/
gorn Naabz
Suelfik ster 2 Has

In this Elementary Arithmetic th, method of treating the subject that was ado Mr. Barnard Smith's Arithmetic for Scha been retained; and especial care has been ts adapt the book, in every respect, to the w: the Junior Pupils in the Schools of the Dom

CONTENTS.

SECTION I. Page.
Definitions, Notation and Numeration 9
Notation Table 12
Numeration Table 13
Simple Addition 14
Simple Subtraction 23
Roman Notation 28
Simple Multiplication $i 3$.
Multplication Table 29
To Xinltiply by a number not larger than 12 ib.
To Multiply by a number larger than 12 32
Simple Division 35
To Divide by a number not larger than 12 36
To Divide by a number larger than 12 39
SECTION II.
Tables. Money 44
Measures of Weight 45
Length ib.
Surface 46
Solidity 47
Capacity 48
Time 49
Reduction 50
Compound Addition 53
Subtraction 55 55
" Multiplication 57 61
To Reduce Old Canadian to the Decimal Currency 65
To Reduce Dollars and Cents to Halifax Currency ib.
Miscellaneous Examples 66
SECTION III.
Greatest Common Measure 70
Least Common Measure 71
SECTION IV.
Fractions 73
Vulgar Fractions 74

CONTENTS.

Pagras
Addition of Vulgar Fractions 80
Subtraction of Vulgar Fractions 82
Multiplication of Vulgar Fractions 84
Division of Vulgar Fractions 86
To Find Value of Vulgar Fractions 88
Reduction of Vulgar Fractions $i b$.
Miscellaneous Examples worked out 89
Decimals 94
To Convert Decimals to Vulgar fractions 95
Addition of Decimals 96
Subtraction of Decimals 97
Multiplication of Decimals. 98
Division of Decimals 99
To Reduce Vulgar Fractions to Decimals 101
Circulating Decimals 102
Reduction of Decimals 104
Miscellaneous Questions and Examples, Sections I-IV 107
SECTION V.
Ratio and Proportion 110
Rule of Three 112
Double Rule of Three 118
Practice 123
Interest 127
Simple Interest $i b$.
Compound Interest 129
Present Worth and Discount. 131
Present Worth. $i b$.
Discount 132
Stocks 134
Per Centage 138
Average 142
Division into Proportional Parts 143
Fellowship or Partnership 144
Simple Fellowship $i b$.
Compound Fellowship ib.
Equation of Payments 145
Square Root. 146
Cube Root. 149
Miscellaneous 152
SECTION VI.
Mental Arithmetic 155
Answers 160

ARITHMETIC.

SECTION I.

1. A nithmetic teaches us the use of Numbers.
2. A. UNIT or ONE is any single object or thing, as an orange, a tree.
3. A WHOLE NUMBER, or AN INTEGER, is a UNIT Or ONE, or a collection of UNITS or ONES : if a boy, for instance, have one orange, and then another orange is given to him, he will have two oranges; if another be given to him, he will have three oranges; if another, he will have four oranges, and so on. One, two, three, four, \&c., are called Whole numbers or INTEGERS.
4. Notation is the art of writing any number in figures or letters.

There are two methods of Notation: 1st, The Arabic; 2nd, The Roman.
5. The Arabic Notation is the method of expressing numbers by means of the following figures, called sometimes digits.
$\begin{array}{ccccccc} \\ \text { called } & 1, & 2, & 3, & 4, & 5, & 6, \\ \text { one, two, } & 7, & 8, & 9 \text { three, four, five, six, } & \text { seven, eight, nine, }\end{array}$ representing (if we express a unite by a dot; thus .),

or one
unit,
:---:
units,
:---:
units,
:---:
units,
:---
units,
:---:
units,

or seven or eight | or nine |
| :---: |
| units, |
| units, | units,

and 0 , called nought, because, when standing by itself, it has no value, and represents nothing. 0 is sometimes called zero or cypher.

Note. Any one of the figures $1,2,3,4,5,6,7,8,9$, when standing alone, or as the last figure on the right hand of any number, expresses so many single objects or things, or ones.
......... or nine units are the greatest number of units which can be expressed by one figure.

If another unit be placed to the right hand of the nine units, we have........ or $^{\text {or }}$ ten units, written in figures thus, 10 ; the 1 in 10 , standing in the second place from the right hand, now expresses not one unit, but one ten units.

Hence we see that although 0 , when stancing by itself, has no value, still when placed to the right hand of any figure, it alters the value of that figure.

The number next after ten represents or elecen units, written in figures thus, 11 , where the 1 in the second place from the right hand expresses ten units, and the 1 in the right-hand place of the number one unit. Thus 11 units equal 1 ten units and 1 unit more.

Next we come to 12 (twelve) or one ten units and 2 more units, 13 (thirteen), 14 (fourteen), 15 (fifteen), 16 (sixteen), 17 (seventeen), 18 (eighteen), 19 (nineteen), which represent 1 ten units, and $3,4,5,6,7,8,9$ more units respectively.

Next we come to 20 (twenty), 21 (twenty-one), 22 (twentytwo), 23 (tweenty-three), 24 (twenty-four), 25 (twenty-five), 26 (twenty-six), 27 (twenty-seven), 28 (twenty-eight), 29 (twentynine) ; the 2 , when followed by 0 or any single figure, representing two tens or twenty units, the figures in the right-hand place of each number expressing so many single units.

Next we come to 30 (thirty), 31 (thirty-one), \&cc., 3 expressing three tens, or thirty, and so on up to 40 (forty), 4 expressing four tens or forty, to 50 (fifty), to 60 (sixty), to 70 (seventy), to 80 (eighty), to 90 (ninety), 5, 6, 7, 8, 9 expressing five, six, seven, eight, nine tens respectively; the numbers between any two of them as 40 and 50 , being formed in the same way as those between 20 and 30 .

We thus come at length to 99 (ninety-nine), or nine tens and nine, the greatest number which can be expressed by two figures.

Ex. I.

Write the following numbers in figures.
(1) Three, four, two, seven, nine, six, eight.
(2) Ten, one, twelve, nineteen, five, eleven, sixteen.
(3) Fourteen, twenty, twenty-seven, thirty-three, fortynine, sixty, fifty-five, seventeen, thirty-six.
(4) Eighty-eight, thirty-five, sixty-three, twenty-nine, seventy-six, eighty, ninety-four, thirteen, fifty-two.
(5) Write down in figures all the numbers between eight and eighteen, between forty-five and fifty-one, and between eighty-seven and ninety-nine.

The next number after 99 is one hundred, written in figures thus, 100 ; the 1 in 100, standing in the third place from the right hand, now expressing not one unit, nor one ten units, but one hundred units.

All numbers from 100 to 200 (two hundred) are formed exactly in the same way, as we formed those from 0 to 100 ; thus we go on 101 (one hundred and one), 102, \&c., up to 110 (one hundred and ten), then 111 (one hundred and eleven), $112, \& c$. , up to 120 (one hundred and twenty), then 121 (one hunared and twenty-one), 122, \&cc., up to 130 (one hundred and thirty), and so on up to 200, then 201, 202, \&c., up to 300 (three hundred), and so on up to 400 (four hundred), 500 (five hundred), 600 (six hundred), 700 (seven hundred), 800 (eight hundred), 900 (nine hundred), 999 (nine hundred and ninetynine), or nine hundreds, nine tens, and nine, the greatest number which can be expressed by three figures.

Ex. II.

Write down the following numbers in figures:
(1) One hundred and six, one hundred and fifty, two hundred, two hundred and eighty-seven, three hundred and ten, four hundred and thirty-one, five hundred and fifty-five, nino hundred and uineteen, eight hundred and sixty-seven.
(2) Write all the numbers in figures from one hundred and ninety-five to two hundred and fourteen, from six hundred and eleven to six hundred and twenty, and from nine hundred and forty-seven to nine hundred and seventy.

The next number after 999 is one thousand, written in Gigures thus, 1000 ; the 1 in 1000 , standing in the fourth place from the right hand, now expressing one thousand units.

All numbers from 1000 up to 9999 (nine thousand nine hundred and ninety-nine) are formed thus, 1001 (one thousand and one), 1002, \&c., up to 2000 (two thousand), up to 3000 (three thousand), and so on.

The next number after 9999 is ten thousand, written in figures thus, 10000 ; the 1 in 10000, standing in the fifth
place from the right hand, now expressing one ten thousand units.

All numbers from 10000 up to 99999 (ninety-nine thousand nine hundred and ninety-nine), are formed thus, 10001 (ten thousand and one), 10002, \&cc., up to 20000 (twoenty thousand), then 20001 (twenty thousand and one), 20002, \&cc., up to 30000 (thirty thousand), and so on.

Ex. III.

Write the following numbers in figures.
(1) Four thousand five hundred and eighty-five, seven thousand three hundred and twenty-one, nine thousand seven hundred and ninety-eight, seven thousand and six,
(2) Five thousand and four, five thousand four hundred, five thousand and forty, eight thousand and thirty-six, eight thousand three hundred and six, eight thousand three hundred and sixty, nine thousand nine hundred and nine.
(3) Seventy-five thousand six hundred and thirty-five, ninety thousand nine hundred and nine, ten thousand and four, eighty-seven thousand and fifty, ninety thousand and one, sixty-four thousand and sixty-four, eighty-three thousand.

The next number after 99999 is one hundred thousand, written in figures thus, 100000 , the 1 in 100000 , standing in the sixth place from the right hand, now expressing one hundred thousand units, and so on up to 999999 (nine hundred and ninety-nine thousand nine hundred and ninety-nine), then we come to one million, written in figures thus, 1000000 , the 1 expressing one million units, and so on up to tens of millions (10000000), hundreds of millions (100000000), billions (1000000000), and so on.
Thus one is written. 1
ten 10
one hundred 100
one thousand. 1,000
ten thousand 10,000
one hundred thousand 100,000
one million. $1,000,000$
ten million $10,000,000$
one hundred millions 100,000,000
one billion $1,000,000,000$
6. From the above table, we see that dividing any num-
ber into periods of three figures each, beginning at the right hand, the names of those periods will be,

First	period	Units.
Second	"	Thousands.
Third	"	Millisons.
Fourth	"	Billions.
Fifth	Be.	Trillions.
\&c.	\&c.	

Also, that the names of the places in each of those periods are the same, namely:

First	place,	Units.
Second	"	Tens.
Third	$"$	Hundreds.

7. The following plan is recommended to enable the scholar to write in figures any number dictated by the teacher.
Let the scholar write on his slate a number of noughts, or zeros; thus $000,000,000,000$, marking them off into periods of three places each from the right;

> Put U over the first period for Units. T.......seond Thousands. M.........third......... Millions. B..........ourth.illions.

B M T U
And so on. Thus $000,000,000,000$. Then when a number is dictated to the pupil all he has to do is to put each figure under its proper place and fill up vacancies, if any, with 0 s .

Thus, two thousand and five will be written thus in figures
Eighty-six thousand four hundred and three 86,403
Four hundred and thirty thousand three hundred and forty

430,340
Eight hundred and three millions one thousand and eleven

803,001,011
Five billions thirty-seven millions and six. $5,037,000,006$

Ex. IV.

Write the following numbers in figures.
(1) One hundred and five, eight thousand seven hundred and ninety, thirty-seven thousand and seventy-one, thirty thousand four hundred and two, seventy-seven thousand seven hundred, twenty-four thousand eight hundred and seventeen.
(2) One hundred and five thousand four hundred and
nine, eight millions eight thousand and thirteen, seren millions six hundred and fifty thousand and ninety, sixty-four millions four hundred, eighty-nine millions forty-four thousand and one, five hundred and four millions six hundred and twenty-three thousand and twenty-four, nine hundred millions three hundred thousand eight hundred, fifty-three millions five hundred and three.
(3) Six billions six millions seventy thousand and seven, eighty-three billions four hundred and one millions one thotisand and ten, seven billions and four millions eighty-nine thousand two hundred, nine hundred and ninety millions.
8. Numeration is the art of writing in words the meaping of any number, which is already given in figures.

This follows from what has been already said; thus
27 means two tens and seven units, or twenty-seven.
503 means five hundreds, no tens, and three units, or five hundred and three.

0610 means no thousands, six hundreds, one ten, and no units, or six hundred and ten.
5634 means five thousands, six hundreds, three tens, and four units, or five thousand six hundred and thirty-four.

6,070,084 means six millions, seven tens of thousands, eight tens and four units, or six millions seventy thousand and eighty-four.
803,968,005 means eight hundreds of millions, three millions, nine hundreds of thousands, six tens of thousands, eight thousands, and five units, or eight hundred and three millions nine hundred and sixty-eight thousand and five.

Ex. V.

Write in words the meaning of
(1) $7,13,4,9,18,5,20,11,05,50,34,29,3,17,53$.
(2) $19,8,041,88,27,72,94,49,16,61,98,80,56,28$.
(8) $107,170,017,430,691,080,800,008,956,803,684$.
(4) $4506,5870,5087,6900,6009,02580,7045,7591,6275$.
(5) 24714, 12500, 10025, 10205, 70457, 74007, 77000.
(6) $300863,30050630,96400250,800400307,572060495$.
(7) 120192703, 890647560, 1050060429, 100000000001.

SIMPLE ADDITION.

9. Simple Addition is the method of finding a number,

Which is equal to two or more numbers of the same kind taken together.

By the same kind we mean all apples, or all horses, or all pence, and so on.

The numbers to be added are called Addernds.
The Sum, or Amount, is the number so found.
Before learning the Rule for Simple Addition, it will be well for a child to learn the following Table, called the Addition Table. The child should satisfy himself that this Table is true by means of counters, or strokes on a slate.

2 and	3 and	4 and	5 and
1 make 3	1 make 4	1 make 5	1 make 6
$2 . .4$.. 5	$2 . .6$	2 .. 7
3 .. 5	3 .. 6	3 .. 7	8
4 .. 6	4 .. 7	4 .. 8	9
$5 . .7$	5 .. 8	5 .. 9	5 .. 10
6 .. 8	6 .. 9	6 .. 10	6 .. 11
	7 .. 10	7 .. 11	7 .. 12
8 .. 10	$8 . .11$	8 .. 12	8 .. 13
9 .. 11	9 .. 12	9 ... 13	9 .. 14
10 .. 12	10 .. 13	10 .. 14	10 .. 15
6 and	7 and	8 and	9 and
1 make 7	1 make 8	1 make 9	1 make10
$2 . .8$	$2 . .9$	$2 . .10$	2 .. 11
3 ... 9	3 .. 10	3 ... 11	3 ... 12
$4 . .10$	4 .. 11	4 .. 12	4 .. 13
5 .. 11	5 .. 12	5 .. 13	5 .. 14
${ }_{6}^{6}$.. 12	${ }^{6}$... 13	6 ... 14	6 ..
$7 . .13$	7 .. 14	$7 . .15$	7 .. 16
8 .. 14	$8 . .15$	8 .. 16	8 .. 17
9 .. 15	9 ... 16	9 ..	${ }^{9}$... 18
$10 \therefore 16$	$10 . .17$	10 .. 18	$10 . .19$

This Table can easily be carried on for numbers larger than 10 ; for instance since 2 and 1 make 3,2 and 11 make 10 more than 2 and 1, i.e. make 13. Again since 9 and 4 make 13,9 and 14 will make 23 , and so on, the result in each case being 10 more than in the corresponding case in the Table. Also 2 and 51 make 53,9 and 54 make 63 , and so on, the result in each case being 50 more than the corresponding result in the Table.
10. The sign + , called Puus, placed between two numbers, means that the numbers are to be added together: thus 2 apples +3 apples, means that 2 apples and 3 apples are to be added together, therefore 2 apples +3 apples make 5 apples. Again $2+3+4$ means that 2 and 3 and 4 are to be added together ; $2+3$ make 5 , therefore $2+3+4$ make $5+$ 4, which make 9 .

The sign = called EQUAL, placed between two numbers, means that the numbers are equal to one another.

The sign \therefore means therefore.
Ex. 1. Find the sum of, or add together 5 if so, we say 5,4 , and 7 .

We add thus, 5 and 4 make 9,9 and $7 \quad 7 \quad 11,11$ and 5 make 16; or thus $\overline{16}$ make 16.
\therefore the sum of 5,4 , and 7 , or $5+4+7=16$.

Ex. 2. Add together 4, 8, 3, $0,9$.
4 and 8 make 12,12 and 3 make 15, 15 and 0 make 15,15 and 9 make 24 , $\therefore 4+8+3+0+9=24$;
or thus $\frac{0}{24}$
Ex. 3. Find the sum of $9,3,7,6$, 5,9 , and 8 .
9 and 3 make 12,12 and 7 make 19 , 19 and 6 make 25,25 and 5 make 30 , 30 and 9 make 39,39 and 8 make 47, \therefore sum of $9,3,7,6,5,9$, and $8=47$;

8 and 9 make 17 , 17 and 5 make 22 , 22 and 6 make 28, 28 and 7 make 35 , 35 and 3 make 38 , 38 and 9 make 47.

9 and 3 make 12, 12 and 8 make 20, 20 and 4 make 24.$\frac{0}{24}$
or thus $\frac{8}{47}$
Ex. VI.
$\begin{array}{ll}\text { Add (1) } & 2 \\ & 3 \\ & 8 \\ & \underline{6} \\ & \end{array}$
(2) $\begin{array}{r}3 \\ 7 \\ 8 \\ 9 \\ \hline\end{array}$
(3)

5
6
8
7

(4) Find the sum of two, seven, and two; of five, seven, and four; of six, three, and nine ; of five, five, and eight; of nine, eight, nought, and six; of six, two, and nine; of four, eight, and three; of seven, nine, and two; of nine, five, three, and eight.
(5) Find the value of $3+4+8+3+2+5 ; 6+4+0+$ $0+7+3 ; 5+8+1+6+5+9 ; 3+6+8+5+4+2 ; 9$ $+5+7+8+3+4 ; 6+9+9+8+8+5 ; 5+8+3+9$ $+9+6+6$.
(6) In a boys' school there are four classes. In the first class there are six boys; in the second class seven boys; in the third class one more than in the first class, in the fourth class two more than in the second class. How many boys are there in the school?
(7) John's age is 2 years, Ellen is two years older than John, Walter's age is the sum of the ages of the other two. Find the sum of all their ages.
(8) A woman sold two chickens to A, to B three more than to A, to C as many as to A and B, to D four more than to B; had C bought as many more chickens as he did buy, the woman would have sold all her chickens; how many chickens had she to sell?

Rule for Simple Addition.

11. Rule. Write down the given numbers under each other, so that units may come under units, tens under tens, hundreds under hundreds, and so on: then draw a line under the lowest number.

Find the sum of the column of units: if it be less than ten, write it down under the column of units below the line just drawn, but if it be greater than ten, then write down the units' figure (i.e. the last figure on the right hand) of the sum under the column of units, and carry to the column of tens the remaining figure or figures.

Add the column of tens and the figure or figures you carry as you have added the column of units, and treat its sum in exactly the same way as you have treated the column of units.

Treat each succeeding column (viz. hundreds, thousands, \&c.) in the same way.

Write down the full sum of the last column on the left hand.

The entire sum thus obtained will be the sum or amount of the given numbers.

Ex. 1. Add together 35, 56, and 282.
By the Rule,

35 Methocl of adding. 2 and 6 are 8,8 and 5 are $56 \quad 13$, i.e. 1 ten and 3 units; write down 3 under 282 the column of units, and carry 1 ten.
sum $=373 \quad$ Then 1 and 8 are 9,9 and 5 are 14, 14 and 3 are 17 , i. e. 17 tens, or 10 tens (1 hundred), and 7 tens, write down 7 under the column of tens and carry one hundred.

Then 1 and 2 are 3, i.e. 3 hundreds, write down 3 in the hundreds' place.

Ex. 2. Find the sum of three thonsand eight hundred and sixty-seven, seven hundred and nine, fifty-six thousand and thirty, eight thousand eight huindred and ninety-six, and fifteen thousand and twenty-nine, and write down the meaning of the sum in words.
By the Rule,

3867
709
56030
8896
15029
84531
eighty-four
thousand five
hundred and thirty-one.

9 and 6 are 15,15 and 9 are 24,24 and 8 are 31 , or 3 tens and 1 . unit: write down 1 under the units, and carry 3 tens.

Then 3 and 2 are 5,5 and 9 are 14, 14 and 3 are 17,17 and 6 are 23, i. e. 23 tens, or 2 hundreds and 3 tens; write down 3 tens, and carry 2 hundreds.

Then 2 and 8 are 10,10 and 7 are 17,17 and 8 are 25 , i. e. 25 hundreds, or 2 thousands and 5 hundreds; write down 5 hundreds, and carry 2 thousands.

Then 2 and 5 are 7, 7 and 8 are 15, 15 and 6 are 21, 21 and 3 are 24, i.e. 24 thousands, or 2 tens of thousands and 4 thousands; write down 4 thousands, and carry 2 teus of thousands.

Then 2 and 1 are 3, 3 and 5 are 8, i.e. 8 tens of thousands; write down 8 tens of thousands.

Note 1. Though the method of adding, as in the above examples, is the one a teacher can follow at first with his pupils; the following method should be insisted on as soon as possible.

Suppose tre have to add;
276 Add thus: 7, 16, 22 ; put down 2 under the
, 10, 2 , then 2,8 , 16,23 , \&c., \&c.; thas saving much time; instead of saying 7 and 9 make 16,16 and 7 make 23 , čc.
Note?. The truth of all stums in Addition may be proved
by adding the columns first upwards, and afterwards downwards; if the result be the same in both cases, the numbers will probably have been added correctly.

(36) One boy had nincteen marbles, another had seventeen more than the first, and another had nine more than the second, how many marbles had they among them?
(37) In a school section there are two and thirty men, sixty-five more women than men; the number of young men, young women and school children all together equals the number of men and women together, and there are twenty-nine infants; what is the population of the school section?
(38) 5 apple-trees produced as follows: the 1st, six hun- . dred and fifty-seven; the 2nd, two humdred and thirty-one
more than the 1st; the 3rd, eight hundred and ninety-two; the 4th, eleven more than all the first three; the 5th, as many as all the others. How many apples were there on all the trees ?
(39) A gentleman left his property by will, thus: to his wife, nine thousand and eighty dollars; to each of his two younger sons, five thousand eight hundred and ninety-four dollars; the rest of his property in two equal shares between his three daughters, and eldest son; the eldest son's share was fifteen hundred and twenty dollars more than the mother's share; what did the gentleman die worth?
(40) A grocer bought 4 chests of oranges. In the 1st chest there were five hundred and eighty-nine oranges; in the 2nd, two hundred and fifteen more than in the 1st; in the 3rd, one hundred and ninety-seven more than in the 1st; in the 4th, as many as there were in the 1st and 3rd. How many oranges did he buy?

Ex. VIII.

\begin{tabular}{|c|c|c|c|c|}
\hline \& $$
\begin{aligned}
& 22+30+29+67 \\
& 63+93+87+73 \\
& 72+90+37+57+39 \\
& 38+47+96+83+27 \\
& 78+89+68+58+47
\end{aligned}
$$ \& (6)

(7)
(8)
7
(9)

(10) \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& 219+315+612+705 \\
& 602+528+346+648 \\
& 736+932+712+836 \\
& 968+864+345+989 \\
& 940+760+712+562
\end{aligned}
$$}

\hline (11) \& \& (13) \& (14) \& (15)

\hline 71407 \& 82079 \& 96748 \& 33456 \& 15161

\hline 90781 \& 88099 \& 25003 \& 84771 \& 8098

\hline 68943 \& 67005 \& 84067 \& 66854 \& 958

\hline 32600 \& 74387 \& 95674 \& 72984 \& 49790

\hline 72777 \& 12345 \& 98765 \& 99999 \& 78368

\hline (16) \& (17) \& \& (18) \&

\hline 9466495 \& 5770821 \& \& 591046 \& 768400

\hline 7545478 \& 910146 \& \& 768000 \& 95320089

\hline 29099 \& 6544889 \& \& 039587 \& 6949

\hline 2988607 \& 7400 \& \& 596459 \& 84982759

\hline 9292929 \& 7683709 \& \& 534842 \& 700897

\hline 7833210 \& 3684793 \& \& 827634 \& 78563412

\hline
\end{tabular}

(20) Add together nine hundred and twelve, two thousand and fifty-eight, three thousand four hundrod and fortyfive, nineteen thousand three hundred and sixty, twentyseven thousand six hundred and forty-three, thirty-nine
thousand seven hundred and ninety, fifty-five thousand eight hundred and seventy-nine, sixty-four thousand nine hundred and seventy-seven, eight thousand two hundred and eleven.
(21) In the census of 1861, the population of the counties on Lake furon, was as follows: Of Lambton, twenty-four thousand nine hundred and sixteen; of Huron, fifty-one thousand nine hundred and fitty-four; of Bruce, twentyseven thousand four hundzed and ninety-nine; of Grey, thirty-seven thousand seven hundred and fifty; of Simcoe, forty-four thousand seven hundred and twenty. What was the whole population of the above five counties in 1861?
(22) In 1861 the population of the counties on the Ottawa river, was: of Prescott, fifteen thousand four hundred and ninety-nine: of Russell, six thousand eight hundred and twenty-four; of Carlton, twenty-nine thousand six hundred and twenty ; of Renfrew, twenty thousand three hundred and twenty-five, What was the total population of these four counties in 1861?
(23) In 1861 Toronto contained forty-four thousand eight hundred and twenty-one inhabitants; Montreal, ninety thousand three hundred and twenty-tinree; Hamilton, ninetcen thousand and ninety-six; Ottawa, fourteen thousand six hundred and sixty-nine ; Kingston, thirteen thousand seven hundred and forty-three; London, eleven thousand five hiundred and fifty-five. Find the total population of these cities in 1861?

Ex. IX.

Find the sum of

(4)
278653
972009
2673627
5009607
27693
986737

20712
21207
616848
703003
1090090

2612856
8906783
912227
6804398
$2 ; 635398$
33297653

(2)	(3)
2012	22793
75005	27812
700764	38614
93860	45693
4202573	$\underline{92075}$

(6)

37613906
27305639
209617382
372637867
$96 \leftrightarrows 363353$
27306463

(7) 276608567	（8） $3067356 \pi 2$	$\begin{gathered} (9) \\ 397203685 \end{gathered}$
\％6293568	68345658	28678326
688927285	928：32が38	$2067386: 38$
9889 ± 8.889	928＊＊3	72839－ 3
21130297	23330374	56343 3ve
26302502	9030 6\％8\％	91230634
397612：97	20786 \％ 3	6383513，
583\％	3057 弐13	83297609
96003 ： 18	0233， 5003	603536339
54383：～：83	5688021.6	736397501
782820）	20？${ }^{\text {\％}}$ 3517	932506593
（1）	（11）	（12）
793578．53	3683）${ }^{\text {a }} 009$ ．	$3786849 \% 6$
97er312	r63856\％3	79683886
5－1－16	467308\％53	468976395
31Cuこ：308	900009900	786347512
$2760 \% 336$	90900999	927607038
976，1304	938568378	90809008
265ju．el8	＇7120こ0750	\％ 788385006
718768826	77807689	703209600
203655	234593368	87967339
963－950	992135067	862006764
397509387	837346395	993387535

（13）Add together nine millions four hundred and sixty－ six thousand four liundred and ninety－five，three hundred and seventy－five millions five hundred and seventy－three thou－ sand seven hundred and thirty－five，seven hundred and fifty－four thousand five hundred and forty－seven，three mil． lions seven hundred and eighty－nine thousand two hundred and eighty－four，twenty－nine millions eight hundred and eighty－six thousand seven hundred and ninety－nine，nine hundred and ninety－two thousand and eighty－four，two hun－ dred and ninety－three thousand six hundred and ninety－five， two millions six hundred and oighty－four thousand four hundred and eighty－seven，three millions five hundred and ninety－two thousand cight hundred and seventy－three，seven millions eight hundred and forty－nine thousand three hun－ dred and forty－six．
（14）Λ firmer had forty－four sheen，thirty－five head of cattle，fiftect pigs，six horses．IIow many animals had he altogether？
(4)
(15) In one year a farmer's crop was as follows: Five hundred and twenty-three bushels of wheat, a hundred and twenty bushels of oats, sixty-four bushels of peas, two hundred and thirty-seven bushels of potatoes, thirty-eight bushels of turnips. How many bushels had he ?
(16) A man bought a farm for sixteen hundred and fifty dollars, he spent a hundred and sixty in putting on it new fences, five hundred and seventy-five in builcling a new house, in repairing the barn and sheds two hundred; he then sold it and made a profit of six hundred dollars. How much did he get for the farm?
(17) In 1861 the population of the counties on Lake Erie was: Essex, twenty-five thousand two hundred and eleven; Elgin, thirty-two thousand and fifty ; Kent, thirty-one thousand one hundred and eighty-three; Norfolk, twenty-eight thousand five hundred and ninety, Haldimand, twenty-three thousand seven hundred and eighty; Welland, twenty-four thousand nine hundred and eighty-eight. What was the total population of the six counties on Lake Erie?

SIMPLE SUBTRACTION.

12. Simple Subtraction is the method of finding what number remains, when a smaller number is taken from a greater number of the same kind.

The number so found is called the Rematnder, or Difference.

The number subtracted from, is called the Minuend; the number subtracted, the Subtrahend.
13. The sign - called minus, placed between two numbers, means that the second number is to be subtracted from the first number: thus $7-3$, or 7 minus 3 , means that 3 is to be subtracted from 7, $\therefore 7-3=4$,

Rule for Simple Subtraction.

14. Rule. Write down the less number under the greater number, so that units may come under units, tens under tens, hundreds under hundreds, and so on; then draw a straight line under the lower number.

Take, if you can, the number of units in each figure of the lower number from the number of units in each figure of the upper number which stands directly over it, and place the remainder under the line just drawn, units under units, tens under tens, and so on.

But, if the units in any figure in the lower number be
greater than the number of units in the figure just above it, then add ten to the upper figure, and then subtract the number of units in the lower figure from the number in the upper figure thus increased, and write down the remainder as before.

Add one to the next number in the lower number, and then take this figure thus increased from the figure just above it, by one of the methods already explained.

Go on thus with all the figures.
The whole difference, or remainder, so written down, will be the difference or remainder of the given numbers.

Ex. 1. Subtract 547 from 859.
By the Rule,
859 Method. 7 from 9 leave 2, i.e. 7 units from 9 547 units leave 2 units; write down 2 in the units' diff. $=\overline{312} \quad$ place. 4 from 5 leave 1 ; i.e. 4 tens from 5 tens leave 1 ten; write down 1 in the tens' place.
5 from 8 leave 3 , i. e. 5 hundreds from 8 hundreds leave 3 hundreds; write down 3 in the hundreds' place.

Ex. 2. Find the difference between seven hundred and forty-two, and two hundred and sixty-eight.

By the Rule,
742
268
diff. $=\overline{474}$
I cannot take 8 from 2, i. e. 8 units from 2 units, \therefore I add 10 to 2 , which makes 12,8 from 12 leave 4 ; write 4 in the units' place.
I have added 10 to the upper number 742 , I must \therefore add 10 to the lower number 268 (so as not to alter the difference between 742 and 268), i.e. 268 must be made $2 \pi 8$, or 1 must be added to the 6 .

Then I cannot take 7 from 4, i.e. 7 tens from 4 tens, \therefore I add 10 to the 4 , really 10 tens or 1 hundred to the 4 tens, which makes it 14, really 14 tens, then 7 from 14 leave 7, really 7 tens; write 7 in the tens' place.

I have just added 10 tens, or 1 hundred to the upper number, I must \therefore add 1 hundred to the lower number, i. e. I must add 1 to the 2, really 1 hundred to 2 hundreds, making it 3 , really 3 hundreds, then 3 from 7 leave 4 , really 4 hundreds; write 4 in the hundreds' place.

Ex. 3. How much greater is eight thousand two hundred than six thousand three hundred and nine?

9 from 0 I cannot, then 9 from 10 leave 1 ; write 1 in the units' place; carry 1 , really 1 ten, then 1 from 0 I cannot, then 1 from 10 leaves 9 , really 1 ten from 10 tens leaves 9 tens;
write 9 in the tens' place; carry 1 , really 1 bundred, then 4 from 2 I cannot, then 4 from 12 leave 8 , realiy 4 hundreds, from 12 hundreds leave 8 hundreds; write 8 in the hundreds' place, carry 1, really 1 thousand, then 7 from 8 leave 1 , really 7 thousands from 8 thousands leave 1 thousand; write 1 in the thousands' place.

Note. The truth of all sums in subtraction may be proved by adding the less number to the difference or remainder; if this sum equals the larger number, the sum will probably have been worked correctly.

Thus, Proof of Ex. 3. Less number + remainder $=6309$ $+1891=8200$, the greater number.

Ex. X .

(29) Subtract thirty-seven from fifty; twenty-nine from seventy-one: sixty-six from one hundred and four: ninetyseven from two hundred and eleven; one hundred and five from three hundred and three; four nundred and seventyfive from six hundred and forty-nine.
(30) A gentleman bought a horse and a carriage for five hundred and sixty dollars; the horse was valued at three hundred dollars. How much was the carriage worth? and how much was the horse worth more than the carriage?
(31) In a school there are 75 children, there are 28 girls. How many more boys than girls are there?
(32) Charles had 167 marbles, he gave Joln 49, James 65,

Thomas all the rest but 19 ; how many marbles had Thomas less than James?
(33) By how much does the sum of 6 and 4 exceed their difference?
(34) A boy's father gave him 40 cents to pay 10 cents for a slate, 3 cents for pencils, 8 cents for a copy-book, 5 cents for ink, 3 cents for a postage stamp; after paying for the above he lost all but 4 cents through a hoie in his pocket; how much did he lose?

Ex. XI.
(1)

From 5467
Take

(2)

$\begin{aligned} & (6) \\ & 7009 \\ & 5080 \end{aligned}$	(7) (8) 8052 5281 4847 597	380	$\begin{array}{r} (10) \\ 8888 \\ 999 \\ \hline \end{array}$	
$\begin{gathered} (12) \\ 14748 \\ 13942 \end{gathered}$	$\begin{array}{r} 54832 \\ .29648 \\ \hline \end{array}$	$\begin{aligned} & 80408 \\ & 59385 \end{aligned}$	$\begin{aligned} & (15) \\ & 7007 \\ & 69999 \end{aligned}$	$\begin{aligned} & 43520 \\ & 25347 \end{aligned}$
$\begin{gathered} (17) \\ 445673 \\ 277594 \\ \hline \end{gathered}$	$\begin{array}{r} 9200000 \\ 560506 \end{array}$			$\begin{array}{r} 650030042 \\ 94090096 \end{array}$

(21) What number taken from three thousand will leave one hundred and one? What number added to seventytwo thousand five hundred and seventy-six will make one million seventy thousand four hundred and nine?
(22) The sum of three numbers is twenty three thousand two hundred and tifty-seven; the first is 9277 , and the second is twelve hundred and eighty-three less than the first; find the third number.
(23) What is the difference between $23047+175-368+$ $495-132$ and $10000-8406-704+7305$?
(24) When will the Prince of Wales, who was born in the year 1841, be as old as the Queen now, in the year 1869, is, who was born in the year 1819? How old will the Queen then be?
(2ธ) John says to Henry, I have 97 marbles; Henry re.
plies, I have 29 less than you: Charlie adds, I have as many as both of you less 25. How many marbles had Heary, and how many had Charlie?
(26) A man whose yearly income is 1000 dollars, spends 84 dollars for house rent, 135 dollars for servants, 39 dollars in travelling, 58 dollars in clothing, as much on his garden as in travelling and clothing, 804 dollars in household bills. Will he have saved anything, or be in debt at the end of the year, and to what amount?
(27) Harry goes up sixteen steps of a ladder, which has 45 steps, then down 7 steps, then up 10 , then down 2 , then down 4 , then up 11, then down 9 , then up 7, then up 5 , then down 8, what step from the top and bottom will he then be standing upon?
(28) In a union workhouse there are 133 inmates. The number is made up thus: infirm and able-bodied 70 ; ablebodied and children 105; children and officers 63 ; officers 5. Find the number of each class.
(29) A basket contained oranges, nuts, and eggs ; in all 1769 ; there were 1696 oranges and nuts, and 1262 nuts and eggs. How many more nuts were there than oranges?
(30) The population of the counties on the river St. Lawrence in 1861, was one hundred and seventeen thousand nine hundred and eighty-six, that of those on the Ottawa river was seventy-two thousand two hundred and sixty-eight. Find the difference between the population of these counties?
(31) What is the difference between thirty-seven millions nine hundred and six thousand seven hundred and three, and forty-five millions three thousand and eight?
(32) The subtrahend is fifty-sixmillions two hundred and twelve thousand three hundred, the remainder seventy-seven thousand three hundred and thirteen. What is the minuend?
(33) The minuend is sixty-six millions three hundred and four thousand, the dufference twelve thousand five hundred and eighty-six. Find the subtrahend.
(34, A man bought 305 sheep for 3 dollars a head, and after spending 45 dollars on them for food, sold them for 4 doliars a head, how many dollars did he gaiu by his bargain?
(3.5) For the year 1861 the Imports into Canada were forty-three milhons fifty-four thousand eight hundred and tuirty-six dollars, and the Exports were thirty four millions
seren hundred and seventoen thousand tivo hindred and forty-eight dollars. Find by how much the Imports exceed. et the Exports for the year 1861.
15. Roman Notation. I, denotes one; V, five; X, ten; I_{1}, fifty; C, one hundred; D, five hundred, M, one thousand.

Rute. Where any one of the above letters is after, or to the right hand of, one of equal or greater value, it is to be wilderl to it, but when put before one of greater value, it is to we subtracted from it.

Thus II $=1+1=2, I I I=1+1+1=3, I V=5$ less $1=$ $4, \mathrm{VI}=5+1=6, \mathrm{VIII}=5+1+1+1=8, \mathrm{IX}=10$ less 1 $=9$, XIII $=10+1+1+1=13$, XIV $=10$ plus 5 less $1=$ $10+4=14, \operatorname{LXXIX}=50+10+10+10 \operatorname{less} 1=70+9=$ \%9, $\mathrm{XC}=100$ less $10=90$.

Note. A line over a letter, or letters, increases their value a thousandfold: thus $\mathrm{V}=5, \overline{\mathrm{~V}}=5000 ; \mathrm{C}=100, \overline{\mathrm{C}}=100000$.

Ex. XII.

1. Express in the Roman Notation, three; seven; eleven; nine; twelve; sixteen; 18; 25; 28; $37 ; 40 ; 53 ; 59 ; 62$; $77 ; 84 ; 103 ; 157 ; 190 ; 200 ; 651 ; 783 ; 1204 ; 1527,1865$.
2. Express in words, and also in Arabic figures, III; VI; VIII; XIII; XV ; XVII: XX; LIV; LXXXI; CXI; DCV; VII; MC ; MM; DCCXLIX; MDCCCLXV

SIMPLE MULTIPLICATION.

16. Simple Multiplication is a short method of repeated addition; thus, when 2 is multiplied by 3 , the number obtained is the sum of 2 repeated three times, which sum $=2+2+2=6$.

The number, which is to be repeated or added to itself, is called the Multiplicand: thus, in the above example, 2 is the multiplicand.

The number, which shews how often the multiplicand is to be repeated, is called the Multiplier: thus, in the above exampie, 3 is the multiplier.

The number found by multiplication, for instance 6 in the ahove example, is called the Product.

The manliphier and multiplicand are sometimes callecl FAcqons, Decause they are factors, or makers, of the product

The sign x, called INTO, on mulumplied By, placed be-
twreen two numbers, means that the numbers are to be muitiplied together.
The following Table, called the Muftiplication Table, ougat to be learned correctly:

17. Rule for Simple Multiplication, when the multiplier is a number not lurmer thun 12.

Pude. Place th multiplier under the multiplicand, units minder units, and (${ }^{\circ}$. e multiplier be 10,11 , or 12) teus under If ; then draw y - he under the multiplior. muply each t re of the multiplicand, berinning with - will by the fuyte, or figures of the multipler (by means (1e a altink cation Table).
die- $=$ and carry as in Simple Addition.

Ex. 1. Multiply 531 by 2.

By the Rule.

531
2
$\overline{1062}$

Twice 1 unit makes 2 units; write 2 in the units' place of the product Twice 3 tens of umits make 6 tens of units; write 6 in the tens' place of the product Twice 5 hundreds of units make 10 hundreds of units, or 1 thousand 0 hundred; write 0 in the hundreds' place, and 1 in the thousands' place.

Ex. 2. Find the product of 5063 and 6.
${ }^{1}$ By the Rule,
5063
6 times 3 units $=18$ units $=1$ ten and 8 units; write 8 units, carry 1 ten. Next 6 times 6
$\overline{30378}$ tens $=36$ tens, which added to the 1 ten carried $=37$ tens $=3$ hundreds and 7 tens; write 7 tens and carry 3 hundreds.

Next. 6 times 0 hundreds $=0$, which added to the 3 hundreds carried $=300$ hundreds, write 3 in the hundreds' place.

Next, 6 times 5 thousands $=30$ thousands $=3$ tens of thoul sands and 0 thousands; write 0 in the thousands' place, and 3 in the tens of thousands' place.

Note. It will be seen from the Multiplication Table, that to multiply any number by 10, we have only to write 0 to the right hand of the number, thus, $3 \times 1=3, \delta \times 10=30$; also $5893 \times 10=58930$, and $58930 \times 10=589300$.

Similarly $3 \times 100=300,3 \times 1000=3000$, and so on.
Also if any number be multiplied by 20, the result is the same as if the number were multiplied by 2 , and 0 written on the right hand of the product; thus, $6 \times 20=6 \times 2 \times 10$ $=12 \times 10=120$; also $60 \times 20=1200$, for $60 \times 20=60 \times 2$ $\times 10=120 \times 10=1200$; and so of any other number.

Similarly $60 \times 200=12000,60 \times 2000=120000$, and so un.

Ex. XIII.

(15) 53 7	$\begin{aligned} & (90) \\ & 45 \\ & 8 \end{aligned}$	$\begin{array}{r}(21) \\ 74 \\ 8 \\ \hline\end{array}$	(22) 69 9	$\begin{gathered} (23) \\ 54 \\ 9 \\ \hline \end{gathered}$	$\begin{aligned} & (24) \\ & 20 \\ & 10 \end{aligned}$	$\begin{gathered} (25) \\ 99 \\ 10 \\ \hline \end{gathered}$	(26) 53 11 1	$(2 \pi$ $8 i$ 11 1
(23)	(23)	(30)	(31)	(32)	(33)	(34)	(35)	(33)
91	co	49	687	800	697	276	777	497
11	12	12	2	3	3	4	5	6
(37)	(38)	(3)			(11)	(42)	(43)	(44)
479	905	83			560	538	888	704
7	7			9	10	11	12	12

(45) Supposing an acre of land to produce 39 bushels of wheat, how many bushels will 11 of such acres produce, and what will be their value at 6 shillings a bushel?
(46) There are 21 shillings in 1 guinea, and 12 pence in 1 shilling; how many pence are there in $3,7,12$ guineas?
(47) Charlie bought of Quintin 11 rabbits at 23 cents each, and Qumtin bought of Charlie 9 hens at 33 cents each, how many cents had Quintin to give to Charlie?
(48) What is the difference between 12 dozen and 8 , and 8 dozen and 12 ? [Note, 1 dozen $=12$]
(49) A has seven thousand four hundred and one potatoes; he sells B fifty-seven dozen and five; C one hundred and twelve dozen and eleven ; D two hundred and fifty-nine dozen and nme; and E the remainder. How many more did E buy than C ?

Ex. XIV.

| (1) | (2) | (3) (4) (5) (6) |
| :--- | :--- | :--- | :--- |

$\begin{array}{llllll}\text { Multiply } 9048 & 5849 & 9873 & 38076 & 6057 & 97068\end{array}$
By

(17) Multiply (1) 38\%0492, (2) 4609758, (3) 85973864, (4) 9090853 , (5) 55880092 , (6) 987654321 , by each of the following, $2,5,3,7,4,9,6,8,11$, and 12.
(18) Two persons start from the same place, and travel in the same direction, one at the rate of 93 miles a day, the other at the rate of 79 miles a day; how far apart will they be at the end of a week?
(19) If the second person at the end of two days turn back, and travel each day in the opposite direction the same number of miles as before; how far will they be apart at the end of a week?
18. Rule for Simple Multiplication, when the Multiplier is a number larger than 12.

Rule. Place the multiplier under the multiplicand, units under units, tens under tens, and so on; then draw a line under the multiplier.

Multiply each figure of the multiplicand, beginning with the units, by the figure in the units' place of the multiplier (by means of the table given for Multiplication); write down and carry as in Addition.

Then multiply each figure of the multiplicand, beginning with the units, by the figure in the tens' place of the multiplier, placing the first figure so obtained under the tens of the line above, the next figure under the hundreds, and so on.

Proceed in the same way with each succeeding figure of the multiplier.

Then add up all the results thus obtained by the rule of Simple Addition.

Ex. 1. Multiply 2307 by 358.	
2307	since $358=300+50+8$, when we mul-
358	tiply by the 5 , we in fact multiply by 50 ,
18456	and $2307 \times 50=115350$; again, when we
11535	multiply by the 3, we in fact multiply
6921	
-825906	it is quite clear that we may multiply
=825906	
take care to place the first figure in the second line under	
athe tens' place of the first line, and the first figure of thethird line under the hundreds' place.	

Ex. 2. Find the product of 758 and 609.

758
609
6822 4548
$\overline{461622}$

Since 758 , or any other number, multiplied by 0 gives 0 as a product, \therefore in this case we multiply by 9 and then by 6 , writing the first figure of the second line under the hundreds' place, and not under the tens' place of the line above, for $609=600+9$.
Note 1. If the Multiplier or Multiplicand, or both, end with cyphers, we may omit them in the working; taking care to place on the right hand of the product as many cyphers as we have omitted from the end of the multiplier or multiplicand, or both. Thus, if 270 be multiplied by 507 , and 2700 be multiplied by 50700 , we have

270	270	In the first case, when we
$\frac{507}{189}$	$\frac{50700}{189}$	multiply 7 by 7 , in fact we multiply 70 by 7, and 70×7
$\frac{135}{=490}$	$\frac{135}{136890}$	$\frac{430}{13689000}$

Note 2. $2 \times 3=2+2+2=6$, and $3 \times 2=3+3=6$.
$\therefore 2 \times 3=3 \times 2$; and this is true of all numbers.
Note 3. If more than two tactors have to be multiplied together; as $2 \times 4 \times 9$, it is termed continued multiplica. tion, and since $2 \times 4=8$, and $8 \times 9=72$, and $\therefore 2 \times 4 \times 9=$ 72 , we shall ot course obtam the same result, whether we multuply any number by 72 , or by its factors 2,4 , and 9 , by continued multiplication; and so of any other number.
$35 \times 72=2520$, and $35 \times 2 \times 4 \times 9=70 \times 4 \times 9=280 \times 9=$ 2520.
19. Numbers which are produced by multiplying together two or more numbers respectively greater than unity, are called Composite Numbers. Thus $4=2 \times 2,36=6 \times 6$, or $=2 \times 3 \times 2 \times 3$, and such like, are Composite Numbers.
Numbers which cannot be broken up into factors, as 3,5 , 7, 11, and such like, are Prime Numbers.

Note 4. The truth of all results in Multiplication may be proved by using the multiplicand as multiplier, and the multiplier as multuplicand; of the product thus obtained be the same as the product found at first, the results are in all probability true.

Ex. XV.

(37) Find the product of seven thousand and thirty-nint by four thousand seven hundred and nine; three thousani nine hundred and ten by three hundred and fifty thousand eighty-seven thousand nine hundred by nine thousand anc six; seven millions eight thousand and five by four hivadred thousand seven hundred and three.
(38) Find the product of the sum and difference of four hundred and ninety-six, and three hundred and twelve.
(39) Multiply (1) 973 by 63 , and also by its factors 3,3 . and 7, and (2) 33000 by 1560 , and also by its fartors $13,5,4$. and 6.
(40) As in (39) do also, (15), (16), (17), (18).

Ex. XVI.

$\begin{gathered} (5) \\ 40930 \\ 779 \end{gathered}$	$\begin{gathered} (6) \\ 9264397 \\ 9584 \end{gathered}$	$\begin{gathered} (7) \\ 6707936 \\ 9878 \end{gathered}$	$\begin{array}{r} (8) \\ 6078908 \\ 6725 \\ \hline \end{array}$	$\begin{aligned} & (9) \\ & 708670567 \\ & 97806 \\ & \hline \end{aligned}$
	$\begin{gathered} (10) \\ 6835675 \\ 2689 \end{gathered}$	$\begin{array}{r} (11) \\ 27083679 \\ 3709 \end{array}$	250	

(18) Find the product of 3523725 and 2538.
(14) " " 2778588 and 9867.
(15) " " 79068025 and 1386.
(16) " " 79094451 and 764095.
(17) Multiply five millions seventy-six thousand eight hundred and twelve by ninety-seven thousand six hundred and thirteen.
(18) Multiply nine millions five hundred and seven thousand three hundred and forty by seven thousand and seven-ty-one.
(19) Required the product of twelve millions four hundred and eighty-one thousand six hundred and thirty, and fifteen hundred and nine.

SIMPLE DIVISION.

20. Simple Division is a short method of repeated Subtraction; or, it is the method of finding how often one number called the Drvisor is contained in another number called the Drvidend. The number, which shews this, is called the Quotient.

Thus, the dividend 12 divided by the divisor 4 gives the quotient 3 ; and for this reason, $4+4+4=12$, and therefore if we subtract 4 from 12, and then a second 4 from the remainder 8 , and then a third 4 from the remainder 4 , nothing remains.

If however some number be left, after the divisor has been taken as often as possible from the dividend, that number is called the Remainder; thus, 11 divided by 4 gives a quotient 2 , and a remainder 3 ; for after subtracting 4 from 11 once, there is a remainder 7 ; after subtracting 4 a second time from the remainder 7 , there is a remainder 3.

The sign \div, called By, or Divided by, placed between
two numbers, signifies that the first is to be divided by the second.
Division is just the opposite of Multiplication. By the Multiplication Table, $3 \times 4=12$, and $12 \div 4=3$, or $12 \div 3$ $=4$.
21. Rule for Simple Division, when the Divisor is a number not larger than 12.

Rule. Place the divisor and dividend thus: divisor) dividend.
Take off from the left hand of the dividend the least number of figures which make a number not less than the divisor.

Find by the Multiplication Table how often the divisor is contained in this number; write the quotient under the units' figure of this number, and take notice of the remainder, whether it be any number or 0 .

On the right of the remainder (whether it be any number or 0), conceive in your mind to be placed the least number of the figures next following in the dividend which will, affixed to the remainder, make a number not less than the divisor. Proceed, as above, with this new dividend to find the next figure of the quotient; taking care to place after the first figure in the quotient a cypher for every figure just Ibrought down from the dividend except the last.

Continue this process till all the figures in the dividend have thus been brought down.

If there be a remainder at the end of the operation, write it as a remainder distinct from the quotient.

Ex. 1. Divide 756 by 3.
By the rule,
3)756 252 2 under the 6.

Reason. In 756 the $7=700$, the $5=50$, and the $6=6$. Now 3 in 700 goes 200 times, and 100 over, therefore write 2 in the hundreds' place, and carry the 100 ; then 3 in 100 +50 , or 150 , goes 50 times, thercfore write 5 in the tens' place; then 3 in 6 goes 2 times, therefore write 2 in the units' place.

Ex. 2. Find the quotient of 21406 by 7 .
7) 21405 Method of roorling. 7 in 2 goes no times, 3058 but 7 in 21 goes 3 times, write 3 under the 1; 7 in 4 goes no times, 7 in 40 goes 5 times and 5 over; write 0 under the 4 and 5 under the 0 ; then 7 in 56 goes 8 times, write 8 under the 6 .

Recason. In 21406 the 21 is $=21000$, the $4=400$, and the $6=6$.
\therefore the 3 in the quotient $=3000$, the $5=50$, the $8=8$, and the quotient is 3058 .

Ex. 3. Into how many classes of eleven each can a population of eight hundred and ninety thousand three hundred and eighty-nine be divided?
11) 890389 80944 rem. 5.
i.c. 80944 classes and 5 people over, or $890389=80944 \times 11+5$

11 in 8 will not go, 11 in 89 goes 8 and 1 over, write 8 under the 9 ; 11 in 10 will not go, 11 in 103 goes 9 and 4 over, write 0 under the 0 , and 9 under the $3 ; 11$ in 48 goes 4 and 4 over, write 4 under the 8 ; 11 in 49 goes 4 and 5 over, trite 4 under the 9 , and rem. 5

Ex. 4. Distribute six hundred thousand four hundred and fifty-five apples in equal portions between 12 families.
12) $\frac{600455}{50037}$ rem. 11
\therefore each family receives 50037 apples, and there are 11 apples over; or
600455 less $11=50037 \times 12$

12 in 60 goes 5 ; for the next dividend we have $045, \therefore$ we write two cyphers or 00 after the $5 ; 12$ in 45 goes 3 and 9 over, \therefore write 3 after 0 ; then 12 in 95 goes 7 and 11 over, \therefore write 7 after 3 , and rem. 11 .

Ex. XVII.

Note. Each of the given numbers is to be divided by each of the different divisors.
(1) $88,93,98,103,100$, by 6,9 , and 8 .
(2) $105,110,119,128,117$, by 5,11 , and 10 .
(3) $130,141,153,168,147$, by 6,12 , and 11 .
(4) $172,195,206,257,240$, by 6,8 , and 12 .
(5) $462,682,840,405,555$, by 4,10 , and 11.
(6) $600,763,842,999,717$, by 11,8 , and 12 .
(7) $1210,6876,7063,5000$, by 9,12 , and 11 .
(8) $2760,9604,8267,6548$, by 8,12 , and 10 .
(9) $86246,72635,85490,35298$, by 12,10 , and 7.
(10) 76002, 90009, 53027, by 11,8 , and 12 .
(11) $5470698,93700682,2060198$, by 8,10 , and 11.
(12) $8360047,6789643,9889989$, by 7,9 , and 12.
(13) How many times can you subtract twelve from eight hundred thousand seven hundred and nine? What number besides 11 will exactly divide 218581?
(14) (1) If the dividend be 84, the quotient 9 , the remainder 3 , what is the divisor? (2) If the divisor be 11, the remainder 7 , the quotient 146 , what is the dividend?
(15) A woman bought 11 fowls at 36 cents each, and sold them so as to gain 198 cents; what did she sell each fowl for?
(16) A boy, having a basket containing 214 plums, distributed them equally between his eight schoolfellows and himself; the number which remained over he gave to his schoolmaster; how many did the schoolmaster receive?
(17) The sum of two numbers is 4563 , and the less number is 9 ; find their quotient.
(18) Find the difference between the product of 40687 and 503 , and the quotient of 93710562 by 11.
(19) A Bachelor, who died worth 5427 dollars, left 1500 dollars to charities, and the rest of his property between his housekeeper, manservant, and cook; the manservant was to have twice the cook's share, and the housekeeper was to have twice the manservant's share; what did each receive?
(20) If the sum of 18 and 30 be divided by their difference, and the quotient be multiplied by the product of 16 and 27 , what is the result?
(21) Find the product of nine hundred and seven thousand. and fifty-seven by six millions and six, and find what number added to the result will make it exactly divisible by nine.
(22) A basket contained 282 apples and oranges; there were 230 more apples than oranges. Find the number of oranges.
(23) How many penknives, worth 16 cents each, ought to be exchanged for 4 gross of penholders at 10 cents per dozen, and twenty-five score envelopes at 16 cents a hundred? .Note, 1 score $=20,1$ gross $=12$ dozens.
22. Rule for Simple Division, when the Divisor is a number larger than 12.

Rule. Place the divisor and dividend thus: divisor) dividend (.
leaving a space for the quotient on the right of the dividencl.
Take off from the left hand of the dividend the least number of figures which make a number not less than the divisor.
Find how many times the divisor is contained in this number; write the quotient as the left-hand figure of the whole quotient; multiply the divisor by this figure, and bring down the product under the number taken off from the left of the dividend, and subtract.

On the right of the remainder (whether it be any number or 0) place the least number of figures next following in the dividend which will, affixed to the remainder, make a number not less than the divisor. Proceed as above with this new dividend to find the next figure of the quotient; taking care to place after the first figure in the quotient a cypher for every figure just brought down from the dividend except the last.
Continue this process till all the figures in the dividend have thus been brought down.

If there be a remainder at the end of the operation, write it as a remainder distinct from the quotient.

Note. If any remainder be equal to or greater than the divisor, the last figure of the quotient must be changed for pne greater.
Ex. 1. Divide 1368 by 57
the Rule, 1368(24 Method of Working. 136 is the least num114 ber taken from the left of the dividend, into which 57 will go; we then say 5 into 11 goes 228
228
2 2; write 2 as the first figure of the quotient
on the right hand, write also 114 (product of 228
228
2 2; write 2 as the first figure of the quotient
on the right hand, write also 114 (product of 2) under 136 and subtract; we obtain a remainder 22. p place 8 , the next figure in the dividend, to the right of emainder; we thus obtain a new dividend 228; as be$\tilde{5}$ into 22 goes 4 ; write the 4 to the right of the 2 in the ent; and so proceed till all the figures in the dividend rought down.
uson. $1368=1360+8 ; \therefore$ the 1st dividend is really
now $57 \times 20=1140, \therefore$ the 1st number in the quotient is nd $1360-1140=220 ; \therefore$ the second dividend is $220+$

8 or 228 , and as $57 \times 4=223, \therefore$ the second figure in the quotient is 4 , and the quotient is $20+4$ or 24 .

Note. Since $1368 \div 57=24$, it follows that $1368 \div 24=$ 57 , and also that $57 \times 24=1368$.

Ex. 2. Find the quotient of 1039888 by 5048. 5048) 1039888 (206 10398 is the least number, taken 10096

30288
30288 from the left of the dividend, into which 5048 will go ; we then say 5 in 10 goes 2 , and $5043 \times 2=10096$; write 2 as the left-hand figure of the quothent, 10096 under 10398, and subtract; we obtain a remainder 302. Then we have to place the next two figures 88 of the dividend to the right of this remainder to form a number 30288 greater than the divisor, \therefore we must write 0 in the quotient after 2 ; then 5 in 30 goes 6 times, and $5048 \times 6=$ 30288 , write 6 in the quotient after 0,30288 under 30288, and subtract: there being no remainder, 206 is the quotient required.
Ex. 3. How many times does 318493585 contam 8607 ? 8607) 318493585 (37004

$\frac{25821}{60283}$
$\frac{60249}{34585}$
$\frac{34428}{157}$

After obtainm 37° in the quotient, 3 figures of the clividend have to be brought down to get the next significant figure in the quotient, \therefore write two cyphers in the quotient.:
8607 is contained 37004 times in 318493585 , and there is a remainder 157; in other words $318493585=37005 \times 8307+$ 157 , or 318493585 less $157=37004 \times 8607$.
23. When the divisor is a composite number, ani?a up of two factors, neither of which exceeds 12 , the $\mathrm{d}_{\mathrm{e}} \mathrm{e}$ may be divided by one of the factors in the way dic Division, and then the result by the other factor. e be a remainder after each of these divisions, the $y \times$ mainder will be found by multiplying the second rher by the first divisor, and adding to the product the r mainder.
$45\left\{\begin{array}{l|ll}9 & 56732, \text { i. e. } 56732 \text { units, } & \text { are } b\end{array}\right.$
$45\left\{\begin{array}{l|l}9 & 56132, \text { i. e. 50, } \\ 5 & 6303 \\ & \text { rem. } 5, \text { i. e. } 6303 \text { nines and rem Re }\end{array}\right.$ \therefore the true rem. $=9 \times 3$ units +5 units $=27+5, \mathrm{o}^{20} ;$ a

Therefore the quotient arising from the division of 56732 by 45 is 1260 , with a remainder 32 over.

Ex. XVIII.

Divide
(1) 102 by $16 ; 720$ by $18 ; 795$ by $15 ; 1780$ by 19 .
(2) 1035 by $23 ; 1073$ by $37 ; 2730$ by $42 ; 5432$ by 50 Ge
(3) 4560 by $80 ; 3871$ by $49 ; 7744$ by 88 ; 6935 by 95.
(4) 5375 by $25 ; 29526$ by $37 ; 25665$ by $29 ; 4590$ by 45.
(5) 69230 by $86 ; 37510$ by 55 ; 10287 by 81 ; 23919 by 67 ; 25760 by $56 ; 538840$ by 76.
(6) 35626 by $94 ; 31339$ by 77; 80840 by $80 ; 28782$ by $39 ; 9000196416$ by $96 ; 41765256$ by 72 .
(7) 88832 by $256 ; 175252$ by $308 \mathrm{C} ; 321776$ by 104 .
(8) 653723 by $329 ; 3577926$ by $506 ; 542100$ by 834 .
(9) 8189181 by $909 ; 4049820$ by $745 ; 342604$ by 883.
(10) 7848600 by $365 ; 2339100$ by $678 ; 90625$ by 72%.
(11) 27291888 by 478 ; 30387310 by 397 ; 3273068 by 703 :
(12) 87634792 by 843 ; 90273189 by 513 ; 53005751 by $609 ; 300 \% 3074$ by 358 ; 630762゙540981 by 652.
(13) 519387042 by $2731 ; 10101255$ by $2185 ; 154725876$ by 3076 ; 632798014 by 7243 .
(14) 2015029 by $1004 ; 131686100$ by 6487 ; 395494875 by 6007; 50696184 by 1617.
(15) 4519559744 by $5008 ; 16322853$ by $9306 ; 23617103000$ by $1579 ; 2106144185$ by 2735 .
(16) 142997420 by 3782; 19554707200 by 6016 ; 2828882701578 by 38706 .
(17) What number multiplied by 79 will give the same product as 257 multiplied by 553 ?
(18) How many pairs of stockings, at 66 cents a pair, should be given for 9 dozen pairs of gloves, at 110 cents a pair?
(19) What number must be added to thirty millions nine hunclred and eighty-four thousand and fifty-one, that the sum may be exactly divisible by two hundred and eightyeight?
(20) If the sum of 274 and 103 be multiphed by their
difference, and the product be divided by 176 , what will be the quotient?
(21) A farmer bought 75 sheep at 4 dollars each; 94 sheep at 3 dollars each; and 106 sheep at 2 dollars each; at what price per head must he sell the sheep, so as to gain 147 dollars by his bargain?
(22) A hatter sold 267 hats for 1068 dollars, gaining thereby 1 dollar on each hat, what did each hat cost him?
(23) If the sum of 103,29 , and 267 be divided by 19 , and the quotient be multiplied by 57 , and the product be diminished by 197 , what will the remainder be?
(24) 8 lambs are worth 16 dollars, and 15 sheep are worth 60 dollars; how many of such sheep ought to be given in exchange for 840 of such lambs?
(25) The sum of the product of two numbers and 355 is eighty-seven thousand four hundred and three; one of the numbers is 216 ; find the other number.
(26) What number must 416 be multiphed by to produce 154979552?
(27) What number subtracted 28 times from 479432 will leave 20 as a remainder?
(28) A farmer bought 29 bullocks for 1885 dollars, and after keeping them for 3 months, and spending on each 5 dollars per month, he sold all the bullocks for 2610 dollars; what was his gain on each bullock?
24. If the Divisor terminate with a cypher or cyphers, the process of Division can be shortened by the following Rule.

Rule. Cut off the cypher or cyphers from the divisor, and as many figures from the right-hand of the dividend, as there are cyphers so cut off at the right-hand end of the divisor; then proceed with the remaining figures according to the Rule, Art. 21. or Art. 22, as the case may be; and to the last remainder affix the figures cut off from the dividend for the true remainder.
Ex. 1. Divide 57 by 20.
$2,0) 5,7 \quad 57=50+7$; now 20 goes 2 in 50 with rem.
2 rem. 1. $10, \therefore$ when the 5 is divided by the 2 , the rem. 1 is really 1 ten, or 10 , and the true rem. $=$ $10+7$ or 17 .

Ex. 2. Divide 46431 by 500 .
$46431=46400+31$, and 46400 divided
$5,00) \frac{464,31}{92 \text { rem. } 4 .}$ by $500=92$ with rem. $400, \therefore$ when the 464 is divided by the 5 , the rem. 4 is really 400 , and the true rem. is 481.
Ex. 3. Divide 375340 by 5900 .
59,00) 3753,40 (63
$\frac{354}{213}$
$\frac{177}{36}$
\therefore quotient $=63$, and rem. $=3640$

Ex. 4. Divide 563854 by 10 , by 1000 , and by 100000 . We may write down the quotient and remainder for each question at once.

Thus: \quad st quotient $=56385$, and rem. $=4$.

$$
\begin{array}{rlll}
2 d \\
3 \mathrm{rd} \cdots & =563, & \cdots & =854 . \\
5, & \cdots & =63854 .
\end{array}
$$

Ex. XIX.

(1) Divide $34,43,56,80,135,260,1504$, by 10,20 , and 30 .
(2) Divide 237, 840, 673, 291, 6019, 7820, 81229, 327800, by $40,60,70,100$, and 200 .
(3) Divide $79048,6870,890061$, by $240,1000,1500$, and 2600 ; and 830678103490 by 100000000 .
(4) $806758245 \div 9067$.
(5) $612709066 \div 70602$.
(6) $60005836 \div 896$.
(7) $70867509 \div 9986$.
(8) $8673456954 \div 868$.
(9) $200006783 \div 93256$.
(10) Multiply 14609 by 719 and divide the product by 806%.
(11) How many regiments of 1000 men, and also of 1200 men, can be formed out of one million one hundred thousand men?
(12) Add together twenty-five millions seven hundred and sixty thousand and thirty four, 75211379 and 4637862 ; subtract ten millions and seventy-five from the sum; divide the remainder by 100000 .

SECTION II.

MONEY TABLES.

CANADIAN CURRENCY.
25. The silver coins are: a 5 cent piece.

a 10	"
a 20	"

100 cents make one dollar, or $\$ 1$.
Note 1. The cent, which is made of bronze, is one inch in diameter, and 100 cents weigh one pound avoirdupois.

HALIFAX OR OLD CANADIAN CURRENCY.
26.

Fote 2. The farthing is written thus, $\frac{1}{4} \mathrm{~d}$; and three farthings thus, $\frac{3}{4} \mathrm{~d}$.

ENGLISH OR STERLING CURRENCY.

2\%. 2 Farthings make 1 Half-penny, or $\frac{1}{2} \mathrm{~d}$. 2 Half-pence. 1 Penny 1d.
12 Pence 1 Shilling. 1s.
20 Shillings 1 Pound. £1.
The sovereign, a gold coin $=20$ shillings.
The guinea, a gold coin not now in use $=21$ shillings.
Note 3. The sterling pound $=\$ 4.86 \frac{7}{3} \quad$ Canadian currency.

UNITED STATES CURRENCY.
28.

```
10 Mills . . . .make 1 Cent.
10 Cents. . ....... . }1\mathrm{ Dime.
10 Dimes . . . . . . . 1 Dollar, or $1.
10 Dollars . . . . . . }1\mathrm{ Eagle.
```


WEIGHTS AND MEASURES.

TABLE OF TROY WEIGHT.
29. Troy Weight is used in weighing gold, silver, dia-' monds, and other articles of a costly nature; and also in determining specific gravities.

TABLE OF AVOIRDUPOIS WEIGHT.

30. Avorrdupois Weight is used in weighing all heavy articles, which are coarse and drossy, or subject to waste, as butter, meat, and the like, and all objects of commerce, with the exception of medicines, gold, silver, and some precious stones.
16 Drams, dr.make 1 Ounce. 1 oz.
16 Ounces 1 Pound. 1 lb.
25 Pounds
1 Quarter,
1 qr.
4 Quarters, or 100 lbs . . 1 Hundredweight ... 1 cwt.
20 Hundredweights 1 Ton................ 1 ton.
Note. 1 lb . Avoirdupois weighs 7000 grs. Troy.
table of apothecaries' weight.
31. Apothecaries' Weight is used in mixing medicines.

20 Grains, gr.make 1 Scruple 1 sc. or 1 Э
3 Scruples.............. 1 Dram 1 dr. or 13
8 Drams................. 1 Ounce........ 1 oz. or $1 \frac{3}{3}$
12 Ounces 1 Pound 1 lb . or 1 1b
table of lineal measure.
32. In this measure; which is used to measure distances, lengths, breadths, heights, clepths, and the like, of places or things:
12 Lines. make 1 Inch 1.
12 Inches. 1 Foot 1 ft .
3 Feet, or 36 in. 1 Yard 1 yd.
6 Feet 1 Fathom $1 \mathrm{fth}^{\mathrm{h}}$
$5 \frac{1}{2}$ Yards, meaning 5 yards and \} 1 Rod, Pole, \}a half yard\} or Perch $\}$
40 Poles, or 220 yds. 1 Furlong
8 Furlongs, or 1760 yds.1 Mile
3 Niles 1 Leagu

The following measurements may be added, as useful it certain cases:

4 Inches make 1 Hand (used in measuring horses).
$\left.\begin{array}{r}22 \\ 100 \text { Yards....... } 1 \text { Chain } 1 \text { Chain }\end{array}\right\}$ (used in measuring land).
A degree is equal to 60 geographical, or nearly $69 \frac{1}{2}$ English miles.

TABLE OF CLOTH MEASURE.

33. In this measure, which is used by linen and woollen drapers:

21	Inches make 1 Nail......... 1 nl .
4	Nails....... 1 Quarte..... 1 qr
4	Quarters.... 1 Yard...... 1 yd.
5	Quarters.... 1 Ell (English).
6	Quarters.... 1 Ell (French).

TABLE OF SQUARE MEASURE.
34. This measure is used to measure all kinds of surface or superficies, such as land, paving, flooring, in fact everything in which length and breadth are to be taken into account.
A Square is a four-sided figure, whose sides are equal, each side being perpendicular to the adjacent sides. See figure below.
A square inch is a square, each of whose sides is an inch in length; a square yard is a square, each of whose sides is a yard in length.
144 Square Inches make 1 Square Foot.. . 1 sq. ft. or 1 ft . 9 Square Feet........ 1 Square Yard. . 1 sq. yd. or 1 yd.
$30 \frac{1}{4}$ Square Yards 1 Square Pole.. 1 sq. po. or 1 po.
40 Square Poles. 1 Square Rood. . 1 ro.
4 Roods 1 Acre 1 ac.
25000 Square Links = 1 Rood.
100000 $=1$ Acre.
$10 \ldots \ldots$ Chains $=1$ Acre.
4840 Yards = 1 Acre.
$640 \ldots \ldots$. Acres $=1$ Square Mile.
This table is formed from the table for lineal meaultiplying each lineal dimension by itself.
of the above table woill appear from the following

Suppose $A B$ and $A C$ to be lineal yards placed perpendicularly to each other.

Then $A B C D$ is a square yard. If $A E, E F, F B, A G, G H, H C$, each $=1$ lineal foot, it appears from the figure that there are 9 squares in the square yard, and that each square is 1 square foot.

The same explanation holds good of the other dimensions.

TABLE OF SOLID OR CUBIC MEASURE.

35. This measure is used to measure all kinds of solids, or figires which consist of three dimensions, length, breadth, and depth or thickness.

A cube is a solid figure contained by six equal squares; for instance, a die is a cube. A cubic inch is a cube whose side is a square inch. A cubic yard is a cube whose side is a square yard.
1728 Cubic Inches. make 1 Cubic Foot, or 1 c . ft.
27 Cubıc Feet. 1 Cubic Yard, or 1 c. yd.
40 Cubic Feet of Rough Timber or
50 Cubic Feet of Hewn Timber 1 Load.
42 Cubic Feet. 1 Ton of Shipping.
128 Cubic Feet of Fire-wood. . . . 1 Cord.
16 Cubic Feet of Fire-wood. . . . 1 Cord-foot.
The truth of the first part of above table woill appear from the following considerations.

If $A B, A C$, and $A D$ be perpendicular to each other, and each of them a lineal yard in length, then the figure $D E$ is a cubic yard.

Suppose $D H$ a lineal foot, and HKLM a plane drawn parallel to side $D C$.

By the table Art. 34, there are 9 square feet in side $D C$. There will therefore be 9 cuvic feet in the solid figure $D L$.

Similarly if another lineal

foot $H N$ were taken, and a plane $N O$ were drawn parallel to $I I L$, there would be 9 cubic feet contained in the solisl figure $I I O$.

Similarly, there would be 9 cubic feet in the solid figure NE.
Therefore, there are 27 cubic feet in the solid figure $D E$, or in 1 cubic yard.

Note. A pile of wood 4 feet high, 4 feet wide, and 8 feet long, makes a cord.

MEASURES OF CAPACITY.

TABLE OF WINE MEASURE.

36. In this measure, by which wines and all liquids, with the exception of malt liquors and water, are measured

TABLE OF ALE AND BEER MEASURE.
37. In this measure, by which all malt liquors and water are measured:

Note 1. Grains are generally sold by weight, as under.
32. 34 Pounds make 1 Bushel of Oats.

40 Pounds. 1 Bushel of Buckwheat.
48 Pounds...... . 1 Bushel of Barley.
50 Pounds....... 1 Bushel of Beans.
56 Pounds...... 1 Bushel of Rye or Indian Corn.
60 Pounds...... 1 Bushel of Wheat, Peas, Timothy or Red Clover Secd.

MEASURES OF TIME.

TABLE OF TIME.
40. 1 Second is written thus $1^{\prime \prime}$.

60 Seconds.make 1 Minute. 1^{\prime}.
60 Minutes. 1 Hour 1 hr.
24 Hours 1 Day 1 day.
7 Days 1 Week. 1 wk.
4 Weeks, or 28 days. . 1 Lunar month. 1 mo.
365 Days 1 Civil or common year 1 yr.
A year is divided into 12 months, called Calendar Months, the number of days in each of which may be easily remembered ly means of the following lines:

Thirty days hath September, April, June and November: February has twenty-eight alone, And all the rest have thirty-one: But leap-year coming once in four, February then has one day more.

Note 2. A civil or common year $=52 \mathrm{mks}, 1$ day. A leap year $=366$ days.
Every year which is divisible by 4 without a rema:
a Leap or Bissextile Year; except those ye? complete a century (i. e. a hundred years), the nu pressing which century, are not divisible by 4 ; thu 2000 are leap years, because 16 and 20 are exaby 4 : but 1700,1800 and 1900 are not leap ye? 18 , and 19 are not exactly divisible by 4 .

MISCELLANEOUS TABLE.

41. 12 Units.make 1 Dozen.

12 Dozen 1 Gross.
12 Gross. 1 Great Gross.
20 Units. 1 Score.
24 Sheets of Paper . . . 1 Quire.
20 Quires. 1 Ream.
100 Pounds. 1 Quintal.
196 Pounds 1 Barrel of Flour.
200 Pounds. 1 Barrel of Pork or Beef.
Note. A sheet folded into two leaves is called a folio, into 4 leaves a quarto, into 8 leaves an octavo, into 16 leaves a 16 mo, into 18 leaves an 18 mo , \&cc.

REDUCTION.

42. When a number is expressed in one or more denominations, the method of fincling its value in one or more other denominations is called Reduction. Thus, $£ 1$ is of the same value as 240 d ., and $7 \mathrm{~s} .1 \frac{1}{2} d$. is of the same value as 342 farthings, and conversely: the method or process by which we find this to be so, is Reduction.
43. First. To express a number of a Figher denomination or of higher denominations in units of a lower denomination.

Rule. Multiply the number of the highest denomination in the proposed quantity by the number of units of the next, lower denomination contained in one unit of the highest, and to the product add the number of that lower denomination, if there be any in the proposed quantity.

Repeat this process for each succeeding denomination, till required one is arrived at.

- 1. How many cents in $\$ 75.65$ cents ? Rule,
Reason. Since 100 cents make
one dollar; $\$ 75=(75 \times 100$ cts. $)$
$=7500$ cts. $. \therefore \$ 75.65=7500$
$+65=7565$ cents.
$\therefore \$ 75.65=7565$ cents.

Ex. 2. Reduce $£ 2$ to farthings.
By the Rule,
$£$
2
20
$\frac{20}{40}$.
$\frac{12}{480 d .}$
$\frac{4}{1920 q}$.

Reason for the Rule.

$$
£ 1=20 s ., \therefore £ 2=(2 \times 20) s .=40 s .
$$

$$
1 s .=12 d ., \therefore 40 s .=(40 \times 12) d .=480 \mathrm{~d} .
$$

$$
1 d .=4 q ., \therefore 480 d .=(480 \times 4) q .=1920 q .
$$

$$
\therefore £ 2=40 s .=480 d .=1920 q .
$$

Reduce
(1) £709. 16s., $8 d$. to farthings.
(2) $17 \mathrm{mls} ., 1$ fur., 2 ft ., 6 in . to inches.
(3) 8 tons, 2 cwts., 3 qrs., 5 lbs. to drams.
(4) $612 \mathrm{ac} ., 2 \mathrm{r}$., $27 \frac{1}{2} \mathrm{yds}$. to square inches.
(5) 10 mils., 5 fur., 5 po., 5 yds., 0 ft., 5 in., 5 ls. to lines.
(6) 5 ac., 3 per., 29 yds. to square inches.
(7) 17 days to minutes.
(8) 2 lbs., 11 oz ., 20 grs. to grains.
(9) 2 lea., 2 mils., 7 fur. to yards.
(10) -23 cub. yds., 1000 in . to cubic inches.,
(11) 13 galls., 3 qts. to gills.
(12) 220 bushels to quarts.
(13) 3 yrs., 315 days to minutes.'
(14) 27 lbs., 5 oz., 16 dwts. to grains.
(15) 47 lbs., $11 \mathrm{oz} ., 6$ dts., 2 sc. to grains. 1
(16) £200. $178 ., 8 \frac{1}{2} d$. to half pence.
(17) 219 ac., 2 r., 16 per. to square yards.)
(18) 218 yds., 2 qTs., 3 nils. to nails.
(19) £2376. 19s., $8 \frac{1}{2} d$. to farthings.
(20) 216 cwt., 2 qrs., 17 lbs. to pounds.
(21) $25^{\circ} 36^{\prime}$ to seconds.
(22) 8 mls ., 3 fur., 4 yds . to inches.
(23) £312, 17s., 6\% d. to farthings.
(24) 105 lbs. Troy to grains.
(2J) 26 English ells to nails.
(26) 37 French ells to nails.
(27) £56\%. 0s. $6 \frac{1}{4} \mathrm{~d}$. to farthings.
(28) 287 lbs ., 6 oz . to scruples.
(29) 3 pipes to gallons.
(30) £200. 19s. $6 \frac{1}{2} \mathrm{~d}$. to farthings.
44. Secondly. To express a number of lower denomination or denominations in units of a higher denomination.

Rule. Divide the given number by the number of units which connect that denomination with the next higher, and the remainder, if any, will be the number of surplus units of the lower denomination.

Carry on this process, till you arrive at the denomination required.

Ex. 1. How many tons, cwts., \&c., are there in $27 \sigma 88$ drams? By the Rule,

$$
\therefore 27658 \text { drams }=1 \text { cwt., } 0 \text { qrs., } 8 \text { lbs., } 0 \text { oz., } 10 \text { drs. }
$$

Ex. 2. In 17392 cents, how many dollars and cents? By the Rule,

$$
100\left\{\begin{array}{l}
10 \\
10
\end{array} \left\lvert\, \frac{\frac{17393}{1739}}{\frac{\$ 173}{}-92 \mathrm{cts} .}\right.\right.
$$

Reason for the Rute.

$$
100 \text { cents }=\$ 1, \therefore 17392 \text { cts. } \div 100
$$

$$
=\$ 173+92 \text { cts., } \therefore 17302 \text { cents }
$$

$$
=\$ 173.92 \mathrm{cts} .
$$

Note. From the above example, we see that by cutting off the last 2 figures on the right of any number of cents. gives the dollars, and the figures so cut off will be the cents.

$$
\begin{aligned}
& 16\left\{\begin{array}{l|l}
2 & \frac{27658}{1389} \\
8 & \frac{\text { Reason for the Rule. }}{13829}-10 \text { drs. } 16 \text { drs. }=1 \text { oz. }, \therefore 27658 \div 16=1728 \\
\text { oz. }+10 \text { drs. }
\end{array}\right.
\end{aligned}
$$

Ex. XXI.
(1) 123290 farthings to pounds.
(2) 13172 grs. to lbs. Troy.
(3) 18191 pts, to gallons.
(4) How many leagues in 76787568 inches?
(5) How many tons, \&c., in 2007008 drams?
(6) How many acres in 93827 perches?
(7) In $16: 812$ grs., how many lbs. Troy?
(8) In 8756765637 lines, how many miles, \&cc.?
(9) In $76 \div 8678956$ drs., how many tons, \&c.?
(10) In 121605 in., how many miles, \&c.?
(11) In 98006 grs., how many lbs. Troy, \&cc.?
(12) In 2022752 drs., how many tons, \&c.?
(13) How many lbs., ozs., drs., \&cc., in 702917 grs. ?
(14) How many years (365 ds.), \&cc., in 1727893 seconds?
(15) How many acres, \&c., in 172425 yards?
(16) How many yards in 13856832 cubic inches?
(17) How many acres in 1244160000 sq. inches?
(18) How many yards, ©cc., in 500 nails?
(19) In 131075 seconds, how many degrees, \&c.?
(20) In 31556600 seconds, how many days, \&c.?
(21) In 219612 pts., how many hogsheads of beer?
(22) In 300738 pts., how many hogsheads of wine?
(23) In 912715 lbs , how many bushels of wheat?
(24) In 1000000 lbs . of oats, how many bushels?
(25) In 7263 lbs . of timothy seed, how many bushels?
(26) In 30747 cents, how many dollars?
(27) How many pounds, \&cc., in 973647 farthings?

COMPOUND ADDITION.

45. Compound Addition is the method of collecting everal numbers of the same kind, but containing different denominations of that kind, into one sum.
Rule. Arrange the numbers, so that those of the same lenomination may be under each other in the same column, and draw a line below them.

Add the numbers of the lowest denomination together, and find by Reduction how many units of the next higher denomination are contained in this sum.

Write the remainder, if any, under the column just added, and carry the quotient to the next column.

Proceed thus with all the columns.
Ex. 1. Add together $\$ 21.97, \$ 28.76, \$ 38.39$.
By the Rule,
$\$ 21.97$
$\$ 28.76$
$\$ 38.39$
$\$ 89.12$
The sum of the right hand column is 22 ; write 2 under that column, and carry 2 to the next: the sum of the next column together with $\$ 89.12$ and carry 2 to the next, and so on; the same way as was done in the Simple Rules, and for the same reason.

Ex. 2. Find the sum of $£ 6.6$ s.. £3. 13 s. $0 \frac{3}{4}$ d.. £35. 15 s. $11 \frac{1}{2} d$., and £43. 0 s. $8 \frac{1}{4} d$.
$1 \overline{q .+2 q .}+3 q=6 q .=1 \frac{1}{2} d . \cdot$ write down

Note. The method of proof in the Compound Rules is the same as in the Simple Rules.

Ex. XXII.

Add together,
(1) $\$ 26.79$
\$39.17
$\$ 28.68$

(2)	£.	s.	d.
6.	9	8	
8.	10.	4	
5.	12.	3	

(3) | qrs. | lbs. | oz. |
| ---: | ---: | ---: |
| $2 \cdot$ | 17 | 12 |
| $6 \cdot$ | $24 \cdot$ | 13 |
| $1 \cdot$ | $6 \cdot$ | 8 |

(4)

lbs. oz. dwt. gr.
$35 \cdot 3 \cdot 4 \cdot 12$
$27 \cdot 8 \cdot 14 \cdot 22$
$41 \cdot 9 \cdot 17 \cdot 10$
$2 \cdot 3 \cdot 13 \cdot 21$

(5)

(6) $\$ 236.97$
6120.35
517.03
9312.07
712.15
(8)
yds. qrs. nls.

$27.2 \cdot 3$
$35.3 \cdot 2$
$217.1 \cdot 3$
$89.2 \cdot 2$
$207 \cdot 3 \cdot 2$

(10)

£	s.	d.
$38 \cdot$	$6 \cdot 7 \frac{1}{4}$	
$29 \cdot 16$	$\cdot 8 \frac{1}{4}$	
$39 \cdot 17$	$6 \frac{3}{4}$	
$21 \cdot 18 \cdot 7$		
$15 \cdot 17 \cdot 8$		

(12)

$\$ 2219.64$
$3812 . \% 5$
913.25
837.19
687.29

mls. fur. per. yds. ft.
$2 \cdot 3 \cdot 8 \cdot 2 \cdot 2$
$25 \cdot 7 \cdot 21 \cdot 4 \cdot 1$
$3 \cdot 6 \cdot 23 \cdot 2 \cdot 0$
$17 \cdot 4 \cdot 19 \cdot 3 \cdot 2$
$29 \cdot 5 \cdot 16 \cdot 1 \cdot 1$

dys. hrs. min. sec.
$2 \cdot 16 \cdot 16 \cdot 17$
$27 \cdot 22 \cdot 22 \cdot 33$
$19 \cdot 21 \cdot 30 \cdot 37$
$28 \cdot 23 \cdot 39 \cdot 50$
$36 \cdot 20 \cdot 45 \cdot 55$
ac. ro. per. yds. ft. in.
7.3. $9 \cdot 22 \cdot 8 \cdot 107$ 9.1.16.29.2. 96 19 • $2 \cdot 22 \cdot 27 \cdot 6 \cdot 108$
0.3.7.28.3.12
tons cwt. qrs. lbs. oz. drs.
(14) $23 \cdot 15 \cdot 2 \cdot 20 \cdot 5 \cdot 0$ $21 \cdot 17$. $0 \cdot 24 \cdot 1 \cdot 13$ $43 \cdot 19 \cdot 3 \cdot 24 \cdot 15 \cdot 15$ $3 \cdot 9 \cdot 2 \cdot 17 \cdot 13 \cdot 11$ 6.6 .1 . 0.7 . 8

COMPOUND SUBTRACTION.

46. Compound Subtraction is the method of finding the difference between two numbers of the same kind, but containing different denominations of that kind.

Rule. Place the less number below the greater, so that the numbers of the same denomination may be under each other in the same column, and draw a line below them.

Begin at the right hand, and subtract if possible each number of the lower line from that which stands above it, and set the remainder underneath.

But when any number in the lower line is greater than the number above it, add to the upper one as many units of the same denomination as make one unit of the next higher denomination; subtract as before, and carry one to the number of the next higher denomination in the lower line.

Proceed thus throughout the columis.
Ex. 1. From £51. 0s. $8 \frac{1}{2}$ d., take $£ 47$. 18s. $79{ }_{4}^{9}$ d. By the Rule,

Method of working. I cannot take $3 q$. from $2 q$., so I add $1 d$., or $4 q$., to the $2 q$., making it $6 q$.; then, $3 q$. from $6 q$. leaves $3 q$.; write down the $3 q$.; in order to increase the lower number equally with the upper, I add $1 d$. to the $7 d$., making it $8 d$.; then $8 d$. from $8 d$. leaves $0 d$.; write down $0 d$. I work the remaining columns in the same way, and find the required answer.

Ex. 2. From $\$ 978.29$ take $\$ 678.93$.
$\$ 978.29$
$\$ 678.93$
\$299.36

This example is worked in the same way as Simple Subtraction.

Ex. XXIII.'

lbs. oz. dwt.
(3) $12.6 \cdot 3$ $9 \cdot 7 \cdot 16$
(5)

ac. ro. per. yds. ft. in.
(7) $29 \cdot 2 \cdot 27 \cdot 29 \cdot 2 \cdot 6$
27.3.23 . 27.8.8
lbs. oz. drs. sc. grs. $27 \cdot 8 \cdot 6 \cdot 2 \cdot 15$ 17. 9 . 3 . 1 . 19

mls. fur. per. yds. ft.
$25 \cdot 6 \cdot 32 \cdot 4 \cdot 2$
$22 \cdot 7 \cdot 37 \cdot 3 \cdot 2$

c. yds. c. ft. c. in. | $325 \cdot 22 \cdot 101$ |
| :--- |
| $295 \cdot 25 \cdot 386$ |

$$
\begin{gather*}
\text { wks. dys. hrs. min. sec. } \\
7.5 .6 .36 .17 \tag{8}\\
6.6 .20 .43 .20 \\
\hline
\end{gather*}
$$

(10) $7 \cdot 2,15,6,12$
6.3.24 •10 . 14

$$
\text { (11) } \begin{array}{r}
\$ 2967.78 \\
\\
1898.89
\end{array}
$$

$$
\text { (12) } \begin{aligned}
& \text { cords. c. ft. } \\
& 193 \\
& \hline 97 \\
& \hline 10 \% \\
& \hline
\end{aligned}
$$

$$
\text { (13) } \$ 325.68
$$

$$
297.99
$$

mls. fur. per. yds. ft. in.
(16) $117,0,27,5,1,9$ $89 \cdot 7 \cdot 38 \cdot 4 \cdot 2 \cdot 11$

(15) $278 \cdot 3 \cdot 1127$
198.8.1478

		pk. gal. qt.		bn. pk. pal. qt					
				19672					
(197	$\begin{aligned} & 2.1 .1 \\ & 3.1 \end{aligned}$	(21)						

COMPOUND MULTIPLICATION

47. Compound Mulitiplication is the method of finding the amount of any proposed compound number, that is, of any number composed of different denominations, but all of the same kind, when it is repeated a given number of times.
Rude. Place the multiplier under the lowest denomination of the multiplicand.

Multiply the number of the lowest denomination by the multiplier, and find the number of units of the next denomination contained in this first product; if there be a remainder, write it down; for the second product, multiply the number of the next denomination in the mutiplicand by the multiplier, and after adding to it the above-mentioned number of units, proceed with the result as with the first product.

Carry this operation through with all the different denomin:ations of the multiplicand.

Multiplier not greater than 12.
189 . 2 . 28 . 21 . 2 . 127

Ex. 1. Multiply $£ 1.14 s$. 9 ? 7 . by 11.
$3 q . \times 11=33 q$. $=8 \frac{1}{4} d$.; write down $\frac{1}{4} d$; £ s. d. then $9 d . \times 11+8 d .=99 d .+8 d .=107 d .=8 \mathrm{~s}$. 1. 14 . $9 \frac{3}{4} \quad 11 d . ;$ write down $11 d$. ; then $14 s . \times 11+8 \mathrm{~s}$. $11=154 s .+8 s .=162 s .=£ 8$. $2 s$. ; write down $£ 19 \cdot 2 \cdot 11 \frac{1}{4} 28$.; then $£ 1 \times 11+£ 8=£ 19$; write down £19.
Ex. 2. Multiply $\$ 27.78$ by 9 .
$\$ 27.78$
9
$\$ 250.02$
In this example we do the same as in Simple Multiplication, observing to place the point separating the dollars and cents in its proper place.

Ex. XXIV.

 12

> lbs. oz. drs. sc.
> (13) $74.11 \cdot 5.2$
> 12

(24) $\begin{array}{r}\$ 917.75 \\ 8 \\ \hline\end{array}$

(25) | 8 |
| :---: |
| 17 |

(26) $\$ 1875.25$

12

$$
(27)
$$

mls. fur. per. yds.

$$
\begin{array}{r}
54 \cdot 3 \cdot 18 \cdot 5 \tag{27}\\
7 \\
\hline
\end{array}
$$

If the Multiplier be a Composite number, each of whose factors is less than 12, multiply by one of them, and the resulting product by another, and so on. The last product so obtained, is the required product.

Find the product of 2 cwt ., 3 qr ., 1 ' 1 lbs . by 63.
cwt. qrs. lbs.
2.3.17 The factors of 63 are 9 and 7\%. First, we multiply by 9 and the product we get by 7 ;
$\overline{26.1 .3}$ which clearly is the same as multiplying 2 cwt., 3 qr., 17 lbs. by 63.
183.3.21 Note. The same result is obtained, by taking the factor 7 first, and then the 9 .

Ex. XXV.

(2) $\begin{array}{r}\text { mls. fur. per. } \\ 27 \cdot 6 \cdot 9 \\ \\ \hline\end{array}$

(3) | $£$ | | |
| :---: | ---: | ---: |
| 19 | 11 | 11 |
| | | d |

(4) $\begin{array}{r}\text { lbs. dwt. } \\ 21,13 \cdot 17 \\ \\ \hline 77 \\ \hline\end{array}$

(6) | yds. qr. nls. in. |
| :--- |
| $27.1,3 \cdot 2$ |
| 54 |

(7) $\stackrel{\text { cwt. qrs. lbs. }}{2} \cdot \frac{\text { oz. }}{}$ drs.
63

81
c. $\mathrm{yds} . \mathrm{c} . \mathrm{ft} . \mathrm{c} . \mathrm{in}$.
(10) $17 \cdot 21 \cdot 57$ 84

lbs. oz. dwt.	
(11)	
$3 \cdot 8 \cdot 15 \cdot 13$	
	13
49	

lbs. oz. crs. sc.
$74.11 .5 \cdot 2$
84

ac. ro. per. yds. ft. in. $20 \cdot 2 \cdot 17 \cdot 15 \cdot 3 \cdot 3$

64

mls. fur. per. yds. ft. in. 375

When the Mrutioplier is not a Composite number and larger than 1, the easiest method will be to spiit the number inio facfors and perts:

Thus, $29=4 \times 7+1 ; 10=6 \times 3+1 ; 39=12 \times 3+3$.
Ex. 1. Multiply £2579. 0s. $0 \frac{3}{4}$ d. by 2831.
$2331=2000+300+30+1$.

$$
=1000 \times 2+100 \times 3+10 \times 3+1
$$

$$
=10 \times 10 \times 10 \times 2+10 \times 10 \times 3+10 \times 3+1
$$

$$
25 \stackrel{\&}{579} \cdot \stackrel{s .}{0} \cdot \stackrel{d}{0 \frac{3}{4}} \text { for } 1
$$

10
$\overline{25790 \text {. } 0 \text {. } 7 \frac{1}{2}}$ for 10
10
257900 . 6.3 for 10×10, or 100 . 10
$\overline{2575003 ~-~ 2 ~ . ~} 6$ for 100×10, or 1000 .
2
$\overline{5158009 ~ . ~ 5 . ~} 0$ for 1000×2 or 2000.
add 7~3~00 . 18 . 9 for $£ 25 \% 900.6 s .3 d . \times 3$, or for 300 . add 77370 . 1 . $10 \frac{1}{3}$ for 225790 . 0 s. $\% \frac{1}{2} d . \times 3$, cr for 30 .
add $2 \pi 9 \cdot 0.03$ for 1 .
0011050 : 5 . 8 for $2000+500+30+1$, or 2021 .

Ex. XXVI.

$\stackrel{\text { cwt. qrs. lbs. oz. }}{3.3 .21 .5}$
89
cwt. qrs. lbs. oz. drs.
(1) $2 \cdot 3 \cdot 23 \cdot 6 \cdot 7$
\qquad

(() lbs. oz. drs. sc. grs. $15 \cdot 2 \cdot 3 \cdot 2 \cdot 7$

712
(7) If a man gets $\$ 2.25$ a day, how much will that be in 200 days?
(8) When wheat is selling for $\$ 1.27$ a bushel, how many dollars will a farmer get for a load of 52 bushels of wheat?
(9) Λ butcher buys an ox weighing 1625 lbs., live weight, at 6 cents a pound, how much will he have to pay altogether?
(10) A boiler-builder bought 29 boiler plates, each weighing 1 qr., $17 \mathrm{lbs} ., 8 \mathrm{oz}$., what was the weight of the whole of them?
(11) If the Government of Ontario sells one hundred thousand acres of wild land for forty cents an acre, how many dollars will it obtain for the whole?

COMPOUND DIVISION.

48. Compound Division is the method of dividing a compound number, that is, a number composed of several denominations, but all of the same kind, into as many equal parts as the divisor contains units; and also of finding how often one compound number is contained in another of the same lind.

When the Divisor is a number either larger, or not larger than 12.

Pule. Place the numbers as in Simple Division : then find how often the divisor is contained in the highest denomination of the dividend; put this number down in the quotient; multiply as in Simple Division and subtract.

If there be a remainder, reduce that remainder to the neat
inferior denomination, adding to it the number of that denomination in the dividend, and repeat the division.

Carry on this process through the whole dividend.
When the Divisor is less than 12.
Ex. 1. Divide £676. 19s. $9 \frac{1}{2} d$. by 11.

61.10 . $10 \frac{1}{2} \mathrm{rem}$.

$£ 676 \div 11$ gives $£ 61$ as a quotient and £5 over; $£ 5+19 \mathrm{~s}$ = $=119 \mathrm{~s} ., 119 \mathrm{~s}$.
$\div 11$ gives 10 s. as a quotient and $9 s$. over $; 9 s .+9 d .=117 d ., 117 d . \div 11$ gives 10 d. as a quotient and $7 d$. over; $7 d .+2 q .=30 q ., 30 q . \div 11$ gives 2 as a quiotient and rem. $8 q$.

When the Divisor is greater than 12 and not a Composite number, the work may stand thus:
Ex. 2. Divide £297. 4s. 8d. by 73.
By the Rule,
73) $297 \cdot 4.8$ ($£ 4$ 292

5

- 20 [add the 48 .]

73) $104(1 \mathrm{~s}$.
$\frac{73}{31}$
74) $\frac{12}{}$ [add the $8 d$.]
$\frac{365}{380}$ ($5 d$.

We first subtract $£ 4$ taken 73 times, i.e. £292 from £297. 48. $8 d$., there remains £5. $4 s .8 d$.

Now £5. 4s. $8 d$. $=104 \mathrm{~s}$. $8 d$., from this we subtract 18 . taken 73 times, i. e. 73s. from 104s., there remains $31 s ., \therefore$ there is $1 s$. in quotient.
$31 s .8 d .=380 d$. , from this we subtract $5 d$. taken 73 times, i.e. $365 d$., there remains $15 d$. over
$\therefore £ 4.18$. 5 d . goes 73 times in £297. 4s. 8d., and 15d. over.
\therefore the Quotient is $£ 4.1 s .5 d$. and $15 d$. over.
When the Divisor is a Composite number greater than 12, we may divide as in E.x. 1, successively by each factor, and the last quotient so obtained will be the required quotient.

Ex. 3. Divide 975 mls ., 3 fur., 24 per. by 56.
Since $56=8 \times 7$, the work may stand thus:

$\frac{$| mls. fur. per. |
| :---: |
| 975.3 .24 |
| 121.7 .18 |
| 17.3 .14 |}{$\frac{17}{}$}

Note. The same result would be obtained by dividing first by 7 aud then by 8 .

Ex. XXVII.

(1) £278. 15s. 8d. $\div 5$.
(2) 237 lbs ., 5 oz., 6 dwt. $\div 8$.
(3) 217 mls ., 5 fur., 16 per., 2 yds. $\div 9$.
(4) 115 yds., 2 qrs., 2 nls. $\div 5$.
(5) 865 lbs., 9 oz., 2 sc., 10 grs. $\div 6$.
(6) £2078. 17s. $11 \frac{1}{4} d . \div 11$.
(7) 67 tons, 13 cwt., 1 qr., 17 lbs. $\div 27$.
(8) 976 ac., 2 ro., 19 per., 25 yds. $\div 56$.
(9) 612 cwt., 17 lbs., 2 drs. $\div 705$.
(10) 8627 mls ., 6 fur., 2 yds. $\div 1247$.
(11) 612 bu., 2 pks., 1 gal., 2 qts. $\div 96$.
(12) £2S51. 16s. $4 \frac{1}{2} d . \div 54$.
(13) 247 lbs., 10 oz., 7 drs., 1 sc. $\div 57$.
(14) 200 mls ., 3 fur., 6 per. $\div 211$.
(15) 416 ac., 3 ro., 19 per., 7 yds. $\div 318$.
(16) 614 tons, 2 cwt., 3 qrs. $\div 564$.
(17) 917 c. yds., 9 c. ft., 100 c. in. $\div 169$.
(18) $926 \mathrm{lbs} ., 5$ oz., 3 drs., 2 sc. $\div 212$.
(19) 3068 lbs., 8 dwt. $\div 634$.
(20) £1914. 10s. 5d. $\div 758$.
(21) £215. 12s. 61 d d. $\div 317$.
(22) 125 yrs., 127 dys., 16 hrs., $47 \mathrm{~min} . \div 397$.
(23) $\$ 2267.84 \div 267$.
(24) $\$ 5693.75 \div 425$.
(25) If a person earned $\$ 600$ a year, how much is that a day? How much per day, omitting the Sundays?

Note. A year $=365$ days.
(35) A farm of 57 acres is let for $\$ 265.05$, for a year; how mach is that for an acre?
(27) A farmer sold 57 bushels of wheat for $\$ 65.55$; how much did he get for one bushel?
(28) The annual rent of a house is $\$ 132$; how much must be put aside every week so as to have the whole rent ready at the end of the year?

When the divisor and dividend are both compound numbers of the same kind.

Rule. Reduce both numbers to the same denomination. Divide as in Simple Division. The Quotient will be the answer required. Ex. 1. How often is 3s. 7d. contained in £8. 15s. 7d.? 3s. 7 d . $£ 8.15 \mathrm{~s} .7 \mathrm{7d}$.

Ex. 2. I employ twice as many men as women, the wages of the former are $3 s .6 d$. each, and of the latter $1 s$. 10d. each per day. The weekly wages amount to £23. 17s. How many men, and how many women do I employ?
$£ \Re 3.17 \mathrm{~s} . \div 6=£ 3.19 \mathrm{~s} .6 \mathrm{~d} .=954 \mathrm{~d} .=\mathrm{am}^{4}$. of daily wages. Daily wages of 2 men and 1 woman $=3 s .6 \pi / \times 2+1 s .10 d$. $=8 s .10 d .=106 \mathrm{~d}$.
106) 954 (9 954
\therefore there are 18 men and 9 women.

Ex. XXVIII.

Divide,
(1) £684. 7s. 6d. by £76. 0s. 10d.
(2) £171. 1s. $10 \frac{1}{2} d$. by £5\%. 0s. $7 \frac{7}{2} d$.
(3) 9 lbs., 9 oz., 3 dwt., 12 grs. by 5 dwt., 9 grs.
(4) 4 mls., 1 fur., 2 yds. by 1 ml ., 3 fur., 2 ft .
(5) 6 cwt., 2 qrs. by 1 qr., 3 oz.
(6) 12 lbs., 6 oz., 2 sc. by 1 lb ., 6 oz., 2sc., 10 grs.
(7) 3 yds., 1 qr., 2 nls. by 1 qr., 2 uls.
(8) 1 dy., 1 hr ., 12 min . by 1 hr ., 3 min .
(9) 5 sq. per., 7 ycls., 108 in . by 2 yds., 1 ft .
(10) $\$ 141.05$ by $\$ 2.17$.
(11) $\$ 221$ by $\$ 2.21$.
49. To reduceold Canadian to the Decimal or present Canadian Currency.

Rule. Multiply the pounds by 4, the product is dollars. Multiply the shillings by 20, the product is cents.
Reduce the pence to farthings and add the given farthings, if any; then multiply by 5 and divide by 12 , the quoticnt is cents.

The sum of these results is the answer required.
How many dollars and cents in £72. 19s. $9 \frac{1}{2} d$. ?

$$
\begin{aligned}
& £ 1=\$ 4, \therefore £ \tau 2=\$ 72 \times 4=\$ 288.00 \\
& 1 s .=20 \mathrm{cts} \text {., } \therefore 19 \mathrm{~s} .=19 \times 20 \mathrm{cts}=3.80 \\
& 9 \frac{1}{2} d .=38 q ., \therefore 38 q . \times 5 \div 12=190 \div 12=\frac{151 \frac{0}{2}}{\$ 291.95 \frac{10}{12}}
\end{aligned}
$$

Therefore the required answer is $\$ 291.95 \frac{1}{1}$.

Ex. XXIX.

How many dollars and cents in

£25. 6s. 3 d .	(2)	£57. 19s. 3d.
(3) £207. 17s. 8d.	(4)	£153. 18s. 5 ¢.
(5) £217. 17s. 0d.	(6)	£319. 15s. $7 \frac{1}{2} d$.
(7) £612. 19s. $11 \frac{1}{4} d$.	(8)	£63. 9s. 9 㫭 d.
(9) £912. 12s. 6d.	(10)	£711. 5s. $5 \frac{1}{2} d$.
(11) £111\%. 0 s. $7 \frac{1}{2} d$.	(12)	£47. 78. 9 d .
(18) £2017. 6s. 8d.	(14)	£75. 9s. $8 \frac{1}{2} d$.
(15) £37. 18s.. $7 \frac{1}{2} d$.	(16)	£87. 13s. 9d.

50. To reduce dollars and cents to Halifax or old Canadian Currency.

Rute. Divide the dollars by 4 , the quotient is pounds.
If there is any remainder bring it to cents and add the given cents if any; then divide by 20 , the quotient is shillings.

If any cents are left, multiply them by 3 and divide by 5 ; the quotient is pence. By arranging these several quotients properly, the required answer is obtained.

How many pounds, shillings and pence in $\$ 1279.12 \frac{1}{2}$?
$4 \left\lvert\, 1279.12 \frac{1}{2}\right.$
£319 and \$3 over. $\$ 3+12 \frac{1}{2} \mathrm{cts} .=300 \mathrm{cts}+12 \frac{1}{2} \mathrm{cts}=$ $212 \frac{1}{2}$ cts. ; $312 \frac{1}{2}$ cts. $\div 20=15$ s. and $12 \frac{1}{2}$ cts. over; $12 \frac{1}{2}$ cts. $\times 3 \div 5=7 \frac{1}{2} d$.
Therefore the answer is £819. 15s. $7 \frac{1}{2} d$. The above is evidently correct; because $\$ 4=£ 1,20 \mathrm{cts} .=12 d ., 5 \mathrm{cts} .=3 d l$.

Ex. XXX.

How many pounds, shillings and pence in

(1)	$\$ 217.25$	(2)	$\$ 327.55$	(3)	$\$ 17.35$
(4)	$\$ 84.50$	(5)	$\$ 75.95$	(6)	$\$ 125.37 \frac{1}{2}$
(7)	$\$ 367.87 \frac{1}{2}$	(8)	$\$ 1162.40$	(9)	$\$ 1393.62 \frac{1}{2}$
(10)	$\$ 1937.20$	(11)	$\$ 2220.29$	(12)	$\$ 3785.48$

Ex. XXXI.

MISCELLANEOUS EXAMPLES.

PAPER I.

(1) The population of the counties on the river St. Lawrence in 1861 was as follows: Leeds, thirty-five thousand seven hundred; Grenvil'e, twenty-four thousand one hundred and ninety-one; Dundas, eighteen thousand seven hundred and seventy-seven; Stormont, eighteen thousand one hundred and twenty-nine; Glengarry, twenty-one thousand one hundred and eighty-seven. Find the total population of these five counties.
(2) By the census of 1848, the population of Montreal was fifty-five thousand one hundred and forty-six; of Toronto, twenty-three thousand five hundred and three; of Hamilton, nine thousand eight hundred and eighty-nine; of Ottawa, six thousand two hundred and seventy-five; of Kingston, eight thousand three hundred and sixty-nine; of London, four thousand five hundred and eighty-four. Find the whole population of those cities.
(3) Add, one hundred thousand, two hundred and twentynine thousand seven hundred and thirteen, fifty-eight thousand seven hundred and five, six hundred and twelve thousand five hundred and seventeen, nine hundred and ninety-nine thousand nine hundred and ninety-nine, eight hundred and thirty-three thousand seven hundred and nineteen, seven hundred and sixty eight thousand three hundred and nine, fifty thousand and fifty.
(4) Add, five thousand and five, seven thousand and eighteen, seventeen thousand nine hundred and fifteen, twentyeight thousand seven hundred and nineteen, nine thousand and twelve, eight hundred and seven thousand five hundred and twelve, seven hundred and seventeen thousand and seventeen, minety-three thousand five hundred and two, two hundred and twelve thousand six hundred and seven.
(5) How many miles in 178006 inches?
(6) In 1848 the value of the imports into Canada was $\$ 8375180.20$; in 1861, the value of the imports was $\$ 43054836$; the population at the former date was 1493332, at the latter ${ }^{\prime}$ 2506755. Find 1st., the value of the imports for each person in 1848 and in 1861, and 2nd., the difference between these values.

PAPER II.

(1) What is the price of 818 bushels of wheat at $8 s .10 \frac{1}{2} d$, per bushel?
(2) A farmer sold 67 bushels of wheat at $\$ 1.62$ a bushel; bought a suit of clothes for $\$ 18,82$ yards cotton at $13 \frac{1}{2}$ cents a yard, a stove for $\$ 16$. How much was left of the price of the wheat?
(3) If a Government was to divide 72812 acres equally among 397 discharged soldiers, how much would each receive?
(4) A farmer brought 160 bushels of wheat to mill when wheat was worth $\$ 1.60$ per bushel, and in exchange got 27 barrels of flour. How much was he charged for the flour per barrel?
(5) A merchant has a piece of cloth containing $42 \frac{1}{2}$ yards, worth 6 s. $6 \frac{1}{2} d$. a yard. How many dresses of $8 \frac{1}{2}$ yards each can be made out of it, and what will each cost?
(6) A farmer sold in the Toronto market 618 barrels of flour for £1. 13 s . 9 d . per barrel; and bought 84 yards of cotton at 17 cents a yard, 5 lbs . tea at $3 s .9 \mathrm{~d}$. a lb., 2 tons of coal at $£ 1.15 \mathrm{~s}$. per ton, 8 sheep at $£ 2.11$ s. 9 d. each, 15 head of cattle at £12. 19s. 9d. each. How much can he deposit in a bank, allowing that he takes $\$ 50$ home with him?

PAPER III.

(1) In one year there were coined in the British mint $203 \% 61$ pounds of gold, value $£ 9520732.14 \mathrm{~s}$. 6d. Required the yalue of each pound?
(2) Three persons bought a ship for $\$ 63000$; the first taking one share, the second three, and the third five. How much do they severally pay?
(3) If a contribution of £354. 11s. G6, is made up in equal shares by 26 men, how much must cac'1 give?
(1) What is the 20 th part of 10 ac., 2 ro., 7 per., 2 ycls?
(5) Divile 300 tons, 15 cwt., 3 qrs., equally among 317 men. How much will each get?
(6) Soldiers marching in quick time, make 110 steps in a minute, each step 2 ft .6 in . long. In what time would a company of soldiers march 20 miles in quick time, allowing half an hour for rest?

PAPER IV.

(1) Add together £6. 17s. 6d., $\$ 30.27, £ 3.12 s .9$..., $\$ 75.83$; giving your answer in decimal currency.
(2) Three boys went out together to fish, the first caught eight, the second as many and three more, the third as many as his two comrades all but one. How many did each of the last two boys catch?
(3) Three boys, Thomas, William, and Alexander, had between them 6 cents; Thomas had one, William two, and Alexander three; they bought fifty-four marbles with their money. How many ought each boy to get?
(4) Four men went out one night to fish, borrowing both boat and nets. A man was to have 4 shares of the catch as often as the owner of the net was to have one; but, a man was to have only two shares as often as the owner of the boat had one. The catch was four barrels of herrings. What was each party's share in dozens ; each barrel containing 38 dozens of herrings ?
(5) It is found by observation that in each square inch of the human skin there are about 1000 pores; and the surface of the body of a middle sized man contains about 2304 square inches, or 16 square feet. Required, the number of pores in the surface of such a body, 999 being supposed to be contained in each square inch?
(6) The sum of two numbers is 84889 ; the difference between them is 889. What are the numbers?

PAPER V.

(1) Find the product of 72678397 and 86073 ?
(2) The quotient is 73697; the remainder 3687; the divisor 11689. Find the dividend?
(3) The minuend is twenty-seven thousand eight hundred and twelve; the difference, fifteen thousand nine hundred and eight. Find the subtraliend?
(4) There are seven adlends all equal; their sum is eighty-nine thousand two hundred and sixty-four. Find one of them?
(5) In the census of 1861, Rutland contained twenty-two thousand nine hundred and eighty-three inhabitants; Northamptonshire, ninety-six thousand eight hundred and one; Huntingdonshire, sixty-four thousand one hundred and eighty-three; Leicestershire, ninety-one thousand three hundred and eight; Nottinghamshire, one hundred and ninety thousand and sixty. What was the sum of the population of the above 5 counties in 1861?
(6) During the Crimean war, out of the French army there were killed in action or missing ten thousand two hundred and forty; drowned in a wreck, seven hundred and four; died of various diseases before the battle of Alma, eight thousand and eighty-four; died of disease before Sebastopol, four thousand three hundred and twelve ; died in hospitals, \&cc., seventy-two thousand two hundred and forty-seven. How many were lost altogether?

PAPER VI.

(1) In 1861 the population of Edinburgh was 160302 ; of Glasgow, 168795 more than that of Edinburgh ; of Aberdeen, 71973 ; of Inverness, 24527 more than that of Aberdeen, What was the total population of all these places in 1861?
(2) The paid up capital of each of the following Banks doing business in Ontario, is: of the Bank of MIontreal, \$6000000; of Bank British North America, \$4866666; of Quebec Bank, $\$ 1467750$; of Bank of Toronto, $\$ 800000$; of Ontario Bank, $\$ 1909640$; of Royal Canadian Bank, $\$ 590382$; of Merchants' Bank, $\$ 862033$. Find the total amount of the paid up capital of the above named Banks?
(3) The amount of revenue, from the named sources during 1866, was as follows: Customs, $\$ 7328146.68$; Excise, \$1888576.76; Postage, \$621936.42; Public-works, \$117474, Education, $\$ 66554$; Common School Fund, $\$ 122142.77$. Find the whole revenue from these sources?
(4) A person has $\$ 975$. He buys a team for $\$ 375$, a wagon for $\$ 82$, a plouglr for $\$ 16$, a stove $\$ 16$, a reaping machine for $\$ 153,12$ sheep for $\$ 8$ each, 2 cows $\$ 25$ each, 3 pigs $\$ 6$ a piece, pays his servantman 3 months' wages at $\$ 20$ a month, and the rest he lays out in flour at $\$ 1.75$ per 100 pounds, How many pounds of flour will he have?
(5) Among 635 men dıvide equaliy 86895 acres.
(6) How many inches in 10 mls., 3 per., 4 yds.?

SECTION III.

GREATEST COMMON MEASURE.

51. A measure of any given number is a number which will divide the given number exactly, i. e without a remainier.

Thus, 2 is a measure of 6 , because 2 is contained 3 times exactly in 6.
52. A multiple of any given number is a number which contains it an exact number of times. Thus, 6 is a multiple oi' 2.
53. A common heasure of two or more given numbers is a number which will divide each of the given numbers exactly. Thus, 3 is a common measure of 18,27 , and 36 .

The greatest common measure ((. c. m.) of two or more given numbers, is the greatest number which will divide each of the given numbers exactly. Thus, 9 is the greatest common measure of 18,27 , and 36 .
54. To find the greatest common measure of two numbers.

Rule. Divide the greater number by the less.
If there be a remainder, divide the first divisor by it.
If there be still a remainder, divide the second divisor by this remainder, and so on; always dividing the last preceding divisor by the last remainder, till nothing remains.
The last divisor will be the greatest common measure required.

Ex. Find the G. c. M. of 144 and 240.
By the Rule,
144) $240(1$

144
96) 144 (1 bringing down last divisor 144 for a dividend. 96

$$
\begin{aligned}
& \text { 43) } 96 \text { (2.. } \\
& 96 \quad \therefore 43 \text { is G. c. м. required }
\end{aligned}
$$

Ex. XXXII.

Find the G. c. m. of

(1)		8 and 18.	(2)	6 and 15.	(3)	d 22.
(4)		16 and 28.	(5)	20 and 82.		24 and 39.
(7)		26 and 44.	(8)	30 and 43.	(9)	36 and 56.
(10)		46 and 116.	(11)	58 and 174.	(12)	315 and 378
(13)		365 and 123.	(14)	180 and 210.	(15)	310 and 630.
		1216 and 424.	(17)	127 and 445.		6408 and 7264
	(19)	(9) 3042 and 3	094.	(20)	r040 an	d 7392.
		1441 and	572.	(22)	46436	d 23025.
	(23)	3) 21168 and	2040	(24)	9748	d 29579.
	(25)) 828597 and	\%381	40. (26)	326337	and $73 \% 800$.

LEAST COMMON MULTIPLE.

55. A COMMON MULTIPLE of two or more givenumbers is a number which will contain each of the givelimbers an exact number of times. Thus, 144 is a common multiple of $3,9,18$, and 24 .

The least common nultiple (l. c. m.) of two or more given numbers is the least number which will contain each of the given numbers an exact number of times. Thus, 72 is the least common multiple of $3,9,18$, and 24 .
56. When the least common multiple of several numbers is required, the most convenient practical method is that given by the following Rule.
Rule. Arrange the numbers in a line from left to right, with a comma placed between every two.

Divide those numbers which have a common measure by that common measure, and place the quotients so obtainel and the undivided numbers in a line beneath, separated as before.
Proceed in the same way with the second line, and so on with those which follow, until a row of numbers is obtained in which there are no two numbers which have any common measure greater than unity.

Then the continued product of all the divisors and the numbers in the last line will be the least common maltiple required.

Aote. It will in general be found advantageous to begin
with the lowest prime number 2 as a divisor, and to repeat this as often as can be done; and then to proceed with the prime numbers 3,5 , \&c., in the same way.
Ex. 1. Find the L. c. м. of 10,12 , and 16.
By the Rule,

$$
\begin{aligned}
& \begin{array}{l|l}
2 & \frac{10,12,}{} 16 \\
2 & \frac{5,}{5,} 8 \\
\hline 5,3, & 4
\end{array} \\
& 10=2 \times 5,12=2 \times 2 \times 3,16=2 \times 2 \times 2 \times 2 \text {. } \\
& \therefore \text { L. C. M. must clearly contain as factors } \\
& 2 \times 5 \text { for } 10 \text {. } \\
& 2 \times 5 \times 2 \times 3 \text { for } 10 \text { and } 12 \text {. } \\
& 2 \times 5 \times 2 \times 3 \times 2 \times 2 \text { for } 10,12 \text {, and } 16 \text {. }
\end{aligned}
$$

\therefore L. c. м. $=2 \times 2 \times 5 \times 3 \times 4=240$.
Note. The process of finding the L. c. M. may often be shortened by striking out in the same line every number which exactly measures any other number in that line.:

Ex. 2. Find the L. c. m. of $9,14,16,18,24,36$, and 38.

2	9,	$4,36,38$	Every multiple of 36
2	7, 8,	12, 18,19	a multiple of 9 and
2	7, 4,	6, 9,19	strike out samereason strike out 3 in the
	7 7,	9, 9,	4th

\therefore L. С. м. $=2 \times 2 \times 2 \times 7 \times 2 \times 9 \times 19=19152$.

Ex. XXXIII.

Find the L. c. m. of
(1) 2,4 , and 10 .
(2) 8,9 and 12.
(3) 12,16 , and 18.
(4) 20,28 , and 36.
(5) 16,24 , and 30 .
(6) 24,56 , and 84.
(7) 15,25 , and 105.
(8) $6,33,24$, and 32 .
(9) 7, 21, 6, 14, and 25.
(10) 7, 8, 9, 10, and 12.
(11) $24,28,36,22$, and 16. (12) $2,5,45,15$ and 25 .
(13) $9,4,8,15$, and $27 . \quad$ (14) $15,20,24,21$, and 35.
(15) $4,5,7,8,15,21$, and 30 .
(16) $2,7,9,13,15,52$, and 63.
(17) $3,7,21,11,77$, and 198.
(18) $100,56,35,125$, and 150.
(19) $22,55,19,15,95$, and 133.
(29) $48,64,27,33,110$ and 165.

SECTION IV.

FRACTIONS.

57. Let unity be represented by the line $A B$, which we will consider to be 1 yard in length.

Suppose $A B$ to be divided into 3 equal parts $A D, D E$, | $E B ;$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| is a then one of such parts $A D$ | A | D | E | B | F_{1} | G | is a foot or one-third part of the yard, and it is denoted thus $\frac{1}{3}$ (read one-third); two of them $A E$, or two feet, thus $\frac{2}{8}$ (read two-thirds); three of them $A B$, or three feet, or the whole yard, thus $\frac{3}{3}$ or 1.

If another equal portion $B F$ of a second yard $B C$, divided in the same manner as the first, be added, then $A F$, or four feet, is denoted thus $\frac{4}{3}$; and so on.
Such expressions, representing any number of the equal parts of a unit, $i . e$. of a quantity which is denoted by 1 , are called Broken Numbers or Fractions.
58. A Fraction denotes one or more of the equal parts of a unit; it is expressed by two numbers placed one above the other with a line between them; the lower number is called the Denominator ($\mathrm{Den}^{\text {r }}$.), and shews into how many equal parts the unit is divided; the upper is called the Numerator ($\mathrm{Num}^{\mathrm{r}}$.), and shews how many of such parts are taken to form the fraction.
59. A Fraction also represents the quotient of the num ${ }^{\text {r }}$. by the den .

Thus $\frac{2}{3}=2 \div 3$; for we obtain the same result, whether we divide one unit, $A B$ or 1 yard, into 3 equal parts $A D$, $D E, E B$, each $=1 \mathrm{ft}$. or 12 in ., and take 2 of such parts $A E$ $\left(\right.$ represented by $\frac{2}{8}$),$=12 \mathrm{in} . \times 2=24$ in., or divide 2 units, $A C$ or 2 yards, into 3 equal parts, $A E, E F, F C$, each $=2 \mathrm{ft}$. or 24 in ., and take 1 of such parts $A E$; which is equal to $\frac{1}{3} \mathrm{rd}$ part of $A C$ or 2 units, or $=2 \div 3$. Hence $\frac{2}{8}$ and $2 \div 3$ have the same meaning.
60. When fractions are denoted in the manner above explained, they are called Vulgar Fractions.
61. Fractions, whose den ${ }^{\text {rs }}$. are composed of 10 , or of 10 multiplied by itself any number of times, are called Decrmal Fractions, or Deglmals.

VULGAR FRACTIONS.

62. In treating of the subject of Vulgar Fractions, it is usual to make the following distinctions:
(1) A proper fraction is one whose num ${ }^{r}$. is less than the denr .; thus, $\frac{8}{4}, \frac{4}{5}, \frac{5}{7}$, are proper fractions. 1
(2) An IMPROPER FRACTION is one whose num ${ }^{r}$. is equal to or greater than the den ${ }^{r}$.; thus, $\frac{5}{6}, \frac{5}{6}, \frac{7}{6}$ are improper fractions.
(3) A simple fraction is one whose num ${ }^{r}$. and den ${ }^{r}$. are simple integer numbers; thus, $\frac{1}{3}, \frac{4}{3}$ are simple fractions.
(4) A mixed number is composed of a whole number and a fraction; thus, $5 \frac{1}{6}, 7 \frac{3}{4}$ are mixed numbers, representing respectively 5 units, together with $\frac{1}{6}$ th of a unit; and 7 units, together with $\frac{8}{4}$ ths of a unit.
(5) A compound fraction is a fraction of a fraction; thus $\frac{1}{2}$ of $\frac{\frac{3}{4}, \frac{5}{6} \text { of } \frac{7}{8} \text { of } \frac{9}{10} \text {, are compound fractions. }}{\text { a }}$
(6) A complex fraction is one which has either a fraction or a mixed number in one or both terms of the fraction; thus, $\frac{\frac{2}{5}}{\frac{5}{7}}, \frac{2 \frac{1}{3}}{3}, \frac{3}{4 \frac{2}{8}}, \frac{2 \frac{1}{7}}{5 \frac{1}{6}}, \frac{\frac{2}{8} \text { of } \frac{1}{2}}{2 \frac{1}{6}}$ are complex fractions.
63. It is clear from what has been said, that every whole number or integer may be considered as a fraction whose den ${ }^{\text {r }}$. is 1 ; thus, $5=\frac{5}{1}$, for the unit is divided into 1 part comprising the whole unit, and 5 of such parts, that is 5 units, are taken.
64. To multiply a fraction by a whole number.

Rule. Multiply the numerator by the whole number. $\frac{2}{5} \times 2=\frac{2 \times 2}{5}=\frac{4}{5} \quad \begin{aligned} & \text { For in } \frac{2}{5} \text { and } \frac{4}{5}, \text { the unit is divided into } \\ & \text { equal parts, and toice as many parts are }\end{aligned}$ taken in $\frac{4}{5}$ as are taken in $\frac{2}{5}$.

Ex. XXXIV.

Multiply (1) $\frac{2}{7}$ and $\frac{17}{9}$ each separately by $2,3,5,7,9$, and 12 ; and (2) $\frac{63}{84}$ and $\frac{95}{107}$ each separately by $6,8,11,106$ and 15%.
65. To divide a fraction by a wohote number.

Rule. Multiply the denominator by the whole number.
$\frac{2}{5} \div 2=\frac{2}{5 \times 2}=\frac{2}{10}$. taken in each, $\therefore \frac{2}{5}$ is twice as large as $\frac{2}{10}$, or $\frac{2}{6} \div 2=\frac{2}{10}$.

Ex. XXXV.

Divide (1) $\frac{8}{4}$ and $\frac{7}{9}$ each separately by $2,3,5,6,9$, and 12 ; and (2) $\frac{16}{29}$ and $\frac{77}{89}$ each separately by $3,5,11,56$, and 100 .
66. If the numerator and denominator of a fraction be both multiplied, or both divided, by the same number, the value of the fraction will not be altered.
$3 \quad 3 \times 2 \quad 6 \quad$ Since $8=4 \times 2$, twoo of the parts in $\frac{6}{8}$ are $\frac{3}{4}=\frac{3 \times 2}{4 \times 2}=\frac{6}{8} \quad$ equivalent to one of the parts in $\frac{3}{4}$; but since $6=3 \times 2$, there are twice as many parts taken in $\frac{6}{8}$ as there are in $\frac{8}{4}$, therefore $\frac{8}{4}=\frac{6}{8}$. In figure, Art. 57, $A E$ represents either $\frac{1}{8}$ rd or ${ }_{6}^{2}$ ths of $A C$.
67. Hence it follows that a whole number may be converted into a vulgar fraction with any required den ${ }^{\text {., }}$, by multiplying the number by the required den ${ }^{r}$. for the num ${ }^{r}$. of the fraction, and placing the required denr. underneath.

For $5=\frac{5}{1}$, and to convert it into a fraction with a denr. 6 or 17 , we have $5=\frac{5}{1}=\frac{5 \times 6}{1 \times 6}=\frac{30}{6}$; also $5=\frac{5}{1}=\frac{5 \times 17}{1 \times 17}=\frac{85}{17}$.

Ex. XXXVI.

Reduce (1) $3,5,8,15$, to fractions with den ${ }^{\text {rs }} \cdot 2,9$, and 13 ; and (2) $9,12,17,37$, to fractions with den ${ }^{\text {re }} .8,10$, and 57 .
68. To represent an improper fraction as a whole or mixed number.
Rule. Divide the numerator by the denominator.
If there be no remainder, the quotient will be a whole number.
If there be a remainder, put down the quotient as the integral part, and the remainder as the num ${ }^{\text {r }}$. of the fractional part, and the given denr. as the den ${ }^{r}$. of the fractional part.
Ex. Reduce $\frac{24}{4}$ and $\frac{24}{5}$ to whole or mixed numbers.

By the rule,

$$
\begin{aligned}
& \frac{24}{4}=6 . \quad \text { For } \frac{24}{4}=\frac{4 \times 6}{4 \times 1}=\frac{6}{1}(\text { Art. } 66)=6 . \\
& \frac{24}{5}=4 \frac{4}{5} . \\
& \text { For } \frac{24}{5}=\frac{20+4}{5}=\frac{20}{5}+\frac{4}{5}=4+\frac{4}{5}=4 \frac{4}{5} .
\end{aligned}
$$

Ex. XXXVII.

Express the following improper fractions as mixed or whole numbers:
(1) $\frac{6}{2}$.
(2) $\frac{5}{2}$.
(3) $\frac{13}{3}$.
(4) $\frac{16}{4}$.
(5) $\frac{19}{6}$.
(6) $\frac{47}{7}$.
(7) $\frac{50}{9}$.
(8) $\frac{76}{11}$.
(9) $\frac{91}{13}$.
(10) $\frac{112}{14}$. (11) $\frac{234}{27}$. (12) $\frac{804}{43}$. (13) $\frac{1000}{107}$. (14) $\frac{26540}{260}$. (15) $\frac{1718}{133}$.
69. To reduce a mixed number to an improper fraction.

Rule. Multiply the whole number or integer by the denominator of the fraction, and to the product add the numerator of the fractional part.

The result will be the required num r., and the den ${ }^{r}$. of the fractional part the required den ${ }^{\text {r }}$.
Ex. Convert $3 \frac{3}{4}$ into an improper fraction.
By the Rule,

$$
3 \frac{3}{4}=\frac{3 \times 4+3}{4}=\frac{12+3}{4}=\frac{15}{4} .
$$

$$
\text { For } 3 \frac{3}{4}=\frac{3}{1}+\frac{3}{4}=\frac{3 \times 4}{1 \times 4}+\frac{3}{4}=\frac{12}{4}+\frac{3}{4}=\frac{12+3}{4}=\frac{15}{4}
$$

Ex. XXXVIII.

Reduce the following mixed numbers to improper fractions:
(1) $1 \frac{1}{8}$.
(2) $2 \frac{1}{1 \frac{1}{2}}$.
(3) $1 \frac{1}{16}$.
(4) $17 \frac{3}{5}$.
(5) $12 \frac{5}{7}$.
(6) $2031 \frac{17}{19}$.
(7) $2 \frac{1}{6}$.
(8) $29 \frac{7}{8}$.
(9) 704_{12}^{126}.
(10) 900_{4}^{31}. 1 .
(11) $5 \frac{7}{6} 0$.
(12) $53 \frac{37}{6}$.
(13) $21_{12 \frac{3}{2} \sigma 0}$.
(14) $148^{\frac{237}{65}}$.
(15) $13 \frac{1088}{160}$
(16) $25_{\frac{389}{2400}}$.
(17) $197 \frac{995}{3084}$.
70. To reduce a compound fraction to its equivalent simple fraction.

Rule. Multiply the several numerators together for the numerator of the simple fraction, and the several denominators together for its denominator.

Ex. 1. Convert $\frac{7}{8}$ of $\frac{5}{6}$ into a simple fraction.
By the Rule,

$$
\frac{2}{3} \text { of } \frac{5}{6}=\frac{2 \times 5}{3 \times 6}=\frac{10}{18} .
$$

or $\frac{2}{3}$ of $\frac{5}{6}=$ twice $\frac{1}{3}$ of $\frac{5}{6}=$ twice $\frac{5}{6} \div 3=$ twice $\frac{5}{18}$ (Art.(9) $)$

$$
=\frac{5 \times 2}{18}(\text { Art } .64)=\frac{10}{18}
$$

Note 1. Before applying the above Rule mixed numbers nust be reduced to improper fractions.
Note 2. In reducing compound fractions to simple ones, re may strike out from any num ${ }^{\text {r }}$. and any denr . such facors as are common to both; for this is in fact simply diiding the num ${ }^{r}$. and den ${ }^{r}$. of a fraction by the same number. Art. 66.)
Ex. 2. Reduce $\frac{3}{5}$ of $2 \frac{1}{12}$ of $1_{1}^{1 \frac{1}{5}}$ to a simple fraction.
of $2 \frac{1}{12}$ of $1 \frac{1}{15}=\frac{3}{5}$ of $\frac{25}{12}$ of $\frac{16}{15}=\frac{3 \times(5 \times 5) \times(4 \times 4)}{5 \times(3 \times 4) \times(3 \times 5)}$
$=\frac{3 \times \beta \times 5 \times 4 \times 4}{\beta \times 3 \times 4 \times 3 \times 5}=\frac{4}{3}$, dividing num ${ }^{\mathrm{r}}$. and den ${ }^{\mathrm{r}}$. by $3,5,5,4$, actors common to both.

Ex. XXXIX.

Reduce the following compound fractions to simple ones:
(1) $\frac{8}{4}$ of $\frac{4}{5}$.
(2) $\frac{4}{6}$ of $\frac{10}{12}$.
(3) $\frac{3}{7}$ of $\frac{21}{19}$.
(4) $\frac{3}{10}$ of $\frac{8}{11}$.
(5) $\frac{5}{6}$ of $2 \frac{5}{8}$.
(6) $\frac{2}{8}$ of $1 \frac{1}{4}$.
(7) $18 \frac{2}{9}$ of $5 \frac{7}{16}$ of 10 .
(8) $11 \frac{2}{6}$ of $8 \frac{3}{7}$.
(9) $\frac{5}{6}$ of $2 \frac{1}{3}$ of 9 .
(10) $\frac{4}{7}$ of $3 \frac{8}{4}$ of $3 \frac{1}{2}$.
11) $\frac{5}{8}$ of $\frac{3}{12}$ of $\frac{22}{3} \frac{1}{5}$ of $\frac{13}{46}$.
(12) $\frac{3}{14}$ of $4 \frac{5}{9}$ of $\frac{6}{37}$ of $6 \frac{8}{11}$ of $\frac{7}{82}$.
13) $\frac{5}{11}$ of $2 \frac{1}{2}$ of $\frac{5}{7}$ of $10 \frac{1}{2}$.
(14) $\frac{7}{9}$ of $12 \frac{1}{2}$ of $\frac{4}{5}$ of $\frac{5}{6}$ of $\frac{8}{8}$ of 9 .
(15) $\frac{5}{18}$ of $\frac{7}{3}$ of $\frac{36}{10}$ of $\frac{9}{4}$ of $\frac{3}{10}$ of 2 of $\frac{8}{27}$.
(16) $\frac{5}{7}$ of $\frac{3}{8}$ of $\frac{6}{7}$ of $70 \frac{2}{9}$ of $\frac{3}{40}$ of $1 \frac{7}{11}$ of 147 .
71. A fraction is in its Lowest terms, when its numerator and denominator are prine to each other.
72. To reduce a fraction to its lowocst terms.

Rule. Divide the numerator and denominator by thei greatest common measure.

Ex. Reduce $\frac{176}{4 \frac{1}{4} \frac{1}{4}}$ to its lowest terms.
By the Rule, find the G. c. m. of 176 and 484.
176) 484 (2

35ั

Ex. XL.

Reduce each of the following fractions to its lowest terms

(1)	$\frac{2}{4}$.	(2)	$\frac{10}{15}$	(3)	$\frac{1}{24}$.	(4)	$\frac{30}{48}$.
(5)	$\frac{28}{6} \frac{8}{3}$.	(6)	$\frac{64}{84}$.	(7)	$\frac{77}{121}$.	(8)	$\frac{48}{272}$.
(9)	$\frac{14}{2} \frac{4}{6} 8$ g	(10)	$\frac{1408}{1687}$.	(11)	$\frac{875}{1000}$.	(12)	$\frac{16890}{2600}$.
(13)	${ }^{\frac{837}{2685}}{ }^{268}$	(14)	$\frac{6006}{8088}$.	(15)	$\frac{885}{26825}$.	(16)	$\frac{9504}{10692}$
(17)	$\frac{23}{3} \frac{1}{7} \frac{1}{5} \frac{1}{9}$.	(18)	$\frac{30599}{271469 .}$	(19)	$\frac{5179}{81} \frac{1}{4}$.	(20)	$\frac{123685}{}$
(21)	$\frac{28597}{99999} 9$.	(22)	$\frac{10395}{1689}$.	(23)	$\frac{7040}{7932}$.	(24)	$\frac{113885}{1633}{ }^{3}$

73. To reduce fractions to equivalent ones with a common denominator.

Rule. Find the least common multiple of the denomina tors; this will be the common denominator.

Then divide the common multiple so found by the de nominator of each fraction, and multiply each quotient sc found into the numerator of the fraction which belongs tc it for the new numerator of that fraction.

Note. If the given fractions be in their lowest terms, the above rules will reduce them to others having the least common den ${ }^{r}$.: if the least common den ${ }^{r}$. be required, the giver fractions should be reduced to their lowest terms before the rule is applied.

Ex. 1. Reduce $\frac{11}{12}, \frac{17}{24}$, and $\frac{31}{36}$ to equivalent fractions with a common denominator.

By the Rule, $12 \frac{\mid 12,21,36}{2,3} \therefore$ L. C. M. $=12 \times 2 \times 3=72$.
the fractions become $=\frac{11 \times 6}{12 \times 6}=\frac{66}{72}$ (since $72 \div 12=6$),

$$
\begin{aligned}
& \text { and } \frac{17 \times 3}{24 \times 3}=\frac{51}{72}(\text { since } 72 \div 24=3), \\
& \text { and } \left.\frac{31 \times 2}{36 \times 2}=\frac{62}{72} \text { (since } 72 \div 36=2\right),
\end{aligned}
$$

the required fractions are $\frac{66}{72}, \frac{51}{62}$, and $\frac{62}{72}$.
Note. If the den ${ }^{\text {rs }}$. have no common measure, the work vill be more quickly done, by multiplying each num ${ }^{r}$. into all he den ${ }^{\text {rs }}$., except its own, for a new num ${ }^{\text {r }}$. for each fraction, nd all the den ${ }^{\text {rs }}$. together for the common den ${ }^{\mathrm{r}}$.
Ex. 2. Reduce $\frac{2}{8}, \frac{3}{5}$, and $\frac{5}{7}$ to equivalent fractions with a ommon den ${ }^{\text {r }}$.
L. C. M. of the den ${ }^{\mathrm{s}} .=3 \times 5 \times 7=105$.
fract ${ }^{\text {ns }}=\frac{2 \times 5 \times 7}{3 \times 5 \times 7}, \frac{3 \times 3 \times 7}{5 \times 3 \times 7}, \frac{5 \times 3 \times 5}{7 \times 3 \times 5} ;$ or $\frac{70}{105}, \frac{63}{105}, \frac{75}{105}$.

Ex. XLI.

Reduce the fractions in each of the following sets to equivlent fractions, having the least common denr.:

(17) $\frac{2}{8}, \frac{4}{5}, \frac{8}{8}$ and $\frac{4}{15}$.	(18) $\frac{8}{4}, \frac{5}{5}, \frac{7}{8}$, and $\frac{9}{10}$.
(19) $\frac{2}{3}, \frac{5}{6}, \frac{7}{8}, \frac{5}{9}$, and $\frac{8}{12}$.	(20) $\frac{2}{8}, \frac{4}{5}, \frac{1}{2}$, and $\frac{3}{11}$.

74. Whenever a comparison has to be made between fractions, in respect of their magnitudes, they must be reduced to equivalent ones with a common den ${ }^{\text {r }}$; ; because then we shal? have the unit divided, in the case of each fraction so obtained, into the same number of equal parts; and the respective num ${ }^{\text {rs }}$. will shew us how many of such parts are
taken in each case, or which is the greatest fraction, whicl the next, and so on.
Ex. Which is the greatest, and which the least of th fractions $\frac{11 \times 4}{5 \times 9}, \frac{12 \times 3}{4 \times 10}, \frac{10 \times 5}{6 \times 8}, \frac{11+4}{5+9}$?
The fract ${ }^{\text {ns }}$. in their lowest terms are $\cdot \frac{44}{4 \stackrel{5}{5}}, \frac{9}{10}, \frac{25}{24}$, and $\frac{15}{14}$
L. c. m. of the den ${ }^{\text {rs }}=2520$.
\therefore the fractions become $\frac{44 \times 56}{45 \times 56}$ or $\frac{2464}{2520} \frac{9 \times 252}{10 \times 252}$ or $\frac{2268}{2520}$,

$$
\frac{25 \times 105}{24 \times 105} \text { or } \frac{2625}{2520}, \frac{15 \times 180}{14 \times 180} \text { or } \frac{2700}{2520} .
$$

$\therefore \frac{11+4}{5+9}$ is the greatest, and $\frac{12 \times 3}{4 \times 10}$ the least.

Ex. XLII.

Compare the values of
(1) $\frac{2}{3}$ and $\frac{4}{5}$.
(2) $\frac{7}{9}$ and $\frac{9}{12}$.
(3) $\frac{17}{24}$ and $\frac{19}{26}$.
(4) $\frac{7}{3}, \frac{5}{8}$, and $\frac{1}{1}$.
(5) $\frac{15}{4}, \frac{22}{49}$, and $\frac{48}{6}$.
(6) $\frac{53}{80}, \frac{63}{93}$, and $\frac{57}{84}$.
(7) $\frac{3}{7}$ of $\frac{5}{9}, \frac{1}{2}$ of $\frac{3}{7}$, and $7 \frac{3}{8}$.
(8) $\frac{11}{15}, \frac{17}{27}, \frac{21}{2}$, and $\frac{29}{3} \frac{1}{0}$.
(9) $\frac{6}{11}$ of $\frac{10}{15}$ of $7 \frac{1}{1}, 4 \frac{1}{2}$ of $\frac{2}{3} 3,9 \frac{1}{96}$ of $7 \frac{1}{2}$ of 11 , and $\frac{3}{5}$ of $4 \frac{1}{6}$ of $\frac{3}{9}$ of $14_{11}^{\frac{7}{1}}$.
(10) $\frac{6884}{78} \frac{4}{5}$ of $\frac{85}{171}, \frac{15}{17}$ of $6 \frac{4}{5}$ of $\frac{1}{50} \subset 1_{2}^{4}$, and $1 \frac{6}{7}$ of $1 \frac{1}{8}$ of $5 \frac{1}{3} \frac{1}{9}$ of $\frac{1}{2}$ of $1 \frac{2}{2} \frac{2}{8}$.
Which is the greater,
(11) $\frac{5}{7}$ of a yd. or $\frac{3}{5}$ of a yd .
(12) $\frac{1}{2}$ of a yd . or $\frac{2}{3}$ of a yd
(13) $1 \frac{7}{8}$ of $\frac{3}{11}$ of $1 \frac{2}{8}$ of $\frac{22}{45}$ of a loaf, or $\frac{5}{6}$ of $\frac{7}{110}$ of $5 \frac{1}{2}$ loaves?

ADDITION OF VULGAR FRACTIONS.

75. Rule. Reduce the fractions to equivalent ones with the least common denominator.

Add all the new numerators together, and under their sum write the common denominator.
Ex. 1. Find the sum of $\frac{1}{2}, \frac{1}{3}$, and $\frac{5}{8}$.
By the Rule,

The L. c. M. of the den ${ }^{r s}$. is 24 .
\therefore fract $^{\text {ns }}$. become $\frac{1 \times 12}{2 \times 12}$ or $\frac{12}{24}, \frac{1 \times 8}{3 \times 8}$ or $\frac{8}{24}, \frac{5 \times 3}{8 \times 3}$ or $\frac{15}{24}$.
\therefore Their sum $=\frac{12+8+15}{24}=\frac{35}{24}=1 \frac{1}{24}$.
Reason for the Rule. In each of the equivalent fractions unity is divided into 24 equal parts, and 12, 8 , and 15 , of such parts are taken, therefore their sum must be $12+8+15$, or 35 of such parts, and will be represented by the fraction $\frac{35}{24}$, or by $1 \frac{1}{2} \frac{1}{4}$.
Note 1. If the sum of the fractions be a fraction which is not in its lowest terms, reduce it to its lowest terms; and if the result be an improper fraction, then reduce it to a whole or mixed number: thus $\frac{147}{10 \tilde{5}}=\frac{49}{35}=1 \frac{1}{35}$: the same remark applies to all results in Vulgar Fractions.
Note 2. Before applying the Rule, reduce all fractions to their lowest terms, improper fractions to whole or mixed numbers, and compound fractions to simple ones,
Note 3. If any of the given numbers be whole or mixed numbers; the whole numbers may be added together as in simple addition, and the fractional parts by the Rule given above.

Ex. 2. Find the sum of $3 \frac{5}{12}, 3_{\frac{1}{6}}^{2}, 2 \frac{7}{16}$, and $\frac{3}{4}$ of $3 \frac{3}{3}$.

$$
\frac{8}{4} \text { of } 3 \frac{3}{3}=\frac{9}{4} \text { of } \frac{11}{3}=\frac{11}{4}=2 \frac{3}{4} ;
$$

\therefore sum of fractions $=3+3+2+2+\frac{5}{12}+\frac{1}{6}+\frac{7}{16}+\frac{3}{4}$,
$=10+\frac{5 \times 4}{12 \times 4}+\frac{1 \times 8}{6 \times 8}+\frac{7 \times 3}{16 \times 3}+\frac{3 \times 12}{4 \times .12}\left(\right.$ since L. c.m of den $\left.{ }^{\text {rs }} .=48\right)$
$=10+\frac{20+8+21+36}{48}=10+\frac{85}{48}=10+\frac{137}{48}=11 \frac{37}{48}$.
76. The sign () or $\}$, called bracket enclosing numbers within 1 t , and the sign - called a vinculum, placed over two or more numbers, denotes that all the numbers within the bracket or under the vinculum are equally affected by anything outside the bracket or vinculum, thus ($2+3$) apples or $\overline{2+3}$ apples would mean 2 apples +3 apples, or 5 apples; whereas $2+3$ apples would mean 2 units +3 apples.

Again $\frac{1}{2}+\frac{1}{8}$ of $\left(2+\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{3}$ of $\frac{5}{2}=\frac{1}{2}+\frac{5}{6}=\frac{3}{6}+\frac{5}{6}={ }_{6}^{8}=\frac{4}{3}=1 \frac{1}{3}$.
$\left(\frac{1}{2}+\frac{1}{3}\right)$ of $\left(2+\frac{1}{2}\right)=\left(\frac{3}{6}+\frac{2}{6}\right)$ of $\left(\frac{4}{2}+\frac{1}{2}\right)=\frac{5}{6}$ of $\frac{5}{2}=\frac{25}{12}=2 \frac{1}{12}$.
$\left(\frac{1}{2}+\frac{1}{3}\right)$ of $2+\frac{1}{2}=\left(\frac{3}{6}+\frac{2}{6}\right)$ of $24 \frac{1}{2}=\frac{5}{6}$ of $2+\frac{1}{2}=\frac{10}{6}+\frac{3}{6}=\frac{13}{6}=21$.
Ex.3. Find the value of $\frac{4}{9}+\frac{1}{3}$ of $\left(2+\frac{1}{8}\right)+\frac{1}{6}$ of $2 \frac{1}{2}+\frac{1}{4}$ of $\left(\frac{5}{5}+\frac{1}{2}\right)$. value $=\frac{4}{9}+\frac{1}{8}$ of $\frac{7}{3}+\frac{1}{6}$ of $\frac{5}{2}+\frac{1}{4}$ of $\left(\frac{5}{6}+\frac{3}{6}\right)=\frac{4}{9}+\frac{7}{9}+\frac{5}{12}+2_{2}^{\frac{5}{2}}$.

$$
=\frac{11}{9}+\frac{5}{12}+\frac{1}{3}=\frac{44+15+12}{36}=\frac{71}{36}=1 \frac{35}{36}
$$

Ex. XLIII.
Find the sum of,
(1) $\frac{7}{8}$ and $\frac{2}{7}$.
(2) $\frac{8}{4}$ and $\frac{2}{3}$.
(3) 3 and $\frac{1}{3}$.
(4) $\frac{8}{4}$ and $\frac{5}{6}$.
(5) $\frac{5}{12}$ and $\frac{7}{15}$.
(6) $\frac{3}{4}$ and $\frac{7}{12}$.
(7) $\frac{3}{6}$ and $\frac{5}{11}$.
(8) $\frac{8}{8}$ and $\frac{5}{14}$.
(9) $\frac{11}{30}$ and $\frac{2}{45}$.
(10) $1 \frac{1}{3}$ and $1 \frac{1}{6}$.
(11) $7 \frac{3}{6}$ and 8.
(12) $1 \frac{1}{3}$ of $2 \frac{1}{2}$ and $6 \frac{1}{4}$.
(13) $\frac{8}{4}, \frac{4}{5}$, and $\frac{7}{12}$.
(14) $2 \frac{3}{8}, \frac{5}{18}$, and $3 \frac{1}{12}$.
(15) $6 \frac{3}{14}, \frac{1}{8}$ of $1 \frac{3}{7}$, and $2 \frac{7}{9}$. (16) $9 \frac{1}{2}$ of $2 \frac{1}{3}, \frac{13}{18}$, and $\frac{1}{27}$. (17) $\frac{2}{3}, \frac{5}{6}$, and $\frac{1}{3}$ of $\left(1+1 \frac{1}{8}\right)$.

Find the value of,
(18) $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}$,
(19) $2 \frac{1}{2}+3 \frac{1}{3}+4 \frac{1}{4}+5 \frac{1}{5}$.
(20) $5_{24}^{7}+13_{3}{ }^{5}{ }_{2}+\frac{4}{7} \frac{9}{2}+2 \frac{23}{60}$.
(21) $4 \frac{5}{9}+\frac{7}{15}+16_{20}^{9}+25 \frac{13}{2}$.
(22) $3 \frac{8}{9}+16 \frac{7}{8}+7 \frac{5}{12}+\frac{2}{5}$ of $3 \frac{3}{4}$.
(23) $\left(2 \frac{3}{4}+3 \frac{2}{3}\right)$ of $2 \frac{5}{1}+3 \frac{1}{5}$ of $\left(16 \frac{5}{8}+3 \frac{1}{4}\right)+1 \frac{2}{3}$ of 11 of $2 \frac{1}{22}$.
(24) A gentleman gave $£ 2 \frac{13}{\frac{1}{8}}$ to A, $£ \frac{1}{2} \frac{9}{4}$ to B, $£ S_{12}^{1} \frac{1}{2}$ to C, $£ 4 \frac{13}{6}$ to D, and $£ \frac{2}{4} \frac{0}{8}$ to E. How much did he give away?
(25) A man ate $\frac{3}{10}$ of a 4 lb . loaf on Mon., $\frac{5}{12}$ of a similar loaf on Tus., $\frac{7}{15}$ on Wed., $\frac{9}{20}$ on Thurs., $\frac{1}{2} \frac{4}{7}$ on Fricl., and on Sat. and Sun. as much as on Mon., Tues., and Wed. How many lbs. of bread did he eat during the week?

SUBTRACTION.

77. Rule. Reduce the fractions to equivalent ones having the least common denominator.

Take the difference of the new numerators, and place the common denominator underneath.

Ex. 1. Subtract $\frac{1}{2}$ from $\frac{5}{8}$.
By the Rule,
The fract ${ }^{\text {ns. }}$ become $\frac{1 \times 4}{2 \times 4}$ or $\frac{4}{8}$, and $\frac{5}{8}$,
\therefore their difference $=\frac{5-4}{8}=\frac{1}{8}$.

Reason for the Rule. In each of the equivalent fractions, unity is divided into 8 equal parts, and there are 5 and 4 parts respectively taken, \therefore the difference must be $5-4$, or 1 of such parts, which is represented by $\frac{1}{8}$.

Note 1. Before applying the Rule, reduce fractions to their lowest terms, improper fractions to whole or mixed numbers, and compound fractions to simple ones.

Note 2. If either of the given fractions be a whole or mixed number, it is most convenient to take separately the difference of the integral parts and that of the fractional parts, and then add the two results together, as in the following examples.

Ex. 2. From $4 \frac{3}{8}$ take $2 \frac{1}{7}$, or from $\left(4+\frac{3}{8}\right)$ take $\left(2+\frac{1}{4}\right)$.
Diff. $=\left(4+\frac{3}{8}\right)-\left(2+\frac{1}{4}\right)=4+\frac{3}{8}-2-\frac{1}{4}$ (Art. 76).

$$
=(4-2)+\left(\frac{3}{8}-\frac{1}{4}\right)=2+\left(\frac{3}{8}-\frac{2}{8}\right)=2+\frac{1}{8}=2 \frac{1}{8} .
$$

Ex. 3. Find the difference between $2 \frac{3}{8}$ and $4 \frac{1}{4}$.
$\frac{3}{8}$ is greater than $\frac{1}{4}$, and \therefore cannot be taken from it,

$$
\therefore \text { we write } 4 \frac{1}{4} \text { thus }\left(4+1+\frac{1}{4}\right) \text {, or }\left(3+\frac{5}{4}\right) \text {, }
$$

then diff $.=\left(3 \frac{5}{4}\right)-\left(2+\frac{3}{8}\right)=(3-2)+\left(\frac{5}{4}-\frac{3}{8}\right)=1+\left(\frac{10}{8}-\frac{3}{8}\right)$

$$
=1+\frac{7}{8}=1 \frac{1}{8} .
$$

Ex. XLIV.

Find the diffe. between
(1) $\frac{1}{4}$ and $\frac{1}{5}$.
(2) $\frac{1}{2}$ and $\frac{1}{8}$.
(3) $\frac{8}{4}$ and $\frac{5}{12}$.
(4) $\frac{13}{18}$ and $\frac{19}{24}$.
(5) $3_{3}^{\frac{2}{3}}$ and $2 \frac{1}{6}$.
(6) 7 and $2 \frac{9}{10}$.
(7) $10 \frac{1}{12}$ and $8 \frac{1}{9}$.
(8) $17 \frac{8}{4}$ and $13 \frac{5}{6}$.
(9) $1 \frac{4}{25}$ and $\frac{3}{4}$.
(10) $4 \frac{3}{7}$ and $2 \frac{17}{20}$. (11) $15 \frac{3}{7}$ and $7 \frac{2}{3}$. (12) $20 \frac{5}{18}$ and $8 \frac{3}{6}$.
(13) A boy ate $\frac{3}{6}$ of a cake, how much less did he leave than he ate?
(14) What number added (1) to $\frac{7}{36}$ will make $\frac{13}{1}$? and (2) to $2 \frac{4}{5}$ will make $8 \frac{1}{2}$?
(15) I copied down by mistake $\frac{5}{8} d$. instead of $\frac{5}{9} d$., what amount of error did I make?
78. Examples involving both Addition and Subtraction of Vulgar Eractions.
Ex. 1. Find the value of $5 \frac{1}{4}-2 \frac{1}{2}+\frac{1}{8}+2 \frac{1}{\frac{1}{6}-\frac{1}{16}}$.
Value $=(5-2+2)+\left(\frac{1}{4}-\frac{1}{2}+\frac{1}{8}+\frac{1}{4}-\frac{1}{16}\right)$

$$
=5+\frac{4-8+2+4-1}{16}=5+\frac{1}{16}=5 \frac{1}{16} .
$$

Ex. 2. Find the value of $\frac{4}{9}+\frac{1}{3}$ of $\left(2-\frac{1}{3}\right)-\frac{1}{6}$ of $2 \frac{1}{2}+\frac{1}{2}$
$-\frac{1}{4}$ of $\left(\frac{5}{6}-\frac{1}{2}\right)$.

$$
\begin{aligned}
\text { Value } & =\frac{4}{9}+\frac{1}{3} \text { of }\left(\frac{6-1}{3}\right)-\frac{1}{6} \text { of } \frac{5}{2}+\frac{1}{2}-\frac{1}{4} \text { of }\left(\frac{5}{6}-\frac{3}{6}\right) \\
& =\frac{4}{9}+\frac{1}{3} \text { of } \frac{5}{3}-\frac{1}{6} \text { of } \frac{5}{2}+\frac{1}{2}-\frac{1}{4} \text { of } \frac{2}{6}=\frac{4}{9}+\frac{5}{9}-\frac{5}{12}+\frac{1}{2}-\frac{1}{12} \\
& =1-\frac{5}{12}+\frac{1}{2}-\frac{1}{12}=1+\frac{1}{2}-\frac{5}{12}-\frac{1}{12}=1+\frac{6}{12}-\frac{5}{12}-\frac{1}{12} \\
& =1+\frac{6-5-1}{12}=1+\frac{6-6}{12}=1 .
\end{aligned}
$$

Ex. XLV.
Find the value of
(1) $\frac{1}{6}+2 \frac{1}{7}+13 \frac{3}{10}-3 \cdot \frac{3}{10}$.
(2) $\frac{1}{4}-\frac{3}{8}+\frac{5}{6}-\frac{13}{2} \frac{3}{4}$.
(3) $12 \frac{1}{17}-\frac{21}{3} \frac{1}{4}+7 \frac{16}{61}-\frac{1}{3}$ of $\frac{16}{17}+\frac{2}{5}$ of $3 \frac{9}{4}$.
(4) $\left(16 \frac{5}{8}-3 \frac{1}{4}\right)$ of $3 \frac{1}{6}-16 \frac{5}{8}+3 \frac{1}{4}$ of $3 \frac{1}{5}$.
(5) $6 \frac{1}{4}+\frac{7}{12}$ of $\frac{9}{14}$ of $3 \frac{1}{3}-\frac{45}{6}-5 \frac{3}{4}$.
(6) $6 \frac{1}{4}+\frac{7}{12}$ of $\frac{9}{14}$ of $\left(3 \frac{1}{3}-\frac{45}{6}\right)-5 \frac{9}{4}$.
(7) What number must be added to the sum of $\frac{4}{5}, \frac{7}{8}$, and $\frac{1}{2}$, to make $5 \frac{89}{1 \frac{8}{20}}$?
(8) A bought $\frac{8}{4}$ of a cheese, and sold $\frac{1}{3}$ of his purchase to $B, \frac{1}{3}$ of what then remained to $C, \frac{1}{3}$ of what then remained to D; what part of the cheese had B, C, and D, and what part had A, after the sales?

MULTIPLICATION.

79. Rule. Multiply all the numerators together for a new numerator, and all the denominators together for a new denominator.

Ex. 1. Multiply $\frac{2}{3}$ by $\frac{5}{7}$.
By the Rule,
$\frac{2}{3}$ multiplied by $\frac{5}{7}=\frac{2 \times 5}{3 \times 7}=\frac{10}{12}$.
Reason for the Rule.
${ }_{2}^{2}$ multiplied by 5 , gives $\frac{10}{3}$ (Art. 64).
But $\frac{10}{3}$ must be 7 times too large, since $\frac{5}{7}$ is one-serenth part of 5 . Therefore $\frac{10}{3}$ must be divided by 7 , and $\frac{10}{3} \div 7=\frac{10}{21}$ (Art. 65).

Note 1. The same reasoning will apply, whatever be the number of fractions which have to be multiplied together.
Note 2. Before applying the Rule, mixed numbers must be reduced to improper fractions.

Note 3. It has been shewn that a fraction is reduced to its
owest terms by dividing its num ${ }^{r}$. and den ${ }^{r}$. by their G.c. M., r in other words, by the product of those factors which are ommon to both: hence, in all cases of multiplication of actions, it will be well to split up the num ${ }^{\text {rs }}$. and den ${ }^{\text {rs }}$. as uuch as possible into the factors which compose them; and ien, after putting the several fractions under the form of ne fraction, the sign of \times being placed between each of the actors in the numr and denr. to cancel those factors which re common to both, before carrying into effect the final hultiplication. Thus, in the following examples:
Ex. 1. Multiply $\frac{3}{4}$ and $\frac{4}{5}$ together.
Prod ${ }^{\mathrm{t}} .=\frac{3 \times 4}{4 \times 5}=\frac{3}{5}$, dividing num ${ }^{\mathrm{r}}$. and den ${ }^{\mathrm{r}}$. by 4 .
Ex. 2. Multiply $\frac{8}{9}, \frac{16}{24}, \frac{27}{30}$, and $\frac{45}{60}$ together.
Prodt. $=\frac{8 \times 16 \times 27 \times 45}{9 \times 24 \times 30 \times 60}$
$=\frac{(2 \times 7 \times 2) \times(2 \times 2 \times 2 \times 2) \times(\$ \times 7 \times 7) \times(7 \times 3 \times \$)}{(3 \times 3) \times(2 \times 2 \times 2 \times 7) \times(2 \times 7 \times \$) \times(2 \times 2 \times 3 \pm 5)}$
$=\frac{2}{5}, \div$ ing by $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5$.
Ex. 3. Multiply $2 \frac{1}{2}, 3 \frac{3}{8}, 10 \frac{1}{8}, 20 \frac{4}{9}$, and $52^{\frac{9}{3}}$ together.
Prodt. $=\frac{5}{2} \times \frac{27}{8} \times \frac{81}{8} \times \frac{184}{9} \times \frac{124}{23}$

$$
\begin{aligned}
& =\frac{5 \times(9 \times 3) \times(9 \times 9) \times(8 \times 2 \%) \times(4 \times 31)}{2 \times(2 \times 4) \times 8 \times 9 \times 2 \%} \\
& =\frac{5 \times 3 \times 9 \times 9 \times 31}{2 \times 2}=\frac{37665}{4}=9416 \frac{1}{4} .
\end{aligned}
$$

Ex. 4. Simplify ($\frac{6}{7}$ of $1 \frac{1}{4}$ of $\frac{14}{15}+3 \frac{1}{2}$ of $\left.2 \frac{1}{2} \frac{0}{1}-2 \frac{2}{3}\right) \times 3 \frac{6}{7}$.

$$
\begin{aligned}
\text { Value } & =\left(\frac{6}{7} \text { of } \frac{5}{4} \text { of } \frac{14}{15}+\frac{7}{2} \text { of } \frac{52}{21}-\frac{8}{3}\right) \times \frac{27}{7} \\
& =\left(\frac{3 \times 2 \times 5 \times 2 \times 7}{7 \times 2 \times 2 \times 3 \times 5}+\frac{7 \times 2 \times 26}{2 \times 3 \times 7}-\frac{8}{3}\right) \times \frac{27}{7} \\
& =\left(1+\frac{26}{3}-\frac{8}{3}\right) \times \frac{27}{7}=\frac{3+26-8}{3} \times \frac{27}{7}=\frac{21}{3} \times \frac{27}{7}=27 .
\end{aligned}
$$

Ex. XLVI.

Find the value of
(1) $\frac{7}{9} \times \frac{8}{4}$.
(2) $\frac{7}{9} \times \frac{5}{8}$.
(3) $-\frac{4}{13} \times \frac{5}{8}$.
(4) $\frac{2}{21} \times \frac{7}{8}$.
(5) $7 \frac{1}{2} \times 3 \frac{1}{3}$. (6) $\frac{8}{4}$ of $\frac{1}{5} \times 17 \frac{1}{2}$. (7) $\frac{7}{12}$ of $1 \frac{1}{7} \times 3 \frac{3}{20} \times \frac{13}{84}$
(8) $\frac{5}{6} \times 33_{7}^{2} \times 19 \frac{1}{5} \times \frac{11}{56} . \quad$ (9) $\frac{7}{18}$ of $1 \frac{1}{10}$ of $1 \frac{13}{14} \times 2 \frac{1}{2} \times 2 \frac{2}{7}$.
(10) $\frac{11}{16}$ of $3 \frac{3}{4} \times 4 \frac{4}{5}$ of $2 \frac{1}{22} \times 13$.
(11) $2 \frac{1}{2} \frac{1}{3}$ of $\left(4 \frac{1}{5}+3 \frac{5}{14}\right) \times \frac{11}{91}$ of $2 \frac{1}{19} \times 1_{6}^{\frac{1}{69}}$.
(12) $\left(3 \frac{5}{6}-1 \frac{7}{12}+1 \frac{4}{9}-2 \frac{1}{7} \frac{1}{2}\right) \times 38 \frac{1}{4}$ of $\frac{2}{17}$.
(18) $\frac{8}{4}$ of $\left(\frac{1}{3}+\frac{1}{6}-\frac{4}{15}+\frac{1}{9}\right) \times \frac{2}{3}$ of $\left(21^{\frac{3}{6}}+\frac{5}{8}\right)$.
(14) $\left\{\left(\frac{1}{2}+\frac{1}{3}\right)\right.$ of $\left.\left(1 \frac{1}{3}+2 \frac{3}{4}\right)\right\} \times\left\{\left(21_{14}^{14}-1 \frac{1}{2}\right)\right.$ of $\left.\left(3 \frac{1}{10}-\frac{3}{7}\right)\right\}$.
(15) $\left\{1 \frac{3}{7}\right.$ of $26 \frac{1}{2}$ of $\left.\left(1-\frac{2}{3}\right)\right\} \times\left\{2 \frac{5}{8}\right.$ of $\left(4 \frac{1}{5}-3 \frac{2}{3}\right)$ of $\left.\frac{45}{106}\right\}$.

DIVISION.

80. Rule. Invert the divisor, i. e. take its numerator a denominator and its denominator as a numerator, and pr ceed as in Multiplication.
Ex. 1. Divide $\frac{3}{7}$ by $\frac{2}{3}$.
By the Rule, $\frac{3}{7} \div \frac{2}{3}=\frac{3}{7} \times \frac{3}{2}=\frac{9}{4}$.
Reason for the Rule. If $\frac{3}{7}$ be divided by 2 , the result is ${ }_{7}$ (Art. 65).

This quotient is only one-third part of the required qut tient, since the divisor is one-third part of 2 ; hence $\frac{3}{14}$ mu be multiplied by 3 , in order to give the true quotient, an $\frac{3}{14} \times 3=\frac{9}{14}$. (Art. 64).

Note. Before applying this Rule, mixed numbers mu be reduced to improper fractions, and compound fraction to simple ones.

Ex. 2. Find the quotient of $3_{\frac{3}{25}} \frac{3}{5}$ by $4 \frac{2}{5}$.

$$
32^{3} 6 \div 4 \frac{2}{5}=\frac{78}{25} \div \frac{22}{5}=\frac{78}{25} \times \frac{5}{22}=\frac{2 \times 39 \times 78}{9 \times 5 \times 2 \times 11}=\frac{39}{55} .
$$

Ex. XLVII.

Divide
(1) $\frac{15}{20}$ by $\frac{5}{7}$.
(2) $\frac{2}{6}$ by $\frac{3}{5}$.
(3) $\frac{64}{1!}$ by $\frac{3}{6}$.
(4) $4 \frac{5}{6}$ by $6 \frac{7}{8}$.
(5) 56 by $5 \frac{5}{7}$.
(6) $7 \frac{5}{7}$ by $4 \frac{2}{2} 1$.
(7) $\frac{1}{8}$ of $20 \frac{3}{4}$ by $10 \frac{3}{8}$.
(8) $\frac{3}{6}$ of $5 \frac{1}{2}$ by $\frac{5}{22}$ of 9 .
(9) ($\frac{3}{5}$ of $7 \frac{1}{2}-\frac{8}{17}$) by $1 \frac{2}{9}$.
(10) Divide $\frac{1}{6}+\frac{4}{4}-\frac{1}{2}$ by the sum of $\frac{4}{5}$ and $\frac{2}{3}$.
(11) What number multiplied by 216 will produce $6 \frac{3}{4}$?
(12) What must $\frac{3}{4}$ be divided by in order to produce 2?
(13) What is the least fraction which must be added to re sum of 4 and $\frac{1}{4}$ divided by their difference to make the esult a whole number?
Note. Complex Fractions may by this Rule be reuced to simple ones.
(1)

$$
\frac{\frac{18}{2}}{2 \frac{1}{2}}=\frac{\frac{7}{4}}{\frac{5}{2}}=\frac{7}{4} \div \frac{5}{2}(\text { Art. } 59)=\frac{7}{4} \times \frac{2}{5}=\frac{7}{10} \text {. }
$$

(2)

$$
\frac{\frac{4}{3}}{30}=\frac{\frac{9}{2}}{\frac{30}{1}}=\frac{9}{2} \div \frac{30}{1}=\frac{9}{2} \times \frac{1}{30}=\frac{3}{20} .
$$

(3)

$$
\begin{aligned}
\frac{4 \frac{1}{12}+2 \frac{2}{3}}{13 \frac{5}{12}-3 \frac{1}{3}}=\frac{6+\frac{1}{12}+\frac{2}{8}}{10+\frac{5}{12}-\frac{1}{3}} & =\frac{6+\frac{1}{12}+\frac{8}{12}}{10+\frac{5}{12}-\frac{4}{12}} \\
& =\frac{6+\frac{9}{12}}{10+\frac{1}{12}}=\frac{\frac{81}{12}}{121}
\end{aligned}=\frac{81}{12} \times \frac{12}{121}=\frac{81}{121} .0
$$

Ex. XLVIII.

Simplify,

1) $\frac{6 \frac{1}{7}}{3 \frac{1}{9}}$.
(2) $\frac{6}{2 \frac{1}{4}}$.
(3) $\frac{21}{6}$.
(4) $\frac{6-\frac{5}{12}}{3 \frac{2}{3}}$.
(5) $\frac{5}{2 \frac{5}{8}}$

2) $\left\{\frac{3 \frac{1}{3}}{7}+\frac{2}{10 \frac{1}{2}}-\frac{5}{18}\right.$ of $\left.\frac{4}{7}\right\} \times 1 \frac{8}{4}$.
(12)

$$
\left(\frac{\frac{5}{7}}{31 \frac{5}{6}} \text { of } \frac{9}{14}\right) \div\left(\frac{3 \frac{3}{8}}{3 \frac{3}{4}} \text { of } 15\right) .
$$

13) $\frac{5 \frac{2}{7} \div 7 \frac{2}{6}}{2 \frac{3}{8}-1 \frac{4}{7}}$ of $\frac{2 \frac{1}{4} \times 8 \frac{1}{3}}{4 \frac{1}{9} \div\left(\frac{1}{8}-\frac{1}{9}\right)}$.
(14) $\frac{13}{2 \frac{2}{3}+\frac{1}{4}}+\frac{1 \frac{1}{3}}{3 \frac{1}{5}}-1 \frac{3}{16}$.
81. To find the value of a fraction in terms of the same or over denomination.
Rule. Divide (if possible) the numerator by the denomipator; if there be a remainder, reduce it to the next lower ame, and divide the product by the denominator; repeat he latter operation as often as necessary.
Find the value of $\frac{2}{7}$ of $£ 15$.
By the Rule,
of $£ 15=£^{\frac{2}{7} \times 15}=£_{\frac{30}{7}}^{7}=£ 4 \frac{2}{7} ; £_{\frac{2}{7}}=\frac{2 \times 20}{7} 8 .=\frac{40}{7} 8 .=5 \frac{5}{7} \mathrm{~s}$;

$$
\begin{aligned}
\frac{5}{7} s .=\frac{5 \times 12}{7} d .=\frac{60}{7} d_{.}=8 \frac{4}{7} d_{.} ; \quad \frac{4}{7} d_{0} & =\frac{4 \times 4}{7} q .=\frac{16}{7} q .=2 \frac{2}{7} q ., \\
& \therefore \frac{2}{7} \text { of } £ 15=£ 4.5 s .8 \frac{1}{2} d_{0} \frac{2}{7} q
\end{aligned}
$$

Ex. XLIX.

Find the respective values of,
(1) $\frac{2}{6}$ of $\$ 1$.
(2) $\frac{8}{8}$ of aml .
(3) $\frac{3}{7}$ of a cwt.
(4) $\frac{9}{20}$ of 2 tons. 3 cwt .
(5) $\frac{3}{16}$ of 3 mls ., 2 fur.
(6) $\frac{4}{6}$ of 3 ac., 2 per., $£ y d s$.
(7) $\frac{5}{6}$ of 5 lbs ., 13 dwts .
(8) $\frac{7}{8}$ of 68 yds ., 2 nls .
(9) $\frac{3}{11}$ of $£ 26.8 s .11 \mathrm{~d}$.
(10) $\frac{6}{7}$ of $128 \mathrm{lbs} ., 2 \mathrm{sc}$.
(11) $\frac{7}{8}$ of $\frac{3}{5}$ of $10 \frac{2}{3} \mathrm{hrs}$.
(12) $7 \frac{3}{5}$ of a lb. Avoird.
(13) $\frac{6}{7}$ of $\frac{2}{8}$ of $\$ 42$.
(14) $\frac{3}{10}$ of a day.
(15) $\frac{9}{16}$ of 24 cords of wood.
82. To reduce a given quantity to the fraction of another quantity of the same kind.

Rule. Reduce both to the same name; and take the re sult of the former for the numerator, and of the latter for thi denominator, of the required fraction.

Reduce 7s. $5 d$. to the fraction of $£ 1$.
Method of working,

7s. $5 \mathrm{~d} .=89 \mathrm{~d}$.
£1. $=240 d$.
\therefore the fraction is $\frac{89}{240}$.

Reason for the Rule.
For $1 d .=\frac{1}{2} \frac{1}{0}$ of $£ 1 ; \therefore 7 s .5 d$. whicl $=89 \mathrm{~d}$. is $\frac{89}{240}$ of $£ 1$.

Ex. I.

Reduce,
(1) $3 s .4 d$. to the fr. of $£ 1$.
(2) 2 ro. 13 per. to the fr. of 3 acres.
(3) 3 wks . 16 min . to the fr. of half-an-hour.
(4) $1 \mathrm{lb} ., 1 \mathrm{oz}$., 3 dwt., to the fr. of 2 lbs .
(5) $1 \mathrm{lb} ., 5 \mathrm{oz}$. to the fr. of 2 lbs ., 1 sc .
(6) 8 ac ., 3 ro. to the fr. of 2 ac ., 32 per.
(7) $2 \mathrm{sq} . \mathrm{yds}$., 2 ft ., 120 in ., to fr. of 3 per. $13 \frac{1}{4} \mathrm{yds}$., 1 ft ., 72 in
(8) $£ 1.18$ s. to the fr. of $£ \%$.
(9) $2 \mathrm{bu} ., 1 \mathrm{pk}$., to the fr. of 4 bu .1 gal .
(10) $\$ 2.09$ to the fr. of $\$ 56.43$
(11) 2 yds., 2 ft . to the fr. of 13 per., 3 yds., 6 in .
12) 1 lb . Troy to the fr. of 1 lb . Avoirdupois.
13) What fraction of 7 bu . is 3 qts.?
14) What fraction of 4 mls ., 2 fur. is $1 \frac{1}{2}$ yds.?
15) What fraction of 5 ac ., 1 per. is $1 \mathrm{yd} ., 4 \mathrm{in}$.?
83. To reduce a fraction of one given quantity to a fracion of another.
Rule. Express by (82) the first quantity as a fraction ff the second: and the fraction required will then be found by reducing the resulting compound fraction to a simple one.
Ex. 1. Reduce $\frac{2}{7} \mathrm{lb}$. to the fraction of a cwt.
Method of working,
$\mathrm{lb} .=\frac{1}{10} \overline{0}$ of cwt . $\therefore \frac{2}{7} \mathrm{lb}=\frac{2}{7} \times \frac{1}{100}$ of a $\mathrm{cwt}=\frac{{ }_{3}^{3}}{350}$ of cwt .
Ex. 2. 24 of $\$ 5.25$ to the fraction of 15 cents.
$\$ 5.25$ is $\frac{3.5}{1}$ of 15 cts ; $\therefore 2 \frac{14}{}$ of $\frac{3.5}{1}$ of $15 \mathrm{cts}=\frac{315}{4}$ of 15 cts .

Ex. LI. ${ }^{\text {. }}$

Reduce,

(1) 每 of $\$ 14$ to the fr . of $\frac{1}{2}$ of $\$ 16$.
(2) $\frac{3}{5}$ of 2 ac ., 2 ro. to the fr. of $\frac{1}{9}$ of 3 ac ., 2 per.
(3) $2 \frac{1}{2}$ of 3 lbs . 6 dwt. to the fr. of $1 \frac{1}{8}$ of 6 lbs ., 12 grs.
(4) $12 \frac{3}{4}$ of 3 s .6 d . to the fr . of $£ 1$.
(5) $3 \frac{1}{3}$ of 10 cwt ., 2 qrs., to the fr. of 1 ton.
(6) $3 \frac{1}{2}$ of 2 ac., 3 ro. to the fr. of 2 ro., $2 \frac{1}{2}$ per. .
(7) $\frac{5}{8} \mathrm{lb}$. Troy to the fr. of a lb. Av.
(8) $1_{1 \frac{3}{7}}$ of $£ 2.4 \mathrm{~s}$. $7 \frac{7}{2} d$. to the fr . of 5 s .
(9) $\frac{3}{11}$ of $2 \frac{8}{4} \mathrm{mls}$. to the fr . of $\frac{1}{2}$ of $\frac{7}{9} \mathrm{mls}$.
(10) $6 \frac{1}{2}$ of 3 cords to the fr. of 5 cord ft.
(11) $8 \frac{1}{3}$ of 6 lbs ., 2 sc . to the fr. of a lb.
(12) $\frac{4}{7}$ of $\frac{2}{8}$ of $\$ 21$ to the fr . of $\$ 7$.
(13) $\frac{9}{16}$ of 8 yds ., 2 nls . to the fr. of $2 \frac{1}{3}$ ells (English).
(14) $2 \frac{7}{8}$ of 10 hrs . to the fr. of 1 day.
84. Miscellaneous Examples in Vulgar Fractions woorked out.

Ex. 1. At the 'call over' at a certain school, $\frac{5}{6}$ of the children on the register answered to their names; the rest, 18 in number, were absent. How many children were there on the register?
$\frac{5}{6}$ of the no. were present, $\therefore \frac{1}{6}$ of no. were absent. By the question, $\frac{1}{6}$ of no. $=18$.

$$
\therefore \text { no }=18 \times 6=108 \text {. }
$$

Ex. 2. A poor woman lost through a hole in her pocket ${ }^{4}$ t of her money ; only $3 s .0 \frac{3}{4} d$. was left. How much money had she at first, and how much did she lose?

After losing $\frac{4}{15}$ of her money, $\frac{7}{11}$ of it was left, $\therefore \frac{7}{7}$ of her money $=3 s .0 \frac{8}{4} d$.
$\therefore \frac{1}{1}$ of her money $=3$ s. $0 \frac{3}{4} d . \div 7=5 \frac{1}{4} d$.
\therefore her money $=5 \frac{1}{d} d . \times 11=48.9 \frac{3}{4} d$.
She lost $\frac{4}{11}$ of $4 \mathrm{~s} .9 \frac{8}{4} d .=\frac{19 \mathrm{~s} .3 \mathrm{~d} .}{11}=1 \mathrm{~s} .9 \mathrm{~d}$.
Ex. 3. A, B, C, D run a race over 1 mile. First A and B race, when A wins by 20 yds.; then C and D race, when C wins by 60 yds.; then A and C race, which will win, and by how much, supposing that if B and D had run against each other, B would have won by 40 yds.?

While A runs 1760 yds., B runs 1740 yds.; while C runs 1760 yds., D runs 1700 yds., or while D runs 1 yd., C runs $\frac{7}{1} \frac{60}{700}$ yds.; while B runs 1760 yds., D would have run 1720 yds., or while B runs 1 yd., D would have run $\frac{1 \frac{7}{1} \frac{2}{6} 6}{6}$ yds.
While A runs 1760 yds., B runs 1740 yds.

$\therefore C$ will win by $\frac{8}{17}$ yds.
Ex. 4. Divide 15s. $6 d$. between A and B, so that B 's share may be less than A 's share by $\frac{2}{\sigma}$ of A 's share.

To represent A 's share fix on some number which is exactly divisible by 5 ; let 5 represent A 's share.

Then B 's share $=5-\frac{2}{6}$ of 5 , or $5-2$, or 3 .
$\therefore 15 s$. 6 d . has to be divided into $5+3$, or 8 shares, of which A is to have 5 , and $B 3$;

$$
\therefore \text { value of each share }=\frac{15 s .6 d .}{8}=1 s .11 \frac{1}{4} d .
$$

$\therefore A$'s share $=18.11 \frac{1}{4} d_{0} \times 5=9 s .8 \frac{1}{4} d ., B$'s $=1 s .11 \frac{1}{4} d . \times 3=$ 5s. $9 \frac{9}{4}$ d.
Ex. 5. If 7 men or 11 boys can dig a field in 10 days, in what time will 11 men and 7 boys dig a field of half the size? 7 men $=11$ boys, $\therefore 1$ man $=11$ boy;
$\therefore 11$ men and 7 boys $=\left(11 \times \frac{11}{7}+7\right)$, or $\frac{121+49}{7}$, or $\frac{170}{7}$ boys.

By the question,
11 boys can dig the greater field in 10 days,
$\therefore 1$ boy............................ (10×11) days ;
$\therefore \frac{170}{7}$ boys...................... $\frac{10 \times 11 \times 7}{170}$ days;
$\therefore \ldots$....the less field in $\frac{10 \times 11 \times 7}{170 \times 2}$ days $=2_{3}^{9} \frac{9}{4}$ days.
Ex. 6. Divide 1860 cords of wood between A, B, and C, so that for every 5 cords given to A, B may receive 4 cords, and for every 3 cords given to B, C may receive 1 cord.
The L. C. M. of 5,4 , and 3 , is $60 ; \therefore$ if 60 shares be given to A, B will have $\frac{4}{5}$ of 60 shares, or 48 shares, and C will have fof 48 shares, or 16 shares;
$\therefore A, B$, and C together have $(60+48+16)$, or 124 shares;
$\because A$ has $\frac{60}{124}$ of 1860 cords $=(15 \times 60)$, or 900 cords.
B has $\frac{48}{124}$ of 1860 cords $=(12 \times 60)$, or 720 cords.
C has $\frac{16}{124}$ of 1860 cords $=(4 \times 60)$, or 240 cords.
Ex. 7. A can do a piece of work in 5 days, B can do it in 6 days, and C can do it in 7 days; in what time will A, B, and C, all working at it, finish the work? Find also in what time A and B working together, A and C together, and B and C together, could respectfully finish it.

In one day....A.... does $\frac{1}{5}$ part of the work,

$\therefore \ldots \ldots . A+B+C$ do $\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)$ or $\frac{107}{210}$;
\therefore no. of days in which $A+B+C$ would finish the work

$$
=\frac{\text { whole work }}{\text { part done in one day }}=\frac{1}{\frac{107}{210}}=\frac{210}{107}=1 \frac{103}{107} \text {. }
$$

Again, in one day $A+B$ do $\left(\frac{1}{5}+\frac{1}{6}\right)$, or $\frac{11}{30}$ of the work,
$\therefore A+B$ would finish the work in $\frac{1}{\frac{11}{30}}$, or $\frac{30}{11^{\prime}}$ or $2 \frac{8}{11}$ days.

In like manner, it may be shewn that A and C would finish the work in $2 \frac{1}{12}$ days; and B and C in $3 \frac{3}{13}$ days.

Ex. LII.

(1) $\frac{4}{5}$ ths of a farm belongs to A, the rest to $B ; A$ sells $\frac{8}{4}$ ths of his share to C, and $\frac{1}{12}$ th of it to B; what portions of the farm do A, B, and C, respectively hold after the sales?
(2) (1) Among how many boys can 9 oranges be divided, so that each boy may have $\frac{8}{8}$ of an orange? (2) From the sum of $4 \frac{1}{2}$ and $3 \cdot \frac{9}{10}$ take their difference.
(3) Divide $\frac{2}{5}$ into two parts, so that one of them is greater than the other by $\frac{8}{8}$.
(4) (1) What number must be multiplied by $1 \frac{1}{5}$ of $2 \frac{2}{5}$ to give $3 \frac{3}{7}$? (2) What number must be added to $\frac{1}{8}$ of $2 \frac{1}{7}$ to give $3 \frac{2}{5}$?
(5) A gives to $B \frac{1}{5}$ of his money, to $C \frac{1}{2}$ of what remains, and to $D \frac{1}{3}$ of what then remains; compare the sums which A and D will now have.
(6) Miss Taylor, after spending $\frac{1}{8}$ rd of the money in her purse, and then $\frac{8}{4}$ ths of the remainder, has still left $\$ 4.20$; how much had she in her purse at first?
(7) $\frac{-3}{11}$ of a fishing-smack being worth $\$ 90$, find the value of $\frac{1}{3}$ of it .
(8) A person after paying an income-tax of 5 cents in the dollar, has a net income of $\$ 855$; find his gross income.
(9) If, when the income tax was 6 cents in the dollar, a person paid $\$ 54$; how much less will he now pay, the tax being reduced 4 cents in the $\$$?
(10) If $\frac{4}{7}$ of a rabbit be worth $\frac{2}{8} 8$, and $\frac{3}{5}$ of a rabbit be worth $\frac{1}{20}$ of a pig; what is the value of 100 pigs?
(11) If, in practising, 7 riflemen shoot 26 rounds in 1 hr ., 31 min. ; how many rounds will 37 riflemen shoot in $4 \frac{1}{4}$ hrs. at the same rate?
(12) A sum of money is divided into 4 parts, which are to each other as the numbers $1,2,3,4$; and a person, who receives $\frac{8}{8}$ of each share, obtains altogether $\$ 12.60$; find the sum of the several shares?
(13) If 15 cows or 28 , sheep can graze a field of 5 ac . in 11 days, how many days ought a similar field of 18 ac. to serve 33 cows and 20 sheep?
(14) Divide $\$ 94.50$ between A and B; (1) giving A half as much again as B; (2) giving A 's share less half A 's share to B.
(15) A bankrupt owes to one creditor 500 dollars, to each of two others $\$ 250$, to each of three others $\$ 75$: his property is worth $\$ 625$. How much can he pay in the dollar, and how much will the first creditor receive?
(16) A mine is worth $\$ 10000$; a person for ${ }_{-\frac{3}{6}}$ of his share receives $\$ 750$. What part of the mine did he possess?
(17) A school is composed of three divisions; there are $\frac{1}{2} \frac{2}{5}$ ths of the whole number of boys in the first, $\frac{1}{5}$ th in the second, and the rest, 80 in number, in the third: how many boys are there altogether?
(18) A can do a piece of work in 10 days, which B could do in 12 ; in what time would they do it together?
(19) A father left to the elder of his two sons $\frac{13}{2}$ of his estate, and $\frac{13}{25}$ of the remainder to the younger, and the residue to the widow; find their respective shares, it being found that the elder son received $\$ 1690$ more than the younger.
(20) Divide 85 ac .2 ro. of land between A, B, and C, so that $B^{\prime} s$ share $=\frac{6}{11}$ of A^{\prime} 's share, and that $C^{\prime} s$ share shall be 9 ac . more than the united shares of A and B.
(21) A fine of $\$ 14.40 \mathrm{had}$ to be raised among a number of boys; one-third paid 18 cents each, as many more 30 cents each, and the remainder 42 cents each. How many boys were there?
(22) A cistern has 3 pipes in it, by one of which it could be filled in 3 minutes, and by the other two it could be emptied in 6 and 7 minutes respectively; in what time will it be filled, if they are all open together?
(23) A and B together can do a piece of work in 30 days, B by himself can do it in 70 days; (1) in what time could A do it by himself ? (2) how much more of the work does A do than B, when they work together?
(24) A and B can do a piece of work in $6 \frac{2}{3}$ days, A and C in $5 \frac{1}{2}$ days, and A, B, and C in $3 \frac{3}{4}$ days. In how many days can A do it alone?
(25) There are 4 casks of different sizes. The 1st is filled with liquid, the rest are empty. The 2nd cask is filled from the 1st, and $\frac{4}{7}$ ths of the origina? liquid in the 1st remains. The 3rd is then filled from the 2nd, and $\frac{1}{\text { th }}$ of the liquid in
the and remains. The liquid in the third is then poured into the 4th, and fills $\frac{9}{16}$ ths of it. Had the 3rd and 4th casks been filled from the contents of the 1st, 15 gallons would still have remained in the 1st. Find the size of each cask?
(26) A in 2 days can do as much work as B can do in 3 days; together they take 12 days to do a certain work. In what time would A alone have done it?

DECIMALS.

85. Figures in the units' place of any number express their simple values, while those to the left of the units' place increase in value tenfold at each step from the units' place; therefore, according to the same notation, as we proceed from the units' place to the right every successive figure would decrease in value tenfold. We can thus represent whole numbers or integers and certain fractions under a uniform notation by means of figures in the units' place and on each side of it; for instance, in the number 5673.241 , the figures on the left of the dot represent integers, while those on the right of the dot denote fractions. The number written at length would stand thus:

$$
5 \times 1000+6 \times 100+7 \times 10+3+\frac{2}{10}+\frac{4}{100}+\frac{1}{1000}
$$

The dot is termed the decimal point, and all figures to the right of it are called Decimals, or Decimal Fractions, because they are fractions with either 10,100 or $10 \times 10,1000$ or $10 \times 10 \times 10, \& c$., as their respective denominators.
The extended Numeration Table will be represented thus:
86. . 10, called the first Power of 10 , is written thus, 10^{1}.
10×10, or 100 , called the second Power of 10 , is written thus, 10^{2}.
$10 \times 10 \times 10$, or 1000 , called the third Power of 10 , is written thus, 10^{3}, and so on; similarly of other numbers: thus the fifth power of 4 is $4 \times 4 \times 4 \times 4 \times 4$, and is written thus, 4^{5}.

The small figures $1,2,3, \&<c$., at the right of the number, a little above the line, are called Indices.

$$
\text { 87. } \begin{aligned}
306 & =\frac{3}{10}+\frac{0}{100}+\frac{6}{1000}=\frac{3 \times 100}{10 \times 100}+\frac{0 \times 10}{100 \times 10}+\frac{6}{1000} \\
& =\frac{300}{1000}+\frac{0}{1000}+\frac{6}{1000}=\frac{306}{1000} .
\end{aligned}
$$

Again, $0306=\frac{0}{10}+\frac{3}{100}+\frac{0}{1000}+\frac{6}{10000}=\frac{0 \times 1000}{10 \times 1000}$
$+\frac{3 \times 100}{100 \times 100}+\frac{0 \times 10}{1000 \times 10}+\frac{6}{10000}=\frac{0+300+0+6}{10000}=\frac{306}{10000}$.
Again, $80 \cdot 306=80+\frac{306}{1000}=\frac{80000+306}{1000}=\frac{80306}{1000}$.
Hence to convert decimals to vulgar fractions: from the above examples we deduce the following:
88. Rule. Write the figures which compose the decimal as numerator, and for denominator 1 , followed by as many cyphers as there are figures after the decimal point.

Ex. LIII.

Express as vulgar fractions,
(1) $\cdot 3 ; \cdot 12 ; \cdot 19 ; \cdot 301 ; \cdot 270 ; \cdot 5653$.
(2) $504 ; \cdot 73201 ; \cdot 791003 ; \cdot 03 ; \cdot 0045$.
(3) $300 ; 18 \cdot 741 ; 2 \cdot 1 ; \cdot 000001 ; 5 \cdot 0007$.
(4) $347 \cdot 02007 ; 500 \cdot 005 ; 5 \cdot 60746805 ; \cdot 0000500$.
(5) $29.0050 ; 20.607 ; 5.00038$.
89. Any fraction, having 10, or any power of 10 , for its denominator, as $\frac{800036}{10000}$, may be expressed thus, 80.0036 .
For $\frac{800036}{10000}=80+T^{3} 0 \pi+\frac{6}{10000}=80+\frac{9}{10}+\frac{0}{100}+\frac{3}{100 \pi}+T 0^{6} 000$

$$
=80.0036 \text { (by the Notation we have assumed). }
$$

90. $\cdot 241=\frac{241}{1000}, \cdot 0241=\frac{241}{10000}, \cdot 2410=\frac{2410}{10000}=\frac{241}{1000}$.

We see that $241, \cdot 0241$, and 2410 are respectively equivalent to fractions which have the same numerator, and the
first and third of which have also the same denominator, while the denominator of the second is greater. Hence '241 is equal to 2410 , but 0241 is less than either.

The value of a decimal is therefore not affected by affxing cyphers to the right of it; but its value is decreased by prefixing cyphers: which effect is exactly opposite to that which is produced by affixing and prefixing cyphers tc integers.
91. A decimal is multiplied by 10 , it the decimal point be removed one place towards the right hand; by 100, if two places; by 1000, if three places; and so on: and conversely, a decimal is divided by 10 , if the point be removed one place to the left hand; by 100 , if two places; by 1000 , if three places; and so on.

Thus, $5.6 \times 10=\frac{56}{10} \times 10=56 ; 5.6 \times 1000=\frac{56}{10} \times 1000=5600$. $5.6 \div 10=\frac{56}{10} \times \frac{1}{10}=\frac{56}{100}=56 ; 5.6 \div 1000=\frac{56}{10} \times \frac{1}{1000}=\frac{56}{10000}$ $={ }^{\circ} 0056$

Ex. LIV.

Write down as decimals,
(1) $\frac{4}{10} ; \frac{23}{10} ; \frac{235}{10} ; \frac{4}{100} ; \frac{147}{1000} ; \frac{47}{1000 .}$
(2) $\frac{5001}{10} ; \frac{951}{100} ; \frac{951}{100000} ; \frac{502}{102} ; \frac{502}{100000}$.
(3) $\frac{35600}{1000} ; \frac{1700791}{100000} ; 1 \frac{50005}{1000000} ; 10000000 ; \frac{2076854}{100000}$; T00 $\frac{5305}{0} 0 \frac{5}{0} 0000$.
(4) Seven-tenths; thirty thousandths.
(5) Three hundred and three thousandths; one ten thousandth.
(6) Four, and five hundred and four millionths; seventy ten millionths.
Express in words the meaning of,
(7) $6 ; \cdot 17 ; \cdot 0$.
(9) $35 \cdot 00205$;
(8) $\cdot 007 ; \cdot{ }^{-700 ;} ; 6.3004$.
(10) Multiply $\cdot 3, \cdot 13, \cdot 013,54 \cdot 0003,7420 \cdot 1$, each separately by $10,100,10000$, and by ten millions.
(11) Divide $5 \cdot 362, \cdot 3,70 \cdot 0107$, and 5000 , each separately by 10,100 , and by 1000000 .
(12) What is the quotient of 2.03 by a million?

ADDITION OF DECIMALS.

92. Rule. Place the numbers under each other, units under units, tens under tens, \&c., tenths under tenths, \&c.; so that the decimals be all under each other. Add as in
whole numbers, and place the decimal point in the sum unler the decimal point above.
Ex. Add together 2•3, 056, 37, and $3 \cdot 60015$.
By the Rule.
```
2:3
.056
7%
3.60015
2.95615
```

By fractions.

$$
\begin{aligned}
2 \cdot 3+\cdot 056+37 & +3 \cdot 60015=\frac{23}{10}+\frac{56}{1000}+\frac{37}{1}+\frac{360015}{100015} \\
& =\frac{2300000}{10000}+\frac{55000}{00000}+\frac{3700000}{100000}+\frac{360015}{100010} \\
& \left.=\frac{4295615}{100000}=42.95615 \text { (Art. } 89\right) .
\end{aligned}
$$

Ex. LV.
Add
(1) 1.035 -00643 2%. 2:2146 530.09
(2) 24.
$185 \cdot 3009$ -98795
3.098
$\cdot 70006$
(3)

$186 \cdot 8$
$35 \cdot 2779$
$9000 \cdot$
$9 \cdot 201$
830.05764

(4) 9425 . 008 187.96009 57.3916 5.998347

Add together, and verify each result by fractions:
(5) $12 \cdot 5,20 \cdot 043,7 \cdot 63201$, and $\cdot 0561$.
(6) $0573,15,2 \cdot 04$, and $567 \cdot 98075$.
(7) $505 \cdot 0003,13 \cdot 98,5853.097$, and 960 .
(8) $6.00734,54,15 \% 70087012,8.00003$, and 9.987789 .
(9) Find the sum of thirteen hundredths, seven and three en-thousandths, four hundred and eight and five tenths, ine hundred and seventy-eight, and eight hundred and ight ten-thousandths.

SUBTRACTION OF DECIMALS.

93. Rule. Place the less number under the greater, nits under units, tens under tens, \&c., tenths under tenths, c.; suppose cyphers to be supplied if necessary in the pper line to the right of the decimal.
Then subtract as in whole numbers, and place the decimal oint in the remainder under the decimal point above.
Ex. Subtract 3.084 from 5%.
By the Rule,
$5 \cdot 7$
$\frac{3.084}{2 \cdot 616}$
By fractions,

Ex. LVI.
(1) From $5 \cdot 345$ Take 3.087
(2) 26.002
$18 \cdot 9564$
(3) 15.67

9•7003
(4) 21
19.900 g
(5) Find the difference between, verifying each result b fractions, (1) 13 and $1.3 ; 2.07$ and 207. (2) 76.3 and 7.63 $67 \cdot 3$ and 67.5803 . (3) 501 and $428 \cdot 90456$; 53.24 and 5326 (4) $4 \cdot 42$ and $\cdot 00042 ; \cdot 0000007$ and $\cdot 007$.
(6) By how much does 23 exceed the difference betwee: $2 \cdot 3$ and 23 ?
(7) Find the difference (1) between one-tenth and fiv thousandths; (2) between twenty and nine thousandths an twenty-nine thousandths.
(8) A person who has seven-tenths of a ship, sells eighty seven thousandths of it, how much has he left?
(9) Find the least fraction, which added to the sum 0 $12, \cdot 12, \cdot 012$, and 210 , will make the result a whole numbe
(10) Find the value of (1) $31 \cdot 25-3 \cdot 059+235 \cdot 6758-$ $184 \cdot 0003$; (2) $215 \cdot 263-(7 \cdot 0004-05)-(45 \cdot 08+80 \cdot 3007)$.

MULTIPLICATION OF DECIMALS.

94. Rule. Multiply the numbers together as if the were whole numbers, and point off in the product as man decimal places as there are decimal places in both the mu, tiplicand and the multiplier; if there are not figures enougl supply the deficiency by prefixing cyphers.
Ex. Find the product of (1) $7 \cdot 35$ by 23 , (2) of 8.27 b -0002.
By the Rule,
$7 \cdot 35$
$\quad 23$
2205
By fractions,
1470
1.6905
(2) 8.27
$\frac{.0002}{.001654} 8.27 \times .0002=\frac{127}{100} \times \frac{2}{10000}=\frac{1654}{1000000}=0001654$.
Ex. LVII.

(3) 40.004
(4) $680 \cdot 35$
(5) 2060
2.03
$\cdot 0049$
$\cdot 2060$

Multiply, and verify each result by fractions:
(6) 60.71 by $11 ; 57.068$ by $2.004 ; 5.36$ by $700 ; 7.01509$ by $50 \cdot 805$.
(7) $48 \cdot 067$ by $00037 ; 54 \cdot 3047$ by $9 \cdot 00005 ; 2 \cdot 568$ by $\cdot 00025$.
(8) Find the continued product (1) of $5 \cdot 5, \cdot 055,550$, and $\cdot 0055$; (2) of $1 \cdot 75,6 \cdot 2,85$, and $\cdot 0004$.
(9) How many yds. of cloth are there in 7.35 pieces of cloth, each of which contains 37.85 yds ?
(10) A man eats 95 of a loaf daily; how many loaves will he eat in the year 1866?

DIVISION OF DECIMALS.

95. First. When the number of decimal places in the dividond exceeds the number of decimal places in the divisor.

Rule. Divide as in whole numbers, and mark off in the quotient a number of decimal places equal to the excess of the number of decimal places in the dividend over the number of decimal places in the divisor; if there are not figures sufficient, prefix cyphers as in Multiplication.
Ex. 1. Divide (1) $2 \cdot 1125$ by $8 \cdot 45$, (2) $\cdot 0021125$ by $84 \cdot 5$. By the Rule,
(1) $8 \cdot 45) 2 \cdot 1125(25$

By fractions,
$\frac{1690}{4225}$
4225

$$
\begin{aligned}
& 2 \cdot 1125 \div 8.45=\frac{215255}{10000} \div \frac{845}{100}=\frac{24125}{10006} x \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& =-25 \text {. }
\end{aligned}
$$

No. of dec \cdot. places in quotient $=4-2=2, \therefore$ quotient $=$ ' 25 .
(2) $84 \cdot 5) \cdot 0021125(25$

1690	. $0021125 \div 84.5=\frac{21125}{10000000} \div \frac{845}{10}$
25	$0 \times \frac{10}{845}=\frac{21125}{845^{5}} \times \frac{1010}{10000}$
4225	$\frac{10020000}{1025}$

No. of dec ${ }^{1}$. places in quotient $=7-1=6, \therefore$ quotient $=000025$.
96. Secondly. When the number of decimal places in the fividend is less than the number of decimal places in the divisor.
Role. Affix cyphers to the dividend until the number of decimal places in the dividend equals the number of decimal places in the divisor; the quotient up to this point of he division will be a whole number.
If there be a remainder, and the division be carricd on
further, the figures in the quotient after this point will be decimals.
Ex. 2. Divide 2112.5 by 845.
By the Rule,
-845) 2112.500 (2500

00

By fractions,
$2112 \cdot 5 \div 845=\frac{21125}{102} \div \frac{845}{1000}=\frac{21125}{10}$
$\times \frac{1000}{846}=\frac{21125}{845} \times \frac{1000}{10}=25 \times 100=2500$.

Ex. LVIII.

Divide and verify each result by fractions.
(1) $33 \cdot 372$ by 2%. (2) 33372 by $\cdot 27$. (3) 33372 by 27 .
$\begin{array}{ll}\text { ((4) } 33372 \text { by } 27 . & \text { (5) } 33372 \text { by } 00027 .\end{array}$
(6) 561.0833 by 323.
(7) 5610833 by 323 .
(8) $56108: 33$ by $3: 23$.
(9) $5610 \cdot 833$ by 0000323 .
(10) $552: 5325$ by $3 \cdot 25$, and also by 00325 .
(11) $2 \cdot 419003$ by $464: 3$, and also by $\cdot 004643$.
(12) 000081 by $2 \cdot 7$, by $\cdot 0027$, and also by 27000 .
(13) $218051 \cdot 081884$ by $2 \cdot 00099$, and by 200099.
(14) 121 by 11 , by 1100 , and also by 0011 .
(15) $393 \cdot \% 2$ by 000193 , by $1 \cdot 93$ and also by 193000 .
(16) $590 \cdot 4825$ by 03275 , and also by 327500 .
(17) $213 \cdot 419596$ by $1 \cdot 00103$, and also by 100103.
(18) Divide the sum of twenty-four ten thousandths and twenty-four hundredths by twenty-four.
(19) Two ten thousandths by twenty-five hundredths.
(20) If a man mow 1.75 ac . of grass in one day, how long will it take him to mow 21.875 ac. ?
(21) How often is 75 min . contained in 64.125 min .
(22) The product of two numbers is seventy thousand two hundred and forty-two hundred millionths; one of the numbers is twenty-three thousandths; find the other number.

Ex. 3. Divide $240 \cdot 13$ by $73 \cdot 4$ to three places of decimals.
Before dividing, affix two cyphers to the dividend, so as to make the number of decimal places in the dividend exceed
the number of decimal places in the divisor by 3 ; if we divide up to this point, the quotient will contain 3 decimal places by Rule 1 .
$73 \cdot 4$) $240 \cdot 1300(3 \cdot 271$
$\frac{220}{1993}$
$\frac{1468}{5250}$
$\frac{5138}{1120}$
$\frac{734}{386}$

$$
\begin{aligned}
& \text { By fractions, } \\
& 240.13 \div 73 \cdot 4=24013 \div \div \frac{734}{100} \\
& =\frac{24013}{100} \times \frac{10}{734}=2 \frac{4013}{734} \times \frac{10}{100} \\
& =\frac{24013}{734} \times \frac{100}{1000}
\end{aligned}
$$

(we multiply num ${ }^{\mathrm{r}}$. and den ${ }^{\mathrm{r}}$. by 10 , to make den ${ }^{\mathrm{r}} .1000$, since the quotient is to contain three decimal places)

$$
=\frac{24013}{73} \frac{300}{4} \times \frac{1}{1000}=\frac{3271}{1000}=3271 .
$$

Ex. LIX.

Divide to three places of decimals, and verify each result by fractions,
(1) 1.9 by 3 , by $\cdot 03$, and by 300 .
(2) $4 \cdot 937$ by 159 , by $1 \cdot 59$, and by 1590 .
(3) 329744 by 53 , by $\cdot 0053$, and by 5300 .
97. Certain Vulgar Fractions can be expressed accurately as Decimals.

Rule. Reduce the fraction to its lowest terms; then place a dot after the numerator and affix cyphers for decimals; divide by the denominator, as in division of decimals, and the quotient will be the decimal required.

Ex. 1. Convert $\frac{8}{4}, \frac{3}{40}, \frac{3}{400}$, each into a decimal.
4) 3.00 No. of dec ${ }^{1}$. places in quotient $=$ no. of dec ${ }^{1}$. places
.75 in dividend-no. of decl. places in divisor $=2-0=2$.
$\frac{3}{40}=\frac{8}{4} \div 10=75 \div 10=.075 ;{ }^{4} 0{ }^{3} 0=\frac{8}{4} \div 100=75 \div 100=.0075$.
Ex. 2. Reduce $\frac{5}{16}$ to a decimal.
16) $5 \cdot 0000(3125$

48
20
16
40
32
80
80

$$
\text { or thus, } 16\left\{\begin{array}{l|l}
4 & \frac{5.00}{4} \left\lvert\, \frac{1.2500}{.3125}\right.
\end{array}\right.
$$

$$
\because \frac{5}{16}=3125
$$

Ex. 3. Convert $5_{\overline{6} \frac{5}{0} \overline{0}}+75$ of $\frac{6}{5}$ of $7 \frac{1}{2}$ into a decimal.

$$
\begin{aligned}
& 640\left\{\begin{array}{r|r}
8 & \frac{5.000}{8} \\
10 & \frac{625000}{.078125} \\
\hline .0078125
\end{array}\right. \\
& .75 \text { of } \frac{6}{5} \text { of } 7 \frac{1}{2}=75 \text { of } \frac{6}{8} \text { of } \frac{15}{2} \\
& =75 \times 9=6.75 . \\
& \therefore 5_{\frac{5}{6} \overline{4} 0}+75 \text { of } \frac{6}{5} \text { of } 7_{\frac{1}{2}}=5 \cdot 0078125+6.75=11.7578125 \text {. }
\end{aligned}
$$

Ex. LX.

Reduce to decimals,

- (1) $\frac{1}{4} ; \frac{3}{5} ; \frac{6}{4} ; 6 \frac{1}{5} ; \frac{39}{5} ; \frac{5}{8} ; 5 \frac{3}{10}$. (2) $\frac{3}{16} ; 8 \frac{15}{16} ; \frac{19}{20} ; \frac{31}{32} ; 77 \frac{37}{40}$.
(3) $\frac{47}{60} ; 4 \frac{7}{125} ;{ }^{\frac{3}{6} 0} ; \frac{-99}{625} ; 84_{10} \frac{3}{24}$.
(4) $\frac{5}{8}$ of $\frac{13}{16} ; 3 \frac{1}{8}$ of $2 \frac{4}{5} ; 3 \frac{1}{2}$ of $4 \frac{1}{4}$ of $5 \frac{1}{8}$.
(5) $1 \frac{3}{5}-\frac{13}{16}+v_{4} \frac{1}{0} ; 11 \frac{1}{2}+75$ of $\frac{24}{25}$ of $6 \frac{3}{9}$.

98. To convert a vulgar fraction int a decimal, we have in fact, after reducing the fraction to its lowest terms and affixing cyphers to the num ${ }^{r}$., to ride 10 , or some multiple of 10 or of its powers, by the denr.; now $10=2: 5$, and these are the only factors into which 10 can be broken up; therefore, when the fraction is in its lowest terms, if the denr. be not composed solely of the factors 2 and $5, c$ one of them, or of powers f 2 and 5 , or one of them, then the division of the num ${ }^{r}$. by the den ${ }^{r}$. will never terminate. Decimals of this kind are called indeterminate decimals, and tl. e also called Circulating, Repeating, or Recurring Dectimals, from the fact that when a decimal does not terminate, the same figures must come round again, or recur, or be repeated: for since we always affix a cypher to the dividend, whenever any former remainder recurs, the quotient will also recur.
99. Pure Circulativg Decimals are those which recur from the beginning: thus, $333 . ., 2727 \ldots$, are pure circulats. dec ${ }^{18}$.

Mixed Circulating Decimals are those which do not begin to recur, till after a certain number of figures: thus, $\cdot 128888 .$. , $0113636 \ldots$, are mixed circulats. dec ${ }^{1 \text { s }}$.

The circulating part is called the Period or Repetend.
Pure and mixed circulating decimals are generally written
down only to the end of the first period, a dot being placed over the first and last figures of that period.

Thus $\dot{3}$ represents the pure circulatg. dect. $\quad 333$. $\cdot 3 \dot{6}$
-3636. .
. 639
-639639..
-138
$\cdot 0113 \dot{6}$
-1388. . $\cdot 0113636$.
100. Pure Circulating Decimals may be converted into their equivalent Vulgar Fractions by the following Rule.

Rule. Make the period or repetend the numerator of the fraction, and for the denominator put down as many nines as there are figures in the period or repetend.

This fraction, reduced to its lowest terms, will be the fraction required in its simplest form.
$E x^{8}$. Reduce the following pure circulatg. dec ${ }^{\text {ls. }} ., \dot{3}, \dot{2} \dot{\gamma}$, $\cdot \dot{8} 5714 \dot{2}$, to their respective equivalent vulgar fractions.
By the Rule, $\cdot \dot{3}=\frac{3}{9}=\frac{1}{3} ; \quad \dot{2} \dot{\gamma}=\frac{27}{99}=\frac{3}{11}$.
101. Mixed Circulating Decimals may be converted into their equivalent Vulgar Fractions by the following Rule.

Rule. Subtract the figures which do not circulate from the figures taken to the end of the first period, as if both were whole numbers.

Make the result the num ${ }^{\mathrm{r}}$.; and write down as many nines as there are figures in the circulating part, followed by as many zeros as there are figures in the non-circulating part, for the denominator.

Ex ${ }^{3}$. Reduce the following mixed circulatg. dec ${ }^{\text {ls }}$., $1 \dot{4}$, $\cdot 013 \dot{8}, 2 \dot{4} 1 \dot{8}$, to their respective equivalent vulgar fractions.
By the Rule, $\cdot 1 \dot{4}=\frac{14-1}{90}=\frac{13}{90} ; \cdot 013 \dot{8}=\frac{138-13}{9000}=\frac{125}{9000}$
$=\frac{1}{72} ;{ }^{2} \dot{4} 1 \dot{8}=\frac{2418-2}{9990}=\frac{2416}{9990}=\frac{1208}{4995}$.
102. In the Addition and Subtraction of circulating decimals, where the result is only required to be true to a certain number of decimal places, it will be sufficient to carry on the circulating part to two or three decimal places more than the number required: taking care that the last figure
retained be increased by 1 , if the succeeding figure be 5 , or greater than 5. In the Multiplication and Division, however, of circulating decimals, it is always preferable to reduce the circulating decimals to Vulgar Fractions, and having found the product or quotient as a Vulgar Fraction, then, if necessary, to reduce the result to a decimal.

Ex. LXI.
Reduce to circulating decimals:
(1) $\frac{2}{3} ; \frac{1}{9} ; \frac{6}{7} ; \frac{7}{12} ; \frac{11}{15}$. (2) $6 \frac{3}{81} ; 7 \frac{5}{37} ; 100 \frac{7}{44} ; 2 \frac{15}{17}$. (3) $11_{4 \frac{67}{496}} ; 23_{\frac{1}{1} \frac{17}{375}}$.

Reduce to their equivalent vulgar fractions: (4) $\dot{2} ; \dot{0} \dot{5}$; - $\dot{8} ; \quad 1 \dot{5} \dot{6} ; \cdot 027 \dot{0} 2 \dot{7} ; \cdot \dot{2} 8571 \dot{4}(5) \cdot 56 \dot{6} ; \quad 7 \dot{4} \dot{3} ; \quad \cdot 2023 \dot{5} ;-19 \cdot 30 \dot{5} ;$ $20 \cdot 0291 \dot{6}$. (6) $6 \cdot 18153153$; $15 \cdot 6923076992307$.

Find the value correct to six places of dec 18 of (7) $4 \dot{3}+$ $16.4 \dot{5}+75 \cdot 73 \dot{5} \dot{2}$.
(8) $3 \cdot 2 \dot{3}+26 \cdot 79 \dot{6}+7 \cdot \dot{4} 1 \dot{3}$
(9) $3 \cdot 856 \dot{4} \dot{4}-2 \cdot 038 \dot{\%}$. (10) $52 \cdot 8 \dot{6}-8 \cdot 37 \dot{2} 3 \dot{5}$.
. Find the value of (11) $7 \cdot \dot{6} \times 5 \cdot \dot{3} ; \cdot \dot{3} 5 \dot{1} \times 7 \cdot 7 \dot{6} ; \cdot 1 \dot{3} \times \cdot 2 \times \cdot \dot{4}$. (12) $6 \cdot \dot{7} \div 2 \cdot \dot{6} ; \quad 26 \dot{2} \dot{7} \div 1 \cdot 92 \dot{6} ; \quad 3 \dot{\gamma} \dot{1} \div 5 ; 42 \cdot 0463 \div 1 \cdot \dot{3} \dot{6}$.

REDUCTION OF DECIMALS.

103. To reduce a decimal of any denomination to its proper value.
Rule. Multiply the given decimal by the number of units of the next lower denomination which make one of the given denomination, and point off for decimals as many figures in the product, beginning from the right hand, as there are figures in the given decimal.

The figures on the left of the decimal point will represent the whole numbers in the next denomination.

Proceed in the same way with the decimal part for that denomination, and so on.
Ex. 1. Find the value of 4625 of $£ 1$.
By the Rule,
£.

-4625
$\frac{20}{2}$
$9 \cdot 2500$ s.
$\frac{12}{3 \cdot 0000 d .}$

$\therefore £ \cdot 4625=95.3 d$.

By fractions,

$$
\begin{aligned}
£ 4625 & =\left(\frac{4625}{10000} \times 20\right) s .=\left(\frac{925 \varnothing \emptyset}{100 \phi \emptyset}\right) s . \\
& =91^{25} 5 .=9 s .+\left(\frac{25 \times 12}{100}\right) d . \\
& =9 s+\frac{3 \emptyset \emptyset}{1 \phi \emptyset} d .=9 s .3 d .
\end{aligned}
$$

Note. If the quantity, the value of whose decimal part is to be found, be a compound quantity, it must be reduced to me denomination before the rule is applied.
Ex. 2. Find the value of $7 \cdot 405$ of 15 mi ., 5 fur., 31 po.

Ex. 3. Find the value of 5416 of $4 \frac{1}{2}$ cwt.
1st method.

2d. method.
$\stackrel{24.7497001 \mathrm{lbs}}{246}=\left(\frac{4875}{9000} \times \frac{9}{2}\right) \mathrm{cwt} .=\left(\frac{13}{24} \times \frac{9}{2} \times 100\right) \mathrm{lbs}$.
$11 \cdot 995200 \mathrm{oz}$.
$=243 \mathrm{lbs} ., 12 \mathrm{oz}$.
\therefore value $=243 \mathrm{lbs} ., 12 \mathrm{oz}$. nearly. The 2nd method is the better one in most cases.

Ex. LXII.

Find the value of,
(1) 75 of $\$ 1$.
(2) 875 of $\$ 5$.
(3) 625 of $\$ 1$.
(4) 625 of 1 cwt .
(5) 375 of a mi.
(6) 175 of a ton.
(7) 46875 of £2. 10 s.
(8) 0625 of $7 s .6 d$.
(9) 3.175 of 1 lb . Troy.
(10) $4 \cdot 65$ of $4 \frac{1}{2} \mathrm{ac}$.
(11) 10.04 of $2 \frac{1}{2}$ ro.
(18) $5 \cdot 00875$ of 3 wks .4 dys.
(12) $2 \cdot 56$ of $10 s .11 \frac{1}{4} d$.
(14) 16.504 days.
(15) 3.05 of 5 lbs. 2 Э.

(16) 3.0085 of $£ 4.1 s$.

(17) 7.034 of 1 ac., 3 ro., 5 po.
(18) $5 \cdot 005$ of $16 \mathrm{lbs} ., 1$ oz., 6 grs. Troy.
(19) $\quad \dot{3}$ of $\$ 2$. (20) $\dot{5} \dot{4}$ of $16 \mathrm{~s} .6 d$. (21) $24 \dot{3}$ of a ton.
(22) $6 \cdot 83$ of $£ 5$. (23) $2 \cdot 383$ of $2 \frac{1}{2} \mathrm{lbs}$. T'y. (24) $6 \cdot 2$ of a c. yd. $\begin{array}{ll}\text { (25) } 18 \cdot 7 \dot{2} \text { of an ac. } & \text { (26) } 2 \cdot 063 \text { of } 1000 \text { guineas. }\end{array}$
(27) $£ \cdot 634375+025$ of $25 s+3 \cdot 1 \dot{6}$ of 30 s.
(28). $\cdot \dot{6}$ of an ac. +625 of a ro. $-\frac{4}{15}$ po.
(29) $6 \cdot \neq \dot{7} 1428 \dot{5}$ of $1 s .9 d .-083 \dot{3}$ of $£ 7.4 s .+25119047 \dot{6}$ of $6 s .8 d$. 104. To reduce a number or fraction of one or more denominations to the decimal of another denomination of the same kind.

Rule. Reduce the given number or fraction to a fraction of the proposed denomination; and then reduce this fraction to its equivalent decimal.
Ex. 1. Reduce $\frac{2}{5}$ of $£ 1$ to the decimal of a guinea.
$\frac{2}{5}$ of $£ 1=\frac{40}{5} s .=8 s .1$ guin $^{2} .=21 s ., \therefore$ fraction req ${ }^{d}=\frac{8}{21} \cdot \therefore$
Now $8 \div 21=38095 \dot{2} 38 \ldots, \therefore$ dec 1. req ${ }^{\text {d }} .=38095 \dot{2}$.
Ex. 2. What decimal of $£ 2$ is 11 s. $9 \frac{8}{4} d$.?

$$
\text { 11s. } 9 \frac{3}{4} d .=567 q . ; £ 2=1920 q .
$$

 or thus,

Ex. LXIII.

Reduce,

(1) 1 qr., 5 lbs. to the dec ${ }^{1}$. of a cwt.
(2) $\$ 2.50$ to the dec . of $\$ 10$.
(3) 3 hrs., 30^{\prime} to the decl. of a day.
(4) 3 ro., 11 per. to the dec ${ }^{1}$. of an acre.
(5) $6 \frac{1}{2} d$. to the dec ${ }^{1}$. of a shilling.
(6) $3 \frac{1}{2} \mathrm{in}$. to the decl. of 2 furlongs.
(7) $2 \mathrm{oz} ., 13$ dwt. to the dec ${ }^{1}$. of a lb .
(8) 4 lbs., 2 sc . to the decl. of an oz.
(9) 2 sq. ft., 73 in . to the decl. of a sq. yd.
(10) 1 lb . Troy to the dec ${ }^{\text {. of }}$ a lb . Avoir.
(11) 10 s .9 d . to the dec^{1}. of $£ 1$
(12) 17 s . 7 d . to the dec . of $£ 1$.
(13) 2 wks., $6 \frac{1}{4}$ dys. to the dec ${ }^{1}$. of 4 dys., 3 hrs .
(14) $2 \mathrm{lbs} ., 14 \mathrm{oz}$. to the dec^{1}. of 18 lbs .

Ex. LXIV.

MISCELLANEOUS EXAMPLES.

PAPER 1.

(1) Define a unit; a number. Into what classes are numhers divided? Explain the difference between them. Define Notation and Numeration.
(2) Write down in words the following numbers: 70340; 125004321; 5607605213403;
and express by numbers eight hundred and ten thousand four hundred and one; sixty-four billions two millions six hundred and forty-six thousand and two.
(3) (1) Add together one million eighteen thousand two hundred and sixty-nine; twenty thousand nine hundred and seventy-nine ; one hundred millions one thousand and fifty; fifty-four billions three thousand; four hundred millions and six; nine hundred and ninety-nine thousand nine hundred and ninety. (2) Subtract 300725 from 400001.
Explain clearly why you carry 1 when you borrow 10.
(4) (1) Multiply 268936785 by 5689 , and verify by division. (2) Divide 27027027027 by 6974, and verify by multiplication.
(5) The product is 99626417315464 , the multiplier 72568 ; what is the multiplicand?
(6) In $12 \mathrm{mi} ., 2$ fur., 6 per., how many inches?

Shew that your result is correct.

PAPER II.

(1) When is a number said to be a multiple of another number? What is a common multiple? What is the least common multiple of two or more numbers? Find L. c. m. of 27, 36, $42,48$.
(2) Explain the meaning of the signs,,,$+-=$. When can questions in Addition be performed by Multiplication.
(3) A cask is required to be exactly filled by any one the following measures: 1 pint, 2 pints, 3 pints, 5 pints, pints, or 9 pints; find the smallest cask for the purpose.
(4) The forewheel of a wagon is 8 feet round, and tl hind-wheel fourteen; how many feet will the wagon trav over before each wheel shall have made a number of cor plete turns? How often will this happen in 1000 feet?
(5) The length and cost of building the undername Canadian Canals, were as follows: The Rideau Canal, 121 miles, $\$ 4380000$; the St. Lawrence Canal, $40 \frac{1}{2}$ miles, $\$ 855$ 000 ; the Ottawa Canal, $10 \frac{1}{2}$ miles, $\$ 1500000$; the Chamb: and St. Ours Lock, $11 \frac{1}{2}$ miles, $\$ 550000$; the Welland Can and feeder, $50 \frac{1}{2}$ miles, $\$ 7000000$; the Burlington and De jardins Bridge cost $\$ 560000$. Find (1) the total length c the above canals, (2) their total cost, and (3) the average co per mile, excluding the Burlington and Desjardins Bridg
(6) Define a vulgar fraction? Distinguish between vulgar and decimal fraction? Give an example of the di ferent kinds of vulgar fractions?

PAPER III.

(1) Simplify (1) $2 \frac{1}{4}\left(\frac{1}{6}+\frac{2}{8}\right)+\frac{4}{9}\left(\frac{2}{3}-\frac{1}{7}\right)$.
(2) $2 \frac{1}{4}\left\{\left(\frac{1}{6}+\frac{2}{8}\right)+\frac{4}{9}\left(\frac{2}{8}-\frac{1}{8}\right)\right\}$.
(2) A person who owns $\frac{1}{2}$ of a steam-vessel, sells $\frac{8}{4} \mathrm{C}$ his share for $\$ 15000$; what is the remaining part of his shat worth?
(3) Simplify (1) $\frac{7}{12}\left(8 \frac{1}{4}-2 \frac{1}{2}\right)-\frac{7}{2}\left(\frac{8}{8}-\frac{1}{11}.\right)$
(2) $\frac{7}{12}\left\{\left(8 \frac{1}{4}-2 \frac{1}{2}\right)-\frac{1}{2}\left(\frac{8}{8}-\frac{1}{11}\right)\right\}$.
(4) A clerk copied 55 of $£ 5$ instead of $5 \cdot 5$ of $£ 5$, wha was the amount of the error?
(5) It takes 87 yds . of carpet, 1.25 yd . wide, to cover room, how many more yds. will it take, if the width be γ yd ?
(6) A gave 5 of an orange to $B ; \dot{3}$ of what remaine to C; how much of the orange had A left for himself'?

PAPER Iv.
(1) A drover sold $\frac{1}{3}$ of his flock to $A, \frac{1}{5}$ of the remainde to B, and the rest to C. How many had he at first, suppos ing C got 32 ?
(2) Add together $13 \frac{1}{2}, 56 \frac{3}{4}$, and $14 \frac{5}{8}$ by vulgar and deci mal fractions, and shew that the results coincide.
3) The product of two decimals is 033372 ; one of them 3.7 ; find the other.
4) Add together £27. 6s. $9 \frac{1}{2} d$. ., $\$ 17.22$, £19. 5s. 8d., 98.05 , £3. 12s. $7 d$. The answer to be in dec ${ }^{1}$. currency.
5) At a football match there were 875 as many on one e as on the other, and the players on both sides were nal in number to 625 of the lookers on: if there were 21 the smaller side, how many were playing on the other e , and how many were looking on?
(6) If in a cricket match one side scores 014 of $1 \frac{2}{5}$ of $\frac{1 \frac{1}{8}}{5^{2}}$ $\frac{5}{7}$ of 45 of $\frac{\frac{2}{8}+\frac{1}{2}}{\frac{2}{8}-\frac{1}{2}}$ of $71 \frac{3}{7}$ of the score made by the other e; which side wins?

PAPER 7 .

1) C owes $B \cdot 6$ of what B owes A, B gives $C 5$ s. to put accounts between them all straight. What is B 's debt A ?
(2) Out of a bag of silver, I take 50 s. more than 5 of whole sum which it contained; then 30 s. more than ${ }^{2}$ what then remained; and then 20 s . more than 25 of lat then remained; after this 10 s. remained. What did bag contain at first?
(3) A bath, containing 286 cub. yds. has two inlets A d B, which respectively supply 26 cub. yds. in $3 \frac{1}{4} \mathrm{hrs}$., and $\frac{1}{2}$ cub. yds. in $2 \frac{1}{2}$ hrs.; and also an outlet C, which disarges 11375 cub. yds. in $1 \frac{8}{4}$ hrs.; if the bath be empty, d A and C open for 12 hrs ., and then B also open, in what ne will 75 of it be filled?
Make out the following bills :
(4) 500 envelopes at 44 cents per 100, 3 boxes of elastic nds at 33 cents per box, $\frac{1}{2}$ a gross of penholders at 19 cents r doz., $2 \frac{1}{2}$ reams of foolscap at 21 cents per quire, 4 dozen till pens at 9 cents per doz., 13 note books at 27 cents each, d 250 official envelopes at 48 cents per 100.
(5) A loin of lamb ($7 \frac{1}{2} \mathrm{lbs}$.) at 10 cents per lb ., a haunch mutton ($19 \frac{1}{2} \mathrm{lbs}$.) at 8 cents per lb., a pork ham (18 lbs .) at cents per lb., $5 \frac{1}{\frac{1}{2}} \mathrm{lbs}$ of suet at 10 cents per lb ., and 9 ops at 4 cents each.
(6) 17 yds . calico at 19 cents per yd., $25 \frac{1}{2} \mathrm{yds}$. at 55 cents r yd., $34 \frac{1}{2}$ yds. of flannel at 60 cents per yd., 14 pairs of ockings at 38 cents a pair, and 5 pairs of gloves at $\$ 12$ or doz.

SECTION V.

RATIO AND PROPORTION.

105. Numbers are divided into two classes, Abstr and Concrete. One, or the number one, when the does not refer to any particular object, is an abstract num One, in the expression one pound, when the unit refers 1 particular object, viz. "a pound," is a concrete number.
106. We 'may ascertain the relation which one abstr number bears to another abstract number, or one concl number to another concrete number of the same kind, expressing the first number as a fraction of the second; t the relations which 12 bears to 3 , and 3 to 12 are expressed the fractions $\frac{12}{3}$ or $\frac{4}{1}$, and $\frac{3}{12}$ or $\frac{1}{4}$; also the relations wh $12 s$. bears to $3 d$., or $144 d$. to $3 d$., and $3 d$. to $12 s$., or $3 d$. $144 d$. are expressed by the fractions $\frac{144}{3}$ or $\frac{48}{1}$, and $\frac{3}{144}$
107. The relation of one number to another in resp of magnitude is called Ratio. The Ratio of one number another may be expressed by the fraction which the firs of the second.
108. The Ratio of one number to another is often noted by placing a colon between them. Thus the ratios 12 to 3 and 3 to 12 are denoted by $12: 3$ and $3: 12$. Her it follows that $12: 3=\frac{12}{3}$, and $3: 12=\frac{3}{12}$.
109. The two numbers which form a Ratio are called terms; the former term is called the antecedent, the latt the CONSEQUENT. Since $3 d$. reduced to the fraction of 1 $=\frac{3}{144}$, it is clear that when we have two concrete numbe of the same kind, but of different denominations, we must, order to find their ratio, reduce them to one and the sar denomination, and may then treat them as abstract number
110. When two Ratios are equal, in other words, when y can be expressed by the same fraction, they are said to in a Proportion, and the four numbers are called Protionals. Thus the ratio of 8 to 9 is equal to that of 24 7 , for $8: 9=\frac{8}{9}$, and $24: 27=\frac{24}{27}=\frac{8}{9}$. The Ratios being al, Proportion exists among the numbers $8,9,24,27$; those numbers are Proportionals.
111. The existence of Proportion between the numbers 24,27 is denoted thus, $8: 9=24: 27$, or $8: 9:: 24: 27$, ch is usually read thus, 8 is to 9 as 24 is to 27 .
112. In any Proportion, as $8: 9:: 24: 27$, the product of 1st and 4th, i. e. the extreme terms $=$ the product of the 2 nd 3rd, i. e. the mean terms;
$\frac{8}{9}=\frac{24}{27} ; \therefore \frac{8}{9} \times 9 \times 27=\frac{24}{27} \times 9 \times 27$, or $8 \times 27=24 \times 9$.
113. If four numbers be proportionals when taken in a cerorder, they will also be proportionals when taken in the trary order. For instance, 8, 9, 24, 27 are proportionals;
$\frac{8}{9}=\frac{24}{27} ; \therefore 1 \div \frac{8}{9}=1 \div \frac{24}{27} ;$ or $\frac{9}{8}=\frac{27}{24}$, or $\frac{27}{24}=\frac{9}{8}$;

$$
\therefore 27: 24:: 9 \text { : } 8 .
$$

14. If any three terms of a proportion be given, the reining term may always be found.
or since in any Proportion
1 st term $\times 4$ th term $=2$ nd term $\times 3$ rd term;
$\therefore 1$ st term $=\frac{2 \mathrm{nd} \times 3 \mathrm{rd}}{4 \text { th }}, 2$ nd term $=\frac{1 \text { st } \times 4 \text { th }}{3 \mathrm{rd}}$,
3 rd term $=\frac{1 \text { st } \times 4 \text { th }}{2 \mathrm{nd}}, 4$ th term $=\frac{2 \mathrm{nd} \times 3 \mathrm{rdl}}{1 \text { st }}$.
ax. 1. Find the 4th term in the proportion $2,3,18 \ldots$
$2: 3:: 18: 4$ th term; $\therefore 4$ th term $=\frac{3 \times 18}{2}=2 \%$.
Ex. 2. Find the 2nd term in the proportion 8,32 , and 24 ,
$8: 2$ nd term $:: 32: 24 ; \therefore$ nnd term $=\frac{8 \times 24}{3 ?}=6$.

Ex. LXV.

Find the 4th term in each of the following proportions
(1) $4: 9:: 12:$
(2) $32: 9:: 24:$
(3) $4: 6:: 10$:
(4) $\frac{1}{2}: \frac{1}{3}:: \frac{1}{4}$:
(5) $05: \cdot 8:: 79$:
(6) $3: 10:: 45$:

Find the 2nd term in each of the proportions:
(7) $\frac{5}{7}::: \frac{10}{21}: \frac{16}{2}$.
(8) $12::: 13: 39$.

Find the 1st term in each of the proportions:
(9)

$$
: \frac{9}{14}:: \frac{7}{18}: \frac{1}{8} .
$$

(10) $: 422:: 17 \cdot 6: 23 \frac{2}{9}$.

RULE OF THREE.

115. The Rule of Three is a method by which we enabled, from three numbers which are given, to find fourth which shall bear the same ratio to the third as 1 second to the first, in other words, it is a Rule by whis when three terms of a proportion are given, we can det mine the fourth.
116. Rule. Find out of the three quantities which o given, that which is of the same kind as the fourth or 3 quired quantity; or that which is distinguished from t other terms by the nature of the question: place this qua tity as the third term of the proportion.

Now consider whether, from the nature of the questio the fourth term will be greater or less than the third; greater, then put the larger of the other two quantities the second term, and the smaller in the first term; but less, put the larger in the first term and the smaller in tl second term.

Take care to reduce the first and second terms to one an the same denomination, and also to reduce the third so the it may be wholly in one denomination; remembering, how ever, that if the quantities involved be all of the same kinc it is unnecessary to reduce all the three terms to the sam denomination, but only the first and second terms to on and the same denomination, and the third to a single de nomination, which will not necessarily be the same as thy former. When the terms have been properly reduced, mul tiply the second and third together, and divide by the first treating all three as abstract numbers. The quotient will be the answer to the question, in the denomination to whict the third term was reluced.

If 19 bushels of potatoes cost $\$ 15.20$, how many bushels in be bought for $\$ 83.20$? Since 19 bus. is of the same kind the req ${ }^{\text {d }}$. term, viz., bus., we make 19 bus. the $3^{\text {rd }}$. term; nce $\$ 83.20$ can buy more bus. than $\$ 15.20$, we make $\$ 83.20$ e $2^{\text {nd }}$. term, and $\$ 15.20$ the $1^{\text {st }}$. term:
$\$ \mathrm{c}$. \$ c. bus.
15.20 : 83.20 :: $19:$ no. of bus. req ${ }^{\text {d }}$.
or 1520 cts. : 8320 cts. :: 19 bus. : no. of bus. req ${ }^{d}$.
\therefore no. of bus. req ${ }^{\text {d }}=\frac{8320 \times 19}{1520}=104$.
Ex. 2. A gentleman hired a servant for the year 1865 for 32. 13s. $11 \frac{1}{2} d$. , the man left his service on the evening of the st day of June: what amount of wages ought to be paid him?
From Jan. 1 to June 30, both included, there are ($31+28$ $31+30+31+30)$ days $=181$ days;
We place £32. $13 s .11 \frac{1}{2} d$. , the given quantity of the req ${ }^{\text {d }}$. nd, in the $3^{\text {rd }}$. term; wages for 181 days will be less than ages for 365 days, \therefore place 181 days in the $2^{\text {nd }}$. term, and 5 days in the $1^{s t}$. term.

365 days : 181 days :: $31390 q$..................in q.
\therefore req $^{\text {d }}$. am^{t}. of wages $=\frac{31390 \times 181}{365} q$. $=£ 16.4 \mathrm{~s} .3 \frac{1}{2} d$.
Ex. 3. A bankrupt can pay 9 s. $0 \frac{1}{2} d$. in the $£$, and his sets amount to £1069. 3 s. $6 \frac{1}{2} d$. ; find the amount of his bts.
For every asset of $9 s$. $0 \frac{1}{2} d$. he owes $£ 1, \therefore$ place $£ 1$ in the d term.

9s. $0 \frac{1}{2} d .:$: £1069. 3s. $6 \frac{1}{2} d .:: £ 1: \mathrm{am}^{t}$. of debts in $£ ' \mathrm{~s}$, 217 half-pence: 513205 half-pence :: £1: am^{t}. of debts in $£$'s, \therefore am . of debts in $£ ' s=\frac{513205}{217}=2365$.
Ex. 4. If 0625 of 1 lb . cost $\cdot 4588$.; what will $\cdot 075$ of a ton st?
${ }_{0625}^{\text {lb. }}: \stackrel{\text { ton. }}{075}::-4 \stackrel{8}{5} 8:$ req $^{\text {d }}$. price in shillings, $\mathrm{lb} \quad \mathrm{lbs} \quad 8$.
or $0625: 075 \times 20 \times 112:: \cdot 458:$ req ${ }^{\text {d }}$. price in shillings;
price $=\frac{458 \times 075 \times 20 \times 112}{.0625}$ s. $=£ 61.11 \mathrm{~s} .1 \mathrm{2} 48 \mathrm{~d}$.

Ex. 5. A owned $\frac{4}{17}$ ths of a ship, and sold $\frac{3}{11}$ of $\frac{2}{9}$ of hi share for $£ 12 \frac{4}{33}$; what was the value of $\frac{1 \frac{1}{4}}{4 \frac{1}{4}}$ of $\frac{2}{5}$ ths of the ves sel?
$\frac{3}{11}$ of $\frac{2}{9}$ of $\frac{4}{17}: \frac{1 \frac{1}{4}}{4 \frac{1}{4}}$ of $\frac{2}{6}:: £ 12 \frac{4}{33}:$ reqd. value in $£ ' s$,

$$
\begin{aligned}
& \text { or } \frac{2 \times 4}{11 \times 3 \times 17}: \frac{\$}{4} \times \frac{4}{17} \times \frac{2}{5}:: £ \frac{400}{33}: \text { reqd. value in £'s; } \\
& \therefore \text { req }{ }^{\text {d }} \text {. value in } £^{\prime} \text { 's }=\frac{400 \times 2}{33 \times 17} \times \frac{11 \times 3 \times 17}{2 \times 4}=100 \text {. }
\end{aligned}
$$

Note 1. There are certain examples in which, at firs sight more than three terms appear to be given, but they, il certain cases, come under this Rule, as in the following in stances.

Ex. 6. If the carriage of 5 cwt ., ${ }^{7} 7 \mathrm{lbs}$., for 84 miles \cos £3. 18s. $4 d$., what will it cost to have 21 cwt ., 1 qr ., 14 lbs carried the same distance?

84 miles may be left out of consideration, the distance ir both cases being the same.
$\therefore 5$ cwt., 7 lbs. : 21 cwt ., 1 qr., 14 lbs. :: £3. 18 s. $4 d$. : reqd. cost whence, req ${ }^{d}$. cost $=£ 16.10$ s. $8 \frac{3}{4} d . \frac{5}{9} q$.
Ex. 7. If 12 men can reap a field in 4 days, in what time can the same work be performed by 32 men?
32 men require less than 4 days to perform the work; $\therefore 32: 12:: 4$ days $:$ req ${ }^{\text {d }}$. time in days;

$$
\therefore \text { req }{ }^{d} . \text { time }=\frac{12 \times 4}{32} \text { days }=1 \frac{1}{2} \text { days. }
$$

Note 2. Examples such as the following are easily worked by Rule of Three.

Ex. 8. A gentlemen after paying an income-tax of $7 d$. in the $£$, has $£ 248.10$ s. $8 d$.; what was his gross annual income?

After paying ince. tax on $£ 1$, he had $£ 1$ less $7 d$, or $19 s .5 d$. $\therefore 19 \mathrm{~s} .5 \mathrm{~d}$. : £248. 10s. $8 \mathrm{~d} .:: \AA 1$. : req ${ }^{\text {d }}$. income; whence, req ${ }^{\text {d }}$. income $=£ 256$.
Ex. 9. A hare, pursued by a greyhound, was 130 yards before him at starting; whilst the hare ran 5 yards the dog ran 7 yards; how far had the hare gone when she was caught by the greyhound?

Since the dog gains 2 yds. on every 5 yds. which the hare
runs, we require to find how many yards the hare must run for the dog to gain 130 yds .
$\therefore 2$ yds. : 130 yds. :: 5 yds. : no. of yds. the hare must run; \therefore no. of $y d s$. req $^{\text {d }} .=\frac{130 \times 5}{2}=325$.

Ex. LXVI.

(1) If 8 bushels of wheat cost $\$ 16$, what will 24 bushels cost at the same rate?
(2) If 2 bushels of oats cost $\$ 1.10$, how much will 33 bushels cost?
(3) If 9 bushels clover seed cost $\$ 36$, how much will 4 bus., 20 lbs. cost?
(4) When oats are selling at 55 cents a bushel; how many bushels can be bought for $\$ 21.25$?
(5) The price of a bushel of pease being 84 cents; how many bushels can be bought for $\$ 17.20$?
(6) Find the value of a silver salver, weighing $21 \mathrm{lbs} ., 4$ oz. at 6 s. $5 d$. an oz.
(7) How much cheese at 16 cts. per lb. can be bought for $\$ 462.36$?
(8) A bankrupt, who owes $\$ 23856$, can pay $\$ 10496.64$; what will be the dividend in the $\$$?
(9) A. pensioner received $\$ 106.14$ for the year 1864 ; find the amount of his daily pension.
(10) 1 mile of road cost $\$ 393.75 \cdot$ what will $20 \mathrm{mi} ., 5$ fur., 22 yds . of the same kind of road cost?
(11) What weight of sugar may be bought for $\$ 449.28$, when the cost of 6 cwt ., 2 qrs. is $\$ 133.12$.
(12) The taxes on a house rated at $\$ 183.75$ amount to $\$ 3.2 .15$; the taxes on another house in the same village amount to $\$ 286.66 \frac{1}{2}$; find the rateable value of the 2 nd house.
(13) A bankrupt's debts amount to $\$ 10000$, and his property to $\$ 38 i 5$, what will each of his creditors lose in the $\$$?
(14) A ship was provisioned for a crew of 84 men for 5 months; how much longer would the provisions last, if a crew of only 60 men were taken on board?
(15) A merchant exchanged 1134 yds . of velvet for 5313
yds . of silk at $3 s .4 \frac{1}{2} d$. a yd .; find the value of the velvet a yd.?
(16) What are the effects of a bankrupt worth, whose debts amount to $£ 305 \%$. 12s., and who can pay 17s. 6 d . in the $£$?
(17) A man on the average walks over 10 ft , 8 in . in 4 steps, what number of steps will he take between two places, a distance of $1 \mathrm{mi} ., 1280 \mathrm{yds}$. apart?
(18) If 31 ac., 3 ro., 9 po., 21 yds. of ground cost $£ 3025$ 12s. $4 \frac{1}{2}$ d., what will be the price of 49 ac., 3 ro., 38 po., $2 \frac{3}{4}$ yds. of ground of the same quality?
(19) A bankrupt pays 59 cts . in the $\$$; what will be lost on a debt of $\$ 13675$.
(20) How many minutes must a boy, who runs 6 mi . an hour, start before another boy, who runs $7 \frac{1}{2} \mathrm{mi}$. an hour, in order that they may be together at the end of 10 mi .?
(21) Two boats start in a race, and one of them gains 5 ft . upon the other in every 55 yds.; how much will it have gained at the end of half a mile?
(22) How many pairs of mits at 45 cts . a pair should be exchanged for 36 dozen pairs of stockings at 55 cts . a pair?
(23) How many men would perform in 168 days a piece of work, which 108 men can do in 266 days?
(24) If an incorporated village be rated at $\$ 12571.87 \frac{1}{2}$ and a rate be granted of $\$ 419.06 \frac{1}{4}$; how much is the rate in the $\$$? How much will be paid by a house rated at $\$ 1734.37 \frac{1}{2}$.
(25) A gentleman's income in 1863 was $\$ 2500$, out of which he saved $\$ 994.37 \frac{1}{2}$; find his average daily expenditure.
(26) If 100 men can finish a piece of work in 27 days, how many men will finish it in 20 days?
(27) A special train on the Grand Trunk Railway, which travels at the uniform rate of 44 ft . in a second, leaves Belleville for Toronto, a distance of 109 miles, at 8 o'clock A. m.; at what time will the train reach Toronto.
(28) A bankrupt owes to one creditor a certain sum, to each of two others $\$ 1250$, to each of three others $\$ 816$: his property is worth $\$ 1718.75$, and he can pay 22 cts. in the $\$$. How much will the first creditor lose?
(89) If, when wheat is 42 s . a qr. f 8 bus.), the 4 lb . loaf
costs $4 \frac{1}{2} d$., what ought the 4 lb . loaf to cost when wheat is 70s. a qr.?
(30) In what time ought 10 men to perform the same work, which 5 men and 5 boys can perform in 15 days, it being given that 3 men can perform the same amount of work as 5 boys?
(31) Find a 4th proportional to $1 \mathrm{lb} ., 10 \mathrm{oz} ., 10$ dwts. ; 1 oz. ; and £6. 3s. 9 d .
(32) How much might a person have spent in Jan., 1864, who wished to save in that year $\$ 250$ out of an income of \$2034.50?
(33) A person, after paying an income-tax of $6 d$, in the $£$, has £877. 10s. left, find his original income.
(34) Find (1) the income which pays £29. 3s. 4d. tax at the rate of $7 d$. in the $£$; (2) the income from which, after paying tax at the same rate, the remaincler is $£ 932$.
(35) A piece of gold at £3. 17 s . $10 \frac{1}{2} d$. per oz. is worth $£ 150$; what will be the worth of a piece of silver of equal weight at 54 s . 6 d . per lb .
(36) A certain piece of work was to be done by 25 men in 16 days; after 4 days 15 men go away; how long will it take the rest of the men to finish the work?
(37) A person after paying tor the 1st half of a year an income-tax of 1 ct . in the $\$$, and for the 2 nd half one of $1 \frac{1}{2} \mathrm{cts}$. in the $\$$ on his income, has $\$ 1855$ left; what was the income on which he paid?
(38) If $\frac{6}{7}$ of a qr. of wheat cost 548 ., what will be the price of $\frac{4}{9}$ of a bus.?
(39) If $\frac{13}{1}$ of a cwt. cost $£ 7$. 3s., what will $\frac{6}{11}$ of a ton cost?
(40) If $\frac{1}{19} \frac{2}{2}$ of $\frac{2}{3}$ of $2 \frac{1}{2}$ of 40 lbs . of beef cost $1_{\frac{3}{50}} d$., how many lbs. can be bought for £1. 6s. 6 d. ?
(41) A clock marks the true time on Sunday morning at 6 o'clock, and on Tuesday at noon it has gaine 124 minutes, what will be the true time when it shews 1 o'clock on Saturday afternoon?
(42), The hour and minute hands of a watch are together at 12 o'clock, when will they next be together?
(43) If 5 lbs . of sugar cost $\cdot 0703125$ of $\$ 4$, what will $\cdot 0625$ cwt. of the same sugar cost?
(44) A certain piece of work can be done in 18 days by

4 men, 7 women, or 9 boys; how long will the same work occupy 5 men, 4 women, and 2 boys?
(45) If after selling $\frac{3}{6}$ ths of an estate, I sell $\frac{1}{3}$ of $\frac{7}{9}$ of the remainder for $1 \frac{1}{6}$ of $\frac{8}{9}$ of $£ 600 \frac{6}{8}$, what is the value of $\frac{2}{3}$ rds of it?
(46) What will be the value of a gold cup weighing $2 \cdot 683 \mathrm{lbs}$.; when 1 oz . of it is worth $£ 4.09$?
(47) 4 men and 5 boys earn $\$ 22.12$ in 7 days, and 3 men and 8 boys earn $\$ 28.98$ in 9 days; in what time will 12 men and 12 boys earn $\$ 186.48$?
(48) A can do a piece of work in 5 hours, B in 9 hours, and C in 15 hours. How long will it take C to finish the work, after A has worked at it for 40 minutes, and B for $1 \frac{1}{2}$ hours?
(49) If a garrison of 1500 men have provisions for 13 mo ., how long will their provisions last, if at the end of 2 mo . they be reinforced by 700 men ?
(50) Two men start at 8.30 A . M., one from Toronto and the other from Whitby, a distance of 30 miles, and they approach each other at the rates of $4 \frac{1}{2}$ and 3 miles an hour; at what time will they meet, and at what distance from a place, which is 2 miles nearer to Toronto than Whitby is?
(51) Two trains respectively 210 feet and 180 feet in length are going in opposite directions, the first at the rate of 24 miles per hour, and the other at the rate of 27 miles per hour ; find how long they will take to pass each other.

DOUBLE RULE OF THREE.

117. The Double Rule of Three is a shorter method of working out such questions as would require two or more applications of the Rule of Three.
118. For the sake of convenience, we may divide each question in the Double Rule of Three into two parts, the supposition and the demand: the supposition being the part which expresses the conditions of the question, and the demand the part which mentions the thing demanded or sought. In the question, "If the carriage of 15 cwt . for 17 miles cost $\$ 21$, what would the carriage of 21 cwt. for 16 miles cost ?", the words "if the carriage of 15 cwt . for 17 miles cost $\$ 21$," form the supposition; and the words "what would the carriage of 21 cwt. for 16 miles cost?" form the demand.

Adopting this distinction we may give the following Rule for working out examples in the Double Rule of Three.
119. Rule. Take from the supposition that quantity which corresponds to the quantity sought in the demand; and write it down as a third term. Then take one of the other quantities in the supposition and the corresponding quantity in the demand, and consider them with reference to the third term only (regarding each other quantity in the supposition and its corresponding quantity in the demand as being equal to each other); when the two quantities are so consilered, if from the nature of the case, the fourth term would be greater than the third, then, as in the Rule of Three, put the larger of the two quantities in the second term, and the smaller in the first term; but if less, put the smaller in the second term, and the larger in the first term.

Again, take another of the quantities given in the supposition, and the corresponding quantity in the demand; and retaining the same third term, proceed in the same way to make one of those quantities a first term and the other a second term.

If there be other quantities in the supposition and demand, proceed in like manner with them.
In each of these statings reduce the first and second terms to the same denomination. Let the common third term be also reduced to a single denomination if it be not already in that state. The terms may then be treated as abstract numbers.

Multiply all the first terms together for a final first term, and all the second terms together for a final second term, and retain the former third term. In this final stating multiply the second and third terms together and divide the product by the first. The quotient will be the answer to the question in the denomination to which the third term was reduced.

Ex 1. If 5 men earn £18. 15 s. in 12 weeks, how much will 16 men earn in 20 weeks?

By the Rule,
$\left.\begin{array}{r}5 \mathrm{men}: 16 \mathrm{men} \\ 12 \mathrm{wks} .: 20 \text { wks. }\end{array}\right\}:: £ 18.15 \mathrm{~s}$.

16 men will earn more money than 5 men in a given time ; in 20 wks. more money will be earned than in 12 wks. by a given no. of men. $\therefore 5 \times 12: 16 \times 20:: 3758$. : no. of shillings req ${ }^{\text {d }}$;
\therefore no. of shillings req ${ }^{\mathrm{d}} \cdot=\frac{16 \times 20 \times 37 \$}{5 \times 12}=2000 \%$, 四 $£ 100$,

Ex. 2. If 16 horses eat 56 bus. of corn in 32 days, in how many days will 8 horses eat 84 bus. ?
$\left.\begin{array}{c}8 \text { horses : } 16 \text { horses } \\ 56 \text { bus. }: 84 \text { bus. }\end{array}\right\}:: 82$ days
\therefore no.daysreq ${ }^{\text {d }}=\frac{16 \times 84 \times 32}{8 \times 56}=96$.
A given no. of bus. will last

Ex. 3. If 15 pumps, working 8 hours a day, can raise 1260 tons of water in 7 days; how many pumps, working 12 hours a day, will be required to raise 7560 tons of water in 14 days?
$\left.\begin{array}{l}12 \mathrm{hrs.}: 8 \mathrm{hrs.} \\ 1260 \text { tons: }: 7560 \text { tons } \\ 14 \text { days: } 7 \text { days }\end{array}\right\}:: 15 \mathrm{pu}^{\mathrm{mp}}$
$\begin{aligned} & \therefore \text { no. of pumps reqi } \\ & \\ & \quad=\frac{8 \times 7560 \times 7 \times 15}{12 \times 1260 \times 14}=30 .\end{aligned}$
Fewer pumps workg. 12 hrs , a day are req ${ }^{\text {d }}$. to raise a given weight of water in a given no. of days than if they worked 8 hirs. a day; more pumps are reqd. to raise 7560 tons than to raise 1260 tons in a given no. of days, workg. a given no. of hrs. each day; fewer pumps are req., works. for 14 days a given no of hrs. each day, to raise a given weight of water, than if they worked u for 7 days.

Ex. 4. If 25 men can perform a piece of work in 16 days working 12 hours a day, in what time will 20 men perform a similar piece of work 4 times as large, when they work only 8 hours a day?

Call the 1st piece of work 1 , then the 2 nd piece will $=4$. 20 men : 25 men \}
$\left.\begin{array}{rl}1: 4 \\ 8 \mathrm{hrs} . & 12 \mathrm{hrs} .\end{array}\right\}:: 16$ days. $\quad=\frac{25 \times 4 \times 12 \times 16}{20 \times 8}=120$.
Ex. 5. A contractor engages to make a road $5 \frac{1}{2}$ mi. long in 160 days; but after employing 135 men upon it for 100° days, he finds that only 3 mi ., 700 yards are completed, how many extra men must he employ in order to complete his contract?
$5 \frac{1}{2} \mathrm{mi} .-3 \mathrm{mi} ., 700 \mathrm{yds} .=9680 \mathrm{yds} .-5980 \mathrm{yds} .=3700 \mathrm{yds}$. \therefore no. of men req ${ }^{\text {a }}$.
$\left.\begin{array}{r}5980 \text { yds. }: 3700 \text { yds. } \\ 60 \text { days }: 100 \text { days. }\end{array}\right\}:: 135 \mathrm{men}=\frac{3700 \times 100 \times 135}{5980 \times 60}=1399_{-\frac{64}{2} 99 ;}$
$\therefore 140$ men must be employed, or 6 additional men.

Ex. LXVII.

(1) If 10 sacks of oats supply 12 horses for 4 weeks, how long will 15 sacks supply 9 horses?
(2) If 42 men finish a work in 36 days, how many will finish twice as great a work in 27 days?
(3) If 60 men in 36 days finish a work, in how many days will 135 men finish four times as great a work?
(4) If 104 tons carried 34 miles cost $\$ 87.36$, what will 102 tons carried 122 miles cost?
(5) If a man with a capital of $\$ 100000$ gain $\$ 2500$ in 3 months, what sum will he gain with a capital of $\$ 1500000$ in 7 months?
(6) If 21 cwt . be carried 40 miles for $\$ 2.80$, how far ought 7 cwt. to be carried for $\$ 4.06$?
(7) If 7 horses be kept 20 days for $\$ 70$, what will it cost to keep 45 horses for 9 days?
(8) If 140 horses eat 560 bus. of oats in 16 days, how many horses may be kept for 24 days on 1200 bus. of oats?
(9) If with a capital of $\$ 5000$ a person gains by trade $\$ 250$ in 16 months, in how many months will he gain $\$ 625$ with a capital of $\$ 2000$.
(10) If a regiment of 1878 soldiers consume 702 qrs. of wheat in 336 days, how many qrs. will an army of 22536 men consume in 112 days?
(11) If 6 horses can plough $17 \frac{1}{2}$ acres in 4 days, how much land can 24 horses plough in $2 \frac{1}{4}$ days?
(12) If £240 be paid for bread for 49 persons for 20 mo ., when wheat is 48 s. a qr. ; how long will £234 find bread for 91 persons, when wheat is $£ 2.16 \mathrm{~s}$. a qr.?
(13) If 100.8 lbs . of flour support 20 men for 3 days, how many men will 46.305 cwt . support for $7 \cdot 35$ weeks?
(14) If 26 men can reap a field of 85 ac . in 12 days, how many men will reap another similar field one-half the size of the 1st field in one-seventh part of the time?
(15) 3 men can do a piece of work in 6 days, if they work 10 hours a day; how long will it take 16 men to do twice the amount of work, when they are working at it 9 hours a day?
(16) If the wages of 25 men amount to $£ 76.13 s .4 d$. in 16 days, how many men must work 24 days to reoeive
£103. 10s., the daily wages of each of the latter being one half that of each of those of the former?
(17) If 6664 men, on half rations, consume 357 qrs. of wheat in 57 days, how many qrs. of wheat will 798 men, on full rations, consume in 119 days?
(18). If the 16 cts. loaf weighs 3.35 lbs , when wheat is $\$ 1.14$ a bus., what ought to be the price of wheat per bus., wher 47.5 lbs . of bread cost $\$ 3.20$.
(19) If when wheat is $\$ 14.40 \mathrm{a}$ qr., the 12 cts . loaf weighs 4 lbs., what should be the price of wheat per qr., when $2 \pm$ lbs. of bread cost $37 \frac{1}{2}$ cts.?
(20) If 4 men, each working 8 hrs. a day, take 11 days to pave a road 220 yds . long, and 35 ft . broad; how many days will 6 men, each working 12 hrs. a day, take to pave a road 175 yds. long, and 36 ft . broad?
(21) If 100 horses consume a stack of hay 20 ft . long, 11 ft., 3 in. broad, and $31 \mathrm{ft.} ,6 \mathrm{in}$. high, in 9 days, how long will a stack 18 ft . long, 5 ft . broad, and 14 ft . high supply 80 horses?
(22) If 3 men can dig a ditch 105 yds. long, 4 ft . deep, and 5 ft . wide in 10 days, how long will it take 5 men to dig a ditch 175 yds. long, $4 \frac{1}{2} \mathrm{ft}$ deep, and 6 ft . wide.
(23) If the 8 cts. loaf weighs 1 lb ., $11 \mathrm{oz} ., 12$ drs. when wheat is $\$ 1.80$ per bu., what ought the 12 cts. loaf to weigh when wheat is $\$ 1.26$ per bus.?
(24) If 5 horses require as much corn as 8 ponies, and 15 qrs. last 12 ponies for 64 days, how many horses may be kept 48 days for $£ 41.5 s$. when corn is $22 s$ s. a qr.?
(25) A contractor agrees to execute a certain piece of work in a certain time. He employs 55 men who work 9 hrs. daily. When $\frac{3}{4}$ ths of the time is expired, he finds that only $\frac{3}{3}$ ths of the work is done. How many men must he employ during the remaining part of the time, working 11 hrs. daily, in order that he may fulfil his contract?
(26) If 5 pumps, each having a length of stroke of 3 feet, working 15 hours a day for 5 days, empty the water out of a mine; what must be the length of stroke of each of 15 pumps which, working 10 hours a day for 12 days, would empty the same mine, the strokes of the former set of pumps being performed four times as fast as those of the latter?

PRACTICE.

120. An Aliquot part of a number is such a part as, when aken a certain number of times, will exactly make up that humber.
Thus, 4 is an aliquot part of 12 ; 6 s . of 18 s .

TABLES OF ALIQUOT PARTS.

Parts of a cutt. (100 lbs.)
50 lbs. or 2 qrs. $=\frac{1}{2} \mathrm{cwt}$.
25 lbs. or 1 qr.
20 lbs.
10 lbs.
5 lbs .
Note. The parts of a $\$$ the ame as of the cwt. (100 lbs).

Parts of $a £ 1$.	
10s.	
6s. 8d.	$=$
5 s .	
48.	=
3s. 4 d.	
2s. 6 d .	=
2 s .	$=1$
1s. 8 d.	=
1s. 4 d.	$=$
1s. 3 d.	=
$1 s$.	$=\frac{1}{20}$

Parts of a cwt. (112 lbs.)

Parts of a shilling.

$6 d$.	$\frac{1}{2}$	of 18.
$4 d$.	$=\frac{1}{8}$	
3 d .	$=\frac{1}{4}$	"
$2 d$.	$=\frac{1}{5}$	"
$1 \frac{1}{2} d$.	$=\frac{1}{8}$	"
$1 d$.	$=\frac{1}{12}$	"
$\frac{8}{4} d$.	$=\frac{1}{16}$	"
$\frac{1}{2} d$.	$={ }_{2}^{14}$	"
$\frac{1}{4} d$.	$=\frac{1}{48}$	"

Note. In working examples in Practice, the above tables vill often have to be varied; the knowledge, which the cholar now has, will render him expert in taking such alifuot parts as he may require in any particular example.
121. Practice is a short method of finding the value of ny number of articles by means of Aliquot Parts, when the alue of a unit of any denomination is given. Practice may pe divided into Simple and Compound.

SIMPLE PRACTICE.

122. In this case the given number is expressed in the ama denomination as the unit whose value is given; as, for nstance, 27 bushels at $\$ 1.30$ per bushel.

The Rule for Simple Practice will be easily shewn by tt following examples.

Ex. 1. Find the value of 1296 things at 16 s . $10 \frac{1}{2}$ d. each. The method of working such an example is the following If the cost of the things be $£ 1$ each; then the total cost $=£ 1296$:
\therefore cost at
10s. 0 d . each $=\frac{1}{2}$ of the above sum..... $=648$. 0.0
$5 s .0 \mathrm{~d}$. each $=\frac{1}{2}$ the cost at 10 s. each. . $=324.0 .0$
1 s .3 d . each $=\frac{1}{4}$ the cost at 5 s . each $\ldots=81.0 .0$
0 s. $7 \frac{1}{2} d$. each $=\frac{1}{2}$ the cost at 1 s .3 d. each $=40 \cdot 10 \cdot 0$
\therefore by adding up the vertical columns, cost at 16s. $10 \frac{1}{2} d$. each

$$
=£ 1093 \cdot 10 \cdot 0
$$

The operation is usually written thus:

$\begin{aligned} 10 s & =\frac{1}{2} \text { of } £ 1 . \\ 5 s . & =\frac{1}{2} \text { of } 10 s . \\ 1 s .3 d . & =\frac{4}{\text { of } 5 s .} \\ \gamma \frac{1}{2} d . & =\frac{1}{2} \text { of } 1 s .3 d . \end{aligned}$	1296-0.0 $=$ cost at
	1296 . 0.0 $=$
	$648 \cdot 0 \cdot 0=$ cost at 10 s. each.
	$324.0 .0=$ cost at 5 s. each.
	$81.0 \cdot 0=$ cost at $1 \mathrm{~s} .3 d$. each.
	$3 \cdot 10 \cdot 0=$ costat $16 s .10 \frac{1}{2} d$. e

Note. The student must use his own judgment in select ing the most convenient 'aliquot' parts; taking care tha the sum of those taken make up the given price of the unit.

Ex. 2. Find the value of 825 bushels of wheat at $\$ 1.31$ per bus.

If 1 bus. cost $\$ 1$, cost of 825 bus. $=\$ 825$ at $\$ 1$ each.

$$
\begin{array}{l|l}
20 \mathrm{cts} .=\frac{1}{8} \text { of } \$ 1 . & \begin{aligned}
\$ 825.00 & =\text { value at } \$ 1 . \text { each } \\
10 \mathrm{cts} . & =\frac{1}{2} \text { of } 20 \mathrm{cts} .
\end{aligned} \\
82.50=\text { value at } 20 \mathrm{cts.} \text { each. } \\
81072.50 & =\text { value at } 10 \mathrm{cts} . \text { each. at } \$ 1.30 \text { each. } .
\end{array}
$$

Ex. LXVIII.

Find the value of,
(1) 75 at $\$ 2.25$.
(3) 910 at $\$ 1.75$.
(5) 1075 at $\$ 3.25$.
(7) 397 at $£ 1.1 s$.
(9) 1324 at $\$ 3.75$.
(11) 972 at 168. $8 \frac{1}{2} d$.
(2) 105 at $\$ 1.50$.
(4) 876 at $\$ 2.20$.
(6) 1278 at $\$ 1.87 \frac{1}{2}$.
(8) 250 at $£ 2.8 s$.
(10) 2078 at £2. 7s. $6 d$.
(12) 236 at $£ 7.58 .11 \frac{1}{4} \mathrm{~d}$.
(13) 9978 at $£ 8.138 .8 \frac{1}{2} d . \quad$ (14) 15739 at $£ 9.17 \% .98$ 운 d.
(15) 27835 at $\$ 9.32 \frac{1}{2}$. 16) 37832 at $\$ 18.90$.
(17) A bankrupt whose lebts amount to $\$ 250215$ pays 29 cts . in the dollar what ure effects worth?
(18) A gentleman's gross income is his rates and taxes amount to 25 cts. in the $\$$, find his net income.
(19) Wh will je the loss on a debt of £4970, if a divilend of $8 s .1$ d. in $n \in £$ be paid?
(20) What wil be the total cost of $83 \frac{1}{2}$ yds. of calico @ $11 \frac{1}{2} d$. per $y \mathrm{~d}$. , of $57 \frac{8}{4} \mathrm{yds}$. of flannel @ 1s. 10 d . a yd., and of 118 yds . of ribbon @ $9 \frac{3}{4} d$. a yd.

COMPOUND PRACTICE.

123. In this case the given number is not wholly expressed in the same denomination as the unit whose value is given; as for instance, 1 cwt. 2 qrs., 14 lbs. at $\$ 10.24$ per cwt.

The Rule for Compound Practice will be easily shewn from the following examples.
Ex. 1. Find the vaiue of 60 cwt ., 3 qrs., 5 lbs . of sugar @ $\$ 8.50$ per cwt.

The method of working such an example is the following:
The value of 1 cwt . of sugar being $\$ 8.50$;

$$
\begin{aligned}
\therefore \text { value of } 60 \mathrm{cwt} & =(\$ 8.50 \times 60) \\
2 \mathrm{qrs} . & =\frac{1}{2}\left(\begin{array}{l}
\text { (alue of } 1 \mathrm{cwt})
\end{array}\right. \\
\mathrm{r} & =\$ 51^{\wedge} 00 \\
1 \mathrm{qr} . & =\frac{1}{2}\left(\begin{array}{l}
\text { (value of } 2 \mathrm{qrs} .)
\end{array}\right. \\
& =\frac{1}{2}(\$ 4.25) \\
5 \mathrm{lbs} . & =\frac{1}{5}(\mathrm{value} \text { of } 1 \mathrm{qr} .) \\
& =\frac{1}{5}\left(\$ 2.12 \frac{1}{2}\right) \\
& =\$ 0.42 \frac{1}{2}
\end{aligned}
$$

Therefore adding up the vertical columns, value of $60 \mathrm{cwt} .3 \mathrm{qrs} ., 5 \mathrm{lbs}$.
$=\$ 516.80$
The operation is usualiy written thus:
2 qrs. $=\frac{1}{3} \mathrm{cwt}$.
$\frac{1}{2} \mathrm{qr}$. $=\frac{1}{2}$ of 2 qrs .
$\begin{aligned} \$ 8.50 & =\text { value of } 1 \mathrm{cwt} . \\ \frac{10}{85.00} & =\text { value of } 10 \mathrm{cwt} . \\ \frac{6}{510.00} & =\text { valu } 60 \mathrm{cwt} .\end{aligned}$

$$
4.25=\text { value of } 2 \text { qrs. }
$$

$5 \mathrm{lbs} .=\frac{1}{6}$ of $1 \mathrm{qr} . \quad .42 \frac{1}{2}=$ value of 5 lbs.
$\$ \overline{516.80}=$ value of $60 \mathrm{cwt} ., 3$ qrs., 5 lbs.

Ex. 2. Find the value of 319 cwt., 3 qrs., 16 lbs . at $£\{$ 12s. $6 d$. per cwt.
$2 \mathrm{qrs} .=\frac{1}{2} \mathrm{cwt}$.
subtracting
$1 \mathrm{qr} .=\frac{1}{2}$ of 2 qrs.
$14 \mathrm{lbs} .=\frac{1}{2}$ of 1 qr .
$2 \mathrm{lbs} .=\frac{1}{7}$ of 14 lbs .

2. $\stackrel{s}{1}_{12} \cdot \frac{d .}{6}=$ value of 1 cwt .
5. ${ }_{4}^{0}=$ value of 10 cwt .
$105 \cdot 0 \cdot{ }_{8}^{0}=$ value of 40 cwt.
840 . 0 . $0=$ value of 320 cwt . 2. $12.6=$ value of 1 cwt .
$837 \cdot 7 \cdot 6=$ value ot 319 cwt .
1. $6.3=$ value of 2 qrs .
$0.13 .1 \frac{1}{2}=$ value of 1 qr .
$0.6 .6 \frac{3}{9}=$ value of 14 lbs .
$0.0 .11 \frac{1}{4}=$ value of 2 lbs .
$\lesssim 839 \cdot 14 \cdot 4 \frac{1}{2}=$ value of 319 cwt .,
3 qrs., 16 lbs.

Ex. LXIX.
Find the value of
(1) 55 bus., 25 lbs. wheat @ $\$ 1.20$ per bushel.
(2) 16 cwt., 2 qrs., 20 lbs . of sugar @ 10 cts . per lb .
(3) 96 ac., 2 ro., 10 per. at $\$ 15.50$ per ac.
(4) 2 lbs., 8 oz., 13 dwt. at 7s. $1 d$. per oz.
(5) 15 yds., 2 ft., 7 in. at 12 s . 6 d . per yd.
(6) 28 sq. yds., 7 ft ., 110 in . at £1. 7s. per sq. ft.
(7) 11 mls., 3 fur., 5 ธ yds. at $\$ 11000$ per mile.
(8) What is the value of 5 tubs of butter, each of 20 them containing $57 \frac{1}{2}$ lbs., and each of the rest $73 \frac{3}{4} \mathrm{lbs}$., at $\$ 3.5$ per cwt.?
(9) What will 3460 ft . of timber cost at $\$ 5$ per 100 ft .?
(10) What will 24650 bricks cost at $\$ 4$ per 1000 .?
(11) What will 45590 ft . lumber cost at $\$ 10.25$ per 1000 ft ?

Find the amount of each of the following bills:
(12) $17 \frac{5}{5}$ yds. calico at $19 \frac{1}{2}$ cts. a yd., 355_{16}^{9} yds. flannel at $55+$ cts. a yd., $96 \frac{4}{1} \mathrm{yds}$. sheeting at $70 \frac{1}{2}$ cts. a yd., $104 \frac{5}{5}$ yds. of Holland at $32 \frac{1}{2}$ cts. a yd., $12 \frac{3}{3}$ yds. of ribbon at $17 \frac{1}{4} \mathrm{cts}$ a yd .
(13) $25 \frac{13}{1} \mathrm{lbs}$. of beef at $12 \frac{1}{2} \mathrm{cts}$. a lb., $19 \frac{11}{1}$ veal at 11 cts .

4 lb ., $35 \frac{7}{8} \mathrm{lbs}$. of pork at $8 \frac{1}{2}$ cts. a lb., $17 \frac{1}{2} \mathrm{lbs}$. lamb at $6 \frac{1}{2}$ cts. lb.
(14) $17 \frac{8}{9}$ lbs. crushed sugar at $12 \frac{1}{2}$ cts. a lb., $18 \frac{8}{4}$ lbs. cheese t $17 \frac{1}{2} \mathrm{cts}$. a 1 ., $5 \frac{5}{18} \mathrm{lbs}$. f tea at 75 cts a lb., $10 \frac{5}{7} \mathrm{lbs}$. coffee t 40 cts. a le, $7 \frac{3}{4} \mathrm{lbs}$. . oney at 25 cts . a lb.
Note 1. The scholar sho ...d bring the last three questions n the form of a bill, to the master.

INTEREST.

124. Interest (Int.) is the sum of money paid for the pan or use of some other sum of money, lent for a certain ime at a fixed rate; generally at so much for each $\$ 100$ for ne year.
The money lent is called the Principal.
The int. of $\$ 100$ for a year is called the Rate per Cent.
The principal+ the interest is called the Amount.
Interest is divided into Simple and Compound. When inrest is reckoned only on the principal or sum lent, it is mple Interest
When the interest at the end of the first period, instead f being paid by the borrower, is retained by him and added s principal to the former principal, interest being calculated n the new principal for the next period, and this interest gain, instead of being paid, is retained and added on to the ist principal for a new principal, and so on; it is Compound sTEREST.

SIMPLE INTEREST.

125. To find the interest of a given sum of money at a given rte per cent. for a year.
Role. Multiply the principal by the rate per cent., and ivide the product by 100 .
Note 2. The int. for any given number of years will be und by multiplying the int. for 1 year, by the number of pars; and the int. for any part of a year may be found from e int. for 1 year, by Practice, or by the Rule of Three.
Note 3. If the interest has to be calculated from one given ay to another, as for instance from the 30th of Jan. to the h of Feb., the 30 th of Jan. must be left out in the calculaon, anci the 7th of Feb. must be taken ' - to accom. for the rrower will not have had the use of the money for one ay till the 31st of Jan.
Note 4. If the amount be required, the int. has first to be
found for the given time, and the principal has then to b added to it.
Ex. 1. Find the simple int. of $\$ 250$ for one year, at 9 pe cent. per annum.

By the Rule, $\$ 250$ 9
$\overline{\$ 22.50}$
\therefore Int. $=\$ 22.50$
or by the Rule of Three. $\$ 100$: $\$ 250$:: $\$ 9$: Int. req ${ }^{\text {d }}$.,

Ex. 2. Find the amount of $£ 1376.11$ s. $3 d$. at $4 \frac{3}{4}$ per cen from Apr. 6 to Aug. 30.

5506 . 5.0	$4 \longdiv { 4 1 2 9 . 1 3 . 9 }$
1032. $8.5 \underline{1}^{*}$	£1032 . $8 \cdot 5 \frac{1}{\frac{1}{4}}$
$\underset{20}{ } \underset{20.13 \cdot 54}{4}$	
$\text { s. } 7.73$	for $1 \mathrm{yr} .=£ 65.7$

$\overline{d .} 8.8125$ since $5 \frac{1}{4} d .=5.25 d$.
No. of days from Apr. 6 to Aug. $30=24+31+30+31+3$ $=146$;
$\therefore 365$ days : 146 days :: £65. 7\%. 8.8125d. : int. reqd. or $5: 2:: £ 65$. 7s. $8 \cdot 8125 \mathrm{~d}$. : int. req ${ }^{\text {d }}$.
\therefore int. req ${ }^{\text {d }}=\frac{2}{6}$ of $£ 65$. 7 s . $8 \cdot 8125 \mathrm{~d}$. $=£ 26$. $3 \mathrm{~s} .1 \cdot 125 \mathrm{~d}$.;
$\therefore \mathrm{Am}^{\mathrm{t}}$. $=£ 1376.11 \mathrm{~s}$. 3 d. $+£ 26$. 3s. $1 \cdot 125 \mathrm{~d}$. $=£ 1402.14 \mathrm{~s} .4125 \iota$
Note. Since £1376. 11s. $3 d .=£ 1376.5625$, and $4 \frac{8}{9}=4 \cdot 7 \mathrm{l}$ we might have found the int. thus : int. $=£\left(\frac{1376 \cdot 5625 \times 4.75}{100}\right.$ $=£ 65.38671875$.

Ex. LXX.

Find the Simple Int. and also the Amt. of
(1) $\$ 217.25$ for 1 year at 8 per cent. per ann n^{m}.
(2) $\$ 217.25$ for 2 yrs. at 8 per cent.
(3) $\$ 527.37 \frac{1}{2}$ for 3 yrs. at 7
(4) $\$ 93.50$ for 2 yrs . at 6 .
(5) $\$ 75.75$ for $2 \frac{1}{2}$ yrs. at 7 .
(6) £62. 188. $0 \frac{1}{2} d$. for $3 \frac{1}{2} \mathrm{yrs}$. at 8
(7) $\$ 1075.75$ for $4 \frac{1}{4}$ yrs. at 8 per cent. per ann n^{m}.
(8) $\$ 684$ for 5 yrs., 8 mo . at 8 .
(9) £7500 from May 5 to Oct. 26 , at $3 \frac{1}{8}$.
(10) £4865. 11s. 5d. from Jan. 1 to Aug. 28, 1868, at $5 \frac{3}{8}$..
(11) In what time will $\$ 672$ at 8 per cent. simp. int. nount to $\$ 994.56$?
(12) At what rate per cent., simp. int., will the int. on 816 amount to $\$ 346.80$ in 5 yrs.?
(13) What sum of money will amount to £138. 2s. 6d. in mo. at 5 per cent. per ann ${ }^{\mathrm{m}}$., simp. int.?
(14) If $£ 1=10$ florins $=100$ cents $=1000$ mills, find the np . int. on £ั78. 3 fl .1 c. $2 \frac{1}{2} \mathrm{~m}$. for $2 \frac{1}{4} \mathrm{yrs}$. at $2 \frac{1}{2}$ per cent.
(15) At what rate per cent., simp. int., will $\$ 2293.75$ uble itself in 25 yrs.?

COMPOUND INTEREST.

126. To find the Compound Interest of a given sum of ney at a given rate per cent. for any number of years.
Rule. At the end of each year add the interest of that ar, found by (Art. 116), to the principal at the beginning it; this will be the principal for the next year; proceed the same way as far as may be required by the question. ld together the interests so arising in the several years, d the result will be the compound interest for the given riod.
Ex. 1. Find the Comp. Int. and Am^{\dagger}. of $\$ 600$ for 3 yrs. 8 per cent. per ann.

$\begin{array}{r} \$ 600 \\ 8 \end{array}$	
\$48.00	Int. for 1st yr.
$\therefore \begin{array}{r} \$ 648 \\ 8 \end{array}$	Prin ${ }^{1}$ for 2 nd yr .
\$51.84	Int. for $2 \mathrm{nd} \mathrm{yr}$.
$\therefore \$ 699.84$	Prin ${ }^{1}$. for 3rd yr.
\$55.9872	Int. for 3rd yr.

Compd int. $=\$ 55.9872+\$ 51.84+\$ 48=\$ 155.8272$.
$\mathrm{Am}^{\mathrm{t}} . \$ 600+\$ 155 \cdot 8272=\$ 755 \cdot 8272$.
Xx. 2. Find, working with decimals, the comp. int. and \therefore of $\mathbf{2} 690$ for 2 yrs. at $4 \frac{1}{4}$ per cent. per ann.

$$
\begin{aligned}
& \text { £ } \\
& 690 \\
& 4 \frac{1}{2}=\frac{45}{3450} \\
& 2760 \\
& £ \overline{31 \cdot 050}=\text { Int. for 1st yr. } \\
& \text { £690 }
\end{aligned}
$$

$$
\begin{aligned}
& 4.5 \\
& \overline{360525} \\
& 288420 \\
& £ 32 \cdot 44725=\text { Int. for 2nd yr. } \\
& \text { £ } 221 \cdot 05 \\
& £ \overline{£ 53 \cdot 49725}=\text { Prin }{ }^{1} \text {. for } 3 \text { rd yr. or amount req } \\
& 20 \\
& 12 \\
& \overline{11 \cdot 340 d .} \\
& 4 \\
& \overline{1 * 36 q} . \therefore \mathrm{am}^{\mathrm{t}} .=£ 753.9 \mathrm{~s} .11 \frac{1}{4} d \text {. nearly, a! }
\end{aligned}
$$ Int. $=£ 753.9$ s. $11 \frac{1}{4} d$., nearly $-£ 690=£ 63.9$ s. $11 \frac{1}{4} d$. near

Note 1. It is customary, if the comp ${ }^{\text {d }}$. int. be required f any number of entire yrs. and a part of a yr. (for instan for $5 \frac{3}{4}$ yrs.) to find the compd. int. for the 6th yr., and th take $\frac{8}{4}$ ths of the last int. for the $\frac{8}{4}$ ths of the 6 th yr .

Note. 2. If the int. be payable half-yearly, or quarterly, is clear that the comp ${ }^{d}$. int. of a given sum for a given tir will be greater as the length of each given period is les the simp. int. will not be affected by the length of ea period.

Ex. LXXI.

Find the Compound Int. and Am^{t}. of
(1) $\$ 800$ for 2 yrs. at 7 per cent. per annum.
(2) $\$: \% 42$ for 3 yrs. at 8
(3) $\$ 560$ for 5 yrs. at 10
(4) $\$ 308$ for $1 \frac{1}{2}$ yrs. at $6 \ldots \ldots \ldots \ldots$. . . . paid quarter]
(5) $\$ 610$ for 2 yrs. at 8 paid half-year
(6) $\$ 1000$ for 3 yrs. at 7 paid half-year]
(7) Find the difference between the Amounts at simp. und comp. int. of (1) $£ 880$ for 2 yrs. at $3 \frac{1}{2}$ per cent. (2) C1431. ©s. for three yrs. at 4 per cent.

PRESENT WORTH AND DISCOUNT.

12%. A owes $B \$ 500$, which is to be paid at the end of 9 nonths from the present time: it is clear that, if the debt be paid at once (int. being reckoned, we will suppose, at 8 per ent. per annum), B ought to receive a less sum of money han $\$ 500$; in fact such a sum of money as will, being now put out at 8 per cent. int., amount to $\$ 500$ at the end of 9 nonths. The sum which B ought to receive now is called he Present Worth of the $\$ 500$, due 9 months hence, and the um to be deducted from the $\$ 500$, in consequence of immedite payment, which is in fact the int. of the Present Worth, called the Discount of the $\$ 500$ paid 9 months before it is lue; hence,
Present Worth is the actual worth at the present times f a sum of money due some time hence, at a given rate of hterest.
Discount of a sum of money is the interest of the Present Worth of that sum, calculated from the present time to the time when the sum would be properly payable.
\therefore Disc ${ }^{\mathrm{t}} .=$ given sum less its P. Worth, and P. Worth $=$ iven sum less its Disct.

PRESENT WORTH.

128. Rule. Find the interest of $\$ 100$ for the given time t the given rate per cent., and state thus:
$\$ 100+$ its interest for the given time at the given rate per ent. : given sum :: $\$ 100$: present worth required.
Lix. 1. Find the present worth of $\$ 676$, due 6 months ence, at 8 per cent. per annum.
By the Rule,
Int. on $\$ 100$ for 6 mo . at 8 per cent. $=\$ 4$.
$\therefore \$ 104: \$ 676:: \$ 100:$ P. Worth req ${ }^{d}$.
ence P. Worth req ${ }^{d} .=\$ \frac{676 \times 100}{104}=\$ 650$.
Reason $\$ 100$ is the P. Worth of $\$ 104$, due 6 mo . hence, we have the above statement by the Rule of Three.
Ex. 2. Find the present worth of $£ 275.68 .8 d$. due 15 onths hence at 4 per cent. per annum.

Int. of $£ 100$ for 15 mo . at 4 per cent. $=\frac{15}{12}$ of $£ 4=£ 5$. $\therefore £ 105$: £275 ${ }^{\frac{1}{3}}:: £ 100:$ P. Worth req ${ }^{\text {d }}$.
\therefore P. Worth req ${ }^{\mathrm{d}} .=£ \frac{275 \frac{1}{3} \times 100}{105}=£ 262.4$ s. $5 \frac{1}{4} d$. nearly.

DISCOUNT.

129. Rule. Find the interest of $\$ 100$ for the given time at the given rate per cent., and state thus:
$\$ 100+$ its interest for the given time at the given rate per cent. : given sum :: interest of $\$ 100$ for the given time at the given rate per cent. : discount required.

Ex. 1. Find the discount of $\$ 250.75$ due 17 months hence at 8 per cent. per annum, simple interest.
By the Rule,
Int. of $\$ 100$ for 17 mo . at 8 per cent. $=\frac{17}{12}$ of $\$ 8=\$ 11 \frac{1}{3}$
$\therefore \$ 111 \frac{1}{3}: \$ 250 \frac{3}{4}:: \$ 1 \frac{1}{3}$: disc t. req ${ }^{\text {d }}$.
$\left\ulcorner\therefore\right.$ disc $^{\mathrm{t}} . \mathrm{req}^{\mathrm{d}} .=\$ \frac{250 \frac{3}{4} \times 11 \frac{1}{8}}{111 \frac{1}{3}}=\$ 25.40 \frac{20}{2} \frac{0}{7}$.
1 Reason. $\$ 11 \frac{1}{2}$ is the interest on $\$ 100$ or the discount on $\$ 111 \frac{1}{3}$ for 17 mo . at 8 per cent., \therefore we have the above statement by the Rule of Three.
130. In the discharge of a tradesman's bill before it has become due, it is usual o deduct interest instead of discount; thus, if B contracts with A a debt of $\$ 100, A$ giving 12 months' credit, it is usual, if the interest . money be reckoned at 8 per cent. per an::um, and the bi be discharged at once, for A to throw off $\$ 8$, or for A to receive $\$ 92$ instead of $\$ 100$; but if A were to put out the $\$ 92$ at 8 per cent. interest for 12 months it will not amount to $\$ 100$; therefore such a proceeding is to the advantage of B : the sum of money which in strictness ought to have been deducted, was not $\$ 8$, the interest on the whole debt, but $\$ 7.36$, the interest on the present worth of the debt, i. e. the discount.
131. Bankers and Merchants in discounting bills calculate interest, instead of discount, on the sum drawn for in the bill, from the time of their discounting it to the time when it becomes due, adding three days of grace, which days are usually allowed after the time a bill is nominally due, be-
fore it is legally due. When a bill is payable on demand, the days of grace are not allowed.

If a bill, without the days of grace, should appear to be due on the 31st of any month which contains less than 31 days, the last day of that month, and not the first day of the next, is considered as the day on which the bill is due. Thus a bill drawn on the 31st of Oct. at 4 months, would be really due, adding in the days of grace, on the 3rd of March. Bills which fall due on a Sunday, are paid on the previous Saturday.

Ex. A bill of $£ 1000$ is drawn on Feb. 16th, 1864, at 7 moaths' date: it is discounted on the 8th day of July at 5 per cent. What does the banker gain by the transaction?

The bill is legally due on Sept. 19; from July 8 to Sept. 19 are 73 days.

Ex. LXXII.

Find the present worth of
(1) $\$ 216$ due 1 yr. hence at 8 per ct. per ann. simp. int.
(2) $\$ 968$.... 3 уг........... 7
(3) $\$ 1236$.... 6 mo..........6.............................
(4) $\$ 225.25$.... 9 mo......... 10
(5) $\$ 1057.50$....21 $\frac{1}{2}$ yrs.. $7 \ldots .$.
(6) $£ 161.13 \mathrm{~s} .5 \frac{1}{4} d .7 \frac{1}{7}$ yrs........ $3 \frac{1}{2}$
(7) £193.17s. $4 \frac{1}{4} d .19$ mo......... 5
(8) £458. 8s. $9 \frac{1}{4}$ d. 31 days. 5

Find the Discount on
(9) $\$ 217$ due 3 yrs. hence at 8 per ct. per ann. simp. int.
(10) $\$ 22100$.... $1 \frac{1}{2}$ yrs......... 7
(11) $\$ 2000$.... 6 mo.......... 10
(12) $\$ 1750$. 9 mo........... 8
(13) £345. 16s. 3d. . . 86 days. . . . 4
(14) What is the difference between the true and mercantile discount on £う49 for 32 days at 5 per cent. per annum?
(15) A bill for £450 drawn March 3, at 9 mo. date, is discounted by a banker on Oct. 22 at 5 per cent. Find his profit.
(16) From a bill of £3. 11 s . 8 d ., due 18 mo . hence, a tradesman deducts $5 s$. ; what is the rate per cent. at which the true discount is calculated?

STOCKS.

132. If the 6 per quoted in \dagger $\$ 105 \frac{1}{2}$ of money for which he will
" ominion of Canada" stock be kei - $105^{\frac{1}{2}}$, the meaning is, that for n can purchase $\$ 100$ of such stock, ve a document which will entitle him to half-yearly payments of Interest or Dividends, as they are called, from the Government of the country, at the rate of 6 per cent. per annum on the stock held by him, until the Government choose to pay off the debt.

Similarly, it shares in any trading company, which were originally fixed at any given amount, say $\$ 100$ each, be advertised in the share-market at 86 , the meaning is, that for $\$ 86$ of money one share can be obtained, and the holder of such share will receive a dividend at the end of each halfyear upon the $\$ 100$ share according to the state of the finances of the company.
Stock may therefore be defined to be the capital of trading companies; or to be the money borrowed by our or any other Government, at sc much per cent., to defray the expenses ot the nation.

The amount ol debt owing by the Government is called the National Debt, or the Funds. The Government reserves tn itself the option of paying off the priacipal or debt at any future time, pledging itself however to pay the interest on it regularly at fixed periods in the mean time.

From a variety of causes the price of stock is continually varying. A fundholder cau at any time sell his stock, and so convert it moto money, and it will depend upon the price at which he disposes of it as compared with the price at which he bought it, whether he will gain or lose by the transaction.

Note. 1. Purchases or sales ot stock are made through Brokers, who generally charge $\$ \frac{1}{8}$, or $12 \frac{1}{2}$ cts. per cent., upon the stock bought or sold: so that, when stock is bought by auy party, every $\$ 100$ stock costs that party $\$ \frac{1}{s}$ more than the market-price of the stock: and when stock is sold, the seller gets $\$ \frac{1}{8}$ less for every $\$ 100$ stock sold than the marketprice.

Thus: the actual cost or $\$ 100$ stock in the 3 per cents at
$94 \frac{1}{3}$, is $\$\left(94 \frac{1}{3}+\frac{1}{8}\right)$, or $\$ 94 \frac{2}{8}$. The actual sum received for $\$ 100$ stock in the 3 per cents. at $94 \frac{1}{8}$, is $\$\left(91 \frac{1}{3}-\frac{1}{8}\right)$, or $\$ 94$.

Unless the brokerage is mentioned, it need not be noticed in working examples in stocks.

Note. When $\$ 100$ stock costs $\$ 100$ in money, the stock is said to be at par; when $\$ 100$ stock cost more than $\$ 100$ in money, the stock is said to be at a premium; when $\$ 100$ stock costs less than $\$ 100$ money, the stock is said to be at a discount.

All Examples in Stocks depend on the principles of Proportion, and may therefore be worked by the Rule of Three.

Ex. 1. What sum of money will purchase $\$ 26006$ per cent. stock at 93 ?
$\$ 100$ stock (st.) costs $\$ 93$ in money ;
$\therefore \$ 100$ st. : \$2600 st. :: $\$ 93$: req ${ }^{\text {d }}$. sum;

$$
\therefore \text { req }^{\text {d }} \text { sum }=\frac{2600 \times 93}{100}=\$ 2418 .
$$

Ex. 2. Find the cost of £2353 3 per cent. Consols at $90 \frac{8}{8}$, brokerage being $\frac{1}{8}$ per cent.

$$
£ 100 \text { st. costs } £\left(90 \frac{3}{8}+\frac{1}{8}\right) \text {, or } £ 90 \frac{1}{2}
$$

$\therefore £ 100$ st. : £2353 st. :: £90 $\frac{1}{2}$: req ${ }^{\text {d }}$. cost ;

$$
\therefore r^{\mathrm{r}} q^{\mathrm{d}} \cdot \operatorname{cost}=£ \frac{2353 \times 90 \frac{1}{2}}{100}=£ 2129.9 \text { s. } 3 \frac{1}{2} d .{ }^{2} q .
$$

Ex. 3. A person, who has $\$ 10000$ Bank-stock, sells out when it is at 35 per cent. premium; what amount of money does he receive, brokerage being $\frac{1}{8}$ per cent?
$\$ 100$ st. sells for $\$\left(135-\frac{1}{8}\right)$, or $\$ 134 \frac{7}{8}$ money;
$\therefore \$ 100$ st. : $\$ 10000$ st. :: $\$ 134 \frac{7}{8}$: req ${ }^{\text {d. am }}{ }^{\text {t. }}$. of money;
$\therefore \mathrm{req}^{\mathrm{d}} . \mathrm{am}^{\mathrm{t}} .=\$ \frac{10000 \times 134^{\frac{7}{8}}}{100}=\$ 13487.50$.
Ex. 4. What incomes will $\$ 5500$ of 7 per cent. stock, and $\$ 5500$ invested in the 7 per cent. stock at 102^{2}, respectively produce?

1st, since every $\$ 100$ stock gives $\$ 7$ int. ; \therefore income from $\$ 5500$ of 7 per cent. stock $=\$ \frac{5500 \times 7}{100}=\$ 385$.

2nd, since $\$ 100$ stock, which gives $\$ 7$ int., costs $\$ 102 \frac{2}{3}$; \therefore every $\$ 102 \frac{2}{3}$ gives $\$ 7$ int.;
$\therefore \$ 102 \frac{2}{z}$: $\$ 5500:: \$ 7$: req ${ }^{\text {d }}$. income;

$$
\therefore \text { req }{ }^{d} \text { income }=\$ \frac{5500 \times 7}{1022_{3}^{2}}=\$ 375 .
$$

Ex. 5. One person buys $£ 500$ Consols at $90 \frac{1}{3}$ and sells out at 93 ; another invests $£ 500$ in Consols at $90 \frac{1}{3}$ and sells out at 93 ; what sum of money does each gain?

1st man gains $£\left(93-90 \frac{1}{3}\right)$, or $£ 2^{2}$, on every $£ 100$ stock; \therefore his whole gain $=\mathfrak{E}\left(2 \frac{2}{3} \times 5\right)=£ 13.6 \mathrm{~s} .8 \mathrm{~d}$.
2 d man gains $£ 2 \frac{2}{3}$ on every $£ 100$ stock, i. e. on every $£ 90 \frac{1}{8}$ of his money which he invests;
$\therefore £ 90 \frac{1}{3}$: £500 :: £2 $\frac{2}{3}$: whole gain;
\therefore whole gain $=£ \frac{500 \times 2 \frac{2}{3}}{90 \frac{1}{3}}=£ 14.15$ s. $2 \frac{1}{4} d$., nearly.
Ex. 6. A person invested some money in the 3 per cent. Consols when they were at 90 , and some money when they were at 80 ; find the rate of interest he obtained in each case, and the advantage per cent. of the second purchase over the first.
$£ 90$: $£ 100$:: $£ 3$: rate per cent. in 1st case, $£ 80$: £100 :: £3 : rate per cent. in 2 d case,
\therefore rate per cent. in 1st case $=£ \frac{100 \times 3}{90}=£ 3.6 \mathrm{~s} .8 \mathrm{~d} . ;$

$$
2 \mathrm{nd} \ldots=£\left(\frac{100 \times 3}{80}\right)=£ 3.15 s . ;
$$

\therefore advantage $=£ 3.15 s .-£ 3.6 s .8 d .=8$ s. $4 d$.
Ex. 7. A person invests $£ 1037$. 10 s. in the 3 per cents. at 83 ; the funds rise 1 per cent.; he then transfers his capital to the 4 per cents. at 96 : find the alteration in his income.
$£ 83$: £1037. 10 s. :: $£ 100$: quantity of 3 per cent. st.; \therefore quantity of 3 per cent. st. bought $=£ \frac{1037 \frac{1}{2} \times 100}{83}=£ 1250$.
The funds have risen 1 per cent., therefore to transfer £1250 stock from the funds at 84 to the funds at 96 ,
$£ 93$: £84 :: £1250 stock : quantity of 4 per cent. stock, (since the higher the price of the stock the less will be the amount purchased);
\therefore quantity of 4 per cent. stock $=£ \frac{1250 \times 84}{96}=£ 1093.158$.

$$
\begin{aligned}
& \text { 1st Income }=£ \frac{1250 \times 3}{100}=£ 37.10 \mathrm{~s} . \\
& \text { 2nd Income }=£ \frac{1093 \frac{3}{4} \times 4}{100}=£ 43.15 \mathrm{~s} .
\end{aligned}
$$

\therefore alteration in income $=£ 43$. 15 s. $-£ 37.10$ s. $工 £ 6$. 5 s.

Ex. LXXIII.

(1) Find amount of Bank of Montreal stock purchased by investing $\$ 527.25$ at $126 \frac{1}{2}$, the stock yielding 8 per cent., per annum interest?
(2) Bank of Toronto stock being at $102 \frac{1}{2}$, how much can be purchased for $\$ 800$?
(3) Find the value of $\$ 1556$ Royal Canadian Bank stock at 98.
(4) Royal Canadian Bank stock being at 1 per cent. discount, I invest $\$ 525.50$; find my income therefrom; the Bank's dividends being 7 per cent. per annum.
(5) Montreal Bank stock being at $125 \frac{3}{8}$, and paying yearly dividends of $7 \frac{1}{2}$ per cent.; how much money must be invested in order to secure an annual income of $\$ 900$, allowing $\frac{1}{6}$ per cent. for brokerage?
(6) Upper Canada Bank bills are at 65 ; how much money could a person obtain for $\$ 2140$ of such Bank bills?
(7) If a man invest $£ 666.8$ s. $4 d$. in the 3 per cents. at $90 \frac{7}{8}$, (1) what half-yearly interest will he obtain after deducting an ince tax of $4 d$. in the $£$? (2) What rate per cent. will he get for the money invested?
(8) What rate per cent. per annum does a person receive for his money, who invests in Bank of Montreal stock at 136 ; the stock yielding half-yearly dividends of 4 per cent.?
(9) Which would be the better investment, Bank of Montreal stock at 136, or Bank of Toronto stock at 104; half-yearly dividends being 4 and $3 \frac{3}{4}$ per cent. respectively?
(10) If a person lay out $£ 4650$ in the $3 \frac{1}{2}$ per cents. when they are at 7 per cent. discount, what will be his loss of property by the stocks falling $\frac{1}{2}$ per cent.?
(11) If a person were to transfer $£ 29000$ stock, from the $3 \frac{1}{2}$ per cents. at 99 to the 3 per cents. at $90 \frac{5}{5}$, what difference would it make in his income?
(12) A person invests $\$ 2000$ in Bank of Toronto stock at 115, shortly afterwards he sells when the stock rose to 123. Find his gain?
(13) If the 3 per cents. are at 95 , and Government offer to receive tenders for a loan of $£ 5016000$, the lender to receive five millions in the 3 per cents., together with a certain sum in the $3 \frac{1}{2}$ per cents.; what sum in the $3 \frac{1}{2}$ per cents. ought the lender to accept?
(14) A man sells out of the $3 \frac{1}{3}$ per cents. at $93 \frac{1}{2}$ and realizes £18700: if he invest one-fifth of the produce in the 4
per cents. at 96 , and the remainder in the 3 per cents. at 90 find the alteration in his income.
(15) A person invests $£ 5460$ in the 3 per cents. at 91 ; ht sells out $£ 2000$ stock when they have risen to $93 \frac{1}{2}$, and the remainder when they have fallen to 85 ; he then invests the produce in the $4 \frac{1}{2}$ per cents. at 102. What is the difference in his income?
(16) A person has an income of £350 from money in. vested in the new 3 per cents., he sells out at $87 \frac{3}{8}$, and invests in the India 5 per cents. at 104. . How will his income be affected, $\frac{1}{8}$ th per cent. being allowed for brokerage?

APPLICATIONS OF THE TERM "PER CENT."

133. There are many other cases in which the term PER Cent. occurs besides those already mentioned; we will mention certain cases, and give examples in each by way of illustration.

Commission is the sum of money which a merchant charges for buying or selling goods for another.

Brokerage is of the same nature as Commission, but has relation to money transactions, rather than dealings in goods or merchandise.

Insurance is a contract, by which one party, on being paid a certain sum or Premium by another party on property, which is subject to risk, undertakes, in case of loss, to make good to the owner the value of that property. The document which expresses the contract is called the Policy of Insurance.

Life Assurance is a contract for the payment of a certain sum of money on the death of a person, in consideration of an annual premium to be continued during the life of the Assured, or for a certain number of years.

Questions on Commission, Brokerage, and Insurance, these charges being usually made at so much per cent., amount to the same thing as finding the interest on a given sum of money at a given rate for 1 yr., and may therefore be worked by the Rule for Simple Int. or by the Rule of Three.
Ex. 1. What is the brokerage on the purchase of $\$ 4300$ 6 per cents. stock at $\frac{1}{8}$ per cent. ?
$100: 4300:: \$ \frac{1}{s}:$ broker $^{\text {st. }}$. req ${ }^{\text {s. }} . ; \therefore$ brok $^{\text {s. }}$. req $^{\text {d }} \cdot=\$ \frac{4300 \times \frac{1}{8}}{100}=$

Ex. 2. What is the premium on a policy of insurance for $£ 9626.11 s$. $3 d$., at £3. 12 s. per cent.?
$£ 100$: £9626. 11s. 3 d. :: £2. 12s : : premium req ${ }^{\text {d }}$;
\therefore premium req ${ }^{d}=£ \frac{9626_{1}^{9} \times 2^{3}}{100}=£ 250.5 s .9 \frac{3}{4} d$.
Ex. 3. What is the annual cost of insuring property to the amount of $\$ 1600$, the premium being $\$ 1.50$ per cent.? $\$ 1 \phi \varnothing: 16 \not \varnothing:: 1.50$: ann ${ }^{1}$. cost $; \therefore$ ann 1. cost $=\$ 1.50 \times 16=\$ 24$.
134. All questions which relate to gain or loss in mercantile transactions fall under the head of Profit and Loss.
Tradesmen measure their Profit or Loss by the actual amount gained or lost, or by the amount gained or lost on overy $\$ 100$ of the capital they invest.
Ex 4. If tea be bought at 84 cts . per lb., and sold at 93 cts . or lb ., find the gain per cent.
$(93$ cts. -84 cts. $)=9$ cts.; \therefore gain on 84 cts. $=9 \mathrm{cts}$.
$\therefore 84$ cts. : $\$ 100:: 9$ cts. : gain per cent. ;
\therefore gain per cent. $=\frac{100 \times 9}{84}$ cts. $=\$ 10.71 \frac{3}{7}$.
Ex. 5. If tea be bought at 93 cts. per lb . and sold at 84 cts. per lb., find the loss per cent.
In this case 9 cts. is lost on 93 cts.,

$$
\therefore 93 \text { cts. : } \$ 100:: 9 \text { cts. : loss per cent. }
$$

whence loss per cent. $=\$ 9.67 \frac{23}{3} 1$.
Ex. 6. By selling cheese at £3. 13s. $6 d$. a cwt. a grocer ealized a profit of $22 \frac{1}{2}$ per cent. what did it cost him per cowt.?
He sells cheese for which he gave $£ 100$ for $£ 122 \frac{1}{2}$.
. £122 $\frac{1}{2}$: $£ 3.13 s .6 d$. or $£ 3 \frac{27}{4}:: £ 100$: prime cost per cwt.;
\therefore prime cost per cwt. $=£ \frac{3 \frac{370}{} \times 100}{122 \frac{1}{2}}=£ 3$.
Ex. 7. By selling cheese at £3. 13 s .6 d . a cwt. a grocer $10 \div{ }^{\circ} \mathrm{t}$ $2 \frac{1}{2}$ per cent., find the prime cost of the cheese per ewt.
In this case he sells cheese, for which he gave £100, for $\left.£ 100-£ 22 \frac{1}{2}\right)$, or for $£ 77 \frac{1}{2}$.
$\therefore £ 77 \frac{1}{2}: £ \frac{27}{40}:: £ 100:$ prime cost of cheese per cwt.;
\therefore prime cost per cwt. $=£ \frac{3 \frac{27}{7} 7}{77 \frac{1}{2}}=£ 4.14 \mathrm{~s} .10_{31}^{2} d$.
Ex. 8. By selling sheep for $\$ 19$ the seller loses 5 per cent. on his outlay; what would have been his loss or gain per cent. if he had sold the sheep for $\$ 23.75$?

1st. $\$ 95: \$ 19:: \$ 100:$ prime cost of sheep, \therefore prime cost of sheep $=\$ 20$.
2nd. $\$ 20: \$ 100:: \$ 3.75$: gain per cent., if the sheep b sold for \$23.75;

$$
\therefore \text { gain per cent. }=\$ \frac{100 \times 3 \frac{3}{2}}{20}=\$ 18.75 .
$$

This sum might have been worked thus,
$\$ 19: \$ 23 \frac{3}{4}:: \$ 35$, i. e. what $\$ 100$ will realize if the sheep bi sold for $\$ 19$: what $\$ 100$ will realize if the sheep be sold fo $\$ 23$?
$\therefore \$ 100$, if sheep sold for $\$ 23 \frac{3}{4}$, will realize $\$ \frac{95 \times 23 \frac{3}{4}}{19}$, or $\$ 118 \frac{3}{4}$ \therefore gain per cent. $=\$ 118 \frac{3}{4}-\$ 100=\$ 18 \frac{3}{4}=\$ 18.75$.
135. Tables respecting the increase or decrease of Popu lation, \&c., are constructed with reference to the increase of decrease on every 100 of such population; Education return are constructed in the same way; and so are other Statistica Tables.

Ex. 9. In 1852 the population of the County of Wellingtor was 26796, in 1861 it was 49200 ; find the increase per cent $49200-26796=22404 ; \therefore 26796: 100:: 22404:$ incre . per cent \therefore increase per cent. $=\frac{2240400}{26 \cdot 96}=83 \cdot 609 \ldots$ per cent.
Ex. 10. Between the years 1841 and 1851 the population of England increased 142 per cent. In 1831 it was 21121290 what was it in 1841?
For every 1 C0 persons in 1841 there were 1142 in 1851; $\therefore 114 \cdot 2: 21121290:: 100:$ population in 1841;
\therefore population in $1841=\frac{21121290 \times 100}{114.2}=18495000$.
Ex. 11. If of a regiment of 750 men, 26 per cent. are in hospital, 32 per cent. in trenches, and the rest in camp, how many are in hospital, trenches, and camp, respectively?
$100: 750:: 26:$ no. in hosp ${ }^{1} . ; \therefore$ no. in hosp $1 .=\frac{750 \times 26}{100}=195$.
$100: 750:: 32:$ no. in tren ${ }^{\text {hs }} ; \therefore$ no. in tren ${ }^{\text {hs }}=\frac{750 \times 32}{100}=240$.
\therefore number in camp $=750-(195+240)=315$.
Ex. 12. The percentage of children who are learning to

Write is 65 in a school of 60 children, and 78 in another sehool ff 10 , what is the percentage in the two schools together?
In the 1st school,
$100: 60:: 65:$ no. who write; \therefore no. who write $=\frac{60 \times 65}{100}=39$.
In the 2 nd school,
$00: 70:: 78:$ no. who write $; \therefore$ no. who write $=\frac{70 \times 78}{100}=54 \frac{3}{5}$.
\therefore in a school of 130 , there are $93 \frac{3}{3}$ who write;
$\therefore 1 \angle 0: 100:: 93 \frac{3}{6}:$ percent. req ${ }^{d}$.; \therefore percent. req ${ }^{d}$.

$$
=\frac{100 \times 93 \frac{3}{5}}{130}=72 .
$$

Ex. LXXIV.

(1) What will be the broker's commission on the purchase pf $\$ 43006$ per cents. at $90 \frac{1}{2}$, at $\frac{1}{8}$ per cent.?
(2) What is the premium on a policy of insurance for \$9626.55 at $\$ 2.60$ per cent.?
(3) The commission on the purchase of $\$ 1560$ Dominion tock at 104 amounted to $\$ 4.60$, what was the rate per cent.?
(4) For what sum would the life of a person aged 23 be nsured by the annual payment of $\$ 45.60$, the premium for hat age being $\$ 2.40$ per cent.?
(5) A draper at Hamilton buys 25 pieces of calico, each containing 36 yds ., for $£ 32.16 \mathrm{~s} .3 \mathrm{~d}$.; the carriage costs him ps. $3 d$.; (1) What will he gain by selling the calico at $10 \frac{1}{2} d$ a d.? (2) What will he gain per cent.?
(6) A merchant bought 1280 bus. of wheat at $\$ 1.20$ a bu., he expenses of carriage, \&c., averaged $3 \frac{3}{4} \mathrm{cts}$. a bu.; he sold he wheat at $\$ 1.40 \mathrm{a}$ bu. (1) What was his gain? (2) What was his gain per cent.? (3) At what price a bu. should he have sold the wheat in order to gain $\$ 400$?
(7) (1) A man buys a pig for $6 s .8 d$. , and sells it for $7 \mathrm{~s} .4 d$. ; ind his gain per cent. (2) What would have been the loss per cent. had he bought the pig at 7 s . $4 d$. and sold it at 68 . Sd.?
(8) Tea is bought at $\$ 96$ per cwt., at what price per 1 lb . must it be sold to gain 25 per cent. ?
(9) Sugar is bought at $\$ 6$ per cwt., what will be the gain per cent. if it be sold at 10 cts . per lb . ?
(10) At what price must a yd. of cloth be sold, which cost. 4s. $8 d$., so as to gain $12 \frac{1}{2}$ per cent.?
(11) If a yd. of cloth, sold at $48.8 d$., give a profit of 1 per cent.; find the prime cost.
(12) A grocer buys 40 lbs . of tea at $84 \mathrm{cts} ., 44 \mathrm{lbs}$. at 93 ct and 55 lbs . at $\$ 1.08$; and sells the mixture for $\$ 188.16$., wh is his gain per cent.?
(13) A grocer mixes 26 lbs . of tea at 5 s .3 d ., 32 lbs . at t 7 d., and 36 lbs . at 6 s .1 d. ; at what rate per lb . must he sell tl mixture in order to gain 40 per cent. on his outlay?
(14). If I sell for $15 s$. I lose 10 per cent., what must I sell; to gain 10 per cent.?
(15) A person buys a certain number of eggs and sel them again at such a price, that 11 are sold for the money 7 cost him. Find his gain per cent.
(16) A boy sells another boy a cricket-bat for $\$ 1.56$, gai ing thereby 30 per cent.; what did it cost him?

APPLICATIONS OF THE TERM "AVERAGE."

136. Questions are often given, in which the term "Av rage" occurs; two such examples will be worked by way c illustration, and others subjoined for practice.

Ex. 1. A gentleman in each of the following years ez pended the following sums: in $1845 \$ 650$, in $1846 \$ 675$, i $1847 \$ 680$, in $1848 \$ 690$, in $1849 \$ 700$, in $1850 \$ 715$, in 185 $\$ 790$. Find his average yearly expenditure.

The object is to find that fixed sum which he might hav spent in each of the seven years, so that his total expend ture in that case might be the same as his total expenditur was in the above question.

Adding the various sums together we find that the tota expenditure amounted to $\$ 4900$; this sum divided by 7 give $\$ 700$ as the average yearly expenditure.

Ex. 2. In a school of 27 boys, 1 of the boys is of the ag of 17 years, 2 of 16,4 of $15 \frac{1}{2}, 1$ of $14 \frac{3}{4}, 2$ of $14 \frac{1}{2}, 5$ of $13 \frac{3}{4}, 11$ of $12 \frac{1}{1}$, and 2 of 10 ; find the average age of the boys.

The object is to find, what must be the age of each boy supposing all to be of the same age, that the sum of thei ages may equal the sum of the ages in the question.

Sum of ages

$$
\begin{aligned}
& =17+32+62+14 \frac{3}{4}+29+68 \frac{3}{2}+122 \frac{1}{2}+20=366 ; \\
& \quad \therefore \text { average age }=366 \text { yrs. }-27=13 \frac{5}{9} \text { years. }
\end{aligned}
$$

Ex. LXXY.

(1) The highest temperature registered in the shade on
onday 13th July, 1868, in the following towns, was:-Otwa, 101. Montreal, 96 : Toronto, 92 ; New York, 90 ; Buf10, 82; New Orleans, 81. Find their average highest mperature?
(2) On Sunday I spent no money, on Mond. $\$ 4.25$, on les. $\$ 5.75$, on Wed. $\$ 6.60$, on Thurs. $\$ 7.80$, on Frid. $\$ 3.50$, Sat. $\$ 5.58$; find my average daily expenditure during e week.
(3) The highest temperatue registered in the shade in the cek endingon Midsummer-day, 1865, in the following towns, is:-Birmingham, $87 \cdot 8$; Manchester, $87 \cdot 7$; London, $87 \cdot 6$; istol, $83 \cdot 8$; Leeds, $85 \cdot 0$; Salford, $84 \cdot 5$; Dublin, $83 \cdot 8$; Edinrgh, $78 \cdot 0$; Liverpool, $77 \cdot 9$; Glasgow, 77.6 . Find their erage highest temperature.
(4) In a school, 17 children average 6 yrs.; 26, $7 \frac{1}{2}$ yrs.; , $9 \frac{1}{4}$ yrs. ; 20,10 yrs. ; and $8,12 \frac{1}{4}$ yrs. Find the average e of all the children.
(5) The average age of 27 men is 57 years, that of the st eleven is 53 years, and that of the last eight $59 \frac{1}{4}$ years. nd the average age of the rest.
(6) The populations of 3 towns in 1851 were 31326,42324 , d $6 \pi 06$; in 1861 the first two had increased 12 , and 10 per. ht. respectively, and the last had decreased 18 per cent.; d the average population of the 3 towns in 1861 .
(7) A tradesman's average annual gain from the year 53 to 1863 , both inclusive, was £184. 11s. $6 d$. ; in 1853 he it £75. 8s. 4d., and in 1864 he gained £151. 9s. 10d. What is his average annual gain from 1854 to 1864, both inclue?

DIVISION INTO PROPORTIONAL PARTS.

137. To divide a given number into parts, which shall be pportional to certain other given numbers.
This is an application of the Rule of Three; still it may well to state a general Rule, by which such Ex ${ }^{3}$. may be riked.
Rule. As the sum of the given parts : any one of them :: entire quantity to be divided the corresponding part it.
This statement must be repeated for each of the parts, or all events for all but the last part, which may either be
found by the Rule, or by subtracting the sum of the value of the other parts from the entire quantity to be divided.

Ex. 1. Divide 40 dollars among A, B, C, so that thei shares may be as 7, 11, and 14 respectively.

By the Rule. Sum of shares $=7+11+14=32$.

$$
\begin{aligned}
& \therefore 32: 7:: \$ 40: A \text { 's she } . ; 32: 11:: \$ 40: B \text { 's she} . ; \\
& \text { whence } A^{\prime} \text { 's she} .=\$ 8.75, B^{\circ} \text { 's she} .=\$ 13.75 \text {., } \\
& C \text { 's she } .=\$ 40-(\$ 3.75+\$ 13.75)=\$ 17.50 .
\end{aligned}
$$

Ex. 2. Divide $£ 45$ among A, B, C, and D, so that A^{\prime} share : B 's share :: $1: 2, B$'s $: C$'s $:: 3: 4$, and C 's $: D$'s :: $4:\}$

The L. C.M. of $1,2,3,4$, and 5 , is $60, \therefore$ if D has 60 share C will have $\frac{4}{5}$ of 60 , or $48 ; B$ will have $\frac{8}{4}$ of 48 , or 36 ; an A will have $\frac{1}{2}$ of 36 , or 18 .
$\therefore(18+36+48+60)$, or $162: 18:: £ 45: A^{\prime}$'s sher ;
whence A 's she.$=£ 5$. Similarly B 's $=£ 10, C$'s $=£ 13.6$. $8 d$. , and D 's $=£ 16.13 s, 4 d$.

FELLOWSHIP OR PARTNERSHIP.

138. Fellowship or Partnership is a method by whic the respective gains or losses of partners in any mercantil transactions are determined.

Fellowship is divided into Simple and Compound Fei LowsHIP : in the former, the sums of money put in by th several partners continue in the business fortthe same time in the latter, for different periods of time.

The Rule in the last Art. applies for Simple Fellowshir
Ex. Two merchants, A and B, form a joint capital; puts in $\$ 210$, and $B \$ 360$; they gain $\$ 80$. How ought th gain to be divided between them?

$$
\$(240+360): \$ 240:: \$ 80: A^{\prime} \mathrm{s} \text { she } \mathrm{in} \$ \mathrm{in}
$$

$$
\therefore A^{\prime} \mathrm{s} \mathrm{sh}^{\mathrm{e}}=\$ 32, \text { and } B^{\prime} \mathrm{s} \text { she} .=\$(80-32)=\$ 48 .
$$

COMPOUND FELLOWSHIP.

139. Rule. Reduce all the times into the same denom ination, and multiply each man's stock by the time of it continuance, and then state thus;

The sum i all the products : each particular product: the whole quantity to be divided : the corresponding share
Ex. A and B trade together; A puts in $\$ 300$ for 9 mo . and $B \$ 240$ for 6 mo. ; they gain $\$ 115$. How ought they 4 divide it?

By the Rule,

$$
\begin{gathered}
\$(300 \times 9+240 \times 6): \$(300 \times 9):: \$ 115: A^{\prime} \mathrm{s} \mathrm{sh}^{\mathrm{e}} . \\
\$(300 \times 9+240 \times 6): \$(240 \times 6):: \$ \$ 115: B^{\prime} \mathrm{s} \mathrm{sh}^{\mathrm{e}} \cdot \\
\text { whence, } A^{\prime} \mathrm{s} \mathrm{sh}^{\mathrm{e}} .=\$ 75, \text { and } B^{\prime} \mathrm{s}=\$ 40 .
\end{gathered}
$$

Reason. $\$ 300$ for $9 \mathrm{mo}=9$ times $\$ 300$ for 1 mo., and $\$ 240$ for $6 \mathrm{mo}=6$ times $\$ 240$ for 1 mo ; the example then becomes one of Simple Fellowship.

EQUATION OF PAYMENTS.

140. When a person owes another several sums of money, Tue at different times, the Rule by which we determine the ust time when the whole debt may be discharged at one payment, is called the Equation of Payments.
Note. It is assumed in this Rule that the sum of the inerests of the several debts for their respective times equals he interest of the sum of the debts for the equated time.
Rule. Multiply each debt into the time which will elapse efore it becomes due, and then divide the sum of the prolucts by the sum of the debts; the quotient will be the equated time required.
Ex. 1. A owes $B \$ 100$, whereof $\$ 40$ is to be paid in 3 mo., and $\$ 60$ in 5 mo. ; find the equated time.
By the Rule,

$$
\text { equated time in mo. }=\frac{40 \times 3+60 \times 5}{40+60}=\frac{420}{100}=4 \frac{1}{5}
$$

Ex. 2. A owed $B \$ 10$, to be paid at the end of 9 mo.; he ays however $\$ 2$ at the end of 3 mo ., and $\$ 3$ at the end of 8 no.; when ought the remainder to be paid?
In this case, $2 \times 3+3 \times 8+5 \times$ no. of mo. req ${ }^{d}=10 \times 9$, or $+24+5 \times$ no. of mo. req ${ }^{d} \cdot=90 ;$
or, $30+5 \times$ no. of mo. req ${ }^{d}=90$, or $5 \times$ no. of mo. req ${ }^{d}$. $=90-30$, or $60, \therefore$ no. of mo. req ${ }^{d} \cdot=12$.

Ex. LXXVI.

(1) Divide (1) 1008 into 3 parts, which shall be to each ther as the numbers $2,3,4$, respectively. (2) $\$ 260$ into 3 arts, which shall be to each other as 5, 11, and 16. (3) 145 c. 3 ro. 33 po. between two persons in the ratio of $5: 6$. 4) $£ 110$ between 4 persons, whose shares shall be as $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, nd $\frac{1}{5}$.
(2) (1) A, B, and C contribute to a fund $\$ 320, \$ 560, \$ 720$, espectively. How are they to divide a profit of $\$ C 8$? ? (2) 1 , who has $£ 422.10$ s., owes $B, £ 175$; $C, £ 210$; and $D, £ 265$; rhat sum ought C to receive?
(3) Sugar being composed of 48.856 per cent. of oxygen $43 \cdot 265$ per cent. of carbon, and the rest hydrogen; how many lbs. of each of these materials are there in 1 ton of sugar?
(4) Archimedes discovered that the crown made for King Hiero consisted of gold and silver in the ratio of 2:1. How much per cent. was gold, and how much per cent. was silver?
(5) Find the equated time of payment of $\$ 150$ due in 2 mo., $\$ 210$ due in 6 mo., and $\$ 120$ due in 7 mo .
(6) A owes $B \$ 1000$ to be paid at the end of 6 mo.; A pays $\$ 400$ at the end of 3 mo .; when ought he to pay the remainder?
(7) A, B, and C remained partners for 2 years; A brought in $\$ 4000$, which remained the whole time; B began with $\$ 300$, and 6 months after put in $\$ 300$ more; C began with $\$ 200$, and one year after put in $\$ 500$ more. The whole gain was $\$ 7960$. Determine each partner's share.
(8) A is a working, B a sleeping partner in a bookseller's business. Their capital amounts to $£ 6400$; of which $£ 2100$ belongs to A, the rest to B. Their profits, at the end of the first year, amounted to $£ 1600$. A receives 10 per cent. of the profits for managing the business. How ought the remaining part of the profits to be divided ?
(9) A, B, and C rent a field for $\$ 60 ; A$ puts in 20 horses, $B 15$ oxen, and $C 10$ sheep; supposing the keep of a horse, ox, and sheep to be in the ratio of 3,2 , and 1 ; shew how the rent should be divided.
(10) Some broth was distributed among a certain number of old men, 9 widows, and 6 single women; the men had twice as much broth given among them as was given among the women; also an old man's share was to a widow's share :: $6: 5$, and a widow's share to a single woman's share $:: 10: 9$. Each single woman received $1 \frac{1}{2}$ pints. How many old men were there?

SQUARE ROOT.

141. The Square of a given number is the product of that number multiplied by itself. Thus 6×6 or 36 is the square of 6 , or $36=6^{2}$. Art. 86 .
142. The Square Root of a given number is a number,
which, when multiplied by itself, will produce the green number. Thus 6 is the square root of 36 ; for $6 \times 6=36$.
The square root of a number is sometimes denoted by placing the sign V before the number, or by placing the fraction $\frac{1}{3}$ above the number a little to the right. Thus $\sqrt{ } 36$, or $(36)^{1 / 2}$ denotes the square root of 36 ; so that $\sqrt{2} 36$, or $(36)^{1 / 2}$ $=6$.

143. Rule for extracting the Square Root of a number:

Place a point or dot over the units' place of the given number; and thence over every second figure to the left of that place; and thence also over every second figure to the right, when the number contains decimals, annexing a cypher when the number of decimal figures is odd; thus dividing the given number into periods. The number of points over the whole numbers and decimals respectively will shew the number of whole numbers and decimals respectively in the square root.

Find the greatest number whose square is contained in the first period at the left; this is the first figure in the ront, which place in the form of a quotient to the right of the given number. Subtract its square from the first period, and to the remainder bring down, on the right, the second period.
Divide the number thus formed, omitting the last figure, by twice the part of the root already obtained, and annex the result to the root and also to the divisor.
Then multiply the divisor, as it now stands, by the part of the root last obtained, and subtract the product from the number formed, as above mentioned, by the first remainder and second period.
If there be more periods to be brought down, the operation must be repeated.

Ex. 1. Find the square root of 1369 .

$\left\{\begin{array}{ccc}3^{2}= & \begin{array}{c}1 \dot{3} 6 \dot{9}(37 \\ 9\end{array} & \begin{array}{l}\text { After pointing, according to the } \\ \text { Rule, we take the first period, or }\end{array} \\ \{2 \times 3=6\} & 67 \left\lvert\, \begin{array}{l}469 \\ \text { 13, and find the greatest number } \\ \text { whose square is contained in it. } \\ \text { Since the square of } 3 \text { is } 9 \text {, and that }\end{array}\right.\end{array}\right.$
of 4 is 16 , it is clear that 3 is the greatest number whose quare is contained in 13 ; therefore place 3 in the form of a quotient to the right of the given number. Square this number, and put down the square under the 13 ; subtract it from the 13 , and to the remainder 4 affix the next period 69, thus forming the number 469 . Take 2×3, or 6 , for a divisor, dl-
vide the 469 , omitting the last figure, that is, divide the 46 by the 6 , and we obtain 7 . Annex the 7 to the 3 before obtained, and to the divisor 6 ; then multiplying the 67 by the 7 we obtain 469, which being subtracted from the 469 before formed, leaves no remainder; therefore 37 is the square root of 1369.

Ex. 2. Find the square root of 282475249 .

	$\begin{aligned} & \dot{1} \dot{2} \dot{2} \dot{4} 75 \dot{2} 4 \dot{9}(16807 \\ & \hline \end{aligned}$					
$\{2 \times 1=2\}$	$2 6 \longdiv { 1 }$	182	18			
		156				
$\{2 \times 16=32\}$	328	2647	$264 \div 32=$			
		2624				
$\{2 \times 168=336\}$	$33607{ }^{2}$	$7 \begin{aligned} & 235249 \\ & 235249 \\ & \hline \end{aligned}$		9336 is greater than 235; \therefore put 0 after the 8 in the quotient, and the 6 in the divisor, bring $23524 \div 3360=7$.		

Ex. 3. Find the square root of $7 \cdot 929856$. $\dot{7} \cdot 9 \dot{2} 9 \dot{8} 5 \dot{6}(2 \cdot 816$

4

| 48 | 392 |
| :--- | :--- | :--- |
| | 384 |
| 561 | 898 |
| | 561 |
| 5626 | 33756 |
| | 33756 |

Place the first dot over the ' 7 , the units' place of whole numbers, and then over every second figure to the right.

There is 1 dot over the integral part, and 3 dots over the dec'. part, \therefore the root is $2 \cdot 816$.

Ex. 4. Find the square root of 001 to 3 places of dec ${ }^{\text {ls }}$. -0010000 (•031

$\{2+3=6\}$	$61 \stackrel{9}{100}$		We affix 3 cyphers in order to have
			3 periods, and $\therefore 3$ dec ${ }^{1}$. places in
		61	root; since there is no number in
		39	the units' place, the first dot will be

Ex. 5. Find the square root of $\frac{529}{2401}$.

$\dot{5} 2 \dot{9}(23$ 4	$2 \dot{4} 0 \dot{1}(49$ 43 129 129

Ex. 6. Find the square root of $\frac{5}{7}$ to 3 places of dec ${ }^{\text {ls }}$.
$\frac{5}{7}=\cdot r 14285 \ldots ;$
-7142்8ธ்(•845...

64 $164 \left\lvert\, \begin{array}{c}742 \\ 656\end{array}\right.$ $1685 \left\lvert\, \begin{array}{c}8685 \\ 8425\end{array}\right.$ 260

Ex. LXXVII.

Find the square roots of (1) $196 ; 289$; 625. (2) 841 ; $900 ; 1764$. (3) $2401 ; 7569 ; 9604$. (4) $12321 ; 40000 ; 388129$. (5) $494209 ; 582169 ; 259081$. (6) 1234321; 28547649; (7) 62504836 ; 33016516; 49112064. (8) 182493081; 47.61. (9) $\cdot 008836$; $445 \cdot 336609$. (10) 000633679929 ; $\cdot 0000000009$.
Find the square roots, each to four places of decimals, of (11) 51 ; 51 . (12) 5.1 ; 051 . (13) $806 \cdot 52$; $96304 \cdot 993$.

Find the square roots, each to 3 places of decimals where the root does not come out exactly, of (14) $\cdot 3$. (15) $\cdot 02 \dot{\%}$. (16) $4 \frac{36}{49}$. (17) $\frac{2304}{3481}$. (18) $\frac{4 \cdot 41}{64}$.
(19) A father left his child a box, containing sovereigns, and shillings; the sovereigns were worth as many times the shillings, as the shillings were worth the box; the value of the box was $2 s .6 d$., and there were 5832 sovereigns in the box. How many shillings were there?

CUBE ROOT.

144. The Cube of a given number is the product which arises from multiplying that number by itself, and then muliplying the result again by the same number. Thus 6×6 $\times 6$, or 216 , is the cube of 6 ; or $216=6^{3}$. Art. 86 .
145. The Cube Root of a given number is a number, Which, when multiplied into itself, and the result again muliplied by it, will produce the given number. Thus 6 is the rube root of 216 ; for $6 \times 6=36$, and $36 \times 6=216$.
The cube root of a number is sometimes denoted by plac-:
ing the sign $\sqrt[3]{ }$ before the number, or placing the fraction $\frac{1}{8}$ above the number, a little to the right. Thus $\sqrt{216}$ or $(216)^{\frac{1}{3}}$ denotes the cube root of 216 ; so that $\sqrt{216}$ or $(216)^{1 / 3}=6$.

146. Rule for extracting the Cube Root of a number.

Place a point or dot over the units' place of the given number, and thence over every third figure to the left of that place; and thence also over every third figure to the right, when the number contains decimals, affixing one or two cyphers, when necessary, to make the number of decimal places a multiple of 3 ; thus dividing the given number into periods. The number of points over the whole numbers and decimals respectively will shew the number of whole numbers and decimals respectively in the cube root.

Find the greatest number whose cube is contained in the first period at the left; this is the first figure in the root, which place in the form of a quotient to the right of the given number.

Subtract its cube from the first period, and to the remainder bring down, on the right, the second period.

Divide the number thus formed, omitting the two last figures, by 3 times the square of the part of the root already obtained, and affix the result to the root.

Now calculate the value of 3 times the square of the first figure in the root (which of course has the value of so many tens) +3 times the product of the two figures in the root + the square of the last figure in the root. Multiply the value thus found by the second figure in the root, and subtract the result from the number formed, as above mentioned, by the first remainder and the second period. If there be more periods to be brought down the operation must be repeated.
Ex. 1. Find the cube root of 15625.
$1562 \dot{5}(25$

$2^{3}=8$		After pointing we take the first period, or	
$3 \times 2^{2}=12$	7625		
$3 \times(20)^{2}=3 \times 400=1200 \quad 15$, and find the great-			
$3 \times 20 \times 5=300 \quad$ est number whose			
$5^{2}=25 \quad$ cube is contained in			
$\overline{1525} \quad$ it. Since the cube of			
Multiply by $5 \quad .2$ is 8 , and that of 3 is			
		whose cube is con-	

tained in $15 ; \therefore$ place 2 in the form of a quotient to the right of the given number.

Cube 2, and put down its cube, viz. 8, under the 15 ; subtract it from the 15 , and to the rem ${ }^{\text {r }} .7$ affix the next period 625 , thus forming the number 7625 . Take 3×2^{2}, or 12 , for a divisor; divide 76 by 12,12 is contained 6 times in 76; but when the other terms of the divisor are brought down 6 would be found too great, therefore try 5 . Affix the 5 to the 2 before obtained; and calculate the value of $3 \times(20)^{2}+$ $3 \times 20 \times 5+5^{2}$, which is 1525 ; multiplying 1525 by 5 we obtain 7625, which being subtracted from 7625 before formed leaves no remr$; ~ \therefore 25$ is the cube root req ${ }^{\text {d }}$.
Ex. 2. Find the cube root of $219: 365327791$.
Place the first dot over the 9 in the units' place.
$219 \dot{9}$ 55327791(6.031

$$
6^{3}=216
$$

$3 \times 6{ }^{2}=108$	3365	33 is not divisible by 108 ;
$3 \times(60)^{2}=10800$	3365327	bring down the next pe-
$3 \times(600)^{2}=\overline{1080000}$		riod and affix 0 to the root;
$3 \times 600 \times 3=5400$		the trial divisor will then
		be $3 \times(60)^{2}=10800$, and
1085409 3		$33653 \div 10800$ goes 3 times, try 3.

$3 \times(603)^{2}=$	$\overline{3256227}$
1090827	$\frac{3256227}{109100}$
109100791	

bring down next period $1091007 \div 1090827$ goes once, try 1.
$3 \times(6030)^{2}=109082700$
$; 6030 \times 1=18090$
$1^{2}=\frac{1}{109100791}$
109100791
$\therefore 6.031$ is the cube root required.
Ex. 3. Find the cube root of 000007 to three places of lecimals.

$\left.$| $3 \times(10)^{2}=$ | 300 |
| ---: | :--- |
| $3 \times 10 \times 9$ | 270 |
| $9^{2}=$ | 81
 $\frac{651}{5859}$ |
| $\frac{9}{141}$ | |\right|$^{\frac{1}{6000}}$

147. Higher roots than the square and cube can sometimes be extracted by means of the Ruies for square and cube root; thus the 4th root is found by taking the square root of the square root; the 6th root by taking the square root of the cube root, and so on.

Ex. LXXVIII.

Find the cube roots of
(1) $1728 ; 8000 ; 5832$.
(2) $74088 ; 421875 ; 778688$.
(3) $912673 ; 1092727$.
(4) $134217728 ; 64 \cdot 481201$.
(5) $444194 \cdot 947 ; \cdot 000202262003$.
(6) $131 \cdot 019108039 ; 408518488000$.

Find the cube roots, to three places of decimals in those cases where the root does not terminate, of
(7) $\frac{27^{\circ}}{64}$.
(8) $\frac{4}{15}$.
(9) $3 \frac{4}{5}$.
(10) 1.
(11) 1 .
(12) 01
(13) 10.
(14) $03 \dot{7}$

MISCELLANEOUS QUESTIONS.

Ex. LXXIX.

PAPER I.

1. Subtract 2057312 from 5287201 , and 2057312 again from the remainder. Explain how this is the same as dividing 5287201 by 2057312 .
2. (1) Reduce 553553 oz . to tons, cwts., \&c. (cwt. $=112$ lbs.) (2) Find the proportions of the Avoird. and Troy oz., when the respective lbs. are as $175: 144$.
3. Find, by Practice, the cost of $16 \mathrm{cwt} ., 3$ qrs., 16 lbs . at £2. 7 cents a cwt ., ($112 \mathrm{lbs} .=\mathrm{cwt}$.) $£ 1$ being $=10$ florins $=$ 100 cents $=1000$ mils.
4. Define (1) the G. C. M., (2) the L. C. M., of two or more numbers, (3) a Vulgar Fraction. Find the G. c. m. of 20803 and 67273 ; and the L. c. M. of $8,9,10,12,15,18,35$ and 84 .
5. (1) Add together $\frac{8}{8}$ of $\frac{5}{11}$ of $99 \frac{1}{15}, \frac{5}{7}$ of $\frac{2}{9}$ of $69_{1 \frac{3}{10}}, \frac{2}{7}$ of $\frac{2}{6}$ of $306 \frac{1}{4}$. (2) Express $13 s$. $1 \frac{1}{2} d$. as the fraction of $\frac{8}{4}$ of $1 \frac{1}{2}$ guinea. (3) Find the value of $\frac{107}{448}$ ton (cwt. $=112 \mathrm{lbs}$.).
6. State the Rule for the division of one decimal by another. Divide (1) 7792.2 by .37, (2) 0077922 by 370 ; verify each result by vulgar fractions.

PAPER II.

1. Define Interest, Simple and Compound. How does Interest differ from Discount? Find (1) the int. on $\$ 7300$ at $3 \frac{3}{4}$ per cent. for 120 days, (2) the discount on £3204. 14s. 1d. at $3 \frac{1}{2}$ per cent., simp. int. for $2 \frac{3}{4} \mathrm{yrs}$.
2. A house built for $\$ 2656$ is sold for $\$ 3320$, find the gain per cent. If it had been built for $\$ 3320$ and sold for $\$ 2656$, find the loss per cent.? Why do the rates differ?
3. Define a square. Find (1) the sq. root of 930372004 , (2) the cub. root of 16777216 , (3) the perimeter of a square whose surface is 2533 sq. ft., 64 sq. in.
4. Multiply 365 separately by 5 , by 20 , and by 300 , and add the products together. Point out how the ordinary method of multiplying 365 by 325 agrees step by step with the above.
5. Define prime and composite numbers. Resolve 22932 into its prime factors.
6. A person left Toronto for Guelph, at 9 A. m., and travelled the first 20 miles by rail, at the rate of $22 \frac{1}{7}$ miles an hour; he then walked the remaining 32 miles at $\frac{1}{6}$ of that rate. At what o'clock did he arrive?

PAPER III.

1. A and B fire at targets, having 55 cartridges each. A fires twice in 3 minutes, and B three times in 5 minutes; how many times will B have to fire after A has finished?
2. (1) Convert $\frac{17}{20 \times 8}$ into a decimal; why is the result a terminating, and not a recurring decimal? (2) Express $3 s$. $0 \frac{1}{2} d$. as the decimal of £5. (3) Which is greater, 36 of a guinea, or $\dot{3} \dot{6}$ of $£ 1$? (4) By how much?
3. What sum of money will amount to $\$ 552.50$ in 15 ma . at 5 per cent. simp. int.?
4. A room whose height is 11 ft ., and length twice its breadth, takes 143 yds. of paper 2 ft . wide for its four walls; how much carpet will it require?
5. Two clocks strike 9 together on Tuesday Morning:

On Wednesday morning one wants 10 minutes to 11 wher the other strikes 11. How much must the slower be pu on that they may strike 9 together in the evening?
6. A person bought 43 shares in a coal mine at $35_{\frac{1}{4}}$, and and kept them till they declined to $11 \frac{1}{2}$, when he sold out and bought with the proceeds 6 per cent. bank stock at 2ε premium; find his annual income from the latter invest. ment.

> PAPER IV.

1. Define a fraction, and shew from your definition that $\frac{1}{2}=\frac{3}{6}$. (1) Add together $\frac{1}{5}, \frac{2}{3}, \frac{1}{35}$, and $\frac{5}{21}$; and find whal fraction the sum is of $1 \frac{2}{8}$ of $\frac{4}{2 \frac{7}{9}}$. (2) How many times can $\cdot 027$ be taken from $3 \cdot 33$? What fraction is the remainder of the former?
2. A person left a sum of money which was divided equally amongst 43 poor people, such that, after a deduction of $6 d$. in the pound, each received £3. 3s. $4 \frac{1}{2} d$. What sum did he leave?
3. (1) If the carriage of 13 cwt ., 2 qrs., 19 lbs. for 35 miles cost £4. 17s. $6 d$., what must be paid for the conveyance of $41 \mathrm{cwt} ., 1 \mathrm{lb}$. for 49 miles? (A cwt. $=112 \mathrm{lbs}$.) (2) A bankrupt owes $\$ 2085$, of which $\$ 235$ is due to $A, \$ 325$ to $B, \$ 525$ to O, and the rest to D. How much must he pay in the \$ so that D may receive as much as is due to C ?
4. A merchant buys 2 butts of wine, one for $£ 120$, and one for $£ 110$, he also buys a third, and after mixing the three, retails the wine at 45 s . per dozen, making $12 \frac{1}{2}$ per cent. on his outlay: supposing the number of dozens in a butt to be 52 , find the price of the third butt.
5. The price of 2 turkeys and 9 fowls is $£ 2.18 s .6 d$. and the price of 5 turkeys and 2 fowls is £4. $8 s .2 d$.; find the price of a turkey and a fowl.
6. How long will it take to walk round a square field containing 13 ac., 81 yds. at the rate of $3 \frac{1}{8}$ miles an hour?

SECTION VI.

MENTAL ARITHMETIC.

143. The following table will be found useful.

Multiplication and Division Table.

149. Such questions as $7+8+3$, \&c., are how many? and 29 less 7, less 6 , \&cc., are how many? or questions in which addition and subtraction are combined, we omit; because, any teacher, by a little practice, can very easily give such exercises to the class, and, moreover, every practical teacher knows that much of the value of this part of the Arithmetic depends on the pupil not having seen the questions before the lesson begins.
150. To find the value of 12 things, the value of one thing being given.

Rule. Reckon each penny in the given value as a shilling, and each farthing as $3 d$.

Ex. Find the value of 12 things at $15 \frac{3}{2} d$. each.
By the Rule,
The value req ${ }^{d} .=1 s . \times 15+3 d . \times 3=15 s .9 d$.)
Reason for the Process.
12 things at 1 d . each $=1 s . ; \therefore 12$ at 15 d . each $=1 s . \times 15 \equiv 15 s$. $12 \ldots \ldots \ldots$. $\frac{1}{4} d_{1} \ldots \ldots=3 d_{. ;} \therefore 12$ at $\frac{9}{4} d . \ldots \ldots=3 d . \times 3=9 d_{\text {. }}$; $\therefore 12$ things at $15 \frac{3}{4} d$. each $=15$ s. 9 d .
151. To find the value of 24 things, the value of one thing being given.

Rule. Reckon each penny in the given value as $2 s$. , and each farthing as $6 d$.
152. To find the value of 48 things, the value of one thing being given.

Role. Reduce the given value into farthings, the result reckoned as so many slillings will be the value required.

Ex. Find the value of 48 things at $18 \frac{8}{4} d$. each.
By the Rule, since $18 \frac{3}{4} d .=75 q$.,

$$
\text { the value req }{ }^{\mathrm{d}} \cdot=75 s .=£ 3.15 s
$$

Reason for the Process.
48 things at $\frac{1}{4} d .=48 q .=1 \mathrm{~s} . ;$
$\therefore 48$ things at $75 q .=1 s . \times 75=75 s .=£ 3.15 \mathrm{~s}$.
153. To find the value of 144 things, the value of one thing being given.

Rule. (1) Find the value of 12 things by Rule 150 : then consider this value as the value of one thing, and apply -Rule 150 a second time.

Ex. Find the value of 144 things at $18 \frac{1}{2} d$. each.

Value of 12 things $=13 s .+6 d .=13 s .6 d$.
Value of 144 things $=13 s . \times 12+6 s .=156 s .+6 s=£ 8.2 s$.
154. The following general Rule may be given " for finding the value of any number of things, the value of one thing being given."

Rule. Reckon how many dozens are contained in the given number, and how many single things remain over. Then by Rule 150, find the value of one dozen, which value multiply by the number of dozens, and add to the result the price of the single things which remained over.

Ex. Find the value of 38 things at $4 s$. 7 d . each.

$$
38=3 \times 12+2 \text {, }
$$

value of 12 things $=£ 2.8 s .+7 s .=£ 2.15 s$.
$\therefore \ldots . . .12 \times 3 . \ldots .=£ 2.15 s . \times 3=£ 8.5 \mathrm{~s}$.
$\therefore \ldots \ldots=2 \quad \ldots \ldots=4 s .7 d . \times 2=9 \mathrm{~s} .2 d$. $38 \ldots \ldots=£ 8.5 s .+9 \mathrm{~s} .2 d .=£ 8.14 \mathrm{~s} .2 d$.

Ex. LXXX.

1. Find the value of 12 articles at the following prices for a single article. (1) $\frac{8}{4} d . \quad$ (2) $2 d$. (3) $5 d . \quad$ (4) $7 d$.
(5) 11 d .
(6) $1 \frac{1}{2} d$.
(7) $2 \frac{1}{\frac{1}{4}} d$.
(8) $3 \frac{8}{4}$ d. (9) $6 \frac{1}{2} d$. (11) $10 \frac{1}{2} d$. (12) 1 s. $0 \frac{3}{4} d . \quad$ (13) $1 s .4 d . \quad$ (14) $1 s .6 \frac{1}{4} d$. $\begin{array}{llll}(15) \\ \text { (1s. } 9 \frac{8}{4} d . & \text { (16) } 1 s .8 d . & \text { (17) } 1 \text { s. } 11 \frac{1}{2} d . & \text { (18) } 1 s .2 \frac{3}{4} d .\end{array}$ (19) $2 s .7 \mathrm{~d}$. (20) $3 s .0 \frac{1}{4} d$.
(21) $48.4 d$.
(22) 6 s. $1 \frac{4}{4} d$.
(23) 7 s .9 d . (24) $8 s .5 \frac{1}{3} d . \quad$ (25) $11 \mathrm{~s} .7 \frac{78}{4} d . \quad$ (26) 13 s .2 d. (27) 16 s. $3 \frac{1}{4}$ d. (28) 18s. $1 \frac{1}{4} d$. (29) 19s. 9 d. (30) 19s. $6 \frac{3}{4} d$.
2. At the prices named as the value of a single article in (1) to (12) inclusive in the last question find the value of 24 articles; at the prices named in (13) to (20) inclusive find the value of 48 articles; and at the prices named in (21) to (30) inclusive find the value of 144 articles.
3. At the prices named as the value of one article in quest . 1. (6) to (20) inclusive, find the value of (1) 13 ; (2) 21 ; (3) 28 ; (4) 35 ; (5) 41 ; (6) 44 ; (7) 57 ; (8) 72 ; (9) 153 ; (10) 182 articles.
4. To find the value of 20 things, the value of one thing being given.
Rule. Reckon each shilling in the given value as $£ 1$, and if there be pence, reckon each penny as the twelfth of $£ 1$, thus 1 d. as 1 s . 8 d., and if there be farthings, each farthing as one-fourth the value of each penny, or $1 q$. as $5 d$. \&cc.
Ex. Find the value of 20 things at $2 s .8 \frac{1}{2} d$. each.

By the Rule,
The value required $=£ 1 \times 2+(1 s, 8 d) \times 8+.5 d . \times 2$.

$$
=£ 2+13 \mathrm{~s} .4 d .+10 \mathrm{~d} .=£ 2.14 \mathrm{~s} .2 d_{0}
$$

Reason for the Process.
20 things at $1 \mathrm{~s} .=20 \mathrm{~s} .=£ 1 ; \therefore 20$ things at 2 s .

$$
=£ 1 \times 2=£ 2,
$$

20 things at $1 \mathrm{~d} .=1 \mathrm{~s} .8 \mathrm{~d} . ; \therefore 20$ things at 8 d .

$$
=1 s .8 d . \times 8=13 s .4 d .
$$

20 things at $\frac{1}{2} d .=\frac{1 \mathrm{~s} .8 \mathrm{~d} .}{2}$, or 20 things at $\frac{1}{2} d .=10 \mathrm{~d}$.;
\therefore value of 20 things at $2 s .8 \frac{1}{2} d .=£ 2.14 \mathrm{~s} .2 d$.
156. To find the value of 100 things, the value of one thin, being given.

Rule. Reckon each shilling in the given value as $£ 5$ reduce the pence and farthings in the given value to farth ings, then reckon each farthing as equal to 2s. $1 d$.
Ex. Find the value of 100 things at $2 s .5 \frac{1}{4} d$. each.
By the Rule, since $5 \frac{1}{4} d .=21 q$.
The value req ${ }^{\text {d }} \cdot=£ 5 \times 2+2 s . \times 21+1 d . \times 21$.

$$
=£ 10+£ 2.2 s .+1 s .9 d_{.}=£ 12.3 s .9 d .
$$

Reason for the Process.
100 things at $1 s .=£ 5 ; \therefore 100$ things at $2 s .=£ 5 \times 2=£ 10$
Again, since $1 d .=4 q$., taking $1 q$. as equal to $1 d$., we multiply by 4 .

Also, since $2 s .=96 q .$, taking $1 q$. as equal to $2 s$. , we multiply by 96 ;
\therefore taking $1 q$. $=2 s$. $+1 d$., we multiply by $96+4$, or 100 .
157. To find the interest of any sum of money for any. number of months at 6 per cent.

Rule. Divide the number of months by 2 ; the quotient is the interest in cents of $\$ 1$ for the given time; multiply the quotient by the given principal and the product is the interest required.

Ex. 1. Find the interest on $\$ 78.56$ for 2 yrs., 7 mo. at 6 per cent. per annum.

By the Rule,
$2 \mathrm{yrs} .7 \mathrm{mo}=31$ months $; \frac{31}{2}=15 \frac{1}{2}$.
\therefore in $^{\mathrm{t}}$. $\mathrm{req}{ }^{\mathrm{d}} .=15 \frac{1}{2} \times \$ 78.56=\$ 121768$.

Reason for the Process.
The interest of $\$ 1$ for 1 month $=\frac{1}{2}$ cent.
\therefore half the number of months will express the interest in ents of $\$ 1$ for the given time.
Note 1. It will be quite easy to obtain from the above the nterest at any other rate than 6 per cent. ; by first obtaining he interest as directed above and then by Practice to add or ubtract as the case may require.
Ex. 2. Find the interest of $\$ 80$ for 15 months at 8 per ent. per annum.
At 6 per cent. in ${ }^{\mathrm{t}} .=\$ 6$, as by the above Rule; \therefore at 8 per cent. int. $=\$ 6+\frac{1}{8}$ of $\$ 6$

$$
=\$ 8
$$

Ex. 3. Find the interest on $\$ 110$ for 10 months at 5 per ent. per annum.

$$
\begin{aligned}
\text { At } 6 \text { per cent. in }{ }^{t} . & =\$ 5.50, \text { by the Rule } \\
\therefore \text { at } 5 \text { per cent. in } & =\$ 5.50-\frac{1}{6} \$ 5.50 . \\
& =\$ 5.50-91 \frac{2}{3} \text { cents. } \\
& =\$ 4.5 \frac{1}{3} .
\end{aligned}
$$

Note 2. If there are days in the question, the interest may e found for $\$ 1$ by dividing the days by 6 and reckoning the potient tenths of a cent, which being added to the result btained in the Rule, will give the interest of $\$ 1$ for months nd days, and consequently for any amount.
Ex. 4. Find the interest on $\$ 90$ for 6 months and 24 days t 6 per cent. per annum.
In^{t}. on $\$ 1=3.4$ cents, by the Rule;
\therefore in ${ }^{\mathrm{t}}$. on $\$ 90=3.4$ cents $\times 90$.
$=\$ 3.06$.
Ex. LXXXI.
Find the interest at 6 per cent. per annum: (1) On $\$ 37$ r 4 months. (2) On $\$ 42$ for 6 months. (3) On $\$ 55$ for 8 onths. (4) On $\$ 75$ for 10 months. (5) On $\$ 110$ for 7 tonths. (6) On $\$ 38.50$ for 9 months. (7) On $\$ 84.25$ for 12 lonths. (8) On $\$ 120$ for 15 months. (9) On $\$ 228$ for 18 ionths. (10) On $\$ 678.50$ for 8 months. (11) On $\$ 422.25$ r 9 months. (12) On $\$ 328.50$ for 9 months.

ANSWERS.

Ex. I. (p. 10.)

1. $3,4,2,7,9,6,8$ 2. $10,1,12,19,5,11,16$. 3. 14 $20,27,33,49,60,55,17,36 . \quad 4.88,35,63,29,76,80,94,13$ 52. 5. 9. 10, 11, 12, 13, 14, 15, 16, 17; 46, 47, 48, 49,50 $88,89,90,91,92,93,94,95,9697,98$.

Ex. TI. (p. 11.)

1. $106,150,200,287,310,431,555,919,867$.
2. 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207 208, 209, 210, 211, 212, 213; 612, 613, 614, 615, 616, 617, 618 $619 ; 948,949,950,951,952,953,954,955,956,957,958,959$ $960,961,962,963,964,965,966,967,968,969$.

Ex. III. (p. 12.)

1. $4585,7321,9798,7006$.
2. $5004,5400,5040,8036,8306,8360,9909$.
3. 75635, $90909,10004,87050,90001,64064,83000$.

Ex. IV. (p. 13.)

1. $105,8790,37071,30402,77700,24817$.
2. $105409,8008013,7650090,64000400,89044001$, 504623024, $900300800,53000503$.
3. $6006070007,83401001010,7004089200,990000000$.

Ex. V. (p. 14.)

1. Seven, thirteen, four, nine, eighteen, five, twenty, eleven five, fifty, thirty-four, twenty-nine, three, seventeen, fiftythree.
2. Nineteen, eight, forty-one, eighty-eight, twenty-seven, seventy-two, ninety-four, forty-nine, sixteen, sixty-one, nine-ty-eight, eighty, fifty-six, twenty-eight.
3. One hundred and seven, one hundred and seventy, seventeen, four hundred and thirty, six hundred and ninetyone, eighty, eight hundred, eight, nine hundred and fifty-six, eight hundred and three, six hundred and eighty-four.
4. Four thousand five hundred and six, five thousand eight
hundred and seventy, five thousand and eighty-seven, six́ thousand nine hundred, six thousand and nine, two thousand five huncired and eighty, seven thousand and forty-five, seven thousand five hundred and ninety-one, six thousand two hundred and seventy-five.
5. Twenty-four thousand seven hundered and fourteen, welve thousand five hundred, ten thousand and twenty-five, en thousand two hundred and five, seventy thousand four rundred and fifty-seven, seventy-four thousand and seven, eventy-seven thousand.
6. Three hundred thousand eight hundred and sixty-three, hirty millions eighty thousand six hundred and thirty, niney -six millions four hundred thousand two hundred and fifty, ight hundred millions four hundred thousand three hunIred and seven, five hundred and seventy-two millions sixty housand four hundred and ninety-five.
7. One hundred and twenty millions one hundred and inety-two thousand seven hundred and three, eight hunlred and ninety millions six hundred and forty-seven thouand five hundred and sixty, one billion and fifty millions ixty thousand four hundred and twenty-nine, one hundred pillions and one.

Ex. VI. (p. 16.)

1. 19.
1. 27 . $\quad 3.26$. $4.11 ; 16 ; 18 ; 18 ; 23 ; 17$; $5 ; 18 ; 25$. $5.25 ; 20 ; 34 ; 28 ; 36 ; 45 ; 46 . \quad 6.29$ boys. 12 yrs. 8. 30 chickens.

Ex. VII. (p. 19.)

1. 37. 2. $69 . \quad 3.99 . \quad 4.99 . \quad$ 5. $95 . \quad$ 6. 71. 115. 8. 110. 9. 200. 10. 214. 11. 213. 12. 186. 3. 214. 14. $241 . \quad 15.503 . \quad$ 16. $1741 . \quad$ 17. 2133.
1. 1540. 19. 2201. 20. $1364 . \quad$ 21. 1920. 22. 1549.
1. 1551. 24. 2514. 25. 1665. 26. 2451. 27. 2148.
1. 2018. 29. $14658 . \quad 30.27640 . \quad 31$. 27832. 32. 35735. 3. 28260. 34. 29635. 35. 28207. 36. 100 marbles. 7. 287 38. 9770 . 39. $\$ 42068 . \quad$ 40. 3554 oranges.

Ex. VIII. (p. 20.)

1. 148. 2. 316. 3. 295. 4. 291. 5. 340. 6. 1851. 2124. 8. 3216. 9. 3166. 10. 2974. 11. 336508. 2. $323915.13 .40025 \% 14.358064$ 15. 152375. 6. 37155818.17 .24601758 . 18. 171357568. 19. 260342506. 0. 222275. 21. 186839. 22. 72268. 23. 194207.

Ex. IX. (p. 21.)

1. $2643560 . \quad$ 2. $5074223 . \quad$ 3. 226987 . 4. $994832!$ 5. 80169315.6 .1642844613 .7 .5481487220 . 8. 3582727022 9. $5198944018.10 .2553242166 . \quad 11.4803131181$. 12. $6137055059.13 .434883345 . \quad 14.100 .15 .982$ 16. $\$ 3185 . \quad 17.165802$.

> Ex. X. (p. 25.)

1. 4. 2. 12. 3. $28 . \quad 4.50$. 5. 26 . 6. 546. \%. 156 8. 6. 9. 2. 10. $58 . \quad 11.36 .12 .9 .13 .16 .14 .35$ 15. 184. 16. 167. 17. $188.18 .198 . \quad$ 19. 601 20. 594. 21. 205. 22. 87. 23. $89.24 .109 . \quad 25.179$ 26. $98.27 .109 .28 .398 .29 .13 ; 42 ; 38 ; 114 ; 198$ 174. 30. $\$ 260 ; \$ 40$. 31. 19. 32. 31. 33. 8. 34. cents.

Ex. XI. (p. 26.)

1. 1021. 2. $3711 . \quad$ 3. $999 . \quad$ 4. $2239 . \quad$ 5. 4484.6 1929. 7. 3205. 8. 4684. 9. 3401. 10. 7889. 11. 3025 12. $806.13 .25184 . \quad$ 14. 21023.1 15. 8. 16. 18173 17. 165079. 18. $8639494 . \quad 19.19075299 . \quad$ 20. 555939946 21. 2899; 997833. 22. 5986. 23. 15022. 24.1891 ; 72 25. 68; $140.26 . \$ 217$ in debt. 27. 19th step from bot tom, 26 th step from the top. 28. 5 officers, 58 children, 4 : able bodied, 23 infirm. 29. 682. 30. 45718. 31. 7096305 32. $56289613 . \quad 33.66291414 .34 . \quad \$ 260$. 35 . $\$ 8337588$

Ex. XII. (p. 28.)

1. III; VII; XI; IX; XII; XVI; XVIII; XXY XXVIII; XXXVII; XL; LIII; LIX; LXII; LXXVII LXXXIV; CIII; CLVII; CXC; CC; DCLI DCCLXXXIII; MCCIV; MDXXVII; MDCCCLXV.
2. three, 3 ; six, 6 ; eight, 8 ; thirteen, 13 ; fifteen, 15 seventeen, 17 ; twenty, 20; fifty-four, 54 ; eight-one, 81 ; one hundred and eleven, 111; six hundred and five, 605 ; five thousand and two, 5002 ; one million one hundred thousand, 1100000; two thousand, 2000 ; seven hundred and forty-nine 749 ; one thousand eight hundred and sixty-five, 1865.

Ex. XIII. (p. 30.)

1. 106. 2. 94. 3. $176 . \quad$ 4. 112. 5. 144. 6. 180. 7. $87.8 .225 . \quad 9.108 .10 .204 .11 .332 . \quad 12.450$. 13. 235. 14. 215. 15. 216. 16. 594. 17. 468. 18. 189 19. 371. 20. 300. 21. 610. 22. 621. 23. 486. 24. 200 .
1. 990. 26. 583. 27. 957. 28. 1001. 29. 720. 30. 588. 31. 1374. 32. 2400. 33. 2091. 34. 1104. 35. 3885. 36. 2982. 37. 3353. 38. 6335. 39. 6680. 40. 4383. 41. 5600. 42. 5918. 43. 10656. 44. 8448. 45. 429 bushels, 2574 shillings. 46. 756 pence, 1764 pence, 3024 pence. 47. 44 cents. 48. 44.49 .885.

Ex. XIV. (p. 31.)

1. 18096. 2. $11698 . \quad$ 3. $29619 . \quad$ 4. $114228 . \quad$ 5. 24228. 6. 485340 . 7. 416160. 8. 404825 . 9. 3073630. 10. 388064. 11. $231483.12 .346284 . \quad 13.590592 . \quad$ 14. 833184. 15. 234927. 16. 1098444. 17. (1) 7740984, 19352460, 11611476, 27093444, 15481968, 34834428, 23222952, 30963936, 42575412, 46445904. (2) 9219516, 23048790, 13829274, 32268306, 18439032, 41487822, 27658548, 36878064, 50707338, 55317096. (3) 171947728, 429869320, 257921592, 601817048, 343895456, 773764776, 515843184, 687790912, 945712504, 1031686368. (4) 18181706, 45454265, 27272559, 63635971, 36363412, 81817677, 54545118, 72726824, 99999383, 109090236. (5) 111760184, 279400460, 167640276, 391160644, 223520368, 502920828, $335280552,447040736,614681012,670561104$. (6) 1975308642, 4938271605. 2962962963, 6913580247, 3950617284,8888888889,5925925926,7901234568, 10864197531, 11851851852. 18. 98 miles. 19. 888 miles.

Ex. XV. (p. 34.)

1. 8334 . 2. $18306 . \quad$ 3. $9108 . \quad$ 4. 32454 . 5. 57706.
2. 32643 .
3. 50516.
1. 45468.
1. 183150.
1. 725912.
1. 7851033000.
2. 353446772.
1. 663503082.
1. 622439160. 2808128627515. 38. 148672 . 39. (1) 61299 ; (2) 51480000 . 10. See $15,16,17,18$.

Ex. XVI. (p. 34.)

1. $43042883 . \quad$ 2. $131296032 . \quad 3.4916047312 .4 .43506216$. $31884470 . \quad$ 6. $88789980848 . \quad$ 7. 66260991808.
40880656300.
2. 100453365411 .
3. 69312233476002. 12. $157593610868 . * \quad 13.8943214050$.
4. $27416327796 . \quad 15.109588282650 .16 .60435674536845$. 17. $495562849756 . \quad 18.67226401140$. 19. 18834779670.

Ex. XVII. (p. 37.)

1. $14 \frac{4}{6}, 97,11 ; 15 \frac{3}{6}, 10 \frac{3}{9}, 11 \frac{5}{8} ; 16 \frac{2}{6}, 10 \frac{8}{9}, 12 \frac{2}{8} ; 17 \frac{1}{6}, 11 \frac{4}{9}, 12 \frac{7}{8}$; $16 \frac{4}{5}, 11 \frac{1}{9}, 12 \frac{4}{8}$.
2. $21,9 \frac{6}{11}, 10 \frac{5}{10} ; 22,10,11 ; 23_{5}^{4}, 10 \frac{9}{11}, 11 \frac{9}{10}$; $25 \frac{3}{5}, 11_{1}^{\frac{7}{1}}$, $12 \frac{8}{10} ; 23 \frac{2}{\frac{2}{5}}$. $10 \frac{7}{7}, 11 \frac{7}{10}$.
3. $21 \frac{4}{\frac{4}{6}}, 10 \frac{10}{2}, 11 \frac{9}{1} \frac{9}{1} ; 23 \frac{3}{6}, 11 \frac{9}{12}, 12 \frac{9}{1 \mathrm{~T}}$; $25 \frac{3}{6}, 12 \frac{9}{12}, 13 \frac{10}{11} ; 28$, $14,15 \frac{3}{1} ;$; $24 \frac{3}{6}, 12 \frac{3}{12}, 13_{1}^{4}$.
4. $28 \frac{4}{6}, 21 \frac{4}{\frac{4}{3}}, 14 \frac{4}{2} ; 32 \frac{3}{6}, 24 \frac{3}{8}, 16 \frac{3}{12} ; 34 \frac{2}{6}, 25 \frac{6}{8}, 17 \frac{2}{12} ; 42 \frac{5}{6}, 32 \frac{1}{8}$, $21 \frac{5}{12} ; 40,30,20$.
5. $115 \frac{2}{4}, 46 \frac{2}{10}, 42 ; 170 \frac{2}{4}, 68 \frac{2}{10}, 62 ; 210,84,76 \frac{4}{11} ; 101 \frac{1}{4}$, $40 \frac{5}{10}, 36 \frac{9}{17} ; 138 \frac{3}{4}, 55_{\frac{5}{1}}^{5}, 50 \frac{5}{11}$.
6. $54 \frac{6}{1}, 75,50 ; 69_{1}^{4}, 95 \frac{8}{8}, 63 \frac{7}{12} ; 766_{1}^{5}, 105 \frac{2}{8}, 70 \frac{2}{12} ; 90 \frac{9}{11}$, $124 \frac{7}{8}, 833_{3}^{\frac{3}{2}} ; 65_{17}^{2}, 895,59 \frac{9}{12}$.
7. $134 \frac{4}{9}, 100+\frac{0}{2}, 110$; $764,573,625 \frac{1}{11}$; 7847, $588 \frac{7}{\frac{7}{2}}, 642 \frac{1}{11}$; $555 \frac{5}{5}, 416 \frac{8}{\frac{8}{2}}, 454 \frac{6}{11}$.
8. $345,230,276 ; 1200 \frac{4}{8}, 800_{\frac{4}{12}}, 960 \frac{4}{10} ; 1033 \frac{3}{8}, 688 \frac{1}{12}, 826 \frac{7}{10}$; $818 \frac{4}{8}, 545 \frac{8}{12}, 654_{1}^{8}$.
9. $7187_{\frac{2}{2} 2}^{2}, 8624 \frac{6}{6}, 12320 \frac{6}{7} ; 6052 \frac{1}{12}, 7263 \frac{5}{10}, 10376 \frac{3}{7} ; 7124_{12}^{2} \frac{2}{2}$, $8549,12212 \frac{6}{7} ; 2941 \frac{6}{12}, 3529 \frac{8}{\frac{8}{10}}, 5042 \frac{4}{7}$.
10. $6909 \frac{3}{12}, ~ 9500 \frac{2}{8}, 6333 \frac{6}{12}$; $8182 \frac{7}{11}, 11251 \frac{1}{8}, 7500 \frac{9}{12}$; $4820 \frac{7}{1}, 6628 \frac{2}{6}, 4418 \frac{1}{2}$.
11. $683837 \frac{2}{\frac{2}{2}}, 547069 \frac{8}{16}, 4973366_{1}^{2}$; $11712585 \frac{2}{8}, 9370068 \frac{1}{10}^{2}$, $8518243 \frac{9}{1}$; $257524 \frac{6}{8}, 206019 \frac{8}{18}, 1872900_{1}^{8}$.
12. $1194292 \frac{3}{7}, 928894 \frac{1}{9}, 696670 \frac{7}{1} \frac{7}{2} ; 969949,754404 \frac{7}{9}$, $565803 \frac{7}{18} ; 1412855 \frac{4}{\frac{4}{2}}, 1098887 \frac{5}{9}, 824165 \frac{9}{9} 2$.
13. 66725 times, 19871.14 . (1) 9 . (2) 1613. 15. 54 cents. 16. 7 plums. 17. 506. 18. 11946419. 19. Cook received $\$ 561$, man-servant $\$ 1122$, housekeeper $\$ 2244$. 20. 1728. 21. 6. 22. 26 oranges. 23. 35 penknives.

Ex. XVIII. (p. 41).

1. 12; 40; 53;94. 2. $45 ; 29 ; 65 ; 97.3 .57 ; 79 ; 88 ; 73$. 4. $215 ; 798 ; 885 ; 102 . \quad$ 5. $805 ; 682 ; 127 ; 357 ; 460$; 7090. 6. $379 ; 407 ; 940 ; 738 ; 93845796 ; 580073 . \quad 7.347$; 569 ; 3094, 8. 1987; 7071; 650. 9. 9009; 5436; 388. 10. 21503 rem. $5 ; 3450 ; 124 \mathrm{rem} .477$. 11. $57096 ; 76542$ rem. 136; 4655 rem. $603.12 .103944 ; 175971$ rem. 66 87039 ; 84003; 967427210 rem. 61. 13. 190182; 4623, 50301; 87366 rem. $6076 . \quad 14.2007$ rem. 1; 20300; 65839 rem. 2; 31352. 15. $902468 ; 1754$ rem. $129 ; 14957000 ; 770071$ 16. $37810 ; 3250450 ; 73086413.17 .1799$. 18. 180 pairs.
2. 141. 20. 360 rem. 52. 21. $\$ 3 \frac{1}{275}$. 22. \$3. 23. 1000. 24. 420. 25. 403. 26. 372547. 27. 17129. 28. $\$ 10$.

Ex. XIX. (p. 43.)

1. $3 \frac{4}{10}, 4 \frac{3}{10}, 5 \frac{8}{10}, 8,13 \frac{5}{10}, 26,150 \frac{4}{10} ; 1 \frac{4}{20}, 2 \frac{3}{20}, 2 \frac{16}{20}, 4,6 \frac{15}{20}$, $13,75 \frac{4}{20} ; 1_{30}^{4}, 1 \frac{13}{30}, 1 \frac{26}{30}, 2 \frac{20}{30}, 4 \frac{1}{30}, 8 \frac{20}{30}, 500_{30}^{40}$.
2. $5 \frac{37}{40}, 21,16 \frac{33}{40}, 7 \frac{1}{40}, 150 \frac{1}{4}, 9,195 \frac{20}{40}, 2030 \frac{29}{4} 9,8195 ; 3 \frac{57}{57}, 14$,

 $406_{200}^{29}, 1639$.

 $8306 \frac{78103490}{100000000}$.

 916 and 800 men over. 12. $956 \frac{9}{1} \frac{9200}{0000}$.

Ex. XX. (p. 51.)

1. 681440 far. 2. 1085070 inches.
2. 3842027640 sq. in.
3. 8092505 ls .
4. 16820 grs.
5. 440 gills.
6. 1074088 c . in.
7. 2030400 mins. $\quad 14.158304$ grs.
8. 31518806 sq in
9. 24480 mins.
10. 96425 half-pence.
11. 2281906 far. 20. 21667 lbs 21. 92100 secs. 22. 530784 in . 23.300362 far. 24. 604800 grs. 25. 520 nls . 26. 888 nls. 27.544345 far. 28.82800 ses. 29. 378 galls. 30. 192938 far.

Ex. XXI. (p. 53.)

1. £128. 8 s. $6 \frac{1}{2} d$. 2. 2 lbs ., 3 oz., 8 dwt., 20 grs .
2. 2273 galls., 3 qts., 1 pt. 4. 403 lea., 2 mls., 7 fur., 16 po.
3. 3 tons, 18 cwt., 1 q. ${ }^{\text {., }} 14 \mathrm{lbs}$., 14 oz. 6. $586 \mathrm{ac} ., 1$ ro., 27 po.
4. 29 lbs., 1 oz., 12 dwt., 4 grs.
5. 11517 mls., 1 fur., 27 po., 2 yds., $11 \mathrm{in} ., 9$ 1s.
6. 14997 tons, 8 cwt., 1 qr., 14 lbs., 10 oz., 12 drs.
7. 1 ml ., 7 fur., 14 po., 2 ft., 9 in. 11.17 lbs., 3 dwt., 14 grs. 12. 3 tons, 19 ewt., 1 lb., 6 oz. 13. 122 lbs., 3 drs., 17 grs. 14. 2 wks., 5 dys., 23 hrs., $58^{\prime}, 13^{\prime \prime} .15 .35$ ac., 2 ro., 20 po.
8. 297 c. yds.
9. 31 yds., 1 qr . 19. $36^{\circ}, 24^{\prime}, 35^{\prime \prime}$. 20. 365 dys., 6 hrs. 21. 508 hhds., 19 gals., 2 qts. 22.596 hhds., 44 gals., 1 qt. 23. 15211 bu., 5.5 lbs. $24.29411 \mathrm{bu} ., 26 \mathrm{lbs} . \quad 25.121 \mathrm{bu} ., 3 \mathrm{l} / \mathrm{ss}$. 26. \$307.47. 27. £1014. 4s. 3 菨d.

Ex. XXII. (p. 54.)

$\begin{array}{lll}\text { 1. } \$ 94.64 . & \text { 2. } £ 20.12 s .3 d . & \text { 3. } 10 \text { qrs., } 24 \mathrm{lbs} ., 1 \mathrm{oz} \text {. }\end{array}$
4. $107 \mathrm{lbs} ., 1$ oz., 10 dwt., 17 grs.
5. $55 \mathrm{lbs}, 1$ oz., 5 drs., 2 sc., 1 gr.
6. $\$ 17255.22$.
8. 578 yds., 2 qrs.
7. 288 tons, 2 cwt., 2 qrs., 23 lbs.
9. 79 mls ., 3 fur., 9 per., 3 yds.
10. $£ 145.17 \mathrm{~s} .1 \frac{1}{2} d$. 11.116 dys., 8 hrs., $35^{\prime}, 12^{\prime \prime}$. 12 . $\$ 8470.12$.
13. 42 ac., 2 ro., 25 po., 5 ft., 40 in .
14. 99 tons, 8 cwt., 3 qrs., 12 lbs., 11 oz ., 15 drs.
15. $\$ 11040$.

Ex. XXIII. (p. 56.)

1. £15. 8 s .6 d . 2. 9 lbs., 11 oz., 3 drs., 16 grs.
2. 2 lbs., 10 oz., 7 dwt.
3. 2 mls., 6 fur., 35 po., 1 yd.
5.13 yds., 1 qr., 2 nls., 2 in. 6.28 c. yds., 23 c. ft., 1413 in.
4. 1 ac., 2 ro., 38 po., 1 yd., 2 ft., 142 in.
5. 5 dys., 9 hrs., 49 min., 57 sec .
6. £53. 17s. $10 \frac{3}{4}$ d.
7. 2 qrs., 15 lbs., 11 oz., 14 drs.
8. $\$ 1068.59$.
9. 95 cords, 110 c. ft. 13. $\$ 27.69$.
10. 107 ac ., 2 ro., 34 po., 29 yds., 7 ft ., 118 in .
11. 79 c. yds., 21 c. ft., 1377 c. in.
12. 27 mls ., 29 per. 1 ft ., 10 in .
13. $6^{\circ}, 39^{\prime}, 39^{\prime \prime}$.
14. 5 tons, 16 cwt., 2 qris., 23 lbs., 11 oz, , 1 dr .
15. 10 yds., 2 qrs., 2 nls., 2 in. 20.70 bu., 2 pks., 1 gal., 2 qts. 21. 673 bu., 1 gal., 2 qts.

Ex. XXIV. (p. 58.)

1. £24. 19s.
2. 52 lbs., 5 oz., 4 drs.
3. 74 lbs., 1 oz., 1 dwt., 16 grs. 4139 yds., 2 qrs., 3 nls.
4. 167 mls ., 6 fur., 1 per., $\frac{1}{2}$ yd.
5. $122 \mathrm{cwt} ., 1$ qr., 11 lbs., 7 oz., 8 drs.
6. 58 mls., 5 fur., 18 po., 1 yd., 9 in.
7. $\$ 1660.33$.
8. 86 wks., 8 hrs., 56 min .
9. 95 ac., 36 per., 3 ft .
10. £14.6. 3s. $6 \frac{1}{4} d$.
11. 23 bu., 1 pk., 3 qts.
12. 50103 gals., 2 qts., 1 pt.
13. 4382 dys., 21 hrs., 47 min ., 24 sec 18. £812. 15 s . $0 \frac{1}{4}$ \%.
14. 134 ac., 3 ro., 31 po.
15. 25013 bu., 2 pks., 1 gal.
16. 219 lbs., 8 oz., 10 divt., 12 grs. 13. 899 lbs., 8 oz., 4 drs.
 Ex. XXV. (p. 59.)
17. 1583 ac., 2 ro., 12 po. 2. $1500 \mathrm{mls}$. , © po. 3. £2817. 12 s .
18. 1621 lbs., 4 oz., 15 dwt., 13 gris.

〔. £351. 13s. 9d.

6． 1484 yds．， 2 qrs．， 2 nls． 7.188 cwt．， 22 lbs．， 11 oz．， 10 drs．
8．£5912．4s． $9 \frac{2}{4} d$ ．
10． 1493 c．yds．， 11 c．ft． 1332 in.
11． 182 lbs．， 10 oz．， 1 dwt．， 13 grs．
9．$\$ 7321.30$ ．
1． 1838 12．£3743．7s．10đ．
13． 688 dys．， 6 hrs．， $40 \mathrm{~min} . \quad$ 14． 6297 lbs．， 11 oz．， 4 drs．
15． 33272 lbs．， 1 oz．， 18 dwt．， 6 grs．16．£3676．13s． $10 \frac{1}{4} d$ ．
17． 1319 ac．， 0 ro．， 0 po．， 13 yds．， 4 ft．， 48 in ．
18． 1034 mls ．， 2 fur．， 4 po．， 3 in ．
19．£2100．18s． 9 d． 20．$\$ 118575$ ．21． 8500 bushels．

Ex．XXVI．（p．61．）

1． 352 cwt ．， 2 qrs．， 21 lbs ．， 13 oz.
2． 33772 lbs．， 10 oz．， 18 dwt．， 15 grs．3．£2194．10s．7 d．
4． 1870 cwt．， 3 qrs．， 23 lbs．， 4 oz．， 5 drs．$\quad 5$ ．£2771． $2 \mathrm{~s} .1 \frac{1}{2} d$.
6． 10826 lbs．， 8 oz．， 5 drs．， 2 sc．， 4 grs．7．$\$ 470.25$.
8．$\$ 66.04$ ．9．$\$ 97.50$ ．10． 12 cwt ．， $1 \mathrm{qr} ., 7 \mathrm{lbs}$ ．， 8 oz ． 11．$\$ 40000$ ．

Ex．XXVII．（p．63．）

1．$£ 55.15 s .1 \frac{2}{\frac{2}{5}} d$ ．
2． 29 lbs．， 8 oz．， 3 dwt．， 6 grs．
3． 24 mls．， 1 fur．， 19 po．， 3 yds．， 10 in ．4． 23 yds．， 2 nls．
5． 144 lbs ．， 3 oz．， 4 drs．， $8 \frac{1}{8}$ grs．\quad 6．£188．19s． $9 \frac{3}{2} d$ ．
7． 2 tons， 10 cwt．， 12 lbs．， 10 oz．， $10 \frac{2}{3}$ drs．
8． 17 ac．， 1 ro．， 30 po．， 10 yds．， 6 ft．， $55 \frac{13}{14} \mathrm{in}$ ．
9． 3 qrs．， 11 lbs．， 13 oz．， $5 \frac{109}{70}$ drs．
10． 6 mls ．， 7 fur．， 14 po．， 3_{1287}^{687} in．
11． 6 bu．， 1 pk．， 1 gal．，$\frac{44}{95} \mathrm{pt}$ ．
12．£วั2．16s． $2 \frac{3}{4} d$ ．
13． 4 lbs．， 4 oz．， 1 dr．， 1 sc．， $11 \frac{53}{57}$ grs．
14． 7 fur．， 23 po．， 5 yds．， $1 \mathrm{in} .1_{2}^{65}$ Is．
15． 1 ac．， 1 ro．， 9 po．， 22 yds．， 5 ft．， $14 \frac{192}{31 \frac{2}{2}} \mathrm{in}$ ．
16． 1 ton， 1 cwt．， 3 qrs．， 2 lbs．， 12 oz．， $10 \frac{50 \frac{4}{64}}{4}$ drs．
17． 5 c．yds．， 11 c．ft．， $961 \frac{12}{6} \frac{3}{3}$ c．in．
18． 4 llvs．， 4 oz．， 3 drs．， 1 sc．， $11 \frac{12}{2} \frac{8}{2}$ grs．
19． 4 lbs．， 10 oz．， 1 dwt．， $9 \frac{3909}{3} \frac{9}{3}$ grs．
20．£2． $10 s .6 \frac{137}{5} \frac{7}{8} d$ ．
21．13s． $7 \frac{1}{4} d . \quad 22.115$ dys．， 5 hrs．， 54 min．， $22^{\frac{2}{3} \frac{0}{3} \frac{5}{7} \text { sec．}}$

26．\＄4．65．27．\＄1．15．28．\＄2．533⿱⿰㇒土口⿱⿰㇒一乂凵，
Ex．XXVIII．（p．64．）
1． 9 times．2． 3 times．\quad 3． 436 times．\quad 4． 3 times，
5． $25 \frac{325}{3}$ times．6． $8 \frac{252}{65}$ times． 7.9 times．8． 24 times．
9． 75 times．10． 65 times．11． 100 times．
Ex．XXIX．（p．65．）
$\begin{array}{llll}\text { 1．} \$ 101.25 . & \text { 2．} \$ 231.85 . & \text { 3．} \$ 831.58 \frac{1}{3} . & \text { 4．} \$ 615.68 \frac{1}{3} \text { ．}\end{array}$
5. $\$ 871.40$. \quad 6. $\$ 12 \% 9.12 \frac{1}{2}$. \quad 7. $\$ 2451.98 \frac{9}{4}$. \quad 8. $\$ 253.96 \frac{1}{4}$. 9. $\$ 3650.50 .10 . \$ 2845.09 \frac{1}{6} . \quad$ 11. $\$ 4468.12 \frac{1}{2}$. $12 . \$ 189.55$. $\begin{array}{llll}\text { 13. } \$ 8069.33 \frac{1}{3} . & 14 . \\ \$ 301.94 \frac{1}{6} . & 15 . \\ \$ 151.72 \frac{1}{2} . & \text { 16. } \$ 350.75 .\end{array}$

Ex. XXX. (p. 66.)

1. £54. 6s. 3d.
2. £21. 2s. 6d.
3. £216. 19s. $4 \frac{1}{2} d$. 10. £484. 6s.
4. £81. 17s. 9d.
5. £4. 6s. 9d. 5. £18. 19s. 9 d. 8. £290. 12 s.
6. £555. 1s. $5_{5}^{2} d$.

Ex. XXXI. (p. 66.)
PAPER I.
$\begin{array}{llll}\text { 1. } 117984 . & \text { 2. } 107766 . & \text { 3. } 3653012 . & \text { 4. } 189830 \% .\end{array}$
5. 2 mls., 6 fur., 18 per., 5 yds., 1 ft., 10 in .
6. 1st, $\$ 5.60, \$ 17.17$; 2nd, $\$ 11.57$.

PAPER II.

1. £362. 19s. 9 d .
2. $\$ 63.47$.
3. 183 ac ., 1 ro., 24 per., 26 yds., $7 \frac{155}{397} \mathrm{ft}$.
4. $\$ 9.48_{\frac{1}{2} 7}^{\frac{t}{7}} \quad$ 5. 5 dresses, £2. 1 Ts. $7 \frac{1}{4} d$. each. 6. $\$ 3227.42$.

PAPER III.

1. $£ 46.14 \mathrm{~s}$. 6 d. 2. $\$ 7000, \$ 21000, \$ 35000$. 3. £13. $12 s .9$.
2. 1 ro., 18 po., 5 yds., 2 ft., and $16 \frac{1}{4}$ feet over.
3. 17 cwt., 1 qr., 8 lbs., 10 oz., 5 drs., and 89 drs. over.
4. 6 hours, 54 min .

PAPER IV.

1. $\$ 148.15$. 2. 11,18 . 3. $9,18,27$. 4. owner of net, 8 dozen; owner of boat, 16 dozen; each man, 32 dozen. 5. 2301696 pores. 6. $42000,42889$.

PAPER V .

1. 6255547664981.2 .861447920 . 3. 11904 4. 12752. 5. 465335 . 6. 9558%.

PAPER VI.

1. 657872 . 2. $\$ 16496471$. 3. $\$ 10444830.63$. 4. $6228 \frac{4}{7} \mathrm{lbs}$. 5. 136 ac., 3 ro., 14 po., $24_{1 \frac{37}{2 / 5} 5}^{\frac{37}{3}}$ yds. 6. 634338 .

Ex. XXXII. (p. 71.)

1. 2. 2. 3. 3. 2. 4. 4. 5. 4. 6. 3. 7. 2. 8. 6. 9. 4. 10. 2. 11. 29. 12. 63. 13. 2. 14 30. 15. 10. 16. 8. 17. none. 18. 8. 19. 26. 20. 352. 21. 131. 22. none. 23. 7056. 24. 11. 25. 17. 26. 31.

Ex. XXXIII. (p. 72.)

1. 20. 2. 72. 3. $144 . \quad 4.1260$. 5. 240. 6. 168. 7. 525. 3. 1056. 9. 1050. 10. 2520. 11. 11088. 12. 450. 13. 1080. 14. 840 . 15. $840.16 .16380 . \quad 17.1386$. 18. 21000 19. 43890. 20. 95C'í0.

Ex. XXXIV. (p. 74.)
(1) $\frac{4}{7}, \quad \frac{6}{7}, \quad \frac{10}{7}, \quad \frac{14}{7}, \quad \frac{18}{7}, \quad \frac{24}{7} ; \quad \frac{34}{19}, \quad \frac{51}{19}, \quad \frac{85}{19}$, $\frac{119}{19}, \quad \frac{153}{19}, \quad \frac{204}{19}$.
(2) $\frac{378}{84}, \quad \frac{504}{84}, \quad \frac{693}{84}, \quad \frac{6678}{84}, \quad \frac{9891}{84} ; \quad \frac{570}{107}, \quad \frac{760}{107}$, $\frac{1045}{107}, \frac{10070}{107}, \frac{14915}{107}$.

Ex. XXXV. (p. 75.)
(1) $\frac{3}{8}, \quad \frac{3}{12}, \quad \frac{3}{20}, \quad \frac{3}{24}, \quad \frac{3}{36}, \quad \frac{3}{48} ; \quad \frac{7}{18}, \quad \frac{7}{27}, \quad \frac{7}{45}$, $\frac{7}{54}, \quad \frac{7}{81}, \quad \frac{1}{108}$.
(2) $\frac{16}{877}, \frac{16}{145}, \frac{16}{319}, \quad \frac{16}{1624}, \quad \frac{16}{2900} ; \quad \frac{77}{267}, \frac{77}{445}$, $\frac{77}{979}, \quad \frac{77}{4984}, \quad \frac{77}{8900}$.

Ex. XXXVI. (p. 75.)
(1) $\frac{6}{2}, \frac{27}{9}, \frac{39}{13} ; \quad \frac{10}{2}, \frac{45}{9}, \frac{65}{13} ; \quad \frac{16}{2}, \quad \frac{72}{9}, \frac{104}{13}$; $\frac{30}{2}, \frac{135}{9}, \frac{195}{13}$.
(2) $\frac{72}{8}, \frac{90}{10}, \frac{513}{57} ; \quad \frac{96}{8}, \frac{120}{10}, \frac{684}{57} ; \frac{136}{8}, \frac{170}{10}$, $\frac{969}{57} ; \quad \frac{296}{8}, \quad \frac{370}{10}, \quad \frac{2109}{57}$.

Ex. XXXVII. (p. \%6.)

1. 3. 2. $2 \frac{1}{2} . \quad$ 3. $4 \frac{1}{3} .4 .4 .5 .3 \frac{1}{6} . \quad$ 6. $6 \frac{5}{7} . \quad$ 7. $5 \frac{5}{9} .8$ 8. $6 \frac{10}{19}$.
1. 7. 10. 8. 11. $8 \frac{15}{27} .12 .18 \frac{30}{43} . \quad$ 13. $9 \frac{37}{107} . \quad$ 14. $102 \frac{20}{2600}$.
1. $12 \frac{122}{3}$.

Ex. XXXVIII. (p. 76.)

| 1. $\frac{4}{3 .}$ | 2. $\frac{25}{12}$. | 3. $\frac{16}{15}$. | 4. $\frac{88}{5}$. | 5. $\frac{89}{7 .}$ | 6. $\frac{3874}{19}$. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7. $\frac{141}{65}$. | 8. $\frac{239}{8}$. | 9. $\frac{88716}{126}$. | 10. $\frac{360931}{401}$. | 11. $\frac{3407}{680}$. | |
| 12. $\frac{3376}{63}$. 13. $\frac{26253}{1250}$. 14. $\frac{69057}{465}$. 15. $\frac{29160}{2160}$.
 16. $\frac{60389}{2400}$. 17. $\frac{608543}{3084}$. | | | | | |

Ex. XXXIX. (p. 77.)
$\begin{array}{llllll}\text { 1. } \frac{3}{5} . & \text { 2. } \frac{2}{3} . & \text { 3. } \frac{9}{19} . & \text { 4. } \frac{12}{55} . & \text { 5. } \frac{35}{16} . & \text { 6. } \frac{5}{6} .\end{array} \quad$ 7. $\frac{5945}{6}$.
$\begin{array}{lllll}\text { 8. } \frac{3363}{35} . & \text { 9. } \frac{35}{2} . & \text { 10. } \frac{15}{2} . & \text { 11. } \frac{1}{36} . & \text { 12. } \frac{1}{11} .\end{array}$ 13. $\frac{375}{44}$.
$\begin{array}{lll}\text { 14. } \frac{175}{8} & \text { 15. } \frac{14}{15} & \text { 16. } \frac{6399}{22} .\end{array}$
Ex. XL. (p. 78.)
$\begin{array}{lllllll}\text { 1. } \frac{1}{2} & \text { 2. } \frac{2}{3} . & \text { 3. } \frac{2}{3} & \text { 4. } \frac{5}{8} . & \text { 5. } \frac{4}{9} \cdot & \text { 6. } \frac{16}{21} & \text { 7. } \frac{7}{11}\end{array}$
 $\begin{array}{lllll}\text { 14. } \frac{3}{4} . & \text { 15. } \frac{35}{114} . & \text { 16. } \frac{8}{9} & \text { 17. } \frac{191}{279} & \text { 18. } \frac{827}{7337} .\end{array}$ $\begin{array}{llll}\text { 19. } \frac{235}{397} & \text { 20. } \frac{103}{136} & \text { 21. } \frac{2}{7} . & \text { 22. } \frac{945}{1529}\end{array} \quad$ 23. $\frac{20}{21}$. 24. $\frac{23}{33}$.

Ex. XLI. (p. 79)
$\begin{array}{lllllll}\text { 1. } \frac{9}{12}, \frac{10}{12} . & \text { 2. } \frac{9}{12}, \frac{8}{12} & \text { 3. } \frac{6}{8}, \frac{7}{8} . & 4 . & \frac{27}{63}, & \frac{35}{63} & \text { 5. } \frac{33}{48},\end{array} \frac{42}{48}$.
6. $\frac{110}{120^{\prime}}, \frac{81}{120} . \quad$ 7. $\frac{140}{200^{\prime}}, \frac{183}{200^{\circ}} \quad$ 8. $\frac{2712}{6720^{\prime}}, \frac{3689}{6720} . \quad$ 9. $\frac{48}{60^{\prime}}$,
$\begin{array}{lll}\frac{55}{60}, \frac{9}{60} & \text { 10. } \frac{189}{1008}, \frac{384}{1008}, \frac{560}{1008} . & \text { 11. } \frac{98}{210^{\prime}}, \frac{110}{210^{0}}, \\ \frac{161}{210} . & \text { 12. } \frac{6545}{8415}, \frac{6120}{8415}, \frac{7293}{8415}, \frac{4455}{8415} . & \text { 13. } \frac{1170}{1260},\end{array}$
$\frac{1225}{1260}, \frac{1176}{1260}, \frac{800}{1260} . \quad$ 14. $\frac{105}{180}, \frac{102}{180}, \frac{130}{180}, \frac{135}{180}, \frac{84}{180}$.
15. $\frac{3744}{7200}, \frac{6075}{7200}, \frac{4200}{7200}, \frac{6000}{7200} \quad$ 16. $\frac{399330}{621180}, \frac{448630}{621180}$.
$\frac{149940}{621180}, \frac{319464}{621180}, \frac{340170}{621180^{\prime}}, \frac{484155}{621180} . \quad$ 17. $\frac{80}{120}, \frac{96}{120}$.
$\frac{45}{120}, \frac{112}{120} . \quad$ 18. $\frac{90}{120}, \frac{100}{120}, \frac{105}{120}, \frac{108}{120} . \quad$ 19. $\frac{48}{72}, \frac{60}{72}$.
$\frac{63}{72}, \frac{40}{72}, \frac{48}{72} . \quad$ 20. $\frac{220}{330}, ~ \frac{264}{330}, ~ \frac{165}{330}, ~ \frac{90}{330}$.
Ex. XLII. (p. 80.)
$\begin{array}{lllll}\text { 1. } \frac{10}{15}, \frac{12}{15} . & \text { 2. } \frac{28}{36}, \frac{27}{36} . & \text { 3. } \frac{221}{312}, \frac{228}{312} . & \text { 4. } \frac{392}{504}, & \frac{315}{504}\end{array}$ $\frac{396}{504} . \quad$ 5. $\frac{315}{882}, \frac{396}{882}, \frac{672}{882}$. \quad 6. $\frac{3339}{5040}, \frac{3528}{5040}, \frac{3420}{5040}$.
7. $\frac{40}{168}, \frac{36}{168}, \frac{1239}{168} . \quad$ 8. $\frac{220}{300}, \frac{255}{300}, \frac{252}{300^{\prime}}, \frac{290}{300} . \quad$ 9. $\frac{16704}{6336}$, $\frac{1728}{6336}, \frac{5445}{6336}, \frac{103040}{6336} . \quad$ 10. $\frac{28}{63}, \frac{99}{63}, \frac{420}{63}$.
11. $\frac{5}{7} \mathrm{yd}$. is greater by $\frac{4}{35} \mathrm{yd}$. 12. $\frac{2}{3} \mathrm{yd}$. is greater by $\frac{1}{6} \mathrm{yd}$. 13. $1 \frac{7}{8}$ of $\frac{3}{11}$ of $1 \frac{2}{3}$ of $\frac{2 \pi}{45}$ of a loaf is greater by $\frac{3}{24}$ of a loaf. Ex. XLIII. (p.82.)
$\begin{array}{llllll}\text { 1. } \frac{13}{21} & \text { 2. } 1_{1 \frac{5}{12}}, & \text { 3. } 3 \frac{1}{3} . & \text { 4. } 1_{12}^{7} . & \text { 5. } \frac{53}{60} . & \text { 6. } 1 \frac{1}{3} . \quad \text { 7. } 1 \frac{3}{55} .\end{array}$
8. $\frac{41}{56}$.
9. $\frac{37}{90}$.
10. $2 \frac{1}{2}$.
11. $15 \frac{1}{2}$. $12.9 \frac{7}{1} \frac{1}{2}$.
13. $2 \frac{2}{1} \frac{1}{5}$.

 25. $13 \frac{4{ }^{4}}{135} \mathrm{bs}$.

Ex. XLIV. (p. 83.)
$\begin{array}{llllll}\text { 1. } \frac{1}{20} & \text { 2. } \frac{3}{8} . & \text { 3. } \frac{1}{8} . & \text { 4. } \frac{5}{72} & \text { 5. } 1 \frac{1}{2} . & \text { 6. } 4 \frac{1}{10} .\end{array}$ 7. $1 \frac{35}{35} . \quad 1$

cake. 14. (1) $\frac{8}{9}$.
(2) 5 T
Z \quad 15. $\frac{5}{72} d$.

Ex. XLV. (p. 84.)

1. $12 \frac{119}{210 .}$. 2. $\frac{1}{6} . \quad$ 3. $20 \frac{9}{17 .}$ 4. $36 \frac{23}{4} 3 . \quad$ 5. 1. 6. $1 \frac{1}{3} \frac{5}{2} . \quad$ 7. $3 \frac{3}{20}$.
2. B, C, D, and A had respectively $\frac{1}{4}, \frac{1}{6}, \frac{1}{9}$, and $\frac{2}{9}$ of cheese.

Ex. XLVI. (p. 86.)
$\begin{array}{llllll}\text { 1. } \frac{1}{12} & \text { 2. } \frac{35}{72} . & \text { 3. } \frac{5}{26} . & \text { 4. } \frac{1}{12} . & \text { 5. } 25 . & \text { 6. } 25 .\end{array}$ 7. $\frac{13}{40}$.
$\begin{array}{llllll}\text { 8. 10. } & \text { 9. } 4 \frac{5}{7} . & \text { 10. } 329 \frac{1}{16} . & \text { 11. } 4 \frac{5}{7 .} & \text { 12. } 6+\frac{5}{6} . & \text { 13. } \frac{17}{32} .\end{array}$ 14. $5 \frac{7}{36}$. $15.7 \frac{1}{3}$.

Ex. XLVII. (p. 86.)
$\begin{array}{llllll}\text { 1. } 1 \frac{1}{20} .2 . & \frac{2}{3} & \text { 3. } \frac{10}{11} . & \text { 4. } \frac{116}{165} & \text { 5. } 9 \frac{4}{6} . & \text { 6. } 1 \frac{38}{4} .\end{array} \quad$ 7. $\frac{2}{3}$.
$\begin{array}{lllll}\text { 8. } 1 \frac{45}{75} . & \text { 9. } 3 \frac{1}{3} \frac{1}{7} 4 & \text { 10. } \frac{27}{88} & \text { 11. } \frac{1}{32} & \text { 12. } \frac{3}{8}\end{array}$ 13. $\frac{13}{15}$.
Ex. XLVIII. (p. 8\%.)
$\begin{array}{lllllll}\text { 1. } 1 \frac{1}{19 \frac{1}{96}} & \text { 2. } 2 \frac{2}{2} . & \text { 3. } \frac{3}{8} . & \text { 4. } 1 \frac{8}{4} . & \text { 5. } 1 \frac{19}{21} . & \text { 6. } \frac{28}{72 \tilde{5}} & 7.2 \frac{1}{5} .\end{array}$
$\begin{array}{lllll}\text { 8. } \frac{76}{153 .} & \text { 9. } 12 \frac{11}{13} . & \text { 10. } 1 \frac{3.97}{2465 .} & \text { 11. } \frac{8}{9} & \text { 12. } \frac{810}{102949} .\end{array}$ 13. $\frac{25}{444}$. 14. $3 \frac{1153}{1680}$.

Ex. XLIX. (p. 88.)

1. 40 cents. 2. 3 fur. 3.1 qr., 17 lbs., 13 oz., $11 \frac{3}{7}$ drs.
2. 19 cwt., 1 qr., 10 lbs. 5. 4 fur, 35 per. 6. 2 ac., 1 ro., 25 per., 20 yds., 4 ft , $136 \frac{4}{5} \mathrm{in}$. 7. 4 lbs., 2 oz., 10 dwt., 20 grs . 8. 59 yds., 2 qrs., $1 \frac{3}{4}$ nls. \quad. £7. 4s. 3 d -10.109 lbs., 8 oz., 5 drs., $8 \frac{4}{7}$ grs. 11.5 hrs., 36 min. 12.7 lbs., 9 oz., $9 \frac{2}{6}$ drs. 13. $\$ 24$. 14.7 hrs., 12 min . 15.18 cords, 64 e . ft .

Ex. L. (p. 88.)
$\begin{array}{llllll}\text { 1. } \frac{1}{6} . & \text { 2. } \frac{31}{160} . & \text { 3. } \frac{15128}{15} . & \text { 4. } \frac{263}{480} & \text { 5. } \frac{408}{577} & \text { 6. } \frac{175}{44} .\end{array}$
$\begin{array}{lllllll}\text { 7. } \frac{1}{45} & \text { 8. } \frac{19}{70} & \text { 9. } \frac{6}{11} & \text { 10. } & \frac{1}{27} & \text { 11. } \frac{1}{28} . & \text { 12. } \frac{144}{175} .\end{array}$ 13. $\frac{3}{224} . \quad$ 14. $\frac{3}{14960} . \quad$ 15. $\frac{325}{7850601}$. Ex. LI. (p. 89.)

| 1. $\frac{1}{2}$. | 2. $\frac{1080}{241}$. | 3. $\frac{5445}{5762}$. | 4. $\frac{357}{160}$. | 5. $\frac{7}{4}$. | 6. $\frac{56}{3}$. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. $\frac{18}{35}$. | 8. $\frac{21}{2}$. | 9. $\frac{27}{14}$. | 10. $\frac{156}{5}$ | 11. $\frac{21625}{432 .}$ | |

$\begin{array}{lll}\text { 12. } \frac{8}{7} & \text { 13. } \frac{361}{224} & \text { 14. } \frac{115}{96}\end{array}$
Ex. LII. (p. 92.)

1. A will have $\frac{2}{15}$ of the farm, $B-_{15}^{4}$ of farm, and $C \frac{3}{5}$ of farm. 2. (1) 24 boys; (2) $7 \frac{4}{5}$. 3 . $\frac{31}{81}$ and $\frac{1}{80}$. \quad 4. (1) $\frac{1}{2} \frac{4}{21}$; (2) $2 \frac{24}{3}$. 5. A has twice as much as D. 6. \$25.20. 7. $\$ 110$, 8. $\$ 900$. 9. $\$ 36$. 10. £'\%. 11. $385 \frac{5}{49}$ rounds. 12. $\$ 33.60$. 13. $131 \frac{0}{7}$ days. 14. (1) A has $\$ 56.70, B$ has $\$ 37.80$; (2) A has $\$ 63, B$ has $\$ 31.50$. 15. $\$ \frac{25}{49}, \$ 255.10 \frac{10}{4}$. 16. $\frac{2}{5}$. 17. 250 boys. 18. $5 \frac{5}{71}$ days. 19. Elder son received $\$ 3250$, younger son $\$ 1560$, and widow $\$ 1440.20 . A$ has 24 ac ., 3 ro. ; B has $13 \mathrm{ac} ., 2$ ro.; and C has $47 \mathrm{ac} ., 1$ ro. 21. 48 boys. 22. 42 min . 23. (1) $52 \frac{1}{2}$ days; (2) $\frac{1}{7}$. 24. $15 \frac{15}{4} \frac{1}{3}$ days. 25. 1st cask contains 140 gals.; 2d, 60 gals.; 3d, 45 gals.; 4 th, 80 gals. 26. 20 days.

Ex. LIII. (p. 95.)

1. $\frac{3}{10} ; \frac{13}{100} ; \frac{19}{100} ; \frac{301}{1000} ; \frac{270}{1000} ; \frac{5653}{1000} \overline{0} . \quad$ 2. $\frac{504}{1000}$;
$\frac{73201}{100000} ; \frac{791003}{1000000} ; \frac{3}{100} ; \frac{45}{10000} . \quad$ 3. $\frac{300}{1000} ; \frac{18741}{1000} ; \frac{21}{10} ;$
$\frac{1}{1000000} ; \frac{50007}{10000} . \quad$ 4. $\frac{34702007}{100000} ; \frac{500005}{1000} ; \frac{560746805}{100000000}$;
$\frac{500}{10000000} . \quad$ 5. $\frac{2900.50}{10000} ; \frac{20607}{1000} ; \frac{500038}{100000}$.
Ex. LIV. (p. 96.)
2. $\cdot 4 ; 2 \cdot 3 ; 23 \cdot 5 ; \cdot 04 ; \cdot 147 ; \cdot 047$. 2. $500 \cdot 1 ; 9 \cdot 51 ; \cdot 00951$; $5.02 ; \cdot 00502 . \quad 3.35 .6 ; 17 \cdot 00701 ; \cdot 0050005 ; \cdot 000002$;
3. Six tenths; seventeen hundredths; seven hundredths.
4. Seven thousandths; seven hundred thousandths, or seven tenths; six and three thousands and four ten thousandths.
5. Thirty-five and two hundred and five hundred thousandths; four hundred and thirty-four thousand one hundred thousandths, or four hundred and thirty-four hundredths.
6. $3,30,3000,3000000 ; 1 \cdot 3,13,1300,1300000 ; 540.003$, $5400 \cdot 03, \quad 540003, \quad 540003000$; 74201, 742010, 74201000, 74201000000 . 11. $53362, \cdot 05362$, ${ }^{\circ} 000005362$; 03 •003 $\cdot 0000003$; 7.00107, •700107, 0000700107 ; 500, 50, 005 12. ${ }^{\circ} 00000203$.

> Ex. LV. (p. 97.)

1. $560 \cdot 34603$.
2. 214.08691.
3. $10061 \cdot 3365$ 5. 4. $345 \cdot 608037$. 5. $40 \cdot 23111$. 6. $585 \cdot 07805$. 7. 7332.0773. 8. $93 \cdot 69602912$. 9. $1393 \cdot 7111$.

Ex. LVI. (p. 98.)

1. $2 \cdot 258$. 2. $7 \cdot 0456$. 3. 5.9697. 4. $1 \cdot 0991$, 5. (1) $1 \cdot 17$; 204•93. (2) $68 \cdot 67$; $\cdot 2803$. (3) $72 \cdot 09544$; $5270 \cdot 76$. (4) $4 \cdot 41958$; $\cdot 0069993$. 6. $20 \cdot 93$. 7. $\cdot 095 ; 19 \cdot 98$. 8. $\cdot 613$ of it left. 9. $\frac{1}{2} \frac{67}{5}, 10$. (1) $79 \cdot 8665$. (2) $82 \cdot 9319$.

Ex. LVII. (p.98.)

1. $1 \cdot 1375$. 2. $16 \cdot 2945$ 3. $81 \cdot 20812$ 4. $3 \cdot 333715$; 5. 4246 48449. 6. $667 \cdot 81$; $114 \cdot 364272$; 3752 ; 356.40164745 , 7. $\cdot 01778479$; $488 \cdot 745015235 ; \cdot 000642$. 8. (1) 9150625. (2) 3689 . 9. $278 \cdot 1975$ yds. 10. $346 \frac{8}{4}$ loaves.

> Ex. LVIII. (p. 100.)

1. $12 \cdot 36.2 .1 \cdot 236$. 3. 01236 . 4. 123600 . 5. 123600000. 6. 1737 1. 7. 17371000 . 8. 17371. 9. 173710000 . 10. $170 \cdot 01$; 170010 . 11. $\cdot 00521$; 521. 12. $\cdot 00003$; ${ }^{\circ} 03$; $\cdot 00000003$. 13. $108971 \cdot 6$; 1•089716. 14. $\cdot 011$; 00011 ; 110. 15. 2040000 ; 204; -00204. 16. 18030; 001803. 17. $213 \cdot 2$; $\cdot 002132$. 18. $\cdot 0101$. 19. $\cdot 0008.20 .12 \frac{1}{2}$ days. 21. $85 \cdot 5$ times. 22 . 03054.

> Ex. LIX. (p, 101.)

1. $6 \cdot 333 ; 63 \cdot 333 ; \cdot 006$. 2. $\cdot 031 ; 3 \cdot 105 ; \cdot 003$. 3. $6221 \cdot 584$; $62215849 \cdot 056 ; 62 \cdot 215$.

Ex. LX. (p. 102.)

1. $\cdot 25 ; \cdot 6 ; 1 \cdot 5 ; 6 \cdot 2 ; 7 \cdot 8 ; \cdot 625 ; 5 \cdot 3.2 . \cdot 1875 ; 8 \cdot 9375 ; \cdot 95$; $96875 ; 7 \cdot 925 . \quad 3 . \cdot 94 ; 4 \cdot 056 ; \cdot 006 ; 1584 ; 84 \cdot 0029296875$. 4. $5078125 ; 8.75 ; 76 \cdot 234375$. 5. $3.9125 ; 16.36$.

Ex. LXI. (p. 104.)
 3. $11113 \dot{5} ; 23 \cdot 012 \dot{3} \dot{6}$. 2.5823529411764705.

1. $\frac{2}{9} ; \frac{5}{99} ; \frac{2}{11} ; \frac{31}{198} ; \frac{1}{37} ; \frac{2}{7} . \quad$ 5. $\frac{17}{30} ; \frac{368}{495} ; \frac{20233}{99990} ;$
$19 \frac{1}{3} \frac{1}{6} ; 20_{\frac{7}{2} \frac{7}{40} .}$ 6. $66_{2}^{-\frac{403}{2} 20} ; 15 \frac{9}{13} .7 .96 .523114$. 8. 37443543.
2. $1 \cdot 817686$. 10. $44 \cdot 494309$. 11. $40 \cdot 8$; $2588429 \ldots$; $0118 \dot{5} . \quad 12.2 \cdot 541 \dot{6} ; 1 \dot{3} \dot{6} ; \cdot 07 \dot{4} \dot{8} ; 30 \cdot 83395 \dot{3}$.

Ex. LXII. (p. 105.)

1. 75 cents. 2. $\$ 4.37 \frac{1}{2}$ cts. 3. $62 \frac{1}{2}$ cts. 4. 2 qr., $12 \mathrm{lbs} ., 8 \mathrm{oz}$. 5.) 3 fur. 6. 3 cwt., 2 qr. 7. £1. 3s. $5 \frac{1}{4}$ d. 8. $5 \frac{1}{2} \mathrm{~d}$., 5 q.). 3 lbs., 2 oz., 2 dwt. 10. 20 ac., 3 ro., 28 po. 11. 6 ac., 1 ro., 4 po. 12. £1. 8 s. 13. 17 wks., 6 days, 5 hrs., 15 min . 14. 16 dys., 12 hrs., 5 min., $45 \cdot 6 \mathrm{sec}$. $15.15 \mathrm{lbs} ., 3$ oz., 3 drs., 2 grs. 16. £12. 3s. $8 \frac{1}{4} \mathrm{~d} . \cdot 048$ q. 17. 12 ac., 2 ro., 1 po., 20 yds., 7 ft ., $122 \cdot 76 \mathrm{in}$. 18. 80 lbs .6 oz., $13 \cdot 23$ grs. 19. $66 \frac{2}{3}$ cents. $\quad 20.9$ shillings. 21. 4 crvt., 3 qr., 11 lb ., 10 oz., $10 \frac{2}{3}$ dr. 22. £34. 3s. $4 \mathrm{~d} . \quad 23.5$ lbs., 11 oz., 10 dwt. 34. 6 c. yds., 6 c. ft. 25. 18 ac., 2ro. 26. £2166. 10s. 27. £5. 8s. $33^{3} d$. 28. 3 ro., 11 po., 9 yds., 1 ft , 72 in. 29. 1 s. $5 \frac{2}{2}$ - d.

Ex. LXIII. (p. 106.)

1. •3. 2. $25 . \quad 3 . \cdot 1458 \dot{3} . \quad$ 4. $81875 . \quad$ 5. 5416.
2. $0002209 \dot{5}$. 7. $2208 \dot{3}$. 8. $48 \cdot 083 . \quad$ 9. $2785 \dot{4} 93827160$. 10. 822885714.11 .5375 .12 .87916 .13 .4 .90 . 14. 15972.

Ex. LXIV. (p. 10\%) PAPER I.
2. Seventy thousand three hundred and forty; one hundred and twenty-five millions four thousand three hundred and twenty-one ; five trillions six hundred and seven billions six hundred and five millions two hundred and thirteen thousand four hundred and three.
3. (1) 54502043294; (2) 992;6.
4. (1) 1520981369865 ;

PAPER II.

1. 3024 . 3. 90 pints. 4. 56 feet; 17 times. 5. (1) $239 \frac{1}{4}$; (2) $\$ 22540000$; (3) $\$ 91870.42$ and $\$ 8.06$ over.

PAPER III.

1. (1) $1 \frac{38}{7} \frac{39}{6} \frac{9}{0}$; (2) $1 \frac{671}{8} 40 . \quad$ 2. $\$ 5000 . \quad$ 3. (1) $3 \frac{7}{37}$; (2) $3 \frac{191}{70} 4$. 4. £24. 15 s. 5.58 yards. 6 . $\frac{1}{3}$ of the orange.

PAPER IV.

$\begin{array}{llll}\text { 1. } 60 & \text { 2. } 84 \cdot 875 \text { or } 84 \cdot \frac{7}{8} . & \text { 3. } 0 & 01236\end{array}$ 4. $\$ 416.27 \frac{5}{5}$. 5.21 on smaller side, 24 on larger side, and 72 lookers on. 6. One side scores 7 times as many runs as the other, and therefore that side wins.

PAPER V .

$\begin{array}{lllll}\text { 1. } 12 s .6 d . & \text { 2. } 275 s . & \text { 3. } 42 \frac{3}{13} . & \text { 4. } \$ 19.90 & \text { 5. } \$ 5.92\end{array}$ 6. $\$ 48.27 \frac{1}{2}$.

Ex. LXV. (p. 112.)
$\begin{array}{lllllll}\text { 1. } 2 \% & \text { 2. } 6 \frac{3}{4} . & \text { 3. } 15 . & \text { 4. } \frac{1}{6} . & \text { 5. } 12.64 . & 6.15 . & \text { 7. } \frac{8}{9} .\end{array}$ 8. 36. 9. 急. 10. 3.2.

Ex. LXVI. (p. 115.)

$\begin{array}{llll}\text { 1. } \$ 48 . & \text { 2. } \$ 18.15 \text {. } & \text { 3. } \$ 17.33 \frac{1}{3} \text {. } & \text { 4. } 38 \text { bus., } 21 \frac{7}{1} \mathrm{lbs}\end{array}$ 5.20 bus., $28 \frac{4}{7}$ lbs. 6. £82. 2s. $8 d . \quad$ 7. 28 cwt., 3 qr., 14 lbs. 1202. 8. 44 cents. 9. 29 cents. 10. $\$ 8126.01 \frac{9}{16}$. 11. 21 cwt ., 3 qr., 18 lbs ., $12 \mathrm{oz} .12 . ~ \$ 1638.40 \frac{103}{6} \frac{3}{4} . \quad$ 13. $61 \frac{1}{4}$. 14. 2 mo. 15. 15s. $9^{\frac{3}{4} d . \quad 16 . ~ £ 2675 . ~ 8 s . ~ 17 . ~} 3420$ steps. 18. $£ 4754.10$ s. $10 \frac{1}{2}$ d.
21. 26 yds , 2 ft . 19. $\$ 5606.75$.

14 . 01%. 8121 25 24. $3 \frac{1}{3}$ cts., $\$ 57 \cdot 812 \frac{1}{2}$. 25. $\$ 4.12 \frac{1}{2}$. 26. 135 men. 27. 11 hrs., 38 min . 28. $\$ 2234.31 \quad$ 29. $7 \frac{1}{2} d$. 30. 12 days. 31. $5 s .6 d$. 32. $\$ 151.14 \frac{13}{8} 3 . \quad 33 . £ 900$. 34. (1) £1000; (2)£960. 35. £8. 14s. $11 \frac{1}{2} d . \frac{46}{623}$ q. 36. 30 days. 37. $\$ 1902.56 \frac{16}{3}$. 38. 3s. 6d. 39. £90. 40. $104 \mathrm{lbs} ., 2 \frac{2}{8}$ oz. 41. $12 \mathrm{hr} ., 3 \frac{33^{\prime}}{}{ }^{\prime}$. 42. $5_{-\frac{5}{11}}$ ' past 1 o'clock. 43. $35 \cdot 15625$ cents. 44. $8 \frac{41}{51 \frac{6}{5}}$ days. 45. £4005. 46. £132. 0 s. $4 \frac{3}{2}$ d. $\frac{1}{6}$ q. 47. 21 days. 48. $10 \frac{1}{2} \mathrm{hrs}$. 49. $9 \frac{1}{2}$ mo. 50.12 .30 P. M. 10 mi . from place. $51.5 \frac{40}{187^{\prime \prime}}$. Ex. LXVII. (p. 121.)

1. 8 wks . 2. 112 men. 3. 64 days. 4. $\$ 307.44$. 5. $\$ 87500$. 6. 174 miles. 7. $\$ 202.50$. 8. 200 horses. 9. 100 months. 10. 2808 qrs. 11. 39 ac., 1 ro., 20 po. 12. 9 mo. 13. 60 men. (cwt. $=112$ lbs.) 14. 91 men. 15. $2 \frac{1}{2}$ days. 16. 45 men. 17. 178 qrs., 4 bus. 18. $\$ 1 \cdot 608$. 19. $\$ 7.20$. 20. 4 days. 21. 2 days. $22.18 \frac{1}{2}$ days. $\quad 23.3$ lbs., $11 \mathrm{oz} ., 7 \frac{3}{7}$ dis. 24. 25 horses. 25.180 men . 26. $2 \frac{1}{2} \mathrm{ft}$.

Ex. LXVIII. (p. 124.)

1. $\$ 168.75$.
\$3493.75.
2. $\$ 4965$.
3. $\$ 157.50$. 3. $\$ 1592.50$ 4. $\$ 1927.20$.
4. $\$ 2396.25$. 7. £416. 17 s. 8. £600.
5. £6360. 5s. 11. £812. 17s. $2 \frac{1}{2}$ d. 13. £86663.1s. 9 d . 14. £155668. $10 \mathrm{~s} .11 \frac{1}{4}$ d. $\$ 267911.87 \frac{1}{2} \quad$ 16. $\$ 715024.80$. 17. $\$ 72562.35$. $\$ 9611.25 .19 . £ 2764.11$ s. 3 d. 20. £14. 1s. $9 \frac{1}{2} d$.

Ex. LXIX. (p. 126.)

1. $\$ 66.50$. 2. $\$ 167$. 3. $\$ 1496.71865$
£11. 11s. $3 \frac{1}{4} d$. £9. 18s. $3 \frac{1}{6} d$ 6. $£ 350.138 .7 \frac{1}{2} d$. (7. $\$ 125468.75$. $\$ 84.06 \frac{1}{4}$. $9 . \$ 173$. 10. $\$ 98.6$ 1. $\$ 477.5475$. 12. $\$ 127.57 \frac{61}{264}$. 13 . $\$ 9.61 \frac{5}{48}$. 14. $\$ 15$ Ex. LXX. (p. 128.
2. $\$ 17.38, \$ 234.63$. 2. $\$ 34.76, \$ 252.0_{+} \quad$ 3. $\$ 110.74875$,
 6. £17. 12s. $5 \frac{1}{2}$ d.,$+ £ 80.11$ s. 3 d. 7. $\$ 360755, \$ 1441 \cdot 505$. 8. $\$ 310.08, \$ 994.08$. 9. £111. 14s. $7 \frac{5}{73} d, £ 7611.14 s$. $7 \frac{5}{73} d$. 10. £171. 9 s. $9 \cdot 94 \ldots$. .d, £5037. 1s. $2 \cdot 94 \ldots$. d. 11. 6 years. 12. $8 \frac{1}{2}$. 13. £130. 14. £32; 5 fl., 3c., 0.078125 n . 15. 4.

Ex. LXXI. (p. 130.)

1. $\$ 1.15 .92, \$ 915.92$. 2. $\$ 192.70, \$ 934.70$. 3. $\$ 341.88$, $\$ 901.88$. 4. $\$ 28.78, \$ 336.78$. 5. $\$ 103.61, \$ 713.61$. 6. $\$ 229.25, \$ 1229.25$. 7. (1) £1. 1s. $6 \frac{1}{2} d .88 q$., (2) £6. 19 s. $2 \frac{3}{4} d .136 q$.

> Ex. LXXII. (p. 133.)

1. $\$ 200$. 2. $\$ 800$. 3. $\$ 1200$. 4. $\$ 209.53+$. 5. $\$ 900$. 6. £129. $6 s .9$ d. 7. £179. 12 s. $10 \frac{2}{2} d$. $\frac{2}{2} \frac{3}{5} 99$ q. \quad 8. £456. 9 s. $11 \frac{3}{4} d . \frac{71}{7} \frac{1}{3} 1$ q. 9. \$42. 10. \$2100. 11. \$95.23 $\frac{17}{27}$. 12. $\$ 99.05 \frac{35}{5}$.
 16. 5 per cent.

Ex. LXXIII. (p. 137.)

1. $\$ 416.79+$. 2. $\$ 780.48 \frac{32}{4} . \quad$ 3. $\$ 1524.88$. 4. $\$ 37.15 \frac{65}{9}$. 5. \$15069. 6. \$1391. 7. (1) £10. 16s. $4 d$. ; (2) £3. $4 s .11_{7 \frac{6 \%}{27} 7}$ d. 8. 6 perct. per ann $^{\mathrm{m}}$. nearly. 9. Bank of Toronto. 10. £25. 11. His income less by $£ 64.12 \mathrm{~s}$. 12. $\$ 139 \frac{3}{2}$. 13 . £ 240000 stock. 14. Loss of income $=£ 45.10$ s. 15. $£ 52.10$ s. 16. Increase of income $=£ 135.5 s .11 \frac{1}{4} d$. $\frac{8 n}{13} \xi q$.

> Ex. LXXIV. (p. 141.)
$\begin{array}{lll}\text { 1. } \$ 5.37 \frac{1}{2} . & \text { 2. } \$ 2502903 . & 3.30 \text { cents. } \\ \text { 4. } \$ 1900 .\end{array}$
5. (1) £6. 5s. ; (2) £18.17s. $4 \frac{1}{4} d . \frac{1}{6} q$. 6. (1) $\$ 208$; (2) $\$ 13.13$;

ANSWERS.

(, 1.55 . 7. (1) 10 per cent.; (2).£9. 1s. $9 \frac{3}{4}$ d. ${ }^{3}-q$. 8. $\$ 1.20$. 9. $3 j_{3}^{\frac{2}{3}}$ 10. $5 s .3 d$. 11. $4 s .1 \frac{3}{4} d$. $\frac{3}{9} q$. 12. $40 \frac{1}{2} \frac{40}{7 y}$. 13. 7 s. $11 \frac{1}{4} d . \frac{41}{4}$ q. 14. 18s. 4 d. 15. £63. $12 s .8 \frac{1}{2} d . \frac{1}{1} \frac{1}{1} q$. 16. $\$ 1.20$. Ex. LXXV. (p. 142.)

1. 90.83 . n to $58,3.83 \cdot 67$. 4. $8 \cdot 667, . . \mathrm{yrs}$ 5. $60 \frac{1}{4} \mathrm{yrs}$. 6. $20040.81 \mathrm{y}, \mathrm{y}$, 88.
$937 \frac{1}{2}, \$ 130$; (3) 66 ac .,
2.) 224, 1 r : 5 po.,
11: N. £21 , 2. 10 . $10 \frac{1}{4} d . \frac{1}{7} \mathrm{q}$.
3. (1) A is to
(2) £136. 10s. 3. 1%
ce . 2 (cint. 969.136 lbs. of carbon, 112 lbs.$)$ 8 mo . 7. A ought to have $\$ 6400$, 8. A ought to have received $£ 700$, and $\mathcal{B} \quad$. 9. A suld pay $\$ 36, B \$ 18$, and $C \$ 6$. 10. 24 men. Ex. LXXVII. (p. 149.)
$1.4 ; 1 r ; 25 . \quad$ 2. $29 ; 30 ; 42 . \quad$ 3. $49 ; 87 ; 98$. 4. $\mathrm{Li} 1 ; 200 ; 623 . \quad$ 5. 703; 763; 509. 6. 1111; 5343. 7. 7306; 5746; 7008. 8. $13509 ; 6.9$. 9. $\cdot 094 ; 21 \cdot 103$ 10. $027173 ; \cdot 00003$. 11. $7 \cdot 1414 ; \cdot 7141$. 12. $2 \cdot 2583 ; \cdot 2258$. 13. $28 \cdot 3992 ; 310 \cdot 3304 . \quad 14.57 \%$ 15. $\cdot 166$. 16. $2 \cdot 175$ 17. $\frac{4}{5} \frac{8}{9} .18 .2: 625$. 19. 540 s .
4. $12 ; 20 ; 18.2 .42 ; 75 ; 92 . \quad$ 3. $97 ; 103.4 .512 ; 401$. 5. $76.3 ; \cdot 0587 . \quad 6.7 .079 ; 7420 . \quad$ 7. 㝵. 8. $643 . \quad 9.1 \cdot 560$. 10. 1. 11. $\cdot 464 . \quad 12 . \quad 215.13 .2154 .14 . \quad 333$.

Ex. LXXIX p. 152.)
 PAPSI I.

1. 2 rem. 11725%. 2. (1) 15 tonst, 8 cwt., 3 qrs., $17 \mathrm{lbs} ., 1 \mathrm{oz}$. (cwt. $=112 \mathrm{lbs}$.) \quad (2) 1 oz . Avoird. $=\frac{175}{192}$ of 1 oz . Troy. 3. £34. 9 fl. 6 c. 821428577 m . 4. 1) 2520 . 5. (1) 63. (2) $\frac{5}{9}$. (3) 4 cwt., 3 qrs., 3 lbs. (cwt. $=112 \mathrm{llbs}$.) 6. (1) 21060.
(2) 00002106 .

PAPER II.

1. (1) $\$ 00$. (2) $£ 231.7 s .5 d$. 2. Gain per cent. $=\$ 25$; Loss per cent. $=\$ 20.50$. 3. (1) Bf L กล
(2) 256
(3) 67 yds., 1 ft., 1 in. $4.118925 .5 .2 \times 2 \times 3 \times 3 \times 7 \times 7 \times 13$. 6. $84^{\prime} .273^{3} \mathrm{r}^{\prime \prime}$ past 6 g'clock P . M.

