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PEEFACE TO FIRST EDITION.

In the following work I have endeavoured to give an

account of the fundamental principles of the Mathematical

theory of Electricity and Magnetism and their more

important applications, using only simple mathematics.

With the exception of a few paragraphs no more advanced

mathematical knowledge is required from the reader than

an acquaintance with the Elementary principles of the

Differential Calculus.

It is not at all necessary to make use of advanced

analysis to establish the existence of some of the most

important electromagnetic phenomena. There are always

some cases which will yield to very simple mathematical

treatment and yet which establish and illustrate the

physical phenomena as well as the solution by the most

elaborate analysis of the most general cases which could

be given.

The study of these simple cases would, I think, often

be of advantage even to students whose mathematical

attainments are sufficient to enable them to follow the

solution of the more general cases. For in these simple

cases the absence of analytical difficulties allows attention
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to be more easily concentrated on the physical aspects of

the question, and thus gives the student a more vivid

idea and a more manageable grasp of the subject than he

would be likely to attain if he merely regarded electrical

phenomena through a cloud of analytical symbols.

I have received many valuable suggestions and much

help in the preparation of this book from my friends Mr
H. F. Newall of Trinity College and Mr G. F. C. Searle of

Peterhouse who have been kind enough to read the proofs.

I have also to thank Mr W. Hayles of the Cavendish

Laboratory who has prepared many of the illustrations.

J. J. THOMSON.
Cavendish Laboratory,

Cambridge.

September 3, 1895.

PREFACE TO THE SECOND EDITION.

In this Edition I have through the kindness of several

coiTespondents been able to correct a considerable number

of misprints. I have also made a few verbal alterations

in the hope of making the argument clearer in places

where experience has shown that students found unusual

difficulties.

J. J. THOMSON.
Cavendish Laboratory,

Cambridge.

November, 1897.
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ELEMENTS OF THE MATHEMATICAL

THEOEY OF

ELECTRICITY AND MAGNETISM.

CHAPTER I.

General Peinciples of Electrostatics.

1. Example of Electric Phenomena. Electri-

fication. Electric Field. A stick of sealing-wax after

being rubbed with a well dried piece of flannel attracts

light bodies such as small pieces of paper or pith balls

covered with gold leaf If such a ball be suspended by

a silk string it will be attracted towards the sealing-wax,

and if the silk thread is long enough the ball will move

towards the wax until it strikes against it. When it has

done this, however, it immediately flies away from the

wax : and the pith ball is now repelled from the wax

instead of being attracted towards it as it was before the

two had been in contact. The piece of flannel used to rub

the sealing-wax also exhibits similar attractions for the

pith balls, and these attractions are changed into re-

pulsions after the balls have been in contact with the

flannel.

The effects we have described are called 'electric'

phenomena, a title which as we shall see includes an

T. E. 1



2 GENERAL PRINCIPLES OF ELECTROSTATICS. [CH. I

enormous number of effects of the most varied kind. The

example we have selected, where electrification is pro-

duced by rubbing two dissimilar bodies against each other,

is the oldest electrical experiment known to science.

The sealing-wax and the flannel are said to be electri-

fied, or to be in a state of electrification, or to be charged

with electricity ; and the region in which the attractions

and repulsions are observed is called the electric field.

2. Positive and Negative Electrification. If we

take two pith balls A and B, coated with gold leaf and

suspended by silk strings, and let them strike against the

stick of sealing-wax which has been rubbed with a piece

of flannel, they will be found to be repelled, not merely

from the sealing-wax but also from each other. To

observe this most conveniently remove the pith balls to

such a distance from the sealing-wax and the flannel

that the repulsions due to these are inappreciable. Now
take another pair of similar balls G and D and let these

strike against the flannel ; G and D will be found to

be repelled from each other when they are placed close

together. Now take the ball A and place it near 0;

A and G will be found to be attracted towards each other.

Thus a ball which has touched the sealing-wax is repelled

from another ball which has been similarly treated, but is

attracted towards a ball which has been in contact with

the flannel. The electrification on the balls A and B is

thus of a different kind from that on the balls G and Z),

for while the ball A is repelled from B it is attracted

towards D, while the ball G is attracted towards B and

repelled from D ; thus when the ball A is attracted the

ball G is repelled and vice verm,.



2] GENERAL PRINCIPLES OF ELECTROSTATICS. 3

The state of the ball which has touched the flannel

is said to be one of positive electrification, or the ball is

said to be positively electrified ; the state of the ball which

has touched the sealing-wax is said to be one of negative

electrification, or the ball is said to be negatively electri-

fied.

We may for the present regard * positive ' and * nega-

tive' as conventional terms, which when applied to electric

phenomena denote nothing more than the two states of

electrification described above. As we proceed in the

subject, however, we shall see that the choice of these

terms is justified, since the properties of positive and

negative electrification are over a wide range of pheno-

mena contrasted like the properties of the signs plus and

minus in Algebra.

The two balls A and B must be in similar states of

electrification since they have been similarly treated

;

the two balls C and D will also for the same reason be

in similar states of electrification. Now A and B are

repelled from each other, as are also G and D ; hence we

see that two bodies in a similar state of electrification are

repelled from each other : while since one of the pair A, B
is attracted towards either of the pair G, D, we see that

two bodies, one in a positive state of electrification, the other

in a negative state are attracted towards each other.

In whatever way a state of electrification is produced

on a body, it is found to be one or other of the preceding

kinds ; i.e. the ball A is either repelled from the electrified

body or attracted towards it. In the former case the

electrification is positive, in the latter negative.

A method, which is sometimes convenient, of detecting

whether the electrification of a body is positive or negative

1—2
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is to dust it with a mixture of powdered red lead and

yellow sulphur which has been well shaken, the friction of

the one powder against the other electrifies both powders,

the sulphur becoming negatively, the red lead positively

electrified. If now we dust a negatively electrified surface

with this mixture, the positively electrified red lead will

stick to the surface, while the negatively electrified sulphur

will be easily detached, so that if we blow on the powdered

surface the sulphur will come off while the red lead will

remain, thus the surface will be coloured red : if a posi-

tively electrified surface is treated in this way it will be-

come yellow in consequence of the sulphur sticking to it.

3. Electrification by Induction. If the negatively

electrified stick of sealing-wax used in the preceding ex-

periments is held near to but not touching one end of an

elongated piece of metal supported entirely on glass or

ebonite stems, and if the metal is dusted over with the

mixture of red lead and sulphur it will be found after

blowing off the loose powder that the end of the metal

nearest to the sealing-wax is covered with the yellow

sulphur, while the end furthest away is covered with red

lead, showing that the end of the metal nearest the

negatively electrified stick of sealing-wax is positively,

the end remote from it negatively, electrified. In this

experiment the metal, which has neither been rubbed

nor been in contact with an electrified body, is said to

be electrified by induction; the electrification on the

metal is said to be induced by the electrification on the

stick of sealing-wax. The electrification on the part of

the metal nearest the wax is of the opposite kind to that

on the wax, while the electrification on the more remote
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parts of the metal is of the same kind as that on the

wax. The electrification on the metal disappears as soon

as the stick of sealing-wax is removed.

4. Electroscope. An instrument by which the

presence of electrification can be detected is called an

electroscope. All electroscopes give some indication of the

amount of the electrification, but if accurate measure-

ments are required a more elaborate instrument, called an

electrometer (Art. 60), must be used.

A simple form of electroscope, called the. gold leaf

electroscope, is represented in Fig. 1. It consists of a

Fio. 1.

glass vessel fitting into a stand ; a metal rod with a

disc of metal at the top and terminating in two strips of

gold leaf passes through the neck of the vessel, the rod

being inserted in a hollow glass tube covered inside and

out with shellac varnish and fitting tightly into a plug in

the mouth of the vessel.



6 GENERAL PRINCIPLES OF ELECTROSTATICS. [CH. I

When the gold leaves are electrified they are repelled

from each other and diverge, the amount of the divergence

giving some indication of the degree of electrification. It

is desirable to protect the gold leaves from the influence

of electrified bodies which may happen to be near the

electroscope, and from any electrification there may be on

the surface of the glass. To do this we take advantage of

the property of electrical action proved in Art. 33, that a

closed metallic vessel completely protects bodies inside it

from the electrical action of bodies outside, so that if the

gold leaves could be completely surrounded by a metal

vessel they would be perfectly shielded from extraneous

electrical influence: this however is not practicable, as

the metal case would hide the gold leaves from obser-

vation. In practice sufficient protection is afforded by a

cylinder of metal gauze connected to earth, such as is shown

in Fig. 1, care being taken that the top of the gauze

cylinder reaches above the gold leaves.

If the disc of the electroscope is touched by an electri-

fied body, part of the electrification will go to the gold

leaves, these will be electrified in the same way, and

therefore will be repelled from each other. In this case

the electrification on the gold leaves is of the same sign

as that on the electrified body. When the electrified

body does not touch the disc but is held near to it, the

metal parts of the electroscope will be electrified by induc-

tion ; the disc being the part nearest the electrified body

will have the opposite electrification to that body, while

the gold leaves being the places furthest from the elec-

trified body will have the same kind of electrification

as that body, and will repel each other. This repulsion

will cease as soon as the electrified body is removed.
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If when the electrified body is near the electroscope

the disc is connected to the ground by a metal wire, then

the metal of the electroscope, the wire and the ground

will correspond to the elongated piece of metal in the

experiment described in Art. 3. Thus, supposing the body

to be negatively electrified, the positive electrification

will be on the disc while the negative goes to the most

remote part of the system consisting of the metal of the

electroscope, the wire and the ground, i.e. the negative

electrification goes to the ground and the gold leaves are

free from electrification. They cease then to repel each

other and remain closed. If the wire is removed from

the disc while the electrified body remains in the neigh-

bourhood the gold leaves will remain closed as long as the

electrified body is stationary, but if this is removed far

away from the electroscope the gold leaves diverge. The

positive electrification which when the electrifie'd body

was close to the electroscope concentrated itself on the

disc so as to be as near the electrified body as possible,

when this body is removed spreads to the gold leaves and

causes them to diverge.

If when the electroscope is charged we wish to deter-

mine whether the charge is positive or negative, all we

have to do is to bring near to the disc of the electroscope

a stick of sealing-wax which has been negatively electrified

by friction with flannel ; the proximity of the negatively

electrified wax increases in consequence of the induction

(Art. 3) the negative electrification on the gold leaves.

Hence if the presence of the sealing-wax increases the

divergence of the leaves the original electrification was

negative, if it diminishes the divergence the original elec-

trification was positive.
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5. Charge on an electrified body. Definition

of equal charges. Place on the disc of the electro-

scope a metal vessel as .nearly closed as possible, the

opening being only just wide enough to allow electrified

Fig. 2.

bodies to be placed inside. Then introduce into this vessel

a charged body suspended by a silk thread, and let it sink

well below the opening. The gold leaves of the electro-

scope will diverge, since they will be electrified by in-

duction (see Art. 3), but the divergence will remain the

same however the body is moved about in the vessel. If

two or more electrified bodies are placed in the vessel the

divergence of the gold leaves is the same however the

electrified bodies are moved about relatively to each other

or to the vessel. The divergence of the gold leaves thus

measures some property of the electrified body which

remains constant however the body is moved about.

This property is called the charge on the body, and two
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bodies A and B have equal charges when the divergence

of the gold leaves is the same when A is inside the vessel

placed on the disc of the electroscope and B far away, as

when B is inside and A far away. A and B are each

supposed to be suspended by dry silk threads, for such

threads do not allow the electricity to escape along them

;

see Art. 6. Again, the charge on a body G is twice that

on A if when G is introduced into the vessel it produces

the same effect on the electroscope as that produced by

A and B when introduced together. 5 is a body whose

charge has been proved equal to that on A in the way

just described. Proceeding in this way we can test what

multiple the charge on any given electrified body is of

the charge on another body, so that if we take the latter

charge as the unit charge we can express any charge in

terms of this unit.

Two bodies have equal and opposite charges if when

introduced simultaneously into the metal vessel they pro-

duce no effect on the divergence of the gold leaves.

6. Insulators and Conductors. Introduce into

the vessel described in the preceding experiment an elec-

trified pith ball coated with gold leaf and suspended by a

dry silk thread : this will cause the gold leaves to diverge.

If now the electrified pith ball is touched with a stick of

sealing-wax, an ebonite rod or a dry piece of glass tube, no

effect is produced on the electroscope, the divergence of

the gold leaves is the same after the pith ball has been

touched as it was before. If, however, the pith ball is

touched with a metal wire held in the hand or by the

hand itself, the gold leaves of the electroscope immediately

fall together and remain closed after the wire has been
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withdrawn from the ball. Thus the pith ball loses its

charge when touched with a metal wire, though not when
touched with a piece of sealing-wax. We may thus divide

bodies into two classes, (1) those which when placed in

contact with a charged body can discharge the electrifica-

tion, these are called conductors
; (2) those which can not

discharge the electrification of a charged body with which

they are in contact, these are called insulators. The

metals, the human body, solutions of salts or acids are

examples of conductors, while the air, dry silk threads,

dry glass, ebonite, sulphur, paraffin wax, sealing-wax,

shellac are examples of insulators.

When a body is entirely surrounded by insulators it is

said to be insulated.

7. When electrification is excited hy friction or hy any

other process equal charges of positive and negative elec-

tricity are ahuays produced. To show this when the

electrification is excited by friction, take a piece of sealing-

wax and electrify it by friction with a piece of flannel

;

then though both the wax and the flannel are charged

with electricity they will if introduced together into the

metal vessel on the disc of the electroscope (Art. 5) pro-

duce no effect on the electroscope, thus showing that the

charge of negative electricity on the wax is equal to the

charge of positive electricity on the flannel. This can

be shown in a more striking way by working a frictional

electrical machine, insulated and placed inside a large

insulated metal vessel- in metallic connection with the

disc of an electroscope, then although the most vigorous

electrical effects can be observed near the machine inside

the vessel, the leaves of the electroscope remain unaffected,
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showing that the total charge inside the vessel connected

with the disc has not been altered though the machine has

been in action.

To show that when a body is electrified by induction

equal charges of positive and negative electrification are

produced: take an electrified body suspended by a silk

thread, lower it into the metal vessel on the top of the

electroscope and observe the deflection of the gold leaves,

then take a piece of metal suspended from a silk thread

and lower it into the vessel near to but not in con-

tact with the electrified body ; no alteration in the diver-

gence of the gold leaves will take place, showing that the

total charge on the piece of metal introduced into the

vessel is zero. This piece of metal is however electrified

by induction, so that its charge of positive electrification

excited by this process is equal to its charge of negative

electrification.

Again, when two charged bodies are connected by a

conductor the sum of the charges on the bodies is unaltered:

i.e. the amount of positive electrification gained by one is

equal to the amount of positive electrification lost by the

other. To show this, take two electrified metallic bodies

A and B suspended from silk threads, introduce A into

the metal vessel and note the deflection of the gold leaves

;

then introduce B into the vessel and observe the deflection

when the tw^o bodies are in the vessel together: now

take a piece of wire wound round one end of a dry glass

rod and holding the rod by the other end place the wire

so that it is in contact with A and B sinmltaneously ; no

alteration in the deflection of the gold leaves will be pro-

duced by this process, showing that the sum of the charges

on A and B is unaltered. Take away the wire and remove
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B from the vessel, and now again observe the deflection of

the gold leaves; it will not (except in very special cases) be

the same as it was before B was put into the vessel ; thus

proving that a transference of electrification between A
and B has taken place ; though this has not changed the

sum of the charges on A and B.

8. Force bet'ween bodies charged with elec-

tricity. When two charged bodies are at a distance r

aparty r being very large compared with the greatest linear

dimension of either of the bodies ; the repulsion between

them is proportional to the product of their charges and

inversely proportional to the square of the distance between

them.

This law was first proved by Coulomb by direct measure-

ment of the force between electrified bodies; there are,

however, other methods by which the law can be much
more rigorously established; as these can most con-

veniently be considered when we have investigated the

properties of this law of force we shall begin by assuming

the truth of this law and proceed to investigate some of

its consequences.

9. Unit charge. We have seen in Art. 5 how the

charges on electrified bodies can be compared with each

other; in order, however, to express any charge it is

necessary to have a definite unit of charge to which the

charge can be referred.

The unit charge of electricity is defined to be such a

charge that two bodies each having this charge, when
separated by unit distance in air are repelled from each

other with unit force. The dimensions of the charged
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bodies are assumed to be very small compared with the

unit distance.

It follows from this definition and the law of force

previously enunciated that the repulsion between two

small bodies with charges e and e placed in air at a

distance r apart is equal to

ee'

The expression ee\r^ will express the force between

two charged bodies whatever the sign of their electrifica-

tion if we agree that when the expression has a positive

sign it indicates that the force between the bodies is a

repulsion, and that when this expression has the negative

sign it indicates that the force is an attraction. When the

charges on the bodies are of the same kind ee' is positive,

the force is then repulsive ; when the charges are of

opposite sign ee is negative, the force between the bodies

is then attractive.

Electric Intensity. The electric intensity at any

point is the force acting on a small body charged with

unit positive charge when placed at the point, the electri-

fication of the rest of the system being supposed to be

undisturbed by the presence of this unit charge.

Total Normal Electric Induction over a Surface.

Imagine a surface drawn anywhere in the electric field,

and let this surface be completely divided up as in the

figure, into a network of meshes, each mesh being so small

that the electric intensity at any point in a mesh may be

regarded as constant over the mesh. Take a point in

each of these meshes and resolve the electric intensity at

that point in the direction of the outward drawn normal
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to the surface at that point, and multiply this normal

component by the area of the mesh, the sum of these

Fig. 3.

products for all the meshes on the surface is defined to be

the total normal electric induction over the surface. This

is algebraically expressed by the relation

where / is the total normal electric induction, iV^ the com-

ponent of the electric intensity resolved along the outward

drawn normal to the surface at a point in a mesh, w the

area of the mesh : the symbol S denotes that the sum of

the product Nw is to be taken for all the meshes drawn

on the surfjxce.

With the notation of the integral calculus

where dS is an element of the surface, the integration ex-

tending all over the surface.

10. Gausses Theorem. We can prove all the pro-

positions about the forces between electrified bodies that

we shall require in the following discussion of Electro-

statics by the aid of a theorem due to Gauss. This

theorem may be stated thus : the total normal electric

induction over any closed surface drawn in the electric
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field is equal to 47r times the total charge of electricity

inside the closed surface.

We shall first prove this theorem when the electric

field is that due to a single charged body.

Let (Fig. 4) be the charged body whose dimensions

are supposed to be so small compared with its distances

Fig. 4.

from the points at which the electric intensity is measured

that it may be regarded as a point. Let e be the charge

on this body.

Let PQRS be one of the small meshes drawn on the

surface, the area being so small that PQRS may be re-

garded as plane : join to P, Q, R, S, let a plane through

R at right angles to 07^ cut OS, OQ, OP respectively in

u, V, w: with centre describe a sphere of unit radius, and

let the lines OP, OQ, OR, OS cut the surface of this sphere

in the points p, q, r, s respectively. The area PQRS is

assumed to be so small that the electric intensity may be



16 GENERAL PRINCIPLES OF ELECTROSTATICS. [CH. I

regarded as constant over it ; we may take as the value of

the electric intensity e/OR^, which is the value it has

at R.

The component contributed by this mesh to the total

normal induction is by definition equal to

area PQRS x N,

where N is the normal component of the electric intensity

atE.

Now iV= yy^ X COS 0,

where 6 is the angle between the normal to the surface

at R, and OR the direction of the electric intensity.

The normal to the surface is at right angles to PQRS,
and OR is at right angles to the area Ruvw, hence the

angle between the normal to the surface and OR is equal

to the angles between the planes PQRS and Ruvw.

Hence

area PQRS xcos6 = the area of the projection of the

plane PQRS on the plane Ruvw

= area Ruvw (1).

Consider the figures Ruvw and pqi^s. Ru is parallel

to rs since they are in the same plane and both at right

angles to OR, and for similar reasons Rv is parallel to rq,

vw to pq, uw to sp. The figure Ruvw is thus similar

to pqrs : and the areas of similar figures are proportional

to the squares of their homologous sides. Hence

area Ruvto : area pqrs = Ru"^ : rs'^

= OR^ : or\
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, , ,
area Ruvw area pars

so that -^^- =-—^
— a,re3i>pqrs (2),

since Or is equal to unity by construction.

The contribution of the mesh PQRS to the total

normal induction is equal to

area FQR8 x -y^^ x cos Q

area Ruvw , • / . x= e X
jy^^
— by equation (1)

= e X area pqrs by equation (2).

Thus the contribution of the mesh to the total normal

induction is equal to e times the area cut off a sphere of

unit radius with its centre at by a cone having the

mesh for a base and its vertex at 0.

By dividing up any finite portion of the surface into

meshes and taking the sum of the contributions of each

mesh, we see that the total normal induction over the

surface is equal to e times the area cut off a sphere of

unit radius with its centre at by a cone having the

boundary of the surface as base and its vertex at 0.

Let us now apply the results we have obtained to the

case of a closed surface.

First take the case when is inside the surface.

The total normal induction over the surface is equal to e

times the sum of the areas cut off the unit sphere by

cones with their bases on the meshes and their vertices at

0, and since the meshes completely fill up the closed

surface the sum of the areas cut off the unit sphere by

the cones will be the area of the sphere, which is equal to

T. E. 2
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47r, since its radius is unity. Thus the total normal in-

duction over the closed surface is 47re.

Next consider the case when is outside the closed

surface.

Draw a cone with its vertex at cutting the closed

surface in the areas PQRS, P'Q'RS'. Then the magni-

FiG. 5.

tude of the whole normal induction over the area FQRS
is equal to that over the area P'Q'R'S', since they are

each equal to e times the area cut off by this cone from a

sphere whose radius is unity and centre at 0. But over

the surface PQRS the electric intensity points along the

outward drawn normal so that the sign of the component

resolved along the outward drawn normal is positive

;

while over the surface P'Q'R'S' the electric intensity is in

the direction of the inward drawn normal so that the sign

of its component along the outward drawn normal is

negative. Thus the total normal attraction over PQRS is

of opposite sign to that over P'Q'R'S', and since they are

equal in magnitude they will annul each other as far as

the total normal induction is concerned. Since the whole

of the closed surface can be divided up in this way by

cones with their vertices at 0, and since the two sections of

each of these cones neutralize each other, the total normal

induction over the closed surface will be zero in this case.
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We thus see that when the electric field is due to a

small body with a charge e the total normal induction

over any closed surface enclosing the charge is 47re, while

it is equal to zero over any surface not enclosing the

charge. We have therefore proved Gauss's theorem when
the field is due to a single small electrified body.

We can easily extend it to the general case when the

field is due to any distribution of electrification. For we
may regard this as arising from a number of small bodies

having charges ^j, e.., ^3 ... &c. Let N be the component

along the outward drawn normal to the surface of the

resultant electric intensity, N^ the component in the

direction due to ei, N^ that due to 63 and so on ; then

If ft) is the area of the mesh at which the normal

electric intensity is iV, the total normal induction over the

surface is SiV^o)

that is, the total normal electric induction over the surface

due to the field is equal to the sum of the normal in-

ductions due to the small charged bodies of which the

field is supposed to be built up. But we have just seen

that the normal induction over a closed surface due to

any one of these is equal to 47r times its charge if the

body is inside the surface, and is zero if the body is out-

side the surface. Hence the sum of the normal induc-

tions due to the several charged bodies, i.e. that due to the

actual field, is 47r times the charge of electricity inside

the closed surface over which the normal intensity is

taken.

2—2
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11. Electric intensity at a point outside a

uniformly charged sphere.— Let us now apply the

theorem to find the electric intensity at any point in

the region outside a sphere uniformly charged with elec-

tricity.

Let be the centre of the sphere, P sl point outside

the sphere at which the electric intensity is required.

Through P draw a spherical surface with its centre

at 0. Let R be the electric intensity at P. Since

the charged sphere is uniformly electrified the direction

of the intensity will be OP, and it will have the same

value R at any point on the spherical surface through P
with its centre at 0. Hence since at each point on this

surface the normal electric intensity is equal to R ; the

total normal induction over the sphere through P is equal

to 72 X (surface of the sphere), i.e. Rx^tir. OP^. By Gauss's

theorem this is equal to 47r times the charge enclosed by

the spherical surface, that is to 47r times the charge on the

inner sphere. If e is this charge we have therefore

i2x47rOP'- = 47re,

Hence the intensity at a point outside a uniformly

electrified sphere is the same as if the charge on the

sphere were concentrated at the centre.

12. Electric intensity at a point inside a uni-

formly electrified spherical shell.—Let Q be a point

inside the shell, R the electric intensity at that point.

Through Q draw a spherical surface, centre ; then as

before, the normal electric intensity will be constant all
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over this surface. The total normal induction over this

sphere is therefore R x area of sphere, i.e.

E X 47r . 0Q\

By Gauss's theorem this is equal to 47r times the

charge of electricity inside the spherical surface passing

through Q, hence as there is no charge inside this surface,

4>7rR X OQ' = 0,

or R = 0.

Hence the electric intensity at any point inside a uni-

formly electrified spherical shell vanishes.

13. Infinite Cylinder uniformly electrified.—
We shall next consider the case of an infinitely long

circular cylinder uniformly electrified. Let P be a point

outside the cylinder at which we wish to find the electric

intensity. Through P describe a circular cylinder coaxial

with the electrified one, draw two planes at right

angles to the axis of the cylinder at unit distance

apart, and consider the total normal induction over the

closed surface formed by the curved surface of the

cylinder through P and the two plane ends. Since the

electrified cylinder is infinitely long aud is symmetrical

about its axis, the electric intensity at all points at the

same distance from the axis of the cylinder will be the

same, and will by symmetry be along a radius drawn

through P at right angles to the axis of the cylinder.

Thus the electric intensity at any point on the plane

ends of the cylinder will be in the plane of these ends,

and will therefore have no component at right angles

to them, the plane ends will therefore contribute nothing
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to the total normal induction over the surface ; at each

point of the cylindrical surface the electric intensity is

at right angles to the curved surface and equal to R.

The total normal induction over the surface is therefore

R X (area of the curved surface of the cylinder).

But since the length of the curved surface is unity

its area is equal to 27rr where ?' is the distance of P
from the axis of the cylinder. If E is the charge per

unit length on the electrified cylinder then by Gauss's

theorem the total normal induction over the surface is

equal to 4<7rE. The total normal induction is however

equal to Rx 27rr, hence

R X 27rr = ^ttE,

r

Thus in the case of the cylinder the electric intensity

varies inversely as the distance from the axis of the

cylinder.

We can prove in the same way as for the uniformly

electrified spherical shell that the electric intensity at

any point inside a uniforaily electrified cylindrical shell

vanishes.

14. Uniformly electrified infinite plane.—In this

case we see by symmetry (1) that the electric intensity

will be normal to the plane, (2) that the electric intensity

will be constant at all points in a plane parallel to the

electrified one. Draw a cylinder PQR8, Fig. 6, the

axis of the cylinder being at right angles to the plane,

the ends of the cylinder being planes at right angles to
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the axis. Since this cylinder encloses no electrification the

total normal induction over its surface is zero by Gauss's

'D'

Fig. 6.

theorem. But since the electric intensity is parallel to

the axis of the cylinder the normal intensity vanishes

over the curved surface of the cylinder. Let F be the

electric intensity at a point on the face PQ, this is

along the outward-drawn normal if the electrification

on the plane is positive, F' the electric intensity at a

point on the face R8, co the area of either of the faces

PQ or BS, then the total normal induction over the

surface PQRS is equal to

Fco-F'(o;

and since this vanishes by Gauss's theorem

F = F\
or the electric intensity at any point, due to the infinite

uniformly charged plane, is independent of the distance

of the point from the plane. It is, therefore, constant in

magnitude at all points in the field, acting upwards in the

region above the plane, downwards in the region below it.

To find the magnitude of the intensity at P. Draw

through P (Fig. 7) a line at right angles to the plane and

prolong it to Q, so that Q is as much below the plane as P
is above it. With PQ as axis describe a right circular

cylinder bounded by planes through P and Q parallel to

the electrified plane. Consider now the total normal

induction over the surface of this cylinder. The electric
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intensity is everywhere parallel to the axis of the cylinder,

and has, therefore, no normal component over the curved

p

R

Q

Fig. 7.

surface of the cylinder, the total normal intensity over

the surface thus arises entirely from the flat ends. Let R
be the magnitude of the electric intensity at any point in

the field, « the area of either of the flat ends of the

cylindrical surface. Then the part of the total normal

induction over the surfaces PQRS due to the flat end

through P is Rco. The part due to the flat end through

Q will also be equal to this and will be of the same sign,

since the intensity at Q is along the outward-drawn

normal. Thus since the normal intensity vanishes over

the curved surface of PQRS the total normal induction

over the closed surface is 2Ra). If a is the quantity of

electricity per unit area of the plane the charge of elec-

tricity inside the closed surface is aco ; hence by Gauss's

theorem

2Rco = iiiro-co,

or R = 27ro-.

By comparing this with the results given in Arts. 11 and

13 the student may easily prove that the intensity due

to the charged plane surface is half that just outside a

charged spherical or cylindrical surface having the same

pharge of electricity per unit area,
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15. Lines of Force. A line of force is a curve

drawn in the electric field, and such that its tangent at

any point is parallel to the electric intensity at that

point.

16. Electric Potential. This is defined as follows

:

The electric potential at a point P exceeds that at Q by

the work done by the electric field on a body charged with

unit of electricity when the latter passes from P to Q. The

path by which the unit of electricity travels from P to Q
is immaterial, as the work done will be the same whatever

the nature of the path. To prove this suppose that the work

done on the unit when it travels along the path PAQ is

greater than when it travels along the path PBQ. Since

Fig. 8.

the work done on the unit of electricity when it goes from

P to Q along the path PBQ is equal to the work which

must be done to bring the unit from Q to P along QBP,

we see that if we make the unit travel round the closed

curve PAQBP the work done on the unit when it travels

along PAQ is greater than the work spent in bringing it

back from Q to P along the path QBP. Thus though the

unit of electricity is back at the point from which it

started, and if the field is entirely due to charges of

electricity, everything is the same as when we started, we
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have, if our hypothesis is correct, gained work. This is

not in accordance with the principle of the Conservation

of Energy, and we therefore conclude that the hypothesis

on which it is founded, i.e. that the work done on unit

electric charge when it travels from P to Q depends on

the path by which it travels is incorrect.

Since electric phenomena only depend upon differences

of potential it is immaterial what point we take as the

one at which we call the potential zero. In mathematical

investigations it simplifies the expression for the potential

to assume as the point of zero potential one at an infinite

distance from all the electrified bodies.

If P and Q are two points so near together that the

electric intensity may be regarded as constant over the

distance PQ then the work done on unit charge when it

travels from P to Q is P x PQ, if F is the electric intensity

resolved in the direction PQ. If Vp, Vq denote the

potentials at P and Q respectively, then since by definition

Vp — Vq is the work done on unit charge when it goes

from P to Q we have

Vp-Vq^FxPQ,

hence ^=^T^ ^^^'

thus the electric intensity in any direction is equal to the

rate of diminution of the potential in that direction.

Hence if we draw a surface such that the potential is

constant over the surface (a surface of this kind is called

an equipotential surface) the electric intensity at any

point on the surface must be along the normal. For since

the potential does not vary as we move along the surface,
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we see by equation 1 that the component of the electric

intensity tangential to the surface vanishes.

Conversely a surface over which the tangential com-

ponent of the intensity is everywhere zero will be an

equipotential surface, for since there is no tangential in-

tensity no work is done when the unit charge moves along

the surface from one point to another ; that is, there is no

difference of potential between points on the surface.

The surface of a conductor placed in an electric field

must be an equipotential surface when the field is in

equilibrium, for there can be no tangential electric in-

tensity, otherwise the electricity on the surface would

move along the surface and there could not be equili-

brium. It is this fact that makes the conception of the

potential so important in electrostatics, for the surfaces of

all bodies made of metal are equipotential surfaces.

17. Potential due to a uniformly charged sphere.

The potential at P is the work done by the electric field

when unit charge is taken from P to an infinite distance.

Let us suppose that the unit charge travels from P to an

infinite distance along a straight line passing through the

centre of the sphere. Let QRSThe a series of points

t-tt

Fig. 9.

very near together along this line. If e is the charge on

the sphere, its centre, the electric intensity at Q is e/OQ",

while that at R is e/OR^; as Q and R are very near together

these quantities are very nearly equal, and we may take
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the average electric intensity between Q and R as equal

to e/OQ . OR, the geometric mean of the intensities at Q
and R. Hence the work done by unit charge as it goes

from Q to jK is equal to

QR
OQ.OR

OQ OR

'

Similarly the work done by the charge as it goes from

i^ to >Sf is

_e e

OR OS'

as it goes from S to T

e e

OS~dT'

and so on. The work done by the charge as it goes from

Q to T is the sum of these expressions, and this sum is

equal to

e e

OQ~OT'

and we see by dividing up the distance between the points

into a number of small intervals and repeating the above

process that this expression will be true when Q and T are

a finite distance apart : and that it always represents the

work done by unit charge as long as Q and T are two

points on a radius of the sphere. The potential at P is



18] GENERAL PRINCIPLES OF ELECTROSTATICS. 29

the work done when the unit charge goes from P to an

infinite distance, and is therefore by the preceding result

equal to ^

.

This is also evidently the potential at P of a charge e

placed at if the dimensions of the body over which the

charge is spread are infinitesimal in comparison with OP.

18. The electric intensity at any point inside

a closed equipotential surface which does not en-

close any electric charge vanishes. We shall prove

that the potential is constant throughout the volume

enclosed by the surface, then it will follow by equation

(1), Art. 16, that the electric intensity vanishes through-

out this volume.

For if the potential is not constant it will be possible

to draw a series of equipotential surfaces inside the given

one ; let us consider the equipotential surface for which

the potential is very nearly, but not quite, the same as for

the given surface ; as the difference of potential between

this and the outer surface is very small the two surfaces

will be close together, and they cannot cut each other, for

if they did any point in their intersection would have two

different potentials.

Suppose for a moment that the potential at the inner

surface is greater than that at the outer.

Let P be a point on the inner surface, Q the point

where the outward drawn normal at P to the inner

surftxce cuts the outer surface. Then since the electric

intensity from P to Q is equal to {Vp — Vq)JPQ we see

that since by hypothesis Vp — Vq is positive, the normal



30 GENERAL PRINCIPLES OF ELECTROSTATICS. [CH. I

electric intensity over the second surface is everywhere in

the direction of the outward-drawn normal to the surface,

and therefore the total normal electric induction over the

surface will be positive, hence there must be a positive

charge inside the surface, as the total normal induction

over the surface is by Gauss's theorem proportional to the

charge enclosed by the surface. Hence, as by hypothesis

there is no charge inside the surface, we see that the

potential over the inner surface cannot be greater than

that at the outer surface. If the potential at the inner

surface were less than that at the outer then the normal

electric intensity would be everywhere in the opposite

direction, and we can show by Gauss's theorem as before

that this would require a negative charge inside the surface.

Hence as there is no charge either positive or negative

the potential at the inner surface can neither be greater

nor less than at the outer surface, and must therefore be

equal to it. In this way we see that the potential inside

the surface must have the same value as at the surface,

and since the potential is constant the electric intensity

will vanish inside the surface.

19. It follows from this that if we have a hollow,

conducting surface there will be no electrification on

its inner closed surface unless there are electrified bodies

inside the hollow. Let Fig. 10 represent the conductor

with a cavity inside it. To prove that there is no elec-

trification at P a point on the surface, take any closed

surface enclosing a small portion a of the inner surface

near P; by Gauss's theorem the charge on a is pro-

portional to the total normal electric induction over the

surface surrounding a. The electric intensity is however
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zero everywhere over this surface. It is zero over the part

of the surface outside the cavity because this part of the

Fig. 10.

surface is in a conductor, and when there is equilibrium

the electric intensity is zero at any point in a conductor

:

the electric intensity is zero inside the cavity because the

inner surface being the surface of a conductor is an equi-

potential surface, and as we have just seen the electric

intensity inside such a surface is zero unless the surface

encloses electric charges. Thus since the electric in-

tensity vanishes at each point on the surface surrounding

a, the charge at a must vanish ; in this way we can see

that there is no electrification at any point on the inner

cavity. The electrification is all on the outer surface of

the conductor.

20. The result proved in Art. 18 that when the force

between two charged bodies varies inversely as the square

of the distance between them the electric intensity

vanishes throughout the interior of an electrified con-

ductor leads to the most rigorous proof of the truth of

this law by experiment.
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Let us for simplicity confine our attention to the case

when the electrified conductor is a sphere positively

electrified.

Fig. 11.

Consider the state of things at a point P inside a

sphere whose centre is 0, Fig. 11 : through P draw a

plane at right angles to OP. The electrification on the

portion of the sphere above this plane produces an electric

intensity in the direction PO, while the electrification on

the portion of the sphere below the plane produces an

electric intensity in the direction OP. When the law of

force is the inverse square these two intensities balance

each other, the greater distance from P of the electri-

fication below the plane being compensated by the larger

electrified area.

Now suppose that the law of force varies as r~P, then

if p is greater than 2 the force diminishes more quickly

as the distance increases than when the law of force is the

inverse square, so that if the larger area below the plane

was just sufficient to -compensate for the greater distance

when the law of force was the inverse square it will not

be sufficient to do so when p is greater than 2, thus the

electrification on the portion of the sphere above the

plane will gain the upper hand and the resultant electric

intensity will be in the direction PO. Again, if p is less
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than 2 the force will not diminish so rapidly when the

distance increases as when the law is the inverse square,

so that if the greater area below the plane is sufficient

to compensate for the increased distance when the law of

force is the inverse square it will be more than sufficient

to do so when p is less than 2 ; in this case the electri-

fication below the plane will gain the upper hand, and

the electric intensity at P will be in the direction OP,

Now suppose we have two concentric metal spheres

connected by a wire, and that we electrify the outer sphere

positively, then if ^ = 2 there will be no electric intensity

inside the outer sphere, and therefore no movement of

electricity on the inner sphere which will remain un-

electrified. If p is greater than 2 we have seen that the

electric intensity due to the positive charge on the outer

sphere will be towards the centre of the sphere, i.e. the

force on a negative charge will be from the inner sphere

towards the outer. Negative electricity will therefore

flow from the inner sphere, which will be left with a

positive charge.

Next suppose that p is less than 2, the electric in-

tensity due to the charge on the outer sphere will be from

the centre of the sphere, the direction of the force acting

on a positive charge will therefore be from the inner

sphere to the outer, positive electricity will therefore flow

from the inner sphere to the outer, so that the inner

sphere will be left with a negative charge.

Thus according as p is greater than, equal to or less

than 2 the charge on the inner sphere will be positive,

zero or negative. By testing the state of electrification

on the inner sphere we can therefore test the law of force.

This is what was done by Cavendish in an experiment

T. E. 3
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made by him, and which goes by his name. The following

is a description of a slight modification due to Maxwell of

Cavendish's original experiment.

The apparatus for the experiment is represented in

Fig. 12.

Fig. 12.

The outer sphere A, made up of two tightly fitting

hemispheres, is fixed on an insulating stand, and the

inner sphere fixed concentrically with the outer one by

means of an ebonite ring. Connection between the inner

and outer spheres is made by a wire fastened to a small

metal disc B which acts as a lid to a small hole in the

outer sphere. When the wire and the disc are lifted

up by a silk string the electrical condition of the inner

sphere can be tested by pushing an insulated wire con-

nected to an electroscope (or preferably to a quadrant

electrometer, see Art. 60) through the hole until it is in

contact with the inner sphere. The experiment is made
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as follows : when the two spheres are in connection a

charge of electricity is communicated to the outer sphere,

the connection between the spheres is then broken by

lifting the disc by means of the silk thread; the outer

sphere is then discharged and kept connected to earth

;

the testing wire is then introduced through the hole and

put into contact with the inner sphere. Not the slightest

effect on the electroscope can be detected, showing that

if there is any charge on the inner sphere it is too small

to affect the electroscope, v To determine the sensitiveness

of the electroscope or electrometer, a small brass ball sus-

pended by a silk thread is placed at a considerable distance

from the two spheres. After the outer sphere is charged

(suppose positively) the brass ball is touched and then left

insulated ; in this way the ball gets by induction a negative

charge amounting to a calculable fraction, say a, of the

original charge communicated to the outer sphere. Now
when the outer sphere is connected to earth this negative

charge on the ball will induce a positive charge on the

outer sphere which is a calculable fraction, say y8, of the

charge on the ball. If we disconnect the outer sphere

from the earth and discharge the ball this positive charge

on the outer sphere will be free to go to the electroscope

if this is connected to the sphere. When the ball is not

too far away from the sphere this charge is sufficient to

deflect the electroscope, i.e. a fraction a/3 of the original

charge on the sphere is sufficient to deflect the electro-

scope, showing that the charge on the inner sphere in

the Cavendish experiment could not have amounted to

a/8 of the charge communicated to the outer sphere. If

the force between two charges is assumed to vary as r~P, we

can calculate the charge on the inner sphere and express

3—2
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it in terms of p, hence knowing from the Cavendish

experiment that this charge is less than ayS of the original

charge we can calculate that p must differ from 2 by less

than a certain quantity. In this way it has been shown

that^ differs from 2 by less than 1/20,000.

21. Definition of surface density. When the

electrification is on the surface of a body, the charge per

unit area is, when the electrification is uniform over the

surface, called the surface density of the electricity ; when
the electrification is variable the surface density at any

point is the limiting value of the ratio of the charge on

a small area o) of the surface surrounding the point to &>,

when ft) is made indefinitely small.

22. Coulomb's Law. The electric intensity R at

a point P close to the surface of a conductor surrounded

by air is at right angles to the surface and is equal to 47rcr

where a is the surface density of the electrification.

The first part of this law follows from Art. 16, since

the surface of a conductor is an equipotential surface.

Fig. 13.

To prove the second part take a small area at P (Fig. 13)

and through the boundary of this area draw the cylinder
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whose generating lines are parallel to the normal at P.

Let this cylinder be truncated at T and 8 by planes

parallel to the tangent plane at P.

The total normal electric induction over this cylinder

is R(o, where R is the normal electric intensity and w the

area of the cross section. For Rio is the part of the total

intensity due to the end T of the cylinder, and this is the

only part of the surface of the cylinder which contributes

anything to the total normal induction. For the intensity

along that part of the curved surface of the cylinder

which is in air is tangential to the surface and therefore

has no component along the normal, while since the

electric intensity vanishes inside the conductor the part of

the surface which is inside the conductor will not con-

tribute anything to the total induction. If a is the

surface density of the electrification at P the charge

inside the cylinder is two- ; hence by Gauss's theorem

R(o = ^ircoa

or R — ^TTo:

The result expressed by this equation is known as

Coulomb's Law. It requires modification when the con-

ductor is not surrounded by air, but by some other in-

sulator. See Art. 71.

23. Energy in the electric field. Let us take the

case of a number of conductors placed in an electric field

;

let E^ be the charge on the first conductor, Vi its poten-

tial, E.2 the charge on the second conductor, V^ its poten-

tial, and so on, we shall show that the potential energy of

this system of conductors is equal to

To prove this we notice that the potentials of the
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conductors will depend upon the charges of electricity on

the conductors, in such a way that if the charge on every

part of the system is increased m times, the potential at

every point in the system will also be increased m times.

To find the energy in the system of conductors we
shall suppose that they are originally uncharged, and at

potential zero, and that a charge J^i/n is brought from

an infinite distance to the first conductor, a charge E^jn

is brought from an infinite distance to the second con-

ductor, a charge -£^3/71 to the third conductor, and so on.

After this has been done, the potential of the first con-

ductor will be Vxjn, that of the second V^jn, and so ou.

Let us call this the first stage of the operation. Then
bring from an infinite distance charges E^jn to the

first conductor, E^jn to the second, and so on. When
this has been done the potentials of the conductors will

be 2 Fi/?i, 2 V^jn, Call this the second stage of the

operation. Keep repeating this process until the first con-

ductor has the charge E^ and the potential F,, the second

conductor the charge E^ and the potential Fg

Then in the first stage the potential of the first con-

ductor is zero at the beginning, and Vyjn at the end ; the

work done in bringing up to it the charge E^jn is therefore

E V . .

gi'eater than but less than — . ^ ; similarly the work

spent in bringing up the charge E.iln to the second con-

E V
doctor is efreater than zero but less than — .

—

.

° n n

Therefore Qi the work spent in the first stage of the

operations is

>o<^,{E,r,+E,r,+E,v^+...].
Ill
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In the second stage of the operations the potential of

the first conductor is VJn at the beginning, 2Fi/n at the

end, so that the work spent in bringing up the charge EJn
E V

to the first conductor is greater than — . — , leas than
71 n

W 2T^— .
—

^ ; similarly the work spent in bringing up the

charge E^/n to the second conductor is greater than— . —
,

E '2V
less than — .

—
^. Thus Qa the work spent in this

n n ^

stage is

>\{E,V,-VE,V^ + E,V,+ .,.)

Similarly Q^ the work spent in the third stage is

>-,{E,V, + E,V,+ E,V,+ ...)
11/

<-^(E,V, + E,V,+ E,V,+ ...)

and Qn the work spent in the last stage is

<-,{E,V, + E,V, + E,V^+...).

Thus Q the total amount of work spent in charging

the conductors is equal to Qi + Q2 + . . . Q«, and is therefore

<^-±^±^±^^iE,V, + E,V, + E,V, + ...).



40 GENERAL PRINCIPLES OF ELECTROSTATICS. [CH. I

(n-l)n n.(n + l)
'•^' ^ 2/1^

(A,K,+ ...)< 2^^,
(^.F,4-...)

or

>|(l-i)(^.7. + ...)<l(n-i)(A'.F. + ...).

If however we make 7i catooediag great the two limits

coincide, and we see that Q the total work spent in

charging the conductors is given by the equation

The work done in charging the conductors is stored up

in the system as electrical energy, and the potential

energy of the system is equal to the work done in pro-

ducing the electric state of the system ; the energy however

only depends on the state of the system and is independent

of the way it is arrived at. Hence we see from the above

result that the energy of a system of conductors is one

half the sum of the products obtained by multiplying the

charge of each conductor by its potential.

24. Relation between the potentials and charges

on the conductors. Superposition of Electrical

Effects. Let V be the potential at any point P when

the first conductor has a charge E^^ and all the other

conductors are without charge: V^' the potential at

P when the second conductor has the charge E2 and

all the other conductors are without charge ; then when

the first conductor has the charge E^, the second the

charge E^, and all the other conductors are without

charge, the potential at P will be V + V'\

For the conditions to be satisfied are that the charges

on the conductors should have the given values and

that the conductors should be equipotential surfaces.
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Now consider the distribution of electrification corre-

sponding to the solution when the first conductor has

the charge E^ and the rest are without charge: this

satisfies the conditions that the conductors are equipo-

tential surfaces and that the charge on the first con-

ductor is E^, the charge on the other conductors zero.

The distribution of electrification corresponding to the

second solution satisfies the conditions that the conductors

are equipotential surfaces, that the charge on the fii-st

conductor is zero, the charge on the second conductor

E^, the charge on the other conductors zero. If the

electrification on the conductors consists of that corre-

sponding to the two solutions superposed, it will satisfy

the conditions that the conductors are equipotential sur-

faces, that the charges on the conductors are the sum
of the charges corresponding to the two solutions, i.e. that

the charge on the first conductor is E^, that on the second

conductor ^2, and that on the other conductors zero. In

other words, it will be the solution of the case when the

first conductor has the charge E^, the second the charge

E^y while the rest of the conductors are uncharged. But

when two systems of electrification are superposed, the

potential at P is the sum of the potentials due to the

two systems separately, i.e. the potential at P will be

25. We see that the preceding reasoning can be

applied to prove the general theorem that if V be the

potential at P when the first conductor has the charge E^
,

the other conductors being uncharged, V" the potential

at P when the second conductor has the charge E^y the

other conductors being uncharged, V" the potential
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at P when the charge on the third conductor is E^, the

other conductors being uncharged, and so on ; then when
the first conductor has the charge E^, the second the

charge E2, the third the charge E3, and so on, the poten-

tial at P will be

26. When the first conductor has the charge E^, the

other conductors being uncharged and insulated, the

potentials of the conductors will be proportional to E^,

that is, the potentials of the first, second, third, &c. con-

ductors will be respectively

PuEu P12E1, i?l3^l...,

where p^, Pvi, Pn are quantities which do not depend

upon the charges of the conductors or their potentials,

but only upon their shapes and sizes and the position of

the conductors with reference to each other. The quan-

tities Pn,pi2,pi3f &c. are called coefficients ofpotential, their

properties are further considered in Arts. 27—31. When
the second conductor has the charge E2, the other con-

ductors being uncharged and insulated, the potentials of

the conductors will be proportional to E.2, and the potentials

of the first, second, third, &c. conductors will be

P21E.J., P2.2E2, p.^E,,, ....

When the third conductor has the charge E^, the other

conductors being uncharged and insulated, the potentials

of the first, second, third conductors will be

^31^3, i>32^3, Pa&E^.

Hence by Art. 25 we see that when the first con-

ductor has the charge ^1, the second the charge E^, the
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third the charge E^, and so on, Ti the potential of the

first conductor will be given by the equation

F2 the potential of the second conductor by the equation

if F, is the potential of the third conductor

F3 = pi3^i +p^E^ +Ps3^3 + •..

,

If we solve these equations we get

^1=^11 ^^1 + ^21^2+^31^3+...,

^2 = ^12^14-^22^2+^32^3+...,

where the qs are functions of the ps and only depend

upon the configuration of the system of conductors. The

g's are called coefficients of capacity when the two

suffixes are the same, coefficients of induction when they

are different.

27. We shall now show that the coefficients which

occur in these equations are not all independent, but that

i?2i=i?i2.

To prove this let us suppose that only the first and

second conductors have any charges, the others being with-

out charge and insulated. Then we may imagine the

system charged, by first bringing up the charge E^ from

an infinite distance to the first conductor and leaving all

the other conductors uncharged, and then when this has

been done bringing up the charge E^ from an infinite

distance to the second conductor. The work done in

bringing the charge E^ up to the first conductor will be
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the energy of the system when the first conductor has the

charge E^ and the other conductors are without charge,

the potential of the first conductor is in this case pnE^ , so

that by Art. 23 the work done is ^E^.p^E^ or ^^n^i^.

To find the work done in bringing up the charge E^ to

the second conductor let us suppose that this charge is

brought up in equal instalments each equal to E^ln.

Then the potential of the second conductor before the

first instalment is brought up is by Art. 26 equal to p^^Ej,

after the first instalment has arrived it is p^E. -\-p<>>— .

^ n

Hence the work done in bringing up the first instalment

will be between

;>„J5:,f and (p,^_E,+p^f]^\n v^ ^ n J n

Similarly the work done in bringing up the second in-

stalment E2/H will be between

„ Eo\ Eq 1 / r, ^Eo\ Eo
p,,E, +P.-)- and [p,,E, + p^ -j - ,

and the work done in bringing up the last instalment of

the charge will be between

(i>12^1+JP22
^ ' ^— and (pi.E. + p,^— '^

thus the total amount of work done in bringing up the

charge E^ will be between

„^ 1 + 2 + 3 + ?i-l
p,,E,E, + -^ p^E,'

_, ^ 1 + 2 + 3+n ^2
and Pi2^i^2 + -^ i>22^2

,
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that is, between

but if 11 is very great these two expressions become equal

to p^J^^E^ + \p,^^E^, which is the work done in bringing

the charge E^ to the second conductor when the first

conductor has already received the charge E^ \ hence the

work done in bringing up first the charge E^ and then

^,is

hPnE:+P.,E,E,-v\p,^E:,

It follows in the same way that the work done when
the charge E.^, is first brought to the second conductor

and then the charge E^ to the first is

hP,.E,' + P.,EA+ip,A'>
but since the final result is the same in the two cases, the

work required to charge them must be the same ; hence

iP^^^:' +P.AE, + hPnE.' = \pJ^'.^P.JE,E, + l^„^;^

i.e. P2i=Pvi-

It follows from the way in which the g's can be ex-

pressed in terms of the ^'s, that q.zi
= qv2-

28. Now py2 is the potential of the second conductor

when unit charge is given to the first, the other con-

ductors being insulated and without charge, and p^^i is the

potential of the first conductor when unit charge is given

to the second. But we have just seen that ^21 =i?i2, hence

the potential of the second conductor when insulated

and without charge due to unit charge on the first is

equal to the potential of the first when insulated and

without charge due to unit charge on the second.
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29. Let us consider some examples of this theorem.

Let us suppose that the first conductor is a sphere with

its centre at 0, and that the second conductor is very

small and placed at P, then if P is outside the sphere we

know by Art. 17 that if unit charge is given to the sphere

the potential at P is increased by 1/OP. It follows from

the preceding article that if unit charge be placed at P
the potential of the sphere when insulated is increased

by 1/OP.

If P is inside the sphere then when unit charge is

given to the sphere the potential at P is increased by Ija

where a is the radius of the sphere. Hence if the sphere

is insulated and a unit charge placed at P the potential

of the sphere is increased by 1/a. Thus the increase in

the potential of the sphere is independent of the position

of P as long as it is inside the sphere.

Since the potential inside any closed conductor which

does not include any charged bodies is constant, by Art.

18, we see by taking as our first conductor a closed

surface, and as our second conductor a small body placed

at a point P anywhere inside this surface, that since the

potential at P due to unit charge on the conductor is

independent of the position of P, the potential of the

conductor when insulated due to a charge at P is inde-

pendent of the position of P. Thus however a charged

body is moved about inside a closed insulated conductor

the potential of the conductor will remain constant. An
example of this is afforded by the experiment described in

Art. 5 ; the deflection of the electroscope is independent

of the position of the charged bodies inside the insulated

closed conductor.
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30. Again, take the case when the first conductor is

charged, the others insulated and uncharged ; then

so that ^"=^-

Now suppose that the first conductor is connected to

earth while a charge B,^ is given to the second conductor,

all the other conductors being uncharged ; then since

Fj = we have

0=pi,E,+p,^E^,

El pi2 F2

by the preceding equation.

Hence if a charge be given to the first conductor, all

the others being insulated, the ratio of the potential of

the second conductor to that of the first will be equal in

magnitude but opposite in sign to the charge induced on

the first conductor, when connected to earth, by unit

charge on the second conductor.

As an example of this, suppose that the first conductor

is a sphere with centre at 0, and that the second conductor is

a small body at a point P outside the sphere ;
then if unit

charge be given to the sphere, the potential of the body

at P is ajOP times the potential of the sphere, where a is

the radius of the sphere; hence by the theorem of this

article when unit charge is placed at P, and the sphere

connected to the earth, there will be a negative charge on

the sphere equal to a/OP.

Another example of this result is when the first
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conductor completely surrounds the second ; then since the

potential inside the first conductor is constant when all

the conductors inside are free from charge, the potential

of the second conductor when a charge is given to the first

conductor will be the same as that of the first. Hence

from the above result it follows that when the first con-

ductor is connected to earth, and a charge given to the

second, the charge induced on the first conductor will be

equal and opposite to that given to the second.

Another consequence of this result is that if >S^ be an

equipotential surface when the first conductor is charged,

all the others being insulated, then if the first couductor

be connected to earth the charge induced on it by unit

charge on a small body P remains the same however P
may be moved about, provided that P always keeps on

the surface S.

31. As an example in the calculation of coefficients

of capacity and induction, we shall take the case when

the conductors are two concentric spherical shells. Let a

be the radius of the inner shell, which we shall call the

first conductor, h the radius of the outer shell, which we

shall call the second conductor. Let E^, E.^ be the

charges of electricity on the inner and outer shells re-

spectively, Fi, Fa the corresponding potentials of these

shells.

Then if there were no charge on the outer shell the

charge E^ on the inner would produce a potential E^ja

on its own surface, and a potential E^jh on the surface

of the outer shell ; hence, Art. 26,

1 1
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The charge Er, on the outer shell would, if there were

no charge on the inner shell, make the potential inside

the outer shell constant and equal to the potential at

the surface of the outer shell. This potential is equal

to E^jh, so that the potential of the first conductor due

to the charge E^ on the second is E^fh, which is also

equal to the potential of the second conductor due to

the charge E^ ; hence. Art. 26,

1 1

We have therefore

Cb

Solving these equations, we get

ab -^ ah

b — a ^ b — a
E.= r^F.-r^n,

b-a b — a

Hence

_ ab _ _ ^^ __^

We notice that qi2 is negative ; this, as we shall prove

later, is always true whatever the shape and position of

the two conductors.

132.
Another case we shall consider is that of two

spheres the distance between whose centres is very large

compared with the radius of either. Let a be the radius

of the first sphere, b that of the second, R the distance

T. E. 4
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between their centres, E^, E.2 the charges, F,, V2 the

potentials of the two spheres. Then if there were no

charge on the second sphere, the potential at the surface

of the first sphere would if the distance between the

spheres were very great be approximately EJa, while the

potential of the second sphere would be approximately

EjIR'j hence

1 1

approximately.

Similarly if there were no charge on the first sphere,

and a charge E^ on the second, the potential at the first

sphere would be E^/R, that at the second E.Jb, approxi-

mately ; hence we have approximately

_1_ _ 1

Pn-j^, P^^-l'

So that approximately

^'~R^J'
Solving these equations we get

„ aR^ ^^ ahR ^^
^1 = ^55—n *^i-R^-ab ' R?-ab

^ obR ,^ bR'

R'^-ab ' ' R-'-ab

hence

aR^ _ _ _ ahR _ bR^
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We see that as before q^^ is negative. We also notice

that ^11 and q^^ get larger the nearer the spheres get to-

gether.

33. Electric Screens. As an example of the use

of coefficients of capacity we shall consider the case of

three conductors, A, B, C, and shall suppose that the first

of these conductors A is as in the Fig. 14 inside the

Fio. 14.

third conductor C, which is supposed to be a closed surface,

while the second conductor B is outside G. Then if

El, Vi\ E<i, V^'y E^, Fg denote the charges and potentials

of the conductors A, B, C respectively, qn, q^t-" qn--- the

coefficients of capacity and induction, we have

^1=^111^1 + ^12^2 4-^13^3 (1).

E^=^q,^V,^-q^V,-\-q^V, (2).

E^=q,,V,^qJ^^ + q^V, (3).

Now let us suppose that the conductor C is connected

to earth so that V^ is zero; then since the potential

inside a closed conductor is constant if it contains no

charge we see that if E^ is zero, V^ must vanish whatever

4—2
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may be the value of V2. Hence it follows from equation

(1) that qi2 must vanish
;
putting q^o and F3 both zero we

see from (1) that

and from (2) E^ = ^22^2-

Thus in this case the charge on A if the potential is

given, or the potential if the charge is given, are entirely

independent of E^ and V2, that is a charge on B produces

no electrical effect on A, while a charge on A produces

no electrical effect at B. Thus the interaction between A
and B is entirely cut off by the interposition or the closed

conductor at potential zero.

C is called an electric screen since it screens off from

A all the effects that might be produced by B. This

property of a closed metallic surface at zero potential has

very important applications, as it enables us by sur-

rounding our instruments by a metal covering connected

to earth to get entirely rid of any electrical effects arising

from charged bodies not under our control. Thus, in the

experiment described in Art. 4, the gold leaves of the

electroscope were protected from the action of external

electrified bodies by enclosing them in a surface made of

wire-gauze and connected to the earth.

34. Expression for the change in the energy of

the system.—The energy of the system Q is, by Art. 23,

equal to ^^EV, hence we have by Art. 27

Q = hPiiE,' + ip^E^' + . . . p^^E^E^ +...,

if the charges are increased to E^, E^ &c. the energy Q'

corresponding to these charges is given by the equation

q = 4p„S/^ + ^^E^^ + . . . p,,E,'E^ + . . .

.
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The work done in increasing the charges is equal to

Q' — Q. By the preceding equations

+ {E,'-E\)^{p,,{E, + E,')^p,,{E,-\-E^)^,..}

+
= (E,'-E,)i{V,'+V,) + {E.;-E.,)i(V,'-\-V,,)-^...

where F/, V2... are the potentials of the first, second,...

conductors when the charges are ^/, E2

Thus the work required to increase the charges is

equal to the sum of the products of the increase in the

charge on each conductor into the mean of the potentials

of the conductor before and after the charges are in-

creased.

If we express Q and Q' by Art. 26 in terms of the

potentials instead of the charge, we have

and we see that

Q'-Q = (V,'-VdUE^ + E,')+....

So that the work required is equal to the sum of the pro-

ducts of the increase of potential of each conductor into the

mean of the initial and final charges of that conductor.

35. Force tending to produce any displacement

of the system.—When the conductors are not connected

with any external source of energy, e.g. when they are

insulated; then by the principle of the Conservation of

Energy the work done by the system when any displace-

ment occurs will be equal to the energy lost by the system

in consequence of the displacement; and in this case
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the system will tend to move so as to make the electric

energy diminish.

When however the potentials of the conductors are

kept constant, one way of doing which is to connect them
with galvanic batteries, we shall show that the system

moves so that the electric energy increases. There is

thus not merely work done by the system when it is

displaced, but along with this expenditure of work there

is an increase in the electric energy, the batteries to which

the conductors are attached are drained of a quantity of

energy equal to the sum of the mechanical work done and

the increase in the electric energy.

36. We shall now prove that when a small displace-

ment of the system takes place the diminution in the

electrical energy, when the charges are kept constant, is

equal to the increase in the potential energy when the

same displacement takes place and the potentials are

kept constant.

Let El, Vi, F2, F2, ... be the charges and potentials

of the conductors before the displacement takes place,

El, Vi,E^, V2, ... the charges and potentials of the

conductors after the displacement has taken place when

the charges are constant,

Ei\ Vi, E.J, V2, ... the charges and potentials of the

conductors after the displacement when the potentials are

constant.

Then since the electric energy is one half the sum of

the product of the charges and the potentials, the loss in

electric energy by the displacement when the changes are

constant is
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The gain in electric energy when the potentials are

constant is

i{v,(£;,'-E,) + r,{E,'-E,) + ...}.

The difference between the loss when the charges are

constant and the gain when the potentials are constant is

thus equal to

Now in the displaced position of the system E^, F/,

E2, V2 ... are one set of corresponding values of the

charges and the potentials, while E^, F^, E^, V^... are

another set of corresponding values. Hence if p^/, /),/, . .

.

denote the values of the coefficients of induction in the

displaced position of the system

v,=p,^e;+p,^e.: + ...

and F/

=

p^^E^ + p,^E^ + ...

Thus

E\V,-\-E,V, + ...=^Pn'E,E,'

+ p.JE,E,'+ ...P,/(E\E,'-{-E:E\)-^...

and

E,'V,' + E:V./ + ...=pn'E,L\'

+ pJE,E.; + . . . +pj (E\E,' + E,'E,) + . .
.

,

hence E,V, + E\V, + ... - (E.'V: + ...) = 0.

Thus the difference between the loss in electric energy

when the charges are kept constant and the gain when

the potentials are kept constant is equal to

i{{E,-En(v,-r:}+...\.
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Now when the displacement is very small E — E',

V—V will each be proportional to the first power of the

displacement, hence the preceding expression is pro-

portional to the square of the displacement, and may be

neglected when the displacement is very small. Hence

we see that the loss in electric energy for any small

displacements when the charges are kept constant is equal

to the gain in potential energy for the same displacement

when the potentials are kept constant. When the poten-

tials are kept constant, the batteries connected to the

conductors which maintain the potentials at their constant

value will be called upon to furnish twice the amount of

mechanical work gained. For they will have to furnish

energy equal to the sum of the mechanical work gained

and the increase in the electric energy of the system,

the latter is as we have just seen equal to the decrease

in the electric energy of the system while the charges are

kept constant, and this is equal by the principle of the

conservation of energy to the mechanical work gained.

37. Mechanical Force on each unit of area of a

charged conductor.—The electric intensity is at right

angles to the surface of the conductor, so that the force

on any small portion of the surface surrounding a point P
will be along the normal to the surface at P.

To find the magnitude of this force let us consider a

small electrified area round P, then the electric intensity

in the neighbourhood of P may conveniently be regarded

as arising from two causes, (1) the electrification on the

small area round P, and (2) the electrification on the rest

of this surface and on any other surfaces there may be in

the electric field. To find the force on the small area we
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must find the value of the second part of the electric

intensity, for the electric intensity due to the electri-

fication on the small area will evidently not have any

tendency to move this area one way or another.

Let R be the total normal electric intensity just

outside the surface at P, R^ that part of it due to the

electrification on the small area round P, R^ the part due

to the electrification of the rest of the system. Then
P = Pi + R-2'

Compare now the electric intensities at two points Q,

S (Fig. 15) close together and near to P, but so placed

Fig. 15.

that Q is just outside and S just inside the surface of

which the small area forms a part. Then the electric

intensity at S in the direction of the normal at P, which

is due to the electrification on the conductors other than

the small area, will be equal to P2 its value at Q since

these points are close together. The electric intensity

due to the small area will have at S the same magnitude

as Pi its value at Q, but will be in the opposite direction,

since Q is on one side of the small area, while S is on the

other. Thus the electric intensity at S due to this area
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in the direction of the outward drawn normal will be — i^i,

that due to the rest of the electrification II^- The total

intensity at S will therefore be — i?i + J?2- But this must

be zero, since the intensity inside a closed equipotential

surface enclosing no charge is zero. Thus jR.2 = i?i, and

therefore since

Now the force on the area co in the direction of the

normal is i^gwcr if a is the surface density at P, but R.,

is equal to ^R, Thus if F is the mechanical force per

unit area in the direction of the normal

F(o = ^R(0(r,

or F=iRa- (1).

Since by Coulomb's Law, Art. 22,

R = 47r<7,

we have the following expressions for the force per unit

area

^ = 8-. (2)'

i^=27ro-2 (3).

Since Coulomb's Law requires modification when the

medium surrounding the conductor is not air, the expres-

sions (2) and (3) are only true for air : the equation (1) is

always true whatever be the insulator surrounding the

conductor.

When the electric intensity at the surface of a con-

ductor exceeds a certain value the air ceases to insulate

and the electrification of the conductor is discharged.

The value of the electric intensity when the electrification
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begins to escape from the conductor depends upon a great

number of circumstances, such as the pressure of the air

and the proximity of other conductors. When the pres-

sure of the air is about 760 mm. of mercury and the

temperature about 15° C, the greatest value of R is about

100, unless the conductor is within a fraction of a mil-

limetre of other conductors ; hence the greatest value of

F in dynes is

IOVStt.

The pressure of the atmosphere on unit area is about

10*^ dynes per square centimetre, hence the greatest tension

along the normal to an electrified surface in air is about

I/SOOtt of the atmospheric pressure. That is, a pressure

due to about '3 of a millimetre of mercury would equal

in magnitude the greatest tension on a conductor placed

in air at ordinary pressure.



CHAPTER II.

Lines of Force.

38. Expression of the properties of the Electric

Field in terms of Faraday Tubes,—The results we

have hitherto attained only depend upon the fact that

two charged bodies are attracted towards or repelled from

each other with a force varying inversely as the square

of the distance between them ; we have made no assump-

tion as to how this force is produced, whether for example

it is due to the action at a distance of the charged bodies

upon each other or to some action taking place in the

medium between the bodies.

Great advances have been made in electricity through

the introduction by Faraday of the view that electrical

effects are due to the medium between the charged bodies

being in a special state, and do not arise from the action

at a distance exerted by one charged body on another.

We shall now proceed to consider Faraday's method

of regarding the electric field—a method which enables

us to form a vivid mental picture of the processes going

on in such a field, and to connect together with great ease

many of the most important theorems in Electrostatics.

We have seen, Art. 15, that a line of force is a curve
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such that its tangent at any point is in the direction of

the electric intensity at that point. As these lines of

force are fundamental in the method which in this and

subsequent chapters we employ for considering the pro-

perties of the electric field, we give below some carefully-

drawn diagrams of the lines of force in some typical

cases.

Figure 16 represents the lines of force due to two

equal and opposite charges. In this case all the lines of

force start from the positive charge and end on the

Fig. 16.

negative. Fig. 17 represents the lines of force due to

two equal positive charges ; in this case the lines of

force do not pass between the charged bodies, but lines

start from each of the bodies and travel off to an infinite

distance.
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Figure 18 reprd^nts the lines of force due to a

positive charge equil to 4 at A, and a negative charge

I

Fig. 18.
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equal to — 1 at B. In this case all the lines of force

which fall on B start from A, but since the charge at

A is numerically greater than that at B, lines of force

will start from A which do not fall on B but travel off

to an infinite distance.

The separation between the lines of force which pass

between A and B and those which proceed from A and

go off to an infinite distance is marked by the line of

force which passes through C, the point of equilibrium,

where

AC = 2AB.

T
m

Fig. 19.

Figure 19 represents the lines of force due to a

charge 1 at ^ and 4 at B.

Figure 20 represents the lines of force due to a

charged conductor formed by two spheres cutting at right

angles. The electric intensity vanishes along the inter-

section of the spheres.
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Figure 21 represents the lines of force between two

finite portions of parallel planes; away from the edges

Fig. 20.

of the planes and between the planes the lines of force are

straight lines at right angles to the planes, but nearer the

Fig. 21.



39] LINES OF FORCE. 65

edge of the planes they curve out, and some pass from

the back of one plane to the back of the other.

39. Tubes of Force.—If we take any small closed

curve in the electric field and draw the lines of force,

which pass through each point of the curve, these lines

will form a tubular surface which is called a tube of force.

These tubes possess the property that the electric in-

tensities at any two points on a tube are inversely

proportional to the cross sections of the tube, made by

planes cutting the tube at right angles at these points :

the cross sections being so small that the electric in-

tensity may be regarded as constant over each cross

section. For let Fig. (22) represent such a surface formed

Fig. 22.

by the tube and its normal sections. Let Wi be the area

of the cross section of the tube at P, co.i its cross section

SitQ, Ri,R^ the electric intensities at P and Q respectively.

Now consider the total normal electric induction over

the surface. The only parts of the surface which con-

tribute anything to this are the flat ends, as the sides

of the tube are by hypothesis parallel to the electric

intensity, so that this has no normal component over the

T. E. 5
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curved surface. Thus the total normal induction over the

closed surface PQ is equal to

the minus sign being given to the second term because,

as drawn in the figure, the electric intensity is in the

direction of the inward-drawn normal. Now, by Gauss's

theorem, the total normal electric induction over any closed

surface is equal to 47r times the charge inside the surface;

hence if the surface does not include any charge, we

have

II2CO2 — Ri(i)i = 0,

or the electric intensity at P is to that at Q inversely as

the cross section of the tube of force at P is to that

at Q.

The tubes of force will start from positive electrifica-

tion and go on until they end on a negative electrified

body. If the points P and Q are on the surfaces of

positively and negatively electrified conductors, then if

a-p is the surface density at P, o-q that at Q,

R^ = 47ro-p , Ki = 4!7raQ
;

thus the equation

R.2(02 — RiCOi = 0,

is equivalent to ctqCo^ = o-jM^ .

Now (Tpcoi is the charge enclosed by the tube where it

leaves the positively electrified conductor, and o-qw^ the

charge enclosed by the tube where it arrives at the

negatively electrified conductor, hence we see that the

positive charge at the beginning of the tube is equal in

magnitude to the negative charge at the end. We may

draw these tubes so that they each enclose one unit of

electrification at their origin, each of these tubes will
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therefore include unit negative charge at its end. Such

tubes are sometimes called unit tubes of Force, we shall

for brevity call them Faraday tubes. Each unit of posi-

tive charge will be the origin, each unit of negative charge

the end of a Faraday tube. The total charge on a

conductor will be the excess of the number of tubes

which leave the conductor over the number which arrive

at the conductor.

Since the Faraday tubes run in the direction of the

electric intensity in air, they begin at places of high and

travel to places of low potential. No Faraday tube can

begin and end on a surface at the same potential, that is

no Faraday tube passes from one surface to another if the

two surfaces are at the same potential.

40. The electrical intensity at any point in the field

is proportional to the number of Faraday tubes which pass

through unit area of a plane drawn at right angles to the

direction of the electric intensity or, what is the same

thing, through unit area of the equipotential surface

passing through the point.

For let ^ be a small area drawn at right angles to the

electric intensity, prolong the tubes which pass through

this area until they arrive at the positively electrified

surface from which they start; let B be the portion of this

surface over which these tubes are spread, R the electric

intensity at any point on B, &>' the area at B. Let F be

the electric intensity and co the area enclosed by the tubes

at A. Then applying Gauss's theorem (Art. 10) to the

tubular surface formed by the prolongations backwards of

the tubes through A we get

Fay - Ray' = 0.

5—2
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But if a is the surface density of the electrification at

jB, we have when the medium surrounding B is air, by

Coulomb's law (Art. 22)

R = 47ro-,

hence Foa = ^iraw
,

but o-ft)' is the charge of electricity on B, it is therefore

equal to N the number of Faraday tubes which start

from B, and which pass through A, hence

J?'a) = 47ri\r,

or if (o is unity

Thus the electric intensity in air is 47r times the

number of Faraday tubes passing through unit area of a

plane drawn at right angles to the electric intensity.

41. The properties of the Faraday tubes enable us to

prove with ease many important theorems relating to the

electric field.

Thus, for example, we see that on the conductor at the

highest potential in the field the electrification must be

entirely positive ; for any negative electrification would

imply that Faraday tubes arrived at the conductor, these

tubes must however arrive at a place which is at a

lower potential than the place from which they start.

Thus, if the potential of the conductor we are considering

is the highest in the field it is impossible for a Faraday

tube to arrive at it, for this would imply that there was

some other conductor at a still higher potential from which

the tube could start.

Similar reasoning shows that the electrification on the

conductor or conductors at the lowest potential in the
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field must be entirely negative. Now take the case when
one conductor has a positive charge while all the other

conductors are connected to earth; we see from the last

result that the charges on the uninsulated conductors

must be all negative, and since the potentials of these

conductors are all equal and the same as that of the earth,

no Faraday tubes can pass from one of these conductors to

another, or from one of these to the earth. Hence all the

tubes which fall on these conductors must have started

from the conductor at highest potential. Thus the sum of

the number of tubes which fall on the uninsulated con-

ductor cannot exceed the number which leave the posi-

tively charged conductor, that is, the sum of the negative

charges induced on the conductors connected to earth

cannot exceed the positive charge on the insulated con-

ductor.

42. These results give us important information as to

the coefficients of capacity defined in Art. 26.

For let us take the first conductor as the insulated

one with the positive charge; then since V^, V^... are all

zero we have, using the notation of that Article,

E, = qnV„ E^=qi2V,y ^3 = ^13^1

Since E^ and Fj are positive, while E^, E^, &c. are all

negative, we see that q^ is positive, while q^iy qis are all

negative. Again, since the positive charge on the first

conductor is numerically not less than the sum of the

negative charges on the other conductors,

El is numerically not less than ^2 + -^a + • • •>

i.e. qu is numerically not less than q^^ + ^13 + 5'i4 + • • ••
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If one of the conductors, say the second, completely

surrounds the first, and if there is no conductor other than

the first inside the second, and if all the conductors except

the first are at zero potential, then all the tubes which start

from the first must fall on the second. Thus the negative

charge on the second must be numerically equal to the

positive charge on the first (see Art. 30). There can be

no charges on any of the other conductors, for all the

tubes which fall on these conductors must come from the

first conductor, the tubes from this conductor are however

completely intercepted by the second surface. Thus if

the second conductor incloses the first conductor, and if

there are not any other closed conductors between the

first and the second, then g„ = — ^j.,, and ^13, ^14, ^15... are

all zero.

43. Expression for the Energy in the Field.

When we regard the Faraday tubes as the agents by which

the phenomena in the electric field are produced we are

naturally led to suppose that the energy in the electric

field is in that part of the field through which the tubes

pass, i.e. in the dielectric between the conductors. We
shall now proceed to find how much energy there must be

in each unit of volume if we regard the energy as dis-

tributed throughout the electric field. We have seen

Art. 23 that the electric energy is one half the sum of the

products got by multiplying the charge on each conductor

by the potential of that conductor. We may regard each

unit charge as having associated with it a Faraday tube,

which commences at the charge if that is positive and

ends there if the charge is negative. Let us now see how

the energy in the field can be expressed in terms of these
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tubes. Each tube will occur twice in the expression for

the electric energy ^S^F, the first time corresponding to

the positive charge at its origin, the second time cor-

responding to the negative charge at its end. Thus since

there is unit charge at each end of the tube the con-

tribution of each tube to the expression for the energy-

will be J (the difference of potential between its begin-

ning and end). The difference of potential between the

beginning and end of the tube is equal to XR . PQ
;

where PQ is a small portion of the length of the tube, so

small that along it R, the electric intensity, may be re-

garded as constant: the sign 2) denotes that the tube

between A and B, A being a unit of positive and B
a unit of negative charge, is to be divided up into small

pieces similar to PQ, and that the sum of the products of

the length of each piece into the electric intensity along it

is to be taken. Thus the whole tube AB contributes to

the electric energy JSi2 . PQ, which is equivalent to sup-

posing that each unit length of the tube contributes an

amount of energy equal to one half the electric intensity.

Any finite portion CD of the tube will therefore contribute

an amount of energy equal numerically to one half the

difference of potential between G and D. We may there-

fore regard the energy of the field as due to each of the

Faraday tubes having associated with it an amount of

energy per unit length numerically equal to one half the

electric intensity.

Let us now consider the amount of energy per unit

volume. Take a small cylinder surrounding any point P
in the field with its axis parallel to the electric intensity

at P, its ends being at right angles to the axis. Then if

R is the electric intensity at P, I the length of the



72 LINES OF FORCE. [CH. II

cylinder, the amount of energy due to each tube in the

cylinder is ^Rl. If co is the area of the cross section, N
the number of tubes passing through unit area, the

number of tubes in the cylinder is Nay. Thus the energy

in the cylinder is

iRlNo),

but in air, see Art. 40,

47riV^=E;

thus the energy in the cylinder is

but lo) is the volume of the cylinder, hence the energy

per unit volume is equal to

Stt*

Thus we may regard the energy as distributed through-

out the field in such a way that in each unit of volume

there is an amount of energy equal to R^/Sir.

44. If we divide the field up into a series of equi-

potential surfaces, the potentials of successive surfaces

decreasing in arithmetical progression, and then draw

Fig. 23.



45] LINES OF FORCE. 73

another series of cylindrical surfaces cutting these equi-

potential surfaces at right angles, such that the number

of Faraday tubes passing through the cross section of

each of these cylindrical surfaces is the same for all the

cylinders, the electric field will be divided up into a

number of cells which will all contain the same amount of

energy. For the potential difference between the places

where a Faraday tube enters and leaves a cell is the same

for all the cells ; thus the energy of the portion of each

Faraday tube inside a cell will be constant for all the

cells, and since there are the same number of Faraday

tubes inside each cell, the energy in each cell will be

constant.

45. Force on a conductor regarded as arising

from the Faraday Tubes being in a state of tension.

We have seen, Art. 37, that on each unit of area of a

charged conductor there is a pull equal to ^Ba-, where a

is the surface density of the electricity, and R the electric

intensity. Now o- is equal to the number of Faraday

tubes which fall on unit area of the surface, hence the

force on the surface will be the same as if each of the

tubes exerted a pull equal to ^R. Thus the mechanical

forces in the electric field are the same as would be

exerted if we supposed the Faraday tubes to be in a state

of tension, the tension at any point being equal to one

half the electric intensity at that point. Thus the tension

at any point of a Faraday tube is numerically equal to the

energy per unit length of the tube at that point.

If we have a small area co at right angles to the

electric intensity, the tension over this area is equal to

iNRo),
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where N is the number of Faraday tubes passing through

unit area, and R is the electric intensity. By Art. 40

47r

Hence the tension parallel to the electric intensity is

The tension across unit area is therefore equal to

Stt
'

46. This state of tension will not however leave the

dielectric in equilibrium unless the electric field is uniform,

that is unless the tubes are straight. If however there is

in addition to this tension along the lines of force a pres-

sure acting at right angles to them and equal to R'^/Sir per

unit area the dielectric will be in equilibrium, and since

this pressure is at right angles to the electric intensity it

will not affect the normal force acting on a conductor.

To show that this pressure is in equilibrium with the

tensions along the Faraday tubes, consider a small volume

whose ends are portions of equipotential surfaces and

whose sides are lines of force.

D

Fig. 24.

Let US now consider the forces acting on this small

volume parallel to the electric intensity at A. The forces

are the tensions in the Faraday tubes and the pressures at
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right angles to the sides. Resolve these parallel to the

outward-drawn normal at A. The number N' of Faraday

tubes which pass through A is the same as the number

which pass through B. If R, R are the electric in-

tensities at A and B respectively, then the tension exerted

in the direction of the outward-drawn normal by the

Faraday tubes at A will be N'Rj^, while the tension in

the opposite direction exerted by the Faraday tubes at B
is N'R' cos e/2, where e is the small angle between the

direction of the Faraday tubes at A and B. Since e is a

very small angle we may replace cos e by unity ; thus the

resultant in direction of the outward-drawn normal at A
of the tension in the Faraday tubes is

N'{R-R)I2.

Let N be the number of tubes passing through unit

area, w, co' the areas of the ends A and B respectively

;

then. Art. 40,

-., ^^ R R' ,

JS = Jy(0= -r— 0) = -. ft),

47r 47r

so that the resultant in the direction of the outward-

drawn normal at A is

4<7r

since R'(o' = Ro) ,

we may write this as

RR / , \

or approximately, since R is very nearly equal to R,
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Let us now consider the effect of the pressure p at

right angles to the lines of force ; this has a component

in the direction of the outward-drawn normal at A as

in consequence of the curvature of the lines of force

the normals to them at all points of the surface are

not at right angles to the outward-drawn normal at A
;

the angle between the pressure and the normal at A will

always however be nearly a right angle. If this angle is

-^ — ^ at a point where the pressure is p', the component

of the pressure along the normal at A will be proportional

to p sin 6. But since p' only differs from p, the value of the

pressure at J., by a small quantity, and 6 is small, the com-

ponent of the pressure will be equal to p sin 0, if we neglect

the squares of small quantities ; that is, the effect along

the normal at A of the pressure over the surface will be

approximately the same as if that pressure were uniform.

To find the effect of the pressure over the sides we re-

member that a uniform hydrostatic pressure over any

closed surface is in equilibrium ; hence the pressures over

the sides G, D will be equal and opposite to the pressures

over the ends A and B, but the pressure over these ends

is pa)' — po) ; hence the resultant effect in the direction of

the outward-drawn normal at A of the pressure over the

sides is p (ft) — ft)'). Combining this with the effect due to

the tension in the tubes we see that the total force

parallel to the outward-drawn normal on the element is

g- (ft)'- ft)) -h;) (ft) -ft)');

• 1 .. B? NR
this vanishes ii P = 'E~ — ~n~ •
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Thus the introduction of this pressure will maintain equi-

librium as far as the component parallel to the electric

intensity is concerned.

Now consider the force at right angles to the electric

intensity. Let PQRS, fig. 25, be the section of fig. 24

by the plane of the paper, PS, QR being sections of equi-

potential surfaces, and PQ, SR lines of force. Let t be

the depth of the figure at right angles to the plane of

the paper. We shall assume that the section of the figure

by the plane through PQ at right angles to the plane of

the paper is a rectangle. Let R be the electric intensity

along PQ, R' that along SR, s the length PQ, s' that of

SR. Since the difference of potential between P and Q
is the same as that between S and R,

Rs = R's.

Consider the forces parallel to PS. First take the

tensions along the Faraday tubes ; those at PS will have no

component along PS : in each tube at Q there is a tension

i2/2, the component of which along PS is (i2 8in^)/2,

where 6 is the angle between PS and QR. Let PS and

QR meet in 0,

RS PQ PQ-SR s-s'
6 = OR OQ OQ-OR RQ
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Thus the component of the tensions at Q along PS is

2 • EQ '

The number of tubes which pass through the end of the

figure through RQ at right angles to the plane of the

paper is N. QR.t, where N is the number of tubes which

pass through unit area.

The total component along PS due to the tensions in

these tubes is thus

Now the component along PS due to the pressures at

right angles to the electric intensity is equal to

pst — p'st,

where p and p' are the pressures over PQ, RS respectively.

Tf J^' r R''

fR^ R'^ ,\

this is equal to ( «~ * "" q ^ *'
) ^

= — (6'' — s) t, (since Rs = Rs),
OTT

or approximately, since R' is very nearly equal to Ry

= £(.'-.).

Thus the component in the direction of PS due to the

tensions is equal and opposite to the components due to

t he pressures ; thus the two are in equilibrium as far as the
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components at right angles to the electric intensity are

concerned. But we have already proved that the tensions

and pressures balance as far as the component along the

direction of the electric intensity is concerned ; thus the

system of pressures and tensions constitutes a system in

equilibrium.

47. This system of tensions along the tubes of force

and pressures at right angles to them is thus in equilibrium

at any part of the dielectric where there is no charge, and

gives rise to the forces which act on electrified bodies

when placed in the electric field. Faraday introduced

this method of regarding the forces in the electric field ; he

expressed the system of. tensions and pressures which we
have just found, by saying that the tubes tended to con-

tract and that they repelled each other. This conception

enabled him to follow the processes of the electric field

without the aid of mathematical analysis.

48. The student will find much light thrown on the

effects produced in the electric field by the careful study

from this point of view of the diagrams of the tubes of

force given in Art. 38. Thus take as an example the

diagram given in Fig. 18, which represents the lines of

force due to two charges A and B of opposite sign, the

ratio of the charges being 4:1. We see from the diagram

that though more tubes offeree start from the larger charge

A, and the tension in each of these is greater than in a

tube near the smaller charge B, the tubes are much more

symmetrically distributed round A than round B. The

symmetrical distribution of the tubes round A makes the

pulls exerted on A by the taut Faraday tubes so nearly

counterbalance each other that the resultant pull of these
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tubes on A is only the same as that exerted on B by the

tubes starting from it ; as these, though few in number, are

less symmetrically distributed,and so do not tend to counter-

balance each other to nearly the same extent. The tubes

of force in the neighbourhood of the point of equilibrium

are especially interesting. Since the charge on A is four

times that on B, only \ of the tubes which start from A
can end on B, the remaining | must go off to other bodies,

which in the case given in the diagram are supposed to be

at any infinite distance. The point of equilibrium corre-

sponds as it were to the ' parting of the ways ' between

the tubes of force which go from A \^<d B and those which

go off from A to an infinite distance.

When the charges A and B are of the same sign, as in

Fig. 19, we see how the repulsion between similar tubes

causes the tubes to congregate on the side of A remote

from J5, and on the side of B remote from A.

We see again how much more symmetrically the tubes

are distributed round A than round B\ this more sym-

metrical distribution of the tubes round A makes the

total pull on A the same as that on B.

We see too from this example that the repulsion

between the charges of the same sign and the attraction

between charges of opposite signs are both produced by

the same mechanism, i.e. a system of pulls ; the difference

between the cases being that the pulls are so distributed

that when the charges are of the same sign the pulls tend

to pull the bodies apart, while when the charges are of

opposite signs the pulls tend to pull the bodies together.

The diagram of the lines of force for the two finite

plates (Fig. 21) shows that the Faraday tubes near the

edge of the plates get pushed out from the strong parts of
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the field and bent in consequence of the repulsion exerted

on each other by the Faraday tubes.

49. As an additional example of the interpretation of

the processes in the electric field in terms of the Faraday

tubes, let us consider the effect of introducing an insulated

conductor into an electric field.

Let us take the field due to a single positively charged

Fig. 26.

body at A ; before the introduction of this body the Fara-

day tubes are radial, when the conductor is introduced the

tubes which previously existed in the region occupied by

the conductor are annulled ; thus the repulsion previously

exerted by these tubes on the surrounding ones ceases,

and a tube such as AB, which was previously straight, is

now, since the pressure below^ it is diminished, bent down

towards the conductor ; the tubes near the conductor are

bent down so much that they strike against it, they then

T. E. 6
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divide and form two tubes, with negative electrification at

the end C, positive at the end D.

50. Force on an uncharged conductor placed in

an electric field. If a small conductor is placed in the

field, then the diminution of energy due to the annihila-

tion of the tubes in the conductor is proportional to R^/Stt

per unit volume, where R is the electric intensity in the

field at the place where the conductor is introduced.

If the conductor is moved to a place where the electric

intensity is R\ the diminution in the electric energy in

the field is R'^/Stt. Now it is a general principle in

mechanics that a system always tends to move from rest

in such a way as to diminish the potential energy as much
as possible, and the force tending to assist a displacement

in any direction is equal to the rate of diminution of the

potential energy in that direction. The conductor will

thus tend to move so as to produce the greatest possible

diminution in the electric energy, that is, it will tend to

get into the parts of the field where the electric intensity

is as large as possible ; it will thus move from the weak to

the strong parts of the field.

The presence of the conductor will however disturb the

electric field in its neighbourhood ; thus i? the actual electric

intensity will differ fromR the electric intensity at the same

point before the conductor was introduced. By differenti-

ating "R^/Stt we shall get an inferior limit to the force acting

on the conductor per unit volume. For suppose we intro-

duce a conductor into the electric field, then R^/Stt would

be the diminution in electric energy per unit volume due

to the disappearance of the Faraday tubes from the inside

of the conductor, the tubes outside being supposed to
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retain their original position. In reality however the

tubes outside will have to adjust themselves so as to be

normal to the conductor, and this adjustment will involve

a further diminution in the energy, thus the actual change

in the energy is greater than that in H^/Stt and the force

acting on unit volume will therefore be greater than the

rate of diminution of this quantity. If we take the case

when the force is due to a charge e at a point, the rate of

diminution of R^Stt is e'^jlirr^, thus the force on a small

conducting sphere of radius a will be greater than

(47raV3) {e'llirr^), that is greater than 2e'a^lSr'. The

actual value (see Art. 87) is ^e^a^jr^.

6—2



CHAPTER III.

Capacity of Conductors. Condensers.

51. The capacity of a conductor is defined to be the

numerical value of the charge on the conductor when its

potential is unity, all the other conductors in the field

being at zero potential.

Two conductors insulated from each other and placed

near together form what is called a condenser; in this

case the charge on either conductor may be large, though

the difference between their potentials is small.

In many instruments the two conductors are so

arranged that their charges are equal in magnitude and

opposite in sign ; in such cases the charge on either con-

ductor when the potential difference between the con-

ductors is unity is called the capacity of the condenser.

52. Capacity of a Sphere placed at an infinite

distance from other conductors. Let a be the radius

of the sphere, V its potential, e its charge, the corre-

sponding charge of opposite sign being at an infinite

distance. Then (Art. 17), the potential due to the charge

on the sphere at a distance r from the centre is ejr\

therefore the potential at the surface of the sphere is eja.
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Hence we have

a

Whea V is unity, e is numerically equal to a : hence,

Art. 51, the capacity of the sphere is numerically equal to

its radius.

53. Capacity of two concentric spheres. Let

us first take the case when the outer sphere and any con-

ductors which may be outside it are connected to earth,

while the inner sphere is maintained at potential V.

Then, since the outer sphere and all the conductors out-

side are connected to earth, no Faraday tubes can start

from or arrive at the outer surface of the outer sphere,

for Faraday tubes only pass between places at different

potentials, and the potentials of all places outside the

sphere are the same, being all zero. Again, all tubes which

start from the inner sphere will arrive at the internal

surface of the outer shell, so that the charge on the inner

surface of this shell will be equal and opposite to the charge

on the inner sphere. Let a be the radius of the inner

sphere, b the radius of the internal surface of the outer

sphere, e the charge on the inner sphere, then — e will be

the charge on the interior of the outer sphere.

Consider the work done in moving unit of electricity

from the surface of the inner sphere to the inner surface

of the outer sphere ; the charge on the outer sphere pro-

duces no electric intensity at a point inside, so that the

^^ electric intensity which produces the work done on the

^kunit of electricity arises entirely from the charge on the

inner sphere. The electric intensity due to the charge on

this sphere is by Art. 17 the same as that which would be
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done on unit of electricity when it moves from the inner

sphere to the outer one is thus the same as the work done

by unit charge when it moves from a distance a to a

distance h from a small charged body placed at the centre

of the spheres ; this by Art. 17 is equal to

e e

this however by definition is equal to F, the potential

difference between the two spheres; hence we have

~a b'

ah ,^
or e = 5 . V.— a

Thus when 6 — a is very small, that is, when the two

spheres are very close together, the charge is very large.

When F= 1, the charge is

ah

so that this is, by Art. 51, the capacity of the two spheres.

The value of this result when the two spheres are very

close together is worthy of notice. In this case, writing t

for h — a, the distance between the spheres, the capacity

is equal to

ah _a(a-{- 1)

T "
i

'

this, since t is very small compared with a, is approxi-

mately,
g^ _ 4i7ra^

J~ 4>7rt

_ surface of the sphere
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thus the capacity in this case is equal per unit area of

surface to l/47r times the distance between the con-

ductors. The case of two spheres whose distance apart is

very small compared with their radii is however approxi-

mately the case of two parallel planes ; hence the capacity

of such planes per unit area of surface is equal to l/47r

times the distance between the planes. This is proved

directly in Art. 56.

If after the spheres are charged the inner one is insu-

lated, and the outer one removed to an infinite distance (to

enable this to be done we may suppose that the outer sphere

consists of two hemispheres fitted together, and that these

are separated and removed), the charge on the sphere will

remain equal to e, i.e. to v—— F, but the potential of the

sphere will rise ; when it is alone in the field the potential

will be eja, i.e.

— a

Thus by removing the outer sphere the potential

difference between the sphere and the earth has been

increased in the proportion of 6 ioh — a. By making h — a

very small compared with 6, we can in this way increase

the potential difference enormously and make it capable

of detection by means which would not have been suffi-

ciently sensitive before the increase in the potential took

place.

It was by the use of this principle that Volta suc-

ceeded in demonstrating by means of the gold-leaf electro-

scope and two metal plates, the difference of potential

between the terminals of a galvanic cell ; this difference is
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SO small that the electroscope is not deflected when the

cell is directly connected to it ; by connecting the ter-

minals of the cell to two plates placed very close together,

then severing the connection between the plates and the

cell and removing one of the plates, Volta was able to

increase the potential of the other plate to such an extent

that it produced an appreciable deflection of an electro-

scope with which it was connected.

Work has to be done in separating the two con-

ductors ; this work appears as increased electric energy.

Thus, to take the case of the two spheres, when both

spheres were in position the electric energy, which, by

Art. 23 is equal to ^lEV, is

2b-a' '

When the outer sphere is removed the potential of the

sphere is e/a, so that the electric energy is

2 a'

2 {h-df
'

and has thus been increased in the proportion of h to

h— a.

54. Let us now take the case when the inner sphere

is connected to earth while the outer sphere is at the

potential V. In this case we can prove exactly as before

that the charge on the inner sphere is equal and opposite

to the charge on the internal surface of the outer sphere,

and that if e is the charge on the inner sphere

ah ^j

— a
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In this case in addition to the positive charge on the

internal surface of the outer sphere there will, since its

external surface is at a higher potential than the sur-

rounding conductors, be a positive charge on this surface.

If c is the radius of the external surface of the outer

sphere, we must have the total charges on the two

spheres = Vc. Since the charge on the inner surface of

the outer sphere is equal and opposite to the charge on

the inner sphere, the charge on the external surface of

the outer sphere must be equal to Vc. Thus the total

charge on the outer sphere is equal to

ab

h — a
V+cV.

55. This charge on the outside of the outer sphere

will be affected by the presence of other conductors ; let

us suppose that outside the external sphere there is a

small sphere connected to earth ; let r be the radius of

this sphere, i^ the distance of its centre from the centre

of the concentric spheres. Let e be the total charge on

the two concentric spheres, e" the charge on the small

sphere. The potential due to e' at a great distance R
from is e'/M, similarly the potential due to e" is at a

distance R equal to e'/R.

Since the surface of the outer sphere is at the po-

tential F, we have

^ c^R'
and since the potential of the small sphere is zero, we

have
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hence F=--!l —
-^^

^ re

that is, the presence of the small sphere increases the

charge on the outer sphere in the proportion of

1 to 1 - rc\R\

It is only the charge on the external surface of the

outer sphere which is affected. The charges on the inner

sphere and on the internal surface of the outer sphere are

not altered by the presence of conductors outside the

system.

56. Parallel Plate Condensers. Condensers are

frequently constructed of two parallel metallic plates

;

the theory of the case when the plates are so large and

close together that they may be regarded as infinite in

area is very simple.

In this case the Faraday tubes passing between the

plates will be straight and at right angles to the plates;

the electric intensity between the plates is constant since

the Faraday tubes are straight ; let R be its value, then

if d is the distance between the plates, the work done

on unit charge of electricity as it passes from the plate

when the potential is high to the one where the potential

is low is Rdy this by definition is equal to F, the differ-

ence of potential between the plates. Hence

Y = Rd.
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If (T is the surface-density of the charge on the plate

at high potential, — a will be that on the plate of low

potential, and by Coulomb's law, Art. 22,

R = 47rcr,

hence V= ^urad,

"=4^ W-

if V is equal to unity, a- is equal to

1

^ird'

The charge on an area A of one of the plates when

the potential difference is unity is thus Aj^iTrd, this by

definition is the capacity of the area A, We arrived at

the same result in Art. 53 from the consideration of

two concentric spheres. The electrical energy of the

condenser is, by Art. 23, equal to

\tEV,

in this case this is equal to

V'A
Sird

'

or if E is the charge on one of the planes

2'7rdE'

57. Guard Ring. In practice it is of course im-

possible to have infinite plates, and when the plates are

finite, then as the diagram, Fig. 21, Art. 38, shows the

Faraday tubes near the edges of the plate are no longer

straight, and the electrification ceases to be uniform, and

given by the expression (1), Art. 56. Thus to express the
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quantity of electricity on the finite plane, we should have

to add to the expression a correction for the inequality

of the distribution over the ends of the plates. This

correction can be calculated, but the necessity for it may
be avoided in practice by making use of a device due to

Lord Kelvin, and called the guard ring.

Fig. 27.

Suppose one of the plates, say the upper one, is divided

into three portions flush with each other and separated

by the narrow gaps E, F. Then if, in charging the

condenser the portions A, B, G are connected metallically

with each other, the places where the electrification

is not uniform will be on ^ and C, so that apart from the

effects of the narrow gaps E, F, the electrification on B
will, if we neglect the effect of the gap, be uniform and

equal to S/4f7rd, where S is the area of the plate B, the

capacity of ^ is thus equal to Sj^^ird.

If, as ought to be the case, the widths of the gaps

at E and F are very small compared with the distance

between the plates, we can easily calculate the effect

of the gaps. For if the gaps are very narrow the

electrification of the lower plate will be approximately

uniform. The Faraday tubes in the neighbourhood of

the gaps will be distributed as in Fig. 28. We see
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from this, if we consider one of the gaps E, that all the

Faraday tubes which would have fallen if there had been

I

Fig. 28.

no gap on a plate whose breadth was E, will fall on one

or other of the plates A and B, Fig. 28, and from the

symmetry of the arrangement half of these tubes will

fall on B, the other half on A ; thus the actual amount

of electricity on B will be the same as if we supposed B
to extend half way across the gap, and to be uniformly

charged with electricity whose surface density is Vj^ird.

We see then that, allowing for the effects of the gaps,

the capacity of B will be equal to S'l^ird, where

S>' = area of plate B
+ J (the sum of the areas of the gaps E and F).

If the plate B is not at zero potential there will be

some electrification on the back of the plate arising from

Faraday tubes which go from the back of B to other

conductors in its neighbourhood and to earth. The elec-

trification of the back of B may be obviated by covering

this side of ^, J5, G with a metal cover connected with

the earth. It can also be obviated by making B the

low potential plate (i.e. the one connected to earth), care

being taken that the other conductors in the neighbour-

hood are also connected to earth.

58. Capacity of two coaxial cylinders. Let us

take the case of two coaxial cylinders, the inner one being
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at potential F, the outer one being at potential zero.

Then if E is the charge per unit length on the inner

cylinder, —E will be the charge per unit length on the

inner surface of the outer one, since all the Faraday tubes

which start from the inner cylinder end on the outer

one.

The electric intensity at a distance r from the axis of

the cylinders is, by Art. (13), equal to

r

Thus the work done on unit charge when it goes from

the outer surface of the inner cylinder to the inner surface

of the outer, is equal to

'^2E
dr.

a r

where a is the radius of the inner cylinder, h the radius

of the inner surface of the outer.

This work is however by definition equal to F, the

difference of potential between the cylinders, hence

'^2E

J a ^
dr

When V is unity E the charge per unit length is

equal to

^
2 log-'

and this, by definition, is the capacity per unit length of

the condenser.
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If the cylinders are very close together, and i{b — a = t,

t will be small compared with a ; in this case the capacity

per unit length

2 log--

=— approximately

2-
a

= 1-~2
t

_ 27ra
~~

4f7rt
'

Now 27ra is the area of unit length of the cylinder,

hence the capacity per unit area is l/4i7rt ; we might have

deduced this result from the case of two parallel planes.

When the two cylinders are concentric, there is no

force tending to move the inner cylinder; thus since

the system is in equilibrium, the potential energy if the

charges are given must be either a maximum or a mini-

mum. The equilibrium is however evidently unstable,

for if the inner cylinder is displaced the forces in the

electric field will tend to make the cylinders come into

contact with each other and thus increase the displace-

ment. Since the equilibrium is unstable the potential

energy is a maximum when the cylinders are coaxial.

[The potential energy however is, by (Art. 23), equal to
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when C is the capacity of the condenser. Thus if the

potential energy is a maximum the capacity must be a

minimum. Thus any displacement of the inner cylinder

will produce an increase in the capacity, but since the

capacity is a minimum when the cylinders are coaxial,

the increase in the capacity will be proportional to squares

and higher powers of the distance between the axes of the

cylinders.

59. Condensers whose capacities can be varied.

For some experimental purposes it is convenient to use a

condenser whose capacity can be altered continuously, and

in such a way that the alteration in the capacity can be

easily measured. For this purpose a condenser made of

two parallel plates, one of which is fixed, while the other

can be moved by means of a screw, through known dis-

tances, always remaining parallel to the fixed plate, is

useful. In this case the capacity is inversely proportional

to the distance between the plates, provided that this dis-

tance is never greater than a small fraction of the radius

of the plates.

Another arrangement which has been used for this

purpose is shown in Fig. 20. It consists of three

EC

B O
Fig. 29.

coaxial cylinders, two of which, AB, CD, are of the same

radius and are insulated from each other, while the third,

EF, is of smaller radius and can slide parallel to its axis.

The cylinder EF is connected metallically with CD, so
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that these two are always at the same potential, the

cylinder AB is at a different potential, then when the

cylinder EF is moved about so as to expose different

amounts of surface to AB the capacity of the system

will alter, and the increase in the capacity will be pro-

portional to the increase in the area of the surface of EF
brought within AB.

60. Electrometers.

Consider the case of two parallel conducting planes •

let V be the potential difference between the planes, d

their distance apart. The force on a conductor per unit

area is by Art. 37, equal to

where R is the electric intensity at the conductor and a
the surface density ; but

while (T= — R by Coulomb's law ; we see therefore that

the attraction of one plate on the other is per unit area

equal to

Stt d^
'

Hence the force on an area A of one of the plates is

equal to

A V

Thus if we measure the mechanical force between the

plates we can deduce the value of F, the potential differ-

ence between them. This is the principle of Lord Kelvin's

attracted disc electrometer. This instrument measures

T. E. 7
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the force necessary to keep a moveable disc surrounded

by a guard ring in a fixed position ; when this force is

known the value of the potential difference is given by

the expression (1).

Quadrant Electrometer. The effect measured by

the instrument just described varies as the square of the

potential difference; thus when the potential difference

is diminished the attraction between the plates diminishes

with great rapidity. For this reason the instrument is

not suited for the measurement of very small potential

differences. To measure these another electrometer, also

due to Lord Kelvin, called the quadrant electrometer, is

frequently employed.

This instrument is represented in Fig. 30 : it consists

of a cage, made by the four quadrants A, B, C, I); each

quadrant is supported by an insulating stem, while the

opposite quadrants A and G are connected by a metal wire,

as are also B and -D ; thusA and C are always at the same

potential and so also are B and D. Each pair of quadrants

is in connection with an electrode, E or F, by means of

which it can easily be put in metallic connection with any

body outside the case of the instrument. Inside the quad-

rants and insulated from them is a flat piece of aluminium

shaped like a figure of eight. This is suspended by a

silk fibre and can rotate with the flat side horizontal

about a vertical axis. A fine metal wire from the lower

surface of this aluminium needle hangs and dips into

some sulphuric acid contained in a glass vessel, the outside

of which is coated with tin-foil and connected with earth.

This vessel, with the conductors inside and outside, forms

a condenser of considerable capacity ; it requires therefore
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a large charge to alter appreciably the potential of this

jar, and therefore of the needle. To use the instrument

Fig. 30.

charge up the jar to a high potential (7; the needle will also

be at the potential G. Now if the two pairs of quadrants

are at the same potential, the needle is inside a conductor

symmetrical about the axis of rotation of the needle, and

at one potential. There will evidently be no couple on

the needle arising from the electric field, and the needle

will take up a position in which the couple arising from

the torsion of the thread supporting the needle vanishes.

If, however, the two pairs of quadrants are not at the same

potential the needle will swing round until, if there is

7—2
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nothing to stop it, the whole of its area will be inside the

pair of quadrants whose potential differs most widely

from its own. As it swings round, however, the torsion of

the thread produces a couple tending to bring the needle

back to the position from which it started. The needle

finally takes up a position in which the couple due to the

torsion in the thread balances that due to the electric

field. The angle through which the needle is deflected

gives us the means of estimating the potential difference

between the quadrants.

The way in which the couple acting on the needle

depends upon the potentials of the quadrants and the

needle can be illustrated by considering a case in which

the electric principles involved are the same as in the

quadrant electrometer, but where the geometry is simpler.

Let E, F (Fig. 31) be two large co-planar surfaces in-

sulated from each other by a small air gap. Let G be

Fig. 31.

another plane surface, parallel to E and F, and free to

move in its own plane. Let t be the distance between G
and the planes E and F. Let A,B,C hQ the potentials of

the planes F, E, G respectively. Let I be the width of

the planes at right angles to the plane of the paper. If

XI is the force tending to move the plane G in the

direction of the arrow, then if this plane be moved through

a short distance x in this direction the work done by the
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electric forces is Xlx. If the electric system is left to

itself, i.e. if it is not connected to any batteries, &c., so

that the charges remain constant, this work must have

been gained at the expense of the electric energy, we
have therefore, by the principle of the Conservation of

Energy,

Xh = decrease in electric energy, the charges remaining

constant when the plane G is displaced through the

distance x
;

or by Art. 36,

Xlx = increase in electric energy, the potentials remain-

ing constant when the system suffers the same
displacement. (1)

Consider the change in the electric energy when the

plane G is moved through a distance x. The area of G
opposite to F will be increased by Ix, and in consequence

the energy will be increased by the energy in a parallel

plate condenser, whose area is Ix, the potentials of whose

plates are A and G respectively, and the distance be-

tween the plates is t ; this by Art. 56 is equal to

At the same time as the area of G opposite to F is in-

creased by Ix, that opposite to E is decreased by the same

amount, so that the electric energy will be decreased by

the energy in a parallel plate condenser whose area is Ix,

the potentials of the plates B and G and their distance

apart t, this by Art. 56 is equal to
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Thus the total increase in the electric energy when G
is displaced through x, the potentials being constant

is equal to

Thus by equation (1)

or ^ = 4^(^-^>|^-l(^+^>

\i G — A is greater than G — B, X is positive, that is,

the plate G tends to bring as much of its surface as it can

over the plate from which it differs most in potential.

In the quadrant electrometer the electrical arrange-

ments are similar to the simple case just discussed, hence

the force will vary with the potential differences in a

similar way. Hence we conclude that the couple tending

to twist the needle in the quadrant electrometer from the

quadrant whose potential is B to that whose potential

is A, will be proportional to

(B-A)\o-l{A + B)

we may put it equal to

n{B-A)\c'-l(A+B)Y

where n is some constant.
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This, when the needle is in equilibrium, will be

balanced by the couple due to the torsion in the sus-

pension of the needle.

This couple is proportional to the angle 9 through which

the needle is deflected. Let the couple equal md. Hence

we have when the needle is in equilibrium

me = n(B-A)[c-'^(A + B)\,

e = l(B-A)\c-l(A^B)^ (2).

If, as is generally the case when small differences of

potentials are measured, the jar containing the sulphuric

acid is charged up so that its potential is very high com-

pared with that of either pair of quadrants, G will be very

large compared with A or B, and therefore with

li^ + B),

SO that the expression (2) is very approximately

e=-(B-A)a

Hence in this case the difference of potential is pro-

portional to the deflection of the needle. This furnishes

a very convenient method of comparing differences of

potentials, and though it does not give at once the ab-

solute measure of the potential, this may be deduced

by measuring the deflection produced by a standard po-

tential difference of known absolute value such as that

between the electrodes of a Clark's cell.

The quadrant electrometer may also be used to

measure large differences of potential ; to do this, instead
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of charging the jar independently, connect the jar and
therefore the needle to one pair of quadrants, say the pair

whose potential is A, then since C = A the expression (2)

becomes

thus the needle is deflected towards the pair of quadrants

whose potential is B, and the deflection of the needle is in

this case proportional to the square of the potential differ-

ence between the quadrants. Thus if the quadrants are

connected respectively to the inside and outside coatings

of a condenser, the deflection of the electrometer will be

proportional to the energy in the condenser.

61. Test for the equality of the capacity of two
condensers. This can easily be done in the following

Fig. 32.

way. Suppose A and B, Fig. 32, are the plates of one

condenser, G and D those of another. First connect A to

0, and B to D, and charge the condensers by connecting

A and B with the terminals of a battery or some other

suitable means. Then disconnect A and B from the

battery. Disconnect A from C and B from D, then if

the capacities of the two condensers are equal, their

charges will be equal since they have been charged to

equal potentials. The charge in A will be equal and

opposite to that in D, while that in B will be equal and
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opposite to that in G. Thus if A be connected with D
and C with B the positive charge on the one plate will

counterbalance the negative on the other, so that if after

this connection has been made A and B are connected
with the electrodes of the electrometer, no deflection

will occur.

62. Comparison of two condensers. If a con-

denser whose capacity can be varied is available, the

capacity of a condenser can be compared with known
capacities by the following method.

Let A and B (Fig. 33) be the plates of the condenser

whose capacity is required, G and D, E and F, G and E,

the plates of three condensers whose capacities are known

;

connect the plates B and G together and to one electrode

of an electrometer, also connect F and G together and to

the other electrode of the electrometer. D and E are to

be connected together and to one electrode of a battery,

induction coil or other means of producing a difference

of potential, while A and H are to be connected together

and to the other pole of this battery. In general there

will be a deflection of the electrometer ; if there is, then
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we must alter the capacity of the condenser whose

capacity is variable until this deflection vanishes, show-

ing that the plates BG, FG are at the same potential.

When this is the case a simple relation exists between

the capacities.

Let Ci, Ca, C3, C4, be the capacities of the condensers

AB, CD, EF, GH respectively, let V, be the potential of

A and H\ x the potential of BG and FG, V the potential

of DE. To fix our ideas, let us suppose that V is greater

than Vq, then there will be a negative charge on -4, a

positive one on B, a negative charge on G, and a posi-

tive one on D ; then since B and G form an insulated

system which was initially without charge, the positive

charge on B must be numerically equal to the negative

charge on G.

The positive charge on B

while the negative one on G is numerically equal to

G,{V-w),

which is a positive quantity ; hence since these are equal

we have
G,{x-r,) = c,{V-x) (1).

Again, since there is no deflection of the electrometer,

the potential of F and G is the same as that of B and G,

and is therefore equal to x, while since F and G are

insulated the positive charge on G must be numerically

equal to the negative charge on F.

The positive charge on G is equal to

c,(x-r,),
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while the negative charge on F is numerically equal to

since these are equal

G,{x-V,) = C,{V-x) (2);

comparing equations (1) and (2), we see that

or G,=
G,

'

thus if we know the capacities of the other condensers

we know Cj.

Thus if we have standard condensers whose capacities

are known we can measure the capacity of other con-

densers.

Other methods of determining capacity which require

for their explanation a knowledge of the principles of

electro-magnetism, will be described in the part of the

book dealing with that subject.

63. Leyden jar. A convenient form of condenser

called a Leyden jar is represented in Fig. 34. The

O

v^

Fig. 34.
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condenser consists of a vessel made of thin glass; the

inside and outside surfaces of this vessel are coated with

tin-foil. An electrode is connected to the inside of the

jar in order that electrical connection can easily be made
with it. If A is the area of the tin-foil, t the thickness

of the glass, i.e. the distance between the surfaces of

tin-foil, then if the interval between the tin-foil was filled

with air the capacity would be approximately

A^

since this case is approximately that of two parallel

planes provided the thickness of the glass is very small

compared with the radius of the vessel. The effect of

having glass within the tin-foil plates will, as we shall

see in the next chapter, have the effect of increasing the

capacity so that the capacity of the Leyden jar will be

where K is a, quantity which depends on the kind of

glass of which the vessel is made. K varies in value

from 4 to 10 for different specimens of glass.

64. If we have a number of condensers we can con-

nect them up so as to make a condenser whose capacity

is either greater or less than that of the individual

condensers.

Thus suppose we have a number of condensers which

in the figures are represented as Leyden jars, and suppose

we connect them up as in Fig. 35, that is, connect all the

insides of the jars together and likewise all the outsides,

this is called connecting the condensers in parallel. We
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thus get a new condenser, one plate of which consists of

all the insides, and the other plate of all the outsides of

Fig. 35.

the jars. If G is the capacity of the compound condenser,

Q the total charge in this condenser, V the difference of

potential between the plates, then by definition

Q = GV.

Tf Qi, Qi, Q-iy ••• are the charges in the first, second,

third, etc. condensers, Oj, Cg, Cg, ... the capacities of these

condensers

but Q = Qi + Q, + Qa + ... = (Ci + 0, + (^3 + ...) K
hence C = Ci + Cg + O3 + . .

.

,

or the capacity of a system of condensers connected in

this way, is the sum of the capacities of its components.

Thus the capacity of the compound system is greater

than that of any of its components.

Next let the condensers be connected up as in Fig. 36,

where the condensers are insulated, and where the outside

of the first is connected to the inside of the second, the

outside of the second to the inside of the third, and so on.

This is called connecting the condensers up in cascade

or in series. One plate of the compound system thus
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formed is the inside of the first condenser, the other plate

is the outside of the last.

Fig. 36.

Let G be the capacity of the system, G^, G.^, G.^, the

capacities of the individual condensers; then since the

condensers are insulated the charge on the outside of

the first is equal in magnitude and opposite in sign to

the charge on the inside of the second, the charge on the

outside of the second is equal in magnitude and opposite

in sign to the charge on the inside of the third, and so on.

Since the charge on the inside of any jar is equal and

opposite to the charge on the outside, we see that the

charges on the jars are all equal. Let Q be the charge

on any jar, F,, V^ ... the differences of potential between

the inside and outside of the first and second jars. Then

Ul O2 O3

if V is the difference of potential between the outside of

the last jar and the inside of the first, then
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V
SO that Q = -^ ? =

,

7T ' ri • 77" + • • •

Vi O2 O3

but since G is the capacity of the compound condenser of

which Q is the charge, and V the potential difference,

Q = GV,

,
1111

hence 77 = 7r + 7T+p+---,

thus the reciprocal of the capacity of the condenser made
by connecting up in cascade the series of condensers, is

equal to the sum of the reciprocals of the capacities of

the condensers so connected up.

We see that the capacity of the compound condenser

is less than that of any of its constituents.

65. If we connect a condenser of small capacity in

cascade with a condenser of large capacity, the capacity of

the compound condenser will be slightly less than that of

the small condenser ; while if we connect them in parallel,

the capacity of the compound condenser is slightly greater

than that of the large condenser.

66. As another example on the theory of condensers,

let us take the case when two condensers are connected

in parallel, the first having before connection a charge Q^,

the second the charge Q2. Let Gi and G2 be the capacities

of these condensers respectively. When they are put in

connection they form a condenser whose capacity is Ci+ G^,

id whose charge is Qi+Qi-

Now the electric energy in a charged condenser is

me half the product of the charge into the potential

ifference, and since the potential difference is equal to
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the charge divided by the capacity; if Q is the charge,

G the capacity, the energy is

2 C
Thus the total electric energy in the two jars before

they are connected is

1 Q^\lQ.'
2 G,2 G^

after they are connected it is

Now

1 {Q^ + Q.\
2 G + G,

2V0, +Cj"
1 (Qi + Q.y
2 (0. + 0/)

^
{G,'Q^'-hG,%^-2GAQ^Q.)

2GA{GrA-G,)

1
(G,Q^-C,Q,y,

2G,G,(G, + G,)

an essential positive quantity which only vanishes if

Q,IG, = Q.IC,.

that is, when the potentials of the jars before connection

are equal. In this case the energy after connection is

the same as before the connections are made. If the

potentials are equal before connection, connecting the

jars will evidently make no difference, as all that con-

nection does is to make the potentials equal. In every

other case electric energy is lost when the connection

is made ; this energy is accounted for by the work done

by the spark which passes when the jars are put in

connection.



CHAPTER IV.

Specific Inductive Capacity.

67. Specific Inductive Capacity. Faraday found

that the charge in a condenser between whose plates a

constant difference of potential was maintained depended

upon the nature of the dielectric between the plates,

the charge being greater when the interval between the

plates was filled with glass or sulphur than when it was

filled with air.

Thus the 'capacity' of a condenser (see Art. 51) de-

pends upon the dielectric between the plates. Faraday's

original experiment by which this result was established

was as follows : he took two equal and similar condensers,

A and B, of the kind shown in Fig. (37), made of concentric

spheres ; in one of these, B, there was an opening by which

melted wax or sulphur could be run into the interval be-

tween the spheres. The insides of these condensers were

connected together, as were also the outsides, so that the

potential difference between the plates of the condenser

was the same for A as for B. When air was the dielectric

between the spheres Faraday found, as might have been

expected from the equality of the condensers, that any

charge given to the condensers was equally distributed

between A and J5; when however the interval in B vva-s

T. E. 8
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filled with sulphur and the condensers again charged he

found that the charge in B was three or four times that

Fig. 37.

in A : proving that the capacity of B had been in-

creased three or four times by the substitution of sulphur

for air.

This property of the dielectric is called its specific

inductive capacity. The measure of the specific induc-

tive capacity of a dielectric is defined as the ratio of the

capacity of a condenser the region between whose plates

is entirely filled by this dielectric to the capacity of the

same condenser when the region between its plates is

entirely filled with air. As far as we know at present

the specific inductive capacity of a dielectric in a con-

denser does not depend upon the difference of potential

established between the plates of that condenser, that is,

upon the electric intensity acting on the dielectric. We
may therefore conclude that at any rate for a wide range
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of electric intensities the specific inductive capacity is

independent of the electric intensity.

The following table contains the values of the specific

inductive capacities of some substances which are of

frequent occurrence in a physical laboratory:

Solid paraffin 2-29.

Paraffin oil 1-92.

Ebonite 315.

Sulphur 3-97.

Mica 6-64.

Dense flint-glass 7-37.

Light flint-glass 6-72.

Turpentine 2-23.

Distilled water 76.

Alcohol 26.

The specific inductive capacity of gases depends upon

the pressure, the difference between K, the specific in-

ductive capacity, and unity being directly proportional to

the pressure : this law however does not seem to hold at

very low pressures.

The specific inductive capacity of some gases at

atmospheric pressure is given in the following table ; the

specific inductive capacity of air at atmospheric pressure

is taken as unity:

Hydrogen -999674.

Carbonic acid 1 000356.

Carbonic oxide 10001.

defiant gas 1000722.

68. It was the discovery of this property of the di-

electric which led Faraday to the view we have explained,

8—2
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in Art. 38, that the effects observed in the electric field

are not due to the action at a distance of one electrified

body on another, but are due to effects in the dielectric

filling the space between the electrified bodies.

The results obtained in Chapters II. and ill. were

deduced on the supposition that there was only one

dielectric, air, in the field ; these require modification in

the general case when we have any number of dielectrics

in the field. We shall now go on to consider the theory

of this general case.

We assume that each unit of positive electricity by

whatever medium it is surrounded is the origin of a

Faraday tube, each unit of negative electricity the ter-

mination of one : let us consider from this point of view

the case of two parallel plate condensers A and B, the

plates of A and B being at the same distance apart, but

while those of A are separated by air, those of B are

separated by a medium whose specific inductive capacity

is K. Let us suppose that the charge per unit area on

the plates of the condensers A and B is the same. Then

since the capacity of the condenser B is K times that of

A and since the charges are equal, the potential difference

between the plates of B is only 1/K of that between the

plates of A.

Now if Vp is the potential at P, Vq that at Q, R the

electric intensity along PQ ; then, whatever be the nature

of the dielectric, when PQ is small enough to allow of

the intensity along it being regarded as constant,

R.PQ=Vp-Vq (1),

for by definition R is the force on unit charge, hence the
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left-hand side of this expression is the work done on unit

charge as it moves from P to Q, and is thus by definition,

Art. 16, equal to the right-hand side of (1).

The electric intensity between the plates both of A
and B is uniform, and at any point equal to the difference

of potential between the plates divided by the distance

between the plates, this distance is the same for the

plates A and B, so that the electric intensity between

the plates of A is to that between the plates of B as the

potential difference between the plates of A is to that

between the plates of B. That is, the electric intensity

in ^ is iiT times that in B.

Consider now these two condensers. Since the charges

on unit area of the plates are the same the number of

Faraday tubes passing through the dielectric between

the plates is the same, while the electric intensity in B
is only l/K that in air. Hence we conclude that when

the same number of Faraday tubes pass through unit

area of a dielectric whose specific inductive capacity is K
as through unit area in air, the electric intensity in the

dielectric is ^ of the electric intensity in air.

By Art. 40 we see that if N is the number of Faraday

tubes passing through unit area in air, R the electric

intensity in air,

hence when N tubes pass through unit area in a medium

whose specific inductive capacity is K, R, the electric in-

tensity in this dielectric is given by the equation
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69. Polarization in a dielectric. We define the

polarization in the direction PQ where P and Q are two

points close together as the excess of number of Faraday

tubes which pass from the side P to the side Q over the

number which pass from the side Q to the side P of a

plane of unit area drawn between P and Q at right

angles to PQ. We may express the result in Art. 68 in

the form

(electric intensity in any direction at P)

= Y=r (polarization in the dielectric in that direction at P).
K.

The polarization in a dielectric is mathematically

identical with the quantity called by Maxwell the electric

displacement in the dielectric.

70. Thus the polarization along the outward-drawn

normal at P to a surface is the excess of the number

of Faraday tubes which leave the surface through unit

area at P over the number entering it. If we divide any

closed surface up as in Art. 9 into a number of small

meshes, each of these meshes being so small that the

polarization over the area of any mesh may be regarded

as constant, then if we multiply the area of each of the

meshes by the normal polarization at this mesh, the sum
of the products taken for all the meshes which cover

the surface is defined to be the total normal polarization

over the surface. We see that it is equal to the excess

of the number of Faraday tubes which leave the surface

over the number which enter it.

Now consider any tube which does not begin or end

inside the closed surface, then if it meets the surface at

all it will do so at two places, P and Q ; at one of these
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it will be going from the inside to the outside of the

surface, at the other from the outside to the inside. Such
a tube will not contribute anything to the total normal

polarization over the surface, for at the place where it

leaves the surface it contributes + 1 to this quantity,

which is neutralized by the — 1 which it contributes

at the place where it enters the surface.

Now consider a tube starting inside the surface, this

will leave the surface but not enter it, or if the surface

is bent so that the tube cuts the surface more than once,

it will leave the surface once oftener than it enters it.

This tube will therefore contribute + 1 to the total normal

polarization : similarly we may show that each tube which

ends inside the surface contributes — 1 to the total normal

polarization. Thus if there are N tubes which begin

inside the surface, and M tubes which end inside, the total

normal polarization is equal to N— M. But each tube

which begins inside the surface corresponds to a unit

positive charge, each tube which ends in the surface to a

unit negative one, so that iV— if is the difference between

the positive and negative charge inside the surface, that

is, it is the total charge inside the surface.

Thus we see that the total normal polarization over

a closed surface is equal to the charge inside the surface.

Since the normal polarization is equal to {Kl4i'n) times

the normal intensity where K is the specific inductive

capacity, which for air is equal to unity, we see that when

the dielectric is air the preceding theorem is identical

with Gauss's theorem. Art. 10. In the form stated above

it is applicable whatever dielectrics may be in the field,

when in general Gauss's theorem as stated in Art. 10

ceases to be true.
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71. Modification of Coulomb^s equation. If o-

is the surface density of the electricity over a conductor

then cr Faraday tubes pass through unit area of a plane

drawn in the dielectric above the conductor at right

angles to the normal. Hence a is the polarization in

the dielectric in the direction of the normal to the con-

ductor. Hence by Art. 69 if jK is the normal electric

intensity

This is Coulomb's equation generalized, so as to apply

to the case when the conductor is in contact with any

dielectric,

72. Expression for the Energy. The student

will see that the process by which the expression ^%(EV)
was in Art. 23 proved to represent the electric energy

of the system will apply whatever the nature of the

dielectric may be, as will also the immediate deduction

from it that the energy is the same as if each Faraday

tube possessed an amount of energy equal per unit length

to one-half the electric intensity.

The expression for the energy per unit volume how-

ever requires modification. Consider as in Art. 43 a

cylinder whose axis is parallel to the electric intensity

and whose flat ends are at right angles to it, let I be the

length, Q) the area of one of the ends, P the polarization,

R the electric intensity. Then the portion of each

Faraday tube inside the cylinder has an amount of energy

equal to
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the number of such tubes inside the cylinder is equal

to Pro, hence the energy inside the cylinder is equal to

ileoPB,

but l(o is the volume of the cylinder, hence the energy per

unit volume is equal to

iPB;

but by Art. 69 P=^R,

so that the energy per unit volume is equal to

Thus for the same electric intensity the energy is K
times as great as it is in air. Another expression for the

energy per unit volume is

2^ p.K '

so that for same polarization the energy in the dielectric

is only 1/J^th part of what it is in air.

We see, as in Art. 45, that the tension in each Faraday

tube will still equal one-half the electric intensity (jR)
;

the tension across unit area in the dielectric will therefore

be —— , the lateral pressure will also be equal to KR-JStt.
OTT

73. Conditions to be satisfied at the boundary

of two media of different specific inductive capa-

city. Suppose that the line AB represents the section
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by the plane of the paper of the plane of separation of

two different dielectrics ; let the specific inductive ca-

pacities of the upper and lower media respectively be

8 R

Fig. 38.

Let US consider the conditions which must hold at

the surface. In the first place we see that the electric

intensity parallel to the surface must be the same in

both media; for if they were different, that in the

medium K^ being the greater, we could get an infinite

amount of work by making unit charge travel round

the closed circuit PQRS, PQ being just above, and RS
just below the surface of separation. For if PQ is the

direction of the tangential component T^ of the electric

intensity in the upper medium, the work done on unit

charge as it goes from P to Q is Ti . PQ ; as QR is ex-

cessively small the work done on or by the charge as

it goes from Q to i^ may be neglected if the normal in-

tensity is not infinite, the work required to take the

unit charge back from JK to >Sf is T^. RS, if T^ is the

tangential component of the electric intensity in the

lower dielectric, and we may neglect the work done or

spent in going from S to P. Thus since the system is

brought back to the state from which it started, the work

done must vanish, hence T^PQ — T^RS must be zero.

But since PQ = RS this requires that T^ = T^ or the

tangential components of the electric intensity must be

the same in the two media.
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Next suppose that a is the density of the free

electricity on the surface separating the two media.

Draw a very flat circular cylinder shown in section at

FQRS, the axis of this cylinder being parallel to the

normal to the surface of separation, the top face of this

cylinder being just above, the lower face just below this

surface. The length of this cylinder is very small com-

pared with its breadth ; the area of the curved surface

of the cylinder will be very small compared with the

area of its ends, and by making the cylinder sufficiently

short we can make the ratio of the area of the curved

surface to that of the ends as small as we please ; hence

in considering the total normal polarization over a very

short cylinder, we may leave out the effect of the curved

surface and consider only the flat ends of the cylinder.

But since the cylinder encloses the charge aco, if co is

the area of one end of the cylinder, the total normal

polarization over its surface must be equal to aco. If N^

is the normal polarization in the first medium measured

upward the total normal polarization over the top of the

cylinder is iV^o); if iV^2 is the normal polarization measured

upward in the second medium, the total normal polariza-

tion over the lower face of the cylinder is — iV^gW ; hence

the total normal polarization over the cylinder is

iVjO) - N^o).

Since this, by Art. 70, is equal to aw, we have

When there is no charge on the surface separating

the two dielectrics, these conditions become (1) that the

tangential electric intensities, and (2) the normal polariza-

tions must be the same in the two media.
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74. Refraction of the lines of force. Suppose

that Ri is the resultant electric intensity in the upper

medium, R2 that in the lower ; 61,62 the angles these make

with the normal to the surface of separation. The tan-

gential intensity in the first medium is Ri sin 61, that

in the second is ii.2 sin 6^, and since these are equal

jRisin^i= 2^2 sin 6^ (1).

The normal intensity in the upper medium is Ri cos 6^ ,

hence the normal polarization in the upper medium is

K,R, cos (9i/47r,

that in the second is iTa^a cos ^a/^Tr, and since, if there

is no charge on the surface, these are equal we have

^R,cos6, = f' R,cos6., (2);
477 47r

dividing (1) by (2), we get

-j^ tan 61 = j^ tan 61
ill ^2

hence, if K^> K^, 6^ is > 6^, thus when the tube enters a

medium of greater specific inductive capacity from one

of less, it is bent away from the normal.

This is shown in the diagram Fig. 39 (from Lord

Kelvin's Reprint of Papers on Electrostatics and Mag-

netism), which represents the lines of force when a sphere,

made of paraffin or some material whose specific inductive

capacity is greater than unity, is placed in a field of uni-

form force such as that between two infinite parallel plates.

An inspection of the diagram shows the tendency of

the tubes to run as much as possible through the sphere

;

this is an example of the principle that a system always

tends to get the potential energy as small as possible.
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We saw, Art. 72, that when the polarization is P the

energy per unit volume is lirP'^IK, thus this for the

Fig. 39.

same value of P is less in paraffin than it is in air; that

is when the same number of tubes pass through the

paraffin they have less energy in unit volume than when
they pass through air, there is therefore a tendency for

the tubes to flock into the paraffin. The reason that

all the tubes do not run into the sphere is that those

which are some distance away from it would have to

bend down in order to reach the paraffin, they would

therefore have to greatly lengthen their path in the air,

and the increase in the energy consequent upon this

would not be compensated for in the case of the tubes

some distance originally from the sphere by the diminu-

tion in the energy when they got in the sphere.

In Fig. 40 (from Lord Kelvin's Reprint of Papers on

Electrostatics and Magnetism) the effect produced by a

conducting sphere on a field of uniform force is given for

comparison with the effects produced by the paraffin



126 SPECIFIC INDUCTIVE CAPACITY. [CH. IV

sphere. It will be noticed that the paraffin sphere pro-

duces effects similar in kind though not so great in

intensity as the conducting sphere. This observation is

true for all electrostatic phenomena, for we find that

Fig. 40.

bodies having a greater specific inductive capacity than

the surrounding dielectric behave in a similar way to

conductors. Thus they deflect the Faraday tubes in the

same way though not to the same extent ; again, a conduc-

tor tends to move from the weak to the strong parts of the

field, so likewise does a dielectric surrounded by one of

smaller specific inductive capacity. Again, the electric

intensity inside a conductor vanishes, the electric intensity

just inside a dielectric of greater specific inductive capacity

than the surrounding medium is less than that just outside.

As far as electrostatic phenomena are concerned an in-

sulated conductor behaves like a dielectric of infinitely

great specific inductive capacity.
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75. Force between two small charged bodies

immersed in any dielectric. If we have a small body

with a charge e immersed in a medium whose specific

inductive capacity is K, then the polarization at a dis-

tance r from the body is e/4!7rr\ To prove this describe

a sphere radius r with its centre at the small body, then

the polarization P will be uniform over the surface of

the sphere and radial ; hence the total normal polarization

over the surface of the sphere will equal P x (surface

of the sphere), i.e. P x 47r?'^; but this, by Art. 70, is equal

to e, hence
P X 4f7rr^ — e,

P-^r^ «
But if R is the electric intensity, then by Art. 69

Hence by (1) ^ = :^2'

the repulsion on a charge e' is Re\ i.e.

the repulsion between the charges when separated by a

distance r in a dielectric whose specific inductive capacity

is K is only l/ii"th part of the repulsion between the

charges if they were separated by the same distance in

air. Thus when the charges are given the mechanical

forces in the field are diminished by the interposition

of a medium with a large specific inductive capacity.

76. Two Parallel Plates separated by a Di-

electric. Let us take the case of two parallel plates
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separated by an insulating medium whose specific in-

ductive capacity is K. Let V be the potential difference

between the plates, a the surface density of the electrifi-

cation on the positive plate, then — cr will be that on

the negative. Let R be the electric intensity between

the plates, d the distance by which they are separated;

then by Art. 71

4770- = KR
_KV
~ d '

The force on one of the plates per unit area is

^Ra-

~ K '

that is if the charges are given the force between the

plates is inversely proportional to the specific inductive

capacity of the medium separating them.

Again, since

we see that if the potentials of the plates be given the

attraction between them is directly proportional to the

specific inductive capacity. This result is an example of

the following more general one which we leave to the

reader to work out; if in a system of conductors main-

tained at given potentials and originally separated from

each other by air we replace the air by a dielectric whose

specific inductive capacity is K, keeping the position of

the conductors and their potentials the same as before, the

forces between the conductors will be increased K times.
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Thus for example if we fill the space between the

needles and the quadrants of an electrometer with a

fluid whose specific inductive capacity is K, keeping the

potentials of the needles and quadrants constant, the

couple on the needle will be increased K times by the

introduction of the fluid. Thus if we measure the couples

before and after the introduction- of the fluid the ratio

of the two will give us the specific inductive capacity

of the fluid. This method has been applied to measure

the specific inductive capacity of liquids, especially those

such as water or alcohol, which are not sufficiently good

insulators to allow the method described in Art. 81 to

be applied.

77. The next case we shall consider is when a slab of

dielectric is placed between two infinite parallel conducting

planes, the faces of the slab being parallel to the planes.

yin///niiiiiiiiii/i/iH////////i////////n//i/i/i\

Fig. 41.

Let d be the distance between the planes, t the

thickness of the slab, h the distance between the upper

face of the slab and the upper plane. The Faraday tubes

will go straight across from plane to plane, so that the

polarization will be everywhere normal to the conducting

planes and to the planes separating the slab of dielectric

from the air.

T. E. > 9
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We saw in Art. 73 that the normal polarization does

not change as we cross from one medium to another, and

as the tubes are straight the polarization will not change

as long as we remain in one medium. Thus the polariza-

tion which we shall denote by P is constant between the

planes. In air the electric intensity is 47rP, in a dielectric

of specific inductive capacity, K the electric intensity is

equal to ^irPjE.

Thus between A and B the electric intensity is 47rP,

B and G —,^-

,

Candi) 47rP.

The difference of potential between the plates is the

work done on unit charge when it is taken from one plate

to the other. Now when unit charge is taken across the

space AB, the work done on it is

47rP X h
;

when it is taken across the plate of dielectric the work

done is

47rP

when it is taken across CD the work done is

47rP [d - {h + t)}.

Hence V the excess of the potential of the plate A
above that of D is equal to

47rP
4>7rPh+^t + 47rP [d - (h + t)]

= 47rP U-i(^- ^
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If a is the surface density of the electricity on the

positive plate, (t = P, so that

V = 47r<7
['-'^i) w-

Hence the capacity per unit area of the plate, i.e. the

value of a when F= 1, is

{'-'^¥)

i.e. it is the same as if the plate of dielectric were re-

placed by a plate of air whose thickness was tjK. The
presence of the dielectric increases the capacity of the

condenser. The alteration in the capacity does not depend

upon the position of the slab of dielectric between the

parallel plates.

Let us now consider the force between the plates
;

the force per unit area

where R is the electric intensity at the surface of the

plate; but since the surface of the plate is in contact

with air R = 47ro-, thus the force per unit area

= 27ro-'^

;

hence if the charges on the plates are given, the attraction

between them is not affected by the interposition of the

plate of dielectric.

Next let the potentials be given; we see from equa-

tion (1) that

V
^ = 7

fT'
4>7rld-t-{-^]

9—2
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hence 27ra^ the force per unit area is equal to

V

Sir (d — t + -^

The force between the plates when there is nothing

but air between them is

Sird'

Now since K is greater than 1, d — t-\- tjK is less

than d, so that l/(c^ - t + tjKy is greater than lld\ Thus

when the potentials are given the force between the plates

is increased by the interposition of the dielectric.

If K be very great tjK is very small, thus d — t-\- t/K

is very nearly equal to d — t, and the effect of the inter-

position of the slab of dielectric both on the capacity

and on the force between the plates is approximately

the same as if the plates had been pushed towards

each other through a distance equal to the thickness

of the slab, the dielectric between the plates being now
supposed to be air. This result, which is approximately

true whenever the specific inductive capacity of the slab

is very large, is rigorously true when the slab is made of

a conducting material.

Effect of the Slab of Dielectric on the Potential

Energy. The potential energy is by Art. 23 equal to

thus the energy corresponding to the charge on each unit

of area of the plates is equal to
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this by equation (1) is equal to

27ro-M(^
-'('-i)i.

it is thus less than ^ira^d, the value of the energy for

the same charges when no slab of dielectric is interposed.

The interposition of the slab thus lowers the potential

energy. We can easily see why this is the case : when
the charges are given the number of Faraday tubes is

given : and when the plate of dielectric is interposed the

Faraday tubes in part of their journey between the plates

are in the dielectric instead of air, and we know from

Art. 72 that when the Faraday tubes are in the dielectric

their energy is less than when they are in air. Since the

potential energy of a system always tends to get as small

as possible, there will be a tendency to drag as much as

possible of the slab of dielectric between the plates of

the condenser. Thus if a slab of dielectric projected on

one side beyond the plates it would be sucked between

the plates until as much of its area as possible was within

the region between the plates.

Energy expressed in terms of difference of

potential. The energy per unit area of the plates is

as we have seen equal to

this by equation (1) is equal to

1 V^

«'^U-^ri-'
Kl)
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If the potentials are given the energy when no slab is

interposed is

so that when the potentials are kept constant the electric

energy is increased by the interposition of the slab.

78. Capacity of two concentric spheres with a
shell of dielectric interposed between them. If we
have two concentric conducting spheres with a concentric

shell of dielectric between them, then if e is the charge

on the inner sphere, a the radius of this sphere ; b, c the

radii of the inner and outer surfaces of the dielectric

shell, d the inner radius of the outer conducting sphere,

V is the difference of potential between the conducting

spheres, and K the specific inductive capacity of the shell,

we may easily prove that

^~^\a b'^KKb cj'^c d

Thus the capacity of the system is equal to

1

a d V Kl\b cj

79. Two coaxial cylinders. As another example

we shall take the case of two coaxial cylinders with a co-

axial cylindric shell of a dielectric whose specific inductive

capacity is K placed between them. If V is the difference

of potential between the two conducting cylinders, U the

charge per unit length of the cylinder, a the radius of the

inner cylinder, b and c the radii of the inner and outer



80] SPECIFIC INDUCTIVE CAPACITY. 135

surfaces of the dielectric shell, d the inner radius of the

outer cylinder, we easily find by the aid of Art. 58 that

F=2^{log^4log| + log|,

SO that the capacity per unit length of this system is

1

,6 1 , c . d

80. Force on a piece of dielectric placed in an
electric field. If a piece of dielectric such as sulphur or

glass is placed in the electric field, then when the Faraday

tubes traverse the dielectric there is, Art. 72, less energy

per unit volume than when the same number of Faraday

tubes pass through air. Thus, as we see in Fig. 39, the

Faraday tubes tend to run through the dielectric, because

by so doing the electric energy is decreased. If the di-

electric is free to move then it can still further decrease

the energy by moving from its original position to one

where the tubes are more thickly congregated, because the

more tubes which get through the dielectric the greater

the decrease in the electric energy. The body will tend

to move so as to make the decrease in the energy as great

as possible, thus it will tend to move so as to enclose

as great a number of Faraday tubes as possible. It will

therefore be urged towards the part of the field where

the Faraday tubes are densest, i.e. to the strongest parts

of the field. There will thus be a force on a piece of

dielectric tending to make it move from the weak to the

strong parts of the field. The dielectric will not move

except in a variable field where it can get more Faraday

tubes by its change of position. In a uniform field such
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as that between two parallel infinite plates the dielectric

would have no tendency to move.

The force acting upon the dielectric differs in another

respect from that acting on a charged body, inasmuch as

it would not be altered if the direction of the electric

intensity at each part in the field were reversed without

altering its magnitude.

81. Measurement of Specific inductive capacity.

The specific inductive capacity of a slab of dielectric can

be measured in the following way, provided we have a

parallel plate condenser one plate of which can be moved
by means of a screw through a distance which can be

accurately measured. To avoid the disturbance due to the

irregular distribution of the charge near the edges of the

plate (see Art. 57) care must be taken that the distance

between the plates never exceeds a small fraction of the

diameter of the plates. Let us call this parallel plate con-

denser A ; to use the method described in Art. 62, first take

the condenser A and before inserting the slab of dielectric

adjust the other variable condenser used in that method

until there is no deflection of the electrometer. If the slab

of dielectric be now inserted between the plates of A its

capacity will be increased, A will no longer be balanced by

the other condensers and the electrometer will be deflected.

The capacity of A can be diminished by screwing the plates

further apart, and by moving the plates through a certain

distance the diminution in the capacity due to the increase

in the distance between the plates will balance the in-

crease due to the insertion of the slab of dielectric ; the

stage when this occurs will be indicated by there being

again no deflection of the electrometer. Suppose that
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when the deflection of the electrometer is zero before

the slab is inserted the distance between the plates of

the condenser is d, while the distance after the slab

is inserted when the electrometer is again in equili-

brium is d'. Then the capacity of A in these two cases

is the same. But if A is the area of the plate of A the

capacity before the slab is inserted is

A
^ird'

If t is the thickness of the slab and K its specific inductive

capacity the capacity after the insertion of the slab is (see

Art. 77) equal to

A

but since the capacities are equal

t
d = d -i + ^,

so that d' — d= t ll — j^[

.

But d' — d is the distance through which the plate has

been moved, so that if we know this distance and t we can

determine K the specific inductive capacity of the slab.

It should be noticed that this method does not require

the knowledge of the initial or final distances between

the plates, but only the difference of these quantities,

and this can be measured with great accuracy by the

screw attached to the mov-eable plate.



CHAPTER V.

Electrical Images and Inversion.

82. We shall now proceed to discuss some geometrical

methods by which we can find the distribution of electricity

in several very important cases. We shall illustrate the

first method by considering a very simple example ; that

of a very small charged body placed in front of an infinite

conducting plane maintained at potential zero. Let P,

Fig. 42, be the charged hody, AB the conducting plane.

Any solution of the problem must in the region to the

right of the plane AB, Fig. 42, satisfy the following con-

ditions : (a) it must make the potential zero over the plane

B

Fig. 42.

AB, and (l3) it must make the total normal induction

taken over any closed surface enclosing P equal to 47re,

where e is the charge at P, while if the closed surface does
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not include P the total normal induction over it must

vanish. We shall now prove that there is only one solution

which satisfies these conditions. Suppose there were two

different solutions, which we shall call (1) and (2). Take

the solution corresponding to (2) and reverse the sign of

all the charges of electricity in the field including that at

P ; this new solution which we shall denote by (— 2) will

correspond to a field in which the electric intensity at any

point is equal and opposite to that due to the solution (2)

at the same point. The solution (—2) corresponds to a

field in which the electric potential is zero over AB and

at any point at an infinite distance from P ; it also makes

the total normal induction over any closed surface enclos-

ing P equal to — 47re, that is equal and opposite to the

total induction over the same surface due to the solution

(1) ; and the total induction over any other closed surface

in the region to the right of J.5 zero. Now consider the

field got by superposing the solutions (1) and (— 2) : it will

have the following properties ; the potential over AB will

be zero and the total normal induction over any closed

surface in the region to the right oi AB will vanish.

Since the normal induction vanishes over all closed

surfaces in this region, there will in the field correspond-

ing to this solution be no charge of electricity. We may

regard the region as the inside of a closed surface at zero-

potential (bounded by the plane AB and an equipotential

surface at an infinite distance): by Art. 18, however, the

electric intensity must vanish throughout this region as

there is no charge inside it. Thus the electric intensity

in the field corresponding to the superposition of the

solutions (1) and (— 2) is zero : that is, the electric

intensity in the solution (1) is equal and opposite to that
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in (— 2), but the electric intensity in (—2) is equal and

opposite to that in (2). Hence the electric intensity in

(1) is at all points the same as (2), in other words, the

solutions give identical electric fields. Hence if we get in

any way a solution satisfying the conditions (a) and (^) it

must be the only solution of the problem.

83. Take a point P' on the prolongation of the per-

pendicular PN let fall from P on the plane, such that

P'N = PN, and place at P' a charge equal to — e. Con-

sider the properties, in the region to the right of AB, of

the field due to the charge e at P and the charge —e
at P'.

The potential due to — e at P' and + e at P at a point

Q on the plane AB is equal to

but since AB bisects PP' at right angles PQ = P'Q, thus

the potential at Q vanishes. Again, any closed surface

drawn in the region to the right of the plane AB does not

enclose P\ so that the charge at P' is without effect upon

the total induction over any such surface. The total

induction over such a surface is zero or 47re according as

the closed surface does not or does include P. In the

region to the right of AB the electric field due to e at P
and — e at P' thus satisfies the conditions (a) and (/S) and

therefore represents the state of the electric field. Thus

the electrical effect of the electricity induced on the

conducting plane AB will for points to the right oi AB
be the same as that of the charge — e at P'. This charge

at P' is called the electrical image of the charge P in the

plane.
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The attraction on P towards the plane will be the

same as the attraction between the charges e at P, and
— e at P', that is

e" 1 ^
{2PNY~ 4>~PN~^'

Thus the attraction on P varies inversely as the square of

the distance of the charged body from the plane.

To find the surface density of the electricity induced

on the plane AB we require the electric intensity at right

angles to the plane. The electric intensity at right angles

to the plane J.5 at a point Q due to the charge e at P is

equal to

e PJ[
PQ^'PQ'

and acts from right to left. The electric intensity due to

— e at P' in the same direction is

e FN
P'Q' ' P'Q '

hence since PQ = P'Q and PN^P'N the resultant normal

electric intensity at Q
_ 2ePN

This by Coulomb's law is equal to 47ro-, if a is the

surface density of the electricity at Q, hence

-± ?K
""

27rP(^'

or the surface density varies inversely as the cube of the

distance from P.

The total charge of electricity on the plane is — e, as

all the tubes which start from P end on the plane.
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The electrical energy is equal to JS^F, so that if

the small body at P is a sphere radius a, the energy in

the field is equal to

le^_l ^
The dielectric in this case is supposed to be air. The

electric intensity vanishes in the region to the left of AB.

84. Electrical Images for spherical conductors.

In applying the method of images to spherical conductors

we make great use of the following theorem due to Apol-

lonius. If >S> is a point on a sphere whose centre is and

radius a, and P and Q two fixed points on a straight line

passing through 0, such that OP . (g = a^ then QSjPS

is constant wherever 8 may be on the sphere.

For consider the triangles QOS, POS. Since

OQ OSOQ.OP = OS',
OS OP'

Fig. 43.

hence these triangles have the angle at common and the

sides about this angle proportional; they are therefore

similar triangles, so that

QS_PS
OQ'OS'
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QS_OQ_qS
^^ PS~OS OP'

Hence QS/PS is constant whatever may be the position

of ,Sf.

.85. Now suppose that we have a spherical shell (Fig.

43) at potential zero whose centre is at and that a small

body with a charge e of electricity is placed at P and we

wish to find the electric field outside the sphere. There

is no field inside the sphere, as the sphere is an equi-

potential surface with no charge inside it.

Let OP =/, OS = a. Consider the field due to a

charge e at P, and e' at Q where OQ . OP = a\ The

potential at a point S on the sphere due to this field is

but by Art. 84,

PS'^QS'

QS^PS.j

thus the potential Sit 8 = \e + e-l
1

PS'

Hence if e = — eajf, the potential is zero over the

surface. Thus under these circumstances the field satisfies

condition (a) of Art. 82, and it obviously satisfies the

condition that the total normal induction over any closed

surface not enclosing the sphere is zero or ^ire according

as the surface does not or does enclose P, so that by Art.

82 this is the actual field due to the sphere and charged

body. Hence the effect at a point outside the sphere of

the electricity induced on the sphere by the charge at P
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is the same as that of a charge - ea/f at Q. This charge

at Q is called the electrical image of P in the sphere.

Since this charge produces the same effect as the electri-

fication on the sphere the total charge on the sphere must

equal the charge at Q, i.e. it must be equal to — ea/f

(compare Art. 30). So that of the Faraday tubes which

start from P the fraction a// falls on the sphere.

The force on P is an attraction towards the sphere and

is equal to

a e^ a ^ _a e^ e^fa

~fPQ'^ /{OP^^roQY ~J lf_ ^Y
-O - <^'f

We see from this result that when the distance of P
from the centre of the sphere is large compared with the

radius the force varies inversely as the cube of the

distance from the centre of the sphere: while when P
is close to the surface of the sphere the force varies

inversely as the square of the distance from the nearest

point on the surface of the sphere. When P is very

near to the surface of the sphere the problem becomes

identical with that of a charge placed in front of a plane

at potential zero. We shall leave it as an exercise for the

student to deduce the solution for the plane as the limit

of that of the sphere.

If the body at P is a small sphere of radius 6, then

since the electric energy is equal to ^EV, it is in this case

1 |e ea \

\'\h~~fpq

= ^e"
1 a

2 [h p - a'
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86. To find the surface density at a point S on the

surface of the sphere, we must find the electric intensity

along the normal.

The electric intensity at S due to the charge e at P
can by the triangle of forces be resolved into the two com-

ponents

^"^ TS' PS ^^^^^ ^^'

p OP
(/3) ;^,^ along PO,

while the electric intensity due to the charge —ea/fsit Q
can be resolved into the components

Hence the components of the resultant intensity are a 4- 7
along the normal OS, and 13 + B along PO.

Now the resultant intensity is along the normal, so

that the component /B -{-B must vanish, and the resultant

intensity along the normal must be equal to a + 7, i.e. to

e . Ob
|p^^^3 ^ ^j^^^3

Him-
PS' fQS'

e^S
PS'

Since PS/QS is constant the quantity inside the bracket

is constant.

T. E. 10
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If o- is the surface density of the electrification at S,

then by Coulomb's law

FS' [ f\QSJ\ FS'i «'r

so that the surface density of the electrification varies

inversely as the cube of the distance from P, and is, since

yis greater than a, everywhere negative.

87. If the sphere is insulated instead of being at zero-

potential, the conditions are that the potential over the

sphere should be constant and that the charge on the

sphere should be zero. The charge on the sphere in

the last case was — ea/f. Hence if we superpose on the

last solution the field due to a quantity of electricity

equal to ea/f placed at the centre of the sphere, which

will give rise to a uniform potential over the sphere, the

resulting field will have the following properties; (1) the

potential over the sphere is constant, (2) the total charge

on the sphere is zero, (8) the total normal induction over

any closed surface is equal to Atire if the surface encloses P
and is zero if it does not; hence it is the solution in

the region outside the sphere when a charge e placed at

P in front of an insulated conducting sphere. Thus out-

side the insulated sphere the electric field is the same as

that due to the three charges, e at P, — ea/f at Q, ea/f

at 0. Let us consider the potential of the sphere : the

charges at P and Q together produce zero-potential over

the sphere, so that the potential will be that due to the

charge ea/f at ; this charge produces at any point on

the sphere a potential equal to e/f so that by the presence

of P the potential of the sphere is raised by e/f This

result was proved by a different method in Art. 29.
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The force on P in this case is an attraction equal to

PQ'f f-f
e^ a f f 1

/ [{f-o^r f-

_eKa? If - g'

SO that in this case wheny is very large compared with a

the force varies inversely as the fifth power of the distance.

When the point is very close to the surface of the sphere

the force is the same as if the sphere were at zero-po-

tential.

The potential energy, ^^EV is, if the body at P is a

small sphere of radius 6, equal to

1 ie ea ea

1 {e ea^

2 [b fHp-a^)

The surface density at S will have on the value given

in Art. 86

thus

6(1
the uniform density ^^~-—- superposed,

•—S(5-')*.> "'

At R the point on the sphere nearest to P,

10—2
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SO that the surface density is equal to

47ral(/-ay /
e (3/- g)

47r/(/-ay

At J?' the point on the sphere most remote from P,

and the surface density is equal to

e_ (3/+ a)

^-rr fif+ay

Since the total charge on the sphere is zero the surface

density of the electricity must be negative on one part of

the sphere, positive on another part. The two parts will

be separated by a line on the sphere along which there is

no electrification. To find the position of this line put a-

equal to zero in equation (1), we get if S is a point on

this line

P,S3 = (/^-o,V=/^f/-^"/
= OP' X PQ,

hence the points at which the electrification vanishes will

be at a distance {OP'' x PQf from P.

The parts of the surface of the sphere whose distances

from P are less than this value are charged with electricity

of the opposite sign to that at P, the other parts of the

sphere are charged with electricity of the same sign as

that at P.
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88. If the sphere instead of being insulated and with-

out charge is insulated and has a charge E, we can deduce

the solution by superposing on the field discussed in Art.

87 that due to a charge E uniformly distributed over the

surface of the sphere ; this at a point outside the sphere

is the same as that due to a charge E at 0. So that the

field in this case outside the sphere is the same as that due

to charges

^+^atO, -yatQ, eat P.

The repulsive force acting on P is equal to

{e-\-
ea\ e e^a

fir f^pQ"
_Ee _e^ (2/^-a^)

When the point is very near the sphere we may put

/= a + w, where x is small, then the repulsion is approxi-

mately equal to

Ee_^
a^ 4a-2

'

and this is negative, i.e. the force is attractive unless

Thus when the charges are given, and when P gets

within a certain distance of the sphere, P will be attracted

towards the sphere even though the sphere is charged with

electricity of the same sign as that on P. When we
recede from the sphere we reach a place where the attrac-

tion changes to repulsion, and at this point there is no

force on P. So that ifP is placed at this point it will be in
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equilibrium. The equilibrium will however be unstable, for

if we displace P towards the sphere the force on it becomes

attractive and so tends to bring P still nearer to the sphere,

that is to increase its displacement, while if we displace P
away from the sphere the force on it becomes repulsive

and tends to push P still further away from the sphere,

thus again increasing the displacemeut. This is an

example of a more general theorem due to Earnshaw that

no charged body (whether charged by induction or other-

wise) can under the influence of electric forces alone be in

stable equilibrium in the electrostatic field.

89. If the potential of the sphere is given instead of

the charge, we can still use a similar method to find the

field round the sphere. Thus if the potential of the sphere

is F, then the effect outside the sphere is the same as

that due to a charge Va at 0, — eajf at Q, and e at P.

90. Sphere placed in a uniform field. As the

point P moves further and further away from the

Faraday tubes due to the charge at P get to be in the

neighbourhood of the sphere more and more nearly parallel

to OP, thus when P is at a very great distance from the

sphere the problems we have just considered become in the

limit problems relating to the distribution of electricity on

a sphere placed in a uniform electric field.

Suppose that as the charged body P travels away from

the sphere the charge e increases, in such a way that the

electric intensity at the centre of the sphere due to this

charge remains finite and equal to F, we have thus
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Now consider the problem of an insulated sphere

without charge placed in this uniform field. We see by

Art. 87 that the electrification on the sphere produces the

same effect at points outside the sphere as would be pro-

duced by two charges, one equal to eajf placed at the

centre 0, the other equal to - ea//at Qthe image of P. If

we express these charges in terms ofP we see that they are

equal respectively to ±Faf; when/ is infinite they are also

infinite. Since OQ=a^/f the distance between these charges

diminishes indefinitely as / increases, and we see that the

product of either of the charges into the distance between

them is equal to Fa^ and is finite. The electrification

over the surface of the sphere when placed in a uniform

field produces the same effect therefore as an electrical

system consisting of two oppositely charged bodies, placed

at a very short distance apart, the charges on the bodies

being equal in magnitude and so large that the product of

either of the charges into the distance between them is

finite. Such a system is called an electrical doublet and

the product of either of the charges into the distance

between them is called the moment of the doublet.

91. Electric Field due to a doublet. Let A, B
be the two charged bodies, let e be the charge dX A,—e
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that at B\ let be the middle point of AB, M the

moment of the doublet. Let (7 be a point at which the

electric intensity is required, and let the angle A0G= 6.

The intensity at right angles to OC is equal to

^2 sin AGO+^^ sin BCO

= ^,AOsmO +-^^BOsme

approximately since ^0 is very small compared with 0(7,

_ if sin (9

The intensity in the direction 00 due to the doublet

is equal to

6 6
-r-^ COS AGO — -7T7^„ cos BOO,
AO^ BO^

but we have approximately

AO=0O-A0cosd,

BO = 00 -^ BO cos 6.

Hence the electric intensity along 00 is approximately

e f^ 2A0 .\ e /, 250 cos (9\^.(l + ^^cos^j-^,^1 -^-j

2e AB cos (9

00'

2McosO
00'
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92. Let us now return to the case of the sphere

placed in the uniform field : the moment of the doublet

which represents the effect of the electrification over the

sphere is Fa^. Hence when the sphere is placed in a

uniform field F parallel to PO, the intensity at a point

G is the resultant of electric intensities, F parallel to PO,

FaHmOjOG^ at right angles to OG, and 2Fa^ cos 6/OG^

along GO ; denotes the angle POG.

At the surface of the sphere where OG = a, the result-

ant intensity along the outward drawn normal is

-i^cos^-2i^cos^,

or - SF cos 6
;

but by Coulomb's law, if a is the surface density of the

electrification on the sphere,

47ro- = -3i^cos6>,

3
or a' = '--j—Fcosd.

4f7r

Hence we see that when an insulated conducting

sphere is placed in a uniform field the surface density at

any point on the sphere is proportional to the distance of

that point from a plane through the centre of the sphere

at right angles to the electric intensity in the uniform

field.

The concentration of the Faraday tubes on the sphere

produces a field where the maximum intensity is three

times the intensity in the uniform field.

93. We have hitherto supposed the electrified body

to be outside the sphere, but we can apply the same

method when it is inside. Thus if we have a charge e
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at a point Q inside a spherical surface maintained at zero

potential then the effect of the electricity induced on the

Fig. 45.

sphere will, inside the sphere, be the same as that due to

a charge - e . a/OQ at Q where OP . OQ = a\ The charge

on the sphere is — e, since all the tubes which start from

Q end on the sphere.

If the sphere is insulated, then the charge on the

inside of the sphere and the force inside are the same

as when it was at potential zero; the only difference

is that on the outside of the sphere there is a charge

equal to e uniformly distributed over the sphere, and the

field outside is the same as that due to a charge e at the

centre.

Again, if there is a charge E on the sphere, the effect

inside is the same as in the two previous cases, only now

there is a charge E-\-e uniformly distributed over the

surface of the sphere raising its potential to {E + e)la.

In all these cases the surface density of the electrifica-

tion at any point on the inner surface of the sphere varies

inversely as the cube of the distance of that point from P.
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94. Case of two spheres intersecting at right

angles and maintained at unit potential. Let the

figure represent the section of the spheres, A and B being

their centres, and G a point on the circle in which they

Fig. 46.

intersect, CD a part of the chord common to the two

circles, then since the spheres intersect at right angles

AOB is a right angle and CD is the perpendicular let fall

from C on AB.

Then we have by Geometry

AD,AB = AC\

DB.AB = BG\

Thus D and B are inverse points with regard to the

sphere with centre A, and A and D are inverse points

with regard to the sphere whose centre is B.

Let ^C = a, BG = 6, then GD .AB = AG .BG, so that

ab
GD =

Ja' + ¥
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Consider the effect of putting a positive charge at A
numerically equal to the radius AC, s. positive charge

at B equal to BC, and a negative charge at D equal

to CD.

The charges at A and D will together, by Art. 85,

produce zero potential over the sphere with centre B.

For A and D are inverse points with respect to this

sphere, and the charge at D is to the charge at A as

— CD is to AC, i.e. as —BC is to AB, so that the ratio

of the charges is the same as that of those on a point

and its image, which together produce zero potential at

the sphere. Thus the value of the potential over the

surface of this sphere is that due to the charge at B, but

the charge is equal to the radius of the sphere, so that

the potential at the surface being equal to the charge

divided by the radius is equal to unity. Thus these

three charges produce unit potential over the sphere

with centre B ; we can in a similar way show that they

give unit potential over the sphere with centre A. The

two spheres then are an equipotential surface for the

three charges, and the electric effect of the conductor

formed by the two spheres when maintained at unit po-

tential is at a point outside the sphere the same as that

due to the three charges.

Capacity of the system. The charge on the system

is equal to the sum of the charges on the points inside

it which produce the same effect, thus the charge on the

system which, since the potential is unity, is equal to the

capacity is equal to

ah
a + h

Ja'' -4- ¥



95] ELECTRICAL IMAGES AND INVERSION. 157

95. If b is very small compared with a, the system

becomes a small hemispherical boss on a large sphere

as shewn in Fig. 47. The capacity is equal to

a-\-h- .

Ja' + b'

(, b bf, b'-

or ail -h 1 +
( a a\

and as in this case, b/a is very small, the capacity is

approximately equal to

( b b (^ U^
a\\ + 1 --—

, 1 6^ _ volume of boss

2 a' volume of big sphere
*

Thus we have, since a is the capacity of the large

sphere without the boss,

increase in capacity due to boss _ volume of boss

capacity of sphere ~ volume of sphere
*
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96. To compare the charges on the surface of

the two spheres. The charge on the sphere EFG (Fig.

46) is by Coulomb's law equal to l/47r of the total normal

induction over EFG. Now the total normal induction is

the sum of the total normal inductions due to the charges

at J. , J?, D. Since B is the centre of the sphere CFE the

total normal induction due to ^ over CFE bears the same

ratio to 47r6 (the total normal intensity over the whole

sphere) as the area of the surface CFE does to the area

of the sphere. But the area of the surface of a sphere

included between two parallel planes is proportional to

the distance between the planes, thus

areaof J^i^C ^ h + BD
area of sphere 26 '

hence the total normal induction due to the charge at B
over CFE

= 27r{b + BD).

The total normal induction due to the charge A over

the closed surface CFEL is zero, therefore the total normal

induction due to A over CFE is equal in magnitude and

opposite in sign to the total normal induction over CLE,

that is, it is equal to the total normal induction over CLE
reckoned outwards from the side J.. But CLE is a portion

of a sphere of which A is the centre, therefore the induc-

tion over CLE is to 47ra the induction over the whole

sphere with centre A, as the area of CLE is to the area

of the sphere, that is as DL : 2a. Thus the induction

due to A over CFE is equal to

27rDL.

Now consider the induction over CFE due to the

charge at i) : it is by the same reasoning as above equal
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to the induction over CLE measured outwards from D.

Now of the tubes starting from B as many would go to

the right as to the left if it were alone in the field, so that

the induction over CLE will be half that due to D over a

closed surface entirely surrounding it; the latter induction

is equal to 47r times the charge at D, i.e. to — 47r . CD,

hence the induction due to D over the surface CLE is

- 27r . CD.

Thus the total induction over CLE due to the three

charges is

27r{h^-BD + DL-CD),

and the charge on CFE is therefore equal to

The charge on CGE can be got by interchanging a and

h in this expression, it is thus equal to

J a+ y +6- . , - . ^ .-•(2).

97. In the case of a hemispherical boss on a large

sphere, h is very small compared with a, in this case when

h is small compared with a the expression (1) becomes

approximately

6^ /, ,
6^

i6+-4-a-a(l-i-)-6

362

4a'
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This is equal to the charge on the boss. The mean
density on the boss is this expression divided by 27r¥ the

area of the surface of the boss, and is therefore

3

When h/a is very small the expression (2) is approxi-

mately equal to a, thus the charge on the sphere is a and

the mean density is got by dividing a by 47ra^ the area of

the sphere, thus the mean density on the sphere is

1

47ra*

Hence the mean density on the boss is to the mean

density on the sphere as 3:2.

98. Since a plane may be regarded as a sphere of

infinite radius this applies to a hemispherical boss of any

radius on a plane surface. It thus applies to the case

Fig. 48.

shown in the figure. Since the mean density over the boss

is 3/2 that over the plane, and the area of the boss is twice

the area of its base ; there is three times as much electricity

on the part occupied by the boss as there is on the average

on an area of the plane equal to the base of the boss.
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99. When b is very small compared with a, the points

B and D, Fig. 46, are close together, the distance between

them being approximately h^/a ; the charge on B is b, that

on D is

ab

and this when b is very small compared with a is

approximately equal to — b. Thus the charges at B and

D form a doublet whose moment is ¥la. The point A is

very far away and the force at J5 or Z) due to its charge

is 1/a. Thus the moment of the doublet is ¥ times this

force. This as far as the sphere is concerned is exactly

the case considered in Art. 92. Hence if F is the force at

the boss due to the charge A alone, the surface density at
or*

a point P on the boss is -r— cos 6, where 6 is the angle

OP makes with the axis of the doublet. Now if o-q is the

surface density on the plane at some distance from the

boss F — ^TTo-Q, Hence the surface density at P a point

on the boss is equal to

ScTo cos 6,

where 6 is the angle OP makes with the normal to the plane.

The electric intensity at Q a point on the plane due

to the doublet is (Art. 91) equal to the moment of the

doublet divided by B(^ and is at right angles to the

plane, thus the normal electric intensity at Q is

and a the surface density at Q is given by the equation

T. E. 11
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We have thus found the distribution of electricity on

a charged infinite plane with a hemispherical boss on it.

100. In the general case when the two spheres are of

any size the surface density on the conductor can be got

by calculating the normal electric intensity due to the

three charges. We shall leave this as an example for the

student, remarking that since the potential of the con-

ductor is the highest in the field there can be no negative

electrification over the surface and that the electrification

vanishes along the intersection of the two spheres.

101. Effect of Dielectrics. We have hitherto only

considered the case when the field due to the charge at

P was disturbed by the presence of conductors, but by

applying the principle that a solution which satisfies the

electric conditions is the only solution, we can find the

electric field in some simple cases when dielectrics are

present.

102. The first case we shall consider is that of a small

charged body placed in front of an infinite slab of uniform

B

Fm. 49.

dielectric bounded by a plane face. Let P be the charged

body, AB the plane separating the dielectric from air, the

medium to the right of AB being air, that to the left a
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dielectric whose specific inductive capacity is K. From P
draw PN perpendicular to AB

;
produce PN to P', so that

PN=:P'N. Then we shall show that the field to the

right o^ AB can be regarded as due to e at P, a charge e

at P', and that to the left of J.5 as due to e" at P. These

charges being supposed to produce the same field as if

there was nothing but air in the field.

In the first place this field satisfies the condition that

the potential at an infinite distance is zero, also that the

induction over any closed surface surrounding P is 47re,

while the induction over any closed surface not enclosing

P is zero. This is obvious if the surface is drawn entirely

to the left or entirely to the right of AB. If it crosses

this plane it can be regarded as two surfaces, one entirely

to the left bounded by the portion of the surface to the

left and the portion of the plane AB intersected by the

surface, the other entirely to the right bounded by the

same portion of the plane and the part of the surface to

the right.

The only other conditions we have to satisfy are that

along the plane AB the electric intensity parallel to the

surface is the same in the air as in the dielectric, and that

over this plane the normal polarization is the same in the

air as in the dielectric.

At a point Q m AB the electric intensity parallel to

AB is in the air

e QN e' QN
PQ^ PQ'^ P'Q' PQ-

This, since PQ = P'Q, is equal to

11—2
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The electric intensity parallel to J.jB in the dielectric is

this is equal to that in air if

e + e' = e" (1).

Again, the polarization at Q at right angles to AB
reckoned from right to left is in air

1 , ..pjsr

that in the dielectric

these are equal if

e-e' = Ke" (2).

Hence both the conditions are satisfied if e and e" satisfy

(1) and (2), i.e. if

(^-1)

Thus the attraction of P towards the plane is

ee' _ K-1 e^

(2Pi\^)2~ir+14Pi\^2'

if K is infinite this equals

which is the same as when the dielectric to the left of AB
is replaced by a conductor.
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Thus if -K" = 10, as it does for some kinds of heavy-

glass, the force on P when placed in front of the glass

would be about 9/11 of the attraction when P is placed

in front of a conducting plate. Inside the conducting

plate the tubes are straight and pass through P; the

effect of the dielectric is, while not affecting the direction

of the electric intensity, to reduce the magnitude of it to

2/(1 + ^) of its value in air. The lines of force when

K=1'7 are shown in Fig. 50.

Fig. 50.

103. Case of a dielectric sphere placed in an
electric field. We have seen that when a conducting

sphere is placed in a uniform field the effect of the

electricity induced on the surface of the sphere can be

represented at points outside the sphere by a doublet

(see Art. 91) placed at the centre of the sphere. Since
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we have seen that the effects of a dielectric are similar

in kind though different in degree to those due to a

conductor, we are led to try if the disturbance produced

by the presence of the sphere cannot be represented at

a point outside the sphere by a doublet placed at its

centre. With regard to the field inside the sphere we

have as a guide the result obtained in the last article, that

in the case when the radius of the sphere is infinitely

large the field inside the dielectric is not altered in

direction but only in magnitude by the dielectric.

We therefore try if we can satisfy the conditions

which must hold when a sphere is placed in a uniform

electric field by supposing the field inside the sphere to

be uniform.

Let the uniform field before the insertion of the

sphere be one where the electric intensity is horizontal

and equal to H.

After the insertion of the sphere let the field outside

consist of this horizontal force plus the field due to a

doublet whose moment is M placed at the centre of the

sphere.

Inside the sphere let the intensity be horizontal and

equal to H'.

We shall see that it is possible to satisfy the con-

ditions of the problem by a proper choice ofM and H'.

The field due to the doublet is by Art. 91 equivalent

at P to an intensity jyp^ cos 6 along OP, and an intensity

-^p^ sin 6 at right angles to it where 6 is the angle OP
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makes with the direction of the uniform electric intensity.

Thus at a point Q just outside the sphere the intensity

tangential to the sphere is equal to

MHsm6 -sin 6,

where a is the radius of the sphere.

The intensity in the same direction at a point close

to Q but just inside the sphere is

The normal intensity at Q outside the sphere is

Hcos6-\—- cos 6,

that inside the sphere is H' cos 0,

The conditions which must be satisfied are that the

tangential intensity at the surface of the sphere must be

the same in the air as in the dielectric, this will be true

if we have

M .

Hbir 6 sin =H' sin 0,
a?

M
or H--^ = ir (1).

Again, the normal polarization at the surface of the

sphere must be the same in the air as in the dielectric,

thus

-— ^5^cos^+-^cos^^ = :r-H' COS $,
4>7r

[
a^

J
47r

9M
or H+^=KE (2).
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Equations (1) and (2) will be satisfied, if

H'
2 +K

and if M= —j^
——^ a\

Thus since if H' and M have these values the con-

ditions are satisfied ; this will be the solution of the

problem. We see that the intensity inside the sphere

is 3/(2 + K) of that in the original field, so that the

intensity of the field is less inside the sphere than out,

on the other hand the number of Faraday tubes which

pass through unit area inside the sphere is SK/{K + 2)

times the number passing through unit area in the

uniform field outside. When K is very great SK/(K + 2)

is approximately equal to 3, so that the Faraday tubes

in this case will be 3 times as dense inside the sphere

as they are at a great distance away from it. This illus-

trates the crowding of the Faraday tubes to the sphere.

The diagram of the lines of force for this case was

given in Fig. 39.

Method of Inversion.

104. This is a method by which when we have ob-

tained the solution of any problem in electrostatics we

can by a geometrical process obtain the solution of

another.

Definition of inverse points. If is a fixed point,

P a variable one, then if we take P' on OP, so that

OP,OP'=k\



105] ELECTRICAL IMAGES AND INVERSION. 169

where k is a constant, P' is defined to be the inverse point

of P with regard to 0. And is called the centre of

inversion, k the radius of inversion.

If the point P moves about so as to trace out a surface,

then P' will trace out another surface which is called the

inverse surface to that traced out by P.

We shall now proceed to prove some geometrical pro-

positions about inversion.

105. The inverse surface of a sphere is another

sphere. Let be the centre of inversion, P a point

Fig. 51.

on the sphere to be inverted, G the centre of this sphere.

Let the chord OP cut the sphere again in P\ let Q be

the inverse point to P, Q the inverse point to P\ R the

radius of the sphere to be inverted, then

OP.OQ = k^

but OP. OF = 00' -R'',

thus 0(3 =^^0P-

similarly ' OQ' =^ ^^^—^^OP,
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thus OQ,Oq = ^^^^-^^OP.OP'

1^

Thus OQ bears a constant ratio to OF'; hence the

locus of Q is similar to the locus of P\ and is therefore a

sphere. Thus a sphere inverts into a sphere. If

the sphere inverts into itself.

To find the centre of the inverted sphere let the dia-

meter OG cut the sphere to be inverted in A and B. Let

A', B' be the points inverse to A and B respectively,

0' the centre of the inverted sphere,

00'=\{OA' + OB')

~2[0G-R'^ OG+ r)

OG
OG^-R''

IfD is the point where the chord of contact of tangents

from to the sphere cuts OG, then

^^
OG '

Hence D inverts into the centre of the sphere.

The radius of the inverted sphere

= i(OA'-OB')

R= k''

OG'-R'
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106. Since a plane is a particular case of a sphere

a plane will invert into a sphere ; this can be proved

independently in the following way

:

Fig. 52.

Let AB be the plane to be inverted,P a point on that

plane, N the foot of the perpendicular let fall from on

the plane, Q and N' the points inverse to P and N
respectively; then since

OQ.OP = ON' .ON

ON'
ON
OP'

thus the two triangles QON\ PON have the angle at

common and the sides about this angle proportional, they

are therefore similar, and the angle OQN' is equal to the

angle ONP. Hence OQN' is a right angle. And the

locus of Q is a sphere on ON' as diameter.
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107. Let be the centre of inversion, PQ two points,

P'Q the corresponding inverse points.

OQ' ~ OP '
Then

Fig. 53.

thus the triangles POQ, POQ' are similar, so that

PQ^P^
OP oq

'

If we have a charge e at Q, and a charge e' at Q',

then if Vp is the potential at P due to the charge at Q,

and FV the potential at P' due to the charge at Q',

^^- ^ ^'-PQ • FQ'-OP ' OQ"

Take e : e' = OQ : A; (1),

k
then F p. = ^p ^/ •

If we have any number of charged bodies at different

points and take the inverse of these points and place there

charges given by the expression (1) then if Vp be the po-

tential at a pointP due to the assemblage of charged bodies,

Vp> the potential at P^ (the point inverse to P) due to the

charges on the inverted figure,

OP''
Vp>=Vp
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thus if the assemblage of points produces a constant poten-

tial V over a surface S, the inverted system will produce a

Vk . .

potential jyp' ^^ ^ point P' on the inverse of >Si. Hence if

we add to the inverted system a charge - A;F at the centre

of inversion the potential over the inverse of S will be zero.

If the charges on the original system are distributed

over a surface instead of being concentrated at a point the

charges on the inverted system will also be distributed over

a surface. Let a be the surface density at Q, a place on

the original system, a' the surface density at Q', the corre-

sponding place on the inverted system, a a small area at Q,

a the area into which it inverts ; then by (1)

(TOL : a'a! = OQ : k

and since a and a are similar figures,

a : a' = OQ' : OQ'^

.-. a : a' = OQ'' : kOQ

kOQ k^ ...

^=^-OQ^=^W^ (^^-

This expression gives the surface density of the inverted

figure in terms of that at the corresponding point of the

original figure.

108. As an example of the use of the method of

inversion let us invert the system consisting of a sphere

with a uniform distribution of electricity over it, the

surface density being F/47ra; where V is the potential

and a the radius of the sphere. We know in this case that

the potential is constant over the sphere and equal to V.

Take the point of inversion outside the sphere and choose

the constant of inversion so that the sphere inverts into

itself. Then if to the inverted system we add a charge
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— kVsit the origin the inverted system will be at poten-

tial zero. By equation (I) or' the surface density at the

inverted system at Q' is given by the equation

"^ ~ 47ra • Oq' '

if we put e = — A;F, this equals

-e k^ ^ -e.{OG'-a')
47ra • OQ'' ~ 4>7ra . OQ' '

where G is the centre of the sphere.

Thus a charge e at induces on the sphere at zero

potential a distribution of electricity such that the surface

density varies inversely as the cube of the distance from

0. Thus in this way we get by inversion the solution of

the problem which we solved in Art. 86 by the method

of images.

109. As another example illustrating the uses of the

method of inversion as well as that of images, let us

consider the solution by the method of images of a charged

body placed between two infinite conducting planes main-

tained at potential zero.

Let P be the charged point, AB and CD the two planes

at potential zero, e the charge at P. Then if we place

a charge —e at P' where P' is the image oi P in AB the

potential over AB will be zero, it will not however be

zero over CD; to make the potential over CD zero we

must place a charge —eatQ, the image of P in CD, and a

charge e at Qi, the image of P' in CD. These two charges

will however disturb the potential of AB ; to restore zero

potential to AB we must introduce a charge +e at Pj

the image of Q in AB, and a charge — e at P" the image
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of Qi in AB. The charges at Pi and P" will disturb the

potential over the plane CD ; to restore it to zero we must

place a charge — e at Q' the image of Pi in CD and a

charge +e at Q2 the image of P'' in CD, and so on ; we get

in this way an infinite series of images to the right of AB
and to the left of GB.

The images to the right of AB are (1) charges — e, at

F, P", P'"... ; and (2) charges +e, at Pi, P„P,....

Now P" is the image in AB of Q^ which is the image

of P' in CD ; hence

FP" = PQi = FE+ EP' = 2FE + FP\

thus FP"-FP' = PT" = 2FE=2c if c is the distance

between the plates.

D A

F p

B
Fig. 54.

Similarly P'P" = P"P"' = . . . = 2c and we can show in a

similar way that PPi = P1P2 = P^Pz^ . . . = 2c. Thus on the

right of ^-B we have an infinite series of charges equal to

— e at the distance 2c apart, beginning at P the image of
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P in AB, and a series of positive images at the same dis-

tance 2c apart, beginning at Pj, a point distant 2c from P.

Similarly to the left of CD we have an infinite series

of images with the charge — e at the distance 2c apart,

beginning at Q, the image ofP in CD, and an infinite series

of images each with the charge + e, at points at a distance

2c apart, beginning at Qi a point distant 2c from P.

Now invert this system with respect to P. The two

planes invert into two spheres touching each other at P,

and maintained at a potential — e/k, the images to the

right oi AB invert into a series of charged points inside

the sphere to the right of P, the images to the left of

CD invert into a system of charged points inside the

sphere to the left of P.

The system of charged points inside the spheres will

produce a constant potential — e/k over the surface of the

spheres, and therefore at a point outside the spheres the

electric field due to the two spheres in contact will be the

same as that due to the system of the electrified points.

If a, h are the radii of the spheres into which the

planes AB, CD invert, and if PF= d. Then

k^

, (k^ ¥

26 =—

3

'

c — d

Consider now the series of images to the right of AB.

The series of positive charges at the distance 2c apart

invert into a series of charges inside the sphere whose

radius is a, of magnitude

ek ek ek

2c' 4c' '^c
'" '
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since

charge on inverted system

charge on original system

k
~ distance of original system from centre of inversion

*

The series of negative images at the distance 2c apart

invert into a series of negative charges

eh ek ek

~2d' ~
2c + 2cZ ' ~4c + 2c?"*'

Similarly inside the sphere into which the plane GB
inverts we have a series of positive charges

ek ek ek

2^' 4^' Qc'"'

and a series of negative ones

ek ek ek
~ 1{c-dy ~'ic^^d' ~6c-2d'

"*

Thus ^1 the sum of the charges on the points inside

the first sphere is given by the equation

^-^^{(i^c+^c--

the charge E2 inside the second sphere is given by the

equation

+ :cAir. + -]\ (2).
,2c-2d 4c-2d

T. E. 12
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Rearranging the terms we may write

E--lek[^---^ ^ ^—- \'~
2 (d c{c-\-d) 2c{2c-^d) Sc(Sc + d) '"y

_1^JJ^ 1 1
I^'~ 2^" c jc-cZ"^2(2c-rf)'^3(3c-(^)"^-j

•

Expanding the expressions for E^ and E^ in powers

of djc we get

1 , /I d r, d' d'

^'=-I^K5-'^^^4^-^^-) (3)'

^ 1 , d f ci d CI d^ CI d^ n

2 c-\ c C c^

o 1 1 1 1
where ^n=j^+^+^n + ^i+"'

The values of 8n are given in De Morgan's Differential

and Integral Calculus, p. 554,

^2 = 1-645, S,= l'0S7,

^3 = 1-202, >Sf6= 1-017,

^4=1-082, Sj = 1-008.

Since E^^ can be got from E^ by writing c — dfovd we get

E., = -lek^-^{s, + '-^8. + ^^S....) (4).

Now the total charge spread over the surface of the

first sphere is equal to the sum of the charges on the

images inside the sphere as these produce the same effect

at external points as the electrification over the surface

of the sphere: thus Ej^ will be the charge on the first

sphere, E^ that on the second. If V is the potential of

the spheres
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Substituting for e, c, d their values in terms of V, a, b

we get from (1), (2), (3) and (4)

E,=:V (^+2^ +3^ +4^ + -)
A a b a b a b /

1 111
l^lv' + 2 + 3-^4 +

a b

(-5),

i\ b a b a b a /

-rT(i+i+l+i+-)t ^'^'

Let us now consider some special cases. The first case

we shall take is when a = b', then from equation (5)

= Va log 2,

the logarithm being the Napierian logarithm.

Since log 2 = -693

^, = •693 Fa;

the charge on the second sphere is also E^; thus the

charge on the two spheres is

1-386 Fa.

12-^2
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When V=l the charge on the two spheres is equal to

the capacity of the system; hence the capacity of two

equal spheres in contact is l'386a.

If the spheres had been a great distance apart the

capacity of the two would have been 2a; if there had

only been one sphere the capacity would have been a.

We can find from this the work done on an uncharged

sphere when it moves under the attraction of a charged

sphere of equal radius from an infinite distance into con-

tact with the charged sphere. Let a be the radius of the

spheres, e the charge on the charged sphere ; then when

the spheres are at an infinite distance apart the poten-

tial energy is e^/2a, when the spheres are in contact the

potential energy is e'^/2 x l"386a, hence the work done by

the electric field when the uncharged sphere falls from an

infinite distance into contact with the charged sphere is

2a\ 1-3^
, - 14

1-386J

If one sphere had a charge E, the other the charge e,

then when they are an infinite distance apart, the potential

energy is 2^{^' + ^')-

When the spheres are in contact the potential energy

Hence the potential energy is less in the second case

than the first by
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li F=e this is equal to

This is the work required to push the spheres together

against the repulsions exerted by their like charges.

The expression (9) vanishes when E/e is approximately

5 or 1/5; in this case the potential energy is the same

when the spheres are in contact as when they are an

infinite distance apart; thus no work is spent or gained

in bringing them together. The attraction due to the

induced electrification on the average balances the re-

pulsion due to the like charges.

The next case we shall consider is where one sphere is

very large compared with the other. Let h be very large

compared with a. Then by (8) we have approximately

or approximately,

^1 = -^^'.

= V

= 1-645

b ^'

~b 6

b

Interchanging a and b in (7) we get approximately
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or approximately

= 7(5-5
f)

= F(6-1.645f).

The mean surface density over the small sphere is

_Zl^==JLZ-^=X 1-645
47ra2 47r 6 6 4>7rb

The mean surface density over the large sphere is

approximately

E, ^1 V
47r62 47r h

'

hence the mean surface density on the small sphere is

TT^B or 1*645 times that on the large sphere. We saw in

Art. 97 that when a small hemisphere was placed on a

large sphere the mean density on the hemisphere was

1*5 times that on the sphere.

Since a plane may be regarded as a sphere of infinite

radius we see that if a sphere of any size is placed on a

conducting plane the mean surface density of the elec-

tricity on the sphere is ir^jQ of that on the plane.

We have

z=Vh\l + 2-404 y^ I approximately.

Thus the capacity of the system of two spheres is

approximately

6|l + 2-404p
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We have thus

Increase of capacity due to small sphere

Capacity of large sphere

— 9'/ia±
^^1^^® ^f small sphere"
volume of large sphere

*

Thus in this case as in that discussed in Art. 95 the

increase of capacity due to the small sphere is proportional

to the volume of the sphere.

From this result we can deduce the work done on a

small uncharged sphere of radius a when it moves from

an infinite distance up to a large sphere of radius b with

a charge E.

For the potential energy when they are at an infinite

distance apart is equal to

2 b
'

when the spheres are in contact the potential energy is

1 E^

2 , f. w
6|l + 2-404g|

The work done on the small sphere is the difference

between these expressions, or approximately,

En'202^.
b^



CHAPTER VL

MAGNETISM.

110. A MINERAL called ' lodestone ' or magnetic oxide

of iron, which is a compound of iron and oxygen, is often

found in a state in which it possesses the power of at-

tracting small pieces of iron such as iron filings ; if the

lodestone is dipped into a mass of iron filings and then

withdrawn, some of the iron filings will cling to the lode-

stone, collecting in tufts over its surface. The behaviour

of the lodestone is thus in some respects analogous to that

of the rubbed sealing-wax in the experiment described in

Art. 1. There are however many well-marked differences

between the two cases; thus the rubbed sealing-wax attracts

all light bodies indifferently, while the lodestone does not

show any appreciable attraction for anything except iron

and, to a much smaller extent, nickel and cobalt.

If a long steel needle is stroked with a piece of lode-

stone, it will acquire the power possessed by the lodestone

of attracting iron filings; in this case the iron filings will

congregate chiefly at two places, one at each end of the

needle, which are called the poles of the needle.

The piece of lodestone and the needle are said to be

magnetized ; the attraction of the iron filings is an example

of a large class of phenomena known as magnetic. Bodies

which exhibit the properties of the lodestone or the needle
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are called magnets, and the region around them is called

the magnetic field.

The property of the lodestone was known to the

ancients, and is frequently referred to by Pliny and

Lucretius. The science of Magnetism is indeed one of the

oldest of the sciences and attained considerable develop-

ment long before the closely allied science of Electricity

:

this was chiefly due to Gilbert of Colchester, who in his

work De Magnete published in 1600 laid down in an

admirable manner the cardinal principles of the science.

111. Forces between magnets. If we take a

needle which has been stroked by a lodestone and suspend

it by a thread attached to its centre it will set itself so as

to point in a direction which is not very far from north

and south. Let us call the end of the needle which

points to the north, the north end, that which points to

the south, the south end, and let us when the needle is

suspended mark the end which is to the north ; let us

take another needle, rub it with the lodestone, suspend it

by its centre and again mark the end which goes to the

north. Now bring the needles together; they will be

found to exert forces on each other, and the two ends

of a needle will be found to possess sharply contrasted

properties. Thus if we place the magnets so that the two

marked ends are close together while their unmarked ends

are at a much greater distance apart, the marked ends will

be repelled from each other ; again, if we place the magnets

so that the two unmarked ends are close together while

the marked ends are at a much greater distance apart,

the unmarked ends will be found to be repelled from

each other ; while if we place the two magnets so that the
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marked end of one is close to the unmarked end of the

other, while the other ends are much further apart, the

two ends which are near each other will be found to be

attracted towards each other. We see then that poles of

the same kind are repelled from each other, while poles

of opposite kinds are attracted towards each other. Thus

the two ends of a magnet possess properties analogous to

those shown by the two kinds of electricity.

112. We shall find it conduces to brevity in the

statement of the laws of magnetism to introduce the term

charge of magnetism, and to express the property possessed

by the ends of the needles in the preceding experiment

by saying that they are charged with magnetism, one end

of the needle being charged with positive magnetism, the

other end with negative. We regard the end of the needle

which points to the north as having a charge of positive

magnetism, the end which points to the south as having

a charge of negative magnetism. It will be seen from the

preceding experiment that two charges of magnetism are

repelled from or attracted towards each according as the

two charges are of the same or opposite signs. It must

be distinctly understood that this method of regarding

the magnets and the magnetic field is only introduced

as affording a convenient method of describing briefly

the phenomena in that field and not as having any

significance with respect to the constitution of magnets

or the mechanism by which the forces are produced : we

saw for example that the same terminology afforded a

convenient method of describing the electric field, though

we ascribe the action in that field to effects taking place

in the dielectric between the charged bodies rather than

in the charged bodies themselves.
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113. Unit Charge of Magnetism, often called pole

of unit strength. Take two very long, thin, uniformly

magnetized needles, equal to each other in every respect

(we can test the equality of their magnetic properties

by observing the forces they exert on a third magnet),

let A be one end of one of the magnets, B the like end

of the other magnet, place A and B at unit distance

apart in air, the other ends of the magnets being so far

away that they exert no appreciable effect in the region

about A and B : then each of the ends A and B is said

to have a unit charge of magnetism or to be a pole of

unit strength when A is repelled from B with the unit

force. If the units of length, mass and time are re-

spectively the centimetre, gramme and second the force

between the unit poles is one d3Tie.

A charge of magnetism equal to 2, or a pole of

strength 2, is one which would be repelled with the force

of two dynes from unit charge placed at unit distance

in air.

If m and mf are the charges on two ends of two

magnets (or the strengths of the two poles), the distance

between the charges being the unit distance, the repulsion

between the charges is mm' dynes. If the charges are of

opposite signs mm' is negative : we interpret a negative

repulsion to mean an attraction.

114. Coulomb by means of the torsion balance suc-

ceeded in proving that the repulsion between like charges

of magnetism varied inversely as the square of the dis-

tance between them. We shall discuss in Art. 131 a more
delicate and convenient method of proving this result.

Since the forces between charges of magnetism obey
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the same laws as those between electric charges we can

apply to the magnetic field the theorems which we proved

in Chap. ii. for the electric field.

115. The Magnetic Force at any point is the

force which would act on unit charge if placed at this

point, the introduction of this charge being supposed not

to influence the magnets in the field.

116. Magnetic Potential. The magnetic potential

at a point P is the work which would be done on unit

charge by the magnetic forces if it were taken from P to

an infinite distance. We can prove as in Art. 17 that the

magnetic potential due to a charge m at a distance r from

the charge is equal to mjr.

117. The total charge of Magnetism on any
magnet is zero. This is proved by the fact that if a

magnet is placed in a uniform field the resultant force upon

it vanishes. The earth itself is a magnet and produces

a magnetic field which may be regarded as uniform over

a space enclosed by the room in which the experiments

are made. To show the absence of any horizontal resultant

force on a magnet, we may mount the magnet on a piece

of wood and let this float on a basin of water, then though

the magnet will set so as to point in a definite direction,

there will be no tendency for the magnet to move towards

one side of the basin. There is a couple acting on the

magnet tending to twist it so that the magnet sets in

the direction of the magnetic force in the field, but there

is no resultant horizontal force on the magnet. The

absence of any vertical force is shown by the fact that

the process of magnetization has no influence upon the
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weight of a body. Either of these results shows that the

total charge on the body is zero. For let rrii, m^, m^ &c.

be the magnetic charges on the body, F the external

magnetic force, then the total force acting on the body

in the direction of F is

l^Fm.

This, since the field is uniform, is equal to FXm.

As this vanishes Sm = 0, i.e. the total charge on the

body is zero. Hence on any magnet the positive charge

is always equal to the negative one.

When considering electric phenomena we saw that it

was impossible to get a charge of positive electricity with-

out at the same time getting an equal charge of negative

electricity. It is also impossible to get a charge of posi-

tive magnetism without at the same time getting an

equal charge of negative magnetism ; but whereas in the

electrical case all the positive electricity might be on one

body and all the negative on another, in the magnetic

case if a charge of positive magnetism appears on a body

an equal charge of negative magnetism must appear on the

same body. This difference between the two cases would

disappear if we regarded the dielectric in the electrical

case as analogous to the magnets; the various charged

bodies in the electrical field being regarded as portions

of the surface of the dielectric.

118. Poles of a Magnet. In the case of very long

and thin uniformly magnetized pieces of iron and steel

we approximate to a state of things in which the magnetic

charges can be regarded as concentrated at the ends of

the magnet, which are then called its poles ; the positive
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magnetism being concentrated at the end which points to

the north, which is called the positive pole, the negative

charge at the other end, called the negative pole.

In general however the magnetic charges are not

localized to such an extent as in the previous case, they

exist more or less over the whole surface of the magnet

;

to meet these cases we require a more extended definition

of ' the pole of a magnet.'

Suppose the magnet placed in a uniform field, then

the forces acting on the positive charges will be a series

of parallel forces all acting in the same direction, these

by statics may be replaced by a single force acting at a

point P called the centre of parallel forces for this system

of forces. This point P is called the positive pole of

the magnet. Similarly the forces acting on the negative

charges may be replaced by a single force acting at a

point Q. This point Q is then called the negative pole

of the magnet. The resultant force acting at P is by

statics the same as if the whole positive charge were

concentrated at P; this resultant is equal and opposite

to that acting at Q.

119. Axis of a Magnet. The axis of a magnet is

the direction of the line joining its poles, the line being

drawn from the negative to the positive pole.

120. Magnetic Moment of a Magnet is the pro-

duct of the charge of positive magnetism multiplied by

the distance between the poles. It is thus equal to the

couple acting on the magnet when placed in a uniform

magnetic field where the intensity of the magnetic force

is unity, the axis of the magnet being at right angles to

the direction of the magnetic force in the uniform field.
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121. The Intensity of Magnetization is the mag-

netic moment of a magnet per unit volume. It is to be

regarded as having direction as well as magnitude, its

direction being that of the axis of the magnet.

122. Magnetic Potential due to a Small Mag-

net. Let A and B, Fig. 55, represent the poles of a

small magnet, m the charge of magnetism Sit B, —m that

Fig. 55.

at A. Let be the middle point of AB. Consider the

magnetic potential at P due to the magnet AB. The

772<

magnetic potential at P due to m at -S is ^p , that due

m
to — m at J. is — ^p , hence the magnetic potential at

P due to the magnet is

m m
WAP'

From A and B let fall perpendiculars AM and BN
on OP: since the angles BFO, APO are very small and

the angles at M and N are right angles, the angles
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PBN and PAM will be very nearly right angles, so that

approximately
BP = PN=PO-ON,

AP = PM=PO-^OM = PO-{- OK

Then BP AP PO-ON PO + ON
2m. ON

~0F- ON' '

and this, since ON is very small compared with OP, is

approximately equal to

2m. ON
OP'

mAB cos 6

OP' '

where 6 is the angle^POB.

If if ie3 the magnetic moment of the

M = mAB,
magnet

hence the potential due to the magnet is equal to

M cos 6

OP' '

123. Resolution of Small Magnets^

We shall first prove that the moment of a small

magnet may be resolved like a force, i.e. if the moment

of the magnet is M, and if a force M acting along the

axis of the magnet be resolved into forces mj, m^, m^, &c.

acting in directions OL^, OL^, OL^, &c., where is the

point midway between the poles, then the magnetic

action of the original magnet at a distant point is the

same as the combined effects of the magnets whose

moments are Mj, M^, M^, &c., and whose axes are along

OXi, OL^, 0L„ &c.
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Now suppose a force M in the direction AB is the

resultant of the forces M^, Mc^, M^ in the directions OB^,

0B„ OB,, &c., let 0B„ OB^, OB^ make angles 6^, 6,, 6,

with OP, then

if cos ^ = i/i cos ^1 + ifa cos 6>2 + ...
,

if cos _Mi cos 6i M2 cos 0^
and ~aP~"~aP~ OP'^

"^•••*

Now ifi cos Oi/OP^ is the magnetic potential at F due

to the magnet whose moment is ifi and whose axis is

along 0^1, M2 cos OJOP'^ is the potential due to the magnet

whose moment is M^ and whose axis is OB^, and so on

;

hence we see that the original magnet may be replaced

by a series of magnets, the original moment being the

resultant of the moments of the magnets by which it

is replaced. In other words, the moment of a small

magnet may be resolved like a force.

By the aid of this theorem the problem of finding

the force due to a small magnet at any point may be

reduced to that of finding the force due to a magnet

at a point on its axis produced, and at a point on a

Hue through its centre at right angles to its axis.

124. To find the magnetic force at a point on
the axis produced. Let AB, Fig. 56, be the magnet, P
the point at which the force is required. The magnetic

force at P due to the charge m at B is equal to

m
{OP-OBf

The magnetic force due to —mdXA is equal to

m
{OP-vOBf

T. E. 13
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The resultant magnetic force at P is equal to

m m 4>m.0B.0P
(OP - OBf (OP + OBf (OP" - OBJ

_ 4^mOB . OP
OP'

approximately, since OB is small compared with OP.

Fig. 56.

If M is the moment of the magnet M=27nOB, thus

the magnetic force at P is equal to

2M
OP''

The direction of this force is along OP.

125. To find the magnetic force at a point Q on
the line through O at right angles to AB. Since

Q is equidistant from A and B, Fig. 56, the forces due to

A and B are equal in magnitude ; the one being a
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repulsion, the other an attraction. The resultant of these

forces is equal to

2m 0B_ M
BQ' ' BQ'BQ^

_ M

since BQ is approximately equal to OQ.

The direction of this force is parallel to BA and at

right angles to OQ.

If Q, a point on the line through at right angles

to AB, is the same distance from as P, a point on AB
produced, we see from these results that the force at P is

twice that at Q. This is the foundation of Gauss's method

(see Art. 131) of proving that the force between two poles

varies inversely as the square of the distance between them.

126. Magnetic force due to a small magnet at

any point. Let AB, Fig. 57, represent the small magnet,

Fig. 57.

let M be its moment, its centre, P the point at which

the force is required, let OP make an angle 6 with AB,
the axis of the magnet. By Art. 123 the effect of M is

13—2
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equivalent to that of two magnets, one having its axis

along OP and its moment equal to ikf cos 0, the other

having its axis at right angles to OP and its moment
equal to M sin 6. Let OP = r.

The force at P due to the first is, by Art. 124, along

OP and equal to 2Mcosd/r^, the force at P due to the

second magnet is at right angles to OP and equal to

il/ sin O/r^, hence the force due to the magnet AB at P is

equivalent to the forces

2Mcos6 , ^ „^5— along OP,

and ——— at right angles to OP,

Let the resultant magnetic force at P make an angle

(f)
with OP, then

MsinO

tan 6 = rrrrP rr= i tan 0.^ 2M cos ^

Let the direction of the resultant force at P cut AB
produced in T, draw TN at right angles to OP, then

TN
tan^ = ^^,

and since tan </> = i tan 0, PN = 20K Thus ON = I OP.

Thus, to find the direction of the magnetic force at P,

trisect OP in N, draw NT at right angles to OP to cut

AB produced in T, then PT will be the direction of the

force at P.
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The magnitude of the resultant force is

— \/4cos2|9 + sin2^ = - Vl + 3 cos^^

;

for a given vahie of r it is greatest when ^ = or tt, i.e. at

a point along the axis, and least when S = 7r/2 or 37r/2,

i.e. at a point on the line at right angles to the axis.

The maximum value is twice the minimum one.

127. Couples on a Magnet in a Uniform Mag-
netic Field. If a magnet is placed in a uniform field

the couple acting on the magnet, and tending to twist

it about a line at right angles both to the axis of the

magnet and the force in the external field, is

where M is the moment of the magnet, H the force in

the uniform field, and 6 the angle between the axis of the

magnet and the direction of the force.

Let AB hQ the magnet, the negative pole being at A,

the positive one at B. Then if m is the strength of

the pole at B, the forces on the magnet are a force mH
at B in the direction of the external field and an equal

and opposite force at A. These two forces are equivalent

to a couple whose moment is HmNM where NM is the

distance between the lines of action of the two forces.

But NM=^ ABsmd, if 6 is the angle between AB and

H\ hence the couple on the magnet is

HmAB^me=HM^me.

128. Couples between two Small Magnets.

Let AB, CD, Fig. 58, represent the two magnets, ilf,

M' their moments; r the distance between their centres
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0, 0\ Let AB, CD make respectively the angles 6, 6'

with 0, 0'.

Fig. 58.

Consider first the couple on the magnet CD.

The magnetic forces due to AB are

^5— along 00 ,

if sin ^ X • 1 . 14. nn/——— at right angles to UU

.

These may be regarded as constant over the space

occupied by the small magnet CD,

The couple on CD tending to produce rotation in

the direction of the hands of a watch, due to the first

component is

2if cos e
, ilf'sin<9',

that due to the second is

if sin 6 ,,, ^,— if cos 6 \

hence the total couple on CD is

MM'
(2 cos 6 sin 6' + sin 6 cos 6').
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This vanishes if tan 0' = — ^ tan 6, i.e. if CD is along

the line offeree due to AB, see Art. 126.

We may show in a similar way that the couple on AB
due to CD tending to produce rotation in the direction of

the hands of a watch is

—3 (2 cos 6' sin 6 4- sin 6' cos 6).

If both these couples vanish, ^ = or tt, ^' = or tt,

or ^ = + — ,
0' = ±-^ , so that the axes of the magnets

must be parallel to each other, and either parallel or

perpendicular to the line joining the centres of the two

magnets.

We shall find it convenient to consider four special

positions of the two magnets as standard cases.

Case I.

m^ —
D

Fig. 59.

^ = 0, ^' = 0, couples vanish, equilibrium stable.

Case II.

n D

I /

o
Fig. 60.

77" *7r

^ = -
,

6' = -
, couples vanish, equilibrium unstable.
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Case III.

A ^ " "
'

'

' '

'
'

'

Fig. 61.

O

U=0, 6 =^ , couple on CD=—-—
, couple on ^5= -——

.

When the magnets are arranged as in this case, AB is

said to be 'end on' to CD, while CD is broadside on

to AB.

Case IV.

O D

Fig. 62.

TT

6=^ , 6 =0, couple on ClJ= , couple on AB= —

.

In this case ^5 is broadside on to CD. We see that

the couple exerted on CD by ^J5 is twice as great when
the latter is end on as when it is broadside on.

It will be noticed that the couples on ^B and CD
are not in general equal and opposite; at first sight it

might appear that this result would lead to the absurd

conclusion that if two magnets were firmly fastened to a

board, and the board floated on a vessel of water, the

board would be set in rotation and would spin round

with gradually increasing velocity. The paradox will

however be explained if we consider the forces exerted by

one magnet on the other.
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129. Forces between two Small Magnets. Let

AB, CD (Fig. 58) represent the two magnets, 0, 0' the

middle points of AB, CD respectively, 0, 6' the angles

which AB, CD respectively make with 00\ Let (/> be

the angle DOG', r= 00' :m, m' the strength of the poles

of AB and CD.

The force due to the magnet AB on the pole at D
consists of the component

^-^ cos (I9-0),

along OD, and

0^ sm (0-ct>)

at right angles to OD.

These are equivalent to a force equal to

2Mm' cos (6 — <^) cos Mm^ sin (6 — </>) sin <^

OD"
^ 05^ '

along 00' , and a force equal to

2Mm cos {6 — <j>) sin </> Mmf sin (6 — </>) cos </>

OD" OD' '

acting upwards at right angles to 00\

Neglecting squares and higher powers of CD/00' we

have

COS 9 = 1, sin9 = -^smcr

/^T^ l>^T-w /!/ 1 lo L/JJ ^,
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Substituting these values we see that the force exerted

hy AB on D is approximately equivalent to a component

2Mm'cose _ SMm' CD cos d cos 6' 3 ifm^ OD sin (9 sin ^^

7^ r^
"^2

r*
'

along 00\ and a component

Mm sine S Mm'CD sin 6 cos 6' S Mm'CD cos sin 6
"

^ +2 r*
"^2

r^
'

acting upwards at right angles to 00\

We may show in a similar way that the force exerted

by ^5 on C is equivalent to a component

2ifm^cos e SMm'CD cos 6 cos6' S Mm'CDsin $ sin 6'

^ ^ 2 r''
'

along 00', and a component

itfm' sin ^ S Mm' CD sine cos 6 ' S Mm' CD cos e sin e'

^3+2 r*
'^2'

r*'

acting upwards at right angles to 00'.

Hence the force on the magnet CD, which is the

resultant of the forces acting on the poles C, D, is equi-

valent to a component

-^^ (2 cos e cos e' - sin (9 sin (9'),

along OO'y and a component

~ (sin e cos e' + cos e sin e'),

acting upwards at right angles to 00'.

The force on the magnet AB is equal in magnitude

and opposite in direction to that on CD.
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If we consider the two magnets as forming one system,

the two forces at right angles to 00' are equivalent to a

couple whose moment is

——— (cos ^ sm ^ + sin Q cos Q),

this couple is equal in magnitude and opposite in direction

to the algebraical sum of the couples on the magnets AB,
CD found in Art. 128 : this result explains the paradox

alluded to at the end of that article.

130. Force between the Magnets in the four

standard positions. In the positions described in Art.

128, the forces between the magnets have the following

values.

Case I. Fig. (59).

^ = 0, 6' — 0. Force between magnets is an attraction

along the line joining their centres equal to

QMW
r"

*

Case II. Fig. (60).

— ^ ,
6' = -. Force is a repulsion along the line

joining the centres .equal to

Case III. Fig. (61).

^ = 0, ^' = o • Force is at right angles to the line

joining the centres and equal to
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Case IV. Fig. (62).

rrr

= ^ ,
6' = 0. Force is at right angles to the line

joining the centres and equal to

jA •

The forces between the magnets vary inversely as

the fourth power of the distance between their centres

while the couples vary inversely as only the cube of this

distance. The directive influence which the magnets

exert on each other thus diminishes less quickly with the

distance than the translatory forces, so that when the

magnets are far apart the directive influence is much the

more important of the two.

131. Gauss' proof that the force between two
magnetic poles varies inversely as the square of the

distance between them. We saw, Art. 128, that, the

distance between the magnets remaining the same, the

couple exerted by the first magnet on the second was

twice as great when the first magnet was 'end on' to

the second as wlien it was * broadside on.' This is equi-

valent to the result proved in Art. 126, that when P and

Q are two points at the same distance from the centre of

the magnet, P being on the axis of the magnet and Q
on the line through the centre at right angles to the axis,

the magnetic force at P is twice that at Q. This result

only holds when the force varies inversely as the square

of the distance ; we shall proceed to show that if the force

varied inversely as the pth power of the distance the

magnetic force at P would be p times that at Q.
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If the magnetic force varies inversely as the pth. power

of the distance, then if m is the strength of one of the

poles of the magnet, the magnetic force at P, Fig. 56, due

to the magnet AB is equal to

m m
^ m^ ~ AFP

ni m
~(OP-OB)P (OP+OBy

. _ 2mp . OB
<- r - Qpp+i > ,- p ^

approximately, if OB is very small compared with OP ; if

M is the moment of AB this is equal to

pM
Opf^i'

mi r ^ r\ ^'*' OB 771 OA
The force at Q =^^^ + -^^^

M
0PP+^' ^

approximately.

Thus the magnetic force at P is ^ times that at Q.

We see from this that if we have two small magnets the

couple on the second when the first magnet is ' end on ' to

it is p times the couple when the first magnet is * broadside

on.' Hence by comparing the value of the couples in

these positions we can determine the value of ^.

This can be done by an arrangement of the following

kind. Suspend the small magnet to be deflected so that it

can turn freely about a vertical axis : a convenient way of

doing this and one which enables the angular motion of

the magnet to be accurately determined, is to place the
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magnet at the back of a very light mirror and suspend the

mirror by a silk fibre. When the deflecting magnet is far

away the suspended magnet will under the influence of

the earth's magnetic field point magnetic north and south.

When this magnet is at rest bring the deflecting magnet

into the field and place it so that its centre is due east

or west of the centre of the deflected magnet, the axis of

the deflecting magnet passing through this centre. The

couple due to the deflecting magnet will make the sus-

pended magnet swing from the north and south position

until the couple with which the earth's magnetic force

tends to bring the magnet back to its original position

just balances the deflecting couple.

Let H be the magnetic force in the horizontal plane

due to the earth's magnetic field. Then when the deflected

magnet has twisted through an angle 6 the couple due to

the earth's magnetic field is, see Art. 127, equal to

HM' sin (9,

where M' is the moment of the deflected magnet.

The other magnet may be regarded as producing a

field such that the magnetic force at the centre of the

deflected magnet is east and west and equal to

Mp

where M is the moment of the deflecting magnet, r the

distance between the centres of the deflected and deflect-

ing magnets. Thus the couple on the deflected magnet

due to this magnet is

MMp cos 6
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The suspended magnet will take up the position in which

the two couples balance : when this is the case

t"^"^"^ w-

Now place the deflecting magnet so that its centre is

north or south of that of the suspended magnet, and at the

same distance from it as in the last experiment, the axis

of the deflecting magnet being again east and west. Let

the suspended magnet be in equilibrium when it has

twisted through an angle 6'. The couple due to the earth's

magnetic field is

HM' sin e\

The couple due to the deflecting magnet is

MM' cos d
'

Since the suspended magnet is in equilibrium these

couples must be equal, hence

MM' cos 6'

EM' sin 0'

M
hence tan6>'= ^=—-^ (2).

,f.p+i

Thus
tan^ _

Hence if we measure 6 and 6' we can determine p.

By experiments of this kind Gauss showed that p = 2, i.e.

that the force between two poles varies inversely as the

square of the distance between them.

If we place the deflecting magnet at different dis-

tances from the deflected we find that tan 6 and tan 6'

vary as l/?-^, and thus obtain another proof that p = 2.
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132. Determination of the Moment of a Small
Magnet and of the horizontal component of the

Earth's Magnetic force. Suspend a small auxiliary

magnet in the same way as the deflected magnet in the

experiment described in the last example and place the

magnet A whose moment is to be determined so that its

centre is due east or west of the centre of the auxiliary

magnet, the axis of the magnet A passing through the

centre of the suspended magnet. Let 6 be the deflection

of the suspended magnet, H the horizontal component of

the earth's magnetic force, M the moment of ^ : we have,

by Art. 131, equation (1), putting j9 = 2

M
jg
= ir^ tan 6;

hence if we measure r and we can determine M/H.

To determine MH suspend the magnet ^ by a vertical

axis, about which it can rotate freely, passing through its

centre, taking care that the magnetic axis of A is hori-

zontal. When the magnet makes an angle 6 with the

direction in which If acts, i.e. with the north and south

line, the couple tending to bring it back to its position of

equilibrium is equal to

MHsmd.

Hence if K is the moment of inertia of the magnet

about the vertical axis the equation of motion of the

magnet is

K'^i-MHsme = 0,

or if 6 is small

dt
K'^ + MHe^O,
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hence T, the time of a small oscillation, is given by

or MH=-^^,

hence if we know K and T we can determine MH
;

knowing MjH from the preceding experiment we can

find bothM and H. The value oiH at Cambridge is about
•18 c.G.S. units.

133. Magnetic Shell of Uniform Strength. A
magnetic shell is a thin sheet of magnetizable substance

magnetized at each point in the direction of the normal

to the shell at that point.

The strength of the shell at any point is the product

of the intensity of magnetization into the thickness of the

shell measured along the normal at that point, it is thus

equal to the magnetic moment of unit area of the shell at

the point.

To tind the potential of a shell of uniform strength.

Consider a small area a of the shell round the point Q,

Fig. (63), let / be the intensity of magnetization of the shell

Fig. 63.

at Q, t the thickness of the shell at the same point. The
moment of the small magnet whose area is a is IcLt, hence

if is the angle which the direction of magnetization

T. E. 14
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makes with PQ, the potential of the small magnet at P is

by Art. 122 equal to

lat cos 6

If (p is the strength of the magnetic shell

hence the potential at P is

</)« cos 6

This, by Art. 10, is numerically equal to the normal

induction over a due to a charge of electricity equal to ^
at P. Hence if <^ is constant over the shell the potential

of the whole shell at P is numerically equal to the total

normal electric induction over it due to a charge </> at P.

This by Art. 10 is equal to </>&), where co is the area

cut off from the surface of a sphere of unit radius with

its centre at P by lines drawn from P to the boundary of

the shell ; co is called the solid angle subtended by the

shell at P ; it only depends on the shape of the boundary

of the shell.

If the shell is closed, then if P is outside the shell the

potential at P is zero, since the total normal electric in-

duction over a closed surface due to a charge at a point

outside the surface is zero ; if the point P is inside the

surface and the negative side of the shell is on the outside,

then since the total normal electric induction over the

shell due to a charge at P is 4>7r(f), the magnetic poten-

tial at P is 47r(^ ; as this is constant throughout the shell,

the magnetic force vanishes inside the space bounded by

the shell.
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The signs to be ascribed to the solid angle bounded by

the shell at various points are determined in the following

way. Take a fixed point and with it as centre describe

a sphere of unit radius, and let P be a point at which the

magnetic potential of the shell is required. The contri-

bution to the magnetic potential of any small area round a

point Q on the shell, is the area cut off from the surface of

the sphere of unit radius by the radii drawn from parallel

to the radii drawn from P to the boundary of the area round

Q ; the area traced out by the lines from is to be taken as

positive or negative according as the lines drawn from P
to Q strike first against the positive or negative side of

the shell ; by the positive side of the shell we mean the

side charged with positive magnetism, by the negative

side the side charged with negative magnetism.

With this convention with regard to the signs of the

solid angle let us consider the relation between the poten-

tials due to a shell at two points P and P' ; P being close

V Fm. 64.

to the shell on the positive side, P' close to P but on

the negative side of the shell. Consider the areas

traced out on the unit sphere by radii from parallel to

those drawn from P and P'. The area corresponding to

those drawn from P will be the shaded part of the sphere,

let this area be co, the potential at P is </>a). The area

14—2
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corresponding to the radii drawn from P' will be the

unshaded portion of the sphere whose area is 47r — w, but

inasmuch as the radii from P' strike first against the

negative side of the shell the solid angle subtended at P'

will be minus this area, i.e. «— 47r; hence the magnetic

potential due to the shell at P' is </>(ft) — 47r). The

potential at P thus exceeds that at P' by 47r(/).

In spite of this finite increment in the potential in

passing from P' to the adjacent point P, there will be

continuity of potential in passing through the shell if we

regard the potential as given in the shell by the same

laws as outside.

Consider the potential at a point Q in the shell, and

divide the original shell into two, one on each side of Q.

Fig. 65.

Then as the whole shell is uniformly magnetized the

strength of the shells will be proportional to their thick-

nesses. Thus if </) is the strength of the original shell

PQ
the strengths of the shell between P and Q will be <^ ~L, ,

OP'
and that of the shell between Q and P' will be (^ p^, .

The potential at Q due to the shell next to P' is

OP QP
a)<l)^jp, that due to the shell next to P is («— 47r) <^ ^p,

,
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the potential at Q is the sum of these, ie.

(o<p - 47r0 pp,

;

this changes continuously as we pass through the shell from

^ (ft) - 47r) at P',

to (fxa at P.

134. Mutual Potential Energy of the Shell and
an external Magnetic System. Let / be the intensity

of magnetization at a point Q on the shell ; consider a

small portion of the shell round Q, a being the area of

this portion. Let P, P' be two points on its axis of mag-

netization, P being on the positive surface of the shell, P'

on the negative. Then we have a charge of positive

magnetism equal to la at P, a negative charge — la at P'.

If Vp, Vp' are the potentials at P and P' respectively

due to the external magnetic system, then the mutual

potential energy of the external system and the small

magnet at Q is equal to

Vpla-Vpla (1).

If </) is the strength of the shell

</) = / X PP\

hence the expression (1) is equal to

<j>{Vp-Vp)oi

PP'

But {Vp — Vp')IPP' is the magnetic force due to the

external system along PP\ the normal to the shell. Let

this force be denoted by —Hn, the force being taken as

positive when it is in the direction of magnetization of

the shell, i.e. when the magnetic force passes from the
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negative to the positive side through the shell, then the

mutual potential energy of the external system and the

small magnet at Q is equal to

Since the strength of the shell is uniform the mutual

potential energy of the external system and the whole

shell is equal to

%HnOL being the sum of the products got by dividing the

surface of the shell up into small areas, and multiplying

each area by the component along its normal of the

magnetic force due to the external system, this com-

ponent being positive when it is in the direction of mag-

netization of the shell. This quantity is often called the

number of lines of magnetic force due to the external

system which pass through the shell.

It is analogous to the total normal electric induction

over a surface in Electrostatics, see Art. 9.

135. Force acting on the shell when placed in

a magnetic field. If X is the force acting on the shell

in the direction x, and if the shell is displaced in this

direction through a distance hx, then Xhx is the work

done on the shell by the magnetic forces during the dis-

placement
; hence by the principle of the Conservation

of Energy, Xhx must equal the diminution in the energy

due to the displacement. Suppose that J., Fig. Q^, repre-

sents the position of the edge of the shell before, B its

position after the displacement. The diminution in the

energy due to the displacement is, by the last paragraph,

equal to

<t>{N'-N) (1),
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whereN and N' are the numbers of lines of magnetic force

Fig. 66.

which pass through A and B respectively. Consider

the closed surface having the shell in its two positions

A and B as ends, the sides of the surface being formed

by the lines PP' &c. which join the original position P
of a point to its displaced position. We see, as in Art. 10,

that unless the closed surface contains an excess of mag-

netism of one sign Sjff^a taken over its surface must

vanish, Hn denoting the magnetic force along the normal

to the surface drawn outwards.

But SiT^a over the whole surface

= N' —N+ %Hna taken over the sides,

hence W-]^=-XH,,a (2);

the right-hand side of this equation being taken over

the sides. Consider a portion of the sides bounded by
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PQ, P'Q'\ P'
> Q being the displaced positions of P and Q

respectively. Since

the area PQP'Q is equal to

hx X PQ X sin 6,

where is the angle between PQ and PP. If H is

the magnetic force at P due to the external system, the

value of HnOL for the element PQQ'P' is equal to

Zx X PQ xsm6 X H cos %,

where x is the angle which the outward-drawn normal to

PQQ'P' makes with H. Hence since X8x = (i>{N'-N) we

have by equation (2)

Xhx = — (^ [thx X PQ X sin 6 xHcos x},

or since Bx is the same for all points on the shell

X=-<l)X{PQx sin e X Hcos x}-

Thus the force on the shell parallel to x is the same

as it would be if a force parallel to x acted on the

boundary of the shell, equal per unit length to

— (f)H sin 6 cos x-

Since x is arbitrary this gives the force acting on each

element of the boundary in any direction ; to find the

resultant force, we notice that the component along x

vanishes if x is parallel to PQ, for in this case 6 = 0,

the resultant force is thus at right angles to the element

of the boundary. Again, if x is parallel to //, x — W^j
and the force again vanishes, thus the resultant force is

at right angles to H. Hence the resultant force on PQ
is at right angles both to PQ and H. In order

to find the magnitude of this force we have only to
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suppose that x is parallel to this normal, in this case

Q = 7r/2 and % = ^ ~ '*/^' where yjr is the angle between

PQ and H ; the resultant force is therefore

— <f)H sin yjr.

Thus the force on the shell may be regarded as equiva-

lent to a system of forces acting over the edge of the shell,

the force acting on each element of the edge being at

right angles to the element and to the external magnetic

force at the element, and equal per unit length to the

product of the strength of the shell into the component

of the magnetic force at right angles to the element of

the edge.

The preceding rule gives the line along which the

force acts ; the direction of the force is, in any particular

case, most easily got from the principle that since the

mutual potential energy of the shell and the external

magnetic system is equal to — (f>N, whereN is the number

of lines of magnetic force due to the external system

which pass through the shell in the direction in which

it is magnetized, i.e. which enter the shell on the side

with the negative magnetic charge and leave it on the

side with the positive charge : the shell will tend to move

so as to make N as large as possible, for by so doing

it makes the potential energy as small as possible. The

force on each element of the boundary will therefore be

in such a direction as to tend to move the element of

the boundary so as to enclose a greater number of lines

of magnetic force passing through the shell in the positive

direction.

Thus if the direction of the magnetic force at the
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element PQ is in the direction FT in Fig. 67, the force

+

Fig. 67.

on PQ will be outwards along PS as in the figure, for

if PQ were to move in this direction the shell would

catch more lines of force passing through it in the positive

direction.

Since X8x = <l>{N'-N)

^ ,dN
we get ^=*d.-

This expression is often very useful for finding the

total force on the shell in any direction.

136. Magnetic force due to the shell. Suppose

that the external field is that due to a single unit pole

at a point A, the result of the preceding article will give

the force on the shell due to the pole, this must how-

ever be equal and opposite to the force exerted by the

shell on the pole. If however the field is due to a unit

pole dX A, H the magnetic force due to the external

system at an element PQ of the shell is equal to l/AP^

and acts along AP: hence by the last article the mag-

netic force at A due to the shell is the same as if we

supposed each unit of length of the boundary of the shell

to exert a force equal to
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where 6 is the angle between AP and the tangent to

the boundary at P, </> is the strength of the shell. This

force acts along the line which is at right angles both

to AP and the tangent to the boundary at P. The

direction in which the force acts along this line may
be found by the rule that it is opposite to the force acting

on the element of the boundary at P arising from unit

magnetic pole at A, this latter force may be found by the

method given at the end of the preceding article.

137. If the external magnetic field in Art. 135 were

due to a second magnetic shell, then the mutual potential

energy of the two shells is equal to

where
(f>

is the strength of the first shell, and N the

number of lines of force which pass through the first

shell, and are produced by the second. It is also equal to

where </>' is the strength of the second shell, and N' the

number of lines of force which pass through the second

shell and are produced by the first. Hence by making

<f>
= (j> we see that, if we have two shells a and y8 of

equal strengths, the number of lines of force which pass

through a and are due to /3 is equal to the number of

lines of force which pass through yS and are due to a.

138. Magnetic Field due to a uniformly mag-
netized sphere. Let the sphere be magnetized parallel

to X, and let / be the intensity of magnetization. We
may regard the sphere as made up, as in Fig. 68, of a

great number of uniformly magnetized bar magnets of

uniform cross section a, the axes of these magnets being
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parallel to the axis of x. On the ends of each of these

magnets we have charges of magnetism equal to + Iol.

Now consider a sphere whose radius is equal to that of

the magnetized sphere and built up of bars in the same

way, each of these bars being however wholly filled with

positive magnetism whose volume density is p : consider

also another equal sphere divided up into bars in the

same way, each of these bars being however filled with

negative magnetism whose volume density is — p ; suppose

n:

Fig. 68.

that these spheres have their centres at 0' and 0, Fig. 69,

two points very close together, 00' being parallel to the

axis of X. Consider now the result of superposing these

two spheres : take two corresponding bars ; the parts of

the bars which coincide will neutralize each other's effects,

but the negative bar will project a distance 00' to the

left, and on this part of the bar there will be a charge of

negative magnetism equal to 00' x a x p : the positive bar

will project a distance 00' to the right, and on this part

of the bar there will be a charge of positive magnetism
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equal to 00' x a x p. If 00' is very small we may regard

these charges as concentrated at the ends of the bars, so

that if 00' X p = I the case will coincide with that of the

uniformly magnetized sphere.

We can easily find the effects of the positive and

negative spheres at any point either inside or outside.

Let us first consider the effect at an external point P.

The potential due to the positive sphere is equal to

4 Tra^p

3 or"
if a is the radius of the sphere.

The potential due to the negative sphere is equal to

4 Tra^p
" 3 ~0F

'

Fig. 69.

Hence the potential due to the combination of the

spheres is equal to

4
Tray

4

\0T of]
00' COS d

OF'

approximately, if 00' is very small, and is the angle

which OF makes with 00'.
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Now we have seen that this case coincides with that

of the uniformly magnetized sphere if /? x 00' = 1, where

/ is the intensity of magnetization of the sphere ; hence

the potential due to the uniformly magnetized sphere

at an external point P is

4 ^ J.
cos 6

where r = OP.

Comparing this result with that given in Art. 122 we
see that the uniformly magnetized sphere produces the

same effect as a very small magnet placed at the centre

of the sphere, the axis of the small magnet being parallel

to the direction of magnetization of the sphere, while

the moment of the magnet is equal to the intensity of

magnetization multiplied by the volume of the sphere.

The magnetic force inside the sphere is indefinite

without further definition, since to measure the force on

the unit pole, we have to make a cavity to receive the

pole and the force on the pole depends on the shape of

the cavity so made : this point is discussed at length in

Chapter viii.

For the sake of completing the solution of this case,

we shall anticipate the results of that chapter and assume

that the quantity which is defined as ' the magnetic force
*

inside the sphere is the force which would be exerted on

the unit pole if the sphere were regarded as a spherical

air cavity in a magnet, the surface of the cavity having

spread over it the same distribution of magnetic charge

as actually exists over the surface of the magnetized

sphere. We may thus in calculating the effect of the
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charges on the surface suppose that they exert the same

magnetic forces as they would in air.

To find the magnetic force at an internal point Q,

Fig. 69, we return to the case of the two uniformly charged

spheres.

The force due to the uniformly positively charged

sphere at Q is equal to

|tp . O'Q,

and acts along O'Q ; the force due to the negative sphere is

equal to

i^p.OQ,

and acts along QO.

Fig. 70.
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By the triangle of forces the resultant of the forces

exerted by the positive and negative sphere is equal to

i^rp . 00',

and acts along 00'. We have seen that the case of the

positive and negative spheres coincides with that of the

uniformly magnetized sphere if 00' x p = I. Hence the

force inside the uniformly magnetized sphere is uniform

and parallel to the direction of magnetization of the sphere

and equal to

|,r/.

The lines of force inside and outside the sphere are

given in Fig. 70.



CHAPTER VII.

Terrestrial Magnetism.

139. The pointing of the compass in a definite direc-

tion was at first ascribed to the special attraction for iron

possessed by the pole star. Gilbert, however, in his work

De Magnete, published in 1600, pointed out that it showed

that the earth was itself a magnet. Since Gilbert's time

the study of Terrestrial Magnetism, i.e. the state of the

earth's magnetic field, has received a great deal of attention

and forms one of the most important, and undoubtedly

one of the most mysterious departments of Physical

Science.

140. To fix the state of the earth's magnetic field

we require to know the magnetic force over the whole

of the surface of the earth ; the observations made at a

number of magnetic observatories, scattered unfortunately

somewhat irregularly at very wide intervals over the earth,

give us an approximation to this.

To determine the magnitude and direction of the

earth's magnetic force we require to know three things

:

the three usually taken are (1) the magnitude of the

horizontal component of the earth's magnetic force, usually

called the earth's horizontal force
; (2) the angle which

the direction of the horizontal force makes with the

geographical meridian, this angle is called the declination,

T. e. 15
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the vertical plane through the direction of the earth's

horizontal force is called the magnetic meridian
; (3) the

dip, that is the complement of the angle which a magnet,

when suspended so as to be able to turn freely about an

axis through its centre of gravity at right angles to the

magnetic meridian, makes with the vertical. The fact that

a compass needle when free to turn about a horizontal

axis would not settle in a horizontal position, but 'dipped/

so that the north end pointed downwards, was discovered

by Norman in 1576.

For a full description of the methods and precautions

which must be taken to determine accurately the values

of the magnetic elements the student is referred to the

article on Terrestrial Magnetism in the Encyclopcedia

Britannica : we shall in what follows merely give a general

account of these methods without entering into the details

which must be attended to if the most accurate results are

to be obtained.

The method of determining the horizontal force has

been described in Art. 132.

141. Declination. To determine the declination an

instrument called a declinometer may be employed ; this

instrument is represented in Fig. 71. The magnet

—

which is a hollow tube with a piece of plane glass with a

scale engraved on it at the north end and a lens at the

south end—is suspended by a single long silk thread from

which the torsion has been removed by suspending from

it a plummet of the same weight as the magnet: the

suspension and the reading telescope can rotate about a

vertical axis and the azimuth of the system determined

by means of a scale engraved on the fixed horizontal base.
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The observer looks through the telescope and observes the

division on the scale at the end of the magnet with which

a cross wire in the telescope coincides; the magnet is

then turned upside down and resuspended and the division

of the scale with which the cross wire coincides again

noted ; this is done to correct for the error that would

*

Fig. 71.

otherwise ensue if the magnetic axis of the cylinder did

not coincide with the geometrical axis. The mean of the

readings gives the position of the magnetic axis. If now

we take the reading on the graduated circle and add to

this the known value in terms of the graduations on this

circle of the scale divisions seen through the telescope, we

shall find the circle reading which corresponds to the

magnetic meridian. Now remove the magnet and turn

the telescope round until some distant object, whose

15—2
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azimuth is known, is in the field of view ; take the reading

on the graduated circle, the difference between this and

the previous reading will give us the angular distance of

the magnetic meridian from a plane whose azimuth is

known : in other words, it gives us the magnetic declina-

tion.

142. Dip. The dip is determined by means of an

instrument called the dip-circle, represented in Fig. 72. It

Fig. 72.

consists of a thin magnet with an axle of hard steel whose

axis is at right angles to the plane of the magnet, and

ought to pass through the centre of gravity of the needle

;

this axle rests in a horizontal position on two agate
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edges, and the angle the needle makes with the vertical

is read off by means of the vertical circle. The needle

and the vertical circle can turn about a vertical axis.

To set the plane of motion of the needle in the magnetic

meridian, the plane of the needle is turned about the

vertical axis until the magnet stands exactly vertical

;

when in this position the plane of the needle must be

at right angles to the magnetic meridian. The instrument

is then twisted through 90° (measured on the horizontal

circle) and the magnet is then in the magnetic meridian

;

the angle it makes with the horizontal in this position is

the dip. To avoid the error arising from the axle of the

needle not being coincident with the centre of the vertical

circle the positions of the two ends of the needle are read

;

to avoid the error due to the magnetic axis not being

coincident with the line joining the ends of the needle,

the needle is reversed so that the face which originally

was to the east is now to the west and a fresh set of

readings taken ; and to avoid the errors which would arise

if the centre of gravity were not on the axle the needle

is remagnetized so that the end which was previously

north is now south and a fresh set of readings is taken.

The mean of these readings gives the dip.

143. We can embody in the form of charts the deter-

minations of these elements made at the various magnetic

observatories : thus, for example, we can draw a series of

lines over the map of the world such that all points on one

of these lines have the same declination, these are called

isogonic lines : we may also draw another set of lines so

that all the places on a line have the same dip, these are

called isoclinic lines. The lines however which give the
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best general idea of the distribution of magnetic force over

the earth's surface are the lines of horizontal magnetic
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East VariatiiiQ

Fig. 73.

West Variation

Fig. 74.



144] TERRESTRIAL MAGNETISM. 231

force on the earth's surface, i.e. the lines which would be

traced out by a traveller starting from any point and
always travelling in the direction in which the compass

pointed ; they were first used by Duperrey in 1836.

The isoclinic lines, the isogenic lines and Duperrey's

lines for the Northern and Southern Hemispheres for 1876

are shown in Figs. 73, 74, 75, and 76 respectively.

144. The points to which Duperrey's lines of force

converge are called 'poles,' they are places where the

horizontal force vanishes, that is where the needle if freely

suspended would place itself in a vertical position.

¥ia. 11

Gauss by a very thorough and laborious reduction of

magnetic observations gave as the position in 1836, of

the pole in the Northern Hemisphere, latitude 70° 35',
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longitude 262'^ 1' E., and of the pole in the Southern

Hemisphere, latitude 78° 35', longitude 150^0' E. The

poles are thus not nearly at opposite ends of a diameter

of the earth.

145. An approximation, though only a very rough one,

to the state of the earth's magnetic sphere, may be got by

regarding the earth as a uniformly magnetized sphere.

On this supposition we should have by Art. 138 that

if 6 is the dip at any place, i.e. the complement of the

angle between the magnetic force and the line joining the

place to the centre of the earth, I the magnetic latitude,

i.e. the complement of the angle this line makes with the

direction of magnetization of the sphere,

tan 6=2 tan I,

while the resultant magnetic force would vary as

{l + 3sin^Z}l
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These are only very rough approximations to the truth

but are sometimes useful when more accurate knowledge

of the magnetic elements is not available.

146. Variations in the Magnetic Elements.

During the time within which observations of the magne-

tic elements have been carried on the declination at London

has changed from pointing 11" 15' to the East of North

as it did in 1580 to 24° 38' 25" to the West of North as

it did in 1818. It is now going back again to the East,

but still points between 17° and 18° to the West. The

variations in the declination and dip in London are shown

in the following table.

Date Declination Dip

1576 71° 50'

1580 iri5'E.

1600 72° 0'

1622 6° O'E.

1634 4° 6'E.

1657 0° O'E.

1665 r22'W.
1672 2°30'W.
1676 73° 30'

1692 6° 30' W.
1723 14°17'W. 74° 42'

1748 17°40'W.

1773 21° 9'W. 72° 19'

1787 23°19'W. 72° 8'

1795 23° 57' W.
1802 24° 6'W. 70° 36'

1820 24° 34' 30" W. 70° 3'

1830 24° 69° 38'
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Date Declination Dip

1838 69° 17'

1860 21° 39' 51" 68°19'-29

1870 20° 18' 52" 67° 57'-98

1880 18° 57' 59"

1893 17° 27' 67° 30'

This slow change in the magnetic elements is often

called the secular variation. The points of zero declina-

tion seem to travel westward.

147. Besides these slow changes in the earth's mag-

netic force, there are other changes which take place with

much greater rapidity.

Diurnal Variation. A freely suspended magnetic

needle does not point continually in one direction during

the whole of the day. In England in the night from

about 7 p.m. to 10 a.m. it points to the East of magnetic

North and South (i.e. to the East of the mean position of

the needle), and during the day from 10 a.m. to 7 p.m. to

the West of magnetic North and South. It reaches the

westerly limit about 2 in the afternoon, its easterly one

about 8 in the morning, the arc travelled over by the

compass being about 10 minutes. This arc varies however

with the time of the year, being greatest at midsummer
and least at midwinter.

The diurnal variation changes very much from one

place to another, it is exceedingly small at Trevandrum,

a place near the equator.

In the Southern Hemisphere the diurnal variation is

of the opposite kind to that in the Northern, i.e. the

easterly limit in the Southern Hemisphere is reached in

the afternoon, the westerly in the morning.
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In the following diagram, due to Prof. Lloyd, the

radius vector represents the disturbing force acting on

the magnet at different times of the day in Dublin, the
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forces at any hour are the average of those at that hour

for the year. The curve would be different for different

seasons of the year.

There is also a diurnal variation in the vertical com-

ponent of the earth's magnetic force. In England the

vertical force is least between 10 and 11 a.m., greatest at

about 6 p.m.

The extent of the diurnal variation depends upon the

condition of the sun's surface, being greater when there are

many sun spots. As the state of the sun with regard to
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sun spots is periodic, going through a cycle in about

eleven years, there is an eleven-yearly period in the mag-

nitude of the diurnal variation.

148. Effect of the Moon. The magnetic declina-

tion shows a variation depending on the position of the

moon with respect to the meridian, the nature of this

variation varies very much in different localities.

149. Magnetic Disturbances. In addition to the

periodic and regular disturbances previously described,

rapid and irregular changes in the earth's magnetic field,

called magnetic storms, frequently take place ; these often

occur simultaneously over a large portion of the earth's

surface.

Aurorge are mostly accompanied by magnetic storms,

and there is very strong evidence that a magnetic storm

accompanies the sudden formation of a sun spot.

150. Very important evidence as to the locality of the

origin of the earth's magnetic field, or of its variations, is

afforded by a method due to Gauss which enables us to

determine whether the earth's magnetic field arises from a

magnetic system above or below the surface of the earth.

The complete discussion of this method requires the use of

Spherical Harmonic Analyses. The principle underlying

it however can be illustrated by considering a simple case,

that of a uniformly magnetized sphere.

Let PQ be two points on a spherical surface con-

centric with the sphere, then by observation of the hori-

zontal force at a series of stations between P and Q, we can

determine the difference between the magnetic potential

at P and Q. If Up and Hq are the magnetic potentials
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at P and Q respectively these observations will give us

Up - IIq. By Art. 138 if 0, , 6., are the angles OP and OQ
make with the direction of magnetization of the sphere

M
flp — Hq = — (cos 6i — cos 62) (1 ),

where M is the magnetic moment of the sphere and

r^OP^OQ,
where is the centre of the sphere.

If Zp, Zq are the vertical components of the earth's

magnetic force, i.e. the forces in the direction OP, and

OQ respectively, then

„ 2if
COS^i

.(2).

Zp and Zq can of course be determined by observations

made at P and Q. By equations (1) and (2), we have

np-nQ = i{Zp^ZQ)r (3),

hence if the field over the surface of the sphere through

P and Q were due to an internal uniformly magnetized

sphere, the relation (3) would exist between the horizontal

and vertical components of the earth's magnetic force.

Now suppose that P and Q are points inside a uniformly

magnetized sphere, the force inside the sphere is uniform

and parallel to the direction of magnetization, let H be

the value of this force, then in this case

Up - Hq = Hr (cos 62 — cos ^1),

Z[. =H cose,,

Zq =H cos O2,
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hence in this case

np-nQ = -r(Zp-z^) (4).

Thus if the magnetic system were above the places at

which the elements of the magnetic field were determined,

the relation (4) would exist between the horizontal and

vertical components of the earth's magnetic force. Con-

versely if we found that relation (3) existed between these

components we should conclude that the magnets pro-

ducing the field were below the surface of the earth, while

if relation (4) existed we should conclude the magnets

were above the surface of the earth; if neither of these

relations was true we should conclude that the magnets

were partly above and partly below the surface of the

earth.

Gauss showed that no appreciable part of the mean
values of the magnetic elements was due to causes above

the surface of the earth. Schuster has however recently

shown by the application of the same method that the

diurnal variation must be largely due to such causes.

Balfour Stewart had previously suggested as the probable

causes of this variation the magnetic action of electric

currents flowing through rarified air in the upper regions

of the earth's atmosphere.



CHAPTER VIII.

Magnetic Induction.

151. When a piece of unmagnetized iron is placed in

a magnetic field it becomes a magnet, and is able to

attract iron filings ; it is then said to be magnetized by

induction. Thus if a piece of soft iron (a common nail for

example) is placed against a magnet it becomes magnet-

ized by induction and is able to support another nail,

while this nail can support another one, and so on until a

long string of nails may be supported by the magnet.

If the positive pole of a bar magnet be brought near

to one end of a piece of soft iron, that end will become

charged with negative magnetism, while the remote end of

the piece of iron will be charged with positive magnetism.

Thus the opposite poles of these two magnets are nearest

each other, and there will therefore be an attraction

between them, so that the piece of iron, if free to move, will

move towards the inducing magnet, i.e. it will move from

the weak to the strong parts of the magnetic field due to

this magnet. If, instead of iron, pieces of nickel or cobalt

are used they will tend to move in the same way as the

iron, though not to so great an extent. If however we use

bismuth instead of iron we shall find that the bismuth

is repelled from the magnet, instead of being attracted

towards it, the bismuth tending to move from the strong
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to the weak parts of the field; the effect is however

very small compared with that exhibited by iron ; and to

make the repulsion evident it is necessary to use a strong

electromagnet. When the positive pole of a magnet is

brought near a bar of bismuth the end of the bar next

the positive pole becomes itself a positive pole, while the

further end of the bar becomes a negative pole.

Substances which behave like iron, i.e. which move

from the weak to the strong parts of the magnetic field,

are called paramagnetic substances, while those which

behave like bismuth and tend to move from the strong

to the weak parts of the field are called diamagnetic

substances.

When tested in very strong fields all substances are

found to be para- or dia-magnetic to some degree, though

the extent to which iron transcends all other substances

is very remarkable.

152. Magnetic Force and Magnetic Induction.

The magnetic force at any point in air is defined to be

the force on unit pole placed at that point, or—what is

equivalent to this—the couple on a magnet of unit

moment placed with its axis at right angles to the

magnetic force. When however we wish to measure the

magnetic force inside a magnetizable substance we have

to make a cavity in the substance in which to place the

magnet used in measuring the force. The walls of the

cavity will however become magnetized by induction, and

this magnetization will affect the force inside the cavity.

The magnetic force thus depends upon the shape of the

cavity, and this shape must be specified if the expression

magnetic force is to have a definite meaning.



152] MAGNETIC INDUCTION. 241

Let P be a point in a piece of iron or other magnet-

izable substance, and let us form about P a cylindrical

cavity, the axis of the cylinder being parallel to the

direction of magnetization at P. Let us first take the case

when the cylinder is a very long and narrow one. Then
in consequence of the magnetization at P, there will be

a distribution of positive magnetism over one end of the

cylinder, and a distribution of negative magnetism over

the other. Let / be the intensity of the magnetization

at P, reckoned positive when the axis of the magnet is

drawn from left to right, then when the cylindrical cavity

has been formed round P there will be, if a is the cross

section of the cavity, a charge la of magnetism on the

end to the left, and a charge — la on the end to the right.

If 21, the length of the cylinder, is very great compared

with the diameter, then the force on unit pole at the

middle of the cylinder due to the magnetism at the ends

of the cylinder will be 2Ia/l^ and will be indefinitely

small if the breadth of the cylinder is indefinitely small

compared with its length. In this case the force on unit

pole in the cavity is independent of the intensity of

magnetization at P. The force in this cavity is defined

to be * the magnetic force at P' Let us denote it by H.

Let us now take another co-axial cylindrical cavity,

but in this case make the length of the cylinder very

small compared with its diameter so that the shape of

the cavity is that of a narrow crevasse. On the left end

of this crevasse there is a charge of magnetism of surface

density /, and on the right end of the crevasse, a charge

of magnetism of surface density — /. If a unit pole be

placed inside the crevasse the force on it due to this

distribution of magnetism will be the same as the force

T. E. 16
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on unit charge of electricity placed between two infinite

plates charged with electricity of surface density + / and

— I respectively, i.e. by Art. 14, the force on the unit

pole in this case will be 47r/. Thus in a crevasse the

total force on the unit pole at P, will be the resultant of

the magnetic force at P and a magnetic force 47r/ in the

direction of the magnetization at P. The force on the

unit pole in the crevasse is defined to be the ' magnetic

induction' at P, we shall denote it by B. If we had taken

a cavity of any other shape the force due to the magneti-

zation at P would have been intermediate in value be-

tween zero for the long cylinder and 47r/ for the crevasse

;

thus if the cavity had been spherical the force due to the

magnetization would (Art. 138) have been 47r//3.

The m^neiic intiuction is not necessarily in the same

direction as the magnetic force, it will only be so when

the magnetization at P is parallel to the magnetic force.

153. Tubes of Magnetic Induction. A curve

drawn such that its tangent at any point is parallel to

the magnetic induction at that point is called a line

of magnetic induction : in non-magnetizable substances

the lines of magnetic induction coincide with the lines

of magnetic force. We can also draw tubes of magnetic

induction just as we draw tubes of magnetic force.

We shall choose the unit tube so that the magnetic

induction at any place whether in the air or iron is equal

to the number of tubes of induction which cross a unit

area at right angles to the induction.

Let us consider the case of a small bar magnet, the

magnetism being yjjjj;gj^ at its ends. Suppose A and B
are the ends of the magnet, A being the negative, B the
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positive end, then in the air the lines of magnetic in-

duction coincide with those of magnetic force and go

A CD B

Fia. 78.

from B to A. To find the lines of magnetic induction

at a point P inside the magnet, imagine the magnet cut

by a plane at right angles to the axis and the two portions

separated by a short distance, the lines of magnetic force

in this short air space will be the lines of magnetic in-

duction in the section through P. If the magnet is cut

as in the figure then the end G will be a positive pole of

the same strength as A, the end D a negative pole of the

same strength as B. Thus through the short air space

between G and D tubes of induction will pass running in

the direction AB. Draw a closed surface passing through

the gap between G and D and enclosing AG or DB, The

magnetic force at any point on this surface is equal to the

magnetic induction at the same point due to the undivided

magnet. Since this surface encloses as much positive as

negative magnetism, we see as in Art. 10 that the total

magnetic force over its surface vanishes. Hence we see

that the tubes of induction inside the magnet are equal

in number at each cross-section and this number is the

16—2
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same as the number of those which leave the pole B and

enter A. In fact the lines of magnetic induction due

to the magnet form a series of closed curves all passing

through the magnet and then spreading out in the air,

the lines running from 5 to J. in the air and from A to B
in the magnet.

Thus w^e may regard any small magnet, whose in-

tensity is / and area of cross-section a. as the origin of

a bundle of closed tubes of induction, the number of

tubes being 47r/a ; every tube in this bundle passes

through the magnet; running through the magnet in

the direction of the magnetization.

It is instructive to compare the differences between

the properties of the tubes of electric polarization in

electrostatics and those of magnetic induction in mag-

netism : the most striking difference is that whereas in

electrostatics the tubes are not closed but begin at posi-

tive electrification and end on negative, in magnetism the

tubes of induction always form closed curves and have

neither beginning nor end.

A surface charged with electricity of surface density a

is the origin of <t tubes of electric polarization per unit

area. A small magnet whose intensity of magnetization

is / is the origin of ^ttI tubes of magnetic induction per

unit area of cross-section of the magnet, all these tubes

passing through the magnet which acts as a kind of girdle

to them.

The properties of these tubes are well summed up

by Faraday in the following passage {Experimental Re-

searches, § 3117); "there exist lines of force within the

magnet, of the same nature as those without What is

more, they are exactly equal in amount to those without.
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They have a relation in direction to those without and

in fact are continuations of them, absolutely unchanged

in their nature so far as the experimental test can be

applied to them. Every line of force therefore, at what-

ever distance it may be taken from the magnet, must be

considered as a closed circuit passing in some part of its

course through the magnet, and having an equal amount
of force in every part of its course." Faraday's lines of

force are what we have called tubes of induction.

154. We shall now proceed to consider the gged^
case, including that of iron and all non-crystalline sub-

stances when magnetized
gjj^jgJij- by ^^^l^^^^^li^ in which

the direction of the magnetization and consequently of

the magnetic induction is parallel to the magnetic force.

Let H be the magnetic force, B the magnetic induction,

and / the intensity of magnetization, then we have by
Art. 152,

47r/.

The ratio of I to H when the magnetization is entirely

induced is called the magnetic susceptibility and is usually

denoted by the letter k. The ratio oi B to H under the

same circumstances is called the magnetic permeability

and is denoted by the letter fi.

We thus have
I =kE,

B^fjiH,

and since B = H -{ 47r/,

we have yu, = 1 -f- 4f7rk.

The quantity /jl which occurs in magnetism is analogous

to the specific inductive capacity in electrostatics, there is
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however this difference between them, that whereas as far

as our knowledge at present goes, the specific inductive

capacity at any time does not depend much if at all upon

the value of the electric intensity at that time nor on the

electric intensity to which the dielectric has previously
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been exposed ; the permeability however, if the magnetic

force exceeds a certain value (about 1/10 of the earth's

horizontal force), depends very greatly upon the magni-

tude of the magnetic force and also upon the magnetic
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forces which have previously been applied to the iron.

The relation between the magnetic permeability is most

conveniently represented by curves in which the ordinate

represents the magnetic induction, the abscissa the corre-

sponding magnetic force. IfP be a point on such a curve,

PN the ordinate, ON the abscissa, then the magnetic

permeability is PN/ON.

Such a curve is shown in Fig. 79, in which the

ordinates represent the values of B, the magnetic in-

duction, the abscissae the values of H, the magnetic

force. For small values of H the curve is straight, in-

dicating that the permeability is independent of the

magnetic force. When however the magnetic force in-

creases beyond about J^ of the earth's horizontal force,

or about '018 in c. G. s. units, the curve begins to rise

rapidly, and the value of /jl is greater than it was for small

magnetic forces. The curve rises rapidly for some time,

the maximum value of fx occurring when the magnetic

force is about 5 C.G.s. units, then it begins to get flatter

and there are indications that for very great values of the

magnetic force the curve again becomes a straight line

making an angle of 45° with the axis along which the

magnetic force is measured. The relation between B and

H along this part of the curve is

B= H-\- constant:

comparing this with the relation

B=:H + ^TrI,

vfQ see that it indicates that the intensity of magnetization

has become constant. In other words, the intensity of

magnetization does not increase as the magnetic force

increases. When this is the case the iron or other
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magnetizable substance is said to be 'saturated.' Thus

iron seems not to be able to be magnetized beyond a

certain intensity. In a specimen of soft iron examined by

Prof. Ewing, saturation was practically reached when the

magnetic force was about 2000 in c. G. s. units. For

steel the magnetic force required for saturation is very

much greater than for soft iron, and in some specimens of

steel examined by Prof Ewing saturation was not attained

even when the magnetizing force was as great as 10000.

For a particular kind of steel called Hadfield's manganese

steel the value of //, was practically constant even in the
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strongest magnetic fields, this steel however is only

slightly magnetic, the value of //, being about 1'4. The
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greatest value of fi which has been observed is 20000 for

soft iron, in this case however the iron was tapped when

under the influence of the magnetic force. Fig. (80) re-

presents the results of Swing's experiments on the relation

between magnetic permeability and magnetic induction in

very intense magnetic fields.

155. Effect of Temperature on the Magnetic
Permeability. The permeability of iron depends very

much upon the temperature. Dr J. Hopkinson found that

as the temperature increases, starting from about 15° C,

the magnetic permeability at first slowly increases ; this

slow rate' of increase is however exchanged for an exceed-

ing rapid one when the temperature approaches a 'critical

temperature ' which for different samples of iron and steel

ranges from 690° C. to 870° C, and at this temperature the

value of the permeability is many times greater than that

at 15° C. : after passing this value the permeability falls

even more rapidly than it previously rose. Indeed so

fast is the fall that at a few degrees above the critical

temperature iron practically ceases to be magnetic. Just

below this temperature iron is an intensely magnetic sub-

stance, while above that temperature it is not magnetic

at all. There are other indications that iron changes its

character in passing through this temperature, for here

its thermo-electric properties as well as its electrical re-

sistance suffer abrupt changes. This temperature is often

called the temperature of fp.cp.lftscencp. from the fact that

a piece of iron wire heated above this temperature to

redness and then allowed to cool, will get dull before

reaching this temperature and will glow out brightly

again when it passes through it.
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Though the value of ii at higher temperatures (lower

however than that of recalescence) is for small magnetic

forces greater than at lower temperatures, still as it

is found that at the higher temperatures, iron is much
more easily saturated than at lower ones, the value of fi

for the hot iron might be smaller than for the cold if the

magnetic forces were large.

156. Magnetic Retentiveness. Hysteresis. When
a piece of iron or steel is magnetized in a strong magnetic

field it will retain a considerable proportion of its mag-

netization even after the applied field has been removed

and the iron no longer under the influence of any applied

magnetic force. This power of remaining magnetized

after the magnetic force has been removed, is called

magnetic retentiveness; permanent magnets are a familiar

instance of this property. This effect of the previous

magnetic history of a substance on its behaviour when

exposed to given magnetic conditions has been studied in

great detail by Prof. Ewing, who has given to this property

the name of hysteresis. To illustrate this properly, let us

consider the curve (Fig. 81) which is taken from Prof.

Ewing's paper on the magnetic properties of iron {Phil.

Trans. Part ii., 1885), and which represents the relation for

a sample of soft iron between the intensity of magnetization

(the ordinate) and the magnetizing force (the abscissa),

when the magnetic force increases from zero up to ON,

then diminishes from ON through zero to — OM, and then

increases again up to its original value. When the force

is first applied we have the state represented by the por-

tion OP of the curve, which begins by being straight, then

increases more rapidly, bends round and finally reaches P,
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the point corresponding to the greatest magnetic force

applied to the iron. If now the force is diminished it will
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be found that the magnetization for a given force is greater

than it was w^hen the magnet was initially under the

action of the same force, i.e. the magnet has retained

some of its previous magnetization, thus the curve PE,
when the force is diminishing, will not correspond to

the curve OP but will be above it. OE is the mag-

netization retained by the magnet when free from

magnetic force ; in some cases it amounts to more than

90 per cent, of the greatest magnetization attained by the

magnet. When the magnetizing force is reversed the

magnet rapidly loses its magnetization and the negative

force represented by OK is sufficient to deprive it of all

magnetization. When the negative magnetic force is

increased beyond this value, the magnetization is negative.

After the magnetic force is again reversed it requires a

positive force equal to OL to deprive the iron of its
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negative magnetization. When the force is again in-

creased to its original value the relation between the

force and induction is represented by the portion LOP
of the curve. If after attaining this value the force is

again diminished to — ON and back again, the corre-

sponding curve is the curve PEK.

The fact that this curve encloses a finite area shows

that a certain amount of energy must be dissipated and

converted into heat when the magnetic force goes through

a complete cycle. To show this let us suppose that we
have a small magnet whose intensity is /, cross-section a,

and length I, and that it is moved from a place where the

magnetic force is H to one where it is H -\- BH. We
shall show that the work done on the magnet is

IBHal

H is considered positive when it acts in the direction of

magnetization of the iron. For if Hi is the magnetic

potential at A, the negative pole; Ha that at B, the positive

pole, then the potential energy of the magnet is equal to

- /aOi -I- /alia

= /a(n2-ni) = -/aZff.

When the magnetic force is ^-|- hH the potential energy

is equal to

Thus the diminution in the potential energy when the

magnet moves into the stronger field is lalSH, this is equal

to the work done by the magnet. If the intensity of

magnetization changes from I to I -{- BI during the motion

of the magnet, the work done is intermediate between

lalBH and (/ + BI) alBff; hence neglecting the small terms

depending upon BIBH, we may still take lalBH as the
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expression for the work done. Since la. is the volume

of the magnet the work done by the magnet per unit

volume is IhH.

If in Fig. 82 OS = H, OT = H-^BE, and >SfP = /then
IBH is represented on the diagram by the area SPQT.

Thus the total work done by the magnet when the

field is increased from OK to OL is represented by the

area CKLDE. Similarly the work done on the magnet

when the field is diminished from OL to OK is represented

by the area DFGKL. Thus the excess of the work done

on the magnet over that done by the magnet, when the

magnetic force goes through a complete cycle, is repre-

sented by the area of the loop CEDFG. The area of the

loop thus represents the excess of the work spent over

that obtained : but since the magnetic force and magnet-

ization at the end of the cycle are the same as at the begin-

ning, this work must have been dissipated and converted

into heat. The mechanical equivalent of the amount of

heat produced in each unit volume of the iron is repre-

sented by the area of the loop.
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If instead of a curve showing the relation between

/ and H we use one showing the relation between B and

H, there will be similar loops in this second curve and

the area of these loops will be 47r times the area of the

corresponding loops on the / and H curve.

For the area of a loop on the first curve is

-SIdH,
this is equal to

-l\iB-HHH

=-l\BdH,

since JHdH=0, as the initial and final values of H
are equal. The area of a loop on the B and H curve is

however equal to

-JBdH.

Hence we see that this area is 47r times the area of the

corresponding loop on the / and H curve.

157. Conditions which must hold at the boun-
dary of two substances.

At the surface separating two media the magnetic

field must satisfy the following conditions.

1. The magnetic force parallel to the surface must be

the same in the two media.

2. The magnetic induction at right angles to the

surface must be the same in the two media.

To prove the first condition, let P and Q be two points

close to the surface of separation, Q being in the air, P in
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the iron. Now the magnetic force at P is by definition

(see Art. 152) the force on a unit pole placed in a cavity

round P, when the magnetism on the walls of the cavity

can be neglected: hence since this magnetism is to be dis-

regarded the only difference between the magnetic forces

at P and Q must arise from the magnetism on the

surface between P and Q : but though the forces at right

angles to this portion of the surface due to its mag-

netism are different at P and Q, the forces parallel to the

surface are the same. Hence we see that the tangential

magnetic forces will be the same at P as at Q.

We shall now show that the normal magnetic induction

is continuous. All the tubes of magnetic induction form

closed curves. Hence any tube must cut a closed surface

an even number of times; half these times it will be

entering the surface, half leaving it. The contributions of

each tube to the total normal magnetic induction will be

the same in amount but opposite in sign when it enters and

when it leaves the surface. Hence the total contribution

of each tube is zero, and thus the total normal magnetic

induction over any closed surface vanishes. Consider the

surface of a very short cylinder whose sides are parallel to

the normal at P, one end being in the medium (1),

the other in (2). The total normal induction over this

surface is zero, but as the area of the sides is negligible

compared with that of the ends, this implies that the total

normal induction across the end in (1) is equal to that

across the end in (2), or that, since the areas of these ends

are equal, the induction parallel to the normal in (1) is the

same as that in the same direction in (2). This is always

true whether the magnet is permanently magnetized or

only magnetized by induction.
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In Art. 73 we proved that the conditions satisfied at

the boundary of two dielectrics are

1. The tangential electric intensity must be the same

in both media.

2. When there is no free electricity on the surface

the normal electric polarization must be the same in

both. That is, if F, F' are the normal electric intensities

in the media whose specific inductive capacities are re-

spectively K and K\
KF=K'F'.

If we compare these with the conditions satisfied

at the boundary of two media in the magnetic field

and with the condition that when the magnetization

is induced, the magnetic induction is equal to fju times the

magnetic force, we see that we have complete analogy

between the disturbance of an electric field produced by

the presence of uncharged dielectrics and the disturbance

in a magnetic field produced by para- or dia-magnetic

bodies in which the magnetism is entirely induced.

Fig. 83.
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Hence from the solution of any electrical problem

we can deduce that of the corresponding magnetic one

by writing magnetic force for electric intensity, and fi

for K.

We can prove, as in Art. 74, that if O^ is the angle

which the direction of the magnetic force in air makes

with the normal at a point P on a surface, 6^ the angle

which the magnetic force in the magnetizable substance

makes with the normal at the same point, then

yu, tan 61 — tan 6^.

Thus when the lines of force go from air to a para-

magnetic substance they are bent away from the normal

in the substance, since in this case //, is greater than 1

;

when they go from air to a diamagnetic substance they

are bent towards the normal, since in this case yu, is less

than 1.

The effects produced when paramagnetic and diamag-

netic spheres are placed in a uniform field of force are

shown in Figs. 39 and 83.

158. If iM is infinite tan 6^ vanishes, and then the lines

of force in air are at right angles to the surface, so that

the surface of a substance of infinite permeability is a

surface of equi-magnetic potential. The surface of such

a substance corresponds to the surface of an insulated

conductor without charge in electrostatics, and any problem

relating to such conductors can be at once applied to the

corresponding case in magnetism. In particular we can

apply the principle of images (Chap. V.) to find the effect

produced by any distribution of magnetic poles in presence

of a sphere of infinite magnetic permeability.

T. E. 17



258 MAGNETIC INDUCTION. [CH. VIII

159. Sphere in uniform field. We showed in Art.

103 that if a sphere, whose radius is a, and whose specific

inductive capacity is K, is placed in a uniform electric field,

and ifH is the electric intensity before the introduction

of the sphere, then the field when the sphere is present will

at a point P outside the sphere consist of -ff and an electric

intensity whose component along PO is equal to

2±/-^-77—^cos^—

,

K + 2 r^
'

and whose component at right angles to PO in the direction

tending to diminish is

a^—^ sm ^—
;K+2 r^
'

in these expressions OP = r, 6 is the angle OP makes with

the direction of H, is the centre of the sphere.

Inside the sphere the electric intensity is constant,

parallel to H and equal to

3

K+2 H.

If we write fi for K the preceding expressions will give us

the magnetic force when a sphere of magnetic permea-

bility fi is placed in a uniform magnetic field where the

magnetic force is H.

A very important special case is when fi is very large

compared with unity. In this case the magnetic forces due

to the sphere are approximately

2H'^cose
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along PO, and ^— sin ^

at right angles to it.

Inside the sphere the magnetic force is

and is very small compared with that outside. The mag-

netic induction inside the sphere is 3^. Thus through

any area in the sphere at right angles to the magnetic

force, three times as many tubes of induction pass as

through an equal and parallel area at an infinite distance

from the sphere.

The resultant magnetic force in air vanishes round the

equator of the sphere.

160. Magnetic Shielding. Just as a conductor

is able to shield oif the electric disturbance which one

electrical system would produce on another, so masses of

magnetizable material, for which fi has a large value, will

shield off from one system magnetic forces due to another.

Inasmuch however as /a has a finite value for all sub-

stances the magnetic shielding will not be so complete

as the electrical.

161. Iron Shell. We shall consider the protection

I
afforded by a spherical iron shell against a uniform mag-

pnetic field. We saw in Art. 159 that, when a solid iron

sphere is placed in a uniform magnetic field, the magnetism

induced on the sphere produces outside it a radial mag-

netic force proportional to 2 cos ^/?*^, and a tangential force

17—2
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proportional to sm^/7^, and a constant force inside the

sphere. We shall now proceed to show that we can

satisfy the conditions of the problem of the spherical iron

shell by supposing each of the distributions of magnetism

induced on the two surfaces of the shell to give rise to

forces of this character.

Let a be the radius of the inner surface of the shell,

h that of the outer surface. Let H be the force in the

uniform field before the shell was introduced. Let the

magnetic forces due to the magnetism on the outer surface

of the shell consist, at a point P outside the sphere, of a

radial force

2ifi cos e

a tangential force

M^ sin 6

where r=OP and 6 is the angle OP makes with the

direction of H. The magnetic force due to this distribu-

tion of magnetism will be uniform inside the sphere

whose radius is h, it will act in the direction of H and

be equal to — Mi/b^

Let the magnetization on the inner surface of the

shell give rise to magnetic forces given by similar ex-

pressions with M2 written for ifc/j and a for b.

This system of forces, w^hatever be the values of

Ml and M2, satisfies the condition that as we cross the

surfaces of the shell the tangential components of the
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magnetic force are continuous. We must now see if we

can choose M^, M^ so as to make the normal magnetic

induction continuous.

The normal magnetic induction (reckoned positive

along the outward drawn normal) in the air just outside

the outer shell is equal to

„ . 2ifi . 2if2 ^
iZ cos ^ + -, ;- COS V + -^r— COS 0,

the normal magnetic induction in the iron just inside the

outer surface of the shell is equal to

{ ^r /I ^1 /I
2il/2 ^\

fi ill C08 6 — jY cos 6 -{- -jy- cos6 ]

.

These are equal if

or, if

i-^-±3^^-:pt^3E^^^,_^)H
(1).

The normal magnetic induction in the iron just

outside the inner surface of the shell is

fjL ill cos 6 - -jj COS 6 -\ f cos6]
,

the normal magnetic induction in the air just inside the

shell is equal to

Hcosd-
-J .^ cos ^ ^ cos 0:

these are equal if

M M
(m-1)j;-(2/.+ 1)^ = (^-1)// (2).
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Equations (1) and (2) are satisfied if

(2/.+ l)(M + 2)-2(^-iyg

M, = -(^,-l)H —
(2/. + l)(^ + 2)-2(;.-l)=g

The magnetic force in the hollow cavity is equal to

I? a'
'

Substituting the values of M^ and 31^ we see that this

is equal to

9/. + 2(/.-iy(i-g

If fi is very large compared with unity this is approxi-

mately equal to

H
1 + H'-i)

The denominator may be written in the form

2
volume of shell

'^^ volume of outer sphere

'

Hence the force inside the shell will not be greatly

less than the force outside unless fi is greater than the

ratio of the volume of the outer sphere to that of the

shell.

In the cases where fi = 1000 and //, = 100, the ratio

oiH', the force inside the sphere, to H for different values

of a/b is given in the following table.
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H'lH H'lH
ajb /A=:1000 /i=:100

•99 3/23 9/15

•9 1/67 1/7

•8 1/109 1/12

•7 1/146 1/15

•6 1/175 1/18

•5 1/195 1/20

'4 1/209 1/22

•3 1/216 1/22

•2 1/221 1/23
•1 1/223 1/23

•0 1/223 1/23

Galvanometers which have to be used in places exposed

to the action of extraneous magnets are sometimes pro-

tected by surrounding them with a thick-walled tube

made of soft iron.

We may regard the shielding effect of the shell as an

example of the tendency of the tubes of magnetic induction

to run as much as possible through iron; to do this they

leave the hollow and crowd into the shell.

162. Expression for the energy in the magnetic
field. We shall suppose that the field contains per-

manent magnets as well as pieces of magnetizable

substances magnetized by induction. If the distribution

of the permanent magnets is given, the magnetic field will

be quite determinate. The forces between magnetic

charges follow the same laws as those between electrical

ones. Hence the energy due to any system of magnetized

bodies will, if the magnetization due to induction is

proportional to the magnetic force, i.e. if ^m is constant,

be equal to the sum of one half the product of the



264 MAGNETIC INDUCTION. [CH. VIII

strength of each permanent pole into the magnetic

potential at that pole. Thus if Q is the potential energy

of the magnetic field,

where m is the strength of the permanent pole and fl the

magnetic potential at that pole. Let us divide each of

the permanent magnets up into little magnets and con-

sider the contribution of one of these to the energy. Let

7o be the intensity of the permanent magnetization, and a

the area of the cross section : then the magnet has a pole

of permanent magnetism of strength /„« at A, another

pole of strength —lod at B. If fl^, fl^ are the values of

the magnetic potentials at A and B, the contribution of

this magnet to the energy is therefore equal to

Now the magnet may be regarded as the origin of 47r/oa

tubes of magnetic induction forming closed curves running

through the magnet, leaving it at A and entering it at 5

;

if ds is an element of one of these tubes, and R the

resultant magnetic force which acts along this element,

then

n^ — n^= Rds,
J A

the integration being extended over the part of the tube

outside the magnet. Hence the contribution of this

magnet to the energy is the same as it would be if each

tube of which it is the origin had per unit length at P
an amount of energy equal to I/Stt of the resultant

magnetic force at P. The portion of the tube inside the

little magnet in which it has its origin, must not be taken

into account.
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Now let us consider any small element of volume in

the magnetic field, let us take it as cylindrical in shape,

the axis of the cylinder being parallel to the resultant

magnetic force R at the element. Let I be the length of

this cylinder, co the area of its cross section. Now each

of the tubes of magnetic induction which pass through

the element and have not their origin within it, con-

tributes R/Stt units of energy for each unit of length of

the tube. Let /q be the intensity of the permanent

magnetization of the element, /the induced magnetization,

then the number of tubes of induction which pass through

unit area of the base of the cylinder is equal to the value

of the magnetic induction, i.e. it is equal to

i? + 4,r(/ + /„); fl

but of these, 47r/o have their origin in the element, and

hence the number of tubes per unit area which contribute

to the energy is equal to

E+47r/,

and since /= kR and yu. = 1 + 4f7rk, this is equal to

therefore the number passing through the base of the

cylinder is equal to

fiRco.

The energy of the portion of each of the tubes within the

element is equal to RI/Stt, hence the energy contributed

by the element is

thus the energy per unit volume is equal to fiR^/STr. We
may then regard the energy of the magnetized system as
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distributed throughout the magnetic field, there being

fiB^lS-rr units of energy in each unit volume of the field.

163. When a tube of induction enters a paramag-

netic substance from air the resultant magnetic force is

—when the magnetization is entirely induced—less in

the paramagnetic substance than in air, the energy per

unit length will be less in the magnetic substance than

in the air since the energy per unit length of a tube of

induction is proportional to the resultant magnetic force

along it. Thus in accordance with the principle that

when a system is in equilibrium the potential energy is a

minimum, the tubes of induction will tend to leave the air

and crowd into the magnet, when this act does not involve

so great an increase in their length in the air as to

neutralize the diminution of the energy due to the parts

passing through the magnet.

Again, when a tube of induction enters a diamagnetic

substance the magnetic force inside this substance is

greater than it is in the air just outside, the tubes of

induction will therefore tend to avoid the diamagnetic

substance. Examples of this and the previous effect are

seen in Figs. 83 and 39.

A small piece of iron placed in a magnetic field where

the force is not uniform will tend to move from the weak

to the strong parts of the field, since by doing so it

encloses a greater number of tubes of induction and thus

produces a greater decrease in the energy. The direction

of the force tending to move the iron is in the direction

along which the rate of increase of R^ is greatest. This

is not in general the direction of the magnetic force.

Thus in the case of a bar magnet AB, the greatest
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rate of increase in R^ Sit G Si point equidistant from A
and B is along the perpendicular let fall from G on AB,

and this is the direction in which a small sphere placed

at G will tend to move ; it is however at right angles to

the direction of the magnetic force at G.

There will be no force tending to move a piece of soft

iron placed in a uniform magnetic field.

A diamagnetic substance will tend to move from the

strong to the weak parts of the field, since by so doing

it will diminish the number of tubes of magnetic induc-

tion enclosed by it and hence also the energy, for the tubes

of induction have more energy per unit length when they

are in the diamagnetic substance than when they are in

air.

164. Ellipsoids. We have hitherto only considered

the case of spheres placed in a uniform field. Bodies

which are much longer in one direction than another

have very interesting properties which are conveniently

studied by investigating the behaviour of ellipsoids placed

in a uniform magnetic field.

We saw in Art. 138 that the magnetic field, due to a

sphere uniformly magnetized in the direction of the axis

of 00, might be regarded as due to two spheres, one of

uniform density p with its centre at 0', the other of

uniform density —p with its centre at 0, the points

and 0' being very close together and 00' parallel to the

axis of oc: the distance 00' is given by the condition

that pOO' is equal to the intensity of magnetization of

the sphere. An exactly similar proof will show that if we

have a body of any shape uniformly magnetized, the

magnetic potential due to it is the same as that due to
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two bodies of the shape and size of the magnet, one

having the density p, the other the density — p, and so

placed that if the negative body is displaced through the

distance f in the direction of magnetization, it will coincide

with the positive body if p^= A, A being the intensity of

magnetization of the body.

Let us suppose that the body is uniformly magnetized

with intensity A in the direction of the axis of x, and let

pfl be the potential of the positive body at the point P,

then the potential of the negative body at P will be equal

to — pfl', where pfl' is the potential of the positive body at

P', if PP' is parallel to the axis of x and equal to f

.

But since P^P is small,

The potential of the negative body is therefore

-'("-^s)-
Thus the potential of the positive and negative bodies

together, and therefore of the magnetized body, will be

.dn
-~^dx'

since p^ = A.

If the body instead of being magnetized parallel to x

is uniformly magnetized so that the components of the

intensity parallel to x, y, z are respectively A, B, C, the

magnetic potential is

-(a~ 7?— ^,dSl\

\ dx dy dz )
''
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We shall now show that if an ellipsoid is placed in a

uniform magnetic field it will be uniformly magnetized

by induction. To prove this it will be sufficient to show

that if we superpose on to the uniform field, the field due

to a uniformly magnetized ellipsoid, it is possible to

choose the intensity of magnetization so as to satisfy

the two conditions, (1) that the tangential magnetic force

and (2) that the normal magnetic induction, are continuous

at the surface of the ellipsoid. The first of these con-

ditions is evidently satisfied whatever the intensity of

magnetization may be : we proceed to discuss the second

condition. The forces due to the attraction of an ellipsoid

of uniform density, parallel to the axes of x, y, z (these

are taken along the axes of the ellipsoid) are, see Routh's

Statics, vol. II. p. 112, equal to

Lx, My, Nz

respectively, where L, if, N are constant as long as the

point whose coordinates are x, y, z is inside the ellipsoid.

Hence by (1) since

-;— = — LX, &C.,
ax

the magnetic potential inside the ellipsoid due to its

magnetization will be

{ALx + BMy + GNz),

so that the magnetic forces parallel to the axes of x, y, z

due to the magnetization of the ellipsoid will be

-AL, -BM, -CN
respectively.

Hence if N^ is the component of these forces along the

outward drawn normal to the surface of the ellipsoid,

N, = - {All + BMm + CNn),
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where I, m, n are the direction cosines of the outward

drawn normal. If N.^ is the force due to the magnetization

on the ellipsoid in the same direction just outside the

ellipsoid, then

N, = N^ + ^ir (IA + 7nB + n(7)

= IA (47r -L)-\-mB (47r - M) + nC (47r - N).

Let X, Y, Z be the components of the force due to

the uniform field. Then N^\ the total force inside the

ellipsoid along the outward drawn normal, will be given

by the equation

N^==lX + mY^nZ + N„

and if N^ is the total force just outside the ellipsoid along

the outward drawn normal

N^=lX^mY+nZ^-N,.

If fjL is the magnetic permeability of the ellipsoid, the

normal magnetic induction will be continuous if

that is if

I {iiX - fiAL) + m (fiY- fiBM) + n {fxZ - fiGN)

= qZ + ^ (47r - L)} + m{Y+B(4>7r-M)]

+ n{^+0(47r-i\^)).

But this condition will be satisfied if

(/x-l)X

(2).

{f^-l)Z
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These equations give the intensity of magnetization of

an ellipsoid placed in a uniform magnetic field.

The force inside the ellipsoid due to its magnetization

has —AL,— BM, — ON for components parallel to the

axes of X, y, z respectively ; these components act in the

opposite direction to the external field and the force of

which these are the components is called the demagnetiz-

ing force. We see from equations (2) that the com-

ponents of the demagnetizing force are

(/x -\)LX
•

47r -I- X (/^ - 1)
'

47r+il/(/i-l)'

47r + iV(/4-l)'

We shall now consider some special cases in detail. Let

us take the case of an infinitely long elliptic cylinder,

let the infinite axis be parallel to z, let 2a, 26 be the axes

in the direction of x and y\ then (Routh's Analytical

Statics, vol. II. p. 112)

Z = 47r^, ,ilf=47r ~^, i\^ = 0.
a + h a4-6

Thus A =

B

{^.-l)X hX

4.^1 + (^-l)— I 1+(M-1)^-^

{fji-l)Y kY

where k is the magnetic susceptibility.
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We see from this equation that A/X is approximately-

equal to k when (//. — 1) 6/(a + b) is very small, but only

then. A very common way of measuring k is to measure

A/X in the case of an elongated solid, magnetized along

the long axis ; but we see that in the case of an elongated

cylinder this will be equal to k only when (/j, — 1) 6/(a + b)

is very small. Now for some kinds of iron fi is as gi-eat as

1000, hence if this method were to give in this case results

correct to one per cent., the long axis would have to be

100,000 times as long as the short one. This extreme

case will show the importance of using very elongated

figures when experimenting with substances of great

permeability. Unless this precaution is taken the ex-

periments really determine the value of a/b and not any

magnetic property of the body.

When the body is an elongated ellipsoid of revolution

the ratio of the long to the short axis need not be so

enormous as in the case of the cylinder, but it must still

be very considerable. If the axis of x is the axis of

revolution, then by Routh's Analytical Statics, vol. Ii.

p. 112, we have approximately

X = 47r^|log^-l|, M= ]Sr=27r.

Thus
^ ^

Thus if /JL were 1000, the ratio oi a to b would have to

be about 900 to 1 in order that the assumption A/X = k

should be correct to one per cent.
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165. Couple acting on the Ellipsoid. The mo-

ment of the couple tending to twist the ellipsoid round

the axis of z, in the direction from x to y, is equal to

(volume of ellipsoid) {YA - XB)

ahc(fM-iyXY(M-L)
-^'^

(477-1- (/.- 1) L] {47r + (y^ _ l)i/}
•

If the magnetic force in the external field is parallel

to the plane ocy and is equal to H and makes an angle 6

with the axis of x,

X =11 cos e, Y=H sine,

and the couple is equal to

sin e cos dj/Ji-iy (M - L)
^'^^

{47r-f(/.-l)Z}{47r + (/x-l)ilf)'

If (X > 6, ilf is greater than L. Thus the couple tends to

make the long axis coincide in direction with the external

force, so that the ellipsoid, if free to turn, will set with its

long axis in the direction of the external force. This will

be the case whether fi is greater or less than unity, i.a

w^hether the substance is paramagnetic or diamagnetic,

so that in a uniform field both paramagnetic and dia-

magnetic needles point along the lines of force. It

generally happens that a diamagnetic substance places

itself athwart the lines of magnetic force, this is due to

the want of uniformity in the field, in consequence of

which the diamagnetic substance tries to get as much of

itself as possible in the weakest part of the field. This

tendency varies as (/a— 1) ; the couple we are investigating

in this Article varies as (yu, — Vf, and as (//, — 1) is exceed-

ingly small for bismuth, this couple will be overpowered

unless the field is exceptionally uniform.

T.E. 18
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166. Ellipsoid in Electric Field. The investiga-

tion of Art. 164 enables us to find the distribution of

electrification induced on a conducting ellipsoid when
placed in a uniform electric field. To do this we must

make ^ infinite in the expressions of Art. 164. The
quantity lA + ynB -\- nC which occurs in the magnetic

problem corresponds to cr. Putting /^ = oo in equations (2)

we find

IX mY nZ
L^ M'^ N

If the force in the electric field is parallel to the axis of x

IX

Thus when the electric field is parallel to one of the axes

of the ellipsoid, the density of the electrification is, as in

the case of a sphere, proportional to the cosine of the

angle which the normal to the surface makes with the

direction of the electric intensity in the undisturbed field.

By Coulomb's law the normal electric intensity at the

surface of the ellipsoid is equal to 47ro-, i.e. to

^irlX

L '

Thus the electric intensity at the surface of the ellipsoid

is 47r/i times the electric intensity in the same direction

in the undisturbed field.

If the ellipsoid is a very elongated one with its longer

axis in the direction of the electric force, then by Art. 164

47r_ a"

1 2^ 1
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Thus, when ajh is large, ^irjL is a large quantity, and the

electric intensity at the surface of the ellipsoid is very

large compared with the intensity in the undisturbed

field. Thus if ajh = 100, the electric intensity at the

surface is about 2500 times that in the undisturbed field.

This result explains the power of sharply pointed con-

ductors in discharging an electric field, for when these are

placed in even a moderate field the electric intensity at

the surface of the conductor is great enough to overcome

the insulating power of the air, see Art. 37, and the

electrification escapes. ,

18—2



CHAPTER IX.

Electric Currents.

167. Let two conductors A and B be at different

potentials, A being at the higher potential and having

a charge of positive electricity, while 5 is at a lower

potential and has a charge of negative electricity ; then

if A is connected to B by a metallic wire the potential

of A will begin to diminish and A will lose some

of its positive charge, the potential of B will increase

and B will lose some of its negative charge, so that in a

short time the potentials of A and B will be equalized.

During the time in which the potentials of A and B
are changing the following phenomena will occur: the

wire connecting A and B will be heated and a magnetic

field will be produced which is most intense near the wire.

If^ and B are merely charged conductors, their potentials

are equalized so rapidly, and the thermal and magnetic

effects are in consequence so transient, that it is some-

what difficult to observe them. If, however, we maintain

A and B at constant potentials by connecting them

with the terminals of a voltaic battery the thermal and

magnetic effects will persist as long as the connection

with the battery is maintained, and are then easily

observed.
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The wire connecting the two bodies A and B at different

potentials is said to be conveying a current of electricity,

and when A is losing its positive charge and B its negative

charge the current is said to flow from A \,<d B along the

wire.

Let us consider the behaviour of the Faraday tubes

during the discharge of the conductors A, B. Before the

conductors were connected by the wire these tubes may
be supposed to be distributed somewhat as in the figure

;

Fig. 84.

when the conducting wire CD is inserted the tubes which

were previously in the region occupied by the wire cannot

subsist in the conductor, they therefore shrink, their

ends travelling along the wire until the ends which were

previously on A and B come close together and the effect

of these tubes is annulled. The distribution of the tubes

in the field before the wire was inserted was one in which

there was equilibrium between the tensions along the

tube and the lateral repulsion they exert on each other

:
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now after the tubes in the wire have shrunk the lateral

repulsion they exerted is annulled and there will therefore

be an unbalanced pressure tending to push the surround-

ing tubes such as EF, OH into the wire, where they will

shrink like those previously in the wire. This process

will go on until all the tubes which originally stretched

from A io B have been forced into the wire and their

effects annulled.

The discharge of the conductors is thus a'^companied

by the movement of the tubes in towards the wire and

the sliding of the ends of these tubes along the wire.

The positive ends of the tubes move on the whole from

A towards B along the wire, the negative ends from

B towards A.

168. Strength of the current. If we consider

any cross-section of the wire at P, and if in the time ht

N units of positive electricity cross it from A towards B
and N' units of negative electricity from B towards A,

{N -\-N')IU is called the strength of the current at P.

When the wire is in a steady state the strength of the

current must be the same at all points along the wire,

for if it were not the same at P as at Q a positive or

negative charge would accumulate between P and Q and

the state of the wire would not be steady.

169. Electrodes. Anode. Cathode. If the ends

R, S of a body through which a current is flowing are

portions of equipotential surfaces, then R and 8 are called

the electrodes, and if the current is in the direction RS,

R is called the anode and S the cathode.

170. Electrolysis. In addition to the thermal and



170] ELECTRIC CURRENTS. 279

magnetic effects mentioned in Art. 167, there is another

effect characteristic of the passage of the current through

a large class of substances called electrolytes. Suppose

for example that a current passes between platinum plates

immersed in a dilute solution of sulphuric acid, then the

solution suffers chemical decomposition to some extent

and oxygen is liberated at the platinum anode, hydrogen

at the platinum cathode. There is no liberation of hydro-

gen or oxygen in the portions of the liquid not in contact

with the platinum plates however far apart these plates

may be. Substances which are decomposed in this way
are called electrolytes, and the act of decomposition is

called electrolysis. Electrolytes may be solids, liquids, or

as recent experiments have shown, gases. Iodide of silver

is an example of a solid electrolyte, while as examples

of liquid electrolytes we have solutions of a great number

of mineral salts or acids as well as many fused salts.

The constituents into which the electrolyte is split up

by the current are called the ions : the constituent which

is deposited at the anode is called the anion, that which is

deposited at the cathode the cation. With very few

exceptions an element, or such a group of elements as

is called by chemists a ' radical,' is deposited at the same

electrode from whatever compound it is liberated ; thus

for example hydrogen and the metals are cations from

whatever compounds they are liberated, while chlorine

is always an anion.

The amount of the ions deposited by the passage of a

current through an electrolyte was shown by Faraday to

be connected by a very simple relation with the quantity

of electricity which passes through the electrolyte.
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171. Faraday^s First Law of Electrolysis. The

quantity of an electrolyte decomposed by the passage of

a current of electricity is directly proportional to the

quantity of electricity which passes through it.

Thus as long as the quantity of electricit}'' passing

through an electrolyte remains the same, it is immaterial

whether the electricity passes as a very intense current

for a short time or as a very weak current for a long

time.

172. Faraday's Second Law of Electrolysis. If

the same quantity of electricity passes through different

electrolytes the weights of the different ions deposited will

be proportional to the chemical equivalents of the ions.

Thus, if the same current passes through a series

of electrolytes from which it deposits as ions, hydrogen,

oxygen, silver, and chlorine, then for every gramme of

hydrogen deposited, 8 grammes of oxygen, 108 grammes

of silver and So 5 grammes of chlorine will be deposited.

If we define the electro-chemical equivalent of a sub-

stance as the number of grammes of that substance depo-

sited during the passage of the unit charge of electricity,

we see that Faraday's Laws may be comprised in the

statement that the number of grammes of an ion deposited

during the passage of a current through an electrolyte is

equal to the number of units of electricity which have

passed through the electrolyte multiplied by the electro-

chemical equivalent of the ion.

Elements which form two series of salts, such as copper,

which forms cuprous and cupric salts, or iron, which forms

ferrous and ferric salts, have different electro-chemical

equivalents according as they are deposited from solutions
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of the cuprous or cupric, ferrous or ferric salts. The

electro-chemical equivalents of a few substances are given

in the following table ; the numbers represent the weight

in grammes of the substance deposited by the passage of

one electro-magnetic unit of electricity (see chap. xii.).

Hydrogen •00010352.

Oxygen •000828.

Chlorine •0003675.

Iron (from ferrous salts) •002898.

„ (from ferric salts) 001932.

Copper (from cuprous salts) •006522.

„ (from cupric salts) •003261.

Silver •01180.

Since the portions of the electrolyte situated between

the electrodes are unaltered by the passage of the current,

if we imagine a plane drawn across the electrolyte, then

there must pass in any time towards the cathode across

the plane an amount of the cation equal to that deposited

in the same time at the cathode ; while a corresponding

amount of the anion must cross the plane towards the

anode. Thus in every part of the electrolyte the cation

is moving in the direction of the current, the anion in

the opposite direction.

Faraday's laws of electrolysis give a method of

measuring the quantity of electricity which has passed

through a conductor in any time and hence of measuring

the average current. For if we place an electrolyte in

circuit with the conductor in such a way that the current

through the electrolyte is always equal to that through the

conductor, then the amount of the electrolyte decomposed
will be proportional to the quantity of electricity which
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has passed through the conductor; if we divide the

weight in grammes of the deposit of one of the ions by
the electro-chemical equivalent of that ion we get the

number of electro-magnetic units of electricity which has

passed through the conductor, dividing this by the time

we get the average current in electro-magnetic units.

An electrolytic cell used in this way is called a volta-

meter ; the forms most frequently used are those in which

we weigh the amount of copper deposited from a solution

of copper sulphate, or of silver from a solution of silver

nitrate, or measure the amount of hydrogen liberated by

the passage of the current through acidulated water.

173. Relation between Electromotive Force
and Current. Ohm's Law. The work done by the

electric forces on unit charge of electricity in going

from a point A to another point B is called the electro-

motive force from A to B. It is frequently written as

the E.M.F. from A to B.

Ohm's Law. The relation between the electromotive

force and the current was enunciated by Ohm in 1827,

and goes by the name of Ohm's Law.

This law states that if E is the electromotive force

between two points A and J5 of a wire, / the current

passing along the wire between these points, then

E = RI,

where R is a, quantity called the resistance of the wire

;

it is independent of the strength of the current flowing

through the wire, and depends only upon the shape and

size of the wire, the material of which it is made, and

upon its temperature and state of strain.
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The most searching investigations have been made as

to the truth of this law when currents pass through

metals or electrolytes; these have all failed to discover

any exceptions to it, though from the accuracy with

which resistances can be measured (in several investiga-

tions an accuracy of one part in 100,000 has been attained)

the tests to which it has been subjected are exceptionally

severe.

Ohm's Law does not however hold when the currents

pass through rarefied gases.

174. Resistance of a number of Conductors in

Series. Suppose we have a number of wires AB, CD,

A B«C DIE FIG H

Fig. 85.

EF... (Fig. 85) connected together so that B is in contact

with G, D with E, F with G and so on. This method of

connection is called putting the wires in series.

Let rj, 7*2, rg... be the resistances of the wires AB,
GD, EF... and let i be the current entering the circuit

AB, GD... at A, then the current i will flow through

each of the conductors. Let us consider the case when

the field is steady, then if v^, v^, v^ &c. denote the poten-

tials at A,B, G, &c. respectively, the E.M.F. from ^ to 5 is

'^a
—

'^d'-)
^tius we have by Ohm's Law,

^c - ^/) = ni

But since B and G are in contact they will, if the wires
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are made of the same substance, be at the same potential;

hence Vj^ = Vc, Vj^ = v^, and so on; hence adding the pre-

ceding equations we get

But if R is the resistance between A and F, then by

Ohm's Law we have

v^ — Vp — Ri.

Comparing this expression with the preceding, we see

that

jR = ri + 7*2 + ra + . . .

.

Hence when a system of conductors are put in series, the

resistance of the series is equal to the sum of the resist-

ances of the individual conductors.

175. Resistance of a number of Conductors
arranged in Parallel. If the wires instead of being

arranged so that the end of one coincides with the

beginning of the next, as in the last example, are arranged

as in Fig. 86, the beginnings of all the wires being in

contact, as are also their ends, the resistances are said to

be arranged in parallel, or in multiple arc.

We proceed now to find the resistance of a system of

wires so arranged. Let i be the current flowing up to ^,

let this divide itself into currents i^, '4
, %. . . flowing through
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the circuits ACB, ADB, AEB... whose resistances are

^2> ^2, ^3--- respectively. Then if v^, v^ are the potentials

of A and B respectively, we have by Ohm's Law

V^-^ZJ = ^2^2,

Now ^ = ^l + ^2 + 4+ ...

But if R is the resistance of the system of conductors,

then by Ohm's Law,

hence comparing this expression with the preceding one

we see that 1111
-^ = - + - + - + ...,
it n 7\ n

or the reciprocal of the resistance of a number of con-

ductors in parallel is equal to the sum of the reciprocals

of the individual resistances. The reciprocal of the resist-

ance of a conductor is called its conductivity, hence we
see that we may express the result of this investigation

by saying that the conductivity of a number of conductors

in parallel is equal to the sum of the conductivities of

the individual conductors.

In the special case when all the wires connected up in

multiple arc have the same resistance, and if there are n

wires, their resistance when in multiple arc is 1/n of the

resistance of one of the individual wires.



286 ELECTRIC CURRENTS. [CH. IX

176. Specific resistance of a substance. If we

have a wire whose length is I and whose cross section is

uniform and of area a, we may regard it as built up of

cubes whose edges are of unit length, in the following

way ; take a wire formed by placing I of these cubes in

series, and then place a of these filaments in parallel ; the

resistance of this system is evidently the same as that

of the wire under consideration. If a is the resistance of

one of the cubes the resistance of the filament formed by

placing I such cubes in series is la, and when a of these

filaments are placed in parallel the resistance of the

system is lajoL ; hence the resistance of the wire is

la-

a
'

Since a- only depends on the material of which the wire

is made we see that the resistance of a wire of uniform

cross section is proportional to the length and inversely

proportional to the area of the cross section.

The quantity denoted by a in the preceding expression

is called the specific resistance of the substance of which

the wire is made ; it is the resistance of a cube of the

substance of which the edge is equal to the unit of length,

the current passing through the cube parallel to one of its

edges.

177. Heat generated by the passage of a cur-

rent through a conductor. Let A and B be two points

connected by a conductor, let E be the electromotive

force from A to B. By the definition of electromotive

force, work equal to E is done on unit positive charge

when it goes from A to B, and on unit negative charge
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when it goes from B to A; hence if in unit time N units

of positive charge go from A to B and N' units of nega-

tive charge from B to A, the work done is E {N+ N').

But N-\- N' is equal to C, the strength of the current

flowing from A to B, thus the work done is equal to EG.

If R is the resistance of the conductor between A and B,

E = RG ; thus the work done in unit time is equal to RG\
We see that the same amount of work would be spent

in driving a current of the same intensity in the reverse

direction, viz. from B to A.

This work, by the principle of the Conservation of

Energy, cannot be lost ; the work spent by the electric

forces in driving the current must give rise to an equiva-

lent amount of energy of some kind or other. The passage

of the current heats the conductor, but if the heat is

caused to leave the conductor as soon as produced the

state of the conductor is not altered by the passage of

the current. The mechanical equivalent of the heat pro-

duced in the conductor was shown by Joule to be equal

to the work spent in driving the current through the con-

ductor, so that the work done in driving the current is

in this case entirely converted into heat. Thus if H is

the mechanical equivalent of the heat produced in time t,

H= RGH.

The law expressed by this equation is called Joule's Law.

It states that the heat produced in a given time is pro-

portional to the square of the strength of the current.

Since by Ohm's Law E = RG, the heat produced in

the time t is also equal to

E^
^t==EGt
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178. Voltaic Cell. We have seen that in an electric

field due to any distribution of positive and negative

electricity, the work done when unit charge is taken

round a closed circuit vanishes ; the electric intensity

due to such a field tending in some parts of the circuit

to stop the unit charge in some parts of its course and to

help it on in others. Hence such a field cannot produce

a steady current round a closed circuit. To maintain

such a current work must be done; this work may be

supplied from chemical sources, as in the voltaic battery,

from thermal sources, as in the thermoelectric circuit, or

by mechanical means, as when currents are produced by

dynamos. We shall consider here the case of the voltaic

circuit. Let us consider the simple form of battery

consisting of two plates, one of zinc, the other of copper,

dipping into a vessel containing dilute sulphuric acid.

If the zinc and copper plates are connected by a wire,

a current will flow round the circuit, flowing from the

zinc to the copper through the acid, and from the copper

to the zinc through the wire. When the current flows

round the circuit the zinc is attacked by the acid and

zinc sulphate is formed. For each unit of electricity that

flows round the circuit one electro-chemical equivalent of

zinc and sulphuric acid disappears and equivalent amounts

of zinc sulphate and hydrogen are formed. Now if a piece

of pure zinc is placed in dilute acid very little chemical

action goes on, but if a piece of copper is attached to

the zinc the latter is immediately attacked by the acid

and zinc sulphate and hydrogen are produced ; this action

is accompanied by a considerable heating eff'ect, and we

find that for each gramme of zinc consumed a definite

amount of heat is produced. Now let us consider two
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vessels (a) and (ff), such that in (a) the zinc and copper

form the plates of a battery, while in (^) the zinc has

merely got a bit of copper fastened to it: let a definite

amount of zinc be consumed in the latter and then let the

current run through the battery until the same amount

of zinc has been consumed in (a) as in (/8). The same

amount of chemical combination has gone on in the two

cells, hence the loss of chemical energy is the same in

(a) as in (0). This energy has been converted into heat

in both cases, the difference being that in the cell (y8)

the heat is produced close to the zinc plate, while in (a)

the places where heat is produced are distributed through

the whole of the circuit, and if the wire connecting the

plates has a much greater resistance than the liquid

between them, by far the greater portion of the heat

is produced in the wire, and not in the liquid in the

neighbourhood of the zinc. Though the distribution • of

the places in which the heat is produced is different in the

two cases, yet, since the same changes have gone on in the

two cells, it follows from the principle of the Conservation

of Energy, that the total amount of heat produced in the

two cases must be the same. Thus the total amount of

heat produced by the battery cell (a) must be equivalent

to that developed by the combination of the amount of

zinc consumed in the cell while the current is passing

with the equivalent amount of sulphuric acid.

179. Electromotive Force of a Cell. If C is the

current, R the resistance of the wire between the plates,

r that of the liquid between the plates, t the time the

current has been flowing, then by Joule s law the mechanical

equivalent of the heat generated in the wire is RC% that

of the heat generated in the liquid is rCH. We shall

T. E. 19
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see in Chapter XIII, that when a current flows across

the junction of two different metals, heat is produced

or absorbed at the junction; this effect is called the

Peltier effect. The laws governing the thermal effects

at the junction of two metals differ very materially from

Joule's Law. The heat developed in accordance with

Joule's Law in a conductor AB is, as long as the strength

of the current remains unaltered, the same whether the

current flows from ^ to 5 or from ^ to -4. The thermal

effects at the junction of two metals C and D depend

upon the direction of the current ; thus if there is a

development of heat when the current flows across the

junction from C to D there will be an absorption of heat

at the junction if the current flows from I) to C. These

heat effects which change sign are called reversible heat

effects. The heat developed at the junction of two

substances in unit time is directly proportional to the

strength of the current and not to its square.

In the case of the voltaic cell formed of dilute acid

and zinc and copper plates, the current passes across the

junction of the zinc and acid, of the acid and copper as

well as across the metallic junctions which occur in the

wire used to connect up the two plates. Let F be the

heat developed at all these junctions when traversed by
unit current for unit time. Then the total amount of

heat developed in the voltaic cell is

RCH + rCH + PGt

Since a current G has passed through the cell for a

time t, the number of units of electricity which have

passed through the cell is Gt, hence, if e is the electro-

chemical equivalent of zinc, eGt grammes of zinc have been
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converted into zinc sulphate. Let w be the mechanical

equivalent of the heat produced when one gramme of zinc

is turned into zinc sulphate, then the mechanical equi-

valent of the heat which would be developed by the

chemical action which has taken place in the cell is eCtw
;

but this must be equal to the mechanical equivalent of

the heat developed in the cell, and hence we have

RCH + rCH + PGt = eCtw,

or {R-\-r)C=ew-P.

The quantity on the right-hand side is called the electro-

motive force of the cell.

We see that it is equal to the sum of the products of

the current through the external circuit and its resistance

and the current through the battery and its resistance.

We shall now prove that if the zinc and copper plates

instead of being connected by a wire are connected to

the plates of a condenser, then if these plates are made
of the same material, they will be at different potentials

and the difference between their potentials will equal the

electromotive force of the battery. For if the system has

got into a state of equilibrium, then when any change

is made in the electrical conditions, the increase in the

electrical energy must equal the energy lost in making

the change. Suppose that the potential of the plate of

the condenser in connection with the copper plate in the

battery exceeds by E the potential of the other plate

of the condenser in connection with the zinc plate of

the battery, and suppose now that the electrical state is

altered by a quantity of electricity equal to BQ passing

from the plate of the condenser at low potential to the

19—2
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plate at high potential through the battery from the zinc

to the copper. The electrical energy of the condenser is

increased by ^8Q, while the passage of this quantity of

electricity will develop at the junctions of the different

substances in the cell a quantity of heat whose mechanical

equivalent is equal to PBQ. If t were the time this

charge took to pass from the one plate to the other the

average current would be equal to BQ/t, hence the heat

developed in accordance with Joule's law would be pro-

portional to (SQ/ty X ^ or to (SQy/t ; by making SQ small

enough we can make this excessively small compared with

either ESQ or P8Q which depend on the first powers of

SQ. The loss of chemical energy is eSQ x w, and this

must be equal to the heat produced plus the increase in

the electrical energy, hence we have

EBQ 4- PBQ = eSQ x w,

or E = ew — P,

that is, the difference of potential between the plates of

the condenser is equal to the electromotive force of the

battery. Hence we can determine this electromotive

force by measuring the difference of potential.

The simple form of voltaic cell just described does

not give a constant E. M. F., as the hydrogen produced

by the chemical action does not all escape from the cell

;

some of it adheres to the copper plate, forming a gaseous

film which increases the resistance and diminishes the

electromotive force of the cell.

The copper plate with the hydrogen adhering to it is

said to be polarized and to be the seat of a back electro-

motive force which makes the electromotive force of the

battery less than its maximum theoretical value. We
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shall perhaps get a clearer view of the condition of the

copper plate with its film of hydrogen from the following

considerations. The hydrogen in an electrolyte follows

the current and thus behaves as if it had a positive

charge of electricity ; if now the atoms of hydrogen when

they come up to the copper plate do not at once give up

their charges to the plate but remain charged at a small

distance from it, then we shall have what is equivalent

to a charged parallel plate condenser at the copper plate,

the positively charged hydrogen atoms corresponding to

the positive plate of the condenser, and the copper to the

negative plate. The condenser will tend to discharge itself

through the cell in the direction of the arrow (Fig. 87),

Zn Copper

Fig. 87.

i.e. in the opposite direction to that of the current through

the cell ; the difference of potential between the plates of

this condenser corresponds to the back electromotive force

due to the polarization of the copper plate.

Another cause of inconstancy is that the zinc sulphate

formed acts as an electrolyte and carries some of the

current ; the zinc, travelling with the current, is deposited

against the copper plate and alters the electromotive force

of the cell.

The deposition of hydrogen against the positive plate
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of the battery, and its liberation as free hydrogen can be

avoided in several ways ; in the Bichromate Battery the

copper plate is replaced by carbon, and potassium bichro-

mate is added to the sulphuric acid ; as the bichromate is

an active oxidising agent it oxidises the hydrogen as soon

as it is formed and thus prevents its accumulation on the

positive plate.

180. DanielPs Cell. In Daniell's cell, the zinc and

sulphuric acid are enclosed in a porous pot (Fig. 88) made

ZINC ROD

SULPHURIC ACID SOL.

POROUS POT

CORPER SULPHATE SOL

COPPER CYLINDER

Fig. 88.

of unglazed earthenware; the copper electrode usually

takes the shape of a cylindrical copper vessel, in which

the porous pot is placed. The space between the porous

pot and the copper is filled with a saturated solution of

copper sulphate in which crystals of copper sulphate are

placed to replace the copper sulphate used up during the

working of the cell. When the sulphuric acid acts upon

the zinc, zinc sulphate is formed and hydrogen gas libe-

rated ; the hydrogen following the current, travels through

the porous pot, where it meets with the copper sulphate,
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chemical action takes place and sulphuric acid is formed

and copper set free. This copper travels to the copper

cylinder and is there deposited. Thus in this cell instead

of hydrogen being deposited on the copper, we have copper

deposited, so that no change takes place in the condition

of the positive pole and there is no polarization.

181. Calculation of E. M. F. of DanielPs Cell.

The chemical energy lost in the cell during the passage

of one unit of electricity may be calculated as follows

:

in the porous pot we have one electro-chemical equivalent

of zinc sulphate formed while one equivalent of sulphuric

acid disappears ; in the fluid outside this pot one equiva-

lent of sulphuric acid is formed and one equivalent of

copper sulphate disappears, thus the chemical energy lost

is that which is lost when the copper in one electro-

chemical equivalent of copper sulphate is replaced by the

equivalent quantity of zinc.

Now the electro-chemical equivalent of copper is

'003261 grammes, and when 1 gramme of copper is

dissolved in sulphuric acid the heat given out is 909'5

thermal units or 909*5 x 4*2 x 10' mechanical units, since

the mechanical equivalent of heat on the c. G. s. system

is 4'2 X 10'. Thus the heat given out when one electro-

chemical equivalent of copper is dissolved in sulphuric

acid is '003261 x 909*5 x 42 x 10'= 1*245 x 10^ in me-

chanical units.

The electro-chemical equivalent of zinc is '003364

grammes, and the heat developed when 1 gramme of

zinc is dissolved in sulphuric acid is 1670 x 4*2 x 10' in

mechanical units. Hence the heat developed when one

electro-chemical equivalent of zinc is dissolved in sulphuric
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acid is -003364 x 1670 x 4*2 x 107 = 2-359 x 10« mechanical

units.

Thus the loss of chemical energy in the porous pot is

2*359 X 10^ while the gain in the copper sulphate is

1-245 X 10«, thus the total loss is 1-114 x lO^. Thus ew

in Art. 179=1-114x10^. The electromotive force of

a Daniell's cell is about 1-028 x 10^ We see from the

near agreement of these values that the reversible ther-

mal effects (see Art. 179) are of relatively small importance,

though if we ascribe the difference between the two num-
bers to this cause these effects would be much greater

than those observed when a current flows across the

junction of two metals.

182. In Grove's cell the hydrogen at the positive

pole is got rid of by oxidising it by strong nitric acid. The

zinc and sulphuric acid are placed in a porous pot, and this

is placed in a larger cell of glazed earthenware containing

nitric acid ; the positive pole is a strip of platinum foil

dipping into the nitric acid. This cell has a large electro-

motive force, viz. 1*97 x 10^

Bunsen's cell is a modification of Grove's, in which

the platinum is replaced by hard gas carbon.

183. Clark's cell, which on account of its constancy

has been legalized as the standard of electromotive force,

is made as follows. The outer vessel (Fig. 89) is a small

test tube containing a glass tube down which a platinum

wire passes ; a quantity of pure redistilled mercury suffi-

cient to cover the end of this wire is then poured into

the tube ; on the mercury rests a paste made by mixing

mercurous sulphate, saturated zinc sulphate and a little
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zinc oxide to neutralize it ; a rod of pure zinc dips into

the paste and is held in position by passing through a

MARINE GLUE

ZINC SULPHATE SOLUTION

ZINC SULPHATE CRYSTALS

MERCUROUS SULPHATE

PLATINUM WIRE

Fig. 89.

cork in the mouth of the test tube. The electromotive

force of this cell is 1'4!34 x 10^ at 15° Centigrade.

184. Polarization. When two platinum plates are

immersed in a cell containing acidulated water, and a

current from a battery is sent from one plate to the other

through the water, we find that the current for some time

after it begins to flow is not steady but keeps diminishing.

If we observe the condition of the plates, we shall find

that oxygen adheres to the plate A, at which the current

enters the cell, while hydrogen adheres to the other plate

B, by which the current leaves the cell. If these plates

are now disconnected from the battery and connected by

a wire a current will flow round the circuit so formed,

the current going from the plate B to the plate A
through the electrolyte and from A to B through the

wire. This current is thus in the opposite direction

to that which originally passed through the cell. The
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plates are said to be polarized, and the e.m.f. round the

circuit, when they are first connected by the wire, is called

the electromotive force of polarization. When the plates

are disconnected from the battery and connected by the

wire the hydrogen and oxygen gradually disappear from

the plates as the current passes. In fact we may regard

the polarized plates as forming a voltaic battery, in which

the chemical action maintaining the current is the com-

bination of hydrogen and oxygen to form water. Though
hydrogen and oxygen do not combine at ordinary tem-

peratures if merely mixed together, yet the oxygen and

hydrogen condensed on the platinum plates combine

readily as soon as these plates are connected by a wire

so as to make the oxygen and hydrogen parts of a closed

electrical circuit. There are numerous other examples of

the way in which the formation of such a circuit facilitates

chemical combination.

185. A Finite Electromotive Force is required

to liberate the Ions from an electrolyte. This follows

at once by the principle of the Conservation of Energy

if we assume the truth of Faraday's Law of Electrolysis.

Thus suppose for example that we have a single Daniell's

cell placed in series with an electrolytic cell containing

acidulated water; then if this arrangement could produce

a current which would liberate hydrogen and oxygen from

the electrolytic cell, for each electro-chemical equivalent of

zinc consumed in the battery an electro-chemical equiva-

lent of water would be decomposed in the electrolytic cell.

Now when one electro-chemical equivalent of hydrogen

combines with oxygen to form water, 1*4<7 x 10^ mechanical

units of heat are produced, and the decomposition of one
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electro-chemical equivalent of water into free hydrogen

and oxygen would therefore correspond to the gain of this

amount of energy. But for each electro-chemical equi-

valent of zinc consumed in the battery the chemical energy

lost is (Art. 181) equal to 1*114 x 10^ mechanical units.

Hence we see that if the water in the electrolytic cell

were decomposed, 3'56 x 10'' units of energy would be

gained for each unit of electricity that passed through

the cell : as this is not in accordance with the principle

of the Conservation of Energy the decomposition of the

water cannot go on. We see that electrolytic decom-

position can only go on when the loss of energy in the

battery is greater than the gain of energy in the electro-

lytic cell.

If we attempt to decompose an electrolyte, acidulated

water for example, by an insufficient electromotive force

the following phenomena occur. When the battery is

first connected to the cell a current of electricity runs

through the cell, hydrogen travelling with the current to

the plate where the current leaves the cell, oxygen

travelling up against the current to the other plate.

Neither the hydrogen nor the oxygen, however, is libe-

rated at the plates, but adheres to the plates, polarizing

them and producing a back E. M. F. which tends to stop

the current ; as the current continues to flow the amount

of gas against the plates increases, and with it the polari-

zation, until the E. M. F. of the polarization equals that of

the battery, when the current sinks to an excessively

small fraction of its original value. The current does

not stop entirely, a very small current continues to flow

through the cell. This current has however been shown

by V. Helmhoitz to be due to hydrogen and oxygen
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dissolved in the electrolytic cell and does not involve any

separation of water into free hydrogen and oxygen. The

way in which the residual current is carried is somewhat

as follows. Suppose that the battery with its small e.m.f.

has caused the current to flow through the cell until the

polarization of the plates is just sufficient to balance the

E. M. F. of the battery ; the oxygen dissolved in the water

near the hydrogen coated plate will attack the hydrogen

on this plate, combining with it to form water, and will,

by removing some of the hydrogen, reduce the polarization

of the plate ; similarly the hydrogen dissolved in the water

or it may be absorbed in the plate, will attack the oxygen

on the oxygen coated plate and reduce its polarization.

The e. m. f. of the polarization being reduced in this way

no longer balances the E. M. F. of the battery ; a current

therefore flows through the cell until the polarization

is again restored to its original value, to be again reduced

by the action of the dissolved gases. Thus in consequence

of the depolarizing action of the dissolved gases there

will be a continual current tending to keep the E. M. F.

of the polarization equal to that of the battery; this

current however is not accompanied by the liberation

of free hydrogen and oxygen and its production does not

violate the principle of the Conservation of Energy.

186. Cells in Series. When a series of voltaic cells,

Daniell's cells for example, are connected so that the zinc

pole of the first is joined up to the copper pole of the

second, the zinc pole of the second to the copper pole

of the third, and so on, the cells are said to be connected

up in series. In this case the total electromotive force of

the cells so connected up is equal to the sum of the
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electromotive forces of the individual cells. We can see

this at once if we remember (see Art. 179) that the electro-

motive force of any system is equal to the difference be-

tween the chemical energy lost, when unit of electricity

passes through the system, and the mechanical equivalent

of the reversible heat generated at junctions of different

substances: when the cells are connected in series the

same chemical changes and reversible heat effects go on

in each cell when unity of electricity passes through as

when the same quantity of electricity passes through the

cell by itself, hence the e.m.f. of the cells in series is the

sum of the e.m.f.'s of the individual cells.

The resistance of the cells when in series is the sum of

their resistances when separate. Thus if E is the E. M. F.

and r the resistance of a cell, the e.m.f. and resistance

of n such cells arranged in series are respectively nE
and nr.

187. Cells in parallel. If we have n similar cells

and connect all the copper terminals together for a new
terminal and all the zincs together for the other terminal

the cells are said to be arranged in parallel. In this case

we form what is equivalent to a large cell whose e.m.f.

is equal to E, that of any one of the cells but whose

resistance is only rjn.

188. Suppose that we have N equal cells and wish to

arrange them so as to get the greatest current through a

given external resistance R. Let the cells be divided into

m sets, each of these sets consisting of n cells in series,

and let these m sets be connected up in parallel. The
E. m. f. of the battery thus formed will be nE, its resistance

nrjin, where E and r are respectively the e.m.f. and
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resistance of one of the cells. The current through

the external resistance R will be equal to

7iE E
-r, nr R r

'

R+— -+-
m 71 m

Now nm — N, hence the denominator of this expression is

the sum of two terms whose product is given, it will

therefore be least when the terms are equal, i.e. when

n m*
or

R =— r.m

Since the denominator in this case is as small as possible

the current will have its maximum value. Since nr/m is

the resistance of the battery we see that we must arrange

the battery so as to make, if possible, the resistance of the

battery equal to the given external resistance. This

arrangement, though it gives the largest current, is not

economical, for as much heat is wasted in the battery as

is produced in the external circuit.

189. Distribution of a steady current in a System of

Conductors.

KirchhofT's Laws. The distribution of a steady

current in a network of linear conductors can be readily

determined by means of the following laws which were

formulated by Kirchhoff.

1. The algebraical sum of the currents which meet at

any point is zero.
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2. If we take any closed circuit the algebraical sum

of the products of the current and resistance in each of

the conductors in the circuit is equal to the electromotive

force in the circuit.

The first of these laws expresses that electricity is not

accumulating at any point in the system of conductors;

this must be true if the system is in a steady state.

The second follows at once from the relation (see

Art. 179)
RI-\-rI = E,

where R is the external resistance, r the resistance of the

battery whose E. M. F. is E and / the current through the

battery. For RI is the difference of potential between

the terminals of the battery, and by Ohm's law this is

equal to the sum of the products of the strength of

the current and the resistance for a series of conductors

forming a continuous link between the terminals of the

battery.

190. Wheatstone's Bridge. We shall illustrate

these laws by applying them to a very important case

of a network of conductors, the system known as the

Fig. 90.

Wheatstone's Bridge. In this system a battery is placed

in a conductor AB, and five other conductors A C, BG, AD,
BD, CD are connected up in the way shown in Fig. 90.
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Let E be the electromotive force of the battery, B the

resistance of the battery circuit AB, i.e. the resistance

of the battery itself plus the resistance of the wires con-

necting its plates to A and B. Let G be the resistance

of CD, and 6, a, a, jS the resistances of AC, BG, AD, BD
respectively. Let x be the current through the battery,

y the current through AG, z that through GD. By

Kirchhoff's first law the current through AD will be

x — y, that through GB y — z, and that through DB
X — y ^ z.

Since there is no electromotive force in the circuit

AGD we have by Kirchhoff's second law,

hy \- Gz — a{x — y) -^\

the negative sign is given to the last term because travelling

round the circuit in the direction AGD the current x-y
flows in the direction opposite to that in which we are

moving; rearranging the terms we get

(6 + a)7/+(T^- a« = (1).

Since there is no electromotive force in the circuit

GDB, we have

Gz ^- ^ {x - y -^ z) - a{y - z) = 0,

or -(a + /3)2/ + (G^ + c^ + ^)^ + ^^=0 (2).

From (1) and (2) we get

x_ ^ y
6^ (a 4- 6 + a + /3) + (6 + a) (a + ^e) (? (a + ^) + a (a + /S)

"iS^^P
^*'^^'

Since the electromotive force round the circuit AGB
is E, we have

Bx -{ by \- a {y — z) — E\
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hence by (3), we have

x={G(a + hi-a + l3) + (h-\-a)(a + l3)]

E\

3/={G^(a + /3) + a(a+/3))
E

F

a;-y={G{a + h) + b(a + ^)}

y-,= {G(a + ^) + ^(a-^h)]^

y + z = {G (a + h) + a {h + a)]

E
A
E
A
E
A

y.-w,

where

A=^BG{a + h + a + ^) + B(h + a)(a + ff)

+ G(a-h b){a + 0) -{-oL(a + I3){a -\-h)-a(aoL- hjS)

= BG(a + h^a + 0)-\-B(b + a)(a-h0)

-\-G(a + h)(oL + /3) + ahoL + a6/3 + aa/3 + hajS,

A is the sum of the products of the six resistances

B, G, a, 6, a, /3, taken three at a time, omitting the product

of any three which meet in a point.

In the expressions given in equations (4) for the

currents through the various branches of the network

of resistances, we see that the multiplier of E/A in the

expression for the current through an arm (P) (other than

CD) is the sum of the products of the resistances other

than the battery resistance and the resistance of P taken

two and two, omitting the product of any two which meet

at either of the extremities of the battery arm or at either

of the extremities of the arm P.

T. K. 20
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From these expressions we see at once that if we keep

all the resistances the same then the current in one arm

(A) due to an electromotive force E in another arm (B),

is equal to the current in (B) when the electromotive E
is placed in the arm A. This reciprocal relation is not

confined to the case of six conductors, but is true what-

ever the number of conductors may be.

We may write the expression for x given by equation

(4) in the form
E

^~ B-^R'
where

p _ G^ (g + 6) (ct + yg) + aoL^ 4- aoih + a/36 + a^h

6^(a + 6 + a+;8) + (6 + a)(a + ^) '

R is the resistance, between A and B, of the crossed

quadrilateral AGBD.

We see that R = (sum of products of the 5 resistances

of this quadrilateral taken 3 at a time : leaving out the

product of any three that meet in a point) : divided by

the sum of the products of the same resistances taken two

at a time, leaving out the product of any pair that meet

in A or B.

191. Conjugate Conductors. The current through

CD will vanish if

aa = 6/3

;

in this case ^5 and CD are said to be conjugate to each

other, they are so related that an electromotive force in

AB does not produce any current in CD: it follows from

the reciprocal relation that when this is the case an

electromotive force in CD will not produce any current

in AB.
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The condition that CD should be conjugate to AB
may be got very simply in the following way. If no current

flows down CD, G and D must be at the same potential

;

hence since <2 = 0, we have by Ohm's Law

hy = a{x- y),

since the difference of potential between A and G is

equal to that between A and D.

Since the difference of potential between G and B is

equal to that between D and B, we have

ay = ^{x-y)\

hence eliminating y owdi x — y, we get

h_a

or 6/3 = aa.

When this relation holds we may easily prove that

- (a + ^)(a+J)|
^

a + 6 + aH-/3j '

which we may write as

where S is the resistance of ADB, AGB placed in series,

P the resistance of the same conductors when in parallel,

and P' the resistance of GAD, GBD in parallel.

When AB is conjugate to CD, then in whatever

part of the network an electromotive force is placed,

the current through one of these arms is independent

of the resistance in the other. We may deduce this

from the preceding expressions for the currents in various

20—2
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arms of the circuit ; it can also be proved in the following

way, which is applicable to any number of conductors.

Suppose that an electromotive force in some branch of

the system produces a current through AB, then we may
introduce any e.m.f. we please into AB without altering

the current through its conjugate CD. We may in par-

ticular introduce such an electromotive force as would

make the current through AB vanish, without altering

the current in CD, but the effect of making the current

in AB vanish would be the same as supposing AB to

have an infinite resistance ; hence we may make the

resistance oi AB infinite without altering the current

through CD.

192. We may use Wheatstone's Bridge to get a differ-

ence of potential which is a very small fraction of that

of the battery in the Bridge. The difference of potential

between C and D is equal to Gz, i.e. to

G{aa-b^)E
A

it thus bears to E the ratio of G (aa — h^) to A. By
making aa. — bjS small we can without using either very

small or very large resistances make the ratio of the poten-

tial difference between C and D to E exceedingly small;

for example, let a =101, a =99, b = 13=100, B = G=1.
Thus we find that this ratio is nearly equal to 1/4 x 10^,

or the potential difference between C and D is only about

one four-millionth part of the E.M.F. of the battery.

193. Heat produced in the System of Con-

ductors. Assuming Joule's law (see Art. 177) we shall

show that for all possible distributions consistent with
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Kirchhoff's first law, the one that gives the minimum rate

of heat production is that which obeys the second law.

For, consider any closed circuit in a network of con-

ductors, let u, V, w ... he the currents through the arms

of this circuit as determined by Kirchhoff's laws, and

rj, Ta, ... the corresponding resistances. The rate of heat

production in this closed circuit is by Joule's law equal to

r^u^ + r^v^ + (1).

Now suppose that the currents in this circuit are

altered in the most general way possible consistent with

leaving the currents in the conductors not in the closed

circuit unaltered, and consistent also with the condition

that the algebraical sum of the currents flowing into

any point should vanish : we see that these conditions

require that all the currents in the closed circuit should

be increased or diminished by the same amount. Let

them all be increased by f ; the rate of heat production in

the circuit is now by Joule's law

n (^ +?)'+ ^^2 (v + ?)'+...

= r^ii^ -{- Vo^ -{-... + 2^ {rill -\- i\v + . . .) -^ {i\ + n^ r^-\- ...) p.

Now since the currents u, v, w are supposed to be

determined by Kirchhoff's laws

i\u + ^2?; + . . . = 0,

if there is no electromotive force in the closed circuit.

Hence the rate of heat production is equal to

n^t24-r2v' + ...+(rl + r2 + ?^3+...)f2 (2).

Of the two expressions (1) and (2) for the rate of heat

production (2) is always the greater ; hence we see that

any deviation of the currents from the values determined

by Kirchhoff's law would involve an increase in the rate

of heat production.
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194. Use of the Dissipation Function. We may
often conveniently deduce the actual distribution of the

currents by writing down F the expression for the rate of

heat production and making it a minimum, subject to the

condition that the algebraical sum of the currents which

meet in a point is zero. Or we may by the aid of this

condition express as in the example of the Wheatstone's

Bridge, the current, through the various arms in terms of

a small number of currents x, y, z, then express the rate

of heat production in terms of x, y, z.

F is often called the Dissipation Function.

When there are electromotive forces Ep, Eg in the

arms through which currents iip, Uq are flowing respec-

tively, then the actual distribution of current is that

which makes

F-2{EpUp + EgUq-\-...)

a minimum. Thus in the case of the Wheatstone's

Bridge (Art. 190)

F = Bx'' + by^ + a(y- zf- -\-Gz''+a(x- yy + p{x-y-\- zf,

and equations (4) of Art. 190 are equivalent to

^(F-2Ex) = {),

dy^ '

^^iF-2Ex) = 0,

i(F-2Ex) = 0^

which are the conditions that F— 2Ex should be a

minimum.

A very important example of the principle that

steady currents distribute themselves so as to make the
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rate of heat production as small as possible, is that of

the flow of a steady current through a uniform wire ; in

this case the rate of heat production is a minimum when

the current is uniformly distributed over the cross section

of the wire.

195. It follows from Art. 193 that if two electrodes

are connected by any network of conductors, the equivalent

resistance is in general increased, and is never diminished,

by an increase in the resistance of any arm of this net-

work.

If R is the resistance between the electrodes, i the

current flowing in at one electrode and out at the other,

then Ri^ is the rate of heat production. Let A and B
respectively denote the network before and after the

increase in resistance in one or more of its arms. By

suitable constraints we can make the distribution of

currents through A the same as that actually existing in

B. The rate of heat production in the constrained system

is however greater than that in A. Now take this con-

strained system and without altering the currents suppose

that the resistances are increased until they are the same

as in B. But since the resistances are increased without

altering the currents the rate of heat production is in-

creased, so that as this rate was greater than in A before

the resistances were increased it will a fortiori be greater

afterwards. But after the resistances were increased the

currents and resistances are the same as B, hence the rate

of heat production and therefore the resistance of B is

greater than that of A.

196. Distribution of Current through an infinite

Conductor. We shall now consider the case when the
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currents instead of being constrained to flow along wires

are free to distribute themselves through an unlimited

conductor whose conductivity is constant throughout its

volume. We shall suppose that the current is introduced

into this conductor by means of perfectly conducting

electrodes, i.e. electrodes made of a material whose specific

resistance vanishes. The currents will enter and leave these

electrodes at right angles, for a tangential current in the

conductor would correspond to a finite tangential electric

intensity in the conductor and therefore in the electrode,

but in the perfectly conducting electrode a finite electric

intensity would correspond to an infinite current. Let A
and B be the electrodes, i the current which enters at A
and leaves at B ; then we shall prove that the current at

any point P in the conductor is in the same direction as,

and numerically equal to, the electric intensity at the

same point, if we suppose the conducting material between

the electrodes to be replaced by air, and the electrodes A
and B to have charges of electricity equal to ij^ir and
— ij^TT respectively. For the current is determined by the

conditions that it is at right angles to the surfaces A
and B, and that since the current is steady, and there is

no accumulation of electricity at any part of the con-

ductor, the quantity of electricity which flows into any

region equals the quantity which flows out. Hence we
see that the outward flow over any closed surface enclos-

ing A and not B is equal to i, over any closed surface

enclosing B and not A is equal to — i, and over any closed

surface enclosing neither or both of these surfaces is zero.

But the electric intensity, when the conductor is replaced

by air and A has a charge ij^ir of positive electri-

city, while B has an equal charge of negative electricity.
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satisfies exactly the same conditions, which are sufficient to

determine it without ambiguity ; hence the current in the

conductor is equal to the electric intensity in the air and

is in the same direction. A line such that the tangent to

it at any point is in the direction of the current at that

point is called a stream-line. The stream-lines coincide

with the lines of force in the electrostatic problem.

197. If q is the intensity of the current at any point

P (i.e. the current flowing through unit area at right

angles to the stream-line at P), a the specific resistance

of the conductor, ds an element of the stream-line, then

by Ohm's law the E.M.F. between the electrodes A and B
is equal to

jaqds,

the integral being extended from the surface of A to that

of B. As (7 is constant, this is equal to

ajqds.

If F is the electric intensity at P in the electrostatic

problem, since F=q, the E.M.F. between A and B is equal

to

<TJFds\

but if V is the difference of potential between A and B
in the electrostatic problem,

V^jFds.

Hence the e.m.f. between A and B is equal to aV.

But if G is the electrostatic capacity of the two conductors,

since these have the charges i/^ir and — ij^nr respectively,

47r
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Hence the E.M.F. between A and B = -~y^,

or the resistance between A and B is equal to

We see from this that the resistance of a shell bounded

by concentric spherical surfaces, whose radii are a and b,

is equal to

The resistance per unit length of a shell of conducting

material bounded by two coaxial cylindrical surfaces whose

radii are a and b is equal to

<T , b

The resistance between two spherical electrodes whose

radii are a and b and whose centres are separated by

a distance R, where M is very large compared with either

a or 6, is equal to

^11 1_2_|
4<7r (a'^b a]'

approximately.

The resistance per unit length between two straight

parallel cylindrical wires whose radii are a and 6, and

whose axes are at a distance R apart, where R is very

large compared with a or 6, is approximately

o- , R'

^rr^'^^b'

If we have two infinite cylinders, one with a charge

of electricity E per unit length, the other with the charge

— E ; then if A and B are the centres of the sections of
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these cylinders by a plane perpendicular to the axis and

P a point in this plane, then the electrostatic potential

at P will, if the cylinders are so far apart that the elec-

tricity may be regarded as uniformly distributed over

them, be equal to

2^1og^;

thus the lines along which the electrostatic potential is

constant are those for which

-^-p == a constant quantity.

That is, they are the series of circles for which A and B
are inverse points. The lines of force are the lines which

cut these circles at right angles, i.e. they are the series of

circles passing through A and B. But the lines offeree in

the electrostatic problem coincide with the lines along

which the currents flow between two parallel cylinders as

electrodes; hence these currents flow in planes at right

angles to the axes of the cylinders, along the circles

passing through the two points in which these planes

intersect the axes of the cylinders.

Since the resistance of unit length of the cylinders is

the resistance of a distance t is

This will be the resistance of a thin lamina whose thick-

ness is t when the current is led in by circular elec-

trodes radii a and 6, if the thickness of the lamina is
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SO small that the currents are compelled to flow parallel

to the lamina. The lines of flow in this case are circles

Fig. 91.

passing through A and B; they are represented in

Fig. 91.

Since the currents flow along these circles we shall

not alter the distribution of current if we imagine the

lamina cut along one or other of these circles; hence

if the lamina is bounded by two circles such as APB,
BQB the lines of flow will be circles passing through A
and B.

To find the resistance of a lamina so bounded, con-

sider for a moment the flow through the unlimited

lamina. The current will flow from out of each electrode

approximately uniformly in all directions; hence if we

draw a series of circles intersecting at the constant

angle a at J. and B, we may regard the lamina as a form

of the conductors between the stream-lines placed in
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multiple arc, the number of these conductors is — , and

since the same current flows through each, the resistance

of any one of them is 27r/a of the whole resistance ; thus

the resistance of one of these conductors is

at ^^ ah
'

Thus, for example, if the electrodes are placed on the

cii'cumference of a complete circle, a = tt and the resist-

ance of the lamina is

irt
^^ ah

'

198. Conditions satisfied when a current flows

from one medium to another. Let AB hQ q> portion

of the surface of separation of two media, o-i the specific

resistance of the upper medium, o-^ that of the lower, let

6 and <^ be the angles which the directions of the current

in the upper and lower media respectively make with the

normal to the surface. Let q^, q^ be the intensities of

the currents in the two media, i.e. the amount of current

flowing across unit areas drawn at right angles to the

direction of flow. Then since, when things are in a steady

state, there is no increase or decrease in the electricity at

the junction of the two media, the currents along the

normal must be the same in the two media.

Thus qi cos 6 = q2 cos
(f) (1).

Again, the electric intensity parallel to the surface

must be the same in the two media, and since the elec-

tric intensity in any direction is equal to the specific
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resistance of the medium multiplied by the intensity of

the current in that direction, we have

o-i^i sin 9 = o-25'2 sin (^ (2),

hence from (1) and (2) we have

o-j tan 6 = (Ti tan <^.

This relation between the directions of the currents

in the two media is identical in form with that given

in Arts. 74 and 157, for the relation between the direc-

tions of the lines of electric intensity and of magnetic

force when these lines pass from one medium to another.

We see that if o-j is greater than o-g, then
(f>

is greater

than 6\ hence when the current flows from a poor con-

ductor into a better one the current is bent away from the

normal.

The bending of the current as it flows from one

medium into another is illustrated in Fig. 92, which is

Copper

taken from a paper by Quincke. The figure represents

the current lines in a circular lamina, one half of which
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is lead, the other half copper, the electrodes being placed

on the circumference. It shows how the currents in going

from the worse conductor (the lead) to the better one (the

copper) get bent away from the normal to the surface of

separation.

The electric intensity parallel to the normal in the

medium whose specific resistance is (r^ is

(Tiqi cos 6,

that in the medium whose specific resistance is a^ is

0-2^2 cos </). Since qicosd is by equation (1), equal to

^2 cos (j), we see that if o-j differs from o-^ the normal

electric intensity will be discontinuous at the surface of

separation.

If the normal electric intensity is discontinuous there

must be a distribution of electricity over the surface

such that 4f7r times the surface density of this distribu-

tion is equal to the discontinuity in the normal electric

intensity ; hence if s is the surface intensity of the elec-

tricity on the surface, and if the current is flowing from

the first medium to the second

4<7rs = 0-2^2 cos (/) — a^qi cos 6

= (a-2 — (Tj) ^1 COS 6.



CHAPTER X.

Magnetic Force due to Currents.

199. It was not until 1820 that it was known that an

electric current exerted any mechanical effect on a magnet

in its vicinity. In that year however Oersted, a Professor

at Copenhagen, showed that a magnet was deflected when
placed near a wire conveying an electric current.

When a long straight wire with a current flowing

through it was held near the magnet, the magnet tended

to place itself at right angles both to the wire and the

perpendicular let fall from the centre of the magnet on

the wire.

The lines of magnetic force due to a long straight wire

may be readily shown by making the wire pass through

a hole in a card-board disc over which iron filings

are sprinkled. When the disc is at right angles to the

wire, the iron filings will arrange themselves in circles

when the current is flowing ; these circles are concentric,

having as their centre the point where the wire crosses

the plane of the disc.

The connection between the direction of the current

and that of the magnetic force is such that if the axis
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of a right-handed screw (i.e. an ordinary cork-screw) coin-

cides with the direction of the current, then if the screw

is screwed forward into a fixed nut in the direction of the

current the magnetic force at a point P is in the direc-

tion in which P would move if it were rigidly attached to

the screw.

Many students will find that they can more easily

remember the connection between the direction of the

current and the magnetic force by means of a figure

than by a verbal rule. The following figure exhibits this

relation.

200. Ampere^s law for the magnetic field due
to any closed linear circuit. This may be stated as

follows: At any point P, not in the wire conveying the

current, the magnetic forces due to the current can be

derived from a potential H where fl = Gio), i being the

current flowing round the circuit, w the solid angle sub-

tended by the circuit at P, and G a constant which

depends on the unit in which the current is expressed.

When the unit of current is what is known as the

'electromagnetic unit,' see Chap, xii., G is unity. We
T. E. 21
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shall in the following investigations suppose that the

current is measured in terms of this unit.

We see from Art. 133 that this is equivalent to saying

that the magnetic field due to a current is the same

as that due to a magnetic shell whose strength is i,

the boundary of the shell coinciding with the circuit con-

veying the current. The direction of magnetization of

the shell is related to the direction of the current in such

a way that if the observer stands on the side of the shell

which is charged with positive magnetism and looks at

the current, the current in front of him flows from right

to left.

The best proof of the truth of Ampere's law is that

though its consequences are being daily compared with

the results of experiments, no discrepancy has ever been

detected.

The potential due to the magnetic shell at a point

in the substance of the shell is not the same as that due

to the electric circuit, nor is the magnetic force at such a

point the same in the two cases. This however does not

cause any difficulty in determining the magnetic force due

to a circuit at any point P, for, since only the boundary of

the equivalent magnetic shell is fixed, we can always

arrange the shell in such a way that it does not pass

through P.

We can easily prove however, that at any point,

whether in the substance of the shell or not, the mag-

netic force due to the circuit is equal to the magnetic

induction due to the shell. For let P be a point in the

substance of the shell, then though the magnetic force due

to the shell will not be the same as at P' a point just
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outside the shell, yet the force due to the current at P'

will differ from that at P by an amount which vanishes

when the distance PP' is indefinitely diminished. The

magnetic force at P' due to the current is the same as

the magnetic force at P' due to the shell. Since the shell

is magnetized along the normal, the tangential magnetic

force in the shell is equal to the tangential magnetic

induction. Now, by Art. 157, the tangential magnetic

force at P\ a point just outside the shell, is equal to the

tangential magnetic force at P, a point just inside the

shell, and this, as we have just seen, is equal to the tan-

gential magnetic induction at P. Again, by Art. 157, the

normal magnetic force at P' is equal to the normal mag-

netic induction at P. Thus since the normal force at P'

is equal to the normal induction at P, and the tangential

force at P' is equal to the tangential induction at P,

the magnetic force at P' is equal in magnitude and

direction to the magnetic induction at P. Since the

magnetic force at P due to the current is equal to the

magnetic force at P' due to the shell, we see that

the magnetic force due to the current at P is equal

to the magnetic induction due to the shell at P.

Thus since the lines of magnetic induction due to the

shell form a series of closed curves passing through the

shell, the lines of magnetic force due to a current flowing

round a closed linear circuit will be a series of closed

curves threading the circuit.

201. Work done in taking a magnetic pole

round a closed curve in a magnetic field due to

electric currents. Let EFGH be the closed curve tra-

versed by the magnetic pole; if this curve threads the

21—2
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circuit traversed by the current, then the magnetic shell

whose magnetic effect is equivalent to that of the current

must cut the curve, let it do so in PQ. Let a, b, c be the

components of magnetic induction due to the shell at any

point, a, ff, 7 the components of the magnetic force at the

same point, and A, B, C the components of the intensity

of magnetization. Since the magnetic force due to the

circuit is the same as the magnetic induction due to the

shell, W, the work done on the unit pole when it traverses

the closed curve EFGH under the influence of the

electrical currents, is given by the equation

W = l{adx 4- hdy + cdz),

the integral being taken round the closed curve.

Hence we have by Art. 152

W = /{(a + ^irA) dx-\-{^ + ^irB) c^y + (7 + ^irC) dz\,

or since by Art. 133 the line integral of the magnetic

force due to the shell vanishes when taken round a closed

circuit, we have
j{oLdx + ^dy + r^dz) = ;

hence W = ^ir^iAdx + Bdy + Cdz),

where the integral is now taken from F to Q, the points

where the shell cuts the curve EFGH, since it is only

between P and Q that A, B, do not vanish.
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If
(f)

is the strength of the magnetic shell, and the

direction of integration is from the negative to the positive

side of the shell

j(Ada; + Bdy + Cdz) = ^ ;

hence W = 47r<^.

If i is the strength of the current which the shell

replaces

</) = i,

see Art. 200 ; hence
W = 47n.

Thus the work dgne on unit pole when it travels round

a closed curve which threads the circuit once in the

positive direction, i.e. when the pole enters at the negative

side of the equivalent shell and leaves at the positive, is

constant whatever be the path, and is equal to

47ri.

If the closed curve along which the unit pole travels

does not thread the circuit of the current, the work done

on the unit pole vanishes, for we can draw the equivalent

shell so as to be wholly outside the path of the pole, and

in this case A, B, C vanish at all points of the path.

If the path along which the unit pole is taken threads

the circuit n times in the positive direction (the positive

direction being when the pole in its path enters the

equivalent magnetic shell at the negative side and leaves

it at the positive), and m times in the negative direction,

the work done on the pole on its path is equal to

^iri {n — m).

The value of J{adx + fidy + ydz) taken round a closed

circuit is independent of the nature of the material which

is traversed by the circuit ; it is the same, if the currents
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are unaltered, whether the circuit lies entirely in air,

entirely in iron or any other magnetizable medium, or

partly in air and partly in iron. For the field may be

regarded as made up of two parts, one, in which the

components of the magnetic force are Wi, A, 71 due to the

magnetic action of the currents when there is nothing

but air in the neighbourhood; the other a field whose

components are a^, ^0, 70 due to the magnetization in-

duced or permanent of the irou.

Hence

J(adx + I3dy + ydz)

= /((«! + ao) due + (A + ft) dy + (71 + 70) dz}.

Since Wo, ft, 70 are the forces due to a distribution

of magnets the work done by these forces on a unit pole

taken round a closed circuit must vanish, hence

J{a4x + ^ody + yodz) = 0,

when the integral is taken round any closed circuit.

Thus
J(adw + fidy + f^dz) = f(aida) + ^ydy + yidz),

and

/(tticZa? + ^^dy + yidz)

= 4f7r (sum of currents embraced by the circuits).

Thus J{adw + 0dy + ydz) depends merely upon the

currents in the field and not upon the nature of the

material intersected by the circuit.

202. Magnetic force due to an infinitely long

straight current^ in a field in which there are no

magnetizable substances. In this case the magnetic

force is numerically equal to the magnetic induction, and

hence the total normal magnetic force taken over any

closed surface vanishes. Take as the closed surface a
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right circular cylinder with the current for axis, and let

R be the radial magnetic force at any point of the curved

surface of this cylinder ; by symmetry R is constant over

the curved surface. Since the current is infinitely long

the magnetic force will not vary as we move parallel to

the wire conveying the current ; hence the normal mag-

netic force taken over one of the plane ends will cancel

that taken over the other. Thus, if S is the curved surface

of the cylinder, the total magnetic force taken over the

cylinder is RS, and since this vanishes, R must vanish

;

hence there is no radial magnetic force due to the

current.

To find T the tangential magnetic force, let P be

any point, and OP the perpendicular let fall from P
on the current ; T is the magnetic force at right angles

to OP and to the direction of the current. With as

centre and radius OP describe in a plane at right angles

to the current a circle ; at each point on the circum-

ference of this circle the tangential magnetic force will

by symmetry be constant, and equal to T. The work

done when unit pole is taken round this circle is 27rrT,

and since the path encircles the current once this must

by Art. 201 be equal to ^iri, if i is the strength of the

current; hence we have

or the tangential magnetic force varies inversely a^ the

distance from the current.

We shall now show that the magnetic force parallel to

the current vanishes.

We can do this by regarding the straight circuit as

the limit of a circular one with a very large radius.
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Consider the magnetic force at a point P due to the

circular current. Through P draw a circle in a plane

parallel to that of the current, so that the line joining 0,

the centre of this circle, to the centre of the circle in which

the current is flowing is perpendicular to the planes of

these circles. Then if T is the magnetic force along the

tangent to this circle at P, T will be, by symmetry, the

tangential force at each point of this circle. Hence the

work done in taking unit pole round the circumference of

this circle is ^irOP . T, this must however vanish as the

circle does not enclose any current, thus T must be zero.

Proceeding to the limit when the radius of the circle is

indefinitely increased we see that the magnetic force due

to a straight current has no component parallel to the

current.

Thus the lines of magnetic force due to the long

straight current are a series of circles whose centres are

on the axis of the current and their planes at right angles

to the current. The direction of the magnetic force is

related to that of the current in the way shown in the

diagram, Fig. 93 ; we see that the directions of current and

magnetic force are related in the same way as the direc-

tions of translation and rotation in a right-handed screw.

The magnetic force at a point P not in the current

itself is thus derivable from a potential O, where

n = ^id ± 4!7rni,

where 6 is the angle PO, the perpendicular let fall from

P on the axis of the current, makes with a fixed line in

the plane through at right angles to the current : 7i

is an integer. The potential is a multiple valued function

having at each point an infinite series of values differing
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from each other by multiples of 47ri, which is the work

done in taking unit magnetic pole round a closed circuit

emb^a-cing the current. This indeterminateness in the

potential arises from the fact that the work done on

unit pole as it goes from one point P to another point

Q, depends not merely on the relative positions of P and

Q but also on the number of times the pole in its path

from P to Q encircles the current.

203. Magnetic force inside the conductor con-

veying the current. When the current is flowing

symmetrically through a circular cylinder, we can easily

find the magnetic force at a point inside the cylinder.

Let be the centre of a cross section of the conductor,

and P a point at which the tangential force T is required
;

in the plane of the section draw a circle whose centre is

and radius OP. The work done in taking unit pole

round this circle is ^irOP . T, this by Art. 201 is equal to

4>7r times the current enclosed by the circle. Hence we

have

27rOP . T=4<7r (current enclosed by the circle with

centre and radius OP).

If the current is all outside this circle, the right-hand

side of this equation vanishes: hence Evanishes and there

is no magnetic force. Thus there is no magnetic force

in the interior of a cylindrical tube conveying a current.

If the current is uniformly distributed over the cross

section, and i is the total current flowing through the

cylinder whose radius we shall denote by a, the current

through the circle whose radius is OP is equal to

.OP'
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Hence

Thus when the current is uniformly distributed, the

magnetic force inside the cylinder varies directly as the

distance from the axis ; outside the cylinder it varies in-

versely as this distance.

204. The total normal magnetic induction through

any cylindric surface passing through two lines which inter-

sect a plane at right angles to the current in the points

A and B, Fig. 95, is the same whatever be the shape of the

surface connecting these lines : this follows at once from

the principle that the total magnetic induction over any

closed surface is zero. Let us take the cylindrical surface

such that ifB is the point nearest to 0, the normal section

Fig. 95.

of the surface is the circular arc BG and the radial portion

GA. Since the magnetic force is everywhere tangential
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to BC no tube of force passes through the portion corre-

sponding to BC ; if r is the distance of any point P on

GA from 0, the magnetic force at P is

2i

hence the number of tubes of magnetic force passing

through the portion corresponding to AC is

/,

o^2i. ^., OA
, —dr=2i log Y^

oc r ^ DC

and this represents the number passing through each

unit of length of any cylindric surface passing through

A and B.

205. Two infinitely long^ straight parallel cur-

rents flowing in opposite directions. Let A and B,

Fig. 96, be the points where the axes of the currents

intersect a plane drawn at right angles to the direction

of the currents. Let the direction of the current at A

be downwards through the paper, that at B upwards ; if i

is the strength of either current, the magnetic potential

at a point P is, Art. 202, equal to

2i [< PAB ± 2'7rn] - 2i [ir-< PBA ± 21^1].
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This may be written

47n (n + m) - < APB x 2i
;

hence along an equipotential line the angle APB is con-

stant, hence the equipotential lines are the series of circles

passing through AB.

The lines of magnetic force are at right angles to the

equipotential lines, they are therefore the series of circles

having their centres along AB such that the tangents to

them from 0, the middle point of AB, are of the constant

length OA.

The lines of magnetic force and the equipotential

lines are represented in Fig. 97.

Fig. 97.

The direction of the magnetic force is easily found

as follows. If PT is the direction of the magnetic force

at P, then since PT is the normal to the circle round
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APB, the angle BPT is equal to the complement of the

angle PAB.

The magnetic force i? at P is the resultant of the

forces 2ilAP at right angles to ^P and ^ijBP at right

angles to BP. Resolving these along PT, we have

P = -f' cos ABP + -^ cos BAPAP BP

2iAB
AP.BP'

Thus the intensity of the magnetic force at P varies

inversely as the product of the distances of P from A
and B.

At a point on the line bisecting AB at right angles

AP = BP, and along this line, which may be called the

axis of the current, the magnetic force is inversely pro-

portional to the square of the. distance from A and B;
the direction of the force is parallel to the axis.

At a point whose distances from A and B are large

compared with AB we may put AP = BP = OP, in this

case the magnetic force varies inversely as OP-^, and the

direction of the force makes with OP the same angle as

OP makes with the line at right angles to AB.

206. Number of tubes of magnetic force due to

the two currents which pass through a circuit con-

sisting of two parallel wires. Let ^, P be the points

where the axes of the two currents intersect a plane
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wires of the circuit cut the same plane. Then, Art. 204,

the number of tubes of magnetic force due to A which

AlG
pass through GB per unit length = 1% log -j-j. . Similarly

the number which pass through GB and are due to the

current B is

-2*^og-g^;

hence the number through GB per unit length due to the

current i at A and — i at B, is

-.j, AG . BC\

We see from the symmetry of the expression that this

is the number which would pass through the circuit AB
due to currents H- i and — i at G and B respectively.

When the circuits AB, GB are so situated that when

the total number of tubes passing through GB due to the

current in A, B is zero, the circuits AB, GB are said to

be conjugate to each other. The condition for this is that

loe: -i-FT—rrr; should vanish, or that
^ AB . BG

AG_AB
BG~ BB'

another way of stating this result is that G and B must

be two points on the same line of magnetic force due

to the currents at A and B; this is equivalent to the

condition that A and B should be points on a line of

magnetic force due to equal and opposite currents at

G and B. Since the lines of magnetic force due to the
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currents A and B are a series of circles with their centres

on AB it follows that if CD is conjugate to AB it will

remain conjugate however CD is rotated round the point

0', 0' being the point where the line bisecting CD at right

angles intersects AB.

A case of considerable practical importance is when

we have two equal circuits AB and CD, the current

through A being in the same direction as that through

G and that through B in the same direction as that

through D,

Let us consider the case when AB and CD are equal

and parallel and so placed that the points A, B, D, C are

at the corners of a rectangle. Then if i is the current

flowing round each of the circuits ; fl the magnetic

potential at a point P will, by Art 202, be given by

the equation

n = — 2i6 — 2i(j) 4- constant,

where 6 and </> are the angles subtended respectively

by AB and CD at P.

The lines of magnetic force are the curves which cut

these at right angles, along such a line

is constant, where ?'i, 7\, r.^, r^ are the distances of a point

on the line from A, B, C, D respectively.

The lines of magnetic force are represented in Fig. 98.

There are two points E, F where the magnetic force

vanishes ; these points are on the line drawn through 0,

the centre of the rectangle, parallel to the sides A B and

CD\ we can easily prove that OE is equal to OA,
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At a point P on the axis of the current, i.e. on the line

through at right angles to AB, the magnetic force is

parallel to the axis and is by Art. 205 equal to

2i.AB' 2^ . CD

p

if OP = X, AB
equal to

Fig. 98.

2a, AG = 2d, the magnetic force at P is

4m
4-

4m
a^ -}- (a) -{ df a' + id-xf

This is, neglecting the fourth and higher powers of x,

equal to

8m f Sd' - g^ J

a^ + rf^l (a^ + rfO'*"r

thus, if VScZ = a, the term in x- disappears and the lowest

power of X which appears in the expression for the

magnetic force is the fourth. Thus with this relation

between the size of the coils and the distance between

them the force near varies very slowly as we move

along the axis.
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The number of tubes of magnetic force which pass

through one circuit when a current i flows round the other

may, by using the result given in Art. 206, easily be proved

to be equal to

4^ log
BG
AG'

207. Direct and return currents flowing^ uni-

formly through two parallel and infinite planes.

K

3

L

N r^

Fm. 99.

Let the two parallel planes be at right angles to

the plane of the paper and let this plane intersect them

in the lines AB, CD. Let a current i flow upwards

at right angles to the plane of the paper through each

unit length oiAB and downwards through each unit length

of CD. Let EF be the section of the plane parallel to

AB and CD and midway between them. We shall prove

that the magnetic force between the planes is uniform

and parallel to EF, being thus parallel to the planes in

which the currents are flowing and at right angles to the

currents.

We shall begin by proving that the magnetic force

has no component at right angles to the planes in which

the currents are flowing. This is evidently true by

T. E. 22
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symmetry at all points in the plane midway between

AB and CD; we can prove it is true at all points in

the following way. Take. a rectangular parallelepiped one

of whose faces is in the plane whose section is EF, let

another pair of faces be parallel to the plane of the paper

and the third pair perpendicular to the line EF, The

total normal magnetic induction over this closed surface

vanishes. Since the currents are uniformly distributed

in the infinite planes, the magnetic induction will be the

same at all points in a plane parallel to those in which the

currents are flowing. Hence the total magnetic induction

over the pairs of faces of the parallelepiped which are at

right angles to the parallel planes will vanish : for the

induction at a point on one face will be equal to that at

a corresponding point on the opposite face, and in the one

case it will be along the inward normal, in the other along

the outward. Hence since the total induction over the

parallelepiped is zero the induction over one of the faces

parallel to the planes must be equal and opposite to that

over the opposite face. But one of these faces is in the

plane EF where the magnetic induction normal to the

face vanishes ; hence the total normal induction over the

other face must vanish, and since the induction is the

same at each point at the face the induction can have no

component at right angles to this face, i.e. at right angles

to the planes in which the currents are flowing. This

proof applies to all parts of the field, whether between

the planes or outside them.

To prove that the force parallel to the currents

vanishes, we take a rectangle PQRS with two sides PQ,

RS parallel to the currents, the other sides PS, QR being

at right angles to the planes of the currents. No current
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flows perpendicularly through this rectangle, hence (Art.

201) the work done when unit magnetic pole is taken

round its circumference is zero. But since the magnetic

force parallel to PS, RQ vanishes, the work done on unit

pole, if^ is the force along PQ, F' that along RS, is equal to

{F'-F')PQ.

Since this vanishes F=F', i.e. F is constant throughout

the field, and since it vanishes at an infinite distance it

must vanish throughout the field.

We have now proved that throughout the field the

components of the magnetic force in two directions at

right angles to each other vanish, hence the magnetic

force, where it exists, must be parallel to EF, Fig. 99.

By drawing a rectangle in the space outside the planes

with one pair of its sides parallel to EF we can prove

that the force parallel to EF also vanishes outside the

planes, so that in this region there is no magnetic force.

To find the magnitude of the magnetic force H between

the planes, take a rectangle such as LMNK, Fig. 99,

cutting one of the planes, the sides of the rectangle being

respectively parallel and perpendicular to EF. The quan-

tity of current flowing through this rectangle is i x LM,
since i flows through each unit of length of the plane;

hence 47ri x LM is equal to the work done in taking unit

magnetic pole round the rectangle. But this work is

H X LM, since no work is done when the pole is moving

along MN, NK and KL, hence we have

HxLM=4>irixLM,
r H = 4>7n.

Thus the magnetic force is independent of the distance

between the planes.

22—2
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208. Solenoid. We can apply exactly the same
method to the very important case of an infinitely long

right circular solenoid, i.e. an infinitely long right circular

cylinder round which currents are flowing in planes

perpendicular to the axis. Such a solenoid may be con-

structed by winding a right circular cylinder uniformly

with wire, the planes of the winding being at right angles

to the axis of the cylinder, so that between any two planes

at right angles to the axis and at unit distance apart there

are the same number of turns of wire. We can show by

the same method as in Art. 207, that inside the cylinder

the radial magnetic force vanishes, and that the force

parallel to the axis of the cylinder is uniform, that out-

side the cylinder the magnetic force vanishes : and that

if H is the magnetic force inside the cylinder parallel to

the axis

II=4f7r (current flowing between two planes separated

by unit distance).

If there are n turns of wire wound round each unit

length of the cylinder and i is the current flowing through

the wire, this equation is equivalent to

H=4)Trm.

The preceding result is true whatever be the shape

of the cross section of the cylinder on which the wire is

wound, provided the number of turns of wire between two

parallel planes at unit distance apart perpendicular to the

axis of the cylinder is uniform.

Endless Solenoids. Near the ends of a straight

solenoid the magnetic field is not uniform and ceases to be

parallel to the axis of the cylinder and equal to 4f7rni. We
can, however, avoid this irregularity if we wind the wire
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on a ring instead of on a straight cylinder. Suppose the

ring is generated by the revolution of a plane area about

an axis in its own plane which does not cut it, and let the

ring be wound with wire so that the windings are in planes

through the axis of the ring and so that the number of

windings between two planes which make an angle 6 with

each other is equal to nO-l^ir ; n is thus the whole number

of windings on the ring. Then we can prove as in Art.

207 that the magnetic force vanishes outside the solenoid,

and that inside the solenoid the lines of magnetic force

are circles having their centres on the axis of the solenoid

and their planes at right angles to the axis. Let H be

the magnetic force at a distance r from this axis ; the work

done on unit pole when taken round a circle whose radius

is r and whose centre is on the axis and plane perpen-

dicular to it is 2'7rrH ; this by Art. 201 is equal to 47r times

the current flowing through this circle, and is thus equal

to 47^?^^, if i is the current flowing through one of the turns

of wire. Hence

^irrH = 4>'jrni

or H= .

r

Thus the force is inversely proportional to the distance

from the axis.

The preceding proof will apply if the solenoid is wound
round a closed iron ring ; if however there is a gap in the

iron it requires modification.

Let Fig. 100 represent a section of the solenoid and

suppose that ABDG is a gap in the iron, the faces of

the iron being planes passing through the axis of the

solenoid. Let this axis cut the plane of the paper in 0.
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Let P be a point on the face of one of the gaps, B the

magnetic induction in the iron at right angles to OP,

Fig. 100.

then since the normal magnetic induction is continuous

B will also be the magnetic induction in the air. Hence

if /jl is the magnetic permeability of the iron, the magnetic

force in the iron is B/jn while that in the air is B. If

OP = r, the work done in taking unit pole round a circle

whose radius is r is

— (27r-0)-\-Brd,

where 6 is the angle subtended by the air gap at the axis

of the solenoid. Hence by Art. 201 we have

or

rB

B =

(27r-0)

/^

+ e = 4!7nii

2)11x1

-JHi + 2^(^-i)

This formula shows the great effect produced by even

a very small air gap in diminishing the magnetic induction.
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Let us take the case of a sample of iron for which

At-l = 1000, then if ^/27r = 1/100, i.e. if the air is only

one per cent, of the whole circuit, the value of B is only

one-eleventh of what it would be if the iron circuit were

complete, while even though ^/27r were only equal to

1/1000 the magnetic induction would be reduced one-half

by the presence of the gap.

We can explain this by the tendency which the tubes

of magnetic induction have to leave air and run through

iron. If the magnetic force in the solenoid due to the

current circulating round it is in the direction of the

arrow, the face AB of the gap will be charged with

positive magnetism, the face CD with negative. If this

distribution of magnetism existed in air, tubes of mag-

netic induction starting from AB and running through

the air to CD would be pretty uniformly distributed in

the field ; in this case they would only be in the solenoid

for a short part of their course. But as soon as the

solenoid is filled with soft iron these tubes forsake the air

and run through the iron, and as they are in the opposite

direction to the tubes due to the current they diminish

the magnetic induction in the iron.

209. Ampere's Formula. We saw, Art. 136, that

the magnetic force exerted by a magnetic shell of uniform

strength </> is that which would be produced if each unit

of length at a point P on the boundary of the shell exerted

a magnetic force at Q equal to </> sin OjPQ^, where 6 is the

angle between PQ and the tangent at P to the boundary

of the shell : the direction of the magnetic force at Q is

at right angles to both PQ and the tangent to the boundary

at P. Since the magnetic force due to the shell is by
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Ampere's rule the same as that due to a current flowing

round the boundary of the shell, the intensity of the

current being equal to the strength of the shell, it follows

that the magnetic force due to a linear current may be

calculated by supposing an element of current of length ds

at P to exert at Q a magnetic force equal to ids sin djPQ^

where i is the strength of the current, and 6 the angle

between PQ and the direction of the current at P: the

direction of the magnetic force being at right angles both

to PQ and to the direction of the current at P.

The direction of the magnetic force is related to the

direction of the current, like rotation to translation in

a right-handed screw working in a fixed nut.

210. Magnetic force due to a circular current.

The preceding rule will enable us to find the magnetic

force along the axis of a circular current.

Let the plane of the current be at right angles to the

plane of the paper. Let the current intersect this plane

A

B

Fig. 101.

in the points A, B, Fig. 101, flowing upwards at A and

downwards at B. Let be the centre of the circle round

which the current is flowing, P a point on the axis of

the circle. The force at P will by symmetry be along OP.

If i is the intensity of the current, then the force at P
due to an element ds of the current at A will be at right
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angles to the current at A, i.e. it will be in the plane

of the paper, it will also be at right angles to ^P : the

magnitude of this force is ids/AP^, hence the component

along OP is equal to

., OA

By symmetry each unit length of the current will furnish

the same contribution \o the magnetic force along the

axis at P: hence the magnetic force due to the circuit

is equal to

Thus the force varies inversely as the cube of the

distance from the circumference of the circle. At the

Fm. 102.

centre of the circle AP=OA, hence the magnetic force

at the centre is equal to

27ri

OA'
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and thus if the current remains of the same intensity

varies inversely as the radius of the circle.

The lines of magnetic force round a circular current

are shown in Fig. 102. 'The plane of the current is at

right angles to the plane of the paper and the current

passes through the points A and B.

211. A case of some practical importance is that of

two equal circular circuits conveying equal currents and

placed with their axes coincident. Let A, B; G, D be

the points in which the currents, which are supposed to

flow in planes at right angles to the plane of the paper,

cut this plane, the currents flowing upwards at A and 0,

downwards at B and D: let P be a point on the common
axis of the two circuits. The magnetic force at P is,

if i is the intensity of the current through either circuit,

equal to

where a is the radius of the circuits. If 2d is the

distance between the planes of the circuits, and x = OP,

where is the point on the axis midway between the

planes of the currents, the magnetic force at P is

27rta-
\ ^j. H 5

+ terms in af^ and higher powers of x> .

Thus if a = 2d, that is if the distance between the

currents is equal to the radius of either circuit, the

lowest power of x in the expression for the magnetic
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force will be the fourth. Thus near where x is small

the magnetic force will be exceedingly uniform.

This disposition of the coils is adopted in Helmholtz's

Galvanometer.

212. Mechanical Force acting on an electric

current placed in a magnetic field.

The mechanical forces exerted by currents on a mag-

netic system are equal and opposite to the forces exerted

by the magnetic system on the currents. Since the forces

exerted by the currents on the magnets are the same as

those exerted by Ampere's system of magnetic shells, it

follows that the mechanical forces on the currents must

be the same as those on the magnetic shells ; hence the

determination of the mechanical forces on a system of

currents can be effected by the principles investigated

in Art. 135. Introducing the intensity of the current

instead of strength of the magnetic shell we see from

that Article that the force in any direction acting on

a circuit conveying a current i is equal to i times the

rate of increase of the number of unit tubes of magnetic

induction passing through the circuit, when the circuit is

displaced in the direction of the force. In many cases the

deduction from this principle given on page 216, is useful,

as it shows that the forces on the current are equivalent

to a system of forces acting on each element of the circuit.

If i is the strength of the current, ds the length of an

element at P, B the magnetic induction at P, the

angle between ds and P, then the force on the element

is equal in magnitude to idsB sind, and its direction is at

right angles both to ds and P. The relation between

the direction of the mechanical force and the directions

of the current and the magnetic induction is shown in
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the accompanying figure, where the magnetic induction is

supposed drawn upwards from the plane of the paper.

Fig. 103.

213. Couple acting on a plane circuit placed

in a uniform magnetic field. Let A be the area of

the circuit, i the intensity of the current, (j) the angle

between the normal to the plane of the circuit and the

direction of the magnetic induction. The number of unit

tubes of magnetic induction due to the uniform field

passing through the circuit is lAB coscj), where B is the

strength of the magnetic induction in the uniform field,

and this does not change as the circuit is moved parallel

to itself; there are therefore no translatory forces acting

on the system. The number of tubes passing through

the circuit changes however as the circuit is rotated, and

there will therefore be a couple acting on the circuit;

the moment of the couple tending to increase
<f>

is by

the last Article equal to the rate of increase with <^ of

the number of unit tubes passing through the circuit,

that is to

-J- (lAB cos<^)

= — iAB sincp.
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The couple vanishes with </>, and hence the circuit tends

to place itself with its normal along the direction of the

magnetic induction, and in such a way that the direction

of the lines of magnetic induction thread the circuit so

that the direction of the magnetic induction through the

circuit and the direction in which the^^r^:ent flows round

it are related like translation and ro^tii5ii in a right-

handed screw working in a fixed nut.

214. Force between two infinitely long straight

parallel currents. Let the currents be at right angles

to the plane of the paper, intersecting this plane in A
and B, let the intensity of the currents be i, i' respec-

tively, and let the currents come from below upwards

through the paper. Then, by Art. 202, the magnetic

force at B due to the current through A is equal to

AB'

and is at right angles io AB \ hence, by Art. 212, the

mechanical force per unit length on the current at B
is equal to

2u^

AB'
and since it acts at right angles both to the current and

to the magnetic force, it acts along AB. By the rule

given in Art. 212, we see that if the currents are in the

same direction the force between them is an attraction,

if the currents are in opposite directions the force between

them is a repulsion. Hence, we see that straight parallel

currents attract or repel each other according as they are

flowing in the same or opposite directions with a force

which varies inversely as the distance between them.



350 MAGNETIC FORCE DUE TO CURRENTS. [CH. X

215. Mechanical force between two circuits^

each circuit consisting of a pair of infinitely long

parallel straight conductors. Let the currents be

all perpendicular to the plane of the paper and let the

currents of the first and second pairs intersect the plane

of the paper in ^, J5 and C, D respectively: we shall

consider the case when the circuits are placed symmetri-

cally and so that the line EF bisects both AB and CD
at right angles. Let the current i flow upwards through

Fio. 104.

the paper at A, downwards at B, the current ^' upwards

through the paper at (7, downwards at D. The force

between the circuits will by symmetry be parallel to EF.

Between the currents at A and C there is an attraction

along CA equal per unit length to

2ii'

AC'

the component of this parallel to EF is

2u'

AC'
EF.

Between the currents B and C there is a repulsion along

BC equal per unit length to

2ii'
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the component of this parallel to EF is

Hence on each unit length of G there is a force parallel

to FE and equal to

there is an equal force acting in this direction on each

unit length of D ; hence the total force per unit length on

the circuit CD is an attraction parallel to EF equal to

li' EF=a), AE=a, CF=h, this is equal to

1

\{a - by + x^ (a + by + x^\

this vanishes when oo = and when x is infinite. Hence
there must be some intermediate value of oo when the

attraction is a maximum. This value of x is easily found

to be given by the equation

a;2 = 1 {2 Ja'' + b^-a^¥-(a' + ¥)}

:

when a — b is very small this gives

00 = a — b,

when b/a is very small

a

V3

216. Force between two coaxial circular cir-

cuits.

The solution of the general case requires the use of

more analysis than is permissible in this work : there
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are however two important cases which can be solved by

elementary considerations. The first of these is when the

radii of the circuits are nearly equal, and the circuits are

so close together that the distance between their planes

is a very small fraction of the radius of either circuit.

In this case the force per unit length of each circuit is

approximately the same as that between two infinitely

long straight parallel circuits, the distance between the

straight circuits being equal to the shortest distance

between the circular ones. Thus if i, % are the currents

through the circular circuits, whose radii are respectively

a and 6, and x is the distance between the planes of

the circuits, the attraction between the parallel circuits

is at right angles to the planes of the circuits and is

approximately equal to

^iraii'x

{a - by + x^
'

This is a maximum when x = a — h; that is, when the

distance between the planes of the circuits is equal to

the difference of their radii.

Another case which is easily solved is that of two co-

axial circular circuits, the radius of one being small com-

pared with that of the other. Let i be the intensity of the

current flowing round the large circuit whose radius is a,

i' the current round the small circuit whose radius is h
;

let X be the distance between the planes of the circuits.

Then since 6 is very small compared with a, the magnetic

force due to the large circuit will be approximately uniform
a

over the second circuit and equal to 27ria^ / (a^ + x"^) , its

value at the centre of that circuit. Thus the number of
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unit tubes of magnetic induction due to the first circuit

which pass through the second circuit is equal to

27rHa%^

Hence by Art. 210 the force on the second circuit

in the direction in which x increases, i.e. the repulsion

between the circuits, is equal to

^irHHa^h' ~ ^—
1-

Thus the attraction between the circuits is equal to

{a? + x^f

This is a maximum when x = a/2, so that the attraction

between the circuits is greatest when the distance between

their planes is half the radius of the larger circuit.

In the more general case when the radii have any

values, there is unless the radii are equal a position in

which the attraction is a maximum. When we use the

attraction between currents as a means of measuring

their intensities, the currents ought to be placed in this

position, for not only is the force to be measured greatest

in this case, but it is also practically independent of any

slight error in the proper adjustment of the distance

between the coils.

217. Coefficients of Self and Mutual Induction.

The coefficient of self induction of a circuit is defined

to be the number of unit tubes of magnetic induction

which pass through the circuit when it is traversed by

unit current and when there are no other currents nor

permanent magnets in its neighbourhood.

T. E. 23
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The coefficient of mutual induction of two circuits

A and B is defined to be the number of unit tubes of

magnetic induction which pass through B when unit

current flows round A, and there are no other currents

nor permanent magnets in the neighbourhood of the

circuits.

We see from Art. 137 that the coefficient of mutual

induction is also equal to the number of unit tubes of

induction which pass through A when unit current flows

round B.

If the circuits consist of several turns of wire, then in

the preceding definitions we must take as the number of

tubes of magnetic induction which pass through the circuit,

the sum of the number of tubes of magnetic induction

which pass through the different turns of the circuit.

We see from the preceding definitions that if we

have two circuits A and B, and if the currents i, j flow

respectively through these circuits, then the number of

tubes of magnetic induction which pass through the

circuits A and B are respectively,

Li + Mj, and Mi + Nj,

where L and N are the coefficients of self-induction of

the circuits A and B respectively, and M is the coefficient

of mutual induction between the circuits. The results

given in the preceding Articles enable us to calculate the

coefficients of self-induction in some simple cases.

In the case of the long straight solenoid discussed in

Art. 208, when unit current flows through the wire the

magnetic force in the solenoid is 47rw, where n is the

number of turns per unit length ; hence if A is the area

of the core of the solenoid, and if the core is filled with
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air, the number of unit tubes of magnetic induction pass-

ing through each turn of wire is equal to 4!7rnA, and since

there are n turns per unit length, the coefficients of self-

induction of a length I of the solenoid is equal to 4>7rnHA.

If the core were filled with soft iron of permeability fi,

then the number of unit tubes of magnetic induction

which pass through each turn of wire is ^irn^A and the

coefficient of self-induction of a length I is ^irnH/jbA.

If the iron instead of completely filling the core only

partially fills it, then if B is the area of the core occupied

by the iron, the coefficient of self-induction of a length

I is ^irnH [fiB + A-B].

Consider now the coefficient of mutual induction of

two solenoids a and 0. The coefficient of mutual in-

duction will vanish unless one of the solenoids is inside

the other, for the magnetic force due to a current through

a solenoid vanishes outside the solenoid. Hence when

a current flows through a no lines of induction will

pass through y8 unless ff is either inside a or completely

surrounds it.

Let ^ be inside a. Let B be the area of the solenoid yS,

and let m be the number of turns of wire per unit length.

Then if unit current flows through a, the magnetic force

inside is 47r/i, where n is the number of turns per unit

length. Hence if there is no iron inside the solenoids, the

number of tubes of magnetic induction passing through

each turn of fi is 4>7rnB, and since there are m turns per

unit length, the coefficient of mutual induction of a

length I of the two solenoids is ^urnmlB.

We see, by Art. 216, that the coefficient of mutual

induction between a large circle of radius a and a small

23—2
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one of radius b, with their planes parallel and the line

joining their centres at right angles to their planes is

equal to

(a' + x^f

'

where oc is the distance between the planes.

If we have two circuits a, 0, each consisting of two

infinitely long parallel straight conductors, the current

flowing up one of these and down the other, then by

Art. 206, the coefficient of mutual induction between a

and ^ is, per unit length, equal to

^ ,
AC .BD

where A, B, C, D are respectively the points where the

wires of the circuits a and 13 intersect a plane at right

angles to their common direction. The current through

the conductor intersecting this plane in A is in the same

direction as that through the conductor passing through C.

218. We can express the energy in the magnetic

field due to a system of currents very easily in terms of

the currents and the coefficients of self and mutual in-

duction of the circuits. We proved Art. 162 that the

energy per unit length in a unit tube of induction at F is

equal to R/Stt, where R is the magnetic force at P. The

tube of induction is a closed curve, and the total amount

of energy in this tube is equal to

where ds is an element of length of the tube and XRds
denotes the sum of all the products Rds for the tube.
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But ^Rds is the work done on unit pole when it is taken

round the closed curve formed by the tube of induction,

and this by Art, 201 is equal to 47r times the sum of the

currents encircled by the curve. Hence the energy in a

tube of induction is equal to

i (the sum of the currents encircled by the tube).

Hence the whole energy in the magnetic field is equal to

half the sum of the products obtained by multiplying the

current in each circuit by the number of tubes of mag-

netic induction passing through that circuit.

Thus if we have two circuits A and B, and if i, j are the

currents through A and B respectively, L,N the coefficients

of self-induction of A and B, M the coefficient of mutual

induction between these circuits, then the numbers of

tubes of magnetic induction passing through A and B
respectively are

Li + Mj,

and Mi + Nj.

Hence the energy in the magnetic field around this

circuit is

\i{Li-\-Mj)^\j{Mi+Nj)

= ^M+Mij-\-\Nj\

If we have only one circuit carrying a current i, .then if

L is its coefficient of self-induction, the energy in the

magnetic field is

\Li\

Thus the coefficient of self-induction is equal to twice the

energy in the magnetic field due to unit current.

We may use this as the definition of coefficient of self-

induction, and this definition has a wider application than
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the previous one. The definition in Art. 217 is only

applicable when the currents flow through very fine wires,

the present one however is applicable when the current is

distributed over a conductor with a finite cross section.

Thus let us consider the case where we have a current

flowing through an infinitely long cylinder whose radius

is OA, the direction of flow being parallel to the axis of

the cylinder, and where the return current flows down a

thin tube, whose radius is OB coaxial with this cylinder.

Fig. 105.

Let i be the current which flows up through the

cylinder and down through the tube, let us suppose that

the current through the cylinder is uniformly distributed

over its cross section. The magnetic force will vanish

outside the tube, for since as much current flows up

through the cylinder as down through the tube, the total

current flowing through any curve enclosing them both

vanishes, and therefore the work done in taking unit pole

round a circle with centre and radius greater than

that of the tube will vanish. Since the magnetic force

due to the currents must by symmetry be tangential to

this circle and have the same value at each point on its
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circumference, it follows that the magnetic force vanishes

outside the tube. We can prove as in Art. 202 that at

a point P between the cylinder and the tube the magnetic

force is equal to

2f

where r = OP.

At a point P inside the cylinder the magnetic force is

2ir
"^'

where a = OA, the radius of the cylinder.

By Art. 162 the energy per unit volume is equal to

fiH^/S-n; where H is the magnetic force ; hence if fi is the

magnetic permeability of the cylinder, the magnetic energy

between two planes at right angles to the axis of the

cylinder and at unit distance apart is equal to

JoA r^ ^ttJo a'Stt

, OB i'

^"^0^ + 4^-

Hence, since the coefficient of self-induction per unit

length is twice the energy when the current is unity, it

is equal to

In this case the coefficient of self-induction will be very

much greater when the cylinder is made of iron than when
it is made of a non-magnetic metal like copper. For take

the case when OB = e . OA, where e = 2718, the base of the

Napierian logarithms ; then the self-induction for copper,

for which fi is equal to unity, is equal to 2*5 per unit
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length, but if the cylinder is made of a sample of iron

whose magnetic permeability is 1000, the coefficient of

self-induction per unit length is 502. Thus in this case

the material of the conductor through which the current

flows produces an enormous effect, much greater than it

does in the case of the solenoids.

The self-induction depends upon the way in which the

current is distributed in the cylinder; thus if the current

instead of spreading uniformly across the sectioxi of the

cylinder were concentrated on the surface, the magnetic

force inside the cylinder would vanish, while that in the

space between the tube and the cylinder would be the

same as before, hence the energy would now be

so that the coefficient of self-induction would now be

2 log (OB/OA), thus it would be less than before and in-

dependent of the material of which the cylinder is made.

Measurement of Current and Resistance.

Galvanometers.

219. The magnetic force produced by a current may be

used to measure the intensity of the current. This is most

frequently done by means of the tangent galvanometer,

which consists of a circular coil of wire placed with its

plane in the magnetic meridian. If the magnetic field

is not wholly due to the earth, the plane of the coil must

contain the resultant magnetic force. At the centre

of the coil there is a magnet which can turn freely about
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a vertical axis. When the magnet is in equilibrium its

axis will lie along the horizontal component of the mag-

netic force at the centre of the coil, thus when no current

is flowing through the coil the axis of the magnet will be

in the plane of the coil. A current flowing through the

coil will produce a magnetic force at right angles to the

plane of the coil, proportional to the intensity of the

current. Let this magnetic force be equal to €ri where

i is the intensity of the current flowing through the coil

and G a quantity depending upon the dimensions of the

coil. G is called the ' Galvanometer constant.' Let //

be the horizontal component of the magnetic force at the

centre of the coil. Then the resultant magnetic force at

the centre of the coil has a component H in the plane of

the coil and a component Gi at right angles to it, hence

if 6 is the angle which the resultant magnetic force makes

with the plane of the coil,

tan^ = g"
(1).

When the magnet is in equilibrium its axis will lie along

the direction of the resultant magnetic force, hence

the passage of the current will deflect the magnet through

an angle 6 given by equation (1). As the current is pro-

portional to the tangent of the angle of deflection, this

instrument is called the tangent Galvanometer.

The smaller we can make H, the external magnetic

force at the centre of the coil, the larger will be the angle

through which a given current will deflect the magnet.

By placing permanent magnets in suitable positions in the

neighbourhood of the coil we can partly neutralize the

earth's magnetic field at the centre of the coil : in this way
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we can reduce H and increase the sensitiveness of the

galvanometer. A magnet for this purpose is shown in

Fig. 106, which represents an ordinary type of galvano-

meter.

Fig. 106.

Another method of increasing the sensitiveness of the

instrument is employed in the 'astatic galvanometer.'

In this galvanometer (Fig. 107) we have two coils A and B
in series, so arranged that the current circulates round

them in opposite directions. Thus, if the magnetic force

at the centre of the upper coil is upwards from the plane

of the paper that at the centre of the lower coil will be

downwards. Two magnets a, /9, mounted on a common
axis, are placed at the centres of the coils A and B re-

spectively, the axes of magnetization of these magnets

point in opposite directions ; thus as the magnetic forces

at the centres of the two coils due to the currents are also

in opposite directions, the couples due to the currents

acting on the two magnets will be in the same direction.
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The couples arising from the external magnetic field

will however be in opposite directions: if the external

Fig. 107.

magnetic field is uniform and the moments of the two

magnets very nearly equal, the couple tending to restore

the magnet to its position of equilibrium will be very

small, and the galvanometer will be very sensitive.

The larger we make G the greater will be the sensi-

tiveness of the galvanometer. If the galvanometer consists

of a single turn of wire wound into a circle of radius a,

then (see Art. 210) G = ^irja. If there are n turns close

together and arranged so that the distance between any

two turns is a very small fraction of the radius of the turns,

then G is approximately iTrnja. If the galvanometer

consists of a coil of rectangular cross section, the sides

of the rectangle being in and at right angles to the plane

of the coil, and if 26 is tlie breadth of this rectangle

(measured at right angles to the plane of the coil), 2a the

depth in the plane of the coil, n the number of turns of

wire passing through unit area, then taking as axis oi x
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the line through the centre of the coil at right angles

to its plane and as axis of 3/ a line through the centre

at right angles to this, we have

G = 27rn
rb rc+a yi^^

J -bJ c-a (af +

y'^dxdy

f
'

where c is the mean radius of the coil.

A ^2^ n

:

'^'^

D

E

f\

Ki

f

I

H Q

Fig. 108.

If 26, 2(f)
are the angles subtended at the centre by

AB, CD, Fig. 108, this reduces to

6

G = 4}7rnh log

cot

cot
I

In sensitive galvanometers the hole in the centre for

the magnet is made as small as possible, so that the inner

windings have very small radii ; when this is the case, we

TT
may put

(f)
= —

, and then

G = 4!7rnh log cot -
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In this case when the area of the cross section of the

coil is given, i.e. when 2¥ cot 6 is given, we can prove that

G^ is a maximum when
g

log cot ^ = 2 cos 0,

the solution of which is ^ = 16° 46': this makes the

breadth bear to the depth the ratio of 1 to 1'61.

The sensitiveness of modern galvanometers is very

great, some of them will detect a current of 10~^^ amperes.

It would take a current of this magnitude centuries to

liberate 1 c.c. of hydrogen.

Since

while rcTTTTr = sin Q cos Q.
(Bi/i)

Thus for a given absolute increment of i, SO will be

greatest when 6 is zero, and for a given relative increment,

Bd, or the change in deflection, will be greatest when
6/ = 45°.

In some cases it is important to have the magnetic

field near the magnet as uniform as possible. This can be

attained (see Art. 211) by using two equal coils placed

parallel to one another and at right angles to the linejoining

their centres, the distance between the coils being equal to

the radius of either. The magnet is then placed on

the common axis of the two coils and midway between

them.
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220. Sine Galvanometer. In this galvanometer,

Fig. 109, the coil itself can move about a vertical axis, its

Fig. 109.

position being determined by means of a graduated hori-

zontal circle. In using the instrument the coil is placed so

that when no current goes through it the magnetic axis

of the magnet at its centre is in the plane of the coil.

When a current passes through the coil the magnet is

deflected out of this plane, and the coil is now moved

round until the axis of the magnet is again in the plane

of the coil. When this is the case the components of

the magnetic force at right angles to the plane of the coil

due respectively to the current and to the external

magnetic field must be equal and opposite. If H is

the external magnetic force, (j) the angle through which

the coil has been twisted when the axis of the magnet

is again in the plane of the coil, the external force at right

angles to the plane of the coil is H sin </>. If ^ is the

current through the coil, G the magnetic force at its
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centre when the wires of the coil are traversed by unit

current, then the magnetic force at right angles to the

coil due to the current is Gi : hence when this is in equi-

librium with the component due to the external field,

Hsm(f> = Gi,

or '^—jT Sin <p.

The advantage of this form of galvanometer is that the

magnet is always in the same position with respect to the

coil. For the same coils and magnetic field the deflection

is greater for the sine than for the tangent galvano-

meter.

221. Desprez-d'Arsonval Galvanometer. In this

galvanometer the coil carrying the current moves while

Fig. 110.

the magnets are fixed. The galvanometer is represented

in Fig. 110. A rectangular coil is suspended by very fine

metal wires which also serve to convey the current to the

coil. The coil moves between the poles of a horse-shoe

magnet, and the magnetic field is concentrated on the coil

by a fixed soft iron cylinder placed inside the coil. When
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a current flows round the coil, the coil tends to place itself

so as to include as many tubes of magnetic induction

as possible (Art. 213). It therefore tends to place itself so

that its plane is at right angles to the lines of magnetic

induction. The motion of the coil is resisted by the

torsion of the wire which suspends it, and the coil takes a

position in which the couple due to the torsion of the wire

just balances that due to the magnetic field. When the

magnetic field is uniform the relation between the de-

flection and the current is as follows. Let A be the area

of the coil, n the number of turns of wire, i the current

through the wire, B the magnetic induction at the coil.

When the plane of the coil makes an angle <^ with the

direction of magnetic induction the number of tubes of

magnetic induction passing through it is

BAn sin (p,

hence, by Art. 213, the couple tending to twist the coil is

iBAn cos </>.

If the torsional couple vanishes when
(f>

is zero, the

couple when the coil is twisted through an angle <^

will be proportional to ^ ; let it equal t<^, then when

there is equilibrium, we have

iBAn cos </> = t<^,

T±

BAn cos
<f>

if (ft is small this equation becomes approximately

• _ ''"^

^~~BA^'

222. Ballistic Galvanometer. A galvanometer may

be used to measure the total quantity of electricity passing
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through its coil, if this passes so quickly that the magnet

of the galvanometer has not time to appreciably change

its position while the electricity is passing. Let us suppose

that when no current is passing the axis of the magnet is

in the plane of the coil, then if i is the current passing

through the plane of the coil, G the galvanometer constant,

i.e. the magnetic force at the centre of the coil when

unit current passes through it, m the moment of the

magnet, the couple on the magnet while the current is

passing is

Gim.

If the current passes so quickly that the magnet has

not time sensibly to depart from the magnetic meridian

while the current is flowing, the earth's magnetic force

will exert no couple on the magnet. Thus if K is the

moment of inertia of the magnet, 6 the angle the axis

of the magnet makes with the magnetic meridian, the

equation of motion of the magnet during the flow of

the current is

thus if the magnet starts from rest the angular velocity

after a time t is given by the equation

dO c'

K ^rr= Gm
dt Jo

idt

If the total quantity of electricity which passes through

the galvanometer is Q and o) the angular velocity com-

municated to the magnet, we have therefore

K(o = GmQ.

This angular velocity makes the magnet swing out of

the plane of the coil : if H is the external magnetic force

T. E. ^ 24
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at the centre of the coil, the equation of motion of the

magnet is, if there is no retarding force,

ir^ + miysin(9 = 0.

Integrating this equation we get

K {('^j' -A + 2mH (1 - cos ^) = 0.

If ^ is the angular swing of the magnet, the angular

velocity vanishes when ^ = ^, hence

K<o^ = 2mH ( 1 - cos ^) = ^mH sin^|

.

On substituting for © the value previously found we get

Q=2sini^^\/mF7Z:

If T is the time of a small oscillation of the magnet,

V inn.

hence
rpTT

Q = sin J^—^.
TTCr

We have neglected any retarding force such as would

arise from the resistance of the air. Galvanometers which

are used for the purpose of measuring quantities of

electricity are called ' ballistic galvanometers,' and are

constructed so as to make the effects of the friction al forces

as small as possible. This is done either by making the

moment of inertia of the magnet very large, or by making

the magnet so symmetrical about its axis of rotation that
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the frictional forces are but small. The correction to be

applied when the frictional forces are not negligible is

investigated in Maxwell's Electricity and Magnetism,

Vol. II. p. 386.

223. Measurement of Resistance. The arrange-

ment of conductors in the Wheatstone's Bridge (Art. 190)

enables us to determine the resistance of one arm of the

Bridge, say BD, Fig. 90, in terms of the resistances of the

arms AG, CB and AD. For the measurement of resistances

by this method wires having a known resistance are used.

These are called resistance coils, and are made in the

following way. A piece of silk-covered German-silver

wire is taken and doubled back on itself (to avoid effects

due to electromagnetic induction, see Chap, xi.) and then

wound in a coil. Its length is then carefully adjusted

until its resistance is some multiple of the standard

resistance the Ohm. Each end of this coil is soldered to

Fig, 111.

a stout piece of brass such as J., i? or C, Fig. Ill; these

pieces are attached to an ebonite board to insulate them

from each other. Two adjacent pieces of brass can be

put in electrical connection by inserting stout well fitting

24—2
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brass plugs between them. When the plug is out the

resistance between B and G is that of the wire, while

when the plug is in there is practically no resistance

between these places.

When there is no current through the arm CD of the

Wheatstone's Bridge there is, by Art. 190, a certain

relation between four resistances: hence to measure a

resistance by this method we require three known re-

sistances. These resistances are conveniently arranged
in what is known as the Post- Office Resistance Box.
This is a box of coils an-anged as in Fig. 112, and pro-

vided with screws at A, B, G, D to which wires can be
attached. To determine the resistance of a conductor

Fig. 112. Fio. 90.

such as R connect one end to i? and the other end to D;
connect one terminal of a galvanometer to G and the other

to D, and one electrode of a battery to A, the other to B.

The arrangement of the conductors is the same as that in

the diagram in Art. 190, which is reproduced here by the

side for convenience. To measure the resistance of R:

take one or more plugs out of GA and CB and then pro-

ceed to take plugs out of AD until there is no deflection

of the galvanometer, when the battery circuit is completed.
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As the current through GB vanishes, we must have by

Art. 189

resistance of BD x resistance of AG
— resistance of BG x resistance of AD.

As the resistances of AG, BG, AD are known, that of BD
is determined by this equation.

224. Resistance of a Galvanometer. A method

due to Lord Kelvin for measuring the resistance of a

galvanometer is an interesting example of the property

of conjugate conductors. We saw (Art. 191) that if GD
was conjugate to AB, then the current sent through any

arm of the bridge by a battery in AB is independent of

the resistance in GD, and the converse is also true. To

apply this to measure the resistance of a galvanometer,

place the galvanometer in the arm BD of the Bridge and

replace the galvanometer in GD by a key by means of

which the circuit GD can be completed or broken at

pleasure. Then adjust the resistance of AD until the

deflection of the galvanometer is the same when the

circuit GD is completed as when it is broken. As in

this case the current through BD is independent of the

resistance of GD, GD must be conjugate to AB, and we
have therefore (Art. 190),

resistance of galvanometer x resistance oi AG
= resistance of BG x resistance of AD.



CHAPTER XL

ELECTROMAGNETIC INDUCTION.

225. Electromagnetic Induction, of which the laws

were unravelled by Faraday, may be illustrated by the

following experiment. Two circuits A and B, Fig. 113, are

placed near together, but completely insulated from each

Fig. 113.

other; a galvanometer is in the circuit B, and a battery and

key in A. Suppose the circuit A at the beginning of the

experiment to be interrupted, press down the key and

close the circuit, the galvanometer in B will be deflected,

indicating the passage of a current through B, though B is

completely insulated from the battery. The deflection of

the galvanometer is not a permanent one, but is of the

same kind as that of a ballistic galvanometer when a finite
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quantity of electricity is quickly discharged 'through it,

that is, the magnet of the galvanometer is set swinging, but

is not permanently deflected, as it oscillates symmetrically

about its old position of equilibrium. This indicates that an

electromotive force, acting for a very short time, has acted

round B. The direction of the deflection of the magnet

of the galvanometer in B indicates that the direction of

the momentary current induced in B was opposite to that

started in A. After a time the motion of the magnet

subsides and the magnet remains at rest, although the

current continues to flow through A. If, after the magnet

has come to rest, we raise the key in J., so as to stop the

current flowing through the circuit, the galvanometer in

B is again affected, the direction of the first swing in this

case being opposite to that which occurred when the

current in A was started, indicating that when the current

in A is stopped, an electromotive force is produced round

B tending to start a current through B in the same

direction as that which previously existed in A. This

electromotive force, like the one produced when the circuit

A was completed, is but momentar3^

These experiments show that the starting or the

stopping of a current in a circuit A is accompanied by
the production of another current in a neighbouring circuit

5, the current in B being in the opposite direction to that

in A when the current is started and in the same direction

when the current is stopped.

If instead of making or breaking the current in A, this

current is kept steadily flowing in the circuit, while the

circuit itself is moved about, then when A is moving away
from B an electromotive force is produced tending to send

round B a current in the same direction as that round A^
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while if J. is moved towards B an electromotive force acts

round B tending to produce a current in the opposite

direction to that round A. These electromotive forces in

B only occur when A is moving, they stop as soon as it is

brought to rest. If we replace the circuit A, with the

current flowing through it, by its equivalent magnet, then

we shall find that the motion of the magnet will induce

the same currents in B as the motion of the circuit A. If

we keep the circuit A, or the magnet, fixed and move By

we also get currents produced in B.

The currents started in B by the alteration in intensity

or position of the current in J., or by the alteration of the

position ofB with respect to magnets in its neighbourhood,

are called induced currents ; and the phenomenon is called

electromagnetic induction.

A good deal of light is thrown on these phenomena if

we interpret them in terms of the tubes of magnetic in-

duction. Let us first take the case when the induction

is produced by starting a current in A. Then before the

current circulates through A no tubes of magnetic induc-

tion pass through B ; when the current is started through

A this circuit is at once threaded by a number of tubes of

magnetic induction, some of which pass through B. The

induced current through B also causes B to be threaded

by tubes of magnetic induction, which since the induced

current is in the opposite direction to the primary one in

A, pass through the circuit in the opposite direction to

those sent through it by the current in A ; thus the effect

of the induced current in B is to tend to make the total

number of tubes of magnetic induction passing through B
zero; that is, to keep the total number of tubes of magnetic

induction through B the same as it was before the current
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was started in A. We shall find, when we investigate the

laws of induction more closely, that the tubes of magnetic

induction passing through B, due to the induced current,

are at the moment of making the primary circuit equal in

number and opposite in direction to those sent through B
by the current in A. The laws of the induction of currents

may thus be expressed by saying that the number of tubes

of magnetic induction passing through B does not change

abruptly.

Again, take the case when currents are induced in B
by stopping the current in A. Initially the current flow-

ing through A sends a number of tubes of magnetic in-

duction through B: when the current in A is stopped

these tubes cease, but the current induced in B in the

same direction as that in A causes a number of tubes of

magnetic induction to pass through B in the same direc-

tion as those due to the original current in A. Thus the

action of the induced current is again to tend to keep the

number of tubes of magnetic induction passing through B
constant.

The same tendency to keep the number of tubes of

magnetic induction through B constant is shown by the

induction of a current in B when A is moved away from or

towards B, When A is moved away from B the number

of tubes of magnetic induction due to A which pass

through B is diminished, but there is a current induced in

B in the same direction as that through A, which causes

additional tubes of magnetic induction to pass through B
in the same direction as those due to A : the production of

these tubes counterbalances the diminution due to the

recession of A, and thus the induced current again tends

to keep the number of tubes of magnetic induction passing
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through B constant. The same thing occurs when A is

moved towards J5, or when currents are induced in B
by the motion of permanent magnets in its neighbour-

hood.

Not only is there a tendency to keep the number of

tubes of magnetic induction passing through any circuit

in the neighbourhood of A constant, there is also the same

tendency with respect to the circuit A itself. Let us

suppose that A is alone in the field, then, when a current

is flowing round A, tubes of magnetic induction pass

through A. If the circuit is broken and the current

stopped the number of tubes would fall to zero ; the

tendency, however, to preserve unaltered the number of

tubes passing through the circuit will, under suitable cir-

cumstances, cause the current in its effort to continue

flowing in the same direction to spark across an air-gap

when the circuit is broken, even though the original

E.M.F., applied to send the current through A, was totally

Fig. 114.

inadequate to produce a spark. To show this effect

experimentally it is desirable to wind the coil A round a

core of soft iron so as with a given current to increase the
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number of tubes of magnetic induction passing through

the circuit ; the coil of an electro-magnet shows this effect

very well. The effect of this tendency is shown very

clearly in the following experiment. The core of an electro-

magnet E, Fig. 114, is placed in parallel with an electric

lamp L, the resistance of the lamp being very large com-

pared with that of an electro-magnet ; in consequence of

this when the two are connected up to a battery by far

the greater part of the current will flow through the coil,

comparatively little through the lamp, too little to raise

the lamp to incandescence. If however the circuit is

broken at K the tendency to keep the number of tubes of

magnetic induction passing through the circuit constant

will send a current momentarily round the circuit HLGE
which will be larger than that flowing through the lamp

when the battery was kept continuously connected up to

the circuit, and thus though the lamp remains quite dark

when the current is steady it can be raised to bright

incandescence by repeatedly making and breaking the

circuit.

226. The electromotive force round a circuit due

to induction does not depend upon the metal of which

the circuit is made. This may be proved by taking

two equal circuits of different metals, iron and copper,

placed close together and arranged so that the electro-

motive forces due to induction in the two circuits tend

to oppose each other. When this circuit connected up

to a galvanometer is placed in a varying magnetic

field no current passes, showing that the electromotive

forces in the two circuits are equal and opposite.

To prove that in a magnetic field varying at an
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assigned rate the electromotive force round a circuit

due to induction is proportional to the number of tubes of

magnetic induction passing through the circuit, Faraday

took a coil made of several turns of very fine wire and

inserted in it a galvanometer whose resistance was small

compared with that of the coil : when this coil was placed

in a varying field the deflection of the galvanometer was

found to be independent of the number of turns in the

coil. As all the resistance in the circuit is practically in

the coil, the resistance of the circuit will be proportional to

the number of turns in the coil. Since the quantity of

electricity passing through the circuit is independent of

the number of turns, it follows that the E. M. F. round the

circuit must have been proportional to the resistance, i.e.

to the number of turns of the coil. Hence since the turns

of the coils were so close together that each enclosed the

same number of tubes of magnetic induction, it follows

that when the rate of change is given the E. M. F. round

the circuit must be proportional to the number of tubes

of magnetic induction passing through it.

Faraday also showed by rotating the same circuit

at different speeds in the same magnetic field that the

E. M. F. round the circuit was proportional to the speed

of rotation, i.e. to the rate of change of the number of

tubes of magnetic induction passing through the circuit.

These investigations of Faraday's determined the

conditions under which induced currents are produced;

F. E. Neumann was however the first to give, in 1845, an

expression by which the magnitude of the electromotive

force could be determined. We may state the law of

induction of currents as follows

—

Whenever the number of

tubes of magnetic induction passing through a circuit is
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changing, there is an E. M. F. acting round the circuit

equal to the rate of diminution in the number of tubes of

magnetic induction which pass through the circuit. The

positive direction of the E. M. F. and the positive direction

in which a tube passes through the circuit are related to

each other like rotation and translation in a right-handed

screw. ,

We shall show later on (page 459) that this law can

be connected with Ampere's law (Art. 212) by dynamical

principles.

Let us apply this law of induction to the case of a

circuit exposed to a variable magnetic field. Let the

circuit contain a galvanic battery whose electromotive

force is Eq, and let the resistance of the circuit, including

that of the battery, be R. If P is the number of tubes of

magnetic induction passing at any time t through the

circuit, there will be an E. M. F. equal to — dPjdt round

the circuit due to induction ; hence by Ohm's law, we

have if i is the current round the circuit,

or

f + ^^ = ^« (!)

Suppose the magnetic field is due to two currents, one

circulating round this circuit and the other through a

second circuit in its neighbourhood ; let j be the current

passing round the second circuit. Let L be the coefficient

of self-induction of the first circuit, N that of the second,

M the coefficient of mutual induction between the two

circuits. Then as the magnetic field is due to the two

circuits, P = Li-\- Mj,
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and equation (1) becomes

if S is the resistance of the second circuit and E^ the

electromotive force of any battery there may be in that

circuit, then we have similarly,

227. Let us compare these equations with the equa-

tions of motion of a dynamical system having two degrees

of freedom, one degree being fixed by the coordinate x,

the other by the coordinate y ; these coordinates may be

regarded as fixing the positions of two moving pieces. Let

the first moving piece be acted upon by the external force

Eq, the second by the force E^'. Let the motions of the

first and second moving pieces be resisted by resistances

proportional to their velocities, and let Rx, Sy be these

resistances respectively. The momenta corresponding to

the two moving pieces will be linear functions of the

velocities. Let the momentum of the first moving piece

be
Lx + My,

that of the second

Mx + Ny.

Then, if L, M, N are independent of the coordinates

X, y, the equations of motion of the two systems will be

~{Lx^My)-\-Rx=E,,

^^(Mx + Ny)+Sy = E:.
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Comparing these equations with those for the two currents

we see that they are identical if we make i, j the currents

round the two circuits coincide with d), y the velocities

of the two moving pieces. The electrical equations of a

system of circuits are thus identical with the dynamical

equations of a system of moving bodies, the current flowing

round a -circuit corresponds to a velocity, the number of

tubes of magnetic induction passing through the circuit

to the momentum corresponding to that velocity, the

electrical resistance corresponds to a viscous resistance,

and the electromotive force to a mechanical force.

A further analogy is afforded by the comparison of

the Kinetic Energy of the Mechanical System with the

energy in the magnetic field due to the system of

currents. The Kinetic Energy of the Mechanical System

is equal to

^x (Lx + My) + iy (Mx + Ny).

The energy in the magnetic field is by Art. 218 equal

to

ii (Li + Mj) + ij (Mi i-Fj).

This expression becomes identical with the preceding

one if we write x for i and y for j.

Since the terms in the electrical equations which

express the induction of currents correspond to terms

in the dynamical equations which express the effects of

changes in the momentum, and as these latter effects arise

from the inertia of the system, we are thus led to regard

a system of electrical currents as also possessing inertia.

The inertia of the system will be increased by any circum-

stance which, for given values of the currents, increases

the number of tubes of electromagnetic induction passing
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through the circuits ; the inertia of the system may thus

be increased by the introduction of soft iron in the neigh-

bourhood of the circuits.

228. We can illustrate by a mechanical model the

analogies between the behaviour of electrical circuits and

a suitable mechanical system. Models of this kind have

been designed by Maxwell and Lord Rayleigh ; a simple

one which serves the same purpose is represented in Fig.

115.

Fig. 115.

It consists of three smooth parallel horizontal steel

bars on which masses mj, M, 171.2 slide, the masses being

separated from the bars by friction wheels : the three

masses are connected together by a light rigid bar which

passes through holes in swivels fixed on to the upper part

of the masses, the bar can slide backwards and forwards

through these holes so that the only constraint imposed by

the bar is to keep the masses in a straight line.

This system will, if we regard the velocities of mi, rn^

respectively along their bars as representing currents

flowing round two circuits, illustrate the induction of

currents. Let us start with the three masses at rest,

then suddenly move mi forwards along its bar, m^ will then
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move backwards, an effect analogous to the production

of the inverse current in the secondary when the current

is started in the primary. If now nii is moved uniformly

forward the friction between ma and its bar will soon bring

it to rest and it will continue at rest as long as the motion

of mj remains uniform : this is analogous to the absence of

current in the secondary when the current in the primary

is uniform. If now we suddenly stop nii then m^ will start

off in the direction in which mj was moving before being

brought to rest. This is analogous to the direct current

in the secondary produced by the stoppage of the current

in the primary. These effects are the more marked the

greater the mass M.

It is instructive to find the quantities in the dynamical

system which correspond to the coefficients of self and

mutual induction. Let us suppose that the bar on which

M slides is midway between the other two.

Then if x^ is the velocity of nii along its bar, X2 that of

m.2, the velocity of M will be (xi-hdj^)/^, and T the kinetic

energy of the system is given by the equation

The momentum along x^ is dTjdx^ and is therefore

equal to

/ M\ . M .

[in, + -y, + -x,.

The momentum along x^ is dT/dx.^ and is therefore equal

to

-^ i(i + (
m., +[in,-^-jx,.

Thus mi + ilf/4, m.i + if/4 correspond to the coefficients of

T. E. 25
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self-induction of the two circuits, while i//4 corresponds

to the coefficient of mutual induction between the circuits.

The effect of increasing the coefficient of mutual induction

between the circuits, such an increase for example as may
be produced by winding the primary and secondary coils

round an iron core, may be illustrated by the effect pro-

duced on the model by increasing the mass M relatively to

nil and m^.

The behaviour of the model will illustrate important

electrical phenomena. Thus suppose the mass m^ is struck

with a given impulse, it will evidently move forward with

greater velocity if mg is free to move than if it is fixed,

for if 7)1.2 is free the large mass M will move very slowly

compared with mj, the connecting bar turning round the

swivel on M almost as if this were fixed : if however m^ is

fixed, then when rrii moves forward it has to drag M along

with it, and will therefore move more slowly than in the

preceding case. When m^ is free to move it moves in the

opposite direction to mi. Now consider the electrical

analogue, the case when m^ is free to move corresponds to

the case when there is in the neighbourhood of the

primary circuit a closed circuit round which a current can

circulate ; the case when 7713 is fixed corresponds to the

case when this circuit is broken, when it can produce no

electrical effect as no current can circulate round it. The
greater velocity of m^ when mg was free than when it

was fixed shows that when an electrical impulse acts on

a circuit the current produced is greater when there

is another circuit in the neighbourhood than when the

primary circuit was alone in the field ; in other words, the

presence of the secondary diminishes the effective inertia

or self-induction of the primary.
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229. Effect of a Secondary Circuit. As an

example in the use of the equations given in Art. 226 we
shall consider the behaviour of a primary and a secondary

coil when an electric impulse acts upon the primary.

Let us suppose that originally there were no currents in

the circuits. Let Z, M, N be respectively the coefficients

of self-induction of the primary, of mutual induction

between the primary and the secondary and the coefficient

of self-induction of the secondary; R, 8 the resistances

of the primary and secondary respectively, x and y the

currents through these coils. Then if P' is the external

electromotive force acting on the primary, we have by the

equations of Art. 226,

^(Lx + My) + Ra) = P' (1),

^^(Mx + Ny)-\-Sy = (2).

The primary is acted on by an impulse, that is the force

P' only lasts for a short time, let us call this time t. Then
if ^0, yo are the values of x, y due to this impulse we have

by integrating equation (1) from ^= to ^ = t

Lxq + Myo + R xdt=\ Fdt
Jo Jo

Since t is indefinitely small and x is finite

/
\dt =

let rP'dt
Jo

then we have Lxq + My^ = P (3).

Similarly by integrating (2) we get

Mxo+Nyo = (4),

25—2
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h
P _ FM

nence ^,___, 2/^______.

If the secondary circuit had not been present the

current in the primary due to the same impulse would

have been P/L : thus the effect of the secondary is to

increase the initial current in the primary ; it diminishes

its effective self-induction from L to L — M^/N. This is

an illustration of the effect described in the last article.

Equation 4 expresses that the number of tubes of mag-

netic induction passing through the second circuit is not

altered suddenly by the impulse acting on the first circuit.

When the impulse ceases the circuits are free from

external forces and the equations for oc and y are

j^{Lx + My) + Ex = (5),

|(if^ +%) + ^y = (6).

Let us now choose as the origin from which time is

measured the instant when the impulse ceases. Integrate

these equations from ^ = to ^ = x , then since x and y
will vanish when ^ = oo we have

Rj xdt = Lxq + Mvo
Jo

= P by equation (3),

but
I

xdt is the total quantity of electiicity which passes
J

^

across any section of the primary circuit, if we denote this

by Q we have
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hence Q is not affected by the presence of a secondary

circuit. Thus since the current is greater to begin with

when the secondary is present than when it is absent it

must, since Q is the same in the two cases, die away faster

on the whole when the secondary is present.

Integrating (6) from t=0 to t= cc we find

S\ ydt = Mooo + J^yo
Jo

= by equation (4)

;

hence the total quantity of electricity passing across any

section of the secondary circuit is zero.

To solve equations (5) and (6) put

y= Be-^\

eliminating A and B we find

{R-LX)(S-N\) = M'\^ (7);

hence if \i , X2 are the roots of this quadratic which are both

positive since LN— M^ is positive, as ^La^-\- Mxy + ^Ny"^

the expression for the energy of the currents is positive for

all values of x and y, we have

X = A-^€~^^* + A^e~^^f

If we determine the values of the -4's and B's from the

values of x and y when ^ = 0, we find after some

reductions
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We see from the quadratic equation (7) that one of

its roots is greater than, the other root less than S/N,

thus Xi — S/N, Xa — ^1^ are of opposite signs, and therefore

by (8), X the current through the primary never changes

sign
; y the current through the secondary begins by being

of the opposite sign to x, it changes sign, and finally x and

y are of the same sign.

A very important special case of the preceding in-

vestigation is when the two circuits are close together, or

when the circuits are wound round a core of soft iron

which completely fills their apertures ; in this case nearly

all the lines of magnetic force which pass through one

circuit pass through the other also ; this is often expressed

by sajdng that there is very little magnetic leakage between

the circuits. When this condition is fulfilled L - M^jN is

very small compared with L. In the limiting case when
this quantity vanishes we see by equation (7) that one of

the values of \, say Xa, is infinite, while Xj is equal to

RS
TsTnr'

In this case we find from equations (8) and (9) that, except

at the very beginning of the motion,

L , , RN

The relation between the currents and the time when
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L — M^/Nis small is represented by the curves in Fig. 116,

the dotted curve represents the current in the primary

when the secondary is absent.

Fig. 116.

230. Currents induced in a mass of metal by
an impulse. Let us suppose that the impulse is due to

the sudden alteration of a magnetic system. Let N be

the number of tubes of magnetic induction due to this

system which pass through any circuit ; to fix our ideas

let us suppose this is the primary circuit in the case con-

sidered in Art. 229. Then using the notation of that

article

P' = -

by Faraday's law.

Hence P =rFdt
Jo

dt

(i\r,-i\r„),

where N^ and Nq represent respectively the number of

tubes of magnetic induction passing through the circuit



392 ELECTROMAGNETIC INDUCTION. [CH. XI

at the times t — r and ^ = respectively. We have, how-

ever, by equation (3), Art. 229,

Lx, + My, = P,

or Lxo + Myo +K = ^\'

Now the right-hand side is the number of tubes of

magnetic induction which pass through the circuit at the

time ^ = 0, i.e. the time when the impulse began to act

;

the left-hand side represents the number of tubes of

magnetic induction, some of them now being due to the

currents started in the circuit, which pass through the

circuit at the time t = T when the impulse ceases to act.

The equality of these two expressions shows that the

currents generated by the impulse are such as to keep

the number of tubes of magnetic induction which pass

through the circuit unaltered. The case we have con-

sidered is one where there is only one secondary, the

reasoning is however quite general, and whenever an

impulse acts upon a system of conductors, the currents

started in these conductors are such that their electro-

magnetic action causes the number of tubes of magnetic

induction passing through any of the conducting circuits

to be unaltered by the impulse.

Let us apply this result to the case of the currents in-

duced in a mass of metal by the alteration in an external

magnetic field.

The number of tubes passing through every circuit

that can be drawn in the metal is the same after the im-

pulse as before. Hence we see that the magnetic field in

the metal is the same after the impulse as before. This

will give an important result as to the distribution of

currents inside the metal. For we have seen (Art. 201)
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that the work done when unit pole is taken round a closed

circuit is equal to 4>7r times the current flowing through

that circuit. Now the magnetic field inside the metal,

and therefore the work done when unit pole passes round

a closed circuit, is unaltered by the impulse, hence the

current flowing through any such closed curve is also un-

altered by the impulse ; hence, as there were no currents

through it before the impulse acted, there will be none

generated by the impulse. In other words, the currents

generated in a mass of metal by an electric impulse are

entirely on the surface of the metal, and the inside of the

conductor is free from currents.

231. The currents will not remain on the surface,

they will rapidly diffuse through the metal and die away.

We can find the way the currents distribute themselves

after the impulse stops by the use of the two fundamental

principles of electro-dynamics, (1) that the work done by

the magnetic forces when unit pole travels round a

closed circuit is equal to 47r times the quantity of current

flowing through the circuit, (2) that the total electro-

motive force round any closed circuit is equal to the rate

of diminution of the number of tubes of magnetic induc-

tion passing through the circuit.

Let u, V, w be the components parallel to the axes of

OS, y, z of the electric current at any point, a,/S, 7 the com-,

ponents of the magnetic force at the same point. The axes

are chosen so that if x is drawn to the east, y to the north,

z is upwards. Consider a small rectangular circuit ABGD,
the sides AB, EG being parallel to the axes of z and y
respectively. Let AB = 2h, BC= 2k. Let a, y8, 7 be the

components of magnetic force at 0, the centre of the
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rectangle ; x,y,z the coordinates of ; let the coordinates

of P, a point on AB,\>& x,y -\-k, z-\-^; the z component

of the magnetic force at P will be approximately

^^^dz^^dy^'

Let now a unit magnetic pole be taken round the

rectangle ABCD, the direction of motion round ABCD
being related to the positive direction of oo like rotation

and translation in a right-handed screw. The work done

on unit pole as it moves from A to B will be

i::hi^*p)<dy

which is equal to 2/17 + 2hk-^
;

the work done on the pole as it moves from C to D is

-2hy+2hkp.

We may show similarly that the work done on unit

pole as it moves from B to G is equal to

-2k^-2hk^f,

and when it moves from D to A to

2kl3-2hk^.
dz

Adding these expressions we see that the work done on

unit pole as it travels round the rectangle ABCD is equal

(|-S)«'-
The quantity of current passing through this rectangle is

equal to 4iuhk,
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hence since the work done on unit pole in going round the

rectangle is equal to ^tt times the current passing through

the rectangle, see Art. 201, we have

47r X ^uhk =
(
3^ — "^ ) ^^^^

^^-=|-£ (^)-

By taking rectangles whose sides were parallel to the axes

of X and z, and of x, y we should get in a similar way

^-4:-£ (^)-

*-4f-| (^)-

If X, F, Z are the components of the electric intensity at

0, we can prove by a similar process that the work done

on unit charge of electricity in going round the rectangle

ABGD is equal to

dy dz J

If a, 6, c are the components of magnetic induction at

0, the number of tubes of magnetic induction passing

through the rectangle is a x ^hk ; hence the rate of diminu-

tion of the number of unit tubes is equal to

at

But by Faraday's law (Art. 226) the work done on unit

charge in going round the circuit is equal to the rate of

diminution in the number of tubes of magnetic induction

passing through the circuit, hence

dt \dy dz J
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or

similarly

da

di

db

dt

dc

di

dZ
dy

dX
dz

dY
dx

dY
dz

dZ
dx

d_X_

dy

(4).

Let us consider the case when the variable part of

magnetization is induced, so that

da _ da db _ d^ dc _ dy

di~^di' dt~^dt' di~^di'

where /jl is the magnetic permeability. If a is the specific

resistance of the metal in which the currents are flowing,

and if the currents are entirely conduction currents,

au = X, o-v = F, aw = Z.

We have by equation (1)

du _ d dc d db

dt dy dt dz dt

'

hence by putting F= <rv, Z = aw in equation (4) we get

. du (d^u d^u d^u\ d fdu dv dw\

^''''Tt = ''[d^-*-df + d^)-''d-x[d-x +
^+-^

We see from equations (1), (2), (3) that

hence

dy dz)

'

similarly

du

di

dv dw
Tz'-

-0,

. du (d^u

^""f^'dt^'^Kdaf

dhi

^df
dH^Y

^dz^j'

dv (dH

^""'"dt-'^W
d'v

df
dH\

^dz')'

dw d^w^. fd'^w d'W (

^-^"Tt'^'Kd^^lif^dzy
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We can also prove by a similar method that

. da ((Pa d?a d^a\

with similar equations for b and c.

These equations are identical in form with those which

hold for the conduction of heat, and we see that the

currents and magnetic force will diffuse inwards into the

metal in the same way as temperature would diffuse if

the surface of the metal were heated, and then the heat

allowed to diffuse.

232. We may apply the results obtained in the con-

duction of heat to the analogous problem in the distribution

of currents. As a simple example let us take a case in one

dimension. Let us suppose that over the infinite face of

a plane slab we have initially a uniform distribution of

currents, and that these currents are left to themselves.

Then from the analogous problem in the conduction of

heat we know that after a time t has elapsed the current

at a distance x from the face to which the currents were

originally confined will be proportional

g {<r/irfi)t

~7~'

This expression satisfies the differential equation and

vanishes when ^ = except at the face where a; = 0. The

currents at a distance x will attain their maximum value

when

t — —.—
,

and the magnitude of the maximum current will be in-

versely proportional to x.
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In the case of copper yw, = 1, a = 1600, hence the time

at which the current at a place, one centimetre from the

surface, is a maximum is 27r/1600 seconds, or about 1/250

of a second, a point '1 cm. from the surface would receive

the maximum current after about 1/25,000 of a second,

while at a point 10 cm. from the surface the current would

not reach its maximum for about 4/10 of a second.

Let us now consider the case of iron : for an average

specimen of soft iron we may put o- = 10^ //, = 10^ ; hence

in this case the time the current, 1 cm. from the sur-

face, will take to reach its maximum value is about

27r/10 seconds, while a place 10 cm. from the face only

attains its maximum after 207r seconds. Thus the currents

diffuse much more slowly through iron than they do

through copper. The diffusion of the currents is regu-

lated by two circumstances, the inertia of the currents

which tends to confine them to the outside of the con-

ductor, and the resistance of the metal which tends to

make the currents diffuse through the conductor ; though

the resistance of iron is greater than that of copper, this is

far more than counterbalanced by the enormously greater

magnetic permeability of the iron which increases the

inertia of the currents, and thereby the tendency of the

currents to concentrate themselves on the outside of the

conductor.

-^
When i is much greater than x'^j{iila)\ e '*/*^^ differs

little from unity in this case, the currents are almost

independent of x and vary inversely as t^, thus the currents

ultimately get nearly uniformly distributed, and gradually

fade away.

233. Periodic electromotive forces acting on a
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circuit possessing inertia. So far we have confined

our attention to the case of impulses, we now proceed to

consider the case when electromotive forces act on a circuit

for a finite time. If these forces are steady the currents

will speedily become steady also, and there will be no

effects due to induction ; when, however, these forces are

periodic, induction will produce very important effects

which we shall now proceed to investigate. We shall

commence with the case of a single circuit whose co-

efficient of self-induction is L and whose resistance is R
;

we shall suppose that this circuit is acted on by an

external electromotive force varying harmonically with

the time, the force at the time t being equal to E cos pt]

this expression represents a force making jp/27r complete

vibrations a second, it changes its direction p/ir times per

second. If i is the current through the coil, we have

Lj-i-Ri^Ecospt (1);

the solution of this equation is

E cos (pt — a)

{R'^ +Ly i
(2),

where tan a = -^ (3).

The maximum value of the electromotive force is E,

while the maximum value of the current is

EI{R' + LY]^:
if a steady force E acted on the circuit the current would

be E/R. Thus the inertia of the circuit makes the

maximum current bear to the maximum electromotive

force a smaller ratio than a steady current through

the same circuit bears to the steady electromotive force
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producing it. The ratio of the maximum electromotive

force to the maximum current, when the force is periodic,

is equal to {R^ + Zyp ; this quantity is called the

impedance of the circuit.

We see from equation (2) that the phase of the current

lags behind that of the electromotive force. When the

force oscillates so rapidly that Lp is large compared with

B, we see from equation (3) that a will be approximately

equal to 7r/2. In this case the current through the coil

will be greatest when the electromotive force acting on

the circuit is zero, and will vanish when the electromotive

force is greatest.

In this case, since Lp is large compared with B, we

have approximately

^ = ^-smp^;

thus the current through the circuit is approximately

independent of the resistance and depends only upon

the coefficient of self-induction and on the frequency of

the electromotive force. Thus a very rapidly alternating

electromotive force will send far more current through

a short circuit with a small coefficient of self-induction,

even though it is made of a badly conducting material,

than through a long circuit with large self-induction,

even though this circuit is made of an excellent con-

ductor. For steady electromotive forces on the other

hand, the current sent through the second circuit would

be enormously greater than that through the first.

The work done by the current per unit time, which

appears as heat, is equal to the mean value of either
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iE cos pt . i or Ri"^, and is equal to

E-'R

R^ + Ly

'

Thus when the electromotive force changes so slowly that

Lp is small compared with R, the work done per unit

time varies inversely as R; while when the force varies

so rapidly that Lp is large compared with J?, the work

done varies directly as R. If E, p and L are given the

work done is a maximum when

R = Lp.

234. Circuit rotating in the Earth^s field. The

external electromotive force is of the type considered in the

last article when a conducting circuit rotates with uniform

velocity (o in the earth's magnetic field about a vertical

axis. If 6 is the angle the plane of the circuit makes

with the magnetic meridian, H the horizontal component

of the earth's magnetic force, A the area of the circuit,

then the number of tubes of magnetic induction passing

through the circuit is

HA sin d :

the rate of diminution of this is

XT A nde— HA cosO -r:.
at

If the circuit revolves with uniform angular velocity ©,

6 = cot, and the rate of diminution in the number of tubes

of magnetic induction passing through the circuit is

— HAo) cos cot.

As this, by Faraday's law, is the electromotive force

acting on the circuit, the case is identical with that just

considered if we write co for p and — HAco for E ; thus

T. E. 26
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if L is the coefficient of self-induction of the circuit,

R the resistance, i the current through the circuit,

HAta cos {(idt — a)

[LW + E"]^

The motion of the circuit is resisted by a couple whose

moment is, by Art. 212, equal to the current multiplied

by the differential coefficient with respect to 6 of the

number of tubes of magnetic induction due to the earth's

field passing through the circuit; thus the moment of

the couple is

iHA cos S,

H^A'^co cos (ot cos (cot — a)
or 1 -.

{ZW + i^'l^

Thus the couple always tends to oppose the rotation

of the coil unless 6 is between ^ and ^ + a or between

-2-and-2 +a.

To maintain the motion of the circuit work must be

spent; the amount of work spent in any time is equal

to the mechanical equivalent of the heat developed in

the circuit.

The mean value of the retarding couple is

, H'A^co cos a _ H'A'^Rq)

it vanishes when co is zero or infinite and is greatest

when CO = RjL,

If the circuit rotates so rapidly that Leo is large

compared with R, a is approximately equal to 7r/2, and

we see that

HA ^mcot
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Now by definition Li is the number of tubes of

magnetic induction due to the currents which pass

through the circuit, while HA sinw^ is the number pass-

ing through the same circuit due to the earth's magnetic

field ; we see from the preceding expression for i that the

sum of these two quantities, which is the total number of

tubes of magnetic induction passing through the circuit,

remains zero throughout the whole of the time. This is

an illustration of the general principle that when the

inertia effects are paramount the number of tubes passing

through any conducting circuit remains constant.

235. Circuits in parallel. Suppose that two points

A and B are connected by two circuits in parallel. Let

R be the resistance of the first circuit, S that of the

second ; let the first circuit contain a coil whose coefficient

of self-induction is L, the second one whose coefficient of

self-induction is N. Let the coils be so far apart that

their coefficient of mutual induction is zero. Then if

a difference of potential E cospt be maintained between

the points A and J5 we see by the preceding investigations

that i and j, the currents between the two circuits, will be

given by the equations

. __E cos (pt — a)

{Ly + R']^

. ^ Ecos (pt - 13)

where tan ol — -~-, tan ^ — -~
.

If the external electromotive force varies so rapidly that

26—2
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Lp and Np are large compared with R and B respectively,

then
E sin pt

E %m.pt
^^ Np '

or the currents flowing through the two circuits are

inversely proportional to their coefficients of self-induc-

tion. Thus with very rapidly alternating currents the

distribution of the currents is almost independent of

their resistances and depends almost entirely on their

self-inductions. Thus if one of the coils had a moveable

iron core, the current through the coil would be very

much increased by removing the iron as this would

greatly diminish the self-induction of the circuit.

236. Transformers. We have hitherto confined our

attention to the case when the only circuit present was

the one acted upon by the periodic electromotive force.

We shall now consider the case when in addition to the

circuit acted upon by the. external electromotive force,

which we shall call the primary circuit, another circuit is

present in which currents are induced by the alternating

currents in the primary: we shall call this circuit the

secondary circuit, and suppose that it is not acted upon

by any external electromotive force beyond that due to

the alternating current in the primary. A very important

example of this is afforded by the ' transformer.' In this

instrument a periodic electromotive force acts on the

primary, which consists of a large number of turns of

wire; in the ordinary use of the transformer for electric

lighting this electromotive force is so large that it would

be dangerous to lead the primary circuit about a building

;
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the current for lighting is derived from a secondary circuit

consisting of a smaller number of turns of wire. The

primary and secondary circuits are wound round an iron

core as in Fig. 117.

Fig. 117.

The tubes of magnetic induction concentrate in this

core, so that most of the tubes which pass through the

primary pass also through the secondary, and vice versd.

The current in this secondary is larger than that in

the primary, but the electromotive force acting round it

is smaller. The current in the secondary bears to that in

the primary approximately the same ratio as the electro-

motive force round the primary bears to that round the

secondary.

Let L, M, N be respectively the coefficients of self-

induction of the primary, of mutual induction between the

primary and the secondary and of self-induction of the

secondary, let R Siud S be the resistances of the primary

and secondary respectively, x and y the currents through

these coils. Let E cospt be the electromotive force acting



406 ELECTROMAGNETIC INDUCTION. [CH. XI

on the primary. To find x and y we have the following

equations

:

L^ + M^-hRa) = Ecospt (1),

^1 + ^1-^^^ = ^ (^)-

The values of x and y are

x = A cos (pt — a) (3),

y = Bcos{pt-j3) (4).

By substituting these values in equations (1) and (2),

we find

^-WyTS^^' ('^'

L'^p'^ + R'^
'

where L' — L—,^„ „ ^^„
,

tan a = -j^ ,

From the expressions for A and a in terms of E we see

that the effect of the secondary circuit is to make the

primary circuit behave like a single circuit whose co-

efficient of self-induction is X' and whose resistance is R\

We see from the expressions for L' and R\ that L' is less

than L, while R' is greater than R. Thus the presence of

the secondary circuit diminishes the apparent self-induc-

tion of the primary circuit, while it increases its resistance.
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When the electromotive force changes so rapidly that Np
is large compared with 8, we have approximately

M''

/8 — a = TT.

This value of the apparent self-induction is the same

as that under an electrical impulse, see Art. 229. In a

well-designed transformer L — M^/N is exceedingly small

compared with L. When the secondary circuit is not

completed >S^ is infinite ; in this case L' = L. When the

secondary circuit is completed through electric lamps

&c., S is in practice small compared with Np, so that

L' — L — M'^jN. Thus the completion of the circuit

causes a great diminution in the value of the apparent

self-induction of the primary circuit. The work done per

unit time in the transformer is equal to the mean value

of E cos 'pt . X, it is thus equal to

1 E^ cos a

2 {ZV +^
^1 E'R
~ 2 L'y -f- R'

•

When the secondary circuit is broken S is infinite and

therefore L' = L, R = R, and the work done on the trans-

former per unit time or the power spent on it is equal to

1 E'E
2 LY + ^'

*

When the circuit is completed and S is small compared
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with Np, L' = L- M'lJSr, R' = R-\- M'S/N% and then the

power spent is equal to

This is very much greater than the power spent

when the secondary circuit is not completed ; this must

evidently be the case, as when the secondary circuit is

completed lamps are raised to incandescence, the energy

required for this must be supplied to the transformer. The

power spent when the secondary circuit is not completed

is wasted as far as useful effect is concerned, and is spent

in heating the transformer. The greater the coefficient of

self-induction of the primary, the smaller is the current

sent through the primary by a given electromotive force,

and the smaller the amount of power wasted when the

secondary circuit is broken. When the secondary circuit

is closed the self-induction of the primary is diminished

from L to L'; since there is less effective self-induction

in the primary, the current through it, and consequently

the power given to it, is greatly increased.

We see from the expression just given that the power

absorbed by the transformer is greatest when

n^-^{^-n)p'
that is, when

When there is no magnetic leakage, i.e. when

LN=M\



236] ELECTROMAGNETIC INDUCTION. 409

the power absorbed continually increases as the resist-

ance in the secondary diminishes ; when however LN is

not equal to if' the power absorbed does not necessarily

increase as S diminishes, it may on the contrary reach

a maximum value for a particular value of S, and any

diminution of 8 before this value will be accompanied

by a decrease in the energy absorbed by the transformer.

The greater the frequency of the electromotive force, the

larger will be the resistance of the secondary when the

absorption of power by the transformer is greatest. When
the frequency is very great, such as, for instance, when

a Leyden jar is discharged (see page 422), the critical value

of the resistance in the secondary may be exceedingly

large. In this case the difference between the maximum
absorption of power and that corresponding to /Sf= may
be very great. Thus when S = 0, the power absorbed

is equal to

1 E'R
2 L'Y + i^'

'

or approximately for very high frequencies

1 E^
2 X'y

'

while the maximum power absorbed is

1 E^
4 L'p'

which exceeds that when >Sf = in the proportion of L'p

to 2E.

The currents x, y in the primary and secondary are

represented by the equations

x = A cos {pt — a),

y = B cos {jjt — /3).
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Thus the ratio of the maximum value of the current

in the primary to that in the secondary is BjA: by

equation (5), we have

B ^ Mp

or, when Np is large compared with S,

B_M
A" N'

^ — a = TT.

If the primary and secondary coils cover the same

length of the core, and are wound on a core of great

permeability, then M/N is equal to m/n, where m is the

number of turns in the primary, and n the number in

the secondary.

If we have a lamp whose resistance is s in the secondary

the potential difference between its electrodes is sy, i.e.

sB cos {pt — /3).

The maximum value of this expression is sB ; substi-

tuting the value of B, we find that this value is equal to

M
J.

This is greatest when L'=0, in which case it is equal to

M ^

and this, if S is small compared with Np^ is equal to
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If R is small compared with SM^/N^ this is ap-

proximately

Thus if for example M/N= 20, the maximum current

through the secondary is 20 times that through the

primary; while the electromotive force between the

terminals of the lamp is approximately

Now s is always smaller than S, as S is the resistance

of the whole secondary circuit, while s is the resistance

of only a part of it : the electromotive force between the

terminals of any lamp is thus in this case always less than

1/20 of the electromotive force between the terminals of

the secondary. In getting this value we have assumed the

conditions to be those most favourable to the production

of a high electromotive force in the secondary; if there

is any magnetic leakage, i.e. if L' is not zero, then at

high frequencies the electromotive force in the secondary

would be very much less than the value just found, in

fact where there is any magnetic leakage, the ratio of the

electromotive force in the secondary to that in the primary

is indefinitely small when the frequency is infinite.

237. Distribution ofrapidly alternating currents.

When the frequency of the electromotive force is so great

that in the equations of the type

dx dii
L -r +M -y- + ,..Rx = external electromotive force,

at at

the term Rx depending on the resistance is small com-

pared with the terms Ldx/dt, Mdyjdt depending on



412 ELECTROMAGNETIC INDUCTION. [CH. XI

induction, which if the electromotive force is supposed to

vary as cos^^, will be the case when Lp, Mp are large

compared with R ; the equations determining the currents

take the form

-^(Lx-\-My + ...) = external electromotive force,

" dt
'

where N is the number of tubes of induction due to the

external system passing through the circuit whose co-

efficient of self-induction is L.

We see from this that

Lx + My + . . . + N = constant,

and since x, y . . . N all vary harmonically, the constant

must be zero. Now Lx -f- My + ... is the number of tubes

of magnetic induction which pass through the circuit we
are considering, and are due to the currents flowing in this

and the neighbouring circuits, while N is the number of

tubes passing through the same circuit due to the ex-

ternal system. Hence the preceding equation expresses

that the total number of tubes passing through the circuit

is zero. The same result is true for any circuit.

Now consider the case of the currents induced in a

mass of metal by a rapidly alternating electromotive force.

The number of tubes of magnetic induction which pass

through any circuit which can be drawn in the metal is zero,

and hence the magnetic induction must vanish through-

out the mass of the metal. The magnetic force will con-

sequently also vanish throughout the same region. But

since the magnetic force vanishes, the work done when unit

pole is taken round any closed curve in the region must

also vanish, and therefore by Art. 201 the current flowing
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through any closed curve in the region must also vanish

;

this implies that the current vanishes throughout the mass

of metal, or in other words, that the currents generated

by infinitely rapidly alternating forces are confined to the

surface of the metal, and do not penetrate into its interior.

We showed in Art. 230 that the currents generated by

an electrical impulse started from the surface of the con-

ductors and then gradually diffused inwards. We may
approximate to the condition of a rapidly alternating force

by supposing a series of positive and negative impulses

to follow one another in rapid succession. The currents

started by a positive impulse have thus only time to

diffuse a very short distance from the surface before the

subsequent negative impulse starts opposite currents from

the surface ; the effect of these currents at some distance

from the surface is to tend to counteract the original

currents, and thus the intensity of the current falls off

rapidly as the distance from the surface of the conductor

increases.

238. The amount of concentration of the current de-

pends on the frequency of the electromotive force and of

the conductivity of the conductor. If the frequency is in-

finite and the conductivity finite, or the frequency finite and

the conductivity infinite, then the current is confined to

an indefinitely thin skin near the surface of the conductor.

If, however, both the frequency and the conductivity are

finite, then the thickness of the skin occupied by the

current is finite also, while the magnitude of the current

diminishes rapidly as we recede from the surface. Any
increase in the frequency or in the conductivity increases

the concentration of the current.



414 ELECTROMAGNETIC INDUCTION. [CH. XI

The case is analogous to that of a conductor of heat,

the temperature of whose surface is made to vary har-

monically, the fluctuations of temperature corresponding

to the alterations in the surface temperature diminish in

intensity as we recede from the surface, and finally cease

to be appreciable. The fluctuations, however, with a long

period are appreciable at a greater depth than those with

a short one. We may for example suppose the temperature

of the surface of the earth to be subject to two variations,

one following the seasons and having a yearly period, the

other depending on the time of day and having a daily

period. These fluctuations become less and less apparent

as the depth of the place of observation below the surface

of the earth increases, and finally they become too small to

be measured. The annual variations can, however, be

detected at depths at which the diurnal variations are

quite inappreciable.

This concentration of the current near the surface of

the conductor, which is sometimes called ' the throttling of

the current,' increases the resistance of the conductor to

the passage of the current. When, for example, a rapidly

alternating current is flowing along a wire, the current

will flow near to the outside of the wire, and if the

frequency is very great the inner part of the wire will

be free from current ; thus since the centre of the wire is

free from current, the current is practically flowing through

a tube instead of a solid wire. The area of the cross

section of the wire, which is effective in carrying this

rapidly alternating current, is thus smaller than the

effective area when the current is continuous, as in this

case the current distributes itself uniformly over the whole

of the cross section of the wire. As the effective area for
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the rapidly alternating currents is less than that for con-

tinuous currents, the resistance, measured by the heat pro-

duced in unit time when the total current is unity, is greater

for the alternating currents than for continuous currents.

239. Distribution of an alternating current in

a Conductor. The equations given in Art. 231 enable us

to find how an alternating current distributes itself in a

conductor. We shall consider the case which presents the

least analytical difficulties, but which will serve to illustrate

the laws of the phenomenon we are discussing. This case

is that of an infinite mass of a conductor bounded by a

plane face. Take the axis of x at right angles to this

face, and the origin of coordinates in the face; let the

currents be everywhere parallel to the axis of z, and the

same at all points in any plane parallel to the face of the

conductor. Then if //, is the magnetic permeability and

a the specific resistance of the conductor, w the current at

the point x, y, z at the time t parallel to the axis of z,

we have by the equations of Art. 231,

. dw [d^w d^w d^w\

or, since w is independent of y and z

. dw d^w

*'^'*d?='^d^ (!)•

We shall suppose that the currents are periodic, making
p/27r complete alternations per second. We may put,

writing i for J^l,
W = €^^* ft),

where &> is a function of x, but not of t Substituting this

value of w in equation (1) we get
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or if 'n? = ^Trfiipja,

The solution of this is

where A and B are constants.

Now „ = |l^l%-i

_|2ir/^>^
(1+i).

1

We shall suppose that the conductor stretches from

x=0 to a? = 00 and that the cause which induces the

currents lies on the side of the conductor for which x is

negative. It is evident that in this case the magni-

tude of the current cannot increase indefinitely as we

recede from the face nearest to the inducing system ; in

other words, w cannot be infinite when x is infinite : this

condition requires that B should vanish ; in this case we

have

and therefore

Thus li w = A cos pt when x = 0,

w==A6 ^ " ^ coslp^ - ( -j a

at a distance x from the surface.
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This result shows that the maximum value of the

cuiTent at a distance x from the face is proportional to

,-^^f- Thus the magnitude of the current diminishes

in geometrical progression as the distance from the face

increases in arithmetical progression.

In the case of a copper conductor exposed to an electro-

motive force making 100 alternations per second, /a = 1,

o- = 1600, ^ = 27rxl00; hence {27r/xp/o-}^ = 7r/2, so that

the maximum current is proportional to e ^ . Thus at

1 cm. from the surface the maximum current would only

be "208 times that at the surface, at a distance of 2 cm.

only '043, and at a distance of 4 centimetres less than

1/500 part of the value at the surface.

If the electromotive force makes a million alternations

per second [^ir^pjay = SOtt ; the maximum current is thus

proportional to e"^^, and at the depth of one millimetre

is less than one six-millionth part of its surface value.

The concentration of the current in the case of iron

is even more remarkable. Consider a sample of iron

for which /a = 1000, a = 10000, exposed to an electro-

motive force making 100 alternations per second, so that

p = 27r X 100. In this case {27r/Ap/o-)^= 20 approximately,

and thus the maximum current at a depth of one milli-

metre is only "13 times the surface value, while at

5 millimetres it is less than one twenty-thousandth part

of its surface value.

If the electromotive force makes a million alternations

per second, then for this specimen of iron j27r/x/}/(r}*

T. E. 27
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is approximately 2000, and the maximum current at the

distance of one-tenth of a millimetre from the surface

is about one five-hundred-millionth part of its surface

value.

We see from the preceding expressions for the current

that the distance required to diminish the maximum cur-

rent to a given fraction of its surface value is directly

proportional to the square root of the specific resistance,

and inversely proportional to the square root of the number

of alternations per second.

240. Magnetic Force in the Conductor. The

currents in the conductor are all parallel to the axis of z,

and are independent of the coordinates y, z.

Now the equations of Art. 231 may be written in the

form
da _ fdw dv\ dh _ (du dw\

'Tt'^^Kdy'dzj' 'Jt'^^Kdi"!^)'
dc _ fdv ^ du\

dt \dx dy)
'

where a, h, c are the components of the magnetic induc-

tion, u, V, w those of the currents. In the case we are

considering u=v = 0, and w is independent of y and z
;

hence a = c = 0, and the magnetic induction is parallel

to the axis of y. Thus the currents in the plate are

accompanied by a magnetic force parallel to the surface

of the plate and at right angles to the direction of the

current.

From the above equations we have

db _ dw
dt^ dx^
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and by Art. 239 w = Ae-"^^ cos {pt — mx\

where m = {^ir^pjo-y.

(^t-mx-'^

= Ae-""^ cos lpt-mx--\

.

Thus the magnetic force in the conductor diminishes

as we recede from the surface according to the same law

as the current.

241. Mechanical Force acting on the Con-
ductor. When a current flows in a magnetic field a

mechanical force acts on the conductor carrying the cur-

rent (see page 347). The direction of the force is at

right angles to the current and also to the magnetic

induction, and the magnitude of the force per unit length

of the conductor is equal to the product of the current

and the magnetic induction at right angles to it.

In the case we are considering the magnetic induction

and the current are at right angles. If tv is the intensity

of the current, the current flowing through the area

dxdy is wdxdy\ hence the force on the volume dxdydz
parallel to x, and in the positive direction of x, is equal

to

— wh dx dy dz.

The total force parallel to x acting on the conductor is

Inwhdxdy dz,

but since h and lu are both independent of y and z, the

force acting on the conductor per unit area of its face is

/
whdx.

27—2
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Now if a, P, y are the components of the magnetic

force

~~
dx dy^

hence, since h — /xy3, we see that the force on the con-

ductor parallel to x is

47r j dx'

where /3o is the value of /5 when ^ = 0, i.e. at the surface

of the conductor, and yS^ is the value of ^ when x= oo

,

But it follows from the expression for b given in the

last article that y9^ = ; hence the force on the conductor

parallel to ^v per unit area of its face is equal to

Sir
'

This is always positive, and hence the conductor tends

to move along the positive direction of ^ ; in other words,

the conductor is repelled from the system which induces

the currents in the conductor. These repulsions have

been shown in a very striking way in experiments made

by Professor Elihu Thomson and also by Dr Fleming.

In these experiments a plate placed above an electro-

magnet round which a rapidly alternating current was

circulating, was thrown up into the air, the repulsion

between the plate and the magnet arising from the cause

we have just investigated.

The expression ^^ is the repulsion at any instant,
OTT

but since ySo is proportional to cos (pt + e) the mean value
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of P^ is H'^12 if H is the maximum value of y8o. Hence

the mean value of the repulsion is equal to

IGtt*

242. The screening off of Electromagnetic In-

duction. We have seen in Art. 240 that the magnetic

force diminishes rapidly as we recede from the surface

of the conductor, and becomes inappreciable at a finite

distance, say d, from the surface. At a point P whose

distance from the surface is greater than d we may neglect

both the current and the magnetic force. Thus the electro-

magnetic action of the currents in the sheet of the con-

ductor whose thickness is rf just counterbalances at P
the electromagnetic action of the original inducing system

situated on the other side of the face of the conductor.

Hence the slab of thickness d may be regarded as

screening off from P the electromagnetic effect of the

original system. In the investigation in Art. 240 we sup-

posed that the conductor was infinitely thick, but since

the currents are practically confined to the slab whose

thickuess is d, it is evident that the screening is done

by this layer and that no appreciable advantage is gained

by increasing the thickness of the slab beyond d. The

thickness d of the slab required to screen off the magnetic

force depends upon the frequency of the alternations and

on the magnetic permeability and specific resistance of the

conductor. By Arts. 239 and 240 the current and magnetic

force at a distance x from the surface are proportional to

g-maj^ where m = [27rfjbplcr]^ ; hence for a thickness d to

reduce the magnetic force to an inappreciable fraction of

its surface value md must be considerable. If we regard
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the system as screened off when the magnetic effect is

reduced to a definite fraction of its undisturbed value,

then d the thickness of the screen is inversely propor-

tional to m. The greater the frequency the thinner the

screen. Thus from the examples given in Art. 239 we

see that if the system makes a million oscillations a

second, a screen of copper less than a millimetre thick

will be perfectly efficient, while a screen of iron a very

small fraction of a millimetre in thickness will stop prac-

tically all induction. If the system only makes 100 alter-

nations a second, the screen if of copper must be several

centimetres and if of iron several millimetres thick.

243. Discharge of a Leyden Jar. One of the

most interesting applications of the laws of induction of

currents is to the case of a Leyden jar, the two coatings of

which are connected by a conducting circuit possessing

self-induction. Let us consider a jar whose inside A is

connected to the outside B by a circuit whose resistance

is R and whose coefficient of self-induction is L. Let i

be the current flowing through the circuit from A to B.

Then by the laws of the induction of currents

di .

L-T.-\-Ri— electromotive force tending to increase i

= F-.-n (1).

If V^ and Vs al-e respectively the potentials of A and

By Q the charge on the inside of the jar, and G the

capacity of the jar, then

or v,-r,) = ^.



243] ELECTROMAGNETIC INDUCTION. 423

The alteration in the charge is due to the current

flowing through the conductor, and i is the rate at which

the charge is diminishing, so that

dQ
'

" dt
'

Substituting this value of i in equation (1), we get

^W + ^di-^G-^ (2>-

The form of the solution of this equation will depend upon

whether the roots of the quadratic equation

are real or imaginary.

Let us first take the case when they are imaginary,

i.e. when

^<4^.

In this case the solution of (2) takes the form

e=^.-S%os[(^-g)S+«} (3),

where A and a are arbitrary constants.

We see from this expression that Q is alternately

positive and negative and vanishes at times following

one another at the interval

1(1 R']^

^/|za-4z4 •

The charge Q is thus represented by a harmonic function

whose amplitude decreases in geometrical progression as

the time increases in arithmetical progression.
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The discharge of the jar is oscillatory, so that if for

example, to begin with, the inside of the jar is charged

positively, the outside negatively ; then on connecting by

the circuit the inside and the outside of the jar, the posi-

tive charge on the inside diminishes ; when however it has

all disappeared there is a current in the circuit, and the

inertia of this current keeps it going, so that positive

electricity still continues to flow from the inside of the jar

;

this loss of positive electricity causes the inside to become

charged with negative electricity, while the outside gets

positively charged. Thus the jar which had originally

positive on the inside, negative on the outside, has now
negative on the inside, positive on the outside. The poten-

tial difference developed in the jar by these charges tends

to stop the current and finally succeeds in doing so. When
this happens the charges on the inside and outside would

be equal and opposite to the original charges if the re-

sistance of the circuit were negligible ; if the resistance

is finite the new charges will be of opposite sign to the

old ones, but smaller. The current now begins to flow

in the opposite direction, and goes on flowing until the

inside is again charged positively, the outside negatively

;

if there were no resistance the charges on the inside and

outside would regain their original values, so that the

state of the system would be the same as when the dis-

charge began ; if the resistance is finite the charges are

smaller than the original ones. The system goes on then

as before until the charges become too small to be ap-

preciable. The charges in the jar and the currents in the

wire are thus periodic, the charges surging backwards and

forwards between the coatings of the jar.

The oscillatory character of the discharge was sus-
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pected by Henry from observations on the magnetization

of needles placed inside a coil in the discharging circuit.

The preceding theory was given by Lord Kelvin in 1853.

The oscillations were detected by Feddersen in 1857.

The method he used consisted in putting an air break

in the wire circuit joining the inside to the outside of

the jar. This air break is luminous when a current passes

through it, and shines out brightly when the current

passing through it is great, and is dark when the current

vanishes. Hence if we observe the image of this air space

formed by reflection at a rotating mirror, it will if the

discharge is oscillatory be drawn out into a band with

dark and bright spaces, the interval between two dark

spaces depending on the speed of the mirror and the

frequency of the electrical vibrations. Feddersen observed

that the appearance of the image of the air break formed

by a rotating mirror was of this character. He showed

moreover that the oscillatory character of the discharge

was destroyed by putting a large resistance in the circuit,

for he found that in this case the image of the air space

was a broad band of light gradually fading away in

intensity instead of a series of bright and dark bands.

When the discharge is oscillatory the frequency of the

discharges is often exceedingly large, a frequency of a

million complete oscillations a second being by no means

a high value for such cases. We see by the expression (3)

that when R = 0, the time of vibration is 27r JLG ; thus

this time is increased when the self-induction or the

capacity is increased. By inserting coils with very great

self-induction in the circuit, Dr Oliver Lodge has produced

such slow electrical vibrations that the sounds generated

by the successive discharges form a musical note.
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la the preceding investigation we have supposed that

B? was less than 4Z/(7; if however R is greater than this

value, the solution of equation (2) changes its character,

and we have now

where — Xi, — Xq are the roots of the quadratic equation

XX2 + i2x+i = 0.

Hence ^^^S+aAS'^^

X-^""^ 2Z V 4Z2 GL

If we take <= when the circuit is closed, then dQ,ldt

vanishes when ^ = and we get, if Qo is the value of Q
when ^ = 0,

A<i "~" A^

(Jib Aj ~~ A/2

Hence dQ\dt never vanishes except when ^ = and when
t — cc. Thus Q which is zero when ^ = oo never changes

sign. That is, the charge in this case instead of becoming

positive and negative never changes sign but continually

diminishes, and ultimately becomes too small to be

observed. This result is confirmed by Feddersen's ob-

servations with the rotating mirror.

The behaviour of the Leyden jar is analogous to that

of a mass attached to a spring whose motion is resisted

by a force proportional to the velocity. If ilf is the mass

attached to the spring, x the extension of the spring, nx

the pull of the spring when the extension is a?, rdxjdt the
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frictional resistance, then the equation of motion of the

spring is

Comparing this with the equation for Q we see that if

we compare the extension of the spring to the charge

on the jar, then the coefficient of self-induction of the

circuit will correspond to the mass attached to the spring,

the electrical resistance of the circuit to the frictional

resistance of the mechanical system, and the reciprocal of

the capacity of the condenser to n, the stiffness of the

spring.

The pulling out of the spring corresponds to the charg-

ing of the jar, the release of the spring to the completion

of the circuit between the inside and the outside of

the jar ; when the spring is released it will if the friction

is small oscillate about its position of equilibrium, the

spring being alternately extended and compressed, and

the oscillations will gradually die away in consequence of

the resistance ; this corresponds to the oscillatory dis-

charge of the jar. If however the resistance to the motion

of the spring is very great, if for example it is placed in a

very viscous liquid like treacle, then when it is released it

will move slowly towards its position of equilibrium but

will never go through it. This case corresponds to the

non-oscillatory discharge of the jar when there is great

resistance in the circuit.

We have seen that the resistance of a conductor to a

variable current is not the same as to a steady one, and

thus since the currents which are produced by the dis-

charge of a condenser are not steady, R, which appears in
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the expression (2), is not the resistance of the circuit to

steady currents. Now R the resistance depends upon the

frequency of the currents, while as the expression (3)

shows, the frequency of the electrical vibrations depends

to some extent on the resistance ; hence the preceding

solution is not quite definite, it represents however the

main features of the case. For a complete solution we

may refer the reader to Recent Researches on Electricity

and Magnetism, J. J. Thomson, Art. 294.

244. Periodic Electromotive Force acting on a

circuit containing a condenser. Let an external elec-

tromotive force equal to E cu^pt act on the circuit which

connects the coatings of the jar, let C be the capacity of

the jar, L the coefficient of self-induction, and R the re-

sistance of the circuit connecting its coatings. Then if

X is the charge on one of the coatings of the jar (which

of the coatings is to be taken is determined by the con-

dition that an increase in x is accompanied by a current

in the direction of the external electromotive force), we

can prove in the same way as we proved equation (2)

Art. 243, that

^£+^'1+0=^"-^' (i>-

The solution of this equation is

<.= .

'^-'"0'^-") ^ (2).

E COS (pt — a)da E cos (pt- a) .

and thus -v- = ' -[ (•>),
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{'-cy
where tan a = ^ .

Comparing these equations with those of Art. 233 we
see that the circuit behaves as if the jar were done

away with and the self-induction changed from L to

L — 1/Cp\ We also see from (3) that if Cp^ is greater

than 1/2Z, the current produced by the electromotive force

in the circuit broken by the jar (whose resistance is

infinite) is actually greater than the current which would

flow if the jar were replaced by a conductor of infinite con-

ductivity. If Cp^ =1/L the apparent self-induction of the

circuit is zero, and the circuit behaves like an inductionless

closed circuit of resistance E. Thus by cutting the circuit

and connecting the ends to a condenser of suitable

capacity we can increase enormously the current passing

through the circuit. We can perhaps see the reason for

this more clearly if we consider the behaviour of the

mechanical system, which we have used to illustrate the

oscillatory discharge of a Leyden jar, viz. the rectilinear

motion of a mass attached to a spring and resisted by a

frictional force proportional to the velocity. Suppose that

X, an external force, acts on this system ; then at any

instant X must be in equilibrium with (1) the resultant of

the rate of diminution of the momentum of the mass, (2)

the force due to the compression or extension of the

spring, (3) the resistance. If the frequency of X is very

great, then for a given momentum (1) will be very large, so

that unless (1) is counterbalanced by (2) a finite force of

very great frequency will produce an exceedingly small

momentum. Suppose however the frequency of the ex-

ternal force is the same as that of the free vibrations of
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the system when the friction is zero, then when the mass

vibrates with this frequency, (1) and (2) will balance each

other, so that all the external force has to do is to balance

the resistance ; the system will therefore behave like one

without either mass or stiffness resisted by a frictional force.

245. A circuit containing^ a condenser is parallel

with one possessing self-induction.

Let ABC, AEG, Fig. 118, be two circuits. Let L be

the coefficient of self-induction of ABC, R the resistance

of this circuit, C the capacity of the condenser in AEG, r

the resistance of wires leading from A and G to the plates.

Fig. 118.

Then if i is the current through ABG, x the charge on the

plate nearest to -4, we have, neglecting the self-induction

of the circuit AEG,
-r di r,. dx X

since each of these quantities is equal to the electromotive

force between A and G.

If i = cos pt,

then X — ^ ^ \ sm (jpt + a).

{i+^i'

where a = tan~^~ + tan~^ —7^

.

B, rpG
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Hence J= jM±E cos (pt + a).

-\-r

Thus the maximum current along AEC is to that

along ABC as ^L'^ + R^ is to a/ j^^.^ + r\ or, if we can

neglect the resistances of the wires to the condenser, as

^Ly + R^ : 11Op. We see that for very high frequencies

practically all the current will go along the condenser

circuit.

Thus when the frequency is very high a piece of a

circuit with a little electrostatic capacity will be as

efficacious in robbing neighbouring circuits of current

as if the places where the electricity accumulates were

short-circuited by a conductor.

246. Lenz^s Law. When a circuit is moved in a

magnetic field in such a way that a change takes place

in the number of tubes of magnetic induction passing

through the circuit, a current is induced in the circuit;

the circuit conveying this current being in a magnetic

field will be acted upon by a mechanical force. Lenz's

Law states that the direction of this mechanical force is

such that the force tends to stop the motion which gave

rise to the current. This result follows at once from the

laws of the induction of currents. For suppose Fig. 119

Fig. 119.
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represents a circuit which, as it moves from right to left,

encloses a larger number of tubes of induction passing

through it from left to tight. The current induced will

tend to keep the number of tubes of induction unaltered,

so that since the number of tubes of magnetic induction

due to the external magnetic field which pass through

the circuit from left to right increases as the circuit

moves tow^ards the left, the tubes due to the induced

current will pass through the circuit from right to left.

Thus the magnetic shell equivalent to the induced current

has the positive side on the left, the negative on the

right. Since the number of tubes of induction due to

the external field which pass through this shell in the

negative direction, i.e. which enter at the positive and

leave at the negative side, increases as the shell is moved

to the right, the force acting on the shell is, by Art. 212,

from left to right, which is opposite to the direction of

motion of the circuit.

There is a simple relation between the mechanical

and electromotive forces acting on the circuit. Let P be

the electromotive force, X the mechanical force parallel

to the axis of x, i the current flowing round the circuit,

u the velocity with which the circuit is moving parallel

to oc, N the number of unit tubes of magnetic induction

passing through the circuit. Then

^"
dt'

and if the induced current is due to the motion of the

circuit dN dN

hence

dt dx
.u\

P = - u
dN
dx
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Again, by Art. 212, we have

„ .dN

SO that Xii = — Pi.

If we wish merely to find the direction of the current

induced in a circuit moving in a magnetic field, Lenz's law

is in many cases the most convenient method to use.

An example of this law is afforded by the coil revolving

in a magnetic field (Art. 234) ; the action of the magnetic

field on the currents induced in the coil produces a couple

which tends to stop the rotation of the coil. The magnets

of galvanometers are sometimes surrounded by a copper

box, the motion of the magnet induces currents in the

copper, and the action of these currents on the magnets

by Lenz's law tends to stop the magnet, and thus brings

it to rest more quickly than if the copper box were

absent. The quickness with which the oscillations of the

moving coil in the Desprez D'Arsonval Galvanometer

(Art. 221) subside is another example of the same efifect

;

when the coil moves in the magnetic field currents are

induced in it, and the action of the magnetic field on these

currents stops the coil. Again, if a magnet is suspended

over a copper disc, and the disc is rotated, the movement

of the disc in the magnetic field induces currents in the

disc ; the action of the magnet on these currents tends

to stop the disc, and there is thus a couple acting on the

disc in the direction opposite to its rotation. There must,

however, be an equal and opposite couple acting on the

magnet, i.e. there must be a couple on the magnet in

the direction of rotation of the disc ; this couple, if the

magnet is free to move, will set it rotating in the

T. E. 28
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direction of rotation of the disc, so that the magnet and

the disc will rotate in the same direction. This is a

well-known experiment ; the disc with the magnet freely

suspended above it is known as Arago's disc. Another

striking experiment illustrating Lenz's law is to rotate

a metal disc between the poles of an electro-magnet, the

plane of the disc being at right angles to the lines of

magnetic force ; it is found that the work required to turn

the disc when the magnet is 'on' is much greater than

when it is 'off.' The extra work is accounted for by the

heat produced by the currents induced in the disc.

247. Methods of determining the coefQcients of

self and mutual induction of coils. When the coils

are circles, or solenoids, the coefficients of induction can

be calculated. When, however, the coils are not of these

simple shapes the calculation of the coefficients would be

difficult or impossible ; they may, however, be determined

by experiment by means of the following methods.

248. Determination of the coefficient of self-

induction of a coil. Place the coil in BD, one of the

c

Fig. 120.

arms of a Wheatstone's Bridge, and balance the bridge

for steady currents, insert in CD a ballistic galvanometer,

and place a key in the battery circuit. When this key
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is pressed down so as to complete the circuit, although

there will be no current through the galvanometer when
the currents get steady, yet a transient current will flow

through the galvanometer, in consequence of the electro-

motive forces which exist in BD arising from the self-

induction of the coil. This current though only transient

is very intense while it lasts and causes a finite quantity

of electricity to pass through the galvanometer, producing

a finite kick. We can calculate this quantity as follows

:

an electromotive force E in BD will produce a current

through the galvanometer proportional to E, let this cur-

rent be IcE. In consequence of the self-induction of the

coil there will be an electromotive force in BD equal to

where L is the coefficient of self-induction of the coil and

i the current passing through the coil. This electromotive

force will produce a current q through the galvanometer

where q is given by the equation

If Q is the total quantity of electricity which passes

through the galvanometer

d
-'/:

the integration extending from before the circuit is com-

pleted until after the currents have become steady. The

right-hand side of this equation is equal to

28—2
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where i^ is the value of i when the currents are steady.

By the theory of the ballistic galvanometer, given in

Art. 222, we see that if 6 is the kick of the galvanometer

where T is the time of swing of the galvanometer needle,

G the galvanometer constant, and H the horizontal com-

ponent of the earth's magnetic force.

Hence we have

kLiQ = sin ^6 . —^ (1).

Let us now destroy the balance of the Wheatstone's

Bridge by inserting a small additional resistance r in

BD, this will send a current p through the galvanometer.

To calculate p we notice that the new resistance has

approximately the current {^ running through it, and the

effect of its introduction is the same as if an electromotive

force rio were introduced into DB, this as we have seen

produces a current krio through the galvanometer ; hence

p = kriQ.

This current will produce a permanent deflection <^ of

the galvanometer, and by Art. 219

^ = tan <^ ^ ,

TT
or krio = tan <^ ^ . .(2).

Hence from equations (1) and (2), we get

sin i|9 T
tan<^ TT
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249. Determination of the coefficient of mutual

induction of a pair of coils. Let A and 5, Fig. 121,

represent the pair of coils of which A is placed in series

with a galvanometer, and B in series with a battery ; this

second circuit being provided with a key for breaking or

closing the circuit.

Fig. 121.

Let R be the resistance of the circuit containing A,

Suppose that originally the circuit containing B is broken

and that the key is then pressed down, and that after

the current becomes steady the current i flows through

this circuit. Then before the key was pressed down no

tubes of magnetic induction pass through the coil A,

while when the current % flows through B the number

of such unit tubes is Mi, where M is the coefficient of

mutual induction between A and B. Thus the circuit

containing A has received an electrical impulse equal to

Miy so that Q, the quantity of electricity flowing through

the galvanometer will be Mi\R, and if Q is the kick of

the galvanometer, we have

using the same notation as before. We can eliminate
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a good many of the quantities by a method somewhat

similar to that used in the last case. Cut the circuit con-

taining the coil A and connect its ends to two points on the

circuit B separated by a small resistance >S ; then if R is

very large compared with 8 this will not alter appreciably

the current flowing round B\ on this supposition the

current flowing round the galvanometer circuit will be

*>R^8
and if <^ is the corresponding deflection of the galvano-

meter

^-^i = tan^.f (2).

Hence from equations (1) and (2), we get

UB sini^r
ilf=

R-h S tan <j) IT

250. Comparison of the coefficients of mutual
induction of two pairs of coils. Let A, a be one pair

of coils, J5, h the other. Connect a and h in one circuit

with the battery, and connect the points P and Q (Fig. 122)

to the two electrodes of a ballistic galvanometer. Insert

resistances in PAQ and PBQ until there is no kick of

x-y

Fig. 122.
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the galvanometer when the circuit through a and h is

made or broken. Let R be the resistance then in PAQ,
S that in PBQ, and let Mj, M^ be the coefficients of mutual

induction between the coils Aa, Bh respectively, then

M, _ M,

R" S
'

To prove this we notice that, by Art. 189, if we have

any closed circuit consisting of various parts, the sum of

the products obtained by multiplying the resistance of

each part by the current passing through it is equal to the

electromotive force acting round the circuit. In the case

when the electromotive forces are transient, we get by

integrating this result, that the sum of the products got

by multiplying the resistance of each part of the circuit by

the quantity of electricity which has passed through it is

equal to the electromotive impulse acting round the circuit.

Let us apply this to our case : if i is the steady current

flowing through the coils a and 6, the electromotive impulse

acting on A due to the closing of the circuit is Mji, while

that on B is M^i. If x is the quantity of electricity which

passes round A in consequence, y that round B, x — y will

be the quantity which passes through the galvanometer;

hence applj'ing the above rule to the circuit APQ, we

have if K is the resistance of the galvanometer circuit

Rx -\-K(x-y) = M^i

Applying the same rule to the circuit BPQ, we get

But if the total quantity which passes through the

galvanometer is zero, we have x = y, and therefore

R~ S'
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251. Comparison of the coefficients of self-

induction of two coils. Place the two coils whose

coefficients of self-induction are L and N respectively in

the arms AB, BD of a Wheatstone's Bridge, Fig. 120,

which is balanced for steady currents, then adjust the re-

sistances in AD, BD so that no kick of the galvanometer

occurs when the battery circuit is made, the alterations

in the resistances oi AD and BD will entail proportional

alterations in those oi AG and BG in order to keep the

bridge balanced for steady currents. Then when there is

no kick of the galvanometer when the circuit is made and

no steady deflection when it is kept flowing, we have

L_P_R

where P, Q, R, S are the resistances of the arms AD, BD,

AG, BG respectively.

We can see this as follows : suppose we have a

balanced Wheatstone's Bridge with the resistances in

as above, then for steady currents the balance would be

undisturbed if we altered P and Q provided their ratio

remains unchanged ; but the alteration of P and Q in

this way is equivalent to the introduction into AD and

BD of electromotive forces proportional to P and Q.

For since no current flows through the galvanometer

the same current flows through AD SiS through BD, and

the preceding statement follows by Ohm's law. Hence

we see that the introduction into the arms AD and BD
of electromotive forces proportional to P and Q will not

alter the balance of the bridge, and, conversely, that if

this balance is not altered by the introduction of an
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electromotive force A into the arm AD, and another, B,

into the arm BD, then A/B must be equal to PjQ.

Now if we have coils in ^D and BD whose coefficients

of self-induction are L, N, since when the current gets

steady, the same current, i say, flows through each of

these coils, there must be, whilst the current is getting

steady, an impulse Li in AD, and another equal to Ni
in BD. Since these impulses do not send any electricity

through the galvanometer they must, by the preceding

reasoning, be proportional to P and Q, hence

L_P



CHAPTER XII.

Electrical Units: Dimensions of Electrical

Quantities.

252. In Art. 9 we defined the unit charge of elec-

tricity as the charge which repelled an equal charge with

unit mechanical force when the two charges were at unit

distance apart and surrounded by air at standard tempe-

rature and pressure. When we know the unit charge

the various other electrical units easily follow. Thus the

unit current is the one that conveys unit charge in unit

time; unit electromotive intensity is that which acts on

unit charge with unit mechanical force ; unit difference of

potential is the potential between two points when unit

work is done by the passage of unit charge from one point

to the other. Unit resistance is the resistance between

two points of a conductor between which the potential

difference is unity when the conductor is traversed by

unit current.

The step from the electrical to the magnetic quantities

is made by means of the law that the work done when

unit magnetic pole is taken round a closed circuit is

equal to 47r times the current flowing through the circuit.

This law is to some extent a matter of definition. All

that is shown by experiment is that the work done when
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unit pole is taken round the circuit is proportional to the

current flowing through the circuit, and, as long as the

current remains the same, is independent of the nature

of the substances passed through by the pole in its tour

round the current. If we said that p times the work done

was equal to 47r times the current, these conditions would

still be fulfilled provided p was independent of the current,

the magnetic force and the nature of the substances in

the field. Though, as we shall see later, it would be

possible to get a somewhat more symmetrical system of

units by a proper choice of p, yet in practice, to avoid

the introduction of an unnecessary constant, p is always

taken as unity. When ^ = 1, it follows from Art. 210 that

the magnetic force at the centre of a circle of radius a

traversed by a current i is ^irija) thus unit magnetic

force will be the force at the centre of a circle of radius

27r traversed by unit current. Thus knowing the unit

current we can at once determine the unit magnetic force.

Having got the unit magnetic force the unit magnetic

pole follows at once from the law that it is the pole

which is acted on by unit magnetic force with the unit

mechanical force. We can from these go on and deduce

without ambiguity the units of the other magnetic quan-

tities. The System of units arrived at in this way is

called the Electrostatic System of Units.

Starting from the unit charge as defined in Art. 9,

we thus arrive at a unit magnetic pole. In Art. 113,

however, we gave another definition of unit magnetic pole

deduced from the repulsion between two similar poles.

The unit magnetic pole as defined in Art. 113 does not

coincide with the unit pole at which we arrive, starting,

as we have just done, from the unit charge of electricity.
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The numerical relation between the two units depends

upon what units of length and time we employ ; if these

are the centimetre and second, then the unit magnetic

pole on the electrostatic system of units is about 3 x 10^°

times as great as the unit pole as defined in Art. 113.

Instead of starting with unit charge of electricity we

may start with unit magnetic pole as defined in Art. 113.

The units of the other magnetic quantities would at once

follow from considerations similar to those by which we

deduced the unit electrical quantities from the unit

electrical charge. The electrical units would follow from

the magnetic ones by the principle that the magnetic

force at the centre of a circular current of radius a is

27n/a where i is the strength of the current; thus the

unit current is that which produces unit magnetic force

at the centre of a circle whose radius is 27r. In this

way we can get the unit current, and from this the units

of the other electrical quantities follow without difficulty.

The System of units got in this way is called the Electro-

magnetic System of Units.

The electromagnetic system of units does not coincide

wdth the electrostatic system. The electromagnetic unit

charge of electricity bears to the electrostatic unit charge

a ratio which depends on the units of length and time ; if

these are the centimetre and second the electromagnetic

unit of electricity is found to be about 3 x 10^" times the

electrostatic unit. The ratio of the electromagnetic unit

of charge to the electrostatic unit is equal to the ratio of

the electrostatic unit pole to the electromagnetic unit.

In the following table the relations between the

electrostatic and electromagnetic units of various electric

and magnetic quantities are given. Here v is the ratio
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of the electromagnetic unit charge of electricity to the

electrostatic unit.
Electrostatic unit

Quantity. SymboL in terms of

Electromagnetic.

Quantity of Electricity e Ijv

Electric intensity F V

Potential difference V V

Current i l/v

Resistance of a conductor R «»

Electric Polarization D l/v

Capacity of a condenser G y^
Strength of Magnetic Pole m V

Magnetic force H yv
Magnetic induction B V

Magnetic permeability t^ t?

Coefficient of Self-induction L 7f

Certain combinations of these quantities are equal

to purely geometrical or dynamical quantities, such as

leijgth, force, energy. The numerical expression of such

combination must evidently be the same whatever system

of units we employ; thus, for example, the mechanical

force on a charge e placed in a field of electric intensity

is Fe, but this force is a definite number of dynes quite

independent of any arbitrary system of measuring electric

quantities, thus Fx e must be the same whatever system

of electrical units we employ.

The following are examples of such combinations.

Time = ?

.

Lengt.h = j

.
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Force = Fe ; mH.

Energy = J Fe; i^; mt) ^LiK

Energy per unit volume = FDJ^tt ; fiH^ISw.

Thus since Fe is independent of the electrical units

chosen, if we adopt a new system in which the unit

of e is i; times the old unit, the new unit of F must be

1/v times the old unit. Again, Ri"^ is another quantity

unaltered by the change of units, so that if the new

unit of i is v times the old, the new unit of R must

be l/v^ times the old unit.

Dimensions of Electrical Quantities.

253. For the general theory of Dimensions we shall

refer the reader to Maxwell's Theory of Beat, Chap. Iv.

;

we shall in this Chapter confine our attention to the

dimensions of electrical quantities.

It may be well to state at the outset that the

" dimensions " of electrical quantities are a matter of

definition and depend entirely upon the system of units

we adopt. Thus we shall find that on the electromagnetic

system of units a resistance has the same dimensions as

a velocity, while on the electrostatic system of units it

has the same dimensions as the reciprocal of a velocity.

In fact we might choose a system of units so as to make
any one electrical quantity of any assigned dimensions;

when the dimensions of this are fixed that of the others

becomes quite determinate.

A symbol representing an electrical quantity merely

tells us how much of the quantity there is, and does not

tell us anything about the nature of the quantity ; this
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would require a dynamical theory of electricity. A theory

of dimensions cannot tell us what electricity is ; its

object is merely to enable us to find the change in the

numerical measure of a given charge of electricity or any

other electrical quantity when the units of length, mass

and time are changed in any determinate way.

We have to fix the electrical quantities by one or

other of their properties. Thus, to take an example, we

may fix a charge of electricity by the repulsion it exerts

on an equal charge, as is done in the electrostatic system

of units, or by the force experienced by a magnetic pole

when the charge is being transferred from one place to

another by a current, as is done in the electromagnetic

system ; these two measures are of different dimensions.

To take a simpler case we might fix a quantity of water

by the number of hydrogen atoms it contains, by its

mass, or by its volume at a definite temperature; all

these measures would be of different dimensions.

On the electrostatic system of units the force between

two equal charges e, separated by a distance X in a

medium whose specific inductive capacity is K, is e^jKL^,

and since this is of the dimensions of a force we have the

dimensional equation

-^ =^ (1)

M, L, T representing mass, length and time.

This result, with the meaning assigned to K in Art.

67, is only true on the electrostatic system of units. We
may, however, generalize the meaning of K and say that

whatever be the system of units the repulsion between

the charges is e^lKDj where K is defined as the * specific
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inductive capacity of the medium on the new system of

units.' We may regard this as the definition ofK on this

system. The ratio of the iT's for two substances on this

system is of course the same as the ratio of the iT's on the

electrostatic system. We shall regard the dimensions of

K as indeterminate and keep them in the expression for

the dimensions of the electrical quantities^ From equa-

tion (1) we have the dimensional equation

Similarly on the electromagnetic system of units the

repulsion between two poles of strength m separated by a

distance X in a medium whose magnetic permeability is fi

is m^/fiL^, fi for this system of units being a quantity of

no dimensions. We shall suppose that whatever be the

system of units the force between the poles is equal to

m^l/iL^: where /x thus determined is defined as the

magnetic permeability of the medium on this system of

units. Thus, for example, if m is the measure, on the

Electrostatic system of units, of the strength of a pole,

the force between two equal poles separated by unit

distance in air is not m^ but 9 x lO^^m^. Hence we say

the magnetic permeability of air on the electrostatic

system of units is 1/9 x 10-°. We shall regard the di-

mensions of fjL as being left uudetermined and retain
fj,

in the expressions for the dimensions of the electric

quantities. Since m^jixL^ is of the dimensions of a force

we have the dimensional equation

We shall find it instructive to suppose that the electric

and magnetic units are connected together by the following

1 Riicker, Fhil. Mag. vol. 27, p. 104.
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relation, viz. j9 times the work done by unit pole in traversing

a closed circuit is equal to 4>7r times the current flowing

through the circuit : the convention made on both the

electrostatic and magnetic systems is that
J9

is a quantity

of no dimensions and always equal to unity. We shall for

the present leave the dimensions oip undecided.

The dimensional equation connecting the electric and

magnetic quantities is therefore

p X H X L =i,

when H is magnetic force, L a length and { a current.

Taking this relation and starting with the electric

charge we can get by the equations given in Art. 252 the

dimensions of all the electrical and magnetic quantities in

terms of M, L, T, p,K: or starting with the magnetic pole

we can get them in terms of M, L, T, p, /i. The results

for some of the most important electrical quantities are

given in the following table.

I

Quantity. Symbol. Dimensions in Dimensions in terms
terms of K and p. of /t and p.

Charge e Km^DT-' PfL-^M^D
Electric intensity F K-m^L-^T-' p-'fiiM^DT-^

Potential difference V K-m^UT-' p-'fim^DT--
Current i K^M^DT-^^ pti-^M^DT-^
Resistance R K-'L-'T p-'fiLT-'

Electric polariza-

tion D KhM^L-*T-' PfjL-^M^L-i

Capacity C KL p^fi-'L-'T-

Specific inductive

capacity K K p'fi-'L-'T'

Strength of Mag-

netic pole m pK-^M^D ^hM^DT-'

T. E. 29
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Quantity. SymboL Dimensions in Dimensions in terms
terms of K and p. of ix and p.

Magnetic force H p-'K^M^DT"^ fi-^M^L-^T-'

Magnetic induc-

tion B pK-^M^L-l fi^M^L-^T-'

Magnetic per-

meability fjL p'K-'L-'T' fi

We see from this table that the dimensions of K, fi, and

p must on all systems of measurement be connected by

the relation

^^=5r2 = (velocityy.

On Maxwell's theory of the electric field j^/V/xiT is equal

to the velocity with which electric disturbances travel

through a medium whose magnetic permeability is fi and

specific inductive capacity K.

On the electrostatic system of units K is of no dimen-

sions, as the specific inductive capacity of air is taken as

unity whatever may be the unit of mass, length and time.

Also on this system p is by hypothesis of no dimensions,

being always equal to unity. Hence the dimensions of

the electrical quantities on this system of units are

got by omitting p and K in the third column of the

table.

On the electromagnetic system of units /jl is of no

dimensions, the magnetic permeability of air being taken

as unity whatever the units of mass, length and time
; p is

also of no dimensions on this system. Hence the dimen-

sions of the electrical quantities on this system of units

are got by omitting yu. and p from the fourth column in

the table.

Another system of units could be got by taking fM and
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K as of no dimensions and p a velocity. If this velocity

were taken equal to the ratio of the electromagnetic unit

charge to the electrostatic unit, then the unit of electric

charge on this system would be the ordinary electrostatic

unit of that quantity while the unit magnetic pole would be

the unit as defined on the electromagnetic system. This

system would thus have the advantage that the electric

quantities would be as defined in the electrostatic system,

while the magnetic quantities would be as defined in the

magnetic system, and we should not have to introduce

any new definitions : whereas if we use the electrostatic

system we have to define all the magnetic quantities

afresh, and if we use the electromagnetic system we have

to re-define all the electrical ones\

This system is however never used in practice ; the

electromagnetic system or one founded upon it is uni-

versally used in Electrical Engineering, and the electro-

static system is used for special classes of investigations.

254. The units of resistance, of electromotive force,

of capacity on the electromagnetic system are either too

large or too small to be practically convenient : hence new

1 It should be noticed that it is only when the electromagnetic system

of units is used that ' magnetic induction ' has the meaning assigned to

it in Art. 152. If we use any other system of units in which we start

with electrical quantities, the ' magnetic induction through unit area

'

appears as the quantity whose rate of variation is equal to p times the

electromotive force round the boundary of the area. The magnetic

induction defined in this way is always proportional to the magnetic

induction as defined in Art. 152. The two are however only identical

on the electromagnetic system of units. With the definition of Art. 152

the magnetic induction is of the same dimensions as magnetic force

since they are both the mechanical force on a unit pole when placed in

cavities of different shapes.

29—2
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units which are definite multiples or submultiples of the

electromagnetic units are employed. These units and

their relation to the electromagnetic system of units (when

the units of length, mass and time are the centimetre,

gramme and second) are given in the following Table.

The unit of resistance is called the Ohm and is equal

to 10^ electromagnetic units.

The unit of electromotive force is called the Volt and is

equal to W electromagnetic vinits.

The unit of current is called the Ampere and is equal

to 10~^ electromagnetic units.

The unit of charge is called the Coulomb and is equal

to 10"^ electromagnetic units.

The unit of capacity is called the Farad and is equal to

10~* electromagnetic units.

The Microfarad is equal to 10~^^ electromagnetic units.

The Ampere is the current produced by a Volt through

an Ohm.

We shall now proceed to explain the methods by

which the various electrical quantities can be measured in

terms of these units : when the quantity is so measured it

is said to be determined in absolute measure.

255. Determination of a Resistance in Absolute

measure. The method given in Art. 223 enables us

to compare two resistances, and thus to find the ratio

of any resistance to that of an arbitrary standard such as

the resistance of a column of mercury of given length and

cross section when at a given temperature. In order to

make use of the electromagnetic system of units we must

find the number of electromagnetic units in our standard

resistance, or what amounts to the same thing we must
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be able to specify a conductor whose resistance is the

electromagnetic unit of resistance.

The first method we shall describe, that of the re-

volving coil, was suggested by Lord Kelvin and carried

out by a committee of the British Association, who were

the first to measure a resistance in absolute measure. The

method was also one of those used by Lord Rayleigh and

Mrs Sidgwick in their determination of the Ohm.

When a coil of wire spins about a vertical axis in the

earth's magnetic field, currents are generated in the coil;

these currents produce a magnetic force at the centre

of the coil. If a magnet is placed at the centre of the

coil, this magnetic force gives rise to a couple on the

magnet tending to twist the magnet in the direction in

which the coil is rotating. The resistance of the coil may
be deduced from the deflection of the magnet as follows.

Let H be the horizontal component of the earth's

magnetic force, A the area enclosed by one turn of the

coil, n the number of turns, 6 the angle the plane of

the coil makes with the magnetic meridian, let the coil

revolve with uniform velocity w, so that we may put

The number of tubes of magnetic induction passing

through the coil is equal to

iiAH^inO,

and the rate of diminution of this is

— nAHco cos (at.

Hence, if L is the coefficient of self-induction of the

coil, R its resistance, and i the current flowing through the

coil, the current being taken as positive when the lines of
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magnetic force due to the current and those due to the

earth pass through the circuit in the same direction, we have

di
L ^,+Ri = — nAHco cos cot

at

Hence, as in Art. 233, we have

nAHay ,„ . r • ,.

i = - p., ax

2

1^ ^^^ ^^ + ^^ ^^" ^^1-

Nowif unit current through the coil produces a magnetic

force at the centre, the current i through the coil will

produce a magnetic force Gi cos (ot at right angles to

the magnetic meridian, and a force Gi sin wt along the

magnetic meridian, since 6 = wt Hence the magnetic

force due to the currents in the coil has a component

nAEGcoR nAHGco ,^ . ^ . . „ ^.

- 2W^^m - 2(Wr-^I>) t^ "^^ 2^^ + ^" ^^" 2^^''

at right angles to the magnetic meridian ; and a component

nAHGLro' nAHGco .^ . « . r o .i

along the magnetic meridian.

Now suppose we have a magnet at the centre of the coil,

and let the moment of inertia of this magnet be so great

that the time of swing is very large compared with the

time of revolution of the coil. The magnetic force acting

on the magnet due to the current induced in the coil

consists, as we see, of two parts, one constant, the other

periodic, the frequency being twice that of the revolution

of the coil. By making the moment of inertia of the

magnet great enough we may make the effect of the

periodic terms as small as we please ; we shall suppose

that the magnet is heavy enough to allow us to neglect
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the effect of the periodic terms; when this is done the

magnetic force at the centre becomes equal to

nAHGcoR
2 (R^ + o)'L')

at right angles to the magnetic meridian, and to

nAHGLco''

2(R' + (D''L')

along it.

Hence if
(f>

is the angle the magnet at the centre

makes with the magnetic meridian

1 nAHGfoR

^ ,
2 R' + co^L^

^^^^=
I nAHGL^ '

2 R^ + co'^L'

1 nAGcoR

, ^ 2R'+(d'L'-
or tan (/>

=
1 nAGLco'

2 R^ + (o^D

This equation enables us to find R, SiS A, G, L can be

calculated from the dimensions of the rotating coil. When
Leo is small compared with R the equation reduces to

the simple form

, 1 nA Go)

When the coil consists of a single ring of wire of

radius a, n = l, A= 7ra\ G = 27r/a ; hence

tan0 =—^ .

Thus by this method we compare R, which, by Art. 243,

is of the dimensions of a velocity, with the velocity of a

point on the spinning coil.
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The preceding investigation is only approximate as we

have neglected the magnetic field due to the magnet placed

at the centre of the ring.

256. Iiorenz's Method. This was also one of the

methods used by Lord Rayleigh and Mrs Sidgwick in

their determination of the Ohm. It depends upon the

principle that if a conducting disc spins in a magnetic

field which is symmetrical about the axis of rotation, and

if a circuit is formed by a wire, one end of which is con-

nected to the axis of rotation while the other end presses

against the rim of the disc, an electromotive force pro-

portional to the angular velocity will act round the

circuit.

We can determine this electromotive force by finding

the couple acting on the disc when a current flows round

this circuit.

Let / be the current flowing through the wire. When
this current enters the disc it will spread out ; let q be

the radial current crossing unit length of the circumference

of a circle of radius r at the point defined by 6. Let

rdrdd be an element of the area of the disc. The

radial current flowing through this area is equal to q rd6.

Hence by Art. 210, if H is the magnetic force normal to

the disc at this area the tangential mechanical force

acting on the area is equal to Hq rdr dO. The moment
of this force about the axis of the disc is equal to

Hqr'drdd;

hence the couple acting on the disc is equal to

IP
Hqr^drdd,

the integration being extended over the area of the disc.
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Since the current flowing across a circle drawn on the

disc with its centre at the centre of the disc must equal /,

the current flowing into the disc, we have

[qrde I.

Since the magnetic field is symmetrical about the axis

of rotation, II is independent of 6, hence the couple acting

on the disc is equal to

JHr dr.

If N is the number of tubes of magnetic induction

passing through the disc

-/H^irr dr.

and thus the couple acting on the disc is equal to

Now suppose in this circuit there is a battery w^hose

electromotive force is E, then in the time 8t the work

done by the battery is EIBt ; this work is spent in heating

the circuit and in driving the disc. The angle turned

through by the disc in this time is wBt, if w is the angular

velocity of the disc ; hence the mechanical work done is

equal to

^ INcoht
ZTT

By Joule's law the mechanical equivalent of the heat pro-

duced in the circuit is equal to
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where R is the resistance of the circuit. Hence we have

by the Conservation of Energy

Em = RP8t-\-^INcoEt,
LIT

E-l-Nt^
/= ^ ;

hence there is a counter electromotive force in the circuit

equal to

This case iUustrates the remark made in Art. 224,

as from Ampere's law of the mechanical force acting on

currents in a magnetic field we have deduced, by the aid

of the principle of the conservation of energy, the expres-

sion for the electromotive force due to induction, and have

thus proved by dynamical principles that the induction of

currents is a consequence of the mechanical force exerted

by a magnet on a circuit conveying a current.

In Lord Rayleigh's experiments the disc was placed

between two coils through which a current passed and

the axes of the disc and of the two coils were coincident.

The magnetic field acting on the disc may be considered as

approximately that due to the current through the coils,

as this field is very much more intense than that due

to the earth. Hence if i is the current through the coils,

M the coefficient of mutual induction between the coils

and a circuit coinciding with the rim of the disc,

Hence the electromotive force due to the rotation of the

disc is Miw
~2^*
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The experiment was arranged as in the diagram ; a

galvanometer was placed in the circuit connecting the

Fig. 123.

centre of the disc and the rim and this circuit was con-

nected to two points P, Q in the circuit in series with

the coils, and the resistance between P and Q was adjusted

until no current passed through the galvanometer. If R
is the resistance between P and Q and if a current i flows

through PQ the E.M.F. between P and Q will be Ri, but

since there is no current through the galvanometer this

balances the electromotive force due to the rotation of the

disc ; hence
Mi(o

May

Since M can be calculated from the dimensions of the

coil and the disc, this formula gives us R in absolute

measure.

257. The method given in Art. 249 for determining a

coefficient of mutual induction in terms of a resistance may
be used to determine a resistance in absolute measure. If

we use a pair of coils whose coefficient of mutual induction

Ri=

or
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can be determined by calculation, then equation (2) of

Art. 249 will give the absolute measure of a resistance.

This method has been employed by Mr Glazebrook.

The result of a large number of experiments made by

the preceding methods is that the Ohm is the resistance

at 0° C. of a column of mercury 106*3 cm. long and 1 sq.

millimetre in cross section.

For a comparison of the relative advantages of the

preceding methods the student is referred to a paper by

Lord Rayleigh in the Philosophical Magazine for November,

1882.

258. Absolute Measurement of a Current. A
current may be determined by measuring the attraction

between two coils placed in series with each other and

with their planes parallel and at right angles to the line

joining their centres. If i is the current through the coils,

M the coefficient of mutual induction between the coils, x

the distance between their centres, the attraction between

the coils is equal to

dM .^

dx

By attaching one of the coils to the scale-pan of a

balance and keeping the other fixed we can measure this

force, and hence if we calculate dMjdx from the dimensions

of the coils we can determine i in absolute measure.

The unit current is very conveniently specified by the

amount of silver deposited from a solution of silver nitrate

through which this current has beenflowing for a given time.

Lord Rayleigh found that the Ampere is the current

which flowing uniformly for one second would cause the

deposition of '001118 grammes of silver.
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259. The unit electromotive force is that acting on a

conductor of unit resistance when conveying unit current.

A practical standard of electromotive force is the Clark

cell (Art. 183), whose electromotive force at T Centigrade

is equal to

1-434 {1 - -00077 {t - 15)} volts.

260. Ratio of Electrostatic and Electromag-

netic Units. We saw in Art. 252 that the ratio of the

measur3 of any electrical quantity on the electrostatic

system of measurement to the measure of the same

quantity on the electromagnetic system is always some

power of a certain quantity which we denoted by "-y,"

and which is the ratio of the electromagnetic unit of

electric charge to the electrostatic unit.

The measurement of the same electrical quantity on

the two systems of units will enable us to find " v." The

quantity which has most frequently been measured with

this object is the capacity of a condenser. The electro-

static measure of the capacity can be calculated from the

dimensions of the condenser; thus the electrostatic measure

of the capacity of a sphere is equal to its radius ; the ca-

pacity of two concentric spheres of radii a and 6 is abl(b— a);

the capacity of two coaxial cylinders of length I radii a and

h is i^/log b/a. Thus if we choose a condenser of suitable

shape the electrostatic measure can be calculated from its

dimensions.

The electromagnetic measure can be determined by the

following method due to Maxwell. One of the arms AC of

a Wheatstone's Bridge is cut at P and Q, one plate of the

condenser is connected to P, the other to a vibrating piece
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R which oscillates backwards and forwards between P and

Q ; when R comes into contact with Q the condenser gets

charged, when into contact with P it gets discharged.

The current through the galvanometer may be divided

into two parts. There is first a steady current which flows

through AD when no electricity is flowing into the con-

denser, this we shall denote by y. Besides this there is at

times a transient current which flows while the condenser

is being charged. We shall suppose that each time the

condenser is being charged a quantity of electricity equal to

F flows through DA in the opposite direction to y. Then if

the condenser is charged n times a second the amount which

Fig. 124.

flows through the galvanometer owing to the charging

of the condenser is nY. If the time of swing of the

galvanometer needle is very long compared with 1/n

of a second this will produce the same effect on the

galvanometer as a steady current whose intensity is

nY flowing from D to A. Thus if nY= y, the current

due to the repeated charging of the condenser will

just balance the steady current and there will be no

deflection of the galvanometer.

We now proceed to find F. This is evidently equal to

the quantity of electricity which would flow from A to D
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if there were no electromotive force in the wire BG and

the plates of the condenser with the gi-eatest charge they

acquire in the experiment were connected to P and Q re-

spectively.

Let ^ be the current from the condenser along PA
during the discharge, Y the current along AD, W the

current along BD. Let the resistances of AB, BG, GD,

DB, DA, be c, a, 7, yS, a respectively. Let the coefficients

of self-induction of these circuits be L^, L^, L^, L^, L^ re-

spectively. Then from the circuit ABD, we have

, dJ'Y
J.
d'{Y-Z)

J.
d'W

,
dY

^'W^^'~~dt^ ^'^dF^^'lU

{dY dZ\ ^dW ^

Integrating from just before discharging until after the

condenser is completely discharged, and remembering that

both initially and finally Y, Z, W vanish, we have

aY+c(Y-Z)-^W = (1),

where Y, Z, W are the quantities of electricity which have

passed during the discharge through AD, PA, and 5Z) re-

spectively.

Similarly from the circuit DBG, we have

(^ + y+a)W-\-(y-{-a)Y-aZ = (2).

We find from equations (1) and (2)

Now Z is the maximum charge in the condenser;

hence if G is capacity of the condenser and A and C
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the potentials of A and C respectively when the charge is

a maximum, i.e. when no current is flowing into the con-

denser,

If 2/ is the current flowing through AD when no current

is flowing in the condenser, and D denotes the potential

of D
A - D = ay.

Hence by equation (3)

But when there is no deflection of the galvanometer

nY=:y;

hence

n(7
~

/9 (7 + a) + (a + c) (^ + 7 + a) 1°^ "^ '^ "^
/3

^"^ "^ "^^1
•

If we know the resistances and n we can deduce from

this equation the value of C in electromagnetic measure.

In practice the resistance of the battery a is very small

compared wdth the other resistances, hence putting a = 0,

we find approximately

\i + - --^
1 C7

_ ( 7 (n + c + /3)

nC /3
J _

(c< + c + /3)(/S+7)
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By this method we find the electromagnetic measure

of the capacity of a condenser ; the electrostatic measure

can be found from its dimensions.

Now by Art. 252

electrostatic measure of a condenser
t;^ =

electromagnetic measure of the same condenser

Experiments made by this method show that

v = S X 10^^ cm./sec. very nearly.

30



CHAPTER XIII.

Dielectric Currents and the Electromagnetic

Theory of Light.

261. The Motion of Faraday Tubes. Dielectric

Currents. In Chapter xi. we considered the relation

between the currents in the primary and secondary circuits

when an alternating current passes through the primary

circuit, we did not however discuss the phenomena occurring

in the dielectric between the circuits. As we regard the

dielectric as the seat of the energy due to the distribution

of the currents, the study of the effects in the dielectric

is of primary importance. We owe to Maxwell a theory,

now in its main features universally accepted, by which

we are able to completely determine the electrical con-

ditions, not merely in the conductors but also in every

part of the field. We shall also see that Maxwell's views

lead to a comprehensive theory of optical as well as of

electrical phenomena, and enable us by means of elec-

trical principles to explain the fundamental laws of

Optics,

Before specifying in detail the principles of Maxwells

theory, we shall endeavour to show by the consideration of

some simple cases that in considering the relation between

the work done in taking unit magnetic pole round a
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closed circuit and the current flowing through that circuit

(see Art. 201), we must include under the term current

effects other than the passage of electricity through con-

ducting media, if we are to retain the conception that

the dielectric is the seat of the energy in electric and

magnetic phenomena.

Let us consider the case of a long, straight, cylindrical

conductor carrying an alternating electric current. In

the dielectric around this wire there is a magnetic field,

and according to the views enunciated in Art. 162, there is

in a unit volume of the dielectric at a place where the

magnetic force isH an amount of energy equal to /juH'^IHtt.

As the alternating current changes in intensity, the energy

in the surrounding field changes, and this change in the

energy must be due to the motion of energy from one part

of the field to another, the energy moving radially towards

or away from the wire conveying the current. If the

dielectric medium possesses inertia, and if its properties

in any way resemble those of any kind of matter with

which we are acquainted, the energy cannot travel from

one place to another with an infinite velocity.

As the alternating current changes, the energy in the

field will change also ; when the current is passing through

its zero value, it is evident that the magnetic energy

cannot now vanish throughout the field, for we assume

that the enei-gy travels at a finite rate, and it is only a

finite time since the current was finite. If the magnetic

energy did vanish it would imply that the energy could

travel over a distance, however great, in a finite time.

If, however, the magnetic energy does not vanish simul-

taneously all over the field, there must be places where

30—2
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the magnetic force does not vanish. But the current

through the conductor vanishes and there are no magnetic

substances in the field. Hence we conclude that unless

we assume that the energy in the magnetic field can

travel from one place to another with an infinite velocity,

we must admit that in a variable field magnetic forces

can arise apart from magnets or electric currents through

conductors.

262. Let us now see if we can find any clue as to what

produces the magnetic field under these circumstances. Let

us consider the following simple case. Let A, B (Fig. 125)

O

Fig. 125.

be two vertical metal plates forming a parallel plate

condenser and let the upper ends of these plates be con-

nected by a wire of high resistance. Suppose that initially

the plate A is charged with a uniform distribution of

positive electricity while B is charged with an equal

distribution of negative electricity. If the plates are dis-

connected, horizontal Faraday tubes at rest will stretch

from one plate to the other. When the plates are

connected by the wire the horizontal Faraday tubes will

move vertically upwards towards the wire. Let v be the

velocity of these tubes, and a- the surface density of the

I
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electricity on the plates, then the upward current passing

across unit length in the plate A and the downward

current in B are equal to va. By Art. 207 these currents

will produce a uniform magnetic field between the plates,

the magnetic force being at right angles to the plane

of the paper and its magnitude equal to ^irva. If iV is

the number of Faraday tubes passing through unit area

of a plane in the dielectric parallel to the plates of the

condenser N =(t. Thus the magnetic force between the

planes is equal to ^irNv. The condition of things be-

tween the plates is such that we have the Faraday tubes

moving at right angles to themselves, and that we have

also a magnetic force at right angles both to the Faraday

tubes and to the direction in which they are moving ; while

the intensity of this force is equal to 47r times the product

of the number of tubes passing through unit area and the

velocity of these tubes.

Let us now see what are the consequences of gene-

ralizing this result, and of supposing that the relation

between the magnetic force and the Faraday tubes which

exists in this simple case is generally applicable to all

magnetic fields. Suppose then that whenever we have

movements of the Faraday tubes we have magnetic force

and conversely, and that the relation between the magnetic

force and the Faraday tubes is that the magnetic force

is equal to 47r times the product of the 'polarization*

(Art. 69) and the velocity of the Faraday tubes at right

angles to the direction of polarization. The direction of

the magnetic force being at right angles to both the

direction of polarization and the direction in which the

Faraday tubes are moving.
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We shall begin by considering what on this view is

the physical meaning of H' x 00' where 00' is a line

so short that the magnetic force may be regarded as

constant along its length, and //' is the component of the

magnetic force along 00'.

Let OA (Fig. 126) represent in magnitude and direction

the velocity of the Faraday tubes, and OP the polarization

;

then if OB represents the magnetic force, OB will be at

right angles to OA and OP and equal to

47r. 0^. OP sin <^,

where </> is the angle POA. The component H' of the

magnetic force along 00' will be

47r . OA . OP sin <^ cos 0,

where 6 is the angle BOO'. Thus we have

H' X 00' = 47r .OA.OP. 00' sin 0COS 6

= 247rA (1),

where A is the volume of the tetrahedron three of whose

sides are OA, OP, 00'.
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Let us now find the number of Faraday tubes which

cross 00' in unit time. To do this, draw 00 and O'D

equal and parallel to AO, OA being the velocity of the

Faraday tubes. Then the number of tubes which cross

00' in unit time is the number of tubes passing through

the area OCDO\

The area of the parallelogram OGDO' is equal to

0.4x00' sin ^00'.

The number of tubes passing through it is therefore

OP X sin <9' xOAx OO'siiiAOO' (2),

where 6' is the angle between OP and the plane of the

parallelogram OCDO' ; this is the same as the angle between

OP and the plane AOO'. But

6A = OP X sin 6' x OA x 00' sin ^100',

where A as before is the volume of the tetrahedron

POO'A. Hence from (1) and (2) we see that

H' X 00' = 47r (number of Faraday tubes crossing 00' in

unit time).

Thus JH'ds where the integral is taken round a closed

curve is equal to 47r times the number of tubes which

pass inwards across the curve in unit time.

In Art. 201 JH'ds was taken as equal to 47r times the

currents flowing through the space enclosed by the curve,

and the only currents discussed in that article were

currents flowing through conductors : we shall now con-

sider what interpretation we must attach to the new

expression we have just found for JH'ds.
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In the first place, any tube which in unit time passes

inwards across one part of the curve and outwards across

another part will not contribute anything to the total

number of tubes passing across the closed curve, for its

contribution when it passes inwards is equal and opposite

to its contribution when it passes outwards. Hence all

the tubes we need consider are those which only cross

the curve once, which pass inwards across the curve and

do not leave it within unit time. These tubes may be

divided into two classes, (1) those which remain within

the curve, (2) those which manage to disappear without

again crossing the boundary. The first set will increase the

total polarization over any closed surface bounded by the

curve, and the number of those which cross the boundary

in unit time is equal to the rate of increase in this total

polarization. The existence of the second class of tubes

tithe

1

%eire

i

C33Z

tube

Fig. 127.

depends upon the passage of conductors, or of moving

charged bodies through the area bounded by the curve.
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Thus suppose we have a metal wire passing through the

circuit, then the tubes which cross the boundary may run

into this wire and be annulled, the disappearance of each

unit tube corresponding to the passage of unit electricity

along the wire ; or the tube may have one end on the wire

and cross the circuit, its end running along the wire ; the

passage of such a tube across the boundary means the

passage of a unit of electricity along the wire, or one end

of the tube may be on a charged body which moves through

the circuit. Thus the number of tubes of class (2) which

cross the circuit in unit time is equal to the number of units

of electricity which pass in that time along conductors or

charged bodies passing through the circuit, i.e. it is equal

to the sum of the conduction and convection currents

flowing throug the circuit.

Hence the work done when unit pole is taken round a

closed circuit is equal to 47r times the sum of the conduction

and convection currents flowing through that circuit and

the rate of increase of the total polarization through the

circuit. From this we see that a change in the polariza-

tion through the circuit produces the same magnetic effect

as a conduction current whose intensity is equal to the

rate of increase of the polarization. We shall call the

rate of increase in the polarization the dielectric current.

The recognition of the magnetic effects due to these

dielectric currents is the fundamental feature of Maxwell's

Theory of the Electric Field. We have given a method

of regarding the magnetic field which leads us to ex-

pect the magnetic effects of dielectric currents. It must

be remembered, however. Maxwell's theory consists in

the expression of this result and is not limited to any

particular method of explaining it.
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263. Propagation of Electromagnetic Disturb-

ances. We shall now proceed to show that Maxwell's

theory leads to the conclusion that an electric disturbance

is propagated through air with the velocity of light.

We can employ the equations we deduced in Art. 231,

if we regard u, v, w the components of the current, as the

components of the sum of the dielectric, convection, and

conduction currents. If X, F, Z are the components of the

electric intensity, and IT its specific inductive capacity, then

the X, y, z components of the polarization are respectively

^x, fy. fz,
47r 47r 47r

the components of the dielectric currents are therefore

K dX KdY KdZ
47r dt * 4>7r dt ' 4!7r dt

'

If (T is the specific resistance of the medium, the

components of the conduction current are

X Y Z
cr ' a ' a*

Hence u, v, w the components of the total effective

current are given by the equations

K dX X
47r at cr

^KdY_^Y
4!7r dt a-

'

K dZ Z
47r at or

Hence substituting these values of u, v, w in the equa-

tions of Art. 231 we get, using the notation of that Article,
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the following equations as the expression of Maxwell's

Theory,

(47r dt a-) dy dz
'

(K dY Y) da d^
^"^

\^7r dt
'^

cr]
~ dz dx'

^^(K dZ ^Z)dp da

(47r dt a-} dx dy'

da dZ dY
dt

~ dy dz
*

dh dX dZ
dt" dz dx'

dc dY dX
dt

""
dx dy

'

Let us now consider the case of a dielectric for which

o- is infinite, so that all the currents are dielectric

currents; putting a infinite in the preceding equations,

and a = fia, h = /x/3, c = fjuy, we get

j^dX^dy _d§\
dt dy dz

v-^ _da _^drf
^ It'di^dxC (1)>

dZ dp da

dt dx

da

^^-dt=^
dZ
dy

dp ^dX
^ dt

~ dz

dy^dY
^ dt ~Tx

dy^

dY\
dz

dZ
dx ^

dX

.(2).
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Differentiating the first equation in (1) with respect

to t, we get

j.d?X _ d drj d djS

df dy dt dz dt

Substituting the values of dy/dt, dff/dt, and noticing

that by (1)
dX dY dZ
dx dy dz

is independent of the time, we get

^d'X d'X d'X d'X

^^^f=^^'^df-^l^ (^>-

We may by a similar process get equations of the same

form for F, Z, a, h, c.

To interpret these equations let us take the simple

case when the quantities are independent of the coordi-

nates X, y. Equation (3) then takes the form

If we put

i=z

dp dz^

t

JlJ^K'

and change the variables from z and ^ to f and t], we get

d^dnfj

The solution of which is

^'i-hX-'-M '"''

where F and/ denote any arbitrary functions.



263] DIELECTRIC CURRENTS. 477

Since F(z — t/JfjbK) remains constant as long as

z -tjjfiK is constant, we see that ifa point travels along the

axis of z in the positive direction with the velocity l/J/juK,

the value of F(z — tlJ/j.K) will be constant at this point.

Hence the first term in equation (5) represents a value

ofX travelling in the positive direction of the axis of z

with the velocity I/J/jlK. Similarly the second term in

(5) represents a value of X travelling in the negative

direction along the axis of z with the velocity l/Jjj,K.

For example, suppose that w^hen ^ = 0, X is zero except

between ^ = + e, z= —e where it is equal to unity, and

suppose further that dX/dt is everywhere zero when ^ = 0.

Then equation (5) shows that after a time t

X = ^ between z = .=^ -- e, and z = —1=^^ + e
2 J^,K JtiK '

and between ^ = -. — e, and z=— 7= + e,

and is zero everywhere else. Thus the quantity repre-

sented by X travels through the dielectric with the

velocity IjJ^K.

It is shown in treatises on Differential Equations that

equation (3), the general form of the equation (4), represents

a disturbance travelling with the velocity l/J^K.

Thus Maxwell's theory leads to the result that electric

and magnetic effects are propagated through the dielectric

with the velocity IjJ^K.

Let us see what this velocity is when the dielectric is

air. Using the electromagnetic system of units we have
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for air a = 1, K=— where v is the ratio of the electro-

magnetic unit of electricity to the electrostatic unit

(Art. 253). Hence on Maxwell's theory electric and

magnetic effects are propagated through air with the

velocity "v." Now experiments made by the method

described in Art. 260 lead to the result that within the

errors of experiment v is equal to the velocity of light

through air. Hence we conclude that electromagnetic

effects are propagated through air with the velocity of light.

This result led Maxwell to the view that since light travels

with the same velocity as an electromagnetic disturbance,

it is itself an electromagnetic phenomenon; a wave of

light being a wave of electric and magnetic disturbances.

264. Plane Electromagnetic Waves. Let us con-

sider more in detail the theory of a plane electric wave.

If/, g, h are the components of the electric polarization in

such a wave, l^ m, n the direction cosines of the normal to

the wave front, and \ the wave length, then we may put

27r
/=/o cos — {Ix 4- my -{ nz — Vt),

A.

g = go cos — (Ix 4- niy + 7iz — Vt),
A,

h = hQ cos —-(lx-\- my + nz —Vt)
;

A,

where V is the velocity of propagation of the wave, and

fot 9o> ho quantities independent of x, y, z or t Since

df^dg^dh^^
dx dy dz '

we have Z/i +mg^+ nho— 0,

and therefore If +mg + nh = 0.
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Thus the electric polarization is perpendicular to the

direction of propagation of the wave.

By equation (2), Art. 263, we have

da^dZ_dY
dt~ dy dz

'

and Z=^h, Y^^g.

Hence

da 47r 27r. . . 27r ., , , tt^.17^ ~u;T~ l^'^o ~ '^9o] sm -z- {ooc -\- my + nz - Vt),

a = -17Y7 (^^0 — '^^^o) cos — (lo) + my -\-nz — Vt)

;

or since

a = ^irViiiig — mh);

similarly

l3 = 4i7rV{lh-nf),

y = 4<7rV(7nf-lg).

Hence la 4- m/3 + ny = 0,

so that the magnetic force is at right angles to the

direction of propagation of the wave, and since

fa +g^ + hy = {h

the magnetic force is perpendicular also to the electric

polarization.

Since

ja2 + ^2 ^. ^2ji = 47rF IP + ^= + h']\

the resultant magnetic force is 47rF times the resultant

electric polarization.
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Hence in a plane electric wave, and therefore on

Maxwell's theory in a plane wave of light, there is in

the front of the wave an electric polarization, and at right

angles to this, and also in the wave front, there is a

magnetic force bearing a constant ratio to the polariza-

tion. We shall see in Art. 267 that in a plane polarized

light wave the electric polarization is at right angles to,

and the magnetic force in, the plane of polarization.

In strong sunlight the maximum electric intensity is

about 10 volts per centimetre, and the maximum magnetic

force about one-fifth of the horizontal magnetic force due

to the earth in England.

265. Propagation by the Motion of Faraday-

Tubes. The results obtained by the preceding analysis

follow very simply from the view that the magnetic force

is due to the motion of the Faraday tubes. The electro-

A B
Fig. 128.

motive force round a circuit moving in a magnetic field

is equal to the rate of diminution of the number of tubes
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of magnetic induction passing through the circuit. Thus

let P, Q/Fig. 128) be two adjacent points on a circuit, P', Q'

the position of these points after the lapse of a time Bt.

Then the diminution in the time Bt of the number of

tubes of magnetic induction passiug through the circuit

of which PQ forms a part may, as in Art. 135, be shown

to be equal to the sum of the number of tubes which

pass through the sum of the areas PP'Q'Q. The number

passing through PP'Q'Q is equal to

PQ X PP' X 5 sin sin ^,

where B is the magnetic induction,
<f>

the angle it makes

with the plane PP'Q'Q, and 6 the angle between PP' and

PQ. If V is the velocity with which the circuit is moving

PF = VBt. Thus the rate of diminution in the number

of tubes passing through the circuit is

SPQ.Fi^ sin </> sin l9.

Hence we may regard the electromotive force round

the circuit as equivalent to an electric intensity at each

point P of the circuit whose component along PQ is

equal to VB sin <^ sin 6. As the component of this

intensity parallel to B and V vanishes, the resultant

intensity is at right angles to B and Y and equal to

i^Tsin^lr,

where -v/r is the angle between B and V. In this case

the circuit was supposed to move, the tubes of induction

being at rest, we shall assume that the same expression

holds when the circuit is at rest and the tubes of mag-

netic induction move with the velocity V across an element

of the circuit at rest.

Let us now introduce the view that the magnetic force is

due to the motion of the Faraday tubes. Let OA (Fig. 129)

T. E. 31
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represent the velocity of the Faraday tubes, OP the electric

polarization, and OB the magnetic induction, which in a

Fig. 129.

non-crystalline medium is parallel to the magnetic force

and therefore (see page 470) at right angles to OP and

OA. By what we have just proved the electric intensity

is at right angles to OB and OA, and therefore along 00.

Now in a non-crystalline medium the electric intensity is

parallel to the electric polarization; hence OP and OG
must coincide in direction ; hence the Faraday tubes move

at right angles to their length.

Again, if E is the electric intensity, by what we have

just proved
E=BV (1).

But if H is the magnetic force, /x the magnetic permea-

bility,

and by Art. 262
H=4^itVP (2),

where P is the electric polarization.
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Hence by (1) and (2)

^= 47r/i F^P.

If K is the specific inductive capacity of the dielectric

47r

hence we have V'^= l/fiK. The tubes therefore move with

the velocity 1/\//jlK at right angles to their length.

266. Evidence for MaxwelPs Theory. We shall

now consider the evidence furnished by experiment as to

the truth of Maxwell's theory.

We have already seen that Maxwell's theory agrees

with facts as far as the velocity of propagation through

air is concerned. We now consider the case of other

dielectrics.

The velocity of light through a non-magnetic dielectric

whose specific inductive capacity is K is on Maxwell's

theory equal to \jjK.

Hence

velocity of light in this dielectric

velocity of light in air

^.
specific inductive capacity of air

specific inductive capacity of dielectric
*

But by the theory of light this is also equal to

1

31—2
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where n is the refractive index of the dielectric. Hence

on Maxwell's theory

n^= electrostatic measure of the specific inductive capacity.

In comparing the values of ri- and K we have to re-

member that the electrical conditions under which these

quantities are on Maxwell's theory equal to one another,

are those which hold in a wave of light where the electric

intensity is reversed millions of millions of times per

second. We have at present no means of directly measur-

ing K under these conditions.

To make a fair comparison between ii? and K we ought

to take the value of K determined for electrical oscilla-

tions of the same frequency as those of the vibrations of

the light for which n is measured. As we catmot find K
for vibrations as rapid as those of the visible rays, the

other alternative is to use the value of n for waves of very

great wave length ; we shall call this value n^.

The process by which n^ is obtained is not however

very satisfactory. Cauchy has given the formula

connecting n with the wave length X, which holds accurately

within the limits of the visible spectrum, unless the refract-

ing substance is one which shows the phenomenon known
as 'anomalous dispersion.' To find ^^ we apply this em-

pirical formula to determine the refractive index for waves

millions of times the length of those used to determine

the constants A, B, G which occur in the formula. For

these reasons we should expect to find cases in which K
is not equal to n^, but though these cases are numerous

there are many others in which K is approximately equal

to n\^. A list of these is given in the following table

:
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Name of Substance K nl

Paraffin 2-29 2022

Petroleum spirit 1-92 1-922

Petroleum oil 207 2075

Ozokerite 213 2-086

Benzene 2-38 2-2614*

Carbon bisulphide 2-67 2-678*

As examples where the relation does not hold, we

have

Glass (extra dense flint) 10-1 2-924*

Calcite (along axis) 7-5 2197*

Quartz (along optic axis) 4-55 2-41*

Distilled water 76 1-779*

Maxwells Theory of Light has been developed to a

considerable extent and the consequences are found to

agree well with experiment. In fact the electromagnetic

is the only theory of light yet advanced in which the

difficulties of reconciling theory with experiment do not

seem insuperable.

267. Hertz's Experiments. The experiments made

by Hertz on the properties of electric waves, on their

reflection, refraction, and polarization furnish perhaps the

most striking evidence in support of Maxwell's theory,

as it follows from these experiments that the properties

of these electric waves are entirely analogous to those

of light waves. We regret that we have only space

for an exceedingly brief account of a few of Hertz's

* These a

Hum light.
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beautiful experiments; for a fuller description of these

and other experiments on electric waves with their

bearings on Maxwell's theory, we refer the reader

to Hertz's own account in 'Electrical Waves' and to

Recent Researches on Electricity and Magnetism by

J. J. Thomson.

We saw in Art. 243 that when a condenser is dis-

charged by connecting its coatings by a conductor, elec-

trical oscillations are produced, the period of which is

approximately 2irjLG where G is the capacity of the

condenser, and L the coefficient of self-induction of the

circuit connecting its plates. This vibrating electrical

system will, on Maxwell's theory, be the origin of electrical

waves, which travel through the dielectric with the ve-

locity V and whose wave length is VlirYJLG. By using

condensers of small capacity whose plates were connected

by very short conductors Hertz was able to get electrical

waves less than a metre long. This vibrating electrical

system is called a vibrator.

Hertz used several forms of vibrators ; the one used

in the experiment we are about to describe consists of

two equal brass cylinders placed so that their axes are

coincident. The two cylinders are connected to the

two poles of an induction coil. When this is in action

sparks pass between the cylinders. The cylinders corre-

spond to the plates of the condenser, and the air be-

tween the cylinders (whose electric strength breaks down
when the spark passes) to the conductor connecting the

plates. The length of each of these cylinders is about

12 cm., and their diameters about 3 cm. ; their sparking

ends are well polished.
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To detect the presence of the electrical waves, Hertz

used a very nearly closed metallic circuit, such as a piece

of wire, bent into a circle, the ends of the wire being

exceedingly close together. When the electric waves strike

against this detector very minute sparks pass between

the terminals ; these sparks serve to detect the presence of

the waves. Recently Professor Lodge has introduced a

still more sensitive detector. It is founded on the fact

discovered by Branly that the electrical resistance of a

number of metal turnings, placed so as to be loosely in

contact with each other, is greatly affected by the impact

of electric waves, and that all that is necessary to detect

these waves is to take a glass tube, fill it loosely with iron

turnings, and place the tube in series with a battery and

a galvanometer. When the waves fall on the tube the

resistance, and therefore the deflection of the galvano-

meter, is altered.

The analogy between the electrical waves and light

waves is very strikingly shown by Hertz's experiments

with parabolic mirrors.

If the vibrator is placed in the focal line of a parabolic

cylinder, and if the Faraday tubes emitted by it are

parallel to this focal line ; then if the laws of reflection

of these electric waves are the same as for light waves,

the waves emitted by the vibrator will, after reflection

from the cylinder, emerge as a parallel beam ; and will

therefore not diminish in intensity as they recede from

the mirror. When such a beam falls on another para-

bolic cylinder, the axis of whose cross section coincides

with the axis of the beam, it will be brought to a focus

on the focal line of the second mirror.

The parabolic mirrors used by Hertz were made of
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sheet zinc, and their focal length was about 12o cm.

The vibrator was placed so that the axes of the cylin-

ders coincided with the focal line of one of the mirrors.

The detector, which was placed in the focal line of

an equal parabolic mirror, consisted of two pieces of

wire ; each of these wires had a straight piece about

50 cm. long, and was then bent at right angles so as to

pass through the back of the mirror, the length of the

bent piece being about 15 cm. The ends of the two pieces

coming through the mirror were bent so as to be ex-

ceedingly near to ' each other. The sparks passing

between these ends were observed from behind the mirror.

The mirrors are represented in Fig. 130.

.J
^1

Fig. 130.

Reflection of ElectHc Waves.

To show the reflection of these waves the mirrors were

placed side by side so that their openings looked in the same
direction and their axes converged at a point distant about

8 metres from the min'ors. No sparks passed between the

points of the detector when the vibrator was in action. If



267] DIELECTRIC CURRENTS. 489

however a metal plate about 2 metres square was placed

at the intersection of the axes of the mirrors, and at

right angles to the line which bisects the angle between

the axes, sparks appeared at the detector. These sparks

however disappeared if the metal plate was turned through

a small angle. This experiment shows that the electric

waves are reflected and that, approximately at any rate,

the angle of incidence is equal to the angle of reflection.

Refraction of Electric Waves.

To show the refraction of these waves Hertz used a

large prism made of pitch. This was about 1"5 metres high,

and it had a refracting angle of 30° and a slant side of

1'2 metres. When the electric waves from the mirror

containing the vibrator passed through this prism, the

sparks in the detector were not excited when the axes

of the two mirrors were parallel, but sparks were produced

when the axis of the mirror containing the detector made
a suitable angle with that containing the vibrator. When
the system was adjusted for minimum deviation, the

sparks were most vigorous in the detector when the angle

between the axes of the mirrors was equal to 22°.

This would make the refractive index of pitch for these

electrical waves equal to r69.

Electric Analogy to a plate of Tourmaline.

If a properly cut tourmaline plate is placed in the

path of a plane polarized beam of light incident at right

angles on the plate, the amount of light transmitted

through the tourmaline plate depends upon its azimuth.

For one particular azimuth all the light will be stopped.
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while for an azimuth at right angles to this the maximum
amount of light will be transmitted.

If a screen be made by winding metal wire round a large

rectangular framework so that the turns of the wire are

parallel to one pair of sides of the frame, and if this screen

be interposed between the mirrors when they are facing

each other with their axes coincident, then it will stop

the sparks in the detector when the turns of the wire

are parallel to the focal lines of the mirrors, and thus to

the Faraday tubes proceeding from the vibrator: the

sparks will however recommence if the framework is

turned through a right angle so that the wires are perpen-

dicular to the focal lines of the mirror.

If this framework is substituted for the metal plate

in the experiment on the reflection of waves, the sparks

will appear in the detector when the wires are parallel

to the focal lines of the cylinders and will disappear when
they are at right angles to them. Thus this framework

reflects but does not transmit Faraday tubes parallel to

the wires, while it transmits but does not reflect Faraday

tubes at right angles to them. It thus behaves towards

the transmitted electrical waves as a plate of tourmaline

does towards light waves. By using a framework wound
with exceedingly fine wires placed very close together

Du Bois and Rubens have recently succeeded in polarizing

in this way radiant heat whose wave length though

greater than that of the rays of the visible spectrum is

exceedingly small compared with that of electric waves.

Angle of Polarization.

When light polarized in a plane at right angles to the

plane of incidence falls upon a plate of refracting substance,
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and the normal to the wave front makes with the normal

to the refracting surface an angle tan~^ //,, where fi is the

refractive index, all the light is refracted and none re-

flected. When light is polarized in the plane of incidence

some of the light is always reflected.

Trouton has obtained a similar effect with electric

waves. From a wall 3 feet thick reflections were ob-

tained when the Faraday tubes proceeding from the

vibrator were perpendicular to the plane of incidence,

while there was no reflection when the vibrator was

turned through a right angle so that the Faraday tubes

were in the plane of incidence. This proves that on the

electromagnetic theory of light we must suppose that the

Faraday tubes are at right angles to the plane of polariza-

tion.

A very convenient arrangement for studying the

properties of electric waves is described in a paper by

Professor Bose in the Philosophical Magazine for January

1897.
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Thermoelectric Currents.

268. Seebeck discovered in 1821 that if in a closed

circuit of two metals the two junctions of the metals are at

different temperatures an electric current will flow round

the circuit. If, for example, the ends of an iron and of

a copper wire are soldered together and one of the junc-

tions is heated a current of electricity will flow round the

circuit ; the direction of the current is such that the

current flows from the copper to the iron across the hot

junction, provided the mean temperature of the junctions

is not greater than about 600° Centigrade.

The current flowing through the thermoelectric circuit

represents a certain amount of energy, it heats the

circuit and may be made to do mechanical work. The

question at once arises, What is the source of this energy ?

A discovery made by Peltier in 1834 gives a clue to the

answer to this question. Peltier found that when a cur-

rent flows across the junction of two metals it gives rise

to an absorption or liberation of heat. If it flows across

the junction in one direction heat is absorbed, while if it

flows in the opposite direction heat is liberated. If the

current flows in the same direction as the current at the
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hot junction in a thermoelectric circuit of the two metals

heat is absorbed; if it flows in the same direction as

the current at the cold junction of the circuit heat is

liberated.

Thus, for example, heat is absorbed when a current

flows across an iron-copper junction from the copper to

the iron.

The heat liberated or absorbed is proportional to the

quantity of electricity which crosses the junction. The
amount of heat liberated or absorbed when unit charge

of electricity crosses the junction is called the Peltier

Effect at the temperature of the junction.

Now suppose we place an iron-copper circuit with one

junction in a hot chamber and the other junction in a

cold chamber, a thermoelectric current will be produced

flowing from the copper to the iron in the hot chamber,

and from the iron to the copper in the cold chamber.

Now by Peltier's discovery this current will give rise

to an absorption of heat in the hot chamber and a libera-

tion of heat in the cold one. Heat will be thus taken

from the hot chamber and given out in the cold. In this

respect the thermoelectric couple behaves like an ordinary

heat-engine.

269. The experiments made on thermoelectric currents

are all consistent with the view that the energy of these

currents is entirely derived from thermal energy, the cur-

rent through the circuit causing the absorption of heat

at places of high temperature and its liberation at places

of lower temperature. We have no evidence that any

energy is derived from any change in the molecular state
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of the metals caused by the passage of the current or

from anything of the nature of chemical combination going

on at the junction of the two metals.

Many most important results have been arrived at

by treating the thermoelectric circuit as a perfectly re-

versible thermal engine and applying to it the theorems

which are proved in the Theory of Thermodynamics to

apply to all such engines. The validity of this application

may be considered as established by the agreement be-

tween the facts and the result of this theory. There are

however thermal processes occurring in the thermoelectric

circuit which are not reversible, i.e. which are not reversed

when the direction of the current flowing through the

circuit is reversed. There is the conduction of heat along

the metals due to the difference of temperatures of the

junctions, and there is the heating effect of the current

flowing through the metal which, by Joule's law, is pro-

portional to the square of the current and is not reversed

with the current. Inasmuch as the ordinary conduction

of heat is independent of the quantity of electricity passing

round the circuit, and the heat produced in accordance

with Joule's law is not directly proportional to this

quantity, it is probable that in estimating the connection

between the electromotive force of the circuit, which is

the work done when unit of electricity passes round the

circuit, and the thermal effects which occur in it, we
may leave out of account the conduction effect and the

Joule effect and treat the circuit as a reversible engine.

If this is the case, then, as Lord Kelvin has shown, the

Peltier effect cannot be the only reversible thermal effect

in the circuit. For let us assume for a moment that the

Peltier effect is the only reversible thermal effect in the
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circuit. Let Pj be the Peltier effect at the cold junction

whose absolute temperature is T^, so that Pi is the

mechanical equivalent of the heat liberated when unit of

electricity crosses the cold junction ; let Pa be the Peltier

effect at the hot junction whose absolute temperature is

Ta, so that Pa is the mechanical equivalent of the heat

absorbed when unit of electricity crosses the hot junction.

Then since the circuit is a reversible heat-engine, we have

(see Maxwell's Theory of Heat)

_ work done when unit of electricity goes round the circuit

But the work done when unit of electricity goes round

the circuit is equal to E, the electromotive force in the

circuit, and hence

E={T,-T,).?^.

Thus on the supposition that the only reversible

thermal effects are the Peltier effects at the junctions,

the electromotive force round a circuit whose cold junc-

tion is kept at a constant temperature should be pro-

portional to the difference between the temperatures of

the hot and cold junctions. Gumming, however, showed

that there were circuits where, when the temperature

of the hot junction is raised, the electromotive force

diminishes instead of increasing, until when the hot junc-

tion is hot enough the electromotive force is reversed and

the current flows round the circuit in the reverse direc-

tion. This reasoning led Lord Kelvin to suspect that

besides the Peltier effects at the junction there were
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reversible thermal effects produced when a current flows

along an unequally heated conductor, and by a laborious

series of experiments he succeeded in establishing the

existence of these effects. He found that when a current

of electricity flows along a copper wire whose tempera-

ture varies from point to point, heat is liberated at any

point P when the current at P flows in the direction of

the flow of heat at P, i.e. when the current is flowing

from hot places to cold, while heat is absorbed at P
w^hen the current flows through it in the opposite direc-

tion. In iron, on the other hand, heat is absorbed at

P when the current flows in the direction of the flow

of heat at P, while heat is liberated when the current

flows in the opposite direction. Thus when a current

flows along an unequally heated copper wire it tends

to diminish the differences of temperature, while when

it flows along an iron wire it tends to increase those

differences. This effect produced by a current flowing

along an unequally heated conductor is called the Thomson
effect.

Specific Heat of Electricity,

270. The laws of the Thomson effect can be con-

veniently expressed in terms of a quantity introduced by

Lord Kelvin and called by him the * specific heat of the

electricity in the metal.' If a is this ' specific heat of

electricity,' A and B two points in a wire, the temperatures

of J. and B being respectively t^ and t^, and the difference

between t^ and t^ being supposed small, then a is defined

by the relation,

a (ti — t^) = heat developed in AB when unit of electricity

passes through AB from A to B.
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The study of the thermoelectric properties of con-

ductors is very much facilitated by the use of the thermo-

electric diagrams introduced by Professor Tait. Before

proceeding to describe them we shall enunciate two

results of experiments made on thermoelectric circuits

which are the foundation of the theory of these circuits.

The first of these is, that if E^ is the electromotive

force round a circuit when the temperature of the cold

junction is 4 and that of the hot junction t^^E^. the electro-

motive force round the same circuit when the temperature

of the cold junction is t^, and that of the hot junction t^,

then E^ + E^ will be the electromotive force round the

circuit when the temperature of the cold junction is ^qj

and that of the hot junction t^. It follows from this

result that E, the electromotive force round a circuit

whose junctions are at the temperatures t^ and ^i, is

equal to

J t

where Qdt is the electromotive force round the circuit

when the temperature of the cold junction is ^ — ^dt,

and the temperature of the hot junction is t-^^dt The
quantity Q is called the thermoelectric power of the

circuit at the temperature t.

The second result relates to the electromotive force

round circuits made of different pairs of metals whose

junctions are kept at assigned temperatures. It may
be stated as follows: If E^c is the electromotive force

round a circuit formed of the metals A, G, E^c that round

a circuit formed of the metals J5, 0, then E^ic — Ebc is the

electromotive force acting round the circuit formed of the

T. E. 32
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metals A and B ; all these circuits being supposed to work

between the same limits of temperature.

271. Thermoelectric Diagrams. The Thermo-

electric line for any metal (A) is a curve such that the

ordinate represents the thermoelectric power of a circuit

of that metal and some standard metal (usually lead) at a

temperature represented by the abscissa. The ordinate is

taken positive when for a small difference of temperature

the current flows from load to the metal A across the

hot junction.

It follows from Art. 270, that if the curves a and ^
represent the thermoelectric lines for two metals A and B,

then the thermoelectric power of a circuit made of the

metals A and B at an absolute temperature repre-

sented by ON will be represented by RS, and the

electromotive force round a circuit formed of the two

R
'l_a

1

^^;^ S

G—y3^ F

N M
Fig. 131.

metals A and B when the temperature of the cold

junction is represented by OL, that of the hot junction

by OM, will be represented by the area EFOH.

Let us now consider a circuit of the two metals A
and B with the junctions at the absolute temperatures

OXi, 0X2, where OL^ and OL^ are nearly equal. Then
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the electromotive force round the circuit (i.e. the work

done when unit of electrical charge passes round the

circuit) is represented by the area EFGH. Consider now

the thermal effects in the circuit. We have Peltier eifects

Fig. 132.

at the j unctions ; suppose that the mechanical equivalent

of the heat absorbed at the hot junction when unit of

electricity crosses it is represented by the area Pi, let the

mechanical equivalent of the heat liberated at the cold

junction be represented by the area P^. There are also

the Thomson effects in the unequally heated metals;

suppose that the mechanical equivalent of the heat

liberated when unit of electricity flows through the metal

A from the hot to the cold junction is represented by

the area iTj, and that the mechanical equivalent of the

heat liberated when unit of electricity flows through

B from the hot to the cold junction is represented by
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the area K^. Then by the First Law of Thermodynamics,

we have

sivesi EFGH= P,-P,-hK,-K^ (1).

The Second Law of Thermodynamics may be expressed

in the form that if -H" be the amount of heat absorbed

in any reversible engine at the absolute temperature t,

then

z

In our circuit the two junctions are at nearly the same

temperature, and we may suppose that the temperature

at which the absorption of heat corresponding to the

Thomson effect takes place is the mean of the tempera-

tures of the junctions, i.e. ^(OXi + OL^).

Hence by the Second Law of Thermodynamics, we

have

- -^ -^ 4- - ^"^Z^^^ (^\''~
OL, OL,\{Oh-\-OQ ^

^•

Hence from (1) and (2) we get

area EFGH =
\ |^^

4- ^1 {OL, - 0L,\

or since OL^ is very nearly equal to OL^ and therefore Pj is

very nearly equal to Pg, this gives approximately

areaEFGH =^(0L,- OL,).

But when OL^ is very nearly equal to OL^, the area

EFGH^GH{OL,-OL,),

so that P, = GH,OL„
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SO that Pi is represented by the area GHUV. Now Pj is

the Peltier effect at the temperature represented by OXj,

hence we see that at any temperature

Peltier effect = (thermoelectric power) (absolute

temperature),

or P=Q^,

when t is the absolute temperature.

By the definition of Art. 270 we see that if cti is the

specific heat of electricity for the metal ^1, 0-3 that for B^,

then

But by (1)

areaEFGH =P,-P, + K, - K,
,

and Pi = area GHVU,

P, = area FEST.

Hence K^ -K, = area SEHV- area TFGU

= (tan ^1 — tan 6^ OL^ x L^L^,

where 6^, 62 are the angles which the tangents at E and F
to the thermoelectric lines for A and B make with the axis

along which temperature is measured. Hence

cTi — a2= (tan ^1 — tan ^2) OL^ (3).

When the temperature interval L^L^ is finite the areas

UGHV and FESL will still represent the Peltier effects

at the junction, the area TFGU the heat absorbed when

unit of electricity flows along the metal B from a place

where the temperature is OXg to one where it is OXj.
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The preceding results are independent of any assump-

tion as to the shape of the thermoelectric lines. The

results of the experiments made by Professor Tait and

others show that over a considerable range of tempera-

tures these lines are straight for most metals and alloys,

while Le Roux has shown that the 'specific heat of

electricity ' for lead is excessively small. Let us assume

that it is zero and suppose that the diagram represents

the thermoelectric lines of metals with respect to lead :

then since these lines are straight, 6 is constant for any

metal and o-g vanishes when it refers to lead, the value of

o- the ' specific heat of electricity ' in the metal is by (3)

given by the equation

<r = tan . t,

where t denotes the absolute temperature.

The thermoelectric power Q of the metal with respect

to lead at any temperature t is given by the equation

Q = tan ^ (^ - to),

where to is the absolute temperature where the line of

the metal cuts the lead line ; to is defined as the neutral

point of the metal and lead.

Let us consider two metals; let 6^, 6^ be the angles

their lines make with the lead-line, and ^i and t^ their

neutral temperatures, then Q^ and Q2 their thermoelectric

powers with respect to lead are given by the equations

Q, = i^ne,{t-t,\

Q2 = tan ^2 {i - ^2)

;

hence Q the thermoelectric power of a circuit consisting

of the two metals, is given by the equation

Q = (tan(9i-tan6>2)(^-ro),
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where 1\ is the neutral temperature for the two metals

and is given by the equation

r„ = ti tan ^1 — 4 tan 0,

fJ ^

tan ^1 — tan $2

The electromotive force round a circuit formed of

these metals, the temperatures of the hot and cold junc-

tions being t^, t^ respectively, is equal to

'"^^

Qdt = (tan e, - tan 6^) {T, - T,) {\ {T, + T,) - T,).

This vanishes when the mean of the temperatures

of the junctions is equal to the neutral temperature.

If the temperature of one junction is kept constant the

electromotive force has a maximum or minimum value

when the other junction is at the neutral temperature.

In Fig. 133 the thermoelectric lines for a number of

metals are given. The figure is taken from a paper by

Noll, Wiedemann s Annalen, vol. 53, p. 874. The abscissae

represent temperatures each division being 50° C, the

ordinates represent the E.M.F. for a temperature difference

of 1° C. each division representing 2 '5 microvolts. To

find the E.M.F. round a circuit whose junctions are at

ti and ^2 degrees we multiply the ordinate for K^i + ^a)

degrees by (t^ — ti).
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