


?^u

IN MEMORIAM
FLORIAN CAJORl





Digitized by the Internet Archive

in 2008 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/dupuisalgebraOOdupurich



PRINCIPLES OF ELEMENTARY ALGEBRA



Th^>C^o.



THE PEINCIPLES

ELEMENTARY ALGEBRA

BY

N. F. pUPUIS, M.A., F.R.S.C.

Protessor op Pure Mathematics in the University of Queen's
College, Kingston, Canada

BEYISKD^AITD O^EnEC'iJ^D ^VITION'

Wehj got*

THE MACMILLAN COMPANY
LONDON : MACMILLAN & CO., Ltd.

1900

All rights reserved



'S

Copyright, 1892,

By MACMILLAX AND CO.

Set up and clectrotyped August, 1892. Reprinted September,

1900.

'y:^M^w^^.:^'\^

J. S. Cashing & Co. — Berwick & Smith

Norwood Mass. U.S.A.



PREFACE.

In the following pages I have endeavored to put into

form what in my opinion should constitute an Inter-

mediate Algebra, intermediate in the sense that it is not

intended for absolute beginners, nor yet for the accom-

plished algebraist, but as a stepping-stone to assist the

student in passing from the former stage to the latter.

The work covers pretty well the whole range of

elementary algebraic subjects, and in the treatment of

these subjects fundamental principles and clear ideas are

considered as of more importance than mere mechanical

processes. The treatment, especially in the higher

parts, is not exhaustive ; but it i^ hoped that the treat-

ment is sufficiently full to enable the reader who has

mastered the work as here presented, to take up with

profit special treatises upon the various subjects.

Much prominence is given to the formal laws of

Algebra and to the subject of factoring, and the theory

of the solution of the quadratic and other equations is

deduced from the principles of factorization.

The Sigma notation is introduced early in the course,

as being easily understood, and of great value in writ-

ill
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iv PREFACE.

ing and remembering important symmetrical algebraic

forms.

Synthetic Division is commonly employed, and the

principles of its operation are extended to the finding

of the highest common factor.

Except in the case of surds, no special method is

given for finding the square root of an expression which

is a complete square, as the operation is only a case of

factoring, and a simple case at that. For expressions

which are not complete squares, the most rational method

is by means of the binomial theorem or of undetermined

coefficients, both of which are amply dealt with.

Probably the most distinctive feature of the work is

the importance attached to the interpretation of alge-

braic expressions and results. Algebra is an unspoken

language written in symbols, of which the manipulation

is largely a matter of mechanical method and of the

observance of certain rules of operation. The results

arrived at have little interest and no special meaning

until they are interpreted. This interpretation is either

Arithmetical, that is, into ideas involving numbers and

the operations performed upon numbers ; or Geometri-

cal, that is, into ideas concerning magnitudes and their

relations. Both interpretations necessitate observation

and the exercise of thought; but the geometrical offers

the wider scope for ingenuity, and is the better test

of mathematical ability. In several cases, as in that
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of the quadratic equation, the solution frequently gets

its complete explanation only through its geometric

interpretation. Hence geometrical problems are freely

introduced, and the relations between the symbolism of

Algebra and the fundamental ideas of Geometry are

discussed at some length.

The Graph is freely employed both as a means of

illustration and as a medium of independent research;

and through these means an effort is made to connect

Algebra with Arithmetic upon the one hand, and with

Geometry upon the other.

The exercises are numerous and varied, and I trust

that they will be found to be fairly free from errors.

N. F. D.
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CHAPTER I.

Symbols, Definitions, and Formal Laws.

1. Arithmetic is pure or concrete. Pure arithmetic

deals with abstract number or numerical quantity. Con-

crete arithmetic has relation to numbers of concrete

objects or things.

Thus 3 is an abstract number, but 3 days is concrete.

Algebra is primarily related to pure arithmetic, but its

extension to concrete arithmetic is an easy matter.

The quantities which are the subject of arithmetic are

of three kinds

:

(1) Whole numbers or integers
;

(2) Symbolized operations called fractions

;

(3) Numerical quantities which cannot be exactly

expressed as integers or fractions, but whose values may
be expressed to any required degree of approximation.

Such are the square roots of the non-square numbers,

the cube roots of the non-cube numbers, etc. This third

class goes under the general name of incommensurables.

The expression numerical quantity, and frequently the

word number, will be taken to denote any of the three

classes.

2. Numbers are fundamentally subject to two opera-

tions— increase and diminution ; but convenience, drawn

from experience, has led us to enumerate four elementary

1



2 SYMBOLS, DEFINITIONS, AND FORMAL LAWS.

operations, viz. : Addition, Subtraction, Multiplication,

and Division.

All higher operations on numbers are but combinations

of the four elementary ones.

3. Algebra originated in arithmetic, and elementary

algebra is arithmetic generalized, the generalization being

effected by employing symbols, usually non-numerical,

to stand for and represent not only numbers or numeri-

cal quantities, but also the operations usually performed

upon numbers.

Thus algebra becomes a symbolic language in which

numbers and the operations upon them are written.

The symbols of algebra are thus primarily of two

kinds

:

(1) Quantitative symbols, which represent numerical

quantities, and

(2) Operative symbols, which indicate operations to

be performed upon the quantity denoted by the quantita-

tive symbol.

A third class, called verbal symbols, may be enumerated,

in which the symbol is a convenient contraction for a

word or phrase.

4. The quantitative symbols are usually letters. The

operative symbols, especially in elementary algebra and

in arithmetic, are mostly marks or signs which are not

letters. Relative position is employed to denote some

operations, and in higher algebra very complex operations

are often denoted by letters.

The verbal symbols do not denote quantity, and they

cannot be said, in general, to denote operations.
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The principal verbal symbols are

:

(1) = and =, either of which denotes that all that

precedes the symbol, taken in its totality, is equal to or

is the same as all that follows the symbol, taken also in

its totality.

(2) > and <. The first denotes that all that pre-

cedes the symbol, taken in its totality, is greater than all

that follows the symbol, taken in its totality; and the

second is like the first with less put for greater.

Other verbal symbols will be introduced as required.

5. From Art. 3 it is seen that operations in arithmetic

must be special cases of more general operations in

algebra. And hence it follows that arithmetic and

algebra must proceed on similar principles, and must be

subject to the same formal operative laws.

That the generalizing process of algebra should intro-

duce new ideas into arithmetic is to be expected; and

that this generalization should carry us beyond the neces-

sarily limited field of arithmetic is also to be expected.

Illustrations will occur hereafter.

6. The operative symbol -f (plus) denotes addition,

and tells us that the quantity before which it stands, and

to which it belongs, is to be added to whatever precedes.

Thus, 5 + 3 tells us that 3 is to be added to 5, and

-f- 3 is the same as the arithmetical number 3.

Similarly, + a is the same as a, whatever a stands for

;

and for this reason the sign + is seldom written when-

ever it can be dispensed with without producing ambiguity.

a -f 5 is the same as -j- a + 6, and indicates that the
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number denoted by h is to be added to the number
denoted by a.

7. Any interpretable combination of quantitative and
operative symbols is an algebraic expression. We shall,

in the meantime, confine ourselves to expressions written

in a single line, as

3a6-f 2c-f d-, etc.

In arithmetic we know that 3 + 5 is in its sum the

same as 5-J-3, and 3 + 5 + 8 is the same as 3 + 8 + 5,

the same as 8 + 5 + 3, etc. And as this must be a par-

ticular case of algebra (Art. 5), we must have a + 6 =
h-\-a, a-\-'b-\-c = a-\-'c-{-h = h-^c-\-a = etc.

This is the Commutative Laiv for Addition, and is ex-

pressed by saying that the order of adding quantities is

arbitrary^ or the sum is independent of the order of the

addends.

8. The symbol — (minus) placed before a quantity

indicates that the quantity is to be subtracted from

whatever precedes the symbol.

Thus, 5 — 3 tells us that 3 is to be subtracted from 5

;

and a — b tells us that the quantity denoted by b is to

be subtracted from that denoted by a. Now, a and b

denoting any numerical quantities, as long as a is greater

than b the subtraction is arithmetically possible, and the

result is an arithmetical quantity. But if a is less than

b, the operation symbolized is not arithmetically possible.

The expression a — & is then a symbolic representation

of an operation that cannot be arithmetically performed,

and the result of the operation, whatever it may be, is

not arithmetical.
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Thus, — 3, which is simply written — 3, and which

is called a negative number, does not belong to pure

arithmetic, but is an idea introduced into algebraic arith-

metic by generalizing the operation of subtraction.

And thus to every pure number, called now a positive

number, corresponds an algebraical negative number, the

relation between corresponding numbers being that their

algebraic sum is zero or nothing.

Negative numbers are important in their relations to

concrete arithmetic, and especially where geometric ideas

are concerned. This matter will be dealt with in Chap-

ter VIII.

9. It is said in Art. 2 that numbers are fundamentally

capable of only increase or diminution. Hence + and
— symbolize the two great operations in arithmetic and

algebra. These are distinctively the signs of algebra.

By the sign of a quantity is meant that one of these

two signs which precedes the quantity; and to change

signs is to change + to — and — to + throughout.

Also, two quantities have like signs when both are

preceded by + or both by — ; otherwise they have

unlike signs.

When no sign is written, -f- is understood.

10. That part of an expression included between two

consecutive signs is called a term.

To indicate that any portion of an expression lying

between two non-consecutive signs is to be taken in its

totality as a single term, we enclose the portion within

brackets.

Thus, in the expression a-f26c — 4(3c + 2 ab), a, 2 be
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are single or simple terms, and 3c-{-2ab is to be con-

sidered as one complex term.

The sign — and the number 4 preceding the brackets,

apply to its contents in their totality.

Instead of brackets, we often employ a line called a

vinculum
J
drawn, above the portion indicated, as, 3 c -j- 1? a6

;

and sometimes, for special reasons, this line is placed

beneath instead of above.

11. The symbol x or • (into or by) indicates that the

quantity following the symbol is to act as a multiplier

upon the quantity preceding the symbol.

With numerical symbols, as 4, 7, etc., it is evident that

we cannot dispense with the symbol, as 34 is not the

same as 3x4; but this difficulty does not exist with

letters, and hence we usually write ab instead of a x 6

or a • &.

In this case relative position or juxtaposition becomes

a symbol of multiplication.

12. The parts which make up a term, or an expression,

by multiplication only, are factors of the term or expres-

sion.

Thus, 3, a, &, and c are factors of Sabc, 3 being a

numerical factor, and a, b, c literal factors. So, also,

4, a, b -\- c, and c-^ a are factors of the expression

4a(6 + c)(c + a).

13. In arithmetic we know that 4x6 is the same in

value as 6x4; 3x2x5 is the same as 2x5x3, etc.

;

and as this must be a particular case of algebra, we must

agree that ab = ba, that abc = bca = etc.

This is the Commutative Law for Multiplication, and is
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expressed by saying that a product is indepefident of the

order of its factors.

Thus, ab means, indifferently, that b multiplies a or

that a multiplies b.

14. Since multiplication by + 1 effects no change in

the quantity multiplied, we have

(+l)(+a) = + a;

Or, + multiplied by + gives + in the product.

Again, a — a==0 = a + (— a) = a4-(+l)(— a),as — a
may be taken in its totality by placing it within brackets.

Hence (+ 1) (— a) must be —a;
Or, + multiplied by — gives — , and, by the commuta-

tive law for multiplication, — multiplied by + gives —
in the product.

Again, a ~ a = 0,

and writing — b for a, we have

-b-{-b) = 0;

and hence —(—6), or (— !)(— &) must be the same as +6;

Or, — multiplied by — gives + in the product.

Collecting results, we have as the Law of Signs : The
multiplication of two like signs gives +, and the multi-

plication of two unlike signs gives — in the product.

15. It is readily established in arithmetic that

3 (4 + 2 + 5) = 3x4 + 3x2 + 3x5.

And as this must be a particular case of algebra, we
must assume that

a (b -{- c -{- d) = ab + ac -\- ad.
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We have here three terms, b, c, and d, which are placed

in brackets and taken as a complex term, and we have

a multiplier a which operates upon this complex term.

And we see that we may distribute this operator so as

to act separately upon each of the terms of which the

complex term is composed.

This is the Distributive Law for multiplication.

Some other operations—like multiplication— are dis-

tributive, and some are not. The case for each operation

must be worked out and learned by itself.

16. A term, such as aaabbc, containing repeated letters,

is simplified in form by writing it a^b\ in which the

small numerals placed to the right and above a and b

show how many times each of these letters enters,

respectively, as a factor.

The symbol a^ is read ^a cubed,' and b^ is read ^b

squared.'

The letters a and b are subjects or roots, and the 3 and

2 are exponents or indices.

Similarly, a"", where n denotes any integer, is the nth.

power of a, read ^ a nth-power,' or ^ a-to-the-nth/ and

denotes that a is to be taken n times as a factor.

Now if n=p-{-q, i.e. if n be separated into two

integers denoted by p and g, we have

a**= a • a • a ••• to n factors.

Or a^+* = a • a • a • • • to jp factors x a • a • a • • • to g factors

= aP . a^.

This expresses the Index Law, its statement being that

the product of any powers of the same subject is that power

of the subject ivhich is denoted by the sum of the exponents.
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Thus, a'^ ' a^ z= a^ 'y a^ - a^ - a^ = a^^, etc.

Of course a is the same as a\

17. The Commutative laws for addition and multipli-

cation, the Distributive law for multiplication, and the

Index law are the great formal laws of elementary-

algebra, and its symbolism, its principles of operation,

and its results are applicable to any subject which by

any consistent process of interpretation can be shown to

be governed by these laws.

A proper conception of this fact opens the way to

important extensions in the applications of algebra.

The foregoing laws belong to elementary algebra

because this subject is a generalization of arithmetic, in

which these laws hold ; but that they are not all essential

to all kinds of algebra, we know, as we have a special

algebra. Quaternions, in which the commutative law for

multiplication does not in general hold true. But this

latter algebra is not generalized arithmetic.

18. A single letter as a quantitative symbol is said to

be of one dimension, and the number of dimensions of a

term, which consists of multiplications only, is the num-
ber of letters, either expressed or implied, which the

term contains.

Thus, ahCy a^b, a^ are each of three dimensions; and

3 a^bcdy 4 a^b% a^b^c are each of five dimensions, a numerical

factor, as 3 or 4, having no dimensions.

The number of dimensions of a term constitutes its

degree ; thus the first three of the preceding terms are

of the third degree, and the last three of the fifth degree.

Usually a term is said to be of a certain degree in

some particular letter or letters.
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Tliiis, Sab^x^ is of the first degree in a, of the second

in b, and of the third in x.

When the degree of each term of an expression has

reference to the same particular letter, this letter is

called a variable, and any other letters occurring in the

expression are constants.

Thus, in the expression ax^ -^bx -{- c, ax^ is of the sec-

ond degree in x, bx is of the first, and c, not containing

Xj is the absolute or independent term. In this case x is

the variable, and a, b, c are constants.

The term dimension is derived from geometry, and its

significance will be more fully seen hereafter.

19. An expression of one dimension in each term is a

linear expression, as a + ^ + <^-

An expression which contains a variable in the first

degree only is linear in that variable.

Thus, ^abx is linear in x, and 3a?> is the coefficient of x.

Similarly, x — a and ax + be are both linear in x,

although the first is of one dimension, and the second of

two, in regard to all the letters.

An expression which is of the same dimensions in

every term is homogeneous. Such expressions are specially

important.

Thus, a + 6 4- c, ab -\- be -[- ca, a^ -f 3 a^& -f 3 ab'^ -f b^ are

each homogeneous with respect to all the letters.

20. A quantitative symbol stands for any numerical

quantity whatever, and operations upon such general

quantities can be only symbolically indicated. Thus a

and b being any quantities, we denote their sum by

a + 6, and their product by ab.
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Herein lies the advantage of algebraic symbolization,

its great powers being due to two things

:

(1) The universal significance of the quantitative

symbol, and

(2) That the operations performed, unlike those in

arithmetic, are not lost sight of, so that a chain of con-

secutive operations may be so reduced by transformations,

as to depend upon the smallest possible cycle of such

operations.

21. As algebra is generalized arithmetic, every alge-

braic relation, which is arithmetically interpretable, ex-

presses some general relation amongst numbers.

Thus, ah (a + h) gives a% + ab^ by distributing ah, or

ah {a -^ h) = a^h -{- ab\

This interpreted gives the arithmetical theorem

:

The sum of two numbers multiplied by their product

is equal to the sum of the numbers formed by multiply-

ing each number by the square of the other.

It may be remarked that theorems like the foregoing

cannot, in general, be proved by an arithmetical process.

Repeated trials with different numbers would give a sort

of moral proof, but not a mathematical one, since we
could not possibly try all numbers. On the other hand,

the quantitative symbol standing at once for any, and

hence for every number, gives a proof which is both

rigid and universal.

EXERCISE I. a.

1. The following are identities arising from distribution ; inter-

pret them as arithmetical theorems.

i. a(a+ b) = a'^ -^ ah. ii. ab(a — b) = a^h — a6"^.



12 SYMBOLS, DEFINITIONS, AND FORMAL LAWS.

iii. (a-^b)(a-b) = a^-b^. y. (a-b)(a-b)=a-\-b^-2ah.

iv. (a+6)(a+6)=a2+62+2a&. yI (a -{- b) + (a - b) = 2a.

vii. (a + 5) -(«-&) = 2 5.

viii. (a + by + (a - 6)2 = 2(a2 + 52).

ix. (a + 6)2-(a-6)2 = 4a6.

X. (a + 6 + c)2 = a2 _|_ 52 + ^2 4 2(a& + 6c + ca).

2. Reduce to a single number—
i. l-{-2(-l + l-2)}.

ii. 3{4 - 5(6 - 7[8 - 9])}.

iii. ia-ia-Ki-i-TV-iV])}.

3. Condense as much as possible—
i. 2a — {Sa—(a — b — a)}.

ii. a-b{l -6(1 -a- 1-6)}.

4. Distribute the following—
i. {(a-6)-2(6~c)}.{(a + 6)+2(6 + c)}.

ii. {(m + l)a + (n + 1)6} • {(m - l)a + (n - 1)6}

4- {(m + l)a - (w + 1)6} . {(m - l)a - (w - 1)6}-

5. If Ti is an integer, 2 n is an even integer, and 2 n + 1 is an

odd integer.

6. The product of two odd integers is an odd integer.

7. The sum of two odd integers is an even integer.

8. The square of an odd integer is an odd integer.

9. The square of an even integer is divisible by 4.

10. What power of 2 is 2» x 22 x 2i-« x 2 ?

11. What power of a is a'"-^ - aP - a^^-p • a^-"* ?

12. According to the index law a* x a~^ = a*"i = a^.

Hence interpret a~\
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22. The symbols = and =. The symbol = placed

between two expressions denotes that one of the expres-

sions may be transformed into the other by the formal

operations of algebra. The whole is then called an

Identical equation, or an Identity, and the connected

expressions are the members of the identity.

Thus, ah (a — b) = a^b — ab^ is an identity, since the

left-hand member is transformed into the right-hand one

by distribution.

The symbol = between two expressions tells us that

the expressions are to be equal in their totalities, although,

in general, no transformation can change one into the

other.

That this condition of equality may exist, some rela-

tion must hold amongst the quantitative symbols, and,

usually, one of these, called the variable, is to have its

value so adjusted as to bring about an identity.

Thus, 4a + a? — 3=6a — 1 is an equation, or a con-

ditional equation, which is true on the condition that x

takes such a value as will make the whole an identity.

We readily see that if x stands for, or is replaced by

2a-f 2, the condition is satisfied. We say then that

2a + 2 is the value of x, and that x is the variable of the

equation.

The variable is often called the unknown, and it is

manifest that any letter occurring in the equation may
be taken as the variable. If a be so taken, its value is

found to be
"I

a; — 1.

23. Evidently an identity is not affected by perform-

ing the same operation upon each of its members ; and,

as a conditional equation is to be brought to an identity,
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the relation existing amongst its quantitative symbols is

not changed by performing the same operations upon

each member.

Thus in the equation 3aj — 2a4-l==a? + a — 4, we may
subtract x from each side, add 2 a to each side, and sub-

tract 1 from each side. We then have

2a; = 3a-5.

Then dividing each side by 2, we get as the value of x,

We notice that we transfer any term from one member
to the other by writing it with a changed sign in the

other.

Thus, x-{-a = b gives x = b — a.

The determination of the value of the variable, in terms

of the constants of an equation, is called the solution of

the equation. And although the solution of equations

does not constitute the whole of algebra, it undoubtedly

forms a very important part of it.

The following examples are given by way of illus-

tration :

Ex. 1. To find the value of x in the equation

3{a - 4(1 - x)} = 2{a + 3( a:- 1)}.

Performing all the distributions,

Sa-12-{-12x=z2a-\-6x-6.

Transferring 6 x from right to left, and 3 a — 12 from left to

riglit, we have
6x = 6 -a.

Dividing by 6, x = 1 — la.



SYMBOLS, DEFINITIONS, AND FORMAL LAWS. 15

Ex. 2. To find a number which exceeds the sum of its third and

fourth parts by 10.

Let X denote the number; the statement of the problem is alge-

braically expressed as

\x-\-\x — x — \^.

Multiplying by 12, 4 x + 3 x = 12 x - 120,

whence x = 24.

Ex. 3. A lends to B one third of a dollar more than ^ of his

money, and to C one half a dollar more than J of what he has left.

A has then $ 6. How much had he at first, and how much did he

lend to B, and to C ?

Let x denote A's money at first.

He lends to B, J x + J dollars.

He has left, x — Qx + i), or f x — | dollars.

He lends to C, 2 (§ ^ — i) + i' or ix + i dollars.

He has left, (f ^ — i) — ( 3 ic + |^) , or | x — f dollars
;

and this is $6.

Whence x = 20 ; and B's loan = C's loan = $ 7.

EXERCISE I. b.

1. Prove the following identities—
i. (a + 5)2 = a2-f h'^ + 2ab.

ii. (a2 + 52) (c2 + ^2) = ^ac + hdy + {ad - hey.

ill. (a2 _ 52)(<o2 _ (^2) ^ (^c - hdy - {ad - bey

= {ac-j-bdy-{ad-{- bey.

iv. (a + 6 + cy+{a + b - cy -^(b -{- c - ay +{c + a - by
= 4(a2-|_ 52_^c2).

V. (a2 4. ^,2)2 = (^2 _ 52)2 _|_ (2 aby.
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2. Interpret ii. and iii. of I as theorems in numbers.

3. By means of v. of 1 find two numbers such that the sum of

their squares shall be a square. Make a table of such numbers.

4. Find the value of x in each of the following—
i. x-\-ix-hix = 2x — 2.

ii. 3(l-2.3"^^)=:2{l + 2(.x-2)}.

6. Simplify l-{l-(l-x)}+l + {l-(l + a^)}+a:-{x-(x-l)}. .

6. Find x in the equation {x — 4) (a: + 6) = (x + 8) (x + 2).

7. Find a number whose half exceeds the sum of its fourth and

fifth parts by 40.

8. Find a number such that if it be increased by a, and if it be

diminished by b, one third of the first result is equal to one half

the second.

9. The sum of the ages of A, B, and C is 108 years. A is twice

as old as B, and twice C's age is equal to A's and B's together.

Find their ages.

10. After paying 2 % taxes on my income I have $ 1078 left.

What is my income ?

11. I pay 33 J % duty on the cost price of a horse. I keep him

2 months at an expense of $16, and I then sell him for $200, mak-

ing 20 % profit on the cost price. What did the horse cost ?

12. In a certain school f of the pupils are in the first form, J in

the second, ^^ in the third, and 14 in the fourth. How many
pupils are in the school ?

13. A market-woman sells to A half an egg more than half she

has, to B half an egg more than half she has left, and 10 eggs to

C, and she then has 6 eggs left. How many had she at first ?



CHAPTER 11.

The Four Elementary Operations,

addition and subtraction.

24. The addition of a and h is denoted by a+&, where

a and h stand for any quantities whatever.

If, however, a = 5 and 6= —3, the expression becomes

5 — 3, and we have a case of subtraction.

Thus, symbolically, addition and subtraction are one

and the same ; for in the expression a + 6 we cannot

know whether an addition or a subtraction is to be per-

formed, until we know something about the quantities for

which the letters stand.

Moreover, any subtraction may be put into the form

of an addition, and vice versa; for a — h is the same as

a + (— ?>), and a + 6 is the same as a — {—h).

Thus the subtraction of one expression from another

may be expressed as an addition, by changing all the

signs of the subtrahend. Hence the rule for Algebraic

Subtraction

:

Change the signs of the subtrahend^ and then perform

addition.

Ex. To subtract 3a— 2 6+ 3 from 6a+36— 4 is the same as to

add — 3a4-2 5— 3 to 6a+3 6— 4; and the result is 3 a+ 5 & — 7.

25. Since a series of terms connected by + and — signs

may be wptteix as one connected by + signs only, such

17
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a series is called an Algebraic Sum. Thus 5 — 4 + 3 — 1

has 3 as its algebraic sum, and may be written

5 + (-4) + 3 + (-l).

We are not justified in speaking of this as an Arith-

metic Sum, for — 4 and — 1 have no meaning in pure

arithmetic, and if we put it into the form S — {-{-5),

it becomes an arithmetic difference.

26. Symmetry. When the interchanging of two let-

ters of an expression leaves the expression unchanged,

except as to the order of the letters in a term, or the

order of the terms in the expression, the expression is

symmetrical in the two letters.

Thus, by interchanging a and b in

ab — ac -\- ad — be -\- bd — cdy

we get ba — be -\- bd — ac -\- ad — cd,

an expression the same as the former, except as to the

order of the terms and of the letters in some of the terms.

Hence the expression is symmetrical in a and b.

It is readily seen that the expression is not symmet-

rical in c and d.

An expression which is symmetrical in every pair of

two letters is symmetrical in all the letters.

Thus ab -\-bc-{- ca and abc + abd + acd + bed are each

symmetrical in all the letters which they contain.

Some special kinds of symmetry will be considered in

a more advanced stage of the work.

27. When we know the letters which enter into an

expression symmetrical in them all, and we are given a

type-term, we can write the full expression by building
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up the form of the type in every possible way from

the given letters, and taking the algebraic sum of all

the terms so produced.

Thus from the letters a, b, c:

i. with type ab^- we have—

ii. with type a {he — a) :

a {he — a) + h (ca — h)+ c (ah — c).

iii. with type ahc^i

ahc^ + hca'^ + cah'^.

iv. with type (h — c) (a^ _ 5c) :

(6 - c)(a2 _ hc)-{-(ic - a)(h-^ - ca) + {a - h){c^ - ah).

V. with a, 6, c, and d, and type ah'^ :

a&2 4. 5^2 _}_ ^(.2 _|_ ca2 _|. (;r(^2 _|_ ^^2 ^ 5^2 + c62 + 6d^

+ d62 4- cd^ 4- (^c2.

It will be noticed that in examples ii. and iii. each term

is formed from the preceding one by changing a to h,

b to c, and c to a. This is called a cyclic or cir- „

cular substitution ; for if we write the letters / \

in a circle, as in the margin, we pass from one ( ,

term to the next by commencing with a letter '''^^^—^*

one step further around the circle until the whole is

completed.

Many substitutions, where three letters are concerned,

are of this character, the distinctive feature being that

we do not interchange any two letters without, at the

same time, interchanging every two in circular order.

A cyclic change with 4 letters and type ab gives

ab -\- be -{- cd -\- da. This lacks the terms ac and bd to

make it completely symmetrical.
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In examples i. and v. a circular change is not suffi-

cient ; for from the type ab^ we must have a term &a^,

which is not given by a mere circular substitution. In

other words, we must interchange two letters without

affecting the third.

A little care and observation are all that are required

in writing out such expressions from a given type.

28. The symbol 2 (sigma), amongst other uses, is

conveniently employed to denote expressions consisting

of algebraic sums, written from a type.

These are symmetrical in all the letters employed, and

when written out are frequently of inconvenient length.

The notation ^a^b, with three letters involved, stands

for a^b 4- b^a -f b^c + c^b + c^a + a^c.

With four letters involved it stands for v. of the pre-

ceding article.

^{b — c ' a^ — be) stands for iv. of the preceding article.

As employed hereafter, 3 letters will be understood un-

less a different number is indicated, or in cases where

misunderstanding is not possible. ^4 will serve to indi-

cate 4 letters, and generally 2n to indicate n letters.

This is known as the Sigma Notation.

EXERCISE II. a.

1. With 3 letters write in full—
1. S(a2_5). iv. (Sa)2

ii. 2 (« + 6 - C)2. V. {2 (a -b)f.

ill.

c
vi. 2a X ^ab.

vii. (2a)-2 + 2 (a + & - c)2 - 4 2a2 + 2 Zab.

yiii. x^ — x22a + x^ab — abc.
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2. With 4 letters write in full—
i. Sa6. iv. (2a)2.

u. Sa&2c. V. 2 (a - &) (c - (T).

iii. Sa(5-c). vi. ^{aP' -h)(d^ - d).

MULTIPLICATION.

29. The multiplication of one expression by another

may be effected by a series of distributions, and when the

expressions are not too complex this is usually the best

method.

Thus (a -h &) (a — & + c) = a(a — & + c) + &(a — 6 + c)

= a^ — ah -{- ac -{- ah — h^ -\- be = a^ — h'^-{-ac-{- he.

By remembering and applying a few elementary pro-

duct forms, the operation may often be much curtailed.

As convenient fundamental forms we may take the fol-

lowing, although any simple form that can be remembered

may be equally useful

:

(1) {a + by = a'-^h' + 2ab,

(2) (a-hy = a'-\-h'-2ah.

(3) (a-h){a + h) = a:'-h\

(4) 3 (a + &) (& + c) (c + a) = (a + 5 + c)^- a^- 6^- c^

(5) (a + h + c) (a2 ^h^ j^c^ -ah -be- ca)

= a^^b^-{-c^-3abc,

or Sa (Sa^ — 5a&) = ^a^ — S abc.

The mark .-. is a verbal symbol for 'therefore' or

hence.^
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Ex. 1. {a -\- b - c + d)(a + b + c - d)

^(a -^ b - c - d)(a -\- b + c - d)

= (a + 6)2-(c-(^)2

= a2 + 52 - c2 - (Z^ + 2 a6 + 2 c(^.

Ex. 2. (a + & + c + dy = (a + 6)2+ 2(a + 6) (c + c?) + (c + (?)2

= a2 ^ 52 ^ c2 ^ ^2 _|_ 2(a& + ac 4- a(^ + &c + 6(^ + cd).

Ex. 3. To distribute

s(s— a)(s— 5)+ s(s— 5)(s— c)+-s(s— c)(s— a) — (s— a)(s— ?))(s— c),

where 2 s = a + 5 + c. s, being symmetrical in a, 6, and c, is not

altered by a circular substitution of these letters.

But this substitution brings s(s — a)(s — b) to s(s — b)(s — c),

and s(s — 6)(s — c) to s(s — c)(s — a).

Hence having the expansion of s(s — a)(s — b), the expansions

of the two following terms may be immediately written down by

a cyclic interchange of letters.

Now s(5 — a)(s — b) = s^ — s^(a -j- b) -\- s - ab.

.-. s(s -b)(s- c) = s^- s%b + c)+ S'bc,

and s(s — c) (s — «) = ^ — ^""^(^ + a) + s • ca.

The algebraic sum is

3s3_2s2(^a + 5_l_c)+s(a& + 6c+ca),

and as 2s=:a + 5 + c, this becomes

— s^ + s(a6 + bc-j- ca) A
Again the expansion of (s — a)(s — b) (s — c) is

^ — s2(a + 6 + c) + s(ab + 6c + ca) — abc,

or — s^ + s(a6 + &c + ca) — abc.

And subtracting this from A gives a6c as the final result.

This example furnishes a good illustration of the

remark in Art. 20, for the long series of operations sym-

bolized in the statement of the exercise is just equiva-

lent in its totality to the two multiplications symbolized

in the final result.
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Ex. 4. To prove the identity

8(2a)8 - S(a + by = S(2a + b + c)(2 6 + c + a)(2c + a + b).

Either of two methods may be adopted— (1) to transform one

member to the other by the rules of operation ; or (2) to transform

each to the same third expression by distribution. We shall adopt

the first way.

8(2a)3^(S2a)3= (a + b + b + c + c -\- a^.

Now put a + b = py b + c = q, c -\- a = r, and the identity

reduces to

(p + q + ry - P^ - q^ -r^ = 3(j) + r) (r + g) (g + i?),

which is true by Art. 29, (4).

30. Expansion of Symmetrical Homogeneous Expres-

sions.

This form of expression is of frequent occurrence, and

its properties of symmetricality and homogeneity enable

us to expand it with some facility.

Ex. 1. To expand (a -{-
b -\- cy - (a + by - (6 + cy - (c + ay.

Being homogeneous and of 3 dimensions, the type terms in its

expansion can only be a^, a^b, and abc. Taking the type a^, we
see that its coefficient is — 1. Taking the type a'^b, its coeffi-

cient is readily found to be zero. And the coefficient of the type

abc is 6.

.-. The expansion is 6 abc — a^ — b^ — (^.

Ex. 2. To expand (Sa)^ + (« + 5 _ c) (6 + c - a) (c + a - 6).

The expansion being homogeneous of 3 dimension^ and sym-

metrical, must be of the form

m2a3 4- nSa^ft + p • abc.

The coefficient of a^ is 1 — 1 or ; .*. m = 0.

The coefficient of a-5 is 3 + 1 or 4 ; .*. n = 4.

The coefficient of abc is 6 — 2 or 4 ; .-. p = 4,

and the expansion is 4 'Za'^b + 4 abc.
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EXERCISE II. b.

1. Write out the type terms in the following symmetrical and

homogeneous expressions—
i. (a-{-b + c + ay. iii. (a + 6 4- c)*.

ii. (a + by. iv. (a+b + c + dy.

V. (a + b + c + ay,

2. Show that

(a -j- b — c)(b -{- c — d)(c + a — b)

= ab(a + b)+ bc(b + c) + ca(c + a) - a^ - 6^ - c^ - 2 ahc,

3. Sa- 2a6-(a + &)(& -f-c)(c + a)=a6c.

4. Show that S{(a - 5) (2 & - c)} = (Sa)2 - 3 Sa^.

5. Show that

(a + 6 + c) (a + & - c) (6 + c - a) (c + a - 6)

= 2Srt252 _ Sa4 = a2(2&2_ a2)^ 52(202 - b'^)^d^{^aP' - d^)

= 4 52c2_(62 + c2-a2)2.

6. Expand—
i. S(a + &)(«-&).

ii. (Sa)* - S(a + &)* -f Sa*.

iii. Sa3(6_c)-Sa.Sa2(6_c).

iv. a(s — 6) (s — c) + 6(s — c) (s — a) + c(s — a) (s — 5)

+ 2(s — a) (s — 5) (s — c), where 2s=:a + & + c.

7. If 2 s = a + & + c, show that the three following expres-

sions are identical in value—
s(s — d)(b -\- c) + « (s — 5) (s — c) — 2 bcs,

s (s — 6 ) (c + a) + 6 (s — c) (s — a) — 2 cas,

s (s — c) (a + 6) + c (s — a) (s — 6) — 2 a6s.



MULTIPLICATION. 25

8. Show that (x — b)(x — c) (b — c) + (x — c) (x — a)(c — a)

-{{x-a){x -h){a-h) + (a - 6)(6 - c)(c - a)=0.

9. Show that (2a)2 = 2^2 _|_ 2 2a&, with any number of letters.

10. Multiply 2a2 + 2 2a6 by 2a, 3 letters.

11. Multiply 2a2 + 2a& by 2a6, 3 letters.

12. Multiply 2a2 4. 2 2a6 by 2a, 4 letters.

This gives (a + & + c -f ^)^.

Prove the following theorems in numbers—
13. The difference between the square of the sum and the

square of the difference of two numbers is the product of twice

the numbers.

14. The sum of the squares of the sum and of the difference

of two numbers is one-half the sum of the squares of twice the

numbers.

15. If two numbers be each the sum of two squares, their pro-

duct is the sum of two squares.

16. If two numbers be each the difference between two squares,

their product is the difference between two squares.

17. If the sum of two numbers is 1, their product is equal to

the difference between the sum of their squares and the sum of

their cubes.

18. If the product of two numbers is 1, the square of their sum
exceeds the sum of their squares by 2.

31. The distribution of (a? + a) {x + 6) (a? + c) ..., the

product of a number of binomial factors with one letter

the same in each factor, is very important.

The dominant letter, x, is taken as the variable, and
the expansion is arranged according to the powers of x.

With three factors we readily see that taking the x

from every factor gives ^) taking it from every factor
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but one, and taking the other letter from that one gives

Qc^ {a -\- b -{- c) ', taking x from one factor and the other

letter from the other two gives a; {ab + bc-{- ca) ; and

lastly, taking the second letters only gives abc.

Thus the expansion is

a^ + aj^ (a -f 6 + c) + X (ab + ^c + ca) -f abc,

or a^ -{ a^^a + x^ab + abc.

Similarly, with 4 factors it is readily seen that the

expansion is

aj* + a^%a + a^2a6 -f- x^abc + abed.

In a similar manner it is shown that with n factors

the expansion is

^n
_|_ ^n-i^a 4- x" 22a6 + a;"-^2a6c H \-abC'".

It will be noticed in every case that the last term is

the continued product of all the letters except the variable.

This is important.

If the signs are negative in all the factors, as (x — a),

etc., then Sa, labc, etc., involving an odd number of

letters in each term, will be negative, and 2a6, etc., in-

volving an even number, will be positive.

Thus, {x — a) (x — b).(x — c) (x — d) • • • to n factors

= aj~ — a;"-^2a + x^'-^^ab — H

Ex. 1. (x + a)(x + b) (x + c)

= x^ + ic2(a 4- 2) -f c) + x(ab -\-bc -{- ca) + abc
;

and making c =zh = a gives

(x + ay=x^ + Sx'^a + Sxa'^ + a^

Ex.2. (x + a)(ix + b)(ix-\-c)(ix + d)

= X* + x^Xa + x'^Zab + x^abc + abed.
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Now 2a contains 4 terms, 2a6 contains 6, 2a&c contains 4, and

a5cd is one term.

Therefore making d = c = h = a gives

(x + a)* = X* + 4 ic% + 6 x2a2 _|- 4 ^cq^s _}. gi^

Ex. 3. Similarly, we find

{x -\-ay = x-5 + 5 x*a + 10 x^a^ + 10 x^a^^ + 5 xa^ + a'\

The coefficients of the several terms in these and

higher powers are exhibited in the following table, which

may be extended at pleasure—
The coefficients form the diagonals, up to the 8th

power.

1 ^^.-'1 ^^--'i ^^.-'1 ^.-'1 ^^^'1 ^^^'1 ^^^'1 ^^^'1

1"''' ^^'-3^'" ^-^^''' ' --''°'''' ^-'5'"'' ^-21'''' ^.28'"'

r"' ^-'^^'^ .-'lO''" ^.^O'"' ^^.35-'"" ^,'56"""'

1"'' ^^--5"" ^--15''''" ^^35''" ^.-TO'""'

1''"' .6''"'' .21'''"'' ^,56""'

I''""' ^,-8'"'"

Ex. 4. (a; + a - 6)(x + 5 - c)(a; + c - a) = ic3 + a^s^^^ _ 5)

+ x2{(a - 5)(6 - c)} + (a - &)(& - c)(c - a).

Now 2(a - 5)= 0, 2{(a - &)(6 -c)} = 2a6 - 2a2,

and (a - 6) (6 - c) (c - a) = 2a5(6 - a),

and the expansion is

x^ + a:(2a6 - 2a2) + 2a6(& - a)

EXERCISE II. c.

1. Expand (a; _ l)(x - 2)(x - 3)(x - 4).

2. Expand (x - l)(a^ + 2)(x - 3)(ic + 4).

3. Expand (4a: + l)(3x + 2)(2x + 3)(a; + 4).
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4. Expand (x+a + & — c)(x + 5 + c — a)(x + c + a — 6).

5. Expand (a -\- b + c)^

Write it {«+(& + c)}^ and pick out the coefficients of the type

terms.

6. Expand (a + 6 + c + d)*.

Write it {(a + 6) + (c + d)}* and pick out the coefficients of the

type terms.

7. Write in S notation the expansion of (a -f 6 + c + d)^.

32. Function. An expression such as a^ + ab changes

value when a* changes value or when b changes value.

It is accordingly called a function of a and b.

When we wish to consider a alone as a variable, and

regard b as being constant, we speak of the expression

as a function of a, and we symbolize it as fa or /(a),

where /is di functional symbol.

This symbol merely denotes that a enters into an

expression as a variable, without any regard to the other

letters in the expression, and /(a;) stands for any expres-

sion in which x enters as a variable.

In general algebra the form of / is given, i.e. we are

given an expression of the form required.

Thus, if /(a) stands for a^ -{- 2 ab -\- c, then /(a;) stands

for x^ -\- 2 xb + c, where x is substituted for a in the type-

form. Similarly, f{a — x) = {a — x)^ -\- 2 (a — x) b -\- c, etc.

Ex.1. If /(a)=aH2a+ l, /(a-l)= (a-l)2+2(a-l) + l=a-2.

EX.2. If /(.)=^, /(r3^)=(r^J/(i+r^)=x.

EXERCISE II. d.

1. If f(x)=x^ + 3x - 10, find /(3), also /(- 3).

2. If fix) = x2 — 5x 4- 6 and y=Z — x^ find /(?/) in terms of x.
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3. If f{a) = 1 - a, show that /{/(«)} = a,

4. If f{x) = a-x, show that p(x) = f{x),

P stands for /{/(/)}.

5. If f{x) = x^ + X + 1 find f(x - 1).

6. If fix) = 1 + X +— +
^^ + — + etc., find the*^^ ^ 1.2 1.2.3 1.2.3.4

numerical value of /(I) to 5 decimal places.

7. If /(x) = a;4 _ 3x3 + 2x2 + 3a: - 3, find f(x + 1).

33. An expression such as

or l-2aj-3aj2 + 2a.^ + aJ*,

in which the exponents of the variable, x, are all positive

integers, is called a positive integral function of x, or

simply an integral function of x.

The first of these is written in descending powers of

the variable, and the second in ascending powers.

The coefficients may be numerical or literal.

The function is complete when all the powers of the

variable in consecutive order are represented; and any

integral function may be made complete in form by writ-

ing zero coefficients to the missing terms. Thus,

aj5 ^ Oic* + 2ar^ + Oic^ - 3a; + 1

is complete in form.

34. In multiplying together two integral functions of

the same variable, it is advantageous to operate upon the

coefficients alone, as the proper powers of the variable

are readily supplied to the result.

The functions, if not complete, should be made com-
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plete in form, and there is some advantage in writing

them in ascending order of the variable.

Ex. 1. To multiply a -\- bx + cx'^ + dx^ ^J P + qx -{- rx^.

h +c +d
q +r

Coefficients
fa +1
\p +(

Product withf^« + ^^l^+^^^
variable supplied

j

^ ^

4- ra

X2+J
+ q('

+ r6

+ re I

By observing in this typical case, how the coefficients

in the product are made up, i.e. by a sort of cross-multi-

plication, as pb + qa, pc-{-qb + ra, etc., we can perform

such multiplications with numerical coefficients with

considerable facility.

Ex. 2. To multiply 1 - 2x i- Sx'^ -{- x^ hy 2-x-{-2x^.

1-2+3 +1 Multiplicand.

2-1+2 Multiplier.

2 - 6x + 10x2 - 5x3 + 5x* + 2x5 . Product.

Ex. 3. To multiply x2 + Jx + J by x2 - Jx - |.

Arranging in ascending powers—

-i-iic-ix2 + 0x3 + x*

Ex. 4. To expand (i + x - 2 x2 + 3 x^y.

1st operationP + ^ ~ ^ + ^

l l + l_2 + 3

2d operation P + 2-3 + 2 + 10-12 + 9 1st product.

1 1 + 1-2 + 3

1 + 3-3-2 + 24-15-17 + 63-54 + 27

Result, l+3x-3x2-2xH24x*-15x5-17xH63x7-64x8+27x«.
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Ex. 5. To multiply x'^ - 2x^ -\- x + 1 by x'^ + 1.

Ordering in descending powers—

1+0+0-2+0+1+1
1 + 0-f 1

1+0+1-2+0-1+ 1+1+1

Result, x^ + x^ - 2x^ - x^ -{- x^ + X -{- 1.

35. A circulating decimal, or the arithmetical approxi-

mation to the value of any incommensurable, is an example

of a series of arithmetical figures which is non-termina-

ting. Similarly, in algebra we may have a series of

terms, arranged in ascending powers of the variable,

such that the series has no last term. Such a series is

called an infinite series, and is indicated by writing a few

terms at the beginning with three points, •••, with or

without ad inf. ; as

a-\-bx-{- cx^ + dar^ + •
. • ad inf.

As we cannot write all the terms of an infinite series,

we cannot, in general, write all the terms of any multiple

of it. In some cases, however, certain multiples may
become finite by the vanishing of all the terms after the

first few.

We have the arithmetical analogue in a repeating or

circulating decimal, such as 1.2333---, which gives a

finite product, 3 • 7, when multiplied by 3, but another

infinite series when multiplied by 4 or 5.

To multiply two infinite series together, we take the

same number of terms in both multiplicand and multi-

plier, and retain that number of terms in the product.
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by

Ex. 1. To multiply l-\-X + x'^4-X^ + X^ +
1-x + x^ -X^-\-X^ -

^
ll _1 + 1_1 + 1

Product, 1 + »2 + ic* +

1+0+1+0+1
, an infinite series.

Ex. 2. To multiply 1-^2 + 2 x^ - 3 x* +
by 1 + 2 X + ic2.

14-2-3...
OperationP + ^ ^^

ll + 2+ 1

1+2 + + 0+0...

Product, 1 + 2 x, a finite result as far as the series extends.

36. To square the series a -\- bx -\- cx^ -\- dx^ -{- ex^ -\-

'

Operation {" +^ +' ^'^ +' + ""

Coefficients <

4-6 +c 4-^ +e +
a? -\-2ab-\-2ac

+ (

-\-2ad -\-2ae

-{-2hc + 2hd

+ 0^

+

The operation is simply multiplication, but owing to

the identity of the multiplier and the multiplicand, the

coefficients in the result consist of double products and

squares ; and we notice that a square appears as the first

coefficient, and then in every alternate one.

By observing how the coefficients are made up, we
may write the square of a series with great ease.

Ex. 1. To square 1 + 2ic + Sic^ + 4x3 H to the term con-

taining x^.

1+2+3 + 4

1 + 4 + 6 1+ 8| + ...

+ 22
I

+ 12
I

.-. 1 + 4x + 10x2 + 20x^ + ••• is the required square.
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Ex. 2. To square 1 + hx - Ix'^ + j\x^

1 + i-J +tV

/. Square = 1 + ».

EXERCISE II. e.

1. Multiply 1 + 2ic + 3x2 4-4x3 + 6x*

by l-2x + 3x2-4x3 + 6x*.

2. Multiply l-x + ix'^-7x"+ 19x* - 40x5 + ...

by l + ic-3x2,

to the term containing x^.

3. Multiply - 1 - X + 3x2 - 2x8 - X* 4- 3x5 - 2x6

by 1 + X + x2,

to the term containing x^.

4. In the complex series

1 + m(ax + 6x2 ^ cx3 + ...) -|- n (ax + hx^ + cx^ + ...)2

+ p{ax + 6x2 + 0x3+ '••y-\-'

find the coefficient of x'.

5. Find the coefficient of x^y* in the product of

(x + ax3 + 6x5 + ...) by /l _^- ^^-Lly4...y

6. Square the series, 1 + ^
"
|(f

)'+
|(|)'-

7. Multiply 1 + x(l - 2 x) + x2 (1 - 2 x)2 + ...

by 1 - X + 2 x2,

to the term containing x^.

Let 2/ = X — 2 x2.
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8. Find the square of x—^ ^ ^ ?-^
2x 1-2 2-^x^ 1.2.8 23^5

The law of formation of the terms is evident, and any required

number of terms may be written down.

9. Show that

(1 - 2x + 3x2 - 4a;3 + ...)(^1 + 2a; + 3x2 + 4x3 + •••)

= (H-X2 + X* + -)^-

10. Find the coefficient of x" in the product

(1 + CiX + C2X2 + C3X3 + ...)(X~ + CjX"-! + C2X»-2 + CgX^-S + ...).

11. Find the coefficient of x"-^ in 10.

12. Find the coefficient of linear x in

l + ^^ + ^C^-l) ^2_^ ^(x-l)(x-2) 3 ^^^

1.2 1.2.3

13. If y = ax-[- bx^ + cx^ H and x = Ay + By'^ + Cy^ -\

find A and B in terms of a and 6, on the condition that the coeffi-

cient of each power of x, in the result of substituting for ?/, is zero.

14. If/(x)^6|l + l.J-+ll^.-L + Ll3:i._L+...l
*^^^ Ix 1 3x* 1.2 5x' 1.2.3 7x10^ /

calculate /(2) to four decimal places.

15. If /(x) = x — Jx^ + ^x^ — ix^+ ..., calculate, to four deci-

mal places, the value of 8{/(i) + /(J)} + 4/(|).

In order to obtain 4 decimals exact, the calculation should be

carried to at least 5 places.

16. In any multiplication, write the terms of the multiplier in

an inverted order, and the partial products are not formed by a

cross-multiplication. How are they formed ?
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DIVISION.

37. Division, in algebra as in arithmetic, is indicated

in several ways. Thus, a-i-b, -, and a/b all mean that

a is to be divided by b.

In any case, a is the dividend and b the divisor, where

a and b stand for any numerical quantities or algebraic

expressions.

We define the operation indicated by - as the inverse
b

of multiplication, such that - xb = a.
b

Denoting - by g, we have a = bq, where q is the quo-
b

tient. Hence the theorem

:

The dividend is the product of the divisor and the

quotient, and the quotient and the divisor are reciprocals

in the sense that if either be made the divisor the other

is the quotient.

Division thus consists in separating the dividend into

two factors, one of which is the divisor ; and any process

which accomplishes this effects the division.

38. Index law in division. Assume — = a^, and multi-

ply both members by a^

Then a'" = a"a^ = a"+^, by the index law.

Therefore m = n -\- p, ov p = 7n — n.

Whence — = a"*""

;

a"

and this must hold for all integral values of m and n.
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Hence the quotient from dividing any integral power

by another integral power of the same root is that power
of the root whose index is found by subtracting the

index of the divisor from that of the dividend.

Cor. 1. If m = 71, —= 1 = a"-~ =a*^.
a"

Hence the zero power of any finite quantity is to be

interpreted as meaning + 1.

Cor, 2. Making m = 0, — = ^ = a<^
*» = a-\

a"" a""

Hence a negative exponent is to be interpreted as the

reciprocal of the same root with the corresponding posi-

tive exponent.

Thus, ? = a6-i; 1 +- + ^=1 + ^^ + ^ ^ etc.

39. The most important cases of division, where any

special process is required, are those involving a variable

in an integral function.

Let aoi? + 6a? 4- c be a divisor, and 'px^ -\-qx-{-r be the

quotient, and let Ax^ + Bd^ -{- Cx^ \- l)x -{- E be the

dividend.

By multiplying the divisor and quotient together, we
obtain as coefficients in the dividend,

A B C D E
ap -hbp + cp + eg -f cr

i-aq 4- &g -\-br > .... X
-f ar

And operating upon coefficients only, when we divide

X by a 4- 6 + c we should get p -\- q -{-r] or, in other
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words, we are given the coefficients in X, and also a, 6,

and Cj and we are to obtain p, g, and r.

Let us see how it is to be done

:

1. Dividing ap or ^ by a gives p, andp becomes known.

2. Multiply p by b, and subtract the product from B,

leaving aq. Divide aq by a, and we have q,

3. Multiply g by 6 and p by c, and subtract the sum of

these products from 0, leaving ar. Divide ar by a, and

r becomes known.

Thus p, q, and r are obtained.

In the foregoing, we notice — (1) that the only quantity

by which we divide is a, so that if a be 1 there is no

real division.

(2) If we change the signs of h and c, the partial

product hp, bq, br, cp, cq, and cr all become additive, so

that the only operations involved will be multiplication

and addition.

(3) That the partial products, which form any co-

efficient in the dividend, as (7, are made up by a cross-

multiplication, as explained in Art. 34, Ex. 1.

This process is known as synthetic division, because

we build up the terms of the dividend by getting the

partial products which enter into their composition,

and through this synthesis we obtain the terms of the

quotient.

The following examples will illustrate

:

Ex. 1. To divide 2a:* + x^ - 8x2 + 17x - 12

by 2x2-3x4-4.
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Here a = 2, b

such that

—

3, c = 4 ; and we are to find p, g, and r

3,

2p = 2, -3p + 2g = l, 4j9-3g + 2r:

whence, i? = 1, Q' = 2, r =

and the quotient is x^ + 2 cc — 3.

This operation is systematically carried out as follows—

2 + 1-8
3 6

-4

1 + 2-

+ 3-4 Divisor, signs of b and c changed.

+ 17-12 . . Dividend.

- 9 + 12^

- 8 I
. . Partial products.

. . Quotient.

Here we change the sign of the 3 and 4 of the divisor,

and thus have only additions. We then divide each sum
by 2 as we proceed. Thus the multipliers in forming the

partial products are 3 and — 4, and the divisor is 2.

Ex. 2. To divide x^ - 3 ic^ + 6 x - 4 by ^2 - 2 ic + 1.

The coefficient of the first term of the divisor being 1 need not

be written. Making the functions complete in form, we have

1+0+0+0-3+0+0+0
+2+4+6+8+4+0-4

_1 -2-3-4-2+0
1+2+3+4+2+0-2-4

+ 2-

+ 6-4
-8 + 4

+ 2

and the quotient is x^ + 2 x^ + 3 x^ + 4 x* + 2 x^ — 2 x — 4.

If desired, the functions may equally well be arranged

in ascending order of the variable, as
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-4+6+0+0+0-3+0+0
^8-4+0+4+8+6+4

+ 4 -{_ 2 + - 2 - 4 - 3

2-1

+ + 1

+ 2 + 0.

-2-1

.4-2+0+2+4+3+2+1
4 - 2 a; + 2 x^ + 4 X* + 3 x^ + 2 x"' + x^.

40. The preceding are examples of exact division. In

arithmetic, when the dividend is greater than the divi-

sor, we can obtain an integral quotient and a remainder,

where there is one ; or, we may expand the remainder

into a decimal series which, in general, is non-termina-

ting.

Now, a higher degree in algebra corresponds to a

greater quantity in arithmetic ; so that, when the divi-

dend is of a higher degree than the divisor, and the

division is not exact, we may obtain a quotient and a

remainder, or we may expand the remainder into an

infinite series.

Ex.1. To divide x^ - x^ + 5x^ + lOx^ - 5x + 1 by x*-2x8
+ x^ — 2, obtaining the quotient and the remainder.

+ 2- 1+0 + 2 . . Divisor.

1+0-1+0
+2+4+4

-1-2

+ 5 + 10-5 + 1 . . Dividend.

+ 4- 2 + 4 + 4^1

-2+4 . . Partial products.

+ 2

1+2+2+2

Quotient,

x3 + 2x2 + 2a

will be noticed 1

+ 9 + 12-1 + 5 . . Result.

Remainder,

, + 2. 9x3+ 12x2 -x + 5.

bhat a vertical line is drawn to the
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left of that part of the divisor which is used in forming

the partial products.

In a case of even division, all the terms of the result

to the right of this line are zeros, and when we wish to

obtain the remainder we treat these terms as if they

were zeros in forming the partial products.

If we employ the terms to the right of the vertical

line in forming partial products, the quotient will extend

into a series, and all the terms to the right of the line

will contain negative powers of a?, and the series will thus

be arranged in descending powers of x.

If we wish the series to be in ascending powers, we
must arrange our functions in that order before begin-

ning the division.

Series so produced, like circulating decimals in arith-

metic, have their coefficients connected by a fixed law

of formation. Sometimes this law is obvious from sim-

ple inspection, and at all times it can be exactly deter-

mined.

This law is of great importance in investigations con-

nected with Recurring Series.

Ex. 2. To divide 1 + a; — x^ by 1 — 2 x + x^ to a series in

ascending powers of x.

1

+ 2-1

+ 1-1
+ 2 + 6 + 8 + 10 + 12 H

_1_3_ 4_ 5

1 + 3 + 4 + 5+ 6+ 7 + ...

Here the law of the coefficients is obvious, and the series is

1 + 3x + 4x2 + 5x'^ + 6x* + 7x5 + ...
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If we arrange the dividend and the divisor in descending powers

of X, the quotient coefficients are—
-1-1 + 0+1 + 2 + 3 + 4 + ...

and the series is—

/v /y»0 /y^ rv*0 /y»0
%Lf JU *K/ %K/ %Kf

or - 1 - x-i + x-3 + 2 a;-* + 3 x-5 + 4 x-^ + ...

Ex. 3. To divide 1 + x by 1 — x + x^ to a series in ascending

powers.

The series is 1 + 2 x + x'^ - x^ - 2 x* - x^ + x^ + ...

Here also the law of the coefficients is readily brought out, foi

the series may be written

(1 +2X + X2)(1 _X3 + X6-X9+ ).

Ex. 4. Divide 1 by 1 - 2x + 3x2.

2-3

1 2 + 4 + 2- 8-22-20...
_3-6- 3 + 12 + 33...

1 + 2 + 1-4-11-10 + 13...

The series is 1 + 2x + x2 - 4x3 - llx* - lOx^ + 13x6. .., and

the law is not apparent from inspection,

41. The following results are frequently required, and

should be committed to memory :

i. -^ = 1 + a: -f a;2 4- a^ 4- a;4 _j

ii. —=— = 1 — a;4-ic2 — ic^-f-ic*
l-{-x

iii.
^^ ^

=l4-2a; + 3a^ + 4a^ + 5a;^+'"

iv. -—±—^ = l_2a;4-3ic2-4ar» + 5a;*-
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14-2;
Ex. 1. To expand ——— to a series.

By iii. this is (1 }- z)(_l + 2 z + S z^ -\- 4 z^ + ...), which by dis-

tribution becomes

1 + 30 + 52:2 + 7^3+...

Ex. 2. To find from what division the series

1 + X - 2x^ - x^ - X* -h 2x^ + x^ + x^ - 2x^ "*

has been derived.

The series may be vsrritten

(1 + x-2x2)(l -x^ + x^-x^'");

and, by ii., 1 — x^ -\- x^ — x^ ••• =
1 + x3

/. 1 + a; - 2 a;2 .^ ^^^ division.
l + x3

EXERCISE II. f.

1. Divide x^ -\- x^ + 2x^ -2x + S by ic2 _ 2 x + 2.

2. Divide 6 a^^2 a^-\-9 a*-2 a^-a^-S a-\-l by 2a^+Sa-l,

8. Divide 1 + x- + 2x^ -2x^ + Sx^ by 1 + 2^ + 3x2 + 4x3.

4. Divide a — lbya + lto5 terms in descending powers of a.

6. Divide x^ — x^ -\- x^ — 2x — 1 by x^ + 2 x2 — 3 x + 1, giving

quotient and remainder.

6. Divide a -\- 2a^ — Sa^ -{- 4:a^'bj a — a^ + a^ — a^ to a series,

and obtain the law of the coefiicients.

7. If ?/ = 1 - + (1 - s)2 + (1 -zy+ ..., and = 1 + a: + a;2

+ ic3 + ..., show that y =— x.

8. Divide l+2x+3x2+4x3+... by l + 3x+5ic2+7x3+... to 6

terms of a series.
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9. Expand x -i- (x^ — 2 x -}- 1) into a series, first in ascending,

and second in descending powers of x.

10. What must be added to x'^ — x^ + x^ — x + 1 to make it an

even multiple of x^ — x + 1 ?

11. Divide 1 + fee + -\^-x'^ + H^' + l«* + fl^^ + ^
by 1 + 2x + 3x2 + 4ic3

12. Divide x^ + j/^ _j_ 3 ^.^^ _ 1 l)y a; 4. 2/ — 1.

Take x as variable and the functions are

flj3 4. 0x2 + 32/x + (2/3 _ 1) and x +(y - 1).

1 + +3?/ + (y' - 1)

- (y' - 1)

l-(2/-l) + (2/2 4-?/+l)

Quotient is x^ - x(y - 1) + (y^ -\- y + 1).

13. Divide a^ (b - c) + b^ (c - a) + c^ (a - b) hy a + b + c.

Take a as variable and proceed as in Ex. 12.

14. Divide x^ + 2 x^^ - x'^y^ + a^?/* - 2/^ by x^ + xi/^ _ y^.

The functions being each homogeneous, put y= zx; this reduces

the division to x^ (1 + 2 z^ - z^ + z^ - z^) -4- (1 -f ^2 _ ^s),

15. Find the simplest division that will give the series

X + 3x2 + 2x3 - x* - 3x5 - 2x6 + x7 + ...

16. What expression added to (a + 6 + c) (ab + 5c + ca) will

make it exactly divisible by a + 5 ?

17. Multiply a + 3 + 3 a-i + a-2 by 1 - a-i.

18. Multiply (x + x-i)3 + (x + x-i)2 + (x + x-i) + 1 by x-x-i.

19. Divide 4 x2 - 7 x + 3 - x-2 + x-3 by x-i - 2 x-2 + x-^.

20. If X - a be a factor of x2 + 2 ax — 3 b'^^ then a = ±b.
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21. If 1 -^ (a2 - ax-\- x^) be expressed as A + Bx+ Cx^ + Do(?

+ /(x), find A, B, O, D and the form of /.

22. If x^ — ax^ + &X + c be divided by x — z^ the remainder is

z^ — az^ + bz + c.

23. If the terms of the divisor are written in an inverted order,

by what arrangement of multiplication are the partial products

formed ?



CHAPTER III.

Factors and Factorization.

42. In a case of even division, we separate the dividend

into two factors (Art. 37). One or both of these might

be again separated into two factors, and so on, until the

whole expression was separated into factors which should

be linear in the variable or else numerical.

Thus a^ ^bx^ — a^x -f- a^b = (x — a){x-\- a) {x — b).

We thus see that Factorization, as an operation, is the

inverse of Distribution.

In the factored expression written above the factors

are each linear and binomial.

In 6 a (a + 6 4- c) {ab + 6c) (oj^ + £c + 1), 6 is a numerical

factor, a is linear and monomial, a-{-b -{-c is linear and

trinomial, and ab + be and oc^ -^x + 1 are both quadratic

factors.

Theoretically, any integral function of a variable can

be separated into factors linear in that variable ; but the

cases in which we can make the separation practically

are limited to but a few classes, out of all the possible

integral functions. Frequently, however, these cases are

of most importance.

43. Factorization may sometimes be effected by mak-

ing use of the standard forms of Art. 29.

Thus, because a^ — 6^ = (a + b) (a — b), we can always

45
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put into factors that which can be expressed as the dif-

ference between two squares.

Ex.1. (a2 + 62)2_(a2_52)2

= (a^ + 62 + «2 _ 52) (^2 ^_ 52 _ ^2 4. 52) ^ 4 ^252.

Ex. 2. x'^-^2a-a^-l = x^-(a- 1)2= (a; - a + 1) (x + a - 1).

44. An expression of the form x^ + ax + b can be

factored at sight if we can discover two quantities such

that their sum is a and their product is b whatever a

and b may stand for. For if p and q be such quantities,

the factors are {x -\-p)(x-^q).

Ex.1. x'^-2x-S = (x-{-l)(x-S),

Ex. 2. a'^ + 2 ah + h'^ - a - b - 6 = (a + 5)2 - (a + 6) _6

= (a + 6-3)(a + 6 + 2).

Ex.3. 8ic2 + 8cc-6 = 2(2x*^ + 2.2x-3)

= 2(2x + 3)(2x-l).

No particular rules can be laid down for this kind of

factoring. Success is to be attained only by observation

and practice.

EXERCISE III. a.

1. Put (x'^ + Sx + 2') (x2 _ 3 X + 2) into four linear factors.

2. Put ab + 2a^ — Sb^ — ibc — ac — c^ into linear factors.

3. Express x"^ — (p -]- q)x^ + pqx^ + (p - q)x — 1 as the pro-

duct of two quadratics in x.

4. Factor (x + yy + (x -^ y) (a -]- b) -^ ab.

5. Factor (a + x)2 - 3(a + x) + 2.

6. Factor 6(2 x + 3 ?/)2 + 5(6x'^ + bxy - ey^)- 6(Sx - 2 yy.

7. Express 4a262 -(^2 + 52 _ ^2)2 in the form of four linear

factors.
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8. Factor 12 ^2 - 7 x + 1, and 6 x^ - 21 x + 18.

9. Express x^ — px^ + (^ — 1)^^ -\- px — q as two linears and a

quadratic.

45. Let f{x) be any integral function of x, and let

p, q, ?', s, etc., denote its factors, so that

f{x)=p'q'r'S'"

Now, assuming that all the factors are finite, if any

factor becomes zero, the whole expression, /(a?), becomes

zero. And, conversely, the expression cannot become

zero unless one of its factors becomes zero.

If, then, we suspect that a certain expression is a

factor of /(cc), we put that expression equal to 0; from

this we find the value of x in terms of the other quanti-

ties concerned, and we substitute this value for x in the

given function.

If the function becomes zero, or vanishes, the sus-

pected expression is a factor ; and if the function does

not vanish, the suspected expression is not a factor.

Ex. 1. Is a + 1 a factor of 6 d'h + 3 a^ + 12 aft'^ -f 12 a6 + 3 a

+ 12 6^ + 6 6 ?

Put a + 1 = ; this gives a = — 1. Substitute — 1 for a in the

given function, and it vanishes.

Hence a -\- 1 is a factor.

Similarly, we find a + 2 6 to be a factor ; and by dividing by
these we get 6 & + 3 as the third factor ; and the expression

becomes
(a + !)(« + 2 5)(6 6 + 3).

Ex. 2. To factor a{h + he - c)+h{c + ca - a)+ c(a -\-ab- 6).

As the expression may have a monomial factor, try a = 0, i.e.

put for a.

The expression vanishes, and hence a is a factor.

But the expression is symmetrical in the three letters, and

hence b and c must also be factors.
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Therefore ahc is a factor.

By the index law the dimensions of the expression must be the

sum of the dimensions of its factors.

But ahc is of three dimensions, and so also is the expression

;

hence there are no other literal factors.

There may be a numerical factor, since such a factor has no

dimensions. The coefficient of the type ahc from the expression is

readily seen to be 3 ; therefore the whole expression factors to 3 ahc.

Ex. 3. To factor ah(h'^ - a^) + hc(c^ - 62) + ca(a'^ - c2).

We readily discover that there are no monomial factors.

Since h — a is a factor of one of the terms, let us try if it be a

factor of the whole.

Put h — a = 0, or write h for a in the expression. It vanishes.

Therefore 6 —a, and from symmetry, a — c, and c — 6, are

all factors.

Therefore (h — a)(a — c)(c — h) is a factor of 3 dimensions.

But the expression is of 4 dimensions. Hence there is a fourth

factor, symmetrical in a, 6, and c, and linear, a -{- h -\- c is the

only such factor that can occur here, and

(6 - a)(a - c)(c - h)(a + 6 + c)

is a factor, and comprises all the linear factors.

For the numerical factor take any type term that occurs in both

the expression and the factored result, as a'^h. Its coefficient

from the expression is — , and from the factored result it is +.

Therefore — 1 is the numerical factor, and the expression becomes

-(h- a)(a - c^iic - h)(a + 5 + c),

or (a - 6) (5 - c) (c - a) (a + 6 + c).

Ex. 4. To factor ah(c -d)+ hc(d -a)-\- cd(a -b) + da(h- c).

We find cf to be a monomial factor, and by symmetry h, c, and

d are factors.

Therefore abed is a factor of 4 dimensions.

But the expression is of only 3 dimensions, and should have

only 3 literal factors, unless it can have any number of factors.

The only expression that admits anything as a factor is 0. Hence

the expression = 0, identically.
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46. If we have an integral function of x, and if its

factored form be

(a; — a){x — b)(x — c) • • •,

the independent term of the function, T say, is equal to

abc'" (Art. 31).

Hence, in trying to factorize the function, since a, b, c,

etc., are all factors of T, the factors of T are the only

quantities to be substituted for x in our trial.

By substituting the rational factors of T, any rational

linear factors of the function will be discovered.

Of course it must be understood that factors are not

necessarily discoverable in this way, since it is only in

special cases that such functions have all or any of their

linear factors rational.

Ex. 1. To factorize x:^ - Sx^ - Sx^ + 7 x + 6.

Here T = Q, and its factors are ±1? ±2, ±3, and ± 6.

Put 1 for x; the function does not vanish, and x — 1 is not a

factor.

Put — 1 for X ; the function vanishes and x + 1 is a factor.

Similarly, try 2, — 2, 3, — 3, etc., successively until all the fac-

tors discoverable by this means are found.

Otherwise, having found x + 1 to be a factor, divide the func-

tion by X -\- 1. The quotient is

x^-ix^ + x + 6.

Of this new function x + 1 is again a factor. Divide by x 4- 1,

and the quotient is 2 ^ i a

which factors into (x — 3) (x — 2)

.

.-. X* - 3x3 - 3x2 + 7x + 6 = (x + l)2(x - 3)(x - 2).

In employing this latter method, it will be more

expeditious to try the higher factors of T first.
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EXERCISE III. b.

1. Factorize the following—
i. 2a25 + 2a5c. Iv. 2{a(65-c3)}.

ii. ^{ah'^-aT-h). v. ^{h{c - d){ah - cd)},

iii. S(a.&^-c-^). vi. S{a(6't-cO}.

vii. 2 (a62 _ a'^j^) + Sa& - 2^2 + i.

viii. (a+ 6 -c)(?) + c- a)(c + a- &)- 2a6(a + 6) + 2a^ °

ix. 2 {ah ' c — d) four letters.

2. Put 2a*6c — 2a^63 j^to quadratic factors.

3. If the 6th power of a number be diminished by 1 and the 5th

power of the same number be increased by 1 , the difference of the

results is divisible by the next greater number.

4. If any even power of a number be diminished by 1, and any

odd power of the same number be increased by 1, the results have

a common factor.

5. Factorize x* + 8^3 - 10x2 - 104 x + 105.

6. Express (x + l)(x + 3)(x + 5)(x + 7) + 15 as the product

of two linears and a quadratic.

7. Factorize x* — 5 x2 + 6.

8. Factorize (a+6 + c)3-(5+ c-a)3-(c+a-5)3-(a+6-c)3

9. Factorize ^a{bc + ac + d^ — a^} — 5 ahc.

10. Factorize

{ac + hdy^— abc{a — 5 4- c) — hcdQb — c -{ d)— cda(c — d + a)

— dab{d — a + 6).

11. Factorize

(a + & - x) (5 + c + x) + (6 + c - x) (c + a + a;)

+ (c + a — x) (a + ^ + ic) — 3(a5 4- 5c -f ca)

4- ahc - a2 _ 52 _ c2 _^ 3 x'^.
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12. Factorize

{a ~ h){h + c)+{h - c)(c ^ a) + {c - a) {a + &) + («- c)2.

13. Factorize x^ + x{^ah - Sa^) -(^a-h){h- c) (c - «).

14. If the 4th power of a number be increased by 4 and dimin-

ished by 5 times the square of the number, the result multiplied by
the number itself is the product of 5 consecutive numbers.

47. The symbol ^ is defined by the relation -yja x V^
= a, where a denotes any numerical quantity or algebraic

expression.

Thus V(^^ + &' + 2a6) = a + &, and V^^ ^ 4.

The expression ^a is read the square root of a, or, more

concisely, the root of a, and it denotes that a is to be

separated into two identically equal factors, and that one

of these is to be taken.

Hence when it is possible to separate a quantity or an

expression into two such factors, it is possible to express

exactly the square root of the quantity or expression.

Thus Sa^ + 2 ^ah can be separated into the identically

equal factors la x 2a; and hence %a -^
-yj {%a^ -\- 2^ab)

,

for any number of letters.

48. The expression y'a requires careful consideration.

(1) If a is a positive square number it is the product

of two identically equal factors, and ^a denotes one of

these factors.

The factors may be both + or both — , since in either

case the product is -f

.

Therefore ^a has two signs and is often written ± -y/a.

Thus V^ is either + x, or — a? ; and ->/16 is + 4, or — 4.

The double sign, whether written or not, must always
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be mentally attached to a square root, being frequently

of very great importance.

(2) If a is a positive non-square number, no two iden-

tically equal factors can be found for it.

The -y/a then symbolizes one of that class of numerical

quantities called incommensurables, or irrational quanti-

ties (Art. 1).

In this case ^a cannot have its value exactly expressed

;

but it may, under the form of a non-terminating decimal,

be expressed to any degree of approximation we please,

by the arithmetical process of ^extracting the square

root.'

Thus (1.41)2 differs from 2 by 0.0118

(1.414)2 n " 2 " 0.000604

(1.4142)2 i( « 2 " 0.000039

(1.41421)2 (( " 2 " 0.0000002

etc. etc.

And the successive squares become closer and closer-

approximations to 2, the degree of approximation de-

pending upon the extent of the decimal series.

This series, unlike circulants produced by division,

has no arrangement of its digits which would indicate

any law governing the order of their succession.

(3) Let a denote a negative number.

As like signs produce only -f in multiplication, it is

not possible to find, or to approximate to, or to conceive

of a quantity, which multiplied once by itself will give

the sign —

.

The symbol ^a is then called an imaginary in contra-

distinction to the quantities of (1) and (2), which are real.

Thus "y/— 3 is imaginary, while -y^3 is real.
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49. As in arithmetic, so in algebra, an expression may
be a complete square and be capable of having its square

root exactly expressed, or it may be a non-square and

admit only of having its root approximated to by an

infinite series.

Thus

1 x" , I'S a^ 1.3.5 a?^^ ^2 1.2 22^1.2 2^ 1.2.3 2^^

General methods for this approximation will be con-

sidered hereafter.

It may be remarked that an algebraic expression can-

not in itself be imaginary, as the character of real or

imaginary is wholly due to the interpretation of the

quantitative symbols.

Thus Va — 6 is real, if a and h are both positive

numbers, and b is less than a, but imaginary if 5 is greater

than a. If a is positive and b negative, the expression

is always real ; and if a is negative and b positive it is

always imaginary.

50. If a denotes a positive quantity, Va can be

expressed to any degree of approximation that we please,

and hence ^a must, like other quantitative symbols, be

subject to the commutative and distributive laws.

Hence

(1) V^+ ^b=^b-\--y/a, and ya • V^= V^ ' V^-

(2) y/a(b-{- V^)=b^a + ^a- ^c, etc.

51. The symbol y' is introduced here as a special

operative symbol, having a relationship to the exponent,

as will appear hereafter, and it is necessary that we
should investigate the limits of its operation, and dis-
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cover in how far it obeys the great formal laws of

algebra.

(1) As (ya- V^)(V^* V^) = V<^* V^* V^' V^ = ^^

by definition ; and as Va6 • -\/ah = ah by definition,

therefore ^a • ^h = y/ah ; and the operative symbol ^
is distributive over the factors of a prodxict.

Thus V^ • V^ • "^^ = V(4 ^^^) ^ V^ • Va6 = 2 Va6.

V (45 a^ &c2) =V (^ ^'c' . 5 a&) = 3 ac V5a6.

etc. etc. etc.

(2) Since ^{a-\-b)^(a-{-b) =a -\-b by definition,

and (-^a + V^) (ya + -^b) =a-\-b-{-2 -y/ab by distribu-

tion, therefore ->/(a + 6) is not the same as ->/a + V^*
Or, the symbol ^ is not distributive over the terms of a

sum.

The statements of (1) and (2) form the working prin-

ciples of this symbol, and should be carefully remembered.

52. Since ^— a-^— a = — a by definition, whatever

a may be, we assume that ^a is subject to the same

general laws of operation whether a be positive or nega-

tive, i,e, whether the expression be real or imaginary.

a . -Vb = y'a • V— bj

where ^a is real.

Thus every imaginary number can be reduced to depend

upon the symbol V— 1, which is called the imaginary

unit, and is usually symbolized by i.
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If, then, X denotes any real number, ix denotes the

corresponding imaginary ; the relation between these

being that the square of the first is + a^, and of the

other it is —x\
This generalization introduces us to a new set of num-

bers, the symbolic numbers or imaginaries.

All whole numbers, positive, negative, and imaginary,

may be represented in the general scheme,

..._5, -4, -3, -2, -1,0,1,2, 3, 4, 5, ...

... — ^i^ — 4 1,
— 3 i, — 2i, — ij 0, i, 2i, 3i, 4i, 5 i,

•••

53. The powers of the symbol i, which occur very

frequently, are given in the scheme,

i^ = — 1, i^ = — i, i* = 1, f = i, i^ = — 1, etc.,

the powers repeating their values in cyclic order.

A quantity which is the algebraic sum of a real and

an imaginary is called a complex quantity; but being

arithmetically inexpressible on account of its imaginary

part, it ranks with imaginaries.

Thus, 2 + 31 is a complex, and so also is 2 — 3 i. The
square of 2 + 3i is 2^+ (3i)^4-12i, or 12 z — 5, another

complex ; but the product (2 + 3 i) (2-3 i) is 2^ - (3 i) \

or 13, a real.

a + hi represents any number whatever; for if 6=0, it

is real ; if a = 0, it is imaginary ; and if neither a nor h

be zero, it is a complex.

64. The expression x^ -\-px-\-q can always be sepa-

rated into two factors linear in x.
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=^(x
i

P + ^P'-'^^Vx
I

p-Vp'-4g

As these factors both contain the same square root

part, they will be both real or both complex, i.e. imaginary.

But in any case they will, upon distribution, reproduce

the original expression.

Thus the factors of a;^ + 2 a; + 3 are

both being complex quantities.

55. The expression aa^ -{-bx + c can always be sepa-

rated into a monomial factor, a, and two factors linear in x,

aoc^ + bx + c^a{x^-{--x-\--
\ a a

The part within brackets is the same expression as

ar' -f- »aj + g, if we write - for p and - for q.
a a

Making this substitution in the result of Art. 54, gives,

after reducing,

x-\—«{-^±tf^}{' 2a

This factorization may also be done independently as

follows

:

aa^ + 2>a; + c =— { 4 aV + 4 abx + b^ -(b^ -4.ac)\

=— K2aa; + &)2-(V62-4ac)2|
4a ^ ^
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==^l2ax-^b-\-Vb''-4.ac\l2ax-\-b-^/b^-4.ac\

Ex. 1. The factors of 3ic2 + 5 a; - 1 are

Ex. 2. The factors of 2 ^2 - 3 x + 2 are

The two factorizations, of Art. 54 and the present

Article, are very important, and the forms of the factors

should be carefully mastered.

Taking ax^ -{-bx + c as being the most general in

form, the square root part of each factor is -Vb^ — 4 ac.

The character of the factors will depend upon that of

this part of them.

If a and c are +, and 4ac is greater than 6^, the fac-

tors will be complex quantities.

If 4 ac be less than 6^, the factors will be real and
unequal ; and if 4 ac = b^, the expression V6^ — 4ac
becomes zero, and the factors are real and equal.

Cor. The expression aa^ -{-bx-\-c is a complete square

when 6^ = 4 ac.

The finding of the square root of an algebraic expres-

sion is equivalent to the separation of the expression

into two identical factors, and hence requires no special

process.

If the expression is a complete square, the factorizar
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tion ranks with the simpler cases. But if it is not a

complete square, the only practical method is by means

of the binomial theorem or undetermined coefficients, to

be given hereafter, and the root is expressed as an

infinite series.

Thus, in a^ — 2 a& + a + 4 5^ — 4 & + 1, we readily see

that ± a, ±2b, and ± 1 must be terms of the root, and

the least observation shows that the root is a — 2 & -|- 1.

Ex. 3. The factors of 2 x^ — 3 x — 4 are

2{x + }(-3+ V41)}{x + K-3-V41)}.

Ex. 4. The factors ot x^ + 2x+10 are

(X + 1 + Si)(x + 1-Si).

Ex. 5. Determine the value of m so that 3 x^ + 4 mx + 12 may
be a complete square. We must have

62 = 4 ac, i.e. (4 m)2 = 4 • 3 • 12.

Whence m = 4- 3 or — 3.

56. The expression x"^ -\- bx^ -\-c can be separated into

four linear factors. Let a, /?, y, S denote these factors.

Any two of these multiplied together gives a quadratic

factor of the expression.

But these may be multiplied two together in three

different ways, namely,

afi, yS ; ay, )8S ; and a8, /?y.

Hence x'^ -{-bx^ -\- c can be separated into a pair of

quadratic factors in three different ways.

Ex. x* + 10x2 + 9= (ic2 + 9)(x2 + 1)

= (x + Si)(x — S i) (x + i) (x — i).
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Thence the pairs of quadratic factors are—
1. (a;2 + 9)(a:2 + l).

2. (x^ -\-iix- 3) (x2 -iix-S),

3. (^2 + 2ix-\- 3) (ic2 - 2 IX + 3).

57. The factorization of x^ — 1 is important,

and by Art. 54,

If any one of these factors becomes zero, the expres-

sion vanishes ; i.e. ar^ — 1 = 0, and qc^ = 1.

Hence, when x = l, or - ^^W^ or - hth/^ a^ = 1.
' '

2 2

And since the cube of each of these three values of x

is 1, these are the three cube roots of unityj one of which

is real, and the other two complex.

The complex roots are generally denoted by <o and w^,

because the square of either of them is equal to the

other.

Then w^ = 1, w* = w^ . w = w, w^ = o)% w^ = 1, etc.

Since w^ — 1 = 0, its equivalent (cd— l)((o^4- a)-f-l)=0;

and as 0) — 1 is not zero, we must have

0)2 + a> + 1 = 0.

And this is the fundamental relation connecting the

cube roots of 1 ; i.e. the sum of the three roots is zero.
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Ex. Multiply together x + wy + w^^ and x + w^y + wz.

Distributing (x + wy + ta^z) {x-\- (ohj \- wz) gives

But w3 = 1, a»2 + <u = - 1, and w* + (o2 = w + w^ = - 1.

/. (x + wy H- w2;j) (x + w2?/ + wz) =:x'^ + y'^ \- z"^ — xy — yz — zx.

EXERCISE III. c.

1. Find V{«^ + 62 + 2 a6 - 2 a - 2 6 + 1}.

2. Separate x2 + 4y2^4a.2^_4ic_8?/4-4 into two identically

equal factors.

3. Express Vab^ + Vac* — ^74 aft^^^ as a multiple of a single

irrational factor.

4. Show that (a + hi) (c + di) has the form A + J5i, and ex-

press A and B in terms of the small letters. •

5. Distribute (x — a + 6Q (x — a — ?>i)

.

6. Show that ix - I (ix)2 + J {ixY — \ (zx)* +

= i(x-Jx8+ix5-+...)+ix2(l-i^'+J^*-+-).
7. Factorize the following—

1. x2-3x-3. V. ax2 + x4-a.

ii. x2 - 2 X + 5. vi. px'^ - (p + 1) x + 1.

iii. 4 x2 - 4 X - 2. vii. {a^ - 62) x2 + 2 ax + 1.

iv. 5 x2 + 3 X - 6. viii. 2 + ax +—

•

ax

8. Resolve x* — 11 x2 + 10 into four linear factors.

9. Resolve x* — 3 x2 -f 1 into linear factors.

10. Resolve x* + x2 — 2 into its three pairs of quadratic factors.

11. Resolve 4x2 — 4x — x* + l into linear factors.

12. Resolve x^ — 2 x2 — x + 2 into linear factors.

13. Distribute (1 + x)(l + t«^x)(l + w2x).
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14. Show that (a + w/3 + ^27) (a + (o^^ + W7) = Sa^ - Sa/3.

15. Show that {x-\- tay -\- uiHf + (a; + ^^2/ + w^)^

= 2 2x3 -3 2x2?/ + 12x2/0.

16. Distribute (x + w?/ + w2^) (x + 0^22/ 4- iaz) (x + 2/ + «).

17. Show that (x + w?/ + ^2^)3 - (x + 0*22^ + ^^y

= - 3V^=r3 (X - 2/) (2/ - 2;) (;? - X).

18. Find the relation between a and 6 when

(a + &)x2 - (a2 - 62)x + a26 + aW-

is a complete square.

58. The integral function of a?,

ic* _ lOa^ + 35a;2 - 50a; + 24,

factors into

(a; _ 1) (a; _ 2) (a; - 3) (a; - 4).

The numbers 1, 2, 3, 4 are the roots of the function,

because from these, and the variable x^ we may build up
the function by multiplication, or, so to speak, cause it

to grow up.

If any of these roots be put for x, the substitution will

cause the function to vanish, since it makes one of the

factors zero. And, conversely, the only single substitu-

tion that will make the function vanish must make one

of the factors vanish, or is the substitution of one of the

roots for x.

Hence the roots of an integral function of any variable

are those quantities which, when put for the variable in

the function, cause it to vanish. And reciprocally any

quantity, which put for the variable will cause the func-

tion to vanish, is a root.
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Thus the roots of a^ + x^'^a + x^ab +abc are — a, — b,

and — c
J
for the function factors into

(x + a) (ic + b) (x + c).

59. The expression a;* — 10 ic^ + 35 ic^ — 50 a? + 24 = is

a conditional equation, or simply an equation in which a;

is to have such a value as will make the expression an

identity (Art. 22).

We have seen, in the preceding article, that this will

be effected by making x equal to any one of the roots of

the function, namely, 1, 2, 3, or 4.

It is readily seen that the same principle applies to

fimctions of any degree.

Hence: (1) In the equation formed by putting an

integral function of a variable equal to zero, we obtain

the roots of the equation by separating the function into

factors linear in the variable.

The determination of any one of these factors is a

solution of the equation, and the determination of all

these factors is the complete solution.

(2) The whole number of solutions, or the number of

roots which the equation has, is the number of linear

factors into which the function is theoretically separable,

and this is the same as the degree of the function in the

variable.

The solution of an equation is thus equivalent to the

factorization of the function into factors linear in the

variable.

60. When the roots of an integral function or of the

corresponding equation are all real and all rational, they

can generally be found.
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Also, the methods of factoring now at our disposal are

sufficient for the linear factorization of all integral

functions of a single variable of not more than two
dimensions ; but these methods are not sufficient for

the general factorization of functions of more than two

dimensions. They suffice, however, for many special

and particular cases.

Ex. 1. To find all the solutions of x* - x^ - 2 ic2 - 2 + 4 = 0.

By trial we readily find x — I and ic — 2 to be factors.

Dividing by these gives ic^ + 2 aj + 2 = 0.

The factors of this are (x + 1 + i) (x + 1 — i)

.

And the four roots are 1,2, — 1 — ^ and — 1 + i.

Ex. 2. To solve the equation x^ — bx-\-2 = 0.

Factorization gives (x — 2) (x^ + 2 a; — 1).

The factors of ic2 + 2 x - 1 are {x + (1 + ^^)}{x + (1 - V^)}-
And the roots are 2, - (1 + ^2), - (1 - V^)-

A linear equation in any variable is simply a linear

factor of unity. By proper transformations such an

equation may always be brought to the form

Ax-B = 0,

B
or ^= .'A
which is the only solution, x having but a single value.

EXERCISE III. d.

1. Solve the following equations—
1. x^ + 4 x^ — X — 4 = 0.

ii. x5 + x^ - x-2 - 1 = 0.

iii. x3 + 3x2 + 4x + 2 =: 0.

2. Find values of x that will make (&2 _ a2)x + ^^^ -^ equal

to (x-l)(a-6). ^



CHAPTER IV.

Highest Common Factor.— Least Common
Multiple.

61. The expressions 2a^bc and 6ab^ have 2, a, and b as

factors common to both, and the product of these, 2aby

is the highest common factor of the expressions.

The name Highest Common Factor is contracted to

H. C. F., and sometimes G. C. M. (greatest common
measure) is used in its stead.

The expressions ar^ — 7 ic + 6 and a;* + 2a^— 9a^ + 8

factor respectively into {x — l){x — 2) {x + 3) and

{x — 1) {x -\-l) {x — 2) {x -{- 4t). They accordingly have

the binomial factors (cc — 1) (x — 2) or ic^ — 3a; + 2 as

their H, G. F,

Common monomial factors, where they exist, are readily

detected by inspection. To detect binomial factors, we
may factor the expressions and pick out the common
factors, as in the preceding example, or we may proceed

upon the principle now to be established.

62. Theorem. If two expressions have a common
factor, the sum and the difference of any multiples of

the expressions have the same common factor.

Let A and B denote the two expressions, and let /
denote their common factor, so that A = Pf and B = Qf,

where P and Q denote all the factors remaining in A
and B respectively after the removal of/.

64
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Let a and h be any numerical multipliers.

Then, aA ±bB = aPf± bQf= (aP ± bQ)fi

and as this last expression contains the common factor

/, the theorem is proved.

63. Now let A and B be two integral functions of x,

and let them have the common factor /, which we will

suppose to be quadratic, as their H. C. F.

SJ taking the sums or differences of proper mu.tipies

of A and B, Ave may reduce the dimensions of each by

unity, and obtain two new functions A^ and J5', one

dimension lower respectively than A and B, and of

which / is still a common factor.

By operating in a similar manner upon A^ and B\ we
find two functions A^^ and .B", two dimensions lower

respectively than A and B, and containing/ as a common
factor.

,_ By a continuation of this process we must eventually

reduce A and B to depend upon functions of two dimen-

sions, and having / as a common factor.

Hence these, upon rejecting all monomial factors, must

be the factor /, and must therefore be identical.

And thus the identity of the two results at any stage

of the operation indicates that the H. C. F. is obtained.

Ex.1. Let ^=6x3-7x2-9^-2, B = 2x^+Zx'^-\lx-Q.

Operation.

u4 .... 6x3-7x2- 9x- 2 B ... .2x3+ 3x2- llx-6
35 . . . 6x3 + 9x2-33x- 18 3^. . . ISx^ - 21x2 - 27x - 6

ZB-A . . . 16x2-24x-16 3^-5 16x3 - 24x2 - 16 x

Reject factor 8, 2 x2 — 3 x — 2 Reject factor 8x, 2x2 — 3x — 2

The results being identical shows that the highest common fac-

tor is 2x2 -3x- 2.
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64. In the preceding example we notice

:

(1) That the presence of the variable is unnecessary,

and the operation may be carried out upon the coefficients

alone.

(2) That as we reject monomial factors wherever they

occur, all monomial factors should be removed before

beginning the operation, and that any of these that are

common to both functions should be set aside and be

multiplied by the final result to give the complete

H. a F,

Ex. 1. Let ^= 3rK3-10ic2-|-9a;-2, 5= 2a;8 - 7«2 + 2« + 8.

A 3-10+9-2 B 2- 7+ 2 + 8

2 A 6-20+18-4 4^ 12-40+36-8
ZB . . . ,. . . 6 - 21 + 6 + 24

A' . . , .

19A' . . ,

14^' . .

1 + 12-28

. . . . 19 + 228 - 532

. ... 196 - 658 + 532

B' 14 - 47 + 38

14^' .... 14 + 168-392

A" 215-430

-f-215 .1-2

B" 215-430

-^215 1-2

.-. x-2 is the H. C. F.

Ex.2. Let J[=3x*-6x3-6x-3, 5= 6x4 + 12x3 + 12-6.

3 being a common monomial factor, we set it aside and write

A 1-2 + 0-2-1 B 1+2 + + 2-1
B 1 + 2 + + 2-1 iA' 1 + 0+1

A' 4 + + 4 B' 2-1 + 2-1
iA 2 + + 2-4 1 + + 1

.-. 3(x2 + 1) is the H. C F.
B" 1 + + 1
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Ex. 3. Let ^ = 3x4-55c3 + 5c2 + 4x+l, B = Sx^-nx-4.

A 3-5+1+4 + 1 B 3-11-4
B 3-11- 4 4 A" 108 + 48 + 4

B" 111 + 37

-f- 37, B'" 3 + 1

.-. Sx + lis the H.C.F.

A' . . , .

2B
. . . 6+ 5+ 4 + 1

... 6 - 22 - 8

Af
9B'" . . .

27 + 12 + 1

27 + 9

A"f 3+1

It may be remarked that the functions must be com-

plete in form before beginning the operation.

65. When two integral functions of the same variable

have a common linear factor, the corresponding equations

have a common root ; and if the functions have a com-

mon quadratic factor, the corresponding equations have

two common roots, etc.

Ex. To find the relation between the constants in order that

the equations x^ + ax -{ b = and x^ + a^x + 6i = may have a

common root.

The functions x^ + ax + 6 and x^ + a^x + b^ must have a com-

mon linear factor.

A 1+ a+ b B l + «i + 6i

bj^A b^ + b^a + b^b A 1 + a + 6

bB 6 + &«! + 6i& (a-aO + (6-6J
A', . . . (b-b,)-\-(ba,-bia)

These results must be multiples of the same Unear factor.

Hence reducing the first term to 1 in each gives—

1 A. ^cti ~ ^l<^ — 1 _L ^ &i

b — bi a — a^

.'. (b — b^y = (a — a{)(bai — b^d);

which is the required relation.
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EXERCISE IV. a.

1. Find the H. C. F. of each of the following—
i. a:* - 4 ^3 + 2 a;2 + 4 X + 1 and x* - 6 x^ + 1.

li. a^ _ 2 a^ + 6 a - 9 and 3 a* - 2 a3 - 8 1;;2 + 6 a - 3.

Hi. lOx^ + x2 - 9ic + 24 and 20z* - 11 x- + 48x - 3.

iv. 5ic-^(12a:3 + 4x2 + 7x-3) and 10x(24x^ - 52a:2 + 14x - 1).

V. ic* — px^ + g — 1 • x'^ -\- px — q and «* — gx^ + j? — 1 • x^ + gx— |).

vi. «_Vl + ^and^^^^
6* «* 63 ^3

2. Find the relation between a and h when x^ _|. ^^j + 10 =
and x2 + 6x — 10 = have a common root.

3. Find the value of c when x^ — 3 x + 2 and x^ + ex + 3 have

a common linear factor.

4. Find the condition that ax^ + 6X + c and jpx^ + qx + r may-

have a common linear factor.

6. Find the condition that

x3 + ax2 + 6x 4- =
and x^ + ajX^ + ft^x + c^ =

may have a common root.

6. Find the value of a when x^ — x — 6 and x^ + x(3 — a) —3 a

have a common linear factor.

7. If X* + X + « and x* — x + 6 have a common linear factor,

show that (a - 6)* = - 8(6 + a).

66. An expression which contains two or more given

expressions as factors is a common multiple of the given

expressions, and that common multiple which is of the

lowest possible dimensions is the lowest common multiple

or the least common multiple of the given expressions, the

Letter term being more particularly applicable to num-

bers. The contraction L. C. M. is used for either.
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If acef and dbde be two expressions in which the

individual letters represent linear factors, their L. C. M.
is dbcdefj and we see that in order to find the L. 0. M.
of two expressions or quantities we take the factors that

are common to both, as a and e, and the factors which
are peculiar to each, as c and / from the first, and b and
d from the second, and form the continued product of

all these factors.

Evidently a similar process applies to the case of

more than two expressions.

Ex. 1. To find the L.C.M. of x'^-x{a^h)-{-ah, x^-ax-x-\-a,
and x"2 — 6x — jc + h.

The expressions factored become—
(x -a)(x- &), (x - a){x — V), and (x - 6) (x - 1) ;

and the L. C. M. is (x — a)(x — b)(x — 1); and this is evenly divisi-

ble by each of the given expressions.

Ex.2. To find the i. C itf. of

x^ — ax — bx + ab and x"^ — 2ax + a\

The expressions factored are (x — a)(x — b) and (x—a)(x—a).
Here sc — a is a common factor, x — b is peculiar to the first,

and the second ic — a to the second.

.-. the L. a M. is (x - a)\x >- 5).

Ex. 3. ro find the L. C. M. of

(x-y-{-z)(x-^y-z), {y-z-{-x){y-\-z-x), and {z-x-^y){z-\-x-y),

or a;2 - (2/ - zy, y'^-{z- x)2, and z'^-ix- y)\

The L. CM. is (x — y + z)(y — z + x) (z — x -\- y\

or — Sx^ + 'Lx-y — 2 xyz.
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67. Theorem. The product of any two quantities or

expressions is equal to the product of their H. C. F, and

their L. 0. M.

Let A and B denote the expressions, and let / be their

H. C. F. Then A=zpf and B = qf, where p and q are the

factors peculiar to A and to B respectively. Their

L. C. M. is pqf.

But A . B =pqf=pqf'f= L, (7. M. x H, C. F,

Hence we may find the L. C. M. of two expressions by

dividing their product by their H. C. F., and conversely

we may find the H. C. F. of two expressions by dividing

their product by their L. 0. M.

APPLICATION TO NUMBERS.

68. The foregoing principles apply to integral num-

bers in the same manner as to algebraic expressions.

The H. a F, or, as it is here called, the G. G. M. of

the numbers, is the greatest number which divides each

evenly.

Ex. 1. To find the G, 0. M. of 3824 and 4160. The
difference between any multiples of the two numbers

must contain their G, G. M. (Art. ^2),

Hence, from 4160 subtract the greatest possible mul-

tiple of 3824, which in this case is the number itself,

and we have 336. We have now to find the G. G. M. of

336 and 3824. Taking 11 times 336 from 3824 leaves

128, and we are to find the G. G, M, of 128 and 336. By
continuing this process we finally arrive at the factor

required.
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The whole operation appears as follows

:

A . 3824 B . 4160

A -11J3' . . 128 . . A' B - A . 336 . . B'

A' - B" . . 48 . . A" B' ~2A' . 80 . . B"
A"- B"'. . 16 . . A'" B" - A"

B'"— A'"

. 32 .

. 16

. B'"

The identical results show that 16 is the G, C. M.

This process may be much shortened by leaving out

the letters of reference, and by writing only remainders

in the operation.

Ex. 2. To find the G. G. M. of 10395 and 20592.

quotients.

And 99 is the G. G. M.

Explanation. — 20592 -^ 10395 gives quotient 1 and remainder

10197. 10395 H- 10197 gives quotient 1 and remainder 198. 10197

-7- 198 gives quotient 51 and remainder 99. And lastly 198 -^ 99

gives quotient 1 and remainder 99, or it is a case of even division.

Hence 99 is the common factor, and hence the G, G. M.

The quotients are important in the subject of continued

fractions.

10395 20592 1
>!

198 10197 1

99 99 51

1 -

69. Two numbers whose G. C. M. is 1 are prime to one

another ; and a number which is prime to every number,

except unity, smaller than itself is a prime number, or

simply a prime.

The following are the primes less than 100, and a table

of all primes below 1000 is given at the end of this work.
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2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

All numbers not primes are composite numbers.

Every composite number can be exhibited as the

product of prime factors. This is called the composition

of the number.

Let ^denote a composite number.

Divide JSf by 2, and the resulting quotient by 2, and so

on until a quotient is found which is not divisible by 2.

Call this quotient N'. Divide JV by 3, and the quotient

by 3, and so on, until a quotient, N", is found which is

not divisible by 3. Divide N^' by 5, etc., and continue

the operation by 7, 11, etc., using only primes as divisors.

Then if 2 has been used a times as a divisor, 3 b times,

5 c times, etc.,

JV^=2«.3^.5^...

And this is the composition of the number N.

Ex. 1. The composition of 8640 is 2^ . 33 . 6 j and 8640 is said to

be decomposed into its prime factors.

Ex. 2. To find the G. O. M. of 8640 and 1720.

Composition of 8640 is 2^ . S^ • 5.

Composition of 1720 is 2^ . 5 • 43.

And the G, C. M. is 23 . 5 = 40.

70. To find the L. (7. M. of two or more numbers, we
may decompose the numbers into their prime factors,

and take the highest power of each factor involved, and

form their continued product.

Ex. To find the L. C. M. of 8640, 1280, and 1560.

8640= 26.33.5, 1280= 28.5, 1560= 23.3.5-13.

And the L. C. M. is 28
.
33

. 5 • 13, or 449280.
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The operation may also be conveniently carried out as

follows

:

40 8640 1280 1560 40 is the G. C. M. of the three numbers.

8 216 32 39 8 is the G. C. M, of 216 and 32, and is

3 27 4 ... prime to 39.

9 ... 13 3 is the G. G. M, of 27 and 39, and is

prime to 4.

The quotients 9, 4, 13 are prime to each other.

Hence 40 x 8 x 3 x 9 x 4 x 13, or 449280 is the L. C. M.

EXERCISE IV. b.

1. Find the i. CM, of the following—
i. 12x - 36, x2 - 9, x2 - 5« + 6.

ii. ic2 - (a + h)x + ah, aj^ - (6 + c)x + &c, x'^—{c-\- a)x + ca.

iii. 1 -\-p+p\ 1 -p +i52, 1 +^2 4.^4.

2. If ax"^ + hx-\- c and cx^ + 6x + a have a linear common
factor, show that a ±h -\- c = 0,

3. Find the compositions of the numbers—
i. 72. ii. 180. iii. 824. iv. 1048. v. 25200.

4. Find the G. C. M. of 144, 840, 5040.

6. Find the L. C. M. of the 9 digits.

6. What is the least multiplier that will make 720 a complete

square ? That will make 1440 a complete cube ?

7. What is the lowest factor that will make a^ — 45c2-f-5x — 2

a complete square ?

8. What is the least multiplier that will make 144 a multiple of

64 ? That will make x3-5x2 + 5x-la multiple of x^ - 4a; + 3 ?



CHAPTER V.

Fractions.— Symbols qo and 0.

71. The expression 3/4 denotes that 3 is to be divided

by 4. As numbers, 3 cannot be divided by 4 ; and hence

we indicate this impossible arithmetical operation sym-

bolically by writing it in a form of division, and we call

the whole symbol a fraction. We then discover the laws

of transformation of these symbols, and these laws form

the working rules for fractions.

In this relation the dividend is called the numerator

and the divisor the denominator.

The expression a/h is an algebraic fraction, in which

a and h stand for any numbers or expressions ; and the

transformations of this symbol must apply to arithmetical

fractions as particular cases.

RULES OF TRANSFORMATION.

72. The fractional form ^ + ^ + ^+-'^ ^-^^^ ^^^ Ylhq

written beneath a-\-h-\-c-\ (Art. 10), shows that

a-\-h-{-c-\ is to be taken in its totality to form the

numerator.

(1) Let Q = T" , Q denoting the fraction as a whole.

Then QD = a + & (Art. 37) ; and if we take d such a

multiplier that Dd = 1, and therefore d = — , we have

74
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QDd = ad-{-bd, or Q = ^-\.^.

Hence the denominator of a fraction is distributive

throughout the terms of the numerator.

And conversely, the algebraic sum of any number of

fractions with the same denominator is that fraction

whose numerator is the algebraic sum of the numerators,

and whose denominator is the same denominator.

(2) Let Q = -. Then QD = ]Sr; and p being any

multiplier,

QDp = Np.

... Q = ^=^.^ Dp D
Hence, multiplying both numerator and denominator

by the same multiplier does not alter the value of the

fraction.

(3) For p write -, and we have from (2)

Q =

N
Q

' D'
1

~d'

And hence dividing both numerator and denominator

by the same divisor does not alter the value of the

fraction.

(4) Let Q =
W

'd'
and ^ D'

Then and

r. an

Q'D' = N'.

DD'
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Hence, to multiply two fractions together, we multiply

together the numerators for a new numerator and the

denominators for a new denominator.

(5) From (4), -^

—

- =—^, and multiplying both frac-

tions by -— gives -^ = — • —- •

Hence, to divide one fraction by another we multiply

the dividend by the inverted form of the divisor.

(6) Let Q =— ; and since p = ^,

P P

Therefore, we multiply a fraction by a given quantity

when we multiply the numerator by that quantity, or

when we divide the denominator by that quantity.

Also, by writing - for p, we see that we divide a frac-

tion by a given quantity when we divide the numerator

by that quantity, or when we multiply the denominator

by that quantity.

Co7\ If two fractions have equal denominators the

greater fraction has the greater numerator, and con-

versely.

And, if two fractions have equal numerators, the

greater fraction has the smaller denominator, and con-

versely.
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73. The operations with fractions are as general in

character as those with whole numbers, and beyond the

rules of transformation as now established no general

directions can be laid down. The principal operation on

fractions in themselves is the simplification of their

forms. Facility in this is the result of practice.

Ex 1 3a;2 -f x - 2_ (3a; - 2)(x + 1) _ 3a; - 2

2x^-x-S~(2x-S)(_x+r)~2x-S

X -f 1 . X — 1

w 2 a; - 1 X -{- l_ (x + ly +(x - iy_ x'^ + 1

' x + 1 X -

1

~ (X -{ ly -(x - ly^- 2x
x-l x-\-l

Ex 3 a^^-1. x + 1 _ (x^-l)(Sx^ + 2x)

»2+l'3xH2x (a:2 + l)(x+l)

= Sx^-Sx^ + 2x- a^(5x2-a; + 4)
^

(X2+ 1)(X + 1)

74. From Art. 72 (1), to add fractions we bring them

to have the same denominator. We then add the numer-

ators, and place the sum over the common denominator.

Subtraction being addition with changed signs follows

the same rule.

When several fractions are to be added the L. C. M. of

all the denominators is the simplest common denominator.

Ex. 1. Simplify

a
,

h
,

c

{a — 6) (a — c) (h — c)(b — a) (c — a){c — b)

The L. C. M. of the denominators is (a — h){h — c)(c — a)
;

and the numerators become respectively—

«(c — &), b(a — c), and c(b — a).
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And the sum is g(c^i&I+A(^' - «)+ Ha - c)
.

(a — b)(b — c){c — a)

And as the numerator vanishes upon distribution, and the

denominator does not, the sum of the three fractions is zero.

Ex. 2. Simplify

a
+ -7-. .., .. 7T+-

(a— 6)(a— c)(ic— a) (b— c){b— a){x—b) {c—a)(c— b){x— c)

The L. C. M. of the denominators is

(a — b){b — c) (c — a)(x — a) (x ~- b)(x — c);

and the sum of the new numerators is

— a(b — c) {x — b) (x — c) — b{c — a)(x — c)(x — a)

— c(a — b)(x — a)(x — b).

This latter expression factors into

x(a — b){b — c)(c — a).

Therefore the simplified sum of the fractions is

x

(x — a){x — 6) (x — c)

EXERCISE V. a.

1. Simplify the following—
. x'^-h jxy + y^

^

ic2 + I xy - 2/2 \x a/\x aj\ x-{-aJ

.J
3x-2+ lOxy + 3y2 ^ gg + &^ + c^ - 3 abc

* 3x2 + 8x2/ -3 2/2* * a'^+b'^-^c^-ab-bc-ca

m.
w(x2 — 2/2) + (?i2 — l)x2/ * \l+x X y

"

\1 + X X J

^^^
a + c & + c x + c

(a — 6) (x — a) {a — b)(x — b) (x — a) (x — b)

iii.—?^ + t + ^
ix-y)(x-z) {y-x){y-z) (z-x){z-tj)
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ix. s| ^ 1. xi. s|

—

y^^ ).

(
1

) xii s|i3L±i^HL±Ml.

xiii. 2 \
^^^ "^ ^^— I , where x is not varied.

<>(« — 5) (a — c) J

I (a - 5)(a - c) i I (« _ 5)((i _ c) /

2. If a = -^—, & = -^— , c = -^-, show that
2/ + 2 z-\-x x + y

ic2 ?/2 2;2

a(l — 6c) &(1 — ca) c(l — a6)

8. Find the value of ^ + V
-

'^

x-y + 1

when aj = -^±A. and y = ^^±^^
«6 + 1 a6 + 1

*i2 /y2 r2

«2 ^ 62 ^ C2

a2 52 g2 ^-2 ^2 (.2

6. If 1+^ =» .
1 + ^ + ^'

, show that x^ = ^^^.
1—xal — x + ic2 5 + a

6. Simplify j>+I£-«U 1 1 ^fl±I2 . ?! when .2 + ^2=1.
l/c — rs c i V fc — rs c)

75. Let ic = , where A, a, b are all positive finite
a — b

quantities and b is not greater than a.

If & is < a, X has some positive finite value, and the

nearer b approaches to a in value the greater the value
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of X becomes. By making the difference between a and

h small enough we can make the value of x as great as

we please.

Thus, let A be 10. If a — & is 1, a; is 10 ; if a — h is

0.1, a; is 100 ; \ia-h is 0.00001, x is 1000000; etc.

When a — h\B> made smaller than any conceivable quan-

tity, X becomes greater than any conceivable quantity.

In this case h is said to approach infinitely near to a

in value ; the difference between a and h is then denoted

by 0, and the value of x is denoted by oo, read infinity.

Thus we say that ^ ^ ^ ^ any finite quantity
^ ^^^•^0

assuming that these symbols obey the formal laws of

quantitative symbols,

00 X = any finite quantity.

But 1 is a finite quantity, and x = QO
;

therefore - X 0, or - = any finite quantity.

The expressions cx) x and - are mere symbols having

no particular value except through their history ; that is,

through a knowledge of the source whence they have

come. The expression -, however, which occurs quite

often, does not necessarily mean zero, but may mean any

finite quantity whatever.

Also, since oo x = ^4, = — , and hence any finite
00

quantity divided by infinity gives zero as a quotient.

Moreover, we are not justified in writing go — go = 0,

or 00 ^ 00 = 1, for oo does not mean any definite quan-
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tity, but merely a quantity so great as to be undefinable

and inconceivable.

76. Special Roots. (1) When an integral function

contains the variable as a monomial factor in the first

degree, one of the roots is zero.

Thus ^ + 3ax^ -\-2a^x = = x{x + 2a) {x-{-a);

which is satisfied by a; = 0, since the whole then vanishes.

The roots are accordingly, 0, — 2 a, — a.

If the variable is of two dimensions in the monomial

factor, two of the roots are zero.

(2) In the linear equation x = x-\- a, to which equa-

tions are sometimes reducible, we transfer x, and obtain

x — x = a.

Now we are not justified in saying that a: — a; = 0, and

therefore a = 0, for a is a given quantity whose value is

not at our disposal ; we must endeavor to find some value

for x that will satisfy the equation.

But X — x = x(l -'l) = a.

a

1-1
= oo by Art. 75.

Whence x = ck> is a symbolic root of the equation.

The meaning of the solution is that a being finite, the

larger x is, the more nearly is the equation x = x-^ a

satisfied, but that it cannot be completely satisfied by

any finite value of x. We shall return to this again in

Art. 81.

77. Let x^-{-ax-{-b^x^ -{-px + q, where a, b, p, q are

^11 finite quantities.
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If X is finite, a^ on one side cancels o^ on the other,

and we have a single finite value of x, namely,

q-b
a—p

(1) If q = b, and a=p, a; = - = any finite quantity

by Art. 75, and the solution is indefinite,

(2) If g — 6 is not zero, and a = p, x= x>,

(3) li q = h and a —p is not zero, a; = 0.

Again, as the equation is quadratic it must have two

roots. Art. 59 (2).

Dividing throughout by x^ gives

X X^ X x^

and the larger x becomes the more nearly does this

become an identity.

Hence ic = oo is a solution.

As the equation may be written

we infer that if the coefficient of the square term, in

a quadratic equation, becomes zero, one solution of the

equation is a; = oo.

Or more generally, if, in any integral equation, the

coefficient of the highest power of the variable becomes

zero, one root of the equation is oo.
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EXERCISE V. b.

1. Given ?^+_§ + ^ ^ 3x + 4, to find x.
6 3

2. Given ^-±^ + ?^ = 5, to find a;.

x + 2 3a; 3

3. Given

a c
,

X 1

(x — a)(x — c) (a — c) (a — x) (c — a)(c — x) a — c

to find X. What is the value of x v^rhen c = ? when a = ?

4. Is /'l+?Wl + ^'\ = /'l+iyi + ^'\ an equation or an
\ dj \x xj \ d J \ aj

/

identity ? What value has x ?

6. What expression substituted for x will make

Zx^-l x±2^ = 1 an identity ?
a-l a + 2

-^

6. From _^—+—^ 2(a;2 - a6) ^ ^^ ^^^ ^ general
X — a X — & {x — a){x — h)

value of X ; and also the particular value when a + & = 0.

7. Given
(^-"^>^^ + ^) = ^il, to find x.
(x-2)(x+l) x-1

8. Given C^^ - 1) (^ + 2) (a; - 3) ^ i ^ q, to find all the values
(x + l)(x-2)(x + 3)

of «.

9. Given
^x^-x^-Qx-^2 4:X^ + x^-^x-2 2 ^^^

X — 1 X ic(l— x)

to find all the values of x.

10. If ^ + ? = ^ + ^, what relation holds between a and & ?

X b X a

11. Two numbers differ by 10, and one-half the less is greater

by 1 than one-sixth the greater. Find the numbers.
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12. One body moves about a circuit in a days, and another in

h days, and they start from the same point. How many days will

elapse between two conjunctions ?

13. The sun moves in the ecliptic 0°.9856 per day, and the moon
moves 13°. 1690 per day. Find the days elapsing between two new
moons.

14. Find a number such that if a be added to it and h be sub-

tracted from it, the difference of the squares of the results shall be

the number.

What relation must hold between a and h that the number may
be (1) zero, (2) infinity ?

15. Given ^Ji3 _ ^+_4 ^-_6 ^ x'^-2x-Vo
^^ ^^^ ^

x+\ 5C+2 ic-4 x2-9

16. Given -^- +^^ = ^-±^ + ^^, to find all the values
X — 2 X — 1 X — 1 X — Q

of X.

17. Given
a + x a-x 3a

_ ^
cC^ -\- ax-\- x^ a^ — ax-\- x^ x{a^ + d^x^ + x*)

find X.

18. Divide $64 among A, B, and C, so that A may have 3 times

as much as B, and C have I as much as A and B together.

19. A person spends .|2 and then borrows as much as he has

left. He again spends $2 and borrows as much as he has left ; etc.

After his fourth spending he has nothing left. How much had he

at first ?

20. A person spends $a, and borrows as much as he has left

;

then spends $a, and borrows as much as he has left, etc., for n
times, when he has nothing left.

2n 1

Show that he had at first a dollars.
2n-l

21. In a naval battle the number of ships taken was 7 more, and

the number burnt 2 less, than the number sunk; 15 escaped, and

the fleet consisted of 8 times the number sunk. How many ships

were in the fleet ?
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78. The following properties of equal fractions are of

special importance

:

I. Let ^= |,

where a, b, c, d denote any quantities or expressions

satisfying the indicated relation.

(1) Multiplying by - gives - = -.

C C U/

(2) Adding 1 to each member

(3) Subtracting 1 from each member

(4) Dividing (2) by (3)

a-\-b _c-\- d

h " d '

a—b c—d
b d

a + b _ c-}-d

a— b c — d'

Eelations (1), (2), (3), (4) are all direct consequences

of the original relations.

The number of such derived relations is unlimited;

those given are of most importance.

It will be noticed that these expressions have that

kind of correlative symmetry by which we may inter-

change a and b if we interchange c and d, or we may
interchange a and c if we interchange b and d, but in

general we cannot interchange a with c or 6 with d.

11. Let ^ = ^ = ? = ... = Q, say.

Then a = bQ, c=:dQ, e=fQ, etc.

And Q(lb -{-md-\'nf-\ ) = la-{-mC'{'ne+ "•

rK\ n ^ Za + mc 4-ne -f-
•••

b lb -i- md -\- nf-\- <
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By giving particular values to Z, m, n ••• an indefinite

number of special relations may be obtained.

The relations of I. and II. are frequently employed

with great advantage, the letters a, h, c, etc., being

general symbols denoting any quantities or algebraic

expressions.

^2
Ex. 1. To find X from the equation f^il^V

\a — xj

cfi -\- 2 ax + x"^ _ ah -^ ex

ah

Expanding, etc.,

Applying (4) of I.,

2ax-\- x'^ ah

a?' -\- x^ _2 ah + ex

2 ax ex

Subtracting denominator from numerator for a new numerator,

(ia-xy ^2ah
2 ax ex

.'. ex(a — xY = ^ a'^hx.

Whence x = 0, (76.1), and x = a-2aJl-Y

Ex. 2. If ^ =. ^ , then
(^'^ + ?>-^) (« + 6) ^ q^,

b d (c^ + d')(ic-{-d) c3

Exercises of this kind may be solved in several ways : as (1) by
transforming one expression into the other

; (2) by using the first

relation to show that the second is an identity, etc.

m ^ = ^. . Q^^+ ^^ ^ c2 + d^ ^^^ a^+ &2 ^b^^c^
^ ^ 62 ^2* •

•

5-2
cf2

'

C2 + d^ d^ C2'

by relations (1) and (2), I.

Again, «+^=L±i, and«+^ = ^ = «.

h d e + d d c

.: by multiplication, «^±^ • "L^^ = «!
. ^ = «!.

q. k. d.
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(2) Let - = - =p; then a = bpy c = dp,
h d

Substitute for a and c in the second expression, and it becomes

hHp'+lXp-\-^) ^ m^ an identity.

Ex. 3. If —^— =—^— =—-—, each fraction = 1.

2y — z 2z — X 2x — y

By (5),
^ - x + y-\-z a; + .V + g _. 2.

' 2y — z 2y — z + 2z — x-\-2x — y x -\- y + z

Ex.4. If ^ =^ = ^^^ and £^+^ + ?!=l, to find the
X y z a^ h'^ c^

values of x, y, and z in terms of the remaining letters.

The first relation gives ^^'^^21;
^ y 1
a b c

whence, squaring each fraction and employing (5),

x2 1

anWhence x =
^{aH^-h &2m2+ c2n2)

'

with symmetrical expressions for y and z.

Question 4 furnishes an example of collateral symmetry

between the two sets of letters a, b, c and l, m, n. Thus

if we change a to & and b to c, we must, at the same time,

change Z to m and m to n. But we are never supposed

to make an interchange between letters from different

sets. In like manner we may have collateral symmetry

amongst three or even more sets of different letters.
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EXERCISE V. C.

1. If ^=:^ = ^=... Show—
h d f

. (a-c)2 + (6-(?)2 ^ g2 4.;^2

'(a-c)2-(6-(?)2 a2-62*

ii
g^ 4- g^ft + q&^ \-h^ ^ b^

... g _ V(Z2g2 + w2c2 + nV)
6 VG^^'^ + ^'^^^^ + ^T-^)*

2. If ^ = ^ and ^ = ^, then «V^ + 5V^^ gy^- fty^,

8. If ^ = ^ = ^, (a2 + 52+c2)(62 + c2 + c?2) = (a6 + &c+c(Z)2.
c d

4. Under the conditions of Ex. 3, show that '

V(g&) + V(&c) + y/iicd) = V{(g + & + c) (6 + c + d)}.

6. If
^ =^

then ?(y - 2j)+ |(5?-a)+ £(x -y)=0.

6. Given that ga;2 + 5^2 + 2 ^ = 0, and ^ = ^ = ^ = ?,
i m n p

show that - +— + 2 w» = 0.
a 6

7. If
^^-y^ ^ y^-zx

^ ^^^^ fraction = x + y + z.
x(l — 2/^) y(l — ^x)

8. IfgLLJ^ ^ + g = g + « ,8g + 96 + 5c = 0.
a- 6 2(6 -c) 3(c-a)
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9. K f±^ = ^-±^ = ^±1, then each fraction is— c c — a a — h

If x^ + y^ + z^ -»

A/ \(6-c)2 + (c-a)2+(a-6)2/*

10. If -:^ = -^ = -^=2R, and a + b + c = 2S,smA smB sm (7

then >S = i2(sin^4-sin^+ sinC).



CHAPTER VI.

Ratio, Proportion, Variation, or Generalized
Proportion.

79. The ratio of a to & is the quotient arising from

dividing a by h, where a and h denote any numerical

quantities. If the division is even, the ratio is an

integer, and is expressible ; if uneven, the ratio is a

fraction and can only be indicated.

In this relation a and h are called the terms of the

ratio, a being the antecedent and & the consequent.

The ratio is commonly symbolized as a : 6.

If a > &, the ratio is one of greater inequality.

If a = b, it is one of equality ; and if a<b, it is one

of less inequality.

When two ratios are multiplied together, after the

manner of fractions, they are said to be compounded.

Thus ac : bd is compounded of a : & and c : d.

When a ratio is compounded with itself, the terms

are squared, and the result is the duplicate ratio of the

original. Thus a^ : b^ is the duplicate of a : 6.

Similarly, a^ : b^ is the triplicate of a : 6 ; and -y/a^ : -y^b^

is, in physics, sometimes called the sesquiplicate ratio of

a: b.

80. As a ratio is virtually a fraction, all the laws of

transformation for fractions apply to ratios.

The ratio of one quantity to another does not depend

90
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upon any absolute magnitudes of the quantities (for

there is no absolute magnitude), but upon the relative

magnitudes of the quantities.

It is thus that the ratio of one quantity to another

expresses the true relation of magnitude or greatness

existing between the quantities.

The ratio - : - is the same as a:b, whatever x may be.
X X

But if X is very small as compared with a and b, both

terms become very great ; and if x is very great as com-

pared with a and b, both terms are very small ; but the

relation of greatness existing between the terms remains

the same.

If x = 0, both - and - become infinite ; so that oo : oo
X X

may be any ratio whatever.

If a; = 00, both - and - becomes zero ; so also :

X X

may be any ratio whatever. (Compare Art. 75.)

81. Theorem. The addition of the same quantity to

both terms brings the ratio nearer to unity, or to a ratio

of equality.

Let aibhe the ratio, and let x be added to each term,

making a-\'X:b + x.

Then ^ a + x _ x(a-b) __^^^^^
b~'bTx=b(b + ^'^' ^'

and ^-1^^ =Q,say.

All the letters denoting positive quantities, if a : 6 > Ij

a>b and Q and Qi are both +.
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.*. a + xib + xKaib, and > 1

;

or a-]-x:b'\'X lies between a : b and 1.

If a:b <lf a <b, and Q and Qi are both —

.

.-. a-{-x:b + x>a:b, and < 1

;

or a-^-xib + x lies between a : b and 1,

which proves the theorem.

Cor, 1. By writing -- x for x, we see that to subtract

the same quantity from both terms of a ratio of inequality

removes the ratio further from 1, provided the subtrac-

tion leaves both terms positive.

Cor, 2. Qi decreases as x increases, and by making x

great enough, we may make Qi as small as we please.

That is, by adding the same quantity to both terms of a

ratio we may bring the ratio as near 1 as we please.

We have here another proof of Art. 76, for if x-\- a =
x-\-b, we have x-\-a: x-{-b = lj and whatever values a

and b may have, provided they are finite, the statement

is satisfied by x — cc, since that value for x makes the

ratio to differ from 1 by a quantity less than any assign-

able quantity.

PROPORTION.

82. Pour quantities are proportional, or are in pro-

portion, or form a proportion, when the ratio of the first

to the second is equal to the ratio of the third to the

fourth.

Thus a, b, c, d are proportional when

a:b = c:d.
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This may be expressed as ^ = -, and a proportion,

being thus an equality of two fractions, is best dealt with

after the manner of fractions.

The proportion is evidently subject to all the trans-

formations of Art. 78, I.

83. In the proportion a:b = c:d, a and d are the

extremes and b and c the means.

But since the same proportion may be written b: a=:

d : c, the extremes and means are capable of exchanging

places.

Writing the proportion - = -, or - = -, or - = -, etc.,
b d c d a c

which all express the same relation, we may represent

the form generally by —!—, where the letters are writ-

ten in the four corners formed by the two crossed lines.

In this form a and d, as also b and c, are opposites of

the proportion, as standing in opposite corners, and we
can make the general statement

The terms of a proportion may be written in any order,

provided the opposites are unchanged.

By cross-multiplication ad = be. That is, when four

quantities are in proportion, the product of each pair of

opposites is the same ; and conversely, if two equal

quantities be each divided into any two factors, these

factors form a proportion, of which the factors of the

same quantity are a pair of opposites.

84. If a : 6 = c : c?^ d is a fourth proportional to a, b,

and c.
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If a:b = b : c, b is Si mean proportional, or a geometric

mean between a and c. In this case b =:^(ac).

If a:b=b : c=c: d=etc., the statement is a continued

proportion.

Ex. 1. If a + b : a = a — b : b, to find a : b.

Here ba -\- b^ = a^ — ab ; whence a — b = b^2,

and a = 5(1 +^2), or a:b = l-\- ^2.

Ex. 2. If ^2^2 _ 52^.2 _ ^252^ to find approximately the ratio

X : y when x becomes indefinitely great, and a and b are finite

constants.

Evidently y becomes indefinitely great with x. Dividing by x^

the relation gives a2 . 1^ _ ^2 _ «!^.

When ic approaches 00, -— approaches 0, and ^ approaches —

•

x2 x^ a^

And when x = qo, ^ i= -j- ^, or x:y = ± a:b.
y b

Ex. 3. Two numbers are in the ratio p:q; what must be added

to each that the ratio of the new numbers may be P : Q ?

Let mp, mq be the numbers, and add x to each.

Then mp -} x:mq-{- x= P: Q.

whence ^^m(pQ-gP).
P-Q

Cor. When P:§=1, P=Q, and the value of a becomes

infinite.

Ex. 4. To find 4 numbers in continued proportion such that

their sum may be 66.

Let a, 6, c, d be the numbers.

Then ^=^ = ^=z,sa>y,bed



PROPORTION. 95.

Hence a = dz^, h = dz^^ c = dz, and their sum is

d{z^ + z'^-Yz+ 1)=65.

.*. d{z'^ + 1)(^ + 1)= 65, and since we can make z what we
please, the problem is indefinite, i.e. it admits of any number of

solutions.

If ^ = 2, the numbers are ^f^, -\2_^ j2_6^ ^nd -i/-.

If 5J = I, the numbers are 8, 12, 18, and 27.

EXERCISE VI. a.

1. For what value of x will the ratio 5 + x : 8 + a: become 5 : 8,

6:8, 7:8, 8:8, 9:8?

2. In a city A a man assessed for $ 10,000 pays $72 tax, and in

a city B a man assessed for 1 720 pays $ 4.50 tax. Compare the

rate of taxation in A to that in B.

3. The ratio a — l-.h — \ is a, and that of a + 1 : 6 + 1 is /3.

Find the ratio a : 6 in terms of a and )3.

4. Two men can do in 4 days what 3 boys can do in 5 days.

Compare a man's working ability with that of a boy.

5. Find the number for which the cube root of its square is to

the square root of its cube as m to n.

6. Given 3^2 + 10a;?/ + 3?/2: 3^2 ^ gx?/ - 3x2 = 2x: ?/, to find

the ratio y : x.

7. It a:h = h'.c = cid^ show that a^ -.y^ = a:c, and a^ . 53 _
a: d.

8. If ^{p + q):^{p — q)= mm, find p : g, and also the dupli-

cate ratio of p — q : q.

9. If l^-m'^ + n'^ = and z + m - n = 0, find I : m.

10. Find the ratio of (x + h)-'^ — x'^ : h when h approaches

zero.
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GENERALIZED PROPORTION, OR VARIATION.

85. Let x be a variable, and let y be connected with x

by a constant multiplier m, so that y = mx. When x

changes its value, becoming Xi, say, y also changes value,

becoming 2/1, so that y^ = mx^.

Dividing one equation by the other,

y _ mx __ x^

yi mxi osi

Whence 2/ • !/i = ^ • ^1^

i.e. any two values of x and the corresponding values

of y are in proportion.

Also, if X takes a series of values, Xi, x^, x^, etc., and

the corresponding values of y be y^, 2/2? 2/3? ^^^v

^1*2/1 = •'^2 • ^2 = ^3 • 2/3 = ^^^*

The foregoing relations are indicated by saying that

y varies as x, or x varies as y, since the relation is

mutual, and they are symbolically expressed by writing

2/ oc i», or xccy.

Hence to say that y varies as x, is to say that one is a

constant multiple of the other, or that any two values

of X and the corresponding values of y are in proportion.

86. li y = n ' -, y varies as the inverse or reciprocal

of 2; ; or 2/ varies inversely as z.

If y = n ' -, y varies directly as x and inversely as z.

z

If 2/ = nxz, y varies conjointly as x and z.

Ex. 1. If xtxyz, and y varies inversely as 2;2^ and if 2? = 2 when

x = 10, it is required to express x in terms of z.
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We have x = myz, and 2/cc—

•

z

And 10 = ^, or w = 20.
2

...x = ?2.

z

Ex. 2. The velocity of a body falling from rest varies as the

square root of the space passed over, and when the body has fallen

16 feet its velocity is 32 feet. Find the relation between space and

velocity.

X) = m^s, where v = velocity and s = space.

.'. I? = 32 and s = 16 gives 32 = 4 m.

,'. m = 8, and v =8 Vs, or v"^ = 64:S;

which shows that the velocity varies as the square root of the space

fallen through.

Ex. 3. The radius of the earth is r, and the attraction upon a body

without varies inversely as the square of the body's distance from

the centre. The number of beats made per day varies as the

square root of the earth's attraction upon the pendulum. How
much will a clock, with a second's pendulum, lose daily if taken to

a distance r^ from the earth's centre, r^ being greater than r.

Let n = the number of seconds in a day = 86400, and let g = the

earth's attraction at the surface.

Then g oc— , and n oc -.yg.

.*. WX-, and we write n = —, m being constant.
r r

Also, if n^ be the number of beats per day made by the pendu-

lum in its new position,

Til = — = n • — , by substituting for m.

And the clock loses n — n^ seconds daily,

z=z nil —-]= n- ^^ ~ ^
seconds.

\ rj ri

If r = 3960 and r^ = 3961, the loss is 21.81 sec.
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EXERCISE VI. b.

1. The space passed over by a body falling from rest varies

as the square of the time, and a body is found to fall 196 feet in

3J seconds. Pind the relation between the space and the time.

2. li X(xy and y = 3| when x = 6 J, find the value of y when

3. y varies inversely as x^, and z varies directly as x^. When
x = 2f y -{- z = 340 ; and when x = 1, y — z = 1275. For what

value of aj is ?/ equal to z?

4. zccu — V, uccx, and v gc x^. When x = 2, ^ = 48 ; and when
X = 5, ^ = 30. For what value of x is 2; = ?

5. If x?/ GC x^ + y% and x = 3 when y = 4, find the relation con-

necting X and y.

6. The area of a rectangle is the product of two adjacent sides

;

if the area is 24 when the sum of the sides is 10, find the sides of

the rectangle.

7. If X + 2/ oc X — 2/, then x"^ + y^cc xy.

8. If X cc y, show that x^ + y^oc xy.

9. A watch loses 2 J minutes per day. It is set right on March
15th at 1 P.M. ; what is the correct time when the watch shows

9 A.M. on April 20th ?

10. The volume of a gas varies directly as its absolute tempera-

ture, and inversely as its tension. 1000 cc. of gas at 240° and

tension 800 mm. has its temperature raised to 300° and its tension

lowered to 600 mm. What volume has the gas then ?

11. The attraction at the surface of a planet varies directly as

the planet's mass and inversely as the square of its radius. The
earth's radius being 3960 miles, and the moon's 1120, and the mass

of the earth being 75 times that of the moon, compare the attrac-

tions at their surfaces.
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12. The length of a pendulum varies inversely as the square of

the number of beats it makes per minute, and a pendulum 39.2 in.

long beats seconds. When a seconds pendulum loses 30 sec. per

day, how much too long is the pendulum ?

13. When one body revolves about another by the law of gravi-

tation, the square of the time varies as the cube of the distance.

The moon is 240,000 miles from the earth, and makes her circuit

in 27 days. In what time would she complete her circuit if she

were 10,000 miles distant ?



CHAPTER VII.

Indices akd Surds.

87. The index law is the result of the convention that

when p is Si positive integer, a^ a • a-** to p factors shall

be denoted by a^. And by this law a^ - a^ = a^+*, p and q
both being positive integers.

Now, if algebra is to be consistent with itself we can

have only one index law, whatever p may denote, and

instead of making a new convention we must interpret

in conformity with this index law the cases in which p
is not positive and integral.

The interpretation of p zero, or negative and integral,

is given in Art. 38. We deal here with p fractional.

(1) If p = g = i, a^ . a'^ = a* . a* = a^ = a.

Therefore, a^ is the same as ^a, the meaning of which

is fully given in Arts. 47 and 48.

Similarly, a^ . a^ . a^ = a^"^ 3 + 3 _- ^^

And a^ means that a is to be separated into three

identically equal factors, and that one of these is to be

taken.

By an obvious extension,

- - -
. n . —

I

1 !-••• ton terms

a".a"-a"--- to n factors = a" " " = a;
1

and a** tells us to separate a into n identically equal

factors, and take one of these factors.

100
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This factor is called the nth root of a, and is often

written ^a, the letter or figure being written in the

symbol -y/ in all cases where n is not 2. Thus -^/a de-

notes the cube root of a, etc.Ill 1^

(2) a"" -a"" -a"" "• to m factors becomes (a")"* when we
1

consider (a") as a single quantitative symbol; and it

becomes a^ by the index law.
1 m

Therefore, (a")"* = a"; and either of these expressions

denotes that the nth root of a is to be raised to the mth
power; or that the mth power of a is to have its nth

root taken.

Thus (64)* = (64^)2, or (642)^ = 16.

Also, writing p for -, and - for m, gives—
n q

(a^)«=:a^; or (a^) » = a* = (a*)^.

(3) Making p=:- in (2) gives—

11
J.

11

or V^= V^ = V^.
Thus to get the 6th root of a quantity we may first

take the square root and then the cube root of the result,

or we may first take the cube root and then the square

root of the result.

Ex. 1. To simplify f^V^". C^Y^'J^Y
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This becomes (xm-n^m+n . (^^n-iy+l . (^y.l~my+m

— x"*^-"^ . x"'^-*^ • x^^-""^ = x'"^-«^+»^-^^+^^-"»^ = x'^ = 1.

Ex.2. To simplify
^' ^'^ ^(i"-\

This becomes

23 . 26-3n . 24n-4 . 3-2+n . 3-2n . 3-3+3n — 25+n . 3-5 _ ?!!lL.

EXERCISE VII. a.

- 1—— 3 3

1. Simplify (a«.a "• a2)-^(«2 . ^j. ^-i)^

2. Simplify V^* • ^^^ . ^2 . ^-Ki+n).

3. Simplify (ic2)2. (xJ)n-i ^(x«)i . (x2«)«.

4. Simplify a-«+i • a"^" • a^ -^ «-«. a2. «l

6. Simplify (x^+« -^ 5C«)^ ^ (ic« -^ x^-py-^.

p q

6. Simplify V{(«~^"* "^ 2>-2«)mj«.

7. Write the square of av^2 _ (j-N/2,

8. Multiply a3 _ q^I^t 4. ^2 i3y ^ it + 5?.

9. Express the relation x = ^< ~ ~ "^
A/ (t ~ r~ ) I ' ^^ ^^ to

be free from irrationals.

10. Express the relation
Va + X + Va — aj

, . . ... Va2-x2
to be free from irrationals.

11. Find X when a* . a=" -4- a*~^ — ^^j.

12. Find n when 2"
.
2«-i

•
2«+i = 2i-"

•
2i+«

•
2i-».

=V(:-^3-
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n

13. Find n when Qs
.
3»»-i = 6« .

2-^ •
3«+i.

14. Find the relation between m and n when a"*" = (a™)**.

n

15. Find n when 4" •
22«-i

.
8i-» = 42 • 2-»» • 163.

16. Divide x^ - Sx'^ + 2 - x-^ + x-^ by ic - 3 - 2 a;-i, giving

quotient and remainder.

17. If fx= i(a' + a-*), and 0x= |(a* - a-*), show that—
i- (fxy^-(<pxy = l. iii. 2(0aj)2=/2x-l.

ii. 2(/x)2 = 1 + /(2 X), iv.
. 0(2 X) = 2(0x) . (/x).

18. If /x= J(a^ + a~**) and 0x=i(a»* - a-**), show that—
i- (/x)2+(</>X)2 = l. ii. 0(_x) = -(0X).

iii. /x=/(-x).

SURDS.

88. A surd is the incommensurable root of a com-

mensurable number (Chrystal).

Thus ^2j -^5j 3*, etc., are symbolic expressions for

surds. The arithmetical extraction of the roots indicated

would approximate to the numerical values of the surds.

The expression ^4 is an integer under a surd form.

Many known incommensurables are not surds, and

some of them are not, as far as we know, due to any

finite combination of surds. As examples, we have

3.1415926 •••, which is the ratio of the circumference of

a circle to its diameter, and which is usually denoted by

the greek letter tt; and 2.7182818 •••, which is the base

of the natural logarithms, and which is usually denote^

by c or e.

An expression such as V2 + ^2 is a surd expression,

but is not a surd according to definition.
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89. Let z and u be any real positive quantities, n being

an integer.

Then a;** will pass through all values from to + oo,

if X passes through all values from to + oo. There-

fore for some positive value of x, a;" = z, and x =: -^z.

That is, every quantity between and + oo has a

positive real nth root. This is the arithmetical root,

and is the one with which we are principally concerned. ,

If n is even, n = 2?/i ; and 2;" = 2;^"* = («'")* And since

a square root has two signs—
.-. every even root of any quantity has two values

differing only in sign.

90. Let X be negative and n be an odd positive integer.

Then a;*" is negative, and passes from to — 00, while x

passes from to — 00.

Therefore, for some value of a?, »" = — z, and x=-\/—z.
That is, every real negative quantity has a real nega-

tive nth root, when n is odd.

Thus, every positive real quantity has two real square

roots, fourth roots, sixth roots, etc., and one real cube

root, fifth root, etc. And every real negative quantity

has one real cube root, fifth root, etc., and no real square

root, fourth root, etc.

91. Let a be any real positive quantity, and let r be

its arithmetical cube root.

Then, since w' = w^ = 1, r^ = wV = wV = a. And tak-

ing the cube root, r, cor, and coV are each cube roots of a.

And the three cube roots of a are -y/a, (u-^/a, in^^a,

where -^a is the arithmetical cube root.

Thus the three cube roots of 27 are 3, 3 <u, 3 w^. Hence
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every real quantity has one arithmetical cube root, and

two complex cube roots.

92. Sards which are reducible to the same surd factor

are similar ; otherwise they are dissimilar.

To reduce a surd to its surd factor we proceed as

follows

:

Decompose the number into its prime factors, and

then (1) for a quadratic surd take out the largest square

factor possible. The remaining factor is the surd factor.

Ex. 1. V(1350) = V(2 . 33 . 52) = 3 . 5V(2 • 3) = 15V6,
and 6 is the surd factor.

(2) For a cubic surd take out the largest cube factor

possible. The remaining factor is the surd factor.

Ex. 2. -^(9720) = ^(2^. 3^
. 5) = 2 • 3^(3^ . 5)

= 6^(45), and 45 is the surd factor.

93. Surds of the same order are added by reducing

them to their surd factors, and adding the coefficients of

similar surds.

Ex. 3V2 + V^^ + 2V12 - V^S

= 3V2 + 3V2 + 4V3 -4V3 = 6V2.

With dissimilar surds, or with surds of different orders,

the addition and subtraction can only be indicated by

connecting them with the proper signs.

94. When a fraction contains a surd expression as

denominator, it becomes necessary, for the sake of ease

in calculation, to so transform the fraction as to make
its denominator rational. This is effected by multiply-
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ing both parts of the fraction by some expression which

will make the denominator rational. Such a multiplier

is called a rationalizing factor of the denominator.

1 1/2/2
Ex. 1. —= ^^^=^^^, and the denominator is rational,

and -^2 is the rationalizing factor.

Ex.2. 2 ^2^2^. V^^2J/^J^^/4^ andthedenom-

inator is rational, and ^2'^^S is the rationalizing factor.

95. Since {^a -{- ^b){-y/a— ^b) = a — b, which is

rational, the expression y'a — ^b is a rationalizing

factor for -y/a + -^/b ; and reciprocally y'a + -^b is a

rationalizing factor for -^a — -y/6.

Ex. 1. To rationalize the denominator of 3V2
^ys - v/2'

Multiplying by ^^ + V^ gives ^V^ + ^ or 3(^6 - 2).

V^ + -^2 1

14-2/2
Ex. 2. To rationalize the denominator of -^—^—

H-V2

Multiplying by Liza^ gives
~^~^^

, or 3 - V2.
1 — •y/2 — 1

In the present case it is better to change the order of the denom-

inator, writing it -^2 + 1, since that gives a + quantity in the

denominator of the result, and does not affect the value of the

fraction.

Ex. 3. To rationalize the denominator in
1 + V2 + V^

This may be effected at two steps.

Multiply by ^ + V^ - V^ and we get ^ + V^ - V^ or

1 + V^ - V3 . And this multiplied by ^ gives V^ + ^'^g.

2-\/2 •y/2 4
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Ex. 4. To rationalize the denominator in —y^ 4-

^

/g

V2 - V3 + V^

Multiplying by V^ - ^3 - V^ gj^^s ~^~V^^~V^^ And

multiplying by :^ gives " V^ -j/^Q - V^Q^

or
ye + 2 V15 + 3 yio

12

A trinomial quadratic deDominator may also be

rationalized by a single multiplication, as we proceed to

show.

96. To find a rationalizing factor for ^a -\- -yjh + yc,

where the surds are all dissimilar.

Let Va =p, V^ = q, ^c = r.

Then {p -\.q^r){p ^ q — r) =p^ + g^ _ r^ + 2pg

;

and (jp^ + g^ — r^ + 2pq) (p^ + g^ — r^ — 2j9g)

= (i>^ + g^ — 7-^) ^ — 4pV-

In this final product p, g, and r appear only in even

powers, and the product is accordingly rational.

The rationalizing factor is the co-factor of (p + g + ^);

that is, (i> + g — ^) (i>^ + g^ — r^ — 2pg)

.

This factor reduces to Sp^ — '^p\ + 2pqr\ or restoring

-^/a, y'ft, and y'c, to

2 (a — & — c) Va + 2 V(^^0 5

and this is the rationalizing factor.

The rationalized expression is Sa^ — 2 Sa^, and the

fraction becomes

2(a — & — c) yg + 2 V(a&c)
2a2-2 2a&
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1
Ex. To rationalize the denominator of

1 + V2 + V3
a = 1, 6 = 2, c = 3.

S(a - & - c) V« + 2^(abc) = -2V2 - 4 + 2^6,

and 2a2 _ 2 2a6 = - 8.

/. the fraction becomes ^ + V ..

4

In using the form :S(a — & — c) -y^a -\- 2y'(a5c), if any

of the terms are negative, the proper signs must be

attached to the parts involving the roots only.

Thus for -yy2 — -y/S + 1 the rationalizing factor is

^ 2V2 - 4 - 2V6.
For V7 —V^ — V^ *^® factor is

2V7 + 6V3 + 8V2 + 2Vi2.

The rationalized result 2a^ — 2 2a&, not involving any

roots, is not affected by the signs of the terms, and

remains the same for all signs.

97. The expression S(a — 6 — c) ^a + 2-\/abc factors

into (v« — V^ + V^) (v^ + v^ — V^) (v^ — v^ — V^) •

This result, although not convenient in practice, is

interesting as showing the constitution of a rationalizing

factor.

For the three factors are each derived from the expres-

sion to be rationalized, -^/a -f- -y/b + -^/c, by keeping one

term unchanged and giving to the other two all possible

variations of sign. So that of the four trinomial expres-

sions v^ + V^ + V^j v^ + v^ — v^? v^ — v^+v^^
and -^a — -y/b — ^c, the product of any three is a rational-

izing factor of the fourth.

This principle admits of great extension.
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98. To find a rationalizing factor for -^a -f- -^b.

Let a = p% and 6 = ^.

Then (p + q) (p^ —pq -{- q^) = p^ + q^ = a -}- b.

.*. p^—pq-\- q^, or -^a^ — -y/ab +-^b^ is a rationalizing

factor for -^a + ^&.
Similarly, -^a^ + ^a6 + -^/ft^ is a rationalizing factor

for ^a - -^6.

Ex. 1. To rationalize ^a + ^6.

(V« + v^^)(V« - ^&) = a - ^&2= ^a^ - ^&2

;

and this being the difference between two cube roots, the rational-

izing factor for it is—

or a2 + ab^ + &^,

and the factor required is—
(V« - W(«^ + <^Vb^ + b^b).

The rationalized expression is a^ — b^.

EXERCISE VII. b.

1. Simplify—
i. (3+V5)(2-VS). V. 5V2(3V4 + 6V2).

ii. U+:^\(-3 + y^\' vi. \/48^+6\/75a.

iii. (4Vi+ViXVH2Vi). ""• V8-7V18+5V72-V50.

iv. •v/{v^8¥3}. viii. ^/iSa^b'^ -\- V^Oa^b^.

2. Rationalize the denominators of

—

i. ^_. ii. :v^3^. iii. ^V^-^.
V8^ 2 - V3 3 - 2V2
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iv V2(V5-1) . ^. 5 4-2V2-3V.3-V6 .

2V5TV5 1+V2-V3

V.
3 + 2V2-3V3-2v/6

1 + V2 - V^ - V^ 1 - V2 - V3

8. Which is the greater, ^^/^jzi or ^V^~^ ?

4. Which is the greater, ^^<!-

—

'^— or -^'
~

, and what is their

difference? >/^ >/^

5. Rationalize the denominator of —'^

^2+^3

6. Rationalize the denominator of —"-^

V2+^2

99. The following theorems are important in relation

to quadratic surds.

(1) The product of two dissimilar surds cannot be

rational.

For, if p and q be their surd factors, p and q do not

contain the same factors, and hence pq is not made up

of square factors only.

Therefore Vpq is not rational.

(2) A quadratic surd is not the sum or difference of

a rational quantity and a surd.

For, if ^a = b ± -y/c, a — b^ — c = ±2b ^c, by squaring.

But a — b^ — c is rational, and therefore y^c is rational,

which is contrary to hypothesis.

Cor. The sum or difference of two quadratic surds is

not rational.

(3) A surd is not the sum or difference of two dis-

similar surds.
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For, if ^^a = ^h + -y/c, a — b — c = 2^he, by squaring.

But by (1), V^c is not rational, while a — b — c is

rational. .*. etc.

(4) li x-{-^y = a + ^h, where x and a are rational,

then x = a and y = b.

For, X — a = ^/b — -y/y ; and if a? — a has any value,

it is rational, and is equal to the difference of two surds,

which is impossible by (2), Cor.

.'. x — a = 0, or x=a and b = y.

It may be well to remark here that with an equation,

such as x = a+ -y/b, we do not mean to assert that x has

not an exact finite value, but merely that its value is not

that of a quadratic surd ; or, in other words, the square

of x is not rational. So also, if a; — a = ^b—-yj'yj where

6 and 2/ are not equal, x — a has a real finite value, but

this value is not rational, and its square is not rational.

i.e. x — a is not a surd. Hence, if x and a be both

rational, x^a cannot have any value, since such a value

must of necessity be rational.

100. The results of Art. 99 enable us to separate a

surd expression, such as a +y6 or ^a + ^b, into two
identical factors, i.e. to find its square root.

Let one factor be -y/x + -y/y.

Then a + -sJb = {-y/x-\-^yy=x-\-y -\-2^xy,

.*. Art. 99 (4), aj + 2/ = a; and Axy = b.

But x--y = ^\(x-\-yy-4xy\=^\a'-bl

x = ilx-}-y-}-x-yl = i\a-h^{a'-b)l

y = i\x + y-x-y] = i\a-^{a'-b)\
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.-. V^ + V^ =VH« +Vo^"^ +VH« - Va2 - 6)

,

which is the required factor.

This factor, upon being squared, will reproduce the

expression a + -yjl) ; but the case of practical utility is

that in which a^ — 5 is a complete square. Denote it

byc^.

Then V^ + V2/ = Vi(a + c)-^^^{a - c).

Ex. 1. To find the square root of 3 + 2^2.
Here a = 3 and 6 = 8, and a^ — 6 = c^ = 1, a complete square,

whose root is 1.

/. Va^ + V2/=VF4+VF2=V2 + 1.

Ex. 2. To find V{^^ \-n-2 n^n}.

Here a = n^ + w, 6 = 4 n^, c^ri^ — n,

}(a + c)=n2, i(a — c)=w.

.'. V{^^ -\- n — 2 ny/n}= n — ^n.

The sign — before -^n in the result is indicated by the same

sign before 2 Uy/n in the original.

101. An expression of the form a + y^^ -f y'c + V^
can have its root found when the expression is a com-

plete square.

Assume V{^ + V^ + V^ + V^l = V^ + V2/ + V^-

Squaring,

.-. a=:x-\-y -\-z, b = 4:yz, c==4:zx, d = 4:xy.
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"^-^"'"HirMrHir^.
Ex. Root of 35 + 4^15 - 6^10 - 12 V^-

Here b = 240, c = 360, d = 864.

.
* 1/ 360 X 864 \ 4 1/ 864 x 240 \ ^//240 x 360 \

**
\V 4x240'j \V 4x360 J \\ 4 x 864 j

= V18 ± V^2 ± V5
=2V3±3V2±V5.

The signs are then to be determined. It is readily seen that

they must be

2V3-3V2+V'5
in order to give those of the original.

Moreover, (2 V3)2 + (3 V2)2 + (^6y = 35.

The original expression should be reproduced by squar-

ing this, and that is the only absolute test that we have

the true root.

EXERCISE VII. C.

Find the square roots of the following perfect squares from 1 to

11 inclusive.

1. 8 + 2^15. 2. 3 + 41 3. 4+2^3. 4. l + 2uVl-u^.

5. -2i. 6. 2^2 + 2(x - 2/)\/x2 - y^ -2xy.

7. 9-4V2+4V3-2V6. ^q 4^10 + 8

8. 25 + 10 V6.
^^^^ ~ ^

9. I + V2. 11. a2 _ 2 + a\/^^2Tr4.

12. Simplify 1 ^—

+

^

V'(16 + 2 V63) V(16 - 2 V^'^)

13. Simplify ^(3 + VO - p^) + V(3 - Vo - p^).

14. If a'^d = be, then V(^ + V^ + V^ + V^) ^^^ he put in the

form (V«5 + V2/)(V^+\/^)-



CHAPTER VIII.

Concrete Quantity.— Geometrical Interpre-

tations.— The Graph.

102. A concrete number depends upon a concrete

unit which gives to the number its name and character.

Thus 8 dollars is 8 of the concrete units called a dollar.

So a hours is a times the concrete unit known as an

hour.

The symbolism of algebra applies to these abstract

numbers, as coefficients of concrete units, but the inter-

pretation is affected by the nature of the concrete unit.

Operations with concrete quantities are in general

subject to the two following laws

:

(1) To multiply 2 hours by 3, or 3 hours by 2, gives

6 hours; but to multiply 2 hours by 3 hours has no

meaning.

Hence, concrete units have no product, i.e. they do

not admit of being multiplied together.

Hence, also, concrete units have no powers and no

roots.

(2) Again, 3 hours and 4 hours make 7 hours, and

5 minutes and 8 minutes make 13 minutes, but 3 hours

and 4 minutes do not make 7 hours or 7 minutes.

Hence, concrete quantities are added only when of the

same name, and then, by adding the coefficients of the

concrete unit.

114
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An important apparent exception to the foregoing laws

occurs in units of length ; this will be fully dealt with

in connection with geometrical interpretations.

Any other apparent exceptions are easily explained.

103. In many cases of the interpretation of concrete

results negative quantity has a special significance.

If an idea which can be denoted by a quantitative

symbol has an opposite so related to it that one of these

ideas tends to destroy the other or to render its effects

nugatory, these two ideas can be algebraically and

properly represented only by the opposite signs of

algebra.

If a man buys an article for h dollars, and sells it for

s dollars, his gain is expressed by s — h dollars. So

long as s > 6, this expression is +, and gives the man^s

gain.

But if s<6, the expression is — . It denotes that

whatever his gain is now, it is something exactly opposite

in character to what it was before. And as he now sells

for less than he buys for, he loses. In other words, a

negative gain means loss.

Thus gain and loss are ideas which have that kind of

oppositeness which is expressed by oppositeness in sign.

If a man gains + a dollars, he is so much the wealthier

;

if he gains — a dollars, he is so much the poorer.

Whether gain or loss is to be considered positive

must be a matter of convenience, but only opposite signs

can denote the opposite ideas.

104. Among the ideas which possess this oppositeness

of character are the following

;
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(1) To receive and to give out; and hence, to buy and

to sell, to gain and to lose, to save and to spend, etc.

(2) To move in any direction and in the opposite direc-

tion; and hence, measures or distances in any direction

and in the opposite direction, as east and west, north

and south, up and down, above and below, before and

behind, etc.

(3) Ideas involving time past and time to come ; as the

past and the future, to be older than and to be younger

than, since and before, etc.

(4) To exceed and to fall short of; as, to be greater

than and to be less than, etc.

Ex. 1. A man goes 20 miles north, then 15 miles south, then 8

miles south, then 12 miles north, and lastly 18 miles south. Where
is he with respect to his starting-point ?

Denoting north by + , south becomes —

.

The traveller has gone +20 — 15 — 8 + 12 — 18 miles, or — 9

miles.

That is, he is 9 miles from his starting-point, and the sign —
shows that he is south of it.

Ex. 2. A man invests $10,000. On J of his investment he

gains 25 % ; on | he loses 20 % ; and on the remaining portion he

gains 2 %. What per cent does he gain upon the whole.

Let gain be +, and let a denote the amount invested. His

gain % is

fa 25^_2_a ^ , 7a 2 \ . a _ ^ ^ p.

U *

100 5 * 100 20
*

lOOy ' 100 '° '^'

Therefore, his gain is — l2^o%' ^^ ^^ loses l2^o%*

Ex. 3. A goes a miles an hour and B b miles an hour along the

same road, and A is m miles in advance of B. Wnen and where

will they be together ?
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Let t be the time in hours, and j? be the distance in miles, from

B's present position to the point of meeting.

hm
Then t = _i?L_, and p =

b — a

1. Suppose a, b, and m to be all positive.

As a and b may have any values,—
(a) Let a = b. Then t and p are both oo.

Now when a = b, A and B are travelling at the same

rate in the same direction, and the values of t and p tell

us that they will be together after an infinite time, and

at an infinite distance from the present position of B,

I.e. that they will never be together. It must be noticed

that this is the only way in which the symbols of algebra

can answer the question proposed with these conditions.

(b) Let a<b. Then as t and p are both positive and

finite, the men will be together at some time in the

future, and at some distance in the positive direction

measured from B's present position.

(c) Let a > &. Then t and p are both negative.

This tells us that A and B will be together at some time

in the past, i.e. they have already been together ; for as

t denotes time to come, — t must denote time past, and

their point of meeting is at some distance in the nega-

tive direction from B's present position.

2. Let a be negative. Then A is coming backwards

to meet B, and they will meet at some time in the future,

and at some place in the positive direction from B's

position.

Other variations of signs must be left to the explana-

tion of the reader.
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Ex. 4. A and B both have cash in hand and both owe debts.

B's cash is 10 times his debt. If B pays A's debt, his cash will be

2| that of A's, and if A pays B's debt, his cash will be ^^ of B's.

When all debts are paid, both together have $ 3400. How much
has A after his debts are paid ?

Let A's cash = a, and B's cash = b. Since debt is opposite to

cash capital, B's debt is capital.

Then A's debt = 3400 + ^-a-b capital.
10

^

After paying B's debt A has a left, and this is equal to

2% b, .-. a = i b.

After paying A's debt B has 6 - ^3400 + ^-a-b\ left, and

this is equal to 2| a.
'

:,^Ab = b- 3400 - A + 5 + 5.

5 4 10 4

Whence b = 4000 = B's capital,

and — 400 = B's debt, as capital.

.-. B is worth 3600 when his debts are paid, and A is worth

— 200 when his debts are paid.

That is, A owes 200 dollars more than he is worth.

105. The examples of the preceding article illustrate

the fact that a literal algebraic solution of a concrete

problem is not a solution of a particular problem, although

put in a particular form, but of every problem belonging

to a group of which the particular one may be taken

as a representative. This group includes all problems

derivable from the particular one by (1) varying the

magnitudes of the numerical quantities concerned, and

(2) changing ideas which admit of it into their opposites,

provided always that such changes do not render the

problem unintelligible.
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When such a literal result is interpreted in language

as general as possible, it becomes a rule; but it seldom

happens that any rule of arithmetic or geometry can be

as broad and representative as the literal expression from

which it is derived, and of which it professes to be the

interpretation.

EXERCISE VIII. a.

1. A man buys m articles at b dollars per article and sells them
at s dollars per article ; what is his gain per cent ?

Interpret the result (i.) when he receives the articles as a gift

;

(ii.) when he gives the goods away
;

(iii.) when ft > s.

Show that a person in dealing may gain any finite percentage,

but that he cannot lose more than 100 per cent.

2. One carriage wheel is m, and the other n feet in circumfer-

ence. How far has the carriage gone when one wheel has made r

revolutions more than the other.

Interpret when m = n.

3. A has a dollars more than B, but if B gives A b dollars, A
will have twice as much as B. How much has each ?

Interpret when (i.) a is negative; (ii.) b is negative; (iii.) is

there any arithmetical interpretation for both a and b negative ?

4. A^s age exceeds B's by n years, and is as much below m as

B's is above p. Find their ages.

Interpret when n > m + p.

5. The hands of a clock go around in the same direction in a
and b hours respectively. If they start from the same point

together, when will they be again together ?

Adapt your result to the case where the hands move in opposite

directions.

6. A, By Cj D are four equidistant fixed points in line ; find a

point 0, in the line, for which

3^O+5SO4-2CO + 6Z)O = 0.

On which side (the ^ or i> side) of the middle is the point ?



120 GEOMETRICAL IKTERPRETATIONS.

7. Two circles have tlieir radii r and r^ and their centres lie on

a fixed horizontal line. If r>ri and d is the distance between

centres, how are the circles relatively situated when—
i. d = r -\- r^f iii. d = —r + r^,

ii. d = r — r^, iv. d =— r — r^?

8. A can run a feet in b seconds, and B can run b feet in a sec-

onds. Express the ratio of A's speed to B's.

9. Two ropes are in length as 4:5, and 6 feet being cut from

each, the remainders are as 3 : 4. Find their original lengths.

10. The lengths of two ropes are as a : 6, and c feet being cut

from each they are as a^-.b^. Eind their original lengths.

Interpret when c is negative.

11. A river flows 4 miles an hour ; a boat going down the river

passes a certain point in 20 seconds, and in going up it takes 30

seconds. Eind the speed of the boat in still water. Also the

length of the boat in feet.

12. A man walks from A to B in h hours. If he had walked

a miles an hour faster he would have been b hours less on the

road. Find the distance from A to B, and the rate of walking.

13. Change the wording of 12 to suit the case where a and b

both change signs.

GEOMETRICAL INTERPRETATIONS.

106. As we have seen in Art. 21, the substitution of

numerical quantity for the quantitative symbol gives an

arithmetical theorem for an algebraic expression, and

especially for an identity.

So, also, an expression written in the symbolism of

algebra may admit of a geometric interpretation, when
the quantitative symbol stands for some elementary
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geometric idea. The mode of interpretation must depend

upon the character of this idea.

By employing the quantitative symbol to stand for

different geometric ideas, mathematicians have developed

different geometric algebras, requiring different modes

of interpretation, and some of which, not being derived

from arithmetic, are not subject to all the formal laws

deduced in Chapter I. It need scarcely be said that

these latter algebras are not generalized arithmetic, and

are not generally applicable to numbers.

Only two modes of interpretation concern us here, and

these are such as belong to algebra as already defined

and developed.

The distinction between these is as follows:

I. The quantitative symbol stands for a given portion

of a straight line, or a line-segment, as a geometric

figure. The algebra then becomes a kind of symbolic

geometry, and is subject to certain restrictions arising

from the nature of geometry.

II. The quantitative symbol stands for a number, i.e.

the number of times a particular line-segment, taken as

a unit of measure, is contained in a given line-segment.

This becomes a matter of concrete quantity, admitting

of geometric interpretation, and being subject to certain

geometric limitations.

I. Symbolic Geometry.

107. The primary ideas in geometry are length and direc-

tion, or, mechanically stated, transference and rotation.

Length is denoted by a quantitative symbol, which in

this connection will be called a line-symbol. Thus a
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denotes a given line-segment. But it does more than

this ; it denotes transference from one end of the seg-

ment to the other in only one direction. Then — a

denotes the same amount of transference in the opposite

direction ; and thus a — a = represents a neutralized

effect, and is equivalent to no transference, and conse-

quently to no line-segment.

Thus a and — a denote the same segment measured in

opposite directions, and we have thus a simple and intel-

ligible interpretation of the signs -f- and — as applied to

line-segments.

Such a segment is called a directed segment, as its

direction, being one of two opposites, is determined by

algebraic sign.

108. a-\-b is a segment as long as a and b together;

or it represents transference over length a followed by

transference over length b in the same direction.

Thus, if a = AB, b = BC, g
,

,
b .

a + b = AB-{-BC=Aa ^ b c

Then a — &, which is a + (— 6) represents transference

over length a followed by transference over length b in

the opposite direction. If a is longer than 6, let a = AB,

and 6=CjB. Then -b = BG, ^^ , ,
,

and a — b = AB + BC, or trans-

ference from A to B, followed by transference from B to

C. This is equivalent to transference fromA to (7, and is

positive, being the remainder when the shorter segment

b is cut off from the longer a.

If b is longer than a, let b = C'B.

Then a — 6 = AB -f BC = AC, which is negative.

Similarly, na, when n is numerical, denotes a segment

n times as long as that denoted by a.
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109. The area of a rectangle is denoted, in the sym-

bolism of algebra, by the product form of the line-

symbols which denote two adjacent sides of the rectangle.

Thus ah means the area of the rectangle whose

adjacent sides are denoted by a and h.

Then a^ denotes the area of the square whose side is a.

If either a or 6 is negative, the area ah is negative, and

is subtractive from any other area concerned. Hence an

area is often spoken of in connection with the symbolism

of algebra as a directed area. A square, however, is

essentially positive.

110. The volume of a rectangular parallelopiped or

cuboid is symbolically expressed as the continued product

of the three line-segments which denote any three

conterminous edges, known as direction edges, of the

cuboid.

Thus ahc is the volume of the cuboid having a, h, and c

as direction edges.

Then a^, which is the same as aaa, is the volume of

the cube whose edge is a.

We thus see the meaning of the terms square and

cube as introduced from geometry into arithmetical

algebra.

111. The evidence of the legitimacy of the conventions

of the three preceding articles, or rather the proof of the

necessity of 109 and 110 as following from the funda-

mental convention of 107, is a matter for geometry rather

than for algebra.

In the elements of geometry it is also shown that,

with these conventions in regard to the geometric mean-

ings of the algebraic forms, we have
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(1) a + 6 = 6 + a.

(2) ab = ba,and .*. abc = acb = bac = etc.

(3) a{b -{- c) = ab -{- ac, etc.

Hence the symbols a, b, c are subject to the same

formal laws of transformation whether we consider them

as line-symbols or as quantitative symbols. And thus

every algebraic identity of proper form may be inter-

preted either as a theorem in numbers, i.e. in arithmetic,

or as a theorem in lines, areas, and volumes, i.e. in

geometry.

EXERCISE VIII. b.

Interpret the following identities as geometric theorems—
I. (a-&)2 + 2a5 = a2_^62.

(a — 6)2 is the square on the difference of two line-segments
;

ah is the rectangle on the segments ; and a'^ + &2 jg ^he sum of the

squares on the segments, therefore

The square on the difference of two segments and twice the

rectangle on the segments are together equal in area to the sum of

the squares on the segments.

2. a(a + b)=a^-\-ab. 5. (a + 6)2 -(« - 6)2 .= 4a6.

3. (a+6)(a-6)=a2_52. g. ^a+by+(ia-by=2(a^-^b^y

4. (a + 6)2 = a2_,_ 52 + 2 a6. 7. ab(ia -}- b)= a'^b -{- ab^

8. (a + 6 + c)2 = a2 + 52 + c2 + 2(a6 + 6c + ca),

9. (a+by = a^-\-b^ + Sab{a-\-b).

10. If a : 6 = c : d, then ad = be.

II. If a : 6 = 6 : c, then 62 = ac.

12. Ji a:b = b;c = c:d, then a'.d = a^:bK
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112. Certain restrictions must be imposed upon alge-

braic expressions if they are to be interpretable as real

geometric relations. These, besides the conditions which

render an expression arithmetically interpretable, are two

in number ; namely,

(1) In the line-symbols the expression must be of not

more than three dimensions.

This is due to the fact that there are but three dimen-

sions in space, the subject-matter of geometry, and that

by our convention each line-symbol in a product repre-

sents one of these dimensions.

(2) The expression must be homogeneous in the line-

symbols. For the adding of one species of magnitude to

another species, as a line to an area, or an area to a

volume, is not an intelligible operation.

113. Every homogeneous expression of one dimension

in line-symbols denotes a finite line-segment, or is linear.

Every homogeneous expression of two dimensions in

line-symbols denotes an area; such areas being squares, as

a^, or rectangles, as ah, or areas made up of these.

Every homogeneous expression of three dimensions

in line-symbols denotes a volume; such volumes being

cubes, as a^, or cuboids on square bases, as a^h, or cuboids

with three unequal edges, as ahc, or volumes made up of

these.

114. An expression which represents a geometric rela-

tion must always represent a geometric relation however

it is transformed, provided it is interpretable. And

hence a homogeneous expression cannot be made non-

homogeneous by any legitimit;^ tvmsformation.
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This fact is useful in many ways.

If at any stage in the transformations of algebraic ex-

pressions a homogeneous expression becomes non-homo-

geneous, or vice versa, some error in work is to be looked

for.

Non-homogeneous expressions are frequently made
homogeneous in form by the introduction of a unit-

variable, on account of the resulting advantages in the «

after work.

Thus 0^24. 3a;—2=0 may be written x^+3xy -2y^=0,
where 2/ is a variable in form only, and is to be replaced

by 1 after all the necessary transformations are made.

115. In applying the symbolism of algebra to develop

metrical relations in geometry, a sufficient knowledge of

descriptive geometry is required, and in addition to the

relations already laid down in 113 and previous articles,

the following are necessary

:

1. If a, c denote the sides of a right-angled triangle

and b denote the hypothenuse, 6^ = a^ -f c^.

2. Similar triangles have their homologous sides pro-

portional.

Ex. 1. Vab is linear, and denotes the side of the square whose

area is equal to that of the rectangle whose sides are a and b.

Ex. 2. Vabc is Hnear, and denotes the edge of the cube whose

volume is equal to that of the cuboid of which a, 6, c denote

direction edges.

Ex. 3. Va^bc is an area. For it is a • Vbc, and \/bc is linear.

Ex. 4. a^bCj being of 4 dimensions, has no geometrical inter-

pretation.



GEOMETRICAL INTERPKETATIONS. 127

Ex. 5. ah 4- he is the sum of two areas, and is therefore an area

;

but ah + c has no geometrical meaning, not being homogeneous.

Ex. 6. The base of an isosceles triangle is h and its altitude is a,

to find the perpendicular, ^, from a basal vertex to a side.

Let ABC be the triangle with B as vertex, D the foot of the alti-

tude, and AE the required perpendicular.

Then ah = AE . BC, since each expresses double the area of the

triangle.

But BDC being right-angled at Z>,

J5C2 = ^Z>2 _|. 2X72 = a2 + J 52.

.\ ah=p^(ia^ + ih^).

Whence p r- ^^^
V(4a^ + 62)

Ex. 7. If any given area be divided respectively by the areas of

the squares on the two sides of a right-angled triangle, the sum of

the quotients is equal to that obtained by dividing the given area

by the area of the square on the perpendicular from the right angle

to the hypothenuse.

Let p be the perpendicular.

Then ac=ph = twice the area of the triangle.

(Art. 115, 1).-. a-c2 = i)^62;= p%a:^ + C2)

Whence 1

a2 -1
1

-i)2>

and multiplying by any area, ^2 say,

W2

a2 ^C2 »2'

which interpreted gives the theorem.
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EXERCISE VIII. c.

1. AA' is the diagonal of a square, and is trisected at the points

C and D. Find the area of the square when the segment CD is a.

2. The sides of a rectangle are as m -. n and the diagonal is d—
i. Find the sides.

ii. Find the area.

iii. Find the perpendicular from a vertex to the diagonal,

iv. Find the distance between the feet of the two perpendiculars

upon the same diagonal.

V. Show that the rectangle on the diagonal and the line-segment

between the ieet of the perpendiculars on the diagonal, is equal in

area to the rectangle on the sum and difference of the sides.

3. The sides of a rectangle are a and b ; to find—
i. The perpendicular upon a diagonal.

ii. The distance between the feet of the perpendiculars upon
the same diagonal.

iii. Show that the volume of the cuboid, whose direction edges

are the two sides and the line-segment of ii.,is equal to that of the

cuboid, whose direction edges are the sum and difference of the

sides and the line-segment of i.

4. The side of an isosceles triangle is n times the altitude, and
the base is 2 & ; to find the area. What does the result become when
n= 1? Explain.

6. The base of an isosceles triangle is one-half the side, and the

perpendicular upon the base is J Vl5. Find the area.

6. An upright tree is broken over by the wind, and the top

touches the ground at 36 feet from the base Find the length of

the whole tree when the remaining upright part is 15 feet.

7. How large a circular disc can be cut from a triangular piece

of paper whose edges are 13, 14, and 15 inches respectively ?
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8. In a right-angled triangle the median to the hypothenuse is

r times one of the sides ; find the ratio of the sides to one another.

9. In an isosceles triangle where h is the base and s the side,

the area is expressed by — ; find the ratio of the side to the

base. ^

10. If the side of a square be increased by -th of itself, where n
n

is a large number, by what part of itself is the area increased ?

11. If the edge of a cube be increased by -th part of itself,

n
where n is a large number, by what part of itself is the volume

increased ?

12. Find the ratio of the diagonal of a square to—
i. The side,

ii. The join of a vertex with the middle of a side.

13. Find the ratio of the diagonal of a cube to its edge.

14. Compare the area of an equilateral triangle on the side of a

square to one on the diagonal.

15. A boat making 10 miles an hour in still water steers directly

across a stream flowing 4 miles an hour. Compare the real velocity

of the boat with—
i. Its velocity across the stream.

ii. Its velocity down the stream.

16. A boat goes a certain distance down a stream in t seconds,

and requires t^ seconds to return. Compare the velocity of the

boat with that of the stream.

Interpret when t ^t^.

17. A street 60 ft. wide has a house 20 ft. high on one side,

and a house 30 ft. high on the other. How long a ladder is

required, and where must its foot be placed, that it may just reach

to the top of each house ?
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Y

II. Geometry as Concrete Quantity.— The Graph.

116. Take any point 0, and through it draw the two

lines XX\ YY' at right angles to one another.

These lines are lines of
^

reference, and are called

axes, and is the origin.

To distinguish the axes,

XX' is called the avaxis,

X and YY^ the y-axis.

Measures are made
along the ar-axis from O
to the right or left, those

to the right being posi-

tive and those to the left being negative. Also measures

are made from the aj-axis parallel to the ^/-axis, upwards

or downwards, those taken upwards being positive and

those downwards negative. We have thus two sets of

measures which represent the two dimensions of the

plane, and by means of the convention of signs stated

above we may represent any point in the plane.

Let P be any point, and FM be perpendicular to OM.
Then the measures which determine the position of P

relatively to the origin and axis are OM and MP^ and

if these are known, the position of P is known.

Usually, and for the sake of uniformity, the measure

OM IS called the x of the point P, and the measure MP
is called the y of the point P, If, then, the x and y of

a point are given, the point can be laid down.

Thus, let the a; of P be 2 and its y be 3.

To get the point, we measure OM to the right equal
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to 2 units from any adopted scale, and then measure MP
upwards parallel to OF and equal to 3 units from the

same scale. The point thus found is an ocular represen-

tation of the given point, and is called the graph of the

given point.

If X were ~ 2, and y 3, we would take OM^ to the

left and get the point Pi ; and if the point had its

a;= — 2 and its y = — 3, we would also take J/1P2 down-

ward and get the point Pg- Thus any point is completely

determined by its x and y with their proper signs.

117. Now let y=fx be any integral function of x.

For every value of x we have a corresponding value of y,

and if x varies continuously, i.e. by infinitely small

gradations, y also varies continuously.

Let, then, a number of corresponding values of x and

y be found by giving to x any convenient arbitrary

values, and finding the resulting value of y for each.

These values form the x's and y^s for a set of points

whose graphs all lie upon the graph of the function /ic,

this graph being a line or curve passing through all the

points.

If all possible values of x could be considered, the

points would be infinite in number, and would exactly

mark out the graph of the function ; but as we cannot

practically take every value of x, we take a set of values,

usually integral, as being most convenient, and thus get

a set of points. We then connect these, as well as

possible, by a line or curve, as may be required.

The theoretical graph is an exact geometrical picture

of the function, and in itself and in its relation to the

axis represents every property of the function. The
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practical graph, is a more or less close approximation

to this.

Ex. 1. Let y = 2x-l.

Take x = -l, 0, + l, + 2,

Then 2/ = -3, -1, + 1, +3,

c/

-X-

Lay down the graphs of the points whose a;'s and i/'s

are given, as at a, h, c, d, "- in the diagram.

It is readily seen that
^ / ...

these points lie in line, and

that the graph, which is

denoted by the dotted line,

is a straight line. Hence

the reason for calling 2x — l

a linear function of x, and

^ 2a;— 1 = a linear equa-

tion.

It can be readily shown

that the graph of every

function of the form ax-\-h

is a straight line.

The root . At the point

R, where the graph ad cuts

the ic-axis, we have y = 0,

and .*. 2x^1 = 0. The x of this point is OB^^^nd as

this is the value of x, which makes the function zero,

OE measures the value of the root. It is readily seen

that OiiJ = f
Thus the cutting of the ic-axis by the graph denotes a

iral root, and the distance from the origin to the point

of intersection measures the value of the root, + if to

/

/

J



THE GRAPH. 133

the right, and — if to the left. In the present example

the root is -f

.

As the line ad must cut the a^axis either at a finite

point or at go, a linear equation has one root only ; this

root must be real, and may be finite or infinite in value.

Ex. 2. Let y = a^ + x^-2x-l =fx.

Take a; = -2-l + 1 + 2.

Then ?/ = -l + l-l-l + 7.

The graph is given at G in the diagram, being a curve

through the points

a, 6, c, d, e •••
/

1. The graph cuts

the a.'-axis at three

points, Bj E', and

E".

Hence there are

three real roots to

the equation

a;3_^^.2_2a;-l = 0.

. Two of these, OE
and OE', are nega-

tive, and the third,

OE'', is positive.

The limits of the roots are, OE > — 2 and < — 1, OE'

> - 1 and < 0, and OE" > 1 and < 2.

2. If we move the graph bodily upwards through 1

unit, we bring it to the position G', and increase every

value of y by 1 unit. But we may increase the value of

2/ by a unit, by adding a unit to the independent term of

the function.

I

'''I
e=7

'

'

^\ /'
f \ ' ;

!

/ \ / 1

'

k \
/ 1

/ /

1

'^v ^\ / /

1

1 t \ \ ' 1

1 ' ^ \ /

'

/ /G' 6 \ \ '' /

''

/ /I
\ ^
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/
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/'R -1 R'^

/
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\
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/
/

/
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Hence, to increase the independent term of the func-

tion is equivalent to moving the graph upwards, and to

decrease it is equivalent to moving the graph downwards.
(7' is thus the graph of

in which a has come to — 2, c to 0, and d to 1.

The roots are now — 2, 0, and 1.

The two points E' and E" have come nearer together,

and the two E and E' have gone further apart ; that is, the

roots OE* and OE'^ have approached one another in value,

while the roots 0^' and OE have become farther sepa-

rated in value.

3. Add another unit to the independent term, and the

graph is moved into the position (^", which is the graph

of a^ 4-0:2 _2aj + l.

As the loop L no longer cuts the aj-axis, the points E'
and E" have become imaginary, while the point E is

still real. Hence the two roots 0^' and 0^" of G have

become imaginary in (r", while the third root, OE,

remains real. Thus, then, o^ + iB^ — 2aj + l has two
imaginary factors, i.e. complex quantities, and one real

factor.

4. In the motion of the graph from the position G' to

that of 6r'' there was an intermediate position in which

the loop L just touched the ic-axis. The points E' and

E" were then coincident, and the roots OE' and OE''

were identical.

We thus see that in passing from real to imaginary

two roots approach one another in value, become equal,

and then become imaginary ; and since two roots must
always be thus involved together, the roots must become
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imaginary in pairs ; or, more concisely, imaginary roots

exist in pairs.

5. The least consideration will show that similar

changes take place when the graph is lowered by sub-

tracting from the independent term of the function, the

difference being that B and R^ will then become imag-

inary, while i?" remains real.

The mode of representing a function by a graph is

due to Descartes, and its invention is one of the great

milestones in the progress of mathematics. The graph

is largely employed by statisticians, by engineers, by

physicists, by chemists, and many others who are able

to employ mathematical methods intelligently; and its

systematic discussion is the subject-matter of coordinate

geometry.

EXERCISE Vni. d.

1. Construct the graphs of 2 ?/ + 3 a; = 6, and of 3 y — 2 « = 6.

2. Construct the graph of x — y = 0. How is it situated with

respect to the axes ?

3. In the graph of ax -\- hy -{ c = 0, what is the effect of—
i. Increasing the independent term ?

ii. Increasing the coefficient of x ?

iii. Increasing the coefficient of ?/ ?

4. Draw the graphs of ic^ — 4^ + 2 = 2/; oi x^ + ^x"^ — x — \ = y]

and oix^ — 4:X = y. How are these graphs situated in relation to

one another ?

6. What integer added to the independent term of a^ — 2 ic^ — x^

+ 2 X — 1 will make all the roots imaginary ? Will make all the

roots real ?

6. Explain from the graph why a cubic must have one re^ xoot.
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The Quadratic.

118. The most general type of a quadratic function of

one variable is

ax^ -{-hx -{-c,

and the corresponding equation is

ax^-\-'bx-\-c = {A)

In the equation we may divide through by a ; then

a a

b c
and writings for -, and q for -, the equation becomes

a a

x^-}-px + q = 0] (B)

which is the quadratic reduced to its simplest foi-m. The
roots of this are, by Art. 59,

i«i = i(—p+Vp^ — 4g), and 0^2 = i(— P — Vp^ — 4g).

On account of the double sign of the root-symbol, -yj

(Art. 48), both values are included in the one expression

^ = i(— i> ±yp^ — 4g),

and this is the solution of {B),

136
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h c
In this solution write - for p, and - for q, and re-

duce, and we obtain

Jj (I

and this is the solution of (A)

The forms of these solutions should be so mastered

that for any quadratic equation, in either of the forms

(A) or (B)y the solution may be written down at once.

Ex. 1. The roots of 3 a:2 + 2 x - 4 = are

x = K-2±V4T48)=K-l±V13).

Ex. 2. The roots of 2a:2 - Sx + 2 = are

X = i(S±V9^=^)=l(S ± i VT).

119. The double root, or double solution of the quad-

ratic, is frequently of the highest importance as giving

an unexpected answer to a problem, and through this

answer giving us a clearer idea of the nature of the

problem.

It is only when a problem admits, in spirit, of a

double answer, that it involves the solution of a quadratic.

A few examples will make this plain.

Ex. 1. A man buys a horse and sells him for $24, thus losing as

much per cent as the horse cost in dollars. To find the cost.

X
100*

Or x2 - 100 x + 2400 = 0.

Whence aj = 60 or 40.

This solution shows the problem to be to a certain extent

indefinite, since there is no way of determining whether the cost

of the horse was $40 or $60.
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Ex. 2. The attraction of a planet varies directly as its mass and

inversely as the square of the distance from its centre. The earth's

mass is 75 times that of the moon, and their distance apart is

240000 miles. To find a point, in the line joining them, where their

attractions are equal.

Let P be the point, and let , ^ ,

EP=X. E P M Q

Attraction ofE =— ; and of If = : and these are
x-2 (240000 - xy^

to be equal. This gives

74 x2 _ 150 X 240000 a; + 76 • (240000)2 = 0.

Whence x = 215160 or 271330 miles.

The smaller of these numbers evidently gives EP ; the

larger, being greater than 240000, gives a second point,

Q, beyond the moon, and not contemplated in the prob-

lem. Our judgment tells us that there is a second point.

Cor. In the foregoing question let the masses of the moon and

earth be the same. Then we have

or ^2(1 - 1) - 480000 x + (240000)2 = 0.

x^ (240000 - x)

By Art. 77, x = 00 or 120000.

That is, one point, P, is half way between the earth and moon,

and the other is infinitely distant.

EXERCISE IX. a.

1. Solve the quadratics.

I. x^ + x-i(b-c)-ibc = 0. iv. 3a;2__2a;+l = 0.

II. x^-ax+ i(a^ - 62) = 0. v. (a2 - b^)x'^ -2ax + l=0.

ill. abx^ - (a2 + b^)x + a6 = 0. vi. x2 - x - J = 0.
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2. Find the relation between a and h in the equation

(a -\- x) (h — x) -\- abx — 1=0, when—
i. The sum of the roots is zero,

ii. The sum of the reciprocals of the roots is zero,

iii. The sum of the reciprocals of the roots is infinite.

3. If the equation ax^ + bx + c = has a and p as its roots,

find the equation which has - and - as its roots.
/3

4. Show that the roots of ax^ + bx+ a = are reciprocals of

one another.

5. The area of a right-angled triangle is a^ and the difference

between the two sides is d; to find the sides. Explain the double

solution, and draw figures to represent it, when a^ — 4 and d = 2.

6. ABCD is a square. P is a point on AB produced, and Q is

on AD^ and PCQ is a right angle. Determine BP so that the

triangle PCQ shall have a given area, a^. Explain the double

solution.

7. In Ex. 6, ^§ is equal to BP\ determine BP when the tri-

angle PCQ has a given area, a^. Explain the double solution.

8. AB and CD are two straight lines intersecting at right angles

in 0. AC is of a given length, I. Find AO when the triangle

ACQ has a given area, a"^. Explain the quadruple solution.

9. Find the area of the triangle of Ex. 8, when AO = 2 CO,

10. Find CO, of Ex. 8, when AO'^ = l'CO.

120. The rational part, , in the solution of (A)
Jj a

is the same for each root, the difference in the roots

being due to the part V^^ — 4 ac.

As this part may be rational, irrational, or imaginary,

both roots are alike rational, irrational, or imaginary.

(1) When V&^ — 4:ac is real, the roots are real and

different.
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This occurs when a and c have unlike signs, or when

they have like signs and 6^ > 4 ac.

Ex. 1. The roots of x^ - 2 x - 2 are 1 di V'*^-

Ex. 2. The roots of x^ - 3 x + 1 are 3 ± V^-

(2) When -y/b^ — 4 ac = 0, the roots are real and equal.

This occurs when &^ = 4 ac, in which case the function

is a complete square.

Ex. 3. The roots of ic2 - 4 x + 4 are 2 ± 0.

(3) When V&^ — 4ac is imaginary, the roots are com-

plex numbers, unless h is zero, when they are imaginaries.

This occurs w^hen 6- < 4 ac.

Ex. 4. The roots of x^ - 2 ic + 2 are 1 ± i.

±—V— 4ac, and
2a

(4) When 6 = 0, the roots are

differ in sign only ; but they may be rational, irrational,

or imaginary.

(5) If the roots are real, and a is +, they will have

the same sign when b > V&^ — ^ac\ that is, when c is +.
The sign of the roots will be the opposite to that of b.

This takes place in Ex. 2, the roots being real, and a

and c being both +.

121. The Graph. The
graph, G, of x^—^x-\-l is

given in the margin. The

roots OR and Oi^' are both

positive (Art. 120, 5).

Let x^-{-px-{-q=0 be the

quadratic in form {B), and

let Xi and X2 be the roots.
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Then,

(X — Xi) {X — X^ = X^ — {Xi -f- ^2) ^ + ^1^2 = ^

is the equation ; and comparing with the former, we
have Xy + .^2 = — p, and x^x^ = g. That is—
The sum of the roots is the coefficient of linear x with

changed sign, and the product of the roots is the inde-

pendent term.

If we put for p and q their vahies in terms of a, 6, and

c, we get Xi-{-X2 — , and X1X2 = -•

a a
Since x^ + X2 is independent of g, the sum of the roots

is not affected by changing the value of g. Hence if we

move the graph upwards by adding to g (Art. 117, Ex. 2,

2) until L comes to (7, the roots become equal and their

sum is unchanged. Hence 0(7= ^ (OjR -f- Oi?').

122. Minimum and Maximum.

The y of any point of the graph expresses the value

of the function a,^ — 3 a? + 1 for the corresponding value

of X ; thus for a; = the value of the function is Oa, for

a; = 01 the value is 16, and for x = OG the value of the

function is CL.

The function has then a least value (7X, called its

minimum, but it has no greatest value.

If we change the signs of the function throughout, we
do not affect the roots in any way, but we change the

sign of every value of y, and we thus reverse the graph,

putting it into the position g.

The function now has a greatest value CL\ its maximum,

but it has no least value.

Hence a quadratic function with the coefficient of x^

positive has a minimum value but no maximum ; and
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with the coefficient of os? negative, it has a maximum, and

no minimum.

123. To find the minimum or maximum solution.

It appears, from Art. 121, that when ic = OC, the value

of the function is either a minimum or a maximum,

according as the coefficient of o? is positive or negative.

But 0(7= 1 (0/? + OjK') = one-half the sum of the roots

= — ^p. Hence the required solution is obtained by

substituting for x one-half the coefficient of linear x with

changed sign.

Ex. 1. The minimum value of x2 - 3x + 1 is (|)2 - 3(|)+ 1,

or - f = (7/:.

Ex. 2. To divide a number into two parts such that their

product may be a minimum or a maximum, and to find its value.

Let a be the number, and x one of the parts.

Then x{a — x) is to be a minimum or a maximum.
But the function ax — x^ has a maximum solution (Art. 122).

-, and X is -, or the number is halved.laY_a^
2

Ex. 3. Two trains A and B are on two roads crossing at right

angles and approaching the crossing. A is a miles from the cross-

ing and goes a miles an hour ; B is 5 miles from the crossing and

goes /3 miles an hour. When will they be nearest together, and

how far apart will they then be ?

Let X be the time in hours. Then

—

a — ax is A' s distance from the crossing at the end of x hours,

and 6 — j3x is B's distance.

Their distance apart is V(a— ax)^ + (5— jSx)^, and this is to be

a minimum. But its square will also be a minimum.

.-. (a-ax)2 + (6-/3x)2

or x\a^ 4-/32) - 2 a;(aa + &3) -f «2 + 62

is to be a minimum.
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The value of x is «fL±_M.
a' + )82

If this value be substituted for x, the function reduces to

{hoL - a&y
a2 + )82

'

which is the square of the least distance.

124. We arrive at the results of Art. 123, without

using the graph, as follows

:

Let x^+px + q = y.

Then a; = i(—p ± Vp^ — 4g + 4y).

Now, whatever be the value of jp^ — 4g, the expression

Vi>^ — 4g -f 4?/ cannot be made imaginary by increasing

the value of y, while it may be made so by sufficiently

diminishing the value of y. If, then, the roots are to be

real, y has a minimum value, and this minimum is

reached just as the expression p^ — 4:q -{- 4,y is passing

from + to — ; i.e. when the expression is zero.

This gives x = — ^p for the minimum solution ; and

the value of y is found either by substituting this value

of X in the function, or by putting p^ — Aq -\- 4:y equal to

zero and solving for y.

Hence y = — ^ (p^ — 4g) ; i.e. one-fourth of the quan-

tity under the sign ^, in the solution of the equation

oc^ +px -{- q =: 0, with its sign changed.

Next let — x^ -\- px -\- q z= y.

Then x=:^(p ± Vp^ -}- 4g — 4:y).

The part Vp^ + 4g — 4y may be made imaginary by

increasing the value of y, but not by diminishing it.

Hence the function now admits of a maximum value,



144 THE QUADRATIC.

but not of a minimum ; and the maximum solution as

before is given hj x = ^p, and the value of the maximum
is 2/ = i(P^ + 4g).

As the value of x, which gives a maximum or a min-

imum solution, does not involve the irrational part of the

root, the solution is independent of the nature of the

roots, as to whether they are real or imaginary.

125. By studying the graph, we see that for real roots

with x^ positive, the function has a negative value for

all values of x lying between the roots, and positive for

values lying beyond the roots ; and for a^ negative, the

value of the function is positive for all values of x lying

between the roots, and negative for all values of . x lying

beyond the roots.

Ex. For what values of 5c is 3 ic^ — 2 ic — 1 positive ?

The roots of 3 a;^ — 2 x — 1 = are 1 and — i
; and the expres-

sion is positive for every value of a; > 1 and < — |.

And the expression is negative for every value of x < 1 and

EXERCISE IX. b.

1. Construct the graphs of—
i. x^ — X— 1. iii. 2 + X — x^.

ii. ^2 + X + 1. iv. 2 — X — x^.

2. Construct the graph of 4 x^ + 4 x + 1.

3. Construct the graph of \/4 — x^.

Here we put y = \/4 — x'^, and hence 2/^ = 4 — x^ ; and y has

thus two values differing in sign only for every value of x.

4. Construct the graph of \/4x.

5. Construct the graph of x(l ± 2).
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6. Construct the graph of x^ + ic + 1. •
.

7. Construct the graph ot x^— x"^ — x + 1.

8. Construct the graph of
^^ " ^ + ^

.

x-{-

1

9. Find the maximum or minimum value of the following

functions

:

i. x^ + x-1. iii. 3x-x2 + 2.

ii. 3 x2 - 2 a; - 1. iv. x'^-Sx.

10. Find the numerical quantity which exceeds its square by

the greatest possible quantity.

11. Divide a number into two parts such that the sum of the

squares of the parts may be a minimum.

12. Find the number which when added to its reciprocal gives

the smallest sum.

13. Divide a number a into two parts such that the square of

one part added to n times the square of the other may be the least

possible, and find the sum.

14. Divide a number into two parts such that the difference

between the sum of the squares upon the parts and the product of

the parts may be a minimum.

15. Divide 20 into two parts such that their product may be 120.

The result is x = lO ±2i ^^. The factors 2(5 + iy/5) and

2(5 — ^V5) have 20 as their sum and 120 as their product, and

thus algebraically the problem is solved. But the complex num-

bers tell us, in the only way in which algebra can do so, that the

question is arithmetically absurd or impossible. We are shown

why this is so in Ex. 2 of Art. 123.

16. The sum of a quantity and three times its reciprocal is y'S
;

is the quantity real or imaginary ?

17. Show that -^ cannot be greater than f^3 if x is

real,
x^-x + 1
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x^ A- or 1
18. If A: is a value of x which makes —— equal to 2,

x^ — X -i- 1
show that A: is a complex number. ^

19. ABCD is a square ; on AD a point P is taken, and on AB
a point §, so that AP = BQ. Find AP when the area of the tri-

angle QAP is a given quantity, a^.

Denote the side of the square by s, and

let AP = BQ = X. Then AQ = s - x, and

the area of the triangle APQ is

J x(s — x)= a^.

Thence, x = i(s± Vs^ - 8 a^)

.

(1) There are two solutions, and there-

fore two positions for P. This is seen in

the diagram, in the triangle AP'Q'.

(2) a^ has a maximum, that is when 8 a^ — s2^ or the area of the

triangle is one-eighth that of the square.

(3) When the triangle has its maximum, the two solutions

become one, and x = J s, as is seen in the triangle AP"Q".

20. In Ex. 19, Q is taken on AB produced, so that BQ = AP,
Examine the case and show, (1) that there are two solutions for a

given area of triangle, (2) that the triangle has a minimum, and

(3) that for the minimum x = — J s, and a^ = — ^ s^, and explain

these negative quantities.

21. Examine Ex. 19, when BQ is so taken that the rectangle

contained by AP and BQis 2i constant, c^.

22. In Ex. 6, of IX. a, has the triangle PQC a maximum or a

minimum, and what is its value ?

23. In Ex. 7, of IX. a, has the triangle PQG a maximum or a

minimum, and what is its value ?

24. Eind the maximum value of the triangle AOC in Ex. 8 of

IX. a.

25. A rectangular field is to contain an acre of ground, and a

path from one comer to the middle of an opposite side is to be as
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short as possible. What must be the form and dimensions of the

field?

26. An isosceles triangle has its equal sides given, to find the

third side when the area is a maximum.

27. Along a road already fenced a rectangular plot of 1 acre is

to be inclosed. What must be its form that the cost of fencing the

remaining three sides may be the least possible ?

28. Two towns, A and B, are on opposite sides of a river 6

miles wide, and B is 10 miles below A. A person can walk along

the shore twice as fast as he can row across. At what point must

he leave the shore so as to get from A to B in the shortest time ?

9. In the equation —-\-—(l- ^V= i, find the relation be-
- 2

^ ^2 Ia- (f^

tween ^, g, a, and h when the quadratic in x has equal roots.

30. What are limits between which x^ — 5 ic + 5i is negative ?

31. If a and /3 denote the roots of x'^ \- px -\- q = Q^ find in

terms of p and q the value of—

i. a + iS. iii. a2+i32. V. i + i-

ii. ajS. iv. - + -• vi. a^ + 0^,

a ^

32. If the height of the thermometer is expressed by the func-

tion x'^ — 2x — 29J, where x denotes the number of days counted

from a fixed time, for how many days will the thermometer be

below zero ?

126. Every equation of the form

can be solved as a quadratic, and be put under the form

ic** = i(— i? ± Vp^ - 4g).
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For, put aj" = y, and the equation becomes

whence the solution follows.

Ex. 1. a;8-3x*- 208 = 0.

Hence a:* = |(3 ± 29) = 16, or - 13.

.-. cc2 = + 4, - 4, + V13> - Vl^-

x = +2, -2, +2i, -2
1, ± Vi'Vl^; ibV- V12;

which gives the 8 roots.

Ex. 2. xi - 7 a^t - 8 = 0.

Let y z= x^, then X2 =: 2/^.

.-. y^ -7y -S = 0, and ?/ = - 1, or 8.

/. xi =-1, or 8, and x^ = 1, or 4096.

/. X = ^1, or 16.

127. Every equation of the form

can be solved as a quadratic, and exhibited in the form

fx = i{-p±Vp^ — 4:q).

Whence, if /ic = is solvable, the equation can be com-

pletely solved.

Ex. 1. Given (x^ - x ~ 1)2 + 4(a:2 _ x) - 6 = 0.

This can be put into the form—
(x2 - X - 1)2 + 4(x2 _ x - 1) - 2 = 0.

... x2 - X - 1 = K- 4 ± V24) = - 2 ± V6.

Then x^ - x + I T V^ = 0.

Whence x = i(l±V± 4V6 - 3).
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On account of the double square root, we have by permutation

of signs 4 values for x, in all, as we should have, since x rises to the

4th power in the expanded equation.

Ex. 2. x2-2x + V(^^-2a^ + 6)=6.

Add 6 to each side ; then

x2 _ 2 ic + 6 + y/{y?' - 2 ic + 6) = 12.

/. V(^^ - 2 X -f 6) = - 4, or +3.

And ic2 _ 2 a: + 6 = 16, or 9.

Whence x = 3, - 1, 1 ± V^-

IRRATIONAL EQUATIONS.

128. An equation which involves the variable under

a root sign is called an irrational equation.

These may always be freed from irrationality, and

presented as rational equations ; but the rationalizing of

them introduces certain uncertainties of solution which

it seems impossible to avoid.

A few examples will make this clear.

Ex. 1. Given y/a + -^x = ^ax.

This is readily reduced by dividing throughout by y/x, or by

treating the equation as having ^/x as its variable. Then

y/x{y/a-V) = y/a,

and ^^ a

and the solution is exact.

Ex. 2. Given Va -\- x { Va — x = 2y/x.

As it is always profitable to reduce the number of terms con-

taining Vx, where possible, we may divide throughout by y/x^ and

obtain—

ve^o-^ve-o=^-
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Let - — z^ and square ; then
X

Divide by 2, transpose z, and square, and

Z^-1=^-4:Z + Z^.

/. ^ = CO (Art. 77), and 5? =
J.

Whence x = 0, and i^.
6

The root -—
- satisfies the irrational equation ; but the

o
root x = does not satisfy the equation, and although

obtained by the legitimate transformations of algebra, is

not really a root of the given equation, as the test of a

root is that it shall render the equation an identity when
substituted for the variable. The root x = 0, however,

satisfies the equation Va -{-x —Va — x = 2-yJx, which

differs from the other in a single sign.

The probable explanation of this peculiarity is that

owing to the disappearance of certain negative signs, in

rationalizing the equations by squaring, both these equa-

tions reduce to the same rational form ; and as far as

this form is concerned, there is nothing by which we can

know from which of the two irrational equations it has

come.

Hence there is no reason why the roots obtained should

not satisfy one of the irrational equations as well as the

other. But it is quite evident that both roots cannot

satisfy both irrationals.

Ex. 3. V^ + Va - ^ax + x^ = ^a.

Transposing yjx^ squaring, and cancelling a,

y/ax + ic2 = 2 y/ax -
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-yjx is a divisor of this. Hence (Art. 76) Vx=0, and 5c=0, and

Va + X = 2^a — ^x.

Squaring, a + a; = 4a + x- 4\/ai.

.-. X = Qo (Art. 81, Cor 2), and 3a = 4\/aa;.

Whence x = j^ a.

Of these roots, and ^^ a satisfy the given irrational equation,

while ic = 00 satisfies the equation

y/x — Va + \/ax + ic2 =,^a,

in which the signs before two root-symbols are changed.

Ex. 4. Given Zx-\r VSOa;- 71 = 5.

Transposing 3 x and squaring, we obtain

ic = 4, or 2|.

Neither of these roots satisfies the given irrational equation,

they being roots of

3cc-V30x-71 = 5.

Whether the given equation has an expressible root or not, it

cannot be found by the usual methods of solution.

EXERCISE IX. c.

1. Solve the following—

i. a + « + V2ax-f «2 = &. iii. V4 a + sc = 2V6 + x - V^i

ii. a-\-x-\- Va2 -f x^ = h. iv. ^a-\-x + Va — x = 2^0;.

V. \/aTx=2?«/{x2 + 6a& + 62).

2. Find X, when ^ " ^^
. ^/fli^'^'l = 1.

l + ax AfVl-tiK/

3. Find X, when ^^"+^ = 1+VlT^.
Vl-x l-Vl-x
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4. Findic, when 1+^(1 --)=J(l + -V

6. Find re, when a -\- x -}- V2 ax -\- x^ = b^{a + x — V2 ax + x^}.

6. Solve the equation 6 x — 4V6x + 1 = x^ _ 2 ^ — 4.

7. Solve the equation x(-y/x + 1)2 = 8(ic + ^x) + 240.

8. Solve the equation a + xVl -\- a^ = aVl — x^ + xVl — a"^.

9. Solve the equation 9 x + 8 + 2 xV9x-\-4 = 15 ^2 + 4.

10. Solve the equation x + V(»^^ - ax+b^)=—+b,
a



CHAPTER X.

Indeterminate and Simultaneous Equations

OF THE First Degree.— Simultaneous Quad-
ratics.

129. When a positive integral equation contains a

single vaiiable, the value or values of that variable may
be found, theoretically at least, in terms of the constants.

But if the function contains two variables, the value of

either will contain not only constants, but the other

variable, and thus this value will not be constant, but

variable, and therefore arbitrary.

Thus if 3a; -1-22/ = 6, x = 2 — ^y, and y may take as

many values as we please, and to every value of y will

correspond a single value of x ; and, conversely, to every

value of X will correspond a single value of y. Such

equations are accordingly called Indeterminate, and as we

have seen in Art. 117, they have a graph which is a

straight line.

The study of Indeterminate equations is practically the

study of their graphs, and as a consequence Indeter-

minate equations in relation to their graphs form the

subject-matter of the great body of higher geometry

known as Analytic Geometry.

130. Linear Indeterminate equations are considered

here only under the restrictions that the corresponding

values of x and y shall be positive integers.

153
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The subject is best discussed in examples.

Ex. 1. To find positive integral values for x and y which shall

satisfy the equation 7 ic + 11 ?/ = 103.

This gives x =
~

^, which is to be integral.

But ^Q^ -^^y = 14 _ y +
^-^y

. and as y is to be integral,

14 — 2/ is integral, and therefore —^—^ is integral.

Also, as the product of integers is integral, 2 x —^—^, or

1--^^—^ is integral ; i.e.
~ ^

is integral.

The purpose in multiplying by 2 is to make the coefficient of y

greater by 1 than a multiple of 7, so that after casting out all inte-

gers the coefficient of y may be 1.

Now, put -
~ y =zp. Then y z=S + 7p; and putting this value

for y in the original equation gives x = 10 — 11^.

Therefore a; = 10 — 11^^
V IS the general solution.

y = S + 7p /

The particular solutions are got by giving to p any allowable

Integral values, provided such values do not make x or y negative.

We readily see that in the present question p can have only one

value, zero ; and x = 10, y = 3, is the only solution.

Ex. 2. Can 1 1 be paid in 9-cent pieces and 7-cent pieces, and if

so, how ?

Let X = the number of 9-cent pieces, and y = the number of

7-cent pieces.

Then 9x-\-7 y = 100 is our equation.

The solution gives y = 4: — 9p and x = S -\-7p.

When p = 0, -1,

X = 8, 1,

2/ = 4, 13.

There are thus two solutions, one by 8 9-cent pieces with 4 7-cent

pieces ; the other, by 1 9-cent piece with 13 7-cent pieces.
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131. It will be noticed that in the general solution

the coefficient of p in the value of x is the coefficient of

y in the equation, and the coefficient of p in the value of

y is that of x in the equation, one of the signs being

changed.

Hence in the equation ax — by = c, p will have the

same sign in the values of both x and y, and the number
of solutions will be unlimited.

Ex. To find solutions of 7 x — 5 y = 23, we easily obtain

X = 4 + 5j9, 2/ = 1 -f 7p.

Therefore when ^ = 0, 1, 2, 3, 4...

ic = 4, 9, 14, 19, 24...

2/ = l, 8, 15, 22, 29...

132. In the equation ax ±by = c there can be no

solution in positive integers if a and b have a common
factor which is not also a factor of c.

Eor, let a = mf, and b = nf.

Then ax ±by = mfx ± nfy = c

;

and mx ±ny = —

But - is a fraction by hypothesis, and is not the sum

or difference of two integers.

133. The following problem is nearly related to one

of the three preceding articles.

Ex. To find an integral number which when divided by 3 leaves

1, by 5 leaves 4, and by 7 leaves 2.

If X denotes the number, x is evidently of any one of the forms
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3m + 1, 5n + 4, or 7p + 2, and these are to represent the same

number ; we have

3m + l = 5n + 4=:7i) + 2.

/. m = ^ "^ ' = an inte^?. , and - = an integ. = m,
3

°
3

b >

and n = Sm.
7 w — 2

Again, 15 m + 4 = 7p + 2, or w == -^ = an integ.
15

» — 11^ = an integ. = m, and ^ = 15 m + H.
15

Hence x=7p + 2 = 105 m -t- 79, which is the general solution.

If m = 0, we have 79 as the lowest number satisfying the conditions.

The following method of solution is also convenient. Let x be

the number.

Then ^^^=^, ^-^, and ^^=^ are all integers. Put ^^ = »,
3 5 7

"^

3 ^'

and X — 375 + 1. Substitute this value of x in the second fraction,

and ^ ~ '

is an integer, or ^
~^

is an integ. = q.
5 5

,'. p = 6q -{- 1^ and x = 15 g + 4.

Substitute this new value of x in the third fraction, and

—^
"*"

is an integ., or ^^— is an integ. = r.

Then g = 7 r — 2, and x = 105 r — 26, which is the general solu-

tion, r = 1 gives 79 as the lowest number satisfying the conditions.

EXERCISE X. a.

1. Find positive integral solutions to the following—
i. Sx+7 y = 10l. iii. 455c - 13?/ = 38.

ii. lSx+ny = 200. iv. x-ll?/ = 48.

2. Find multiples of 23 and 15 which differ by 1 ; which differ

by 2; by 3.

3. How can I measure off a length of 4 feet by means of two

measures, one 7 inches long and the otlier 13 inches long ?



LINEAR SIMULTANEOUS EQUATIONS. 157

4. I have nothing but 4-pound and 7-pound weights. How can

I weigh exactly 45 pounds ?

5. A company of soldiers when arranged 4 abreast lacks 1 man,

when 5 abreast it lacks 2 men, when 6 abreast it has 3 too many,

and when 7 abreast it forms a complete block, llow many men, at

least, are in the company ?

6. A wall 27 ft. 9 in. long is to be panelled with two widths of

boards, 8 in, and 5 in. wide. How many of each kind must be

used so that—
i. The narrow boards may exceed the wide by the least number

possible ?

li. The wide may exceed the narrow by the least number
possible ?

lii. The whole number of boards may be the least ?

LINEAR SIMULTANEOUS EQUATIONS.

134. The equations ax -\-hy-^c=0 and aiX-{-biy-{-Ci=0

are both indeterminate, and being linear, both have

straight lines as their graphs (Art. 117, Ex. 1).

These straight lines have some common point, their

point of intersection, and at this point the corresponding

values of x and y must be such as to satisfy both equa-

tions ; and as the graphs have only one common point,

there is only one such set of values.

When two equations are given, and it is required to

find corresponding values of x and y that shall satisfy

both, the equations are called simultaneous, and these

particular values of a; and y form the solution to the set

of two equations.

Ex. The two equations 2x-\-Sy = 9 and Sx-h 2y = 11 are

satisfied by the values x = 3, y = 1, and by no other values.
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135. Problem. To solve a set of two simultaneous

equations with two variables. The methods will be ex-

plained through examples.

Let 4:X — 3y = 26 and 3x -\- 5y = 5 be the equations.

First method. — By addition and subtraction.

Add 5 times the first equation to 3 times the second,

and the coefficients of y, being equg] with opposite signs,

disappear, and we have left

29 X = 145 ; whence x = B.

Again, to get rid of x, we subtract 4 times the second

equation from 3 times the first, and obtain

— 29 ?/ = 58 ; and hence y = — 2.

Second method, — By substitution.

The first equation gives 0? =———^; and substituting

this for X in the second gives

I§-±-^ + 5y = 5, or 78 + 29y = 20.
4

Whence 29y = - 58, and ?/ = - 2.

Next substitute — 2 for 2/ in either of the equations,

and we get the value of x.

Third method. — By comparison.

The values of x found from the two equations are

2Q4-3v 5 5?/———^ and ^; and as these must be equal, we have
4 3 '

^

78 + 92/ = 20 - 20y, or 2/ = - 2.

Similarly, y = — ==—
/. 20a; — 130 = 15 — Oaj, or a? = 5.
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Fourth method.— By an arbitrary multiplier.

Multiply one of the equations, the first, by an arbitrary

multiplier m, and add to the other.

We have (4m + 3) a; — (3m — 5) 2/ = 26 m + 5.

As m is arbitrary, we may give to it such a value as

will make either of the brackets zero.

If m = f, (-2/ + 3) a: = 26 X 1 4- 5, or aj = 5.

If m = — -|, we similarly obtain ?/ = — 2.

EXERCISE X. b.

1. 7(a; _ 5) = 2^ _ 2, 4 ?/ - 3 = i(x + 10), to find x and y.

2. (x+5)(2/+ 7)=:(aj-l)(2/-9)+104, and2a: + 10 = 32/ + l,

to find X and y.

3. X — a = c(y — b) , a(x — a) + b(y — b)+ abc = 0, to find x

and y.

4. ^ + ^ = l=:^Z^ + ^^,tofinda:and2/.
a b b a

5. 2 s = n(« + z), d{n — 1) = 2; — a, to find a relation not con-

taining n.

6. A and B have $500 between them. A gains from B 1 of B's

money and |50. B then gains from A J of A' s original money

and $'50, and they then have the same amount. What had they

to begin with ?

7. A fraction is such that if 2 be added to its numerator it

becomes i, and if 1 be added to its denominator it becomes |.

Find the fraction.

8. A number of two digits has the sum of the digits 12, and if

6 times the first digit be subtracted from the number, the digits are

exchanged. Find the number.

9. There are two kinds of coin such that a and b pieces respec-

tively are equal to |1. How many pieces of each kind must be

taken so that the value of c pieces together may be one dollar ?
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10. A farm was taxed at 30 cents an acre, and the tenant being

allowed 10 % off his rent found the allowance to amount to 15 dollars

more than the taxes. The next year the taxes were doubled, and

the farmer was allowed 15 % off his rent, which just paid his taxes.

What was the rent of the farm, and how many acres did it

contain ?

SET OF THREE LINEAR EQUATIONS.

136. Denote the three equations by A, B, and C, and

let the variables be x, y, z.

Find from A the value of x in terms of y, z, and the

constants, and substitute this value for x in equations

^ and C. We are then said to have eliminated x between

A and B, and also between A and (7; and we have two

new equations, D and Ej which contain only y and z as

variables.

Thus in eliminating one variable we reduce the num-

ber of our equations by one.

Now eliminate y between D and E, and we are left

with a single equation F, which is just sufficient to

determine z in terms of the constants. Hence we readily

find 2/ and x.

Ex. Let ^be x + Sy — 2z = l,

Bhe Sx — 2y -\- ^ = 5,

Cbe 2x + 4y-Sz = l.

From A we have x = l — Sy-\-2z.

Substituting this value for x gives—
inB, S-9y + 6z-2y-\- z = 5, or-Uy+7z = 2 (D)

inC, 2-6i/ + 4^ + 4?/-3^ = l, or- 2?/+ z = -l (E)

And eliminating y between D and E gives

3 ^ = 15, or ^ = 5.
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Thence E gives y - ^-^ = 3, and x = l-94-10 = 2.

,'. X = 2^ y = Sj z = 6 is the solution.

This method of eliminating x and y is always sufficient,

but it may not always be the most convenient, and any

method of elimination will answer if carried out in proper

form. Thus whatever process of elimination be employed,

the same letter must be eliminated between one of the

equations and each of the others. The following method

is very convenient and gives the same results as the last.

Subtract jB from 3A This gives 11 ?/ - 7^ =- 2 ...(D)
Subtract C from 2 A. This gives 2y - z = l . . . . (E)

Subtract 11 {E) from 2 (Z>), and - 3 2; = - 15, or z = ^.

137. From the preceding article it appears that when

we eliminate a variable from a system of equations we
lose one equation ; and conversely, that by combining

one of the equations with each of the others of the set

we can eliminate one variable from the set.

Hence the two following results

:

(1) That n equations are just sufficient to determine

n variables ; and conversely, that n variables can be

determined from a system of n equations, provided the

equations be independent, i.e. such that any one cannot be

derived from the others.

(2) That with n variables, and n — 1 equations, the

final result will be a single equation containing two

variables, and be thus indeterminate. And hence a system

of 71 — 1 equations with n variables is indeterminate.

Thus the two equations with three variables,

3x-}-2y — 6z = 4., and 4:X + y-^z = 10,
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give, by eliminating x, the single indeterminate equation

5y - 27 z = 36.

If this be solved for positive integers, we may find

one or more systems of positive integral values for Xj y,

and z, which will satisfy the two given equations.

138. Let there be n variables and n + 1 equations

;

an important case requiring consideration.

As the n + 1 equations are sufficient to determine

n + 1 variables, we make up this number of variables by
taking one of the constants, provided it be literal, and

considering it as a variable. After eliminating the n
true variables, we have a single equation in which this

pseudo-variable is the only one occurring; or, in other

words, we have a single equation expressing a necessary

relation amongst the constants. This equation is called

the Eliminant of the system.

Ex. Given 3ic + 2?/ = a, 2x — 4y = &, and x + 5 ?/ = c, to find

the eliminant.

Eliminating x gives

13 2/ = 3 c — a, and 14 ?/ = 2 c — 5.

And now eliminating ?/, we have

14 a - 13 6 - 16 c = 0,

as the necessary relation between «, 5, and c that the three equa-

tions may be compatible.

If a, h, and c are numbers which do not satisfy the

eliminant, the equations are incompatible, and cannot be

satisfied by any one set of corresponding values of x and y.

On the other hand, if a, ft, and c are numbers which

do satisfy the eliminant, one of the equations is derivable



SETS OF LINEAR EQUATIONS. 163

from the other two, and thus expresses no relation but

what is already given by the other two. The equations

are then not independent, and one of them is redundant

139. An important system is one of homogeneous

equations, in which the number of variables is greater by

one than the number of equations.

Let aiX-\- h^y + Cjs; = = a^x + &22/ + ^^ ^® such a sys-

tem.

Dividing through by y, these take the form

«i- + Ci- + &i = = a2- + C2 - + h,
y y y y

which is a system of two equations, with the two variables

X : y and z : y.

Solving, we get - = h^i^Z^.
y Cittg — c^ai

a; _ ?/ _ ;

-, by symmetry.
61C2 — h2Ci Cia2 — c^ai a^^g — ajbi

Or x:y'.z = biC^ — ^2^1 • Cia2 — C2ai : aib2 — ajbi.

And the variables are any quantities proportional to

the denominators of the fractions.

Ex. Let 2x + 6?/-3;s=:0 = 4x-32/ + 2r.

Then x : ?/ : ^ = 3 : 14 : 30,

and the numbers 3, 14, and 30, or any multiples of these, will

satisfy the equations.

If in these equations we make 2; = a constant, both x

and y take fixed values, and we have the common case

of two equations with two variables.
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140. Problem. To solve a system of three lineal

equations with three variables by arbitrary multipliers.

Let the system be

biX + 6jj2/ + h^ = ^2?

CiX + C22/ + c^z = ds,

Multiply the equations by the arbitrary multipliers

I, m, and n, respectively, and add; then

(lai-\-mhi-\-nc^x-\- (la2-{-mh2-\-nc^y-\- {la^-\-mh^-\-nc^z

= Id^ + mdg + ^^^3-

As I, m, n are arbitrary, we may so take their values

as to make any two of the brackets zero.

Thus to eliminate y and z we must have

The solution of this is, by the preceding article,

I _ m _ n

^2^3 — ^3^2 ^2^X3 — (^^(^2 ^2^3 — ^'3^2

And Z, m, ti are any quantities proportional to the

denominators. Naturally we take as the multipliers the

denominators themselves.

The reader will find, upon trial, that these multipliers

cause the coefficients of y and z each to become zero.

We notice that the multiplier for any equation does

not contain any coefficient from that equation or any

coefficient of the variable to be determined. Thus the

multiplier for the first equation is ^2^3 — &3C2, and does

not contain a suffix 1, or an a, etc. A little observation

on the forms of these multipliers is better than any

description.
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Ex. 1. Given x + 2ij~j-Sz = 9,

2x+ y+ z = U,

Sx + 2y + ^z = S.

To eliminate y and z the multipliers are

Z = 3, m= — 4, n=— 1.

.\ Sx-Sx-Sx = 27 -56-S,

or — 8 X = — 32, and x = 4:.

To eliminate x and y the multipliers are

1 = 1, m = 4, n =— S.

.'. 3^ + 42; -16^ = 9 + 56 -9,

or — 8 ^ = 56, and z = —7,

Ex. 2. Given ax + ?/ + ^ = 0,

ic + a?/ + 2J = 1,

« + 2/ + «^ = - 1.

The multipliers for eliminating y and ^ are a2_i^ 1 _^^ and 1 — a.

Thence, {a(a^ - 1) + 2(1 - a)}x = 0, and x = 0.

Similarly, we find y = , z =
a — 1 1 — a

141. With four or more equations, multipliers may
also be found which will eliminate all the variables but

one, but these multipliers are too complex for convenient

use. In the chapter on Determinants it is shown that

all sets of linear equations are solvable upon the same

general principle.

A set of four equations may be dealt with as follows

:

Ex. Let them be x + y+z-\-u=4: (A)

x + 2y-\-Sz + ^u = 10 (B)

2x-\- y + Sz+ u= 1 (C)

3x + 3?/ + ^ + 2 w = 10 (D)
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Take the first three equations, and consider the x and y part as

forming a single term.

The multipliers for eliminating z and u are — 9, 2, 1 ; and these

give 5 X + 4 2/ = 9.

Now take the last three equations ; the multipliers are 5, — 2,

— 9 ; and these give 26 x + 19 ?/ = 54.

From these two new equations we find cc = 5, ?/ = — 4. The
values of u and z are then readily found to be z =— \^ w = 4.

EXERCISE X. c.

1. Solve the set, 2x + 4 ?/ + 5^ = 49, 3x + 5?/ + 6^; = 64,

4x + 32/ + 45; = 55.

2. Solve the set, 2x — Sy + z = 2, x + y — 2z = 1^ Sx + 2y
^Sz = 6.

3. Solve the set, x — y — 2z = S, 2x + y — Sz = l\f Sx — 2y
+ z = i.

4. Solve the set, ax + by — az = b{a-\-b), bx — ay-\-z=b(b— a),

x-\-2y — 2z = 4:X — b.

5. Solve the set, x + 2/ + ^ = 0, (a+ b)x + (b+ c)y+(c-i-a)z=Of

abx + bey + caz = 1.

6. Solvetheset, ?-A + l = 7f,
A. + J_ + 2^ioj, A__L

^ x by z 3x 2y z ox 2y

7. If 2x -\- Sy =: a, x — y = by x + 2y = c, find the eliminant.

8. Find the eliminant of ax-\-y = 1, bx + S y = 6, ex -\- b y = 10.

9. Find the eliminant of3x + 2?/ + a=0, x — Sy + b = Oj

2x + y — c = 0.

10. Solve the set, Sx-2y + 6z = U, 2x + y -Sz = \0,

Sx — Sy-]-2z = SS; and explain the cause of any difficulties.

11. If ttiX + b^y + c^z = a.^x + 6.^?/ + c.^z = a.^x -^ b.^y + c^z = 0,

show that aiC^^Cg — b.^c.^) + &i(c2«3 — c^a.^) + <^i{P"p6 — (^M = ^'
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12. When x -{- y — z — u = 2x—2y -\- z-\-u=Sx — y -{•Sz—u=0,

find four numbers having the ratios xiy.ziu.

13. What does Ex. 12 reduce to when m = 1 ?

14. Solve the set, a + 26 + 3c+4(? = 29, 4a + 6+2c+3d:=23,
3a + 45 + c + 2(Z = 25, 2a + 36 + 4c + (? = 23.

15. Solve the set, x+ by — az = -<, ax + y— z = a% -a; -f ay
— « = 1

^ o a

16. Solve the set, a'^x + ay + z = — a^, b^x + by -^ z = — b^^

c^x + cy -}- z =— c^; and reduce the values of the variables to

lowest terms.

17. Find the eliminant of ax + by + cz = bx + cy + az = ex

+ ay + bz = 0,

18. Solve theset, If^+lVl/^^. IN 1/2 _ 6 N 1/3^ IX

x\z yz) y\x zj y\x xzj z\y xj

z\y xyj x\z yj

19. Given x(y + z)= a^, y(z-i-x)= b\ z(x + y) = c^, and

— + -- = —, to find the relation connecting a, 6, c.

a;2 2/2 ^'^

(Find the values of «, t/, and z from the first three equations,

and substitute these in the fourth.)

SIMULTANEOUS QUADRATICS.

142. A system consisting of one quadratic and one

linear can always be solved.

The most general type of a quadratic equation of two

variables may be written

aoc^ + %^ + ^^ + gx +fy + c = 0.

And any linear of two variables may be written
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If we substitute for x from the linear into the quadratic,

we have

a {py + ry + by^ — hy (py -^r)-g{py + r) -{-fy + c = 0,

a quadratic from which to determine y.

Ex. To find two numbers such that the sum of their squares

and their product is a and the sum of the numbers is 6.

We have, x^ + y"^ + xy = a, and x + y = b^ where x and y de-

note the numbers.

Substituting for x from the hnear into the quadratic,

(p _ yy _|_ 2/2 + (^ _ 2/)?/ = a,

or y^ — by = a — b'^.

Whence y = ^(b ± V4a-3 6-^),

and x = K^=FV4a-362).

If 4 a < 3 b^j the numbers are complex.

The equation a^ -\- y^ -{- xy = a and x-\-y = b are sym-

metrical in x and y ; and whenever this is the case, the

values of x and y must be interchangeable, so that having

the two values of y, we have also the two values of x.

Thus if a = 19, and & = 5, we have y = 3 or 2, and

a; = 2 or 3.

143. A system of two quadratics with two variables

does not in general admit of being solved as a quadratic,

since substituting the value of a variable from one of

the equations into the other will in general give rise to

an equation of four dimensions.

Thus the system x^ -{-y = a, and y^ -{- x=b gives, by
substituting for y^ x^ — 2ax^ -{- x = b — a^, a quartic equa-

tion.

There are, however, many cases in which a sufficient

relation exists between the forms of the equations, to
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make a solution possible without going beyond the

quadratic.

No general list of such can be given, and no very

general rules of procedure can be laid down for such

cases when they occur. Practice and observation are

the only keys to success.

The following are given by way of illustration :

144. When two quadratics have a common linear fac-

tor in the portions involving the variables, they can be

solved.

For let A be the common linear factor, and let C and

C be the independent terms.

Then the equations are of the forms AB = C and

AB' = C, and B and B' must be linear factors.

Dividing the first equation by the second, we have

B' c' a
cAnd as — is a constant, one variable is linearly ex-

pressible in terms of the other. And hence by substitu-

tion we obtain a quadratic for finding one of the variables.

Ex. Given Sx^ -4 2/2+ 4[xy=z -21,

12 0^2 + 2?/2-l] xy = -3.

The first equation is (Sx-- 2y){x + :^y) = -21,

and the second is (Sx-- 2 ?/) (4 X --y) = -3.

Dividing,
x + 2y
^x-y

= 7, and .•
. y = 3 a;.

Substituting in the first equation,

21 ^2 = 21 ; and x = ± 1.

Thence 2/ = ± 3.
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145. When the equations are homogeneous in the

parts involving the variables, they can often be readily

solved by putting y = ux, and then dividing one equation

by the other. This gives a quadratic for finding u, and
hence a known linear relation between the variables.

Since u will, in general, have two values, we will get

two quadratics to determine x, and hence x will have in

all four values, as it should have. So also y will have

four values.

Ex. Given sc^ + xy + 4 2/2 = 6,

3 x2 _|_ 8 2/2 = 14.

Let y = ux^ and divide equation by equation ; then

3 x2 + 8 u^x^ 7*

or 4 ^2 + 7 ^ — 2, and u = —2, or J.

.*. y = — 2x, or \x; and substituting these values in one of the

equations, the second by preference, as being the simpler,

35c2 + 32a:2 = 14, and 3x2 + | x2 = 14.

.-. x = ± WIO, =±2,
and y = Tl^lO, =Th

146. When two variables are involved symmetrically,

it frequently simplifies the solution to assume two new
variables whose sum shall be one of the original variables,

and their difference the other.

Ex. Given x^ -}- y'^ -\- x + y = S,

x-^y + xy = 6.

The variables being symmetrically involved, assume a; = m -f t,

and y = u — V,

Then ^^2 ^ ^2 _j_ ^ _ 4^

and w2 _ ^2 ^ 2 w = 5.
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Adding, 2u'^ + Su = 9; and u = f, or - 3.

Substituting these values for u in one of the new equations,

the first, we get

And ic = 2orl, =-3db i^2.

And y being symmetrical with x has the same values ; then

x = 2, y = l; x = l, y = 2; x = -S-{- i^2
;

2/=-3-V2; x = -Z-i^2) ?/=-3+iV2;

are the four sets of corresponding values of x and y.

The present equations may be otherwise solved as

follows

:

Add twice the second equation to the first, and it becomes

(x + y)2 + 3(a: + 2/)=18,

whence x + ?/ = 3, or — 6.

Then from the second, xy = 2, or 11,

and (x — yy =(x + yy — 4:xy = 1, or — 8.

... x-y = ±l, or 2iV2.

Whence x= J(x + y + x — y)=2j or — 3 + i^^
;

y= i(x-\-y-x-y)=l, or -S-i^2;

and the values of x and y being interchangeable give the four val-

ues as before.

147. Various devices are employed to obtain solutions

of simultaneous quadratics and other simultaneous

equations. These cannot be given in detail, but will be

illustrated in the following examples.

Ex. 1. Given x^ -h V^ = 275, x-\- y = 6.

(x + ?/)5 = x5 + 5 xy (2 x'^y + 2 xy'^ -{ x^ -\- y^) + y^ = 3125.
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Subtracting x^ -\- y^ = 276 leaves

5 xy (x^ + 2x^y + 2 xy'^ + y^) = 2850.

.-. x3 + 2 x:^y -\-2xy^ + y^ =—

•

xy

But (x + ?/)3 = a:3 + 3x2y + 3ic2?/2 + 2/^ = 125.

.-. xy(x + ij)=6xy = 126-—

•

xy

Whence (xyj^ — 26xy = —114,

and xy = 19, or 6.

Then having x?/ and x + ?/, we readily find

a: = 2, or 3, or J (5 ± V^l);

y = S, or 2, or J (5 T iV^l)-

Q
.

Ex. 2. Given x + vx^ — y'^ = - (Vx + ?/ + Vx — ?/),

2/

and (x + ?/) 2 _ (x - ?/)
-^ = 26.

Put X + ?/ = 2 s2, and x - ?/ = 2 ^2^

This reduces the equations to

(s + 0'(«'-«')=8(s + 0V2 («)

and 2(s3_^3)^2 =26 (6)

Divide (a) by s + ^, and s + i = 0, or s = — «.

Multiplying out the quotient,

s^-t^ + st{s-t)=S^2.

And substituting s^ — t^ from (5),

s^(s-0=lV2 . (c)

Dividing (6) by (c),

s^
~

3
*

Whence i^-+il' = 1?, and ^±-^ = ± 2.

.-. 5 = 3 «.
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From this we readily obtain

s = IV2, t = 1^2, X = 5, y = 4.

Ex. 3. Given x(y + z)= a, y(z + x)=b, z(x + y)=c.

Adding the first and second and subtracting the third,

xy + x» -{- yz + yx — zx — zy = 2 xy = a + b — c.

Similarly, 2 yz = b + c — a, 2 zx = c + a — b.

Multiplying together two of these new equations and dividing

by the third,

2xy'2yz _ 2 ^^2 _ (o^ + b - c)(b + c- a)

2zx c-\- a — b

,^ lf (a + b-c)(b + c- a) ^

MX 2(c-\-a-b) r2{c-\- a-b)
with symmetrical expressions for z and x.

Ex. 4. Given x^ — yz = a, y^ ~ zx = b, z^ — xy = c.

Then, (x2 - yz^ - (2/2 - zx) {f - xy) = a^ - be,

i.e. x(x^ + y^ + z^ — S xyz) = a^ — be.

,,^s^y3^,^_^^y^^ a'-hc ^ b'^-ca ^ c'^-ab
^

X y z

since the left-hand expression is symmetrical in ic, 2/, and z.

Thence each fraction ^ ^ | (^^ - ^^)^ " (b'- ^^) (^' " ^^)
|

.

... x = J\ a(a^-hcy
I\ I (a2 _ bey - (&2 _ ca) (c2 -ab)r

a^ - be

^(a^ + b^-i-e^-Sabey

with symmetrical expressions for y and z.

EXERCISE X. d.

1. Given x:y = S:2, and (2-xy + (l- yy = 25, to find all

the values of x and y.

2. Given x + ?/ = a, and xy(x^ + 2/*^) = b.
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8. Given xy = 750, and x : y = 10 : S.

4. Given x + y = xy = x^ — y'^ ; that is, to find the two quanti-

ties for which the sum, product, and difference of squares may be

the same.

5. Given (x - y) {x^ - t/2) = 160 ;
(x + ?/) (x'^ + y^) = 580.

6. Given x -\- y -{- xy = S4 ; x"^ + y^ -(x + y)= 42,

7. Given x^ -\-
y^

-\- x -\- y = SSO ; x'^ - y^ + x - y = 150.

8. Given 4 x^ -\- y"^ + 4x + 2 y = 6 ; 2xy = \.

9. Given x + ?/ = 18 ; x* + y* = 14096.

10. Given x + y = 5
;

(x^ + ?/2) {x^ + y^) = 455.

11. Given -Vxn/ + -V^Ti=—

•

X y Z

3

12. Given ^ x_^x'^-y\^ ^_^+l^y.
X X -\- y y y x x

13. Given x — Vx^ — i/^ = x(x + Vx^ — y'^)
;

X Vl — 2/ = y Vl + X.

14. Given xy = a
\
yz = h ) zx = c.

15. Given that the sides of a right-angled triangle are in geo-

metrical progression, and the area is a^^ to find the sides.

16. Find three numbers such that the product of each into

the sum of the other two may be the numbers 48, 84, and 90,

respectively.

17. Given x'^yH'^ = a, x^y^z"^ = 6, x'^y'^z^ = c, to find x, y, and z.

18. Giveny^=4:ax, x~p=—2(a-\-x), y—q= ^. (q+ x) to find

the relation between a, p, and q.
^ ^

19. Given x2 + xy + ^2 _ 14 ^^ x^ -\- x^y^ + y^ = 84 x2, to find x

and y, (Divide one equation by the other.)
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20. x3 4- 2/3 + xy{x -{-y) = 65, (x^ + y'^)x'"if = 468, to find x and y,

(Put x-\- y = u and xy = v.)

21. x + y + z = lS, ic2 4- 2/2 + ;s2 _ ei, jc?/ + x^ = 2 2/^, to find

X, 2/, and z.

22. The sum of the two sides of a right-angled triangle is 61,

and the hypothenuse is greater than the longer side by 3. Find

the sides.

23. The sum of the three sides of a right-angled triangle is 60,

and the sides are in A. P. To determine the triangle.



CHAPTER XI.

Remainder Theorem.— Tkansfoemation of
Functions.

149. When we divide a^ -{- ax^ -{- bx -{- c hyx—p, we
get the quotient x^ -\-(a-\-p)x-\-p^ -^ap -\-b, and the

remainder p^ + ap^ -{-bp -{-c.

We notice here that the remainder can be obtained

from the dividend by simply putting p for x ; or, in other

words, the remainder is the same function of p as the

dividend is of x.

To prove that this is always the case.

Let fx be any integral function of x, and let it be

divided by x—p. Then if Q denotes the quotient, and

B the remainder, we have

fx = (x^p)Q-\-E,

As x—p is of one dimension in x, E is independent

of X, and is not affected by any change in x.

Change xtop-, i.e. put p for Xj and x—p = Oy and

which proves the

Theorem. If an integral function of x be divided by

x — p, the remainder is the same function of p.

Ex. 1. The remainder when ic^ — 5x* + 6x — 2 is divided by
x-1 is 1» - 5- 14 + 6. 1 - 2= 0; and x - 1 is a factor of the

given expression.

176
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Ex. 2. The remainder when x^ — 6x^ + Sx — 2 is divided by

ic + 3 is

(_ 3)7 _ 6(- 3)5 + 3( - 3) - 2 = - 740.

Ex. 3. To find the result of substituting 6 for x in the function

x^-Sx^ + x^-2x-l.

To substitute 6 for x is to find the remainder when the function

is divided by x - 6.

Therefore, 6

1_3_|_ i_ 2- 1

+ 6 + 18 + 114 + 672

1 + 3 + 19 + 112 + 671

And i? = 671 is the result.

Hence to substitute a for x in an integral function of

X is equivalent to dividing the function hj x — a and

taking the remainder.

EXERCISE XI. a.

1. Eind the value of x^'^ — Sx"^ -\- x^ — bx + 6 when x = 4, when
X = — 4, when x = l.

2. Find the value of x^ - 3.6 x'^ + 4.32 x - 1.728 when x = 1.2.

3. What is the remainder when x^ — 6 x* + 5 x^ - 4 x'-^ + 3 x — 2

is divided by x + 5 ?

4. Find the remainder when (a + 6 + c) (ab + 6c + ca) — abc

is divided by a + 6.

5. Find the remainder when x^ — 7 x + 10 is divided by x — 1,

by X - 2, by X + 3.

What relation does x^ — 7 x + 6 hold to the three divisors ?

6. Find the result of substituting 1.71 for x in the function

X8-' 5.

What, approximately, is the relation between 1.71 and 5 ?
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7. Find the result of substituting 1.27 for x in the function

What relation does 1.27 hold to the function ?

8. Find the remainder when x^ + 2 a:^ — 3 x^ + x + 1 is divided

by 5c2 - X + 1.

The function may be written

x(x* + 2x2+ l)_ 3x2 + 1,

and the divisor gives x2 = x — 1.

.-. x{(x - 1)2 + 2(x _ 1)+ l}~ 3(x - 1)+ 1 = i?

= x(x2)-3x+ 4 = x(x-l)-3x + 4

= -3x + 3.

We thus substitute x — 1 for x2, wherever x2 occurs, and con-

tinue the reduction until only linear x remains.

9. What is the value of x^^ - x* + x - 1 when x3 + 2x— 1 = 0?

150. Divide a^ — 3a^4-2aj — 1 by a; — 1; we get a

quotient ic^ — 2 a; + 0, and a remainder — 1.

Divide a^ — 2ic4-0 byaj — 1; we get a quotient a; — 1,

and a remainder — 1.

Hence a^-3a:2^2aj-l = (a:-l)(a^-2a;)-l

= (aj_l)(a;_l)(a;-l) + (x-l)(-l)-l

We have thus expressed the function of a;,

a:3__3a;2^2aj-l,

as a function of (aj — 1), viz.,

(a,_l)3_(a;_l)_l;

and we notice that the function is simplified in form as

it lacks the square term.
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This result tells us that to substitute any value for x

in x^ — 3oc^ -{-2x — lis equivalent to substituting a num-

ber less by unity in the function

The foregoing transformation may also be effected as

follows

:

Let x — l = y; then x = y -\-l, and putting y-\-l for

X in the function, and expanding, we obtain

f-y-^',
or, since y = x — l,{x-'iy'-{x — l)^l,

161. Let it be required to express ic^ — 4a^ — 3a; + 6

as a function of x — 2.

The transformed function will take the form

(x - 2)3+ B2(x - 2)2 + E,{x -2)-{-E,

where the coefficients i?, Bi, R^ ^^^ ^o be found.

We have the identity

aj3__4aj2_3^^g^(^__2)3+i?2(^-2)2+i?,(a;-2)+i?.

Writing 2 for x gives ^ = — 8.

But to substitute 2 for x is equivalent to dividing by

a; — 2 and taking the remainder ; so that if we divide the

given function by x — 2 the remainder gives R.

Hence rejecting — 8 from each member, and dividing

throughout by a; — 2, we have from the remainder

The next similar operation gives

R, = 2.
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Therefore the transformed function is

(a; _ 2)3 + 2{x - 2)2 - 7(x - 2) - 8.

The whole operation carried out in the form of divis-

2
ion is as follows

:

4 -3
2 -4

+ '6

-14
1 -2

+ 2

-7
+

- 8

1 -0
2

-7 == . . .

y 2 =
1

-B

-B,

^2

We here divide by a; ~ 2, getting the remainder — S=R,
We then cut this off, and divide the quotient of — 2 a; — 7

by X — 2, and get the remainder — 7 = Ri. Cutting this

off', we divide again by a; — 2, etc., until the whole is

completed.

Ex. 1. To express x* - 12x3 + 36x2

x-3.
• X — 77 as a function of

1-12
3

+ 36

-27
-1-77
+ 27 +78

1 - 9 .+ 9

3-18
+ 26

-27
+ 1

1-6-9
3-9

- 1

1-3
3

- 18

1

And the required functio

(X - 3)4 -

n is

18 (x-_3)2_(a;-S3)+l.



REMAINDER THEOREM. 181

Ex. 2. To express m^ — 3 mhi + 2 m/i^ — Zn^ as a function of

m — n'm. place of m.

Both parts being homogeneous, this is equivalent to expressing

/?» y_8(''??V+2(™U3 as a function of ™ - 1.
\n I \nj \n) n

The coefficients are readily found to be 1, 0, — 1, — 3, and the

function becomes

(m — nY — n^ (m — n) — 3 n^.

EXERCISE XI. b.

1. Express x^ — Zx'^-\-2x-\-l as a function of sc -f 1.

2. Express Za^ — a^-\-4iCfi + ^a — ^ as a function of &, where

3. Express ?/5 — 6 ?/* + 10 y^ _ 10 ?/2 + 5 ?/ — 2 as a function of

ic, when x — y — \.

4. Express x^ + ISx* + 90^3 + 270 a:2 + 404x + 241 as a func-

tion of X + 3.

5. Express a^-\-2a^h-2 a^b'^ - 12 a^b^ - 15 aS* - 5 2)5 in terms

of a + 6 and b,

6. Express x^ — 7 x + 6 as a function of sc — 1.

What relation does x — 1 hold to the function?

What relation does 1 hold to the corresponding equation?

7. If x2 -^ ax -\- b be developed as a function of x — z, for what

value of z will the function take the form

(x -zy + A(x-z)?

152. If we have to express fx as a function of

x — {a-\-b-\-C'*'), we may carry out the operation in

successive parts by putting y = x — a, and transforming

to a function of y ; then putting z = y — h, and trans-
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forming to a function of 2, etc., until all the quantities

a, h, c ••• are taken in. Where 6, c, etc., are decimals,

this is generally the most convenient method, as the

whole operation is very compact.

Ex. To express x^ — 2 x^ + 3x — 4 as a function of x ~ 1.23.

In the following operation only the algebraical sums are put

down in each column.

1.231-2 +3 -4
L

-1 +2 -2
2

1

1.2 2.24 -1.552

1.4 2.52

1.6

1.63 2.5689 -1.474933

1.66 2.6187

1.69

Hence, x^ - 2^2 4. 3^ - 4 = (x - 1)3 + (x - 1)2 + 2(x - 1) - 2

= (X - 1.2)3 ^ i.6(x - 1.2)2 _|_ 2.52(x - 1.2) - 1.552

= (x - 1.23)3 + 1.69(x - 1.23)2 + 2.6187(x - 1.23) - 1.474933.

The work may be still more condensed by leaving out

the decimal points, and remembering that when begin-

ning with a new quotient figure the product must be

written one place further to the right in the first column,

two places in the second column, three in the third, etc.

153. Let /a; = a^-l-aj2-2aj-l = 2/.

When ic = - 2, - 1, 0, 1, 2, ...

2/ = ~l, +1, -1, -1, +7,...
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The graph is given

in the figure, with

as origin, from which

values of x are meas-

ured.

Transform to a func-

tion of z where

2; = a; + 1,

and we have

2z'-z + l = y,

And when 2; == — 1, 0, 1, 2, 3, •••

2/ = -l, 4-1, -1, -1, -fJ...

By comparing results for the same values of y, we per-

ceive that z is measured from an origin Z, one unit to

the left of the origin for x.

Of the equation ic^+ic^ — 2a; — 1 = 0, two roots, OP
and OQ, are negative, and one root, OB, is positive. Of

the equation 2:^ — 22;^ — 2; + l = 0, one root, ZP, is nega-

tive, and two roots, ZQ and ZR^ are positive.

Similarly, by transforming to a function of u where

u = x-\-2 = z-{-lj the origin is moved to U, and the

resulting equation, u^ ^ 5u^ -{-6u-- 1 = 0, has all its roots

positive.

Hence the transforming of fx to a function of a; — a is

equivalent to moving the origin with respect to the

graph, through a units along the a;-axis, to the right if a

is positive, and to the left if a is negative.

Now take the equation a^ — 5a:^ + 6a; — 1 = 0, for

which the origin is at U, and all the roots are accordingly

positive.
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For some value of a, the origin will be moved from

U to Pj and UP represents this value of a. But UP
also represents one of the roots.

Therefore the value of a which transfers the origin

from U' to P is one of the roots of the equation.

Similarly, the values of a which transfer the origin

from Uio Q, and from Uto R, are the tw^o other roots. .

154. As the roots of the equation x^ — bx^-\-^x — l=zO
are real and incommensurable, they may be approximated

to. Let us then endeavor to find the value of UR.
For this purpose we first transfer the origin through

three units from Uto F. Then, having carefully drawn
the graph, we estimate the distance VR in tenths of a

unit, as nearly as we can, and we move the origin

onwards through this estimated distance.

To know whether our estimated distance is too great

or not, we have the following test ;

As long as the origin lies between Fand R, the graph

at that point is below the ic-axis, and the independent

term is negative ; but when the origin passes R, the

graph rises above the a;-axis, and the independent term

is positive.

Hence a change in the sign of the independent term

indicates that we have caused the origin to pass R,

Now transforming cc^ — 5a^4-6aj — 1 = to a function

of a; — 3 gives ?/^4-4?/2 + 3i/ — 1, where y = x^S.
Next transform to a function oi y — 0.2, and we get

z' + 4:.6z''-i-4.,72z- 0,232, where z = y -0.2', and the

independent term being — shows that our new origin is

still to the left of R.
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The student is advised to try the effect upon the

independent term of transforming to y — 0.3.

Again transforming the last equation to a function

of z-OM, we obtain u^ + 4.72 u^ -{- 5.0928u- 0.035776,

where n = z — 0.04.

We have thus transferred the origin in all through

the distance 3.24, and this is to two decimals a correct

approximation to the root Uli. A repetition of the

same process will furnish as close an approximation as

may be desired.

The work is carried out practically in the following

condensed form, where only algebraic sums are written,

and decimal points are not employed

:

3.24698

1-5 + 6 -1
-2 -1...

+ 1 3:. -0232...

4. 384 -0035776...

42 472.. -0005047984

44 49056

46. 50928..

464 5121336

468 5149728

472.

4726

4732

4738

It will be noticed that the independent term is being

successively reduced in value ; and as this term gives the

distance from the origin to the graph, measured parallel

to the ?/-axis, this reduction shows that the origin is ap-

proaching the point R.

We have said that the first decimal figure must be

estimated, and then tried. So, to a certain extent, must
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the remaining figures. But the values of the others are

readily found. Thus, after finding the 2 of the quotient,

and finishing the transformation, we add a cipher to 0232

of the last column, and divide by 472 of the second col-

umn ; this gives 4 for the next figure. Similarly, 357760

divided by 50928 gives 6 for the next, and so on.

In fact, after obtaining the three decimals 246, and

completing the transformations thus far, we may safely

obtain three more decimals by simple division. In this

way 9, 8 are obtained by dividing 5047984 by 514972.

Ex. To find the root UQ. The various transformations give

as coefficients—
for X - 1, 1? - 2, ~ 1, + 1

;

for X - 1.5, 1, - 0.5, - 2.25, + 0.125
;

for x-1.55, 1, -0.35, -2.2925, +0.011375;

and the approximate root is 1.554 •••

It will be noticed that the independent term for this root is +,
as the graph lies above the x-axis to the left of §, or between P
and Q,

155. The preceding methods offer an elegant means of

extracting roots of numbers.

Ex. To approximate to the cube root of 12. Let x^ — 12 = 0,

and solve this as a cubic equation. This equation has but one real

root, and that is the arithmetic cube root of 12.

-12 12.2894

2 4 - 4

4 12.. - 1.352...

6 1324 - 0.147648

62 1452..

64 150544

66 155952

668

676 •. ^2 = 2.2894...
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EXERCISE XI. c.

1. Determine the integral values between which the real roots

of the following equations lie—
i. x^-Sx^-\-2x-2. iii. x* - 4x2 + 3a; - 4.

ii. x3+3x2 + 2x + 2. iv. x* + 2x3-4x-2

• 2. Find to 3 decimals the greatest positive root of

x4_ 2x3-3x2 + 6x-l =0.

3. Transform x^ — 3 x^ + 3 x — 4 = to an equation in (x — 1),

and thence find the roots of the given equation.

4. Transform x* — 4 x^ + 2 x- + 4x4-6 = to an equation in

(x — 1), and thence find the roots of the given equation.

5. Show that if x^ — px^ -]- qx + r = be transformed to an

equation in (x— ^), the equation will assume the form z^+ Qz

4- i? = 0, where the square term is wanting.

6. Remove the second term from x^ — Gx^ + 12x + 9 = 0, and

thence solve the equation.

7. In the equation x^ — 2 x^ — x — 6 = 0, move the origin 3 units

to the right, and thence find the roots.

8. Find to 5 decimals the cube root of 3.1416.

9. A gallon contains 277.273 cu. in. Find the length in inches

of the edge of a cubical box that shall hold just 10 gallons.

10. Find the fifth root of 100, to 3 decimals.



CHAPTER XII.

The Progressions.— Interest and Annuities.

m

156. A series is a succession of terms which follow

some fixed law, by means of which any term, after some

fixed term, usually not far removed from the beginning,

may be obtained from the preceding terms and from

constants.

Thus l-{-3 -\- 5 -\-7 -\- "' is a series in which each

term is got from the preceding one by adding 2.

1 + i + i + i'" ^^ ^ series in which each term is one-

half the preceding term.

The doctrine of series is a very extensive and im-

portant one, and has given rise to a distinct calculus,

that of Finite Differences ; but two series, the simplest

of their species, are of such common application as to be

treated of in elementary algebra, and even in arithmetic,

under the name of the Progressions.

A series in which each term differs from the preceding

one by a constant, as in the first of the foregoing exam-

ples, is an Arithmetic Series, or an Arithmetic Progres-

sion, and is symbolized as an A. P. ; and a series in which

each term is a constant multiple of the preceding one,

as in the second example, is a Geometric Series, or a

Geometric Progression, contracted to G. P.

A third kind, the nature of which will be explained in

the proper place, is called a Harmonic Series, or a

Harmonic Progression, contracted to H. P.

188
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ARITHMETIC SERIES.

157. The quantities normally occurring here are : a,

the first term of the series ; d, the common difference

;

w, any given number of terms ; and s, the sum of n

terms.

If fn is such a function of n that the substituting of

any integral number for n gives that numbered term in

the series, fn is called the 7ith term of the series, and

is all-important, not only in an A. P., but in all series,

as expressing the law of the series.

Evidently, to know the form of fn is to know the series,

since its consecutive terms are given by the substitution

of 1, 2, 3, • • • etc., for n.

The consecutive terms of an A. P. are

a, a + cZ, a -{-2d, a + 3 d, etc.,

and it is readily seen that the nth term is a-{-(7i — l) d.

It being often convenient to denote this general term by

a single letter, z, we have

z = a-{-(n — l)d (A)

158. An A. P., like any other series of numbers, is not

necessarily limited in extent, but may be continued at

pleasure in either direction.

When we consider any portion containing n consecu-

tive terms of this unlimited series, we call the first term

a, and the nth, or last term, z. And thus any two

unequal numbers may be any two terms of an A. P.

Ex. To find the A. P. whose 5th term is 12, and whose 11th

term is 24.
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There will evidently be 7 terms in this portion, and hence

24 = 12 + 6d

. •. d = 2; and the first term of the series is 12 — 4 df or 4.

Hence the nth term is 4 + 2(/i — 1) or 2 + 2 n. And the series is

4 + 6 + 8+10+ —

159. It will be noticed that the nth term of an A. P.

is a linear function of n.

Now any function of n taken as the nth term will

give rise to some series, and if it is a positive integral

function of n higher than linear, the series will be of

the same species as an A. P. but of a higher order. So

that the A. P. is the simplest series of its species.

Thus if the nth term be l(n^-\-7i) or ^n(n -f 1)? the

series is

1, 3, 6, 10, 15 ...

It is worthy of notice that the differences of the terms

in this series form an A. P.

Similarly, if the nth term be of the form n^ + n^, or a

function of three dimensions in n, the differences of the

differences of the terms of the series will be an A. P.

160. As n denotes the number of a term in a series, it

must be integral ; and hence the presentation of a non-

integral value for n indicates some absurdity or im-

possibility.

Ex. Is 100 a term of the series whose first term is 3 and whose

difference is 4 ?

As the nth term is 3+(w — 1)4 or 4n — 1, the equation

100 = 4 71 — 1 will give an integral value for n if 100 is a term of

the series.
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It does not give such a value, and therefore 100 is not a term of

the series.

It is readily seen that 99 is the 25th term.

161. S being the sum of n terms of an A. P., we have

^ = a + (a + d) + (a + 2d)H (a + 7i — l-d).

Also, by reversing the order,

S=(a-\-n— l'd)-{-(a+n—2'd)-j-(a+ n—3'd)-] ha.

Adding,

2S = (2a + n — l'd)-\- (2a + n — l'd)-] n terms

= n(2a + n — l'd).

.'. S=~(2a + n-l'd) (B)

The following method of investigation for the sum of

an A. P. is important.

We have 1^ = 02 +2-0 +1,
2^=12 +2.1 +1,
32 = 22 +2.2 +1,

n^ = {n -\y -\-2{n -\) ^\
(7l + l)2=n2 +271 +1.

.-. by addition,

2(l + 2 + 3+...n) = (n + l)^-(n + l);

whence S = —i

—

~^—^ = the sum of the first n natural

numbers.

Then, the terms of an A. P. are

a, a + d, a-\-2d^ ... a-\-{n — V)d\
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and summing these gives

>S'= na -h (1 + 2 4- 3 + ... n - l)cZ

= na-{- ^n(n — l)d.

And this is the same as (B),

Ex. The sum of the first n odd numbers is

^(2 + 5r^ri.2), orn2.

162. Upon multiplying out,

fv 2^1 2a — d
JS =71"^ \- n ' .•

2 2

Hence the sum of n terms of an A. P. is a quadratic

function of n, with no independent term.

And every quadratic in n, without the independent

term, is the sum of ?i terms of some A. P. The inde-

pendent term, if present, would appear as an extraneous

term which might or might not follow the law of the

series.

Ex. To find the A. P. of which 2 n^ — 3 n expresses the sum of

n terms.

Let n = I ; the sum of 1 term is — 1 = «.

Let n = 2 ; the sum of 2 terms is2 = 2a -{- d.

.'. d = i, and the 7ith term = 4 w — 5
;

which gives the series.

Otherwise, the sum of n terms, or Sn, is 2n^ — Sn; and the

sum of w — 1 terms, or Sn-h is2(n — ly — 3(w — 1).

But Sn is got by adding the nth term to Sn-i.

.-. nth ieYm= Sn- >Sn-i=2 n^-S n-2(n-iy-{-S(n-l)=4:n-6,

163. Any positive integral function of ?i, of a higher

degree than the second, and lacking the independent
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term, expresses the sum of n terms of some series of the

same species as the A. P. but of a higher order.

Ex. Let 2 n^ — 3 n^ + n be the sum of n terms.

Then Sn-Sn-i=^n^-Sn^+n - 2(n-iy+S(n-iy-{n-'i)

= 6 n2 - 12 ?i + 6,

which is the nth term. And the series is

+ 6 + 24 + 54 + ...,

a series whose differences form an A. P. Compare Art. 159.

164. Tn problems where n is to be found from con-

ditions involving the sum of n terms, n may have two

values. If both be integral, both will satisfy the con-

ditions, but non-integral values of n must be rejected as

being inapplicable to the case.

Ex. How many terms of the series whose nth term is 27 — 2 n

will make 144 ?

The sum of n terms is - (2 a + n — 1 • d), and this is to be 144.

We readily find a = 25, and d= — 2,

.-. ^(52-2n)=144. "^

Whence n = 18, or 8.

And the sum of 18 terms = sum of 8 terms = 144.

165. When three quantities form three consecutive

terms of an A. P., the middle one is called an arithmetic

mean between the other two.

Let A be an arithmetic mean between a and b. Then

A — a = b — A] whence

A = ^{a + b).
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Or the arithmetic mean between two quantities is one-

half their sum.

The following miscellaneous examples illustrate the

subject of arithmetic progression.

Ex. 1. The pth term of an A. P. is P and the qth term is Q, to

find the nth term, and the sum of n terms.

From the pth to the ^th term the difference is added q—p
times.

q-p
Also, from the first to the pth term the difference is added p—1

times.

,.a = P-(p-l).Q^z^=lil^L}l:^QLP^zJ}.
q-p q-p

Hence the nth term is
P^-QP+<Q-P).

q-p

Also, s=-(ia-\- 71th. term)

_nf2(Pq-Qp) + (n+l)(Q-P }

21 q-p }

Ex. 2. In the A. P.'s 6 + 7^ + 9 + .•• and - 3 - 1 + 1 ... to

determine—
(1) If there be a common term, and if so, its value.

(2) If there be a common number of terms for which the sum
in each series is the same, and if so, to find the simi.

(1) 6 + (w — 1)1 = — 3 + (n — 1)2 gives an integral value for n
if there is a common term.

This gives n = 19, and the 19th term is common.
Its value is 6 + 18 X I or 33.

(2) /S' = ^[l2 + ^TTT. ?^ = ^ (- 6 + W^^l . 2) gives the condi-

tion for a common sum, if n is integral
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This gives n = 37, and the sum of the first 37 terms is the same

in each series.

The sum is V- (12 + 36 x f) = 1221.

EXERCISE XII. a.

1. Find the nth terms in the A.P.s, two of whose terms are

given as follows—
i. 1st term = wi, 2d = ^. v. 3d = 8, 8th = 6.

ii. 1st = a + n-l -6, 2d = a. vi. 10th = 4, 4th = 20.

iii. 1st = 3, 3d = 12. vii. (w-l)th=a, (7H-l)th=&.

iv. 1st = 0, 10th = 60.

2. Sum the following A. P.s—
1. 1 + IJ + ••• to 12 terms. iv. - H h ••• to n terms.

a a-\- b

ii. i + i + — to 10 terms. v. 103 + 97 + ••• to 24 terms,

iii. + 3 + .-. to 7 terms. vi. 2 + 4 + ••• to n terms.

8. Sum 100 terms of the A. P. whose 3d term is 5, and 10th

term 75.

4. Sum to n terms the series whose nth term is J (n — 1).

5. Find the sum of all the multiples of 7 lying between 200 and

400.

6. If a, 6, c are in A. P., so also are a^ (6 + c), b^(c + a), and

c2(a + 6).

7. Find the A. P. for which s = } (3 ^2 - 2 m).

8. Find the A. P. for which s = 72, a = 17, d = -2.

9. The A. P.s whose sums are 29 n — 2 n^ and J (17 n + 3 n^)

have a common term. Find it.

10. One hundred apples are placed in line at two feet apart,

and a basket is placed at an extreme apple. How far will a person

travel who takes the apples one by one to the basket ?
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11. n apples are placed in line d feet apart, and a basket is

placed in the same line, m feet from the first apple. How far will

a person travel who takes the apples one by one to the basket ?

What is the difference between m positive and in negative ?

12. A debt of •$ 1000 is paid in 20 annual instalments of $ 50

with simple interest at 6% on all, due at the time of each pay-

ment. How much money is paid in discharging the debt ?

13. A person receives ^1.50 daily. He spends 15 cents the first

day, 18 the second, 21 the third, and so on.

i. When will he be worth the most, and how much will it be ?

ii. When will he be worth nothing ?

iii. When will he be worth exactly $ 21.30 ?

iv. Will he at any time have exactly 1 10 ?

14. A and B start from the same place at the same time. A
goes westward 10 miles the first day, 8 miles the 2d, etc., in A. P.

B goes eastward 3 miles the 1st day, 4 miles the 2d, etc., in A. P.

i. Where and when will they be together ?

ii. When will they be 70 miles apart ?

15. Eind the sum of 1 + 2 - 3 + 4 - 5 + 6 - + ••• to 120 terms.

16. Two sides of an equilateral triangle are each divided into

100 equal parts, and corresponding points of division are joined.

Find the total length of all these joins.

Into how many equal parts must the sides be divided, so that

the sum of the joins may be m times the side of the triangle ?

17. $ 100 is deposited annually in a bank for 20 years to be left

at simple interest at 6 %. What is the accumulated sum at the

last payment ?

18. The side of an isosceles triangle is a and the base is &, and

the altitude is an arithmetic mean between the side and base.

Show that a : 6 = 1 + ^7 : 3.

19. Insert 4 terms of an A. P. between a and b.
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20. Find the series for which S = in(n -\- 1) (n + 2).

21. Find the series for which S = ^ n (n -\- 1) (2 n + 1).

22. Find the series for which S = {in(n + l)}^.

23. The sums of two A. P.s to n terms each, are n^ + pn and

3 w^ — 2 n. For what value of p will they have a common nth

term ?

Show that they cannot have a common term unless j) is a mul-

tiple of 4.

24. Two sets of n lines each are drawn parallel to adjacent sides

of a parallelogram. Find the whole number of parallelograms thus

formed.

26. The natural numbers are divided into groups as follows—
(1)(2,3)(4, 6,6)(7, 8, 9, 10)...

Find the sum of the numbers in the nth group.

GEOMETRIC PROGRESSION.

166. The quantities with which we have normally to

deal in Geometric Progression are

a, the first term ; r, the common ratio ; ?i, the number

of terms ; z, the last or nth term ; and JS, the sum of n

terms.

By definition, the terms of a Geometric Progression are

a, ar, ar^, ar^ •••, and it is readily seen that the nth term

is af~^,
.-. a; = ar"-^ {A)

Again, 8 == a -{- ar -\- ar^ -{- • • • a?*"~\

and rS — ar -^an^ -\ ar""'^ + ar^

... ^(i_r)=a(l-r«),

and S^a^'^^ (J5)
1 — r
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Eelation (B) may also be obtained as follows

:

By division,

- = a + ar + ar^ + • • • ar"~^ +
1 — r 1 — 7'

I 1^1 n-i ^ ^^" 1 — r"

1 — r 1 — r 1 —r

Ex. The population of a city increases at the rate of 5% per

annum, and it is now 20000. What will it be 10 years hence ?

It will evidently be the 11th term of the G. P. whose first term

is 20000, and whose ratio is 1.05.

.-. The population will be 20000 (1.05)io = 32578 to the nearest

Integer.

167. The finding of r or n in a geometric progression

cannot usually be conveniently done without employing

logarithms. Thus in the preceding example the labor

of raising 1.05 to the 10th power is very great. And in

the case of n, on account of its appearing as an exponent,

the common operations of arithmetic do not suffice for

finding it.

Ex. 1. In a G.P. the first term is J, and the second term is i;

to find the wth term and the sum of n terms.

Since a = \ and ar = ^. .-. r = J -;- 1 = |.

Then z = nth term = - {-Y~^ =—!•

3V2/ 2«-i

Ex. 2. How many terms of the series l + 2 + 4 + 8 + »»» will

make 127 ?

Here m ='^^^^^ = '^^^^^:^ = 2^ - 1.

r-\ 1

.•. 2» = 128, and n is evidently 7.
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168. When r < 1, r" diminislies as n increases, and by

taking n great enough r" may be made as small as we

please. At the limit when n= oo , r"=0, and {B) becomes

1-r

This is the limit towards which the sum of n terms of the

series approaches as n is continually increased ; and by

taking n sufficiently great we can make the sum of n

terms approach this value as near as we please.

For convenience, this limit is called the sum of the

series to infinity, although it is more properly spoken of

as the limit of the series as n approaches infinity.

Ex. 1. To find the limit of 0.333 *" ad infinitum.

And its limit is A/i + J_-|. JL + ...\ =A 1_=1.
10 V 10 102 I 10 l-yi^j 3

Ex. 2. To find the value of the circulating decimal 0.241.

10 103 V
^102^104^

I 10 103 99

_ 2 41 ^ 2 X 99 + 41 ^ 241 - 2

10 990 990 990

Hence the rule— Subtract the non-repeating part from

the whole, and write as denominator as many 9's as

there are digits in the repeating part, followed by as

many ciphers as there are digits in the non-repeating

part.
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EXERCISE XII. b.

1. Find the sum of n terms of the series—
i. 1 + 3 + 9 + ... ii. i_| + |-_^..

iii. y3^ + yf^ + ••• What is this when w = oo ?

iv. ^2 + (2 — ^2) 4- -• when n = co.

2. Sum to 00 the series 1 H \-
^

'

n + 1 (n + 1)2

What are the results when n = l? =2? =S?

3. Find the nth. term of the G. P. whose first term is v +
1 V2-1

and the second is

2-V2
4. A cask of wine contains 30 gallons. 5 gallons are drawn off

and the cask is filled up with water.- After this has been done

6 times, how many gallons of the original wine are in the cask ?

5. A circle is inscribed in an equilateral triangle ; a second

circle touching the first and two sides ; a third touching the second

and the same two sides, etc. If the side be s, find the radius of

the nth circle so described. Also, find the total area of all the

circles continued to oo.

6. A square is inscribed in an acute-angled triangle having one

side of the square on the base of the triangle. A second square is

inscribed similarly in the triangle above ; a third square above

that ; etc. to x. If the base of the triangle be b and its altitude a,

find the total area of all the squares.

7. How many terms of the G. P. 1 + 2 + 4 + ... will make 1023 ?

8. Find the sum of n terms of the series whose nth term is

na + a\

9. If S, a, r, z be taken in their common acceptation, show that

r =
S-z

10. A country whose annual production is now 5 millions, in-

creases at the rate of 5 % per annum. What will it be 5 years hence?
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169. When three quantities are three consecutive

terms of a G. P., the middle quantity, is a geometric mean

between the other two. It is also called a mean propor-

tional. Art. 84.

Let (7 be a geometric mean between a and h.

Then — = —
- : and hence G = Va6.

a G

Problem. To insert n terms betwen two extremes, a

and h, so that the whole may be a G. P.

Let the series be

Then ^-l = ^2^...^ = A.= ^ = ,..

a t^ t,_, ^„_i t

and ^ = ^.^...^. A..^ = ^.n+i,

« Cf' h tn-2 L^i K
'

.-. r= [-Wi;
^i = ar = (a"6)»+i;

1 1

e2 = (a'»-^62)«+^; and generally, «^ = (a'»-*"+^6'")"+^

EXERCISE XII. c.

1. Insert 8 terms between 1 and 512, to form a G. P.

2. A body weighs a grams in one scale pan of a balance and h

grams in the other. Show that its true weight is Vab,

3. Three circles each touch the same two lines, and one circle

touches both the others. Show that the radii of the circles form
aG.P

4. If a, 6, c, d be in G. P., prove that

(a + 6 + c + d)2 =(a + b)2 +(c + d)'^ + 2(6 + c)2.
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5. A right-angled non-isosceles triangle has a perpendicular

drawn from the right-angled vertex to the hypothenuse. The
larger of the resulting triangles is treated in the same manner;

and so on. Show that the perpendiculars so drawn form a G. P.

6. AB is the diameter of a circle, and CT is a tangent at any

point C on the circle, and AT is perpendicular to CT. Prove that

AC is Si geometric mean between AB and AT.

HARMONIC SERIES.

170. A number of terms form a Harmonic Series when
their reciprocals form an Arithmetic Series.

Thus 1, 2, 3, 4, 5, etc., are in A. P.

And 1, I, ^, \, ^, etc., are in H.P.

Let a, by c be three terms in H. P.

Then i, ^, i are in A. P., and ?= - + 31:.

a b c b a c

a_^ a — b

c b — c

That is, three quantities are in H. P. when the first is to

the third as the difference between the first and second

is to the difference between the second and third.

The term Harmonic is derived from the property that

a string of a musical instrument stopped at lengths cor-

responding to the terms of an H. P., sounds the harmonics

in music.

In algebra itself Harmonic Progression does not play

any important part; it is in geometry that it has its

principal applications.

JS"o method of summing an H. P. is known.
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EXERCISE XII. d.

1. Find the Harmonic Mean between a and 6.

2. If -4, G^ JET denote the Arithmetic, Geometric, and Harmonic
Means between two quantities, show that G = y/AH.

3. J., P, By Q are four points in line, and C is half-way between

A and B. If -4P, AB, AQ are in H. P., then OP, CB, CQ are

in G. P.

4. If 1, c, a are in A. P. and 1, c, 6, in G. P., can c, a, 6 be

in H. P. ?

6. If X, y, z be in H.P., a, sc, 6 in A. P., and a, z, b in G.P.,

show that
-2

'-(-'>{©'-(!)'}

6. Three numbers are in G. P. If the first two be each increased

by 1, the result is in A. P. ; and if 2 be then added to the third, the

result will be in H. P. Find the numbers.

INTEREST AND ANNUITIES.

171. Let F denote the principal, r the rate per unit, t

the time in years, and A the sum of the principal and

interest at the end of t years.

Then Pr = the interest for 1 year.

(1) If the interest is simple, this interest remains the

same for every year, and in t years becomes Prt, And
adding the principal gives

which is the relation connecting the quantities in simple

interest.

(2) In a case of compound interest, the amount at the

end of the first year becomes the principal for the second
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year ; the amount at the end of the second year becomes

the principal for the third year, etc.

Amount at end of 1st year = P(l + r).

Amount at end of 2d year = P(l + r) (1 + r)

= P(l + ry.

Amount at end of 3d year = P(l + ry.

Similarly,

Amount at end of t years = P(l + ry,

or A = P(l + ry,

which expresses the relation connecting the quantities

in compound interest.

172. The present value of a sum of money, payable

at some fixed future date, is that sum which put at

interest will amount to the given sum at the given date.

Ex. 1. What is the present value of a sum, S, payable t years

hence, money being worth r per unit.

Let V be the value.

Then v(l + rV = S. .: V=—
^ ^ (1 + ry

The result is given for compound interest, as in all

such cases compound interest is the only kind practically

considered.

Ex. 2. If the sum S pays yearly interest at rate r, and money
is worth rate rj, we have

S(l -\- ry = amount of S in t years, rate r,

and V(l -\- r{)* = amount of Fin t years, rate r^,

and as these must be equal,

--iHfJ-
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Ex. 3. A loan of $ 5000 pays interest annually at 4 % for 4 years,

and is to be then paid in full. What is its present value, reckoning

money at 6 % ?

V= 5000 f
^-^y= 14633.28
/L04y^,
Vi.oeJ

OF ANNUITIES.

173. An annuity is a fixed payment of money made at

stated and equidistant intervals.

If the payments continue for a definite time, it is an

annuity certain, or a fixed annuity ; if they continue only

during a person's life, it is a life annuity ; and if they

continue for all time, it is a perpetuity.

Annuities may pay annually, or semi-annually, or

quarterly, or at any other stated times ; but as the prin-

ciples are the same in dealing with all of these, we shall,

unless otherwise stated, consider the payments as being

made annually.

Problem. To find the present value of a fixed annuity.

Let P be the annual payment, r the rate per unit of

interest, t the number of years the annuity is to run,

V its present value, and let R stand for 1 + r.

Let us suppose that the annuity is paid into a bank,

and left there for t years from the time of purchase, to

accumulate at compound interest.

The 1st payment draws interest for t — 1 years, and

amounts to PR~^.

The second payment, similarly, amounts to PR*^.

The 3d payment amounts to PR^~\

etc. etc.

The last payment is PR^~^ or P.
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Therefore the whole amount is

K — 1

Now if the purchase money were deposited in the

same way, it shouhl, in t years, amount to the same sum.

But F dollars in t years amounts to F(l + r)*

7?* — 1

Whence V= P

E -1

1 - R-'

Ex. What is the present value of $ 100 paid annually for 6 years

at 10 % compound interest ?

Here 72* =(1.1)6 = 1.77156 ; and R-' = 0.56447.

Then F = 100 x ^ ~ ^'^^^^^ = $ 435.53.
0.1

Cor. When t = yo, the annuity becomes a perpetuity,

and for its present value

174. When an annuity does not begin to pay until

after the lapse of a number of years, it is said to be

deferred, or to be in reversion.

Problem. To find the present value of an annuity in

reversion.

Let p be the number of years the annuity is deferred,

and let t be the number of years through which its pay-

ments run.
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The amount of the annuity at the end of 79 + ^ years is

1--R ?

and the amount of V for the same time is

VR'^',

and these must be equal.

R'- 1

1~n R
r

-"{^'l

Cor. When t = cc, we have as the present value of a

deferred perpetuity

P
rR^'

Ex. A young man, at the age of 19, will come into a property

at 23 that will pay him $ 1000 yearly during his life. If his life

probability at 23 is 40 years, how much is his annuity now worth,

money being at 6 % ?

Here P = 1000, p = 4, ^ = 40, r z^ 0.06, B = 1.06.

1000 f 1 1And V= {-1
0.06 C (1.06)4 (i.06)-t4.

This cannot be conveniently Avorked out without the use of

either logarithms, or tables of the powers of 1.06.

The value is $11918, to the nearest dollar.

175. An annuity which has not been paid for a number

of years is said to be foreborne. The present value of a

foreborne annuity is the cash value of all due, together

with the present value of the annuity as continued into

the future.

To find the present value of a foreborne annuity. Let

the annuity be foreborne for q years.

Its cash value is P •
^ ~ ^'

or P • ^^-^-.
1-R r
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1 — R~^And its value for the future is P , t being
r

the number of years it is to continue.

... v=p[^^].
Cor. If t=cc, we have for the present value of a

foreborne perpetuity

r

176. The following problem is of special importance.

Problem. A corporation borrows A dollars, which is

to be paid in t equal annual instalments, each instalment

to cover all interest due at the time of payment. To
find the value of each instalment.

A part of the instalment goes to pay interest, and the

remainder goes to reduce the debt.

Let a, b, c, • • • t, be the parts applied in successive years

to the reduction of the debt, and let p be one of the

annual instalments.

Then,

1st payment =p = a -{- Ar.

Eeduced debt = A — a.

2d payment =p = b + (A —a)r ; whence b = aB.

Eeduced debt = A — a— b = A — a — aR.

3d payment =2) = c-\-{A — a — aR)r ; whence c = aR^,

Eeduced debt = A — a — b — c = A — a — aR — aR\

tth payment = 2)=t-^\A—a—aR—aR^ aR-^lr,

Eeduced debt = A — \a -i- aR -\- aR^ -\ aR-^},

But after the tth payment the debt must be nothing.



,.-ix ^B'-l

OF ANNUITIES. 209

.'. A = a(l + E + B' + "^E'-') = a

But a=p — At, and eliminating a between these gives

p = A' ->^ R-1
which is the value of the annual payment.

EXERCISE XII. e.

1. A mortgage for ^1200 pays $400 annually for 3 years with-

out interest. What is its cash value when drawn, money being

reckoned at 6% compound interest ?

2. Find the present value of the mortgage, of Ex. 1, if it pays

interest at 4 %, while money is worth 5 %.

3. An annual annuity of $1000 is foreborne for 6 years, and

is to run 8 years in all. What is it now worth, money being

reckoned at 4 % interest ?

4. A man borrows $ 500 on a mortgage and wishes to pay prin-

cipal and interest in 5 equal instalments. What is the amount of

each instalment, calculating interest at 6 % ?

5. A corporation borrows $30000 at 4% interest, and is to repay

principal and interest in 30 equal instalments. What is the value

of an instalment ?



CHAPTER XIII.

Permutations, Combinations, Binomial
Theorem.

177. If from n different objects we form groups each

containing r objects, such that no two groups contain

the same assemblage of objects, each group is called a

Combination, and the possible number of such groups is

the number of combinations of n things r together.

This number is symbolized by "C^, and read 'n objects

combined by ?''s.'

Thus ^Cg, taking letters as objects, is 4, and the several

groups or combinations are

ahc, ahd, acd, and bed.

Similarly ^Og has for its groups a5, ac, ad, ae, he, bd,

be, cd, ce, and de ; or 10 in all.

The combination abc is the same as acb, the same as

bac, etc., since all have the same assemblage of letters.

If, however, we take relative position into considera-

tion, abc and acb are not the same, since, although they

contain the same letters, the letters are differently ar-

ranged. Distinguishing different groups in this way,

each group is called a Permutation, and the possible

number of such groups is the number of permutations

of n things r together.

This number is symbolized by "P^.

210
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The combination ahc gives 6 permutations : dbc, acb,

bac, bca, cab, and cba; and as each combination may be

treated similarly, the number of permutations of 4 letters

3 together is 24 ; or ^F^ = 24.

PERMUTATIONS.

178. Problem. To find the number of permutations

of 71 things r together, n being greater than r.

If we have r boxes, A, B, C, •••, etc., into each of which

one of the n letters, a,b,c*" is to be put, the number

of ways in which the distribution can be effected is the

number of permutations of n things r together.

In filling box A, we may choose any one of the n

letters, and we have therefore n choices.

Having filled A, we have n — 1 choices in filling B,

and any one of these n — 1 choices may be combined

with the n choices in filling A,

Hence in filling A and B we have n(n — 1) choices.

Similarly, infilling^, B, and (7, we have n(n — 1) (n — 2)

choices, and so on through the r boxes.

.-. "P^ = n{n - 1) (n - 2) ... {n-r-\- 1).

179. Multiply the value found for "P^ by the unit

fraction

(it-r)(yi-r-l)...3.2.1
1.2.3... (n-r-l)(n-r)'

and we obtain

,p^ l.2.3...(n-2)(n-l)n
1.2.3... (n-r)
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The continued product of m consecutive natural

numbers, beginning at 1, is called factorial m, and is

symbolized as m !, or [m.

rt f

Hence "P. = -

{n — r)\

Cor, When r = n, we have

"P„ = 71 ! (Art. 178) = "^ (Art. 179),

and hence ! must be interpreted as meaning 1.

Ex. 1. The number of permutations of 12 things 5 together is

i2p^ = 12 . 11 . 10 . 9 . 8 = 95040.

Ex. 2. The number of permutations of n things 3 together is

14| times the number of permutations of n — 2 things 2 together,

to find n.

Here

n{n-V){n-2) _U_n
(7i-2)(7i-3) 3 n-3

Whence n = 12, or 3f

.

As n must be integral, its value is 12, and 3| must be rejected

as being inapplicable to the nature of the problem.

Nevertheless, (3f • 2f • If) - (If • Of) = ~%K

180. In the permutations "P^ to find how many con-

tain a particular object or letter, as a.

Putting a aside, we form a group of r — 1 from n — 1

objects, and this can be done in

(?i — 1) (n — 2) • • • (n — r + 1) ways.

In each of these groups a can have r positions; namely,

from preceding all the other letters to following them all.
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Hence the number of permutations containing a is

r(n — l)(n — 2) ... (n — r + l).

Similarly, the number of permutations containing two

particular letters, as a and 6, is

r(r-l)(n-2) ...(n-r + 1).

Containing 3 particular letters together, it is

r(r - 1) (r - 2) (n - 3) ... (n - r + 1).

etc. etc.

Ex. How many numbers can be made from 5 figures, 1, 2, 3, 4, 5,

three at a time ; and how many of these will contain 1 ? How
many contain 1 and 2 ?

1st. «P^ = 5 . 4 . 3 = 60.

2d. r(w-l)(n-2)=3.4.3 = 36.

3d. r(r- l)(n-2)=3.2.3 = 18.

181. To find the number of permutations of n things,

all together, when u of the things are alike.

Denote the number by ''F(u).

If the u things were all different, they would in them-

selves give rise to u ! permutations, each of which com-

bined with each of the permutations of ''P(u) would give

Or "P(w) =—

.

ul

Similarly, if **P(u) (v) denotes the number of permu-

tations all together, when u articles are alike of one

kind, and v articles are alike of another kind,
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Ex. How many permutations can be made from the letters in

Mississippi 9

Here there are 11 letters, of which 4 are i's, 4 are s's, and 2

arep's.

.-. ^P(u) (v) (w) = —111— = 34660.

If the permutations were to be such as not to have

repeated letters, we have only 4 different letters, and

the number is

«P„ = 4 . 3 . 2 . 1 = 24.

EXERCISE XIII. a.

1. Find the values of—

2. Given «P^ = S^-iP^, to find "Pg.

3. Given "Pg = V ""^P^, to find n.

4. How many permutations can be made from the letters in

College ? in Oporto f in Amsterdam ?

In each of these how many permutations would have letters

repeated ?

5. A person writes at random 3 of the figures 1, 2, 3, 4, 5, 6.

What is the probability that they will be consecutive and in

ascending order ?

6. With four different consonants and a vowel, how many words

of 3 letters can be made having a vowel in each.

7. The figures from 1 to 9 are written down, and a person erases

3 figures at random. What is the chance that the figures erased

may be consecutive ?

8. Six points are taken on a circle. In how many different

ways may they be joined by twos ?
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COMBINATIONS.

182. As a combination has no reference to arrange-

ment, each combination of r articles can give rise to r !

permutations r together.

Hence "P, = r ! x "(7^.

r ! r ! (n — r) !

or, by reduction, "0^ = ^ •
^"7

•
^^^ to r factors.

Cor. Since "(7^ is necessarily an integer, it follows

that the continued product of any r consecutive integers

is divisible by factorial r.

183. Substituting n — r for r gives

{71 — r) ! r

!

Or the number of combinations of n things r together

is the same as the number n — r together.

This is quite self-evident, for every time we take an

assemblage of r things out of n things we leave an

assemblage of n — r things, and the numbers of the

two assemblages must necessarily be equal.

"Or and "C7„_r ^^re complementary combinations.

184. Since "C^= ^.^llll.^JIl^..., the number of

combinations will increase with r as long as the last

fractional factor is greater than 1. But this factor is



216 COMBINATIONS.

^"~^"^
; and while this is >1, the number of com-

r

binations increases.

71 4-

1

.-. 71 — r + l>r, or t<--^—

And T is to be the integer nearest to but less than

1(71 + 1). Therefore

If 71 is even, the value of r which makes "(7,. greatest is

r = ^7i; and if n is odd, the value of r is ^(ti — 1), or

1(71 + 1); the latter value giving a unit-factor.

Ex. r2a^^l2-ll-10>9^12.11.10.9.8.7.6.5^,^^^^^^^
* 1.2.3.4 1. 2. 3. 4. 5. G. 7.0 ^

12.11.10.9.8.7^^,^
: ^ 1.2.3.4.5.6

n /^ ^ 11 ' 10 ' 9 . 8 . 7 ^ 11 . 10 . 9 . 8 7 . 6 ^ -n ^
^ 1.2.3.4.5 1.2.3.4.5.6 ^*

185. In the combinations "(7^, to find the number of

times any particular object, as a, will be present.

If we form "~^(7r_i from all the letters except a, taken

r — 1 together, we can place a with each of these groups,

and we then have all the combinations of n letters r

together containing a.

^
Thus a occurs "~^(7^_i times.

Similarly, ah occurs "^(7,._2 times, etc.

Ex. Out of a- guard of 12 men 5 are drafted for duty each night.

Relatively, how often will A be on duty ? How often will A and B
be together on duty ? How often will A be on duty without B ?

. As ^2^5 = 792, this is the total number of different drafts.,

1. A is on duty "C^ - 330 times out of 792.

2. A and B are'together ^^C^ = 120 times out of 792.

3. .'. A is present without B, 210 times out of 792.

i
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EXERCISE XIII. b.

1. If a = **(73, and b = "Pj, find the relation between a and b.

2. If a = "Or, and b — "-^Pr-i, find the relation between a
and b.

3. At an election there are 10 candidates, of which 4 are to

be elected. If a man may vote for 1 or more up to 4, how many
different votes can he cast ?

4. If "C„_i = "»+i(7„»-i, then m(m + 1)= 2n.

5. Prove that "O- + "CV-i = «+iCr.

6. Prove that w{«0r + «-iCr-i}=(w + r)«(7r.

7. 3 black and 2 white balls are put into a bag ; what is the

chance of drawing 2 black balls at a single drawing of 2 balls ?

THE BINOMIAL THEOREM.

186. The expansion of (l+o;)**, with n a positive

integer, is the simplest form of the binomial theorem, or

binomial formula. The theorem is then generalized and

adapted to any value of n whatever. The simplest case

is first established.

I. w A Positive Integer.

The number of terms in 2a with n letters is "Ci; the

number of terms in 2a6 is "C2 ; and generally the number
in Sa6---r is "(7^.

These statements are self-evident.

Now (x -]- a) {x '\- b) (x -{- c) "- to n factors is
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And making a = 6 = c = -..==l, we obtain

(x + 1)" = ic" -f "Cio;"-^ + "C2a;"-2 + ••• + "C„.

Or, since "(7„ = 1, "(7„.i ="(7i, "(7„_2 = "Oa, etc.

(1 + 0?)" = 1 + "Cjo; + ""C^ + - "CX + - (A)

Also writing the factor values of "Ci, "Cg, etc.,

1 • ^

(^) and (B) are common forms of the binomial the-

orem; and

iC,

r!

the (r4-l)th term from the beginning, is called the

general term.

Knowing the particular value of each coefficient, these

coefficients are often denoted by a single letter with

subscript numbers, and the theorem then becomes

where Cq = 1, Ci = n, Cg = ^^^"~ ^
, etc.

Ex. 1. (a + «)« = a^(l + -V= a^(l + Cj - + c.,^ + r-\

= a« + Cia«-ix + Caa"-2x2 + ••• Cra«-*'«^ H

and thus the expansion of any binomial depends upon that of

(1 + X).

Ex. 2. (1 - iK)« = 1 + Ci(- cc) + C2(- a;)2 -f CgC- a)8 + ...

the signs being alternately + and —

.
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187. Since (l + x^ = l-\-''CiX-i-"C^'^ -{ h"0„a;^

making ic = 1 gives

2»=l4-"Ci + "(72 + "03+...+"a.
.-. The total number of combinations of n things taken

1 at a time, 2 at a time, and so on to n at a time, is 2" — 1,

Also, the sum of the coefficients of the expansion of

(l + a;)»is2".

Also, since (1—a;)"=l— CiX + CzX^ — c^pc^ -\ , by mak-

ing a; = 1 we have

= 1 4- Cg + C4 H (ci + Cg + C5 + •••)•

Or, the sum of the odd coefficients in the expansion of

(l-{-xY is equal to the sum of the even coefficients.

Ex. To find the sum of the squares of the coefficients of (1 +x)".

(1 + x)« = Cq+ CjX + C2X2 ^ (.3^3 + ... + c„x»

;

(x + 1)« = CqX^ 4- c^x'^-^ + C2a;«-2 ^ C3X"-3 -\- ,..Cn.

The coefficient of ic" from the product of the right-hand mem-
bers is

Co2+Ci2 + C22+...C„2.

But the coefficient from the product of the left-hand members is

the coefficient of x» from the expansion of (1 + x)2«

;

that is, 2«(7^ or i?^.
n! w!

.. Co -hCi +C2 + — C„ -
^^^^2

Cor. 1. This last expression on the right is the number of per-

mutations of 2 n articles, when half of them are alike of one kind,

and the other half alike of another kind.

Cor. 2. The coefficient of x"-2 from the right product is

And from the left it is
(^ny.

(n-2)!(w + 2)!

The student is left to generalize this.
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EXERCISE XIII. c.

1. Write the general, or (r -f l)th, term in the expansions—
i. (a + x)". ii. (a - x)«. iii. (1 + x)2».

2. Show that

(a + x)» _ a» x^
,

g^-^
^
x^

,
a^-2

. ?^ _!_... 4.
«° ^.

n! w! *0! (ri-1)! * H (n-2)! * 2! 0!
*

n\
.

3. Find the 10th term in the expansion of (1 + xy^.

4. What is the factor which changes the (r + l)th term into the

(r + 2)th term ?

5. Find the value of r that the factor of question 4 may be the

last one greater than unity.

6. Find the greatest coefficient in the expansion of (2 4- 3 x)^.

7. Show that the 6th term has the greatest coefficient in the

expansion of (3 + 2x)i2.

8. Prove that "Cr + "Cr-i = »+^Cr.

9. In the expansion of [ x + -
]

show that the coefficient of x** is

Qn-r)liin + r)\

II. n A Negative Integer.

188. Let the expression "(" + l)('^ + ^)-(^^ + ^-^)

be denoted by ""H^.

Then "H, + »+'^,_, = n(n + l)...{n + r-l)
r

!

(n+1) (w+2) -(n+r-1) ^ (n + l)(n + 2)-(n + r)

(r-iy. r!

= »+'ir, (D)
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Now we know from division that

{1-xy

^1 ^1.2 ^1.2.3 {n-iy.

= l + 'H,x + 'Hox^ + 'B^^ + ... ^jy^.io:"-^ + ...

Therefore let us assume that

1

(I-:.-)"
= l+"iyia?+"iy2^+"^3^'+ •••+"Jy.i»'+ -. (^)

Divide both sides by 1 — a; ; the left-hand member be-

comes r, and the right as follows :

(1 - xy+^

because '^^^ + "+^^,_i = "+W„ from (D)

.

.-.
__^^ ^^^

= 1 + "-^^J^io? + -+^^2^^ + "^^^3^^

Hence if the expansion is true for any value of n, it is

true for the next greater value. But it is true for n = 2,

and therefore for n = 3, for n = 4:, etc. : that is, it is

generally true. And the expansion, (E), is true.

XT /I \n -I I
n(n—l) n(n—l)(n^2)

,Now {l—xy=l—nx+ ^ ^
^^

—

ToQ '^
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Change n to —n, and this becomes

^ ^ 1.2 1.2.3

= 1 + ".^laJ + "^^2^^ + "^3^^ + •••, agreeing with (jEJ).

And we see that the general form of the binomial

theorem holds good for all integral values of n, positive

or negative.

With n positive, the series terminates when ^~^ "^

r

!

becomes zero ; i.e. when r = n + 1. Or the series con-

tains n + 1 terms.

With n negative, however, the series is infinite, as

w(n4-l)(n4-2)... cannot become zero by extending the

number of factors.

189. To interpret "5;.

1

1

1-hx
1

1 — ex

= 1 + 5a; 4. 52^ + 53^
_f.

... + ^r^r ^ ..

= 1 4- ex + c^x^ 4- cV H h e^'x*' + ...

By multiplying n such equations together, the coeffi-

cient of X*", on the right, is the sum of all the homogeneous

terms of r dimensions that can be made out of n letters.

But if we make a = & = c=... = l, the left-hand product

becomes (1 — x) ~", and the coefficient of x"" is ""11^.
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.•. "jET^ = the number of homogeneous terms of r dimen-

sions which can be formed from n letters, and their

powers.

Thus, if n = 4 and r = 2, ^Hr= ^H^ = j^ = 10 ; that is, there

are 10 homogeneous terms ; namely, a^, 6"^, c-^, c2^ ab, ac, ad, be, bd,

and cd.

It is well to notice that if we denote ""Hi by /ij, "^2 by

^2j 6tc.,

(1 + xy = 1 -h Cio; 4- CgO^ + CgiB^ H signs all +.

(1 — a;)~" = 1 + hiX + ^2^ + /igO^ H signs all +.

(1 — xy = 1 — CiX 4- Cgo;^ — CgO^ H signs alternate.

(1 4- a?)
~" = 1 — /ii^; + ^2^ — h^a^ -\— • • • signs alternate.

EXERCISE XIII. d.

1. Expand (1 — jc)-*, and show that the coefficients are the

sums of the coefficients of (1 — x)-\

2. Expand ^t_^— in ascending powers of x, and find the
1 + x-\- x'^

coefficient of x" in the expansion.

(1
4. x\*»

l-xj

4. Prove that (l+x)«=2» \ l-/^^ .lli-?+ ^ Yln^V-^- ... \.
( 1+x \i-tx/ y

5. Find the coefficient of x^^^ in
^-^^

,

(l-x)2

6. Find the coefficient of x" in the expansion of

(1 -2x4-3x2-4x3 + )-«.

7. Show that if n is a positive integer, (5 + 2^Qy is odd in its

integral part.
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Since 52 -(2^6)2 = 1 and 5 + 2^6 > 1, .-. 6 - 2^6 < 1, and

is accordingly a proper fraction.

. •. 5« - Ci
5"-i

. 2V^ + Cj 6"-2 22 . 6 - + ...=/' = proper fraction.

5« + Ci
5^-1

. 2V6 + C2 5«-2 22 . 6 ++ — = /+/ = an integral

part + a proper fraction.

. •. 2{5« + C2 •
5«-222

. 6 + ...} = /+ / +/= an integer.

. *. f +f must = 1 ; and as /+ /+/ must be even, /must be odd.

8. Show that the coefficient of x'^ in the expansion of (1 + xy^
is double the coefficient of x" in the expansion of (1 + x)2«-i.

9. By the Binomial theorem find 99^.

10. Prove that c^ - 2 Cj + 3 Cj - + ••• + (- l)^(w + l)c„ = 0.

11. Show that »/r^ = «+^-iCV.

III. n A Fraction.

190. With n fractional there are certain difficulties in

the Binomial theorem which we cannot here explain

;

and no very satisfactory proof of the theorem with

n fractional can be given without involving higher con-

siderations than occur in this w^ork.

Several methods, however, will furnish proofs which

are morally sufficient.

The following is Euler's.

(1 + a;)'' is a function of n ; denote it hj fn.

Then (l-\-x)"'=fm,Vind (l+a^)"*+"=/(m+n).

But (1 + x)"^ ' (1 -f xY = (1 + .1')'"^" by the index law.

.-. fm'f)i=f{m-\-n).

Similarly, fm -fn -fp =f{m + 71 -\-p)
j

and generally,

fm 'fn 'fp'"k factors =f{m + n -i-p'-'Jc terms).
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hNow let m = n=p= '*' —
k

and f(^={fh)\ = {l+x)i.

But, fn = l + nx + ^^^^^^x' +
1 • z

h

i-^).

Or (l + a;)Ll+|a;4-^^^^a^ +

And the form of the Binomial theorem holds good for

n fractional.

-1
Cor. If we make k = — 1, f(—h) = (fh)

But

and (//()-'=
^ ^

fh (l+x)"

1
. = (! + «')•

-ft•
{l + x)

which proves the theorem for negative indices
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EXERCISE XIII. e.

1. To find VT^^, This is (1 - x)*,

and (1 - a;)i = 1 - Jx + Ki^niix^ - i(L—0(isz^y.9 ^ ...^ ^ ^1-2 1-2.3
^

= 1 -_ 1 a; - J_x2 - -1^x3 - -i-lil^x* -- ...
^ 2.4 2.4.6 2.4.6.8

2. Write the general term, (r + l)th, of Ex. 1.

3. Expand (I -\- x)^ in ascending powers of x.

4. Find the approximate value of a(l — x) Vl + x^ when sc^

is so small as to be rejected.

5. Expand (14- x)% and find the result when x = 0.

6. Expand ( 1 + -
)

, and find the result when x = oo.

(-i)-

7. Find the value of $ 1 compounded every moment for t years

at r % per annum.
1

8. By expanding (1 + x)" and making x = 3 and n = 2, show

that 2 is the limit of the series

2 1.2V2/ 1.2.3V2>/

9. Find the limit of the series to infinity—
l + }-2-J.22 + /^.23-^VV.244--

10. If e =
(
1 + -

)
where x = oo, show that

^21 3! n\



CHAPTER XIV.

Inequalities.

191. When two unequal expressions are compared,

particularly with the purpose of showing that the ex-

pressions are not equal, the whole is called a non-equatlop^

or inequality.

An inequality employs the signs > and < between

its members, and sometimes the signs ^fc, read not equal

to, >, read not greater than, and <, read not less than.

It usually happens that some values of the variables

will change an inequality to an equality, i.e. an identity.

The working rules for inequalities being in some

respects different from those for equations, must be here

established.

I. Let CL>b,

and let all the quantitative symbols denote positive

quantities.

1. Let a = b + /3, and add p to both sides.

.-. a+p = b-^p-\-p, ov a-{-p>b+p.

2. Subtract p from both sides, and

a —p = b—p-\- 13, OT a —p >b—p.
Hence the same quantity may be added to or subtracted

from both members of an inequality ; and hence a term

may be transposed from one member to the other by

227
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changing the sign of the transposed term, without affect-

ing the character of the inequality.

3. Subtract both members from p.

Then p — a=p — h — P] ov p — a<p — b, and the

character of the inequality is changed.

Therefore, if both members be subtracted from the "

same quantity, the character of the inequality is reversed.

4. ma = mb + w/5 ; or ma > mb.

m m m mm
Hence, if both members be multiplied or be divided

by the same quantity, the character of the inequality is

unchanged.

/> m mm mB ^„ '^ ^ "^

a b + p b b{b + py a b

Hence, dividing the same quantity by both members

changes the character of the inequality.

7. To multiply or divide both sides by a negative

quantity is equivalent to exchanging the members, and

therefore it reverses the character of the inequality.

II. Let a>b and c>d.

Put a = 6 + A andc = d + S.

8. a-{-c = b-{-d + (3-\-S; ora + c>6 + d.

9. a — c = & — d + /5 — S; from which we cannot infer

whether a — c>b — dov <6 — d.

If /5 > S, a - c> & - d; but if ^ < S, a — c < 6 — d
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Hence, inequalities of the same character may have

corresponding members added; but they do not in

general admit of being subtracted.

192. Inequalities are usually referred to certain stan-

dard forms, or determined by fixed relations.

(1) Eor all values of x and y^ except equality,

a^ + 1/^ > 2 a^i/.

Proof. (x — yY is essentially positive, and .-. >0.

... r^^f_2xy>0,

and x^ + y^':>2xy (A)

Ex. 1, The sum of a number and its reciprocal is greater than 2.

x + - >2,
X

if a;2+i2^2x.l.

And this latter is true {A). /. the former is.

Ex. 2. To show that 1 -{-
a^

-\- a'^> ^(a + a^).

If a is negative, this is evidently true, since the left-hand mem-
ber is essentially positive.

Let a be positive.

To prove that 2 + 2a2 + 2a* > Sa + Sa^.

(a — 1) (a^ — 1) = a* — a — a^ + 1 ; and is + when a is +.

.-.1 -\-a^>a + aS.

Also 1 +a2->2a . . . (Ex.1)

and a^ + a^>2 aK

.-. Adding, 2 + 2a'^ + 2a^>Sa + Sa^.

193. (2) (x~ — 2/") (^•"' — 2/"") > 0, if m and n are both

odd or both even positive integers.
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Proof. If X and y have the same sign or opposite

signs, both factors have the same sign, and the product

is positive.

Ex. 1. sfi + ^^ x^y + xy^ according as

x^ — x^y + i/^ — xy^ -^ 0,

as (a^ - 2^) (aJ — 2/) ^ 0.

But (x5-2/5)(x-?/)>0.

. •. x^ + t/^ > x^y -\- xyK

EXERCISE XIV

1. If a, ft, c ••• a be any unequal quantities forming a cycle, show

that Sa2 > 2a6.

2. Showthata2 + 3 52^2 6(a + &).

3. Show that a% + ah^>2 a^h'^.

4. Show that {aP' + h^) (a* + h^) > {a^ + &^)2.

5. With three letters, ^a% > 6 ahc.

6. L±^ + ^i«-f «±^>6, unlessa = 6 = c.ahc
7. Which is the greater—

1. (a2 + 62) (c2 4- ^2) or (ac + 6(^)2 ?

ii. m2 + m or m^ + 1 ?

8. If X is real, x2 - 8x + 22 < 6.

9. Under what circumstances isx + ->or<4?
X

10. An isosceles triangle is greater in area than a scalene

tri.mgle with the same perimeter and base.



CHAPTER XV.

Undetermined Coefficients and their

"Applications.

194. Theorem. If an integral function of aj of n

dimensions is satisfied by more than n different quanti-

ties, it is satisfied by all quantities, or its coefficients are

severally zero.

Let fx = ax"" + 6aj"-^ + cx""'^ -\ sx + t =

be satisfied by the n values, a, (3, y** t.

Then /a; = a(a; — a) (x — /?) (a; — y) ... (a? — t) = 0.

Now, if it is satisfied by an (n -\- l)th value z,

fz = a(z -a){z- p) (z - y)"'(z - r) = 0.

But z is different from a, and
fi, and y, etc., so that

none of the binomial factors are zero.

.-. a = 0. And rejecting aa;", we can show in like

manner that 6 = 0; thence that c = 0, etc. And the

coefficients being severally zero, the function is satisfied

by all values for x, since it is zero identically.

196. Let

Ax'^+Bx'^-^+Cixf-^-] j-^=aa;"+6a;»-^+caj«-2H \-t.

Then

{A - a)x- + {B- 6)a;~-i + {C- c)x--'-{- ... + (
2"- = ^•

231
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And if this equation is to be true independently of

the value of x, that is, for all values of x, we must have

A = a, B=b, C=C"'T=L

And this establishes the principle of undetermined

coefficients for functions of finite dimensions.

The statement of the principle is, that if a positive

integral function of x of finite dimensions be zero for all

values of x, the coefficients of the several powers of x

are each equal to zero.

The extension to functions of infinite dimensions will

be established hereafter.

We shall now consider applications of this prolific

principle.

I. Partial Fractions.

196. The sum of the fractions and is

.
: and with reference to this latter fraction, the

1 — ar

parts which make it up by addition are called its partial

fractions. It is often necessary to separate a fraction

into its partials, it being understood that the denomina-

tors of the partials shall be linear whenever practicable,

but at any rate be less complex than that of the original.

Ex. 1. To separate
"*" ^

into its partials.
1 — x'^

Since the denominator is (1 — x)(l -\- x),

.«i.Tr.o S±x _ A ^ B
.

l-x2 \-x 1 + x'

where A and B are coefficients to be determined.
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Then, S-\-x = A(l -i-x)+ B{1 - x).

And as this is to be true for all values of x, we apply the prin-

ciple of undetermined coefficients, which gives

S = A + B, and 1 = A - B,

Whence A = 2, and B=l;

and 3 + x^_J_^. 1

1— X'^ 1 — X 1 -\- X

Ex. 2. To separate into its partials.^ (X- l)(x-2)(x-3)

Assume ^ _=^_ + ^_+_^.
{x-l)(x-2)(x-S) x-1 x-2 x-S

Then

x^ = A(x— 2)(x-S)-hB(x-l)(x-S) + C(x-l)(x-2).

We might now equate coefficients ; but the following method is

simpler.

Since this equation is to hold for all values of a;,

Make x = 1 ; then 1 =2A^ and ^ =
J.

Make x = 2; then 4 = — 5, and 5 = — 4.

Make x = S; then 9 = 2 (7, and (7 = f

.

/ x2 1 4.9
(x - l)(aj - 2)(x - 3) 2 (X - 1) X - 2 2 (« - 3)

/v2 x 4- 1
Ex. 3. To separate — into its partials.

(X- l)2(x + 2)

In forming this fraction by addition there may have been a frac-

tion of the form —-— and another of the form , and in
x-l (x- ly

our assumption we make provision for these. Therefore we assume

x^-x-\-l ^ A B C
(x-l)2(xH-2) {x-iy x-l x-{-2

Then x'^ - x + 1= A(x + 2)+ B (x - l)(x + 2) + C (x - ly.

Let x = l ; then 1 = 3^, and A = ^,
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Substitute J for A, and

x'i-ix + i = B(ix- l)(x + 2)+ C(x - 1)2.

Let x = -2', then 7 = 9 (7, and C =
J.

Substitute | for C, and equate the coefficients of x^j which gives

1 = ^ + J,
or ^ = f

.

x^ - X + 1 _ 1 , 2 7

ix-\y\x + '2) 3(ic-l)2 9(ic-l) 9(a:4-2)

3 'v^ I 3. _ 1

I'x. 4. To separate —i—H-^ into partials.
X'^ — 1

The denominator is (x — l)(x^ -\- x + 1), and the quadratic fac-

tor is not separable into real factors.

But a proper fraction with a quadratic factor in its denominator

may have a linear factor in its numerator. We make provision

for this by assuming

S x'^ + x-1 _^ ^ Bx +J7
x^-l x-l x^ + x + l

Then, 3x2 + X - 1 = A(x^ + ^ + 1) + (^x + C)(a; - 1),

whence we readily find A = lj B = 2, (7=2.

. 3x2 + x-l_ 1 __^_ 2x + 2

X^ — 1 X — 1 X2 + X + 1

For a fuller discussion of this subject the student is

referred to works on Higher Algebra, and to the Calculus.

EXERCISE XV. a.

1. Separate into partial fractions the following—
ic 4- 2 . ax + b

(x - l)(x - 2) (a - x)(& - x)b

oc+l „ 7x
x2 _ 5x + 6 (2x + 3)(x + 2)2

3x — 2 . ax

(x-l)(x-2)(x-3)* ' a2-x2'
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197. We shall now extend the principle of undeter-

mined coefficients to the case of an integral function of

X of infinite dimensions.

Theorem. In a positive integral function of x of

infinite dimensions, and arranged in ascending powers,

any term may be made greater than the sum of all that

follow by making x sufficiently small.

Let a -{- bx -{- coc^ -{- daP -i- ex^ -\-
fx^ -\ be the function,

and let ca^ be the term chosen.

Also let k be greater than any coefficient following c.

Then kx^{l -{- x -\- x^ -\- '")>dx^ + ex^ -\-fx^ -f •••

Or kx^ ' -^— >dx^-{- ex^ -^fx^ + ...

1 — x

But cx'>kj^'-^— if c>:^^
1—x 1—x

And since —— = when a; = 0, and c and k are con-
1 — x

stants, —— can be made less than c by taking x suffi-

1 —X
ciently small.

.*. cx^ can be made > dx^ + ex'^ +fx^ H

Now let A + Bx-\-Cx^-\ = a + bx + cxr-\ be true

for all values of x. Then

ji^a + {B-b)x + (C-c)x^-\--* =

is true for all values of x.

But when x is sufficiently sm^ll, ^ — a is greater than

all that follows, and its sign controls that of the series

;

but the whole series is zero ; therefore A — a = 0,

,', A = a.



236 EXPA]srsTo:tT of functions.

And by striking out A and a as being equal, we prove

in like manner that B=b'j thence C =c, etc.

II. .Expansion of Functions.

198. If a function of x which has but one value for

each value of x be expanded in powers of x, it must take

the form
a -{- bx -\- cx^ -}- dx^ -\

where every exponent is a positive integer.

For if there be a term of the form gx"\ this term will

become infinite when x = 0, and therefore the inde-

pendent term a must be infinite, and the expansion is

impossible. ^

Again, if there be a term of the form hx"", this term

has n values, and therefore the expansion has at least n

values for each value of a;, which is contrary to the

hypothesis.

Ex. 1. To expand
I — X — x:^ -^ x^

Assume ^ "*" ^—p^ = I + ax -^ bx^ -]- cx^ + dx* + ...

1 — X — x^ -{- x^

Then I + x- Sx^ = 1 + a\x + b

-1 -a
x'^ + c

~b
1 -a

+ 1

And equating coefficients,

x^^d
— c

-b
+ a

x^ + .

l = a — 1, —3 = 5 — a — 1, = c— 6 — a + 1, = d— c — & + a, etc.,

whence a = 2, 6 = 0, c = 1, c? = — 1, e = 0, etc.

And the expansion is

14-2x4- 0x2 4-x3-x* + 0x5...
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Ex. 2. To expand Vl + x.

Assume y/\ -\- x = 1 + «x + hx'^ + cx^ + c?x* + •••

Then l+x = l + 2aa: + 25|aj2 + 2c \x^-\-2d »* +
aH 2ah\ 2ac

whence a = }, 6 = —
J^,

c = jV, <? = — yf j, etc.

.-. vrTx = i + ix-ix^ + j\x^-jijx^'''

^ 2-4 2.4.6 2.4.6-8

EXERCISE XV. b.

1. Expand ^(1 +2x + Sx'^ + ix^ + "- wx«-i + •.-).

2. Expand y/(l + x -{- x'^) to x*.

3. Expand
-jf^—^) to x*.

4. Expand ^(1 + x) to x*.

5. Given (1 + a*)" = ^— = 1 + CjX + CjX^ + CgX^ + ..., to
(1 + x) "^

find the coefficients of the expansion of (1 + x)-" in terms of

Ci» C2, c.^, etc., up to the fourth.

6. It y = a^x + a.^x^ + a^x^ + •••, find x in terms of y.

Assume x = Ay + Bif + Cy^ + •"
; write for y, in this assump-

tion, the value given, and equate coefficients.

7. If v = l4-- + -- + — + •••! find X in terms of z, where
/ 1 2! 3!

z = y - 1.

8. If X = ?/ - 2 ?/2 + ?/3, develop ?/ as a function of x.

9. If (a + 7)x + rx2 + ...)2 = (a + 2 6x + 22cx2 +..-), find the

values of a, &, c, etc.
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III. Summation of Series.

199. It will be noticed in Article 163 that the expres-

sion for the nth term, as a function of n, is one dimen-

sion lower than the expression for the corresponding

sum, and this can be shown to be true for all series of

that species.

For suppose aS'„ = a'nP + hn^~^ + cn^~^ -\

Then S,_^= a{n - iy-\- b(n - iy-^+ c{n - iy-'+ ...

And the difference, >S" — /S"~^, is the nth term ; and on

expanding n^ disappears.

The coefficient of n^"* is b — ap — b, or ap, which can-

not be zero unless a or p is zero, both of which suppo-

sitions are contrary to the assumption.

.-. S'' — aS"-^ is of the (p — l)th dimension.

Ex. 1. To find the sum of the series of squares of the natural

numbers, viz., 12 4- 22 + 3*^ + ••• w^.

Smce the nth term is of two dimensions, assume

Sn = an^ + hn^ + en.

Then Sn-\ = a(n - \y + h{n - 1)2 + c(n - 1).

.'. 8n — Sn-^1 = 3an2— (3 a — 2 5)w+a — & + c = ?ith term

= n2.

And equating coefficients,

a = J, 5 = J, c = i.

/. Sn = in^ + in'^ -^ in = "^(71 + l)(2n + 1).
o

Ex. 2. To find the nth term, and the sum of n terms, of the series

1 + 4 + 8 + 14 + 23 + 30 + .-.
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Taking first differences, we have

3 + 4 + 6 + 9 + 13 + ...

and for second differences,

1 + 2 + 3 + 4 + ..., an A. P.

Now as the nth term of an A. P. is linear, the nth term of the

first difference is quadratic, and of the original series is cubic.

Therefore, assume the nth term = a + 6w + c/i^ -}- dn^.

When n = l, l = a+ 6+ c+ d,

n = 2, 4 = a + 2&+ 4c+ 8d
n = 3, 8 = a + 36+ 9c + 27d.

n = 4, 14 = a + 46 + 16c + 64d.

3 = 6 + 3c+ Id.

4 = 6 + 5c + 19d

6 = 6+7c + 37df.

l = 6d /. (? = J.

Thence 1 = 2 c + 12 (^,

2 = 2 c + 18 (?.

Thence c = - J, 6 = %^, a = - 2.

And the nth term = \{n^ - 3 n^ + 20 n - 12).

Next, for the sum, assume

^„ = an + hn^ + cn^ + (^n*.

Sn-i = a(n - 1) + 6(n - 1)2 + cCn - 1)^ + d(n - 1)*.

Then J (n^ - 3 n^ + 20 n - 12) = i^n - Sn-\ = the nth term

= a-6 + c-(2+(2 6-3c + 4d)n + (3c-6(2)n2 + 4 dn^.

And equating coefficients, we get

d = Jj, c = - ^\, 6 = If, and a = —\%,

. Q _ n{n3 - 2 n2 + 35 n- 10}
• " 24

EXERCISE XV. C.

1. If the nth term of the series l + 8x+4x2+5x3+6a^+7x5+.
is of tbe form 1 + ax + &x"^, find the nth term.
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1 j_ 2 x x'^
2. Develop —

, and show what two series it is the

sum of.
(l-x)(l + x)-^

(Separate into partial fractions and develop each.)

3. Sum to n terms the series whose nth term is 1 — n + n^.

4. Sum the series whose nth term is | (n^ + n)

.

5. Sum to ri terms, 1 . 2 + 3 . 4 + 5 . 6 + ••»

6. Sum to n terms, IJ + 2 + IJ + - 2J ...

7. Sum ton terms, 1.2.3 + 2.3.4 + 3.4.5+ ...

8. Find the series whose nth term is the sum of the natural

numbers from 1 to n.

IV. Miscellaneous.

200. The following are miscellaneous applications of

the principle of undetermined coefficients to problems

which fall under none of the previous heads.

Ex. 1. To find the condition under which ax"-* + 6x + c shall be

a complete square.

Assume ax^ + 6x + c = (px + g)^.

Then expanding (px + 5)2, and equating coefficients,

a = p'^, b = 2pq^ c = q'^.

But (2i)g)2 = 4j)2g2.

.-. 52 — 4:ac

is the required condition.

Ex. 2. To find the condition that the equation x^-\-ax'^-{-bx-\-c=0

may have two equal roots.

This is the condition that x^ + ax^ + 6x + c may have a square

factor.

Assume x^ + ax^ + 6x + c =
f
x + —

]
(x + p)^.

V py
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Expanding, and equating coefficients,

from which we must determine p.

1st 9*i2 j_ C
2 r)2 I i^ — ^29

p r«p2_26p4-3c = 0,
whence { „ , ^

^24.2c^^. I 3p2_2ap+6 = 0.

p

Eliminating linear p, p^ — 3ac -62

a^- 35

9c — ah
Eliminating square p, -^ '

2ra2 - 3 6)

... 4 (3 ac - 62) ((^2 _ 3 6) = (9 c - a6)2

IS the required relation.

Cor. For the equation x^ -\- hx + c =^ 0^ we get by making

a = 0, 46"^ — 27 c2, as the condition.

Ex. 3. To find the condition that

ax^ 4-62/2 + 2 hxy + 2 (/x + 2./>/ + c (A)

may be the product of two factors, rational in x and y ; and to find

the factors.

Assume

ax""- + by'^ + 2hxy + 2 gx + 2fy + c = (ax +^ + s\ (x + py +

and equate coefficients of xy and x, and we obtain

ap2 _ 2 /ip + 6 = 0, and s'^ — 2 gs + ac = 0.

Whence p = -(h -{ V/i^ — ab), s = g -^ Vg'^ — ac.
a

Denote Vh^ — ab by H, and ^/g'^ — ac by G, and the factors

become

{ «^ + rz^+ ^
+ '^ I ^ + ^^^^"^^

+ ^1'I h + H Jl a g -\-GfJ

or i{ax + (;i - JET)?/ + ^ + G'}{ax + (/i + ^)?/ + ^ - G^},

a
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As these factors do not contain /, we equate the coefficients of

linear y from the function and from its factored equivalent, and

obtain

2/= 1{(^ ^G){h-^H) + {g- G)(h - IT)} = ? (gh + GH).
a a

And putting for G and H their values, and reducing, we obtain

ahc-\-2fgh-aP-hg'^-ch'^ = () {B)

which expresses the necessary condition.

This very important function, B, is called the dis-

criminant of the function A,

Ex. 4. To find a number such that if 1 be added to it the sum
shall be a square, and if 1 be subtracted from it the difference shall

be a square.

Let X denote the number.

Then ic + 1, and x — 1, and consequently x^ _ |^ are all to be

squares.

Assume x'^ — \ ={x —pY = x"^ — 2px \- p\

Then x = l-±^,
2p

and ^+1^ (1 +P)^
,

2p

which will be a square if 2p is a square.

Let 2p = s2 ; then p = -, and x = i±-^;

where s may be any quantity whatever.

When s = \,\, 1, 2, 3, 4...

and the problem is thus indeterminate.

EXERCISE XV. d.

1. Find the condition that x'^ — ahx-\- he may be a complete

square.
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2. If x^ + ax2 + 6a; + c is a complete cube, show that 27 c= a^,

and 3 & = a^.

3. Find the condition that ax^ -\- bx + c and a^x^ + b^x + Cj

may have a common linear factor.

2 A X 2 B
4. Determine X so that the equation 1 1 = may-

have equal roots in a;.
x-^a x x-a

6. Show that 1 +^ + i?^ + i^^+ ... is the square of12! 3!
^

6. Find the value of m that y — mx — S = may be compati-

ble with y — X — 1 =0 and y — 2x — 2 = 0.

7. Find the value of c in order that 2x^-}-y'^ — 4:xy + 6y + c

may be put into rational factors in x and y, and find the factors.

8. Show that ax^ + 2 hxy + ftz/^ can always be rationally fac-

tored, whatever be the values of a, h, and b ; and find the factors.

9. Find a formula for numbers which put for x make x"^ -\- b a>

complete square.

10. Determine the fraction of form —^ "^ —, which expands
1 + ex + dx'^

into 1 +3x + 4x2+7^3 + llx*+ 18x^ + 29x6 + ...

11. Find the relation between a and b that (x — a)2 + (x — 6)

may be a square.

12. Express x*-4 x3H-x2+2 x in the form (x2+ax+ 6)2- C^+c)2

;

and thence show how the corresponding equation can be solved.

13. Put x2 + x?/-2?/2 4-2x + 72/-3 into factors.

14. Find the value of m that 2x2 — 3xy4-2x — y + m may be

put into rational factors in x and y.

15. If ax2 + 6?/2 + 2 hxy -\- 2 gx + 2fy -\- c is expressible in fac-

tors rational in x and ?/, show that h has two values for given val-

ues of a, 6, /, ^, and c, unless /- = 6c, or g'^ = ac.
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Elementary Continued Fractions.

201. Take any proper fraction, preferably in its lowest

terms, as ^.
Then,

11^ l^ l ^ l ^ l ^ 1

25 25 2 +A 2 +— 2H — 2+ ^

11 '11 'll 3^2 3^ 1

This expanded result is a continued fraction, and is

often written

1

2 + ^- 1

2

Or, for the purpose of saving space, it is more generally

written 1111
2 + 3 + 1+2*

From the nature of the expansion, it is evident that

every fraction can be expressed as a finite continued

fraction.

Ex ^ = '^ 1 1 1 1.

Ill 2 + 1+3 + 2+4
244
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202. Problem. To express any vulgar fraction as a

continued fraction.

Proceed as in finding the G. C. M. of the numerator

and denominator of the given fraction, and write the

quotients in order as denominators of the continued

fraction, the numerators being 1.

Ex. 1. To change j\% to a continued fraction.

56 103 11

9 47 1

1 2 5

4

2J

- quotients. .-. —

-

56_.
103"

11111
1 + 1 + 5 + 4 + 2*

Ex. 2. To change 3.1416 to a continued fraction.

This is 3 + ^^^1 and we change xVoVo ^^ ^ continued fraction.

1416
I

10000 7

16

11

1416
.

10000
1 Jl i_
7 + 16 + 11'

and 3.1416 = 3 + -
1 1

Ex. 3. To express
X2 + X + 1

a;2 + X + 1 _ 1 a;+ 1

X2 11

7 + 16 + 11

as a continued fraction,

— X . X + 1 _-^— = x + ,

5C+ 1 X+ 1 X X

X'^ + X+l 1 + X+ (-1)+ (-X)

203. The quotients obtained by the process of finding

the G. O. M. are called partial quotients.

Let the partial quotients be denoted by aj, ag, a^, etc.,

all the quantities being affected with the sign +.
Then the continued fraction is

ill 1
ai + ag + agH ha„'
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which in its totality is equal to the fraction from which

it is derived, and which we shall denote by x.

— is the 1st convergent, which denote by Vi ;

— — is the 2d convergent, which denote by Vj
5

tti -f ttg

— — — is the 3d convergent, v^
;

ai + ag + «3

etc. etc. etc.

Then

— >x, since its denominator a^ is too small.

Vg? or — — <x, since its denominator is too great.
«! + ^2

Vg, or — — — > cc ; ^4 or — — — —<x)
«! + «2 + «3 «! + ^2 + tta + ^4

etc. •••

Thus, all the odd convergents are greater than x, and

all the even convergents are less than x\ so that the

value of X lies between that of any two consecutive con-

vergents, until we reach the last convergent, which is the

value of X itself.

Illustration. — The convergents to \\ (Art. 201) are

Vl = J, ^2 = f , V3 = 1, n=l\ = «.

Now \\ = x = 0.44.

Vj = 0.50, and is too great by 0.06.

^2 = 0.42857 .-. and is too small by 0.02142 ...

Vj = 0.4444 ••• and is too great by 0.0044 •••
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Thus the consecutive convergents, while being alter-

nately too great and too small, approximate more and

more nearly to the value of a?; and hence the names

convergent and converging fractions.

We thus see that one obvious application of continued

fractions is to find a fraction, with few figures, which

shall be a close approximation in value, to a given

fraction with so many figures as to be unwieldy.

Thus f and Jf are close approximations to ffif.

204. The first convergent Vi = —, and the second,

V2 = ; so that to get the second convergent from

the first we write ai H— for ai in the first.

Similarly, to get v^ from V2 we write a2-\— for ag in
a

the value of V2; and generally, to get v„^i from v„, we

write a„ H for a^ in the value of i;„.

P P PNow let Vi = —̂ V2 = -?, ^3 = -?, etc.

Vi ^2 Vs

Then Vi = -^ = —', V2 = -^ =

^ Q3 a3(a2ai + l) + «i a3Q2+Qi'

-^4 =
(^a3 + ^y2 + P,

P4 _ V CIJ
' ^^ (-3 + ^)&+Q.

^^^^+«^
etc.
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We here see that the forms for % and v^ are exactly

alike, the only difference being that the subscripts are

each increased by unity.

To prove that this is always the case.

Assume v,, =^ = ^^^^-' +^-2.
Qn CtnQn-1 + Qn-2

an +— ]Pn-l+Pn-

Then v . _ ^n+i _ V «n+i.

_ an+l(<^nPn-l+ Pn-2)+ Pn-l _, ^n+l^n+ -Pn--1
.

Which shows that the form is true for v^+i if it is true

for Vn' But it is true for v^ and V4, and therefore for

Vsj Vqj etc. ; i.e. it is generally true.

205. The result of the preceding article furnishes a

convenient means of finding all the consecutive con-

vergents, when we have any two consecutive ones, and

the partial quotients.

P P
Taking _?i=l^ —^^ a„+i, we get the (n + l)th convergent

Qn-l Qn
as follows

:

Multiply P„ by a„^i and add P„_i, for P„^i ; and mul-

tiply Q„ by a,+i and add Q„_i, for Q„+i.

This operation gives ^^ = ^^+^^^ + Pn-i
. ^hich is

correct. ^"+1 <^n+lQn+6n-l

Eor convenience we assume a fictitious convergent,

Vq = ^, and carry out the operation as in the following

example

:
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Ex. Let 2, 1, 3, 1, 2 be partial quotients.

1 i ^ 6_U
1 2 1 '^ 1 2

11 14 39

The partial quotients after the first are written between

the lines, and the parts of the corresponding convergents

are written above and below the lines.

Thus the convergents are

Vi = h '^2 = h ^3 = IT* n = T4> and ^5 = if.

206. Taking the convergents of the preceding example,

111 14-1v,-v,=---= ] V,,-Vo = -- — ^
2 3 2x3' ^ 3 11 3 X 11

4 5 1 ^.^
v« — v.= =

: etc.
^ * 11 14 11 X 14

'

Thus the difference between two consecutive conver-

gents is the fraction whose numerator is 1, and whose

denominator is the product of the denominators of the

two convergents. And this difference, taken in regular

order, is alternately positive and negative.

To prove that this is always the case.

But, Art. 204,

= — {Pn-lQn-2 — Qn-l^n-2)'

Similarly,

- {Pn-lQn-2 - Qn-lPn-2)=Pn-2Qn-S " Q«-2^n-3 = etC,

SO that PnQn-i — QnPn-i cvidcutly has, with the

exception of sign, the same value for all values of n.
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But when n = 2, P2Q1 — Q2P1 = ^2% — (^A + 1) = — 1

5

and for 71 = 3, P3Q2 - QsA = + 1-

Hence ?;„ — v^-i = (-1)"-',

Q„Qn-l

Which proves the theorem. And as the difference

between any two consecutive convergents is a fraction

with unity as numerator, every convergent is in its low-

est term, i.e. its parts are prime to one another.

207. As the value of x lies between those of two con-

P
secutive convergents, —~ differs from x in value by less

1 Qn 1
than —-——, i.e. by less than -—

.

QnQn+l Qn

Thus
y*i,

a convergent to |f, differs from the latter fraction by
less than y^y ; and ^s^, another convergent to the same, differs from

it by less than jj^.

Kow if a„ is relatively large, the quantities — Pn-29

and — . Q„_2 are relatively small, and the whole fraction

differs* but little from ^^.
Qn-l

That is, if a„ is relatively large, the difference between

v^_i and Vn is relatively small, and hence v^-i is a close

approximation to x.

Hence, the last convergent preceding a large partial

quotient is a close approximation to the value of the

fraction.
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Thus, if the partial quotients be

1, 2, 1, 3, 15, 2,

the convergents are

Vj = 1, 1^2 = 2, v^ = 1, V, = \\, Vg = Iff, vg = a; = ffJ ;

and v^, preceding the quotient 15, differs from x by less than

^ or-^.
15 X 229 3435

EXERCISE XVI. a.

1

.

Find all the convergents to Jff

.

P a
2. If - be the convergent preceding -, show that Ph differs

q b

from Qa by unity.

Thence form a rule for finding multiples of two numbers prime

to one another, so that such multiples shall differ by a given integer.

3. Find multiples of 23 and 31 that shall differ by 6.

4. Find an improper fraction to express 3.1416 to a near

approximation.

6. Express 1.4142 by a vulgar fraction, each of whose parts are

less than 100.

209. A continued fraction may be non-terminating;

i.e, its partial quotients may be an endless series of

numbers.

The convergents approximate in the same way whether

the fraction is terminating or not, but no convergent,

however high its order, can express exactly the quantity

denoted by the continued fraction. Such a fraction has

in general an incommensurable for its value.

If the partial quotients exist in recurring periods, like

the figures in a circulating decimal, the fraction is a
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periodic continued fraction, and every such fraction is the

development of a square root or quadratic surd.

An infinite continued fraction, in which the partial

quotients are not periodic, may be the expansion of a

cubic or higher form of surd expression, but, in general,

the equivalent surd expression cannot be found.

Ex. 1. Let the partial quotients be 2, 2, 2 •••, and let x be the

equivalent fraction.

Then a. = l
1 1 ~ '

2 + 2 + 2+ 2-\-x

.'. x2 + 2 X = 1, and ic = V^ - 1-

Ex. 2. Let the partial quotients be 1, 2, 3, 1, 2, 3 •••

, Then x = 1
. =1±^,

l+_i_ 10 + 3x

2+-i-
S + x

.-. 3a:2 + 8x = 7, and X = K">/37 - 4).

And the method applies to all, however great the

periodic part may be.

210. To expand the square root of a non-square num-

ber into a periodic fraction.

We give the method of operation by means of examples.

Ex. 1. To develop ^1.

Since 2 is the highest integer in the root of 7, we subtract 2 from

^7, and throughout the operation no number greater than 2 is to

be thus subtracted.

3
7 = 2+ V7 -2 = 2 +

multiplying ^/l^ by ^^.
V7 + 2'



V7 + ^^i +
3

CONTINUED FEACTIONS

2

253

^^1^ = 1+- -,
3 V7 + 1

adding 1 to 2 to get an integral quotient, 1, and subtracting 1

from y/1 so as to keep the whole unchanged.

2 2 V7 + 1'

3 ^3 V7 + 2'

V'^ + ^ = 4 + ^7 _ 2, etc.

The partial quotients obtained are 2, 1, 1, 1, 4; and

as we have now to begin again with ^1 — 2, the same

quotients will constantly recur. We notice then that

when a quotient which is double the first one appears,

the period is complete.

^ ^1+1+1+4+

Ex. 2. VIS = 3 + V13 -3 = 3 +
V13 + 3

a/13 4-3 ^.^ V13-l ^. 3

4
"^4

V13 + 1

V13 + 1 ^1 1
V^-^- = 1 +

V13 + 2

Vl3 + 2 ^ V13-1 ^ 4

3 3 V13 + 1

4 ^4 ^Vl3 + 3

V13 + 3 = 6+ V13 - 3, etc.

.,^13 = 3 + 1 1 1 1 1 ...
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The convergents to the fractional part are

Vj = 1, ^2 = h ^3 = h v^ = f , etc.

/. the convergents to ^13 are

4, 3}, 3|, 3|, 3ff, etc.

EXERCISE XVI. b.

1. Find the value of 1 + - - - i—
2+3+2+3

2. Find the value of 1 - - - L.
1+2+3+4+1

8. Show that the C. F. whose partial quotients are 1, — 2, 3,

— 4, forming a period, has 3 for its total value, and find the first

10 convergents.

4. Find the value of 2 + - - - - ...

2+4+2+4+

6. Expand ^2 and y^6 into periodic C. F.'s.

6. Expand y'l? and y'19 into periodic C. F.'s.
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Logarithms and Exponentials.

211. In the expression a^=h, x is called the logarithm

of h to the base a; and this relation is otherwise indi-

cated by writing x = log„&.

The base, a, being some fixed positive number, to

every value of b there is a corresponding value of x.

If these corresponding values be tabulated in opposing

columns, the 6-column is a column of numbers, and the

ic-column is a column of logarithms, and the whole forms

a table of logarithms to the base a.

As will be shown hereafter, the general properties of

logarithms are the same for all bases, and any positive

number, commensurable or incommensurable, may be

taken as a base; but certain numbers offer special ad-

vantages as bases in working with logarithms, and in

calculating them.

As a consequence logarithms are, in practice, taken

to one of two bases ; namely, 10, as being the base of

our numerical system ; and a certain incommensurable,

usually denoted by e, and called the Napierian or natural

base.

Logarithms to the base 10 are decimal or common
logarithms, and those to the base e are Napierian or

natural logarithms.

255
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GENERAL PROPERTIES OF LOGARITHMS.

212. Let a" = h, and a^ = c.

Then x = logJ), and y = log„c.

(1) bc = a''a^ = a'+^,

and log^(bc) = X + y,

or log„ (&c) = log„6 + log„c.

That is, the logarithm of the product of two numbers

is the sum of the logarithms of the numbers.

(2) ^ = ^ = a^-y.

log/-j=a;-2/,

or log„/^- j= log,6 - log„c.

That is, the logarithm of the quotient of two numbers

is the logarithm of the dividend diminished by the loga-

rithm of the divisor.

(3) (a-)" = 6-= a--.

.*. loga(&") = nx = nlogj).

That is, the logarithm of the nth power of a number is

n times the logarithm of the number.

(4) Writing - for n,
n

log.(&»)=-logA
n
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or the logarithm of the nth root of a number is one-nth

of the logarithm of the number.

These four relations form the working rules of loga-

rithms in their applications to quantity.

213. The results of the preceding article show that

multiplication in numbers corresponds to addition in

logarithms ; division in numbers, to subtraction in loga-

rithms ; the raising of a number to a power, to the mul-

tiplication of a logarithm by a number ; and the extracting

of the root of a number, to the division of a logarithm by

a number.

There are in arithmetic, as confined to numbers, no

known operations which correspond to the multiplication

or division of one logarithm by another, and hence to

the raising of a logarithm to a power, or to the extrac-

tion of its root.

Such operations upon logarithms can correspond only

to some hyper-arithmetical processes. Thus logarithms

not only facilitate the more difficult arithmetical opera-

tions ; they also, by an extension of processes, give rise

to a sort of transcendental arithmetic.

EXPONENTIAL EQUATIONS.

214. An exponential equation is one in which the

variable appears as an exponent.

Thus a' = b, with x variable, is an exponential equation.

The method of solution is obvious ; for taking the

logarithms of both members,

log(a'=) = a^loga = log 6.

loga



258 EXPONENTIAL EQUATIONS.

And the operation which gives x is the transcendental

one which corresponds to the division of one logarithm

by another.

Ex. 1. Given a'' + a-' = 26; to find x.

Multiply by a*,

a^x -2ba' + 1=0.

Whence a' = b± Vb^ - 1, (Art. 126)

and ^^logjb+Vb^^l
log a

Ex. 2. To express the logarithm of \' ^
'—^, in terms of the

logarithms of 2, 3, 5, and 7. 2^(216)*
5.9

The given expression reduces to (3i ^ • 7^) h- (2^3 , 56^ . and hence

its logarithm is

fflog3 + 61og7 - 131og2-61og5.

EXERCISE XVII. a.

1. If 3 be taken as a base, what are the logarithms of 9, of 81,

of 729, of 2V, of ^^3 ?

2. If 6 be the base, show that | is the logarithm of 14.697.

3. If J be the base, of what numbers are 1, 2, 0, — -,

the logarithms ?
^

4. Prove that, with any positive base, 1 is the logarithm of the

base, is the logarithm of 1, and — 00 is the logarithm of 0.

5. If logfc a = n loga 6, show that logfe a = ^ ' ^^
, where the

logarithm without a suffix is taken to any base. ^^ ^

6. Solve the exponential equations—
i. 20^ = 100. iv. oc^ = y'^ and x^ = y\

ii. (23)a:.(32)« = 4.9. V. 2a^+ a^^ = a^,

iii. 32*. 53*-^ = 7=^-1112-*. vi. ai.a2.a3...Qjx_yj,
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7. Express the logarithm of (8V3 • ^12) ^ ( V^ • v^l^) in terms

of the logarithms of 2, 3, and 6.

8. Given log 2 = 0.30103 ; find log 64, log 256, log vl28, log J,

log 25. (Base = 10.)

9. Express in terms of log 2 and log 3 the logarithms of 6, 18,

72,
ji^, 0.25, 0.0416.

10. How many terms of the G. P. 1 + § + | + ••• will make
18915 9

11. How long will it take a sum of money to double at 5%
compound interest ?

OP THE TABLE OP LOGARITHMS.

216. In a' = b, iib is greater than a and less than a%

0? is > 1 and < 2 ; i.e. oj = 1 + a proper fraction.

If 6 is > a^ and <a^, a? = 2 + a proper fraction ; etc.

Thus a logarithm consists of an integral part, called

the characteristic, and a fractional part, called the man-

tissa. Either of these may, however, become zero.

Taking 10 as a base, every integral power of 10 con-

sists of 1 followed by ciphers only, and the logarithm of

such power is an integer, or characteristic, being the

index of the power.

Thus log 100 = 2, log 1000 = 3, etc.

For any number between 100 and 1000 the logarithm

is 2 + a decimal ; for a number between 1000 and 10000,

it is 3 + a decimal ; etc.

Hence one convenience of decimal logarithms is that

we know the characteristic at sight, and it is not nec-

essary to tabulate it.

The following rule gives the characteristic for decimal

logarithms

:
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Call the units' place of the number zero, and count to

the significant figure farthest upon the left ; the number

of this figure is the characteristic, positive if counted

leftward, and negative if counted rightward.

Thus the characteristic of the logarithm of 0.000074 is

- 5, of 386.50 it is 2, and of 430070 it is 5.

216. The Mantissa. Let n be a number, and let c and

m be the characteristic and mantissa of its logarithm.

Then log n=:zc-\-m.

To divide n by 10* we subtract log lO'' from log n. But

log 10"= = 07; and dividing a number by an integral power

of 10 has no effect other than moving the decimal point.

Therefore log(n-^ 10'') = (c — a?) + m,

and since x is integral, the mantissa is unchanged.

Hence the mantissa of a logarithm to base 10 does not

depend upon the position of the decimal point, but only

upon the arrangement of figures in the number ; so that

the same arrangement always corresponds to the same

mantissa, and vice versa.

The characteristic, on the other hand, is determined

wholly by the position of the decimal point.

Thus the logarithms of 0.0024, 0.24, 240, 24000, etc.,

all have the same mantissa, while the characteristics are

— 3, — 1, 2, and 4 respectively.

217. As the logarithms of integral numbers are mostly

incommensurable, the approximation to their mantissse

is carried to 4, 5, 6, 7, etc. decimal places, thus giving rise

to tables of 4-place, 5-place, 6-place, or 7-place logarithms.
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Portions of a table of 5-place logarithms. A, from number 1780

to 1889 ; B, from number 5700 to 5769 ; and C, from number 7320

to 7429.

N.

178

1 2 3 4 5 6
1

7 8 9 D.

25042 066 091 115 139 164 188: 212 237 261

9 285 310 334 358 382 406 431 455 479 503 24
180 527 551 575 600 624 648 672 696 720 744

I 768 792 816 840 864 888 912 935 959 983
2 26007 031 055 079 102 126 150 174 198 221

3 245 269 293 316 340 364 387 411 435 458
4 482 505 529 553 576 600 623 647 670 694

5 717 741 764 788 811 834 858 881 905 928
6 951 975 998 021 045 068 091 114 138 161 23

7 27184 207 231 253 277 300 323 346 370 393
8 416 439 462 485 508 531 554 577 600 '"'.

570 75587 595 603 610

B.
618 626 633 641 648 656

I 663 671 679 686 694 702 709 717 724 732
2 740 747 755 762 770 778 785 793 800 808

3 815 823 831 838 846 853 861 868 876 884 8

4 891 899 906 914 921 929 937 944 952 959
5 967 974 982 989 997 005 012 020 027 035
6 76042 050 057 065 072 080 087 095 103 no

732 .86451 457 463 469

C.

475 481 487 493 499 504

3 510 516 522 528 534 540 546 552 558 564
4 570 576 581 587 593 599 605 611 617 623

5 629 635 641 646 652 658 664 670 676 682
6 688 694 700 705 711 717 723 729 735 741

7 747 753 759 764 770 776 782 788 794 800 6

8 806 812 817 823 829 835 841 847 853 859

9 864 870 876 882 888 894 900 906 911 917
740 923 929 935 941 947 953 958 964 970 976

I 982 988 994 999 005 on 017 023 029 035
2 87040 046 052 058 064 070 075 081 087 093

r24 2 5 7 10 12 14 17 19 22

P. \ g

2 5 7 9 II 14 16 18 21

I 2 2 3 4 5 6 6 7
I 6 I I 2 2 3 4 4 5 5
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The larger tables are mostly 7-place, but 5-place loga-

rithms are sufficiently accurate for the majority of arith-

metical applications.

We give on page 261, and merely for purposes of illus-

tration, portions of a 5-place table, in which, as is usual,

only mantissse are registered.

218. The working a table of logarithms consists in two

operations inverse to one another ; namely,

(a) to find the mantissa corresponding to a given

arrangement of figures in a number, and

(h) to find the arrangement corresponding to a given

mantissa.

(a)

A complete 5-place table gives the mantissse for every

arrangement of 4 figures from 1000 to 9999 ; the three

right-hand figures being taken from column N, and the

fourth from the horizontal line at the top of the table.

Thus, for 1854 the mantissa is 26811 ; for 1864 it is

27045, the last three figures 045 being in distinctive type

to show that the first two figures of the mantissa are to

be taken from the first column and the line below, being

27 instead of 26.

Ciphers occurring before or after an arrangement do

not affect the mantissa.

Thus, 23, 2300, 23000, .023, etc., have the same man-

tissa.

Ex. 1. To find the mantissa of 18347.

Mantissa for 18340 is 26340.

Mantissa for 18350 is 26364.

Difference 10 24.
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Thus each unit between 18340 and 18350 adds f^ to the man-

tissa, and hence 7 adds 7 x f J, or 17 nearly.

.-. 26340 + 17 = 26357 is the mantissa required.

The column marked D (differences) and the row at the bottom

marked P (proportional parts) are intended to facilitate this

operation.

Thus, for 1834 we find D to be 24, and in line with 24, in the

row P, we have 17 in the column having 7 at the top. This quan-

tity, 17, is to be added to the mantissa of 1834 to give the mantissa

of 18347.

(&)

Ex. 2. To find the arrangement corresponding to the mantissa

26845.

The tabular mantissa next below this is 26834, and the cor-

responding arrangement is 1855.

The excess of 26845 is 11, and D being 23, we find in line with

23, in row P, that 11 is in the column having 5 at the top. Then 5

is to be attached to 1855, giving 18555 as the arrangement cor-

responding to 26845.

219. It must be remembered that the mantissa is

always positive, while the characteristic is negative for

numbers less than 1, zero for numbers from 1 to 10, and

positive for numbers above 10.

To mark the negative characteristic the minus sign is

written above the characteristic instead of before it.

Ex. 1. To find the value of (1.8471)*^.

logl.8471 = 0.26649

7

log (1.8471)7 = 1.86543

/. (1.8471)7 = 73.355...

Ex. 2. To find the value of (18.71)i

logl8.71 = 1.27207
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Divide by 5. log (18. 71)* = 0.25441

/. (18.71)^ = 1.7964...

Ex. 3. To find the value of (0.185)^.

log (0.185) =1.26717

7

.-. log (0.185)7 = 6.87019

.-. (0.185)7 = 0.0000074162 ...

Ex. 4. To find the value of (0.001836)TT.

log (0.001836) =3.26387

log (0.001836)5= 14.31935

= 22 + 8.31935

.-. log (0.001836)TT ^ 2.75631

and (0.001836)A = 0.057056 ...

Notice that to divide the negative characteristic, 14,

by 11, we make it evenly divisible by subtracting 8 from

it and adding 8 to the mantissa, so as to keep the whole

unchanged.

EXERCISE XVII. b.

(All the exercises here given can be worked by means of the

portions of logarithmic table given.)

1. Find the continued product of 1.783, 1.791, and 1.799.

2. Find the value of (18.43 x 18.65 x 1.876 x 5736) -- (1854

X 186.6 X 5766).

3. Find the value of (0.1866)^ x (7.365)^

4. Find the value of (1.8337)3-3037.

6. Given that 17.80 x 17.977 = 320, to find the logarithm of 5.

6. To what power must 74 be raised to give 57 ?
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NAPIERIAN BASE, AND EXPONENTIAL SERIES.

220. Definition. The quantity which we have denoted

by e, and called the Napierian base in Art. 211, is the

limiting value of (1 + 7i)" as n approaches the value zero.

By the Binomial theorem

(i + ^0" = i + --^+-Y:2^^+^'nT2T3

—

''^'

^1 I 1 I

^(^-^)
I

Ul-^0(l-2r0
_

1.2 ^ 1.2.3

= i + i +J_+_!_ + ..

1.2^1.2.3 '

when 71 = 0.

By adding a sufficient number of terms, we find for

the approximate value of e,

e = 2.7182818 ... to 7 decimals.

This peculiar incommensurable quantity is one of the

most important constants in mathematics.

221. From the definition of e in Art. 220,

1

e' = the limit of ^1 + n)"}*, as n approaches zero.
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But

i(i+n)V=(i+^)"
xfx _^\ X 1-^-^

1.2 1.2.3

and when n = 0,

^" = ' + f! +S + S+l] + - • • (^>

Any power of e is got in the form of a series, by writ-

ing the index of the power in the place of x in the series

for e'. Thus,

- = 6-^ = 1-1 +--- +--+

-

e 2! 3! 4!

and Ve = e* = 1 + - + -i- +-^ +-^ + • • •^
2 2 ! 22 3 ! 2^ 4 !

2*

222. Let a = e\ Then c = log^ a ; or, denoting, in

future, Napierian logarithms by the single italic I fol-

lowed or not by a point, c = l - a.

And a'=e«=H-cx+~ +^+-

This last series is called the exponential series ; and it

expresses any power (x) of a given number (a) in terms

of the exponent and the Napierian logarithm of the

number.
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Coi\ Making x = l,

and this series which expresses a number (a) in terms

of its Napierian logarithm is sometimes called the anti-

logarithmic series.

EXERCISE XVII. c.

1. Show that e = limit of
(
1 + -

j
as n approaches oo.

90 92 94
2. Prove that (e2 - 1)2 - 8e2 = |^ +^ +^+

-

1

3. If X is positive, then e > x'.

4. The series — +—^—^— + ^'^'^,
^ + ... is the ex-

1.2 1.2.3.4 1.2.3.4.6.6
pansion of (^^e — 1).

5. Find the sum of e + e-i.

6. Show that I (e'' + e-«)=1-^ +^-^ + ...

2! 4! 6!

7. Show that — (e'* - e-'*)=x- — + — -— +
2i

^
3! 5! 7!

8. Expand ^
e*-l

Assume the expansion to be a + 5ic + cx^ + ...

Then a; = (a + 6x + cx2 + ...) ^x + ^ +^ 4- .-.]

Distribute and equate coefficients of like powers of a, and find

a, &, c, etc.

9. Show that l^ + ?i + §!. + ^+... =2e.
1 ! 2 ! 3 ! 4 !

10. Find the value of i^ +— +— +— 4- -
11 21314!
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LOGARITHMIC SERIES.

223. In the exponential series (O, Art. 222) the ]^a-

pierian logarithm of a is the coefficient of linear x in the

expansion of a^ And as a; is arbitrary it follows from

the principle of undetermined coefficients that if we
expand a^ in ascending powers of x, by any means, the

coefficient of linear x in the expansion will still be the

Napierian logarithm, of a.

But a' = {l + a-iy

1.2.3 ^ ^

by the Binomial Theorem.

And picking out the terms which form the coefficient

of linear x, we have

Z . a = (a - 1) - i(a - l)^ + -i(a - 1)^- + ... (E)

which gives Z . a in terms of the number less by unity.

Writing 1 -{-x for a,

Z.(l4-aj) = a^-ia^ + iaj3-^aj^ + (F)

which is the logarithmic series.

224. Writing 1 for a; in i^ gives a series for I -2 ; but

this series is so slowly convergent (see limits of a series.

Chap. Xyill.) as to be of no practical utility in compu-

tations.

We transform the logarithmic series as follows

:
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Til (F) write — x for x, and we get

6 • ( X — X)— ~~ X — -n" X "~~" -5- 3/ — -T U/ ~"~ * * *
>

and subtracting this latter series from (F),

l.l±1^2{x + ^x' + lx^ + ...) ((?)
1 — X

Now make x = ; then
"*"

'

=
, and this

-, .^. . 2z — l 1 — x z — 1
reduces (O) to

l.z=l(z-l)

\2z-l 3 {2z-iy 5 (2z-iy I ^ ^

This makes l-z depend upon I (z — 1), and a function

of z which makes up the difference between the two

logarithms.

Ex. 1. Let z = 2. Then since M = 0,

^. 2 = 2(1 + 1. -1+1. I+.4
l3 3 33^5 35^ /

= 0.69315... to five places.

Ex. 2. Let z = 6. Then since Z . 4 = 2 ? . 2,

Z.6 = 2Z.2 + 2/l + l.i + l.i + ...\
193 93 5 95 /

= 1.60944 ... to five places.

Ex. 3. Z . 10 = Z . 2 + Z . 5 = 2.30259 to five places.

225. The series now obtained furnishes a practical

method for computing logarithms to the base e.
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Now let a' = 6, and take the Napierian logarithms of

both members of the equation ; then

ha' = xl'a = l'b,

and X = logJ).

.-. log.& = -^.Z.&.
Z-a

Hence is a multiplier which changes I • b into log„5.
ha

And a being given, T a is also given and constant, being

the Napierian logarithm of the given base.

The multiplier, {l-a)~\ is called the modulus of the

system of logarithms having a as base.

The modulus for base 10, or (MO)-^ is 0.43429448...

to 8 decimals.

Thus the Napierian logarithm of any number is

changed into the decimal logarithm of the same number

by being multiplied by 0.43429448 •«. ; and the decimal

logarithm of any number is changed into the Napierian

logarithm, by being divided by 0.43429448 ... or by being

multiplied by the reciprocal of this quantity, namely,

2.30258509..., which is Z.IO.

The logarithms of any two systems are thus connected

by a constant multiplier, the modulus of one system

Avith respect to the other.

Napierian logarithms are most convenient in analysis,

and decimal logarithms in practical applications, and the

change from one system to the other is easily effected.
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EXERCISE XVII. d.

1. Find X from the equation a(h + 1) = I • (a + ic).

2. Show that a; = e«-* = a^« = a^°^«"'.

1 1 1

3. li y = e^-^-", z= ei-«-% then x= e^-^-y,

4. Prove that Z.a-?..x= ^^^ -^f^:^YV-V^^^V- + •••

6. Prove that

ii{(x -V)-\{x- \y + K^ - 1)' - •••}

^ x^-\ i/x^-i \2 i/x^-iy
x« 2V x» y 3V X" y

l+ae 1-x
2 4 S

6. Show that ?.{(! + a:) 2 . (i _ x) 2 } ^z -^ + ^- + ^- + ...
^^ ^ ^ ^ ^ 1-2 3.4 5.6

7. Prove that the ratio log a : log &, where a and ?> are given

numbers, is the same for all systems.

8. The modulus which changes from base 10 to base 3 is

log 10 : log 3, taken in any system.

9. Show that log,o9 = 1 - m fi - i . — +-. — - + -^^^
Vio 2 102 3 103 ^ y

where m is the modulus to base 10.

10. Show that the logarithm of a number cannot be developed

in terms of the number itself.

226. The exponential and the logarithmic series can

be obtained by other methods besides the ones already

employed. We give some of these as examples and

exercises.

Ex. 1. Assume a^ — \^-h^x-\- \x^ + h.^x'^ + ...

Then a^=\ + 5i(2x) + &2(2^)2 + &3(2a;)3 + "• (1)
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Equate coefficients of like powers of x in the two expressions

for d^.

Ex. 2. In Ex. 1, &i is indeterminate ; what does it mean?

Ex. 3. How do we know that the expansion of a^ must begin

with 1?

Ex. 4. If a = e*S show from the result of Ex. 1 that

Ex. 6. Assume a^ = \ -\- h^x -\- h.^x'^ + ... hnX"" + •••

Then ay = I -\- h^y -\- h.^y'^ -\ 6„?/" + ...

And a^ - av = h^{x -y)^- h^ipcP' - y'^) + — 6„(x" - ?/«) + ... (3;

But w"- aM = ayia^'-y - 1)

= ay{b,{x-y) + h^{x - ?/)2+ ••. 6„(x - yy^- ...} (4)

Make (3) = (4) as they are equivalents; divide throughout by

X — y, which is a factor
;
put y = X] and equate coefficients of x'^.

Then 6„^i = _k^.6

Erom this relation obtain the coefficients in terms of 5^, which

is indeterminate.

Ex. 6. In Ex. 6, why is it necessary to divide hjx — y before

making y = x?

Ex. 7. If e« = 6, cc = Z . 6.

But 5 _1 = 5C + —+- + . ..

2! 3!

Assume x = A(b - l)-\-B(b - 1)^ + C(b - ly + -" (5)

In (5) put the value of 5 — 1 taken from the preceding line, and

equate coefficients of like powers of x. Then find A, B, C, etc.

This gives L 6 in terms of 6 — 1.
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Ex. 8. Starting from a* = 6, proceed as in Ex. 7 to find loga b

in terms of b'— 1. What is the meaning of the indeterminate co-

efficient in the result ?

Ex. 9. Assume log (1 + x)= ax+ bx'^ + cx^ + •..

Then n being an arbitrary quantity,

n\og(l+x')=n{ax+bx^ + cx^ + ''-) . • . (6)

But n log (1 + x) = log (1 + x)«

= log (1 + «(7iX + "02^2 +...)

= a(^C,x + »a,x^ + ...)+ bi^C^x + ^a,x^ + "-y + - . (7)

by taking the expression ^C^x + ^C^x^ + ••• as a variable.

(6) and (7) are equivalents. Make /i = 0, and equate coefficients

of like powers of x.

The result contains the indeterminate a. What is this, and
what is the effect of making a = l?

Ex. 10. In the assumption of Ex. 8, how do we know that the

first term of the expansion must contain x ?



CHAPTER XVIII.

Of Series.

227. Series are too varied in character to be rigidly-

classified, but the greater number of them have a relation

to the geometric series, or to the arithmetic series, or to

both.

In series related to the geometric, any term is con-

nected with one or more of the preceding terms by

constant multipliers, or by multipliers which vary with

the number of the term in the series.

Thus in 1 + 3 + 7 + 15 + 31 + 63 + ...

63 = 3 X 31 - 2 X 15, 31 = 3 x 15 - 2 x 7, etc..

with constant multipliers, 3 and — 2.

In i + £4-^ + ^%...
1! 2! 3!

the wth term is got from the (w — l)th term by multiplying by -,

and the multiplier is a function of the position of the term in the

228. The nth term of a series is such a function of n

that after some particular term, usually near the begin-

ning of the series, any term is got by writing the number

of the term for n in the function of n.

Usually, however, when the series contains a variable,

X, in ascending powers, the absolute term is not con-

274
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sidered in the counting, so that the term counted as the

nth is the (n + l)th from the beginning. This usage

makes the nth. term contain a?" ; and in purely numerical

series a unit variable is frequently introduced for this

and other purposes.

Thus (2'»+i — l)x" is the nth. term of the series

RECURRING SERIES.

229. A recurring series is generally the expanded form

of a proper fraction, and is analogous to the circulating

decimal in arithmetic.

Thus —— =:l-\-x + x^ + x^-]— , a geometric series.
1 —X

h±ll =l + 5a;+13«2 + 29x3 + 61cc*+...,
1 — 3 X + 2 ic2

a recurring series of the second order.

1j=l^ =l_2a + 4x2-7x3 + 13a:*-23«5_f-...
1 + X-2X2-X3 '

a recurring series of the 'third order.

etc. etc. etc.

In this relation the fraction which by its expansion

produces the series, is called the Generating Function

(G) of the series ; and the denominator of the fraction

is the Scale of Relation (E).

When the E is binomial and linear, the series is

geometric, and is of the first order ; and generally, the

order of the recurring series is the same as the dimen-

sions of the K.
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230. Problem. G-iven a recurring series and its order,

to find its E; and its G-.

Take the recurring series of the 2d order given above,

viz.

:

Assume
N = l+ 5aj+13a;2+29a^+61a;*+.

1 -\- ax -\- bo(^

Multiply by the denominator. Then

JV^= 1 + 5

a

ic + 13 aj2 + 29 0^3 + 61

5a 13 a 29 a

b 5b 13 b

x^ + •

But N cannot be higher than linear in x ; and there-

fore all the coefficients after linear x must vanish.

That is,

13 -}_ 5a+ & = 0;

29 + 13a + 5& = 0;

61 + 29a + 136 = 0, etc.

The first two equations give a = — 3, 5 = 2, and these

values satis.fy the third equation.

This compatibility shows that the series is of the

second order and the R is quadratic.

If the third equation were not satisfied, the E, would

be of higher dimensions, and the series would be of a

higher order.

TheEis l-3a; + 2a;2.

By putting — 3 for a in the terms up to the linear

inclusive, we get JV= 1 + 2a;.

l + 2a;G =
l_3a; + 2ic2
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231. We see from the foregoing article, that if z be

the order of the series, it requires z terms to find the

E, and z terms to find N. Hence the number of

terms required to determine completely a recurring

series of any order is twice the number of the order;

and if z be the order, 2; — 1 terms at most, counting from

the beginning, may not follow the law of the rest of the

series.

232. Problem. To find the 7ith term of a recurring

series.

Taking the series of Art. 230, its R factors into

{l — x)(l—2x)j and going to partial fractions,

l + 2x ^ 4 3

l^^x-^2x'~l-2x 1-x
Then expanding these partials, we get the equivalent

geometric series

:

= 4(l + 2a;4-2V+...2"a;"+...).

= 3(1 + aj + a;2 4-...aj« + ...).

l-2a;

3

And confining ourselves to the coefficient of a;",

(2«+2 _ 3)aj^ = the nth term.

This shows that the terms of a recurring series are, in

general, the algebraic sums of the corresponding terms

of two or more geometric series.

And in finding the nth term we need not write out the

geometric series ; for if

z , -^ -^, z , etc.,
\ — ax 1 — f3x 1 — yx
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be the partial fractions,

is the 72th term.

233. Our ability to find the nth term depends upon

our ability to factor the E-. If the R rises only to a

quadratic, or is separable into factors none of which are

higher than quadratic, it is possible to find the rith term

;

but when the linear factors are irrational, the operation

may be laborious.

We give one example.

Ex. The series 1 - 4 ic + 19 a^^ - 17 x^ + 265 x*

has 1 + 4 a; + ic2 as its R, and N = 1 — x.

1 + 4x + X2 =: {1 + (2 + ^S)X}{1 + (2 - ^S)x],

Assuming —^-^^^— = ^ + -
^

l + 4a: + ic2 i+(2-f^3)x l-i-(2-y/S)x

we obtain ^ =: J (1 + -y/S), B=i(l - ^S).

Thence the nth term is

(-)** H(2 + V3)" + (2 - V^)" + V[(2 + V^)" - (2 - V3)"]}aJ«.

EXERCISE XVIII. a.

1. Find the R and the G of 1 + 2 x + 3 cc2 + 4^3 + ..., it being

of the second order.

2. Eind the R and G of 1 + 3 x + 4 x^ + 5 x^ + •••, a recurring

series of the second order.

3. Find the next two terms of the series of Ex. 2.

1+ 2 X - x2
4. Develop the series whose G is

(l-x)(l + x)2
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5. The terms 1 + x — 2 x^ + 3 ic^ are the first four terms of a

recurring series of the second order, and also of one of the third

order. Find the G's of the series, and the 5th term in each.

6. The first four terms of a recurring series of the third order

are 1 — x + 2x^ — 2x^. Find an expression for the nth term, and
thence find the 99th term.

7. Find the nth term of the series of Ex. 4.

8. Find the nth term of the series of the second order,

1 + 5x+ 19x2 + 65x3+ ...

9. If there be n terms given, N may contain any number of

terms from 1 to - — 1 if w is even, and from 1 to ^ ~ if n is odd.
Z 2

10. If n terms be given, they may belong to a series of any

order from w — 1 to - + 1 if w is even, and from n — 1 to ILtA
if n is odd.

^ 2

DIFFERENCE SERIES.

234. These have an alliance with arithmetic series.

Take the series

2 + 3 + 6 + 12 + 22 + 37 +

—

1st differences 1 + 3 + 6 + 10 + 15 +
2d « 2 + 3 + 4 + 5 +
3d " 1 + 1 + 1 +
4th " + +

By subtracting each term from the following, we obtain

a set of series similar to the first, but of successively

lower orders, called the series of 1st differences or Aj-

series, the series of 2d differences or Aj-series, etc.



280 DIFFERENCE SERIES.

In the example given, the Ag-series is arithmetic, and

the A4-series vanishes ; and for any true difference series

some A-series is arithmetic, and the second one there-

after vanishes.

Thus in the series of cubes 1, 8, 27, 64, 125, etc., the

Ag-series is arithmetic. In 1^, 2^, 3^, etc., the A4-series

is arithmetic, etc.

Evidently if any general relation exists between the

original series and its A^-series, a similar relation must

exist between each two consecutive A-series.

235. Let Uq + Ui-\- U2-\- •*- be a difference series in

which the suffix serves the purpose of the exponent of a

variable.

Then, -w-series t^o + ^^i
+ '^2 + ^s + ^4 -f-

•••

Ai-series Ai A/ A/' A^'"

Ag-series Ag Ag' A2"

Ag-series A3 A3'

A4-series A^

Now, Ui = Uo-{-Ai, A/ = Ai4-A^

A2' = A2 + ^3? ^3' = A3 + A4, etc.

Again, U2 = Ui-\- A/ = 2^0 + 2 Aj -[- Ag.

.-. Ai" = Ai + 2A2 + A3.

A2" = A2 + 2A3 + A4.

Again, ^(3 = U2-{- A/' = -i^o + 3 Ai + 3 Ag + A3.

.-. A/" = Ai + 3A2 + 3A3 + A4.

Again, u^=zUs + Aj'" = i^o + 4 Ai + 6 Ag + 4 A3 + A4.

And obviously, from the mode of formation of the

terms,

^„ = ^0 + "CiAi + "C2A2 + "C3A3 + ...
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which is an expression for the nth. term of a difference

series.

Ex. To find the nth term of 2 + 3 + 6 + 12 + 22 + •••

u, = 2, \ = 1, A, = 2, A, = l, A, = 0.

/. u^ = 2 -\-n + n{n - 1) + | n(w - 1) (n - 2)

INTERPOLATION.

236. Take the difference series whose first 5 terms are

7, 2, 1, 4, 11.

The expression for the nth. term is

u^ = 7 -^n(2n — T).

Eegarding ti as a variable of the function whose value

is denoted by u^y we draw, as in the figure, the graph (G)

of the function, in which 7i takes the place of x^ and u^ of y

Then Oa:
^
= 7, lb = u, = 2,

2c = U2 = l, 3 d = % = 4, etc.

And the points a, 6, c, d, etc., represent, by their

4

V

ordinates, Oa, lb, etc., the

terms of the series.

Hence we may define a

series as a set of point values

of a function of a variable,

corresponding to equidis-

tant values of the variable;

the equidistant values being

generally regarded in all

series as the consecutive in-

tegers from zero upwards, or the numbers of the succes-

sive term.

Xm'

Li
I 1 m 2 ^ 3
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Now n = I gives the point value W corresponding to

the middle point of 01; w = f gives mm' corresponding

to the middle point of 1 2 ; etc. And the points 0, Z,

1, m, 2, etc., being equidistant, we have a, Z', 6, m\ c, etc.,

as terms of a new series, such that every alternate term,

counting from the first, belongs to the original series.

We are then said to have interpolated single mean
terms in the original series.

Our unit on the ic-axis being arbitrary, we may make
1 the unit by writing ^ n for n in the function, and leav-

ing u^ unchanged.

This gives ^^^ = 7 4. ^ (n - 7)

for the new series ; and the series itself is

7, 4, 2, 1, 1, 2, 4, 7, 11 ...

So that IV — 4, mm^ = 1, nn' = 2, etc.

In a similar manner by writing - for n in the nth
o

term of the original series, we obtain the nth term of a

series in which two mean terms are interpolated between

each two consecutive terms of the given series, etc.

In like manner, if any real value whatever be given to

n, the resulting value of u^ is the ordinate corresponding

to that particular value of n.

237. The least consideration will show that interpola-

tions can be made accurately whenever the nth term can

be accurately expressed, and that the last condition is

satisfied for any series in which an order of differences

becomps zero. Also, that if no order of differences is

zero, the ?ith term can be expressed only approximately,



INTERPOLATION. 283

and the interpolated terms will be only approximately

eorrect.

As an illustration of the latter statement consider a

t ible, such as that of logarithms, for example.

The logarithmic series is a function of a variable n,

and the tabulated logarithms are the point values of this

function corresponding to consecutive equidistant values

of the variable, as 30, 31, 32, etc., say.

These logarithms do not form a proper difference series,

and the rith term cannot be exactly expressed.

Thus

log 30 = 1.47712
Ai

1424
log 31 = 1.49136 ^ - 45

1379
log 32 = 1.50515 -43
log 33 = 1,51851

1336

But A2 is small as compared with A^, and nearly con-

stant, so that

u, = 1.47712 + 1424 n - -V-n(n - 1)

is approximately true for small values of n, as from to

1 ; i.e. the result will be practically correct for the loga-

rithm of any number lying between 30 and 31.

Thus log 30.3 = 1.47712 + -j-% . 1424 + S^-
•
y'lr

• tV

= 1.47712 +427 + 5

= 1.41844,

which is true to the last figure.

This example shows that in a case like the present

proportional parts are not always sufficient.
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EXERCISE XVIII. b.

1. Find the orders of differences of the difference series, 50, 52,

50, 45, 38, 30, etc.

2. Find the expression for the nth term of Ex. 1.

3. Find the nth. term of the difference series of which the first

four terms are 1 + 7 + 11 + 13.

4. Find the nth term of li, 2, 3, 4|, 8 ...

5. Interpolate mean terms in the series 4, 1, 2, 7.

6. If a, 5, c be three consecutive terms of a difference series,

and m and n be mean terms between a, b and 6, c, respectively,

show that m = ^(3 a + 6 6 — c), and n = J(3 c + 6h — a).

7. If in Ex. 6, m, n be two interpolated mean terms between

a and 6, and j?, q be two between b and c, show that, upon the

supposition that A3 = 0, m = i(5 a+56 — c), n = |(2a + 8& — c),

p =z 1 (2 c + 8 & - a), and g' = i(5 c + 5 6 - a).

8. The expectation of life at 10 years of age is 48.8, at 20 it is

41.5, at 30 it is 34.3, and at 40 it is 27.6, What is it at 15 ? at 25 ?

9. At 9 o'clock the distance of a star from the moon is 42', at

10 it is 19', and at 11 it is — 3'. How were they situated at

10 h. 52 m. ?

10. Given sin 240 =0.40674, sin 25°= 0.42262, sin 26°= 0.43837,

sin 27°= 0.45399; find sin 24° 25'.

SUMMATION OF SERIES.

238. The Sum of a Series is a somewhat indefinite

expression, as the following statements will show.

(1) If the series be numerical, the sum of its first n

terms is intelligible, whether a general expression for

such a sum can be found or not.

Thus the sum of n terms of the series 1-1-2+ 3+ ••• is Jw(ri+1),

for all values of n ; and the sum of any given number of terms of
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the series l + i + i + i+--- may be found, although no general

expression for the sum of n terms has ever been obtained.

(2) In many numerical series the sum of the series to

infinity may be given as a finite expression ; but as we
cannot properly speak of summing an infinite number of

terms, this expression is more correctly spoken of as the

limit of the series, i.e. the value towards which the sum
of the terms approaches, as more and more of the terms

are included in the summation, and to which the sum
may be made to approach as near as we please.

Thus 2 is the limit of 1 + J + i + J H ad inf.

(3) If a series contains a variable in ascending or

descending powers, what is called the sum is in reality

the Generating Function of the series.

Thus e"" is the G. of 1 + a; +— + . •
. ad inf., and can-

Z I

not be spoken of as the sum of the series without extend-

ing the meaning of the word sum quite beyond that

usually given to it.

Similarly, — is frequently spoken of as the sum of

1 + ^ + ^ • • • 4- ^'"~^ because, when developed by division,

it produces the series. But it is evidently a generating

function rather than a sum.

Thus in reference to series, the word sum applies

properly to a finite number of terms of a numerical series.

The word limit applies to an infinite numerical series

;

and the term generating function to a series, finite or

infinite, containing ascending or descending powers of a

variable.

We shall not, however, always apply these distinctions

rigidly.
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SERIES TO n TERMS.

I. Generating Functions.

239. As a particular case take the recurring series of

the second order

;

l + x
is the G- of

l-2x + x^

Assume

l-2x-{-x'

Then iV:==

(2n+l)aj'»+...adinf.

1+3
-2

x-i-5

-6
+1

aj2_^...(2n-fl)

-2(2w-l)
(2ri-3)

--2(2n+l)

(2n-l)

.n+l

+(2n+l)a;'*+2

*'* """ 1-2X + X'

is the generating function required; and this fraction,

by division, gives the series to n terms, and no more.

The variable x may take any value except 1 (as for

this value the G„ becomes indeterminate), and the G»
becomes the sum of n terms of a numerical series.

Thus, putting a? = 2, we have

S,= 3 + (2n-l)2^-^\

as the sum of the first n terms of the series

1 4- 6 + 20 -f 56 +... (2 n + l)2^
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Similarly, for a; = ^ we get ~ ^^ ——^ as the

sum of n terms of the series

240. Now take the general case, and let

l+px-{- qx^
tto + ^1^ + • • • €inX\

^n = «0 + «1

pao

x-\ a„

PCtn-l

a;"+^..

+ga"

v.n+2

And from the property of the R, that every column

with three terms is zero,

^n = «o + {cti -i-pcto)^ + lpc('n + Q^tn-i + got„a;Ji»"+\

Also a„+i + pa„ + g«n_i = 0.

.-. iV; = ao + (cti +i>ao)a; — (a„^i — ga„a;)aj"+\

And the required G is

1 -j- px + ga;^

In a similar manner the G„ can be found for a recur-

ring series of any order.

241. To find the sum of n terms of the series whose

nth term is •

n{n-{-l){n-\-2)

This series is allied to a recurring series, but the scale

of relation is not of finite dimensions.
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We have

SUMMATION OF SERIES.

n{n + l)(n + 2) 2n 2{n^V) 2(n + 2)

And by putting n = 1, 2, 3, etc., we express the given

series as the sum of three series, viz.

:

^r. ^ + 2- + l+'
2
2'

2_
3

4-

1

n

2

n 71 + 1

1 + -

= '}-
2(22 (^ + l)(n + 2))

Cor. If n = 00, we obtain as the limit of the series to oo,

s=\.

Series of the form of the foregoing can always be

summed when the numerator of the Tith term is constant,

and the denominator has its factors of the form

(n + A:)(^ + 2^0(^ + 3^0••• etc.

II. Difference Series.

242. Let Uq + xi^ -f ^2 + • • • u^ be a given difference

series, and let U'o + t/i + t/'o + ••• be the series of which

^0 + '^1 + "^^2 + *•• is the first series of differences.

Then Uo = 0, t/j = Wq? t/g = n^ + ^^u C/3 = i^o + 'ih + Wg,

and generally JJ^ = '?^o + ^^1 ••• + ^n-i = ^n-x-

But the 7ith term of the C/'-series is given by

U"^ = To + "Oii^o + "^2^1 + ^C^^2 + • •
• (Art. 235)
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and •.• Uo = 0,

Sn-i = nuo + "O^Ai + "(73A2 + -
which gives the sum of ?i — 1 terms counting from the

2d term, or of n terms counting from the 1st.

Hence for the sum of n terms from the beginning of

the series,

^n= nUo + "C2A, + "(73A2 + • • •

Ex. The sum of the 5th powers of the first n natural numbers is—
n + y n(n - 1) + 30 n(n - 1) (?i - 2) + -^^ w(w - 1) (n - 2) {n - 3)

+ Sn(n - IXn - 2)(n - S)(n - 4)

+ ^(n - l)(n - 2)(n - 3)(n - 4)(n - 6) ;

which reduces to

j\n\n + ly (2n^ + 2n - 1).

LIMIT OF A SERIES.

243. The limit of a series is either finite or infinite.

When the limit is finite, it is often called the sum of the

series to infinity, and the series is said to be convergent.

In general, series which are not convergent are classed

together as divergent, and cannot be said to have any sum.

The limit of a converging series may be rational, or in-

commensurable ; but in either case the rational value,

or a sufficiently close approximation to the incommen-

surable, may be employed in place of the series in com-

putations.

Such is the case with logarithms, with e, with trigono-

metrical functions, etc.

To know whether a series has a sum or not, we must

determine whether it is convergent or not.
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CONVERGENCY OP SERIES.

When a series contains a variable, its convergency

or divergency is usually dependent upon the numerical

value assumed by the variable.

Thus X being positive, the series 1 + ^ + ^^ + ••• is

convergent only when cc < 1.

Some series of this kind, however, and especially such

as have increasing factorials in the denominators of their

terms, are convergent for all numerical values of the

variable.

244. It is shown under geometric series that the series

1 -}- X -{- x^ -\- a^ -\- * *
' ad inf. has as its limit when

1— X

X is positive and less than 1, and hence that under these

conditions the series is convergent.

Now let Uq -\- Ui -{- U2 -}- Us -\- • • • be an infinite series.

Then

^ ( . Ui Uo Ui Uo Uo Ua ')

;S=^0il +- + -•- + -•-•- + ••• ['
( Uq Ui Uq U2 Ui Uq )

And if each ratio —, —, — ? etc., be < x,
^1 2

S<Uo\l+x + x'-{-a^+'''l',

which is convergent ii x<l.

Therefore the series Uq + Wi + 1^2 + • • • is convergent

if, after some finite term, ^^^^ is less than a quantity

which is less than 1 for all values of n.



CONVERGENCY OF SERIES. 291

Ex. 1. The Binomial series

1 + „x + ?L(»^Liix-^ + ...
n(n-l)-(n-r+l)

^, ^ ...

2 ! r

!

where n is negative or fractional, is infinite in extent.

To show that it is convergent if a: be < 1.

Un±i ^ n(n- l)»>-(yt-r) ^^+i r\ 1^

Un (r + 1)! n{n — 1)'" (n — r + 1) x^

\l-hr 1 + rJ

But
^ = 0, and —-— = 1, when r = oo. And the whole is

1 +r 1 +r
< 1 if a: < 1, which proves that the series is convergent if x < 1.

Ex. 2. The series 1+-^ + ^ + ^+... is convergent for all

numerical values of ic.
...

^^^^^ =—^ ; and for all finite values of x, this is < 1, when n
Un 7^ + 1

is great enough, and is zero when n = ao.

245. The series Wo — Wi + ^2 — '^3 H— • • •? with alternat-

ing signs, is convergent when each term is greater than

the following one.

For S = Uo — (ui — U2) — {uq — u^)— "'

And as Ui > Wg, u^ > u^, etc., every bracket is positive,

and

Again, S = {uo — u{) + {U2 — ^^3) + {u^ — %) H

And every bracket being positive, S >Uo — Ui,

.', S lies between Uq and Uq — w^, and is finite.

Ex. The logarithmic series

x-ix'^ + ix^-lx^-h

is convergent when a; < 1.

For if a; be < 1, the condition is evidently satisfied.
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246. When the sum of a few of the first terms of a

series is a close approximation to its limit, the series is

rapidly convergent.

If the ratio u^^^ : u^ approximates to zero as n ap-

proaches 00, the series is rapidly convergent. But even

when this ratio approaches 1 as ii approaches oo, we are

not justified in saying that the series is not convergent,

as it may even then be slowly convergent, and may require

further examination.

247. Theorem. The series 1 + ^ + ^ + — + •••— + •••

IS convergent it p > 1.

Separate the terms of the given series, after the first,

into groups of 2, 2^, 2^, etc., terms ; then,

l>i4.i. £>lj_i4.l4.i. I>i4....etc

.*. US be the limit of the given series,

I.e. <^+2fe + (2^J+(2^J+'

But this latter series is convergent if —— < 1 ; that is,

ifi>>l
^'~'

•*• ^ + 2^ + 3^ + ^ + ••• ^^ convergent if p > 1.

248. The series Wq + Wi + ^2 • • * + ^^n + • • • is convergent

if u^ = — , and _p > 1.
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Then, J^= i^±l)!=A+lY

= l+£ +K£^ + 4 + ...

Every term of the right-hand member except the

first vanishes when n = oo. Hence the series

^o + Wi + WgH u^^

is convergent if the function n \
—^— 1

f-
> 1, when

n = 00.

Ex. To examine the series whose nth term is —i-^.
1 + ^3

t^«+i^ l+(r^ + l)
.

l + n3 ^ n^+2n3 + n4-2 ^ .^ ^henn = oo

Un 1+ (n + 1)^ 1 + n w* + 4 n3 + ... + 2 '

and this test is not sufficient.

Again, n{^-\\= 2/i^ + 6n3... ^ 2, when n =. oo.
l Un^\ y n* + 2 n^ + n + 2

.'. the series is convergent.

The tests here given are the most useful tests of

convergency. Eeaders who wish to make themselves

acquainted with other tests will find such in larger

Algebras, where special attention is given to the subject,

or better, in works on Finite Differences.

249. When the sum of n terms of a series can be

found, and is of such a form as to become finite when n
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is infinite, the series is convergent, and the finite expres-

sion found by making n = oo is the limit of the series.

This is quite self-evident.

Ex. The sum of n terms of 1 1 f-
.•• is

3.4 4-5 5.6 3(n + 3)'

and when w = qo, the limit of the series is i.

EXERCISE XVIII. c.

1. Find the G„ of 1 + 2 ic + 3a;2 + ... (n + 1) x^.

2 3 4
2. Sum n terms of the series 1 -{ 1-^ + — + •••

3. Find the Gn of 1 + 3 x + 6 0^2 + ... ^ (w) (n + 1) x^-K

4. Sum n terms of the series 1 + 2.2 + 3 2^ + 4 . 23 + ...

5. Find the G„ of 1 - 2 ic + 3^2 - 40:"^ +

6. Sum n terms of the series 1 — 2 + 3 — 4+5 — 6 + «»

7. Sum n terms of -—- + —— + —— + —
1.2 2 • o 0.4

8. Sum n terms of —- + -—- + —— H

—

1.3 3.5 5.7

9. Sum n terms of 1 h 1

1.4 2.5 3.0

10. Show that Sn | ^^ zA = sJ-^] ^, where
l(n+l)(w + 2)i \n + iy n + 2

Sn is the sum of n terms from the beginning.

11. Find the limit of i- (I2 + 22 + 32 + ... ^2), when w = 00.

12. Find the limit of i (l^ + 2^ + 3^ + ... w^), when n = cc.
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13. Find the limit of -J- + -i- + -1- + ... ad inf.
1.4 2.5 3-6

14. Is the series 1 + - + llll^ + 1-S.6x^
convergent ?

2 2.4 2.4-6 ^

15. Under what condition is 1 + 2'^ + S^x^ + 4^^^ -f ••• conver-

gent ?

16. Show that x — \x^ + ^x^ — ^-x"^ + ... is convergent if x < 1;

thence find to four decimals the approximation to the value of

l5 3.58 5.55 / 1239 3(239)8 J

17. Find the limit of the series in Ex. 2.

18. Find the limit of 1 - - + — - -^ + —



CHAPTER XIX.

Determinants.

250. Two figures, as 3 and 4, are in order when the

less precedes the greater, and they form an inversion

when the greater precedes the less.

Thus 12 3 4 are in order ; 1 3 2 4 has 1 inversion, 3 2
;

14 2 3 has 2 inversions, 4 2 and 4 3 ; and 4 13 2 has 4 inver-

sions, 4 1, 4 2, 4 3, and 3 2.

For illustration, take any arrangement of figures,

3 14 2 5 6 8.

This contains 3 inversions. Interchange any two con-

secutive figures, as 2 and 5; the arrangement becomes

3 14 5 2 6 8, and contains 4 inversions. Or interchange

4 and 2, and the new arrangement has 2 inversions.

Thus the interchange of any two consecutive figures

increases or decreases the number of inversions by one.

This is readily seen to be always the case; for if the

figures be in order before the interchange, they form an

inversion afterwards, and vice versa, while their relations

to the figures which precede or follow them are unchanged.

251. Starting with any arrangement, as

3 14 2 5 6 8,

let us interchange two figures which are not consecutive,

as 1 and 6. To do this, we must move 1 through 4

296
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places to the right, and then move 6 through 3 places

to the left ; or we must move 1 through 3 places to the

right, and 6 through 4 places to the left. In either case

we make 7 consecutive changes in all; and the num-
ber of inversions is thus increased or decreased by an

odd number. The new arrangement, 3 6 4 2 5 18, has

10 inversions, or 7 more than the original.

Similarly, if the orders of any two figures be denoted

by m and 7i, where m<7i, to interchange m and n requires

us to move m through n — m places to the right, and then

to move n through n — m — 1 places to the left ; or, to

make 2 (71 — m) — 1 consecutive interchanges in all. And
this being an odd number gives the important

Theorem.— To interchange any two numbers in an

arrangement ^increases or decreases the number, of inver-

sions by an odd number,

252. Consider the four-dimensional term «! 62 ^3 ^4;

composed of four letters with attached suffixes, and in

which both the letters and suffixes are in order.

Keeping the letters in order, let us permute the four

suffixes in every possible way, as aj 63 Cg c?4, ag &i c^ d^, etc.

As we can permute the four suffixes in ^P^ or 24 ways,

we shall have 24 terms in all, of which no two have the

same suffixes attached to the same letters, or are wholly

alike.

The term ai b^ C3 d^, being the one from which the others

are derived, is called the principal or leading term ; but

as the whole set of terms may be derived from any one

of them, any term may be taken as a principal term.

Let us take as our principal term that one having no

inversions, and calling this positive, let us agree that in
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forming the other terms every inversion is to be accom-

panied by a change of sign. Then a term with one in-

version in its suffixes, as aj b^ Cg d^, is negative ; a term

with two inversions, as ai b^ c^ d^y is positive ; and gener-

ally, a term is -\- or — according as its suffixes contain an

even or an odd number of inversions.

These considerations apply to a leading term of any

number of letters, and its derived terms.

253. A Determinant is the algebraic sum of all the

terms that can be derived from a leading term, by per-

muting the suffixes without changing the letters, each

term being taken with its proper sign.

A letter with its attached suffix is an element of the

determinant, and as each letter takes in turn each suffix,

if there are n letters, there are also n suffixes and n^

elements.

A determinant with n letters and n suffixes is of the

nth order, and contains n ! terms.

The determinant of the second order is afi^ — ^2^1? ^^^

of the third order it is

254. A letter with its attached suffix, standing as an

element of a determinant, is symbolic, and may be

replaced by any quantitative symbol whatever.

But it is only through this symbolic and symmetrical

notation that we are enabled to discuss with any facility

the general properties of determinants. Moreover, owing

to their unwieldiness when written at length, it becomes

necessary to employ some symbolic or contracted form

for the whole expression.

The symbols :S±ai&2C3--- and |aAc3---|, where the
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«! 61 Ci ^1

a2 62 C2 d2

ag 63 C3 ds

a^ 64 C4 d.

leading term is written after 2 ± or between straight-line

brackets, are both employed. But the working form

known as a matrix is made by writing the elements in a

square between parallel vertical lines, in

such a manner that all the same letters

stand in the same column, and all the same

suffixes are situated in the same row.

The determinant of the 4th order is

written as a matrix in the margin.

255. The diagonal of the matrix from the upper left-

hand corner to the lower right-hand corner, namely,

tti 62 C3 d^, is the principal or leading diagonal, as giving

the principal term of the determinant.

The sign of the matrix as a whole depends upon that

of its principal diagonal.

The matrix being a symbolic form for a determinant

must be capable of being expanded so as to give the

determinant, and with a matrix having symbolic elements

this expansion can be effected by permuting the suffixes

of the leading diagonal according to the definition of

Art. 253. Hence two matrices containing the same sym-

bolic elements can differ only in sign, and the signs of

two such matrices will be the same or opposite according

as the number of inversions in their principal diagonals

differ by an even or by an odd number, Art. 2b2.

256. Consider the matrices

0)

a^ hi Cj di

a2 &2 ^2 ^2

«3 ^3 ^3 ^3
, (2)

a^ 64 0*4 d^

ci| 0^-2 (X3 a^

61 &2 h h
Ci C2 C3 C4

di ^2 r/g ^4

«! hi Cx c?i

, (3)
«3 ^3 C3 ^3

^2 62 C2 do

a^ 64 C4 d^
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(1) is the standard matrix of the 4th order, the suf-

fixes being in order in the columns, and the letters being

in order in the rows. Its principal diagonal is aj h^ c^ d^.

(2) differs from (1) in having the rows of (1) for its

columns and the columns of (1) for its rows, the letters

and suffixes still being in order. The principal diagonal

of (2) is «! &2 ^3 ^4? ^11 d. being the same as that of (1), the

expansions give the same determinant.

Therefore, a matrix is not changed in value by chang-

ing its rows to columns and its columns to rows, provided

the letters and suffixes maintain the same order. Hence

whatever is true for a matrix with respect to its columns, is

true also ivith respect to its rows, and vice versa,.

(3) differs from (1) in having its 2d and 3d rows in-

terchanged. This introduced one inversion into its prin-

cipal diagonal, and hence changes the sign of the matrix.

And it is readily seen from the principles of Art. 252,

that the interchange of any two rows, or of any two

columns in a matrix changes the sign of the matrix,

since it increases or decreases the number of inversions

in the principal diagonal by an odd number.

257. Theorem. If tivo columns or two rows of a matrix

he identical, the value of the matrix is zero.

For, by interchanging the identical columns or the

identical rows, the matrix changes sign. But the columns

being identical leaves the matrix unchanged. The only

quantity or expression which remains unchanged when
you change its sign is zero. Hence the value of the

determinant is zero.

Thus the matrix with two a-columns, as in the mar-

gin, expands into a^a.fi.^— aia.^b.^-\- a./i.^b^— a^a^h^-^ a.^ai^b.2

— a-/(:J)^, which is identically zero.

a. a, b,

«2 a, b.

a. «j h
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258. Expansion of the Matrix. Let us take a matrix

of the third order to begin with.

As every term in the determinant contains each letter

once and each suffix once, the terms which contain a^ can-

not contain any other a or any other letter with suffix 1.

Hence the coefficient of aj is the sum of all the terms

that can be made from the remaining letters and the

remaining suffixes. But this, for a determinant of the

3d order, is the expression denoted by the matrix

Similarly, the coefficient of ag is

ho Co

h C3

&2 ^2

&3C3

and of ttg it is

Hence the expansion takes the form

±0^1
&2 C2

±^2 5i c/
±a. h Ci

h cs ^3 C3 &2 ^2

But taking the principal diagonals, ai &2 C3 is -}-, (Xg 61 Cg

is — , and a^ hi c^ is +. And the expansion is

«i
&2 C2 -a2!^'^ + a3

61 Ci

&3 C3 1^3 C3 ^>2 C2
(^)

and the matrix of the third order is made to depend

upon matrices of the second order.

Similarly, the expansion of the matrix of the 4th

order is

&2 C2 d^ hi Ci di &1 Ci di 61 Ci di

hs C3 ^3 -a^ hs C3 ds + «3 ho C2 d2 --a4 &2 C2 C^2

54 O4 ^4 &4 C4 d^ 64 C4 ^4 63 C3 C?3

which makes it depend upon matrices of the 3d order.
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So also a matrix of the nth. order may be expanded to

depend upon matrices of the (n — l)th order ; and these

again upon those of the (n — 2)th order; and so on.

259. Reducing the matrices of (A), the determinant

of the third order becomes—
(^ih^s — ai^gCg + ctgftgCi — a2&iC3 + a^hiC2 — agftgCi-

Comparing this with the matrix here written, in which

the first two rows are repeated in order below

the matrix, we see that the three terms aj 62 ^3,

ttg 63 Ci, and ag bi Cg, read in the direction of

the principal diagonal, are +, and the three,

Us 62 ^1) ^1 ^3 ^2? ^^^ ^2 ^1 ^3? I'Gad in the direc-

tion of the other diagonal, are —

.

This is the rule of Sarins for expanding a

matrix of the third order ; in practice the portion with-

out the matrix is not written, the operation being carried

on mentally.

2

Ex.1. 121 =2.2.6 + 4.1.3 + 7.1-5-3.2.7
-2. 5. 1-1. 4.6 = - 5.

ai &i Cl

a2 b. C2

% h C3

a, h Cl

Ct2 h C2

2 4 71

121
3 5 6

1 4 7

2 5 8

3 6 9

a 1 a

a a 1

\ a a

Ex.2. 2 58 =1.5.9 + 2.6.7 + 3.4.8-3.5.7
-6.8.1-9.2.4 = 0.

Ex. 3. a a\ = a^ \- a^ + \ - d:^ - a!^ - a^ = 2a^ -^a^ -Ji-l.

EXERCISE XIX. a.

1. Find the value of the following matrices of the third order—
1 2 3 7 1 6 a h g x\\
2 3 1 ii. 1 -2 4 iii. hh f iv. X 1

3 1 2 3 -5 -1 Q f ^ a:
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1 X y a b c

1 «2 y2 vi. b c a vii.

1 X3 2/3 cab

1 1

1 -1
-1 1

a b c

bed
ode

2. Expand

12 3 4

13 2 4

12 4 3

14 3 2

8. Show that

X X 1 1

X 1 X 1

X 1 1 X

X 1 1 1

(Expand to depend upon matrices of

the third order, and then expand

these.

)

= x(l - x)8.

260. We see from the preceding article that as soon

as a matrix is reduced to depend upon matrices of the

third order, we can write out its expansion.

We turn our attention now to the investigation of

those properties of the matrix which enable us to expand

or reduce it more readily.

OPERATIONS ON THE MATRIX.

Let D denote a determinant, of any order, with sym-

bolic elements, and let A^ be the coefficient of ai. Then
(Art. 2bd>) Aiy which is called sl first minor of D, is a

determinant of the next order lower than D, and contains

no a and no letter with suffix 1. Similarly, let A2 be

the coefficient of a2, A^ of a^, etc.

Then (Art. 258)

D = a^Ai - a^A^ + a^Ao^ - + ••• (-)«-^a„^„.

261. To multiply the matrix by any quantity, m.

mD = maiA^ — -wiagztg + ma^A^—f- • • •

But this is the expansion of the matrix in which mai is

written for a^ mag for ag, etc., throughout the a-column.
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Therefore, to multiply a matrix by m we multiply every

element of a column or of a roiv by m.

Also, as multiplying by a fraction with unit numerator

is equivalent to dividing by the denominator,

Therefore, to divide a matrix by m we divide every

element of a column or of a row by m.

= etc.

«i ^1 Cj
1

mai h, c. mai mbi mc^

Ex. 1. 'm ^2 ^2 ^2

a, h, c.

- ma.2 ^2 ^2

ma.^ 63 C3

= C?2 ^2 ^2

«3 ^3 C3

Jl 1 13 4

Ex.2. 1 i 1 = t\ 2 14 =111.

1 1 i 2 3 1

8 4 2 2 2 2 1 1 1

Ex.3. 12 4 3 = 8 3 2 3 = 16 3 2 3 = -64.

4 6 5 ] 3 6 1 2 5

262. Let each element of a column be the algebraic

sum of two quantities.

Thus, let ai=pi-\- q^, ag = P2 + Q2) ^^c.

Then D = (Pi+gO^i- (P2+q2)A+(P3+q3)A- + '"

=PiA -P2A +P3^3 - + •••

+ \q^A^ - q^A^ + q^A^ -+•••}

= the matrix with p written for a, + the

matrix with q written for a.

And the matrix thus becomes the sum of two matrices

of the same order.

2 3 1 1 + 13 1 1 3 1 1 3 1 1 3 1

Ex.1. 5 2 1

3 4 1

- 4 + 12 1

2 + 14 1

- 4 2 1

2 4 1

+ 1 2 1

1 4 1

" 4 2 1

2 4 1

= 4,

since the second 1na trix, having tv*^o colurnn 3 ahke, vailishes.
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2 3 1 + 231 3 1

5 2 1 = 3 + 2 2 1 = 3 2 1

3 4 1 1 + 2 4 1 1 4 1

Ex.2.

as the second matrix will vanish after dividing by 2.

263. Let «! be changed to ai + nbi, ag to ^2 + 7ib2, % to

% + ^^^3? etc., throughout the a-column ; and let the value

of the new matrix be noted by D'.

Then

D'= (ai + nbi)Ai — (as + ^^2)^2 + («3 + ^^3)^3 — + •••

= aiJ.i — a2^2 + ^3^3 — + •••

+ ^{Mi-M2 + M3-+---^
= D + 71 times the matrix with b put for a.

But the matrix with b written for a has two 6-columns,

and therefore vanishes.

Hence D' = D, and we have the following important

Theorem. The value of a matrix is not changed by

increasing or diminishing any column by a midtiple of any

other column, or any row by a multiple of any other row.

In the examples which follow we shall denote the

columns from left to right by (7i, C2, C^, etc., and the

rows from above downwards by E^ E2, B^, etc. Then
R2 + Ri indicates that we are to add the second row to

the iirst row, and C2 — nC^ denotes that we are to subtract

n times the first column from the second column : etc.

Ex. 1.

15 3 6

3 14 1

4 6 17
—

2 2 5 2

1 5 3 6
7 5 17

14 5 17
=r2 1 -9 3

2 -9 3
4 1 10

8 1 10

= -24.
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1 a h c

1 a2 62 C2

1 a^ 63 c3|

1 a* 6* cH

Here we write S R^— R^ for i?.^ ; R.^—2R^ for 7?3 ; and 2 i^j— i?^

for jR^. The C^ of the new matrix being all ciphers except 1, the

matrix is at once reduced to one of the third order.

1. Divide by abc.

2. i?i, i?2 — Rv ^3 ~ ^2» -^4 ~ -^3-

Ex. 2. C ", r, ",
. 3. Divide by (1 - a)(l - 6)(1 - c).

4. Cj, Ci — Cg, 0.2 — Cg.

5. Divide by (a— 6) (5— c), and reduce.

Result, - abc(l - a) (1 - 6) (1 - c) (a - 6) (6 -c)(c-a).

Ex. 2 may also be reduced as follows—

1. If a, &, or c = 0, the matrix vanishes. .*. a, 6, c are mono-

mial factors.

2. If a, or 6, or c = 1, two columns are alike, and the matrix

vanishes. .-. a — 1, 6 — 1, c — 1 are binomial factors.

3. If a = 6, or 6 = c, or c = a, two columns are alike, and the

matrix vanishes. .-. a — b, b — c, c — a are binomial factors.

Since the expansion cannot have any term higher than of 9

dimensions, these are all the literal factors. And the expansion is

readily seen to be abc (a — 1) (6 — 1) (c — 1) (a — b) (b —c)(c — a).

EXERCISE XIX. b.

1. Evaluate the following determinants :

3 13 1

12 12
10 1

13 13

12 3 4

4 12 3

3 4 12
2 3 4 1

1111
111
11

10 1

2. lta,\-\-b,\-\ + c,\...\-d,\...

a 4th-order determinant, fill in the brackets.

be the expansion of

3. If a matrix be rotated through ninety degrees, the rows

become columns, and the columns rows, but they are not disposed

in the original order. How does this affect the sign ?
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4. If the rotated matrix of 3 be turned over in the plane, so that

the 4th column may become the 1st, the 3d, the 2d, etc. , how does

this affect the sign ? How does the matrix now compare with the

original ?

5. Show that to keep the suffixes in order and permute the let-

ters is equivalent to keeping the letters in order and permuting the

suffixes.

6. If Pi and p^ denote the diagonals of a matrix of the nth. order,

show that the sum of the inversions in p^^ and p.^is ^n{n — 1).

7. A matrix of the nth order has both diagonals of the same

sign when n or n — 1 is a multiple of 4 ; and of opposite signs in

other cases.

DETERMINANTS IN THEIR RELATION TO
EQUATIONS.

264. Take the set of linear equations, with symbolic

coefficients—

a^ + b^y + 0^=92,

Let Ai be the first minor of
|
a^ 62 ^3 1 with respect

to ai, A2 with respect to a^j etc.

Multiply the 1st equation by Ai, the 2d by A2, the 3d

by A^, and add ; then—
(ai^i — a^A^ + CLzA)^ + (Ml — M2 + hA)y

+ (ci^i - C2A2 + 03^3)2; = giA^ — g^A^ + ^3^3-

But the coefficient of a? is
| ai &2 ^3 1

.

The coefficient of ?/ is
|
% 62 ^3 1 with b put for a, and

it therefore vanishes.
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The coefficient of 2; is
| ai 62 Cg

|

with c for a, and

it vanishes.

The independent term is
| ^1 62 ^3 1

, i.e.
\ ai &2 C3 1 with

g put for a.

I
91 h C3

1

.'. X -.

I

c^i h C3

Similarly, y = !-^l|^, and . =
j

^^ ^^ ^^

^1 ^2 ^3 ai &2 ^3

Thus, in the solution of the set of 3 linear equations

in 3 variables, each variable appears as a fraction whose

parts are matrices. The denominator is common to all,

and is the matrix formed by taking the coefficients of

the variables in order as elements of the matrix.

The numerators are the denominators in which one

column is replaced by the independent terms of the

equations, the coefficients of x being replaced in finding

the value of x, those of y in finding y, and those of z in

finding z.

Ex. To solve the set 2x + ^y + 4:Z = 16,

x + ^y + 2z = lS,

Sx +

Here 16 3 4

13 4 2

7 11
2 3 4

14 2

3 11

y +

2 16 4

1 13 2

3 7 1

z= 1.

3 4

4 2

1 1

2 3 16 1

1 4 13|

3 1 7

2 3 4
'

1 4 2

3 1 1

whence x = l, y = 2, z = 2.

265. Prom the nature of the investigation of Art. 264,

it is evident that the same method of solution applies to

the case of n linear equations in n variables.
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So that in the case of any number of linear equations

in the same number of variables, we can, at sight, write

down the values of the variables in the forms of frac-

tions whose parts are matrices. The rest of the solution

consists in the evaluation of the matrices.

266. Take the set of four homogeneous linear equa-

tions in four variables—
QiX -\- hiU + CiZ + diu =
a2X + 622/ + ^2^ + ^2^ =
a^x +% + CqZ -\-dsU =
a^x + b^y + C42; + d^u = .

Divide the last three equations throughout by w, and

solve for the ratios -, ^, and

(^)

Then, - = -. -

u
I

a2 63 a

u u

hc^d^\ y
u

y

u

!
0^2 ^3 ^4

I

I

a^ bs C4

1

z

z

u
I

<^2 h ^4
I

I

ag &3 C4

- u
(B)"

I

62 C3 ^4
I I

a2 C3 ^4
I I

a2 &3 ^4
I

1
a2 63 C4

^

which gives the ratios x: y : z : u.

Ex. Given Sx-\-2y — z = 4:X — 6y + z = 0, to find the ratios

x:y:z.
X y _ ^ ora^_2/_2r
2-1 3-1 3 2 '

^'
4 7 26

-6 1 4 1 4-6
..

. x:y:z = 4::7:26.

267. Since the denominators, in (B) of Art. 266, are

proportional to the numerators, write these denominators

for X, y, z, and u in the first equation of {A) of the same

article, then—
tti

I
&2 C3 (^4 1

— &i
I
(^2 C3 ^4 1

4- Ci
I

ag ?>3 ^4 1
— ^1 1 ^2 &3 C4

1
= 0.



810 DETERMINANTS.

Biit this expression is the expansion of the matrix

I

di h C3 di |.

Hence the Eliminant (Art. 138) of a set of homogene-

ous linear equations, having the same number of equa-

tions as of variables, is the determinant formed from the

coefficients taken in order.

The vanishing of the eliminant indicates that the set

of equations is consistent, or that the equations are

compatible.

Ex. 1. Given the equations

2x + 32/-l=:3x-2?/ + 4 = ccH-62/-m = 0,

to find the value of m that the equations may be compatible.

Writing a unit- variable, z^ in the independent term, we have

' Sx — 2y + 4:z = whence

. x + Qy — mz^O

2 3

3 ^2
1 6

-1
4

— m
= 0,

from which m = 4/^.

Ex. 2. Given al + bm : hm + en : en -^ al = x

ratios a:b: c and l-.m-.n.

V'^y to find the

We have «^ + ^^ = ^"^ + ^^= en -\- al ^ ^^
X y z

say.

Then, al -\- hm —x 1^ =
bm -h en — yu =

al + e7i — zu =

And treating a, 6, c, and u as variables,

a — b c
(Art. 266)

Whence a:b: e=mn(x-y-{-z) : nl^y-z+x) : lm(z-x+y').

Similarly, l:m: n= bc(x-y-hz) : ca(y-z-^x') : ab(z-x+y).

m X I X I m X

m n y n y m y

n z I n z I z
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EXERCISE XIX. c.

1. Express the condition that y = niiX + h^, y = rrioX + h^, and

y = m.^x + h^ may be satisfied for the same values of x and y.

How would you interpret this fact with respect to the graphs of

the given functions ?

2. Express the condition that Ax-^ + By^^ 4- C = Ax^ + By^ + C
= Ax.^ + By^ + = may be true, A, B^ and C being considered

as variables.

3. If 3 sheep, 1 cow, and 4 horses are worth ^ 318, 4 sheep, 3

cows, and 1 horse are worth -$137, and 6 sheep, 2 cows, and 5

horses are worth $ 420, what is the value of 2 sheep, 5 cows, and

3 horses ?

4. If a -{-\(hm + gn)= b -^ - (hi -{- fn)= c + - (gl + fm)=\,
I m n

eliminate Z, m, and w, and find a cubic equation for determining X.

5. Find the condition that x^ -{• ax = b and x^ + a^x = b^ may
have a common root.

6. By means oi Ax -{- By + Cz = and Px+Qy-\-Bz=0 elimi-

inate x, y, and z from the statement - = ^ = -.

I m n

7. Determine m, n, and p from the set

Wq — 4m + 6Wi — 4n + 2^2 = wi — 4wi + 6n — 4w2+i)

= Wj — 4 n + 6 1/2 — 4 J9 + ^3 = 0.

(If Wq, i^i, u^^ ^«3, be four terms of a difference series, w, n, and

p are intermediate equidistant terms.)

8. Find the eliminant of a%-2 + b'^y-'^' + c^z-^ = alx-^ + bmy-^

+ cn^~2 = a?'x~2 + bm'y^ + cri'^"^ = 0.

9. Show that

a -h b — c

a

b

10. Solve the equation in x,

c c a b c

- c — a a = b c a

b c + a — b cab

«! + b^x Ci di

a^ + b^x C2 (?2 = 0.

«3 + h^ <^3 ^3
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MISCELLANEOUS EXERCISES.

1. If X + y = a, y-\- z=:h, z-\-x=c, and a"^ -\-
h'^ { d^ = 0,

then xy + yz -\- zx = I {ah + &c + ca).

2. Extract the fifth root of 78502725751.

3. Expand ^-^^—|- ^-i_ into an ascending series.
x-\-l X — 1

5. Given x -\- by — az = -^ aic + 2/ — - = «^, - -{- ay — z = 1,

to solve the set.
^ a a

6. Find all the positive integral solutions of 17 x + 31 ?/ = 100.

7. Expand —^ in ascending powers of x.
1 — x-{- x^

8. Divide 100 into two parts such that twice the square of one

added to three times the square of the other may be a minimum.

x^ — or 4- 1
9. Determine if ^^—- has a maximum or a mmmium

X2 + X + 1

value, or both for real values of x.

10. Factor 3 x^ — 10 x — 25 and thence show for what values of

x the expression is positive.

11. Show that f^ + ^ + ^U^ + 5 + ^W 9.

\a b cj \x y z]

12. Find the value of Vx^ + ax — x when x = cc.

*
( CL -4- x^(b -4- x^

13. Find the maximum or minimum value of ^^

—

——^-^———^—

X2

14. Write the nth term of 1 - 2 x + 5 x2 - 8 x^ + H x* ...

15. Solve the set, x^ + ^/^ + x + 2/ = 14, 2(x2 + t/^) + 3x?/ = 29.

16. A person distributes 50 cents among beggars, giving 7 cents

to some, and 12 cents to others. How many were there ?
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17. A and B play four games, each having the same sum at

starting. In the first game A wins ^ of B's money. In the second

B wins .f 20. In the third A wins J of what B has ; and in the

fourth B wins 1 5, and has then J as much as A. What did each

start with ?

18. Find three numbers in A. P. whose sum is 21, while the first

and second terms are together equal to f of the second and third.

19. Sum to n terms the series whose wth term is n'^ — n + \.

20. A falling body descends \f feet the first second, f/ feet the

second second, |/ feet the third, and so on. How far will it fall

in the wth second ? How far in n Seconals ?

21. Solve 2x3 — 5c2 — 2ic+l=0 by putting it under the form

x^ — (x^ -\- px -\- qY = ^.

22. If 2 w — 10 is the nth term, how many terms will make
1*2 _ 3 6 ?

23. Find three numbers in G. P. whose sum is 13, and the sum
of whose squares is 91.

24. The sums of n terms of two A. P. s are n(n-\- 1) and

-
(
- — 1 ) . Determine if they have a common term.

2^2 y

For what same numbered term is the term in one series 8 times

that in the other ?

25. A sum of $ 1000 is compounded annually for 4 years and
amounts to $ 1464. 10. What is the rate ?

26. Divide 1 into 5 parts in A. P. so that the sum of the squares

of the parts may be ^^.

27. Factor 2 ^2 - 21 xy - 11 ?/2 - x + 34 ?/ - 3.

28. If a'^-\-h'^'.a^-c = a^-h'^'.a- c, then a : 6 = 6 : c ; and
a-2h^-c={a- hY/a = (6 - c)2/c.

29. If zcc(x-\- y)^ and y oc ^2, and if when x = J, 2/ = J» ^ = h
express z in terms of x.
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31. At a game of cards 3 are dealt to each person, and each can

hold 425 times as many different hands as there are cards in the

pack. How many cards are in the pack ?

32. If the number of combinations of n things 10 together be

the same as the number 5 together, what is the number 2 together?

33. The sums of n terms of two A. P. s are as 11— 5 w to 11 + 3 n.

Find the ratio of their sixth term.

34. How many different guards of 6 soldiers can be formed from

a company of 30 ? And relatively,

1. How often will A be on duty ?

ii. How often will A and B be on duty ?

iii. How often will A be with B, without C ?

iv. How often will A be without B or C ?

35. At what time after T o'clock will the hands make an angle

of a° with one another ?

36. A, B, and C start from the same point at the same moment
to travel around an island 34 miles in circumference. A goes 13,

B, 7, and C, 4 miles an hour. When and where will they first be

together again ?

37. Find the expansion of
(
1 — ^ ~

j when x = 0,

38. In a G. P., s = 73.5682, r = 1.1, a = 3, to find the number of

terms.

39. Expand vTl as a periodic C. F.

40. Find values of x and y so that 314 x ~ 451 y = 13.

42. Divide a^ (b -c)+ b^ (c-d)+ c^ (a - 6)

by a2 (6 - c)+ b^ (c - a)+ c2 (a - 5).
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43. Express a;^ — 1 in terms of u when u = x — \,

44. li s = a + \ prove that a* + i = §2 (^2 _ 4)+ 2.

a a*

45. Put 4 ic^ - 4 ic3 + 5 x2 + 3 under the form A^ - B^.

46. Factorize 2x'^ + Qy'^ -%xy + xz -Zyz '-2x -[-^y - z,

A

47. Expand in ascending powers of x.
3 — X (1 — x)

48. If -^ = a, -^— = 6, -^— = c, show that
y-\-z z-\-x x-\-y

x^ _ y2 _ g2

a(l — 6c) 6(1 — ca) c(l — a6)

49. From each of two towns 45 miles apart a traveller sets out,

at 9 o'clock, towards the other town, and the rate of one is 5 miles

more than | that of the other. They meet at 12 : 45. Where ?

50. If ^ = 1 + ix+ |x2 + i5c5+ ... and z = \ - x + Ix"^ - \x^

+ Jxi ..., show that x = 2 (1— 2/^)+ | (1 - yz)'^ + V (1 - yzf-\-'"

51. P is any point on the bisector of the angle AOB, and A, P, B
are in line. Show that the sum of the reciprocals of OA and OB
is constant.

52. A gives to B and C as much as each one has. B then gives

to A and C J as much as they have, and then C gives to A and B
1 of what they then have, when A*has 72 cents, B 104 cents, and

C 28 cents. What had they at first ?

53. xy = c{x-{- ?/), yz = a(y -\- ^), zx = b(z -{- x), to solve in x,

y^ and z.

54. If x(^B-^b)=h-^b, find the value of x(B -b)+ Bh
in terms of P, 6, and h.

55. If a carriage wheel, 16 1 feet in circumference, took one sec-

ond longer to revolve, the rate of the carriage would be 1| miles

less per hour. How fast does the carriage go ? Explain the double

solution.
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66. Prove by inequalities that the triangle of greatest area, with

given base and perimeter, is isosceles.

57. If xy + yz + zx = 0, and xyz = a, find y and z in terms of

a and x.

58. Resolve
a;^ + 6a;-2 .^^^ partial fractions.

(x2-x + l)(x-l)2

59. By the expansion of (1 + 1 — x)»» show that

Ci(l + Ci 4- C2 + ...)= 2ci + 4c2 + 6C3 + .

60. By the expansion of (1 + x — 1)^ show that

i. C0-C1 + C2- Cb ..• Cn = 0.

ii. ci ~ 2 C2 + 3 C3 — 4 C4 ••• = 0.

61. If Pand Q are the pth. and gth terms of an A. P., what is

the (p + g)th term ?

62. Divide a number into two parts such that the product of

the parts shall be equal to the difference of the squares of the

parts.

63. Three numbers are in A. P. If 1 be taken from each of the

first two, the three terms will be in G. P. ; and if the last term be

increased by the first, they will be in H. P. Find the numbers.

64. Eind the square root of 2x + 2^{y(2 - y)+ x'^ - 1}-

65. How many sums can be made of a farthing, a penny, a six-

pence, a shilling, a half-crown, a crown, a half-sovereign, and a

sovereign ?

66. A stream runs 2 miles an hour, and a rower who rows 4

miles an hour wishes to go directly across it. At what angle up

the stream must he direct his boat ?

67. Find the approximate value of

{Vr+^ + v'(l + iC)2} ^ {1 + X + VTTx]

when first powers of x only are retained.
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2 S or -A- x^
68. Expand — to the term containing x^.

69. Find the fraction which expanded gives

2 - Sx -\- x'^ + 2 x^ - S x^ + x^ + 2 x^

70. Show that 1 + ^ + ^^ + ^^+- ^ 1±^.
1—X + X^ — X^+"' 1—x

71. Express x^ — 5 x^^y 4- 9 x^y^ — 7 x^y^ + 2 ic?/* — 2/^ as a func-

tion of ?/ and ^, when z = x — y.

72. A rectangle is inscribed in a triangle, and has a side coinci-

dent with the base of the triangle. Show that the area of the

rectangle is a maximum when its altitude is one-half that of the

triangle.

73. A cubic foot of lead weighs 715 pounds. If 10 pounds of

lead is formed into a cubic block, how long is the edge ?

74. What three linear expressions divided into x^ — 7 x -1- 10

will each give a remainder 4 ?

75. Express x^ + S x'^y — 6 xy^ — 2 ?/3 as a function of y and ^,

when z = x-\- y.

76. If ic2 - 2 a; - 1 = 3, find the values of x^- 5 xH 3 x'^- x+l
as a linear function of x.

77. If Bac — 5A, Cab = cA, find the value of

a^BC

2(B^/l - (72 + CVl - ^2)

in terms of abc and A.

78. Put x^ -\- x^(a + h)— x{a^ — ah) — a'^b into linear factors.

79. If £+^ + «^« = ^lL^+6^^, provethat a = 6.

a — X a -{- X b — X b -\- x

80. If ^ = ^ = ^
, then

lx{ny — mz) my(lz — nx) nz(mx — ly)

^(Z-x)+— (m-2/) +— (n-c) = 0.

Ix my nz
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81. Two circles, whose diameters are D and df, are made to over-

lap until their common chord is c. Find the distance between the

centres, and explain the quadruple solution.

82. Two perpendiculars from a point to adjacent sides of a

square are 6 and 7, and the line to the vertex not related to those

sides is 6. Find the side of the square, and explain the double

solution.

83. The wheel of a barrow is 20 in. in diameter, and its axle is

1 in. out of the centre. If the wheel turns uniformly at the rate

of 1 revolution per second, find the greatest and least velocity of

the barrow in feet per second.

84. A V-shaped trough has an angle of 60°, and is 6 feet long,

A sphere 12 inches in diameter is placed in it and rolls throughout

its length. How many revolutions does it make?

85. If a + X Vl + a^ = a Vl - x^ + x Vl - a^ fmd x.

86. From a log 20 in. diameter and 20 ft. long, the largest beam
is to be cut so as to be twice as wide as thick. How many cubic

feet will it contain ?

87. Given x2 -f i = 12 + 6 f x + -V to find x.
x^ \ xj

88. Given ^^(x^ -f y"^) =c^(p — Ix — myy, to find n in terms of c,

when the terms of two dimensions in x and y form a square.

89. To go through a rectangular field along a diagonal is 10 rods

shorter than going around, and one side of the field is twice the

other. Find its area.

90. Divide a into two -parts, such that the difference of their

squares divided by the sum of their squares is a max. or a min.

91. Given x(i-^x + iy= 102(x + V^) - 2576, to find x.

92. If two chords of a circle intersect at right angles, the sum
of the squares on the segments is equal to the square on the

diameter.
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93. Find the nth term of the A. P. whose sum to n terms is

94. A pair of wheels, whose diameters are d and d'^ are rigidly-

fixed upon an axle, a feet apart. How large a circle will the

smaller wheel describe when the set rolls on a plane ?

95. ABCD is a square with side s. AE =BF= CG=DH=ns,
E being on AB, F, or BC^ etc. Determine n so that the square

formed by AF, BG, CH^ and DE may have a given area cfi.

Explain the double solution, and thence find the maximum and

minimum values of a^.

96. A farmer bought some sheep for |72. If he had bought

6 more for the same money, he would have paid $ 1 less for each.

How many did he buy ? Explain the double solution, and change

the wording of the question accordingly.

97. A G. P. and an A. P. each has its first term = a, and the

sums of the first three terms are equal.

Find r in terms of a and d, and show that both values of r satisfy

the conditions.

98. If a, &, c are all positive, ?i + 1 + 1 > ^'^ -f ^2 _|_ ^2
^^^

^ Va+V6+Vc
a h c abc

Vabc

99. If u = l + x + x^+'" Siiid v = l-x + x'^-+ ..-, 1 + 1 = 2.
u V

100. Show that l-(ll' + m7n'+ nn'y^=(mn'-m'nyi-{nV-Vny
+ (Im' - Vmy\ if P + m2 -\- n^ = V^ + m'--^ + ?z'^ = 1.

101. X and Y are towns 20 miles apart. A person goes a certain

number of miles in a certain direction, and then changing his course

through a right angle arrives at Y after travelling 1 mile further

upon the second course than the first. How long was he in going

from X to Y at 4 miles an hour ?

102. On the rectangle ABCD, with sides AB = a and BC= 6,

P, Q, i?, S are taken, so that AP = na = CB, and BQ= nb =DiS,
Show that



320 MISCELLANEOUS EXERCISES.

area of Rectangle : area of Parallelogram PQBS = 1:2 n^—2/1+1;

and explain the result when n = 1. When n is negative.

Has the parallelogram any maximum ? any minimum ?

103. n /i = l + ic + - +^ + ..., prove that

^2 + 1_^ /. , X2 , CC* X6/l+^%^ + ^% ...I.
1 2! 4! 6! /

104. A ladder 20 feet long leans against an upright wall, and has

its foot 3 feet from the wall. If a person pulls the foot outward,

compare the rates with which the foot and the top begin to move.

105. A room 18 by 24 is to be so carpeted as to have its floor

two-thirds covered, and the width of the uncovered part is to be

uniform around the room. Find the size of the carpet.

106. In a rectangular garden, 40 by 60 feet, a flag pole 50 feet

high is placed at 6 feet from a longer side of the garden and 15 feet

from an adjacent side. How far is the top of the pole from each

corner of the garden ?

107. If «&2 _ 5c2 = a, hc^ - ca"- = 6, ca2 - ah^ = c, show that

(ab + 6c + ca)(a'^ + 52 + ^2) = - (a* -f 6* + c^).

108. Find all the values of x from /x + iV+1^:--
V xj x^

109. Two wheels, in the same plane, are 3 feet and 1 foot in

diameter, and their centres are 4 feet apart.

Find the length of the belt which envelops the wheels and
crosses between them.

110. Show that l+x + x2 + ic3^--fl + l + -l+ ...V
x\ x x^ J

111. If (^^±yiy= lizl!, then each fraction = 1.

\y + zxj 1 - x^

112. Express as a fraction 1 — 2 ic (1 — x) (1 + ic2 + x* + •••) +

I 3 I.2V3J 1.2.3^3/ r
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113. Given

a

{x — d)(x — c) {a — c){a — x) {c — x)(c — a) a — c

to find X; and also the ratio (c + a)2 : (ex + a"^).

114. Determine the isosceles triangle in which the altitude is

equal to one-third the whole perimeter.

115. The radius of a circle being r, find the angle between two
radii when the triangle formed by them and the chord through their

extremities is a maximum.

116. Through a point P to draw a line so as to form with two
given intersecting lines the minimum triangle, show that there are

two minima, and explain.

117. A man walks from A to B. If he had walked m miles an
hour faster he would have been h hours less on the road, and if he
had walked m^ miles an hour slower he would have been h^^ hours

longer.

Find the distance from A to B, and the rate of walking.

118. If X = re, y = rs, r = as, and s^ + c^ = 1, eUminate c, s,

and r.

119. How many sets of positive integers satisfy the system

120. A rectangular garden, sides a and ?>, is to be bordered with

a walk of uniform width which shall occupy one-half the plot.

Find the width of the walk ; and explain the double solution.

121. If f(x) ~l+^ + f + f^ ..., find /(O + /(_ ^), where
1 Z\ o!

122. If s, p, g, be the sum, product, and quotient of two num-
bers, ;? = S2(g _ 2g2^ 3g3_4g4 _| ),

123. Two wheels, A and B, geared together should move, as

nearly as practicable, with relative velocities of 1401 and 1945.
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The number of teeth in a wheel being limited to not more than 120,

find the numbers to be employed.

After 100 revolutions of A how much will B be in advance of,

or behind, its true place ?

124. The resistance to sliding a stone on the ground varies as

the weight, and the weight varies as the cube of the diameter.

The power of a running stream to move a stone varies conjointly

as the square of the diameter and the square of the velocity of the

stream. Show that if the velocity of a stream be doubled it can

move a stone 2'^ times as heavy as before.

125. If a,, a.^, a.^, a^ be perpendiculars from the vertices of a

square to any line, and p be the perpendicular from the centre of

the square to the same line, show that 2a^ = 4j)2 _(- §2^ where s is

the side of the square.

126. If &p ^21 &3, ?>4 be line-segments from any point to the ver-

tices of a square, and p be the line-segment to the centre, show

that 26-2 = 4j9'2 + 2 si

127. The natural numbers are grouped as follows :

(1) (2, 4) (3, 5, 7) (6, 8, 10, 12) (9, 11, 13, 15, 17) ...

Show that the sum of the numbers in the nth group is

128. If xy :=1, show that a;" + ?/" :

(x+2/)«-4 0. 1



TABLE or PRIME NUMBERS UNDER 1000.

The hundreds are found in the top row, and the two remaining figures in the

body of the table.

1 2 3 4 5 6 7 8 9

I 01 II 07 01 03 01 01 09 07

2 03 23 II 09 09 07 09 II II

3 07 27 13 19 21 13 19 21 19

5 09 29 17 21 23 17 27 23 29

7 13 33 31 31 41 19 33 27 37

II 27 39 37 33 47 31 39 29 41

13 31 41 47 39 57 41 43 39 47

17 zi 51 49 43 63 43 51 53 53

19 39 57 53 49 69 47 57 57 67

23 49 63 59 57 71 53 61 59 71

29 51 69 67 61 77 59 69 63 77

31 57 71 73 63 87 61 73 77 ^Z

37 63 77 79 67 93 73 87 81 91

41 67 81 83 79 99 77 97 ^3 97

43 73 83 89 87 ^^ 87

47 79 93 97 91 91

53 81 99

59 91

61 93

67 97

71 99

n
79

83

89

97
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ANSWERS TO EXERCISES.

I.

a. 2. i. - 3. ii. - 183. iii. 30521/415800. 3. La- b.

ii. a-h + b^- ab'^ + ab^. 4. i. a^ -9b^ + ^c^ + 4: ac.

ii. 2(m2 - l)a2 4 2(n2 - 1)62. lo. 4th. 11. pth.

b. 4. i. 12. ii. 4J. 5. 1-x. 6. -5. 7. 800. 8. 2a+ 3 6.

9. 48,24,36. 10. $1100. 11. $120. 12. 120. 13. 67.

II.

b. 6. i. 0. ii. UabcZa. iii. 0. iv. abc. 10. 'Za^ + S'Za'^b

-^-Qabc. 11. 2a35+2a252_^3 2^25c. 12. Sa3_f3 Sa^d+O 2a&c.

C. 1. a:4_i0x3+35ic2-50ic+24. 2. a:H2x3-13 x2-14 x+24.

3. 24a:*+ 154a:H269x2+154x+24. 4. x3+ x2Sa + x(2 Sa6-2«2)

+(Sa25 _ 2a3 _ 2 a^c). 5. Sa^ -}. 5 Sa^?, + lO Sa^ft^ 4. 20 Sa^^c

+ 30 Sa262c. 6. 2a* + 4 Sa^^ + 6 Sa262 + 12 l^a^bc + 24 a6cd.

d. 1. 26, -46. 2. x'^-x. 6. 2.71828. 7. ic* + a:3-ic2 + 2 x.

e. 1.14-2x2 + 3x^+14x0 + 25x8. 2. 1. 3. x2-2x-l.
4. mc-^2nab-\-pa^, 5. -J6(8a+1). 6. 1+x. 7. 1. 8. x^-l.

10. 12+ Ci2+ C22+--.. 11. C2+ C1C3+ C2C4+ C3C5+---. 12. m-^m'^

4.1^3 _+.... 13. ^ = i, J5=r--^, C = ?^^^^-^, etc.

14. 3.1416. 15. 3.1416.
a a a

f. 1. x3 + 2 x2 + 3 X + 4. 2. 3 a3 + a2 _ 1. 3. 1 - 2 x + 2 x2.

4. l-2a-i+2a-2-2a-3.... 5. Q=x2-2 x+6, i2=-18x2+18x-7.
6. l + (3a-a2+ «3+5^4)(i4.Qj4_|.^8+ ...). 8. l-x+x2-x3+ -••..

9. x+2x2+3x3+4x*+ ..., and x-i+2 x-2+3x-3+.... 10. x-1.
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11. l-{-ix-\-ix^ + ixK 13. a2(5_c)-a(62_c2) + 6c(5-c),

or -(a-&)(6-c)(c-a). 14. x^-hy\ 15. x(l + 2x)/ {l-x-hx^).

16. 6%. 17. a + 2 - 2 a-2 - a-s. 18. a:* + x^ + 3 x2 + 2 a;

- 2 x-i - 3 x-2 - x-3 - X-*. 19. 4 x3 + x2 + X + 1. 21. J. = a-2,

^ = a-3, = 0, i> = - a-5, /x = - ic4(a - x)/a%a^ - ax + x^).

III.

a. 1. (x-l)(x+l)(x-2)(x+2). 2. (2a+ 3 5 + c)(a-5-c).

3. (x^ - px + l)(ic2 -qx-1). 4. (x + y + a)(x + ?/ + 5).

5. (a + x-l)(a + x-2). 6. 169 xy. 7. (a + b -\- c){a + b - c)

(&+ c-a)(c+a-6). 8. (3x-l)(4x-l) and 3(x-2)(2 x-3).

9. (x-l)(x + l)(x'^ -px + q).

b. 1. i. (6 H-c)(c + a)(a + 5). ii. (& - c)(c - «)(a - 5).

iii. (5 — c)(c — a)(a — 6). iv. (a — b)(b — c)(c — a)(a -{- b + c).

V. vanishes. vi. (a — b)(b — c){c — a)(1>a'^ + 'Zab),

vii. (a — 6 + 1)(6 — c + l)(c — a + 1). viii. — 2 abc. ix. van-

ishes. 2. (a2 _ be) (b^ -ca) (c^ - ab). 5. (x - 1 ) (x - 3) (x + 5)

(x + 7). 6. (x-f-2)(x + 6)(x2 + 8x + 10). 7. (x + V3) (:k - V^)
(x+V2)(a:-V2). 8- 24a?)c. 9. (a+ 5-c)(?)+ c-a)(c+rt-6).

10. (a-&)(6-c)(c-(^)((^-a). 11. abc. 12. (a-6)(6-c).
13. (x - a + 5) (x - & + c) (x - c + a)

.

c. 1. a + 6 - 1. 2. (X + 2 1/ - 2)2._ 3. (b - c)\/a.

5. x2-2«x + a2+52. 7. i. {x - J(3 + V21)}{x - i(3-V21)}.

ii. (x-l + 20(x-l-20. iii. (2x - 1 + V3)(2 x - 1 - V^)-

iv. 5(x+x%4-tV^129)(x+A-tVv'129). v. a(x+-i+J-Vr=4^2]

/a; + J__ J_Vl--4a2y vi. (x-l)(i9x-l). vii. (o^-x+l)

(a + 6 • X + !)•

IV.

a. 1. i. x2 - 2 X - 1. ii. x2 - 3. iii. 2 x2 - 3 x + 3. iv. 5 x.

V. x2 - 1. vi. a26-2 - 1 + 52^-2. 2. a2 - 62 = 40. 3. c = - 4,

= -3J. 4. (cp-ar)2=:(6;)-«^)(cg-6r). 5. {BG - Aq)
iCQ - BB) = {C^ - ABY, where ^ = a-ai, B = b-bu
C=c — Ci, § = cai — aci, i? = c6i — 6ci. 6. a = ^, = — 2.
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b. 1. i. 12(x-2)(x-3)(a: + 3). ii. (x - a)(x - b)(x ~ c).

iii. i^p^^pi, 3. i. 2332. ii. 22325. iii. 23103. iv. 23131.

V. 2^32527. 4. 223. 5. 2520. 6. 5, 150. 7. x-2,
8. 4, X - 3.

V.

a. 1. i. (2x + i/)/(2x-y). ii. (Sx -{ y)/(Sx -y).
iii. (iix -\- y) / (nx — y) . iv. 2(a — x)(a2 + x2)/ax2. v. a + h + c,

vi. l/(2x- — 1). vii. 0. viii. 1. ix. a + 5 + c. x. 1. xi. 0.

xii. —1. xiii. x. xiv. a-\-h-\-c. xv. —2. xvi. 0. 3. a. 6. r/f.

b. 1. -
f. 2. 00. 3. 00, (c2 + 2 ac - a2)/2 c ; - 00 ;

-.

5. (a2-f2)/(4a+ 5). 6. 00, 2ab/(a + b); 00. 7. 00. 8. 0, V^-
9. 0, 1, i(l±Vl7). 10. a = b. 11. 8, 18. 12. ab/(a-b).
13. 29.5.... 14. X =(b'^ - a^) / (2 a -{-2 b -I), 15. 00, 1.

16. X, 4. 17. 3/2 a2. is. 36, 12, 16. 19. $3.75. 21. 32.

VI.

a. 1. 0, 4, 16, 00, - 32. 2. 144 : 125. 3. (2 ajS - a - /3)

/(a + ^-2). 4. 15:8. 5. (n/m)^. 6. 1, -3, f.

8. (?7i2+n2) : (m2-n2), {2 n2 : (m2 - n2)}2. 9. 0, -1. 10. -1 : x2.

b. 1. s = 16 ^2. 2. 145/416. 3. X = ± 4. 4. x = 0, 6.

5. (x-yy = ^\xy. 6. 6,4. 9. 10 hrs. 29.74 min. 10. 1666|.

11. © : D =75 X (28)2 : (99)2. 12. 0.027 in. 13. 5 hrs. 31 m. nearly.

VII.

2n-5 _^ PI

a. 1. a. 2. -^z. 3. X 2 . 4. a ^. 6. x^?. 6. (ft^/a"*)"*".

7. ggy/g -f a-2v^2 _ 2. 8. a^ + b^. 9. x^ + rx^ + 3fV ^' = 0-

10. (aT^^-2a)2 = 4(a2_a;2). n. 2. 12. n = {. 13. w = -6.

14. m"-i = n. 15. n = S. 16. x2 + 2 + 8 x-i + 27 x"^ ;

i2 = 97 x-2 + 55 x-3.

b. 1. i. 1 - V5. ii. -24J. iii. ^38 + 13^6). iv. \/2a".

V. 30V2_+_3V2. vi. 9bVJa. vii. 8V2. viii. a?)(3 a + 5 6) \/2a'.

2. i. 3V2a/4a. ii. l+V^. iii. V^- iv. ^(3V5-5)VlO+2v5.
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V. 1 + v/2. vi. 2 - ^3. vii. 1(2 - ^2 - ^6). 3. The former.

4. The latter, by JO'^V^ - ^V^)- 5. K^^ - ^v^^ + 2^2).
6. fv2(V2-^2)(2+^4 + ^2).

C. 1. V^ + \/3- 2. 2 + i. 3. 1 + V'3. 4. tf + V(l - w^)-

5. l-^. 6. a^-?/+V(^-2/''): 7. 2+V3- V2. 8. Vl^+Vl^.
9. l + iV2. 10. 1(V16 + VQ). 11. (a + Va2-4)/V2. 12. 3.

13. V(6 + 2i)).

VIII.

a. 1. 100(s-h)/b, 2. mnr/{m-n). 3. ^ = 2 a + 3 &,

^ = a+3&. 4. A's = J(m + w +p), B's = i(m-n +^).
5. ah/{a ~h). ^. AO = l\\a^ where a is the distance be-

tween consecutive points. 8. a'^/d^. 9. 24 and 30.

10. ac{hi — ai)/(abi — ai&), bc(bi — a{) / {ahi — aib). 11. 20

miles an hour and 704 ft. long. 12. dist. = ha(h — b)/h
;

rate = a(h — b)/b.

c. 1. I a2. 2. i. dm/ Vm^ + n'^, dn/Vm^n^.
ii. d2m?i/(m2+n2). iii. dmn/(m'^+n^). iv. d{m'^—n^)/(m'^-\-)v^),

3. i. ab/Va^ + b^ ii. (a2 - 62) / Va^ + 6^. 4. 62/V^i2Tn".

6. iVl5. 6. 64. 7. 4in. rad. 8. ^(ir^-1). 9. iV^-
O Q

10. _ths nearly. 11. _ths nearly. 12. i. w2. ii. |Vl07
71 n

13. V3- 14. 1:2. 15. i. V29 : 5. ii. \/29 : 2. 16. t+ ti'.t-h.

17. ladder = 39J ft. nearly
;
position, 34J ft. from wall.

d. 5. 3, 1.

IX.

a. 1. i. —\b, }c. ii. lia — b), J(a + 5). iii. a/b, b/a.

iv. HiV2, i-iV2. V. l/(a-6), l/(a+ 6). vi. i-iV2,
1+1^2. 2. i. b = a/(\-\-a). ii. 6=:a/(l + a). iii. a6 = 1.

3. cx2+6a:+a=0.^_5^J<V#+8^±(^). 6. BP= ^(2 a^-s^).

7. J5P=i(s±V5s2_8a2). 8. ^0 =^{4^^ ±^^* - 16 a*)}-

9. Z2 = 5«2. 10. 00=iZ(V5-l).

b. 9. i. min. — |. ii. min. — |. iii. max. 4J. iv. min. —
2J.

10. |. 12. 1. 13. a/(l + w), n«/(l + n), wa2/(i + n).

14. J a, J a. 16. imag. 22. min. J s'^. 23. max. |ths of

the square. 24. J Z2. 25.4^5,8^5. 26.5^2- 27.4^5,8^5.
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28. 10 - 2v3 from A. 29. p'^/a'^ + q^/b'^ = 1. 30. IJ, 3^.

31. i. —p. ii. q. iii. p^ — 2 q. iv. —p/q. v. {p^ — 2q)/q'^

vi. iipq—p^. 32. 11 days.

C. 1. i. (b-ay/2b, 00. ii. oo, b(b - 2 a)/2(b - a).

iii. 00, (b-ay^/(2a-b). iv. 0, fa. v. oo, (5 a6 + 6'^ - a-^)/2a.

2. 0, V{(2«-&)/«2&}. 3. 0, JV3. 4. faV^- 5. ia (5^ -6"^)2.

6. 0, 4. 7. 16 , 25. 8. 0, - 2 a( Vl + a2_ Vl - a^)

/{a2 + 2 - 2\/l - a*}. 9. f , - f 10. 0, «, K« ± VSa^-Baft).

a, 1. 1. a; = 29 + 7p, ?/ = 2-3jt). ii. a; = l + 17p, y=ll-lSp.
iii. x = 13p + 2, ?/ = 45^ + 4. iv. ic = 48 + llp, 2/=i). 2. 2 and

3, 4 and 6, 6 and 9. 3. 5 7-in. and 1 13-in. 4. 6 4-lbs. and 3

7-lbs. 5. 63
;
general formula 420^9 - 357. 6. i. 21 wide, 33

narrow, ii. 26 wide, 25 narrow, iii. 41 wide, 1 narrow.

h, I. x = 6, y = 2. 2. x = S, y = 6. 3. x = a — abc^/(b -\- ac),

y = b-i/{b + ac). 4. X = aV(a - 6), y= b^/(b - a),

5, 2sd=(z + a) (z-a + d). 6. A = 200, B = 300. 7. xV
8. 93. 9. alb - c) / (b - a) of the first, b{a - c) / (a - b) of

the second. 10. 150 acres, rent = ^ 600.

C. 1. X = 7, 2/ = 5, ^ = 3. 2. X = 2, 2/ = = 1. 3. a; = 3,

y = 2, ^=— 1. ^.x = y = b,z = 0. 5. x=(b — a)

/{a— b){b — c)(c — «), with symmetrical expressions for y and z.

6. ic = J, 2/ = i, ^ = i- 7. 3 a = 6 + 5 c. 8. 5 6 = 3 c.

9. 7 a + 6 + 11 c = 0. 12. x:y:z:u = 1:S : I: S. IZ. x = z = ^^,

y = 1. 14. a = 1, 5 = 3, c =r 2, d = 4. 15. x = a, y = a"^,

z = l. 16. X = - Sa, 2/ = 2a6, ^ = - abc. 17. 3 a6c = Sa^.

18. X = 3, 2/ = 1, 2; = - 2. 19. Sa* + 2 2:a2&2 = 8 ^252.

d. 1. x = 6, -2xV 2/ = 4, - IxV 2. X = i(a + \/a*-8 5),

2/= 1 (a -</«*- 8 6). 3. x = ±50, y = ±16. 4. x=:J(3±v5),
2/ = i(l ± V^)- 5._x = 7, 2/ = 3. 6. X = 4, i(- H + *V59),

2/ = 6,
i(_ 11 _ iV59). 7. X = 15, - 16, 2/ = 9, - 10. 8. x = i,

KV3 - 2), 2/ = 1, V3 - 2. 9. X = 10, 2/ = 8. 10. x = 3, 2/ - 2.

11. x= 1.786..., 2^ = 1.731.... 12. x = -i,y=:-j\. 13. x = i,

2/ = i. 14. x = y/{ac/b), y=^(ab/c), z=:^(bc/a).
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15. 2a/\/2T2V^, qv^2 + 2 V5, j q \/(2 + 2 V5)3. 16. x r= 3
,

y = 7, z = 9. n. x= Vbc^'^a-^, y = '\/ab^^c-^ z = Vca>^h-\

18. 27 a^2 = 4(i) - 2 a)3. 19. x = 2, y = 4. 20. x = 2, ?/ = 3.

21. X = 4, ?/ = 6, ;? = 3. 22. 15, 36. 23. 15, 20, 25.

XI.

a. 1. 999666, 1098010, 0. 2. 0. 3. - 7617. 4. 0. 5. 4 in

each case. 6.0.000211. 7.-0.0114-... 9. 12^2 - 31 x + 11.

b. 1. (x+ l)3-6(x + l)2+ll(x + l)-5. 2.3 65+30 6*

+ 119 63+238 62+ 249 6+ 106. 3. x^-l. 4. (x + 3)5-(x+3)+l.
5. (a + 6)5-3 6(a + 6)* - 4 h^{a + 6)2 + 6^.

6. (x - 1)3 + 3(x - 1)2 - 4(x - 1).

C. 1. i. 2 and 3. ii. — 2 and — 3. iii. — 3 and — 2, 1 and 2.

iv. Oand-1, land2. 2. 2.2284. 3. 1+^3. 4. \+ ^(2-{-i^^).

6. 2-^17. 7. 3, J(-l + V")- 8. 1.46460.... 9. 14.0487 in.

10. 2.5119....

XII.

a. 1. i. m +(n — l)(j9 — w). ii. a + 6(n — 1)(2 - n ).

iii. 1(3 n - 1). iv. -^^(n - 1). v. \{Q\ _ 3 6 + n • 6 - 8).

vi. K92-8w). vii. K«+^)- 2. i. 45. ii. 12i. iii. 63.

iv. w(2a+ 3 6-?i6)/2a(a+ 6). v. 816. vi. n(n+l). 3. 48000.

4. \ 7i{n - 1). 5. 8729. 7. nth = i(6 w - 5). 8. 6 or 12 terms.

9. 11. 10. 19800. 12. $1630. 13. i. 46 days. ii. 91 days.

iii. 20 or 71 days. iv. no. 14. i. 27 days. ii. 7 or 20 days.

15. 62. 16. 49J s, n = 2 m + 1. 17. $ 3140. 19. diff. == ^(b - a).

20. nth= i 71(^+ 1). 21. wth=rn2. 22. nth= n^ 23. i)=4(n-l).

24. i{n + l)2(w + 2)2. 25. J w(n2 + 1).

b. 1. i. K-^" - 1). ii- lU -(- I)"}- iii- f {1 -(A)"}» f-

iv. V2 + i. 2. n + 1. 3. 1{(V2-1)/V2}«-^. 4. 12.056 ... gals.

5. s^^/2'S% j\7rs2. 6. a26/(2a+6). 7. 10. 8. iaw(n+ l)

+ («"+! -a)/(a-l). 10. 6381407.

C. 1. 2, 4, 8, 16, 32, 64, 128, 256.

d. 1. 2a6/(a + 6). 6. 1, 2, 4.

e. 1. $1069.20. 2. $1156. 3. $8192, 4. $118.75.

5. $1734.90.
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XIII.

a. 1. i. 6. ii. 6. iii. 840. iv. (n-l)\/(n-l - m)l 2. 720.

3. 10. 4. 1260, 120, 90720. 5. 1 in 30. 6. 36. 7. 1 in 72. 8. 60.

b. 1. Qa={n-2)b. 2. nb = a(r)\. 3. 385. 7. 3 in 10.

C. 1. i. {n(w - 1) ••• (n-r-\- l)a«-^x^}/r !. ii. i x (- l)*".

iii. {2 n(2 n - 1) ••. {2 n - r + l)xr}/r !. 3. ^^CqX^.

^. {(n-r)x}/{air + l)}. 5. ^^^^=-^>r >?^^^:^-l. 6. 1080.

d. 2. 1, 0, ~1, accordingas wisof formSm, 3m + 1, or3m+2.

3. coho + cihi + C2h2 + ... + Cnhn. 5. - 197. 6. ^~?"i'^'^~,\^'
-

n !(2 n — 1)!

I 4.9 4.8V9/ 4.8.12\9/ /

e. 2. 1 .3.5...(2r-3)af/2.4.6...2r. 3. l+^x + -^x^

x3 4- -. 4. a(l-x+ I x2 - ix3 - Jx*). 9. V^.2.4.6

XIV.

7. i. The first, ii. The second, iii. The first. 9. Less than 4

for all values of x from 1 to 3.

a. 1.

XV.
4 3

X-2X-1 X-3X-2
_-t i-+ '

2(x-l) x-2 2(x-3)
a-\-l a^ + b

(a— 6)(6 — x) 6(a — 6)(a — x)

21 42
^

14
vi

^ ^

x + 2 2x + 3 (x + 2)2 2(a-x) 2(a + x)

b. 1. l+x-hx'^ + x^+-", 2. l + ix + fx2-TVa;^+Tl^a:*.-..

3. i_a;+ 1x2-1 a-3+fx*.... 4. l + ix-ix24-A^^-]j?%-'^*---
6. (1 +X)-«= 1 -CiX+ (C12-C2) X2- (Ci3-2 C1C2+ C3) X3+ (Ci*-3 Ci2C2



332 ANSWERS.

+ 2ciC3 4-C22-C4)ic*.-.. 6. x=l/ai'y—a2/ai^'y'^-\-(2a2^-asai)/

9. a = 1, 6 = 6, c = 62/2 \, d = h^/^ !, etc.

C. 1. (nH-l)x«-i. 2. (2-x+2x2 )_(l_2ic+3x2-4x3...).

3. Jn(n2 + 2). 4. J n(n+ l)(w;2+ n+ 2). 5. | n(w+ l)(4 w-1).

6. 4(11 -2w)(l + n). 7. in(n + l)(ri + 2)(n + 3).
12

d. 1. a^h = 4 c. 3. (ca' - c'aY = {ah' - a^h) (be' -h'c).

4. \ = 2VAB-{A + B). 6. 3. 9. (b-p^)/2p. 10. (l+2x)
/(l_aj-x2). 11. a -6 = 1 12. (x2 - 2 x - l)2-(x + 1)2.

13. (x + 2?/ - l)(x - y + 3). 14. m = f

XVI.

a. 1. 1, i li If , AV, if?. 3. 558, 552. 4. ¥, m- 5.

b. 1. i(Vi5--1). 2. K2V39- 9). 4. V6. 5. 1 +
1

'94-

2 + -

2

1 1

+ 4 +
"• 6.

'-sV
-., 4-f

1 1 1 1 1 1

'

2+ 1+ 3+ 1+2+ 8 +

XVII.
1

^

a. 1. 2, 4, 6, - 3, - 5. 3. 1, i, 1, 23, 2« 6. i. 1.537....

ii. 0.8379 .... iii. 1.242. iv. x = 2l,y = 3f. v. log( ^2 + 1)/
21oga. vi. iV(l + 81ogn/loga)-i. 7. -^^log2+ilog3-ilog5.

8. 1.80618, 2.40824, 1.05361, 1.69897, 1.39794. 9. log2 + log 3,

log2 + 21og3, 31og2 + 21og.3, -(2 log 2 + log 3), -21og2,
-(31og2 + log3). 10. 8. 11. « = log 2/log 1.05.

b. 1. 6.7449. 2. 0.0018542. 3. 0.57122. 4. 7.4123....

6. 0.69897. 6. 0.93936.

c. 10. Se.

d. 1. x = e«(»+i)-a.

XVIII.

a. 1. i? = 1 - 2 X + x2, G^ = 1/i?. 2. i? = 1 - 2 X + x2.

G^rz:(l + x-x2)/jR. 3. 6 x* + 7 x^. 4. 1 + X - x2 + 3 x^ - 3 X*

+ 5x5-5x6.... 6. (3+ 8x)/(3+ 5x+x2), l/(l-a;+3x2-8x3),
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~4ix4,17a^4. 6. i{l+(_)«(2n + 3)}, -50.

7- i{l + (-)"(! - 2 n)}. 8. (3«+i - 2«+i)x^

b. 2. 50 + -(^2 _ 15 ;^ + 26). 3. 1 + 7 n - n2.

4. -^^(n^ _ 4 w2 + 13 n + 6). 6. 4, 2, 1, 1, 2, 4, 7. 8. 45.14,

37.89. 9. -0'.13. 10. 0.41337.

C. 1. {l-(n+2)x«+H(w+l)x«+2}/(i_x)2. 2. (2"+2-n-3)/2«

3. {l-i(w + l)(w + 2)x» + n(n + 2)x»+i-| n(^+_l)a;«+2}/(l-x)8.

4. l + w.2"+i. 5. {H-(-)"(7i+2x«+Hw+ l^"+2)j/(i+aj)2.

6. i{l+(-)"(2n + 3)}. 7. n/(n+l). 8. n/(2nH-l),
9. 7i/3(/i + 1) + n/6(n + 2) + n/9(?i + 3). 11. f 12. J.

13. a. 14. conv. ifx<l. 15. x<l. 17. 4. 18. |.

XIX.

a. 1. i. -18. ii. 173. iii. abc + 2fgh - af^ - hg^ - ch^.

iv. x^. V. xz/(y — x)(l — ic)(l — y), vi. 3 a6c — Sa^ vii. — 4.

viii. c(ae - c^) + 6(c(Z - 6e) + (^(^c - ad), 2. 0.

b. 1. i. 0. ii. - 160. iii. 1.

C. 3. $301. 4. X8 - X22a + A(2a& - 2/2) - (ahc \-2fgh- ap
— hg'^ — ch'^) = 0, wlifTe ahc and fgh are collateral systems of

letters. 5. (a - aiy\abi - a^h) = (b - b^y. 6. mn{BB - CQ)
= jil(CP-AB) = lm(AQ-BP). 7. m = j\(6uo+ lbui-{-U3-6u2)y

^ = T6 (^ ^1 + 9 ^2 — Wo — Wa), p = yV (^ W3 + 15 W2 + Wo — 5 Ui),

8. a6c
I
a??i?i' |. 10. x=—

\
aic^dz |/| b\C2,dz |.

MISCELLANEOUS.

2. 151. 3. -2(1+2x2 + 2x4 + 2x6+...). 4. x = a/\/a234.

5. x=a, y= \/a^ z= \. 6. none. 7. l + 2(x—x^—x^+x^+x^—).
8. 60 and 40. 9. max. 3, min. \. 10. x must not lie between

-fandS. 12.1a. 13. min. -(a- 6)2/4 a?). 14. (-)"(3 7i-l)x^

15. x=:3, i/ = l. 16. 5. 17. $120. 18. 5, 7, 9. 19. in(w2 + 2).

20. J/(2 n - 1), 1 n2/. 21. 1, - 1, i- 22. i 5. 23. 1, 3, 9.

24. no, 5th. 25. 0.1 per unit. 26. ^, iV» ^^•> tui ij%.

27. (x-lly + l)(2x + ?/-3). 29. z=j\x+^x^ 30. 4.
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31. 52. 32. 105. 33. -1. 34. 593775; i. 118755; ii. 20475;

iii. 17550; iv. 80730. 35. -Vr(30r±a°) seconds after

hour T. 36. 34 hrs., at starting point. 37. Put I — z for x,

expand, and then make z = \. 38. 13. 39. 3 + i - ....

3 + 6
40. 1027, 715. ^l. {ah{h-a)-\-hc{c-h)-\-ca{a-c)}/ahc,
42. a-\-b-^c, 43. w5+ 5 w^+ lO i^H 10 wHS w. 45. (2x2-a:+ 2)2

-(2x-l)2. 46. (2x-2^+ ;2)(x-3?/-l). 47. t(l + ir.-fa:2
— ^jX^ + ••.). 49. 15 miles from one town. 52. A, 120

;

B, 60 ; C, 24. 53. x = 2 ahc/(ab — be -\- ca), with sym. ex-

pressions for y and z. 54. h{B -}- b -{- VBb). 55. 5| miles.

67. y = KVa2-4ax3 - a)/x'^, z = i(- Vo^r^Tox^ - a)/x^,

58. 5/(x-l)2 + 3/(x- l)_(3x + 4)/(x2-x+ 1).

61. {qQ-pP)/{q~p). 62. greaterpart = J a(V5 - 1).

63. 2, 3, 4. 64. Vx -
2/ + 1 + Vx -f ?/ - 1. 65. 255.

67. 1 - i X. 68. 2 - X + 5 x2 - 7 x3 + 17 x^ - 31 x^ + 65 x^ ....

69. (2 - x)/(l + x)(l + x;^). 71. z^ - z^y^ - y^. 73. 2.8912 in.

74. X - 1, X - 2, X + 3. 75. z^-^zy'^^b ?/^. 76. 437 x + 557.

78. (X + 5) {x + i «(1 - V5)} . {x + 1 a(l + yS)}. 81. i(v'X>2_c2

4. Voji _ ci^, 83. 22 7r/12, and 18 7r/12. 84. 3.82. 85. 0,

a(Vr=r^-\/l + a2)/(l + irt2_Vl- «4). 86. 22fcu. ft.

87. 4 ± Vli, -l±L 88. 7i2 z= c\P + m2). 89. 25(7jf 3^5)
sq. rds. 90. x = J a, a min. 91. yx = 7, - 8, ^"^185 — 1).

93. i2pn-p-q)/(p- q'). 94. md.= d' ^(a'^-^id^'^)/ (d-d'y,

95. w=^±aV2s2-a2)/(s2_^2). 93. 18, or -24. ^01. iV799.

104. V39i:.3. 105. 14.234 by 20.234. 106. V2761, V4561,

\/388l, V568I. 108. x =(- 3 ± V21)V V^- 109- 4v3 + f7r.

112. (1 -x + x.l + x3)/(l + x). 113. x=(c2 + 2ac-a2)/2c;
ratio is 2. 114. side : base = 13 : 10. 115. 90°. 117. rate

= mmi(h + hi)/(mhi — mih); dist. — mmihhi(m + mi)(Ji + ^1)

/(mhi-mihy. IIS. x^-]-y^= ay. 119. 12 solutions, 1 + 3 p, 12 -p,

10+5/). 120. i(a+ 6±Va2TP). 121. 2^-i+l-+...y

123. 85 and 118 ; + yi^th, nearly.
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FROM THE AUTHOR'S PREFACE.

The whole covers pretty well the whole range of elementary algebraic
subjects, and in the treatment of these subjects fundamental principles

and clear ideas are considered as of more importance than mere mechan-
ical processes. The treatment, especially in the higher parts, is not
exhaustive; but it is hoped that the treatment is sufficiently full to

enable the reader who has mastered the work as here presented, to take
up with profit special treatises upon the various subjects.

Much prominence is given to the formal laws of Algebra and to the
subject of factoring, and the theory of the solution of the quadratic and
other equations is deduced from the principles of factorization.

OPINIONS OF TEACHERS.
** It approaches more nearly the ideal Algebra than any other text-

book on the subject I am acquainted with. It is up to the time, and
lays stress on those points that are especially important."— Prof. W.
P. DuRFEE, Hobart College, N.Y.

" It is certainly well and clearly written, and I can see great advan-
tage from the early use of the Sigma Notation, Synthetic Division, the
Graphical Determinants, and other features of the work. The topics

seem to me set in the proper proportion, and the examples a good selec-

tion."— Prof. E. P. Thompson, Westminster College, Pa.

** I regard this as a very valuable contribution to our educational
literature. The author has attempted to evolve, logically, and in all its

generality, the science of Algebra from a few elementary principles
(including that of the permanence of equivalent forms) ; and in this I

think he has succeeded. I commend the work to all teachers of Algebra
as a science." — Prof. C. H. Judson, Furman University, S.C.
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Mathematical Works by Charles Smith, M.A.,

Master of Sidney Sussex College, Cambridge.

A TREATISE ON ALGEBRA. 12ino. $1.90. Key,
$2.60.

"Your Smith's 'Treatise on Algebra' was used in our University"
Classes last session, and with very great satisfaction. . . . The gen-
eral adoption of these texts would mark an epoch in mathematical
teaching."— Prof. W. B. Smith, University of Missouri.

** Its style is clear and neat, it gives alternative proofs of most of the
fundamental theorems, and abounds in practical hints, among which
we may notice those on the resolution of expressions into factors and
the recognition of a series as a binomial expansion."— Oxford Review

»

AN ELEMENTARY TREATISE ON CONIC SECTIONS.
New Edition. 12mo. $1.60. Key, $2.60.

"We can hardly recall any mathematical text-book which in neat-
ness, lucidity, and judgment displayed alike in choice of subjects and
of the methods of working, can compare with this. . . . We have no
hesitation in recommending it as the book to be put in the hands of the
beginner."

—

Journal of Education.

"The best elementary work on these curves that has come under our
notice."— Academy.

*' A thoroughly excellent elementary treatise."— Nature.

AN ELEMENTARY TREATISE ON SOLID GEOMETRY.
New Edition. 12mo. $2.50.

*'The best we can say for this text-book is that it is a worthy suc-

cessor to the ' Conies ' previously noticed by us. . . . Much credit is due
for the freshness of exposition and the skill with which the results are
laid before the student." — Academy.

"This book is calculated to supply a long-felt want. The plan of
the book is one which will recommend itself to most. The chapter on
surfaces of the Second Degree falls rather earlier than is usual, but
the care which has been bestowed upon it and the clear explanations
given remove any difficulties which might otherwise beset the compara-
tively unprepared student in the study of the subject. The examples
are numerous and well selected."— Educational Times.
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By Charles Smith, M.A., Master of Sidney Sussex College, Cam«

bridge. Second edition, revised and enlarged, pp. viii, 404. 16mo.

$1.10.

FROM THE AUTHOR'S PREFACE.
" The whole book has been thoroughly revised, and the early chapters

remodelled and simplified; the number of examples has been very

greatly increased ; and chapters on Logarithms and Scales of Notation

have been added. It is hoped that the changes which have been made
will increase the usefulness of the work."

From Prof. J. P. NAYtOR, of Indiana University.

*' I consider it, without exception, the best Elementary Algebra that

I have seen."

PRESS NOTICES.

"The examples are numerous, well selected, and carefully arranged.

The volume has many good features in its pages, and beginners will

find the subject thoroughly placed before them, and the road through

the science made easy in no small degree."~ Schoolmaster.

** There is a logical clearness about his expositions and the order of

his chapters for which schoolboys and schoolmasters should be, and

will be, very grateful."— Educational Times.

*' It is scientific in exposition, and is always very precise and sound.

Great pains have been taken with every detail of the work by a perfect

master of the subject."— School Board Chronicle.

"This Elementary Algebra treats the subject up to the binomial

theorem for a positive integral exponent, and so far as it goes deserves

the highest commendation." — Athenseum.

" One could hardly desire a better beginning on the subject which it

treats than Mr. Charles Smith's ' Elementary Algebra.' . . . The author

certainly has acquired— unless it * growed ' — the knack of writing

text-books which are not only easily understood by the junior student,

but which also commend themselves to the admiration of more

matured ones."— Saturday Review.
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ELEMENTAKY ALGEBRA FOU SCHOOLS. By H. S.

Hall, M.A., and S. R. Knight, B.A. 16mo. Cloth. Withon* an-

swers, 90 cents. With answers, ^1.10.

NOTICES OF THE PRESS.
**

. . . We confidently recommend it to mathematical teachers, who,

we feel sure, will find it the best book of its kind for teaching pur-

poses.''— Nature.

*' We will not say that this is the best Elementary Algebra for school
,

use that we have come across, but we can say that we do not remember

to have seen a better. . . . It is the outcome of a long experience of

school teaching, and so is a thoroughly practical book. . . . Buy or

borrow the book for yourselves and judge, or write a better. ... A
higher text-book is on its way. This occupies sufficient ground for the

generality of boys."— Academy,

HIGHER ALGEBRA. A Sequel to Elementary Alge-

bra for Schools. By H. S. Hall, M.A., and S. R. Knight, B.A.

Fourth edition, containing a collection of three hundred Miscella-

neous Examples which will be found useful for advanced students.

12mo. il.90.

OPINIONS OF THE PRESS.
** The * Elementary Algebra ' by the same authors, which has already

reached a sixth edition, is a work of such exceptional merit that those

acquainted with it will form high expectations of the sequel to it now
issued. Nor will they be disappointed. Of the authors' ' Higher Alge-

bra,' as of their ' Elementary Algebra,' loe unhesitatingly assert that

it is by far the best work of its kind with which we are acquainted.

It supplies a want much felt by teachers."— The Athenxum.

"
. . . Is as admirably adapted for college students as its predecessor

was for schools. . . . The book is almost indispensable and will be

found to improve upon acquaintance."— The Academy.

"... The authors have certainly added to their already high repu-

tation as writers of mathematical text-books by the work now under

notice, which is remarkable for clearness, accuracy, and thorough-

ness. . . . Although we have referred to it on many points, in no

single instance have we found it wanting."— The School Guardian,
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ALGEBRAICAL EXERCISES AND EXAMINATION
Papers. By H. S. Hall, M.A., and S. R. Knight, B.A. 16mo.
Cloth. GO cents.

This book has been compiled as a suitable companion to the ** Ele-
mentary Algebra" by the same Authors. It consists of one hundred
and twenty Progressive Miscellaneous Exercises followed by a compre-
hensive collection of Papers set at recent examinations.

ARITHMETICAL EXERCISES AND EXAMINATION
Papers. With an Appendix containing questions in Logarithms
and Mensuration. By H. S. Hall, M.A., and S. R. Knight, B.A
Second edition. IGmo. 60 cents.

KEY TO THE ELEMENTARY ALGEBRA FOR SCHOOLS.
12mo. $2.25.

KEY TO THE HIGHER ALGEBRA FOR SCHOOLS.
12mo. $2.60.

iit*^ These Keys are sold only upon a teacher's written order.

HALL and STEVENS.— A Text-Book of Euclid's Ele-
MENTS. Including Alternative Proofs, together with additional
Theorems and Exercises, classified and arranged. By*H. S. Hall,
M.A., and F. H. Stevens, M.A.

Books I.-VI. Globe 8vo. $1.10.

Also sold separately

:

Book I. 30 cents. Books I. and II. 50 cents.
Books I.-IV. 75 cents. Books III.-VI. 75 cents.

Book XI. 30 cents. Books V., VI., XI. 70 cents.

*' This is a good Euclid. The text has been carefully revised, the defini-

tions simplified, and examples added illustrative of the several propo
sitions. We predict for it a very favorable reception."— Academy.

LEVETT and DAVISON.— The Elements of Trigonom-
etry. By Rawdon Levett and A. F. Davison, Masters at King
Edward's School, Birmingham. Crown 8vo. $1.60.

This book is intended to be a very easy one for beginners, all diffi-

culties connected with the application of algebraic signs to geometry
and with the circular measure of angles being excluded from Part I.

Part II. deals with the real algebraical quantity, and gives a fairly

complete treatment and theory of tlie circular and hyperbolic functions
considered geometrically. In Part III. complex numbers are dealt with
geometrically, and the writers have tried to present much of De Mor-
gan's teaching in as simple a form as possible.
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ARITHMETIC FOR SCHOOLS. By Rev. J. B. Lock,
Fellow and Bursar of Gonville and Gains College, Cambridge ; for-

merly Master at Eton. Third Edition, revised. Adapted to Ameri-

can Schools by Prof. Charlotte A. Scott, Bryn Mawr College,

Pa. 70 cents.

The Academy says: "'Arithmetic for Schools,' by the Rev. J. B.

Lock, is one of those works of which we have before noticed excellent

examples, written by men who have acquired their power of present-

ing mathematical subjects in a clear light to boys by actual teaching

in schools. Of all the works which our author has now written, we^
are inclined to think this the best.'*

TRIGONOMETRY FOR BEGINNERS, AS FAR AS
THE Solution of Triangles. By Rev. J. B. Lock. Third Edi-

tion. 75 cents. Key, supplied on a teacher's order only, ^1.75.

The Schoolmaster says :
'' It is exactly the book to place in the hands

of beginners. . . . Science teachers engaged in this particular branch

of study will' find the book most serviceable, while it will be equally

useful to the private student."

TO BE PUBLISHED SHORTLY.

INTRODUCTORY MODERN GEOMETRY OF THE
Point, Ray, and Circle. By William B. Smith, Ph.D., Profes-

sor of Mathematics in Missouri State University.

THE ELEMENTS OF GRAPHICAL STATICS. A Text-

Book for Students of Engineering. By Leander M. Hoskins,

C.E., M.S., Professor of Theoretical and Applied Mechanics, Univer-

sity of Wisconsin.

Correspondence from professors and teachers of mathematics, re-

garding specimen copies and terms for introduction, respectfully

invited*
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