. when a boundary spanning transfer is requested/

"physio" calls " c o n t i g /
" a memory management primitive/ that

reallocates the data and stack segments of the requesting

process so that both of them are allocated contiguous

memory. The process is also flagged as one that reauires

contiguous allocation. Whenever memory is allocated for the

process in the future/ the segments are given contiguous

areas of storage. The process remains flagged until it

either invokes a new program with "exec" or terminates.

APPENDIX B contains more detail on this subject.

F. SUPPORT PROGRAM MODIFICATIONS

During the course of this thesis two program development

tools were perfected and two program errors in UNIX commands

were encountered and corrected. These programs and

corrections have been documented elsewhere and are only

briefly discussed here.

The program development tools are: an assembly language

program to dump memory onto the swao file without operating

system support and a C language program/ CRASHSAV/ to

retrieve the dump from the swao file and place it into the

UNIX file system. The dump program was made part of the

operating system. It was executed from the system control

panel following a system failure to oreserve the contents of

memory for analysis. This system of taking and retrieving

39





complete memory dumps was extremely valuable. PSUNIX could

not have been develooed without it.

The two proqram errors were discovered in " n m ,
" the

command for printing symbol tables of. compiled orogramsr and

in "sysfix," the command that adjusts the format of a UNIX

operating system image so that it can be "bootstrapped" into

memory. The errors were discovered because the PSUNIX image

exceeded 6 <4 K bytes. Neither Drogram executed p r o d e r 1 y with

the PSUNIX image as data because both programs used counters

that overflowed at 64K. The problem was solved by

increasing the size of the counters.
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VI. PERFORMANCE STUDY

A. EXPERIMENTAL DESIGN

A series of exoeriments was done to determine the

relative performance of the UNIX and PSUNIX versions of the

operating system under a variety of operating conditions.

The elapsed execution times of standard streams of processes

(benchmarks) was chosen as the metric for system

performance. Two benchmarks were used: a monoprogramming

benchmark, 8ENCH1; and a multiprogrammina benchmark, BENCH2.

Both benchmarks contained the same processes. Most

processes chosen for the benchmarks are representative of

the I/O limited program development environment but several

of them (notably a "Rings of Hanoi" calculation) are

processor limited. APPENDIX C contains listings of the

commands in BEN CHI and 8ENCH2. Reference [11] documents

these commands.

The computer system used to execute the benchmarks was

the "B H side of the laboratory configuration shown in Fig.

1. The peripheral devices used were a single terminal and

two 1.25 mega-word RK05 cartridge direct access storage

devices (161. The file system for the ooerating system was

mounted on one of the RK05 devices. To reduce I/O

contention, the other RK05 device was used for swapping

processes into and out of main memory. The main memory

at





available in the system was the oarameter varied in the

exper i ment s

.

B. PRESENTAIOM OF RESULTS

The timing data presented in this section was obtained

by executing the benchmarks under control of the "time"

command [11]. The times are determined by sampling the

processor state at a 60 m rate. "Real" time is actual

elapsed test time reoorted to the nearest second. "User"

time is the time the processor spent executing instructions

in the User state. "Sys" time is the time that the

processor SDent executing instructions in the Kernel and

Supervisor states. Both "User" and "Sys" times are reported

to the nearest tenth of a second. The difference between

"Real" time and the sum of "User" and "Sys" times is

orocessor idle time. Earlier work [d] suggests that timings

of the same benchmark may have a standard deviation of as

much as 8 percent of the mean values. No statistical study

of these timings was performed in the course of this thesis

but limited ooservations indicate that the deviation is much

less than 8 percent.

Six experiments were performed. The first was an

execution of BENCH1, the monoprogramming benchmark, under

both operating systems. The results of this experiment are

shown in Table 1. The next five experiments consisted of

executing B E N C H 2 under both operating systems/ varying the

amount of dynamic memorv availible from 32K words to 64K
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words in 8K word steos. The results of these experiments

are shown in Tables 2 to 6 resDec t i ve 1 y . Combined results

are shown in Fig. Q , a graph of elapsed times against

dynamic memory available.

C. ANALYSIS OF RESULTS

The experimental results clearly indicate that the

performance of PSUNIX and the performance of UNIX are almost

identical over a wide range of sizes of available dynamic

memory. Both the amounts of processor idle time and of

supervisory overhead are approximately egual in all

corresponding experiments. The approximate egual i t y of idle

times indicates that the aisaavantage of increased swapping

overhead in PSUNIX is offset by a reduction in the number of

processes swapped because of reduced external fragmentation.

The approximate eauality of the supervisory overhead

indicates that the advantage of reduced segment copying in

PSUNIX is offset by the increased complexity of the memory

management routines.
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REAL
USER
SYS

UNIX
3:32.0
1:30.3

29.7

PSUNIX
3:29.0
1 :29.8

31.2

Table 1 BENCHl, 32K Words

REAL
USER
SYS

UNIX
a: 17.0
1 :32.5

30.6

PSUNIX
a:20.o
1:31.6

33.0

Table 2. BENCH2, 32K Words

REAL
USER
SYS

UNIX
3:50.7
1:31.7
31.5

PSUNIX
3:49.0
1:31.8

32.1

Table 3. BENCH2, 40K Words

REAL
USER
SYS

UNIX
3:49.0
1:32.0

32.1

PSUNIX
3:38.0
1 :30.8

33.0

Table 4. BENCH2, 48K Words

REAL
USER
SYS

UNIX
3:38.0
1:31.3

31.9

PSUNIX
3:34.0
1:31.3

32.8

Table 5. 8ENCH2, 56K Words

REAL
USER
SYS

UNIX
3:32.0
1 :30.5

30.1

PSUNIX
3:29.0
1:30.8

32.2

Table 6. BENCH2, 64K words
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VII. CONCLUSIONS AND RECOMMENDATIONS

The most interesting result of this thesis is that it

confirms the axiom that a simple program is very often a

good program. From the standpoint of performance alone; the

simpler UNIX memory manager is as efficient as PSUMIX.

PSUNlX is attractive because it provides an additional

feature^ segmentation/ with no performance penalty.

Although PSUNIX could be placed into production use at once/

it would prooably be a better idea to proceed with the

develooment of SUNIX. From the data oresented on segment

sizes* it appears that SUNIX will perform at least as well

as PSUMIX. SUNIX memory management routines will have the

advantages of being both smaller and simpler. Because of

this/ they will reguire less storage/ be easier to maintain,

and cause less memory management overhead.

No matter which version is implemented/ many parts of

the memory manager will remain potential candidates for

improvement. The basic memory allocation primitive/

"malloc/" is an example. In rein lb], Knuth suggests many

oossible imDrovements to the simple algorithm used in

"malloc." Although Knuth' s logic is compelling, we may again

be surprised by the correlation between simplicity and

goodness

.
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A more important project will be the development of the

system calls that will be used to olace a process's data

segment in specific areas of memory. Successful completion

of this project will be required before the full benefits of

segmentation will be attained.
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APPENDIX A: MEMORY MANAGEMENT CONTROL BLOCKS

A. DOCUMENTATION FORMAT

This aDpendi x contains documentation of the control

blocks in the UNIX, SUNIX, and PSUNIX versions of the

©Derating system that are direcly or indirectly concerned

with memory management. The source code for these control

blocks is found in files in the directory /usr/sys. Each

control block is documented under an u o p e r case roman

letter. The name of the source code file containing the

control block is noted following the control block name.

The documentation of each control block is divided into two

subsections: overview and significant data elements. Only

the data elements significant to memory management are

documented. Because this aooendix was designed to be used

with a copy of the system code, the data elements are

documented in the order in which they apoear in the source.

In accordance with the non-disclosure terms of t^e

software agreement with Western Electric, program listings

are not orovided as oart of this thesis. Authorized users

of the UNIX ooerating system may obtain machine-readable

copies of programs oroduced for this thesis by contacting

the Naval Postoraduate School.
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B. COREMAP, systm.h

I . Overview

COREMAP is an array of structures that keeps track

of the unallocated areas of main storage. Each structure

contains the startinq physical block number and the size of

an unallocated storage area . COREMAP is sorted so that its

entries are in physical block number seauence. See the

documentation of "malloc.c" in APPENDIX B for descriotions

of the memory management primitives that manipulate COREMAP.

2, Significant Data Elements

a . char *m«-s i ze

This is the size of the free area in 64-byte

b 1 oc ks .

b . char *m«-addr

This is the memory physical block number of the

start of the free area. If this field is zero* it marks the

end of COREMAP.

C. SwAPMAP, systm.h

1 . Overv i ew

SimAPMAP is an array of structures that keeos track

of the unallocated areas on the swap device. Each structure

contains the startinq physical sector number and the size of
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an unallocated area. S V>i A P M A P is sorted so that its entries

are in physical sector number sequence. The same primitives

used to maipulate COREMAP are used for SwAPMAP. See

APPENDIX B.

2. Significant Data Elements

a . char *m«-s i ze

This is the size of the free area in 256-word

sectors .

b . char *m«-addr

This is the memory physical sector number of the

start of the free area. If this field is zeror it marks the

end of SWAPMAP.

D. PROC, Droc.h

1. Overview

The array "proc" is an array of structures referred

to as PROCs in this thesis. One of these structures is

allocated to each active process in the system for the life

of the process. The array is located in the Kernel address

space ana is oermanently resident in main memory. A

orocess's PROC contains all Drocess information that cannot

be swapped out of main memory.
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2. Significant Data Elements

a . char o<- f 1 ag

This is a word of flags. Bit of this word is

the SLOAD flag. If it is set/ the process is in main memory.

Bit 2 of this word is the SLOCK flag. If it is set/ the

process is locked in memory and may not be swaoped out. Bit

4 of this word is the SSWAP flag; if it is set; the process

is being swapped out. In PSUNIX, bit 15 of this word is the

CONT flag. If the bit is set/ it means that both the

process's data and the process's stack must be contiguous in

ma i n memo ry

.

b . i nt p*-addr

This field is present only in UNIX. If the

process is resident in main memory/ it is the physical block

number of the orocess's UVECTOR. If the process is swaoped

out/ it is the swap device block number of the swapped

i mage

.

c . i nt p«-s i ze

This field is present only in UNIX. It is the

size of the orocess's swaooable image measured in 64-byte

blocks.

d. i nt *p«-t ex t p

This is a pointer to the process's TEXT. If the

value is zero/ the orocess does not have shared text.
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e . i n t p<-cadar

This fiela is oresent only in SUNIX and PSUNIX.

It is the main memory physical block number of the orocess's

UVECTOR if the process is in memory.

f . i nt o«-oaddr [8]

This ar ray is present only in PSUNIX. The

integers in the array are the memory physical block numbers

of the orocess's pages. The order of pages is: first data

pages from low to high virtual address and then stack pages

from high to low virtual address.

g . i n t o«-dadd r

This field is present only in SUNIX and PSUNIX.

It is the swap device block number of the process's swap

space. If it is zero/ the process has no swap space.

h . i nt p«-ds i ze

This field is present only in SUNIX and PSUNIX.

It is the size of the orocess's data in 64-byte blocks.

i . i nt o<-ss i ze

This field is present only in SUNIX and PSUNIX.

It is the size of the process's stack in 64-byte blocks.
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E. TEXT, text.h

1. Overview

The array "text" is an array of structures called

TEXTs in this thesis. Each segment of sharable code is

assigned a TEXT for the life of the segment. The text

contains all data on the usage and status of the segment.

The "text" ar ray is found in the Kernel address space and is

permanently resident in main memory.

2. Significant Data Elements

a . i nt x«-dadd r

This is the swap device block number of the text

segment's image.

b. int x«-caddr, int xcaddr [8]

In UNIX and SUNIX, this is the memory physical

block number of the start of the text segment. In PSUNIX

this array contains the memory physical block numbers of the

pages of the text segment.

c. int x*-size

This is the size of the text segment in 64-byte

b 1 oc ks .
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d . char x«-coun t

This is the number of processes sharing the text

segment

.

e . char x«-ccount

This is the number of memory resident processes

using the text segment.

F. UVECTOR, user.h

1

.

Overview

The structure "user" is referred to as the UVECTOP

in this thesis. One of these structures is part of the

swappable image of each orocess. The UVECTOR contains all

process data that is not needed when the process is not in

control of the processor. When the process is in control of

the processor, the orocess's UVECTOR resides at virtual

Kernel aata space address 140000 octal. The portion of the

UVECTOR not used by Drocess data elements is used as the

Kernel mode processor stack.

2. Significant Data Elements

a . i n t u«-u i sa C 1 6]

In UNIX this array contains the 64-byte block

displacements from the start of the region of the process's

data and stack pages. In SUN IX and PSUNIX this array is not

used .
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b . int u«-u i sd [ 1 6]

This array contains the prototypes of the

process's user I-SDace and 0-soace paae descriptor

reg i sters.

c. int u«-t s i ze

This is the size of the process's shared text

segment

.

d . int u<-ds i ze

This is the size of the process's data.

e. int u *- s s i z e

This is the size of the process's stack.

G . PAGET , oage .

h

1 . Overview

An array of "paget" structures is referred to as a

PAGET in this thesis. This is a page table containing the

sizes and addresses of the process's pages. A PAGET is

always organized so that data pages apDear first from low to

high virtual address followed by stack pages from high to

low virtual address.
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2. Significant Data Elements

a . i n t t «-oaddr

This is the memory physical block number of the

start of the page

.

b . i n t t <-os i ze

This is the size of the Daae in 64-byte blocks.
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APPENDIX B: MEMORY MANAGEMENT ROUTINES

A. DOCUMENTATION FORMAT

This aopendix contains documentation of functions within

the UNIX, SUNIX, and PSUNIX versions of the operating system

that are directly or indirectly concerned with memory

management. Because this aopendix is designed to be used

with a copy of the source code, the documentation is divided

into sections that correspond to the divisions of the source

code. The UNIX source is divided into several blocks of

code containing related functions. These blocks of code are

stored as files in two directories: /usr/sys/dmr for device

management functions and /usr/sys/ken for the remainder of

the system. The documented functions in each block of code

are grouped under an upper case roman letter. Each function

within each block is listed under an arabic numoer. The

functions are documented in the same order in which they are

found in the code blocks with any new functions appearing

last. The documentation of each function is divided into

the following subsections: parameters, functional

description, returned values, and error conditions. Any

differences in function documentation among the three

versions of the operating system are noted in the

aopropriate subsection.
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B . main.c

1 . sureg ( )

a

.

Paramet ers

The current process's UVECTOR and PROC are

implied parameters.

b. Functional Description

This function loads the User descriptor and

address registers in the memory management unit. The

descriptor registers are obtained from the array u«-uisdt] in

the current UVECTOR. Address register loading is controlled

by the values of u<-tsize» u*-dsizer u«-ssize/ and u«-sep in

the current UVECTOR. In UNIX the page address registers are

determined based on: the region address? p«-addr, in the

current PROC; the text segment address, x^caddr, in the

current TEXT; and the page di sol acement s in the array

u«-uisaC] in the current UVECTOR. The page displacements are

not used in SUNIX or UNIX. In SUNIX the segment adaresses,

p*-daddr and p*-saddr, are used instead of o«-addr. In PSUNIX

the page addresses in the array p«-paddrU in the PROC and

x«-caddrU in the TEXT are used.

c. Returned Values

The values returned by this function are not

chec ked.
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d. Error Conditions

This function has no error conditions.

2. estabur(nt/nd/ns»sep)

a

.

Pa rame t ers

The first three parameters are the sizes of the

current process's data and stack in 64-byte blocks. The

value of "seD" is a flag that is set if the process has

split instruction and data space. The current Drocess's

UVECTOR is an implied input.

b. Functional Description

This function first checks the validity of its

arguments. It loads the prototypes of the memory management

page descriptor registers into the array u<-uisdU in the

current UVECTOR. In UNIX it also loads page start

displacements in blocks measured from the beginning of the

region or text into the array u «- u i s a U in the current

UVECTOR. In both SUNIX and PSUMX, u«-uisaU is not loaded;

the values of the Darameters are placed in the variables

u«-tsize* u<-dsize* u*-ssize» and u<-sep in the current UVECTOR.

In all versions* "suregO" is called to load the actual

memory management registers.

c. Returned Values

If the parameters are invalid* minus one is

returned? otherwise* zero is returned.
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d . Error conditions

The minus one return indicates an error to the

ca

1

ler.

3 . nseg ( n

)

a

.

Paramet ers

The parameter is a number of memory blocks.

b. Functional Description

This function calculates the number of pages,

rounded uo« in the number of blocks specified in the

paramet er

.

c . Returned Va 1 ues

The returned value is the number calculated.

d. Error Conditions

This function has no error conditions.

4. cksizeCnt/nd/nS/Sep)

a

.

Paramet ers

See w estabur(nt,nd/ns,sep)."

b. Functional Description

This function is present only in SUNIX and

PSUNIX. It checks its parameters to see if they are valid.
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c

.

Ret urned Values

This function returns minus one if the

parameters are invalid and zero if thev are valid.

d. Error Conditions

A minus one return indicates an error to the

ca 1 1 er .

C . ma 1 1 oc .c

1 . ma 1 1 oc (mo t s i ze )

a

.

Pa ramet ers

The parameters are a pointer to a map array and

a size specified in blocks to be allocated from the map.

b. Functional Description

This function allocates space in main memory and

on the swao device. If memory is to be allocated/ the first

parameter must point to COREMAP. If swap soace is to be

allocated/ it must point to SWAPMAP. The amount of space

needed must be specified in 64-byte blocks if memory is to

be allocated and in 256-word sectors if swao space is to be

a 1 located.

c. Returned Values

This function returns the physical block number

of the space if allocation is successful and zero if
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allocation is unsuccessful.

d. Error Conditions

A return value of zero indicates allocation

failure to the caller.

2 . mfree(mp,si ze,aa)

a. Parameters *

The first two parameters are the same as those

of "malloc". The third oarameter is a physical block number

of an area of main storage or swap space.

b. Functional Description

This function frees the specified area of main

storage or swap space. If memory is to be freed, the first

parameter must point to C R E M A P . If swap space is to be

freed, it must point to SwAPMAP. The size must be specified

in 64-byte blocks if memory is to be freed and in 256-word

sectors if swap space is to be freed.

c . Ret urned Val ues

The value returned by this function is not

checked.

d. Error Conaitions

This function has no error conditions
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D . si g.c ^

1 . core ( )

a . Pa rame t ers

The current process's UVECTOR, PROC , TEXT and

address space are implied parameters.

b. Functional Description

This function creates a memory image file

consisting of the current orocess's UVECTOR, data, and

stack. In UNIX this function uses "estabur" to redefine the

process's virtual address space to make the data and stack

contiguous. It then writes the data and stack in one output

operation. In SUNIX and PSUNIX this is impossible because

the data and stack may not be physically contiguous. Two

output operations are used, one output oDeration for the

data ana one for the stack. If an output error occurs an

indication is left in u*-error in the current UVECTOR.

c. Returned Values

This function returns zero if it is successful

and one if an output error occurs.

d. Error Conditions

The one return indicates an error to the caller.
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2 . grow ( so

)

a . Paramet ers

The parameter is the value of the current

process's User stack pointer. The current process's UVECTOR

and PROC are implied parameters.

b. Functional Description

This function is called asynchronously when the

current process's stack attempts to exDand beyond the size

allocated to it. This function calculates the number of

blocks that the stack must be increased? validates the new

stack size? and acquires the memory that is needed. In UNIX

"expand" is called to establish the new, larger address

space. In P S U N I X "sexpand" is called to establish the new/

larger stack. In SUNIX this function attempts to acauire

space for the new stack. If it is unsuccessful/ it calls

"ceswao" to acquire the space. If it is successful/ it

copies the old stack to the new and frees the old memory.

In all versions the newly acauired space is cleared and

"estabur" is called to reload the memory management

regi st ers

.

c . Ret u rned Values

This functon returns a zero

unsuccessful and a one if it is successful.

if it 1 s
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d . Error Conditions

A zero return indicates an error to the call e p

E . s 1 o .c

1 . sched(

)

a • Paramet ers

The PROCs and TEXTs of all processes are implied

Da ramet ers.

b. Functional Description

This function searches for swapped out processes

that "deserve" to be returned to memory. It selects the

most "deserving" process; acquires soace for it by swapping

out other processes* if necessary; and returns it to main

memory. In SUM IX and PSUNIX two new functions are used:

"pralloc" to acquire main memory for the process and

"prswap" to swap it in.

c . Returned Va 1 ues

This function does not return. It is the basic

instruction 1 ooo of Process 0. It goes to sleeo and is

reawakened about once oer second by the clock function.

d. Error Conditions

In UNIX, if a swap input or output error occurs,

the message "swap error" will be sent to the console and the
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system will crash.

2 . newproc ( n rp

)

a

.

Paramet ers

The parameter is a pointer to a PROC to be

established for a child process. The current process's

UVECTOR, PROC/ and TEXT are implied parameters.

b. Functional Description

This function creates an exact duplicate of the

current process as a child of the current process. It first

makes the appropriate entries in the child and parent PROCs

and in the TEXT if one exists. It then attempts to acquire

memory for the child. If it is successful/ it simply copies

the parent's image to the new memory. If it fails? it swaps

out a copy of the parent's i maqe to be returned to memory as

the child. In SUNIX and PSUNIX, a new function, "pralloc,"

is used in the attempt to acauire memory for the child. In

PSUNIX a new function "prcooy" is used to cooy the Parent's

i mage

.

c. Returned Values

This function returns zero to the parent

process. The return to the child does not come from this

function but from the scheduling function "swtch". The

child can identify itself as the child because "swtch"

returns a one to it. This is one of the most important and
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subtle phenomena in UNIX.

d. Error Conditions

If the PROC pointed to by the parameter is

already allocated to an active orocess, the message "no

procs" will be sent to the console and the system will

c rash .

3. expand ( news i ze ) f expand(newd, news)

a • Paramet ers

In UNIX this function is called with a single

parameter/ the new region size. In SUN IX and PSUNIX this

function is called with two parameters: the new data size

and the new stack size. The current process's PROC and

UVECTQR are imolied parameters.

b. Functional Description

In UNIX this function is called whenever the

size of the current orocess's address space changes. It cuts

the new size in o«-size in the current PROC. If the new size

is smaller, it frees the unwanted storage. If the new size

is larger, it attempts to acguire a new region for the

process. If it succeeds, it copies the process's image to

the new region. If it fails, it causes the process to be

swapped out with the new size noted in its PROC. When the

process returns to memory, it will return at the new size.

If the process is swapped out, this function calls "swtch"
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to change current processes. In SUNIX and PSUNIX, this

function is called only to acquire an address soace for a

process that currently has only a UVECTOR. In these systems

it Duts the two new sizes in o «- d s i z e and p *- s s i z e in the

current PROC. In UNIX the function "xswap" is called to

swap out the process; in SUNIX and PSUNIX "ceswap" is used.

In UNIX, "sureg" is called to load memory management

registers; in SUNIX and PSUNIX, this is not necessary.

c. Returned Values

The return codes of this function are not

checked. The caller has no way of determining if the process

was increased in size directly or by swapping. In UNIX, if

the process is swappea, this function does not return to its

caller. The return comes from a subsequent call to "swtch"

after the process has returned to memory.

d. Error Conai t ions

This function has no error conditions.

Q . ceswap (ods , oss

)

a. Paramet ers

The parameters are the current process's data

and stack sizes in 64-byte blocks.
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b. Functional Description

This function is present only in SUNIX and

PSUNIX. It is called to do the housekeeping that is

necessary for expansion swapping. It calls "xswao" to

perform the actual swapping and then it calls "swtch" to

place a new process in control of the processor.

c . Ret u rned Va 1 ues

This function does not return to its caller.

The return to the caller comes from a subseauent call to

"swtch" after the process has returned to memory.

d. Error Conditions

This function has no error conditions.

5 . swf ree ( rp)

a

.

Paramet ers

The parameter is a pointer to a PROC.

b. Functional Description

This function frees any swap space belonging to

the process indicated by the parameter, and it zeroes out

p+-daddr, the pointer to the soace in the PROC.

c. Returned Values

The values returned by this function are not

checked.
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d . Error Conditions

This function has no error conditions.

6 . sexoand ( news

)

a

.

Pa ramet ers

The parameter is the new» larger stack size.

b. Functional Descriotion

This function is present only in PSUNIX. It is

called from "grow" to increase the stack size. See the

description of "exoand".

c. Returned Values

See "expand" .

d. Error Conditions

See "expand".

7 . dexpand ( newd

)

a

.

Paramet ers

The oarameter is the new/ larger data size.

b. Functional Descriotion

This function is present only in PSUNIX. It is

called from "sbreak" to increase the data size. See the

descriotion of "expand".
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c . Ret umed Va 1 ues

See "expand".

d. Error Conditions

See "exDand" .

8 cont i g ( ro)

a

.

Pa rame t e rs

The parameter is a pointer to the current

process ' s PROC

.

b. Functional Description

This function is present only in PSUNIX. It is

called from "physio" to make both the stack and the data of

the current process physically contiguous in main storage.

It indicates that the orocess requires contiguous segments

by setting the CONT bit in the p <- f 1 a g in the process's PROC;

then it attempts to acquire physically contiguous main

storage with "oalloc". If it succeeds, it cooies the old

noncontiguous cages to the new contiguous ones. If it

fails* it calls "ceswap" to swao out the process. When it

returns to main memory* the CONT flag will cause its storage

to be allocated contiguously.

c. Returned Values

The values returned by this function are not

chec ked .
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d. Error Conditions

This function has no error conditions

F . sys 1 .c

1 . exec (

)

a . Parame t ers

The current process's UVECTOR, PROC, and TEXT

are implied parameters. Because this function is a system

calif the array u«-arg[] in the UVECTOR contains additional

arguments. See Ref. till .

b. Functional Description

This system call is used by the current process

to invoke a new program. It copies any program arguments to

a buffer, unlinks from the old TEXT, frees its old main

storage, establishes a new TEXT if the new program has

shared code, acqui res storage for the new data and stack,

clears the region acquired, reads in the new data, copies

the arguments to the new stack, and changes the memory

management registers to make them compatible with the new

address space. In UNIX "expand" is used to free the old

main storage; in SUNIX and PSUNIX a new function, "prfree" ,

is used. In UNIX "estabur" is used to validate the storage

requirements of the new program; in SUNIX and PSUNIX

"cksize" is used.
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c . Ret umed Values

This system call returns to the caller only if

it encounters an error. If no error has occurred* it

returns to the first instruction of the new program.

d. Error Conditions

This function returns to the caller if the

storage requirements of the new orogram are invalid.

2. exi t (

)

a

.

Pa ramet ers

The current process's UVECTOR, PROC, and TEXT

are implied parameters.

b. Functional Description

This function is the system call used to

terminate the current orocess. It clears signals/ closes

any ooen files* unlinks from the current TEXT, acquires a

block on the swao device/ copies the first 25b bytes of the

current UVECTOR to the block/ and frees main storaae. In

SUNIX and PSUNIX/ old main storage is freed by M prfree/" a

new function. Because of the different method of

controlling swap space/ SUNIX and PSUNIX use "swfree" to

free any swao space allocated to the process.
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c

.

Returned Va 1 ues

This system call does not return to its caller.

The next function invoked for this process is "wait" which

completes the cleanup.

d. Error conditions

This system call has no error conditions.

3 . sbreak (

)

a

.

Pa rame t ers

The current process's UVECTOR and PROC are

implied parameters. Because this function is a system call/

an additional argument/ the virtual address of the new end

of the data/ is found in the array u «- a r g [ ] in the UVECTOR.

b. Functional Description

This function is the system call used to change

the size of the current process's data area. It calculates

the new data size desired by the current process and

validity checks the current process's total storage

reguirement. If the requirement is not valid it returns

without fulfilling the recju i remen t . In UNIX/ "expand" is

used to establish the new region. In PSUNIX/ "dexpand" is

used to change the size of the data. In SUNIX/ this

function attemDts to do the work itself. It puts the new

size in p*-dsize in the current PROC. If the new size is

smaller/ it frees the excess storage. If the new size is
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X larger, it attempts to acauire it. If it fails, it calls

"ceswap" to acauire the space by swapping. In all systems

the newly acguired soace is cleared.

c

.

Ret urned Values

Values returned by this system call are not

checked .

d. Error Conoi t ions

If the new storage reguirement is not valid,

this system call returns without allocating the storage.

This will usually cause the process to terminate abnormally

because of a memory management error.

G. text »c

1. xswao (p, f f , os ) , xswap (p , f f , ods ,oss )

a . Parameters

In UNIX this function is called with three

parameters. In SUNIX and PSUNIX, it is called with four

parameters. The first parameter is a pointer to the PROC of

a process to be swapped out of main memory. The second

parameter is the memory free flag. In UNIX the third

parameter is the process's region size in 6^-byte blocks.

In SUNIX and PSUNIX the third and fourth parameters are the

process's data and stack sizes in 64-byte blocks.
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b. Functional Description

In UNIX this function allocates swao SDace for

the process and swaps it out. In SUNIX and PSUNIX this

function allocates swao space onlv for those processes that

do not already have it. In all versions of the operating

system* memory is freed if the memory free flag is set.

This flag will not be set if this function has been called

by "newproc" to create a copy of a parent process.

c • Ret urned Va 1 ues

The value returned by this function is not

chec ked.

d. Error Conditions

If swao space must be allocated but none is

available/ the message "out of swap space" will be sent to

the console and the system will crash. If an output error

occurs during the swao, the message "swap error" will be

sent to the console and the system will crash.

2 . x f ree ( )

a . Paramet ers

The current process's UVECTOR and TEXT are

implied oarameters.

76





b. Functional Description

This function relinquishes use of the current

process's shared text. If the current Drocess has no shared

text/ this function just returns. If the current process

has shared text/ "xccdec" is called to decrement the TEXT's

in-memory use count. The TEXT's active-process use count is

then decremented. If this count has reached zero and if the

text segment is not to be retained/ the TEXT's swap space

and the TEXT itself are freed.

c. Returned Values

The value returned by this function is not

chec ked

.

d. Error Conditions

This function has no error conditions.

3 . xal 1 oc ( i p)

a

.

Paramet ers

The parameter is a pointer to the i node of the

text segment that is to be established or located. The

current orocess's UVECTOR and PROC and all TEXTs are implied

parameters .

b. Functional Description

This function establishes the shared text

segment requested by the current process. If the current
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process does not require shared text/ this function returns.

If the process does require shared text/ this function

searches the array of TEXTs for a previously established

TEXT for the requested segment. If one is found its

active-process use count is incremented. If the requested

segment is in main memory/ the TEXT'S in-memory use count is

also incremented and the function returns. If a TEXT has

not been previously established/ an unallocated TEXT is

located and allocated to the text segment. Swap space is

allocated for the text segment. The current process's

address space is increased using "expand" to get soace into

which the text segment can be read. The text segment is

read into memory and then it is written out to the swap

space acquired for it. The memory acquired for the text

read is freed using "expand" in UNIX and "prfree" in SUNIX

and PSUNIX. The address of the TEXT is placed in D*-textp in

the current PROC. The current process is swapped out with

"xswap". When it returns to memory/ the text segment will

return with it.

c. Returned Values

The value returned by this function is not

checked .

d. Error Conditions

If a TEXT must be allocated and one is not

availaole/ the message "out of text" will be sent to the

console and the system will crash. If swao soace must be
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allocated and none is available/ the message "out of swap

space" will be sent to the console and the system will

c rash .

4 . xccdec (xo)

a

.

Paramet ers

The parameter is a pointer to a PROC. The PROC ' s TEXT is an

implied a rqument

.

b. Functional Description

If the PROC has no TEXT this function returns.

If it has a TEXT/ the TEXT'S in-memory use count is

decremented. If the count reaches zero* the memory occupied

by the TEXT's text seqment is freed.

c. Returned Values

The value returned by this function is not

checked.

d. Error Conditions

This function has no error conditions.

H . page .c

1. ptbu i 1 d ( t ab , s i ze 1 / s i ze2 , ad)
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a . Paramet ers

The first parameter is a pointer to a PAGET.

The next two oarameters are the sizes in 64-byte blocks of a

process's data and stack. The last oarameter is a pointer

to an array containing the memory physical block numbers of

a process's pages.

b. Functional Description

This function is present only in PSUNIX. It

puts the sizes and addresses of a process's pages into the

PAGET. The order within the PAGET is data pages first from

low to high virtual address followed by stack pages from

high to low virtual address. Unused PAGET entries are

zeroed .

c. Returned Values

The value returned by this function is not

chec ked .

d. Error Conditions

This function has no error conditions.

2. pt s i ze ( t ab , s i ze

1

, s i ze2

)

a . Paramet ers

The first parameter is a pointer to a PAGET.

The last two parameters are the sizes in 6^-byte blocks of a

process's data and stack.
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b. Functional Description

This function is present only in PSUNIX. It

puts page sizes into the PAGET. The order of sizes within

the PAGET is data pages from low to high virtual address

followed by stack pages from high to low virtual address.

c . Ret urned Values

The value returned by this function is not

chec ked.

d. Error Conaitions

This function has no error conditions.

3. pal loc(ptab/ds>ss»cont)

a

.

Paramet ers

The first parameter is a pointer to a PAGET.

The next two parameters are a process's data segment and

stack segment sizes in 64-byte blocks. The last parameter

is the contiguity flag.

b. Functional Description

This function is present only in PSUNIX. It

calls "ptsize" to put the page sizes into the PAGET,

allocates main memory for each PAGET page with a nonzero

size* and puts the starting block numbers of the allocated

memory into the PAGET. If allocation fails for any page,

all memory allocated for the process is freed. If the
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contiguity flag is set* contiguous memory is allocated for

both the data and stack oages.

c . Ret urned Va 1 ues

If allocation for all pages is successful / minus

one is returned. If allocation fails for any page/ zero is

returned .

d. Error Conditions

A returned value of zero indicates an allocation

error to the caller.

4. pfree(tab)

a . Pa ramet er

s

The parameter is a pointer to a PAGET.

b. Functional Description

This function is found only is PSUNIX. It frees

the memory allocated to the oages in the PAGET.

c. Returned Values

The value returned by this function is not

chec ked

.

d. Error Conditions

This function has no error conditions.
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5. pcopv (ot ab t nt ab )

a

.

Parameters

The first parameter is a pointer to the origin

PAGET. The second parameter is a pointer to the destination

PAGET.

b. Functional Description

This function is present only in PSUNIX. It

copies pages pointed to by the oriqin PAGET to corresponding

pages pointed to by the destination PAGET, A zero page

block number in either PAGET terminates the copying. The

number of blocks copied per cage is determined by the size

of the origin page.

c

.

Returned Va 1 ues

The value returned by this function is not

checked.

d. Error Conditions

This function has no error conditions.

6 . pra 1 1 oc (pr )

a . Paramet ers

The parameter is a pointer to a PRCC. The

PROC ' s TEXT is an imolied input.
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b. Functional Descriot ion

This function is present only in SUNIX and

PSUNIX. It acquires memory for the process's UVECTOR* data

segment* stack segment* and/ if necessary* shared text

segment. Space for the text segment is acquired only if the

text is not main memory resident. If any allocation fails*

all memory previously allocated is freed.

c . Ret urned Values

If all allocations are successful* the memory

block number of the first block allocated for the UVECTOR is

returned. If any allocation fails* zero is returned.

d. Error Conaitions

A return value of zero indicates an error to the

ca 1 1 er

7. pswaD ( daddr * t ab * num* f 1 ag

)

a

.

Paramet ers

The first parameter is a bloc* number on the

swap device. The second parameter is a pointer to a PAGET.

The third parameter is the number of Dages to swap. The

last parameter is the read-write flag.

b. Functional Description

This function is present only in PSUNlX. It

swaps the indicated number of pages to or from main memory.

8a





If the read-write flag is set » the pages are swapped into

the memory locations specified by the PAGET. If it is not

set* the pages are swapped to the swap device beginning at

the specified block number.

c. Returned Values

The value returned by this function is not

chec ked.

d. Error Conditions

This function has no error conditions.

8 . prswap ( ro

)

a

.

Paramet ers

The parameter is a pointer to a PPOC. The

PROC's TEXT is an imolied input,

b. Functional DescriDtion

This function is present only in SUNIX and

PSUNIX. It swaos a process's UVECTOR/ data segment/ stack

segment/ and/ if necessary/ text segment into main memory.

c . Returned Val ues

The value returned by this function is not

chec ked

.
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d. Error Conaitions

If an input error occurs during the swap/ the

message "swap error" will be sent to the console and the

system will crash.

I . b i o . c

1. physioCstrat, abp, dev, rw)

a

.

Pa rame t e r

s

The first parameter is a Dointer to the I/O

initiation routine routine for the device to be used. The

second parameter is to a buffer header that contains control

information about the I/O ooerat ion to be performed. The

third parameter is the device identifier. The fourth

parameter is a read/write flag.

b. Functional Description

This function computes and validates the

physical address of an I/O area within the User address

soace. If the address is valid, this function calls the I/O

initiation routine to start the I/O operation. In PSUNIX,

this function determines if the I/O area crosses a page

boundary. If it does cross a boundary, this function calls

" C o n t i g ( ) " to make the reauesting orocess contiguous.
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c . Ret urned Va 1 ues

chec ked .

The values returned by this function are not

d. Error Conditions

If an I/O error occurs or the requested

operation is not valid/ an error condition is signaled by

setting a bit in u«-uerror in the reauesting process's

UVECTOR.





APPENDIX C: SYSTEM BENCHMARKS

A. BENCH1

chdir /usr/emery
sh old
chdir ken
cc -0 -c s

I

d .c

cd . .

cd dmr
ed ipc.c </us r /bene

h

/edcmd >/dev/nul1
chdir /us r /bene h

cc -0 r f test .c

bas t owe r< t ower

i

n>/dev /nu 11

od /us r/sy s/con f /m45 . s >/dev/nul 1

cd /unix /dev/null
chdir /bin
sum *>/dev/nu 1

1

wa i t

chdir /us

r

/emery /ken
rm s 1 p . o

chdir /us r/bench
rm a .out

B. BENCH2

chdir /usr/emery
sh old&
chdir ken
cc -0 -c s 1 p .c&
cd . .

cd dmr
ed ipc.c </us

r

/bene h/edemd >/dev/nu11&
chdir /usr /bene h

cc -0 r f test .c&
bas t owe r< t owe r

i

n>/dev/nu 1 1 &

od /usr/sys/con f /m45 . s >/dev/null&
cp /unix /dev/nul 1&
chdir /bin
sum *>/dev/nu 1 1 &

wa i t

chdir /us r /eme ry /ken
rm s 1 p . o
chdir /usr /Dene

h

rm a .out
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