AN EARTH'S FIELD MAGNETOMETER THAT
 ITTLITES THE FREE PRECESSION OF PROTONS

CHAREES H. BOWEN, fR.

Lilbrary
U. S. Naval Po•tgraduate School

Montarey, Caliicmia

I

AN EARTH'S FIELD MAGNGTOMETER
THAT UTILIZES TYE FREE
PRECESSION OF PROTONS

Charles H. BOWEN, Jr.

AN EAPTH'S FIELD MAGNETOMFTGR
 THAT UTI LIZES THE FREF
 PRECFSSIION OF PROTONS

by
Charles H. Bowen, Jr. Lieutenant, United States Navy

Submitted in partial fulfillment
Oi the requirements for the degree of MASTGR OF SCIENCE

IN
FANGIN:3RING ZIECTPONICS

United States Naval Postrraduate School
そonterey, California
1954

$$
B 74
$$

This work is accapted as fulfilling the thesis requirements for the degree of
 MASTER OF SCIENCE IN
 ENGINEERING FLECTRONICS

from the
Unitad States Naval Postgraduate School

\square
25283

This paper describes the instrumentation of a new type of device for measuring the absolutg values of, as well as small changes in, the earth's magnetic fiald。

The athor's work on this device was accomplished at the Varian Associates research Laboratory at Palo Alto, California, during the period January to Karch, 1954, while a studert in the Electronics Engineering curriculum th the U.S. Naval Postgraduate School, Monterey, California.

The ifez that the technique described in this paper would be a feasible method for measuring the earth's magnetic field was conceived by Dro Russell Varian and a basic patent on use of this technique was granted to him in 1948.

The author wish>s to express his aprreciation to Varian associates, to Messrs. Dolan Kansir and John Drake for their cooperation and especially to Dr. Martin Packard, the Dir \rightarrow ctor of Nuclear Spectroscopy at the laboratory, for his help and enosuragement.

TABLE OF CONTENTS

Page
Preface i1
Table of Contents iii
List of Illustrations v
Chapter 1 Introduction 1
Chapter II Other types of Magnetometers

1. Dip Needles 2
2. Earth Inductor 2
3. Schmidt-Type Magnetometer 2
4. Magnetic Airborne Detector
a. Gulf Airborne Detectar 3
b. NOL Magnetic Airborne Detector 3
5. Statio on Magnetometer 3
Chapter III Method of Attack
6. Theoretical Background 5
7. A New Type Magnetometer 16
Chapter IV Exporimental Equipment
8. Polarizing Coils 26
9. Receiving Coil 29
10. Water Sample 31
11. Preamplifier 31
12. Amplifier, Narrow Band 32
13. Gating and Counting Circuits 37
14. Analoging Circuit 42
Chapter V Experimental Results 44
Chapter VI Conclusions
15. Possible Frrors 46
16. General Comments and Applications 46

$+1$

-

TABLE OF CONTENTS

Page

Appendix I 48
Appendix II 57
Appendix III 58
Appendix IV 59
Appendix V 86
Bibliography 87
Fifrure Page

1. Precession of nuclear magnetic moment about the polarizing field
Position of polarizing and $R_{0} F$ ．coils 8
2。3.4.5.$\overrightarrow{\mathrm{Ho}}, \overrightarrow{\mathrm{HI}_{1}}$ and $\overrightarrow{\mathrm{M}}$ vectors9
Components of vector \vec{M} 11
Proton resonance for ． 1 molar solution of Mn SUA 12 in water30 MoC．R．F．Head14
Nuclear spectroscopy tape for ethyl alcohol 15
8 Direction of vectar \vec{M} after polarization 17
2. Orientation of receiving coil 19
10．Block diarram of sarth＇s magnetic field measuring 19 equipment
3. Input to first stage of preampliffer 21
4. Jxponential rise of sine wave signal impressed on 22 a high Q circuit
13.Waveform produced by signal $A e^{-\alpha t}$ 冝ut impressed on a23circuit with a Q of 200
5. Timing wheel 27.
6. Polarizing coil circuit 28
7. Transient response of polarizing coil 29
8. Preamplifier 32
9. Q multiplier circuit 33
10. Photographs showing result of impressing a sine wave 3520 。
on a high Q circuit 36
Narrow band amplifier 36
Figure Page
11. One stage of binary circuit 38
12. Binary gating counter 39
13. Timing wheel 40
14. Diurnal change in earth's magnetic field 45

INTRODUCTION
The mezsurerent of the earth's magnetic field has long been of interest to various magnetic observatori=s throughout the world, to those interested in mapnetic prospectins, and to the military in anti-sumarine ork. This paper describes the instrumentation of a new type magnetometer that measures the earth's field by measuring the free precession frequency of the protons in water.

Resilts obtained indicate that with the present equipment configur ati on the arth's magnetic fisld can be measured to within 2) (out of 50000γ) on an absolute basis and that changes of $\frac{1}{4} \gamma$ can be detected. This tochinipue probably represents the most accurate method presently available for measuring the absolute vilue of the edrti's magnetic field. Further, chanjess of much less than $\frac{1}{4} \gamma$ could be datected by this method If it were necessary or lesirable simply by increasins the frequency of the crjstal controlled source in the counting system.

Possible apnlications include: use as a station magnotometer for a magnetic observatory, us for magnetic surveying or prospecting, and use in harbor defense and air anti-submarine work.
$41 y^{\prime}=10^{-5}$ gauss

1. Dip Nesdles

This is simply a compass needle free to move in a vertical plane with an adjustable weight attached on one side of the pivot. A balance is achisved between gravitational and magnetic torques. Changes in the vertical component of the earth's mapnetic field changes the magnetic moment and results in an unbalance in the forces.

This device measures changes in the earth's magnetic field and will detect anomalies of approxtmately 300γ. The earth's magnetic field, as mentioned in the introduction, is about 50000γ.
2. Farth Inductor

This instrument is frequently used by magnetic observatories for measuring the inclination of the earth's magnetic field. It consists of a high speed rotating coil which generates a voltage for all oriantations excent those for which its axis is parallel to that of the magnetic fiell being measured. It can also be used as a crude device for measuring the magnitude of a magnetic field since the voltage generated by the rotating coil is proportional to strength of the magnetic field whose flux is being cut. When used to measure the absolute value of the eartri's magnetic fleld it is accurate to within about 1000γ. 3. Senmidt-Type Magnetometer

This device is widely used in magnetic prospecting. It is similar to the dip needle in that there are orposing gravitational and magnetic torques. It is much more sensitive than the $d i p$ needle, however. It consists of a maçnet that is pivoted--but not pivoted at its center of mass. Py careful adjustment it c an be made to detect changes in the
earth's field of a few gamma--even one gama under favorable conditions. 4. Magnetic 1irborne Detector
a. Gulf Airborme Detector (9)

This dovice is also known as the flux-gate magnetometer or saturable reactor. It utilizes a ferro magnetic element of high permeability such that the earth's field can very nearly saturate it. If an alternating field, obtained from a coil, is superimposed on the earth's field the core will saturate each cycle. The phase of each cycle at which saturation occurs gives a measure of the earth's field. Small changes of a fraction of \nrightarrow can be detected in this way. The instrument does not provide an absolute measure.
b. NOL Marnetic Airborne Detector (6)

The magnetic airborne detector developed by NOL (Naval Ordnance Laboratory) and Bell Laboratories operates on a slightly different principle. Here a single core is driven into saturation about 2000 times a second. A back electromotive force is set up in the magnetizing coil which has even harmonics when there is an external field in the direction of the axis but only odd harmonics when there is no such field. The amplitude of the even harmonic content as recorded on a tape is proportional to the field strength. This instrument measures changes of a fraction of Y but does not measure the absolute value of the earth's field.
5. Station Nagnetometer

Fven a brief description of a station magnetometer would be too lengthy for a paper of this sort。 McComb, (5) in a U.S. Department of Cormerce Publication, describes in detall how a magnetic observatory
should be set un ind equipped. The Coast and Geodetic Survey maintains two magnetic observatories in this country--one at Tucson, Arizona and the other at Cheltenham, Massachusetts. A station typically has a triple walled building with sawdust between one pair of walls and air between the other pair to reduce temperature and humidity changes in sensitive equipment. Standard magnets are used and complex optical equipment is necessary. This is mentioned to illustrate the difficulty previously oncountered in making earth's field measurenents. Accuracy of better than 5 for an absolute earth's field measurement was very difficult to obtain.
r
$*$

1. Theoretical Background

An entirely now approach to the magnetometer problem was opened by the field of nuclear induction or nuclear magnetic resonance. Bloch, Packard and Hansen (2) at Stanford and Purcell, Torey and Pound (8) at Harvard pioneered in this work. A brief amount of background material follows. The notati on used follows that of Block (2) and Packard (7).

The phenomenon of nuclear induction is possible because of two inherent properties of the nuclei: their angular momentum and magnetic moment. The unit for magnetic moments is the Bohr magneton

$$
\mu_{B}=\frac{e \hbar}{2 m c}
$$

where e is the charge on an electron, m represents its mass, c is the velocity of light and $/$ equals 1.05×10^{-27} erg-sec. ($2 \pi /{ }^{2}$ is Planck's constant). The nuclear magneton is related to the Bohr magneton simply by the ratio of the mass of the proton to that of the electron. For the nuclear magneton

$$
\mu_{n m}=\frac{e t}{2 m c}=5.049 \times 10^{-24} \mathrm{erg} / \mathrm{gauss}
$$

However, careful measurements have shown that for the proton, since it is not simply a spinning spherical shell of mass m and charge 0 , that its magnetic moment is 2.7935 times the theoretical value. The measured ratio of magnetic moment of proton to that of the electron is $1 / 660$.

The second characteristic property is the angular momentum, \vec{a}, and is given in units of \hbar.

The angular momentum and magnetic moments are related by the gyromagnetic ratio gamma, Y. (This Y is unrelated to the unit of magnetic field)。

$$
\vec{\mu}=\gamma \vec{a}
$$

The vectors $\vec{\mu}$ and \vec{Q} are either parallel, in which case γ is positive, or anti-parallol and Y is then negative.

We wish to have a relationship between magnetic field strength and frequency. This can be obtained by considering the energy difference E between the Zeeman levels for a material placed in magnetic field of strength $H . \quad E=\frac{\mu H}{I}=\omega$ and since $\mu=1.41 \times 10^{-23}$ erv/gauss and $I=1 / 2$ for protons, then $\omega=\left(\frac{\mu}{r / 2}\right) \mathrm{H}$

The quantity is the parentheses in the gyromagnetic ratio and we have Wequals Y. The frequency is termed the Larmor frequency and for protons,

$$
\frac{\gamma_{p}}{2 \pi}=4.2578 \mathrm{kc} / \mathrm{qauss}
$$

For example, if H equals 7000 gauss s, the corresponding Larmor frequency is approximately 30 mc . As indicated on the previous page the ratio of the magnetic moment of the proton to that of electron is $1 / 660$ The ferequency of precession for the electron in a magnetic field is less by this same factor.

Nuclear moments can be detected because they contribute to the total susceptibility (A paramagnetic substance is one with a positive susceptibility while a diamagnetic material has a negative susceptibility.) The average value of the magnetic moment for each nucleus is:

$$
\bar{\mu}=\frac{I+1}{3 I}\left(\frac{\mu^{2} \vec{H}}{K T}\right) \text { if } \frac{\mu \vec{H}}{k T} \ll 1
$$

$$
K=1.37 \times 10^{-16} \text { ergs } / d \text { gree (Bolt mann's constant }
$$ Total magnetization per unit volume, \vec{M}, is fitimes number of nuclei per unit volume. Further \vec{M} equals $\chi \vec{H} \overrightarrow{H e r e} \chi$ is the susceptibility, for the proton at room temperature: $T=291^{\circ}$

$$
T=291 \times 10^{-23} \text { erg/gauss }
$$

$$
\begin{aligned}
\mu & =1.41 \times 10 \\
v & =6.9 \times 10^{22} \mathrm{~cm}^{-3} \\
& =1 / 2
\end{aligned}
$$

So that, if a magnetic field is applied to a paramagnetic substance, there is a total magnetization induced along the axis of the applied field. However this value is not reached instantly after applying a magnetic field but approaches this value exponentially depending on a time constant T_{1}. (For electron resonance the final value is approached in microseconds.) T for protons may vary from seconds to hours. During this time between application of a magnetic field and final alignment of the nuclear moment, a precession occurs about the external field at the Larmor frequency. The precessing nuclear magnetic moment vector, \vec{M}, is shown in figure 1. Nuclear induction was obtained at Stanford by the "crossed coils" method. If Ho is approximately 7000 gauss then the frequency of precession is approximately 30 mc as mentioned earlier. Ho wIll be termed the polarizing field. The change to be observed is a voltage produced by the change in orientation of the nuclear moments. If the field Ho was created by two polarizing coils with their common axis the z axis (or by a magnet similarly oriented) and if to this is added two coils placed with their
axis alonf the x axis, then we would have the sotup shown in figure 2.

Firure 1. Precession of nuclear magnetic moment about polarizing field.

Fişure 2. Position of polarizing and RoF。coils

If the coils oriented along the \mathcal{K} axis are excited at a frequency near the Larmor frequency of 30 mc , it is possible for the nuclear moment, which has been precessing about the polarizing field Ho, to absorb energy from the source of R.F. voltage. (The R.F. field is termed the H_{1} field and is small as compared with Ho). It is convenient to think of the RoF。 as composed of two vectors rotating in opposite directions. Thus, as long as no sample was present to be polarized, the R.F。 vectors have components along the x axis but components along the y axis are cancelled to zero. However, the presence of a polarized sample provides a vector which adds to one or the other of the two rotating R.F. vectors depending on the direction of rotation of \vec{M}. This vector, \vec{M}, is initially precessing about the z axis and the angle \varnothing, indicated in figure 3 is rather small.

However, as the vector attempts to precess about the field that is the resultant of $H o$ and H_{1}, \oint increases so that \vec{M}, at resonance, is rotating in the dy plane and is in phase with one of the two $R_{0} F_{0}$ vectors previously discussed. The R.F. vectors are then no longer equal and so no longer cancel to zero along the y axis.

$$
\text { If } \begin{aligned}
\vec{A} & =\text { angular monewtwm } \\
\vec{T} & =\text { Total Torque } \\
\frac{d \vec{A}}{d t} & =\vec{T} \\
\vec{T} & =\vec{A} \times \vec{H}
\end{aligned}
$$

Where \vec{M} equals resultant nuclear magnetic moment per unit volume.

$$
\begin{aligned}
& \vec{M}=\gamma \vec{A} \\
& \vec{A}=\frac{\vec{M}}{\gamma} \\
& \frac{d \vec{A}}{d t}=\frac{1}{Y} \frac{d \vec{M}}{d t} \\
& \frac{1}{r} \frac{d M}{d t}=\vec{M} \times \vec{H} \\
& \frac{d \vec{M}}{d t}=\gamma(\vec{M} \times \vec{H})
\end{aligned}
$$

The above equation describes the time variation to be expected from the polarization vector \vec{M}. It can be seen that the maximum value, $1 . \theta_{0}$, resonance, will occur when \vec{M} is in the ky phase if Ho is along the z axis. For resonance ω equals $\}$ Ho. If we assume that $\omega_{0}-\omega$ is $\ll \omega_{0}$ and $H_{1} \ll H_{0}$, then

$$
\begin{aligned}
& H_{x}=2 H_{1} \cos \omega t \\
& H_{y}= \pm 2 H_{1} \sin \omega t
\end{aligned}
$$

So that when ω equals γ Ho equals ω_{0} we have resonance, ϕ equals 90° and gt ϕ equals ∞. The t is used since Y may be either positive or negative in sign.

It is often easier to obtain resonance by having a constant ReF frequency and start with a value of polarizing field that is near that required for resonance. Then by modulating the amplitude of the magnetic field along the z axis with sweep coil:; at an audio rate, the nuclear moment \vec{M} can be made to pass thru the ry plane and, hence, resonance, at an audio rate 。

If, in addition to these coils already described, there is added still another whose axis is along the of axis, termed the receiving coil, a small signal on the order of microvolts will be induced in the receiveor coil by M_{y} as the vector \vec{M} passes thru resonance.

The transmitter coils, receiver coils, sample, plus certain matching networks are usually contained in an R.F. head called a probed photograph of a 30 Mc probe built by the author is shown in figure 6. The signal induced in the receiver coil of this probe is amplified and detected-usually wi th a crystal detector when working at 30 Mc. The ty pe of presentation of the signal depends on the purpose of the equipment. For magnetometer work in high fields of 7000 gauss for example, an oscilloscope presentation may be satisfactory. Figure 5 shows an oscilloscope picture of the resonance of protons in water. The In e width is of gauss. It has been determined that the linn width can be affected by the addition of certain paramagnetic ions. In this case tho solution was . 1 molar of $\mathrm{MH}_{4} \mathrm{SO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$.

Figure 5. Proton resonance for fol molar solution of MnSO4 in water.

One of the difficulties in realizing great accuracy with the magnetmeter operating in the 30 megacycle region is the difficulty of reading dining a line width. The signal shown in figure 5 has a waveform given by Bloch as:

$$
\frac{\gamma H_{1} T_{2}}{\left.1+\left(\gamma H_{1}\right)^{2} T_{1} T_{2}+\Delta \omega T_{2}\right)^{2}}
$$

Where T_{1} and T_{2} are relaxation time constants and other factors have been previously given. The exact shape is difficult to determine. Further the narrowest "line" (an electron resonance line) is approximately 20 millgauss or 2000γ. Therefore, for extremely accurate readings of field strength, the exact position of the resonant peak must be determined to 1 part in 2000 if accuracy to within 1 gamma is desired. The problem of reading within a line is quite complicated because of inhomogeneities that may exist in the field and because of the possibility of assymetry that may exist in the wave shape due to a mixture of u and v "modes" as described by Bloch. (1)

A common and very useful application of nuclear induction is in the field of nuclear spectroscopy. This is a tool used primarily by chemists. For example, the various proton lines of some substance such as ethyl alcohol can be resolved into fine line structure as shown in figure 7. Noving to the right along the abscissa on the tape of figure 7 corresponds to increasing the magnetic field. The total signal occurs within a field change of about 20 milligauss. The technique requires that the intensity of the magnetic field be known to the degree of line resolution desired. The sample being studied is placed in an R.F. head which contains the transmitter and receiver coils plus matching circuits. The RoF。 head used to obtain the tape in figure 7 is shown in figure 6.

Fiure 6. 30 M.C. RoF。Head

$$
\begin{array}{r}
H \\
H- \\
C \\
C \\
\\
H
\end{array} \quad \begin{aligned}
& H \\
& H \\
& H
\end{aligned}
$$

I
I

Fine splitting of an ethyl alcohol signal. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

OH is left hand peak
CHz_{2} next is a quadruplet
CH_{3} next right is a triplet coupling between electrons of the two carbons causes interaction. The tape indicates resolution of about 1.5 milligauss.
Figure 7. Nuclear Spectroscopy tape for ethyl alcohol.
2. A New Type Magnetometor

In nuclear spectroscopy work the relationship ω equals $\gamma \mathrm{H}$ is made use of in determining fine lins structure. This same relationship can be used in magnetometer applications. For a given frequency the magnetic fie ld H required to produce resonance in the protons of water is well known. Thus we have the inherent possibility of being able to measure fYeld strength H by measuring frequency W. This fact is made use of in magnetometers working in hish fields and at R. 5 . frequencies with little difficulty since information to within ol gauss is usually sufficientiy accurate. A magnetometer that will operate in small fields with comparable accuracy is more difficult to come by. One approach to the problem was to make use of electron resonance. For the fixed frequency of 30 Mc , proton resonance occurs at about 7000 gauss while electron resonance occurs in fields of only a few gauss for the same frequency. This possibility, the use of electron resonance for low fleld measurenent, was investigated by Levinthal and Rodgers. (4) They found that accuracy of \pm .02 gauss or $\pm 2000 Y$ could be obtained.

The material that follows will describe a new technique that utilizes the free orecession of protons in water to measure the small magnetic field of the earth. In this method a sample of water is polarized with a large magnetic field (large as compared with that of the earth). This polar izing field is oriented approximately 90 degrees to the earth's magnetic field. It is necessary to polarize the sample of water with a field Ho in order to orient the vector \vec{M} approximately 90 degrees to the earth's field. The reason for this will become more apparent later.

Figure 8. Direction of vector \vec{M} after polarization.

The polarizing field Ho is left on for a time lang as compared with T_{1}, where a time equal to $5 \mathrm{~T}_{1}$ is required for alignment of the induced moment \vec{M} approximately along Ho. After $5 T_{1} \vec{M}$ would actually be aligned along a line that is a resultant of Ho and the earth's field but if Ho is much greater than the earth's field then the vector \vec{M} would be positioned approximately along Ho.

If this large polarizing field is now suddenly cut of f, the vector representing the overall magnetic moment is left free to precess, with exponentially decreasing amplitude, about the only magnetic field remaining, that of the earth.
\vec{M} will precess about the earth's field in the same way that it processed about Ho immediately after Ho was impressed. However, the frequency of procession is quite different in the two cases because Ho is much greator than the earth's field and the frequency of precession is definitely related to field strength as shown by the equation for ω equals γH on Page 7 which leads to a precession frequency of:

$$
f=4.2578 \mathrm{kc} \times \text { field ing gauss }
$$

Thus, for the 30 Nc probe discussed earlier, the fleld associated with 1t was about 7000 gaus s. Now, however, with the earth's fleld of .5 gauss, the frequency of precession is seen to be an audio frequency just over 2 Kc .

If a receiving coil were placed 90 degrees to both the earth's field and the polarizing field, a small signal of a few microvolts would be induced in it by the precession of the vector M about the earth's field after Ho was cut of f.

An important factor in practical application of this equipment should be noted here. It is not necessary that Ho be exactly 90 degrees to the earth's field in order to determine the frequency of precession and thus the earth's field strength. If Ho is not 90 degrees to the earth's field, then the amplitude of the signal induced in the receiving coil is reduced but its frequency is unchanged. Thus, if Ho is 45 degrees to the earth's field, the ultimate signal is reduced to .7 of its previous amplitude but its frequency remains the same.

If the signal induced in the recoiving coil after the magnetizing field is turned of f is ampliffed, and the exact frequercy determined, it would be possible to thus obtain a measure of the earth's magnetic field. A block di agram of the required equipment is sketched in figure 10.

It has been shown by Bloch (I) that the signal to noise ratio is proportional to the volumg of the sample. This is true because the groater volume provides a larger number of dipoles. Therefore a fairly large sample should be used.

In nuclear spectroscopy the line resolution possiole is limited by inhomogenaities in the big magnetic fleld, Ho. Fnr example, if the field

Figure 9. Orientation of receiving coil.

Figure 10. Flock diagram of Earth's magnetic field measuring equipment.
across the sample is homogeneous to within. On gauss, then spectrum lines separated by less than . Ml gauss cannot, in general, be resolved. Since it is difficult to create a magnetic field of 7000 gauss that is homogeneous over a large area, the samples used in spectroscopy are necessarily small, being on the order of one cubic centimeter. However, the earth's magnetic field is homogeneous over a very large area and this makes it possible to uss quits large samples and thus obtain better signal to noise ratios.

The polarizing coil should be capable of providing a magnetic field of at least 100 gauss in order to produce a magnetic field that is 200 times that of the earth's magnetic field.

The open circuit voltage, which c in be considered as being int roduced in series with the coil has been shown by Packard (7) to be: Vopen circuit $=4 \pi N A M$ wicoswt $\times 10^{-8}$ volts $N=$ number of receiver coil turns
$A=$ area of cylindrical sample in cm^{-3}
$M=\nsim H$
$=$ susceptibility $\times H=3.4 \times 10^{-10} \mathrm{H}$
$H_{0}=100$ gauss polarizing field
$N=6.9 \times 10^{22} \mathrm{~cm}^{-3}$
$\mu=1.4 \times 10^{-23} \mathrm{erg} /$ gauss $=$ magnetic moment for each nucleus
$K=1.37 \times 10^{-16} \mathrm{erg} /$ degree $=$ Boltman's constant
$T=291^{\circ}=$ absolute temperature in degrees Kelvin for room temperature The voltage across the capacitor shown in fIgure 11 which is the voltace annliad to the grid of the first sta e of the preamplifier is Q times Voc. The rms value of the grid voltage is $Q \frac{V o c}{\sqrt{2}}$ where Q is the Q of the
recaiver coll. For the above vill $\rightarrow 9$ the maximum rms volts at the grid is: Vrens max equals 41.6 NAQ micr micr volts.

Figure 1l. Inout to first stage of preamplifier.

Therefore, in order to theoretically have an input signal of 41.6 mierovolts, N12 must equal 10^{6}. Trus, a large number of receiver coil turns, a large sample area, and a high Q is desirable.

In the counting circuit, t, be described later, it is possible for noise to cause an grroneous count. Therefors, it is desirable to madu noise to as low a level as possible while still retaining tie signil.

The signal was contored about a frequency of 2182 cycles. A shift of 1 cycle would correspond to a shift in the earth's field of approximately 25γ. Diurnal fluctuations based on data from the Coast and Ceodetic Survey's station at Tucson, Arizona, are about 40γ, corresponding to less than two cycles. Large magnetized material near the equipnent could cause somewhat greater fluctuations then this but is is apparent that a very narrow band amplifier is feasible. Noise N equals $4 k$ Tof where Δf represents the bandwidth. A bandwidth of a few cycles seems advisable. However, a very narrow bandwidth brings in other considerations. If a sine wave is impressed on a tuned circuit with a given Q, the ensuing oscillations do not commence at maximum amplitude instantly but build up exponentially to their maximum value in $\frac{5 Q}{\pi}$ cycles of the impressed sine wave.

Figure 12. Exponential rise of sine wave signal impressed on a high Q circuit.

The signal occurring in the receiving coil is an exponentially decreasing sine wave $A e^{-\kappa t} \operatorname{sir} \omega t$ 。 If this signal were applied to a low Q circuit it could be expected to build up very rapidly wile If it were applied to a very high Q circuit it would build up more slowly. Since the time constant of the exponential decay was approximately 1.6 seconds, it was important that the signal not build up tocslowiy for, if it did, it would be decaying into noise before a satisfactory count could be obtained. This problem was investigated with LaPlace transforms and is included as appendix I. The results showed that for a $\&$ equal to 200 , 1.e., a bandwidth of approximately 10 cycles, the envelope of the waveform produced would be as sketched below.

Figure 13. Waveform produced by signal $A e^{-\alpha \sin } \omega t$ Impressed on a circuit with a Q of 200 。

The waveform shows that the transient condition caused by the high Q circuit lasts only about one-tenth of a second which is not serious since the total counting time expected to be available before the signal decays into the noise is approximately two seconds.

The frequency of precession could be determined in various ways. One direct way that immsdiatsly suggests itself is to amplify the signal to sufficient amplituie and count the frequency with some device such as a Hewlett Packard 524A counter. The H_{0} P。 5244 will count a 2 Kc audio frequency by more than ons method. It will count for 1 second of the signal frequency with an uncertainty in the count of 1 cycle of the signal frequency which corresponds, for a one second count, to an uncertainty in the earth's field of 25 . Another method of counting possible with the H.P. 524 t is to use the signal frequency, the 2 Kc , to gate on and off a 100 Kc crystal controlled frequency that is generated inside the H.P. 524A. In its nomal use the gate would be kept open for 10 cycles of the signal frequency during which 500 cycles of 100 Kc is counted with a possible srror of 1 cycls out of 500 。 Therefore, the count must continue for much longer than 10 cycles of the signal frequency if accuracy on the order of 1γ is to be obtained. If the count were continued for 4000 cycles of the signal frequency, 2 sec onds of time, the number of 100 Kc cycles occurring between the gating on and gating off pulses would be approximately 200,000 and the uncertalnty of one count in the 100 Kc would correspond to a $\frac{1}{4}$ Yuncertainty in the earth's field.

It might seem at first glance that the count should be continued as long as any slgnals were available to count. This is not true because of noise bursts that can \propto cur and cause errors in the counting. The accuracy
will decrease by a factor $1 / e$ each time the range is doubled after reaching some S / N ratio that first cuses sang s:all error to exist in the counting. This is the "critical" S / N ratio. Thus the re are two opposing offects-one that produces a factor of two improvement in accuracy each time the range is doubled; the othwr a $1 /$ e decrease in acruracy each time the range is doubled after reaching the critical S / N ratio. The count should always be continued to the critical value of S / N and to .557 of one time constant thereafter. This conclusion is justified in anpendix II.

CHAPTER IV

EXPERTMENTAL BQUIPMENT

The following system components will be described:

1. Polarizing coils
2. Receiving coil
3. Sample of water
4. Preamplifier
5. Amplifier, Narrow Band
6. Gating and counting circuits
7. Analoging circuit
8. Polarizing coils

These two coils each consisted of 1200 turns of \#18 wire. The D.C. resistance of each coil was 25 ohms. They were wound on drum-like coil forms that could be moved relative to one another. The total inductance when the coils were placed as close together as posible was I henry. The field created by the coils with two amperes of current flowing was 172 gauss which is 244 times that of the earth's field. This field meets the requirement of being large as compared with that of the earth. The inside diameter was $8^{\prime \prime}$ which permitted use of a quite large water sample. It was necessary to polarlze the coil by supplying current for a period of several seconds in order to allow the sample sufficient time to reach its steady state of maximum magnetization. Following this the current must be cut of f This switching was accomplished by a microswitch actuated by a slowly ro tating whe el containing two notches.

The whe el rotated at 2 rpm which permitted ons cycle of polarize and then count during each 15 second period. A schematic diagram of the

Figure 14. Timing wheel.
polarizing coil circuit is shown on page 28. Terminals 1 and 2 are also indicated in the figure.

The sequence of action was as follows: when the microswitch was out of the notch, s_{1} was closed. This in tum $c l o s e d s_{2}$ and s_{3}. These relays caused s_{4} and s_{5} to close. In this condition, which lasted for approximately 10 seconds, the power supply provided two amperes of current to the polarizing coils and the water sample was thereby polarized. As the rotation $\mathfrak{o f}$ the wheel continued, the microswitch arm dropped into the notch causing s_{1} to open. Switches s_{2}, s_{3}, and s_{4} open immediately leaving the polarizing coils in series with a resistor R_{1} (220 ohms) and a capacitor ${ }^{c} 1$ ($80, \mathrm{f}$). This causes an overdamped pulse of current to flow in the polarizing coil whose duration is approximately 20 milliseconds.

There is a delay of several milliseconds between the opening of 32 , s_{3}, and s_{4}, and that of s_{5}, C_{2} was $80 u$ and R_{2} was approximately 31 K 。

Figure 15. Polirizine coil circuit.

+

Figure 16. Transient resp once of polarizing coil.

The opening of s_{5} leaves the polarizing coils free to ring at the $h i g h$ frequency but low amplitude determined by the inductance of the coils and their distributed capacitance. See figure 16. The voltage rises initially then decays for 24 milliseconds before the high frequency ringing commences. This two-step cutoff was devised by Varia and greatly simplifies the transient problem. This is true because large transients in the polarizing coils induce large, unwanted signals in the receiving coil which block the amplifying stages and cause ringing of the high Q circuits. 2. Receiver coil

This coil was $4^{\prime \prime}$ long and had a 3.5" inside diameter. It consisted
of 3500 turns of $\# 26$ ini re and hai an inductance of .235 henry. The D.C. resistance was 95 ohms. The $A . C$ resistance equals the D. . resistance at the audio frequency of 2 Kc .

$$
Q=\frac{\omega L}{R}=34
$$

Sufficient capicity to resonate the receiving coil was placed across it。

In the cutoff of the polarizing coils it is desirable to have a rapid cutoff so that the many small nuclar moments which combine to form the vector \vec{M} will start processing in phase and thius produce a coherent signal. Fxperience his shown that if cutoff is too rapid a smaller signal results. This is tentatively accounted for by a fanning out of the nuclear moments that combine to form $\vec{M}-$ with a resultant destructive phase interference.

On page 20 the equation for the maximum voltage at the grid of the first stage of the preamplifier was given. It depended on several factors such as the Q and number of turns of receiving coil, magnitude of polarizing \tilde{i} eld, area and susceptibility of sample and frequency of precossion. Using the values just given in the description of the polarizing coils and receiving coil, the the oretical value of maximum rms voltage to be expected at the grid of the first stage of the preamplifier is 1.8 millivolts. (The sariple area used was $213 \mathrm{sq} \cdot \mathrm{cm}$.)

Later, it was desired to check this value of 1.8 millivolts at the grid of the first stage of the preamplifier to gse how it compared with the amplitude of the signal at this point obtained from an actual water sample. In order to accomplish this a water sample was polarized and then allowed to precess about the earth's field. The output amplitude
after preamplifi:ation was observed on an oscilloscope. in artificial signal from z signal generator was then introduced at the first grid of the proamplifier and tts amplituds at that point adjusted until the preamplifier output as shown on the cocilloscope was the same as that obtained with the actual signal. By this substitution method it was found that the signal from the actual sample of water praiuced a voltage of .1 millivolt at the arid of the first stage of the proamplifier rather than the computed vilue of 1.8 millivolts. The reason for this difference is not fully understood. Possible explanations include the fact that the equation used is for a long cylindrical sample which did not in fact exist. Further, simal reduntion can be caused by coil orientations that are not optimum. 3. Water sampla

This was enclosed in a plass far that was fitted inside the receiving coil, so that the coupling would be close. The actual sample area was $3^{\prime \prime}$ or $7.62 C_{m}$ in di meter and $3.5^{\prime \prime}$ or 8.9 Cm long。
"q" equils arez of sample and was $213 \mathrm{sq} . \mathrm{cm}$. Volune of sample was $1620 \mathrm{~cm}^{3}$. This can be compared with approxinately $1 \mathrm{~cm}^{3}$ samples that are used in most spectroscopy work. Thus a great many mora nuclei are being polarized here and the resulting signal is larger than that obtained in spectroscooy work.
4. Preariplifiar

This devise was placed near the transmitting and receiving coil. It was built of miniature tubes and was powered with batteries on both filaments and $B+$ to reduce noise and 60 cycle hum. The schematic diagram is shown below. All tubes were ck 628 Patheon miniatures.

This preamplifier provided amplification of the signal from .l millivolt to 7 millivolts. Thus, the gain was 37 db .
5. Narrow band Amplifier

There were no tuned circuits placed in the preamplifier so narrow banding was required in the amplifier in addition to further amplification. The required amplification could be obtained vith one or two additional stages. However, it was desirable to have an amplifier whose bandwidth could be changed readily in order to observe the effect of narrow banding on the signal. With this in mind a narrow band, \& multiplier circuit (3) was constructed.

The Q multiplier circuit consists of a cathode follower that has a tuned circuit at the prid. It has an adjustable positive feodback thru resistor R.F. shown in the schematic diagram, figure 15.

Figure 18。 Q multiplier circuit

Oscillation will nceur in a circuit with nositive feedback only if ak equals one, $i .0$. , if the gain tim*s the feadback factor equals one. In a cathode follower the gain is somewhat less than one. Therefore, by keeping the feedbick also just slifghty less than one, the feedback can be kent bal ow a critical value that would cause ascillating to ensue. The feedback provides, in effect, a negative resistance that cancels a part or the equivalent parallel resistance of the tuned circuit thereby increasing its \int. It was found that G_{C}^{\prime} s of 2000 ware possible at 2 Kc signal input with a resultin bandwidth of 1 cyclo. With the circuit shown in figure 18 a bandinidtin of 28.7 cycles was measured for an input frequency of 2182 cynle with resistor Rf all in。 As Rf was reduced, the Q of the input circuit increased to 200 while retaining good stabllity.

It was found that if the C_{8} was increased to 570 a slight overshoot due to institility x curred when a sine wave was suddeniy impressed. This is shown in the three photographs of figura 19. The first photo shows the sienal that resul.tad when the feodback resistor was disconnected. The rise oí sional to final anplitude was very rapid. (Signal was supplied by Hewlatt Packard audio signal generator). The Q of the tank circuit at the grid of the tubs when considured alone was found to be 5?. The second picture shoris the rise due to impressing a wave on the circuit with $R f$ adjusted so that the G was increased to 200. There is a measurable rise time ovidert as would bs expected. In the third photo the \& was 570 and some overshoot is evident. C's used during the tests never exceeded 275.

It is oiviously irpossible to read the bandwidth of a circuit with a of over 500 from the erequency dial of an audio signal generator when the eariter frequency is 2182 cycles. The bandwidth measurements were

$\overline{-1} \sqrt{\square} \square+1+0$
 $-$

5

Figure 19. Photorraphs showing result of impressing a sine wave on a righ Q circuit. (continued on next page)

Figure 17. Photographs showing result of impressing a sine wave on a high Circuit.
made by H. . 5244 counter plus the binary scaling circuit which was constructed to : θ used as an integral part of the overall system. This counting system will be d scribed in the next section.

Having, constructed a circuit to provide a narrow bandwidth it was also noressary to have \Rightarrow two untuned stases of amplification in order to have an output signal of approximately 10 volts maximum amplitude.

Figure ? O Narrow bind amplifier
6. Jatine and Countin; circuits

There is available out of the amplifier a simal of frequency near 2182 cycles. Its initi il amplitule is approximately ten volts and it is exponentially decaying with a time constant of approximately 2.6 seconds. It has an initial S / N ratio of 20 or 30 to 1 . During the lst 100 milli seconds a transient condition exists that must be avoided. The frequency of this si fnal rust be determined to within a small fraction of one cycle. The $11 . ? 524$. required .85 volts of inout signal to trigger the first squarjng and amplifying stages. An input si gnal sine wave greater than .85 volts would (with the froquency-period switch set to period) produce positive rectangular pulses (shaped signal pulses) of about 30 volts amolitude at oin one of the decado divider socket. This decade divider then supplies output pulses to pin 2 of the same socket that are $1 / 10$ the frequency of the incoming simn . These pulsas act as gating pulses for the intemally generated 100 K.c. This decade divider was removed and the positive rectangular pulses into pin 1 were inverted and utilized to trigger a binary gatine counter. This binary circuit produced pulses spaced 4096 cyclos apart or, by switching out one or more stages, it nould provide pulses 204 ? , 1024 etc. cycles apart. The reason for using the binary circuit was to reduce the last count arror to a val equivalent to approximately $\frac{1}{4} \gamma$ change in the earth's field as discussed on page 24.

The schematic diagram of the binary circuit is shown on the next two pages.

The binary scaling circuit consisted of 13 stages wich would actually permit outout pulses to be spaced by is many as 2^{13} or 8192 cycles, though this number was not used.

Figure 2l. One stage of binary circuit

Firura 22. Binary gatine countar.

It was important that the counting not commence until 100 milliseconds after the polarizing coil was cut off in order to avoid a transient condition. (See page 23 and Appendix I) However, no further delay was desirable if the maximum counting time was to be utilized. The delay was introduced by placing a second microswitch so that it was on the onposite side of the slowly rotating whe el from the polarizing coil microswitch。

Figure 23. Timing wheel.

The physical position of the second microswitch was arranged so
that it dropped into the notch 135 milliseconds after microswitch \#1. This introduced sufficient but not excessive delay. The second microm switch caused a relay to open and close that was connected to the reset of the binary gating counter. By dropping into the notch, switch 8_{6} in drawing 22 was closed bypassing the 50000 ohm resistor. When microswitch \#2 was out of the notch, the 50000 ohm resistor was placed in series with the grid resistor in one stage of each of the pairs of bistable circuits in the binary gating counter. This unbal anced each pair and caused each of the stages which had 50000 ohm int roduced to become the "on" tube of its pair. The first squaring amplifier of the H.P. 524 A counter limited 1ts output to 20 volts regardless of input signal amplitude. This output when fed to the binary gating counter out of pin 1 of the "Decade Divider Socket" was not sufficient to trigger the binary gating counter provided 36 was open with the 50000 ohm in the grid lead of every other stage. Therefore large transients which ocurred prior to the time that microswitch \#2 dropped into the notch did not start an erroneous count. Whon microswitch \#2 dropped into the notch closing s6 and bypassing the reset resistor, the binary gating counter was ready to receive input signal pulses. It was necessary for the first input pulse to produce an output pulse which would open the gate on the 100 Kc and start a count on the H_{0}. . 524A counting stages. Since this was true, the binary gating counter was not arranged in the conventional manner. If it were, then the first output pulse would occur only after 4096 input signal pulses and additional pulses would follow spaced 4096 cycles of the input si gnal frequency apart. In ordor to cause the first input signal pulse to produce
an outout pulso, i.s., "go all the way through," the reset resistor was introduced into the opposite stage of each pair than it would have been normally. This is the condition that would usually exist after 4095 cycles of the input sigmal frequency. Thus the first pulse started a count and 4096 cycles later the count was stopped by the next pulso。

In order to determine the overall accuracy of the counting equipment, a Hewlett Packard low frequency standard of 1000 cycles was counted for 8 seconds. The results showed the device to be accurate within the limits of the crystals which is 1 part per million plus 1 cycle of 100 Kc. For data see appendix III.
7. Ana loging circuit

For the data collected the precession frequency was counted and the answer indicated on the lighted dials of the H.P. 524A counter. For some applications, it would be preferable to have the result of the successive measurements continuously recorded on a tape recording voltmeter such as the تsterline-Angus or Brown. It is possible to accomplish this by using another binary counting circuit that will count to 64 . To this circuit can be fed the same 100 Kc fracuency that is counted by the $H_{0} \mathrm{P} .524 \mathrm{~A}$ when the gate is opened by the 2 Kc signal. The total number of 100 Kc cycles occurring during a 2 second count will be about 200000 and the actual number of cycles will differ from this slightly depending on the exact frequency of precession. When these cycles are fed into the binary counter capable of counting to 64, it will count thru its full range a large number of times and when the 100 Kc is gated off will stop counting. The count indicated at this time on the binary will deternine some reference number. If the next count then leaves a different remainder on the
binary indicater lights, this will correspond to a change of field. A change of one cycle of the 100 Kc will cause a change of one count in the binary indicator which corresponds to a change of very nearly t in the earth's field. If, in the plate circuit of one of each pair of stages in the binary circuit is placed a relay switch that switches in a voltage of a cortain amplitude then the 100 Kc frequency count c an be converted to a voltage amplitude. The weight given to the six stages of this binary counter are $1,2,4,8,16$, and 32 so that the voltages switched in by the various pairs of siages shald be proportional to the se numbers. The total voltage or some fraction thereof can then be applied to a recording voltmeter.

Such a circuit was built and tested with a synthetic signal but time did not permit its incorporation into the overall system.

CHAPTER V

EXPERMENTAL RESULTS

Data were collect:d for a plot the diurnal change of the earth's magnetic field. In general during the day data were collected for ten minutes out of each hour. (A total of 40 pieces of information was collected in a ten minute period). Data were collected continuously for certain periods of the day in order to establish short term trends. A plot of the data is given in figure 24。 The tabulated data is appendix IV. Several things of interest are: the polarizing and receiving coils were placed approximately 50 feet from the main laboratory building in order to reduce interference. However, some interference still existed but was less at night when the laboratory was quiet. Also, the effect of the sun is less at niprt. The data collected starting at 2331 shows a period of over 7 minutes when the indicated change in the earth's field was only $\pm \frac{1}{4} r$. Data taken starting at 0029 shows a drift in the earth's field of 3 during a ten minute period with a clear "trend" apparent in the data. This same type of trend is evident at other points in the data. Data collected between 0750 and 0820 is believed to have superimposed on the normal change an effect due to the arrival on the Varian parking lot of about 200 auto mobiles during this period. Data were collected continuously and a total change of $7 Y$ was noted during this time. It is al so noted in the data that at the end of the 24 hour cycle the readings indicated a return to the starting point of the previous day.

An additional piece of information on equipment sensitivity was obtained by moving a 3 foot length iron pipe 5 inches in diameter from a point 50 feet distant from the polarizing and receiving coils to within 15 feet. An immediate shift of over 12 Y was noted in the data. (See appendix V)。

CONCLUSIONS

1. Possible frrors:

It is belleved that changes in the earth's field of $\frac{t}{4} Y$ can be detected, with the present ecuipment configuration. The limitation is imposed by the fact that the count is for only 2 seconds and the base counting frequency is 100 Kc . If this base frequency wore increased to 500 Kc then changes of $1 / 20 \mathrm{Y}$ should be detectable. Accuracy of course is also devendent on the stability of the oscillator creating the base frequency but with crystal controlled oscillators errors from this eource should be less than one part per million. Noise is another possible source of error but with initial S / N ratios of 20 or $30 / 1$, this is not a problem unless long counts are attempted.

Accuracy with ∂ for measurement of the absolute value of the earth's field was achieved. Greater accuracy than this is not claimed since the gyromagnetic ratio as measured by the Bureau of Standards was only accurate to within one part in 40000. Also the exact way in which the squared up signal wave crosses the axis affects the accuracy of the count slightly. 2. General Comments and Applications

The ascuracy of the system which has been described depends solely on the ancuracy of measurement of the frequency of precession. The orientation of the coils need not be exact and the precession fraquency is not affected by temperature or humidity changes. Further, the equipment does not operate as a rate of change instrument and does not require motion.

The equioment exclusive of the frequency counting devices could be reduced to a 25 pound package-something that could be carried by one man。

The 2 Kc sipnal could be telemetered to a remote spot where its exact frequency could be determined.

This system would obviously have applications as a station magnetometer for a magnetic observatory. It could also bo used for magnetic prospecting either as an airborne or ground equipment. Possible military applications in harbor defense and anti-submartne warfare are also evident.
s

ON NODAL BASIS

$$
\begin{gathered}
\left(c s+\frac{\Gamma}{s}\right) v-(\Gamma / s) v_{1}=-I(s) \\
-\frac{\pi}{s} v+\left(G+\frac{\Gamma}{s}\right) v_{1}=0 \\
I(t)=I e^{-\alpha t} \sin \beta t \\
I(s)=
\end{gathered}
$$

$$
\begin{aligned}
& V=\frac{-I(1)\left(G+\frac{\pi}{s}\right)}{G \operatorname{cs}+C T+G \frac{\pi}{s}+\left(\frac{\pi}{5}\right)^{2}-(\pi / s)^{2}} \\
& =-I(s) \frac{(s G+\pi)}{C G s^{2}+C \Gamma s+G \Gamma} \\
& =-I(s) \frac{s M+\frac{\pi}{4}}{s^{2} c+\frac{c \pi s}{G}+\pi} \\
& =-\frac{I(s)}{c} \frac{s+\pi / T}{s^{2}+\frac{\pi}{q} s}+\frac{\pi}{c} \\
& =-\frac{I(s)}{c} \frac{s+\frac{R}{C}}{s^{2}+\frac{K}{C} s+\frac{1}{L C}} \\
& =-I \frac{\beta}{c} \frac{s+\pi / L}{\left[(s+\alpha)^{2}+\beta^{2}\right]\left[L^{2}+\frac{k}{L} s+\frac{1}{L c}\right]}
\end{aligned}
$$

$$
V=-\frac{I \beta}{C} \frac{s+R / L}{\left[(L+\alpha)^{2}+\beta^{2}\right]\left[\left(\alpha+\frac{R}{2 L}\right)^{2}+\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}\right]}
$$

let $-\frac{I \beta}{c}=K \omega$ since $\beta=\omega$

$$
\begin{aligned}
& +f(\alpha+\alpha)^{2}+\beta^{2}=0 \\
& (\alpha+\alpha)^{2}=-\beta^{2} \\
& \alpha+\alpha= \pm j \beta \\
& 1=-\alpha+j \beta,-\alpha-j \beta
\end{aligned}
$$

similarly

$$
\begin{aligned}
& L=-\frac{R}{2 L}+j\left(\frac{1}{L c}-\left(\frac{R}{2 L}\right)^{2}\right) \\
& -\frac{R}{2 L}-j\left(\frac{1}{L c}-\left(\frac{R}{2 L}\right)^{2}\right) \\
& \text { let }-\frac{R}{2 L}=-\delta, \text { hen } \frac{R}{L}=2 \delta \\
& \text { Let } \frac{1}{L c}-\left(\frac{R}{2 L}\right)^{2}=\gamma^{2} \\
& L=-\delta+j r,-\delta-j r
\end{aligned}
$$

*

$$
\begin{align*}
& v(\alpha)=k \omega \frac{1+\alpha \delta}{(1+\alpha-j \beta)(\alpha+\alpha+j \beta)(\alpha+\delta+j r)(\alpha+\alpha-j r)} \\
& \frac{V(t)}{k \omega}=\frac{(-\alpha+j \beta+\alpha \delta) e^{(-\alpha+j \beta) t}}{2 j \beta\left((-\alpha+j \beta+\delta)^{2}+\gamma^{2}\right)} \tag{1}\\
& \frac{(-\alpha-j \beta+\alpha \alpha) e^{(-\alpha-j \beta) t}}{-2 j\left((-\alpha-j \beta+\delta)^{2}+j^{2}\right)} \\
& -2 j \beta\left((-\alpha-j \beta+\delta)^{2}+\gamma^{2}\right) \\
& \frac{(-\delta-j r+\lambda \delta) e^{(-j-j r) t}}{\left[(-\delta-j r+\alpha)^{2}+\beta^{2}\right](-2 j \gamma)} \\
& \frac{(-\delta+j r+\alpha \delta) e^{\left(-\delta+j^{r) t}\right.}}{\left((-\alpha+j r+\alpha)^{2}+\beta^{2}\right)(2 j r)}
\end{align*}
$$

Terns (1) and (2) are complex conjugates
" (3) " (4)"
raking twice the real part of one in each case:

$$
\begin{aligned}
\frac{v(t)}{k \omega} & =\not \operatorname{Re}\left[\frac{(-\alpha+2 \delta+j \beta) e^{-\alpha t} e j \beta t}{x j \beta\left((-\alpha+\delta+j \beta)^{2}+r^{2}\right)}\right. \\
& +\gamma \operatorname{Re}\left[\frac{(\delta+j r) e^{-\delta t} e j r t}{\partial j r\left((-\delta+\alpha+j \gamma)^{2}+\beta^{2}\right)}\right] \\
\frac{v(t)}{k \omega}= & \operatorname{Re}_{e}\left[\frac{(-\alpha+\alpha \delta+j \beta) e^{-\alpha t} e j \beta t}{j \beta(-\alpha+\delta+j \beta)(-\alpha+\delta+j \beta)+j \beta+2}\right] \\
& +\operatorname{Re}\left[\frac{(\delta+j r) e^{-\delta t} e j r t}{\left.j r(-\delta+\alpha+j \gamma)(-\delta+\alpha+j r)^{*} j \beta^{2}\right]}\right.
\end{aligned}
$$

4
after some further manipulation, the voltage as a function of time is:

$$
\begin{aligned}
\frac{V(t)}{k \omega}= & \frac{e^{-\alpha t}}{\beta} \sqrt{\frac{(-\alpha+\alpha \delta)^{2}+\beta^{2}}{4 \beta^{2}(\alpha-\delta)^{2}+\left(\gamma^{2}-\beta^{2}+\alpha^{2}-\alpha \delta\right)^{2}}} \\
& +\frac{e^{-\delta t}}{\gamma} \sqrt{\frac{\delta^{2}+\gamma^{2}}{4 \gamma^{2}(\delta-\alpha)^{2}+\left(\beta^{2}-\gamma^{2}+\delta^{2}-\delta \alpha\right)^{2}}} \\
& \times \cos \left(\gamma t+\psi_{3}-\psi_{4}\right) \\
\Psi_{1}= & \arctan \frac{\beta}{-\alpha+2 \delta} \\
\Psi_{2} & =\arctan \frac{\beta\left(\gamma^{2}-\beta^{2}+\alpha^{2}-\alpha \delta\right)}{2 \beta^{2}(\alpha-\delta)} \\
\Psi_{3} & =\arctan \frac{\gamma}{\delta} \\
\Psi_{4} & =\arctan \frac{\gamma\left(\beta^{2}-\gamma^{2}+\delta^{2}-\delta \alpha\right)}{\partial \gamma^{2}(\delta-\alpha)}
\end{aligned}
$$

$+f \alpha=1, \varphi=200$ and frequency $=2000 \mathrm{~N}$

$$
Q=\frac{\omega L}{R}=200
$$

$$
\frac{L}{R}=\frac{200}{6.28 \times 2000}
$$

$$
\frac{R}{L}=62.8
$$

$$
\frac{R}{2 L}=31.4
$$

$$
\begin{aligned}
\beta & =6.28 \times 2.00 \\
& =12.56 \times 10^{3} \\
\alpha & =4 \\
\delta & =31.4
\end{aligned}
$$

$$
\begin{aligned}
\psi_{1} & =\operatorname{artan} \frac{12.56 \times 10^{3}}{61.8} \\
& =\operatorname{artan} 203
\end{aligned}
$$

$$
\psi_{1} \approx 0
$$

$$
\begin{aligned}
\psi_{2} & =\arctan \frac{12.56 \times 10^{3}\left(1.58 \times 10^{8}-1.58 \times 10^{6}+1-31.4\right)}{2} 158 \times 10^{6}(30.4) \\
& =\arctan \frac{1.345}{1000} \\
\psi_{2} & \approx 90^{\circ}
\end{aligned}
$$

-.

3.

so, for git term

$$
\begin{gathered}
\frac{-e^{-t}}{12.56 \times 10^{3}} \sqrt{\frac{3820+12560}{4 \times 12560(923)+1.058 \times 10^{6}}} \\
\times \sin (2 \pi 2000) t
\end{gathered}
$$

which reduces to

$$
-e^{-t} 1.485 \times 10^{-6} \sin 12.56 \times 10^{3} t
$$

The second term

$$
\begin{aligned}
& \frac{e^{-\delta t}}{r} \sqrt{\frac{\delta^{2}+r^{2}}{4 r^{2}(\delta-\alpha)^{2}+\left(\beta^{2}-\gamma^{2}+\delta^{2}-\delta \alpha\right)^{2}}} \\
& \cos \left(r t+\psi_{3}-\psi_{4}\right) \\
& \psi_{3}=\arctan \frac{12.56 \times 10^{3}-31.4}{31.4} \\
& \Psi_{3} \approx 0 \\
& \psi_{4}=\arctan \frac{998+988-31.4}{12.56 \times 10^{3} \times 60.8} \\
& \psi_{4} \approx 90^{\circ}
\end{aligned}
$$

second term

$$
\frac{e^{-31.4 t}}{12.56 \times 10^{3}} \sqrt{\frac{888+158 \times 10^{6}}{4 \times 158 \times 10^{6}(925)+(988+988-31.4)^{2}}}
$$

which reduces to

$$
\begin{aligned}
& \frac{e^{-31.4 t}}{12.56} 16.5 \sin r t \\
& r^{2}=\frac{1}{L c}-\left(\frac{R}{2 L}\right)^{2} \\
& r \approx \omega \\
& \frac{V(t)}{k \omega}=\left(1.485 e^{-t}-1.316 e^{-31.4 t}\right) \times 10^{-6} \\
& \times \sin \omega t
\end{aligned}
$$

now, if t assumes various valves the envelope of the wave form of tanned 15:

The accuracy is changing at a rate $k\left(e^{-\alpha t}-\alpha t\right)$. This is a derivative, Lt is the rate of change accuracy with respect to time. To maximize set equal to zero.

$$
k\left(e^{-\alpha t}-\alpha t\right)=0
$$

which is a mayionum when

$$
t=.567
$$

or graphically

1	819208
2	819208
3	819208
4	819208
5	819208
6	819209
7	819209
8	819209
9	819209
10	819208
11	819208
12	819208
13	819209
14	819209
15	819209
16	819208
17	819208
18	819209
19	819209
20	819209
10	

APPENDIX IV
SUMMARY OF DATA TAKTN 2, 3 MAPCH

$1728-38$	187710.6
$1820-28$	187747.8
$1933-43$	187754.8
$2030-38$	187761.7
$2129-39$	187713.9
$2229-39$	187711.1
$2331-41$	187712.3
$0029-39$	187708.8
$0123-33$	187705.2
$0215-25$	187715.4
$0315-25$	187711.3
$0415-25$	187701.6
$0515-25$	187689.2
$0615-25$	187707.1
$0715-25$	187802.1
$0952-02$	187830.0
$1052-02$	187509.0
$1208-18$	$1243-53$

1728		1732	
1	187,705	1	187710
2	09	2	12
3	07	3	13
4	09	4	12
5	08	5	11
6	11	6	12
7	10	7	14
8	10	8	12
9	14	9	14
10	11	10	12
11	11	11	14
12	14	12	16
13	13	13	15
14	09	14	14
15	10	15	16
16	11	16	14
17	13	17	16
18	12	18	14
19	14	19	16
20	11	20	16

$\underline{1738}$		1743	
1	187714	1	187717
2	17	2	18
3	19	3	20
4	14	4	17
5	16	5	20
6	20	6	21
7	19	7	21
8	16	8	21
9	16	9	21
10	17	10	23
11	20	11	22
12	18	12	22
13	17	13	24
14	18	14	22
15	17	15	22
16	20	16	25
17	19	17	26
18	18	18	27
19	17	19	23
20	18	20	29

1748.5		1753.5	
1	187728	1	187731
2	28	2	31
3	32	3	34
4	28	4	32
5	27	5	35
6	30	6	37
7	30	7	33
8	28	8	31
9	29	9	34
10	28	10	34
11	30	11	32
12	30	12	32
13	29	13	35
14	27	14	36
15	30	15	35
16	30	16	32
17	32	17	34
18	33	18	34
19	33	19	34
20	31	20	35

e

1759		1804	
1	187734	1	187746
2	35	2	50
3	38	3	51
4	36	4	49
5	38	5	49
6	44	6	49
7	42	7	51
8	44	8	50
9	41	9	50
10	44	10	53
11	44	11	50
12	47	12	55
13	44	13	52
14	49	14	54
15	49	15	55
16	43	16	55
17	44	17	53
18	48	18	57
19	47	19	56
20	47	20	56

1908		18	
1	187754	1	187764
2	56	2	61
3	55	3	59
4	57	4	59
5	57	5	59
6	60	6	58
7	60	7	59
8	62	8	59
9	58	9	61
10	59	10	59
11	60	11	58
12	57	12	59
13	63	13	60
14	58	14	57
15	59	15	56
16	59	16	58
17	62	17	57
18	61	18	55
19	59	19	56
20	59	20	54

\qquad

2030

	709	21	86
2	09	22	85
3	05	23	85
4	04	24	85
5	04	25	87
6	03	26	87
7	02	27	88
8	01	28	87
9	01	29	86
10	97	30	85
11	96	31	86
12.	96	32	87
13	91	33	87
14	92	34	87
15	90	35	84
16	87	36	85
17	92	37	85
18	87	38	88
19	90	39	87
20	85	40	86

En

5

1	187712	21	187710
2	13	22	10
3	13	23	11
4	12	24	11
5	10	25	10
6	12	26	10
7	11	27	10
8	11	28	10
9	12	29	11
10	12	30	11
11	12	31	11
12	12	32	12
13	11	33	11
14	12	34	11
15	11	35	11
16	12	36	10
17	11	37	11
18	11	38	10
19	11	39	10
20	11	40	10

2331

1	187713	21	187711
2	14	22	3
3	12	23	3
4	12	24	3
5	12	25	2
6	13	26	2
7	12	27	3
8	12	28	2
9	12	29	2
10	12	30	2
11	13	31	2
12	12	32	2
13	12	33	3
14	12	34	2
15	12	35	2
16	12	36	3
17	13	37	2
18	13	38	2
19	12	39	3
20	11	40	2

1	187703	21	187711
2	04	22.	11
3	014	23	11
4	05	24	13
5	05	25	13
6	05	26	14
7	C5	27	14
ε	05	28	14
9	06	29	15
1 C	06	30	13
11	07	31	15
12	07	32	15
13	08	- 33	15
$1 / 4$	09	34	14
15	09	35	15
16	09	36	15
17	10	37	15
18	10	38	16
19	09	39	15
$\therefore \mathrm{Cr}$	11	40	14

0123

1		21	6
2	8	22	4
3	7	23	6
4	7	24	6
5	7	25	5
6	7	26	5
7	7	27	3
8	7	28	2
9	7	29	4
10	7	30	2
11	6	31	3
12	7	32	3
13	7	33	2
14	6	34	3
15	7	35	2
16	6	36	2
17	7	37	3
18	7	38	3
19	7	39	
	7	40	4

1	187713	21	187711
2	3	22	2
3	2	23	2
4	3	24	2
5	2	25	1
6	2	26	2
7	2	27	2
8	2	28	2
9	5	29	2
10	2	30	1
11	2	31	3
12	2	32	3
13	3	33	3
14	2	34	3
15	2	35	3
16	1	36	4
17	2	37	4
18	1	38	4
19	1	39	4
20	2	40	5

1	187714	21	187711
2	21	22	14
3	- 15	23	19
4	23	24	18
5	26	25	17
6	19	26	17
7	17	27	20
8	09	28	17
9	16	29	19
10	09	30	14
11	17	31	09
12	18	32	13
13	19	33	13
14	13	34	11
15	12	35	12
16	17	36	11
17	24	37	11
18	19	38	11
19	20	39	11
20	10	40	11

ϕ

1	1"7710	21	127710
$?$	11	22	11
3	$11)$	23	12
4	1.9	24	12
5	iv	25	12
6	10	26	12
7	10	27	1%
8	10	29	11
9	10	29	11
1	on	30	12
11	09	31	13
1.	10	32	13
13	09	33	13
14	10	34	15
15	10	35	15
16	10	36	14
17	10	37	14
1.	1	33	14
19	11	39	14
(2)	19	40	16

0515			
1	187713	21	187687
2	10	22	87
3	09	23	97
4	08	24	98
5	07	25	98
6	07	26	99
7	06	27	99
8	06	28	700
9	05	29	700
10	07	30	699
11	06	31	700
12	04	32	700
13	02	33	701
14	02	34	700
15	03	35	700
16	01	36	701
17	01	37	702
18	00	38	701
19	00	39	701
20	677	40	702

I震
－

0615

1	691	21	187687
2	91	22	86
3	92	23	84
4	93	24	86
5	94	25	88
6	94	26	89
7	93	27	88
8	92	28	88
9	91	29	89
10	91	30	89
11	90	31	88
12.	89	32	90
13	89	33	90
14	85	34	91
15	86	35	91
16	86	36	91
17	84	37	92
18	86	38	91
19	87	39	92
20	87	40	91

0713		0748			
1	187708	1	187699	21	695
2	6	2	97	22	695
3	7	3	99	23	696
4	8	4	700	24	697
5	6	5	699	25	695
6	5	6	699	26	696
7	7	7	697	27	696
8	7	8	698	28	697
9	9	9	699	29	694
10	8	10	698	30	697
		11	699	31	697
		12	700	32	698
		13	699		
		14	698		
		15	697		
		16	697		
		17	697		
		18	696		
		19	696		
		20	696		

1	187699	(0800)	25	703		54	718
2	698		26	706		55	718
3	698		27				
4	699		28	705	(0807.5)		
5	702		29	707			
6	702		30	705			
7	699	(0802)	31	703			
8	700		32	705			
9	700		33	704			
10	698		34	708			
11	699		35	708	(0809.5)		
12	700		36	707			
13	699		37	711			
14	700		38	709			
15	701		39	708			
16	700		40	706			
17	701	(0805)	41	707			
18	701		42	710			
19	702		43	710			
20	702		44	712			
21	704		45	714			
22	705		46	715			
23	703		47	717			
24	705		48	717	(0814)		
			49	719	,		
			50	718			
			51	718			
			52	718			
			53	719			

1	187797	21	187803
2	98	22	803
3	98	23	803
4	98	24	803
5	97	25	805
6	98	26	804
7	96	27	803
8	97	28	803
9	98	29	810
10	802		
21	801		
12	803		
13	801		
14	802		
15	800		
16	802		
17	801		
18	800		
19	800		
20	803		

1	187831	21	187831
2	2	22	32
3	3	23	37
4	3	24	30
5	2	25	27
6	4	26	26
7	4	27	28
8	5	28	29
9	3	29	28
10	4	30	27
11	5	31	28
12	4	32	29
13	3	33	29
14	3	34	28
15	4	35	33
16	1	36	32
17	3	37	32
18	2	38	32
19	3	39	33
20	2	40	

$$
9
$$

1	187808	21	187811
2	08	22	11
3	09	23	11
4	08	24	11
5	08	25	10
6	08	26	10
7	07	27	10
8	07	28	09
9	06	29	09
10	05	30	09
11	06	31	09
12	07	32	10
13	07	33	09
14	07	34	09
15	08	35	10
16	09	36	11
17	11	37	10
18	10	38	16
19	10	39	11
20	11	40	12

1	187806	21	187803	1253	
2	04	22	01	41	800
3	06	23	07	42	801
4	06	24	01	43	799
5	06	25	00	44	800
6	06	26	00	45	800
7	05	27	02	46	800
8	04	28	00	47	802
9	02	29	02	48	802
10	02	30	02	49	801
11	03	31	01	50	801
12	03	32	01	51	
13	03	33	01		
14	02	34	01		
15	03	35	01		
16	01	36	01		
17	03	37	01		
18	02	38	01		
19	02	39	00		
20	02.	40	01		

1431			
1	187768	21	187762
2	67	22	63
3	67	23	65
4	66	24	61
5	64	25	61
6	69	26	62
7	62	27	59
8	187762	28	59
9	62	29	58
10	60	30	59
11	61	31	58
12	61	32	59
13	62	33	58
14	62	34	59
15	62	35	58
16	62.	36	58
17	61	37	58
18	61	38	58
19	62	39	57
20	62	40	57

$$
\begin{gathered}
5+\frac{1}{4} \\
x+1
\end{gathered}
$$

$-\sqrt{2+5}=$

1632			
1	18712	21	187579
2	12	22	701
3	12	23	702
1	12	24	701
5	09	25	701
6	08	26	701
$?$	09	27	701
8	06	28	701
9	07	29	702
10	10	30	699
11	710	31	702
12	711	32	700
13	710	33	700
14	708	34	698
15	707	35	699
16	707	36	700
17	707	37	698
18	707	38	699
19	707	39	698
20	596	40	699

 Pipe at 50 '
 \(1 \quad 187576\)
 2187575
 3187578
 \(4 \quad 187579\)
 5187576
 \(6 \quad 187577\)
 7187574
 \(8 \quad 187578\)
 \(9 \quad 187579\)
 $1018758!$
Pipe moved to 15 '
11187521
12187524
13187521
$14 \quad 187520$
15187522
$16 \quad 187522$
17187523
$18 \quad 187522$
$19 \quad 187525$
20187525

$$
4
$$

1．Blon，Po	Physicil Review $70 \quad 460$（2946）
2．Bloc＇，${ }^{7}$ 。Harsen，Wo．No and ？ckard，H．	Physicil Review 20 474（1946）
3．Blactrorics May 1951	Simplified O Multiolier P 130
4．Levinthil and Rodgers	Measurements of low magnetic fields using piramagnetic resonance Report prapared for University of Cilirornia Rad lab P．O．\＃H－24656 April 6，1951
5．ic ？omb，	Masnetic Observatory Manual U．S。 Departrert of Comnerce Special Putlic：iti on 2831952
6．NOL Laborstory Report 937	1945
Dackard，Dr．Martin	Method of nuclear induction thesis stanford
Burcell，F．：＂．Torey，J．．．． Pound，R．V．	Physical Review 69， 37146
－Vyck off，I．D．	The gulf airborne magnetometer Geophusics volume $13 \mathrm{pp4}$－56 1936

1．Blon，F。
2．Hioc，${ }^{\text {º }}$ 。Harsen，Wo．N。 and Packard，M．

3．Slectrorics lisy 1951
4．Levinthal and Rodgers

5．ic？omb

6．NOL Laboratory Report 93 ？
7．Dackard，Dr．Martin

9．Burcell，F．．．＇Torey，J．？．， Pound，R．V．

7．Wyck off，Z．D．

Geophysics volume 13 pp48－56 1936
-

