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PREFACE

This book has been written primarily for use at Cornell

University and similar institutions. In this university the

classes in calculus are composed mainly of students in engi-

neering for whom an elementary course in the Integral Calculus

is prescribed for the third term of the first year. Their pur-

pose in taking the course is to acquire facility in performing

easy integrations and the power of making the simple applica-

tions which arise in practical work. While the requirements

of this special class of students have been kept in mind, care

has also been taken to make the book suitable for any one be-

ginning the study of this branch of mathematics. The volume

contains little more than can be mastered by a student of

average ability in a few months, and an effort has been made

to present the subject-matter, which is of an elementary char-

acter, in a simple manner.

The object of the first two chapters is to give the student

a clear idea of what the Integral Calculus is, and of the uses

to which it may be applied. As this introduction is somewhat

longer than is usual in elementary works on the calculus, some

teachers may, perhaps, prefer to postpone the reading of sev-

eral of the articles until the student has had a certain amount

of practice in the processes of integration. It is believed, how-

ever, that a careful study of Chapters I., II., will arouse the stu-

dent's interest and quicken his understanding of the subject.

There may be some difference of opinion also as to whether
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the beginner should be introduced to the subject through

Chapter I. or through Chapter II. The decision of this ques-

tion will depend upon the point of view of the individual teacher.

So far as the remaining portion of the book is concerned it is

a matter of indifference which of these chapters is taken first;

and, with slight modifications, they can be interchanged. In

Chapter III. the fundamental rules and methods of integration

are explained. Since it has been deemed advisable to intro-

duce practical applications as early as possible, Chapter IV. is

devoted to the determination of plane areas and of volumes of

solids of revolution. The subject of Integral Curves, which is of

especial importance to the engineer, is treated in Chapter XII.

Many of the examples are original. Others, especially some

of those given in the practical applications, by reason of their

nature and importance, are common to all elementary courses

on calculus. In several instances, examples of particular interest

have been drawn from other works.

A list of lessons suggested for a short course of eleven or

twelve weeks is given on page viii. This list has been arranged

so that four lessons and a review will be a week's work.

It is hardly possible to name all the sources from which the

writer of an elementary work may have obtained suggestions

and ideas. I am especially conscious, however, of my indebted-

ness to the treatises of De Morgan, Williamson, Edwards,

Stegemann and Kiepert, and Lamb.

To my colleagues in the department of mathematics at

Cornell University, I am under obligations for many valualile

criticisms and suggestions. Both the arrangement and the

contents have been influenced in a large measure by our con-

ferences and discussions. As originally projected, the volume

was to have been written in collaboration with Dr. Hutchinson,

but circumstances prevented the carrying-out of this plan.
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Chapters V., VI., in part, and Articles 28, 73, in their entirety,

have been contributed by him. My colleagues have aided me

also in correcting the proofs.

Prom Professor I. P. Church of the College of Civil Engi-

neering and Professor W. F. Durand of the Sibley College of

Mechanical Engineering, I have received valuable suggestions

for making the book useful to engineering students. Pro-

fessor Durand kindly placed at my disposal, with other notes,

his article on "Integral Curves" in the Sibley Journal of

Engineering, Vol. XI., No. 4 ; and Chapter XII. is, with slight

changes, a reproduction of that article. I take this oppor-

tunity of thanking Mr. A. T. Bruegel, Instructor in the kine-

matics of machinery, and Mr. Murray Macneill, Fellow in

mathematics in this university, the former for the interest

and care taken by him in drawing the figures, the latter for

his assistance in verifying examples and reading proof sheets.

D. A. MURRAY.
Cornell University.
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INTEGRAL CALCULUS

CHAPTER I

INTEGRATION A PROCESS OF SUMMATION

1. Uses of the integral calculus. Definition and sign of integration.

The integral calculus can be used for two purposes, namely :

(a) To find the sum of an infinitely large number of infinitesi-

mals of the form f(x) dx ;

(h) To find the function whose differential or whose differential

coefficient is given ; that is, to find an anti-differential or an anti-

derivative.

The integral calculus was invented in the course of an en-

deavor to calculate the plane area bounded by curves. The area

was supposed to be divided into an infinitely great number of

infinitesimal parts, each part being called an element of the area

;

and the sum of these parts was the area required. The process

of finding this sum was called integration, a name which implies

the combination of the small areas into a whole, and hence the

sum itself was called the whole or the integral.

From the point of view of the first of the purposes just indi-

cated, integration may be defined as a process of summation. In

many of the applications of the integral calculus, and, in particu-

lar, in the larger number of those made by engineers, this is the

definition to be taken. On the other hand, however, in many

problems it is not a sum, but merely an anti-differential, that is

required. For this purpose, integration may be defined as an

operation which is the inverse of differentiation. It may at once be

1
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stated that in the course of making a summation by means (jf the

integral calculus it will be necessary to find the anti-differential

of some function ; and it may also be said at this point, that the

anti-differential can be shown to be the result of making a sum-

mation. Each of the above definitions of integration can be de-

rived from the other. These statements will be found verified in

Arts. 4, 11, 13.

In the differential calculus, the letter d is used as the symbol

of differentiation, and df(x) is read "the differential of /(.t)." In

the integral calculus the symbol of integration is *
j , and lf(x) dx

is read " the integral of f(x) dx^ The signs d and
J
are signs of

operations ; but they also indicate the results of the operations

of differentiation and integration respectively on the functions

that are written after them.

The principal aims of this book are : (1) to explain how sum-

mations of infinitesimals of the form f{x) dx may be made
; (2) to

show how the anti-differentials of some particular functions may
be obtained.

2. Illustrations of the summation of infinitesimals. Two simple

illustrations of the summation of an infinite number of infinitely

small quantities will now be given. They will help to familiarize

the student with a certain geometrical principle and with the

fundamental theorem of the integral calculus, which are set forth

in Arts. 3, 4. The method employed in these particular instances

is identical with that used in the general case which follows them.

* This is merely the long 8, which was used as a sign of summation by

the earlier writers, and meant " the sum of." The sign | was first employed

in 1676, and is due to Gottfried Wilhelm Leibniz (1046-1710), who invented

the differential calculus independently of Newton. The word integral ap-

peared first in a solution of James Bernoulli (1054-1705), which was pub-

lished in the Acta Erudilorum^ Leipzig, in 1600. Leibniz had called the

integral calculus calculus summatoriusj but in 1096 the term calculus in-

tegralia was agreed upon between Leibniz and John Bernoulli (1667-1748).

See Cajori, History of Mathematics^ pp. 221, 237.
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(a) Find the area between the line whose equation is y = mx,

the a;-axis, and the ordinates for which x = a, x = b.

Let OL be the line y = mx; let OA be equal to a, and OB to b,

and draw the ordinates AF, BQ. It is required to find the area

of APQ B. Divide the segment AB into n parts, each equal to

L
Y Q^

r--^^£Bn

••"^l P»

^«
R. Bx

P Bt

^ O ^1 Ax At A, B

Fig . 1.

Ax; and at the points of section Ai, A2, •••, erect ordinates AJ^,

AJ\, •••, which meet OL in P,, P^, •••. Through P, P^, Pg, •••, Q,

draw lines parallel to the axis of x and intersecting the nearest

ordinate on each side, as shown in Fig. 1, and produce PB^ to

meet BQ in C.

It will first be shown that the area APQB is the limit of the

sum of the areas of the rectangles PA^, PiAy, •••, when 71, the

number of equal divisions of AB, approaches infinity, or, what

is the same thing, when Ao; approaches zero. The area APQB
is greater than the sum of the "inner" rectangles PA^, P^A^, •••

;

and it is less than the sum of the "outer " rectangles AP^, A1P.2, •••.

The difference between the sum of the inner rectangles and the

sum of the outer rectangles is equal to the sum of the small rec-

tangles PP„ PiP„ ....

The latter sum is equal to

B,P,Ax-^B,P,Ax -{-••' +B^QAx;

that is, to (J5jPi -f B^P^ H h B^Q) Ax, which is CQAx.

INTKGUAL CALC. —

2
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This may be briefly expressed,

SAPi - 2P-4i = 2PPi

= CQ Aaj.

When Aa; is an infinitesimal, the second member of this equa-

tion is also an infinitesimal of the first order ; therefore, when Aa;

is infinitely small the limit of the difference between the total areas

of the inner and of the outer rectangles is zero. The area APQB
lies between the total area of all of the inner and the total area

of all of the outer rectangles. Hence, the area APQB is the

limit both of the sum of the inner rectangles and of the sum of

the outer rectangles as Aa; approaches zero. Each elementary

rectangle has the area y AXy that is 7nx ^x, since y = mx. The

altitudes of the successive inner rectangles, going from A towards

B, are ma, m (a+ Ax), m(a-{-2 Ax), • • •, m (a+ (ri — 1) Ax) . Hence,

Area APQB = limit^^^o^ [ a Aa; + (a -f- Aa;) Aa; + (a + 2 Aa;) Aa; H

-t-(a 4-71 — 1 Aa;) Ax\ *

= limit^^o^ {« + (a 4- Aa;)+ (a + 2 Aa;) 4- •••

4- (a -f n — 1 Aa;) j Ax.

Addition of the arithmetic series in brackets gives

Area APQB = limit^^^o^^^ ]2a-{-(n-l)Ax\

= limit^^^o^^ ~^^
j6 + a — Aa;j, since /iAa;= 6— a,

=^2-2)

The symbol Ax= means " when Ax approaches zero as a limit." It is

due to the late Professor Oliver of Cornell University.
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In this example the element of area is obtained by taking a

rectangle of altitude y, that is, mx, and width Ax, and then letting

Ax become infinitesimal.

The expression w = oo may be used instead of Ax = 0, since

Ax =

It may be noted in passing, that if the anti-differential of mxdx,

namely ^^, be taken, and b and a be substituted in turn for x, the

difference between the resulting values will be the expression

obtained above.

(6) Find the area between the parabola y=x^, the a^axis, and

the ordinates for which x= a, x=h.
Let QiOQ be the parabola y — ^\ let OA be equal to a, and OB

to &. Draw the ordinates AP, BQ, It is required to find the

area APQB. Divide the segment AB into n parts each equal to

Ax, and at the points of division Ai, A2, •••, erect ordinates AiPi,

A2P2, •••• Through P, P^, Pg, •••, draw lines parallel to the axis

of X and intersecting the nearest ordinates on each side, as in

Fig. 2. It can be shown, in the same way as in the previous illus-

tration, that the area APQB is equal to the limit of the sum of
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the rectangles PA^ Pjvl,, •••, Pn-iB, when Ax approaches zero.

This urea will now be calculated.

The area of any elementary rectangle is y AXj that is x^ Ax,

since // = x^; ami the altitudes of the successive rectangles, going

from ^1 toward B, are a^, (a -\- Axy, (a + 2 Axy, •••. Hence,

Area APQB = Yumtj^^^o\a^Ax-\-(a -f- AxfAx +(a+2 AxyAx -\

-\-(a + n — lAxyAxl

= liinit^^^o?«'+(« + Aa;)2+ (a -j- 2 Axf -h "

-\-{a + n — lAxy\Ax

= limit^^^^\na^ -\- 2 a Ax(l + 2 -h 3 H \-n — l)

+ (Aa;)2(12 4- 2^ + 32+ . .
. + tTTi')

J
Aa;.

It is shown in algebra that the sum of the squares of the first

n natural numbers, V, 2\ S\ ..., n\ is
^(^ + l)(2n + 1)^ ^^^^

6
application of this result to the sum of squares in the second

member of the last equation and the summation of the arith-

metical series 1, 2, 3, • • • {n — 1), gives

Area APQB = limit^^^on Ax \ a? + an Ax — a Ax

+ (Ac,yOL^lK2ii^ilL

But nAx = b — a

2

and hence, a^+anAx + -^ (Axy = J (a^ + a?> -h b^.
o

Hence, APQB = limit^,^o(& - «) |
^•'+^+^'-a Ax

3 3*
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In this example, the element of area is obtained by taking a

rectangle whose area is x^ Ax and then letting Ax be an infinitesi-

mal. Here also, it may be noted in passing, that if the anti-

differential of x^dx, namely — , be taken, and b and a substituted
o

in turn for x, the difference between the resulting values will be

the expression just derived for the area.

3. Geometrical principle. Let f(x) be a continuous function

of X, and let FQ be an arc of the curve whose equation is

y=f(x). Draw the ordinates AP, BQ, and suppose OA = a,

OB — b. It is required to find the area APQB ; that is, the

area between the curve, the cc-axis, and the ordinates AP, BQ.

Divide the segment AB into n parts, each equal to Ax, and at

the points of section Ai, A^, •••, erect the ordinates A^P^, A2P2, •••

to meet the curve in Pj, Pj? •••• Through P, P^, Pg, •••, draw

lines parallel to the a-'axis and intersecting the nearest ordinate

on each side, as in Fig. 3, and produce PBi to meet BQ in C.

It will now be shown that the area APQB is the limit of the

sum of the areas of the rectangles PAi, P1A2, •••, when the num-
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ber of equal divisions of AB is made infinitely great, that is, when
Aa; is made infinitely small. The area APQB is greater than the

sum of the areas of the inner rectangles Pxii, P1A2, •••, and less

than the sum of the areas of the outer rectangles AP^ A1P2, • • •.

That is,

:S,PA,<APQB<'S,P^A.

The difference between the sum of the outer rectangles and the

sum of the inner rectangles is equal to the sum of the small

rectangles PPi, PiP^ ••• ; that is,

= JSiPiAa? + B^P^^x + . .
. + P„Q Aa?

= (7QAaj.
;

The difference, CQ Aa;, can be made as small as one pleases by

decreasing Aa;. Therefore, since the area of APQB always lies

between the areas of the inner and outer series of rectangles,

and since the difference between these areas approaches zero as

its limit, the area APQB is the limit bpth of the sum of the

inner rectangles, and of the sum of the outer rectangles.

Therefore, the area included between the curve ivhose equation is

y =f(x), the oc-axis, and a pair of ordinates, is the limit of the sum

of the areas of the rectangles whose bases are successive segments of

the part of the x-axis intercepted by the pair of ordinates, and whose

altitudes are the ordinates erected at the points of division of the

X-axis, as the bases approach zero.

4. Fundamental theorem. Definite integral. Since the equa-

tion of the curve, an arc of which is given in Fig. 3, is y=f(x),

the heights of the successive inner rectangles, going towards the

right from A, are

/(a), f(a + Ax), f(a -f 2 Aa;), • •

., f(a +(n-l) Aa;).
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Hence,

Area APQB = limitAa!=o \f(a) Ace -\-f(a + Ao;) Ax

+/(a + 2 Aa;) Aa; + ... +/(a -i-n-lAx) Ax^ (1)

The second member of (1) is the limit of the sum of the

values, infinite in number, that f(x) Ax takes as x varies by

equal increments Ax from x= a to x = b, when Ax is made
infinitesimal. This limit may be indicated by

05=6

IiimitAa.^oy^/(») Aa?.

In the integral calculus this is more briefly indicated by

prefixing to f(x) dx the sign
| , at the bottom and top of which

are respectively written the values of x at which the summa-

tion begins and ends ; thus :

jf(x) dx,

x=a

An abbreviation for this form is

^f{ic)dx. (2)

This is read, " the integral of f{x) dx between the limits

a and 6." The initial and final values of x, namely, a and 6,

are called the lower and upper limits respectively of the inte-

gral."* The differential f{x) dx is called an element of the

integral. It evidently represents the area of any one of the

component infinitesimal rectangles of altitude f{x) and infini-

tesimal base dx. In the same way that dx is a differential of

* This manner of indicating the limits between which the summation

is to be made by writing the lower limit at the bottom and the upper

limit at the top of the integration sign, is due to Joseph Fourier

(1768-1830).
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the distance along the x-axis, so f(x) dx, or y dx, as it is usually

written, is a differential of the area between the curve and

the axis of x.

The limit of the sum in the second member of (1), which is

indicated by the symbol (2), will now be obtained. Suppose

that f(x)dx is d<f)(x)j that is, suppose that (f>(x) is the anti-

differential of f(x) dx. Then, by the fundamental principle of

the differential calculus,

in which e is a quantity that varies with x and approaches

zero when Ax approaches zero. On clearing of fractions and

transposing, the latter equation becomes

f(x) tlx = <f>(x -\- Ax) — (f>(x) — e Ax. (3)

On substituting in (3) the values of x at the successive

points of division between A and B at intervals equal to Aic,

the following equations are obtained

:

f(a) Ax= <f>(a-\- Ax) — <f>(a) — €« ^x,

f(a 4- Aic) Ax= <j>(a-{-2 Ax) — <j>(a -\- Ax) — ei Ax,

f(a 4- 2 Ax) Ax = <l>(a -{- S Ax) - <f>(a + 2 Ax) — eg Aa;,

f(b — Ax)Ax'=<f> (b) — <f>(b — Ax) — e„_, Aic,

in which each of the e's approaches zero when Ax approaches

zero. The sum of the first members of these equations is

equal to the sum of the second members ; that is,

x = h

^/(a;)Aa; =
<l>

(b) -
<i>

(a) - (cq -\- e^ -\ + e„_,) Ax.

Of the quantities Cq, ei, •••€„_!, suppose that e, has an absolute
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value E not less than that of any one of the others. If E is

substituted for each of the e's, the term

(^o + eiH f-e„_i)Aa;

becomes nE ^x, or (b — a) E,

since n^x = b — a. Hence,

x = b

a quantity which is not greater

than (b — a) E, and which ap-

proaches zero when E ap-

proaches zero, that is, when
Ax approaches zero.

Therefore, on letting Aa; approach zero, there will be obtained,

b

a

/•6

Hence, the sum or integral, I f(x) dx, tvJiich is the sum of all the
• 'a

values, infinite in number, that f(x) dx takes as x varies by infinites-

imal increments from a to b, is found by obtaining the anti-differ-

ential cf) (it*) of f(x) dx, and subtracting the value of <f)
(x) for x = a

from its value for x=b. The following notation is used to indi-

cate these operations

:

f'fix) dx = r*^ (x)J= <f>(b)-cf> (a)* (4)

*It will be shown in Art. 9, that if dp(x) =f(x) dx, the anti-differential

of/(x) dx is (p (aj) -I- c, in which c is an arbitrary constant. Hence, equation

(4) should be written

JJ/(x)(te=[0(a;)+cJ*.

Since the same c is used when a and b are substituted for x, this becomes

Cfix)dx = 4>ib)-4>(a).

as above.
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The sum I f(x) dx is called a definite integral because it has a

definite value, the limit of the series in the second member of

(1). Since the evaluation of this definite integral is equivalent

to the measurement of the area between the curve y=f(x), tlie

X-axis, and the ordinates at x = a, x = b, the area may be regarded

as representing the integral. It follows from the result (4) that

a definite integral may be regarded as either

:

(1) The limit of the sum of an infinitely large number of infini-

tesimal quantities of the form f{x)dx taken between certain

limits; or,

(2) The difference of the values of the anti-differential of

f{x)dx at each of these limits.

If fix) is any continuous function of x, f(x) dx has an anti-differ-

ential.* However, the deduction of the anti-differential is often

impossible, and in any case, is less simple and easy than the

process of differentiation.!

Many of the practical applications of the integral calculus,

such as finding areas, lengths of curves, volumes and surfaces of

solids, centers of gravity, moments of inertia, mass, weight, etc.,

consist in making summations of infinitely small quantities. The

integral calculus adds these infinitesimal quantities together

and gives the result. It has been observed that in order to

obtain the sum of infinitesimal areas, etc., the anti-differential

of some function is required. Accordingly, a considerable part of

any book on the integral calculus is devoted to the exposition of

methods for obtaining the anti-differentials of functions which

frequently appear in the process of solving practical problems.

* The truth of this statement, for all the ordinary functions, will appear

in the sequel. A proof applicable to all forms of continuous functions is

given in Picard, Traite (PAnalyse^ t. I., No. 4.

t The phrase "to find the anti-differential" means to deduce 2^ finite

expression for the anti-differential in terms of the well-known mathematical

functions. In cases in which the anti-differential cannot be thus obtained, an

approximate value of the definite integral can be found by the methods dis-

cussed in Arts. 84-88. A short inspection of these articles may be made now.
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5. Supplement to Art. 3. In proving the principle of Art. 3,

the arc PQ in Fig. 3 was used. If the arc of the given curve

has the form and position in Fig. 4, the proof of the principle

is as set forth in Art. 3. If the arc has the form and position in

Fig. 5, and thus has maximum and minimum values of the

ordinate, the principle still holds. This can be seen by drawing

the maximum and minimum ordinates that come between AP
and BQ, and remarking that the principle holds for the several

successive parts APPiAi, A^PiP^A, •••.

Suppose that the curve has the form and position in Fig. 6.

The area of the part APAi is the limit of the sum of the ele-

mentary areas f(x)Ax when Ax approaches zero and x varies

from OA to OAij or, in other words, the area of APA^ is the

limit of the sum of the elementary areas f(x) dx as x varies from

OA to OAi. Similarly, the area of A^TA,^ is the limit of the sum

of the elementary areas f{x) dx as x varies from OAi to OA2, and

the area A^QB is the limit of the sum of the elementary areas

f(x)dx as X varies from OA2 to OB. In APA^ and A^QB, the

ordinates that represent the values of /(if) are positive, while in

A1TA2 the ordinates are negative. Since x is taken as varying

from left to right, dx is always positive. Accordingly, areas such

as APAi, A2QB, which lie above the a^-axis, have a positive sign,

and areas such as A1TA2, which lie below the a;-axis, have a neg-

ative sign. This example shows that in the case of a curve that

crosses the cc-axis, the method of summation by means of the

integral calculus gives the algebraic sum of the areas that lie
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between the curve and the a>axis, the areas above the avaxis

being given a positive sign, and those below receiving a nega-

tive sign.

If the total absolute area between the curve and the axis of

X is required, the portions APAi, A1TA2) A^QB, should be found

separately.

Note. If n is a constant not equal to — l,the anti-differential of M»tZ?< is

—
; for, differentiation of the latter gives ii'^du.

n + 1

Ex. 1. Find the area between the curve whose equation is y = cc^, tlie

X-axis and the ordinates for which a; = 1, x = 4.

By Art. 4, the area required = \ x^dx

= 63 1 units of area.

Ex. 2. Find the area between the parabola 2 1/ = 5 x^, the a>axis and the

ordinates for which x = 2, x = 5. Ans. 91^ square units.

Ex. 3. Find the area between the line y = ix, the cc-axis and the ordi-

nates for which x = 2, x = 11. Ans. 234 square units.

Ex. 4. Find the area between the parabola 2y — 3x2, the x-axis and the

ordinates for which x = — 3, x = 6. Ans. 76 square units.

Ex. 5. Find the area between the line ?/ = 6 x, the x-axis and the ordinate

for which x = 2. Ans. 10 square units.

Ex. 6. Find the area between the line y = 5x, the x-axis and the ordinates

for which x = - 2, x = 2. Ans. 0.

6. Geometrical representation of an integral. It is necessary to

perceive clearly that a definite integral, whether it be the sum

of an infinite number of infinitesimal elements of area, length,

volume, surface, mass, force, work, etc., can be represented graphi-

cally by an area. For instance, in order to represent the definite

integral

J
f{x)dx,
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choose a pair of rectangular axes, plot the curve whose equation

is

and draw the ordinates for x = a, x = b. It has been shown in

Art. -4' that the area between this curve, the x-axis, and these

ordinates has the value of the definite integral above. Hence,

this area can represent the integral. This does not mean that

the area is equal to the integral, for the integral may be a length,

a volume, etc. The area can be taken to represent the integral,

because the number that indicates the area is equal to the 7iumber

that indicates the value of the integral. That an integral may
be represented geometrically by an area is at the foundation

of some important theorems and applications of the integral

calculus.

7. Properties of definite integrals. In Art. 4 it was shown that if

the definite integral,
j f{x) dx = <f>

(b) — <fi (a).

From this, the first of the following properties is immediately

deducible. The second and third properties depend upon Art. 6.

(a) jy(x)dx = -jy(x)dx.

This relation holds since the second member is — j <^ (a) — <^ (6) j

;

that is, (l>{b) — <ji(a). Hence, the algebraic sign of a definite inte-

gral is changed by an interchange of the limits of integration.

(b) Cfix) dx = ffix) dx + ffix) dx.
«/o %Ja «/c

Let the curve whose equation is 2/ = /(^) be drawn ; and
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let ordinates APj BQ, CR be erected at the points for which

x = a, x= b, x= c. Since

area APQB = area APRG
+ area CEQB,

Cf(x)dx= rf{x)dx+ Cf{x)dx.

It does not matter whether c is

X between a and h or not. For, sup-

pose 0(7' = c', and draw the ordi-

nate OB} ; then

area APQB = area APR'C - area BQR'C
;

f{x) dx = i f{x) dx— \ f(x) dx,

f{x)dx+ I f(x)dx.

Therefore a given definite integral may be broken up into any

number of similar definite integrals that differ only in the limits

between which integration is to be performed.

(c) Construct APQB as in (b) to represent the definite integral

rf(x)dx. Then

C f{x) dx = area APQB

= area of a rectangle whose

height CB is greater

than^P and less than

BQ, and whose base

is AB,

-X =:AB' CB
= (b-a)f(c),

OC being equal to c.
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r f(x) dx
Therefore /(c)

b — a

The function /(c) is called the mean value of f(x) for values of

X that vary continuously from a to b. This mean value may be

defined to be equal to the height of a rectangle which has a base

equal to b — a and an area that is equivalent to the value of the

integral. The subject of mean values is discussed further in

Arts. 76, 77.



CHAPTER II

INTEGRATION THE INVERSE OF DIFFERENTIATION

8. Integration the inverse of differentiation. In Art. 1, two

definitions of integration were indicated, namely

:

(a) Integration is a process of summation

;

(b) Integration is an operation which is the inverse of differen-

tiation.

The first definition was discussed in Chapter I. In this and

the next following article, integration will be considered from the

point of view of the second definition.

The differential calculus is in part concerned with finding the

differential or the derivative of a given function. On the other

hand, the integral calculus is in part concerned with finding the

function when its differential or its derivative is given. If a

function be given, the differential calculus affords a means of

deducing the rate of increase of the function per unit increase of

the independent variable. If this rate of increase of a function

be known, tlie integral calculus affords a means of finding the

function.

Ex. 1. A curve whose equation is y = 4 x^ is given ; and the rate of increase

of the ordinate per unit increase of the abscissa is required.

Since y = 4x%

dx

This means that the ordinate at a point whose abscissa is x is increasing 8 x

times as fast as the abscissa. If tliis rate of increa.se remains uniform, the

ordinate will receive an increase of 8 a; wlien the abscissa is increased by

unity. This determines the direction of the curve at the point.

18
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On the other hand, suppose that at any point on a curve, it is known that

f=Sx,
dx

and let the equation of the curve be required. It evidently follows from this

equation that

in which c is an arbitrary constant. The constant c can receive any one of

an infinite number of values ; and hence, the number of curves that satisfy

the given condition is infinite. If an additional condition be imposed, for

example, that the curve pass through the point (2, 3), then c will have a

definite corresponding value. For, since the point (2, 3) is on the required

curve,
3 = 4.22 4- c,

and accordingly, c = — 13.

Hence, the equation of the curve that satisfies both of the conditions above

given is

y = 4x2-13.

Ex. 2. In the case of a body falling from rest under the action of gravity,

the distance s through which it falls in t seconds is a constant, approximately

16 times t^ feet ; find the velocity at any instant.

Here, s = 16 1^,

and hence, ^ = S2t;
dt

that is, the velocity * in feet per second at the end of t seconds is 32 t.

On the other hand, suppose it is known that in the case of a body falling

from rest, the velocity in feet per second is 32 multiplied by the time in

seconds since motion began. Let the corresponding relation between the

distance and the time be required.

ds
Here, it is known that — = 32 «.

'

dt

* If a body moves in a straight line through a distance As in a time At, and

if its average velocity be denoted by -y.

As
V =—

At

As At approaches zero. As also approaches zero, and the velocity approaches

ds
the definite limiting value —

dt

INTEGRAL CALC. —

3
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It is obvious that the solution of this simple differential equation is

(1) s = 16 «2 + c,

in which c is an arbitrary constant. This result is indefinite. By the condi-

tions of the question, however, s = when « = 0.

Hence, substituting in (1), = + c

;

whence, c = 0,

and s = 16 1^

is the definite solution.

The distance through which the body falls can also be deter-

mined by the method of summation employed in the first chapter.

Let the number 32 be denoted by g. The distance passed over in

any time is equal to the product of the average velocity during

that time and the time. The time t may be divided into n equal

intervals A^, so that t = n^t. The velocity at the beginning of

the rth interval is {r — l)g ^t, and at the end of the interval is

rg At. Hence, the distance passed over in the interval lies between

(r-l)^(A«)2andr^(A02.

On finding similar limits for the distance passed over in the

case of each of the intervals and adding, it will be found that the

total distance passed over lies between

[0 + 1 + 2 + ... + (71 - l)-]g{My and [1 +2 + ... + 7{\g{Ltf',

that is, summing these arithmetical series, the distance passed

over lies between

'^i^^gi^tf and !Ll?^^(AO».

Since A^ = -, the distance lies between
n

^^_|^and2LV^;
2 2n 2 2n'

and the distance is the common limit of these two expressions,

when At approaches zero, that is, when n approaches infinity.

Hence, 8 = ]^gt^.
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Sometimes the anti-differential (or the anti-derivative) of a func-

tion is wanted for its own sake alone, as in the illustrations

given above ; and sometimes it is desired for further ends, as, for

example, in the process of making a summation by means of

the integral calculus in Art. 4. The anti-differential is called the

integral, the process of finding it is called integration, and the

symbol of integration is the sign
j

. Thus, if the differential of

</)(x) is f{x)dx, which is expressed by

d<l>(x)=f(x)dx, (1)

then Cf(x) dx = <f>(x). (2)

Equation (1) may be read " the differential of <^ (x) is f(x) dx ;

"

equation (2) may be read " the function of which the differential

is f(x)dx, is <f>(x).^' For brevity, the latter may be read "the

integral oif(x)dx is <t>(x)."
*

Memory of the fundamental formulae of differentiation will

carry one far in the integral calculus. For instance, since dx^

is Aoc^dx,
j 4 o;^ die is x'^; since d sin x is cos x dx,

j cos x dx is

sin X. The beginner will see the necessity of having ready com-

mand of the formulae for differentiation, since they will be

employed in the inverse process of integration.! Differentiation

* The origin of the terms integral, integration, and of the sign 4 has

been given in Art. 1. Instead of the sign l , the symbols d~^ and D~^ are

sometimes employed: thus, d-\f(x) dx, which is read "the anti-differential

of /(x) dx, '
' and D-'^f{x) , which is read, '

' the anti-derivative of /(x) . " In the

case of the second definition of integration, the use of the symbols d-'^, Z)-i,

is more logical than the use of \ . The latter sign is, however, firmly estab-

lished in this connection. It may be remarked that the differential is more

frequently written than is the derivative of a function.

t The expressions Cx'^dx, d~^(x^dx), D~^{x^) are equivalent. The in-

verse process of integration is not always practically possible (see Art. 4).

Art. 81 may be referred to for examples of differentials whose integrals can-

not be expressed in a finite form.



22 INTEGRAL CALCULUS [Ch. II.

of both members of (2) gives

d I fix) dx = d<f> (x)f

whence, by (1), = f{x) dx.

Therefore, d neutralizes the effect of
j

. It will be shown in

the next article that j dcfi(x) may have values different from <^ (x).

9. Indefinite integral. Constant of integration. Since d (x* -f c)

is 4 a^ dx, c being any constant, j
4 ic^ da; is a;* + c. The integral

given in Art. 8 comes from this on making c zero. But c may

be given any other value that does not involve x. Hence, j 4 x^dx

is indefinite ^o far as an arbitrary added constant is concerned.

In general,

if d<t>(x)=f(x)dx, (1)

then Jf(x)dx=<l>{x)-\-c, (2)

in which c is any constant; for differentiation of the members of

(2) shows that f(x)dx = d(f>(x). Hence, the integral of a given

differential is indefinite so far as an arbitrary added constant is

concerned. Illustrations have been seen in the preceding articles.

It should be noted that the indefiniteness does not extend to

terms that contain x. In other words, a given differential can

have an infinite number of integrals that correspond to the infi-

nite number of values that an arbitrary constant can take, but

any two of these integrals differ only by a constant. For

instance.

/(x-{-l)dx = ^ + x-{- Ci.

But on substituting z for a; + 1, and consequently, dz for dx,

f(x-\-l)dx=Jzdz = ^-hc,==^^^±^ + c, = ^-^x + ^-\-c,.
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These two integrals agree in the terms that contain x. When
an integration is performed, the arbitrary constant should be

indicated in the result ; or, if not indicated, it should be under-

stood to be there. The second member of (2) is usually called

the indefinite integral of f{x) dx, and c is said to be the constant

of integration. When the constant of integration has an arbitrary

value, that is, when no definite value has been assigned to it, the

integral is called also a gerieral integral ; on the other hand, when

the constant of integration is given a particular value, the integral

is said to be a particular integral. For instance, the general

integral (and indefinite integral) of x^dx is ^aj^'-f-c.in which

c is arbitrary. A particular integral of a^dx is obtained by

giving c any one of an infinity of possible values, say 6, — 5, \.

Thus J a;"* + 6, ^ ic* — 5, \x'^ + ^ are particular integrals. In

practice the value of the constant may be determined by the

special conditions of the problem.

10. Geometrical meaning of the arbitrary constant of integration.

If |=nx), (1)

then 2/ =
I
^'(^) ^^j

that is, y = F{x) + c, (2)

in which c is an arbitrary constant of integration. Suppose that

c is given particular values, say 8, — 3, etc. ; and let the curves

whose equations are

etc., etc.,

be drawn. All of these curves have the same value of -f- ;
that

dx

is, the same direction, for the same value of x. Also, for any
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two of the curves the difference in the lengths of their ordinates

remains the same for all

values of x. For example,

for any value of x, the dif-

ference between the lengths

of the ordinates of the two

curves whose equations are

given in (3) is 8 -(-3),
or 11. Hence, all the

curves, whose equations are

of the form (2), thus differ-

ing merely in the c's, can be obtained by moving any one of the

curves vertically up or down. The particular value assigned

to c merely determines the position of the curve with respect to

the avaxis, and has nothing to do with its form. Fig. 9 illustrates

this.

Fig. 9.

11. Relation between the indefinite and the definite integral. In

Art. 4 it has been seen that if d<l>(x) =f(x)dx, the sum or inte-

gral of f{x) dx for all values of x from x = a to xz=b, satisfies

the relation

£f(x)dx=<l>(b)-<f>(d), (1)

If the upper limit be variable and be denoted by x, .

Jj(x)dx = <l>{x)-^(a). (2)

If the lower limit a be arbitrary, — <^ (a) may be represented

by an arbitrary constant c, and (2) becomes

But

J fix) dx = <l>
(x) -f c.

yf(x)dx=<f>{x)-\-c.

(3)

(4)
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Hence, an indefinite integral is an integral whose upper limit

is the variable and whose lower limit is arbitrary. The first

member of (4) may be considered an abbreviation for the first

member of (3). The indefinite integral may therefore be re-

garded as obtained by a process of summation.

12. Examples that involve anti-differentials. This article is in-

serted for the purpose of giving simple, typical examples of a

practical kind, in which anti-differentials are required for pur-

poses other than that of summation. These illustrations will

also involve the determination of constants. In many applica-

tions of the calculus, two kinds of constants must be distinguished,

namely, those which are constants of integration, and those

which are given distances, angles, forces, etc. ; for example, the

constant g, in Ex. 2, Art. 8, and h, b, 7c, a, in Ex. 2 below. Eec-

tangular coordinates are used in the following exercises.

Ex. 1. Determine the equation of the curve at every point of which the

tangent has the slope i. Determine the equation of the curve which passes

through the point (2, 3) and also satisfies the former condition. The

slope of a curve y =f(x) at any point (x, y) is -^.* Hence, by the given
dx

condition,

(1)
dy 1

dx 2*

Adopting the differential form,,dy = ldx,

and integrating, (2) y = lx-\-C,

the equation of a straight line. Now c, the arbitrary constant of integration,

which in this case represents the intercept of the line on the ?/-axis, can take

an infinite number of values. The first condition is therefore satisfied by

each and all of the parallel lines of slope ^.

If, in addition, the line is required to pass through the point (2, 3), then

x=-2, y = 3, satisfy (2), and 3 = ^ • 2 + c. From this, c = 2. Hence, the

curve that satisfies both of the given conditions is the line whose equation is

y = lx + 2.

* By the slope of a curve at any point is meant the tangent of the angle

that the tangent line to the curve at the point makes with the a-axis.
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Ex. 2. netermine the equation of the curve that shall have a constant

subnornuil. Also, determine the curve which has a constant subnormal and

passes through the two given points (o, /t), (6, k); and find the length of its

constant subnormal.

Let A, B, be the given points (o, h), (6, A:), and let P be any point (x, y)

on the curve. Suppose that FT is the tangent at P, and PJV the normal.

Put the constant subnormal i¥iV equal to a.

Since the angle a = angle d (see Fig. 10), their sides being respectively

perpendicular,
tan a = tan d

;

that is. (1)
dy

dx

Putting this in the differential form,

(2) ydy = adXj

Y
p.^-^^

r.

A
o\

>W<)

a \
M

Fig. 10.

iV

and integrating both sides, ^ 4. c' = ax + c",

whence, (3) ax + c,

in which c', c", are the constants of integration, and c denotes c" — c'.

Ecpiation (3) is the equation of a parabola, and it includes an infinite number

of parabolas, one for each of the infinite number of values that the arbitrary

constant c can have.

The particular curve which passes through the points (r>, h) (h, k), and

has a constant subnormal is also required. Since the coordinates of these

points must satisfy (3), it follows that

and ab + c
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These equations suffice to determine c and the length a of the constant

subnormal. On solvhjg them, it is found tliat

^ 26

Hence, the equation of the second curve required is

In the differential calculus it is shown that the length of the subnormal

is y -• The first condition might have been expressed immediately by the

equation

dx

which is equivalent to (1) and (2).

Ex. 3. Find the curve whose subtangent is constant and equal to a. De-

termine the curve so tliat it shall pass through the point (0, 1).

Ex. 4. Find the curve for which the length of the subnormal is propor-

tional to (say k times) the length of the abscissa.

13. Another derivation of the integration formula for an area.

In Arts. 3, 4, it was shown that the area included between the

cnrve // =f(x), the a^axis, and the ordinates fov x = a, x = b is

the limit of the sum of the infinitely large number of infinites-

imal quantities / (a;) dx, which are successively obtained as x

varies continuously from a to b, and this limit was represented

by the definite integral I f(x) dx. The area can also be derived
•./a

by means of the second defi-

nition of integration.

Let CPQ be an arc of the

curve whose equation is y =
f(x), and let OA = a, OB = b.

Draw the ordinates AP, BQ.

Take any point S on the

a^-axis at a distance x from

0, and draw the ordinate SL whose length is f{x). Let z

denote the area of OCLS. If x or OS is increased by ST,

which is equal to Ax, and the ordinate TM be drawn, the area

z will be increased by the area SLMT, This increment will

Fig. 11.
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be denoted by Lz. Draw LR parallel to the a?-axis, and complete

the rectangle LRMV in which LR = Ax and RM= Ay.

The increment of the area,

A« = SLMT

= rectangle SLRT + area LRM
= SLRT -{- an area less than the rectangle LRMV
= /(aj) Ax + area less than Ay . Aic.

Hence,

Az— =f{x) + something less than Ay.

When Aa; approaches zero. Ay also approaches zero ; and hence,

in the limit,
•

|=/(x); (1)

that is, ^ = .y. (2)
ax

Equation (2) means that the numerical value of the differential

coefficient with respect to the abscissa, of the area between a

curve, the axes of coordinates, and an ordinate, is the same as the

numerical value of this ordinate of the curve.

Equations (1) and (2) written in the differential form give the

differential of this area, namely,

dz =f(x) dXf and dz = y dx.' (3)

Finding the anti-differentials in (3) gives as the area OCLS,

2=1 f(x) dx

= <A(x)+c, (4)

in which <f>{x) is the anti-derivative of f{x) and c is an arbitrary
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constant. If the area is measured from the y-Sixis, the area is

zero when x is zero. Hence, substituting these values in (4)

= <^(0) + c,

whence, c = — <^(0),

and (4) becomes z = (f)(x) — <^(0).

Hence, area of OCPA = <^(a) - <^(0).

Similarly, area of OGQB = <^(6)- «^(0).

Since APQB = OCQB - OCPA,

it follows that area APQB = </>(6) - <f>(a).

The expression in the second member- is the same that was

found for the area in Art. 4 by means of the first definition of

integration.

If the area is measured, not from the 2/-axis, but from another

fixed vertical line, say the ordinate at x = m, the derivation of

equations (1) and (2) is the same as given above. In this case,

the area is zero when x = m, and hence,

= <^(m) + c. From this, c = — <^(m).

The value of c in (4) thus depends solely upon the fixed ordi-

nate from which the area is measured.

14. A new meaning of y in the curve whose equation is y = f(x).

Derived curves. It has been seen in the differential calculus

that in the case of a curve whose equation is y =f(x), at any

point on the curve the slope of the curve is -_^, the differential
cix

coefficient of its ordinate with respect to its abscissa. Art. 13,

with equations (2) and (4), shows that at any point of a, curve

the length of the ordinate y is the differential coefficient with

respect to the abscissa, of the area bounded by the curve, the
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axis of X, a fixed ordinate, and the ordinate at the point.* There-

fore, " if we wish to make a graphic picture of any function and

its derivative, we can represent the function either by the ordi-

nate 2/ of a curve or by its area, while its derivative will then be

represented by its slope or ordinate respectively. If we are most

interested in the function, we usually employ the former method

(in which the ordinate represents the function) ; if in its deriva-

tive, the latter (in which the ordinate represents the derivative).

That is, we usually like to use the ordinate to represent the main

variable under consideration." f

For instance, suppose it is necessary to represent the function

f(x). Let the curve be drawn whose equation is

y=.m- (1)

At any point (x, y) on the curve, the ordinate y represents the

value of the function for the corresponding value of x ; and the

slope -^ represents the rate of change of the function compared
dx

with the rate of change of the variable x. Now let the curve be

drawn whose equation is

y=f\=^), (2)

df(x^
in which /'(a;) denotes '

^
- At any point (aj, y) on this curve,

ax

* The reinainiiiiij part of this article is not necessary for the articles tliat

follow. However, it may be useful for the beginner to read it, brcause it

may help to strengthen his grasp on the fundamental principles of the

integral calculus.

t Irving Fisher, A brief introduction to the Infinitesimal Calculus designed

especially to aid in reading mathematical economics and statistics, Art. 80.

Some readers may be intere.sted in an application of the principle qu()te<l

above. Professor Fisher continues: "Jevons, in his Theory of Political

Economy, used the abscissa x to represent commodity, and the area z to

represent its total utility, so that its ordinate y represented ' marginal

utility ' {i.e. the differential quotient of total utility with reference to com-

modity). Anspitz and Lieben, on the other hand, in their Uiitersurhungen

uher die Theorie des Prcises, represent total utility by the ordinate and

marginal utility by the slope of their curve."
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the numerical measure of the ordinate is the same as that of the

slope of the first curve at the point having the same abscissa.

Hence, an ordinate at any point of the second curve represents

the rate of change of the function f(^x) compared with the rate of

change of the variable x at this point. Also, the area between

the second curve, the axes, and the ordinate at (x, y) is

that is

Cf{x)dx,

Hence, the area of the curve y=f'(x) bounded as described

above plus a constant quantity /(O) can represent the function

For example, suppose that the function is pxF + 4. That is,

f(x) =px^ + 4:,

and f'(x) = 2px.

The parabola y = px^ -\- 4, and the line y = 2px are shown in

Fig. 12. At any point M on the ic-axis, the ordinates MPj MQ

are drawn to these curves. The ordinate MP represents the

function for x= OM; and the slope at P represents the rate of

change of the function when x = OM. The ordinate MQ is

equal (numerically) to the slope at P; and hence, it also repre-
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sents the rate of change of the function when x = OM. More-

over, since

area OQM= I 2px dx = pa^,
Jo

the function f{x) for x=OM is represented by the areaOQilf4-4.

Had the function been j^^ (shown by the dotted curve), the area

OQM would exactly represent the function.

To recapitulate : In the case of a function f(x), if the curve

?'=/(«), (1)

and its first derived curve y = f'(x), (2)

be drawn, the rate of change of the function for any value of x

is represented equally well by the slope of the first curve and by

F

s9

Fig. 18.

the ordinate of the derived curve for that value of x; and the

function itself for any value of x is represented equally well by

the corresponding ordinate of the primary curve and by the area

of the derived curve increased by the constant quantity /(O).
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The derived curve (2) is called the "curve of slopes" of the

first curve. Two of these curves are shown in Fig. 13. The
horizontal scale is the same for both curves ; but the ordinates

on the original curve represent lengths while the ordinates on

the derived represent tangents of angles. At a point at which
the original curve has a maximum or a minimum ordinate, the

slope is zero; and hence, the corresponding ordinate on the

derived curve is zero. Conversely, when the derived curve

crosses the cc-axis, the corresponding ordinate of the original

curve is a maximum or a minimum.

15. Integral curves. Let the curve whose equation is

y=A^) (1)

be drawn. Suppose that the anti-derivative of f(x) is <f>{x) ; and

draw the curve whose equation is •

y=rf(^)dx, (2)

that is, y = <l>(x)— <^(0),

or, briefly, y = F(x). (3)

The curve whose equation is (2) or (3) is called the first inte-

gral curve of the curve (1). It is evident that

The following important properties can be deduced from equa-

tions (1), (2), (4).

(a) For the same abscissa x, the number that indicates the

length of the ordinate of the first integral curve is the same as

the number that indicates the area between the original curve,

the axes, and ordinate for this abscissa. Therefore, the ordinates

of the first integral curve can represent the areas of the original

Qurve bounded as above described.
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(6) For the same abscissa x, the number that indicates the

slope of the first integral curve is the same as the number that

indicates the length of the ordinate of the original curve. There-

fore the ordinates of the original curve can represent the slopes

of the first integral curve.

Kk;. U.

Example. The line whose equation is

y=^px

has for its first integral curve the parabola whose equation is

y= \ T)xdx,
Jo

that is, y=v
x^

At any point M on the a;-axis, OM being equal to x^^ say, erect

the ordinates 3fP, MP^. to the line and the parabola. The same

number, namely V-jr-, indicates both the length of the ordinate

MPy and the area 0PM \ and the same number, namely px,, indi-

cates both the length of the ordinate MP and the slope of the

tangent at Pi. This is true for the pair of ordinates erected at

every point on the .r-axis.

In like manner the curve whose equation is (2) has a first

integral curve. The latter is called the second integral curve

for the curve of equation (1). This second integral curve has a
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first integral curve which is called the third integral curve of

(1), and so on. There is thus a series of successive integral

curves for any given curve. For instance, the second integral

curve of the line y=px is the curve whose equation is

/" x^

that is, y = P-^-

This curve is shown in the figure. The subject of successive

integral curves has very important applications in problems in

mechanics and engineering. Accordingly, an exposition of their

properties and uses is given in Chapter XII.

16. Summary. This and the preceding chapter have been con-

cerned with showing by statement and examples that integration

may be regarded in two ways

:

(1) As a process of summation, in which j f{x) dx denotes the
x=Jt %Ja

limit of the sum indicated by y f(x)^Xy when Aa; approaches

zero

;

*=«

(2) As an operation which is the inverse of differentiation, in

which
j f{x) dx denotes d-\f{x) dx] or D-^f(x) ; that is, denotes

the anti-differential oif(x) dx, or, what is the same thing, the anti-

derivative of f{x).

It may be remarked that the rules of integration are all derived

from the latter point of view. Both of these conceptions of

integration are employed in problems in geometry, mechanics, and

other subjects. The first view of integration is necessary to a

clear understanding of the application of the integral calculus to

the solution of certain problems ; and, on the other hand, the

second view is necessary to a clear understanding of the use of

the calculus in the solution of certain other problems.

INTEGRAL CALC.



CHAPTER III

FUNDAMENTAL RULES AND METHODS OF
INTEGRATION

17. In Chapters I. and IT., the two purposes of integration

were set forth; and definitions of integration based upon these

purposes were given with illustrative examples. Relations be-

tween the definitions were also pointed out, particularly in Arts.

11, 13. It was also shown that in the process of making an

integration, whatever the object may be, it is necessary to find

an anti-differential or an anti-derivative of some function. A
general method of differentiation is given in the differential

calculus. Unfortunately, no general method for the inverse pro-

cess of integration exists. It is necessary to derive a rule for the

integration of each function. The formulae of integration are

derived or disclosed by falling back upon our knowledge of the

rules of differentiation. In fact, the first simple rules, given in

Art. 18, are merely directions for retracing the steps taken in

differentiation. The inverse operation of finding an integral is,

in general, much more difficult than the direct operation of find-

ing a differential or a derivative.

This chapter gives an exposition of the fundamental rules and

methods employed in integration. One or more of these rules

and methods will come into play in every case in which integra-

tion is required.

18. Fundamental integrals. Following is a list of fundamental

formulffi of integration derived from the fundamental formulae

of differentiation. They can be verified by differentiation, as
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indicated in the first of the set. An additional list is given in

Art. 22.

Every integrable form* is reducible to one or more of the

integrals given in these two lists. The student should have

ready command of these formulae for two reasons : first, so that

he may be able to integrate these forms immediately; and second,

so that he may know the forms at which to aim in reducing com-

plicated functions. The functions to be integrated will not

usually present themselves in terms of these simple, immediately

integrable expressions ; and therefore a considerable part of this

book is taken up with algebraic and trigonometric transforma-

tions showing how to reduce given functions to these forms.

In the following formulae, u denotes any function of a single

independent variable.

[. ^un
n + 1

in which n has any constant value, excepting — 1. The case in

which n = — 1 is given in II.

Differentiation of each nlember of I. with respect to u gives

w" du.

n.t \^=logu + co = logu-\-\ogc = log cu.
J Iff

The different ways in which the arbitrary constant of inte-

gration can appear in this form, may be noted.

* " An integrable form " here means a function whose integral can be ex-

pressed in a finite form which involves only algebraic, trigonometric, inverse

trigonometric, exponential, and logarithmic functions.

t According to I., fw-i du = -^^j^ + c = ^+c = cc + c. Nevertheless,

f%-i du can be derived directly by means of I. For, on putting ^— -|- Ci

C wn+l _ 1 ^^ W»»+l — 1
for c, which is allowable by Art. 9, I w« dw = — + C\. Now —

—

' ^ J w+1 w+1
= - when n = —l. Evaluation of this indeterminate form by the method of

the differential calculus gives, differentiating numerator and denominator

as to w, M"+Uogw, that is, logw. Hence
J
u-^du=\ogu + ci.
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J

III. fa«f/w = r^^ + c.
J loga

IV. fc'*rfM = e'* + c.

V. fsiu u du = -cosu -f c.

VI, fcos udu = sin t* + c.

VII. (sec'^udu = tanu-\- c.

VIII.
J
csc^ udu = - cot «« + c.

IX. j sec i^tan udu = secu-\- c,

X. rCSC u cotu du = — CSC «* 4- c.

XI. f
^** = sin-i w + c = - cos-* M + ci.

XH. f-^^=tan-i«* + c=-cot-iM + ci.

XIII. f
——— = sec-*te + c = - csc-^te + a.

-^ u^u^ - 1

XIV. \— = vers-i u^-c-- covers"* i* + ci.

Ex. 1. fx«(te =:^^ + c = ^x* + c.
»' 3+1

Ex 4. ix^dx, iv>\lT, fs'»+''ds, it^dt, iz^Hz, i\y^'^d-p.
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Ex. 6. Tx^Ja;, Kb^dt, \x^dx, J
v?(Zv, (x~hx, fx~^(Zx, Cx'^tZx-

Ex. 7. f V^(Zj-, f 'y:, f—L rVx3(/x, f v^^(7x, f V^fZa:, Tf^-

Ex 8 f- r ds rix^dx r d (nvw) r (8a-2 + 4x -2)dx

J
sec- X dx Ccosxdx
ianx ' J sinx

Ex. 9. fe-^2t/x, f 2't?x, j(m+«)^<?x.

Ex. 10. fsin2xc?(2x), fcos3x(Z(8x), f scc'^ 4x^(4 x).

Ex.11. fsecixtanixcZ(lx), T 2dx^^
f

'^^^^
, r_iKH)_.

Ex 12 f-A^ r ^(Zx r 2^x r 4dx r ^U)
J 1+4x2' J 1+9x2' J2xV4x2-l' J4xVl6x2-l' J x /x2_j*

a^a2

19. Two universal formulae of integration. In this article two

formiilse of integration will be given wliicli differ from those of

Art. 18 in that they do not apply to particular forms merely, but

are of a much more general character.

Suppose that /(ic), F(x),
<f>

(x), •••, are any functions of x. Then,

A. J|/(x) + JP^(a?) + <|)(ir)+...|f?a5

= ( f(x)(lx-^(Fi,x)(lx + ^^(x)dx-^-";

for differentiation of each member of A gives f{x)-\-F(x)

-\- <t}(x) 4- •••. This formula may be thus expressed : the integral

of the sum of any number of functions is equal to the sum of the

integrals of the several functions. -^
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Ex. 1. ( (x2 ± siu x i; c*) dx = fx* dx ± fsin xdx±
J

e* das,

= ^ «' T cos a; db e* + c.

Each of the separate integrations requires an arbitrary con-

stant ; but, since all these constants are connected by the signs

-h and — , their algebraic sum is equivalent to a single constant.

Again, if u is any function of x, and m is a constant,

B. (mu dx = tn \u due,

for differentiation of each member of B gives mu. Hence, a

constant factor can be removed from one side of the sign of in-

tegration to the other without affecting the value of the integral.

It will soon be found that sometimes it will make the work

simpler to remove such a factor from the right to the left of the

sign
j , and that, at other times, the process of integration will

be aided by putting such a factor under the integration sign. It

follows from B, that the value of an integral is unaltered if a

constant is used as a multiplier on one side of the sign I , and as

a divisor on the other. Thus,

Judx =— ( mu dx = m\ •

This principle will often be found useful.

Ex.1. f3xdas = 3fa;(to=f f2x(to = fac2 + c.

Note. The value of an integral is changed if an expression that contains

X is transferred from one side of the sign \ to the other. Thus,

(x'^dx = \y?-\-c\

but xfxdx = Jx8 + c.

Ex.2. f7.r*Jx, (az^'^dz, ( ac'^bx^-^dx, (aH'^^dx, (^ ah'^ cx^'^^-'^ dx.
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Ex.3. f(a;2_2x + 5)dx, ( {x^ -3x^ + 6x^)dx.

Ex.4. ((S + 6tydt, ({a^-x^)^dx, ( (cos d -\- sin 6) dS.

Ex. 5. (e^^dx, (e^='dx, (e^='dx, (e^'^dx, (e^'^+^+^x + 2) dx.

Ex. 6.
I
(cos mx + sin 3ic) dx, \ (sec^ 2 x + cosec'^ (m + n)x} dx.

Ex 7 r^lLli^ C_v^_dv_ r x^dx

Ja + bx^' J4 + 3u3' J 5- 2x4*

Ex.8. f_^M^, r ^^
, f ^y .

20. Integration aided by a change of the independent variable.

Integration can often be facilitated by a convenient change of

the independent variable. For instance, if f(x) dx is not imme-

diately integrable, it may be possible to change the independent

I variable from x to t, the relation between x and t being, say

x = xp{t)j so that f(x) dx is thereby put into a form F{{) dt which

can be easily integrated. Experience and practice afford the only

means of determining the substitutions that will be helpful in

particular cases. The actual substitution of the new variable

may often be conveniently omitted, as in Exs. 1, 2, 3, below.

Ex. 1. f(x + a)«dx.

On putting x + a = t, dx = dt ] and the given integral becomes

J . n+l w+1

Since dx = d(x + a), the given integral may also be written

I
(x + aYd(x + a) , and x + a being regarded as the variable w, the integral

is i^±«):^ + c, as before,
n + l
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Ex. 2. fsec^ (5 - 2 x) dx.

U b - 2 X = t, dx = - Idt ) and

(*sec« (6 - 2 x) rfx = - i (sec^tdt = - ^ tan ( + c

= - ^ tan (5 - 2 x) + c.

Since dx = — ^d{b — 2x), the integral may be written also

f sec2 (5 -2x)dx = - ^ fsec2 (5-2 x)d (5 - 2 x)

= — J tan (5 — 2 x) + c.

J'
Ex. 3. I e«+**t?a;.

If a-{- bx = t, dx = -dt, and
b

(e'^+^^dx = - f e'Ji = ie* + c = ic«+** + c.

J bJ b b

Otherwise : since dx = d(a + bx),
b

r^a+ftx^ = 1 f e«+&*d (a + 6a:) = le«+^* + c.

Ex.4, t
12X2-4X + 5 ^^

4x8-2x2 + 5x-10

On putting 4x3 - 2x2 + 5x - 10 = «, it follows that (12x2 - 4x + 5)dx

= dt, and

rj^t7f^/\n ^^ = fT = l«g« + ^ = ^«g (^^' _ 2x2 + 5x- 10) + c.

J4x" — 2x^+ox — 10 J t

Note. If the expression under the sign of integration is a fraction whose

numerator is the differential of the denominator^ the integral is the logarithm

of the denominator.

Ex. 6. rc28«^.
J sin'x

If sin X = t, cosxdx = dt ; and

J 8in®x J t^ 6(* Ssin^x

Otherwise: fcQsxdx^ /-(^(sinx) ^ L_ + c.
J sin^x J (sinx)* Ssin^x

The necessity of learning to recognize /orms readily will be apparent.
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Ex. 6. C^-^^.

If X {- I = z^ dx = dz, X = z — 1,

then f_^!f?^=f(^^d.= f(l-i +l-iU
J(x + 1)'* J z^ J \z z^ z^ z^l

Ex. 7.
J
—^

Y dx.

If ^ -\-\ =z, e^'dx = dz, e' = z — \',

and ^^^dx= (^^1^^ (i^dz= (iz^-z-hdz

Ex. 8. ((x-ha^dx, ((x + a)Ux, f-^, f—^, f , f ,, ,

f(2 + 3x)^dx, f(3-7x)3(7x.

Ex. 9. fcos(x + a)cZx, (sec'^(x+a)dx, (—^ f^ „ , (sin (a -\-bx)dx
J J J cos2(4 — 3 x) J

Ex.10, fcos^dx, fes+sx^a; Ce^'Hlx, (^^dx.

Ex.11. fx(a + x)3dx, f
^^^

•

•^ ^ (a + &x)*

r (?x rcos(iog x)<;x
^

f de

J (l + x2)tan-ix' J x '

Jsin2/'^\

Ex.13, ({a^-hzydz, (V{a + hxY dx, ^-j^==='
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Ex.14. (—=M===- (Put2a;-1 = 4;2!.)

J Vl5 + 4x-4«« .

Ex. 16. r22i£^. (Put sin x = z.) fcsin*^ - 3 sins^ + 4 sins^
J siii8 X ^

+ nain0-\-2)cosed0j f (tan8<^ - 7 tan^ ,^ + 2 tan + 9) sec^ ^ d^.

21. Integration by parts. Two universal formulae of integra-

tion were given in Art. 19. A third formula of this kind will

now be discussed. Differentiation shows that, u and v being any

functions of x,

d / X du , dv

ax ax ax

This may be written also in the differential form,

d(uv) = v(^)dx-^u(^\dx,
\dxj \dxj

or more simply, d (uv) = vdu-\- udv, (1)

in which, du=— dx, and dv = ^—dx.
dx dx

Equation (1) becomes on transposition,

udv= d (uv) — V du.

Integration of both members of this equation gives

C. lu dv = uv — iv du.

Equation C may be used as a formula for integrating u dv when
the integral of v du can be found. This method of integration,

commonly called " integration by parts," may be adopted when

f(x)dx is not immediately integrable, but can be resolved into

two factors, say u and dv, such that the integrals of dv and v du

are easily obtained. The procedure is as follows

:

jf(x)dx= judv'f

whence by C, =uv— t v du.
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No general rule can be given for choosing the factors u and dv.

Facility in using formula C can be obtained only by practice.

This formula has a greater importance and a wider application,

than any other in the integral calculus. The following examples

will show how it may be employed.

Ex. 1. Integrate x sin x dx.

Let u = Xy dv = sin x dx

;

then, du = dx^ v=— cos x.

Application of C gives

ixsinxdx = — x cos a: + j cos x dx
;

= — ic cos X + sin X + c.

Ex. 2. Integrate \ogxdx.

Let u = log X, dv = dx

en.
dx

du = —i
X

V = x.

Therefore by C,

flog X dx = X log X - y^—

= X log X — X + c.

Ex. 3. Find (xe'dx.

Let M = e*, dv = xdx\

then, du = e*dx, v = \ x\

The formula gives

J
xe* dx = \xV — \ fxV dx.

But xH'^dx is not so simple for integration as xe'dx. This indicates that

a different choice of factors should have been made.

On putting u = X, dv = c*dx

du = dx, V = e',

nd formula C now gives

J
xe* dx = xe=' -(e-dx

= xe'-- e* + c.
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Ex. 4. Find fxV(?j.

Let u = x^, dv = e'dx ; then du = Sx'^dx^ v = e'.

Hence, \a^^ dx = o^c* — 3 1 a^V dac.

To find Jac^c* dx, put m = x*^, do = e^^ dx ; then dw = 2 x dx, v = e'^ ; and

j x^e^* dx = x'^e* — 2 j xe* dx.

By Ex. 3, fxe' dx = xe* — e* + c.

Hence, combining the results,

(x'^e'dx = e'(x^ - 3x2 j^Qx-Q)-\-c.

This is an example in which several successive operations of the same

kind are required in order to effect the integration. Many such examples

will be met, and usually a formula called '* a formula of reduction" will be

found for integrating them. "Integration by parts" is of great use in

deducing these formulae of reduction. In order to avoid making mistakes in

cases like Ex. 4, a good plan is to write down the successive steps in the

integration clearly, without putting in the intermediate work, which can be

kept in another place. Thus :

fx8e*dx = x3f' - 3 fxVdx

= x^e* - 3 [x^e^ - 2 Txe* dx]

= xV - 3 [x^e^ - 2 (xe* - e*) ] + c

= e* (x=^ - 3 x2 + G X - 6) 4- c.

Ex. 6. rsin~ixdx. Ex. 10. fx'^sinxdx.

Ex. 6. jcot-ixdx. Ex.11. rx2cosxdx.

Ex. 7. (zaulz. Ex. 12. fxtan'ixdx.

Ex. 8. (x'^a'dx. Ex. 13. r(logx)2dx.

Ex. 9. ftan-'xdx. Ex. 14. fcos ^ log sin ^d^.
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Ex.15, j sec^ x log tail x (Zx. Ex.17. \xe"^dx.

Ex.16. frXloga;)2tZx. Ex.18. fx"*logxdx.

22. Additional standard forms. Some fiindaiuental integrals

which often appear are collected together in the following list.

Their derivation will be found in the next article.

XV.
J
tan udu = log sec u -{- C.

XVI.
I
cot u du = log sill u + C.

XVII. Jsec udu = log tan f ^ + ^W C.

XVIII. fcosecudu = log tan ^ + C

XIX. r
^^ = sin-i"* + C = - cos-i - + C

XX. r^^^=itan-i^ + C=:-lcot-i**+C'.

XXI. f—^^^= = ^sec-i^+C = -lcosec-i^+C'.

XXII. f
^^^ = vers-i - + C - - coyersi "" + C.

^y/2au-u^ « ^

XXIII. T—^?**-,.. J-iog?^^^+ C = ltanh-i^+C'.
J 1^2 _ ^2 2 a M + a a a

XXIV. f
^^ = log {u + Vm2 + «2) 4^ e = sinh-i - + C

^ Vf/2 + a2
«

XXV. f
^^ = log (t* + VM2-a2)+ e = cosh-i ?^+ C.

•^ Vm2 _ «2 aw^ - a
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23. Derivation of the additional standard forms.

Formula XV. Since tan u = -i5_!f,

cosu

ftan u du = f?iHJf clu = - fl(221^
J J COS U J COS w

= — log COS u = log sec u.

Formula XVI. foot udu= fS^iH d„ = f
djsinu)

J J smu J sin u

= log sin w = — log cosec u.

Formula XVIII. Since cosec u = cosec w ^2^^^Jizi^2l^,
cosec ?^ — cot u

/l.^ ^^ ^ r— cosec u cot ^* -|- cosec'^ u ,

cosec w aw = I ' du
J cosec u — cot w

/
^ (cosec u — cot ^)

cosec u — cot w

= log (cosec u — cot u) = log ~~ ^^^ ^

sm w

2 sin^
I= log = log tan ^.

2sin?cos^ 2

Formula XVII. On substituting w +| for w in XVIII., there

results

Tcosec fu +yjdu = log tan f'^ + ^\

that is,
j sec udu — log tan

(
^ + - ) •

Formula XIX. If w = a^, then du = a dz, and

r ^^ = f
^^^ = f ^^ =sin->.

= sin~* - = — cos"^ -•
a a
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Formula XX. If u = az, then du = adz, and

/du 1 r dz 1, 1

a^ + u^ aJ l-\-z^ a

\

1 , ,u 1 ^ .u= - tan~^ -= cot~^ —
a a a a

Formulae XXI., XXII. These integrals also can be derived by

means of the substitution u = az.

Formula XXIII. Since —J— = -^(^-1 1_\
w — a^ 2a\u — a u-\-aJ

r <?» _ 1 r/ 1 i_Ad„
J u^ — a^ 2 aJ \u — a u-\-aJ

=^ Slog (^ - «) - log (w + a)|
^ a

= 1 log'l^.
2a u-\-a

Formula XXIV. If u^ + a^ = z% then udu = z dz,

or

Hence,

and, by composition,

_dz
u

die du dz

Viu^ + d" z u

_du-\- dz^

u + z

• du _ rdu + dz

J u-\-zv^11^ + a!'

= log {u-\-z) -\-c = log (u + ^u^ -\-a^)-\-c

= log—!—5^ ;!^

f- Ci = sinh ^ - + Cj.

a a
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The latter result can be derived also in the following way

:

On putting u = 02,

r_du_ ^ r_jh_ ^ ^^^^.^^ ^ ^^

= sinh-^ --\-c.
a

Formula XXV. Similarly, on putting u^ — o? = z^,

{
—^~ = log(u4-AA^^^=^+c

= log + C2 = cosh-' - + Ca.

Or, putting u = 02?,

f .

^" = f-—^- = cosh-'^ + c =: cosh-' 1* + c.

-^ Vw2 - a" -^ V2' - 1 a

Ex. 1. Find (Va^-x^dx.

Integrating by parts, let

u = Va2 — a;'-^, dv = <?«.

Then (?m = - •

—

^
dx, v = x,

Va-i - x-^

and f Va2 - a;2 fZx = xVo^^^ + f-^^^—

.

•^ -^ \/«2 _ a;2

Since Va* - ac^ = ^^ ~ ^^
, it follows that—^^ = "'^

- Va'^- x'^.

Hence, f Vq-^ - g^dx = agVa« - x'^ + gg f ^ (Va^- x^dx.

From this, on transposing the last integral to the first member,

f Va«-x«(te = I (xVa^ - x-^ + a^sin-' ^Y
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dx

J V24 + 10 a; -x-^ -^ V45 i - (x-^ - 10 x 4- 25)

^V7=^-(x-5^2 V 7 Jby

Ex. 3. r-_-:,j^,,==r
^ Vx--\-Sx + b2 -^

dx

V{x + 4)2 + 36

= log (X + 4 + Vx2 + «x + 52).

V3
Ex. 4. f '^ =(—^ ^J_tan-i^

Jx--2 + 6x + 12 J(.r+3)-' + 3 ^3 V£

Ex. 5. f ^? =( ^ ^1 log (^-±11:=
Jx^+Ox + 5 J(x+3)-^-4 4 *(a; + 3)+

= llog^+i.
4 "'x + S

Ex. 6.
I

dx

Ex. 7.

Ex

V x"^ — 5 X

dx

Ex. 16. f-
dx

+ X2

VI x^ + 19

Ex. 16. f ^y .

J 2/2 -8

8 C
5xdx

•^ V3x4 + 2x2-1

Ex. 9.
J-

dx

tan ax

dx

Ex. 10.

^ + 4 X - x2

V4x-x2

51

Ex. 11. J—

^

Ex. 12. f

V4-x2

d9

V5"

Ex. 13. y\ tan 3 x dx.

Ex.14, f—1^
>/3- 5x2

INTJiOUAL, CALC. 5

Ex. 17. f-J ta

Ex. 18. fcot (ax 4- b)dx.

Ex.19. (-1^^.
J 4 02 + 3

Ex.20, f ^ r^ r d(x-2) -|

Jx-2-4x+ 8L J (x-2)2+4j

Ex. 21. f —
Jx'!-4x-8

Ex. 22. r(sec2x + 1)2 da;.

r dx

•^ (X - a) V(x - a)2 - 62

Ex. 23
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Ex. 24. ( ^
Ex. 29. f — -•

Ex. 25. f-^^. Ex. 30. P-±^^^^.•^ V re* - c* J

Ex. 26. Jxyv^^T^ete. ^.^ j^ j-

Sin

da;

Va2a;2 + 2bx-{-c

Ex. 27

^^ + 2V3 Ex.32. fJ^dx.
.28. i -Ex "- '

^^

vl6 X — (J
x*-* [Rationalize the numerator.]

24. Integration of a total differential. It has been shown in the

differential calculus, that if

u=f{x,y), (1)

Xf y, being independent variables, the total differential of u is

equal to the sum of its partial differentials with respect to a; and

y. That is,

du = ^^dx + ^dy. (2)
5a? dy

It will be remembered that when differentiation is performed

with respect to x, y is regarded as constant, and when differenti-

ation is performed with respect to y, x is regarded as constant.

Suppose that a differential with respect to two independent

variables is given, namely,

Pdx-\-qdyy (3)

in which P and Q are functions of x and y. The anti-differential

of (3) is required. Not every function (3) that may be written

at random has an anti-differential. Hence, it is necessary to de-

termine whether an anti-differential of (3) exists or not, before

trying to find it. It has been shown in the differential calculus

that if u and its first and second partial derivatives with regard

to x, 2/ are continuous functions of «, y, then.

By dx dx dy
(4)
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If (3) has an integral, say u, then,

du = Pdx+Qdy, (5)

in which P= |^, (6)

and Q = |. (7)

Differentiation of both members of (6) and (7) with respect to

y and x, respectively, gives

dP d'u

By dy dx

dx dx dy

Hence, by (4), |=|§. (8)

Therefore, if (3) has an integral, relation (8) holds between the

coefficients P, Q, and the differential (3) is then said to be an exact

differential Conversely, it can be shown that if relation (8)

holds, the differential (3) has an integral. For the present the

latter proposition may be assumed to be true.* The condition

(8) is called the criterion of the integrability of the differen-

tial (3).

Suppose that the coefficients P, Q satisfy the test (8), then

there is a function u which satisfies equation (5). Since Pdx can

have been derived only from the terms that contain x, integration

of the second member of (5) with respect to x gives

f'
Pdx +c,

in which c denotes any expression not involving x.

* For proof, see Introductory Course in Differential Equations, Art. 12,

by D. A. Murray (Longmans, Green & Co.).
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Now Q dy has been derived from all the terms of u that contain

y. Some of these terms may contain x also ; and if so, they luive

been discovered already in j Pdx. Therefore, the remaining

terms of u that do not contain x will be found by integrating

with respect to y the terms of Qdy that do not contain x. Hence,

the following rule: Integrate Pdx as if y were constant; inte-

grate, as if X were constant, the terms in Q dy that do not contain

X ; add the results and the arbitrary constant of integration.

Ex. 1. Integrate ydx-\-xdy.

Here P=y, Q = x\ hence 3- = !, ^=1, and thus, criterion (8) is

oy qx
satisfied.

Also, \Pdx = iydx = xy; and there are not any terms in Q dy without x.

Hence the integral is xy + c.

Ex. 2. Integrate ydx — xdy.

Here P = y, Q = —x: hence -- = 1, —^ = — 1, and the criterion is not
^' ^ dy dx

satisfied. Therefore an integral of the given expression does not exist.

Ex. 3. Integrate (x^-Axy-2 y^) dx + (y"^ - ixy - 2 x^) dy.

Ex. 4. Integrate (a^ -2xy - y"^) dx - (a; + y)"^ dy.

Ex. 5. Integrate (2 ax-\-hy -\- g) dx + {2. ay -\- hx \- e) dy.

25. Summary. The directions so far given for obtaining the

indefinite integral oif{x)dx may be summarized as follows:

(1) Memorize the fundamental formula3 of integration given

in Arts. 18 and 22.

(2) Acquire familiarity with the application of the principle of

substitution, or change of the independent variable, discussed in

Art. 20.

(3) Use the first and second universal formulae of integration.

Ay J5, given in Art. 19.

(4) Learn to apply with ease the third universal formula of

integration, namely, the formula for integration by parts given in

Art. 21.
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EXAMPLES ON CHAPTER III

f^x" dx, (ah'^z^^^'-'^dz.

2. y /a;2 + 1- _ 3a;' + ^-] dx, J%^
_ ykyi^y^

X"' x^' ^

Jx + 2 J 0-2 Jg

4. Find the functions whose differential coefficients are

1 _i

x", X ", X ", ijs - 3 av'f + 4 av~3.

5. Find the anti-differentials of

(sec2 d + cosec2 6) d9, (3 cos 2 - 5 sin 3 0) d0,
_sinjM^^
a 4- 6 cos i/'

6. Find the anti-derivatives of

f-^— +^—Y cosx + -^, -logx, _J—^ log (ax + 6).
\y — o, y -{• a} cos^ x x ax -|- 6

7. Evaluate the following definite integrals

:

P(x~^ + 5x2)t?x, pcos4<9fZ0, • r'cos4x(Zx, T—

C 2 2dx
^ 4 r < ^^^ 2 (9 fZ^.

Jo Vl — 4x2 *^o

X I

•8. log 25 r b^'dx, r^i+«^i^, r (eax_^e")dx, ("'(e^+e-^^)
J_0o ^v/2 X^ — \ J ^ Jy

9. pe-2^'+'^xfZx, f
^^^

, pcot^logsin^fZ^,
Jo '^rvl -x'^^sin-ix *^T

•^0
' VI - x^ *^^ 1 + ^^
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10. P°(
^

- + /^ \dx, P(sin2<^ + cos3 0)dJ0,
•''* \Vx + a y/x- a' "Yj

Ja cZx L Vx2 + a2 - Vi^TT^d

11. r

—

^^
(Put a; = -. Compare result with formula XXL)

•^ XVa;2 _ a2 «

J-^.
(Putsinx = ;2. Compare with XVII.)

cosx

r <fo? (Put3+2x=0.) f ^^ -. (Putl+x=«2.)
•^ V1-3X-X2 ^ /I . ,v.\^ . (-[ ^rf\h

13. f^i^cZx. f_^^^. (Puta + 6x2 = ;.2.)

14. fsec-ix(?x, fcosec~ix(?x, icos-^xc^x,
J
x^ sin~i x (to.

15. fX cos X dx, fx8 sin X d«, fx tan^ x dx.

16. fx^a^dx, fsinxlogcosxcZx, fcosec^xlogcotxifx.

17. f(2x-2)(x2-2x + 6)cos(x2-2x + 5)cZx. (Put x^ -2x + 5 =5;.)

18. fx61og(x8 + a8)(?x. (Putx3 + a3 = 2;.)

19. f (!2^)! ^x. (Integrate by parts, putting u = (\ogxy,)
-^ x^

20. Show that

f (logx)«dx = x[(logx)»« - m(logx)"'-i + ^.{m - l)(logx)"»-2— ...

+ (_l)m-im(m-l)...3.21ogx+ (-l)"».wl].

21. Show that

fe*x* dx = x^e* - m ie^x"'-^ dx = e*[x'* — mx^-^ + m(m - l)x'»-2 — ...

4.(_ l)m-iw(»n-l) ...3.2.x + (-l)'"-»»!J.
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22.
I
(sec X + cosec xY dx.

23. 1^
^'

24.

+ cot^

dx
f

^

62 _ a;'

25. Evaluate 2 f log tan d • cosec 2 (^5 + log cot d \ cosec 2 ^ d^.

26. r (a tan sec + b) cot (?^.

27. f
^^

, f
^^

•^ V2 + 2 a; - x2 ^ V- 16 - 10 x - a;2

28. flog («^ + Vx2 - a2) ^.

29. flog (x + Vx2 + a2)
^'^

.

^ \/x2 + a2

30. |eJ""^''^'d^.

„- rg sec2 d + b cosec2 g ,, «g fsecxtanxt^x

'J tan ^ + cot ' "J tan2 x - 2

JX ^Q i
"^

vers-1-' Vxdx. ' J gx _ Sg-x*

33. ^V^^^J^dx. ^'
J v^2^'

j
—«^ (Putx = ;32.) 41. r—

•^x2-5xi J sin- Vcosx'

. r ^ -„ r (?x

Jsinx + cosx *-«•
Jax^-{-bx + c

C do 43 r dx
J cos20 - sin20 • J Vax2 + &x + c

34

(3x + 4)x^T2", AA C dx_
37. r(3x + 4)Vx + 2^^^ 44. r

\/2 — X. "^ V- ax2 + &X + c

45. Integrate sin x cosy dx + cos x sin ?/ dy.

46. Integrate cos x cos ydx- sin x sin «/ dij.

47. Integrate (3 x2 + 6 xy + 4 y2) c?x + (3 x2 + 8 x?/ + 6 y'^)



CHAPTER IV

GEOMETRICAL APPLICATIONS OF THE CALCULUS

26. Applications of the calculus. In this chapter some of the

practical applications of the integral calculus are discussed. In

particular, the areas of curves and the volumes of solids of

revolution are determined. Art. 32 deals with the deduction

of the equation of curves from data whose expression requires

the use of differential coefficients.

There is one common aim in by far the larger number of the

simpler applications of the integral calculus. This aim is to

find the sum of an infinite number of infinitely small quantities.

The process of summation has been discussed in Chapter I.

The student will find that in most of the problems there are

two steps to be taken in order to obtain the solutions, viz.

:

(a) To find the expression for any one of the infinitesimal

quantities concerned and to reduce it to a form that involves

only a single variable;

(b) To integrate this differential expression between certain

limits which are assigned or are determinable.

Each of the differential expressions is called an element,—
an element of area, an element of length, an element of volume,

an element of force, etc., as the case may be.

27. Areas of curves, rectangular coordinates. It has been

shown in Arts. 3-5 that the area* between the curve y =f(x),

* The calculation of such an area is called " Quadrature of curves." From
this comes the phrase *'to perform the quadrature," which is often used as

synonymous with '*to integrate." The areas of only a few curves could be

found before the discovery of the calculus. Giks Persone de Koberval (1602-

58
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the a^axis, and two ordinates for which x = aj x=b, is ex-

pressed by

J
f{x)dx.

It has also been shown that this area can be evaluated by-

finding the indefinite integral

of f{x)dx, substituting h and a

in turn for x in the indefinite

integral, and taking the differ-

ence between the results of the

two substitutions.

L

T
P^^^

/T
Xr—

B

>

M

\v 9

D

R
Q

Fig. 15.

Ex. 1. Find the area bounded

by the parabola whose equation is

y2 = 4 ax, the axis of x, and the

ordinate at x = Xi. Also find the

area between the parabola y^ = ^x^

the axis of x, and the ordinates for

which X = 4, X = 9.

Let QOG be the parabola whose equation is y"^ = 4 ax. Take 0M= Xi,

0A = 4, 0D = 9; erect the ordinates MP, AB, DC. Suppose that two

ordinates BS, VT are drawn at a distance dx apart. The element of area,

which is the area of any infinitesimal rectangle like BSTV, is ydx. The
area required in the first case is equal to the sum of the areas of all such

rectangles, infinite in number, that are between OY and PM; that is, be-

tween the limits zero and Xi for x. Hence,

area of 0PM = \ ^ydx.
Jo

First of all, y must be expressed in terms of x. This can be done by

means of the equation of the curve, from which

y=z±2 a^x^.

1675), professor of mathematics at the College of France in Paris, Blaise

Pascal (1623-1662), John Wallis (1616-1703), Savilian professor of geometry

at Oxford, considered an area to be made up of infinitely small rectangles,

and applied the principle to the determination of the areas of parabolic

curves. The French geometers found the formula for the area between the

curve y = x^, the axis of x, and any ordinate x = h when m is a positive

integer. Wallis found the area when m is negative or fractional. This was

before the development of the calculus by Leibniz and Newton.



60 INTEGRAL CALCULUS [Ch. IV.

(The positive sign denotes an ordinate above the a>axis, the negative, one

below.)

Hence, area of 0PM = f *2aMcZa;
Jo

that is, area of 0PM= two thirds of the area of the circumscrib-

ing rectangle OLPM.

The area OPQ = 2 0PM = two thirds the area of the rectangle LPQR.

In the second case :

area ABCD =\ydx

= 3 fV(Zx = 3 [f x^ + c]9 = 38.

If the unit of length is an inch, the area of ABCD is 38 square inches.

Ex. 2. Find the area between the curve j/'^ = 4 ax, the axis of y, and the

line whose equation is j^ = 6.

Y
A B

A '

^

^
^.x„)

X

\

Fig. 16.

In this case it is more convenient to take for the element of area the

infinitesimal rectangle indicated in the figure. The element of area is thus

xdy\ and

area 0AB= \ xdy
Jo

= Jo 4a

12a

dy
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Ex. 3. Find the area of the ellipse ^ + ^ = 1.

The area required is four times the

area of the quadrant A OB. An ele-

ment of area is the area of an infini-

tesimal rectangle BSTV, namely

y dx. The sum of all these elements

from O to ^ is expressed by \ ydx.

From the given equation,

a

in which the positive sign denotes

an ordinate above the x-axis, and

the negative sign, an ordinate be-

low. Hence,
Fig. 17.

area of ellipse = 4 OAB = 41 ydx
Jo

= 4nVa2-x2f2a;;
aJo

which by Ex. 1, Art. 23, = i^ [^ Va2 - x'^ + ^sin-i^ + c'Y
a 1.2, 2 a Jo

= irah.

If a = &, the ellipse is a circle whose area is ira^.

Find the area included between the ordinates for which a; = 1, x = 4, the

curve, and the axis of x.

Area PQMN= Cydx = - f* y/a'^-x'^dx

_6 p y/cfi - x2 +
a Ji

= ^ { 2 V^^^ri6 - |V^23T +^ f
sin-1^ - sin-il^ \

If the semi-axes Jire 5 and 3,

area PqMN=^{Q-VQ + ^ (sin-i f - sin-i \)]

= I {6 - 2.454) + ^ (.927 - .201)

= 3.778.
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Fio. la

Ex. 4. Find the area between the

curve whose equation is

2/ = T^(x-l)(x-3)(x-5),

the axis of a;, and the ordinates for

which x = — 2, X = 7.

7

The area required = \ydx

7

= 1*2 fc^* - 9«2 + 23 a; - 16)da;

U
= i^zCi*^ - 3 x3 + ^a;2 _ 15 a; + c]'

-2

= -!§.

Further remark on this example

may be instructive. On putting

y = 0, the intersections of the curve

and the ic-axis are seen to be at the

points for which re = 1, 3, 5. That
is, referring to the figure, 0(7= 1,

OD = 3, 0^ = 5.

Area APC =Cydx = - J^.

This area appears with a negative sign, since the ordinates are negative in

APC because it is below the x-axis.

Area CHD = Cy dx = -\-^,

the sign coming out positive since CHD is above the x-axis.

Area DLE =
J
ydx = — ^;

and area EQB = \ ydx = -{-S.

The area required = area APC + area CHD + area DLE + area EQB

= -!!,
The absolute area =ijY + J + J + 3 = 12ff

as obtained before
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This is an example of the principle indicated in Art. 5, namely, that when

the area between a curve, the x-axis, and any two ordinates, is found by inte-

gration, this area is really the sum of component areas, those above the

jc-axis being aifeeted with the positive sign, and those below the x-axis with

the negative sign. The next example will also serve to illustrate this.

Ex. 5. Find the area between a semi-undulation of the curve y = sin x

and the x-axis.

The curve crosses the x-axis at x = 0, x = tt, x = 2 tt, etc.

Areaof ^IBC sin X dx

'2n

[ — cos X + c] =2.= \ydx = {''

Jo Jo

But area ABCDE = \''ydx=\'smxdx =
Jo Jo

The total area, regardless of sign, is 4.

Fig. 19.

28. Precautions to be taken in finding areas by integration. The

method of finding areas which has been described in the last

article can be used immediately and with full confidence in the

case of a curve y=f(x), only when the limits a and b are finite,

and the function f(x) is continuous and one-valued for values of

X between a and 5, and does not become infinite for any value

of X between a and b. Special care must be taken in cases in

which any one of the conditions just mentioned does not hold.

While, in some of these cases, the application of the method of

Art. 27 will give true results, in other cases it will give results

that are altogether erroneous. A few examples are given below

in order to emphasize the necessity of caution.

Ex. 1. There is a double value for y in the parabola y'^ = 4 ax. This was

considered in Ex. 1, Art. 27.

Ex. 2. Find the area included between the parabola {y — x — 6y = x,

the axes of coordinates, and the line x = 5.
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In this case y = x ± Vx + 5 ; and thus to each value of x belongs two

values of y. The ambiguity can be removed by defining more exactly what

area is meant. If the area ORPM is desired, the value of y corresponding

to each value of x between and 6 is a; — Vx + 6. Hence,

, y 'Q

2

A
X

/'

E^
s

area OBPM= C^x -y/x + 6)dx
Jo

a;^ + 6 x + c1
Jo

V M
Fio. 20.

If the area OliQM is desired, the value

of y corresponding to each value of x be-

tween and 5 is x + Vx + 5 ; and hence,

area OIiQM= ( (x + Vx + 5)dx
Jo

= ^- + ^V5.

If the area PBQ, between the curve and the line x = 5, had been required,

it would have been necessary first to determine the areas OBPM, OEQM.

Area PBQ = area OBQM- area OBPM;

Another way of finding the area of PBQ is the following. Let TS be any

infinitesimal strip of width dx parallel to the y-axis. Evidently, TS is the

difference of the values of y that correspond to x= OV. Hence, denoting

these values of y by yi, 2/2,

area PBQ = i (yi — 2/2) dx
Jo

= f^{(x + Vx + 6) - (X - v^ + 5)} dx

= i 2^/xdx

= ^V6.

Ex. 3. Find the area included between the witch y
a8

and its

x2 + a2

asymptote. The asymptote is the axis of x, and hence, the limits of integra-

tion are -|- 00 and — 00, In this case it is allowable to use infinite limits.

For, on finding the area OPQM between the curve, the axes, and an ordi-

nate at distance x from the origin,
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axea OPQM= Cydx
Jo

_ C" a^dx

Jo ic2 + a2

= ranan-i^ + cT
L a Jo

65

M
Fig. 21.

If the ordinate 3IQ be made to move away from the origin towards the

right, that is, if the upper limit x increases continuously, then tan-i^

IT
^

increases continuously, and approaches - as a limit. Hence,

p aMx ^7ra2

Jo x^ + d^ 2^ x^ + a

represents the true value of the area to the right of the y-axis. Since the

curve is symmetrical with respect to the y-axis, the area required is double

this, namely, -ko^.

Ex. 4. Find the area included between the curve y^ {x? — a^y- — %x^, the

iK-axis, and the asymptote x = a.

In this case y
2x To every value of x corresponds a real value

(X2 - «2)3

of y ; but, when aj = a, y is infinite. Therefore a special examination is re-

quired. For values of x less than a, however, y is finite. Then, for a:< a,

area OMP Ixdx
*^" (x2-a2)^

r3(a;2_a2)¥+c]*

= 3(a;2-a2)3 + 3a^.
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As X approaches the value a, it is apparent that the area OMP approaches

3 a' as a limit j and hence,

,1

Fm. 22.

Ex. 5. Find the area bounded by the curve in Ex. 4, the x-axis, and the

ordinate at a; = 3 a,

It has already been noticed in Ex. 4, that f{x) becomes infinite when
X = a. As a lies between the limits of integration, and 3 a, the integration

formula for the area should not be used until its applicability is determined

by a special investigation. The area from x = to the infinite ordinate at

x=ia^ has been shown in Ex. 4 to be 3 a^. The area to the right of the

ordinate at x = a will now be discussed. Since /(x) is finite for values of x

greater than a, then for limits, x> a and x = 3 a,

area M'P'QN= f
^^^^

= 6a^-3(x2-a2)i

As X diminishes and approaches a, this area approaches Oa*; and hence,

the area between the infinite ordinate at x = «, and the ordinate at x = 3 a,

isOas. Hence, the total area between the curve, the x-axis, and tlie ordi-

nate at X = 3 a, is 3 (fi -\- «*, that is a*

The same result is obtained when C^_2x dx
is evaluated in the ordi-

(x2 - a^y-
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nary way ; and thus, the integration formula for the area holds good in this

case, aUhough f(x) becomes infinite for a value of x between the limits of

integi-ation.

Ex. 6. Find the area included between the curve y(x— ay^=l, the axes,

and the ordinate x = 2a.

Immediate application of the integration formula gives for the area,

Jo (X - a)2 [_ x — a Jo a

x=2a

Fig. 23.

But, /(x), which is the length of the ordinate ?/, becomes infinite for

x=a\ and, if an investigation be made similar to that carried out in Exs.

4, 5, it will be found that the area is infinite. For, OM being equal to x,

area OMPB

=

r—^^

=

— -•

JO (x — a)'^ a — x a

It is evident, that as x increases from to a, the area increases from

to 00. Consequently, the area between the curve, the axes, and the ordinate

at X = a is infinite. Similarly, it may be shown that the area between the

curve, the x-axis, and the ordinates at x = «, x = 2 a, is infinite. Therefore

the total area required is infinite. Hence, the integration formula for the

area, namely, \
"

—

—— » fails in this particular case in which /(x) be-

comes infinite for a value of x between the limits of integration. This con-

clusion may be compared with that in Ex. 5.

29. Precautions to be taken in evaluating definite integrals. It

has been shown in Art. 6, that any definite integral, say I f(x)dx,

may be graphically represented by the area between the curve

y =:f(x), the axis of x, and the ordinates 2it x = a, x = b. Hence,

INTEGRAL CALC. —

6
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the statement at tlie beginning of Art. 28, and the precautions

described in that article, must be applied when any definite inte-

gral
J
f(x)dx is under consideration.

EXAMPLES IN AREAS.*

1. Find by integration the areas of the triangles bounded by the co-

ordinate axes, and each of the following lines

:

(a) 7a; + 5y-36 = 0; (6) 18a; -y- 12 =0.

2. Find the areas of the triangles bounded by the a;-axis, and

(a) the lines 7 x — Sy — 21 = 0, x = — 6
]

(6) the lines 5x-\-6y-\-16 = 0, x = -l.

3. Find the areas of the triangles bounded by the y-axis, and

(a) the lines 9x + 4y — 6 = 0, 2/ = l;

(&) thelines2x + 2/ + 8 = 0, y=-4.

4. Find the area of the figure bounded by the axis of abscissas, the curve

y = x2 + a + 1, and the ordinates corresponding to the abscissas 2, and 3.

6. So for the curve y = x^ + ^x^ \-2x'^ + S between the abscissas 1, 2.

6. Find the area of the figure cut off from the curve y =(x+l)(x-\-2)
by the ic-axis.

7. Find the area included between the semi-cubical parabola y"^ = x^ and
the line x = i.

8. Find the area included between the semi-cubical parabola y"^ = x^, the

y-axis, and the line y = 4.

9. Find the area included by the parabola y'^ = -4x, and the line x = - 1.

10. Find the axea included by the parabola x^-{-12y = 0, and the line

y = -3.

11. Find the total area included by the curve y = x^, and the line y = 2x.

12. Find the area of the first quadrant of the circle x^ -\- y^ = r^.

18. Find the area intercepted between the coordinate axes and the parab-

ola a;2 ^ yi _ gi^

14. Find the area included between the hyperbola xy = k^, the x-axis, and
the ordinates at x = a, x = 6.

Figures of some of the curves referred to in examples throughout the

book are given in the Appendix.
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30. Volumes of solids of revolution. Let PQ be an arc of a

curve whose equation is y =/(«). Draw the ordinates AP, BQ,

and let OA^a, OB=h. The volume of the solid PQML
generated by the revolution of APQB about the ai-axis is re-

quired. On the revolution of PQ each point in the arc PQ
will describe a circle. Suppose that AB is divided into n equal

parts Aa;, and let 0Q^= x, Q^Q^^ i^x. Construct the rectangles

P1Q2, P2Q1 as indicated in the

figure, and suppose that they

have revolved about OX with

APQB.
It is evident that the volume

of each plate, such as P1P2N2N1,

of the solid of revolution is less

than the volume of the corre-

sponding exterior cylinder gen-

erated by the revolution of the

rectangle Q1R1P2Q2 about the

avaxis, and greater than the vol-

ume of the corresponding interior cylinder generated by the

revolution of the rectangle Q1P1P2Q2 about the a;-axis. Now,

the volume of the cylinder generated by Q1P1R2Q2

= ttPiQi Ax

= iry^ Ax

= ^lf(x)yAx;

and the volume of the cylinder generated by Q1R1P2Q2

= 7rP2Q2 Ax

= 'irlf(x-{-Ax)fAx.

Hence, tt lf(x)fAx < PiPg^a^i < tt [f(x + Aa;)]^ Aa;.

Suppose that PQML is divided into n plates, such as PiP2-ZV^2-^i>

one plate corresponding to each segment Aa^ of AB ; and suppose

Fig. 24.
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also that the interior and exterior cylinders corresponding to

each of these plates are constructed. Then, on taking the sum
of all the interior cylinders, and the sum of all the exterior

cylinders, and the sum of all the plates PJ^NzN^i, the latter

sum being the volume required,

x=b x=b

^^[f(^)f^^ < PQML <^7r [/(a;4- ^x)y^x.
i=o x=a

As Aa? approaches zero, the sum of the exterior cylinders ap-

proaches equality to the sum of the interior cylinders. The

difference between these sums is at the most an infinitesimal of

the first order when Aa; is an infinitesimal, and accordingly has

zero as its limit. Therefore, since the volume required always

lies between these sums,

volume PQML = limit 'Vtt \_f(x)Ji^x ;

x= a

that is, volume FQML = (\ [ /(a?)] 2 dx.

The element of volume is tt [/(a;)]^fZx; this is usually written

iry^dx, since y =f(x). This value of the element may readily be

deduced from the figure on supposing that QyQ^ is an infinitesimal

distance.

If an arc of y =f{x) between the points for which y = c and

y = d revolves about the 2/-axis, it

can be shown in a similar way that

the element of volume is nx^dy^ and

that the total volume generated by

the revolution is

irj^^dy.

X
Before integrating it will be neces

sary to express x^ in terms of y.
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Ex. 1, Find the volume of tlie right cone generated by revolving about

the oj-axis the line joining the origin and

the point (A, a).

Let M be the point (/i, a). The equation

of OM\s
ax = hy.

The element of volume is iry'^ dx. Hence,

dxvolume OMN = ^ i y'^

= .C^^dx.
Jo K^

3
Fig. 26.

This may be interpreted : the volume of the right circular cone OMN is

equal to one third the area of the base by its altitude.

Ex. 2. Find the volume of the cone generated by the same line on revolv-

ing about the ?/-axis.

In this case, the element of volume

is TTX'-^ dy. Hence,

volume OMN =Tr Cx^dy
Jo

Jo a-2

3

Ex. 3. Find the volume of the solid

generated by revolving the arc of the Fio. 27.

parabola y- = 4px between the origin and the point for which x = iCi, about

the a;-axis.

In this case,
/•xi

volume OPPi = tt \ y^dx
Jo

= TT \ "ipxdx
Jo

= 2 irpxi^ ;

or, since yi^ = 4j9a;i,

Hence, tlie volume is one half the

volume of the circumscribing cylinder. Fig. 28.
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Ex. 4. Find the volume generated by revolving the arc in Ex. 3 about the

y-axis.

In this case,

volume OPQ = tt I x'^dy
Jo

Tryi°

O

Fig. 29.

~5.16jo2'

or, since yi^ = 4pxi,

volume OPQ = I iryiXi^.

Hence, the volume required is one fifth the volume of the cylinder of base

PQ and height CO.

Ex. 6. Find the volume of the solid generated by the revolution about the

aj-axis of the arc of the curve y = (x + l)(x + 2) between the points whose

are 1, 2.

Ex. 6. Find the volume of the cone generated by the revolution about the

X-axis of the parts of each of the following lines intercepted between the axes :

(a) 2x-\-y = 10] (c) 4x-5y4-3 = 0;

(6) 7x + 2y + 3 = 0; (d) Sx-8y = 5.

Ex. 7. Find the volume of the cone generated by the revolution about the

y-axis of the parts of each of the following lines intercepted between the axes :

(a)4x + 3y = 6; (c)6x-7y + 35 = 0;

(ft) 3x-4y = 6; (d) 2x + 6y + 9 = 0.

Ex. 8. Find the volume of revolution about the x-axis of the arcs of the

following curves between the assigned limits :

(a) y2 = x», X = 0, X = 2
; (6) (a2 + x2) y* = a*, x = 0, x = a.

Ex. 9. Find the volume of the solid generated by the revolution about the

X-axis of the curve y^ = cx from the origin to the point whose abscissa is Xi.

Ex. 10. Find the volume of the solid generated by the revolution of the

same arc as in Ex. 9 about the y-axis.

Ex. 11. Find the volume of the solid generated by the revolution about

the y-axis of an arc of the curve in Ex. 9 from the origin to y = yi.

Ex. 12. Find the volume of the prolate spheroid generated by the revolu-

tion of the ellipse —f- ^ = 1 about the x-axis.
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31. On the graphical representation of a definite integral. In

Arts. 4, 6, attention has been drawn to the principle that any-

definite integral, whether it denotes volume, length, surface,

force, mass, work, etc., may be graphically represented by an

area.* A simple illustration may put this in a clearer light.

Ex. Find the volume of the right cone generated by revolving about the

cc-axis the line drawn from the origin to the point (4, 1).

Let P be the point (4, 1),

and let POQ be the cone of

revolution. The equation of

OP is 4 y = X.

Hence,

wo\. POQ =C'jry^dx

The volume is thus | tt cubic

units of the same kind as the

linear unit employed. In

order to represent this volume graphically, draw the curve OHB whose

equation is

^ 16 '

— a;2 being the function of x under the sign of integration in (1); and draw
16
the ordinate Ci2 at ic = 4. The area BOG graphically represents the volume

POO. For,

area 2200= \ ydx
Jo

=£
/o 16

dx (2)

Equations (1) and (2) show that the number of cubic units which indi-

cates the volume of POQ is the same as the number of square units which

indicates the area oi BOG. In the same way, if the ordinate NH be drawn

at any point iV, for which x = a, say, it can be shown that -^-^ va^ denotes

both the number of cubic units in the cone MOL and the number of square

* On account of this property the process of integration was called by

Newton and the earlier writers " the method of quadratures."
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units in the area HOX. It is thus apparent that the number of cubic units

in LMPQ is the same as tlie number' of square units in NHBC^ namely

^T(6-i-a»). Hence,

vol. FOQ : vol. MOL : vol. LMPQ
= area HOC: area HOX : area NBB C. (3)

If the curve y =^ mvyi^ be drawn, the numbers which indicate the areas

will be m times the numbers which indicate the volumes of the correspond-

ing sections of the cone. But the ratio of any two right sections of the cone

will be the same as the ratio of the two corresponding areas, and proportion

(3) will still hold. The curve y = ^ mvx^ can tlierefore be used to represent

the volume. It is sometimes well to use a multiplier m for the sake of con-

venience in plotting the curve that will graphically represent the integral.

Note. If the first integral curve (see Art. 15) of OHR, namely,

Job 16 48 '

be drawn, its ordinates represent both the areas of the segments of OHB
and the volumes of the segments of the cone FOQ measured from 0.

32. Derivation of the equations of certain curves. Oftentimes,

when a curve is described by some property belonging to it, the

formal analytic statement of the property involves differential

coefficients. In these cases the derivation of the equation of the

curve consists in finding a relation between the coordinates which

will be free from differentials. Examples of this have been given

in Art. 12. A few additional simple instances are introduced

here. In the larger number of cases the derivation of the equa-

tion of the curve will require a greater knowledge of differential

equations than the student possesses at this stage; and hence

further problems of this kind will be deferred until Chap. XI II.

Ex. 1. Determine the curve whose subtangent is n times the abscissa of

the point of contact. Find the particular curve which passes through the

point (5, 4).

Let (x, y) be any point on the curve. The subtangent is y — . By the

given condition, ^

dxy— = nx.
dy

This may be written,
^^ndy
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Integrating, log c + \ogx= n log y ;

whence, y^ = ex. (1)

All the curves obtained by varying c, satisfy the given condition.

If one of the curves passes through the point (5, 4), for instance,

4" = 5 c (2)

Substitution in (1) of the value of c from (2) gives

5y» = 4»x,

as the equation of the particular curve through (5, 4).

What curves have the given property forw = l? n = 2? n = f? n = ^?

Ex. 2. Find the curves in which the polar subnormal is proportional to

(is k times) the sine of the vectorial angle. What particular curves pass

through the point (0, 2 tt)?

drThe polar subnormal is — . By the given condition,
dd

— = A: sin d.

dd

Integrating, r = c — k cos 0.

For the curve that passes through (0, 2 7r), = c — k; whence c = k.

Hence, the equation of the particular curve required is

r = A;(l — cos^),
the equation of the cardioid.

Ex. 3. Determine the curve in which the subtangent is n times the sub-

normal ; and find the particular curve that passes through the point (2, 3).

Ex. 4. Determine the curve in which the length of the subnormal is pro-

portional to the square of the ordinate.

Ex. 6. Determine the curve in which the subnormal is proportional to (is

k times) the nth power of the abscissa.

Ex. 6. Find the curve in which, for any point, the length of the polar

subtangent is proportional to (is k times) the length of the radius vector.

Ex. 7. Find the curve in which the angle between the radius vector and

the tangent at any point is n times the vectorial angle. What is the curve

when n — 1 ? when n = ^?
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EXAMPLES ON CHAPTER IV

1. Find the area of the figure bounded by the curve x* + ax^ + a^x^

+ 6*y = 0, the x-axis, and the ordinates at x = 0, x = a.

3. Find the area inclosed by the curve xy^ = y^ -\- 2 y^ and the lines

a; = 0, y = 0, y = l.

3. Find the area included between the parabolas y'^ = iax and x'^ = 4 ay.

X X

4. Find the area included betv^een the catenary y = ^(e*' + e *), the

of coordinates, and the line x = c.

5. In the logarithmic curve y = e^ prove that the area between the

curve, the axis of «, and any two ordinates is proportional to the difference

between the ordinates.

6. Find the area included between the curve y =—^—^, and the line

7. Find the area bounded by the curve y = x^ + ax^, the x-axis, and

(a) the ordinates at x = — a, and x = ;

(6) the ordinates at x = 0, x = a.

8. Find the area inclosed by the axis of x, and the curve y = x — x'.

9. Find the entire area of the curve y'^ = a^x^ - x*.

10. Find the area included between the curve y^ (^2 _ ^.2) _ ^23.2 and its

asymptote x = a.

11. Find the entire area contained between the curve y^ ^q2 _ x'i) = a*

and its asymptotes x = a, x = — a.

12. Find the area included by the curve xV (aj2 _ ^2) _ ^^ and its asymp-

tote x = a.

13. Find the area of the loop of the curve a'y^ = x* (6 + x).

14. Find the total area bounded by the curve ahj^ + b^x^ = a^^^.

16. Find the volume of the solid generated by the revolution about the

X-axis of

:

(a) y2 = X* — x2 between the ordinates x = 1, x = 2

;

(b) (a^ — x^)y* = a* between the curve and its asymptotes x = a, x = — a.

16. Find the volume generated by the revolution about either axis of the

bypocycloid x» + y ' = a'.
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17. Find the volume of the solid generated by the revolution about either

axis of the parabola x^ -\-y'^—a^.

18. Find the volume of the solid generated by the revolution about the

y-axis of that portion of the catenary y = -(e«4-e «) between the lines

X = a, X = — a.

19. Find the volume generated by the revolution of the cissoid y'^ =
about the ic-axis from the origin to x = a.

ax
20. Find the volume generated by the revolution of the cissoid in Ex. 19

about its asymptote x = 2 a. [Reference may be made to the table of in-

tegrals in the Appendix.]

21. Find the volume of the frustum of a cone, obtained by rotating about

the X-axis the line joining the points (—4, 1) and (3, 6).

22. The hyperbola xy = c^ revolves about the axis of y. Show that the

volume generated by the infinite branch extended from the vertex (c, c)

towards the ?/-axis is equal to the volume of the cylinder generated by the

revolution of the ordinate at the vertex about the y-axis. Show that the

area which generates the first volume is infinite.

23. Find the volume of the ring generated by the circle x^ -\-y'^ = 25 re-

volving about the line x = 7.

24. Show that in the solid generated by the revolution of the rectangular

hyperbola x^ — ?/2 = a^ about the x-axis, the volume of a segment of height a

measured from the vertex, is equal to that of a sphere of radius a.

25. Show that the volume generated by the revolution of one semi-undu-

lation of the curve y = 6 sin - about the x-axis is one half that of the circum-

scribing cylinder.

26. The figure bounded by a quadrant of a circle of radius a, and the

tangents at its extremities, revolves about one of these tangents ; find the

volume of the solid thus generated.

I



CHAPTER V

RATIONAL FRACTIONS

33. A rational fraction is one in which the numerator and

denominator are rational integral functions of the variables.

The fraction is proper when the degree of the numerator is

lower than that of the denominator. If the degree of the

numerator is greater than that of the denominator, division can

be carried on until the remainder is of less degree than the

denominator. Suppose that N^ D are rational integral functions

of Xy and that the degree of N is greater than that of D. By
division,

in which R is of lower degree than D ; and, therefore,

7?
In order to integrate the proper fraction — it is often neces-

sary to resolve it into partial fractions. It can be shown that

any proper rational fraction can be decomposed into partial

fractions of the types

A B Cx-\-G Ex +F
X — a (x — ay Qi? -\-px-\-q {:(? -\-px-\- qY

in which A^ B^ (7, O^ E, F are constants, r, s positive integers,

and 7? -^ px-\- q is an expression whose factors are imaginary.

For the proof of this and the related theory, reference may be

78
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made to works on algebra.* Here nothing more is done than

to work some examples in the principal cases that occur in

practice, t

34. Case I. When the denominator can be resolved into factors

of the first degree, all of which are real and different.

Ex. 1. Find rx^- 7x^ + 60= -6^^
J x^ — x^ — Qx

On division, =!— = x + 1 + -t-'^
—-—^

;

y?-x^-Qx x^ — x^ — Qx

, 1 ,
6(2x- 1)"+^+ .(xl3)(.;2)

-

Put
6(2x-l) ^A _B_ _G_

(1)
5C (X - 3) (X + 2) X X - 3 X + 2 ^ ^

in which A, B, C are constants to be determined.

Clearing of fractions,

6(2x- l)=^(x-3)(x + 2) + J5x(x + 2) + Ox(x-3).

Since this is an identical equation, the coefficients of the same powers of

X in each member are equal. On equating the coefficients of like powers of

X, it is found that

A + B+ G = 0,

-A + 2B-SC=12,

-QA = -6.

On solving these equations for A, B, C, there results

^ = 1, I? = 2, 0= -3.

Therefore, after substituting these values in (1),

rx^-7x2 + 6x-6^^^r/ 1 ^ ^x
J x^-x^-Qx J\ X x-'S x + 2)

=
?^ x2 + ic + logx + 2 log (x - 3) - 3 log (x + 2)

See Chrystal's Algebra, Parti., Chap. VIII., Arts. 6-8.

t A few remarks on the decomposition of rational fractions are given in

Note A, Appendix.
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A shorter method for calculating A, B, C, could have been employed in

the example just solved.

Since
6(2x-l) _A

^

«(«-3)(a; + 2) a;x-3'x + 2

is an identity, it is true for any value of x.

Clearing of fractions,

6 (2x - 1) = ^ (« - 3)(x + 2) + 5a; (aj + 2) + Cx (x - 3).

On letting the factor a; = 0, ^ = 1

;

on letting the factor 35-3 = 0, ora; = 3, B = 2\

and on letting the factor a; + 2 = 0, or a; = - 2, C = - 3.

2V3dx
Ex. 2.

J:

5 da;

2 - X - 6*

-- - IS. -35

Ex. 5. f^.

Ex. 6. rM±i}^.
J a;(x2 - 1)

Ex 7 r (q — 6)x(Z

J x'^-{a + h)x

Ex. 8. ri3x+i)^
J2x2 + 3x-2

Ex. 9. riLnl^!)^.
J 3x-x8

Ex.10. f(^^-^)^.
J X2 + X-6

Ex.11. r(i±^^.
J x-x»

Ex.

Ex.

Ex.

Ex.

Ex.

Ex.

Ex.

Ex.

'ii ;2-4x+l

3 r2x3-6x^-4x-ll^
J a;2-3x-4

x8 + 7x2 + 6x-6
x2 + 2x

x2 + pq

dx.

x(x-i?)(x + g)
dx.

^^ + 3
dx.^' J(x-l)(x-2)

J x2 + 2 X - 4

g r(8x8-31x2+41x-6)dx
* Jl2(x*-6x3+llx2-6x)*

g r (2x2-6)(Zx
J X*- 5x2 + 6*

Ex. 20. f ^^
J x7- 7x5 + 14 8x

(X - a) (x -6)(x-c)
^^Ex.21, f

^-^^,^-
J(x-a)(x-/3)(«-7)

[Suggestion.— Assume the fraction equal to 1 + + etc.]
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35. Case II. When the denominator can be resolved into linear

factors, all of which are real and some of which are repeated.

Ex. 1.
r6x3-8x^-4x+l^^^
J X* - 2 X3 + X2

Let
6x^-8x^-4x+l _A B C D

X\X - 1)2 X X'^ X-\ {X- 1)2'

in which A^ B^ (7, D, are constants to be determined.

Clearing of fractions,

6x3 - 8x2 - 4a; + 1 = ^x(x - 1)2 + 5(x - 1)2 + Cx2(a; - 1)+ J9x2.

Equating coefficients of like powers,

A + G = %

A-2B = -4.,

B=l.

On solving these equations it is found that A = -2, B — 1, C=S, D = - 6.

Therefore,

r6x^-8x^-ix+l^^^n_2 I ^ 5_\^^
J X2(X-1)2 J{ X X^ X-l (X-Iyj

= -21ogx-i+81og(x-l) +—

^

X X— 1

^ X2 ^X(X-I)

Ex. 2. f ^^^ Ex. 7. P^(^-4)^.
J (X + 1)2 J (X - 3)»

Ex. 3. f(^-^)^^. Ex. 8. fj^jul)^.
J (X-3)2 Jx8 + 2X2 + X

Ex.. 4.
pCx + 2)tto

. Ex. 9. f-^^l^.
J (2x+l)2 J(x + a;8

Ex 5. ff-« ^^-U. Ex.10. fi^!±^c?x.
J Va; + a (X + 6)2/ J x3 - x2

Ex 6. f 2^ Ex.11, r (2x-5)(Zx
,

^ (3V5 - 2 - x)8 J (X + 3) Cx + 1)2
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Ex.12. ( "^^ Ex.14. ClCl±A^^Z^l^.

Ex.13. (—^ Ex.15. fi^i+II^.
J(x2-2)« J x{x-iy

36. Case III. When the denominator contains quadrcUic factors^

th^ linear factors of which are imaginary. This case can be sub-

divided into the two following

:

(a) When all such quadratic factors are different.

(6) When one or more of them is repeated.

The latter case seldom occurs in practice. For each power,

from the first to the nth, of these quadratic factors, a numerator

of the form Mx-\-Nj in which 3f, ^ are constants, should be

assumed.

Ex. 1. Find
J x3 -f 4

:

Assume 4 ^A Bx+C,
x{x^ +4) X aj2 ^. 4

Clearing of fractions,

4 = ^(x-2 + 4) + x{Bx -I- G).

Equating coefficients of like terms,

A-\-B = 0,

= 0,

4^ = 4.

The solution of these equations gives

^=1, B = -\, C = 0.

Hence, r_i^=rfl__^U

= logaj-ilog(a;2 + 4)

= log
X

\/a;2 + 4

Ex. 2. Find f ?^Jli dx.
J {x-2){x^-2x-\-^y^

Assume ^±J = _A_ + _^^±_CL_ + ^x^E
(a;-2)(x2-2x-|-3)-^ x-2 x''5-2x + 3 (x2-2x + 3)i
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Clearing of fractions,

a;3+l = ^(x2 + 2x + 3)2+(J5x+ (7)(x - 2)(x2-2a;+3) + (Z)x+ ^)(x-2).

Equating coefl&cients of like powers of x,

^ + 5 = 0,

-4^+0-4^=1,
10^ + 75-4O+Z> = 0,

-12^-6B + 7e+^-2Z> = 0,

9^-0O-2£'=l.

The solution of these equations is, J. = 1, J5= - 1, 0=1, Z> = 1, JE' = 1.

Hence,

r i^^ + ^)dx =((J}l ^-1
I

^ + 1 w
J (x-2)(x2-2x + 3)2 J\x-'2 x2-2x + 3 (x2-2x + 3)V

=iog ^-^
- ^ + r 2^^

Vx2-2x + 3 2(x2-2x4-3) J(x2-2x + 3)2

The last integral can be found by means of reduction formulae to be given

in the next chapter.

Ex.3. r(^+i)!i?2: Ex.6. fi^i±-2)^.
J X3 + X J (X2 -I- 1)2

Ex.4, f
2X2 + X + 3 ^^ j,^^^_ r (2x2 + x + 2)(?x

J(x+l)(x2+l) J (3x + 2)(2x2 + 4x + 4)

j,^ 5 r3x^ + 6x^ + x2 + 2x + 2^^^ ^^3 ^ (3x2 - 17x + 33)dx
J 3x3 + 6 J xa-6x2 + llx

Ex 9 r a;5 - 3 X* - 22 x« + 1 7 x2 - 23 X + 20
^^

J (a: + 4)(x2+l)

Ex.10. r^^+7x2+13^^
J (x2 + 3)3

• Ex 11
px* + 3x« + 30x2 + 17x + 75

^^
J 3 (x2 + 5)3

Ex.12, f^iinldx. Ex.13. (S^^JZ3^.
Jx3 + 3x Jx4 + 6x2 4-8

Ex.14, f ^

'^^-7
dx = log-^^-ti-+itan

J X3 + X2 + 4 X + 4 (^X + 1)2 ^ 2

INTEGRAL CALC.



CHAPTER VI

IRRATIONAL FUNCTIONS

37. The integrals of irrational functions can be found in only

a few cases. In some instances, by means of substitutions, these

functions can be changed into equivalent functions that either

are in the list of fundamental integrals, or are rational, and

therefore integrable. In other instances the integral can be

found by means of a formula of reduction. A few irrational

forms have been discussed in preceding articles.

38. The reciprocal substitution. Sometimes the integration of

an irrational function is facilitated by the substitution

a; = - dx = — -dt,

Ex. 1. Find f^^5iE?^.

On putting x = \ i
^^^~^'^

dx = - ^ (aH^ - l)kdt

Ex. 2.

Ex. 3.

dx
f "^ Bx.6. f-

f
"^

• Ex.6. (—M=-

Ex.4. |—^- . Ex.7. r^^iZ«! dx.

84
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Ex. 8. f
^^

' Ex. 11. r ^
•^ xy/a^ 4- y?- *^ xy/'lax — x^

Ex, 9. r ^ Ex. 12. f ^^^.

Ex. 10. f—^=- Ex. 13. r ^^2«x-x-^ ^^^

39. Trigonometric substitutions. Although the integration of

trigonometric functions is not discussed until the next chapter,

it may be stated here that trigonometric substitutions sometimes

aid the integration of irrational functions. The following sub-

stitutions may be tried

:

(a) x = a sin for functions that involve Va^ — a^,

(6) x = a tan 6 for functions that involve Va^ + a^,

(c) a; = a sec 6 for functions that involve Va.*^ — al

Ex. Find (Va^-x^dx. (See Ex. 1, Art. 23.)

On assuming a; = a sin ^, dx = a cos 6 d9,

and ( Va2 - aj2 die = a^Jcosa ^ d^ = ^ f (1 + cos 2 ^)d^

= — (^ + i sin2 ^) =— (^ + sin ^ costf)

= if a2 sin-i - + xVa^-xA •

2\ a I

40. Expressions containing fractional powers oi a-\-hx only. If

n is the least common multiple of the denominators of the powers

of a + hx, these expressions can be reduced to the form

F(x, Va -f hx).

If F(u, v) is a rational function of u, v, then j F{x, -y/a + hx) dx

can be changed into a rational form by means of the substitution

a-j-bx = z\
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For then x=^^—=^, dx^''!^dz,
b

and hence, f^i^j Va + bx) dx = - Cpf^-^^, A^-^ dz.

Expressions that contain fractional powers of x only, belong to

this class. This is apparent on putting a = in a + bx. If n is

the least common multiple of the denominators of the exponents

of Xy the function can be changed into a rational form by the

substitution

x= z\

Ex. 1. Find f- ^^

xVa"^ + bx

On making the substitution a^ + 6x = z^^ x = ^ ~ ^
, dx =— dz.

b b

a z -\- a

Ex

« Va2 + 6x + a

. 2, Find f-^

—

dx.

The L. C. M. of the denominators of the exponents is 6. If a; = s*, then

dx = Qz^dz^ and

= 6x*(^«-ia;^4- \x^ - l)+6tan-iA

Ex. 3. Find fJ^dx. Ex. 4. Find
fS + 5(x^ + x^^

•'^-^
-^ 15(x + x^)
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Fx 'i f a^y + VS ^^ Ex. 9. C ^

^ r(a;^-2x^)dx Ex.10, f VjM- ^ + 1
^^^Ex

x^ + a^

E^^ ^^
V^3_7^+12V^

^^
Ex. 11. |(3-x)>^(c-x)2dx.

x(\/x — v^x)

/» , Ex. 12. r
Ex. 8. I xva+ bxdx. J

xdz

(2x + 3)'

41. Functions of the form f{x^, (a + bx^) "]-x dx, in which m,
w are integers. If f(ii, v) is a rational function of t^, v, these

functions can be rationalized by means of the substitution

a + hx^ = 2".

For then, 2hxdx=nz''~^dZj q^= ^ ~^\ and the function becomes
h

n
2b^

Ex. 1. Find f ^^
(See Ex. 10, Art. 38.)

•'x\/x2-a2

This belongs to the form above, since
*

xVx"^ — a' x^Vx^ — a^

On putting x^ - a^ = z"^, xdx = z dz, x^ = z'^ -\- a^^ and

J
dx _ r dz

xVx2 - a2 Jz'^-ha^

-tan-i-
a a

a a a X

;x. 2. (*—^__-. (See Ex. 8, Art. 38.) Ex.3. T-^!^^.
'^xVx-J + a'' -^ Vl -x2
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Ex.4, f ^^ Ex.5, f ^^ .

•^ (1 + a;2) VI -x^ -^ (2 + x^) Vx^ + 6

Ex. 6. If /(«, v) is a rational function of m, r, show that

\ ^cx + dl

can be rationalized by means of the substitution ^^ "^ = ««.

cx + d

42. Functions of the form F{x, v^sc^ + aas + 6)c?£c, l^(w, v)

being a rational function of Ut v. If the radical be Vmic^+paj+g,

it can be written Vm \/ic^ + — a; + —

•

The given function can be rationalized by assuming that

Va^ -\- ax-{-b = z — x,

and then changing the variable from xtoz.

For, squaring and solving for x,

^^ z'-b
a-\-2z

whence, z-x=^±^^,

and ax =^+^^dz.

Therefore, on substitution,

Cf{x, ^x^ + ax + h)dx = 2 Cf(^, z^±az±b\z2±^az.

Ex. ^ ^^
^•1

X Va;2 + X + 1

Assume vx^ + x + l = z — x.

^2 1

Squaring and solving for x, x = -= .

l + 2«
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Hence, ^^^ 2(.^ + . + l)

(1+2^)2 '

and Vx2 + X 4- 1 = g - a; =
^'

"^
^J"

^-

1 + 20

On substitution, f
^^ = 2 T-^

•^ X Vx2 + a; + 1 ^ ^2 _ 1

= log
x-l+Va;2 + x+l

° X + 1 + Vx2 + jc + 1

43. Functions of the form /(ic, ^-x^ + aix^ + b) doc, f(u, v)

being a rational function of m, v. If the radical be V—m^+p^+g,

it may be written ^m\ -a^ + —x-\--- If the factors of

— a?-\-ax + b are imaginary, V— a;^ + aa; + 6 is imaginary. For,

if one of the factors is x—a+ip, the other must be —{x—a—i/3),

and hence,

— a^ + aa; + 5 = — (a; — a + ip)(x — a — ip)

which is negative, and has an imaginary square root whatever x

may be. Only cases in which the factors of —x^-\-ax-\-h are

real will be considered here.

Let —x^-{-ax-\-h=(x — a)(J3 — x).

Assume v — ar^ + aa? + &

or V(a; — a)(fi — x) = (x — a) z.

Then, squaring, p — x= (x—a)z%

1 + s?'
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1 +25*

Hence, on making the substitutions,

which is rational, and accordingly integrable.

Equally well, the substitution, ^{x — a)(/J — x) = (p — x)Zf

might have been made.

It follows from this article and the preceding article that, if X
is the indicated square root of an expression of the second degree

in X, every rational function / (a;, X) is integrable.

Ex. 1. Find f ^ —
''xV-x-^ + Sx-e

Assume

V- x2 + 6x - 6 = V(x - 2)(3 - x)= (x - 2)z.

From this, on squaring, 3 — x = (x — 2)«2.

Hence, z = „ ,

z^ -\- \

(«2 + 1)2'

and V- x2 + 6 X - 6 = (x - 2)2; =—-?

—

^ ^ z^+1
Therefore, on substitution,

J
dx _ _ 2 C dz

xV-x2 4-5x-6 J22!2 + 3

= -V|tan-iV|«

= _^tan-iJlZil
>3 >'3(x-2)

Ex. 2. f
^

Ex. 3. f -^
•'(l+x2)>/l-x2 •^ V2l^ + 3x-f 4
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dx
Ex.4. (^^^^^±^dx. Ex.6, f

J x^ -^ x^Vn^

Ex. 6. f / + ^
dx. Ex. 7. f ^^^^^3E?c^x.

44. Particular functions involving Vao?'^ + ftx + c.

(a) If a is positive,

f
^^ =^ log (2 ax + & + 2 Va Vtta;^ + 6» + c).

^Vaa- + &x + c Va
(Ex. 43, Chap. III.)

(6) If ot is negative, say — ai,

' r ^^ =J^ sin-^
2 aix-b_ ^^^ ^^^ ^^^^ j^j^

•^ V— ctio;- 4- 6a; + c V^i V6^ + 4aiC

(c)/: (^g; + B)

\/ax^ + 6x + c

da;.

Since — (aay^ -{-bx + c) =2ax + b,
dx

and Ax-\-B=—(2ax + b)-\-B-4^,
2a 2a

•/ Vaar* + &x -f- c ^ ^^^^ Vaa;^ + 6a; + c

V 2ajJ ^cijf-\-bx + c

— :f± Vaar^ + 6a; + c + an integral of the
a

form (a) or (6) above.

Ex. 1. Find
J

(X + 3) dx

d

Vx2 + 2 X + 3

Since i^(x2 + 2x + 3) =2x + 2, and x + 3 = i(2a; + 2) + 2,
dx

C (x + 3)(te _ir (2x + 2)(?x r dx

J Vx2 + 2 X + 3
~ 2J Vx2 + 2x + 3 ^ V(x + l)^ + 2

= Vx^ + 2x + 3 + 2 log (x + 1 + vx2 + 2 X + 3).
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Ex.2, f
^^^ Ex.6, f (5 + 3a;)cte

Ex.3, f
^
^ Ex 7 (-K^^^dx,

Ex.4, f ^
Ex.8. ri5x+ll^.

Ex.5, f
^^^

Ex.9, r 7^ + 3
dx.

(rf) r /fo r

—

^^+^ ^.
^ (ic — a) Vaar* + 6x4-0 •^ (x — a)^ax^ + hx-{-c

My N being constants.

On putting a; — a = -, da; ==—^ cf^, and the first integral takes

the form

-/:
dz

yjAz^ + Bz-\-G

in which A, B, (7, are constants. The first integral is thus

reducible to (a) or (6).

Since Mx + N= M(x - a) + N-\- Ma,

f
(Mx + N) ^^^ rM{x-a) +N+m ^^

*^ (x — a)^(ia^-i-bx-\-c •^ (x — a)^a3? -\- hx + c

= M f
'^^- +{N+ Ma) C '^

^ -y/ax^ + hx-{-c ^ {x — a)^aay^ -\-bx-\- c

The two integrals in the second member have been considered

above.

Ex. 10. Find ^ ^^f—
-^ (x- l)Va;2_2x + 3

On putting x — 1 = -, dx=—-dz^ and

•^(x-l)Vxa_2x + 3 •'VH-2^2 y/2

^J_j \^^_-2x+_3+v^
V2 ^-l
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Ex. 11. Find f i^^ + ^)dx

•^ (X + 2) V2x2 + 8x + 10

Since ^^-+1= 3 —, and 2 a:2 + 8 x + 10 = 2{(x + 2)2 + 1},
x + 2 x + 2

i^ -r
>' -r J,

(3a;+2)(;x _ 3 C___dx_^ „ /^ f^ dx

+2)V2x2+8x+10 V2'' V(x+2)2+l '^ (x+ 2)V(x+2)'-^+l

The integrals in the second member belong to forms already considered.

Integration gives the result,

Alog(a; + 2+Vx2 + 4x+6) + 2V21og ^^' + ^^ + ^ + ^
.

V2 x+ 2

Ejf. 12
C C.2 + x+l)dx_ , (suggestion: ?!±^=x+4+J^.^
•^(x-3)V6x2_26x+34 \ aj-3 x-3 y

Ex

.U.J

(2X

XVx2 + X + 1

(2x + 6)<;x

(x-l)Vl + 2x-x2

45. Integration of x:^{a + hx^)Pdxi (a) by the method of

undetermined coefficients ; (b) by means of reduction formulae.

Some integrable functions are of the type x"'(a + bx'^y, in which

a, b, m, n, p, are constants. The exponent n can always be

positive. If the integration of an expression having this form

is possible, it can always be effected by the method of "inte-

gration by parts." A shorter method, however, may sometimes

be employed. The given integral is expressed in terms of a

function of x not affected by a sign of integration, and of

another integral which is easier to integrate than the original

function.

.
(a) KuLE. Put j x*^(a + bx'ydx equal to a constant times

one of the integrals

Cx'^-\a-\-b:xf'ydx, C^xf^'^^a-^bxydXy

I of{a + bx'^y-^dx, j x'^(a + bx^'y^^ dx,
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plus a constant times x''-^'^(a + 60;'*)'*+^, in which X, ^ are the lowest

indices of x and of (a + 6a;") in the two expressions under the inte-

gration signs. Then determine the values of the constant coeffi-

cients thus introduced.

For example, on taking the first of the four integrals referred

to in the rule,

Cx'*{a-\-hoifydx=Ax'^-''^\a+hxy-^'^ f5 Caf^ ^a^hoif'ydx. (1)

Here A, /ut, the lowest indices of x, (a -f bx^), under the sign

I
, are m — n, />; and from this the term Ax'^~"+\a -\- bx^'Y'^^ is

derived. In order to determine the coefficients A, B, differentiate

both members of equation (1). The result, after simplifying, is

a;" = Ab {m -{- np -^ l)a;** -|- Aa{m — n -\- 1) -\- B

.

From this, on equating the coefficients of like powers of .t,

^ =—-J-_—

,

B= a{m-n + \)

6 (m -}- np + 1) 6 (m + Tip -f- 1)

The substitution of these values in (1) gives

Similarly, by connecting j a;"*(a + bx'*y dx with the other inte-

grals mentioned in the rule, the following results are obtained

:

J ^
^ a{m + 1)

+ ^~^-—i (x^ (a + bx*')P » dx. [C]
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J ^ ^ an(i>+ 1)

In each of the four integrals with which
j ic'"(a + hx'^y' dx may

be connected by the rule, m is either increased or diminished by

?i, or else ^^ is either increased or diminished by unity. The values

of m and p will indicate the one of the four which is simpler than

I
X"* {a 4- hx'y dxj and may preferably be connected with it. Suc-

cessive applications of the rule are necessary in some cases.

(b) The results A, B, C, D, can be used as formulae of reduc-

tion. It is necessary only to make carefully the proper substitu-

tions for m, n, p, in them. It is not necessary to memorize these

formulae, as they can be kept for reference.

It is well to be familiar with the process of deriving A, B;

C, D, so that they can be readily obtained when required *

if necessary. Formulae A, C fail when m -\- np -\-l = 0, B fails

when m + 1 = 0, and D fails when p + 1 = 0. In these cases

other methods can be used.

Ex. 1. Find r^^
Here,

that

r x^ dxOn connecting this integral with \ —^3^3321= t>y the rule in (a), it follows
J Va2 - x2

* Another method of deriving these formulse, that of integration by parts,

is given in Note B, Appendix. Other formulae of reduction can be obtained

by connecting

(x"'(a-{- hx^)Pdx with ('^"'-"-^(a + hx'^y^^dx and fx'"+'»-'(a + 6x'»)p-ida;

in the manner described in the rule in (a). The student may derive the

formulae in this case as an exercise. (See Edwards' Integral Calculus,

Art. 82.)
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(1) f^^=^8v^nr72 + B, (-^M='

Jdx—=izi:r thus,

(2) r^!^^= ^,xV^^:^2 + c, f--^=.

Hence, on substitution in (1),

(3) f_^!^=^8V^TZ^ + BxV^^TT^ ^ e f
^

•^ Va2 - x'^
-^ Va2 - x2

On differentiating and simplifying,

x* = 3^x2(a2 - x2)- ^* 4- 5(a2- x2)- ^x2 + 0.

On equating coefficients of like powers and solving for u4, B^ C, it is found

that
A = -\. B = -\a\ 0' = fa*.

.

Substitution of these values in (2) gives, since f = sin-i -»

J Va2 - x2 o

f-^^ = 1 1 3 a* sin-i^ - x(2 x2 + 3 a2) v^23^2 1

.

The coefficients A^ JBi, might have been determined in (1), and ^i, Ci,

might have been determined in (2).

Tlie integral could also have been found by the application of formula [A]

twice in succession.

Ex. 2. Find f /'^
-

J (x2 + a^y

Here m = 0, n = 2, p = — A:, a = a^, 6 = 1,

Connecting the integral with f (x2 + a2)-*+i(te,

(1 ) f (iK'^ + a^)"dx= Ax (x2 + a2) -*+i + 5 f (x2 + a^) -*+i (fx.

On differentiating and dividing the resulting equation through by

(x2 - a2)-*,

l = ^(x2 + a2) + 2^2(1 _jc)^B(x'^ + a2).

On equating coefficients of like powers, and solving for A, B, it is found

that

^^ 1 T>_ 2A;-3
2a2(A;-l) 2a2(A;-l)
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Substitution of these values in (1) gives

r <^a; _ 1
(

X (2k-S) ( ^^
\

J (x2 + a2)* 2 a^{k- 1)1 {x^ + a2)*-i
"^ ^ ^ J {x^ + a2)*-i'

J

This result might have been obtained by the application of formula [DJ.

Ex. 3. (Va^-x^dx. (See Ex. 1, Art. 23, Ex. Art. 39.)

Ex.4. ( ^^
. [V2 ax-x^ = x^(2 a - a;)^.]

•^ V2 ax - x2

Ex.5. C-^^. Ex.6, f—^. Ex.7, f—-^=.
•^ Va2 - x^ ^

(^(jfi
_ a;2)f '^ x^y/a'^ — x^

Ex.8. \xy/'2.ax — x'^dx. [Suggestion. Put fx^(2 a — ic)^dx

= ^x*(2 a-x)^-{- Bx^2 a - x)^ -\- Cx^(2 a - x)^ -\- d(x~^2 a - xyhx.']

^ ^ r dx ^_ ^n, C x^dx
:.9. f ^

. Ex.10. (*

Ex. 11. Show that

J
xP'dx _ x^-Wa^ -x^ . (m- l)a^ C a;"*- 2(7aj

Va2 - x2 «» «i ^ Va2 - x2

Ex. 12. Show that

J m + 2 m-\-2J y/q2 _ a.2

Ex. 13. Show that

J
(?x _ _ \/a2 - x2 w-2 r dx

xWa^-x^ (w - l)a2x«-i (n - l)a2j ^„_2Va2 - x2

Ex. 14. Show that

C x^dx _ _ x»»-V2ax-x2 (2w-l)q f x*»-^ <?x

V2 ax - x2 «» w» -^ V2 ax - x2
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MISCELLANEOUS EXAMPLES.

- Vidx 16. f '^^

2 C clx 16. f ix-^)<i^

tZx

3.
r Mdx •

17. r ^^

(o . 1 into partial frac-
Separate — .

^
x'^ - X tions.

(a; — a) Vx — b
xdx

18 r ^«^

x'^da; J (x2 - 2) Vx'^ - 3

3x3 + 1

jg^
r (x-^ + 3x + 5)fZx

dx
_^

•^ (x + l)Vx2+ 1

6 r X- dx
" J V2x6 + 3x3 4-l ^, ., .,

. ,, ,

jg r (x-^ + 3x + 5)fZx

V-3x2-6x-

dx
' ^ {x^-\-2x- 3) Vl - X^

5x2
7. r d^

J V-27 + 10x+ t,^-
^

21.
J vV+ a-''x2(\/6M^a2x^+ax)2cZx.

8. r^^z^^^^dx.
•^ (wix — n) y/mx + w 22.

(* ^
*

"^ (a^ - x-^)-^\/a2 - x2

J 34x-17x2 23. r^_^_.
-^ Va'^ - x2

10.
rV2^E3(V2^±^p),,.

^^
. ,,^

•^ (2x-3)V6-5x-6x2 24.
J-Vrt2 - X2

^^ r( -2x + 4)dx
. r_^Mx

^Vx2 + 2x + 4 26. J^^==-

12. r(^+J)v^EIdx. 26. f ^^—
x\/a2-x2

18. f(x-l)^(x + l)"^dx. 27. j' ^^q'-ig'^ tto.

14.
•^ (x + l)vx^ + 1 •^
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31.

32.

33. f-^^.

34. j'(a;2±a2)'(7x.

35.
J

X fZ.r,

Vx^ + a^

36. [ ^^^

37. (- dx

X

ax — X-

(Zx

[X - 1)2 (a: + 1)2

•^x2Vx2±a2 **•
J YT^

^ +'' Jxa+6x2+lla: + 6

47. 1,-7
(
«

-

+b^- x'^)V( a2- x2)7 x2- 62

)

48. f "''\/2ax-x2 vers-i - dx.
*^o a

49. f -a;* + x34-3x + 9

J x« + 9x4 + 27x2 + 27

r^^±4^x.
*^ \/x2 + *>

V2 ax - x2 / a:2+5

50. .

\/x2 + 2

vvx2+2 v^2T2 y

\/2 ax - x2
Ri r x-^ + 2 X + 1

J:

51.
f

^-^ + 2^+1 ^^

62. i :^ ^ dx
39- fv2ax-x-'r?x. *'Vx2"+2x + 3

r X2 + X + 1

^ Vx2 + 2x +

40. f ^^^
.

53. f-
J (a;2 + a2)8

*^ V-3+12x-9x2

41. r ^^^ 64. \ VZx2 + wiic + » (Zx, Z negative.
J (x* + a*)2 -^

42 r a^^^a; 55. f
^^

J (a;3 _ a3)2*
-^ (x2 + a2) Vx2 - a^

x2 - X - 3 ,
dx.

43. r—^——. 56. f C^dtl)^r ^ 56. f
^ (x2 - 2 X + 3)2 J

(2 x2-2 x+i) V3 x2-2 x+

1

INTEGRAL CALC. —
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CHAPTER VII

INTEGRATION OF TRIGONOMETRIC AND EXPONEN-
TIAL FUNCTIONS

Integration by parts and the use of substitutions will be found

very helpful in obtaining the integrals of trigonometric and

exponential functions.

46. j sin^aj dx, I co%^xdx, n being an integer.

(a) If n be a positive odd integer, say 2m + 1,

j sin**a;c?a;= imi?'^'^^xdx=
|

sin^'"a;sina;c?a;

= —
)
(1 — cos^a;)'"d (cos x).

The binomial in the latter form can be expanded, and the inte-

gral found term by term.

Ex. 1. fsin8xdx = - )(1 — cos^ a;)d(cos x) = - cos a; + | cos^ x-\-c.

Similarly,

( cos^"*"''^xdx= I (1— sin^ a?)*"d (sin a?)= sin a; — ^ sin^a; -\ .

Ex. 2. \coB^xdx= f (l-sin2aj)2d(sinx)= \ (\-2sin'^x-\-^h\*x)d{s\nx)

= sinx — f sin3x + \mn^x + c.

(b) If w be any positive integer, integrate sin" a; da; by parts,

putting
u = sin" -^

a;, dv = sin a; dx.

100
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Then, du= (n — 1) sin""^ x cos x dXj -y = — cos a;

;

and j sin"xdx=^ — sin"~^ x cos a;+ (w — 1) j sin"-^ x cos^ x dx

= — sin~~^a; cos x-\-(n — l) I sin**~2a; (1 — sin'' x)dx

— _ sin"~^a;cos x+ (n — 1) I siii'''^xdx

— {n—1)
I
sin^xdx.

By transposing the last term to the first member, combining,

and dividing through the equation by n, the result is

/. „ , sin"~^ X cos X
, n — 1 r • n-2 ^ tatsm" xdx = 1 I sm'^^ic dx. [A]

n n J

The result A can be used as a reduction formula. Successive

applications of it leads to j da; or
j
sin a; cia; according as n is

even or odd.

Ex. 3. jsins X dx= - SHl!^£2£^ + ^^smxdx

1 2=— sin2 ic cos a;— cos a; + c.

3 3

This result may be compared with that of Ex. 1.

On integrating cos" x dx by parts, putting u — cos"~^ a?, dv =
cos X dx, the following reduction formula is obtained,

/' „ , sina;cos"~^*
^
n — 1 r „ „ , r-pi

cos" xdx = I cos" ~^X dx. L-*^J
n n J

The deduction of B is left as'an exercise.

(c) Suppose that n is a negative integer.

The value of j sin"~^ a; da; in A is

J n — 1 n — lJ
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On changing n into n -\-2 this becomes

/. _ , sin**"*"' X cos X
,
n -{-2 r . „ , , •, rr^-^sm"xdx= — 1—-1-—

I sin"+2 r,.^ mi
n-\-l n-\-lJ * -•

This can be used as a formula of reduction when n is a nega-

tive integer.

Ex. 4. f-^ = f (sin x)-3 dx = - \ cos ic(sin x)-2 + f (sin x)-i dx
J sm»a; ^ J

^__cos|_
fcscicdx

2sin2x J

=— cot ic CSC X + log tan - + c.
2 2

Similarly, on solving for I cos*'~^x dx in B, and then changing

n into 71-1-2, there results,

rcos«a;daj =-?H^^^ +^ fcos'-^^o^dx. [D]
J n + l w + lJ ^-^

This is a formula of reduction for j cos"icda; when n is negative.

It is advisable to remember the method of deriving A, B, C, D,

so that they may be readily obtained when necessary.

Ex. 6. (a)
I

cos"^ X dx, (Jb) \ sin^ x dx, (c) | sin' x dx.

Ex. 6. (a) Jsin*a;dx, (Jb) jsin^xdx, (c) IsinSxcie.

Ex. 7. (a) tcos^xdx, (6) jcos^xdaj, (c) j cos^xde.

Ex. 8. (a) (J^ (6) f
^, (c) f^, (rf)

f-

<**

Jsin^x Jcos^x J co^x Jicos^x

dx

sin^x

Ex. 9. Show that f^in»mdx = ^-^-^;"(^^-^> .^
Jo 2.4.6...2W 2

Ex. 10. Show that! 8m^^+^xdx =\ sir

Jo

2.4.6..«2m
3.6.7...2m + l'



48.] TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS 103

47. Algebraic transformations. The trigonometric integral

I
sm**xdx can be put into an algebraic form. For, if

sin a; = 2;, •

then cos xdx = dz,

, , dz dz
and dx = =

;

cos X Vl — 2^

and hence, | sin"xdx= \
— •

The second member has a form which has been discussed in

Chapter VI.

If the substitution cos x^z

sin" xdx = — { {1 — z^)'^rdz.

This form can be integrated by methods already explained.

These substitutions may also be employed in the case of
|
cos" x dx.

Ex. 1. i sin^xdx. (Compare with Ex. 3, Art. 46.)

On putting

= — i sin'2 ic cos a; — I cos a; + c.

Ex. 2. Solve Exs. 2, 4, 6 (a), 7 (a), 8 (6) of Art. 46 by algebraic sub-

stitution.

48. fsec»» a? <fa5, fcosec" a? cfic.

(a) Since sec x = , and cosec x = —— , I sec" x dx and

^ cos X sin X J
I
cosec" icdic can be reduced to the forms considered in Arts.

46, 47.
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Ex.1, (a) (sec^xdx, (b) (cosec^xdx, (c) f-^, (d) (
J J J sec^ X J (

dx

[See Exs. 8 (c), 8 (^), 8 (d), 6 (a), (Art. 46).]

Ex. 2. Find f —
, assuming a: = a tan 6. (See Art. 39, and Ex. 2, "

Art. 45.)
^ ^

(b) If n is an even positive integer, another method may be

employed.

Since sec^ a; = 1 + tan^ x, and d (tan a;) = sec^ x dx,

j sec" a;c?a;= j sec''~^a;sec^a;c?a;

«-2

=
j
(1 + tan^a;) ^ d(tana;).

The binomial under the sign of integration can be expanded in

n — 2
a finite number of terms since n is even, and accordingly—^

—

is an integer.

In a similar way it can be shown that

I
cosec" xdx = —

j
(1 + cot^ x) ^ d (cot x),

Ex. 8. fsec8 xdx= f ( 1 + tan2 xyd{i2^ x) ;

= tan X + f tan^ x -\- ^ tan^ x -{ c.

(Compare Ex. 8 (e), Art. 46.)

Ex.4. (a) jsec*a;cZa;; (6) lcosec*ajdx;

(c) i cosec^ X dx
;

(fZ) l sec* - dx.

[Compare the results with those of Exs. 8 (c), 8 (/), 8 (gr), Art. 46.]

(c) If n is any positive integer greater than 2, the method of

integration by parts can be used.

On putting sec""* x = u, sec^ xdx = dv,

it follows that du={n — 2) sec"~* x tan xdx, v = tan x.
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Hence, I sec" xdx=: I sec""^ x sec^ x dx

= tan X sec''- 2 x — (n — 2)( sec"-^ x tan^ x dx.

On substituting sec^ x — 1 for tan^ x in the last term, and solv-

ing for j sec" a; da?, there is obtained

/_ , tan X sec**~^ x , n — 2 f* „_2J fat
sec" a; (?a; = 1 I sec"^ x dx. [AT

n — 1 n — lJ

This formula of reduction leads to j sec x dx when n is odd,

and to I dx when n is even.

Similarly, integration by parts will give

J_ , cot X cosec"-^ X , n — 2 r „_o , n^T
cosec" xdx = 1 I cosec"^ x dx, fBln—1 n—lJ

which, on repeated applications, leads to j cosec x dx or to | dx,

according as n is odd or even.

Ex. 6. (a) i sec^ x dx
; (6) j sec^ x dx ;

(c) | cosec^ a; (?a;

;

(d) \ cosec^ X dx
;

(e) | sec^ | x dx.

[Compare the results with those of Exs. 8 (6), 8 (d), 4, 8 (a), Art. 46.]

Ex.6, (a) isec^xdx; (6) jcosec^xi^x. [Compare Ex. 4 (a), (&).]

(d) Transformation to an algebraic form.

If tan x = z, x = tan"^ z, dx = ^
^

^
, sec^ x = l-\-z^)

dz_

1+z'

and hence, j sec" a; dx= i (1 +z^ ^ dz.

Also, if sec x = z,
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it follows that dx
z^z" - 1

and hence, I sec"xdx= I—^
dz.

In like manner, the substitutions 2 = cot a;, z = cosec x, will re-

duce j cosec" X dx to an algebraic form.

Ex. 7. Solve Exs. 3 (a), 4 (a), 4 (6), 1 {d) above, by algebraic substitution.

49. j tan** » dx, i cot** a? cJo;;,

(a) Let ?i be a positive integer.

Then, j tan** xdx= I tan"~^ x tan^ a; dx

=
j tan""2 cc (sec^ x — l)dx

= I tan** ^ a; c? (tan a;) — j tan^^ajcia;

^ tan** ^a; _ Ttan" ^ a; da;. [A]

This reduction formula leads to j cia; or to
J
tan a; da;, accord-

ing as n is even or odd.

Ex. 1.
I
tan' a; dx =

J
tan x (sec^ x— l)dx= i tan xd (tan a;) — j tan x dx

= J tannic — log sec x -{- c.

In like manner,

j cot** a; da; =
j cot**~^ x cot'^ a; da; = j cot** '^ x (cosec'' a; — 1) da^

w — 1 »/

another reduction formula.
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(b) If n is a negative integer, say — m,

j
tan** xdx= I cof* x dx, and | cot**xdx= I tan"* x dx.

Hence, this case reduces to the preceding.

Ex.2, (a) jtan^xtZx, (b) itun^xdx, (c) itan^xdx, (d) icot^xdx,

(e) i cot* X dx, (/) i cot^ X dx.

(c) Transformation to an algebraic form.

dz .

If tan x = z, dx
1+^2

and hence, I tan" xdx= I -^

—

dz_

Again, if sec x = z, dx= '

n-l

dz.

zVz' - 1

and hence, j tan** xdx= I ^
Similarly, j cot** x dx can be changed into algebraic forms by the

substitutions,

z = cot Xj and z = cosec x.

Ex. 3. Solve Ex. 1, 2 (a), 2 (d) above, by algebraic substitution.

50.
I

sin*»* a? cos" a? d!a?.

(a) When either m or % is a positive odd integer, no matter

what the other may be, the form sin*" x cos" x dx can be integrated

very easily. For, it is then reducible to a sum of integrals of

the form j sin^ x d (sin x), or of the form
|

cos' x d (cos a;). This

is illustrated by the following example.
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Ex. 1. sin^as co^xdx = jsin^ a; (1 — sin^a;) d (sin a;)

= r^ sin 7 « — ^ sin^ x+ c.

Ex. 2. Tsin^ X cos^ x dx. Ex. 4. f ^|"^ ^ dx.

Ex.3. fcos*a;sin8»cZa;. Ex.6, (-^^^^dx.

(b) When m + n is a negative even integer, say —'^p,

sin"* a; cos" a; dx can be integrated by means of the substitution

tan x = t.

If tan x=.ty dx = -——
-, sin x =— . cos x =

1 + f' viT^ VTT?

and hence, j sin** x cos" xdx= j
?^!^^^ ==

j r (1 + ^^^^ ^ d^.

• *^ •^(1 + ^^'^' "^

The last form is readily integrable. Sometimes the substitu-

tion cot x = t is better than the substitution tan x = t for obtain-

ing a simple integrable form.

'sin2 X
dx.

cos^a;

If tanx = t, (^^^^dx = (t^n +t^)dt = lt^ + lt^ + c
J COS^ X J

= I tan^ x + I tanS a; + c.

The actual substitution of the new variable may often be conveniently

omitted ; for instance,

J^^^ dx = ftan2 X sec* xdx= ftan2 x (1 -f tan2 x) d(tan a;)

cos® X J J

= \ tan8 a; -I- ^ tan^ x-\-c.

Ex.6. r^cZx. Ex.7, f^dx.
J cos' x J sni^ X

(c) Transformation to an algebraic form.

If sin x = z. cos X = VI — z\ dx = dz

hence, J sin*" a; cos" x dx =J 2;'"(1 — z^ ^ dz.
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In like manner the substitution 2; = cos a; will give//» m-l

sin'"a;cos"a;da;=J 2;"(1— 2;^) 2 ^^^

The substitution tan x = t leads to a simple form when m + n

is a negative even integer. This has been shown above. See

Ex.6.

51. Integration of siii*^ x cos*^x dx : (a) by the method of

undetermined coefficients; (b) by means of reduction formulae.

(a) Rule. Put I sin"* x cos" x dx equal to a constant times

one of the four integrals,

j sin"*~^ X cos** a? dx, j sin"* x cos**~^ x dx,

I
sin"*+^ ic cos" X dx,

j
sin"* x cos**"^^ a; c^a;,

p?ws a constant times sin^^^ a; cos'"*"^ x,- in which ^, q are the lowest

indices of sin x and cos x in the two expressions under the inte-

gration sign. Then determine the values of the two constant

coefficients by differentiating, simplifying, and equating coeffi-

cients of like terms. For instance, using the first of the four

integrals referred to in the rule,

j sin"* X cos" xdx = A sin"*"^ x cos""*"^ x-\-B i sin"*~^ x cos" x dx.

Here the lowest indices of sin x, cos x, under the sign
|

, are

m — 2, n; and from them the term ^ sin"*"^ a^ cos""*"^ a; is formed

by the rule. On finding the differential coefficients of both mem-

bers of this equation, there is obtained

sin'" x cos"x={m — l)A sin"*'^ x cos"+^ x — {n-\-l)A sin"* x cos" x

-f B sin"*~^ X cos" x.

Division of both terms by sin"*~^ a; cos" a; gives

sin^a; = (m — 1)^ (1 — sin^ x) — (n-{-l)A sin^ x + Bo
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On equating the coefficients of like terms in both members,

— (m -{-n)A = ly

(m-l)A + B = 0',

whence, • A = , B =
m-{-n m-\-n

Hence,

sin*»* X cos** Xilx =

+ ^LzJ_ fsin*"- 2 a; cos»»x dx. [A]
tn -\r nJ

In a similar way, by connecting
j
sin"* a; cos**xclx with the other

integrals mentioned in the rule, the following reduction formulae

are obtained:

siii***"'-*a?cos"+*a5
8in*'*a5cos**a;rfa5J

Jsin

m + 1

+^ + ^ + ^
fsin"* + 2 a; COS** ic <«a;. [B]m+1 J

***^X eos**^X (Ix =
sin*** +* a? cos**"la?

+ w

+ ^~^
fsin*** cc cos»*- 2 a; ^aj. [C]

Jsin*** X COS" a? flap = sin*" + 'a5Cos»* + ia5

w + 1

+M+MiJ fgj^m ^ eos" + 2 a. cla;. [D]
w- + 1 J

In each of the four integrals with which | sin"*a;cos**a;f?a; may

be connected by the rule, m or w is increased or diminished by 2.

The numerical values of m, n will indicate the one of the four

which is simpler than
j
sin"'a:cos".Tr7jr, and with which it may

preferably be connected. A succession of steps like A, B, C, D,

may be necessary.
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In solving the problems of this and the following article, it

may happen that the results will not agree in form with those

given in the answers. An agreement can be made by using the

trigonometric relations, sin^ x + cos^ x = l, sec^x=l -{- tan^ x, etc.

Any apparent difference in results will be due to a difference in

the methods of working the examples.

Ex.1. \ am^ X cos^ X dx.

Assume i sin^xcos^xdx = A sinx cos^x + B icos^xdx.

Differentiating, sin2 x cos^ x = A cos*x-^A sin2 x cos2 x-{- B cos^ x,

whence, dividing by cos^ x, sin^ x = ^1 (1 — sin2 x) — 3 ^ sin^ x -\- B.

Equating coefiicients of like terms,

-4^=1,

A + B = 0.

On solving these equations, A = —
I, B = ^.

Hence, |
sin^ x cos^ xdx = — | sin x cos^ x + | fcos^ x dx

;

from this, by Art. 46, =-
I sin x cos^ x + I

(sin x cos x + x) + c.

Equally well,
J
sin^xcos^xdx might have been connected with (sin'^xdx.

Also, 1 — cos^x might have been substituted for sin^x, or 1 — sin^x for cos^x,

and the integi-al found by the method of Art. 46.

Ex.2. Csin^xcos^xdx. Ex.4, (^^^dx.
J J sm^ X

Ex.3, r ^ Ex.5. f£2^rfx.
J sin* X cos2 X J sin'^ x

Ex. 6. Solve some of these examples by reducing them to an algebraic

form, as described in Art. 50 (c).

(b) The results A, B, C, D can be used as formulae of reduc-

tion. It is necessary only to substitute in them the proper values

for m and n. It is not necessary to memorize these formulae.

The student should make himself familiar with the process of

deriving these formulae, so that he can readily obtain them when
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required.* The formulae A, B, C, D of Art. 46 are special cases

of A, B, C, D above. This will be apparent on putting m and n in

turn equal to zero in the latter formulae. Moreover, I tan" x dx,

I cot" X dx, discussed in Art. 49, may be put in the forms

j sin" a; COS"" ic c?a;, j cos" a; sin"" a; c?aj, and solved by the methods

of this article. For the sake of practice in making the substitu-

tions a few examples may be solved by means of the formulae.

Ex.7, isin^xcos'^xdx.

By A, fsine ^ cos* xdx = - sin5a;cos5a;
_^ £ C^^^

^ ^^^4 ^ ^^

.

J 10 lO*/

by A, Jsin* x cos* xdx = - si^^a^cos^a; ^
|
Jsins x cos* x dx

;

by A, fsin2 x cos* xdx=^-
s^^^^^osSa; ^ 1 fcos* x dx ;

by C, ^cos^xdx = ^JR^^^ + ^^cos'^xdx

;

by a, ycos2xdte =«-i^» + ^|(^x=?HL^+ia; + c.

The combination of the results gives

f8in« x cos* xdx = — ^ sin^ x cos ^ x — ^^ sin^ x cos^ a; — ^ sin a; cos^ x

-\-
jl-g sin a; cos^ a; +^ sin a; cos a: + ij|^ a; + c.

The formulae might have been applied in other orders, for example CACAA^
CCAAA, etc.

Ex. 8. Solve Exs. 2, 3, 4, 5 by means of the reduction formulae.

» Another method of deriving these formulee, namely, by integrating by

parts, is given in Note C, Appendix. Other formulae of reduction can be

obtained by connecting

f 8in'»x COS" xcZx with fsin«-2x cos^+^xdx, \ sin«+2 a; cos'»-2 a; (te

in the manner described above. The formulae for these cases may be derived

as an exercise. (See Edwards, Integral Calculus, Art. 83.)
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52.
I
tan"*^ oc sec" a? doCf I cot*** ac cosec** a? dx.

(a) Eeduction to the form
j
sin^ a; cosmic c^a;. This may be done

by the substitutions

tan X — 5HL^j sec x = , cot x = ^—^, cosec x= — :

cosx cos a; sma; sma;

and the integration can then be performed by one of the methods

of the last two articles.

(b) Eeduction to an algebraic form.

If tan x = z, j
tan"* a? sec" a; da; =

j
2;"*(1 + z^y^ dz.

This is almost immediately integrable if ti is a positive even

integer. In this case, I tan"* x sec" x dx can be reduced to inte-

grals of the form
j
tanPa;d(tana;). (See Ex. 1, below.)

tan"*X sec"xdx= i 2;"~^ (z^ — 1) ^ ^^•

This is almost immediately integrable if m is a positive odd

integer. In this case, j tan"*a;sec"a;c2aj can be reduced to integrals

of the form j sec' a; d (sec a;). (See Ex. 1, below.)

The form I cot"* a; cosec" ajoia; may be treated in a similar manner.

Ex. 1. \ tan^ X sec* a; da; = I tan^ x sec^ x sec'-^ x dx

= ftaii3a;(tan2ic+ l)c?(tana;)

= ^ tan^ re + ^ tan* aj + c.

Or, j tau3 X sec* aj da; = i tan^ x sec^ x sec x tan x dx

= i (sec2 a; — 1) sec^ x d (sec x)

= ^ sec6 x — l sec* x + c.

I



114 INTEGRAL CALCULUS [Cn. VII. 52-

Ex. 2. ^^^J^. Ex.6, fcotsxcosecsxdx.

Ex.3. ftan^a;sec*a;(te. Ex.6. \ i2i\\' x &qq.^ x dx.

Kx. 4. j cot^ a; cosec* a; (Za;. Ex.7. | tan^ a; sec* « cte.

Ex 8. Solve some of these examples by using algebraic transformations.

53. Use of multiple angles. When m and n are positive and

one of them is odd, the first method of integration shown in Art.

50 can be employed in the case of |
sin*" a: cos** a; da;. When m and

n are positive and botli even, the nse of multiple angles will

aid the process of integration. The trigonometric substitutions

that can be employed for this purpose are

:

sin X cos x = \ sin 2 x,

cos^ a; = ^ (1 -h cos 2 x),

sin^ a; = ^ (1 — cos 2 x).

Ex. 1. ( sin2 X cos2 a; dx = H sin^ 2xdx

= J j
(1 — cos 4 as) dx

= Jx — 3^2 sin 4 X + c. (Compare Ex. 1, Art. 61.)

Ex. 2. fsin^xdx. (See Ex. G (a), Art. 46.)

Ex. 3. fcos*x(Jx. (See Ex. 7(a), Art. 46.)

Ex. 4. fsin«X(Zx. (See Ex. Q{h), Art. 46.)

Ex.5, (ccysf^xdx. (See Ex. 7 (ft), Art. 46.)

Ex.6, fsin^xcos^x^x. (See Ex. 2, Ar*. 51.)

Ex. 7. \ sin* X cos* x dx.



65.] TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS 115

54 r ^ .

On denoting the integral by I, and dividing the numerator and

denominator by cos^a?,

^ __ r sec- X dx _ r d(tana;)

~J a' + 52 tan^ a;
~J a^ + 6^ tan^ x

On substituting ?« for tana?, integrating, and replacing u by

tanic, there is obtained,

C
da, C

' J a -\- b cos X J a

ah

ilx

^ana?\

+ 6 sin a?

Since cos x = cos^ ^ — sin^ '|, and cos^ ^ + sin^ f= 1?

On dividing numerator and denominator in the second member
a;

2

sec^
2

by cos^- and reducing.

sec^ ? dx
r dx ^ 1 r
Ja-^bcosx a — hJi

2 a — 6

a — hJ,

cz(tan|)

2 a — 5

-;;—

—

,^ or I
— -, accord-

z^ -\-c^ J z^ — &
ing as a is greater than 6, or less than 6. Hence,

if ^ > /,, r_^^ =^A— tan-fJ^t^n |V,
J a + 6 cos a? Va^ - ft^ ^ >'tt + 6 2y

INTEGRAL CALC. —

9
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V6 + a 4- V6 — a tan -

if a < 6, I
——r =

,
log '

L_tanh-fJ|^tan|\
V^

On introducing the half-angle as before, and dividing numerator

and denominator by cos^ |, as in the case just considered, it will

be found that,

/
dx _ r

a -f 6 sin a;
~J

dx

a fcos2 ^+ sin2 ^^ + 2 6 sin ^ cos ^
V Z Zj z z

-s

2 2

X

2
sec^ - dx

a -{-2 b tan - + a tan^ -
Z Z

_2 r__\__2_aj_
~~aJ/^ X . by , a^

—

b''
tan^ + - +

2 a a'

/' dz f* dz
^

, or I
.^

,
according as a is greater

Z -J- C^ %/ Z — (/

or less than 6. Hence,

dx
if a > 6, I ——r—^— =

,
tan"^

J a + & sin a; ^^2 _ yi

X
a tan ;:+b

z

Va^ + 52

atan-+6-V62-a2
.^ ^ /* da; 1 , 2
ifa<6, I r-^— = log

.
-'« + ^sma; V6^- a^ atan^ + & + V62 - a^

V6»-a«
coth"

a tan - + &
z
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In working the examples it is preferable to follow tlie method

employed above, and not to use the results that have just been

found as formulae for substitution.

Ex. i^
C dx T?^ A C dx(^ Ex.4, f—
J3— 2sinaj J 5 —

Ex.2. r ^
. Ex.5, r ^

J2 + 3sin2x J4 + 5

3cosx

dx

+ 5 cos 2 X

Ex. 3. r — Ex. 6. f —
J5 + 3COSX J4 + 5sin2a;

Ex. 7. When a = b in this article, find the integrals.

56. ( e*** sin nx doc, \e^^ cos nx dx.

On integrating e"'' sin nx dx by parts, first taking e""" dx for dv,

" and then taking sin^ixdx for dv, there are obtained

/' ax ^ 6'"' sin nx n f* ^^ , ,^

.

e""" sm nx dx = I e'"' cos nx dx, (1

)

a aJ

/* ax ' ^ 6"* cos nx
,
a C ax ^ /0\€"* sm nxdx = h - I e'*'' cos nx dx. (2)

The integral in the second members of (1), (2) can be elimi-

nated by multiplying the members of (1) by - and the members
n

of (2) by -, and adding the results. When this is done it will

be found that

/' - . -, e'^'^ia sin nx — n cos nx) ,o\
e"* sm nx dx =—^^ ^- (3)

o?-[-n^

Similarly, on integrating e""" ao^ 7ix dx by parts, first taking

e'^'^dx for dv, and then taking cos ^la? da; for dv, and eliminating

:

I
e""' sin nx dx which has thus been introduced, there will be

obtained /, e'^^'in sin nx-\- a cos nx) z .x
e"^ cos nx dx ——^^ —^—

r

^- (4)
ar + n^
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The result (4) can be obtained by eliminating I e'*' sin nxdx

from (1) and (2). It can be deduced also by substituting the

result (3) in (1) or in (2). It is, however, preferable to deduce

it directly by integrating by parts.

As in Art, 55 the student is advised to work the examples

by the method followed above, and not to use (3) and (4) as

formulae for substitution.

Ex. 1. (e'sinxdx, Ex. 4. ^^2^dx.

Ex. 2. (e'cosxdx. Ex. 5. ^^dx.

Ex. 3. (e^cosSxdx. Ex. 6. ie'cos^xdx.

57. (smmxcosnxdx, xcostnxcosnxdx, isintnxsinnxdx.

Since, by trigonometry,

sin mx cos nx = ^ sin (m -\- n) x -\- ^ sin (m — n)x,/, cos (m + n) X cos (m — n)x
sin mx cos nxdx = ——^ —-^^ r^ ^—

2(rn + n) 2(m — n)

In a similar way it can be shown that,/, sin (m + n)x .
sin (m — ii) x

cos mx cos nx dx = —^ri :f— -\—^ f—

,

*2(m-\-n) 2(m-n)/sin (m 4- n) x
.
sin (m — n)x

sin mj; sin nxdx = ^ ^
— ^ry {

—
2(m + n) 2(m — n)

Ex. 1.
I
cos 3 a; sin 5 X (fa;. Ex. 4.

J
cos 3 x cos | x da;.

Ex. 2. fcos4xcos7xdx. Ex. 5. fcos |xsin}x(to.

Ex. 8.
I
8in6xsin6x(2x. Ex. 6. Isin ^^^ x sin^ x (2x.



CHAPTER VIII

SUCCESSIVE INTEGRATION. MULTIPLE INTEGRALS

58. Successive integration. It has been seen in the differential

calculus that successive differentiation with respect to x is some-

times required in the case of functions of the form

u=f(x);

and that successive differentiation with respect to both x and y

may be required in the case of functions of the form

u=f(x,y).

On the other hand, the reverse process called successive inte-

gration is sometimes necessary. This chapter will be concerned

with describing the notation that is used in "multiple integra-

tion," as it is often termed ; and it will show, by examples, how

successive integration is introduced and conducted. Arts. 61,

62, 63, contain applications of multiple integration to the measure-

ment of areas in rectangular coordinates, and of volumes in rec-

tangular and polar coordinates. Plane areas in polar coordinates

and curvilinear surfaces will be found by means of multiple

integration in Arts. 67, 75.

59. Successive integration with respect to a single independent

variable.

Suppose that fi(x)=lf(x)(^X} (1)

f2(x)=fMx)dx, (2)

119
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and M^)=Cf2{^)dx. (3)

Since f^ {x) =J\_fi (a^)] d^>

it follows from (1) that f^ (x) =C I" Cf(x) dx^ dx
; (4)

and since f^ (x) = C\ f^ {x) \ dx,

it follows from (4) that /g (a;) = f | f I" Cf{x) dajl dx | dx. (5)

The second member of (4) is usually written in a contracted

form, namely,

fff(^) ^^ ^^^ or fjf(x) dx", (6)

in which dx^ means (dxy, and not d (a?).

Similarly, the second member of (5) is usually written

C C Cf{x)dxdxdx, or C C ('f{x)d7?. (7)

Integral (6) is called a double integral, and integral (7) is called

a triple integral. In general, if an integral is evaluated by means
of two or more successive integrations, it is called a multiple in-

tegral. If limits are assigned for each successive integration, the

integral is definite ; if limits are not assigned, it is indefinite.

Ex. 1. Determine the curve for every point of which the second differ-

ential coefficient of the ordinate with respect to the abscissa is 8.

The given condition is expressed by the equation

This may be written

lence,

'(2)-,.

d(m=8dx.
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Integrating, (2) ^= 8x-\-c,
dx

whence, dy =(8x i- c)dx.

Integrating again, (3) y = 4:X^+ cx + k.

This is the equation of any parabola that lias its axis parallel to the ?/-axis

and drawn upwards, and its latus-rectum equal to 4. All such parabolas will

be obtained by giving all possible values to c and k, the arbitrary constants of

integration. Two further conditions will serve to make c and k definite.

For instance, suppose that the tangent to the parabola at the point whose
abscissa is 2, is parallel to the a;-axis ; and also that the parabola passes through

the point (3, 5). By the former condition,

^ = when x = 2;
dx

and hence, by (2), = 8-2 + 0,

that is, c = — 16.

Equation (3) then becomes y = ix^ — I6x -\- k.

Also, since the parabola passes through the point (3, 5),

5 = 4 .
3-2 - 16 . 3 + A;

;

whence, k = 17.

Therefore the equation of the particular parabola that satisfies the three

conditions above is

y = 4a;2-16x + 17.

The given relation (1) might have been written in the differential form,

d^y = Sdx'^,

and y expressed in the form of a multiple integral, namely,

y=^^Sdx^;

whence on integrating, = i (Sx + c)dx

=:4:X^ + CX + k.

The former solution is better because it shows all the steps more clearly.

Ex. 2. If s represents distance measured along a straight line, and t time,

— is the velocity of a body that moves in the straight line, and — is its

dt dt^

acceleration or rate of change of velocity. In the case of a body falling in

a vacuum in the neighborhood of the earth's surface, the acceleration or rate
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of increase in the velocity is constant and equal to about 32.2 feet-per-second

l»er second. The number 32.2 in this connection is denoted by the symbol

g. Let it be required to determine s from the known relation,

This may be written i)
dt

Using the differential form, dl ^\ = gdtt

ds
and integrating, (2) — = grj + c,

CIC

in which c is an-arbitrary constant of integration.

Writing the latter equation in the differential form,

ds = {gt + c) dtj

and integrating, (3) s = | gt'^ -\-ct + k,

in which k is another arbitrary constant of integration. In order that the

constants c, k may have definite values, two further conditions are required.

For instance

:

(a) Suppose that the body falls from rest, and that the distance is measured

from the starting point.

ds
In this case, s = 0, and — = 0, when « = 0.

dt

Hence, substituting in (2), = + c,

that is, c = ;

and, substituting in (3), = + + A;,

that is, A; = 0.

Therefore, the distance through which a body falls in a vacuum on starting

from rest is \ gt"^, in which g is about 32.2 and t is the duration of fall in

seconds.

(6) Suppose that the body has an initial velocity of 8 feet per second, and

that the distance is measured from a point 12 feet above the starting point.

By the last condition, « = 12 when « = ;

and hence, by (3), 12 = + + A,

whence A: = 12.
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By the other condition, — = 8 when t = 0;
dt

and hence, by (2), 8 = + c, that is, c = 8.

Therefore, under these conditions,

s = lgt'^-\- St + 12.

The known relation (1) might have been written in the differential form,

d^s = gdf^
;

from this, * - f \od^^ ',

whence, on integration, s = \ {gt + c) dt

= J gt^ -\-ct + k.

Ex. 3. Evaluate f
* C TV {dxy.

The integrations are made in order from right to left. Thus, if / denote

the integral,

i=cc r- r (dx)'^ =4:C V (dx)^

= iC[xVdx = sCdx

= 16.

Ex. 4. Evaluate C C Cx^(^dxy. Ex. 6. Evaluate C P Cx^ {dx^.

(Compare Exs. 4, 5, with Ex. 3.)

Ex. 6. Determine all the curves for which ^4 = 0.
dx^

Ex. 7. Find the curve at each of whose points the second derivative of

the ordinate with respect to the abscissa is four times the abscissa, and

which passes through the origin and the point (2, 4).

IT

Ex. 8. Find CC( V(dr)3. Ex. 9. f
' f

^
J

'^
sin (doy,

60. Successive integration with respect to two or more indepen-

dent variables. In this article the notation commonly used in this

kind of integration will be described ; and, in preparation for the

next article, a few examples will be given so that the student

may become familiar with the notation.

Suppose that f^{x, y, z) =Cf(x, y, z) dz, (1)
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the integration indicated in the second member being performed

as if X, y were constants. (It will be remembered that if x, y, -•',

are independent variables, differentiation of F (x, y, •..,) with

respect to one of the variables, say aj, is performed as if the others

were constants.) Then, suppose that

f^{x, y, z) =jfi(x, y, z) dy, (2)

the integration now being performed as if a;, 2; were constants.

Again, suppose that

/sCa?, y, z) = ^f^(x, y, z) dxy (3)

the integration being performed as if y, z were constants. EquBr

tion (2), by virtue of equation (1), can be put in the form

/2(aJ, y, 2) =
J" J'/CaJ, y, 2) dzUy, (4)

and equation (3), by virtue of (4), can be written,

/sCa?, y, ^) =/ 1/[//(^^ 2/, ^) dP^ dy |
dx. (6)

The bracketing in the second member of (5) indicates that the

differential coefficient, /(a;, y, z), is integrated with respect to z
;

that the result of this integration is then integrated with respect

to y ; and that, finally, the result of the last integration is inte-

grated with respect to x. In the notation usually adopted, the

second member of (5) is abbreviated by removing the brackets,

and the order of the variables with respect to which the integra-

tions are made, is indicated by the order of the respective differ-

entials of the variables beginning at the right and going toward the.

left. Thus, the abbreviated form of the second member of (5) is

jfff(x,y,z)dxdydz. (6)
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This is a triple integral. Similarly, the double integral in the

second member of (4) is generally written,

Jjf{^yyyz)dydz.

As to the integration signs, the first on the right is taken with

the first differential on the right, which is dz in (6) above, the

second sign from the right is taken with the second differential

from the right, the third sign from the right is taken with the

third differential from the right, and so on. It is well to note

this usage, because attention must be paid to it when limits of

integration are assigned to x, y, z.* In some of the examples

below, and often in practical problems, the limits for one variable

are functions of one or more of the other variables.

Ex.1. Evaluate
| j

i xy^dxdydz.

If /denote the integral,

1= V { pl*a;2/2 dxdy = S ( Cxy"^ dx dy

=3j;[|!];a=<z.=7j-;.d.=i7i.

Ex. 2. Evaluate i'^y xy"^ dxdy.
Jo J2x

Ex.3, f f f xy'^dzdydx. Ex.4, j f f xy'^dzdxdy.

(Compare Exs. 3, 4 with Ex. 1.)

- * rh riot ,

Ex. 5. £"j; (» + 2.)d»d«,. .

E^- 1-
J^ J,

v^rr?d«&.

Ex.6.
J I

r"^ sin edd dr. Ex.8, i \ \ x'^yzdxdydz.
Jo Jo Jo Jo Jly

* The notation described above is not universally adopted, but it is the

one most frequently used.
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61. Application of successive integration to the measurement of

areas : rectangular coordinates. In this and the two following

articles, problems are solved which show applications of succes-

sive integration. In some of the examples there may not be

any special advantage in resorting to double integration, for the

reason that a single integration may suffice. They are, however,

given to the student for the purpose of making him familiar with

an instrument for solution which may sometimes be the only one

possible. It will be found that the elements in the summations

which follow are infinitesimals of a higher order than those which

have been met with heretofore.

FiQ. 81.

Ex. 1. Find the area included between the parabolas whose equations are

3y2 = 25a;, and C)X^ = 9y.

The parabolas are VOP, WOP. Their points of intersection, 0, P, arc

(0, 0), (3, 6). Taking any point Q within the area as a vertex, construct
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a rectangle whose sides are parallel to the axes of coordinates and are equal

to Aic, Ay. Produce the sides which are* parallel to the x-axis until they

meet the curves in L, 31, G, i?, thus forming the strip LGBM, and produce

ML to meet the ?/-axis in li. On LM construct the rectangle HM, giving it

a width A?/.

x=BM

Area of the rectangle HM = limit^^^^ ^ Aa; Ay.

x= RL

Both y and Ay remain unchanged throughout this summation. Now,

BL =^, and BM = SA/f

•

Hence, area^M= \ dx\Ay (1)

25

=H-f)^.. (2)

As Ay approaches zero, the rectangle HM approaches coincidence with

the infinitesimal strip GM, am\, in the limit, Hilf coincides with GM. Also,

the area OLPMO is the limit of the sum of all the strips similar to LGBM
lying between and P, when Ay is made to approach zero as a limit.

Therefore,
y=PAr

area OLPMO = limitj^j,=oV^ UaJI -^\ Ay

= 5.

If the linear unit is an inch, the answer is in square inches. On substi-

tuting for (sJy -^y^] in C-S) its value as shown by (1) and (2), there is

,^ . , \ '5 25 /
Qbtamed,

area OLPMO = rjj'[ j* jy^^Mv

=£f^hydx. (4)

25



128 INTEGRAL CALCULUS [Ch. VIII.

The latter is the customary abbreviated form which indicates that the first

integration is made with respect to x between the limits ^ and S-J^ for
25 '5

X, and that the result obtained thereby is to be integrated with respect to y
between the limits and 5. The element of area in (4) , namely dy dx, is an

infinitesimal of the second order.

Another way of performing the double summation required in adding up
all of the elements of area like dy dx, may be described as follows. Sum all

of these elements that are in the vertical strip ST, and then sum all of the

vertical strips in OLPMO. In the first summation, x and dx do not change,

Ix 6x^
and the upper and lower limits of y are ^A/-, respectively ; in the second

summation, the limits are the values of x at and P, namely and 3. This

double summation is indicated by the double integral

rtf dxdy.

This, on evaluation, gives an area of 5 square units as before.

The area OLPMO might have been expressed in terms of single integrals.

For
OLPMO = OLPN - OMPN

Jo ^3 Jo 9Js^-'
—

= 10 - 5 = 5.

Ex. 2. Solve Exs. 7-11, Art. 29, by this method.

62. Application of successive integration to the measurement of

volumes: rectangular coordinates. If the equation of a surface

is given in the form
f{x, y, z) = 0,

the volume can usually be determined by means of three successive

integrations. In the particular case of solids of revolution, the

volume can be found by a single integration. This was shown

in Art. 30. In Art. 61 the element of area was dyclx, the area

of an infinitesimal rectangle each side of which was an infini-

tesimal. In the case tiow to be considered, the element of volume

will be the volume, dxdydz, of an infinitesimal parallelopiped

each of whose infinitesimal edges is parallel to one of the axes

of coordinates. This will be illustrated in Ex. 1.
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Ex. 1. Find the volume of the ellipsoid whose equation is

a2 + 62 + c2

Let 0-ABC be one eighth of the ellipsoid whose volume is required.

Then OA = a, OB = b, 00 = c. Take IL an infinitesimal distance dx on

Pig. 82.

OX, and through 7, L pass the planes HIJ, KLM perpendicular to OX.
Take EF of an infinitesimal length dy on ML, and complete the infinitesimal

rectangle EFGD. Through the lines DE, GF pass planes parallel to the

plane ZOX which intersect the curvilinear surface HJMK in the infinitesi-

mal arcs B V, ST. Through a point D' on DB, DD' having an infinitesimal

length dz, pass a plane parallel to the plane XOY. The infinitesimal paral-

lelopiped D'F, whose volume is dxdydz, will be taken for the element of

volume. The solid 0-ACB is the limit of the sum of parallelopipeds of this

kind. This limit will now be determined.

First, the volume of the vertical rectangular column BF will be found by
adding together all the infinitesimal parallelopipeds such as D'F which are

included between DEFG and BSTV.
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Second, the volume of the slice HIJMLK will be found by adding together

all the infinitesimal rectangular columns like BF which are erected between

IL and JM.
Third, the volume of 0-ABC will be found by adding together all the

infinitesimal slices like HIJMLK that lie between OCB and A.

In the addition of the infinitesimal parallelopipeds from DEFG to BSTV^
z alone varies, and it varies from zero to DB.

\ Vol RF = dz

«=0

dydx. (1)

In the addition of the vertical columns from IL to MJ^ y alone varies,

and it varies from zero to IJ.

.: Yo\. HIJMLK =\ ( (dz dy \dx. (2)

In the add ion of the slices between OCB and A^ x varies from zero

to OA.
x=OA

I

p = Tjrz=DR'

.'. Vol. 0-ABC = j*
J f^^

Writing this in tht, usual manner,

1=0 1.^=0 L-«=o

x=OA y = IJt=DR

dy \ dx. (3)

Vol. 0-ABC = f f f dxdyds. (4)

;=0 y=

If the coordinates of B are x, y, s, it follows from the equation of the

surface that

DB = z,

At the point J, zz=0; and hence,

IJ=b

Also, OA = a.

Tlierefore (4) becomes

v^-

Vol. 0-ABC= pP^' azpVJ ai bidxdydz.
Jo Jo Jo
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On making the integrations in their proper order, it is found that

Vol. 0-ABC = \Trahc.

Hence, the volume of the whole ellipsoid = | Ttahc.

Note 1. The volume of an infinitesimal parallelopiped is an infinitesimal

of the third order, the volume of a vertical column is an infinitesimal of the

second order, and the volume of a slice is an infinitesimal of the first order.

Note 2. Equally well, the planes bounding an infinitesimal slice might

have been taken perpendicular to either OZ or O Y.

Note 3. On putting a = h=^c^ the volume of a sphere of radius a is

found to be | ira^.

Ex. 2. Find the volume of the ellipsoid given in Ex. 1 : (a) by taking

the infinitesimal slice at right angles to OF; (6) by taking it at right angles

to OZ.

Ex. 3. Determine the volume of a sphere of radius a by the method of

this article.

Ex. 4. Find the volume bounded by the hyperbolic paraboloid z = -^,

the xy-plane and the planes x = a^ x = A^ y = h^ y = B.
^

Ex. 5. Find the volume of the wedge cut from the cylinder x'^ -\- y^ = a^

by the plane z=0^ and the part of the plane ^ = a:tana for which z is

positive.

Ex. 6. Find the entire volume bounded by the surface

Ex. 7. The center of a sphere of radius a is on the surface of a right

linder the radius of whose base i

cylinder intercepted by the sphere.

cylinder the radius of whose base is -• Find the volume of the part of the

63. Further application of successive integration to the measure-

ment of volumes: polar coordinates. The illustration in this

article is given, because the use of polar coordinates in dealing

with solids is often advantageous. It will be necessary to employ

these coordinates in solving some of the problems in Arts. 77, 79.

Ex. 1. To find the volume of a sphere of radius a by means of polar

coordinates. Let a point O on the surface of the sphere be the pole, the tan-

INTEGRAL CALC. 10
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gent plane at be the a-y-plane, and the diameter through be the s-axis.

Take any point P within the sphere, and let its coordinates be denoted by

r, ^, 0,— r being its distance OP from 0, 6 the angle that OP makes with the

2-axis, and
<t>

the angle that the projection of OP on the xy-plane makes with

the ic-axis. Draw PM perpendicular to OZ. Produce OP an infinitesimal

distance (?r, and revolve OP through an infinitesimal angle dd in the plane

ZOP. The point P thus traces an infinitesimal arc of length rdd. Complete

the infinitesimal rectangle PQ that has the sides dr, rdd just described.

Fio. 88.

Now let the angle
<t>

be Increased by an infinitesimal amount d<p. Then P
and the rectangle move through a distance equal to MPd(t), that is r &m6d(p.

The rectangle will thus have generated a parallelopiped whose edges are dr,

r dd, r sin d d<t>, and whose volume therefore is r^ sin 6 dd d<l> dr.* Tlie volume

of the sphere is the limit of the sum of such parallelopipeds. Hence,

* Tliis is not absolutely correct, for the opposite edges of the solid gener-

ated differ in length by infinitesimals of higher orders. By fundamental

theorems in the differential and integral calculus these differences will not

affect the limit of the sum of the infinitesimal solids. See Art. 67 and Note D.
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Volume of sphere = 1 ^ | |
''^^''

r'P r sin Odd

e=o [ 4>^o L r=o J
J

= 4
I

\ r^smdde d<l> dr

_ 8af r
^ P'^coss ^ sin ^ d^ c?0

;

3 Jo

f Ex. 2. Find the volume of sphere of radius a by this method, on letting

the XOY plane pass through the center.



CHAPTER IX

FURTHER GEOMETRICAL APPLICATIONS. MEAN
VALUES

64. The calculus has already been employed for the derivation

of the equations of curves in Art. 32, for the determination of

the areas of curves in Art. 27, for the determination of volumes

of solids of revolution in Art. 30, and for the determination of

volumes of solids in a more general case, in Arts. 62, 63. Carte-

sian coordinates were used in all but the last of these applica-

tions. This chapter will consider the derivation of the equations

of curves and the measurement of areas in cases in which polar

coordinates are employed. Special cases in areas and volumes

are taken up in Arts. 68-70. The measurement of the lengths of

curves for both Cartesian and polar coordinates is considered in

Arts. 71, 72; and the measurement of surfaces is discussed in

Arts. 74, 75. The subject of mean values is treated in the last

two articles of the chapter.

65. Derivation of the equations of curves in polar coordinates.

Let the equation of a curve in polar coordinates be

f{r,e)=0.

It is shown in the differential calculus that, if (r, B) be any point

on the curve, ^ the angle between the radius vector and the tan-

gent at (r, 0), and </> the angle that this tangent makes with the

dQ
initial line, then tan \h = r—

,

dr

134
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the length, of the polar subtangent

ode

dr

the length of the polar subnormal

_dr
~de

Ex. 1. Find the curve in which the polar subnormal is proportional to

(is K times) the sine of the vectorial angle.

In this case, | = .sin^.
dd

Using the differential form, dr = K sin Odd,

and integrating, r = G — KCosd.

If C = fC, r = K(l -cos^),

the equation of the cardioid.

Ex. 2. Find the curve in which the polar subtangent is proportional to

(is K times) the length of the radius vector.

Ex. 3. Find the curve in which the angle between the radius vector and

the tangent is n times the vectorial angle. What is the curve when n = l?

when n = ^?

66. Areas of curves when polar coordinates are used: by single

integration. Let AB be an arc of the curve r=f(0), and suppose

that angle AOL = a, angle BOL = p. The area of AOB is re-

quired.

Divide the angle AOB into n parts, each equal to A^ ; then

The sector AOB will thus be divided into n sectors, v^^hich have

equal angles at 0. Let POQ be one of these sectors. About

as a center, and with a radius equal to OP, describe through P a

circular arc PPi, which intersects OQ in P^; and about the same

center with OQ as a radius describe an arc QQi, which meets

OP in Qi- The area of the sector POQ is greater than the area

of the "interior" sector POPi, and is less than the area of the
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" exterior " one QOQ^. About as a center, and through each of

the points in which the arc AB is intersected by the lines that

divide the angle AOB into equal parts, let circular arcs be drawn
which intersect the adjacent lines of division on each side, as

Fig. 84.

shown in Fig. 34. There is thus obtained a set of exterior circu-

lar sectors like QiOQ, and a set of interior circular sectors like

POPi. It has been seen that each sector POQ of the figure AOB
is greater than the corresponding interior sector POPi, and less

than the corresponding exterior sector QOQi ; that is,

sector POPi < sector POQ < sector Q^OQ.

Therefore the sum of the sectors POQ, which is AOB, is

greater than the sum of the interior sectors, and less than the

sum of the exterior sectors ; that is,

0=8 »=8

POP^<AOB<S\QOq,.
0=B
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In the limiting case, when the number of sectors POQ becomes

infinite, that is when A^ approaches zero, the sum of the areas of

the interior sectors, and the sum of the areas of the exterior sectors

approach equality. For, the difference between these two sums is

equal to the area of AMM'A', which is ^(OM^ -OA^)^d, and

can therefore be made as small as one pleases by decreasing A^.

The area AOB always lies between these sums ; and hence,

area AOB = limit^^^o^i^OPi.^Ae-

If the coordinates of P be denoted by r, 6, the area of

POPi = i r'AO.

Hence, area AOB = limit_^^ ^ o / ^r^^O;

that is, areaAOB = ^(^r^dQ,

by the definition of a definite integral. The element of area for

polar coordinates is thus ^ r^dO.

Ex. 1. Find the area of the sector of the logarithmic spiral whose equation

is r = e«^, between the radii vectores for which = a, d =.^.

Area POQ = ^(^r'^dd

ri, r2 being the bounding radii

vectores.
Fio. 85.

Ex. 2. Find the area of one loop of the lemniscate r^ = a^ cos 2 $.

The area of one half the loop,

OMA = ^ (r'^de,

between proper limits for 6, which must be determined.
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The initial and final positions of the radius vector are OA and OL the tan-

gent to the arc OM at 0. For r = 0, the equation of the curve gives

= rt2 cos 2 ^

;

and hence, 2d = ± or d
4

Fig. 86.

The positive sign indicates the position of OL, and the negative sign that

of ON.

Hence, area OMA

2 Jo
cos2^c?^

Hence, area of loop OMARO = —

•

2

Ex. 3. Find the area of a sector of the spiral of Archimedes, r = ad,

between 6 = a, = p.
a

Ex. 4. Find the area of the part of the parabola r = a sec^ - intercepted

between the curve and the latus rectum.

Ex. 6. Find the area of the cardioid r^ = d^ cos -•

2

Ex. 6. Find the area of the loop of the folium of Descartes,

x3 + 2^8 _ 3 fixy = 0.

(Hint. Change to polar coordinates, thus obtaining r= 3«smgcosg
. ^^^

then change the variable d by putting z = tan 6. )
^^^' ^ "*" ^*^* ^

Ex. 7. Show that the area bounded by any two radii vectores of the

hyperbolic spiral rd = a, is proportional to the difference between the lengths

of these radii.

Ex. 8. Show that the area of a loop of the curve r'^ = a?- cos nd is —

•
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67. Areas of curves when polar coordinates are used : by double

integration. The areas of curves whose equations are given in

polar coordinates can be found by double integration, in a man-

ner analogous to that used in Art. 61. Example 1 below will

serve to make the method plain. Successive integration in two

variables, polar coordinates, will also be required in Arts. 77, 79.

Ex. 1. Find by double integration the area of the circle whose equation

is r = 2 a cos 6.

Let OLAN be the given circle, O
being the pole and OA the diameter

2 a. Within the circle take any

point P with coordinates (r, e).

Draw OP and produce it a distance

Ar to S. Revolve the line OPS about

O through an angle A^ to the position

OQR. Then

area PQRS= | [ (r + Ar)2 - r2] A^

= rArA^-|-i(Ar)2A^. Fig. 37.

Produce OP^ OQ to meet the circle in M, G. The area of the sector MOG
will be found by adding all the elements P^i? /S' therein, and the area of the

semicircle OLMA will be calculated by adding all the sectors like MOG
that it contains.

Area MOG = 2PQRS

= \[mit^r =oy^(rArAd + ^ (Ar)2 A^)

r=

= limit^y. = / 1^^^^^

by a fundamental theorem in the calculus,*

r=OM

and hence, area MOG = I rdrAd^

r=0

See Note D, Appendix.
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in which the integration is performed with respect to r. Hence,

0=TOX r=OM

area OLMA = f f fr (Zr I dd

0=0 7=0

J*i
r2acoa0

Jo
rdddr

2
*

Hence, the area of the circle is va^.

The area of OMA can also be obtained by finding the area of the circular

strip LG whose arcs are distant r, r -\- dr from 0, and then adding all of the

similar concentric circular strips from O to A. The angle LOG = cos"i— • It

will be found that
2a

area OMA
/•2a rc'

Jo Jo
^ rdrde = ^!^ as before.

Ex. 2. Find by double integration the area of the circle of radius a, the

pole being at the center
; (1) by adding equiangular sectors

; (2) by adding

concentric circular strips.

68. Areas in Cartesian coordinates with oblique axes. In this

case the method of finding the area is similar to that in Art. 61.

Let the axes be inclined at

an angle w, and construct a

parallelogram whose sides

are parallel to the axes and

have the lengths Aic, A?/.

The area of this parallelo-

gram is

Aa; Ay sin w.

Pjq 88.
'^^^^ whole area is the limit

of the sum of all parallelo-

grams that are constructed within the perimeter of the figure

when Ax and A?/ approach zero. Hence, the area is the value of

the double integral

j I
sin o) dx dy, that is, sin w

j j
dx dy,
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between the proper limits for x and y. If the element of area be

an infinitesimal strip parallel to the 2/-axis, as in Art. 27, the

area is the value of the integral

sin <a I ydx

between the proper limits for x.

69. Integration after a change of variable. Integration when the

variables are expressed in terms of another variable. The function

under the sign of integration may assume a much simpler form

on changing the variables. Examples 1, 3 illustrate this. Some-

times, also, the ordinary variables are expressed in terms of an-

other variable. Examples 2, 4 illustrate this. When a change

is made in the variable or variables, the corresponding changes

should be made in the limits. The work of returning to the

original variables, in order to substitute the original limits, will

thus be avoided. These remarks are also applicable to practical

examples in other articles.

Ex. 1. Determine the area of the circle whose equation is x^ -f ?/2 = a^.

(Compare Ex. 3, Art. 27.)

Area of circle = 4 i ydx.
Jo

Put x = a cos 0. Then y = a sin d, and dx = — asind dO.

Also, d = - when x = 0, and ^ = when x = a.
'

2

Making these substitutions in the integral above,

area of circle = - 4 j a^ sin2 d dd

= wa^.

Ex. 2. Find the area between the x-axis and the complete arch of the

cycloid whose equations are x = a (^ — sin ^) , 2/ = a (1 — cos d).

/•27ra

Area = i ydx.
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When a; = 0, ^ = ; and when oj = 2 7ra, ^ = 2 tt.

Also, dx = a(\ — cos 6) dd.

If these values fory, dx., and the limits, be substituted in the integral

above, it becomes

(1 -co&d)^dd

= 37ra2.

That is, the area is three times that of the generating circle.

Ex. 3. Find the area of the ellipse -g + 12 — •^- (Compare Ex. 3, Art. 27.)

(Hint : put x = a cos 0, then y = 6 sin 0.)

Ex. 4. Find the volume of the solid generated by the revolution of a

complete arch of the cycloid of Ex. 2 about the a>axis.

70. Measurement of the volumes of solids by means of infinitely

thin cross-sections. In Art. 30 the volume of a solid of revolution

was determined by finding the volume of an infinitely thin slice

of the solid, the slice being taken at right angles to the axis of the

figure, and the sum of the volumes of all such slices being then

found. This method can be extended to other figures besides

figures of revolution. Some convenient line is chosen, and an

infinitesimally thin slice of the solid is taken at right angles to

this line. If the area of a face of the thin slice can be expressed

in terms of its distance from some point on the line, the volume

of the slice can be expressed in terms of this distance ; and from

this, the sum of the volumes of all the slices can be found. For

example, let the chosen line be taken for the axis of x, and sup-

pose that the 3,rea of a face of a thin slice at right angles to this

line is f(x). Let the thickness of the slice be Aa;. The volume

is (as in Art. 30) the limit of the sum of an infinite number of

infinitesimal cylinders whose volumes are of the form f(x) Aa;.

That is,
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volume of the solid = limit_^^^o^/(a;) Aa;,

=jf(x)dx,

in which the limits of integration are determined from the figure.

Ex. 1. Determine by this method the volume of the ellipsoid

a2
^

1)2
^

c2 •

(The student is advised to make a figure. ) At a distance x from the center

cut out a very thin slice at right angles to the x-axis, and let its thickness be

dx. The face of this cylindrical slice will be an ellipse whose semiaxes are

i

These values are deduced from the equation of the ellipsoid.

The area of this ellipse = -nbc
( 1 — ^ )

•

Hence, the volume of the slice = irbc ( 1 — ^ )
Ajc ;

and therefore, volume of ellipsoid = irbc i {l—^\dx

= f wabc.

Ex. 2. Find the volume of a sphere of radius a by this method.

Ex. 3. Find the volume of the torus generated by revolving about the

o^axis the circle x^ + (y — by = a^, in which 6 > a.

Ex. 4. Find the volume of a pyramid or a cone having a base B and a

height h.

Ex. 5. Find the volume of a right conoid with a circular base and alti-

tude h, the radius of the base being a.

Ex. 6. A rectangle moves from a fixed point, one side varying as the

distance from this point, and the other as the square of this distance. At

the distance of 2 feet, the rectangle becomes a square of 3 feet. What is

the volume then generated ?

Ex. 7. Given a right cylinder of altitude h, and radius of base a.

Through a diameter of tlie upper base two planes are passed touching the

lower base on opposite sides. Find the volume included between the planes.

Ex. 8. Find the volume of the elliptic paraboloid 2 ic = ^ + — cut off by

the plane x = h.
P ^
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curve "*

71. Lengths of curves: rectangular coordinates. To find the

length of a curve is equivalent to finding the straight line that

has the same length as the curve. For this reason the measure-

ment of its length is usually called ^'the rectification of the

The deduction here made of the integration formulae

for the length of a curve depends

upon the definition that integra-

tion is a process of summation.

The equation of a given curve

is f{x,y) = 0; it is required to

find the length s of an arc AB,

A being the point (x^, y^), B be-

ing the point (a^g, y^. On the

curve take any two points P, Q
whose coordinates are a;, y, and

X -\- A.T, y -f A?/. Draw the chord PQ and make the construction

indicated in the figure.

Fig. 89,

The chord PQ = V (Aa;)^ -f {^yf

-MW Ax.

(1)

(2)

As Q approaches infinitely near to P, that is, when Aa; ap-

proaches zero, the chord PQ approaches coincidence with the

arc PQ. It is shown in the differential calculus that if Aa; is

an infinitesimal of the first order, the difference between the

In 1659 Wallis (see footnote, Art. 27) published a tract in which he

showed a method by which curves could be rectified, and in 1660 one of his

pupils, William Neil, found the length of an arc of the semi-cubical parabola

x^ = ay^. This is the first curve that was rectified. Before this it had been

generally .supposed that no curve could be measured by a mathematical proc-

ess. The second curve whose length was found is the cycloid. Its rectifi-

cation was effected by Sir Christopher Wren (,1632-1723) and published in

1673. This was before the development of the calculus by Leibniz and

Newton.
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arc and its chord is an infinitesimal of at least the third order

;

that is,

arc PQ = chord PQ + is, (3) ,

in which % is an infinitesimal of the third order when Aa; is an

infinitesimal of the first order.

Therefore, s=2(arcsPQ)

by a fundamental theorem.* As Aa? approaches zero, —^ in gen-

eral approaches a definite limiting value, namely, —. Therefore,

by the definition of a definite integral.

In applying this formula it will be necessary to express

a/i+(-^j in terms of x before integration is attempted.

Instead of being put in the form (2), equation (1) may be

given the form,

chord PQ =V^ + r^YA2/.

By the same reasoning as above, it can then be shown that

in which \/l + (
~

)
iii^st be expressed in terms of y before inte-

gration is performed. Formula (4) or formula (5) will be used.

* See Note D, Appendix.
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according as it is more convenient to take x ov y for the inde-

pendent variable.

If As denotes the length of the arc PQ, it follows from (3) that

Ax \ \Ax A£Ax ^ \^^J ^^

Therefore, by the differential calculus,

t'^hm'

whence, ds = a/i + (
-^

j
dx.

Similarly, ds=yjl-\-f~\ dy.

In order to recall formulae (4) and (5) immediately whenever

they may happen to be required, the student need only remember

the construction of the triangle PQB, and let its sides become

infinitesimal.

Ex. 1. Find the length of the circle whose equation is jc^ + y2 _ ^[2,

Let AB be the first quadrantal arc of the circle.

In this case,
dx y

Hence, axe AB = r^l+T^VcZa; rrT-^l+^cfa;

Va'^ - x^Jo ^ y^ Jo ^/7^

=«^"-i];

dx

2
*

Therefore, the perimeter of the circle (=4 AB) = 2 Tra.

Ex. 2. Find the length of the arc of the parabola from the vertex to the

point (asi, y{). Find the length of the arc from the vertex to the end of the

latus rectum.
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Ex. 3. Find the length of the arc of the semicubical parabola ay"^ = x^

from the origin to the point (xu ?/i). Also to the point for which x = ba.

Ex. 4. Find the length of the arc of the catenary 2/ = -(eo-}-e «) from
z

the vertex to the point (aji, y{).
' Also to the point for which x = a.

Ex. 5. Find the length of the arc of the cycloid from the point at which
^ = ^0 to the point at which 6 = di. Also find the length of a complete arch

of the curve.

Ex. 6. Find the entire length of the hypocycloid x^ -\-
y'^ = a^.

Ex. 7. Show that in the ellipse

a; = a sin 0, y = h cos 0,

being the complement of the eccentric angle of the point (x, ?/), the arc s

measured from the extremity of the minor axis is

s = a\ Vl — e^sin^^ d0,

and that the entire length of the ellipse is

/»?
^

4a i Vl - e2sin2 0(?0,

in which e is the eccentricity.*

72. Lengths of curves : polar coordinates. The equation of a

curve is /(r, $)= 0, and the length s of the arc AB is required, A
being the point (rj, ^i), and B the

point (rg, 6^. On the curve take any

two points P, Q, whose coordinates

are r, 6, r -\- Ar, 6 + ^0. Draw OP,

OQ, and the chord PQ. About as

a center, and with a radius equal to

OP, describe the arc PR which inter-

sects OQm P, and draw PE^ at right

angles to OQ. Then the angle

P0Q = A6, RQ = Ar,

and arc

PR = r^e.
Fig. 40.

* This integral, which is known as "the elliptic integral of the second

kind," cannot be expressed, in a finite form, in terms of the ordinary func-

tions of mathematics. See Ex. 8, Art. 83.

INTEGRAL CALC. 11
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It is shown in the differential calculus that when A^ is an infini-

tesimal of the first order,

PRi = arc PM — ^3, an infinitesimal of the third order

;

QR^ = QR 4- 1*2, an infinitesimal of the second order

;

chord PQ = arc PQ — i'g, an infinitesimal of the third order.

In the right-angled triangle PRiQ,

chord PQ = VPRi^ + RiQ".

Hence, when ^6 approaches zero.

arc PQ- i', =^{PR-Hf+{RQ + Hy,

or, arc PQ = V(rA^ - nf + (Ar + 4)' + ^'s (1)

-V^*(s A^ ^ \AOy^ (A^)
+ 2l27^ + ^^7t_lLA^ + i'3, (2)

which differs by an infinitesimal of at least the first order from

Therefore,

= 2PQ = limit^e-o^V'^-fg^Y • A^,

when Ad approaches zero, — approaches the definite limiting

dr
^^

' value — . Therefore, by the definition of a definite integral,
d6

It will be necessary to express a/i-^ "'"( ~Z )
^^ terms of before

integration is made. ^ ^

Similarly, on removing Ar from the radical sign in (1), it can

be shown that
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in which a/1 + r^l—
)
must be expressed in terms of r before inte-

gration is made. Formula (3) or (4) will be used according as it

is more convenient to take ^ or r for the independent variable.

In order to recall these formulae immediately it is only

necessary for the student to remember the construction of the

figure PRQ, and to suppose that its sides are infinitesimal.

Ex. 1. Find the length of the circumference of the circle whose equa-

tion is

r = a.

Here ^ = 0.
dd

(•2
'"de

= 2 ira.

Ex. 2. Find the length of the circle of which the equation is r = 2 a sin 0.

Ex. 3. Find the entire length of the cardioid, r = a(l — cos^).

Ex. 4. Find the arc of the spiral of Archimedes, r = ad, between the points

(n, ^i), (^2, ^2).

Ex. 5. Find the length of the hyperbolic spiral, rd = a, from (ri, ^1) to

(^2, 62).

Ex. 6. Find the length of the logarithmic spiral, r = e«^, from (1, 0*") to

(ri, ^1).

Ex. 7. Find the length of the arc of the cissoid r = 2a tan ^ sin d from the

cusp (^ = 0) to ^=-.
4

Ex. 8. Find the length of the arc of the parabola r = a sec^ - from ^ =

to d = di', also, from ^ = - - to ^ = -.
'

2 2

73. The intrinsic equation of a curve. Let PQ be the arc of a

given curve, and let s denote its length. Suppose a point starts

at P and moves along the curve towards Q. At the instant
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of starting the point moves in the direction of the tangent

P7\. In passing over the arc PQ the direction of motion

changes at every instant, until at Q the point is moving in

the direction of the tangent QT2. The total change in direc-

tion, as the point moves from P to Q, is measured by the

angle <^ between the two tangents. It will be found that a rela-

tion exists between the distance s through which the point has

moved, and the angle
<f)
by which the direction of its motion has

changed. This relation between s and <^ is called the intrinsic

l^g equation of the cwve. The form

of this equation depends only on

the nature of the curve, and the

choice of the initial point P. On
the other hand, the form of the

equation of a curve in other

systems of coordinates, for ex-

ample the rectangular and polar,

depends upon points and lines

that are independent of the curve.

Hence the term " intrinsic."

To find the intrinsic equation of a curve given in rectangular

or polar coordinates,

(1) Determine the length of arc s measured from some con-

venient starting point up to a variable point on the curve.

(2) Find the angle <^ between the tangents at the initial and

the terminal points.

(3) Eliminate the rectangular or polar variables from the equa-

tions thus found.

Fig. 41.

Ex. 1. Find the intrinsic equation of the catenary

y=|(e« + e «).

If the vertex of the curve be taken as starting point,

(1) s = ^ (e« - e -). [Ex. 4, Art. 71.]
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Also, since the tangent at the vertex is parallel with the «-axis,

X X

(2) tan<^=^ = Ke"-0.
ax

The elimination of x from (1) and (2) gives the required equation between

s and 0, viz.,

s = a tan <p.

It is easy to extend this result and show that

s = a [tan (0 + <pi) — tan <f>{]

is the intrinsic equation of the catenary when any point A is chosen for the

initial point. The angle 0i is then the angle between the tangent at the

vertex and the tangent at the point A.

Ex. 2. Find the intrinsic equation of the parabola

r= asec^-.
2

If the vertex of the parabola be taken for the initial point,

(1) s=:atan-sec-+alogtan^- + -^ [Ex. 8, Art. 72.]

Also, since the tangent at the vertex makes an angle of - with the polar

axis,

where 0' is the angle that the tangent at the point (r, 6) makes with the

polar axis. But
2 0' = e + TT.

Hence, ^ = 20.

On substituting this value of 6 in equation (1) , the intrinsic equation of

the parabola is found to be

s = a tan sec + a log tanf - + -
)

\2 4/.

EXAMPLES.

1. Find the intrinsic equation of a circle with radius r.

2. Find the intrinsic equation of the cardioid r = a(l — cos 6), the arc

being measured from the polar origin.

3. Find the intrinsic equation of the cycloid

X = a (6 — sin d)

y = a(l — cos 6) ;}
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(1) the origin being the initial point,

(2) the vertex being the initial point.

4. Find the intrinsic equation of the parabola y^ = 4 px,

(1) the vertex being the initial point,

(2) the extremity of the latus rectum being the initial point.

6. Find the intrinsic equation of the semicubical parabola 3 a?/^ = 2 x^,

taking the origin for initial point.

6. Find the intrinsic equation of the curve y = a log sec -, taking the

origin for the initial point.

7. Find the intrinsic equation of the logarithmic spiral r = ae«^.

8. Find the intrinsic equation of the tractrix

x=v3^3^+ciog "+^"'-y^
y

taking the point (0, c) as the initial point.

9. Find the intrinsic equation of the hypocycloid x* + y* = a^, taking

any one of the cusps as initial point.

74. Areas of surfaces of solids of revolution. Suppose that the

surface is generated by the revolution about the a^axis of the

arc AB of the curve whose equation is y —f(x) ; and let the coor-

RT L S

Fig. 42.

dinates of the points A, B, be a^i, y^ and rcj, t/j) respectively.

Take (Fig. 42) any two points on the curve, say P, Q, whose

coordinates are a;, y^ and x + Ax, y + Ay. Draw the chord PQ
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and the ordinates RP^ SQ,

and suppose that LM is an

ordinate which is not less, and

that TN is an ordinate which

is not greater than any ordi-

nate that can be drawn from

the SiYcPNMQ to the ic-axis.

(In Fig. 43, LM coincides

with SQj and TJ^ coincides

with EP.) Through JV, M,

draw lines PiQi, Afe parallel

to the ic-axis and equal in ^^'
'

length to the arc PNMQ. On the revolution of the arc AB
about OXj each point in AB describes a circle with its ordinate

as radius.

The surface generated by arc PNMQ
527riJf X arcPQ,

and ^ 2 vTN x arc PQ.

When Aa? is an infinitesimal of the first order,

arc PQ = chord PQ+ i^, an infinitesimal of at least the third order;

LM= BP+i, an infinitesimal of at least the first order;

71^= MP—i', an infinitesimal of at least the first order.

Hence, since the chord PQ =\/l + (— ) Ace, it follows that

< surface generated by arc PQ

<
Therefore,

2.(2/ + »)(Vl +
(gJ^-

+ ^a)-

liiniW^„^2V^3/ - f'V"\|l+r||YAa! + i^
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^ surface generated by AB

5

*= a;8

By a fundamental theorem * the least and the greatest expres-

sions in this inequality are each equal to

limitAa,=o^2 ^y^l-\-f^\ Ax.

Hence, surface generated by AB

= limitAa.^0^ 2 Tryyjl +(t^) Aa;.

When Ao; approaches zero, —^ takes a definite limiting value,
, Ax

namely -^- Therefore, by the definition of a definite integral,
cix

area of surface =
|J^'

2 nyyjl + (^Y dx. (1)

It is necessary to express the function under the sign of inte-

gration in terms of x before integration is performed. If

be used for the length of the chord, there will result,

area of surface = j'^'2ir2/^l + (^Y^V* (2)

Formula (1) or formula (2) is taken according as it is more

convenient to choose x oy y for the independent variable.

The surface generated by the revolution of AB about the y-axis

is given by the formulae,

See Note D, Appendix.
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(3)

(4)

The student is advised to deduce these formulae for himself.

The expressions under the sign of integration in formulae (1),

(2) may both be written 2iryds by Art. 71, and those in formulae

(3), (4) may both be written 2 irx ds. In order to recall immedi-

ately a formula for the area of a surface of revolution, it is only

necessary to remember that the area traced out by an infinitesi-

mal arc in its revolution about any line is equal to the product of

the length of the infinitesimal arc by the length of the circle

which is described by a point on the arc.

Ex. 1. Find the surface generated by the revolution of a semicircle of

radius a about its diameter.

Let the diameter be the x-axis,

and the origin be at the center

;

the equation of the curve will be

a;2 + y2 = 052.

Surface generated by ABA'
about a;-axis

^, o
Fig. 44.

a;2 +

Hence,

_a2

surface = 2ira\ ax

= 4 7ra2.

Ex. 2. Find the surface of the prolate spheroid obtained by revolving

about the x-axis the ellipse b'^x'^ + a'^y^ = a^b^.

Ex. 3. Find the surface generated by revolving about the x-axis the

parabola y2 _ 4 ^x. Show that the curved surface of the figure generated

by the arc between the vertex and the latus rectum is 1.219 times the area

of its base.
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Ex. 4. Find the surface generated by revolving about the jz-axis the

/ - — -\
catenary y = -(e« + e

"J
from ic = to x = a.

Ex. 6. Find the entire surface generated by revolving about the a;-axis

the hypocycloid x* + y* = a*

Ex. 6. A quadrant of a circle of radius a revolves about the tangent at

one extremity. Find the area of the curved surface generated.

Ex. 7. The cardioid r = a (1 + cos d) revolves about the initial line.

Find the area of the surface generated.

75. Areas of surfaces whose equations have the form z=fipc,y).

Areas of surfaces of revolution were considered in the last article.

A more general case will now be discussed. In the explanation

of the following method for measuring the area of a surface,

reference will be made to these two geometrical propositions

:

(a) The area of the orthogonal projection of a plane area upon

a second plane is equal to the area of the portion projected multi-

plied by the cosine of the angle between the planes. (See C.

Smith, Solid Geometry^ Art. 31.)

(6) If the equation of a surface be in the form z =f(x, y), the

cosine of the angle between the ic?/-plane and the tangent plane at

any point (Xj y, z) of the surface is

MiHi)T-
(See C. Smith, Solid Geometry^ Arts. 206, 26.)

Let z = /(a?, y) be the equation of the surface BFCMALB
whose area is required. Take two points P, Q, whose coordinates

are a;, y, «, a; + Aa?, y + i^y, z + Lz, respectively. Through P and

Q pass planes parallel to the yz-plane and let them intersect the

surface in the arcs ML, MiLy Also pass planes through P, Q,

parallel to the za^-plane. The curvilinear figure PQ is thus

formed. The projection of the surface PQ on the a:y-plane is the

rectangle P^Qi whose area is Ax Ay. When Aa;, Ay approach zero,

the point Q comes infinitely close to P; and the curvilinear sur-
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face PQy which is then infinitesimal, approaches coincidence with

that portion of the tangent plane at P, which also has PiQi for its

projection on the icy-plane. The area of PiQi also becomes dxdy.

Fig. 45.

Now let Q be infinitely near to P. If y is the angle between the

a;?/-plane and the tangent plane at P, it follows from (a) and the

remarks which have just been made, that

Hence,

area PiQi = area PQ • cos y.

area PQ = area P^Qi • sec y

= dx dy sec y.

Therefore, by (6), area PQ = V^ + (||T+(|^T^^^^*

The summation of all the infinitesimal surfaces PQ in the strip

LMMiLi gives

area ofst.px.r. = [jV+(|)%(|J^.] Ax.
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The summation of all the strips like LMi in the surface

BFCMALB gives

x=OA y= SL , ;

area of surface J5F(7iIfAL5=r [ C V +(||T+(|^Y^^ |^-^'

or, abbreviating in the usual way,

The limits y = SL, x = OA can be determined from the equa-

tion of the surface. It is necessary to express the function under

the signs of integration in terms of x and y. It may happen that

a more convenient form of the equation of the surface is either

x = f(y,z), or y=f(z,x). The area of the surface will then be

the value of either one or the other of the double integrals

between the proper limits of integration.

In some cases, there are two surfaces each of which intercepts

a portion of the other. In finding the area of the intercepted

portion of one of the surfaces, it is necessary to obtain the partial

derivatives that are required in the formulae of integration, from

the equation of the surface whose partial area is being sought.

This is illustrated in Ex. 2.

Ex. 1. Find the surface of the sphere whose equation is

a;2 + 2/^ + ^2 = 0(2.

Let 0-ABC (Fig. 46) be one eighth of the sphere. In this case,

dz^_xdz^_y,
dx z' By z*

and hence 1 1 l^'^'Y 1 (^'Y 1 1

^'
1

^' «'- «'

^'\d'x) 'IJ -' '.2',2-,2-«2_^2_y2
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x=OA y = SL

Therefore, area of surface ABC = f ( J\^{^W I^Ydx
Lo /=()^ ^^^1 ^^yi

Jo Jo Va^ - ic2 - 2/2

Jo L v'a2 - a;2Jo

2 Jo
'

dy

dx

Hence, area of all the surface of the sphere is 4 Tra^. (Compare Ex. 1,

Art. 74.)

Ex. 2. The center of a sphere, whose radius is «, is on the surface of a

right cylinder the radius of whose base is \ a. Find the surface of the cylin-

der intercepted by the sphere. On taking the origin at the center of the

Pig. 46.

sphere, an element of the cylinder for the ^-axis and a diameter of a right

section of the cylinder for the a>-axis, the equation of the sphere will be

X2 + y2 + ;22 = tt^

and the equation of the cylinder, x'^ \- y^ = ax.
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The area of the strip CP will first be found, and then the strips in the

cylindrical surface APBOCA will be summed. The element of surface in

the strip CP is dx dz. Hence,

Cylindrical surface intercepted =4 APBOCA

Since the surface required is on the cylinder, the partial derivatives must

be derived from the second of the equations above. Hence,

dy _ a-2x dy_Q
dx 2y ' dz

Also, CP^ =.z^ = a^ — (x^ + y^}j since P is on the sphere,

and hence, = a^ _ ax^ since P is on the cylinder.

Moreover, OA = a.

Therefore, the cylindrical surface intercepted

-rr""[^-(^it--
But on the cylinder, y'^ = ax — ic^. Hence,

the intercepted cylindrical surface

Jo Jo

^«^-«' dxdz

Vax — «=*

•^0 a//,7- — nfi Jo ^X

Ex. 3. In the preceding example, find the surface of the sphere inter-

cepted by the cylinder.

Ex. 4. Find the area of the portion of the surface of the sphere

x^-\-y^ + z^ = 2ay
lying within the paraboloid

y = Ax^-^ Bz'^.

76. Mean values. The mean value of n quantities is the nth

part of their sum. Let <f>(x) be any continuous function of x,
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and let an interval, b — a,he divided into n parts, each equal to h.

The mean value of the n quantities,

<f>(a), <i>(a-\-Ji), <l>(a + 2h), ..., <t>{a + (n-l)h),

<f>(a) + cf> (a +h) + <f>(a-\-2h)-{-"' + <t>(a-{-n-lh)
IS ———

»

n

Since n =
~

, this mean value is
h

<li(a)h 4- <^(a + ^)A + ... + <^(a -f- yi - lh)h

b — a

Now suppose that x takes all the possible values, infinite in

number, that are in the interval between a and b. Then, n is

infinite, h is infinitesimal, and the number of terms in the last

numerator is infinite. The sum of all these terms, by Art. 4, is

expressed by

</) (x) dx.£
Hence, the mean value of all the values that a continuous

function,
<f>

(x), can take in the interval 6 — a for a; is

£(«') dx

b — a

This is usually called the mean value of the function <^{x) over

the range b — a. A geometric conception of the mean value was

given in Art. 7 (c). A more general definition of mean value is

given in Art. 77.

It is necessary to understand clearly the law according to

which the successive values of the function are taken. Exs. 1, 2,

Exs. G, 7, and Exs. 12, 13, will serve to illustrate this remark.

Ex. 1. Find the mean velocity of a body when falling from rest, the

velocities being taken at equal intervals of time.

In the case of a body falling from rest, v = \gt. Hence, calling V the

mean velocity for a time ii,
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7yvdt

y — t=o

h h Jo

that is, the mean velocity is one half the final velocity.

Ex. 2. In the case of a body that falls from rest, find the mean of the

velocities which the body has at equal intervals of space. It is known that,

if s is the distance through which a body has fallen on starting from rest,

and V is the velocity required,

»2_2grs.
Hence, the mean velocity,

•-"1

V=- f V^ds = |\/2^ = fvi;
Si »/„

that is, the mean of the equal-distance velocities is equal to two thirds of the

final velocity.

Ex. 3. Find the average value of the function Saj^ + Sx — 7as x varies

continuously from 1 to 4.

Ex.4. Find the average value of the function x^ — Sx"^ -{2x ^ 1 as x

varies continuously from to 3.

Ex. 5. Find the average ordinate drawn,

(a) in the curve, y = a:'^ + x + 1 between the abscissas 2, 3
;

(6) in the curve, y =(x+ l)(x + 2) between the abscissas 1, 3

;

(c) in the curve, x* 4- ax^ + a'V + 62^ = between the abscissas a, 0.

Ex. 6. Find the mean length of the ordinates of a semicircle (radius a),

the ordinates being erected at equidistant intervals on the diameter.

Ex. 7. Find the mean length of the ordinates of a semicircle (radius «),

the ordinates being drawn at equidistant intervals on the arc.

Ex. 8. Find the mean value of sin d as 6 varies from to ^

Ex. 9. Find the mean distance of the points on the circumference of a

circle of radius a, from a fixed point on the circumference.

Ex. 10. Find the mean latitude of all the places north of the equator.

Ex. 11. A number n is divided at rarulom into two parts. Find the mean

value of their product.

Ex. 12. Show that the mean of the squares on the diameters of an ellipse

that are drawn at equal angular intervals is equal to tlie rectangle contained

by the major and minor axes.
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Ex. 13. Show that the mean of the squares on the diameters of an ellipse

that are drawn at points on the curve whose eccentric angles differ succes-

sively by equal amounts, is equal to one half the sum of the squares on the

major and minor axes.

77. A more general definition of mean value. In Exs. 1, o, 4.

below, " the range " over which the function (in these cases, the

distance of a point) varies, is a plane area. In Ex. 2, the range

is a curvilinear area ; and in Exs. 5, 6, it is a portion of space.

The following may be taken for the definition of the mean value

of a function, whatever the range may be

:

r The mean yalue of a 1

I
function throughout

[
=

[ any range J

Zr (The value of the function for each

I

element of the range) x (the ele-

[ ment of the range)

The range

in which the summation in the numerator is made throughout

the whole of the range. The mean value considered in Art. 76

is merely a special case.

Ex. 1. Find the mean distance of a fixed point on the circumference of a

circle of radius a from all points within the circle.

On taking the fixed point for the pole and the tangent thereat for the

initial line, the value of the function (in this case the distance) at any point

(r, e) is r. The element of the range

(in this case an area) at the point is

rdQdr. This is shown in Fig. 47.

Hence,

\ \ r"dddr

the mean distance —

XT'

3 Jo

r dd dr

sin3 edd

32 a = 1 .132 a.

(See Ex. 1, Art. 67.)

INTEGRAL CALC. — 12
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Ex. 2. Find the mean length of the ordinates drawn from all points on

the curved surface of a hemisphere of radius a to its diametral plane.

Ex. 3. Find the mean length of the ordinates drawn from all the points of

its diameti-al plane to the surface of the hemisphere of radius a.

Ex. 4. Find the mean square of the distance of a point within a given

square (side = 2 a) from the center of the square.

Ex. 6. Find the mean distance of all the points within a sphere of radius a

from a given point on the surface.

Ex. 6. Find the mean distance of all the points within a sphere of radius a

from the center.

EXAMPLES ON CHAPTER IX.

1. Find the volume of a sphere of radius a by means of a single integra-

tion. (Suppose that the sphere is made up of infinitely thin concentric

spherical shells of thickness dr. The volume of each shell = 4 irr'^dr ; hence

volume of sphere = 4 tt t r^dr = f ira^.

Jo

2. Find the volume and surface generated by revolving about the y-axis

the ellipse b'^x^ + a^y'^ = a'^b^.

3. Find the surface generated by the revolution about the y-axis of the arc

of the parabola y^ = iax from the origin to the point (x, y).

8 a^
4. Find the volume generated by revolving the witch y = ———— about

'J. ^ J.
x^ + 4:a-^

Its asymptote.

6. Find the convex surface of the cone generated by revolving about the

a-axis the line joining the origin and the point (a, 6).

6. Find the surface of the torus generated by revolving about the x-axis

the circle x^ -\- (y — b)^ = a^.

7. On the double ordinates of the ellipse ^ + ^=1, and in planes per-
a^ b^

pendicular to that of the ellipse, isosceles triangles of vertical angle 2 a are

described. Find the volume of the surface thus constructed.

8. Two cylinders of equal altitude h have a circle of radius a for their

common upper base. Their lower bases are tangent to each other. Find the

volume common to the two cylinders.

9. Find the volume inclosed by two right circular cylinders of equal

radius a whose axes intersect at right angles. Also, find tlie surface of one

intercepted by the other.

i
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10. Find the volume of the solid contained between

the paraboloid of revolution, x"^ + y'^ = az\

the cylinder, x'^ -\-
y'^ = 2 ax

i

and the plane, z = 0.

11. Find the entire volume bounded by the surface

x^ -{-y^ + z^ = a*.

12. An arc of a circle revolves about its chord. Find the volume and sur-

face of the solid generated, a being the radius, and 2 a the angular measure of

the arc.

13. A cycloid revolves about the tangent at the vertex. Find the surface

and volume of the solid generated.

14. A cycloid revolves about its base. Find the area of the surface

generated.

15. A cycloid revolves about its axis. Find the surface and volume
generated.

16. A quadrant of an ellipse revolves round a tangent at the end of the

minor axis of the ellipse. Find the volume of the solid generated.

17. If h be the radius of the middle section of a cask, a the radius of

either end, and h its length, find the volume of the cask, assuming that the

generating curve is an arc of a parabola.

18. Find the length of the curve Qay^ = x(x — Z ay from « = to « = 3 o.

19. Find the length of the logarithmic curve y = ca''.

20. Find the length of an arch of the epicycloid,

a; = (a + 6) cos ^ - 6 cos ^-±-^ ^,
b

y=(a + b) smd-bsin^^^^d.

21. Find the length of an arc of the evolute of the parabola y^^Apx,
namely,

27 py^ = 4 (x- 2 py

from the point where x = 2p to the point where x = Sp. Also, find the

length of arc of the preceding curve from the cusp (cc = 2p) to the point

where it intersects the parabola (at the point for which x = Sp).
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22. Find the length of the arc of the cui've y = log sin x between x = -

and x = -•

2

23. Find the length of the arc of the evolute of the circle,

x = a(cos^ 4- ^sin0),

y = a(sin^ — ^cos0),

from ^ = to ^ = a.

24. Find the entire length of the curve r = asin*-.
o

25. Find the length of arc of the spiral r = m^, from e = to = ^i.



CHAPTER X

APPLICATIONS TO MECHANICS

78. Mass and density. This chapter is introduced for the

purpose of giving the student further examples of the applica-

tion of the fundamental principle of the integral calculus, and

of affording him additional opportunity for practice in integrar

tion. The definitions of mechanics that are required in what

follows are merely stated, but are not discussed. They will be

familiar to those who have had the advantage of an elementary

course in that subject. Other readers can only assume these

definitions as data for problems in integration.

Mass. The mass of a body is usually defined as " the quantity

of matter which it contains," and is specified in terms of the

mass of a standard body. In English-speaking countries, for

ordinary purposes, the standard mass is a certain bar of plati-

num marked "P.S. 1844.11b.," which is called the "imperial

standard pound avoirdupois," and is preserved at the Office of

the Exchequer in London. Any mass equal to this standard

mass is then a unit of mass. For scientific purposes in general,

and in countries where the metric system is adopted, the standard

of mass is the "kilogramme des archives," a bar of platinum

kept in the Palais des Archives in Paris. A mass equal to one

thousandth of this standard is then the unit of mass ; this unit

is called the gram. The mass of a body should not be con-

founded with its weight. The weight of a body depends upon

its distance from the center of the earth, but its mass is inde-

pendent of its position.

Density. The mean density of a body is the quotient of its

mass by its volume. The density at a given point of a body is

167
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the quotient of the mass of an infinitesimal portion of the body

surrounding the given point by the volume of the same portion.

If the density of a body is the same at all of its points, it is said

to be homogeneous.

79. Center of mass. Suppose that there is a system of parti-

cles whose masses are mi, m2, •••, and whose distances from a

given plane are rj, rg, •••. There is a point whose distance D
from the given plane, no matter what plane it may be, always

satisfies the condition

mi-\-m2-\— •
'

that is, the condition

D =^ (2)

This point is the center of mass. Iii other words, the distance

of the center of mass of a system of particles from any plane

is equal to the sum of the products of the masses of the parti-

cles into their distances from the plane, divided by the total

mass of the system. The center of gravity of a body, when it

has one, coincides with the center of mass, and the former term

is often used for the latter. The position of a point is known

if its distances from three planes, no two of which are parallel

to each other, are known. If Xi, y^ Zi, x^y 2/2, ^2? ••• are the coordi-

nates of the particles of mass mi, m2, •••, respectively, and if

X, y, z are the coordinates of their center of mass, then by (2)

S = ?^; y=^ -z = ^^^ (3)^m' '^ ^m' 2m ^ ^

In cases in which matter is continuously distributed,— for

example, as in a bar, a solid sphere, a cylindrical shell, etc.,—
the matter in the bar, sphere, shell, etc., may be supposed to

be divided into small portions whose masses are Ami, ^wi2, •••.

If a point be taken in each of these elements, and the dis-

tances of these points from a fixed plane be 7*1, ^2, •••, then the
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smaller the portious Am the more nearly do they come to being

particles with distances Vi, r^, ••, from the fixed plane. Ulti-

mately, therefore, the distance of their center of mass from the

plane is given by

i? = limit,„.„|:^.
:S Am

In accordance with the first definition of integration this is

written,

I
rdm

I dm

Therefore, in the case of any continuous distribution of matter,

the coordinates x, y, z, of the center of mass are given by

\x dm \y dm \z dm

I din \ dm \ dm,

If p be the density at any point of a body, and dv an infini-

tesimal volume about the point,

din = p dv,

the total mass = jp<?v,

and formulae (4) become

_ \pxdv _ \pydv _ \pzdv
iic =^ 5 y =^ 5 z =^ .

Xpdv \pdv \pdv
(5)

The density p usually varies from point to point of a body, and

it is generally expressed as some function of the position of the

point. If the body is homogeneous, p is constant and can be

removed from formulae (5) by cancellation. If p be the mean

density of a non-homogeneous body, then, by the definition in

Art. 78,

Xpdv
f>=^ (6)

jdv
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If matter be supposed to be continuously distributed along a

line or curve making, as it were, a wire of infinitesimal cross-

section, or so thinly laid upon a surface, curvilinear or plane,

that the thickness of the layer may be neglected, the term "mass-

center " can also be used with reference to lines and curves, sur-

faces and plane areas. If As, ^S, AA are small elements of a

line or curve, a curvilinear surface, and a plane area respectively,

and p is the linear density or the surface density, the coordinates

of the mass-center of an arc, surface, or plane area are obtained

from formulae (5) on the substitution of ds, dS, dA respectively

for dV. Expressions for these differentials have already been

obtained in the preceding articles. The mean linear and surface

density can be obtained by making these substitutions in for-

mula (6).

Ex. 1. Find the total mass and the mean density of a very thin plate

which is the first quadrant of the circle whose equation is x'^ \- y"^ = a^, and

whose density varies at each point as xy.

If p denote the density, then by the given

condition,

that is, p = kxy^

in which k is some constant.y

i_
A

FiQ. 48.

If M denote the total mass of the quadrant,

and dm denote the mass of an infinitesimal rec-

tangle about any point,

ilf = j dm =\pdA

=17'

= \ka^

^'J^^ kxydxdy

If p be the mean density, it follows from the definition that,

jka* _ kg'

I
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Ex. 2. Find the center of mass of the thin plate described in Ex. 1.

I px (Zv i kxy X dA
Here,

\ pdv M

kC ("^
"'-'''x^ydxdy

Similarly,

M

T3«-

Ex. 3. Find the mass-center for a thin hemispherical shell, radius a, whose

density at each point of the surface varies as the distance y from the plane of

the rim.

Let the hemisphere be described by revolving the semicircle of radius a

and center O about the y-axis O Y, which is at right angles to the diameter,

the point being taken for the origin

of coordinates. Let P, whose coordi-

nates are x, y^ be any point on the

semicircle, and draw PJf, PN at

right angles to the axes of x and y

respectively. Join OP^ and denote

the angle NOP by 0.

At the point P, y = acosd
;

also at P, pec y,

that is, p = ka cos 6,

in which k is some constant. The infinitesimal arc of length ds atP describes

a zone about Y whose area is given by

dS = 2iTNPds.

or, since ds = adSy = 2 ttg sin • a dd.

The synnnetry of the figure shows that

ic = 0.

Also,

py dS 2 nka^ \
^ cos^ ^ sin ^ (

y^-7^ =
\ p dS 9 ,^«8 ( ^ pna fi fiin R r}

J'

dd

2 -nkd^ \
"^ cos sin 6 dd

Jo

fa.

Hence, the center of mass is at the point (0, | a).
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Ex. 4. Find the center of mass of a right circular cone of height h^ which

is generated by the revolution of the

line y = ax about the aj-axis, when
the density of each infinitely thin

cross-section varies as its distance

from the vertex.

Symmetry shows that the center

of mass is in the a;-axis. Suppose

that a very thin plate BS is taken

which cuts the axis of the cone at

right angles at O at a distance x

from the vertex.

The radius CB of the cross-section = ax.

The density of this thin plate, p = kx.

The volume of the tWn plate, dV=ir GB^ dx

= iraH'^dx.

Hence, x =
\pxdV kira^i x^dx

]pdV kira'^Cx^dx

Ex. 5. Find the mean density of the cone described in Ex. 4.

Ex. 6. Find the mass-center of the surface of the cone in Ex. 4.

Ex. 7. Find the mass-center of the cone generated in Ex. 4, and the mass-

center of its convex surface when the density is uniform.

Ex. 8. Find the mass-center of a quadrantal arc of the hypocycloid

x^ + ifi = a^.

Ex. 9. Find the mass-center of the convex surface of a hemisphere of

radius 10.

Ex. 10. The quadrant of a circle of radius a revolves about the tangent

at one extremity
;
prove that the distance of the mass-center of the generated

curved surface from the vertex is .876 a.

Ex. 11. Find the mass-center of the semicircle of x^ -\-
y"^ = a^ on the

right of the y-axis.

Ex. 12. Find the mass, the mean density, and the mass-center of the

semicircle in Ex. 11 when the density varies as the distance from the

diameter.
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Ex. 13. Find the mass-center of a circular sector of angle 2 a, taking

the origin at the center, and the x-axis along the bisector of the angle.

Ex. 14. Find the mass-center of the first quadrant of the ellipse b'^x^

4- a^y^ = a^b\

Ex. 15. Find the mass-center of the area between the parabola y^z=4: ax,

and : (a) the double ordinate for x = ^ ; (6) the ordinate foTx = h and x-axis.

Ex. 16. Show that the mass-center of the circular spandril formed by a

quadrant of a circle of radius a and the tangents at its extremities is at a

distance .2234 a from either tangent.

Ex. 17. Find the mass-center of a quadrant of the hypocycloid x^ + y^

Ex. 18. Find the mass-center of the area between the parabola x^ + y^

a^ and the axes.

Ex. 19. Find the mass-center of the area between the cissoid y^
*

and its asymptote. a — x

Ex. 20. Find the mass-center of the cardioid r = 2a{l — cosd).

Ex. 21. Find the center of mass of the solid paraboloid generated by the

revolution of ?/2 = 4 ax about the x-axis.

Ex. 22. Show that the center of mass of a solid hemisphere of uniform

density and radius a, is at a distance f a from the plane of the base.

Ex. 23. Show that the center of mass of a solid hemisphere, radius a, in

which the density varies as the distance from the diametral plane is at a dis-

tance ^ a from this plane. Also show that the mean density of this hemi-

sphere is equal to the density at a distance f a from the base.

Ex. 24. Find the center of mass of a solid hemisphere, radius a, in which

the density varies as the distance from the center of the sphere.

Ex. 25. Find the center of mass of the solid generated by the revolution

of the cardioid r = 2 a (1 — cos ^) about its axis.

80. Moment of inertia. Radius of gyration. If in any system

of particles the mass of each particle be multiplied by the square

of its distance from a given line, the sum of the products thus

obtained is called the moment of inertia of the system about that

line. Thus, if trii, mg, •••, be the masses of the several particles,
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»'i> ^21 '") their distances from the line, and I denote the moment

of inertia,

/= miVi^ -f ma^g^ + •••

;

that is, /= ^mr^. (1)

In any case in which matter is continuously distributed, as in

a solid cylinder, a shell, etc., the matter may be supposed to be

divided into small portions, Ami, ^*^2) •••• ^7 reasoning similar

to that employed in the last article, it can be shown that

^rhlm.

If matter be supposed to be distributed uniformly along a line

or curve, or upon a curvilinear surface or a plane area, the term

"moment of inertia" can also be used in reference to curves,

surfaces, and plane areas.

Let M denote the total mass of a body, namely
j
dm, and / its

moment of inertia about a given line or axis. If k satisfies the

equation

Mk^ = /;

Y 1 r^dm,
that is, if k^ =^ = i— ,

k is called the radius of gyration of the body about the given

axis.

Ex. 1. Find the moment of inertia of a rectangle of uniform density,

whose sides liave the lengths ft, d about a line which pa.sses through tlie

center of the rectangle and is parallel to the sides of length b.

The density per unit of area will be represented by unity. Let the axes

of X and y be taken parallel to the sides of the rectangle, the origin being at

the center, and let

AB = 6, BC = d.
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'dAThen /= fy^i

d b
2 J

d _b
"2 2

12

This moment of inertia is impor-

tant in calculations on beams. Since

the mass of the rectangle = bd,

M 12*
il-^.-^

A

* _Y -6 >

1

\ \

1

X

f) t

Fig. 51.

Ex. 2. Find the moment of inertia of a very thin circular plate of uniform

density of radius a about an axis through its center and perpendicular to

its plane.

Taking the density as unity per unit of area,

I=(r^dm= (r^dA

= JoJ
1-2 rdrdd

9ra*

2

/fc2 ~M~
2 _a2

2*Also,

Ex. 3. Find the moment of inertia about its axis of a right circular cone

of height h and base of radius &, the density being uniform, and m being

the mass per unit of volume.

The moment of inertia is equal

to the sum of the moments of inertia

of very thin transverse plates like

MS. If

OC= x,

then, by similar triangles,

BC='^{h-x).
h
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Hence, if dl denote the moment of inertia of the plate B8 of thickness

dx, by Ex. 2,

2A*
^ ^

Therefore, for the whole cope.

Also, k^=l =^=Ami^
' M mV imTb^h

Ex. 4. Find the radius of gyration of a uniform circular wire about its

diameter.

Ex. 5. Find the moment of inertia of the triangle formed by the axes and

a line whose intercepts are a and &, about an axis which passes through the

origin, and is at right angles to the plane of the triangle.

Ex. 6. Find the radius of gyration about its line of symmetry of an

isosceles triangle of base 2 a and altitude h.

Ex. 7. Find the moment of inertia about the oj-axis of the area between

the line and the parabola which both pass through the origin and the point

(a, 6), the axis of the parabola being along the ic-axis.

Ex. 8. Find the moments of inertia of the ellipse b-z^ + a^y^ = a^ft^ ; (a)

about the x-axis
; (6) about the y-axis

;
(c) about an axis that passes through

the center of the ellipse and is perpendicular to the plane of the ellipse.

Apply the results to the circle x^ + y^ = a^.

Ex. 9. Find the moment of inertia of the thin plate in Ex. 1, Art. 79,

about the oj-axis.

Ex. 10. Find the moment of inertia of a homogeneous ellipsoid

a^ b^ c^

about the a;-axis.

Ex. 11. Find the moment of inertia of the surface of a sphere of radius a

about a diameter, m being the mass per unit of surface.

Ex. 12. Find the moment of inertia of a solid homogeneous sphere of

radius a about a diameter, m being the mass per unit of volume.

Ex. 18. Find the moment of inertia of the semicircular plate described in

Ex. 12, Art. 79, about the diameter.

Ex. 14. Find the moment of inertia, and the radius of gyration about its

axis, of a homogeneous right circular cylinder of length I and radius B, m
being the mass per unit of volume. Also about a diameter of one end.



CHAPTER XI

APPROXIMATE INTEGRATION. INTEGRATION BY
MEANS OF SERIES. INTEGRATION BY MEANS
OF THE MEASUREMENT OF AREAS

81. Approximate integration. It was remarked in Arts. 4, 8

that in most cases in which a differential f{x) dx is given it is

not possible to find the anti-differential. In some of these

cases, however, an expression can be found that will approxi-

mately represent the indefinite integral i f(x) dx. Even if this

cannot be done, it is often possible to determine a value that

will very nearly be that of the definite integral
j f(x) dx.

Art. 82 explains a method, that of integration in series, by

means of which an indefinite integral may be expressed as a

function of x in the form of a series that contains an infinite

number of terms. An important application of this method

to another problem is given in Art. 83. Arts. 84-87 set forth

a method, that of measurement of areas, which reduces the

evaluation of a definite integral to a mere matter of careful

computation. In this connection several formulae for the ap-

proximate determination of areas are necessarily considered.

82. Integration in series. When the indefinite integral of a

given function, f(x) dx, cannot be found by any of the means

thus far considered, one of the most usual and most fruitful

methods employed is the following: The function f(x) is de-

veloped in a series in ascending or descending powers of x. If

this series is convergent within certain limits for x, the series

obtained by integrating it term by term is also convergent

177
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within the same limits.* The greater the number of terms

taken the more nearly will the new series represent if{x)dx.

Ex. 1. Find ^ ^^'ind |.
(1 + x^y

By the binomial theorem,

(1+^.5;,!
1 3 1.2 Si! 1.2.3 33^

The second member is convergent for values of x between + 1 and — 1.

Integration of both members of (1) gives

(2) I
(ix „^„ 2 3:6^2.5 x" 2-5.8 x^-

,

(! + «:«) I
1 3 .6 1 .2 32- 11 1 .2 .3 38. 16

The second member represents the required integral for values of x

between + 1 and — 1. It follows from (2) that

n dx _ , 2,2.5 1 2.5-8 1= l-:7^ +
,.

, 5,^ 3.6 1 . 2 32 - 11 1 . 2 . 3 33 . 16
(1 + x°)^

Ex. 2. Find \ e^'dx.

Since e' = 1 + z + -=— +1.21.2.3

which is convergent for all finite values of x.

* Suppose that

f(x) = r/o 4- axx -\- a^x'^ + ••• + nn-ix^-'^ + rtnX" + •••- (1)

Then (f(r)dx = a^^^f-^^f-+.-.+'-^^-^^^^ + ..: '

(2)
J 2 3 n n + I

The series in (1) is convergent wlien —"^- is less than unify for all valnos
rtn-l

of n beyond some finite number. The series in (2) is convergent when

—-— Hi^^ and therefore when ^"^
, is less than unity for all values of n

w + 1 rt„ 1 an-i
beyond a certain number. Since the convergency of both series depends

upon the same condition, the second series is convergent when tlu; first is

convergent.
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Integration of both members of (1) gives

(•2) Je.'
X^ , X

dx = c-\-x-\-^-\-—^—^i- -^
4- £r +...

3 1.2.6 1.2.3.71.2.3.4.9
Tlie second member represents the required integral for values of x

between + 1 and — 1. It follows from (2) that

'+1

J-i V 3^1 .2.5^1 .2.3.7^1 .2.3.4.9^ ;

T?v 4 C d^ ' Ex. 8. f—^. (Putsinic=^;.)

Ex. 5. (* a;3 Vl - x^ dx.

Ex. 6. fxVl -rK^dx.

VI -x5

Ex. 9. r^!^.

Ex. 10. \ — dx.
J X

(Compare Ex. 28, page 98.)
:. 11. p-^

J X
Ex. 11. \ ^ii:^ dx.

83. Expansion of functions by means of integration in series. A
function can be developed in series by means of the method

described in the last article if the expansion of its derivative is

known. The series which represents the function is obtained by

integrating the series which represents the derivative, and deter-

mining the value of the constant of integration.

Ex. 1. Expand tan-i a; in a series of ascending powers of x.

Differentiation and division give

d-ta,n-^x = -^^ = (\ -a;2 + x4-a;6 ^ ... _|.(_ i)na;2n )^a;^
1 + a:2

which is convergent when x lies between — 1 and +1.
Integrating,

tan-ia;=:c + x---f- — --+••• + (-1)''
^^""^^

3 5 7 ' 2w+l
The substitution of for x gives

rmr = c,

m being an integer ; and hence,

ryS /ic5 ^7
tan-ia; = m7r -fa:-- + •*---+ •...

3 5 7

INTEGRAL CALC. — 13
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This series* can be employed for values of cc between — 1 and + 1. It

can be used for computing the value of v. For, on putting x =— therein,

it is found that ^

whence, . = 2V3 (l -l +±- A.+ •.•).

Ex. 2. Expand f sin-i x in a series in x ; and compute the value of t by-

putting X = ^.

Ex.3. Derivet f-''dx = l-^g +^^-j-^+..., which is

convergent for all finite values of x.

Ex. 4. Show that

log(a + .)=loga + |-^^ + ^^-^^ + ...whenl.l<l;

,2 nS M
and that log(a + x) = loga + ^ -;^ + ;^--^ + ••• when

|
x] >1.

a; 2a;2 3x3 4x*

The symbol
|
x

\
denotes the absolute value of x.

Ex. 6. Derive series for log (1 + x), log (1 — x), log 2, log9.

Ex. 6. Develop log (x + Vl + x'^) in a series by integrating (1 + x^)"^ dx.

Ex. 7. § Show that

^' Vl-A:'^sin2
21^^^^ V2.4 J V2.4.6 )

\ 2.4...2n /J
k^ being less than unity. (See Ex. 9, Art. 4G.)

* It is usually called Gregory's series, after its discoverer, James Gregory

(1638-1675). It was found also by Leibniz (1646-1716).

t This expansion is due to Newton (1642-1727), and, by means of it, he

computed the value of w.

X This integral is often met in the theory of probabilities, and in certain

questions in physics. For the evaluation of
| e'^ dx when x is greater than

unity, see Laurent, Cours d'Analyse, t. III., § IV., p. 284. For the derlva-

tion of I e-'^^dx = ^ Vir, see Williamson, Integral Calculus, Ex. 4, Art. 116.

§ This integral is called the "elliptic integral of the first kind." It re-

ceived the name elliptic integral from its similarity to the integral in Ex. 8,

which represents the length of a quadrantal arc of an ellipse, and is known

as "the elliptic integral of the second kind." The integral of the first and

second kind are usually denoted by F(k, <p), E(k, 0), respectively. These

names and symbols were given by Legendre (1752-1833).
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Ex. 8. Show that

J^ "^ ^ 21 1V2 / 3V2.4 ) 5V2.4.6 y

j_/ l-3...(2n-l) \2_ n

2n-lV 2.4...n ) J
(See Ex. 9, Art. 46 ; Ex. 7, Art. 71.)

Ex. 9. Deduce the value of ir by means of the series in Ex. 1, it being

known that - = 4 tan- 1 - tan- 1 4—
4 6 239

84. Evaluation of definite integrals by the measurement of areas.

It has been seen in Arts 4, 6, that the definite integral
|

f{x) dx,

may be graphically represented, by the area included by the curve

whose equation is y =/(a;), the axis of x, and the ordinates for

which x = a, x = b'j and it has been observed that the evaluation

of the integral is equivalent to the measurement of this area.

The numerical value of the integral
|

f(x)dx, which is also the

same as that of the area just described, has been obtained up to

this point, by finding the anti-differential of f(x)dx, say (f>(x),

substituting b and a for x therein, and calculating (f>(b) — <f)
(a).

But when it is not possible to find the anti-differential of f(x) dx,

recourse must be had to other methods.

While, on the one hand, as already shown, areas may be

determined by evaluating definite integrals, on the other hand,

definite integrals may be evaluated by measuring areas. If the

anti-differential of f(x)dx is unknown, the value of
|
f(x)dx can

be found in the following way. Plot the curve y =f(x) from

x = a to x = b, erect the ordinates for which x = a, x=b, and

measure the area bounded by the curve, the axis of x, and these

ordinates. There are several rules or formulae for determining

areas of this kind. The degree of approximation to absolute

correctness depends in general only on the patience of the

calculator. These formulae, some of which are usually given in

manuals for engineers, are called " formulae for the approximate
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determination of areas," or "formulse for approximate quadra-

ture." They may be given the more general title, ^'formulm

for approximaJte integration.^^ The two rules most frequently

employed, namely, the trapezoidal rule and Simpson's one-third

rule, are discussed in Arts. 85, 86, and a rule deduced from them

is given in Art. 87. Other rules are given in the Appendix.*

It should be observed that only a numerical result is obtained

by means of these rules. The knowledge of the value of the

definite integral
| f(x) dx thus calculated does not give any clue

whatever to the expression of the indefinite integral I f(x)dx as

J*/f(x)dx has been

found in the form of a series which is convergent for values of x

between a and 6, the value of the definite integral I f{x) dx,

can be found as accurately as one pleases by taking a suffi-

ciently large number of terms. Illustrations of this remark

have been given in Exs. 1, 2, Art. 82, and in Exs. 1, 2, 7, 8,

Art. 83.

85. The trapezoidal rule. Let AKhQ a portion of a curve whose

equation may or may not be known ; and let LA, TK, be drawn

at right angles to the line

OX. It is required to find

the area AKTL contained

between the curve AK, the

line L T, and the perpendicu-

lars LA, KT.

Divide LT into 7i parts,

each equal to h, and at the

points of division erect the

perpendiculars MB, NC, •••,

SH. Draw the chords AB,

BC, '•', HK. A rule for finding the area of LAKT will now be

« See Note E.
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derived by substituting the sum of the trapezoidal areas, AM, BN,
• ", HTf for the curvilinear area LAKT; that is, by substituting

the boundary made up of the chords AB, BC, ",IIK, for the

curved line AK. On adding the trapezoidal areas beginning at

the left there is obtained,

area = ^(^L -h 5ilf) +|(^-M-+ O^) + ... +|(^^ + ^T)

= ^(AL + 2 BM-{- 2CN -{-••' +2 HS + KT)

= ^Q+l + l + -- + l + l-fp,

on writing merely the coefficients of the successive ordinates.

This mode of writing will be used also in the rules which follow.

The greater the number of parts into which ZT is divided, the

nearer will the total area of the trapezoids be to the area required.

If the equation of the curve is y =f(x), the axes being as in

the figure, and OL = a, OT=b, the lengths of the successive

ordinates beginning with LA are /(a), /(a + /i), /(a + 2/i), •••,

f{h — h), f(h). If iyT is divided into w equal parts, h = ~^, and

hence, approximately,

Jn 'in ^ \ n I

+ if[a + ^^^^^) + - + 2/(& - h) + fib) }

.

Ex.1. Evahiate i a;^^;^^ ijy tii}s method, taking unit intervals.

By the given condition, ^ = I ; and hence, n — 10. The successive ordi-

nates, since /(a:) = x2, are 0, 1, 4, 0, 10, 25, 36, 49, 64, 81, 100. Hence,

approximately,

J
x'^dx =: |§{0 + 100 + 2(1 + 4 4- 9 + 10 + 25 + 36 + 49 + 64 + 81)} ;

= 335.

r/>.3~| 10

The true value of the integral is — , that is, 3331 Had the interval
L.3 Jo

to 10 been divided into more than 10 equal parts, the approximation to the

true value would have been closer.
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Ex. 2. Show that the approximate value obtained for the above integral,

by making 20 equal intervals, is 333|.

Ex. 3. Show that the approximate value of \ logioxolx, unit intervals

being taken, is 7.990231.
"^^

86. The parabolic or Simpson's * one-third rule. The parabolic

rule for approximating to the value of the area LAKT is derived

by substituting parabolic arcs through ABC, CDE, •••, OHK, for

the arcs of the given curve passing through these points, the

axes of the parabolas being vertical, and then summing the

areas of the parabolic sections, LABCN, NCDEP, ••., ROHKTy

Fig. 54.

which are thus formed. A parabolic arc, as CDE, will more

nearly coincide with the given curve through CDE, than will

the chords CD, DE. Eor the purposes of this rule, n the num-

ber of equal parts into which LT i^ divided must be even, since

a parabolic strip is substituted for each of the consecutive pairs

of trapezoidal strips ; for example, NCDEP for ND -f DP.

The area of one of the parabolic strips, say NCDEP will first

be found. Through D draw OE' parallel to the chord CE, and

produce NC, PE to meet C'^' in C\ E'.

Thomas Simpson (1710-1761).
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The parabolic strip NGDEP= trapezoid NCEP -{- parabolic

segment CDE.

The parabolic segment CDE = two thirds of its circumscribing

parallelogram CC'E'E.

Hence, the parabolic strip

NCDEP=NPl^{NG+PE) + l\QD -^{NG+PE)]-]

= 2h(iNG-\-iQD-j-\PE)

= h]srG-\-4.QD-\-PE).
o

Application of the latter formula to each of the parabolic strips

in order beginning with the first on the left, and addition, gives,

approximately,

area LAKT = ^(1 + 4 + 2 + 4 + 2 + .- + 2 + 4 + 1),
3

in which merely the coefficients of the successive perpendiculars

LA, MB, •••, TK are written. As in the case of the trapezoidal

rule, the greater the number of equal parts into which XT' is

divided, the more nearly equal will the area thus calculated be

to the true area.

If the equation of the curve AK is y =f(x), and OL = a,

OT=b, and LT is divided into n parts, each equal to
~

, the

lengths of the successive ordinates, LA, MB, ••• TK, are f(a),

ffa + ^^=^\ ffa + 2 ^^^\ . •

., /(6). Hence, on calling these

successive lengths, yo, yi, y^, -" yn,

r/(a;)da; = ^f:^ (2/0 + 42/1 + 22/2 + 42/3 + 22/4+-
•/a O 71

+ 2 2/„-2 + 4 2/m-i + 2/«)-
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For the sake of computation, this may be put in the form,

jT /(»)^=1 ^^ [I
(2/0 + Vn) + 2 (1/1 + ya + - + 2/« i)

+ (1/2 + 2/4+ ••• + 2/n-2)J*

/»10

Ex. 1. Evaluate I x^ dx hy this method, taking n = 10.

Here, yo, yu y'l-, •••» yio» are 0, 1, 81, 625, •••, 10,000, respectively; and

hence, approximately,

f^*x4dx=|^P§^+2(l + 81 + 625+2401 + 6561) + (16+ 256+ 1296+ 4096)}

= 20001^.

The true value of the given integral is 20,000 ; thus the error is only 1|

in 20,000.

Ex. 2. Show that the value of \ logioicdx calculated by this rule for

n = 10, is 8.004704 (compare Ex. 3, Art. 85).

A comparison between these two rules is given in the following

quotation : f " The increase in accuracy (of the parabolic) over

the trapezoidal rule is usually quite notable, unless the number

of ordinates become large, in which case they both approximate

more and more closely to the true value and to each other. In a

* If n be the number of equal intervals into which the range 6 — a is

divided, the outside limit of error that the parabolic formula for integration

can have, is

/ft_ax6 /iv(av)
^

V 2 I 90?i4

in which Xr is some value of x between a and &, and p" (x) denotes the

fourth derivative of /(x). The outside limit of error in the case of the

trapezoidal rule is

12n2 -^ ^
"^'

in which f"{x) denotes the second derivative of f(x). If n is doubled, the

limit of error is reduced, therefore, to ^^ and \ of its former amount. (See

Boussinesq, Conrs iV Analyse, t. II. 1, § 262, and Markoff, Differenzen-

rechnung, § 14, pp. 67, 59.)

t This is from an article, entitled, "New Hules for Approximate Integra-

tion," in the Emjincering News (N. Y.), January 18, 1894, by Professor W.

Y. Durand of Cornell University.
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series of trials made by the author upon a number of integrals of

various forms for the purpose of testing the relative accuracy of

these rules, it was found for cases in which the locus was of single

curvature only that the trapezoidal rule required about double the

number of sections for equal accuracy with the parabolic rule.

Where the locus involves several changes of curvature, as in

lumpy and irregular curves, and the number of sections is moder-

ate, one rule is as likely to be right as the other, and both are

likely to be considerably in error. For a large number of sec-

tions, however, the parabolic rule will show its superiority as

above."

87. Durand's rule. From a discussion * on the trapezoidal and

parabolic rules. Professor Durand has deduced another rule for

which " it seems not unfair to claim substantially the full prob-

able accuracy of the parabolic rule, and practically the simplicity

in use of the trapezoidal rule." It is as follows, merely the co-

efficients of the successive ordinates being written in order from

the left

:

approximate area = h \^f\ -}-|| + l-l-l-f- " +1 + 14- Yf + fV]

;

or, approximately,

area = fe[.4 + 1.1 + 1 + 1 f ••. h 1 + 1 + 1.1 + .4].

The number of intervals may be even or odd.

Ex. 1. Find the value of \ sin d dd with 10° intervals.

The circular measure of 10° is .17453. The rule gives for the approximate

value of tlie integral,

•6(f

y sui 0dd= .17453 [.4 (sin 0° + sin 60°) + 1.1 (sin 10° + sin 50°)

+ (sin 20° + sin 30° + sin 40°)] =:= .5000075.

/*6(r n ^1(50

Since the exact value of \ sin 6 d9 is - cos (9 , or .5, the difference

between the above approximate and the true values of this integi'al is not

more than one part in 66,666.

* In the article mentioned in the preceding footnote.
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/•lO

Ex. 2. Show that \ x^ dx calculated by this rule with unit intervals gives
Jo

a difference of one part in 3333.

ri2
Ex. 3. Show that \ logio x calculated by this rule with unit intervals is

8.004062. (Compare with Ex. 3, Art. 85, and Ex. 2, Art. 86.)

88. The planimeter. Attention has been drawn to the fact that

the value of a definite integral is also the value of a certain plane

area, and that, consequently, the measurement of the area is

equivalent to the evaluation of the integral. In Arts. 85, 86, 87,

rules are given for approximately determining plane areas, and

other rules therefor are given in the Appendix.* These areas can

be measured exactly by instruments called mechanical integrators

or planimeters. A planimeter measures the area of any plane

figure by the passage of a tracer round about the perimeter of the

figure, the readings being given by a self-recording apparatus.

There are several kinds of planimeters, but they all have certain

fundamental properties in common. The first planimeter . was

invented by the Bavarian engineer, J. M. Hermann, in 1814.

Amsler's polar planimeter, which was invented by Jacob Amsler

when a student at Konigsberg in 1854, is the most popular on

account of its simplicity and handiness in use. Thousands of

them have been made at his works in Schaifhausen.

The Amsler planimeter is shown in Fig. 55. It consists of two

bars, (a) the radius bar, and (b) the pole arm, jointed at the point

C. The tracing point P, which now coincides with the point B
of the figure ABDE, is carried round the curve, and the roller m,

which partly rolls and partly slips, gives the area of the figure

;

and by means of the graduated dial h, and the vernier v in con-

nection with the roller m, the result is given correctly in four

figures. The sleeve H cslu be placed in different positions along

the pole-arm b, and fixed by a screw s so as to give readings in

different required units. A weight at w is placed upon the bar to

* See Note E.
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keep the needle point in its place, but in instruments by some

other makers T is a pivot in a much larger weight, which rests

on the paper. The accuracy of the reading depends upon the

accuracy with which the tracing point follows the curve.*

Fig. 56.

Professor O. Henrici's Report on Planimeters (Report of the British

Association for the Advancement of Science, 1894, pp. 496-523) contains

a sketch of the history of planimeters, the geometrical theory of gener-

ating areas, descriptions of early planimeters, a discussion on Amsler's

planimeter, and a description of some recent planimeters. Professor H, S.

Hele Shaw's paper on Mechanical Integrators (Proceedings of the Institution

of Civil Engineers, Vol. 82, 1885, pp. 75-143) gives an account of the theory

and the practical advantages of several varieties of planimeters. The descrip-

tion given above is from this paper. An explanation of the theory of

Amsler's planimeter is given by Mr. J. MacFarlane Gray in Carr's Synopsis

of Mathematics. There is a discussion on planimeters in Professor R. C.

Carpenter's Text-book of Experimental Engineering, pp. 24-49.

* For the fundamental theory of the planimeter, see Note F, Appendix.



CHAPTER XII

INTEGRAL CURVES

89. Introduction. A first integral curve was defined in Art. 15.

The student is advised to review that article thoroughly before

proceeding further. In this chapter the subject of integral curves

will be studied more fully, and some of .their applications to

mechanics will be pointed out. Diiferentiation under the sign of

integration is an important topic in the integral calculus. Only

a very special case, however, is necessary in what follows : this

case is considered in Art. 90. Arts. 92, 93, 94, contain an

exposition of the simpler properties of integral curves and a few

examples of their usefulness. Their applications are of especial

value to the student of engineering. For the proper understand-

ing of several of them, a better acquaintance with the theorems

of mechanics is required than some readers of the calculus may

be presumed to have at this stage. Accordingly, a further expo-

sition of the service that may be rendered by these curves is

given in the Appendix for purposes of future reference. Articles

94, 95, discuss the practical plotting of integral curves.*

90. Special case of differentiation under the sign of integration.

A special case of differentiation under tlie sign of integration

Arts. 91-95 and the related matter in the Appendix are taken with some

slight but no essential change, from an article entitled Integral Curves,

by Professor W. F. Durand, Principal of the Graduate School of Marine

Engineering and Naval Architecture, Cornell University. The article, wliich

appeared in the Sibley Journal of Engineering, January, 1897, is practi-

cally all reproduced here. This chapter has also had the benefit of Professor

Durand's revision.

190
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with respect to one of the limits which is also involved in the

function under the sign will be considered. Let

^=J'(P - ^Yf{^) dx. (1)

The differential coefficient — will be derived by the funda-
db

"^

mental method employed in differentiation, namely, by giving an

increment to the variable, in this case b, then finding the cor-

responding increment in /, and finally obtaining the ratio of

these two increments when the increment of b approaches zero.

Suppose that b receives an increment A6, then from (1)

J-»6+A6 (6 -f A6 - xyf(x) dx.

Hence

Jr»b+M /*b

1 (6 + A6 - xyf(x) dx- i (b- xYf{x) dx
;

*A)

whence, by Art. 7 (6),

(6 + A& - xYfix) dx-\- \ (b + ^b- xyf(x) dx

- C (b - xyf(x) dx= r'[(6 + A6 - xy - (b - xy^f(x) dx

Xb+Ab
(b + Ab- xyf(x) dx.

From this, by Art. 7 (c),

A/= r l(b -j-Ab- xy -(b- xy']f(x) dx
Jo

-{- Ablb + Ab - (b + e ' Ab)l "/(^ + ^
' ^^)f

in which <1.

Hence, remarking that Ab is independent of x, and can there-

fore be put under the integration sign,

Jo A6

AT
Ab c/o
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Therefore, letting A6 approach zero,

§= «j^' (6 -»)"-'/(«') ote. (2)

This result will be required in Art. 93.

91. Integral curves defined. Their analytical relations. A more

general definition of an integral curve than that given in Art. 15

will now be introduced. In what follows, a number of curves

will be spoken of together. In order to distinguish between

them, the system of ordinates, that is, the 2/'s, for each of the

several curves will be denoted by a subscript number.

If y=m>
or, for the sake of distinction,

y.=f{^) (1)

be the equation of a given curve, the curve whose equation is

= lCyod^ (2)Vi

is called a first integral curve of the curve whose equation is (1).

The latter is called the fundamental curve. Since
|
ydxi^ of

the second dimension, and yi should be linear, the constant factor

- is introduced in (2), in which a is a linear quantity and has a
a
magnitude that will make equation (2) convenient for plotting.

It may be called a scale factor. In the definition in Art. 15 the

scale factor was unity.

From (2) on differentiation,

ax a

Hence, as x varies, the slopes of the first integral curve vary as

the ordinates of the fundamental ; and therefore the former can

be represented by the latter, and vice versa.
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The first integral curve (2) also has a first integral, the latter

has a first integral, and so on. These successive integral curves

are called the second, third, etc., integral curves of the original or

fundamental curve. On using the constant linear quantities, &,

c, • • • to, as scale factors for the sake of plotting the curves con-

veniently, and on distinguishing by different subscripts the ordi-

nates that belong to the various curves, the latter will have the

following equations:

Fundamental, yo—f(x)
; (1)

1 C
first integral, y\ = -

\ Vadx-, (2)
(X«/0

second integral, 2/2 = - I yi(Zaj =— I \ y^doi?) (3)

third integral, y3 = - i y2dx = —- f C C yoda^] (4)
cJo aocJa Jo Ja

nth integral curve,

2/« = - Cyn-idx = —^ r r r... Cyodx-. (S)
wJo ahc '"WJo Jo Jo Jo

From equation (2)

cto-a^'"'

from (3) dx b"' at

and hence.
dx'-ab.y<'

And in general,

d'y„ 1

dx' abc---w

(7)

yo- (8)

Equation (8) shows that as x varies, the nth derivatives of the

wth integral curve vary as the ordinates of the fundamental

. curve ; and therefore, the former can be represented by the latter.
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92. Simple geometrical relations of integral curves. In Fig. 56

RPy OA, OB, OC, represent the fundamental, and the first,

second, and third integral curves respectively, whose equations

are (1), (2), (3), (4), of Art. 91.

-Ctegli^
I
C^TV^

(a) As X increases, and so long as the fundamental curve RP
lies above the i»-axis, the ordinates of the lirst integral OA will

increase, and the tangent to OA will make a positive angle with

the a>-axis; when RP lies below the a^axis the tangent to OA
makes a negative angle with the a>axis ; when RP crosses the

it'-axis, the tangent to OA is parallel to the a;-axis. These prop-

erties follow from equations (2) and (6), Art. 91.

(b) At points for which the ordinate of the first integral curve

is a maximum or a minimum.

dy

and there also, by (6),

dx

2/0

? = 0;

0.

Hence, to a zero value of the ordinate of the fundamental there

corresponds a maximum or a minimum value of an ordinate of

the first integral curve.
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(c) At points where an ordinate of the fundamental is a maxi-

mum or a minimum,

and at points where the first integral curve has a point of in-

flexion,

Differentiation of the members of equation (6) shows that

^=Owhent^=0.
dar dx

Hence, to a point on the fundamental at which there is a

maximum or a minimum value of the ordinate, there corresponds

a point of inflexion on the first integral curve.

93. Simple mechanical relations and applications of integral

curves. Successive moments of an area about a line. If each in-

finitesimal portion of a plane area be multiplied by its distance

from a given line, the sum of all these products is called the

moment of first degree of the area about the line. If each of the

infinitesimal portions of the area be multiplied by the square of

its distance from the given line, the sum of all the products is

called the moment of second degree of the area with respect to the

line. The latter is the moment of inertia of the area about

the line, examples of which were shown in Art. 80. The moment

of first degree is usually called the statical moment. In general,

if each infinitesimal portion of an area be multiplied by the ni\i

power of its distance from a given line, the sum of all these

products is called the moment of the nth degree of the area about

the line. For the sake of brevity, this may be called the nth

moment.

Thus (Fig. 56), lay off OX = x^, and erect the ordinate AP at

X, and consider | ^y^dx, the area ORPX, between the funda-

INTEGRAL CALC. — 14
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mental, the axes, and the ordinate AP. If the successive moments

of this area be taken about the ordinate AP for which x = Xi, and

these moments be denoted by M^ Mz, •••, M^, in order, then

the first moment, Mi= I \xi — x)ydx; (1)

(xi — xyy dx
; (2)

the nth moment, JIif„=
j \xi — xyydx. (3)
Jo

In this notation, J^o = I *(^i — ^fy ^^9

=
j V ^^j ^^^ 3,rea. (4)

(a) Differentiation of (3) with respect to Xi will give by equa-

tion (2), Art. 90,

dM^
dXi

-»= n I {xi — xY'^y da
?! Jo

that is, ——^ = nMn-i. (5)
dxi

Hence, M^ = nC'M,^_.idxi.

Since dx^ is an infinitesimal distance along the aj-axis, it can be

written dx, and hence

M^ = nJ^''M„_^dx. (6)

By successive application of (6) there will finally be obtained,

M„ = nl Pp.. pModaf^. (7)

That is, the nth moment of the area ORPX about an ordinate

distant Xi from the origin is equal to factorial n times the rith
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integral of the moment of degree zero for the same area. On
substituting for Mq in (7) its value from (4), there is obtained,

Hence, the value of the nth moment of the area of y=zf(x)

above described about an ordinate distant Xi from the origin, is

equal to factorial 7i times the ordinate of the (n + l)th integral

curve at x = Xi; and, therefore, the nth moment may be repre-

sented by this ordinate. On using Y^^i to denote the ordinate of

the (n + l)th integral curve at x = Xi, this may be expressed by

In particular, the statical moment (1) is represented by the

corresponding ordinate of the second integral curve, and the mo-

ment of inertia (2) by twice the corresponding ordinate of the

third integral curve. Thus in Fig. 56,

the area ORPX is represented by AX;
its statical moment about APis represented by BX;
and its moment of inertia about AP by 2 OX

Suppose that the scale factors used in plotting the three inte-

gral curves, each from the one of next lower order, are a, b, c,

respectively, as indicated in equations (2), (3), (4), Art. 91.

Then,
SiYesiORPX=a-AX',

the statical moment of ORPX about AP = ah • BX;
the moment of inertia of ORPX about AP=2 abc • OX.

(b) If G is the center of mass (or center of gravity) of ORPX,

its distance HX from AP, by Art. 79, is determined thus

:

1 Mo ay^ AX
ydx

s:
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(c) If k is the radius of gyration of the area ORPX about

APy theu by (Art. 80),

,2

_

Moment of Inertia about AP_ 2 ahcy^ —Oh ^^
Area a?/, AX

For further applications to mechanics, and some general re-

marks on the use of these curves in engineering problems, see

Appendix. The reader is recommended to glance at the latter

remarks now.

94. Practical determination of an integral curve from its funda-

mental curve. The integraph. Suppose that the equation of the

fundamental curve is y =f(x). The ordinates of the first integral

curve that correspond to successive values x^, ajg, ••, a;„, of the

abscissas are

respectively. These may be determined by the ordinary rules

for integration when the functions under the sign of integration

are integrable. If the latter condition does not hold, recourse

can be had to some of the various methods of niechanical and

approximate integration described in Arts. 85-88. It will be

necessary to do this also, when the fundamental has been plotted

merely from a knowledge of the ordinates that correspond to

particular abscissas, the equation of the curve being unknown.

For example, in Fig. 57, the area of each successive section

between the ordinates of the fundamental may be found with a

planimeter, and the ordinates of the integral curve, which is

shown by the dotted line, may be found by successive additions.

As an instrumental check, it is well from time to time to go

around the entire area between the y-a.x{s and the ordinate in

question, and compare the result with the total area summed to

that point. Numerical means of integration may also be em-

ployed. The trapezoidal rule and the parabolic rule can be

readily used for finding successive increments of area in the case
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of the fundamental, and hence for finding successive increments

of the ordinates of the first integral curve.

In whatever way the integral curve may be derived from the

fundamental, it is well, after plotting, to compare the two and

note the fulfillment of the simple geometrical relations, (a), (b),

Y

, ..^
.^'

^."^ ^'

^ ~^'' ^^

2 7 ^^^ _
,-''

7 V
y ^ ^' '^

' -^^ \ y \
i y ^, X

\^ z N^
1 ^ / ^
' ^ / V

o

4

i'lO. 57.

(c), of Art. 92. Thus, one should look for a maximum or a mini-

mum ordinate in the integral corresponding to every zero ordinate

in the fundamental, and for a point of inflexion in the integral

for each maximum or minimum in the fundamental. The tan-

gent of the integral varies with the ordinate of the fundamental,

and hence, the slope of the integral should increase or decrease

when the ordinate of the fundamental increases or decreases.

These relations may be noted in the curves in Figs, h^, 57.

The integraph is an instrument that is used for drawing the

first integral curve from its fundamental. The theory of it is

given in the Appendix (Note G). It may be used also for

determining the area between a curve and the ic-axis. For the
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integral curve can be drawn with the integraph, and the ordinate

corresponding to the area can be measured. Since the length

of the ordinate represents the area, the latter can be found

immediately on making allowance for the scale-factor.

95. The determination of scales. In order to have the various

curves convenient for plotting, it is usually necessary to employ

different scales for the ordinates. If numerical integration is

used, the value of the area of the fundamental will be found

directly, and the scale may be correspondingly selected so that

the curve will be kept within the desired limits as to size. If

the planimeter is used, the result will be given in square inches

or other area units, and must be converted into the value desired

by the use of a scale factor. Suppose the fundamental plotted

as follows:

horizontally 1 unit of length = p units of abscissa,

vertically 1 unit of length = q units of ordinates.

Then 1 unit of area on the diagram will represent pq units of

the integrated function, and the area found must be multiplied

by this factor in order to reduce it to the value of the integral

desired. The scale factors a, b, c, etc., may then be chosen as

before.

* See Note G.



CHAPTER XIII

ORDINARY DIFFERENTIAL EQUATIONS

96. Differential equation, order, degree. A few differential

equations which frequently appear in practical work will now
be discussed very briefly.*

A differential equation is an equation that involves differentials

or differential coefficients. Ordinary differential equations are

those which contain only one independent variable. For example,

dy = cos X dx, (1)

(2)

,.}-(i)T

dx'

(3)

dy
,
a

dx

(4)

(2' +
«)^f

+^|-(2' + «)=0, (5)

are ordinary differential equations.

The order of a differential equation is the order of the highest

derivative that appears in it. The degree of a differential equa-

tion is the degree of the highest derivative when the equation is

* For fuller explanations than are given here, reference may be made to

Introductory Course in Differential Equations, by D. A. Murray. (Long-

mans, Green, & Co.)

201
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free from radicals and fractions. Of the examples above, (1) is

of the first order and first degree, (2) is of the second order and

first degree, (3) is of the second order and second degree, (4) is

of the first order and second degree, (5) is of the first order and

first degree. Differential equations of a very simple kind have

already been considered.

97. Constants of integration. General and particular solutions.

Derivation of a differential equation. If a relation between the

variables together with the derivatives obtained therefrom satis-

fies a differential ^equation, the relation is called a solution or

integral of the differential equation. For example,

y = m sin x, (1)

y = n cos Xf (2)

y = Acosx -\- B sin x, (3)

y = csm(x-\- a), (4)

in which m, n. A, B, c, a, are arbitrary constants, are all solutions

of the equation

g = 0. (5)

This may be verified by substitution. It will be observed that

(5) does not contain m, n, A, B, c, or a. The solutions of the

differential equations of the first order which have appeared in

the former part of this book contain one constant of integration
;

those of the second order contain two constants. Examples have

been given in Arts. 8, 9, 12, 59, etc.

Solutions (1) and (2) above contain one arbitrary constant, and

solutions (3) and (4) each contain two. The question is sug-

gested : How many arbitrary constants should the most general

solution of a differential equation contain ? The answer can in

pa^ be inferred from a consideration of one of the ways in which

a differential equation may arise, namely, by the elimination of

constants. On comparing (3) and (5) it is seen that (5) must
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have been derived from (3) by the elimination of the two con-

stants A and B. In order to eliminate two quantities, three

equations are necessary. One of these is given, and the others

can be obtained by successive diiferentiation. Thus,

y = A cos X -\- B sin x,

--^ = — A sin X -\- B cos x,
dx

—4 = — A cos X — B sin x
;

daf

whence, —^ -f w = 0.
dor

In order to eliminate three constants from a given equation,

four equations are required. Of these, one is given and the

remaining three can be obtained only by successive differentia-

tion. The third differentiation will introduce a differential coeffi-

cient of the third order, which accordingly will aj)pear in the

differential equation that is formed by the elimination of the three

constants. In general, if an integral relation contains n arbitrary

constants, these constants can be eliminated by means oi n -\-l

equations. The latter consist, of the given equation and n rela-

tions obtained by n successive differentiations. The nth differ-

entiation introduces a differential coefficient of the ?ith order,

which will accordingly appear in the differential equation that

arises on the elimination of the constants. The solution of an

equation of the nth order cannot contain more than n constants

;

for if it had n -j-1, their elimination would lead to the equation

of the n -f- 1th order.*

The solution that contains a number of arbitrary constants

equal to the order of the equation is called the general solution or

the complete integral. Solutions obtained therefrom by giving

* For a proof that the general solution of a differential equation contains

exactly n arbitrary constants, see Introductory Course in Differential Equa-

tions, Art. 3 and Note C, Appendix.
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particular values to the constants are called particular solutions.

For example, (3) and (4) are general solutions of (5), and

2/ = 2 cos a; 4- 3 sin a;, y = 5 cos a; — sin a;, y = 2 sin (x -\- ir),

y = 3sinfx-^,

are particular solutions.

Ex. 1. Eliminate the arbitrary constants m and cfrom

(1) y = mx-\- c.

Differentiating twice, (2)
dx

w,

(3) 0,

These equations may be interpreted geometrically. If wi, c, are both

arbitrary, (1) is the equation of any straight line ; and, therefore, (3) is the

differential equation of all straight lines. If c is arbitrary and m has a definite

value, (1) is the equation of any line that has the slope m^ and, accordingly,

(2) is the differential equation of all the straight lines that have the slope m.

Ex. 2. Find the differential equation of all circles of radius r.

The equation of any circle of radius r is

in which a, 6, the coordinates of the center, are arbitrary. The elimination

of a and 6 gives

the equation required.

Ex. 8. If y = Ax^ + B, prove that a;^ -^ = 0.
dx^ dx

Ex. 4. Eliminate c from y = ex + c — c^.

Ex. 6. Form the differential equation of which e^v + 2 cxev + c^ = is the

complete integral.

Ex. 6. Eliminate the constants from y = ax -{ bx"^.

Ex. 7. Form the differential equation which has y = acos (mx + 6) for

its complete integral, a and b being arbitrary constants.
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Section I. Equations of the First Order and the First

Degree.

98. Equations in which the variables are easily separable.

If an equation is in the form

/i(a;) dx 4- fiiv) dy = 0,

its solution, obtainable at once by integration, is

Jfi(x)dx+jf2(y)dy = c.

Some equations can easily be put in this form.

Ex. 1. Solve (1 - xyiy - (1 + y)dx = 0.

This may be written, -^ ^ = 0.
l+y 1-x

This step is called " separation of the variables."

Integrating, log (1 + ?/) + log (1 - a;) = Ci,

or, (1 + y)(l —x)= e«i = c.

Ex.2. Solve ^ + J}—yl = 0.4dx ^ 1 - a;2

Ex. 3. Solve 3 e" tan ?/ dx + (1 — c*) sec^ ydy = 0.

99. Equations homogeneous in x and y. If an equation is homo-

geneous in X and 2/, the substitution

y = vx

will give a differential equation in v and x in which the variables

are easily separable.

Ex. 1. Solve (x2 + y'^)dx -2xydy = 0.

Rearranging, (1) ^^^L±i(!.
^ ^' ^ ^ dx 2xy

On putting y = vx,

^=v+x^
dx dx
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Substitution of these values in (1) gives

dx 2v

Separating the variables, ^- - -^^^ = 0.
X 1 —v^

Integrating, log a;( 1 — v^) = log c

;

that is, log xfl - ?(_
J

= log c

;

whence, x^ — y^ = ex.

Ex. 2. Solve 2/2 dx + (xy + x^) dy = 0.

Ex. 3. Solve x^y dx - (x^ + y^) dy = 0.

Ex. 4. Show that the non-homogeneous equation of the first degree in x

and y
dy _ ax -^hy -{- c

dx a'x + b'y + c'

is made homogeneous, and therefore integrable, by the substitution

x = xi-{-h, y = yi + k,

h, k being solutions of a/i + 6A; + c = 0,

a'h + h'k + c' = 0.

100. Exact differential equations. An exact differential equa-

tion is one that is formed by equating an exact differential to

zero. It follows from Art. 24 that

Mdx -h Ndy =

is an exact differential equation if

dM^ dN
dy dx

Ex. 1. Solve (a'2 -2xy- y^) dx - (x + y^dy = 0.

Ex. 2. Solve (ic2 -\xy-2y'^) dx + (?/2 - 4 xy - 2 a;2) dy = 0.

Ex. 3. Solve (2 x'^y + 4 x^ - 12 xy"^ + 3 y^ _ xey + e^) dy

+ (12a;2y-|- 2:k?/2 -\- A x? - Af -\- ^yc^^ - ev) dx = 0.
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101. Equations made exact by means of integrating factors. The
differential equation

ydx~xdy =

is not exact. Multiplication by — gives
y

ydx — xdy_

This is exact, and its solution is - = c, or x = cy.

y

When multiplied by —? the first equation becomes
xy

dx dy _ ^
~x~^~ '

which is also exact. The solution is

loga;-logy = logc,

whence, - = c, or a; = cy.

y

Another factor that will make the given equation exact is

— Any factor such as — , —, — employed above, which changes
x^ 2/ ^y ^

an equation into an exact differential equation, is called an

integrating factor. It can be shown that the number of integrat-

ing factors is infinite. There are several rules for finding

integrating factors. In the following examples, the necessary

integrating factor can be found by inspection.

Ex.1. Solve ydx — X(?y+ log X dr. = 0.

Here, log x dx is integrable, but a factor is needed for ydx — x dy.

Obviously — is the factor to be employed, as it will not affect the third term
x^

. 1
injuriously from the point of view of integration. On multiplication by —

the given equation becomes

ydx-Xdy . loga; _Q
»2 aj2
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The solution of this equation reduces to

ex + y - logoj — 1 =0.

Ex. 2. a(xdy + 2ydx) = xydy.

Ex.3. {x^ + y'^+l)dx-2xydyz=0,

Ex. 4. (x^e* — 2 my^) dx \-2mxydy = 0.

102. Linear equations. If the dependent variable and its de-

rivative appear only in the first degree in a differential equation,

the latter is said to be linear. The form of the linear equation

of the first order is

|+i^=Q, (1)

in which P and Q are functions of x, or constants. The linear

equation occurs very frequently. The solution of

that is, of — = — Pdx,
y

~ \pdx {pdx
IS y = ce ^

J
OT yer = c.

On differentiation the latter form gives

J'"Xdy-^Pydx) = 0,

which shows that e^^*" is an integrating factor of (1).

Multiplication of (1) by this factor gives

J'"^(dy 4- Py dx) = J'"^Q dx
;

and this, on integration, gives

or y = e-^'"^{^J'"^Qd^ + c]- (2)
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The latter can be used as a formula for obtaining the value
of 2/ in a linear equation of the form (1).

Ex. 1. Solve x^-y =x\
dx

dy

dx
it in the ordinary form (1), it becomes

This is linear since y and -^ appear only in the first degree. On putting

- — X .

dx X

Here P = — , and hence, the integrating factor e
"^ = e ^ = e'°^^ _ 1.

a; x
By using this factor, and adopting the differential form, the equation is

changed into

-dy ydx = xdx.
X x^

V 1 1
Integrating, ^ = -x^ + c, or y = -x^ + ex.

x 2 « Ji

Ex. 2. Solve -^ + y = e-*.
dx

Ex. 3. Solve ^ + ^~^^ y = 1.
dx x2

Ex.4. Solve ^ +^^y = ^

dx x^ + V (x2 + l)s

Ex.5. Solve ^ + ^y=-^.
dx x x^

103. Equations reducible to the linear form. Sometimes equa-

tions that are not linear can be reduced to the linear form. One

type of such equations is

dx

in which P, Q, are functions of x, and n is any constant. Divi-

sion by 2/" and multiplication by (— n -\- 1) gives

(- n + 1) 2/-"^ + (- n + 1) Py-"-' = (-n + l)Q.
dx
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On substituting v for y*^^, this reduces to

^ + (l-n)Pv={l-n)q,
ax

u liicli is linear in v.

Ex. 1. Solve ^ + Ii/ = x2w6.
dx X

Division by y^ gives y-e^ _(_ i y-5 = aj2.

(Zx X

On putting « for y-^, this takes the linear form

^ _ 5

dx X

The solution is v = y~^ = cx^ + | x*.

Ex. 2. Solve ^ + ?w = 3x2wi
(Zx X

dx 1 - x2

Ex.4. Solve 3^^ 4- -^y=^'-
dx X + 1 2/'^

Ex. 5. Show that the equation

dx

ill wliicli P, Q, are functions of x, becomes linear on the substitution of v

Section II. Equations of the First Order but not of

THE First Degree.

104. Equations that can be resolved into component equations of

the first degree. In what follows, ^•' will be denoted by p. The
dx

type of the equation of the first order and vith degree is

which on expansion becomes

y» + /\p»-' -h Ap" ^ + - -f Pn-iP + PnV = 0. (1)
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Suppose that the first member of (1) can be resolved into

rational factors of the first degree so that (1) takes the form,

(p - E,) (p-B,)-(p- 74) = 0. (2)

Equation (1) is satisfied by any values of y that will make a

factor of the first member of (2) equal to zero. Therefore, in

order to obtain the solutions of (1), equate each of the factors

in (2) to zero, and find the integrals of the n equations thus

formed. Suppose that the solutions derived from (2) are

/i {x, y, Ci) = 0, f, (x, y, c,) =0, . .

., /„ (x, y, c„) = 0,

in which c„ Ca, •••, c„, are arbitrary constants of integration. These

solutions are just as general if Cj = C2= ••• = c„, since each of the

c's can take any one of an infinite number of values. The solu-

tions will then be written

M^y y, c)= 0, f,(x, y, c) = 0, •.., f^{x, y, c) = 0,

or simply, /i {x, y, c)f. {x, y,c)" •/„ (x, y, c)= 0.

(I)
Ex. 1. Solve (

^
] + (X + y)^ + a;?/ = 0.

dx

This equation can be written (p + y)(p -\- y) = 0.

The component equations are p -\- y = 0, p -\- x = 0y

of wliich the solutions are logy -\- x -\- c = 0, 2 y -\- x^ + 2 c = 0.

The combined solution is (log ?/ + a; + c) (2 y + x^ + 2 c) = 0.

Ex. 2. Solve f^^ f= ax*. Ex. 3. Solve p^ + 2 x})-
\dx)

-

105. Equations solvable for y. When equation (1), Art. 104,

cannot be resolved into component equations, it may be solvable

for y. In this case,

f(^, y,p) = ^

can be put in the form y = F(x, p).

Differentiation with respect to x gives

^=*(^'^'i)
INTEGRAL CALP. — 15
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which is an equation in two variables x and p. From this it may
be possible to deduce a relation

il;{x,p, c)=0.

The elimination of p between the latter and the original equa-

tion gives a relation that involves x, y, c. This is the solution

required. If the elimination of p is not easily practicable, the

values of x and y in terms of p as a parameter can be found, and

these together will constitute the solution.

Ex. 1. Solve X — yp = ap^.

Here y = —-^.

Differentiating with respect to x, and clearing of fractions,

(«P^ + «^)|=P(1-P').

This can be put in the linear form

dx 1 ap

dp pil -p^) 1 -i)2

Solving, X = -—^ ic + a sin-ip)

.

Substituting in the value of y above,

y = -ap+
_

(c + a sin-ip).

Ex. 2. Solve 4y = a;2 + p2.

Ex. 3. Solve 2^ = 2p + 3p2.

106. Equations solvable for a;. In this case f(x, y, p) can be

put in the form
x = F(y,p).

Differentiation with respect to y gives

from which a relation between p and y may sometimes be obtained,

say, f(yyP,o)=0.
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Between this and the given equation p may be eliminated, or x
and y may be expressed in terms oi p as in the last article.

Ex. 1. Solve x = y -\- a logp.

Ex. 2. Solve x(l+p2)=i.

107. Clairaut's equation. Any differential equation of the first

order which is in the first degree in x and y comes under the

cases discussed in Arts. 105, 106. An important equation of this

kind is that of Clairaut.* It has the form

y=px+f(p). (1)

Differentiation with respect to x gives

x+f<{p) = 0, (2)

From this,

or.

From the latter equation it follows that p = c. Substitution of

this, value in the given equation shows that

y = cx +/(c) (4)

is the general solution. See Introductory course in differential

equations, Art. 28, for remark on equation (2). Some equations

are reducible to Clairaut's form, for instance, Ex. 2 below.

Solution (4) represents a family of straight lines. The en-

velope of this family of lines will also satisfy the differential

equation, since x, y, p, at any point on the envelope is identical

with the X, y, p of some point on one of the tangent lines of which

(4) is the equation. The equation of the envelope of (4) is called

the singular solution of (1). Singular solutions are discussed in

Chapter TV. of the work referred to above.

* Alexis Claude Clairaut (1713-1765) was the first person who had the

idea of aiding the integration of differential equations by differentiating

them. He applied it to the equation that now bears his name, and published

the method in 1734.
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Ex. 1. Solve y = px -\- aVl -\- pf^.

The general solution, obtained by the substitution of c for p, is

y = cx-\- aVl 4- c'^

which represents a family of lines. The envelope of this family is the circle

X2 + y2 _ (j2.

The latter equation is the singular solution.

Ex. 2. x^(y — px) = yp"^.

On putting x^ = m, y^ = v, the equation becomes

du \duj

which is Clairaut's form. The solution is

that is, 2/2 = cx^ + c?.

Ex. 3. y = jr>rK + sin-^p.

Ex. 4. py =p^x + w.

* Ex. 6. xy2 = pyx"^ + x-\-py.

108. Geometrical applications. Orthogonal trajectories. A curve

is often defined by some property whose expression takes the

form of a differential equation. In the examples given below the

differential equations of the curves are of a less simple character

than those which appeared in similar problems in Arts. 8, 12, 32.

Problems that relate to orthogonal trajectories are of consider-

able importance. Suppose that there is a singly infinite system

of curves

f(x,y,a) = 0, (1)

in which a is a variable parameter. The curves which cut all the

curves of the given system at right angles are called orthogonal

trajectories of the system. The elimination of a from (1) gives

an equation of the form

(.,.,|) = 0, (2)
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the differential equation of the given family of curves. If two

curves cut at right angles, and if ^j, <^2j be the angles which the

tangents at the intersection make with the axis of x, then

<t>i = <t>2± 2>

and therefore, tan <^i = — cot <^2-

Hence, -^ for one curve is the same as for the other.
dx

. dy

dx
Therefore, the differential equation of the system of orthogonal

trajectories is obtained by substituting

dx dy

dy dx

in equation (2). This gives

Integration will give the equation in the ordinary form.

Suppose that f(r, 0, c) =

is the equation of the given family in polar coordinates, and that

(.,^,|)=0 (3)

is the corresponding differential equation obtained by the elimina-

tion of the arbitrary constant c. Let
\f/i,

xp^y denote the angles

which the tangents to one of the original curves and a trajectory

at their point of intersection make with the radius vector to the

point. Then
tan i/^i = — cot (/^2-

dB

'

Now tanj/A| = r— • Hence the differential equation of the
dr

required family of trajectories is obtained by substituting

-1.^-1* for /-^,
r dO dr

4>



216 INTEGRAL CALCULUS [Ch. XIU

that IS, — IT—- for —

•

'
dr dS

in (3). This gives Jr, 0, - r'j\

as the differential equation of the orthogonal system.

Ex. 1. Find the orthogonal system of the family of parabolas

2/^ = 4 ax.

Differentiating, ^-^ = 2 o,

and eliminating a, y = 2x-^'
dx

This is the differential equation of the given family. Substitution of

_^for^
dy dx

gives « = -'^fy'

the differential equation of the family of trajectories. Integration gives

2/2-1-2x2 = 02,

the equation of a family of ellipses whose foci are on the y-axis, and whose

centers are at the origin.

Ex. 2. Find the orthogonal trajectories of the cardioids

r = a(l — costf).

dr
Differentiating, 3- = a sm 6,

dd

Elimination of a gives -^ = r cot -»

the differential equation of the given family of curves. Therefore, the equa-

tion of the system of trajectories is

dd ^0— r — =» cot -.

dr 2

Integration gives r = c (1 + cos ^),

another system of cardioids.
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Ex. 3. Find the curve in which the perpendicular upon a tangent from
the foot of the ordinate of the point of contact is constant and equal to a,

determining the constant of integration in such a manner that the curve shall

cut the axis of y at right angles.

Ex. 4. Find the curve vyhose tangents cut off intercepts from the axes the

sum of which is constant.

Ex. 5. Find the curve in which the perpendicular from the origin upon
any tangent is of constant length a.

Ex. 6. Find the curve in which the perpendicular from the origin upon
the tangent is equal to the abscissa of the point of contact.

Ex. 7. Find the orthogonal trajectories of the straight lines y = ex.

Ex. 8. Find the curves orthogonal to the circles that touch the ?/-axis at

the origin.

Ex. 9. Find the orthogonal trajectories of the family of hyperbolas

xy = ^2.

Ex. 10. Find the orthogonal trajectories of the ellipses

^ +_i^ = l
a^ a^ + \

'

in which \ is arbitrary.

Ex. 11. Show that the system of confocal and coaxial parabolas

y2 = 4 a(x + a) is self-orthogonal.

Ex. 12. Find the orthogonal trajectories of the system of circles

r = c cos dj

which pass through the origin and have their centers on the initial line.

Ex. 13. Find the orthogonal trajectories of the system of curves

r'* sin nd = a".

Ex. 14. Find the equation of the system of orthogonal trajectories of the

2 a
family of confocal and coaxial parabolas r = -•

^ ^
1 + cos

Ex. 15. Determine the orthogonal trajectories of the system of curves

r« = a" cos nd ; and therefrom find the orthogonal trajectories of the series of

lemniscates r^ = a^ cos 2 6.
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Section III. Equations of an order higher than the first.

109. Equations of the form—^ = /(a5). The solutions of equa-

tions of this type can be obtained by n successive integrations.

Examples have already been seen in Art. 59.

Ex. 1. Solve ^ = ic2 - 2 cos a: + 3.

Integrating, ^ = ^ic» - 2sina; + 3x + Ci.

Integrating, --§•= ^^ a:' + 2 cos a; + f a;^ + cix + c^.

Integrating, ^ =± a;^ + 2 sin a: + ?- +— + Cza; + Cg.

dx 60 2 2

Integrating, y = ^ J<j a:^ _ 2 cos a: + J a:* + kix?' + k^x"^ + Cax + C4.

Ex.2. Solve —=/sin we.
dt-

Ex. 3. Solve — = g.
dt'^

Ex. 4. Solve B^- W(l -x) = 0, subject to the condition that y =
dy

^^^'

and T" = for a; = 0.
dx

Ex. 5. Solve ^ = xfi*.
dx-i

Ex. 6. Solve ^ = a;'*.

110. Equations of the form ^-^ = /(|/). Multiplication of both

members of this equation by 2 -^ gives
dx

dxdx" ^^^Ux

Integrating, T^Y = 2jf(y) dij + c^
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whence, -—-

—

^ — = dx.

Therefore, f-— ^ — = x -\- c^.

^
[2Jf(y)dy + c,y'

Ex. 1. Solve ^^a^y = q.

Multiplying by 2 ^2/^ 2^ . ^ = - 2a'-y^
;

dx dx dx^ dx

and integrating, /^ \ = — a%2 ^ ^
\dx)

or, putting a^c^ for c, = a^ic^ — y^).

Separating the variables, ^ =:: adx,

and integrating, sin-i — = ax + Cg.

Therefore, y = Ci sin (ax +. c^).

This solution may also be written y = A sin ax -\- B cos ax.

Ex. 2. Solve ^ = -^, determining the constants, so that — =0 when
dt' x^

^
dt

x = a, and that x = a when ( = 0.

Ex. 3. Solve ^^ - d^y = 0.

111. Equations in which y appears in only two derivatives whose

orders differ by unity. The typical form of these equations is

dx"" dx'

dx''-^' dx"" dx
Up be substituted for^^, then ^^1 = ^, and (1) becomes

Jdp
\dx'

ff^,p,^yo,
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an equation of the first order between p and x. Its solution gives

p in terms of x ; thus,

The value of y can be found from this by successive integration.

Ex. 1. Find the curve whose radius of curvature is constant and equal

toi?.

The expression of the given condition gives

{-(in
rfx2

Substituting p for -^, clearing of fractions, and separating the variables,
dx

dp __ dx

(1 +P''Y ^

Integrating, ^ = ± ^-=^,

in which a is an arbitrary constant of integration.

Solving for p, P = f^ = ±
"^ ~ "^

^^ >/i22-(x-a)2

whence, y-h=± y/ifi _ (^ - a)%

in which h is the arbitrary constant of integration. This result may be

written
(x-a)2 + (y-6)2 = jB2.

The integral represents all circles of radius B.

Ex.2. Solve ^-a(£V = 0.
dx^

Ex.3. Solve ^,^ = 2.
dx^ dx'^

112. Equations of the second order with one variable absent,

(a) Equations of the form
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on the substitution of p for -^, become
dx

f(|,P,.) = 0,. (2)

an equation of the first order in p and x. Suppose that the solu-

tion of (2) is

Then the solution of (1) is y= \ F{Xj Ci) dx -|- Cj.

(h) Equations of the form f(^, ^, 2/Vo, (3)

on the substitution of » for -^, become
dx

an equation of the first order in p and y. Suppose that its solu-

tion is

Then the solution of (3) is

Equations of the type in Art. 110 and Ex. 1, Art. Ill, are ex-

amples of the equations discussed in this article.

Ex.1. Solvea:^-f^ = 0.
(Zx2 dx

Ex.2. Solve ^-f-a2^ = 0.

Ex.3. Solve2/^+f^V=l.
dx:^ \dxj
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113. Linear equations. General properties. Complementary Func-

tion. Particular Integral.

The form of the linear equation of order n is

where Pj, P2, •••, P„, X, are constants or functions of x. The

linear equation of the first order was considered in Art. 102.

The complete integral of

is contained in the complete solution of (1). If y=f^(x) be an

integral of (2), then, as may be seen on substitution, y = Ci/i(a;),

c, being an arbitrary constant, is also an integral. Similarly,

if y=f^(x), y=f^(x), .-., y=f^(x), be integrals of (2), then

y = C'2M^), '•', 2/=c„/„(a;), wherein Cg, •••, c„, are arbitrary con-

stants, are integrals of (2). Moreover, substitution will show

that

y = CiMx) + C2MX) + ... + cj,(x) (3)

is an integral. If fi(x))f2(x), ...,/^(a;), are linearly independent,

(3) is the complete integral of (2), since it contains n arbitrary

constants.

If y = F{x)

be a" solution of (1), then y z=Y+ F(x), (4)

in which F= c,/, (x) -f c,f2(x) + ... + c^x),

is also a solution of (1). For, the substitution of Y for y in the

first member of (1) gives zero, and that of F(x) for y, by liy-

pothesis, gives X. Since the solution (4) contains n arbitrary con-

stants, it is the complete solution of (1). The part Y is called

the complementary function^ and the jiart F(x) is called the par-

ticular integral. Equations of the form (2) will be considered in

the articles that follow.
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114. The linear equation with constant coefficients and second

member zero. On the substitution of e"" for y, the first mem-

ber of

becomes (m" + Pim''-^ + • • • + P„_ im + P„) e'""'.

This expression is equal to zero if

m" -f Pim"-i + • • • + P„-im + P„ = 0. (2)

The latter may be called the auxiliary equation. Therefore, if

mi be a root of (2), y = e'"i'' is an integral of (1) ; and if the n

roots of (2) be wii, mg, •••, m„, the complete solution of (1) is

y = de"*!* + Cae"*!!^ H \- c^er^. (3)

Ex.1. Solve g-2|_35, = 0.

The auxiliary equation is m''^ — 2 w — 35 = ;

and its roots are m = — 5, m = 7.

Hence, the complete solution is

y = cie-^ + Cae^*.

If the auxiliary equation has a pair of imaginary roots, say

mi = a-\- i/3, m^^a — if3 (i denoting V^^), the corresponding

part of the integral can be put in a real form. For,

= e"^
J
Ci (cos px + i sin ^x) -h Cg (cos^x— i sin^a;)

\

= e*'' (^ cos I3x + B sin /:ia;).

Ex.2. Solve ^+8^+25^ = 0.

The auxiliary equation is

wi2 + 8 TO 4- 25 = 0,

and its roots are m = — 4 + 3 i, m = — 4 — 3 1*.

Hence, the integral is y = e-*' (^CicosBx -{ C2 sin

3

x).
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Ex. 3. Solve 2^ + 5^ - 12x = 0.
dt^ dt

Ex.4. Solve f| + 8y = 0.

Ex.5. Solve f|-7^-6?/ = 0.
dx^ dx

Ex.6, solve fl- 3^1-6^ + 8^ = 0.
dx^ dx^ dx ^

Ex.7. Solve^ - a^y = 0.
dx'^ ^

115. Case of the auxiliary equation having equal roots. If two

roots of (2) Art. 114 are equal, say mj and mg, solution (3) becomes

2/ = (cj + C2) e*"!* + Cifi*^'^ + ••• + c„e'""''.

Since Ci -f- ^2 is equivalent to a single constant, this solution has

n — 1 arbitrary constants, and hence, it is not the general solu-

tion. In order to obtain the complete solution in this case, make

the substitution

mg = mi + h.

The terms of the solution that correspond to m^ mg, will then be

y = Cie*"i'= -I- Cgg^'"^"'"*^*,

that is, y = e^^'' (cj + Cge*'').

On expanding e** in the exponential series, this becomes

= e'^i''(A + Bx -\- ^ c.Ji^x^-{- terms in ascending powers of h),

in which A=c^-\- C2, and B=cji.

Now let h approach zero, and solution (3), Art. 114, takes the

form
y = e'*!* (A + Bx) 4- C3e"*3* -j + c„e«"*

;
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for the arbitrary constants Ci, Cg can be chosen so that A, B will

be finite, and that Cg^^, etc., will approach zero. If the auxiliary

equation have three roots equal to m^ it can be shown that the

corresponding solution is

and, if it have r equal roots, that the corresponding solution is

y == e"*r' (ci + Cacc H h c^^iO;*-^).

If a pair of imaginary roots, a + i(3, a — i^, occurs twice, the

corresponding solution is

which reduces to

y = e'^''l(A + A^x) cos px-\- {B-\- B^x) sin ^x],

Ex.1. Solve ^-3l^ + 3^-y = 0.
dx^ dx^ dx

The auxiliary equation is

. m3-3m2 + 3m-l = 0,

r of which the roots are + 1 repeated three times. Hence, the solution is

y = e*(ci + dx + CsX^).

I
Ex.2. Solve ^ + 2^ + ^ = 0.

[
dx^ dx^ dx

i

'^

Ex.3. Solve ^-^-9^-11^-4^ = 0.

r,

dx^ dx^ dx^ dx ^

116. The homogeneous linear equation with the second member

zero. This equation has the form

'^l^.+ft^-'f^+i'^"" ??.+••• +p.^^^+P'^=^' (1)
dx"" dx^~^ dic"~^ ax

wherein Pi, P2) "',Pn) ^re constants.

(a) First method of solution. If the substitution

z = log X, that is, x = e',
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be made, equation (1) will be transformed into

wherein q^, q.^^ ••-, g„, are constants. This can be easily verified.

Ex.1. Solve aj-^^-a^'^ + yzrO.
dx' dx

If z = logx, then ^ = \ and
cZx X

dy_dy dz_\^dy
dx dz dx xdz

dx2 dzXdxjdx x-\(te^ dz)

Substitution of these values in the given equation changes it into

d^^ dz

the solution of which is y = e*(ci + C2z)y

whence, y = x{ci + C2 logx).

(h) Second metliod of solution. The substitution of .t"' for y in

the first member of (1) gives

jm (m — 1) • • • (m — 91 + 1)+ Pi*^ (m — 1) • • • (7>i — ?i 4- 2) + • • •

This is zero, and accordingly y — of is a solution of (1), if

m{m — l)---(m — n -\- l)-\-p^m(m — l).-- (m — n -\-2)-\

+Pn iW+;)„ = 0. (3)

Hence, if m„ mg, •••, m„, are the roots of (3), the complete solu-

tion of (1) is

y = CiOJ'"' -|- c/c"^ -f . . .
-f- C^X'^n.

To a solution y = e'"'(ci -{- CjZ -j- ••• -\-c^ ^x"" ') of (2), there cor-

responds a solution y = x'^lpi -\- c^log x }- ••• +c,._,(loga:)''-') of

(1), since 2 = log a;. It can be easily shown that the auxiliary
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equation of (2) is identical with (3). Hence, if m, is repeated r
times as a root of (3), the corresponding solution of (1) is

Ex.2. Solve x3^+3x2^-f^ + ?/-o

Substitution of x"» for y gives (m^ + l)^™ =

of which the roots are — 1 1 + V3

1

1 — Vsl
2 '

2
Hence the solution is

y..^ + xi|c2Cos(:^logx)+C3sin^^logr»:)}.

Ex.3. a:-^f^+4x^ + 2y = 0.
dx^ dx

Ex.4, a.^f|-3^^ + 4!, = 0.

Ex.5. x3f|-3x2f|+7x^-82, = 0.
tto^ dx^ dx

EXAMPLES

1. lty = Ae^ + Be-"', prove that ^-Jc^y = Q
dx2

2. Derive the differential equation of all circles which pass through the
origin and whose centers are on the x-axis.

3. sec2 X tan ydx-]- sec2 y tan x dy = 0.

4. xdx-\-ydy = a^^^y-y^\
X2 + 2/2

5. ^^ ^ ^y
x2 — 2x2/ y'^-2xy'

6. (2 «at + &?/ + (7) (Zx + (2 c?/ + 6x + e) dy = 0.

7.- (1 +x?/)i/c?x+(l -x?/)xcZ?/ = 0.

8. y(2xy-\-e')dx-e^dy = 0.

9. x|-a, = x + l.

10. cos2x-^+ y =r tanx.

INTEGRAL CALC. 16
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11. a:(l-a;-^)^ 4- (2x2-1)2/ = 0X8.

12. -r + y cos x — y» sin 2 x.

13. % = ^y^-^.

11. pXx + 2y) + 3p2(x + y) + (y + 2x)p = 0.

15. xp2 _ 2 yp + ox = 0.

18. p2y + 2px = y.
22

17. e3'(p-l) + i)862y = 0.

^ dx2

^?x2 (Zx dx^ dx^

dx* dx^ dx2 dx

<p+^=»-

- -ra-^)--B-- dx*
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NOTE A

[This note is supplementary to Art. 33]

A method of decomposing a rational fraction into its partial

fractions.

Suppose that . :^^
^

^ is a proper rational fraction. The
J/ [X) \X — Ct)

substitution of a for x in this fraction, (x — ay being left un-

changed, and the subtraction of the fraction thus formed gives

/(^) /W ^ f(^)F(a) -f(a) F(x)
F{x)(x-ay F{a)(x-ay F(a)F(x){x-ay ' ^^

The numerator of the fraction in the second member of (1)

vanishes for x = a, and hence it is divisible by a; — a. Let the

quotient be denoted by <f>(x). Then

/(^) ^ /(«)
,

1 <^(^) ,.x

F{x) {x - ay F(d) (x - ay '^F{a)' F(x) (x - ay-^' ^^

Of the two fractions in the second member of (2) the first is

one of the partial fractions required, and the second has a de-

nominator of lower degree than the original fraction possesses.

The second fraction can be similarly decomposed, and by the

repetition of the operation all the partial fractions will be

foimd.

When the factors of the denominator are all different and

of the first degree, the decomposition of a fraction can be

effected very quickly. For example, on taking the fraction

229
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-. . / ^ ',. , r^ and substituting a for x except in x — a,
\X — Qij \X — ) \X — C)

and subtracting the fraction thus formed, there is obtained

fix) f{a) F(x)

(x — d)(x — b){x — c) {x — a){a — h){a — c) {x—h){x—c)

in which F{x) is a constant or of the first degree in x.

The partial fraction whose denominator is x — a, which is

formed by this rule, is accordingly ^^^ The^ ' ^^ (x-a)(a-b)(a-c)
partial fractions whose denominators are (x — 5), (x — c), can be

written by symmetry. This is easily verified. For, on assuming

f(x) _ A
,
B4--^^ +

{x — a){x — h){x — c) x — a x — b x — c

and clearing of fractions,

f(x) = A(x-b)(x-c)-^B(x-a)(x-c) + C(x-a)(x-b).

The substitution of a for x gives

/(a) = A(a — b){a — c),

whence. f(a)

(a — b)(a — c)

It will be found, on putting b for x that

f(b)

(p-a){b-cy

and on putting c for Xj that

C: m
(c — a){c — b)

Therefore,

(x — a){x — b)(x — c) (x — a)(a — b)(a — c)

+_ ^jm + m
(b-a)(x-b)(b-c) (c-a)(c-6)(x-c)
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Ex. 1.

2x2-1 ^ 2-22-1 2(- 3)2-1
(X - 2)(x + 3)(x - 5) (X - 2)(2 + 3)(2 - 5) (-3 -2)(3 + x)(- 3 - 5)

+ .
2 . 52 - 1

(5-2)(5 + 3)(x-5)

7 17 49

15 (X - 2) 40 (X + 3) 24 (x - 6)

Ex.2. ^^+2 3-2 + ^ =F.
(X - 2)2(x - 3) (X - 2)2(2 - 3)

On determining F by subtraction,

3x + 2 8 ^ 11

(X - 2)2(x - 3) (X - 2)2 (X - 2) (X - 3)

11
.

11

(3-2)(x-3) (x-2)(2-3)

3x+2 8 , 11 1
Hence, —-r rr = — z rr:; -l ^

(X - 2)2(x - 3) (X - 2)2 X - 3 X - 2

NOTE B

[This note is supplementary to Art. 45]

To find reduction formulae for
j
oc^^a + hx^^)Pd3c by integra-

tion by parts. In what follows I x'^ia + bx'^ydx will be denoted

by /.

(a) On putting dv = a;"-^(a + bx'^ydx, u = x"'-''+\

it follows that V = (2l±^^l)^ du=(m-n-^l) x*" " dx.
nb{p-\-l)

^m -n+l

Hence, /= -

no (p + 1) nb(p + l)J ^ ^

But x'^-^a 4- bxy+^ = a;'"-"(a + bx'')(a + bx^
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Therefore

nh{p + l) nh{p + l)\J ^ ^ ^ ^
J

On solving for 7,

a.m-,.+l/^ _|_
5^„y+l a(m-n + l) T m-n/ .7,nN«^/= -r-7—^^—

'

tr 7-r -'—:4- I ic (a + 6a;'*)' da;.

(6) On transposition in the result just obtained and division

by
a(m-n-fl)

^

^ h{m-\-n+p + l)

a (m — n + 1)s

a (m — n + 1) J

From this, on changing m into m + w,

J ^
-^

a(m + l)

_ 6(m + « + «p + l) r,»+«(„ + j^),^.
a(mH-l) J

(c) On putting dv = a;"* dx, u={a-{- bx^y,

it follows that v = -, du = pnbx''-\a + fta;")"-* (ia?

m +

1

and hence,

j^x-^Ha + bxr_jn^ fx-»(a + 6a;"r^da;.m + l m + lJ ^ ^

But ar^» = a;-^« = x-ja + bx^) _ o^.

6 b

On substituting this value in the last integral,

r xr+y
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Whence, on solving for /,

^^ x-^^ia + bx-y ^ anp T^
(„ + j^),-. ^.

m + np + 1 m-{-np-{-lJ

On transposing in the last result and dividing by ^^—->^ m + np + 1

J ^
^ anp anp J

From this, on changing p into p + 1,

art (i> + 1) •/

NOTE C

[This note is supplementary to Art. 51]

To find reduction formulae for
j sin*** a? cos" a? cfa? by integration by

parts. On denoting this integral by /,

/= rsin'"a;cos"a;da; = — rsin'"-^flJCOs"a;c?(cosa;).

On putting dv = cos^icc^ (cos x), u=: sin"'-^a;,

it follows that v = ^^^"^/
, du = (m- 1) sin"'-^ x cos x dx.

n-\-l

Hence I=- '^''"'"'"^ cos"-^^ a;
_^ m-J, fsjn^'-^a^cos^+^a^da;.

'

71 + 1 n + lJ

But sin"*-2a; cos"+2a; = sin"*-2a; cos"aj (1 - sin^a;)

= sin'"~^a; cos"* a; — sin"* a; cos" a;.

Hence J= - sm""^ ^ cos-*+^

x

^m-1 f" r^^^m-2^ ^os" xdx - /]'
w + 1 n + l[y J
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From this, on solving for 7,

r sin'*^a;cos"''"^.T
,
m — 1 f - ^ o „,i = 1 I sin"*~^iccos**a;aa?.

m -j- n m + n J

Erom this result, on transposition and division by —^—

,

71 + 1

fsin'"-'^X cos" xdx = ^^^'""' ^ ^^^"""^ ^ + ^^^^-^^ fsin-ajcos^xda;;
J m — 1 m — IJ

whence, on changing m into m + 2,

J-
m n ^ sin*""*-^ X cos""*"^ a;,m + n + 2/'.„,2 „ -,

sm"* a; cos"xdx = 1
——^!^— I sm"'+^ x cos" x dx.

m + 1 m -\-l J

Formula G, Art. 51, can be obtained by writing

7=1 cos"~^ X sin"* x d (sin a;),

putting dv = sin*" x d (sin x), u = cos""^ ic,

and then integrating by parts and reducing.

Formula 7>, Art. 51, can be derived from C by transposition and

the change of n into n + 2.

NOTE D

[This note is supplementary to Art. 67]

It is explained in the differential calculus that if the differ-

ence between two quantities be infinitesimal compared with

either of them, then the limit of their ratio is unity, and either

of them can be replaced by the other in any expression involving

the quantities. A deduction that can be made by means of this

principle is of great importance in the practical applications of

the integral calculus.

If ai4-«2H \-cCn

represent the sum of a number of infinitesimal quantities which

approaches a finite limit as n is increased indefinitely,
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and if ft, ft, ..., ft

be another system of infinitesimal quantities, such that

| = l + e„ |=l + e. .., |"=1 + .. (1)

where fii, eo

are infinitesimal quantities, then the limit of the sum of ft, ft,

• ••, ft is equal to the limit of the sum of «i, ccg? •••> ««•

It follows from equations (1) that

A+AH- ••• +ft=(«i+«2+ - +«n)+ («iei+«2e2+ •••+««e„). (2)

Let ry be one of the infinitesimal quantities ej, eg? •••> ^n? which

is not less than any one of the others. Then

(A + ft + ••• + i8„)
- («i + ^2 4- ... + «„)<(«! + «2 + ... + «„) ^.

But by hypothesis «! + «2 + • • • + «n l^as a finite limit, and hence

the second member of this inequality is infinitesimal. There-

fore the limit of ft + ft + *"ft is the same as the limit of

NOTE E

[This note is supplementary to Arts. 84-87]

Further rules for the approximate determination of areas. A
few more rules for approximately determining the area of

LAKT (Fig. 53) may be stated. As before, li denotes the

interval between successive equidistant ordinates, and merely

the coefficients of the successive ordinates are given in the

formulse. In the trapezoidal rule, strips were taken in which

two ordinates were drawn; in other words, the ordinates were

taken by twos. In the parabolic rule, strips were taken in

which three ordinates were drawn; that is, the ordinates were

taken by threes.

* See B. Williamson, Treatise on the Differential Calculus, Arts, 38-40.
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Rule A. If four ordinates are taken at a time, then for

each strip, approximately,

area = |7i(l + 8 + 8 + l).
o

This is commonly called Simpson's three-eighths rule.

Rule B. If five ordinates are taken at a time, then approxi-

mately for a strip involving them,

area = :f%h(7 +- 32 + 12 +- 32 + 7).

Rule C. If six ordinates are taken at a time,

area = HP(^+-3 + 2 + 2+-3+-^).

Rule D. If seven ordinates are taken at a time, then, after

a very slight modification of the formula that first presents

itself,

area =
,^.

This is known as Weddle's* rule. It may be expressed in

words: The proposed area being divided into six portions by

seven equidistant ordinates, to five times the sum of the even

ordinates add the middle ordinate and all the odd ordinates,

multiply the sum by three tenths of the common interval, and

the product will be the required area approximately. Rules

A and D are frequently employed.

The trapezoidal and parabolic rules A, B, C, above, are special

cases of one general rulef which is deduced on the supposition

that the area concerned is divided into n portions bounded by

w +- 1 equidistant ordinates whose lengths and common distance

apart are known. The given curve, say y = <f> («), is replaced by

a curve which passes through the extremities of the n-\-l given

ordinates, and whose equation is a rational integral function of

X of the nth degree. The area of the latter curve can be easily

* It was first given by Mr. Thomas Weddle in the Cambridge and Dublin

Mathematical Journal, Vol. IX. (1854), pp. 79, 80.

t This rule was first given by Newton and Cotes, and published by the

latter in 1722 in a tract, De Methodo Differentiali.
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found by integration. For example, in the case of each succes-

sive pair of ordinates in Art. 85, the given arc was replaced by a
straight line, and in the case of each successive group of three

ordinates in Art. 86, the given arc was replaced by the arc of a

parabola. On assuming that the equation of the second curve is

y = Ao-^A,x + A^-\-...-^A^x% (1)

the coefficients Aq, A^, A^, •••, A^, can be determined. For, the

substitution in (1) of the coordinates of the n -f 1 given points,

namely the extremities of the given equidistant ordinates, will

give n -f 1 equations, by means of which the values of the n-\-l

coefficients A^, A^, •••, A,„ can be found.=^ If n is sufficiently

great, the difference between the area of the second curve and

that of the original curve will generally be very small. The
general formula for the case of 7i + 1 equidistant ordinates can

also be deduced by the method of finite differences.! For a dis-

cussion on various methods of finding an approximate value of a

definite integral by numerical calculation, reference may be made

to J. Bertrand, Calcul Integral, Chapter XII., pp. 331-352.

NOTE F

[This note is supplementary to Art. 88]

The Fundamental Theory of the Planimeter $

In Fig. 58, ALBC is a plane figure whose area is required, and

QX is a given straight line taken as the axis of X. Let MN rep-

resent a plate of which two given points always move, Q along

QX, and P on the contour of the given area. Then QP is a

straight line fixed with reference to the instrument. Let h be

the length of QP. Let W be the recording wheel with axis

parallel to QP. Its actual location is arbitrary.

* Also see Lamb, Infinitesimal Calculus, Art. 112.

t See Boole, Calculus of Finite Differences, Chapter III, Arts. 10-14.

X This note is by Professor VV. F. Durand, who has kindly permitted its

insertion here.
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The movement of P from P to (7, a point very near, may be

decomposed into: (1) A movement dx parallel to QX, (2) a

movement dy at right angles to QX. It will first be shown

that the record of the wheel W due to the dy component will, for

the closed area, be zero.

Fig. 58.

It may be noted that the amount of the dy record depends on

the dy and on the configuration of the instrument under which it

is traversed. Now it is evident that for every dy traversed in

the up direction, there will be an equal dy traversed in the down

direction, and under the same configuration. In the diagram the

pair thus traversed is dy and dy-^. The net record for such a pair

is zero, and for every other pair, zero, and therefore, for the

entire contour, zero.

It follows that the entire record will be merely that due to the

dx components. This is found as follows. The component of

dx in the direction of the plane of the wheel is dx - sin 0. But

sin^ = ^. Denote that part of the record due to dx by dR.

Then,

dB = dx • sin 6 _ ydx
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Hence,

and therefore

It only remains therefore to graduate W conformably to the

length of h, or, vice versa, to graduate W and give to h an appro-

priate length. The latter is the usual method. By giving to h

various lengths, the area may be read off in corresponding units.

Thus far it has been assumed that Q follows the straight line

QX. It will next be shown that the record is independent of the

path of Q so long as it is back and forth on the same line.

Fm. 59.

To this end let FM (Fig. 59) be any area, and ABODE a

broken line. Let A and E be the points from which arcs with

a radius b will be tangent to the contour at F and M. With the

same radius and B, C, D as centers, draw arcs as shown in the

figure. Suppose now that P is carried around these partial areas

successively, and always in the same cyclical direction. For

(1) the point Q (Fig. 58) will traverse AB, for (2), BO, etc. In

each single case the record will represent the corresponding area.

Therefore the total area will be represented by the total record.

And it is readily seen that GH, IJ, KL, are each traversed twice

in opposite directions. Hence the record due to them is zero,

and the actual record is due only to the external contour. Hence,

if P were carried directly around the external contour, it should
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have the same record, and hence the area. This is true for any

broken line, and hence for a curve. In the common polar planim-

eter the curve is the arc of a circle. Thus the point G in Fig.

55, Art. 88, which corresponds to the point Q moving along QX
in Fig. 58, or along ABODE in Fig. 59, moves along the circum-

ference of the circle of center T and radius a.

NOTE G

On Integral Curves

1. Applications to mechanics.— (This article is supplementary

to Art. 93.)

(a) The statical moment about OY=My = (area) 011= ay^OH.

Hence,

My = ay^ (a?! - HX) = ay^x^ - ahy^ = a (y^x^ - hy^. (1)

Also

IOH= 'PX (area) {HXf = 2 abcy^ -^^^= ah(2 cy^ -^\ (2)
2/i V 2/1 /

(&) The value of HX in Art. 93 (6), may be found by a simple

construction, though from its nature the accuracy may not be

all that is desirable.

Let BH be drawn tangent to OB at B. Then

t2inBHX =^=^'
dx HX

But y2 = T \ Vi^^) ^"^^ hence ^ = ^.
bJ dx

Hence, -^=t. and HX= ^-HX b ?/i

Hence, from Art. 93 (6), the point // thus determined will be

the abscissa of the center of gravity as desired.

(c) The moment of any area ORFH about any vertical XA is

proportional to the corresponding ordinate XD of the tangent
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to the second integral curve at the point E on the limiting ordi-

nate HF.

It has been shown in Art. 91 that^= =w,. From this,
dx b

tanZ>/fX = ^^=^2^^ = 5^.HK dx b ab

Hence the equation to the tangent KD is

ab

whence, aby = ab • HE -{-A(x — OH). (3)

But from Art. 93, ab • HE is the moment of the area about

HF, and A{x — OH) is the correction necessary to transfer this

moment to an axis distant {x — OH) from HF, and therefore

distant x from the origin. The second member of (3) is thus

seen to be equal to the moment of the area about a vertical line

at any distance x from the origin. Hence, such moment is meas-

ured by aby, or ab times that ordinate of the tangent line which

is determined by the abscissa x. Hence such ordinate at any

point bears the same relation to the moment of ORFH about

the vertical line containing the ordinate, that HE does to the

moment about HF.

(d) It follows that where KD crosses OX, the moment about

the corresponding ordinate will be zero, and hence an ordinate

through K will contain the center of gravity of the area ORFH.
Hence the construction given in (b) above is a special case of (c).

(e) If we apply the same proposition to the moments of the

two areas ORFH and ORPX about an ordinate through L, the

point of intersection of the two tangents at E and B, we shall

have for each moment the expressions abNL, and the moment of

the difference of the two areas or of HFPX about N8 will be

zero, and therefore NS will contain the center of gravity of such

area.



242 INTEGRAL CALCULUS [Note G.

Hence the tangents to the second integral curve at any two

ordinates intersect on the ordinate which contains the center of

gravity of the area of the fundamental curve lying between the

two ordinates chosen.

2. Applications in engineering and in electricity. The limits of

the present article will not allow detailed reference to the various

ways in which these curves may be made of use in studying

engineering problems. A few brief references may, however, be

made to some of the more common applications.

It is readily seen by comparison with text-books on mechanics

that if for the fundamental we take the curve of net external

force on a beaiii or girder, then the first integral of such funda-

mental will give the entire history of the shear from one end to

the other. Also that the second integral will give similarly the

entire history of the bending moment from one end to the other.

This serves to illustrate one important advantage of representa-

tion by means of these curves, and that is, that they serve to

give not only the value at some one or more desired points, but

at all points as well.

In this way they furnish a continuous history of the variation

of the function in question, and thus give a far more vivid

picture of its characteristics than can be obtained in any other

way. In the case of beams or girders it may be well to note

that external forces should not be assumed as concentrated at a

point, but should rather be considered as distributed over a length

equal to that occupied by the object to the existence of which

they are due. Thus the supporting forces at the ends of a bridge

span must not be considered as located at a point, as is common

in the analytical treatment, but rather as distributed over a length

equal to that occupied by the supporting pier. Their graphical

representation will therefore be a rectangle, or rather it may be

so taken for all practical purposes.

As another application, consider the action of a varying effort

or force acting through moving parts having inertia, and upon
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a dissimilarly varying resistance, their mean values being of

course the same. This is the case with the ordinary steam

engine or other prime mover operating against a variable resist-

ance.

Suppose that we have plotted on a distance abscissa, the curves

of effort and of resistance. The integral of the first will give

the history of the work as done by the agent or effort, while that

of the second will give the history of the work as done upon the

resistance. Steady conditions being assumed, their mean values

will be the same. Their history, however, will be quite different.

The difference between the ordinates at any point will give the

work stored as energy in the moving parts during their accelera-

tion when the effort is greater than the resistance, restored

during their retardation when the effort is less than the resist-

ance. We might reach the same results by taking as our funda-

mental the difference between the curves of effort and resistance.

The integral of this will give the history of the ebb and flow

of energy from and into the moving parts of the mechanism.

Again, by replotting this latter curve on a time abscissa it becomes

representative of the time history of the acceleration of the

moving parts. If then the reduced inertia of these parts is

known, the acceleration at any instant is known, and the curve

may be considered as one of acceleration. Its integral will,

therefore, give velocity, such velocity being the increase or

decrease above the mean value. Such a curve would, therefore,

show the continuous history of variation in the velocity due to

the causes mentioned.

In electrical science there are many interesting applications of

these methods. Of these only one or two of the simpler will be

here given.

Suppose that we have on a time abscissa a curve showing the

history of the electromotive force in any circuit. Then since

this is the time rate of variation of the total magnetism in the

circuit, it is evident that, reciprocally, the latter must be the

INTEGRAL CALC. — 17
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integral of the former. Hence the first integral curve will give

the history of the total magnetic flux in the circuit.

Again, if we have on a time abscissa a curve showing the

history of a current, then the history of the growth of the quan-

tity of electricity will be given by the first integral of such

curve.

Instances might be widely multiplied, but enough has been

given to show that where desired results may be found by one

or more integrations effected on a function whose history is

known, the complete representation of the problem naturally

leads to the production of these curves; and for their practical

determination and for their application to many special problems,

the fundamental relations and properties as developed above and

in Chapter XII., will be found of considerable value.

3. The theory of the integraph. We will next show briefly the

fundamental theory of the integraph, an instrument for practi-

cally drawing the first integral from its fundamental. Various

forms of instrument have been devised, but in nearly all, the

kinematic conditions to be fulfilled are the same. These are as
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follows: Let PC (Fig. 60) be the fundamental relative to axes

OX, OY] and QD the integral relative to axes QXj, QY. For
convenience the two F-axes are taken in the same line, though
this is not necessary. P and Q are therefore corresponding

points. At Q draw a line QA tangent to QD. From P draw
PE parallel to QA. Then

:

OA dx OE a

Hence, -^ = ^ or Vi == \-dx,
dx a ^ J a

If now a is constant, we shall have

1 /* 7 area
yi = - i ydx = or area = ayi.

(X\/ (Xi

These conditions are seen to correspond to (2), Art. 91. The

instrument must therefore include three points, E, P, and Q,

related as above specified. While the instrument travels along

the direction of X, P is made to trace the given curve, and E'

remains at a constant distance a from the foot of the ordinate

through P. This determines a direction EP, and Q constrained

by the structure of the instrument to move always parallel to

EP, will trace the integral curve QD.

It is not necessary that the points E and A should lie to the

left of as in Fig. 60. They may be taken as at E', A', and in

such case if the fundamental lies above X, the integral will lie

below its X as shown by QD', and vice versa. The actual values,

however, will remain imchanged, and the inversion is readily

allowed for in the interpretation of the results.



Following are the figures of some of the curves referred to in

the preceding pages

;

The hypocycloid, x^ -\- y^ = a^. The cissoid, y^
2a — X

o O' X
The cycloid, x — a{d — sin 6) \

y = a(l - cos^).

246

Folium of Descartes,
/gS _j_ yi — 3 dxy.



The catenary, y = - (e« -}- e «). The parabola, % * + y"- = a -

.

The semicubical parabohi, a\p- = x^ The cubical parabola, a'^y ^ x^.

The parabola, r = a sec^ -. The logarithmic spiral, r = e"^.

247



The curve, r = a siu^ ~. Spiral of Archimedes, r = ad.
3

The curve, r = a sin 2 ^. The cardioid, r = a(l - cos^).

The lemniscate, r^ = a^ cos2 tf. The witch, y = 8a8

248
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»J«<c

Following is a list of integrals for reference in the solution of

practical problems. The deduction of these integrals will be a

useful exercise in the review of the earlier part of the book.

GENERAL FORMULiE OF INTEGRATION

1. I (u ±v ±w ± '••)dx= I udx ± i vdx ± I w dx ± '".

2.
I
mu dx = m I u dx.

3 (a). ludv = uv— IV du.

3(b). fu— dx = uv- Cv~dx.
J dx J dx

ALGEBRAIC FORMS
4. f^= loga..
J X

x^ dx = , when n is different from — 1.

ri + r

Expressions containing Integral Powers of a-{- 6x

J a + bx b

7. C(a + bxY dx = ^^ + ^^^"""^
when n is different from - 1.

J ^ ^ 5(n + l)
'

249
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8.
I
F{Xf a + hx) dx. Try one of the substitutions, z= a + bx,

Qoz = a-\-bx.

U. f ^ = _liog«-±-^.
J x(a-\-bx) a x

13. r-^^= iriog(a + 6x)+ _^1.

14. r_^^ = i fa + 6a; -2a\og(a + 6a;) ^1

15. f-^dx 11 1 aH-6a;

6a;)'' a (a + 6a;) a

16

--Jog

r xdx _ 1 r_ 1
I

^ 1-

'' J (a + bxy~'b\ a + 6a; 2(a + 6a;)2j

Expressions containing a^ + ar^, a^ — cc^j a + 6a;'', a -f 6a;^

17. r^= ltan->?; r^= tan-^.

18. r_^= 1 iog»±^; r^= 1 log^.
J or — or 2 a a — x J or — a' 2 a x-\-a

19. r__^=J_tan-^a;\/-, when a>0 and 6>0.
J a + bx^ -y/^ ^ a

20. f ^^ =J-ioggL±J^.
J a^ - 62a;2 2 a6 ^ a - 6aj
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21. Cx"'(a-{-bx''ydx

binp + m-^l) b (up -{- m -\- 1)J ^ ^

22. Cx"'(a + bxydx

r+\a+bxy
7i2) + m-i- 1 np + m +

x'^+Ua+bx^'Y
,

anp T ^, , r „n„ i 7^^—^—^ H ^—- I ct'*" (a + bx'y-^ dx.
7ip + m4- 1 np + m4-lJ

23. f-—
<^^

(m— l)aa;"*"^(a+6a;'')^"^ (m— l)a J ic"'-"(a+6a;")^

1 (m—n+np—l)b f* dx

.— l)a J x"^'

24. f-
''^

a;"* (tt + 5x'»)p

1
,

m — n-\-np — l f* dx

an {p — l)x'^-^{a + bx'J'-^ an {p — 1) J a;'" {a -\- bx"y-^'

'dx

_ _ (a + bx^^y-^^ __ b(m — n — np — l) r(a + bxy dx
^

25 r(a 4- b:^y

J x""

(a + bx

a(m — l)x"'~^ a (m — 1) J x^

2Q r(a-\-bxydx
J x""

_ (g + &a;")P ay?j9 r (a + bx'^y-^dx

{lip — m 4- 1) a;"*"^ np — m-\-lJ x""

27 r_^"*^^
J (a{a + bxy

rf.m-n-^\ g (m — n 4- 1) C x'^-'^dx
^

~b(m-np-\-l){a + bx^-^ b{m - np -\- 1)J (a + bxy

28. f-^^"'^^^
.' fg(g + bxy

^m + l m 4- n — nj9 + 1 (* x"" dx

an(p - 1) (g + bxy-' an (p-1) J {a + bxry-"-

np + 1 r_
-1) J (a
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'' ha
''

30 ' ^^
J {a-h hx'Y

31. r_^^ =lf__^, where. = 0^.

32. f-^^^J (a(a + da^"

^^ . 1 r da;

2 6(n - 1) (a + 6ar^"-i"'"2 6(n - 1)J (a + fear^)"-!*

a;(a -f 6a;") an a + daf*

34 / dx ^1 r cga; & ^ da;

a;2(a + 6a;2^'' " a J ar^(a + &a;2)"- ^ aJ (a + ba^'

J aH-6a;2 26 ^\ b)

J a-^ba?~b bJ a -\- ba/

37. r ^^^ =— log ^
(a + 6ar^ 2 a a + 6a;^

38 r dx — 1 ^ r da;

»/ ar'(a + 6a;^ ax aJ a + 6a;^

39 r da; _ a; ^J_ r dx
' J {a-\-b3f)^~2a(a + bic') 2aJ a-i-bx^'
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Expressions containing Va + 6a5

[See FormulsB 21-28]

40. r^V^+todx = -2(2 g - 3 bx)^(^+b^l
J 15 b^

J 105 b^

42. f_4^=_2i2a-te).^^^p^_

43 r ^'i^ ^ 2(8a^-Aabx + 3V^^
^^~f:j^^

'^ Va + bx ^5V>

44. f
^^ = J-log ^" + ^^-^

. for g > 0.

45. f^^==-?_ tan-'J« + ^, for a < 0.

AA r tZa; _ —Va + bx b_ r dx

J y?^a + bx aa; 2aJ icVoT^

47.
rV^+T^ ^ 2V^+6^ + a f—

^

bx

Expressions containing Va^ + a^

[See Formulae 21-28J

18. ({^ + a2)^(Za; =
I
V^T^' + |log (a; +V^T^^-

49. ({^^a'f da; = - (2 a^+ 5 a^)V^?+a^+^log (a;4- V^+^0-

50. r(.- + aycZ.== ^(^+f)%-^;- fe + af"d..
J ^ w + 1 >i4-l^
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51. Cx(x'-\-aydx = ^^^-^

n+2

2 '

•/ 8 8

53. f ^^ =log(a;+V^T^^.

54. r dx

(ar^ + a2)f aVa^ + a^

55. r_^^=v^+^^.
^ (x' + ay

56. r-^^= ^V^T^^-|'log(aj +V^T^^.
•^(a:2_^^2^i 2 2

57. r_^^= -^ + log(a;+V^T^^.

58

59

f ^^ =iiog ^

r dx ^ _ Va;^ 4- a'
.

J a; a?

J or X
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Expressions containing Va^ — a^

[See Formulse 21-28]

63

64. fix' - a^^ dx= ^(2x'-5 a") V^^^ +^ log (x+^¥^^').
c/ 8 o

n

65. C(^- a?f dx = ^i^-ff _J^ fo + a^s-' ax.
J ^ ^ n-\-l n + lJ

n+2

66. Cxix'-aFfdx^^^^^^^^-
J ^ n-\-2

67. Cx^Q^-a^Ux = ^{2:^-a^^/¥^^'-^log{x + V^^^=^').

68. f ^^—= log (a; + V^^^'^^^.

69. r-^^=

—

^

—

.

70. f ^^^ ^V^-:^'-

J (^r^_a^\ 2 2

72. f_^^ = -^- + log(a^+V^^^^).

73. f__^^_=lsec-^; f—^^^= sec- a..

74 r___^^__^ v^EZ.
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75. f ^ = ^^^^«V-J-sec-^.

76.
r(^-a-)^c^^ ^v^:r^^-acos-^^.

"• J ^-^ = h log(xH-Va^-a').

Expressions containing -\/a? — Qt?

[See FormulaB 21-28]

78. Cicf - ar)i<fo,= IV^rr^+ ^'sin"'*.
J ^ 2 a

f(a' -x^Ux = ^(5a'-2x^V^T^ +^ sin"^^.

80. Cicf -^%dx =xj^^ j^ /(„, _ ^1-,

81. ra?(a^-ar^fda; = -(^'-^)'^.

^ o 8 a

83. r_^^_=smi^; r ^^
sin~' a;.

84, ' ^^

(a2 _ ^^f c?^j^fzr^

85. 1

^^^ -_V^^^^.

-/ (a2 _ ic2)i 1^ 2 a

ar^(/a;

(a2 _ iB2)t Va=^ - x'

otj (* x'ax X . ^xo/. I -= sin"'-'
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dx 1 1 _ _ X
89. r_^^ = iloj

90./
da; Va^ — x"^

a? (a" - x'Y

91 f ^^ =_VV-^ _1_, a;

X
93. (•('^--^)^cte= -^gHg-sia-

J x^ X a

Expressions containing V2 aa; — x^j \/2ax-\-x^

[See Formulae 21-28]

94. rV2 aa; - x" dx =^^V2 aa; - a^ + ^ vers-^ -•

95. f
^^ =Yers-^^; f

^^
=vers-^a;.

96. I a;*" V2 ax — x^dx = — ^

—

—^
J TTl -f- ^

(2m + l)a r^-.^2l[^^z:^dx.
m-\- 2 J

97. C
J a

dx _ y/2ax — x^

aJ"V2ax-ar^~ (2m-l)aa;''

m — 1 r <^a5

— 1) a J ic"*-'(2 m — 1) a J ic"*-' V2 aa; - a^
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98 C
^""^^ = - ^'^^^^^-^ .

(2m-l)a r x'^-^dx

«g rV2aa;-a?^ , (2aa;-ar^)f m-3 rV2aa?-ar^

J ic- (2m-3)ax«'^(2m-3)aJ ic—i

). rxV2^^^da.= -^^^±^=^V2^^^+^%ers-^.
*/ 6 2 a

01 r t?a; _ _ V2 ga; — x^
^

02. f
^^^ = - V2aa;-a^ + a vers"^ -•

03. I —^:^=i= —— V2 ax — xr-{--a^ vers^ —
-^ V2ax-x' 2 2 a

04. r^2^^-^ (ia; = ^2ax-a^ + a vers-^ -•

J x a

(j5
pV2 ax - ^'^

^^^ _ 2 V2 ax - X-_ ^^^^., g
ar* X a

-w, /^V2 aa —^ ^„ _ (2 ax— x^f
'^- J S Sax'

07 r dx _ a; —

g

-'(2gx-af)f aV2aa;-ar'

08. f ^^^ = ^

'^(2ga;-ar^f «V2aa;-ar'

09. ( -F(ic, V2ga;— ar^ c?a;=
j i?'(2;+g, Vg^—z^ dz, where 2j=ic— a.

10. r ^^
=logra; + g4-V2ga; + a:^.

•^ V2ga; + ar'

11. (i*^(a;, V2gic-har^)rfa;= ( F(z—a, ^z^—a^)dZf where 2=a;4-a.
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Expressions containing a + bx ±ca^

m r dx _ 2 ^__, 2cx + h , ^» ,
•

f —TT—;—I^ = tan ^—
. when 6^ < 4 oc.

113. =
^ / log

2ca^4-5- V6^:r4^c
^ ^^^^

y/b^ — 4 ac 2 ca; + 6 + V6^ — 4 ac

62 > 4 ac.

114. f ^ ^ w V624-4CTc + 2ca;-6
A/t> i-^ac v6^H-4ac — 2ca; + 6

-, =-^lo8(2cx + b + 2V~c^a^bx-\-ca^,
V (X -\-bx-j-cxr Vc

116.
I
Va + 6a; + ca;2c?aj

=-^^^Va+6a;+car^- ^'~^^^log(2ca;+6+2V^Va + &a; + car^).

8 c

117. r ^^
=-l-sin-^ 2 ca^-5_

^ Va + 6a; — cic^ Vc V6'^ + 4 ac

118.
I
Va + 6x — car' dx

119. r

4c 3^1 V62 + 4ac

a; da;

Va 4- 6a; 4- car'

= ^^ + ^^ + ^^
--^log(2ca;+ 6 + 2V^Va + 6:.+ caO .

^ 2c^

' X dx Va 4- 6a; — car^ , 6 • _i 2 ca; — 6— = '
1 sin ^— •

Va + 6x-car' c 2c^ V62+4ac

Other Algebraic Expressions

^21- j"^^J^(ia;==V(a+a;)(6+a;)+ (a-6)log(V^T^+V6+i).

122. fJ^^ dx = \/(a-x)(b-hx)+ (a + 6) sin-^J^^-

INTEGBAL CALC. 18
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123. J^^^-±^dx= --^(a + x)(h-x)-{a + h) siii"^-
'^ "

^

a + 6

124. J^/|±|(Zx=-vT3^ + sisin~'a;,

125. f
^^

- = 2 sin-ufc^^.

128. Ce^dx =^
J a

129.
j
sin iccZa; = — cos a;.

EXPONENTIAL AND TRIGONOMETRIC EXPRESSIONS

126. fa'cZa;= -^. ""*> ^'---- ^"
c/ log a

127. Ce'dx = e'.

130.
I
cos xdx = sin a;.

131.
j
tan a; (Za; = log sec ic = — log cos a?.

132.
I
cot xdx = log sin x.

133. fsec xdx= f-^= log (sec x + tan a;) = log tan f''+ ^\
J J cos a; \4 2y

134.
I
cosec xdx = C-4^ = log (cosec x — cot a;) = log tan -•

J J smx ^ ^ ^ 2

135.
J
sec^ a; c?a; = tan a?. 136.

J
cosec^a;da;= — cota:.

137.
I
sec x tan xdx = sec x,

138.
j cosec a; cot a;c?a; = — cosec a?.

139. fsin^ a; da; = ? - - sin 2as.Jsii
2 4
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140. fcos^xdx = --^-sm2x.
J 2 4:

141. fsm''xdx = ~'^^^::^^^^^ +l^ Csm-^xax.^ n n J

142. CcoB-xdx = '"''""'"^'' + !^^l Coos"-^xdx.J n n J

143
r_dx_ _ _ 1 cos a; n — 2 C dx
J siii**ic n — 1 sin"~^a; 7i — lJ siii'^'^o?'

144
r_dx_ _ 1 sin a; n — 2 r dx
J cos" a; n — 1 cos'*~^a; n — 1 J cos"~^a;

145. foos-xsm'xdx= ^-^^rl^^I'::lll+ri^ fcos-^xsin-xd^.
*/ m-\-n m-\-nJ

146.
j

cos*" a; sin" a; (?a;

sin"-ia;cos'"+^a:
, w — 1 /* „ • „ 2 ^=
1 I cos*" X sin"~^X dx.m + n 771 + nJ

147. r—

^

J sin"* a;sin'" a; cos" a;

_ __1 1 ,
m + n — 2 r dx

^

n — 1 sin"'"ia;cos''~^a; n — 1 J sin'^ajcos^^^a;

148. f. '^^

J sm"* a; COS" a;

_ _ _1 1
, m + n-2 r dx

m — 1 sin"*~^a;cos"~^a; m — 1 J sin™~^ a; cos" a;

^ ^g rcos'^xdx cos'^^^a; m — n + 2 /'cos'" a; da;

J sin" a; (n — 1) sin""^ a; n — 1 J sin"~^a;

150 rcos"*a;c?a;_ cos"''^a; m —

1

rcos'^'^a^da;

J sin" a; (m — n)sin"~^a; m — nJ sin"a;

151. fsin a; cos"a; (^a; = - £2£!!!£

152. fsin" X cos a; dx = ^H^!^^.
J n + 1
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153. rtan'*a;da; = ^^^:^-^- rtan«-2a;da;.

164. fcot-xdx = - S2^L^-j*cot*^-'xdx.

- _ ^ r . . , sin (m + ?i) a;
,
sin (m — ?i) x

155. I sin maj sin nx da; = —f r- + —777 r~'J 2 (m -f n) 2 (m — w)

,_„ /* , sin (m + n)a;
,
sin (m — n)a;

156. \ cos mx cos nxdx = —-j——^ + "177 r"
J 2(m-\-n) 2(m — n)

^^^ C • J cos (m + w) a; cos (m — n)x
157. I sin ma; cos wa; da; = -f—;—^ -^ ^'

158. f ^ = ^
tan-i

f\^^ tan |\ when a>b.
J a + bcosx ^'a^~W \^a + h 2)

V6—a tan - + VM-a
159. = log—-— , when a<b

a tan- + 6

160. r ^^ = tan-i

—

-^ when a > &.

Ja + 6sina; Va^ - h^ Va^-ft'

atan| +&-V6^^^
161. = -^

log , when a< 6.

Vft'^-^' atan^+6+ V6^^^^

168. r ^__ = ltan-Y^^^Y
•/ a^cos^a; + ft^sin^a; a6 \ « /

^ /»o r «. • J ^'"(ci sin ?ia; — n cos na;)
163.

I
e** sin na; da; =—^^ r ^

/' . , e* (sin a; — cos x)
e sm a; ax= —^ ^•

-it* A C^ J €'"(nsinna;4-acoswa;).
164. I e*" cos na; dx = —^^

, „ ^

;

/' , e* (sin X 4- cos a;)

e* cos a; da; = —^^ -^ ^»



ANSWERS TO THE EXAMPLES

CHAPTER II

Art. 12

3. 2/» = ce* ;
2/« = «». 4. j/2 _ ^(^.2 + c2).

CHAPTER III

Art. 18

X^ X^ S"'+»+^ ^100 g22 jo88

V iT' m + w + l' lOO' 22' 38*

g _8_^ S^^ __1_^ 1_^ 1 1 1

225 40 6x6 9x^ mx« 99x99 20x20

6. |x^ ^tK ^x^, -4-v'i^\ Ix', fx^ _J_x"1^\

7. |x', 2xi -4=, |x^ ^xi fx^, 4xi
vx

8. logt, log(s-l), flog(x3 + 3), log(Mvw> + l), log(x8 + 2x2-2x + 4),

log tan X, log sin X.

-9 2x 15 (m + ny 10. -cos2x, sinSx, tan4x.

log 2' log(m + n) 11. sec^x, sin-i2x, sin-i3x, sin-iwv.

12. tan-i2x, tan-i3x, sec-i2x, sec-i4x, sec^-.
a

Art. 19

• ^ ' 11 d V2 + I

3. ^x3-x2 + 5x, ix*-2x2 + 2xi
2H8
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4. 9( + 15«2 + ^^t» + c, or 3-15(3 + 50^ + 0, a^x-iJx^-\-^Jxi-\x^
sin e — cos e.

a 2 ^ ' p ' ^

g sin ma; cos 3 a; tan 2 a; cot (m + n)x

«i 3 ' 2 wH n

7. -llog(a + 6x"), ^log(4 + 3t;3), - ^log(5 -2«*).

8. ^sin-i^, itan-i^, J_tan-i^.
4 ' ^ 3' 20 4

Art. 20

8. K« + «)i |(x + a)^, log(a; + a), 2VxTa, ^, ^5^(2 + 3a;)^,
5 a; + a

-3\(3-7a;)K

9. sin (x + a), tan (a; + a), — | tan (4 — 3 «), — cos (a + 6x).

10. 2 sin? ^e2+5«, -3c"i, ^

2' ^ '
' 2sin2a;

11. ^3^(4a;-3a)(a + a;)^ _§_(« + 6x)^(2 6x - 3 a).
10 6'^

12. log tan-i a;, sin log a;, — w cot-

.

n

13. ^ (a + bzy, A (a + 6x)^ ^ (a + 6y)l

14. isin-i^^^nl.
4

15. -Icosec^a;, ^sin^^ - f sin4^+ f sin^^ + Ysin2d + 2sin^, ^tan*^
- ^ tan» <p + tan2 + 9 tan 0.

Art. 21

6. a;sin-ia; + vT=^. 12. «l±i tan-i a; - ?.

2 2
6. a;cot-ia; + Uog(l + a;2). ,^ ^,, ^, ^,^ ^^ ^

13. a;[(logx)2-21ogx + 2].

7. a*|—^^
1

] ,
14. sine(logsin^- 1).

llog a
^

(log a)2 J 16. tan x (log tan a; - 1 )

.

8. a'\-^--^+—^\. 16. ^[(loga:)2-^logx + i].
Uoga (loga)2 (loga)8i 4

9. X tan-i X — ^ log (1 + x^). 17. -- e"" (wx - 1)

.

10. 2cosx+ 2x8lnx — x2cosx. ^.m+i / 1 \

11. x^sinx + 2xcosx — 2 8inx. *

wi + 1 \ w + 1/
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Art. 23

6. log(2a;-5 + 2Vx--^-5x). 7. log (7 x + V? V? x"^ + 1-J).

8. -^ log (3 a;2 + 1 + V3V3x* + 2x^- 1).

2V3

9. ilog^. 21. -^ j.g a^-2-2V8
4V3 °a;-2 + 2V3

10. 5 sin- ,

^
,, "

, _^3in-i (^-^^\, or 5vers-i-. , .

V 2 ; 2 22. Uan2x + logtaii(x + '')

23. Asec-i?^:^.
b b

12. sin-i— 1 2 3.

V5 24. -1 sec-i^.

13. 2 log sec 3 X.

7 V5x 25. -i-log(x2+VS4^::^).

V5 a/3

15. J_tan-i ^

(x2-?/2)^.

va Va 27. log(^ + V)82 + 2\/3).

16. _L,iog?^. 28. -Lvers-ii^.
4V2 ^+\/8 V6 ^

17. -log sin ax. 29. itan-i^^-±^.
2

18. llogsin(ax + 6).
g^^^ log tan ? 4- log sin ^

19. J_tan-i^^
2

\/3 V3 81. ilog (a2x+6+ a\/a-^x2+2 6x+c),
a

20. itan-i-^-.
^^ ^^,___^^^^^^_^^-^—^^^

Art. 24

3. ?!_ 2x2?/- 2x1/2 + ^ + c. 4. a"x - ^ - x?/2 - x2?/ + c.

3 3 «>

5. ax2 + bxy + ay^ -\- gx -\- ey + A;.

Page 55

m4-n + 2 V^/

2. ix3 + 4x^-fx^ + 15x^ 7a^-J-|^a^ + ^f^.
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3. ?^-^ + 2a:2_8x + 251og(x + 2), ^ + z^ + Qg + 5\og(z -2),
4 o 6

24 + 6 log 3.

1 + n n — 1 1 — n 6 4

6. -2 cot 2^, f sm20 + |cos3 0, - - log (a + 6 cos V').

6. log(y2_a2), sinx + tanx, Ulogaj)2,
[^og (aa; + &)]^

2a

7. 106, 1, 1, 4, 2nT + J,
log 2. 8. 2, 1, 1 + a, e^ - e-^'

4 4 2 2 a

9. ie6, log 2, -Q2E^, e2-l, l(e?-e?).
8 a

10. 4Va, T»j(l + 3V3-2V2), 3+\/l6.

12. sin-i^-±^, 2tan-ivTT^. 13. |x^-lx^ ^^^ ~ ^

"

Va + fcx^.

VT3
^ ^ ' 362

^

14. X sec"i X — log(x + Vx2 — 1), x cosec-i x + log(x + Vx^ — 1),

X cos-i X - VI - x2, — sin-1 x + - (x^ + 2) Vl - x^.
o y

15. X sin X + cos x, — x^ cos x + 3 x^ sin x + 6 x cos x — 6 sin x,

x2
X tan X + log cos x

16. a'[-^ 3^_ _6x 6_-| cosx(l - logcosx),
Lloga (loga)2 (loga)8 (log a)*J

^ ^ ^

cotx(l — log cot x).

17. (x2 - 2 X + 5) sin (x* - 2 x + 5) + cos (x' - 2 x 4- 5).

18. ^^ + ^^^^
[2 log (x8 + a3) - 1] - a8(x3 + a^) [log (x^ + a^) - 1].

19. —?_|(logx)2 + ^logx + - [. 22. tan X - cot X + 2 log tan X.

3 ^f
I 3 9

)

23. ^ - 1 log (1 + cot 6)+- log (1 + cot2 d).

24. 8in-i—-^-_. 25. 0. 28. 1 sec-i ? - i log (x + V^^^^"^=^).
Va2 + 62 o a X "^ ^

26. a log tan
^^ + ^^ + 6 log sin d. 29. J (log (x + Vx2 + a^)}*.

27. sin-i^^lli, sin-i^J^. 30. logsecf^ + jV
V3 3 "*

V2 4/
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^^-
^""^^e ^^- i4sin-i|- ax + 10) vT^:^.

32. fxHers-i-+f(x+4a)v^"a^.
a

33. fv^^^±^±f'log(a:+V^±^).

34. J- log ^-

A

35. ilogta„(| + |).
«• ^i;^^*^"-'^-

36. ilogtan^^+jV 41. 2V2sin-i
[ V2sin-y

42. tan-i ^«^+_^
, when 62< 4 ac,

V4 ac - 62 V4 ac - 62

38.
1 i^„seciK-V3

2\/3 secx + VS

39.

2V6 6- + V5

40. ! seo-i«'.

lo.
2ax + 6- V6^34J^

^ when62>4ac.
V62-4ac 2ax+6+V'62-4i

43. ilog (2 ax + 6 + 2Vay/ax^ + bx + c).

Va

44. — sin-^—^^~^
. 46. sinxcosy + c.

Va V6"^ + 4 ac
47. x3 + 3x2?/ + 4 xi/2 -I- 2 y3 + c.

45. - cos X cos 2/ + c.

CHAPTER IV

Art. 29

1.

2.

(«)¥;(&) 4.

(«) 74|; (6) |.

6.

7.

h
25|.

11.

12.

2.

3. (a) tV ; (&) 4. 8. f\/1024. 13.
a2
6*

A;21o^

4.

5.

9|.

28if.

9.

10.

2|.

24.
14. 6.

a

Art. 30
5. Sl^Vr.

6. (a) ^fi^Tr; (6) /^tt; (c) yf^Tr; iff^r.

7. (a) f^r; (6) 2,r; (c) ^f^Tr; (d) ^m
8. (a) 4 7r; (6) ua^log (1 + v^).

9. f^c^xii 10. ^c^xA 11. ^. 12. |^a62.
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Art. 32

8. Vny = x-{-c;Vn(y-S)=x-2.
9

4. y = ce^. 5. (n + 1) y2 = 2 kx^'+^ + c. 6. cr = e*.

7. r« = c sin »i^
J
r = c sin ^ ; r = c (1 — cos ^).

Page 76

1.
47 ««

60 6«*

10.

11.

2a2.

2 7ra2.

18.
2 \ e /

2.

3.

4t. 12.

13.

7ra2.

32 . 6^
19. ^7' (logs 2)

4.
f(^4)- 3 . 5 . 7 . a^ 20. 2ir2a8.

6. log4-|. 14. fa&. 21. ^-^TT.

7. (a) ^; (ft)
7a>

12

15.

16.

(a) Htt; (6) ^%^.
23. 350 7r2.

8.

9.
17.

16
26. -(M)-

CHAPTER V
Art. 34

2. log^^zi. 7 lo^ (^ - «)" 13. a;2+log(a:+l)«(a:-4).

a; + 2 *
"' (a; - />)*

3. log(a; + 5)2(x-7)3. 8. log[V2^^(a^+2)]. ^*- f+ 5x-loga:3(x+2).

4. -log(x-2)2(x-l). 9. ilog.(a.2-3)4.
(x-p)(x + ,)

10. ]og(x + 3)2(x-2). 15. log
•

5. log^. n. log-^.^ ^l-x2 16. x + log^.

6. log^^^ni. 12. log^-^-A
""''

^ X-2+V3 17. log\/x2 + 2a:-4.

18. T^i logx(x - l)«(x - 2)-8(x - 3)9.

19. -l-log^-^^4-^log^-^.
2V^ X+V2 2v^ X + V3

80. ilog(x2-l)_ilogx(x2-2)+^jlog(x2-4).
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Art. 35

269

log(x + l) +

log(x-3)-

x+ 1

2

9. alog(a; + a) + a32a2

x + a 2(ic + rt)2

x-Z
3 1

3.

4. log \/2x + 1 -

6. log(x + a)«(a; + 6)-*

-

6.

10. loga;(a;- 1)3-

2 2a; + l

&2

a; + 6

11.

12.

7 +lllog-+l
2ic + 2 4 °a; + 3

x + 2
+ log(x4-l).

(3V5 -2-xy
13. -

4(x2-2) 8V2 ^-V2
7. log (x- 3)8

8. loj

x-S 2(x-Sy
14. ^^-5 + ^^+1 +log^^.

X + 1(x-2)2 2(x+l)'

,x + l

x+ 1

15.
(X - 1)^

+ log (^-1)1

3.

4.

5.

9.

10.

11.

12.

13.

log X + 2 tan-i x.

log(x + 1)2 + tan-ix.

f + ilogx + ^tan-i^.

V3 V3 •'(:«' + 3)2^J

Art. 36

6. tan-ix+ f

—

^
J (X2 + 1)2

7. ilog(3x + 2)-|taii-i(x + l).

8. 31ogx+— tan-i^~'^
V2 V2

dx

(X2 + 3)3

V5 V5 6 (x2 + 5)2

x + llog?!-±^_V3tan-i^.
6 x2 V3

log ^!_+l. + 3 tan-1 ^ _A tan-i

Vx2 + 2 2 V2 V2

3.

«Va2_a;2

X

CHAPTER VI

Art. 38

4. 6. _ Vx2+ a2

a^x

aVx2 - a2 a2a;
7.

(x2 - a^)\

3 a2x8
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, -l^^-VfT^). V2 ax - x^

ax

9. 2log(« + ^«^--^). 12. ^ .

«V2ax-ic2

10. -.lsin-1^.
a X

j3 -(2ax-a;2)t

3aa;8

Art. 40

3. SxUilog^^I^^ VSt^^l'^y\
x-l V V3 /

4. a;^ + log(x^ + l).

. up-l^f-ff)-

1

6. i2(^-^-^+^+^-4-4-^xhx^'^-\og(ixhl)-t^n-^x^'A.\9473543 /

7. 12f^-1^ +4+^+ ^^^ + l«g(^^'' - 1)'(^^'' + 1)'^'!

•

v 6 4 3 2 /

8. _?_^(a+6x)^(3 6a;-2a). 9. log(3 + 2VxTr).
15 6^

10. x + l + 4Va;+ 1 + 4log(Vic + 1-1).

11. :^(c-x)^(5a: + 3c-24). 12. |
^^ + ^

.

^ (2a; + 3)*

_^

r Vx2 + 6

Art.

-V3>

41

4.

1-

1

2V2 '-(^^
-X2-V^\
-X-2+V2/

8. r^^- X2.

log6. Vx2 + 6 ^_

Art. 43

l-tan-^f
^^~^'^

V 3. -^log(3 + 4x + 2\/2\/2x'2 + 3x + 4).

/2 V V2a; / V2V2

4. log (x+ 1 + V2x + x2) -
x + V2x + x2

6. Vx2 + x4-l + ilog(x + i + Vx2-fx + l).

6. Vi - x2 , , „ / vT^^ +

1

2x2
i,„,(vr^). ,_,^,eos-.(^).
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Art. 44

2. \/51og(5a;-l+\/5V5a;2-2x + 7).

3 -i_ log (6 X - 1 + 2V3 V3 x2 - X + 1 )

.

4. sin-i(^y 5. 2V2sin-i(i^^y

6. -I V6-3x-2x2 + JLLsin-ifi^^V
4V2 V \/57 /

7. a sin-i - - Va2 - x2. 8. 5Vx^"^ + log (x + Vx^^S)

.

13
9. I \/3 x2 - 3 X + 1 +-^ log (6 X - 3 + 2V3 \/3 x2 - 3 X + 1)

.

2V3

12. i V5x2 _ 26x + 34 +-^ log (5x - 13 + V5 VSx^ - 26x + 34)
5V5

I
i3iog^

2x-7 + V5x2-26x + 34 \

13. -log(2 + ^ + 2Vx2 + x+iy

14. 2sin-i(^)-4V21og(^^5±^^Z^^E?).

Art. 45

4. -V2ax-x2 4-avers-i-. 5. - 1 V^^IT^a + 1- sin-i ^.

a ^ 7
V^2372 1 / g + V^^^^y

8. _ ^(3 a2 + ax - 2 x2) V2 ax - x2 + ^ vers"! -•

^ a

g -(a2 + 2x2)Va2-x2^
^^^ i r^^i _ 2 a^) Vc^T^.

3a4x3
'

Page 98

1. log(2x + a + 2Vx2 + ax). 2. log (2 x - 5 + 2 Vx2 - 5x + 6).

3. —log [2 N^x - P + 2 NVN'^x^ -Px+ B].
iV

4. log (x - a) (2 X - a - 6 + 2\/(x - a)(x - &)).

5. _l_log(4x8 + 3 + 2\/2V2x6 + 3x3 + l).

3V2
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6. -i-sin-iV3(x+l). 7. -^log[V5(x + 1) + V5x2 + lOx - 27].
v3 V6

8. _4^sin-i^. 9. -^ + -g.sin-i(a;-l) + A ^"1
. .

Vm » 17 17
^

17 V2a;-x2

10. ^log (2a: + Vix^ - 9)+ -^siq-i
f
^-l^^zi^V

V6 \ 5 /

11. - 2 Vx2 + 2 a; + 4 + 6 log (X + 1 + V«2 + -2 X + 4).

12. -^2x4- llV(x - 2)(3 - x)+ J^siii-i (2x - 5)

3.

2

»3

13. \ (X - 4) Vx-^ -1 + 1 log (X + Vx2 - 1).

14. --Llog/l-^ + v^V^^M:"lV 15. _iogf^^iElzi3x-4\
V2 \ «+i ) \ 2x+3 y

16. log(x + 2+Vx2 + 4x + 5) + -l-wf^^^' + ^^ + ^-^-lV
V2 \ iK + 3 /

17. io^fx-hl-\-Vl + 2x-7^^ \ 1 ^^^/ V2 + Vl + 2x-x2 \

18. tan-iVx2 - 3.

19. V^Mri + 2iog(x + V^^Mn:)-Aiogfi-^ + V2^^^^T"i\

\/2 V a; + 1 y

^1-x^ ^4V2 U + SJ

21. ^x* + a62a;2 + ly/b'i + a2x2(3 62^ + 2 a2x8) + j^log (VPTo^ + ax).

22.
^^3^'-^^')

3aKa2-x2)^

23. -±Va^- x2(8 x4 + 10 a2x2 + 15 a*) +^ sin-i?.
48 16 a

24. -Va2-x2. 26. - yV Va2 - x2 (3x* + 4a2a;2 ^. 8^4).

26. -llog(«±^^:^'). 27. V^^i:T2-alog(«±2|!HiV

28. ? Va2 _ x^ (2 x2 - a^) + ^sin-i ?.

8
^ ^ 8 a

29. -^ Va2 - x2 (8x* - 2 a2x2 - 3 a*) + -^ sin-i ?.

48
^ ^ 16 a

80. T^^3Z. 31. _liog/a + V^^TZV
a2x a \ X /

82. I Vx2 i a2 (2 x2 ±a^)-^ log (x + Vx^ ± a«). 33.
^^

.

8 8 a2Vx2 ± a2
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34. |V^2-^^(2x2±5a2) + §^*log(x + v^^±^). 35. V^^^~±a'.
o o

36. -y/2ax-x^ + a vers-i -. 37. - ^'^ ^^ ~ ^'.

a ax

38, _ 2x-^ + 5a(x + 3a) ^^^^_^, ^5a3^^^^.,x,

6 2 a

39. ^::i«V2ax-x^ + «-vers-i^. 40. ^ (3 ^^ + 5 g'^) J_ x,

2 2 a 8 a* («^ + a^^)"-^ 8 a° a

41. ^^ + J_tan-i^. 42
^

4a*(a^* + a4) ia^ a^ 3 (a^ - x^)

43. "^^ + J- tan-i (^^] . 44. ^ + 1 log ^+^.
4(x-2-2x + 3)^4V2 \ V2 / 2 (1 - x'^ ^ ' °x-l

45. Vl + x+x-^-l log (2 x+1 + 2 Vl+ a;+x--^)-log
(

^ -a;+2Vl+ x+x^ X

46. - tan-iVx + 2V2 iSLU-^J- - V3 tan-iJ|.
'2 'o

(a2-6-2)(a2 + 6'-i-x2) * 4

49.
2x-l

. gO_ ^^^i±I + 41og(x + VSM^).
2(x2+3) 2

51. ^JH+A ^4x2 + 4x + 3 + I log (2 X + 1+ \/4x'' + 4x + 3).
16

52. ^^ll Vx-^ + 2 X + 3. 53. --^ V- 3 + 12x -9x2-i|sin-i(3x-2),

54. ± (2 Zx + m)VZx2 + mx + n + '^" "H^ sin-i
f
^jg±^\

.

4? 8ZV-Z Wm^-^lnJ

1 1 r(^ + Vx2 - a2)2 + (3 _ 2 V2) a2 i

55. ~ log
I ;= I

•

2 a^V2 L (X + Vx-' - a^y + (3 + 2 V2) a2

J

.« 2\/3x2 -2x~+"l
Ob. •

2x-l

CHAPTER VII

Art. 46

6. (a) sin x - sin« x + ^ sin^ x - ^ sin^ x ;

(6) -cosx + |cos8x-|cos5x;

(c) - cos X + cos3 X - I cos^ X + f cos7 X.
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6. (a)
-co8^«i"^

(sin^a:+|) + ix.
4

(6) —
J sin^ X cos X + I \sm*xdx, [see (a)] ;

(c; _?lB!^£2i£ + 7 fsinea^dx, [see (6)].
7 8 •/

7. (a)?i^^2i£(2cos2x + 3) + fx.
o

(6) ^sinxcos^x + ij cos*x(2x, [see (a)],

(c) i sin X cos^ X + I fcos^ x <?x, [see (6) ]

.

8. (a) _l£2i«+3f^, (seeEz.4).
4 sin* X 4 J sinS x

(b) i sec X tan X + log\/secx + tanx.

(c) 1 illL?- + f tan X.
'^ ^ 3cos«x '

(d) liiE^ + ^r^^, [see (6)].^^ 4cos*x 4J cos8x
L wj

(e) ll!ll£ +4r_^ [see(c)].

(/)-|^-|cotx + c.

3 sin^ X

(^)
_lco8x 4r_dx_

j-see(/)].

Art. 48

4. (a) \ tan^ x + tan x-\- c. (c) — i cot^ a; — | cot^x — cotx.

(6) -^cot8x-cotx. ((Z) tan8|+3tan|+c.
3 3

6. (a) itanxsecx + ilogtanf - + -V

(6) I tan X sec* x + | -j tan xsec x + log tan f - + -
j

v •

XV cotxcosecx
, ii«„x„„x ^ '

(c) ^ + i log tan-.

(d) — } cot X cosec* ^ ~ I ( cot x cosec x — log tan -
j

•

(c) J tan f X sec f X + f log tan (- + -)•

Art. 49

2. (a) ^ tan' x — tan x + x. i^) — h cot^ x — log sin x.

(6) \ tan* X — J
tan* x + log secx. (e) — | cot' x + cot x + x.

(c) I tan* X — i tan'x + tan x — x. (/) — \ cot* x + ^ cot* x + log sin x.
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Art. 50

i5 11 1 7.

f sin^ X — j\ sin ^ x + j\ sin ^ a;.

— 2 Vcos X (1 — I cos2 x-\- ^ cos* x) . 5. f sin^ x (1 — i sin^x + ^ sin^x).

I tanS X + ^ tan* x + c. 7. — } cot^ ic — ^ cot^ x + c.

3. — I cos^ X + j\ cos'^" X.

cosx / sin^x sin^x

2 V 3 12

tan X — 2 cot x — 4 cot^ x.

sinx\

8 )

Art. 51

X

16
4. ^2i^(3-cos2x)-^.

2sinx 2

6. - -^2^ - cos X - I log tan^.
2sin2x

^
2

^ tan2 X + 2 log tan X — I cot2 x. c cosec« x

Art. 52

5. - + f cosec'^ ^ — ^ cosec^x.

3. t\ tan"^3^" X + f tan^ x.

4. — I cot^ X — I cot* X.

if^-sin2x+«-^^^^

6. I tan9 x + ^- tan? x.

7. 4 sec* X (xV sec2 x — ^^ sec x + |).

Art. 53

3. f X 4- i sin 2 X + 3^ sin 4 x.

4. TV(5a;-4sin2x + isin32x+ |sin4x).

5. y\ (5 X + 4 sin 2 X - ^ sin^ 2 x + | sin 4 x).

sin3 2x . X sin4x

48 16 64
7. jh

Art. 55

|,(3x-sin4x + «i^).

(3tan^-2)
^ tan-i f

V5 V5

1 j^^ 2 tan X + 3 - V5

2V5 ^2tanx + 3 + V6*

itan-ifitan-V

ie^(sinx — cosx).

I e^(sin X + cos x).

tV e2^(3 sin 3 X + 2 cos 3 x).

INTEGRAL CALC. 19

4. itan-i^2tan-y

tan X 4- 3
5. I log

6. ^log

tan X — 3

2 tan X + 1
^

tan X + 2

Art. 56

4. _i_ e-^(2 sin 2 X - 3 cos 2 x).

b. — I e-*(sin x + cos x).

ie-( 1 +
2 sin 2 X + cos 2 x^
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Art. 57

1 cos 8 a; cos 2 a; g sin 11 x sing

16 4 * 22 "^ 2 '

2 sin 11 a; sin 3 a;
*• ^'^ ^^" "V ^ + r'o

sin f a;.

22 6 * 5. — ^ cos X — cos | x.

6. — ^ sin a; + | sin f x.

CHAPTER VIII

Art. 59

4. 240. 6. 80.

6. The double infinity of straight lines y = cix -\- C2, in which ci, c^ are

arbitrary constants.

7. Sy = 2x(x^-1). 8. |(n5 - m5)(d - c)(& - a). 9, ^i^-dj.

Art. 60

3 24^. 6. Wa3. 7. 6&3.

4. 58^. 6. |a3.

Art. 62

8. 32 a7.

4.
4c

-62)
6.

«^^.

90

5. 1 a3 tan a. 7. K^. -!)««.

CHAPTER IX

2. cr = e*.

Art. 65

3. r" = c sin nd ; r = c sin ^
;

Art. 66

r= c(l - cos^).

3. ia2(/33-a8). 4. \«^ 6.- f.a2.
« 3a-2
^- 2'

Art. 69

3..ira6. 4. 5ir^aK

Art. 70

3. 2 TrVft. 6. ^ 7ra2/i. 7. (tt - ^)a2;i.

4. J5A. 6. 4^ cubic feet. 8. irVpqh^
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Art. 71

4a
"^

2a '

^Vaxi + a:i^+alog^ + ^g^+^.
Va

s = 2.29558 a.

5. s = 4 a
(
cos — — cos —

]
; length of a complete arch = 8 a.

6. s = 6 a.

Art. 72

3. 8a. 4. g Tg^Vi + e^^ -eWi + dr^ + log gg-±-^^+-^2 1.

2L ^j+Vl + ^iJ

vr.2(a + Va2 + ri-^)J «

7. 2a(V5-2-V81og ^ + ^^ 1.

I \/2(2 + V3) )

8. s = a tan ^ sec ^ + a log tan f^ + -\ ; s = 2 al sec ^ + log tan f ttV
2 2 V44/ \4 /

Art. 73

1. s = r<f>. 2. s = 4an-cos^y

3. (1) s = 4a(l -COS0); (2) s = 4.asin 0.

4. (1) s =i) tan0sec0 +plogtan f ^ + Jj;

(2) s=^tanL+^'\secf0+^Wi)logtan^|+^VpV2-plog2pv/2.

6. 9s = 4a(sec30 - 1). 8. s = clog sec 0.

6. » = aIogta„(| + :). ^ s = ^sm^4-.

1. s = aie'^'^ - 1).
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Art. 74

x)^-2. 2irb[b+—^ cos-^^V or 3. ^ira^(a + x
\ Va2 - 62 a; , ,.

,
4. 27ra2(l-i:]

2^a6fVnr^2 + ?Hll^\ V e/

in which e is the eccentricity. 6. tt (tt — 2) a2.

7. ^5^7ra2.

Art. 75

3. 2(7r - 2)a2. 4.

Art. 76

2ira

\/AB

3. 26^. 6. .7854 a.
10. \-\% or 32.704°

4.

6. (a) 9^ ; (&)

(c) -iI«-^
^ '' 60 62

121-

;

7.

8.

9.

.6366 a.

.6366.

1.273 a.

Art. 77

11.

2

2.
a

2

3.

4.

la.

Page 164

' 5.

6.

fa.

fa.

1. %7ra\

2. Volume = | Tra^fe ; surface = 2 Tra^ + ^^— log "^ ^
, in which e is the

eccentricity.
^ ~~ ^

3. ,{(x + |)V^^Tl^-f log2^.±«+|^^^+^}.

4. 4 7r2a3. 6. 7r6Va2+62. 6. 4 7r2a6.

7. |a62cota. 8. |a2/i.

9. Volume = ^- a^ ; surface = 8 a'l 10. \ Tra\ 11. /j Tra^.

-rt -iT-^i o o/2sina , sinacos2a „_ \
12. Volume = 2 Tra^l 1 a cos a

J

;

surface = 4 Ta2(8in a — a cos a).

18. Volume = 7r2a8 ; surface = ^^ ira"^. 14. Surface = -%^ ira"^.

15. Volume = ,ra8[— - -] ; surface = 8 7ra2(7r - f).

16. !!^(iO-3 7r). 17. ^5 7r(3a2 + 4a6 + 8 62)/i.
6
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18. 2 aVs. 19. s = y/W+t + 6 log
^^' + y'--A, where 6= -J-.

_ ?/ loga

« 3V3
^

22. logVS. 23. ^. 24. ^^. 25. ^^[(^i^ + 4)'^ - 8].
2 2 3

CHAPTER X
Art. 79

5. The density at a point three fourths of the distance from the vertex to

the base, namely, %1ch.

7. x = lh] x = lh.

9. x = 5. 11. x = ~, y = 0.
Sir

12. Mass = f ka^, if density = Jc distance.

Mean density = .4244 max. density.

Center of mass is at y = 0, ^ = j\ ira = .589 a.

,__ n - 2a sin a -ia - 4a- 4 b
13. y = 0,x = - 14. ic =— , y =—

•

6 a 3ir Sir

15. (a)x = ^h,y = 0;

(b) X = ^ h, y = I k, in which k is the ordinate corresponding to x = k.

17. x = y = |ff.-- 18. x = y = ^a. 19. x = fa, ?/ = 0.
IT

20. ic = — I a, s?
= 0. 24. At a point distant | a from the base.

21. x = fx, 2/ = 0. 25. x = - f a, y = 0.

Art. 80

(In the answers M denotes mass)

4. If a is the radius, 1=1 Ma^, A; =— •

\/2

5 /=«M«i±&!). 6. ^ = ^. 7. ^•
12 V6 20

8. (a) I=\Mb^; (b) I = I Ma''
;

(c) 1= ^M (a'' +b''),

9. I=M-' 10. 7=|ilf(62 + c2). 11. 7=|l/a2. 12. I=lMa^.
o

13. j= i^ «5 = I j^a-2^ since M= f A^a^ by Ex. 12, Art. 79.

15
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CHAPTER XI

Art. 82

3.
1 a^ . 1 . 3 . x9 1 . 3 . 5 . xi3

.

^ 2-5+2.4.9 2.4.6.
13-^-+'-

4.
1 x'^ 1.3x11 1.3.6xi«

"^ + 2 6+2.411 'e.4.6 16+ +^-

5. |x^ (1 - i x2 - ^V^ - jVa^ + •••) + c-

6. ix3_^Vx5-3Vx7-xha^'+- + C.

7. -(^f;^-^fef^,l^-)-•
8. 2Vsi„.(l +l^ + l^S|^ + ...).c.

9. "'S- + »= + i%. + i.2.3.+
- + <'-

10. ,„,. +I^+^ + _^^+... + c.

11.
^ X3 , X5 X' ,

, ^
^

3^+5L5 717+- + '-

Art. 83

2. --=-i-f-M-f—4^^a7^-s
6. .oga..)=f-f.f-f.....

.o.o-.)=-M-f-f-..
1 y.^ 1 q ^s 1 ^ fi T»'

6. '"S(^ + ^^^'>=^-|--3+1.4-5-2:!.6-7 +
"-

CHAPTER XIII

Art. 97

4. -^i-i-(i)- o--^^^—1-

6. (i-')(2y+i=°- ^•i+'»=^=o-

Art. 98

2. 1/Vl - X'-* + xVl - 2/2 = c. 3. tan y = c (1 - e*)».

+ .-..
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Art. 99
XS

2. xy2 = c2(a; + 2y). 3. y = ce^v^

Art. 100
yS

3

3. x2y2 ^ix^y — i xy^ + ?/3 - xey + e2xy + aj4 _ c.

1. a'^x -y- - xy"^ - x'^y = c. 2. x^ - 6 x2y - 6 xy2 -f ^3 _ c.

Art. 101

2. 2 a logx + a log y - y = c. 3. x^ - ?/2 _ i _ ^a;.

4. x^e^ + my2 = cx"'^.

Art. 102

2. 2/ = (x + c)e-«. 4. ?/(x2 + 1)2 = tan-ix + c.

1

3. ?/ = x2(l4-ce=«). 5. x"?/ = ax + c.

Art. 103

2. 7 y~3' = cx^ _ 3 x3. 3. ?/^ = c(l - x2)^ - h=J^.

4. 60 y\x + 1)2 = 10 x6 + 24 x^ + 15 x^ + c.

Art. 104

2. 343(y + c)3 = 27ax7. 3. (?/ - c)(y + x2 - c)(xy + c?/ + 1) = 0.

Art. 105

2. log(^ — x) = —— +c, with the given relation. 3. x=\ogp'^-\-Qp-\-c.

Art. 106

1. y=c-a log(p-l), x=c+a log -^. 2. y-c=y/x-x^- tan-i-y^I^-

Art. 107

3. ?/ = ex + sin-i c. 4. t/ = ex + —

.

5. y2 _ cx2 + 1 4-c.
c

Art. 108

3. The catenary ?/ = ^ (e» + e «) or ^ = cosh-i -. *

2 a a

4. The envelope of the family of lines y = ex + —— , namely the parabola

(a; _ yyi _ 2 a(x + y) + a^ = 0. ^ ~ ^
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6. The envelope of the lines y=cx+aVl+c2, namely the circle x'^-\-y^=a'^.

6. The circles x- -\-y^ = 2cx.

7. The circles x^ + y^ = k\

8. The circles which pass through the origin and have their centers on the

2/-axis.

9. The rectangular hyperbolas x^ — y^ = c^ whose axes coincide in direction

with the asymptotes of the former system.

10. x2 + 2/2 = 2a2ioga; + c.

12. The system of circles r = c' sin 6 which pass through the origin and touch

the initial line.

13. r'* cos nd = c«.

14. The con focal and coaxial parabolas r =
1 — cos ^

15. The system of curves r*» = c"sinn^; r2 = c2 sin 2^, a series of lemnis-

cates having their axis inclined at an angle of 45° to that of the given

system.

Art. 109

2. x = --^smnt + At + B. *• y = h^^G-lx).

3. x = yt^ + At + B. ^' y = ^e--Se' + Cix'^-\-C2X + Cs.

6. y = Ci + C2X + C8X2 + ..
. + CnX"-! + \=

\m + n

Art. 110

3. ax = log (y + Vy^ + Ci) -{- c^, or y = ci'e"* -f- Ci'e-'^.

Art. Ill

2. e"y = CiX + C2. 3. 15 y = 8 (x + ci) ^ + c^ + cg.

Art. 112

1. y = Ci log X + ca. 2. ?/= Ci sin ax + C2 cos ax + CsX + C4.

3. y^ = x^ + cix + C2.
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Art. 114

3. a; = Cie^' + C2e-'*«.

4. y = Cie-2* + e^(c2 cos Vs x 4- Cg sin \/3 x).

5. y = cie-' + cze ^ + Cae^^. 6. y = Cie-2x 4. q^qAx ^ ^36*.

7. y = cie<« + 026""'= + C3 sin (ax + a).

Art. 115

2. y = ci + e-*(c2 + C3X). 3. y = e-^(ci + C2X + c3x2)+c4e^.

Art. 116

3. y = cix-i + C2X-2. 4. 2/ = x2(ci + C2 log x).

5. y = x2 [ci + C2 log X + C3(l0g x)2].

Page 227

2. v^ = 2 xu ~ 4- x^, 12. ?/-"+i= ce(«-i)"n*_|.2sinx+—^.
dx ?i—

1

3. tan X tan 2/ = k^. 13. J_ = x^ + 1 + ce=«=l

4. x2 + w2 = 2a2tan-i^ + c. -^
. ,0.9^^

X 14. ?/=c, x+|/=c, xy+x2+?/2 = c.

5. xy{x-y)=c.

6. ax2 + bxy + cy^ -\- gx -\- ey = k. 15. 2 y = cx2 + -•

7. x = cye''v. 16. 2/2 = 2cx + c2.

^ „ e* 17. ev = ce* + c^.

8. x2 + — = c.

y 18. (cix + C2)2 + a = Ciy2.

X 1
9. y =— + cx«. 19. y = ci + C2X + cse"^ + C4C-''*

10. V = tan X - 1 + ce-t'in^. 20. y = C2- sin-i Cie-''.

11. y' = ax + ex VI - x2. 21. y = Cie-* + Ca + i e*.

22. ?/ = Cie-* + 62/02003-—x+ C3 sin— xj.

23. y = csin(wx + a)(ax+ 6).

24. y = e^(ci + C2X) sin x + e==(c3 + c^x) cos x.

25. y = Ci + C2X + e*(c3 + C4X).

26. y = x(ci cos log X + C2 sin logx) + C3X-1.

27. 2/ = (ci + C2 log x) sin log x + (C3 + C4 log x) cos logo;.

28. Ely = ^l^-^\ + ciX-\- C2.

29. ^ /y = - 7& :;^ + Cix3 + C2X2 + C3X + Ci,
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Algebraic transformations, 103, 105, 107,

108, 113.

Amsler, 188.

Amsler's planimeter, 189.

Angles, use of multiple, 114.

Anti-derivative (anti-differential), 1,5,

7, 11, 12, 14, 21, 25.

Applications to mechanics, 1()7.

Approximate integration, 177-189.

rules for, 181-188, 235.

Areas, change of variable, 141, 142.

derivation of integration formulae

for, 9, 27.

oblique axes, 140.

polar coordinates, double integra-

tion, 139.

polar coordinates, single integra-

tion, 135.

precautions in finding, 63.

rectangular coordinates, 58.

rectangular coordinates, double in-

tegration, 126.

rules for approximate determination

of, 181-188, 235-237.

surfaces of revolution, 152-156.

surfaces z =/(x, y), 156-160.

Auxiliary equation, 223, 224.

Bernouilli, James and John, 2.

Bertrand, 237.

Boussinesq, 186.

Cajori, 2.

Cardioid, area, 138.

center of mass, 173.

intrinsic equation, 151.

length, 149.

orthogonal trajectories, 216.

surface of revolution, 156.

Carpenter, 189.

Catenary, area, 76.

intrinsic equation, 150.

length, 147.

surface of revolution, 156.

volume of revolution, 77.

Center of mass, 168.

Change of variable, 41.

Circle, area, 61, 139, 140, 141.

evolute of, 166.

intrinsic equation, 151.

length, 146, 149.

orthogonal trajectories, 217.

Cissoid, center of mass, 173.

length, 149.

volume of revolution, 77.

Clairaut, 213.

equation of, 213.

Complementary function, 222.

Cone, center of mass, 172.

moment of inertia, 175.

surface, 164.

volume, 71, 73, 143.

volume of frustum, 77.

Conoid, volume, 143,

Constant of integration, 22.

geometrical meaning of, 23.

two kinds, 25.

Convergent, 178.

Cotes, 236.

Curves, areas of, oblique axes, 140.

areas of, polar coordinates, 135-140.

areas of, rectangular coordinates, 58.

derived, 29.

derivation of equations of, 25, 26, 75,

134, 214-217.

integral, 33, 190-200, 240-245.

intrinsic equations of, 149.

quadrature of, 58.

Cycloid, area, 141.

intrinsic equation, 151.

285
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Cycloid, length, 147.

note on length, 144.

volume of revolution, 142.

volumes and surfaces of revolution,

165.

Cylinder, 143.

moment of inertia, 176.

Density, 167.

Derived curves, 29.

Derivation of equations of curves, 25,

26, 75. 134, 214-217.

Derivation of fundamental formulae, 48.

Differential equations, see Equation.

Differential, integration of total, 52.

Differentiation under integration sign,

IDO.

Durand, 186, 187, 190, 237.

Equations, homogeneous in x, y, 205.

linear, constant coefficients, 223.

linear, homogeneous, 225.

linear of first order, 208.

linear of nth order, 222.

linear, properties of, 222.

of order higher than first, 218-228.

reducible to linear form, 209.

resolvable into component equations,

210.

solutions, general, 202.

solutions, particular, 202.

solvable for x, 212.

solvable for y, 211.

variables easily separable, 205.

Evolute, of circle, length, 166.

of parabola, length, 165.

Expansion of functions in series, 179.

Exponential functions, 117.

Figures of curves, 246-248.

Fisher, Irving, 30.

Folium of Descartes, area, 138.

Formuhe, areas, 9, 27, 137, 139, 141.

lengths, 145, 148.

of approximate integration, 183, 185,

18(j, 187, 2.35-237.

of integration , fundamental, 37, 47, 48.

of integration, table of, 249-262.

of integration, universal, 39, 44.

of reduction, 46, 93, 94, 95, 101, 102,

10<>, 110, 231-2:i4.

surfaces, 151, 1."), 157, 158.

volumes, 70, 130, 143.

Fourier, 9.

Fractions, rational, 78-83, 229-231.

Functions, irrational, 84-99.

trigonometric and exponential, 100-

118.

Geometrical applications, 58-77, 126-166,

214-217.

meaning of constant of integration,

23.

principle, 7.

representation of an integral, 14.

Graphical representation of a definite

integral, 73.

Gray, 189.

Gregory, 180.

Hele Shaw, 189.

Henrici's report on planimeter, 189.

Hermann, 188.

Hyperbola, area, 68.

orthogonal trajectories, 217.

related volumes, 77.

Hyperbolic spiral, area, 138.

length, 149.

Hypocj'^cloid, center of mass, 172, 173.

intrinsic equation, 152.

length, 147.

surface, 156.

volume of revolution, 76.

Integrable form, 37.

Integral, complete, 203.

Integral curves, 33, l{K)-200.

applications, 195-198.

applications to mechanics, 195, 240-

242.

applications to engineering and elec-

tricity, 242-244.

determination of, 198.

relations, analytical, 192.

relations, geometrical, U)4.

relations, mechanical, 195.

Integral, definite, 8.

definite, evaluation by measuring
areas, 181.

definite, geometrical representation,

14.

definite, graphical representation, 73.

definite, limits, 9.

definite, precautions in finding, 67.

definite, properties, 15.

definite, relation to indefinite, 24.
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Integral, elliptic, 147, 180.

general, 23.

indefinite, 22.

indefinite, directions for finding, 54.

multiple, 120.

name, 1, 21.

particular, 23, 204, 222.

Integrals, derivation of, 48.

fundamental, 36-38, 47.

table of, 249-262.

Integraph, 198, 200.

theory of, 244.

Integrating factors, 207.

Integration, aided by changing variable,

41, 141.

approximate, 177-189, 235-237.

by parts, 44, 46, 100, 231, 233.

constants, 22, 202.

definition, 1, 18, 21.

derivation of reduction formulse, 231,

233.

fundamental formulae, 37j 47.

fundamental rules and methods, 36.

in series, 177-179.

mechanical, 188, 189, 200.

of a total differential, 52.

precautions, 63, 67.

sign, 2, 21.

signs in successive integration, 125.

successive, one variable, 119-123.

successive, two variables, 123-125.

universal formulae, 39, 40, 44.

uses of, 1.

Intrinsic equation of a curve, 149.

Irrational functions, 84-99.

Jevons, 30.

Lamb, 237.

Laurent, 180.

Legendre, 180.

Leibniz, 2, 59, 144, 180.

Lemniscate, area, 137.

Lengths of curves, polar coordinates, 147.

rectangular coordinates, 144.

Limits of a definite integral, 9.

Logarithmic curve, area, 76.

length, 165.

Logarithmic spiral, area, 137.

length, 149.

Markoff, 186.

Mass, 167.

Mass, center of, 168, 169.

Mean value, 17, 160-164.

definition, 103.

Mechanical integration, 188-189, 200.
Multiple angles used, 114.

integral, 120.

Neil, 144.

Newton, 2, 59, 73, 144, 180, 236.

Oliver, 4.

Orthogonal trajectories, 214-217.

Parabola, area, 5, 14, 59, 68, 76, 126, 138.

center of mass, 173.

derivation of equation, 26.

intrinsic equation, 151, 152.

length, 146, 149.

length of evolute, 165.

orthogonal trajectories, 216, 217.

semicubical, area, 68.

semicubical, intrinsic equation, 152.

semicubical, length, 144, 147.

surfaces of revolution, 155, 164.

volume of revolution, 71, 77.

Parabolic rule, 184, 186, 236.

Paraboloid, center of mass, 173.

volume, 131, 143.

Pascal, 59.

Planimeter described, 188, 189.

theory of, 237.

Pyramid, volume, 143.

Quadrature, 58, 73.

Range, 161, 163.

Rational fractions, 78-83.

decomposition of, 229-231.

Reciprocal substitution, 84.

Reduction formulae, 46, 93-95, 101, 102,

106, 110, 231-233.

Roberval, 58.

Signs of integration, 2, 21, 125.

Simpson, Thomas, 184.

one-third rule, 182, 184, 186.

three-eighths rule, 236.

Slope of a curve, 25.

Solids of revolution, surfaces, 152-156.

volumes, (59.

Solutions, general, 202.

Sphere, surface, 155, 158.

volume, 131, 132, 133, 143, 164.
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Spheroid, surface, 156.

volume, 72.

Spiral of Archimedes, area, 138.

length, 149.

Substitution, 41, 54.

reciprocal, .S4.

trigonometric, 85,

Summation of infinitesimals, 1, 2, 2:}4,

235.

Surfaces of revolution, areas, 152-15(5.

volumes, 69.

/(x, y, z) = 0, areas, 15(i-160.

/(«. y, z) = 0, volumes, 126-133, 128.

Table of integrals, 249-262.

Torus, surface, 164.

volume, 143.

Total differential, integration of, 52.

Tractrix, intrinsic equation, 152.

Trajectories, orthogonal, 214-217.

Transformation, algebraic, 103, 105, 107,

108. 113.

Trapezoidal rule, 182, 186, 236.

Trigonometric functions, integration of,

100-118.

substitutions, 85.

Undetermined coefficients, use of, 93, 109.

Universal formulae of integration, 39, 40,
44.

Uses of integral calculus, 1.

Volumes, of revolution, 69.

polar coordinates, 131.

rectangular coijrdinates in general,
128.

Wallis, 59, 144.

Weddle, 236.

Williamson, 180, 235.

Witch, area, 64.

volume, 164.

Wren, 144.
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