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PREFACE.

IT has long been my firm conviction that the teaching

of Elementary Statics would gain in clearness and

educational value by a more general use of geometrical

methods. The fundamental propositions of the subject

are essentially geometrical, but it is usual for the

beginner to abandon the direct use of the geometrical

methods in favour of -the analytical formulae to which

they give rise. This is a pity. Mathematical formulae

fail to appeal to the eye with the direct force of a

geometrical figure, and the power and neatness of the

geometrical methods are unquestionable. The practical

engineer makes considerable use of Graphic Statics, but

the subject has been much neglected in this country,

and there seems to be no book which leads up by easy

stages to the mastery of a subject at once interesting

and instructive, and which can be systematically dealt

with in a scientific manner. In most recently published

text-books on Elementary Statics, an attempt is made

to deal with the subject of Graphic Statics in a short

chapter or a few articles, but the matter is worthy of

better treatment, and there seems to be a growing
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need for some such volume as the present, which deals

with Geometrical Statics alone. The book is essentially

an elementary one, and is intended to prepare the way
for such works as Major Clarke's Graphic Statics or

Professor Hoskins' Elements of Graphic Statics.

Rather against the advice of friends, I have not

attempted to write a treatise independent of existing

text-books. My wish is to supplement, not to compete

with, such. Hence the Principle of Transmissibility

of Force and the Parallelogram of Forces have been

assumed, and a direct plunge taken into the geometrical

aspect of the subject. For the groundwork and, later

on, for an exposition of the Laws of Friction, the

student is referred, by permission, to Professor Loney's

Elements of Statics.

In preparing this work, I have consulted most

available English books which bear upon the subject,

and, in particular, Professor Hoskins' Elements of

Graphic Statics. The method of lettering the diagrams

is the extension of Bow's notation adopted in that

volume.

Each chapter concludes with a number of worked-

out examples, which are followed by a set of exercises

for the student. Each set contains a collection of

numerical examples, followed, in most cases, by others

of a more general kind, which are intended to be

worked with the aid of elementary pure geometry. The

numerical examples are designed primarily for solution

by means of accurately drawn figures ;
a careful
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worker, however, can in the more simple cases obtain

fairly accurate results by freehand drawing, while the

student of Trigonometry can calculate the lengths of

the lines of his force diagram, and thus obtain accurate

solutions.

I may claim most of the examples as my own original

problems, accumulated during the last six years while

teaching the subject to Woolwich pupils. Those which

are not original are taken, for the most part, from recent

examination papers set to candidates for admission to

the Royal Military Academy.
The figures have, in most cases, been reduced in

size from my original drawings, so as to admit of

space diagram and force diagram being placed side

by side on the same page. Those, however, which

constitute the answers to numerical questions, are

reproduced, in general, on the scale in which they

were originally drawn. This has, in some cases,

necessitated corresponding figures being placed on

different pages facing each other. Attention is drawn

to the numbering of the figures. Corresponding to

the space diagram 108, we have the force diagram

108a, etc.

In conclusion, I take this opportunity of tendering

my warmest thanks to several mathematical friends, to

whom I am indebted for much kindly encouragement
and assistance. My former mathematical master, the

Rev. Henry Williams, read through the work in manu-

script, and again as it went through the press, and
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to his personal interest I owe much. I desire also, in

particular, to acknowledge my obligations to my
friend and former colleague, Mr. K. W. Bayliss, late

scholar of St. Peter's College, Cambridge, who has

also read through the whole of the proof sheets, and

to whom I am indebted for many criticisms and

suggestions.

Any corrections or suggestions for improvement
from either teachers or students will be most thank-

fully received. I have spared no pains in working out

the answers to the examples, and hope that no serious

errors will be found to have escaped correction.

W. J. DOBBS.

3 SUNNINGDALE GARDENS,

KENSINGTON.

July, 1897.
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CHAPTER I.

FUNDAMENTAL PRINCIPLES.

1. Geometrical Representation of Force.

A force is completely determined when we know

(i.) its point of application, (ii.) the direction in which

it acts, and (iii.) its magnitude.
Now the point of application has a corresponding

point in the diagram which represents the material

system under consideration
;

and from that point a

straight line may be drawn in the direction which

represents, in the diagram, the direction in which the

FIG. 1.

force acts; further, this line rnay be drawn of such

a length as to represent the magnitude of the force,

by making it contain, on any suitable scale, as many
units of length as the force contains units of force.

D.S. A
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Thus, in the accompanying figure, we have a diagram

representing some material system, and the point

of ;the diagram [represents a material point of the

system. The straight line OL is drawn in such a

direction tji&i it
'

represents, relatively to the rest of

the system, the direction of a force whose measure is

6 applied at the point ;
and OL is taken 6 units

of length, and in this way represents graphically the

magnitude also of the force.

2. Now it is to be noticed that, in the above figure,

we have two different scales. The outline of the figure

and the position of the point represent the configura-

tion of the material system under consideration, on a

scale in which length represents length for instance,

one inch may be taken to represent one foot; while

the line OL does not represent a material line of the

system, for in this part of the diagram length represents

force for instance, one inch may be taken to represent

the weight of one pound.

FIG. 2. FIG. 2 a.

In order to avoid the confusion which would other-

wise arise when a number of forces are represented
in this way, it is found convenient to draw two separate
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figures one, a diagram of the material system under

consideration, in which length represents length, called

a space diagram ;
and the other, a diagram in which

lines represent forces, called a force diagram.
Thus HL, 6 units long, represents in the force diagram

a force whose measure is 6 applied at the point which

is represented by in the space diagram.

3. Principle of the Transmissibility of Force.

We take it as axiomatic, that two equal forces acting
in opposite directions at two points A

,
B of a rigid

body, so that the force acting at A is in direction AB,
and that acting at B in direction BA

, produce no effect

upon the body as a whole. The tendency is merely
to compress the portions of the body between A and

B, and as we are dealing with an ideally rigid body,
that is, a body in which the several parts are so in-

separably connected that they retain the same positions

with regard to one another under all circumstances,

the effect upon the body as one solid piece is nil.

Similarly, if the two equal and opposite forces act

outwards instead of inwards, they produce no effect

upon the body as a whole. From this axiom we

deduce, as in Art. 19 of Loney's Elements of Statics,

the Principle of Transmissibility of Force, which states

that a force acting at A in the direction AB has the

same effect upon the body as a whole as- an equal force

acting in the same direction at any point of the rigid

body situated in AB or AB produced either way.
Thus there are a succession of points of the body, all

situated in the same straight line, any one of which

may be considered to be the point of application of
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the force. This line is called the line of action of the

force, and the force is said to act along its line of

action. Further, the line of action may be extended

beyond the limits of the body, and the force considered

as applied at a point outside the actual body alto-

gether, if we suppose the body to be ideally extended

so as to include this point, which must be treated as

a point of the body.
4. In practice, in representing a force geometrically,

we do not trouble about indicating the point of applica-

tion. In the space diagram we draw a line XY showing
the line of action of the force, and insert an arrow

to indicate the direction in which the force acts along
its line of action; and in the force diagram another

line HL, parallel to XY, shows graphically the mag-
nitude of the force. The force is described as acting

along XY when its direction is from X towards Y,

and as acting along YX when its direction is from I
7

towards X.

FIG. 3. FIG. 3 a.

A very convenient notation, and one which will after-

wards be found to be extremely useful, is indicated in

the figure. The letter k is placed on one side of the
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line X Y, and the letter I on the other
;
then the straight

line separating the spaces marked h and I respectively

is called the line hi, and the force which acts along

the line hi is represented in the force diagram by HL.

5. The converse of the axiom above referred to (Art. 3)

is equally important ; namely, two forces acting upon a

rigid body cannot balance one another unless they are

equal and opposite and act in the same straight line.

This we also take as axiomatic, and it leads to the

converse of the principle of transmissibility of force,

which is as important as the principle itself. It is this,

if a force acting at A has the same effect upon a rigid

body as a whole as another force acting at B, then B
must be a point in the line of action of the first force, and

the two forces must be equal and in the same direction.

6. The Parallelogram of Forces.

If two forces act along, and are represented by, the

two sides of a parallelogram drawn from one of its

angular points, their resultant acts along, and is repre-

sented by, the diagonal of the parallelogram draivn from
that angular point. ^ Q

Thus, if a force whose

measure is P acts along
OA and is represented

by OA, so that OA con-

tains P units of length; Q^~ ~^p A
and if a force whose FlG - 4 -

measure is Q acts along OB and is represented by

OB, so that OB contains Q units of length; then,

completing the parallelogram OACB, the resultant of

P and Q acts along 00 and is represented by 0(7.
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Hence, if OC contains R units of length, the resultant

of P and Q is a force whose measure is R acting

along OG.

This gives the following method for finding graphically

the resultant of two given forces :

P L ti

FIG. 5.

Let two given forces whose measures are P and Q act

along the given lines AB, CD; it is required to find

their resultant. Let the given lines AS, CD intersect at

0. Then both forces may be supposed to act at 0.

Along OB measure OL to contain P units of length,

and along OD measure OM to contain Q units of length.

Complete the parallelogram OLNM and measure ON.

Suppose ON contains R units of length. Then the

resultant of the two forces acts along ON and its measure

is R. Its point of application may be taken to be

any point in ON, or ON produced either way.
For the proof of this very important proposition

see Loney's Elements of Statics, Art. 43. The student

should notice that the two forces are represented by
OL, OM, both drawn away from 0, and that the

resultant is intermediate in direction to the directions

of P and Q.
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The force whose measure is R, and whose line of

action is ON, is not an actual force applied to the

body; it is, rather, an ideal force which may be con-

ceived to replace the given forces in their effect upon
the body as a whole. We cannot locate the point of

application of the resultant, although we are able to

determine its line of action. This line of action may
fall altogether outside the limits of the body on which

the forces act. In such a case the interpretation is,

that if the body be supposed to be ideally extended so

as to include a portion of the line ON, the given forces

may be conceived to be replaced by a force whose

measure is R, applied, in the direction of ON, at a point
of ON supposed to be rigidly connected with the body.

7. In the above direct use of the Parallelogram of

Forces it will be noticed that we have our space diagram
and our force diagram in one

;
in fact the force diagram

has been constructed over the space diagram. This, in

practice, would cause a great amount of confusion
;
but

we can separate the two diagrams thus :

D,

Instead of measuring a line along OB to represent

the force P, draw SL in the direction of the force P
to contain P units of length; also draw SM in the

direction of the force Q to contain Q units of length.
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Then, completing the parallelogram SLNM, the resultant

is represented in magnitude and direction by SN, and

its line of action is a straight line through drawn

parallel to SN.

8. But now we notice that we do not require to draw
the whole parallelogram in the force diagram. All that

is necessary is to draw one half of it, namely the

triangle SLN.

Hence, finally, we have the following simplified

method :

To find graphically the resultant of two given forces.

Let P, Q be the measures of two given forces acting

along the two given lines AB, CD respectively.

Starting from some suitable point 8, and with any
suitable scale, draw -SL equal to P units of length in

the direction of the force P. This takes us to the

point L. From L draw LN equal to Q units of length
in the direction of the force Q. Then the straight

line from S, where we started, to N, where we finished,

represents in magnitude and direction the resultant of

the two given forces. We measure SN and find it is

(say) R units of length. Find 0, the point of inter-

section of AB and CD. Then the resultant is R units
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of force and acts along a line through drawn parallel

to SN.

This is the fundamental method of constructing the

resultant of two given forces, and is the foundation of

Graphic Statics. We see that the method fails when
the point is inaccessible. We will return to this case

in a future chapter.

It is to be particularly noticed that the angle SLN is

the supplement of the angle between the directions of

the forces P, Q.

9. Conversely, to resolve a given force into two com-

ponents in two given directions.

Let OL be the line of action of the given force

whose measure is P. We may take any point in

H

OL as its point of application. Let OH, OK be straight

lines through in the given directions.

Draw AB in the direction of OL and of length equal
to P units; then draw AC parallel to OH, and BC
parallel to KO, meeting in C.

Measure AC, CB. Let AC contain X units, and CB
Y units

;
then X, Y are the measures of the components

required along OH, OK respectively. For, by the pre-

ceding piece of work, the resultant of X and Y is

represented by AB and acts along OL.
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10. // two forces acting along OA and OB are repre-
sented by m times OA and n times OB respectively,
their resultant acts along 00, and is represented by
m+n times 00, where is a point in AB such that

m times AC=n times OB.

FIG. 9.

The force which acts along OA is equivalent to two

forces acting through represented by m times 00
and m times CA respectively.

The force which acts along OB is equivalent to two

forces acting through represented by n times 00
and n times OB respectively.

Let the two given forces be replaced by these two

pairs of components. Then the two forces represented

by m times OA and n times OB, both acting at 0,

balance one another, and can therefore be removed.

Also the two forces represented by m times 00 and

n times 00, both acting along 00, are equivalent to a

single force represented by m+ n times 00 acting

along 00.

Hence the resultant acts along 00 and is represented

by m+n times 00.

In particular, if the forces are represented by OA
and OB, their resultant acts along 00 and is represented

by twice 00, where C is the middle point of AB.
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11. Ex. 1. Find ike resultant of two forces 43 and
'21 pounds' weight acting at an angle of

FIG. 10.

With any suitable scale make AB of length 43

units. Make angle ABC= supplement of 105J = 74J,
and make BC of length 21 units. Join AC. Then, on

measurement, AC is found to be of length 42*5 units,

and the angle BAG of magnitude 28J. Hence the

resultant is 42*5 pounds' weight, making an angle of

28\ with the direction of the first force.

12. Ex. 2. Two forces, one of which is of given mag-
nitude, are inclined at a given angle. Show how to

find the second force in order that the resultant may
be of given magnitude.

Taking AB to represent the given force to scale,

make the angle ABX equal to the supplement of the

given angle, BX being taken of unlimited length.

Then the second force will be represented by some

line BC taken along BX. To get the position of C
we describe a circle with its centre at A, and its

radius of such a length that it represents to scale the

given magnitude of the resultant.

The points, if any, in which the circle intersects

BX are possible positions of the point C. If, as in
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the figure, the circle cuts BX in two points Cv <7
2,

then measuring BCV BC2 ,
we have two possible values

for the force required.

FIG. 11.

Thus, we see that the problem may be ambiguous,

admitting of two solutions.

13. Ex. 3. The resultant of two forces is equal to

one of them. Show that, if this force be doubled, the

new resultant is at right angles to the other force.

A' A B
FIG. 12.

Let AB, BG represent the two forces. Then AC
represents their resultant, and must, in the case before

us, be equal to AB.
If the first of the two forces be doubled, the force,

so altered, will be represented by AB where A is

the middle point of AB.
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Thus A', C, B are points on a circle of centre A
;

.*. angle A'CB, being an angle in a semi-circle, is a

right angle, i.e. the new resultant is at right angles
to the force represented by BC.

14. Ex. 4. Show that the resultant of two forces

P+Q and P, acting at 120, is of the same magnitude
as the resultant of tivo forces P+Q and Q, acting at

the same angle.

B DC
FIG. 13.

Take BDC a straight line, so that BD and DC are

respectively P and Q units of length, and on it describe

the equilateral triangle ABC.
Then AD represents in magnitude and direction

(i.) the resultant of forces represented by AB, BD;
also (ii.) the resultant of forces represented by AC, CD.

That is, AD represents

(i.) the resultant of forces P+ Q and P acting at

120; also (ii.) the resultant of forces P+Q and Q
acting at 120.

.*. the resultant of the first pair is equal in magni-
tude to the resultant of the second pair.

15. Ex. 5. // one of two equal forces be reversed

and doubled, the other remainin^^mi&Ltered, it is

OF TEE

UNIVERSITY
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found that the magnitude of the resultant is unaltered.

Find the original angle between the forces.

Let two equal forces P be represented by AB, BC,
so that their resultant is represented by AC. Produce

fC
CB to D making BD= 2CB. Then

AD represents the resultant of one

of the forces P unaltered, and the

other doubled and reversed.

Hence, by the question,

AD= AC,
and therefore angle ACB = angle
ALE.

Bisect DB in E. Then

DE=EB= BG.

In the triangles ADE, ACS the

sides AD, DE and the included

angle D are respectively equal to

the sides AC, CB and the included angle C;

.'. AE=AB;
.'. ABE is an equilateral triangle;

.'. the original angle between the forces is 60.

16. Ex. 6. Two given forces act in one plane at

two given points of a rigid body ; if they are turned

round those points in the same direction through any
two equal angles, show that their resultant will always

pass through a fixed point
Let two forces, P and Q, act at two fixed points,

H and K, in the directions OH and OK respectively,

being the point of intersection of their lines of

action.

Take AB, BC to represent the forces P and Q

respectively. Then AC represents their resultant R,

FIG. 14.
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which acts along a line through drawn parallel to

AC.

Now let the forces be turned in the same sense

round H and K through the same angle, so that their

new lines of action meet at 0'. Then, since angle
OHO' angle OKO', the locus of 0' is the circle de-

scribed through H, K, ;
and angle HO'K= angle

HOK, so that the forces are inclined at the same angle
as before.

If we suppose the triangle ABC altered so as to

become the force triangle for the new position of the

FIG. 15 a.

forces, the lines AB, EG remain of the same lengths
as before, and contain the same angle. But two sides

and the included angle are sufficient to- determine the

triangle in size and shape. Hence the resultant remains

of the same magnitude as before, and is inclined to its

components at the same angles as before. If, then,

OJ is the line of action of the resultant in the first

position, and J the point where this line meets the
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circle HKO, O'J must be the line of action of the

resultant in the new position.

Thus we see that the resultant passes through the

fixed point J, it remains of the same magnitude as

before, and it has turned through the same angle as

either of its components.

EXAMPLES I.

1. Find the resultant of

(i.) 8 and 3 pounds' weight acting at an angle of 120
;

(ii.) 8 and 5 pounds' weight acting at an angle of 120
;

(iii.) 5 and 3 pounds' weight acting at an angle of 60
;

and in each case give the angle that the resultant makes with

the larger force.

2. ABCDEF is a regular hexagon. Find the magnitude, direc-

tion, and position of the resultant of forces of 4 pounds' weight

acting along FB, and 2 pounds' weight acting along AE.

3. ABC is a triangle such that ,4.6=3 inches, BC=4 inches,

CA = 5 inches. If 1 inch be taken to represent a force equal to

the weight of 1 pound, find the magnitude, direction, and position

of the resultant of two forces acting along and represented by
AC and CB respectively.

Find also the magnitude, direction, and position of the resultant

of 4 pounds' weight acting along AC, and 5 pounds' weight

acting along CB.

4. ABC is a triangle, having its sides BC, CA, AB of lengths

14, 13, 15 inches respectively. Two forces, of magnitudes 25 and 39

pounds' weight, act along the lines AB and AC respectively. Find

the magnitude, direction, and position of their resultant.

5. Find the resultant of forces of 200 and 100 pounds' weight

acting at an angle of 60.

6. Find the resultant of forces 15*8 and 23*7 pounds' weight

acting at an angle of
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7. Resolve a force of 8 pounds' weight into two components,
one of which is 3 pounds' weight in a direction making 60 with

the given force.

8. Find the angle at which two forces of 16 and 20 pounds' weight
must be inclined, in order that their resultant may be 33 pounds'

weight.

9. Eesolve a force of 31 pounds' weight into two components,

making 98 and 40 with it on opposite sides.

10. The resultant of two forces P and Q is 8 pounds' weight,

and makes an angle of 60 with the direction of P. If Q is

7 pounds' weight, determine /', and account for the double result.

11. The resultant of two forces, which act at an angle of 120,

is 31 pounds' weight, and one of the forces is 35 pounds' weight.

Find the other force, and account for the double result.

12. Find the resultant of two equal forces acting at an angle

of 120.

13. If the magnitudes of two forces are given, their resultant

is greatest when they act in the same direction, and least when

they act in opposite directions.

14. The greatest and least resultants of two forces, of constant

magnitudes, are given. Show how to find their resultant when

they are inclined at a given angle.

15. E is a point in the side AB of the parallelogram ABCD.
Show that the resultant of the two forces, represented in magni-

tude, direction, and position by CA and ED, is parallel to one of

the sides of the parallelogram. Find also the line of action of

the resultant.

16. If D is the middle point of the base EC of a triangle ABC,
and the resultant of forces represented by BA, BD is equal to

the resultant of those represented by CA, CD, show that the

triangle ABC is isosceles.

17. It is required to apply to a given point two forces of given

magnitudes, in order that their resultant may be of given magni-
tude and in a given direction. Explain how the directions of

the two forces may be determined by geometrical construction.

Under what circumstances does the construction fail ?

D.S. B
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18. A given force is to be resolved into two components, one

of which is of given magnitude and acts in a given direction.

Explain how the magnitude and direction of the other component
may be determined by geometrical construction.

19. One of two forces is fully known, and the direction of the

other is known. Show how to find the magnitude of the second,
in order that the resultant may be in a given direction.

20. One of two forces is fully known, and the magnitude of

the other is known. Show how to determine the direction of

the second, in order that the resultant may be in a given direction.

21. Show how to resolve a given force into two others, one of

which is of given magnitude, and the other in a given direction.

22. Show how to resolve a given force into two components,
such that their sum may be of given magnitude ^,nd one of them
in a given direction.

23. The resultant of two forces, one of which is fully known,
is of given magnitude. If the known force be reversed, the

resultant is of another given magnitude. Show how to determine

the other force.

24. The resultant of two forces P and Q is in a direction per-

pendicular to that of P. Show that if P be doubled, Q remaining

unaltered, the new resultant will be equal in magnitude to Q.

25. A straight line DE is drawn parallel to the base BC of

a triangle ABC to meet the sides AB, AC in Z), E respectively.

Show that the resultant of forces represented by BE and DC is

equal to a force represented by a line parallel to BC and equal
to the sum of BC and DE.

26. Two forces P and Q act at an angle of 60. Show that

the magnitude of the resultant is unaltered if either of the given
forces be replaced by a force P -j- Q acting in the opposite
direction.

27. The sides AB, BC, CD, DA of the quadrilateral ABCD
are bisected at E, F, G, H respectively. Prove that the resultant

of the two forces acting along, and represented by, EG and HF
is represented in magnitude and direction by AC. What is the

line of action of the resultant ?
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28. Two opposite sides AB, CD of the quadrilateral ABCD are

bisected at E and F respectively. Prove that the resultant of

forces acting along, and represented by, A C and BD is represented
in magnitude and direction by twice EF. What is the line of

action of the resultant ?

29. Two forces are represented in magnitude and direction by
OA and 20B. Show that their resultant is represented by 30(7,

where C is one of the points of trisection of AB.

30. OA, OB, OR represent in magnitude, direction, and posi-

tion two forces and their resultant. If 00 and OD be two equal

lines cut off from OA and OB respectively, and if OR meet CD
in G, find the ratio of CG to GD.



CHAPTER II.

FORCES ACTING AT A POINT.

17. To find the resultant of any number of given

forces acting at a point in one plane.

FIG. 16. FIG. 1C a.

Let P, Q, R, S, T be the measures of five forces

acting in known directions in one plane at the point 0.

From any suitable point A, and with any suitable

scale, draw AB in the direction of the force P and of

length P units. This takes us to the point B. From
B draw BC in the direction of the force Q and of length

Q units. This takes us to the point C. Similarly draw

CD, DE, EF in the directions of R, S, T respectively

and of lengths R units, S units, T units respectively.

Thus, finally, we arrive at the point F.

The straight line from A where we started, to F
where we finished, represents the resultant in magni-
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tude and direction, and its point of application is

0.

For, the resultant of P and Q acts at and is

represented by AC. Let P and Q be replaced by their

resultant. The resultant of this force and R acts at-

and is represented by AD; therefore the resultant

of P, Q, and R acts at and is represented by AD.

Proceeding in this way, we see that the resultant

of the whole system acts at and is represented by
AF.

The method is applicable to any number of forces,

and the forces may be taken in any order. Also the

lines in the force diagram may cross and recross one

another any number of times. It is only necessary
that the arrows in the force diagram should go one

way round.

18. The student will, in the following manner, be

able to satisfy himself that he gets the same result

in whatever order he takes the forces. Let it be re-

quired to find the resultant of three forces, whose

measures are P, Q, R, acting in known directions at

the point 0.

As before, take ABV B&, G^D to represent P, Q, R
respectively in magnitude and direction.

If we had taken the forces in the order P, R, Q,

we should have obtained the figure ABfiJD, thus com-

pleting the parallelogram B^G^DG^.
If we had taken the forces in the order Q, P, R, we

should have obtained the figure A B^G^D, thus completing
the parallelogram AB^G^B^

So Q, R, P gives AB2
G

BD, completing the parallelo-

gram B
2G^DG^ R, P, Q gives ABBC2D, completing
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the parallelogram AB^C^B^ and R, Q, P gives AB3
C

BD,
B

S
G

3 clearly being equal and parallel to AB2
.

FIG, 17 a.

Thus we see that if we start at the point A, we

always finish up at the point D, in whatever order

we take the forces.

The resultant of the system acts at and is repre-

sented by AD.

19. Equilibrium of a system of forces acting at a

point in one plane.

If, in the force diagram of Art. IT, the point F coin-

cides with the point A, the resultant of the system
vanishes. In this case, replacing the forces P, Q, R, S

by their resultant represented by AE acting at 0, we
see that the system is equivalent to two forces acting

at 0, the one represented by AE, and the other, T,

represented by EA. Thus the system reduces to two

equal and opposite forces acting in the same straight

line. Therefore the forces are in equilibrium.

Hence we have the proposition known as
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The Polygon of Forces.

If any number of forces, acting at a point, be re-

presented in magnitude and direction by the sides

of a polygon taken one way round, the forces are in

equilibrium.
This of course includes, as a particular case,

The Triangle of Forces.

// three forces, acting at a point, be represented in

magnitude and direction by the sides of a triangle

taken one way round, the forces are in equilibrium.
It is to be particularly noticed that, in the Polygon

of Forces, the polygon is essentially a force diagram.
The forces do not act along the lines which represent
them. So also in the Triangle of Forces.

20. Conversely, if a system of forces acting at a point
in one plane be in equilibrium, and a force diagram
be constructed, so that the forces are represented by

straight lines each commencing where the preceding
line ends, the arrows going one way round, then the

last point must coincide with the first.

For, otherwise, the system would be equivalent to

a resultant represented in magnitude and direction by
the straight line drawn from the first point of the

force diagram to the last point.

It is sometimes said that the converse of the Polygon
of Forces is not true. But here we have a true converse,

namely :

// a number of forces, acting at a point, be in equi-

librium, it is possible to construct a closed polygon,
ivhose sides taken one way round shall represent the

forces in magnitude and direction.
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This, of course, includes the following converse to

the Triangle of Forces :

If three forces, acting at a point, be in equilibrium,
it is possible to construct a triangle whose sides taken

one way round shall represent the forces in magnitude
and direction.

21. But there is a more general converse to the

Triangle of Forces, namely:

If three forces, acting at a point, be in equilibrium,
and straight lines be drawn parallel to their lines of
action so as to form a triangle, then the sides of the

triangle are proportional to the forces to which they

are respectively parallel.

For, let P, Q, R be the measures of three forces in

equilibrium, acting at the point 0. Take EG in the

direction of P and make it P units of length. Take
GA in the direction of Q and make it Q units of length.

FIG. 18. FIG. 18 a.

Then the straight line drawn from A in the direction

of R and of length R units, must terminate at B
',

otherwise the forces would not be in equilibrium.

Now any triangle drawn with its sides parallel to

the lines of action of P, Q, R will be similar to the

triangle ABC, and will therefore have its sides pro-

portional to P, Q, R.
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In this wider sense the converse of the Polygon of

Forces is not true, since two polygons with their sides

respectively parallel are not necessarily similar.

22. Three forces, of given magnitudes, act at a point
in one plane. It is required to determine how these

forces must be arranged so as, if possible, to produce

equilibrium.
Let P, Q, R be the given measures of the forces, and

the point at which they act.

FIG. 19.

FC
FIG. 19 a.

Construct a triangle ABC whose sides EC, CA, AB
are of lengths P, Q, R units respectively.

From draw straight lines in the directions of BG,

CA, AB. Then, if the forces P, Q, R be arranged to

act in these directions respectively, they will, by the

Triangle of Forces, produce equilibrium.

This determines the relative directions of the three.

The method fails if any one of the forces is greater

than the sum of the other two, as no triangle can be

constructed having one side greater than the sum of

the other two. In this case the problem is impossible

of solution.

If one of the forces, P, be equal to the sum of the

other two, the triangle becomes a straight line, the

point A falling in BC. This shows that Q and R must
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be arranged to act in one and the same direction, and P
in the opposite direction.

The student should notice that the angle between

the directions of any two of the forces is the supple-
ment of the corresponding angle of the triangle.

23. Let P, Q, R, S be the measures of known forces

acting in known directions at a point ;
and let X, Y

be the measures of two other forces acting at 0, at

present unknown in magnitude or direction or both,

which preserve equilibrium with the known forces
;

all the forces being in one plane.

FIG. 20. FIG. 20 a.

We can plan out the known forces in a force diagram
at once. Thus, take AB, BO, CD, DE in the directions

of P, Q, R, S and of lengths P, Q, R, S units respec-

tively. This takes us from A to E.

In completing the force polygon, we shall have to

go from E to A in two steps, as EK, KA, where EK
represents X in magnitude and direction, and KA
represents Y.

To complete the figure, we must know
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either (i.) both magnitude and direction of one of the

remaining two forces, say X ;

or, (ii.) the directions of both of the remaining forces
;

or, (iii.) the direction of one, say X, and the magnitude
of the other, F;

or, (iv.) the magnitudes of both X and Y.

For, (i.) suppose the force X is known completely.

Then we can draw EK, and joining K to A we have a

straight line which represents the remaining force F
in magnitude and direction.

Here, we see, we always get one solution, and one

only.

(ii.) Suppose the directions of X and Y are both

known, but not their magnitudes.

Draw EL in the direction of X, AM in the direction

opposite to that of F, and let EL, AM intersect at K.

Then, measuring EK, KA, we have X, Y respectively.

It may be that LE has to be produced through E,

in order to meet AM. In this case X is negative.

Or, MA may have to be produced through A to meet

EL. In this case F is negative.
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Here, also, we always get one solution, and one

only.

(iii.) Suppose the direction of X is known and the

magnitude of Y.

FIG. 22.

Draw EL in the direction of X, and with centre A,

and radius whose measure is F, describe a circle, which

may cut EL in two points K and K
2 , giving two

solutions.

Measuring ER1
we have one value of X, and K^A

is the corresponding direction of F. EK
2 gives another

value of X, and K%A is the corresponding direction

of F.

The circle may touch the line EL, in which case

the two solutions coincide
; or, the circle may not meet

the line, in which case there is no solution.

(iv.) Suppose the magnitudes of X and Fare known.

With centre E, and radius whose measure is X, describe

a circle, and with centre A, and radius whose measure

is F, describe another circle.

These circles may or may not intersect in two points.

Suppose they intersect in two points Kv K2
. Then,

again, we have two solutions.
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The directions of X, Y are either those of EKV
respectively, or those of EK

2 ,
K

2
A respectively.

FIG. 23.

The two solutions coincide when X= Y, for then

K^ is a parallelogram.
It appears, then, that if we have a number of forces

in equilibrium acting at a point in one plane, and if

everything is known about the system except two

details, namely, either the magnitude of one of the

forces and the direction of one of the forces, or the

magnitudes of two of the forces, or the directions of

two of the forces, we can in general determine the

two unknowns by the graphical method.

24. Ex. 1. Find the resultant of forces of 4, 5, 6

pounds' weight acting at a point in one plane, the angle
betiveen the first two forces being 37, and between the

first and the third a right angle measured in the same

direction.

Take any straight line OH, and make the angles

HOK, HOL equal to 37 and 90 respectively.

With any suitable scale, draw AB of length 4 units

in the direction of OH, BG of length 5 units in the

direction of OK, CD of length 6 units in the direc-

tion of OL.
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Then AD represents the resultant, and a straight line

OR, drawn through parallel to AD, is its line of action.

4

FIG. 24.

On measurement, we find that AD is of length 12

units, and that the angle BAD is 48J.

Hence, the resultant is 12 pounds' weight in a

direction making 48J with the first force.

25. Ex. 2. Find the magnitudes of the forces P, Q,

in order that the system of forces, represented in figure

25, may be in equilibrium.
Draw AB of length 4 units in the direction of the

force marked 4, BG of length 2 units in the direction

of the force marked 2, CD of length 3 units in the

direction of the force marked 3.

Through D and A draw straight lines parallel to the

lines of action of the forces P and Q respectively, to meet

in E. Then DE and EA represent P and Q respectively.

On measuring DE, EA we find that

P=5-8,
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\

D
FIG. 25 a.
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26. Ex. 3. Two equal forces P are in equilibrium with

two equal forces Q, all four being in one plane and

acting at the same point. Prove that either (i.) the

two forces P are in opposite directions and the two

forces Q in opposite directions, or (ii.) the bisector

of the angle between the two forces P is in the same

straight line as the bisector of the angle between the

two forces Q.

A<c

FIG. 26. FIG. 26 a.

Let a force polygon be constructed taking the forces

in the order P, P, Q, Q. This will be a quadrilateral
ABCD in which AB, BC are each of length P units,

and CD, DA each of length Q units. Hence the

triangles DAB, DCB are equal in all respects, so that

DA and DC are equally inclined to DB, and AB, CB
are equally inclined to the same line.

(i.) Let A and C be on the same side of DB.

In this case A and C must coincide. Therefore the

forces represented by AB, BC are in opposite directions,

and the forces represented by CD, DA are in opposite

directions.
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(ii.) Let A and C be on opposite sides of DB.

P

Q,

A^

33

FIG. 27.

In this case a straight line parallel to AC is the

bisector of the angle between the forces P, and also

of the angle between the forces Q.

27. Ex. 4. Find a point P, within a quadrilateral
ABCD, such that the forces represented by PA

, PB,

PC, PD may be in equilibrium.

A

I) G
FIG. 28.

Find E and G the middle points of AB and CD

respectively. Then the forces represented by PA, PB
have for their resultant a force represented by twice

PE\ and the forces represented by PC, PD have for

their resultant a force represented by twice PG.

Hence, for equilibrium, it is necessary and sufficient

that P should be the middle point of EG.
D.S. c
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Hence, take P at the middle point of EG. Then

we know that the forces represented by PA, PB, PC,
PD are in equilibrium, and therefore, in the same

way as above, P must be the middle point of the

straight line joining F and H, the middle points of

BC and DA respectively.

Thus, we have here an independent proof of the

geometrical property of the quadrilateral, that the

straight lines joining the middle points of opposite

sides bisect one another.

EXAMPLES II.

1. If the side of a regular hexagon ABCDEF represents a force

of 100 pounds' weight, find the magnitudes of the forces repre-

sented by the straight lines AE, AD, FB ; and, supposing them
to act at a point, determine the magnitude and direction of the

resultant of the three forces.

2. If a straight line AB represents a force equal to the weight
of 1 pound, construct a line which shall represent a force equal
to the weight of 3^/2 pounds.

A, B, C, D are the angular points of a square taken one way
round, and forces represented in direction by the lines AB, BD,
DA, and AC, and in magnitude by the numbers 1, 2^/2, 3 and ^2,
act at a point ;

find their resultant.

3. Forces 1, 2, 3 and 2^/2 act at a point in the directions of

the sides AB, BC, CD and the diagonal DB of a square ABCD
respectively ; determine their resultant.

4. ABCD is a square ;
find the resultant of the forces repre-

sented by the straight lines AB, AC, and AD.

5. OA, OB, OC are three straight lines inclined at angles of

120 to one another
;
a force 3P acts from A towards 0, a force

4P from towards B, and a force bP from towards C.

Determine the magnitude and direction of the resultant of the

three forces.
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6. Forces of 2, 3, x pounds' weight act at a point in one plane,

the middle one being inclined to each of the others at an angle
of 60. If the force of 2 pounds' weight is removed, the resultant

is of the same magnitude as before. Find x.

7. The triangle ABC has its sides EC, CA, AS of lengths 8,

12, 15 inches respectively. A particle is acted upon by forces

of 2, 3, 1 pounds' weight parallel to and in the direction of BC,

CA, AB respectively. Find the resultant.

8. Find the resultant of forces 4, 2, 5, 3 acting at a point in

one plane, the angles between 4 and 2, 2 and 5, 5 and 3 being

90, 30, 120 respectively, and all angles being taken the same

way round.

9. Forces 3, P, 5, 2, Q act at a point in one plane, the angles
between 3 and P, P and 5, 5 and 2, 2 and Q being 90, 60, 60,
90 respectively, all taken the same way round. Find P and Q
in order that the system may be in equilibrium.

10. Find the resultant of forces 3, 5, 2, 4 acting at a point in

one plane, the angles between 3 and 5, 5 and 2, 2 and 4 being

90, 60, 90 respectively, all taken the same way round.

11. Forces 2, P, 1, Q, 3 act at a point in one plane, the angles
between 2 and P, P and 1, 1 and Q, Q and 3 being 30, 90, 30, 90

respectively, all taken the same way round. Find P and Q in

order that the system may be in equilibrium.

12. Find the resultant of forces 5, 3, 2 pounds' weight acting
in one plane at a point, the middle one being inclined to each

of the others at an angle of 60.

13. Find the resultant of forces 11, 8, 3 pounds' weight acting
in one plane at a point, the angle between each pair being 120.

14. ABCDEF is a regular hexagon. Upon a particle at A
forces of 6, 8, 9, 8, 6 pounds' weight act in the directions AB,
AC, AD, EA, AF respectively. Find their resultant in magnitude
and direction.

15. ABCDEF is a. regular hexagon. Upon a particle at A forces

of 12, 17, 6, 2, x pounds' weight act in directions AB, AC, AD,
AE, AF respectively. Find x in order that the resultant may
be in the direction AC.
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16.. ABC is an equilateral triangle, and D is the middle point

of BC. Find the magnitude and direction of the resultant of

the following three forces acting at A : 3 pounds' weight in direc-

tion AB, 2 pounds' weight in direction DA, 4 pounds' weight in

direction AC.

17. OABC is a square, and D is a point in AB such that

AD is | of AB. Find the magnitude and direction of the resultant

of forces of 4, 2, 3 pounds' weight acting at in directions OA,

OD, OC respectively.

18. OABC is a square, each side of which is 1 foot in length.

D is a point in AB 5 inches from A, and E is a point in BC
3 inches from B. Find the magnitude and direction of the

resultant of the following system of forces acting at : 45 pounds'

weight along OA, 65 pounds' weight along OD, 35 pounds' weight

along EO, 66 pounds' weight along OC.

19. Let be the position of a particle, and OA a straight

line drawn through 0. Find the magnitude and direction of the

resultant of forces of 10, 18, 20, 16 pounds' weight acting on the

particle, when their directions make with OA angles of 0, 30,

90, 135 respectively, all measured in the same sense.

20. Forces of magnitudes 3, 4, and 5 act at a point in direc-

tions lying in one plane, and making angles of 15, 60, and

135 respectively, with a line OA in the same plane. Find the

magnitude of the resultant.

21. Forces of 3, 4, and 6 pounds' weight make angles of 90,

60, and 30 respectively with a force of 2 pounds' weight (the

angles being measured in the same direction). Find the magni-
tude of the resultant, and the angle its direction makes with

the force of 2 pounds' weight.

22. ABCDEF is a regular hexagon ;
forces of 1, P, 2, Q, 6

pounds' weight respectively act along the lines AB, AC, AD,
AE, AF. Find the value of P in order that the resultant of

the system may be along AE.

23. A particle is acted upon by three forces of given magni-
tudes ;

show how these forces must be arranged so as, if possible,
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to produce equilibrium, and determine the angle between the

last two forces, when the measures of the forces are

(i.) 6,11,18;

(ii.) 1, 1, v/2 ;

(iii.) 17, 15, 8;

(iv.) 13, 15, 7
;

(v.) 13, 15, 8
;

(vi.) 13, 8, 7.

24. Two equal forces are in equilibrium with a third force

which is fully known. If the direction of one of the equal forces

be known, show how to determine the direction of the other

and the magnitude of each.

25. Find a point P within a triangle ABC, so that the forces

represented by PA, PB, PC may be in equilibrium. Make use

of this to prove the geometrical theorem, that the three medians

of a triangle are concurrent
;
and that the distance of their point

of concurrence from a corner is two-thirds of the length of the

median along which it is measured.

26. Extend Art. 10 to include the case of any number of forces

acting at a point.

27. Four forces in equilibrium, acting at a point, are represented
in magnitude and direction by AB, CD, AD, CB. Show that

A, B, C, D must be the angular points of a parallelogram.

28. A number of forces, acting at a point in one plane, are in

equilibrium. If one of them be turned about its point of applica-

tion through a given angle, show how to find the resultant of

the system, and, if the inclination of the force continue to alter,

show that the inclination of the resultant alters by half the amount.

29. Three forces, whose measures are P, Q, X, are in equili-

brium when acting at a point; the first force is given in magnitude
and position, the second in magnitude only, the third in direction

only, making an angle 6 with the direction of the first. Show
how to determine the direction of the second and the measure of

the third. Show that there are generally two solutions, and that,

if P> Q, there are limits to the angle 0, beyond which the ques-
tion is impossible of solution.

As an example, take the case in which P=15, $=13, 0=120.
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30. In the preceding question, show that the product of the

two values of X is equal to the difference between the squares
of P and Q.

31. Three forces P, Q, R act at a point 0, and are in equilibrium.

A circle through cuts their lines of action in p, q, r respec-

tively. Prove that P : Q : R= qr : rp :pq.

32. Three forces, acting at a point, are in equilibrium. Show
that if a triangle be formed by drawing straight lines perpen-
dicular to the directions of the forces, its sides will be proportional

to the forces to which they are respectively perpendicular.

33. Three forces P, Q, R, in equilibrium, act along the lines

OA, OB, OC, where is the orthocentre of the triangle ABC.

Prove that P : Q : R =BC : CA :AB.

34. / is the centre of the circle inscribed in the triangle ABC.
Three forces P, Q, R, in equilibrium, act along the lines IA, IB,

1C respectively. Prove that P : Q : R=BC : CE : EB, where E
is the centre of the circle which touches BC, AB produced and

AC produced.

35. E is the centre of the circle which touches BC, AB pro-

duced and AC produced. Three forces P, Q, R, in equilibrium,

act along the lines AE, EB, EC respectively. Prove that

P: Q : R=BC : CI \ IB, where / is the centre of the circle in-

scribed in the triangle ABC.

36. A, B, C are three points on the lines of action of three

forces P, Q, R respectively, which act at and are in equi-

librium. Prove that if P : Q : R=BC : CA : AB, then is either

the orthocentre of the triangle ABC, or it is some point on the

circle which passes through A, B, C.

37. In the preceding example, prove that if P i Q:R=BC:AB\CA,
then either BC is a common tangent to the circles BOA, COA,
or coincides with A

;
and that, in each case, the line of action

of P passes through the middle point of BC.



CHAPTER III.

EQUILIBRIUM OF FINE LIGHT STRINGS IN A
STATE OF TENSION.

28. By a light string we mean one whose weight
is inappreciable. By a fine string we mean one whose

thickness is inappreciable.

29. When a string in a state of tension has taken

up a position of equilibrium, we may treat any portion
of it as a rigid body at rest under the influences of

the forces which act externally upon that portion.

This is a particular case of the following important

general principle : The conditions of equilibrium of a

body not rigid are the same as those of an ideally

rigid body with these additions: (i.) Every portion
into which the body can be conceived to be divided

must be in equilibrium under the external forces

which act upon that portion considered as a rigid

body, (ii.) The external forces acting upon the body
must not be such as to induce internal actions within

the body sufficient to break or fracture it.

The first of these additional conditions enables us

to find, when necessary, the internal actions at any

point within a body; the second we generally ignore
in the elementary statics, as we generally assume that
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the material system under consideration is strong-

enough to bear any strain to which it may be subjected.
In practical applications this, of course, has to be taken

into account.

30. Now let AB be a portion of a fine light string
in equilibrium in a state of tension, and suppose that

between the points A and B the string is quite free.

K

II-

FIG. 29.

Take any two points P and Q of the string between

A and B, and consider the equilibrium of the portion

PQ of the string.

The fibres at P are in a state of tension, so that

the adjoining piece of string AP is pulling upon the

piece PQ at P with a force S in the direction of

the tangent PH.

Similarly, the fibres at Q are in a state of tension,

so that the adjoining piece of string QB is pulling

upon the piece PQ at Q with a force T in the direction

of the tangent QK.
Now we assume that between P and Q the string-

is strong enough to bear all strain to which it is

subjected, and that if a rigid body of the same size

and shape as PQ were substituted for the string PQ,
it would be in equilibrium under the same external

forces.
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But, if a rigid body is in equilibrium under the

influence of two forces, those forces must be equal
and opposite and act in the same straight line.

.-. S=T, and HP and QK are parts of the same

straight line.

Also, as P and Q were taken to be any two points

between A and B, we see that the magnitude of the

tension is the same at every point between A and

B, and that the tangents at all points of AB are in

one and the same straight line. Hence the portion
AB must be straight.

Thus, if a fine light string is in equilibrium in a

state of tension, every free portion of it is straight,

and the tension is the same at every point of such

a portion.

31. In particular, let a fine light string AB rest in

equilibrium with one extremity A attached at a fixed

point, and with a force whose measure is F applied

at .B in a fixed direction.

FIG. 30.

By Art. 30, we see that AB must be straight, and

the tension at any point is the same throughout the

string. Let T be the measure of this tension.

Take any point P of the string, and consider the

equilibrium of the portion PB as a rigid body.

The external forces acting upon it are F in the
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fixed direction and T in the direction PA. These

must be equal and opposite.

/. T=F,
and AB is in the direction of the force F.

Thus the string takes up a position of equilibrium

such that AB is in the direction of the force applied,

and the fibres of the string pull both ways at every

point with a force equal in magnitude to the force

applied.

If a heavy mass is attached at B, then AB takes

up the vertical position with B below A, and the

tension of the string at every point is equal to the

weight of the mass supported.
32. Suppose now that a number of fine light strings

OA, OB, OG, OD, in a state of tension, are knotted

together at the point 0, and that they have taken

up some position of equilibrium.

D

FIG. 31.

The tension of the string OA is the same at every

point. Let its measure be T.

Similarly let U, V, W be the measures of the tensions

of OB, OC, OD respectively.
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Consider the equilibrium of the portion of string in

the immediate neighbourhood of 0. We have drawn

a closed curve round cutting off the portions OP,

OQ, OR, OS from the strings. The portion of string

within this closed curve we treat as a rigid body in

the manner explained above.

The forces acting externally upon this portion are

as follows :

At P it is being pulled in direction PA with a force T.

AtQ QB U.

ME EC V.

MS SD W.

The lines of action of these forces meet at the point

0, and we may treat them as though they all acted

at 0. Hence the consideration of the equilibrium of

this portion of matter round comes under the case

of the consideration of the equilibrium of a number

of forces acting at a point. The force polygon will

have its sides parallel to the lines OA, OB, OC, OD,
and the arrows must go one way round.

The consideration of the equilibrium of the portion
of the system in the neighbourhood of is briefly

described as considering the equilibrium of 0, and

the force polygon is called the force polygon for the

point 0.

33. An endless fine light string LMN is in a given

position, in the form of a triangle, with the point N
fixed. To the point L is applied a known force, whose

measure is P, in a given direction LH outwards from
the triangle. It is required to find the measure of a

force which must be applied at M in a given direction

MK, in order that the system may be in equilibrium,
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and also to determine the tensions in the different parts

of the string and the force of constraint at N.

Let X be the unknown measure of the force applied

at M, and let NV be the unknown direction, Y the

unknown measure, of the constraint at N.

v\

n

FIG. 32. FIG. 32 a.

We will make use of the notation suggested in

Art. 4, and the student will at once see the advantage
of doing so. The lines of the space diagram divide it

into four parts which we letter o, , 6, c as in the

figure. We have now no further use for the letters

L, M, N, H, K, V in the diagram. The straight lines

LH, LM, etc., we now call be, oc, etc. The point L,

where the spaces b, c, o meet, we now call bco, etc.

Take BG of length P units in the direction of the

given force P, i.e. parallel to be, and draw BO, CO

parallel to bo, co respectively, meeting in 0. Then

BCOB (this way round) is the triangle of forces for

the point bco, so that GO and OB represent the pulls

of the strings co and ob respectively upon the point bco.
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Now consider the equilibrium of the point oca. The

pull of the string co at this point is represented by 00.

Draw CA, OA parallel to ca, oa respectively, meeting in

A. Then 00A (this way round) is the triangle of

forces for the point oca, so that AO represents the

pull of the string ao at the point oca, and CA represents

the force applied at M.

Now consider the equilibrium of the point oab. The

pulls of the strings bo, ao at this point are represented

by BO, OA respectively. Therefore the remaining force

of constraint at N, which balances these two, must be

represented by AB, the triangle of forces for the point
oab being OABO (this way round).

Measuring the lines of the force diagram, we have

X, Y and the tensions of the three parts of the string,

and AB gives us the direction also of the force of

constraint.

34. Ex. 1. The fine string ABODE, of length 3 feet,

has its extremities attached to the two points A and E,
situated 18 inches apart in a horizontal line. Another

fine string, of length 10 inches, connects the points B
and D, situated 5 inches each from A and E respectively,

and to the middle point of the first string is attached

c r-iss of 24 pounds. The whole is allowed to take

fc> a -mmetrical position of equilibrium. Find the

tensi. of each portion of the string.

There is no difficulty in constructing the space diagram
to scale

;
this the student should do for himself. We

then mark the portions of the space diagram, as in the

figure, with the letters o, h, k, I.

With any suitable scale, draw HK 24 units of length

vertically downwards to represent the tension of the
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string hk, which is equal to the weight of 24 pounds.
Draw HO, KO parallel to the strings ho, ko respectively,

to meet in 0.

Then HKOH (this way round) is the force triangle

for the point hko. Thus KO represents the pull of

A E

FIG. 33.

the string ko at (7; .'. OK represents the pull of the

same string at B.

Draw OL, KL parallel to the strings ol, kl respectively,

meeting in L. Then OKLO (this way round) is the

force triangle for the point okl. Thus LO represents
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the pull of the string lo at$; .*. OL represents the

pull of the same string at D. Again, since OH repre-

sents the pull of the string oh at C, HO represents the

pull of the same string at D. Hence we see that HO,
OL represent the pulls of the two strings ho, ol at

D
; therefore, by joining H, L we complete the force

H

K
FIG. 33 a.

diagram, and the line LH must be parallel to the string

Ih, and must represent its tension.

If we consider the equilibrium of the strings which

form the triangle BDC as one rigid body, the force dia-

gram for the system is the triangle HKL, the lines HK,



48 EQUILIBRIUM OF FINE LIGHT STRINGS

KL, LH representing the external forces which act upon
the triangle CBD at the points C, B, D respectively.

On measuring the lines of the force diagram, we
have LK=W = LH, OK =13 = OH, L0 = ll.

.'. The tensions of the strings BC, CD are each 13

pounds' weight, of AB, DE each 20 pounds' weight,

and of ED 11 pounds' weight.

35. Ex. 2. A fine light string ACB is placed on a

smooth horizontal table, and has its extremities fastened

to two given fixed points A, B. A force is applied in

the plane of the table to the string at the point C,

which is at given distances measured along the string

from A and B. It is required to find the conditions

under which the string will rest in equilibrium with

both portions in a state of tension, and, when the

applied force is given satisfying these conditions, to

determine the tensions of each portion of the string.

FIG. 34.

At the outset we do not know the position of equi-

librium, but, in any position of equilibrium in which

both portions of the string are in a state of tension, each

of those portions will be straight. Now we are given
the lengths of the portions AC, BC, and also the

positions of the points A, B. Hence the point C will

take up one or other of two positions Cv (7
2 ,

which

we can find, situated symmetrically on opposite sides

of AB.
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Let HK represent the applied force. Having found

the positions of the points Cv C
2 ,
draw Hav Hbv Ha2 ,

Hb
2

in the directions of the lines AGV BCV AC2 ,
BG

2

respectively.

FIG. 35. FIG. 35 a.

If AG^B is the position of equilibrium, considering

the equilibrium of the portion of string in the neigh-

bourhood of the point C
lt
we see that the applied force

will have to balance two forces in the directions G^A,

G^B, and therefore HK must lie within the angle

a^Hb^. Similarly, for the position AC2B, HK must lie

within the angle a2
Hb

2
. Thus, for the string to rest

with both portions in a state of tension, the applied

force must be between the directions Ha^ and Hbv or

between Ha
2
and Hb

2
. If there is no limit to the

possible tension of the string, there .is no further

limitation upon the magnitude or direction of the

applied force.

If the line HK be given, within, say, the angle

a^Hb^ then, drawing KL parallel to a^H to meet Hb^
in L, HKLH (this way round) is the triangle of

D,S. D
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forces for the point C, and the position of equilibrium
is AG^B.

If the string can stand at every point tension up
to, but not beyond, a certain given value, describe

with centre JET, and radius representing this maximum

tension, a circle intersecting Hav Hbv Ha
2 ,
Hb

2
in

av bv a
2)

b
2 respectively, and complete the parallelo-

grams b
1
Ha

l
Rv b

2
Ha

2
K

2
.

FIG. 36.

Then the point K must lie within one or other of

these two parallelograms.
If it be required to find the greatest force which

can be applied in any given direction without breaking
the string, we have merely to find the point X where

the straight line drawn from H in the given direction

meets a-JZ^ or a
2
K

2
b
2

. Then HX represents the

force required.

36. Ex. 3. If, in the preceding example, ike line of
action of the applied force passes through D, the middle

point of AB, then the tensions of the two portions of
the string are proportional to their lengths.
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Draw through A a straight line parallel to CB to

meet CD produced in E. Then the triangles ADE,
BDC are similar, and, as AD = DB, it follows that

AE=CB.
Now the triangle CAE has its sides parallel to the

three forces which keep the portion of string at C in

FIG. 37.

equilibrium ;
therefore its sides are proportional to the

forces to which they are respectively parallel.

.*. the tensions of the strings CA, CB are propor-
tional to CA, AE, that is to CA, CB.

EXAMPLES III.

1. A mass of 24 pounds is supported by two fine light strings

inclined at angles of 15 and 60 with the vertical. Find the

tensions of the strings.

2. A and B are two fixed points distant 8 feet apart in a

horizontal line. Two fine light strings AC, BC, of lengths 5 and 7

feet respectively, support a mass at C. Compare their tensions.

3. BAG is a fine light string, of length 14 inches, attached at

its extremities to two points B and (7, situated 10 inches apart.

At the point A, 6 inches from B, is knotted another string AD,
which is pulled with a force equal to the weight of 20 pounds.
If DA produced passes through J, the middle point of 0, find

the tensions in the strings BA and AC.
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4. Two fine light strings AB, BC, each of length 5 feet, are

knotted together at B and attached at their other extremities

to fixed points A and C, situated 8 feet apart in a horizontal line.

A mass of 180 pounds is supported by another fine light string

attached at B. Find the tension in each of the strings AB, BC.

5. Two fine light strings AB, BC, of lengths 13 and 15 inches

respectively, are knotted together at B, their other extremities

being attached to two points A and C, situated 14 inches apart
in a horizontal line. A third string, attached at B, supports a

mass weighing one cwt., and the whole is allowed to hang freely.

Find, in pounds' weight, the tensions of the strings.

6. A mass of 300 pounds is supported by two fine light strings,

of lengths 17 and 26 inches respectively, attached to the same

point of the mass, the other extremities of the strings being

respectively attached to two points, situated 25 inches apart in a

horizontal line. Find the tensions of the strings.

7. A mass of 42 pounds is supported by two strings AC, BC,
of lengths 17 and 25 inches respectively, attached to two points

A, B situated 28 inches apart in a horizontal line. Find the

tensions of the strings.

8. Four fine light strings, each of length 5 inches, are knotted

together to form a rhombus ABCD, which is suspended from A.

A mass of 80 pounds is attached at C, and B, D are kept 6 inches

apart in a horizontal line by two equal and opposite forces P
acting at B and D. Represent the forces acting upon each of

the knots B, C by the sides of a triangle, and find the magnitude
of P and the tension of the string.

9. Three fine light strings are knotted together to form a tri-

angle ABC, the strings AB, BC, CA being of lengths 8, 5, 5 inches

respectively. If a mass of 30 pounds is suspended from C, and
the whole is supported, with AB horizontal, by two forces applied
at A and B in. directions making 22-| with the horizontal, find

the tension of each portion of the string and the magnitude of

each of the applied forces.

10. Three fine light strings are knotted together to form a

triangle ABC, the strings AB, BC, CA being of lengths 28, 25,
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17 inches respectively. The point A is fixed, and a mass of

84 pounds is suspended from C. If the triangle and mass are

supported, with AB horizontal, by a force applied at B in direc-

tion perpendicular to AC, find the magnitude of this force, the

tension of each portion of the string, and the magnitude and

direction of the action at A.

11. A fine light string ABCDE, of length 5 feet, has its ex-

tremities attached to two points A and E, situated 4 feet apart
in a horizontal line. Another piece of string, of length 2 feet,

connects the points B and D, situated 13 inches each from A and E
respectively ;

and to the middle point C of the first string is

attached a mass weighing 40 pounds. The whole is allowed to

take up a symmetrical position of equilibrium. Find the ten-

sion of BD.

12. A fine light string ABC supports a mass, of given weight,
at C, and is attached to a fixed point at A. To the point B of

the string, situated at a given distance from A measured along
the string, a given force is applied in a given direction. Show
how to find the position of equilibrium, and the tension of AB.

For example, if the mass supported is 40 pounds, and the given
force is equal to the weight of 15 pounds, and acts in a direction

of 60 with the upward vertical direction, find the tension of

AB and the vertical distance of B below A, the distance AB
being 14 inches.

13. In the preceding example, show how to find the magnitude
and direction of the smallest force which will cause the string

to rest in a given position.

14. A fine light string of given length has its extremities

attached to two given fixed points. Show how to find the greatest

load that can be applied to a given point of the string without

breaking it, supposing that string can bear a*iy tension up to a

certain given value.



CHAPTEE IV.

EQUILIBEIUM OF FINE LIGHT KODS, FKEE
EXCEPT AT THEIR EXTREMITIES.

37. By a light rod we mean one whose weight is

inappreciable. By a fine rod we mean one whose

thickness is inappreciable.

38. We shall in this chapter confine our attention

to straight rods of no appreciable weight or thickness,

which are in equilibrium under forces applied only
at their extremities, so that each rod is quite free

throughout its length.

If a framework of rods is in equilibrium, each in-

dividual rod must be in equilibrium, and each part
of the structure must be in equilibrium considered as

a rigid body, whether such part consists of a certain

number of the rods which make up the structure, or

of parts of the rods themselves.

In considering the equilibrium of a system of such

rods jointed together at their extremities to form a

framework, as we neglect the thicknesses of the rods,

so also we shall neglect the sizes of the hinges. We
shall suppose that all hinges are smooth, and that the

effect of a hinge upon a rod is to compel that extremity
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of the rod to remain in a definite position by means

of a direct push or pull applied at that point. The

constraint is a self-adjusting force, and accommodates

itself to prevent, if possible, the extremity of the rod

from getting away from the part of the structure to

which it is attached. It is of any magnitude, and

acts in any direction necessary to preserve equilibrium,

but must act through the extremity of the rod, which

extremity is here treated as a mere point.

39. Let AB represent a rod in equilibrium, being

jointed freely at A and B to the adjoining parts of the

structure. Suppose also that its weight is inappreciable,
and that it is quite free between A and B, so that

the only external forces that act upon it are applied
at A and B.

FIG. 38.

FIG. 39.

The forces that act upon it at A- are equivalent
to a single force acting upon it at A. So also the

forces at B are equivalent to a single force at B.

Thus the forces acting externally upon the rod are

equivalent to two forces, one acting at A and the

other at B. These two must be equal and opposite
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and act along the same straight line. Therefore AB
must be the line of action of both forces. Also the

resultant actions at A and B must be either (i.) both

inwards, in which case the rod is in a state of com-

pression, and its effect is to keep the two parts of the

structure at A and B apart from one another; such

a rod is called a strut
;

or (ii.) both outwards, in

which case the rod is in a state of tension, and its

effect is to bind together the two parts of the structure

at A and B; such a rod is called a tie.

In the case of a strut, the rod pushes the structure

at each end in its own direction. In the case of a

tie, the rod pulls the structure at each end in its

own direction.

40. Let us consider the equilibrium of the portion
AP of the rod AB, which is acted upon by forces at A
and B only. Since the portion AP is in equilibrium,

FIG. 40.

the action of the adjoining piece PB at P upon the

portion AP, must be equal and opposite to and in the

same straight line as the action at A. Therefore, in

the case of a strut, the portion PB presses against the

portion AP with a force equal and opposite to the

resultant of the forces which act upon the rod at A.

In the case of a tie, the portion PB pulls at the portion
AP with a force equal and opposite to the resultant

of the forces which act upon the rod at A.
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In the one case the fibres at P are in a state of

compression, in the other case in a state of tension.

In both cases the action at P of one part upon the

other is in the direction of the rod, and is of the

same intensity at every point of the rod.

In the case of a tie, we might replace the rod by
a string which would answer the purpose theoretically

just as well.

If a rod is not free between its extremities, or if

it is of appreciable weight, then the action at each

end is not necessarily in its own direction, and the

internal strains may be different at every point of

the rod.

41. The equilibrium of a tie is stable
; for, if it be

twisted a little out of its position, the external forces

acting upon it at its extremities tend to restore it to

FIG. 41.

FIG. 42.

its original position. The equilibrium of a strut is

unstable
; for, if it be displaced, the external forces

acting upon it at its extremities tend to twist it still

further from its original position.
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42. Now suppose that several rods, all coming under

the case above described, are jointed together at a

common extremity.

Let the rods OA, OB, 00, OD be freely jointed at 0.

Draw a closed curve round 0, cutting off portions

OP, OQ, OR, OS from the rods, and consider the

equilibrium of the matter contained within this curve

as a rigid body. Its weight is inappreciable, and the

only forces acting externally upon it are the actions

at P, Q, R, S which are along the lines (inwards or

outwards) OA, OB, 00, OD respectively. Hence the

consideration of the equilibrium of this portion of

matter round comes under the case of the con-

sideration of the equilibrium of a number of forces

acting at a point. The force polygon for the system
under consideration will consist of a polygon having
its sides parallel to the lines OA, OB, 00, OD, and

the arrows must go one way round. The direction

of the arrow decides in each case, not already known,
whether the rod is a strut or a tie.

The consideration of the equilibrium of the portion
of the system in the neighbourhood of is briefly

described as considering the equilibrium of 0, and the
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force polygon is called the force polygon for the

point 0.

43. Four fine light rods are freely jointed at their

extremities to form a quadrilateral, which is stiffened

by another fine light rod connecting tiuo opposite joints.

It is required to consider the equilibrium of the

framework under the influence of two forces applied
at the remaining two joints.

Let the spaces inside the quadrilateral be denoted

by ov o
2 ,
and the spaces outside by a and b, as indicated

in the diagram.

FIG. 44.

Let Pv P2
be the measures of the forces applied at

the joints abov bao
2 respectively.

We will first consider the equilibrium of the whole

framework as one rigid body. It will be seen that

the framework is not deformable and behaves as a

rigid body. As the stresses in the rods can be of

any magnitude and in either direction, it is necessary
and sufficient for equilibrium that the forces acting

externally upon the framework should form a system
in equilibrium. In order to ensure, therefore, the
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equilibrium of the framework, it is necessary and

sufficient that P
1
and P

2
should form a system in

equilibrium. Thus, P
l
and P

2
must be equal and in

opposite directions along the same straight line, either

both inwards or both outwards. If P
l
and P

2 satisfy

these conditions, the framework is in equilibrium, and

we can determine the stresses in the rods.

Taking Pl
and P

2
as both outwards, the force diagram

for the point abo
l
is a triangle ABO^A (this way round),

in which AB represents P1
and AOV BO^ are parallel

to the rods aov bo
l respectively. The triangle of forces

for the point oj)0z
is

1
,B0

2 1 (this way round), in

which E0
2 , X 2

are parallel to the rods 6d
2 , o-^o2 respec-

tively. Now considering the joint ao
1
o
2 ,
we see that

two of the forces acting upon it are represented by
AOV OjOg. Hence, joining A02 ,

the straight line A0
2

must be parallel to the rod ao
2 ,

and the triangle of

forces for the point a0j02
is AO^O^A (this way round).

Also the triangle of forces for the point ojba is
2
BA

2

(this way round).

We see that the outside rods are ties and the cross rod

a strut. We might replace the outside rods by strings.

If P
l
and P

2
both act inwards, it will be found that

the outside rods are struts and the cross rod a tie.

The force diagram will be the same as before, but the

directions will in each case be the opposite way round.

We might now replace the cross rod by a string.

In the above, the two equal and opposite forces

Pj and P
2 may be applied by means of another fine

light rod, in a state of stress, connecting the joints

abo
l
and bao

z
. For instance, in a quadrilateral frame-,

work, if there are two diagonal ties and no external
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forces, we can determine the stresses in all the members

provided we know the stress in one of them.

44. Ex. 1. A fine light rod HK, of length 9 inches,

is capable of turning freely in a vertical plane about

the point H, which is fixed. To the point K is attached

a fine light string, supporting at its other extremity a

mass of 40 pounds. Another fine light string, of length

7 inches, connects K with the fixed point L, situated

8 inches vertically above the point H. Find the tensions

of the strings, the stress in the rod, and the action at H.

In the position of equilibrium, the two strings are

straight and the mass rests vertically below K. The

data are sufficient to enable as to construct the space

diagram to scale. This done, we mark the portions

of the space diagram with the letters a, b, o, as

indicated in the figure on the next page.

The rod is at rest under forces acting only at H
and K. Therefore the stress in the rod is at every

point in its own direction, and the action at H is in

the line HK.
The tension of the vertical string we see at once is

40 pounds' weight. Hence, draw AB vertically down-

wards of length 40 units, and through A and B draw

AO, BO parallel to ao, bo respectively, to meet in 0.

Then ABOA (this way round) is the triangle of forces

for the equilibrium of the portion of matter in the

neighbourhood of K. On measuring, we find that BO
and OA are of lengths 45 and 35 units respectively, and

the direction BO shows that the rod is a strut. Hence

the thrust of the rod is 45 pounds' weight, the tension

of XL is 35 pounds' weight, and the action at H is

45 pounds' weight in direction HK.
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In this example we might have dispensed with the

force diagram altogether. The triangle LHK has its

sides parallel to the forces which act upon the portion
of the system at K. Hence, on the scale in which

FIG. 45.

LH represents 40 pounds' weight, HK and KL repre-

sent the thrust of the rod and the tension of the

string KL. This, of course, gives the same result as

before.
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A

FIG. 45 a.

45. Ex. 2. A fine light rod HK, of length 56 inches, is

connected with a fixed-point M by two fine light strings

HM and KM of lengths 39 and 25 inches respectively.

Another fine light string, of length 112 inches, has its

extremities attached to the points H and K, and supports
a mass of 1 cwt. at the point N, distant 60 inches along
the string from H. The whole is allowed to rest in a

vertical plane. Find the position of equilibrium, the

tension of each portion of string, and the thrust in

the rod.

In the position of equilibrium the four strings are

straight. The data are sufficient to enable us to con-
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K

FIG. 46.
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struct the shape of the quadrilateral HMKN, but not its

position relatively to the vertical. We construct the space

diagram to scale, and put in the vertical afterwards.

Considering the equilibrium of the four strings and

the rod as one rigid body, we see that the force of

constraint at M balances a force equal to the weight

FIG. 46 a.

of 112 pounds acting vertically downwards through N.

Hence the force of constraint at M must be equal to

the weight of 112 pounds, acting vertically upwards,
and the line MN must be vertical. Hence, joining MN,
we have the vertical line through M, and thus determine

the position of equilibrium. On measuring the angle
D.S. E
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between MN and HK we find that it is a right

angle. Hence, in the position of equilibrium, HK is

horizontal.

Having marked the parts of the space diagram with

the letters a, b, ov o
2

as in the figure, we draw AB
vertically downwards, and of length 112 units. The

point Q! is obtained by drawing through A and B
straight lines parallel to the strings ao

l
and bo

l

respectively, the point 2 , by drawing through O
l
and

B straight lines parallel to o
x
o
2
and bo

2 respectively;

then, joining A02 ,
we complete the force diagram.

On measuring the lines BOV OlA t
A0

2 , 2B, OjOg,

we find that the tensions of the strings KN, NH, HM,
MK, and the thrust of the rod are 78, 50, 104, 120,

and 126 pounds' weight respectively.

46. Ex. 3. Four fine light rods are smoothly jointed

at their extremities to form a quadrilateral, which can

be inscribed in a circle. The opposite joints are con-

nected by two fine light strings in a state of tension.

Prove that the thrusts in the rods and the tensions of
the strings are proportional to the opposite sides and

diagonals of the quadrilateral respectively.

Let ABCD be the framework, AC and BD being
the diagonal ties.

Mark the line AB with the letters c'd', placing one

letter on each side of the line; AC with the letters

'd', BC with the letters a'd', etc.

Then the force diagram will be the quadrilateral

A'E'C'L', in which A'K is parallel to a'b\ A'C' to ac

B'C' to b'c', and so on.

We can now prove that the figure A'B'C'D' is similar

to the figure ABCD, the correspondence being shown
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by using the same letters. For,

angle D'C'A'= aiigle DBA = angle DCA ;

also, angle D'A 'G' = angle DBG= angle DAG ;

therefore the triangles D'A'G' and DAG are similar.

In the same way we can show that any other triangle

of the figure AB'C'D' is similar to the corresponding

triangle of the figure ABCD ;
therefore the two figures

are similar.

B'

FIG. 47 a.

Now the thrusts in the rods AB, BC, CD, DA,
and the tensions of the strings AC, BD that is, the

thrusts in the rods c'd', d'a', a'b', b'c, and the tensions

of the strings b'd', afc\ are represented by C'D', D'A,
AB', B'C', B'D', A'G' respectively, and are therefore

proportional to CD, DA, AB, BC, BD, AC respectively.

Thus the thrusts in the rods and the tensions of the

strings are proportional to the opposite sides and

diagonals of the quadrilateral.

47. Ex. 4. Two fine light rods AC, CB rest in a

given position, being smoothly jointed to one another at

G and to tivo fixed points at A and B. A given force
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is applied at G in the plane ABC. It is required to

determine the stresses in the rods, and to examine the

nature of those stresses for different directions of the

applied force.

Let HK represent the applied force. Draw through
H straight lines bHb', aHa in the directions of CB,

GA respectively. Through K draw KL parallel to

CA to meet bHb' in L. Then KL, LH represent the

actions of the rods CA, CB respectively upon C.

If HK is within the angle aHb, both rods are ties;

if within the angle aHb', the rod AC is a tie and CB
a strut; if within the angle aHb, the rod AC is a

strut and CB a tie
;

if within the angle a'Hb', both

rods are struts.

FIG. 48. FIG. 48 a.

Suppose that the maximum tension and compression
that each rod can bear without breaking are known.

Take Ha, Hb to represent the maximum tensions of

the rods AC, BC respectively, and Ha', Hb' the maxi-

mum compressions of the rods AC, BC respectively.

Through a, a' draw parallels to bH, and through b, b'

parallels to aH. Then the point K must lie within

the parallelogram so formed.



EXAMPLES IV. 69

EXAMPLES IV.

1. A fine light rod AB, of length 15 inches, is capable of turning

freely in a vertical plane about the end A, which is fixed. A
mass of 60 pounds is suspended from B, and the whole is sup-

ported by a horizontal string BC, of length 14 inches, attached

to a fixed point (7, distant 13 inches from A. Find the tension

of the string, the thrust in the rod, and the action at A.

If the string cannot bear a tension greater than 90 pounds'

weight, find the least load which, applied at B, will break the

string.

Also, if there is no load supported at B, find in what direction

a force of 75 pounds' weight must be applied at B, in order to

be just on the point of breaking the string.

2. Two fine light rods AC and CB, of lengths 25 feet 8 inches and

17 feet 1 inch respectively, are jointed together at C and to two

fixed points A and B, the point B being 9 feet 9 inches vertically

above A. A mass of 1 cwt. is suspended from (7. Find the

stresses in the rods.

If the greatest thrust that the rod AC can bear is the weight
of 40 cwt., and the greatest tension that the rod EC can bear

the weight of 41 cwt., find the magnitude and direction of the

force which, applied at C, will be on the point of breaking both

rods simultaneously.

Find also the greatest load which can be sustained at C.

3. Four equal rods, of no appreciable weight, are hinged together

to form the rhombus ABCD, and the hinges at B and D are

joined by another equal rod BD, of no appreciable weight. If

the rhombus is supported at A
t
and a mass of 1 cwt. is sus-

pended from
(7,

find the thrust in BD.

4. If, in the preceding example, the cross rod BD is half as

long again as each of the other rods, find the stress in each rod

under the same load as before.

5. ABCD is a framework of four light rods loosely jointed

together, AB and AD being each of length 4 feet, BC and CD
each of length 2 feet. A mass of 100 pounds is attached to the

OF THE
TT-NrTVTTRSTTY



70 EQUILIBRIUM OF FINE LIGHT BODS.

hinge C, and the whole framework, which is stiffened by a light

rod of length 3 feet connecting the hinges B and D, is suspended
from A. Find the thrust in the rod ED.

6. ABCD is a framework of four light rods loosely jointed

together, AB and AD being each of length 4 feet, BC and CD
each of length 2 feet. The hinge C is connected with A by means

of a fine string of length 5 feet, and the whole is placed on a

smooth horizontal table. If the hinges B and D are pressed towards

one another by two forces each equal to 25 pounds' weight in

the straight line BD, find the tension of the string.

7. Four fine light rods, of lengths 20, 15, 20, 15 inches, are

smoothly hinged together to form a parallelogram ABCD, and

the hinges B and D are connected by another fine light rod of

length 31 inches. If the system is suspended from A, and a

mass of 68 pounds is attached at C, find the position of equili-

brium and the stress in each rod.

8. In the preceding example the cross rod BD is of length
17 inches. Find the position of equilibrium and the stress in

each rod when a mass of 62 pounds is attached at C.

9. A fine light rod UK, of length 15 inches, is connected with

a fixed point M by two fine light strings HM and KM, of lengths
13 and 4 inches respectively. Another fine light string, of length
27 inches, has its extremities attached to the points H and K,
and supports a mass of 60 pounds at the point N, situated 14

inches along the string from H. The whole is allowed to rest

in a vertical plane. Find the position of equilibrium, the tension

of each portion of string, and the thrust in the rod.

10. Four fine light rods are smoothly jointed at their ex-

tremities to form a parallelogram. The opposite joints are con-

nected by two fine light strings in a state of tension. Prove that

the thrusts of the rods and the tensions of the strings are pro-

portional to the lengths of the rods and strings respectively.

11. Four fine light rods are smoothly jointed at their extremities

to form a trapezium. The opposite joints are connected by two

fine light strings in a state of tension. Prove that the thrusts in

the parallel rods are inversely proportional to the lengths of
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those rods, and that the thrusts in the non-parallel rods and the

tensions of the strings are proportional to the lengths of those

rods and strings respectively.

12. Four fine light rods are smoothly jointed at their extremities

to form a quadrilateral ABCD, The opposite joints are connected

by two fine light strings AC, BD in a state of tension. AS is

drawn parallel to BC to meet BD in 8, and By is drawn parallel

to AD to meet AC in
y.

Prove that y8 is parallel to CD ;
also

that the thrusts in the rods AB, BC, CD, DA and the tensions

of the strings AC, BD are proportional to AB, A8, y8, By, Ay,
B8 respectively.

13. Four fine light rods are smoothly jointed at their extremities

to form a quadrilateral framework. The opposite joints are con-

nected by two fine light strings in a state of tension. Prove

that if the thrusts in two opposite rods are proportional to the

lengths of those rods, the other two rods must be parallel.

14. Four fine light rods are smoothly jointed at their extremities

to form a quadrilateral ABCD. The opposite joints are connected

by two fine light strings AC, BD in a state of tension. Prove

that if the diagonal BD bisects the diagonal AC, (i.) the thrusts

in the rods AB, BC are proportional to the lengths of those rods
;

and (ii.) the thrusts in the rods CD, DA are proportional to the

lengths of those rods.

Conversely, if the thrusts in the rods AB, BC are proportional
to the lengths of those rods, prove that (i.) DB bisects AC, and

(ii.) the thrusts in the rod CD, DA are proportional to the lengths
of those rods.



CHAPTER V.

FINE LIGHT STRINGS IN CONTACT WITH
SMOOTH SUKFACES.

48. Let a portion of a fine light string, in a state

of tension, rest in contact with a smooth surface into

which it does not penetrate. This portion takes up
the shape of the surface against which it rests, and

the surface, being smooth, presses it, at every point
where it touches it, in a direction perpendicular to

the tangent at that point, that is in the direction of

the normal at that point.

It is usual for the beginner to assume that under

these circumstances the tension of the string is the

same at every point. We offer here a proof of this

proposition by the graphical method.

49. Let the portion AB of the string HABK rest

against a smooth surface. Divide this portion up into

a number of parts in the points Pv P2 ,
P

3 ,
P

4
.

Let T, Tv T
2 ,

T
3 , T, T be the measures of the

tensions at the points A, P15
P

2 ,
P

3 ,
P

4 ,
B respectively.

Draw HAQj, Q.P.Q,, Q2
P

2Q3 , QS
P

3QV Q4
P

4Q5 , Q,BK
the tangents at A, Pv P2 ,

P
3 ,
P

4 ,
B respectively.

Consider the equilibrium of the portion APl
as a

rigid body. The external forces acting upon it are,
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the tension T in direction AH, the tension T^ in

direction P^, and the forces with which the surface

presses it outwards at every point. These pressures

together balance the first two forces and must therefore

be equivalent to a resultant pressure equal and opposite
to the resultant of the two forces T and Tr

FIG. 49. FIG. 49 a.

Hence a force diagram aOpl
can be constructed, in

which aO represents T
t Opl represents Tv and p^a

represents the resultant pressure of the surface upon
the portion of string APr

Similarly, if we consider the equilibrium of the

portion P^P^ we have the force diagram p-fip^ in

which Op2 represents T2 ,
and pzp represents the resultant

pressure of the surface upon the portion of string P^P^

Proceeding in this way, we have the force diagram
indicated above, in which Op3 , Op4 ,

Ob represent the

tensions at P3 ,
P

4,
B respectively; and p3p2 , P^pB , bp4

represent the resultant pressures of the surface upon
the portions of string P3

P
2 ,
P

4
P

3 ,
BP respectively.
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Now suppose the points Pv P
2 , P^ ... to be inde-

finitely increased in number and taken indefinitely

close together. Then the straight lines Oa, Op, Op2 ,

Op3 ,
... become indefinitely close together, and aplp2p3

...

becomes ultimately a continuous curve ab.

Now the pressure on any element P of the string is

represented by the little element of the curve ba at p.

But the pressure is normal at P, and therefore perpen-
dicular to the tension at P, which is represented by Op.

.'. the direction of the curve apb at p is perpendicular
to Op.

In other words, Op is the normal at any point p
of the curve apb.

.'. the curve apb must be a circle with centre 0.

.'. Op is constant for all positions of p and equal to

Oa or Ob.

In other words, the tension at any point P of the

string is the same as at A or B.

50. Resultant pressure between a fine light string,

in a state of tension, and a smooth peg, round ivhich

it passes.

Let the string ABC, in a state of tension, pass round

a smooth peg at B. The tension of the string is the

same at every point; let its measure be T.

Consider the equilibrium of the portion of string
HBK in the neighbourhood of the peg. The external

forces acting upon it are the tension T at H in the

direction HA, the tension T at K in direction KG,
and the forces with which the peg presses the string

at every point of contact. These pressures must

produce a resultant pressure equal and opposite to the

resultant of the first two forces.
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Hence a triangle of forces LMN can be constructed,

in which LM and MN are each of length T units, and

parallel to HA and KG respectively, and in which

NL represents the resultant pressure of the peg upon
the string. This is equally inclined to LM and MN,
and is therefore in the opposite direction to the internal

FIG. 50. FIG. 50 a.

bisector of the angle ABC. Also the line of action

of this pressure passes through the point of inter-

section of AH and CK.

The pressure of the string upon the peg is equal
and opposite to the pressure of the peg upon the

string, and is therefore in the direction of the bisector

of the angle ABC.
51. Ex. 1. A fine light string has. its extremities

attached to two masses, each weighing 5 pounds, and

passes over two small smooth pegs H, K. The peg K is

situated 7 inches farther from the ground than H,
and 24 inches horizontally to the right of H. Find the

resultant pressures of the string upon the pegs.
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In the position of equilibrium, the portion of the

string between H and K is straight, and the other two

portions hang vertically downwards. Also, the tension

of the string is everywhere 5 pounds' weight.

Having constructed the space diagram to scale, we
mark the three portions of the string with the letters

oa, ob, oc, as in the figure. Draw the straight line ab

bisecting the angle between the portions of the string

FIG. 51.

at H, and the straight line be bisecting the angle be-

tween the portions of the string at K.

Draw OA, of length 5 units, vertically downwards,
to represent the tension of the string oa. Through
and A draw straight lines OB, AB parallel to ob, ab

respectively. This gives the point B. Draw BO parallel

to be to meet AO produced in G. Then OABO (this

way round) and OBCO (this way round) are the tri-
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angles of forces for the portions of string in the

neighbourhood of H and K respectively.

On measurement we find that AB and BC are of

length 6 and 8 units respectively. Thus, the pressure

FIG. 51 a.

between the string and the peg H is 6 pounds' weight,
and the pressure between the string and the peg K is

8 pounds' weight.
Without drawing the lines ab and be, we can construct

the force diagram by describing a circle with centre
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and radius OA, and by drawing OB in the direction of

KH to meet this circle in B.

52. Ex. 2. A fine light string, 31 inches long, passes

through a small ring of mass 4 ounces, and has its

extremities fixed at two points 25 inches apart in the

same horizontal line. Find the magnitude of the

horizontal force which, applied to the ring, ivill cause

it to rest at a point 7 inches from the nearer end of
the string. Also determine the tension of the string.

FIG. 52.

Take A and B to represent the two given points 25

inches apart. In the position of equilibrium the two

portions of the string are straight, and, as the string

rests against the smooth surface of the ring, its tension

is the same on either side of the ring, and therefore

the same throughout. The position of the ring will be

at C, which is 7 inches from A and 24 "inches from B.

Having found the position of C, draw CD bisecting

the angle BCA.
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Consider the equilibrium of the portion of matter as

one rigid body contained within a closed curve drawn

round C. The external forces acting on this portion of

the system are its weight, which amounts in all to 4

ounces' weight, as the string itself is of no appreciable

weight, the equal tensions of the strings along CB and

CA, and the unknown horizontal force. The equal

K
FIG. 52 a.

tensions of the strings can be replaced by a single

force of unknown magnitude acting along CD. Thus

we have reduced the forces acting upon the portion of

the system under consideration to three forces acting

along known lines.

Draw HK vertically downwards, of length 4 units,

to represent the weight of the ring. Through H draw
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a straight line parallel to DC to meet the horizontal

through K in L. Through H and L draw straight lines

parallel to BC and CA respectively, to meet in M. Then

KL represents the horizontal force, and LM, MH each

represent the tension of the string.

On measuring the lines of the force diagram, we find

that the horizontal force is 2*19 ounces' weight, and

the tension of the string is 3'23 ounces' weight.

53. Ex. 3. A fine straight rod HK, of no appreciable

weight and of given length, has two pieces of fine light

string of given lengths attached to it in the manner
indicated in the diagram. One of these strings passes

through a small smooth ring L of no appreciable weight,

which is connected by means of another fine light string

JN
FIG. 53.

to a mass N of given weight. The other string is then

placed over a small smooth fixed peg M. Prove that,

in a position of equilibrium, the rod is either vertical

or horizontal, and show how to determine in each case

the tension of the string and the thrust in the rod.

In a position of equilibrium both strings are in a state

of tension, and hence the portions HL, LK, KM, MH
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are all straight ; also, the string supporting the mass N
hangs vertically below L.

As we are unable at the outset to draw accurately
a space diagram for the system in equilibrium, we
assume a position of equili-

brium, making no attempt to

construct the diagram to scale,

and endeavour to ascertain the

properties of the figure.

We will consider first the

equilibrium of the rod HK, the

strings HMK, HLK, and a por-
tion LX of the string LN, all

together as one rigid body. The

only forces acting externally

upon this portion of the system
are the pressure of the peg

upon the string at M and the

tension of the string LX at X.

be equal and in opposite directions along the same

straight line.

.'. ML is vertical and in the same straight line with LN.

As the strings HMK and HLK rest against smooth

surfaces at M and L respectively, their tensions are

in each case the same throughout. Now consider the

equilibrium of a portion of the system included within

a closed curve drawn round L. This shows at once

that the vertical through L bisects the angle HLK.

Similarly, considering the equilibrium of a portion of

the string in the neighbourhood of M, we see that the

pressure of the peg upon the string at M, already shown

to be vertical, must balance the two equal tensions of

D.S. F

FIG. 54.

These two forces must
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the string, and therefore the vertical through M bisects

the angle HMK.
Thus, the position of equilibrium is such that LM is

vertical, and bisects the angles between the strings at

L and M respectively.

I. The strings HM, MK may both be vertical. The

points H and K are then both in the line ML, and the

M strings HL, LK are also vertical.

This gives two positions of equili-

brium, namely, with H above Ky
or

with K above H.

The diagram in each case is readily

drawn as the lengths ^of the strings

HMK, HLK and of the rod are all

known.

II. If HM, MK are not vertical,

they are equally inclined to ML, and

\N +N the points H, K are on opposite sides

FIG. 55. FIG. 56.
of ML In thig cage> in the triangles

HML, KML, the side ML is common, and the angles

HML, HLM are respectively equal to the angles KML,
KLM.

:. the triangles HML, KML are equal in all respects.

This shows that the figure is symmetrical with respect

to the vertical LM, and hence that HK is horizontal.

The space diagram is now readily constructed to

scale
;
for the lines HM, MK are each half of the given

length of the string HMK, and the lines HL, LK are

each half of the given length of the string HLK.

Having constructed the space diagram to scale and

marked it with the letters a, b, ov o
2 ,

as indicated, we
draw AB to represent the given weight of the mass N.
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AOV JBOV A02 ,
B0

2
are then drawn parallel to the lines

aov bov ao
2 ,
bo

2 respectively, and joining the points O
l} 2

thus obtained, we have the complete force diagram.

Jf- K

FIG 57 a.

In the cases I., where the strings are all vertical, the

points Ov 2
coincide with the middle point of AB.

Therefore the thrust in the rod is zero, and the tension

of each string is half the weight of the mass.

54. Ex. 4. A fine light string, of given length, is

passed through a smooth ring, of no appreciable weight

or size, and is attached at its extremities to two given

points. A force, given in magnitude and direction,

is applied to the ring. It is required to find the

position of equilibrium and the tension of the string.

Here, at the outset, we are unable to construct the

space diagram, as we do not know the position of

equilibrium. We therefore assume a position of equili-

brium and represent it in a diagram without any

attempt at first to construct it to scale.
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Let AMB represent the string in the position of

equilibrium, A and B being the two fixed points and

M the position of the ring.

Let P be the measure of the force applied at M in

direction ML, and let CD be drawn P units of length
in the given direction of this force

;
thus ML and CD

are parallel.

FIG. 58. FIG. 58 a.

As the string, in passing through the ring, rests

against a smooth surface, its tension is the same on

one side of the ring as on the other, and therefore

its tension is the same throughout. Let T be the

measure of this tension.

Consider the equilibrium of the ring, together with

the portion HMK of the string in its immediate

neighbourhood, as one rigid body. The forces acting

externally upon this are, the tension T at H in

direction HA, the tension T at K in direction KB,
and the force P. Hence our force diagram for this

system will be a triangle CDN in which DN, NC are

parallel to MA, MB respectively, and each T units of

length. Hence CD must be equally inclined to NC
and DN, and therefore LM produced must bisect the
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angle AMB. This gives the following construction

for finding the position of M :

".F

j

IE

FIG. 59. FIG. 59 a,

Through B draw BE in the direction of CD. With

centre A, and radius representing the given length of

the string, describe a circle cutting BE in F. Let the

straight line which bisects BF at right angles meet

AF in M. Then M is the position of the ring.

The student will have no difficulty in proving that

AMB is of the proper length, and that the straight

line drawn through M in the direction of DC is the

bisector of the angle AMB.
Draw CN parallel to BM and DN parallel to MA, and

let CN and DN meet at N. Then, measuring either of the

two lines DN and CN, we have the tension of the string.

We must see that the point F is taken in BE, and

not EB produced. Also the string must evidently be

longer than AE\ this being so, we get one, and only

one, position of equilibrium.
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55. Ex. 5. To the extremities of a fine light string,

which passes round two small smooth pegs given in posi-

tion, are applied two given forces in given directions,

one at each end. To a point of the string between the

pegs is applied a third given force in a given direction.

It is required to find the position of equilibrium and

the pressures between the string and the pegs.

Without attempting at the outset to construct a

space diagram to scale, suppose the string takes up
the position HALBK, A and B being the two given

pegs.

FIG. 60.

7)

FIG. 60 a.

Let P and Q be the measures of the given forces applied

at H and K respectively, and R the measure of the

given force applied at L. The directions of AH and

BK are of course the given directions of P and Q,

but the directions of AL and EL are at present

unknown.

Since the peg A is smooth, the tension of the string

HAL is the same at every point, and therefore its
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measure is P. Similarly the measure of the tension

of the string LBK is Q at every point.

Hence the force diagram for the point L will be a

triangle GDN in which CD is R units of length in

the given direction of the force R
;
and DN, NG are

respectively P, Q units of length and parallel to LA, LB

respectively.

Also, if CE be drawn in the direction of KB and

equal to CN, and if DF be drawn in the direction of

AH and equal to DiV, then NF and EN will represent

the pressures of the string upon the pegs at A and B

respectively.

Hence we have the following construction : Draw

EG, CD, DF parallel to the directions of the given
forces Q, R, P and of lengths Q units, R units, P units

respectively. With centre C and radius CE describe

a circle, and with centre D and radius DF describe

another circle intersecting the first circle in N.

Draw AL and BL parallel to ND and GN respec-

tively. This gives the position of L, and the directions

of AH, BK are already known.

Then, measuring NF and EN, we have the pressures

at A and B respectively.

As the circles may intersect in two points, this ap-

parently gives two solutions, but the student will

readily see that if he takes the point of intersection

of the circles on the other side of CD, he will get an

inadmissible result.
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EXAMPLES V.

1 . One end B of a fine light cord is fixed
;
the cord passes over

a small smooth fixed peg A in the horizontal line through B, and

supports at its other end C a mass of weight P ;
find the magni-

tude and direction of the pressure on the peg.

2. A fine light string ACB, of length 14 inches, has its extremities

attached to two fixed points A and B, situated 10 inches apart
on a smooth horizontal table. To a point C of the string, 8

inches from A, is knotted another fine light string CD, which

passes over the smooth edge of the table and supports at its free

end a mass of 20 pounds. Find the tensions in AC and BC, sup-

posing that DC produced passes through the middle point of AB.

3. An endless fine light string, of length 3 feet, on which a

small heavy ring of weight W is capable of sliding freely, is sup-

ported on two small fixed pegs situated 1 foot apart in a horizontal

line. Find the pressure between the string and each peg.

4. A fine light string ABCD has one extremity A fixed, and

passes over two small smooth pegs at B and (7, supporting at

its free end D a mass of 10 pounds. If ABC is an equilateral

triangle, having the side AC vertical and A uppermost, determine

the pressure between the string and each peg.

5. A fine light string has one end attached to a fixed point A.

It passes over a small smooth peg B, situated 1 foot 4 inches to

the right and 1 foot above A, and supports at its other extremity
a mass of 25 pounds. Find the pressure between the string and

the peg.

6. A fine light string has one extremity attached to a fixed

point A, passes over a small smooth peg B, and supports at its

other extremity a mass of 20 pounds. The peg B is situated

5 inches to the left of A and 12 inches above it. Find the pressure

on the peg.

7. B and C are two smooth rings fixed in space at a distance

apart equal to 13 inches, B being 10 inches and C 15 inches above

the ground. A fine light string ABCD passes through the

rings, and supports at its extremities masses weighing 10 pounds
each. Find the pressures between the string and the rings.
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8. A fine light string, of length 64 inches, passes over two

small smooth pegs fixed 30 inches apart in a horizontal line.

Both extremities of the string are attached at the same point to

a mass of 20 pounds. Find the pressure between each peg and

the string.

9. A fine light string, 28 inches long, passes through a small

smooth ring, to which is attached a mass of 24 pounds, and has

its extremities fixed at two points situated 14 inches apart in

the same horizontal line. Find the magnitude of the horizontal

force which, applied to the ring, will cause it to rest at a point

13 inches from the nearer end of the string. Also determine

the tension of the string.

10. A fine light string, of length 25 inches, has its extremities

attached to two points, situated in a horizontal line 7 inches apart.

A small smooth ring, of mass 3 pounds, is capable of sliding freely

on the string. Find the tension of the string in the position of

equilibrium.

11. A fine light string, 31 inches long, passes through a small

ring of 4 ounces' weight, and has its extremities fixed at two points

25 inches apart in the same horizontal line. Find the tension of

the string in the position of equilibrium.

12. A fine light string, of length 15 inches, is passed through a

small smooth ring C of no appreciable weight, and is attached at

its extremities to two fixed points A and B. The point B is

situated 3 inches farther from the ground than A and 1 foot

horizontally to the right of A. If a mass of 12 pounds is con-

nected with the ring C by means of another fine light string,

find the position of equilibrium and the tension of the string.

13. A fine light string, of length 32 inches, is passed through a

small smooth ring of no appreciable weight, and is attached at its

extremities to two points A and B situated 24 inches apart. A force

of 16 pounds' weight is applied to the ring in a direction making
an angle of 53 with BA. Find the position of equilibrium and

the tension of the string.

14. A fine endless string, of length 20 inches, rests on three

smooth pegs A, B, C, the pegs B and C being situated in a horizontal

line 6 inches apart, and A 4 inches vertically over the middle point
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of BC. To a point D of the loop of string below BC is attached

a mass of 8 pounds. Find the pressures on the pegs and the

tension of the string.

15. A, B, C are three smooth pegs fixed in a vertical plane,

A being 3 feet vertically above the middle point of BC> which

is horizontal and 8 feet long. A string, 20 feet long, passes round

the three pegs, and has its extremities attached at the same point
to a mass of 12 pounds. Find the tension of the string and the

resultant pressures on the pegs.

16. A, B, C are three smooth pegs fixed in a vertical plane,

A being 3 feet vertically below B and 4 feet horizontally to the

right of C. A fine light string, 13 feet long, passes round the

three pegs, and has its extremities attached at the same point
to a mass of 12 pounds. Find the tension of the string and the

resultant pressure on each peg.

17. A fine light string OABO, 2 feet long, passes round two

smooth small pegs at A and B, situated 8 inches apart on a

smooth horizontal table. The two ends of the string are knotted

together at 0, 6 inches from A. In what direction must a hori-

zontal force of 16 pounds' weight be applied to the knot 0, in

order that the string may remain stretched without slipping over

the pegs ? If the force has this direction, find the tension of

the string and the pressures upon the pegs.

18. A fine light string ACB, of length 20 inches, has its ex-

tremities attached to two points A and B, situated 16 inches apart

in a horizontal line. To the middle point C of the string is

attached a small smooth ring of no appreciable weight. Another

string has one extremity attached at D, 21 inches vertically below

B, and passes through the ring, supporting at its other extremity

a mass of 51 pounds. Find the tensions of AC and BO.

19. A fine light string, passing over two smooth parallel bars

one foot apart in a horizontal plane, has two masses each weighing
25 pounds fastened to its extremities, and another mass weighing
14 pounds is attached to a point P of the string between the

bars
;

in the position of equilibrium find the depth of P below

the level of the bars
;

find also the magnitude of the pressure

upon each bar.
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20. A fine light string ABCD is attached at one extremity to

a fixed point A. It passes through a small smooth ring B, of

mass 1 pound, and over a smooth peg (7, and supports at its

extremity D a mass of 4 pounds. Find the pressure between the

string and the peg in the position of equilibrium.

21. A fine straight rod AB, of no appreciable weight and of

length 30 inches, has two pieces of fine string ACB and ADB, of

lengths 50 and 34 inches respectively, attached to it at A and B.

The shorter string passes through a small smooth ring, of no

appreciable weight, which is connected by another fine string

with a mass of 16 pounds. The longer string is placed over a

small smooth fixed peg. Show that, in the position of equilibrium,
the rod is either vertical or horizontal, and in each case determine

the tensions of the strings.

22. A, B, are three points in a vertical plane, A and C lying

on opposite sides of the vertical line through the highest point B.

A fine light string ADBCDE, having one end fixed at J., passes

in succession through a light smooth ring D, round pegs at B
and (7, again through the ring, and is attached to a heavy mass

at its free extremity E. Prove that, in the position of equilibrium,

the ring and the mass hang vertically below B.

23. A fine light string AXBC is attached at one extremity to

a fixed point A. It passes over a smooth peg B, and supports at

its extremity C a mass of given weight. Show how to determine

at what point X, between A and B, another mass of given weight
must be attached, in order that, in the position of equilibrium,

AX may be in a given direction. Show that there may be two

solutions, but that the length of XB is the same in both cases.



CHAPTER VI.

EQUILIBRIUM OF A PARTICLE RESTING IN CON-
TACT WITH A SMOOTH SURFACE OR CURVE.

56. Suppose that a particle, acted upon by a system
of forces, rests in contact with a smooth surface at P.

Then, in addition to the other forces that act upon it,

M

FIG. 61. FIG. 62.

there is the force R, with which the surface resists

any tendency that the particle may have to penetrate it.

If the surface is smooth it cannot resist any tendency
to slide over it

;
it can only press outwards in the

direction of the normal at P. If we assume that the

material of which the surface is composed is sufficiently

strong for all purposes, then there is no limit to the

magnitude of this force R. This force, which is called

the reaction of the surface, is a self-adjusting force,

that is, it will be of the magnitude required to pre-

serve equilibrium, if equilibrium is possible. Hence,
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for equilibrium, it is necessary and sufficient that the

resultant of all the other forces acting upon the particle

should be in the direction of the normal at P, and

inwards that is, towards the surface.

If, instead of the surface, we have a material plane
curve on which the particle can slide, as a bead threaded

on a wire, or a fine tube in which the particle is placed ;

and if the forces acting on the particle are all in the plane
of the curve, then the reaction of the curve may be

in either direction, inwards or outwards, and for equili-

brium it is only necessary that the resultant of all the

other forces acting upon the particle should be per-

pendicular to the tangent at P.

If we suppose applied to the particle a force R
identical with the reaction of the surface or curve, we

may suppose the latter removed altogether, and then

consider the particle as in equilibrium under the influ-

ence of the given system of forces that act upon it

together with the force R. Thus the consideration of

the equilibrium of the particle is the same as for a

particle free to move, with this difference, that there

are certain limitations upon the direction of the force R.

57. Equilibrium of a Heavy Particle on a Smooth
Inclined Plane.

A particle of given weight is placed on a smooth

plane inclined at a given angle to the horizon, and
is sustained by some force applied to it in some direc-

tion which is in a vertical plane with the line of

greatest slope. It is required to represent graphically
the different values of the sustaining force correspond-

ing to the different directions in which it may be



94 EQUILIBEIUM OF A HEAVY PARTICLE

applied, and to find in each case the pressure between

the particle and the plane.
Let be the position of the particle, AOB the line

of greatest slope making the given angle with the

horizontal AC. Suppose the particle is sustained by
a force whose measure is P applied in direction OH.
Let W be the measure of the weight of the particle,

and let it be represented by EF drawn vertically down-

wards W units of length.

K

FIG. 63.

The only effect of the presence of the inclined plane
is to produce a normal reaction outwards, of such

magnitude as to balance, if possible, the other two

forces acting on the particle. Let R be the measure

of the reaction of the plane, and let OK be the straight

line drawn from away from the plane, and in a

direction perpendicular to it. Then the two forces P
and W are in equilibrium with a force R, which may
be of any magnitude, but must be in the direction OK.
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Draw FD a straight line of unlimited length from

F in the direction OK. The triangle of forces for the

particle at will be a triangle FGE, in which G is

some point in FD, and GE is parallel to OH, and of

length P units.

Draw EL in the direction FD. Then we see that,

as G may have any position in FD, GE may have any
direction between FE and LE. Hence, drawing ON
vertically upwards, and producing KO to N, we see

that the sustaining force may be applied in any direc-

tion between OM and ON. The smallest value of P
is obtained by drawing EG perpendicular to FD. Then

G^E is parallel to AB. Hence, if the sustaining force

is to be as small as possible, it must be applied straight

up the plane, and its measure is Pv where G^E is P
l

units of length.

If the direction of the sustaining force be some

given straight line OH between OM and ON, we have

merely to draw EG parallel to HO to meet FD in G.

Then, measuring FG and GE, we have the measures of

the reaction of the plane, and of the sustaining force

respectively.

If the measure of the sustaining force be some given
number P greater than Pv we describe a circle with

centre E and radius P
l
units of length, and this will

cut FD in two points, giving two directions for the

sustaining force equally inclined to OB and on opposite

sides of it.

We see from the force diagram, that if the sustaining

force be applied in any direction between OB and OM,
then its value will be less than that of the weight of

the particle.
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58. Ex. 1. A fine straight smooth rod AB, of length

'2 feet 6 inches, is fixed with the end A I foot 6 inches

farther from the ground than the end B. A small

smooth ring P, of no appreciable weight, is capable of

sliding on the rod, and is connected, by a fine light

string 17 inches long, with a point C fixed 10 inches

vertically below A. Another fine light string has one

end attached to the ring P, and the other end to a mass

D o/lOO pounds. Find the tension of the string PC,
and the pressure between the ring and the rod in the

position of equilibrium.

Moo
FIG. 64.

In the position of equilibrium, the two strings are

straight, and the string PD is vertically downwards.

Having constructed the space diagram to scale, draw

HK vertically downwards of length 100 units, to re-
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present the tension of the string PD. Through K
draw KL perpendicular to AB, to meet the straight

line drawn through H parallel to CP in L. Then

HKLH (this way round) is the triangle of forces for

the ring.

100

FIG. 64 a.

On measuring, we find that KL and LH are of lengths

112 and 68 units respectively. Therefore the pressure

between the ring and the rod is equal to the weight
of 112 pounds, and the tension of the string PC to

the weight of 68 pounds.
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59. Ex. 2. A fine straight smooth rod AB is fixed in

a given position inclined to the vertical with the end A
uppermost A small smooth ring P, of no appreciable

weight, is capable of sliding on the rod; and a fine

light string having one end fixed at the point C, situated

at a given distance vertically below A, passes through

the ring and supports at its other extremity D a mass

of given weight. Prove that in the position of equi-

librium AC=GP, and show how to find the pressure

between the ring and the rod.

II

FIG. 65 a.

In the position of equilibrium, the tension of the

string is at every point equal to the given weight of

the mass, the two portions are straight, and the part
PD is vertically downwards; but at present we do not

know the position of P.

Draw HK vertically downwards of such length as to

represent the weight of the mass. With centre H and
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radius HK, describe a circle meeting the straight line

drawn through K perpendicular to AB in L.

Then HKLH (this way round) is the triangle of

forces for the system consisting of the ring and of the

portion of string in its immediate neighbourhood.

Hence, to find the position of P, we draw CP parallel

to HL to meet AB in P.

As HK, HL are equally inclined to the straight line

LK which is perpendicular to AB, they are also equally
inclined to AB.

.'. AC, CP, which are respectively parallel to HK, HL,
are also equally inclined to AB.

.'. AC=CP.
Also, measuring KL, we have the pressure between

the rod and the ring.

60. Ex. 3. AB is a smooth straight wire fixed in a

given inclined position with B uppermost. A small

heavy ring of given weight, capable of sliding freely

on the wire, is connected with B by a fine string of

given length, which passes through a second small smooth

ring of given weight, hanging freely on the string. It

is required to find the tension of the string, and the

pressure between the ring and the wire.

Assume a position of equilibrium BCD. Let Wv Wz

be the measures of the weights of the rings, and R the

reaction of the wire, which is perpendicular to AB.
The tension of the string is the same throughout; let

its measure be T.

Take EF, FG vertically downwards, of length Wlt
W2

units respectively. Then, if EFK be the triangle of

forces for the point C, K will lie on the straight line

which bisects EF at right angles. Also KFO will be
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the triangle of forces for the point D, so that GK is

perpendicular to AS.

Hence, having taken the points E, F, G, we proceed

to complete the force diagram by drawing GH per-

pendicular to BA, meeting in K the line bisecting EF
at right angles. Then, measuring KE and GK, we
have the tension of the string and the reaction of the

wire.

FIG. 66. FIG. 66 a.

To finish the space diagram, we draw BL parallel

to EK, and of such length as to represent the given

length of the string; then we draw LD parallel to GF
to meet AB in D, and DC parallel to KF to meet LB
in G. Thus we have the positions of the rings and

of the string.

61. Ex. 4. A smooth circular hoop is fixed in a

vertical plane. Two small smooth rings of given weight,

each capable of sliding freely on the hoop, are connected

by a fine string of given length less than the diameter of

the hoop. It is required to find the position of equili-

brium in which the string is tight, the tension of the

string, and the pressures between the rings and the hoop.
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Suppose P and Q are the positk/n
vof the rings in

equilibrium, the centre of thfe "hopp. ^
to represent TF2 ,

TF
1}

the weights'' of 'tbte? ri

respectively. Let ^
1?

i2
2
be the reactions of the hoop

at P and Q respectively. These will be in directions

OP, OQ respectively, and therefore equally inclined to

the string.

A

FIG. 67. FIG. 67 a.

The force diagram for the point Q will be a triangle

ABEA (this way round), in which BE is parallel to

QP and represents T the tension of the string, and

EA is parallel to OQ and represents R2 .

Hence, considering the equilibrium of the ring P, we

see that CE must be parallel to OP and represent Rr

Hence EB bisects the angle A EC.
Now the magnitude of the angle POQ can be found,

as it is subtended by a chord of given, length at the

centre of a given circle. Also the angle CEA is the

supplement of this angle. Hence we have the follow-

ing construction for the force diagram : Having drawn

AB, BC, describe through A, C the circle ADCE such

that the segment ADC contains an angle equal to the
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subttmde>i rby- the string at the centre of the

Eind *]) the. middle point of the arc ADC, and

lei? DB meet the circumference again in E.

To construct the space diagram, we then draw OP
and OQ parallel to CE and EA respectively; then we
have the positions of the rings P and Q in equilibrium.

EXAMPLES VI.

1. AB is a fixed smooth vertical rod on which a small smooth

ring, of mass 3 pounds, is capable of sliding. The ring is supported

by a fine light string, of length 10 inches, attached to a fixed

point 0. If is at a distance of 8 inches from the rod AS, find

the tension of the string and the pressure between the rod and

the ring.

2. A is the lowest point of a smooth circular wire fixed in a

vertical plane. A small smooth bead, of mass 10 ounces, rests

on the wire at P, being supported by a horizontal force F. Find

the magnitude of F and the pressure of the wire, if the arc AP
subtends an angle of 60 at the centre.

3. A small heavy bead, of mass 20 ounces, is capable of sliding

freely on a smooth fixed vertical circular hoop, of radius 5 inches.

It is supported by a fine light string, of length 9 inches, attaching

it to the highest point of the hoop. Find the tension of the

string and the pressure between the bead and the hoop.

4. ABC is a smooth wire fixed with BA vertically upwards,
the portions AB, BC being straight, and inclined at an angle

of 120. A small smooth ring, of mass 2 pounds, rests upon the

wire at P in BC, where BP=BA, and is kept from falling by
a fine string connecting it with the point A. Find the tension

of the string and the pressure between the ring and the wire.

5. A small ring C rests upon a fixed smooth horizontal rod

AB, whose length is 13 feet. To the ring are attached two strings,

one of which is 7 feet long and has its other extremity fixed at

A, while the other passes over a smooth hook, situated 8 feet
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below B, and supports a mass of 20 pounds. Find the tension

of the string AC.

6. A small ring of weight W, which can move without friction

on a circular wire fixed in a vertical plane, is in equilibrium at

a point P, on the lower half of the wire, under the action of a

force R in the direction of the tangent at P to the wire. If

the pressure of the ring on the wire is equal to \W, find the

magnitude and direction of the force R.

7. A small heavy ring of mass 10 pounds, which can slide

freely upon a smooth thin rod AB, is attached to the end A of

the rod by a fine string. If the rod is held, with A uppermost, in

a position inclined at an angle of 40 to the vertical, find the

tension of the string and the pressure between the rod and the

ring.

8. Find the force necessary to sustain a particle of mass 5

pounds placed on a smooth plane inclined at an angle of 20 to

the horizontal

(a) when the force is horizontal ;

(6) when it acts along the inclined plane.

9. Find the greatest vertical height through which a force

2 pounds' weight can raise a particle of mass 6 pounds by drawing
it up a smooth sloping plank 20 feet in length.

10. Find what force, acting horizontally, will support a mass

of 30 pounds resting on a smooth inclined plane, the base of the

plane being three times its height; also find the pressure on

the plane.

11. A small smooth ring P rests upon a fixed smooth horizontal

rod AB of length ] 4 feet. To the ring are attached two strings,

one of which is 10 feet long and has its other- extremity fixed at

C, situated 8 feet vertically below A
;
the other passes over a small

smooth hook, situated 6 feet vertically below B, and supports a

mass of 30 pounds. Find the tension of the string PC.

12. A and B are the highest and lowest points respectively

of a smooth thin circular wire, of radius 5 inches, fixed in a

vertical plane. A small bead P, weighing 5 ounces, is threaded
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on the wire, and is attached to A by a fine string of length 8

inches. A second string is attached to the bead and passes over

a small smooth peg at B, supporting at its other extremity another

bead weighing 3 ounces. Find the tension of A P.

13. A smooth straight rod AB is fixed in a position inclined

at an angle of 60 with the vertical, the end B being uppermost.
A small smooth ring (7, of mass 2 pounds, is threaded upon the

wire, and is connected with B by a fine string ;
a second string

is attached to the ring, and passes over a small smooth peg at

D fixed vertically below A, supporting at its free end a mass of

10 pounds. If AC=AD, find the tension of the string BC and

the pressure between the ring and the wire.

14. A smooth straight rod AB is fixed in a position making
an angle of 60 with the vertical. A fine light string, one end

of which is attached to A, the highest point of the rod, passes

through a small smooth ring z), to which a mass of 30 pounds
is attached, and the other end of the string is attached to a small

smooth ring C capable of sliding freely along the rod. Find

the angle ADC and the tension of the string in the position of

equilibrium, the weights of the rings C and D being inappreciable.

Find also the distance of C from A in the position of equilibrium,

given that the length of the string is 6 inches.

15. ACB is a smooth thin wire in the form of a semicircle of

radius 5 feet, and it is fixed in a vertical plane with AB hori-

zontal and uppermost. A small heavy bead (7, of mass 20 ounces,

is threaded on the wire and attached to A by means of a fine light

string, of length 6 feet. Find the tension of the string and the

pressure between the bead and the wire.

16. ACB is a smooth thin wire in the form of a semicircle,

and it is fixed in a vertical plane with AB horizontal and the

curve uppermost. A small smooth bead 0, of mass 3 ounces, is

threaded on the wire, and is attached to A by means of a fine

light string equal in length to the radius. Another fine string

is attached to the bead and passes through a smooth hook fixed

at B, supporting at its other end a mass of 12 ounces. Find the

tension of the string AC.
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17. A small ring P, of no appreciable weigEt, is capable of

sliding freely on a smooth straight piece of stiff wire AB, fixed

in a position inclined 40 to the horizontal with A uppermost.
To a fixed point 0, situated 1 foot vertically below A, is attached

a fine light string which passes through the ring and supports
at its free extremity a mass of 5 pounds. Find the length of

OP in the position of equilibrium, and the pressure between the

ring and the wire.

18. ABO is a smooth fixed wire, the portions AB, BC being

straight, and B situated at a higher level than A and C. A
small smooth ring of given weight, capable of sliding freely on

AB, is connected by a fine light string of given length with a

small smooth ring of given weight, capable of sliding freely on

BC. Show how to obtain the position of equilibrium, the tension

of the string, and the pressures between the wire and the rings.

19. Show that the weight of the greatest mass, which a given
force can sustain on a smooth inclined plane of given height, is

proportional to the length of the plane.

20. Two smooth inclined planes, of equal height, are placed

back to back. Two particles, one on each plane, are connected

by a fine light string which passes over the common vertex of

the planes. Prove that, if the system is in equilibrium, the

weights of the particles are proportional to the lengths of the

planes on which they respectively rest.



CHAPTEK VII.

EQUILIBRIUM OF A PARTICLE IN CONTACT WITH
A ROUGH SURFACE OR CURVE.

62. It is assumed that the student is -familiar with

the laws of friction, as set forth, for instance, in Loney's
Elements of Statics.

The reaction of a rough curve or surface is not, in

general, normal. It may make any angle, not greater
than the angle of friction, with the normal on either side.

FIG. FIG. 69.

Suppose a particle rests, in equilibrium, in contact with

a rough surface at P. Draw PN, the normal at P,

away from the surface, and make angle NPH = angle
NPK=the angle of friction= X. Then the total resist-

ance of the surface, though unrestricted in magnitude
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must be in a direction intermediate between PH and

PK. If it has either of these two limiting directions,

the particle is just on the point of slipping.

63. Equilibrium of a Heavy Particle on a Rough
Inclined Plane.

A particle of given weight is placed on a rough plane,
inclined at a given angle to the horizon, and is sustained

by some force applied to it in some direction which is

in a vertical plane with the line of greatest slope. The

angle of friction between the particle and the plane

being given, it is required to consider the conditions

of equilibrium.

B

K "--..

A

FIG. 70.

Let be the position of the particle, AOB the line

of greatest slope making the given angle with the

horizontal AC. Suppose the particle is sustained by
a force, whose measure is P, applied in direction OL.

Let W be the measure of the weight of the particle

and let it be represented by EF drawn vertically down
wards W units of length.
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Let ON be the straight line drawn from away from

the plane and in a direction perpendicular to it. Make

angle NOH= angle NOK= angle of friction = X; so that

OH, OK are within the angles BON, AON respectively.

Then the resistance of the plane must be in some direc-

tion intermediate between OH and OK, and may be of

any magnitude.
Draw FS, FT, straight lines of unlimited length, from F

in the directions of OH, OK respectively. The triangle
of forces for the particle at will be a triangle FGE,
in which G is some point within the angle SFT, and

GE is parallel to OL and of length P units. If G lies

in the line FS, the particle is only just prevented from

slipping down the plane, if in the line FT, it is on the

point of slipping up the plane.

If the direction of the sustaining force be some given

straight line OL, we draw EGft^ parallel to LO to

meet FS and FT in G and G
2 respectively. Measure

G
l
E

t
G

2E', let them be respectively Pv P
2

units of

length. Then, for equilibrium, P must lie between P
1

and P
2

.

Draw Egv Eg2 perpendiculars to FS, FT respectively.

Then g^E represents in magnitude and direction the

smallest force that can prevent the particle from slipping

down the plane, and g2
E represents the smallest force

necessary to drag the particle up the plane. Now
OH, OK make angles X with the normal to the plane,

therefore g^E, g2E, which are perpendicular respectively

to OH, OK, must make angles X with the plane itself.

Thus, to prevent the particle from slipping down the

plane, the end is achieved with the least exertion by

applying the force in a direction making the angle of
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friction with the plane, measured downwards from

OB
;
and to drag the particle up the plane, the end is

achieved with the least exertion by applying the force

in a direction making the angle of friction with the

plane, measured upwards from OB.

FIG. 71. FIG. 72.

The left-hand figure shows the easiest way of pre-

venting the particle from slipping down ;
the right-hand

figure shows the easiest way of dragging the particle up.

In the space diagram, draw OM vertically upwards,
and produce HO and KO to H' and K' respectively.

K'

\H'

C
FIG. 73.

Then an examination of the force diagram will show the

student that, for equilibrium, the force P must be applied
between the directions OH' and OM, and that no force,
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however great, applied between the directions OH' and

OK' can drag the body up the plane.

64. Throughout the above piece of work we have taken

the inclination of the plane as greater than the angle
of friction. The consideration of the case in which the

inclination of the plane is less than the angle of friction

is left as an exercise for the student. He will see that,

in this case, E lies within the angle TFS, and equilibrium
is possible for all directions of P. It will be seen that

E

'H'

FIG. 74. FIG. 74 a.

no force applied between the directions OH' and OK' can

move the particle. To move it up the plane, the force

must be applied between the directions OK' and OM\
to move it down, between the directions OH' and OM.

FIG. 75. FIG. 76.

Also the left-hand figure shows the easiest way of

moving the particle down the plane; the right-hand

figure the easiest way of moving it up.
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As E lies within the angle TFS, the particle will rest

in equilibrium if P vanishes; then the total resistance

of the plane is represented by FE, i.e. the resistance

is equal and opposite to the weight of the particle.

If the inclination of the plane is equal to the angle
of friction, FS coincides with FE. In this case, if P
vanishes, the particle is just on the point of 'slipping

down the plane.

Conversely, if the particle is just on the point of

slipping down the plane under the action of its weight
and the resistance of the plane only, the angle of in-

clination of the plane to the horizon is equal to the

angle of friction. This gives a method for determining
the angle of friction experimentally.

65. It is required to find at what point, or points,

of a given rough curve, fixed in a vertical plane, a

particle of given weight may rest in limiting equilibrium,

being supported by a given force applied to it in a

given direction.

FIG. 77.

Draw AB, BC to represent in magnitude and direc-

tion the given sustaining force and the weight of the

particle respectively. Then CA must represent the
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total resistance of the curve, and, as the equilibrium is

limiting, CA must make with the normal to the curve

an angle equal to the angle of friction. Hence draw

CN and CM, making angles equal to the angle of friction

on either side of CA. Then, to find the position of

the particle in limiting equilibrium, we must find what

point, or points, of the curve have their normals in

directions CM or CN.

66. Ex. 1. A particle, of mass 16 ounces, rests on a

rough plane inclined at an angle of 30 to the horizon.

.E

JV

\16

A

FIG. 78.

F

If a force equal to the weight of 2 ounces, acting up
and parallel to the plane, is just sufficient to prevent the
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particle from slipping down, find the force acting in

the same direction, which will cause the particle to be

on the point of moving up the plane.

Draw EF vertically downwards 16 units of length
to represent the weight of the particle. Draw EA so

that the angle FEA is 60
;
then AE is parallel to the

line of greatest slope on the inclined plane. Take S
in AE so that SE is of length 2 units, and join F8.

Draw FN perpendicular to AE. Then angle NFS is

the angle of friction. Make angle NFT equal to angle

NFS, and let FT meet EA in T. Then TE represents
the force required.

We find that TE is 14 units of length; therefore the

force required is the weight of 14 ounces.

67. Ex. 2. A particle A, of given weight, is placed

upon a given rough inclined plane AD. It is required
to determine at what different points of the plane it can

be supported by a fine light string ABC, of unlimited

length, which passes over a small smooth peg B, situated

in a given position, and supports at its other extremity
another particle C of given weight. The plane of BAD
is vertical, and the line AD a line of greatest slope of
the inclined plane.
The triangle of forces for the particle A will be

OHPO (this way round), in which OH is vertically

downwards and represents the weight of the particle

A, PO is parallel to AB, and represents' the weight of

the particle C, and HP represents the total resistance

of the plane.

Having drawn OH, the point P lies on the circumfer-

ence of a circle having its centre at 0, and its radius of

such length as to represent the weight of the particle C.

D.S. H
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Through draw SOT parallel to AD, to meet in

S and T straight lines drawn through H so as to be

equally inclined to ST, and to contain an angle equal
to twice the angle of friction. Then, for all possible

/" //i\x
// \

/' / a \

/
x' N

X M

D
FIG. 79.

positions of equilibrium, the point P must lie within

the angle SHT. Also, as B is situated above the plane,

the point P must lie below the line /SOI
7
.

S

Hence all possible positions of P are confined to

those portions of the circumference of the circle which

are contained within the triangle SHT.
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In the case considered in the accompanying diagram,
the only portions of the circumference of the circle

contained within the triangle SHT are the arcs Id, mn.

Draw EL, BM, BN parallel to 01, Om, On respectively,

to meet AD in L, M, N respectively. Then equilibrium
is possible if A lies anywhere between M and N, or

anywhere below L.

The student will have no difficulty in interpreting

any other case which may occur.

68. Ex. 3. Two equal heavy particles, on two equally

rough inclined planes of the same height placed back

to back, are connected by a fine light string which

passes over the smooth top edge of the planes; show

that, if the particles are on the point of moving, the

difference of the inclination of the planes is double the

angle of friction.

FIG. 80. FIG. 80 a.

Let P and Q be the particles, each of weight W, rest-

ing on the planes HJ, JK respectively, and just on the

point of slipping in the direction HJK. Let T be the

measure of the tension of the string.

Take AB vertically downwards to represent W, and

let BM, BN, parallel to HJ, KJ respectively, be each



116 PARTICLE ON A ROUGH SURFACE.

of length T units. Then MA and NA represent the re-

sistances of the planes at P and Q respectively. Hence

NA must be inclined to the normal at Q at an angle X

measured upwards from the outward normal, and MA
must make angle X with the normal at P measured

downwards, X being the angle of friction.

Draw MO, NO perpendiculars to BM, BN respectively.

Then the angles OMA, ONA each equal X. Hence the

circle on OB as diameter passes through M, N, A.

Since BM=BN, the arc Jf=arc BN,

. . arcMA arc NA = twice arcA 0.

.'. angleABM- angleABN= 2X,

i.e., the difference of the inclination of the planes to

the vertical = 2X.

EXAMPLES VII.

1. A particle, of mass 10 ounces, rests on a rough horizontal

plane, the angle of friction between the particle and the plane

being 25. Find

(i.) the least horizontal force which will move the particle,

and determine the total resistance when this force is

applied ;

(ii.) the least force which, acting in an upward direction at an

angle of 15 with the horizontal, will move the particle,

and determine the total resistance
;

(iii.) the magnitude and direction of the total resistance, when

a force of 4 ounces' weight is applied in an upward
direction making an angle of 20 with the horizontal ;

(iv.) the magnitude and direction of the least force necessary

to move the particle.
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2. A particle, of mass 10 ounces, rests on a rough plane inclined

at an angle of 35 to the vertical, the angle of friction between

the particle and the plane being 25. Find

(i.) the least horizontal force which will move the particle

up the plane ;

(ii.) the least horizontal force which will prevent the particle

from slipping down the plane ;

(iii.) the magnitude and direction of the least force necessary

to move the particle up the plane ;

(iv.) the magnitude and direction of the least force necessary

to prevent the particle from slipping down the plane.

3. A particle, of mass 10 ounces, rests on a rough plane inclined

at an angle of 15 to the horizontal, the angle of friction between

the particle and the plane being 25. Find

(i.) the least force which will produce motion when acting

up the plane ;

(ii.) the least force which will produce motion when acting

down the plane ;

(iii.) the magnitude arid direction of the least force necessary
to move the particle up the plane ;

(iv.) the magnitude and direction of the least force necessary

to move the particle down the plane.

4. A particle, of mass 19 ounces, is placed on a rough plane
of height 5 feet and length 13 feet, the coefficient of friction

being ^ ;
find the magnitude of the horizontal force which will

just suffice to push the particle up the plane.

What is the magnitude of the horizontal force which will just
suffice to drag the particle down ?

5. A particle, of mass 3 pounds, is just supported on a rough
inclined plane, whose height is three-fifths of its length, being
acted upon by no forces other than its weight and the resistance

of the plane. Find the coefficient of friction between the particle

and the plane, and determine the magnitude of the force which,

acting parallel to the plane, will be just on the point of moving
the particle up the plane. Find also the magnitude and direction

of the least force necessary to move the particle up the plane.
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6. A is the lowest point of a rough circular hoop fixed in a

vertical plane. A small ring, of mass 2 pounds, is threaded on

the hoop at P, where the arc AP subtends 50 at the centre of

the hoop. Find the magnitude of the smallest horizontal force

which will support the ring, the angle of friction between the

ring and the hoop being 20.

7. A particle, of weight JF, is sustained in limiting equilibrium
on a rough circular hoop, fixed in a vertical plane, by a force

TT W acting at an angle of 60 with the vertical and upwards. The

angle of friction between the particle and the hoop being 20,
find the positions of limiting equilibrium.

8. A ring P, of inappreciable weight, is capable of sliding on

a rough straight piece of wire A CB, which is fixed in a position

inclined at an angle of 65 to the vertical. A fine light string

has one extremity attached to the ring P, passes through a

small smooth ring D, fixed at a distance of 10 inches vertically

below (7, and supports at its free end a mass of weight W. If

the coefficient of friction between the ring and the wire is f,
show

that there is a portion of wire, of length about 7j inches, at

any point of which the ring can rest in equilibrium, and that

beyond either end of this portion equilibrium is impossible.

9. A body is placed on a rough inclined plane. Prove that

the force which must be applied to it in a fixed direction, in

order to just prevent it from slipping doivn, is the same as if

the plane were made smooth and its inclination to the horizon

were decreased by the angle of friction.

10. A heavy body is supported on a rough plane inclined at

an angle 2X to the vertical, A being the angle of friction. It is

just on the point of moving up the plane when acted upon by
a force parallel to the plane. Show that the applied force must

be equal to the weight of the body.

11. A particle is supported on a rough inclined plane by a

force equal to the weight of the particle. Show that the force

must be applied in some direction within a fixed angle equal to

four times the angle of friction.
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12. A particle, placed on a rough inclined plane, is on the

point of slipping down the plane, being acted upon by no force

other than its weight and the resistance of the plane. Show
that the least force which, acting parallel to the plane, will move
it up the plane, is twice as great as the force which would support

it, if the plane were smooth. Prove also, that the total resistance

of the plane, in the first case, is equal to the weight of the particle.

13. A particle, of weight TF, is supported on a rough inclined

plane by a force acting up the plane. It is on the point of moving

up the plane when the force has the value P
1}
and of moving down

the plane when the force has the value P2 . Show that a force

^(P1 +P2\ acting up the plane, would support the same particle

on a smooth plane of the same inclination.

14. A heavy particle is placed on a rough horizontal plane,

the angle of friction between the particle and the plane being A.

When the particle is on the point of moving, under the influence

of a horizontal force, the total resistance of the plane is of magni-
tude R. Show that the force, which, applied at an angle 3A. with

the downward vertical, is just sufficient to move the particle, is

of magnitude %R.

15. Show how to determine all possible positions of equili-

brium of a heavy bead on a rough circular wire, which is fixed

in a vertical plane.

16. A small bead, of no appreciable weight, is capable of moving
on a circular wire, fixed in a vertical plane. A fine light string,

attached at one extremity to the bead, passes over a small smooth

peg, situated at a point on the wire, and supports at its other

extremity a heavy body. Show that the bead can rest in equili-

brium at any point of a particular arc, which subtends, at the

centre of the wire, an angle equal to four times the angle of

friction.

17. The triangle ABC, right-angled at (7, is the vertical section

o a rough inclined plane. When the plane is placed with AC
horizontal and BC vertical, a certain force of unknown magnitude

X, acting parallel to the plane, can just move a mass of given

weight Wl up the plane ;
when the plane is placed with BC hori-
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zontal and AC vertical, the same force X, acting parallel to the

plane, can just prevent a mass of given weight W,2 from moving
down the plane. Prove the following construction for determining
the angle of friction, which is the same for both masses, and
the value of X \

Take LH and LK at right angles, to represent Wl
and W2

respectively, and make angle KLM equal to the angle BAG, so

that LM meets HK in M. Draw LN perpendicular to HK. Then
LM represents X, and MLN is the angle of friction.

18. Prove the following particular cases of the preceding

example :

(i.) If W
1 : Wz=AC:BC, the plane is smooth.

(ii.) If Wl : W2
= BC : AC, the total resistance of the plane, in

both positions, and the force X have the same magnitude ;

also, half of the angle of friction is equal to the difference

between 45 and the angle BAG.

(iii.) If AO=BOj then, in turning the plane round, the total

resistance is changed in the ratio W
1

: TF2 .

(iv.) If W
lt
W

2 and X are all known, while the inclination of the

plane and the coefficient of friction are to be determined,
there may be two planes of different inclinations, but

of the same coefficient of friction, satisfying the given
conditions.

19. The triangle ABC, right-angled at (7, is the vertical section

of a rough inclined plane. When the plane is placed with AC
horizontal and BC vertical, a given force P, acting parallel to

the plane, can just move a mass of unknown weight W up the

plane; when the plane is placed with BC horizontal and AC
vertical, another given force Q, acting parallel to the plane, can

just prevent the same mass from slipping doion the plane.
Prove the following construction for determining the weight
of the mass and the angle of friction between the mass and the

plane :

Draw LH and LK at right angles, to represent P and Q respec-

tively, and make angle KLM equal to the angle BAG, so that

LM meets the circle HLK in M. Draw the diameter LN of this
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circle. Then LM represents JF, and the angle NLM is the angle
of friction.

20. Prove the following particular cases of the preceding

example :

(i.) If P : Q=BC : AC, then the plane is smooth, and, in turning
it round, the total resistance is changed from Q to P.

(ii.) If P\Q=AC:BC, then, in turning the plane round, the

total resistance is changed from P to Q ; also, half of

the angle of friction is equal to the difference between

45 and the angle BAG.

(iii.) If P, Q and W are all known, while the inclination of the

plane and the coefficient of friction are to be determined,
there may be two planes of different inclinations, but

of the same coefficient of friction, satisfying the given
conditions.



CHAPTER VIII.

TWO FOKCES WHOSE LINES OF ACTION DO NOT
INTERSECT AT AN ACCESSIBLE POINT.

69. To find the resultant of two given^ forces, when

the point of intersection of their lines of action is

inaccessible.

A

M

FIG. 81. FIG. 81 a.

Let two forces, whose measures are P and Q, act along

two given lines. Draw AB of length P units in the

direction of the force P, and BC of length Q units in

the direction of the force Q. Then AC represents the

resultant in magnitude and direction. If AC is found

to contain R units of length, R is the measure of the

resultant. We have to find its line of action.
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Take any two points, M and N, in the lines of action

of P and Q respectively. Draw BO parallel to MN, and,

taking any point in BO, join A, and C, 0. Draw
ML and NL parallel to AO and OC respectively, to meet

in L. Then we shall show that L is a point in the

line of action of the resultant.

The force P can be replaced by two forces represented

by AO, OB acting in the lines ML, NM respectively;

and the force Q can be replaced by two forces re-

presented by BO, OC acting in the lines MN, NL
respectively. Let P and Q be replaced by these pairs

of components. Then the two forces represented by
OB and BO acting in the line MN balance one another,

having no effect on the body as a whole, and may
therefore be removed.

Hence the two given forces have the same resultant

as forces represented by AO, 00 acting in the lines

ML, NL respectively.

Hence a straight line drawn through L parallel to

AC is the line of action of the resultant, and the measure

of the resultant is R.

The correspondence between the two figures will be

made clearer if we use the notation suggested in Art. 4.

The two forces P and Q are represented by AB and BO
respectively; we therefore denote their lines of action

by ab and be respectively, placing one of the small letters

on each side of the line indicated. The straight line MN,
connecting a point in ab with a point in be, is denoted

by ob, and the line OB of the force diagram is parallel

to it. Through the intersection of ab and bo is drawn

ao parallel to AO, and through the intersection of be

and bo is drawn oc parallel to OC. The intersection of
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oc and ao gives us a point in ac, which is the line of

action of the resultant represented by AC.

The above method is, of course, applicable to the case

in which the lines be and db intersect at an accessible

point. We know that the line of action of the resultant

passes through that point. It can be proved geometri-

cally that the line ac passes through the point of inter-

section of db and be.

70. Parallel Forces.

The construction for the resultant of two parallel

forces is a particular case of the above.

Case I. Let the two forces P and Q be parallel and

in the same direction. Making the construction of the

preceding article, we see that the resultant is equal to

the sum of the forces, and is in the same direction

FIG. 82 a.

rR C
FIG. 82.

as each of its components. Also, if the line of action

of the resultant meets MN in K, we have

KN
^

KL
' KN~BA '

OB~BA~ P'

.'. the point K divides MN internally in the inverse

ratio of P to Q. If we make use of this result, we can
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dispense with the force diagram altogether, or we may
use it to obtain the following more simple construction :

Join A to any point N in the line be. Draw CM
parallel to AN to meet the line ab in M. Draw BK
parallel to AN to meet MN in K. Then K is a point
in the line of action of the resultant.

Case II. Let the two forces P and Q be parallel and

in opposite directions.

FIG. 84 a.

Making the same construction as before, we see

that the resultant is equal to the difference of the two

given forces, and acts in the direction of the greater.

(In the figure we have taken P > Q.)
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Also, if the line of action of the resultant meets NM
produced in K, we have

Mlf_MK KL_OB BC_1W_Q
KN~KL

'

KN~ BA' OB~BA~ P'

.". the point K divides MN externally in the inverse

ratio of P to Q.

We see that the above construction fails if P is equal

and opposite to Q. In that case C coincides with A,
and the straight lines oa, oc become parallel, so that

there is no point L at a finite distance. Two equal

parallel forces acting in opposite directions therefore

have no resultant; they are said to form a couple.

The result obtained above gives the same simplified

construction for finding the resultant of two parallel

forces in opposite directions as for finding the resultant

of two parallel forces in the same direction. The figure

is shown below:

71. To resolve a given force into tivo others passing

through two given points.

Let the given force be represented by AB, and let

its line of action be marked ab. Let H and K be the

given points.
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From H and K draw straight lines oa, ob respectively,

to meet at any point chosen on ab; draw AO, BO

parallel to ao, bo respectively, to meet in 0. Join H, K,
and let the straight line so drawn be called ox. Draw
OX parallel to ox, and in OX take any point X.

FIG. 86. FIG. 86 a.

Then AX and XB represent components of the given
force acting through the points H and K respectively.

As X may be taken anywhere in the line through
drawn parallel to HK, the problem is indeterminate.

If the two components are required to be parallel,

we take X in AB
;

if equal, we take X in the straight

line which bisects AB at right angles. In the former

case the lines of action of the components are each

parallel to ab.

72. To resolve a given force into tivo others acting

along two given straight lines each parallel to the line

of action of the given force.

This is a particular case of the preceding article,

and can be solved in the manner there indicated. We
choose the points H, K anywhere in the lines of action
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of the required components respectively, and resolve

the given force into two parallel forces acting through
the points H, K.

Or we may proceed thus:

FIG. 87.

Let the given force be represented by AB, and let

its line of action be marked ab. Of the lines of action

of the required components mark one ax, the other xb.

Draw two parallel lines through A, B to meet bx, ax

in A', B' respectively. Let AB' meet ab in X', and

draw X'X parallel to AA to meet AB in X. Then,

clearly, AX: XB= AX': X'B', and therefore AX and

XB represent the components required along ax and

xb respectively.

We have drawn the figures for the case in which

the given force lies between the lines of action of its

components. The method is, however, quite general.

We might dispense with the force diagram altogether,

and proceed as follows:

Draw any straight line AX'B' meeting the lines

bx, ab, xa in the points A, X', B' respectively.

Measure AX' and X'B', and divide the given force into
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two parts in the ratio A'X':X'B'. The first part is

the component along ax, the other that along xb.

73. Ex. 1. Forces of 24 and 10 pounds' weight act

along the straight lines MH and NK respectively ; the

angles HMN and MNK are 90 and 100 respectively,

and the points H, K are on the same side of MN,
which is 10 inches long. Find the magnitude and
direction of the resultant of the forces, and determine

the point where its line of action cuts MN. Find
also the resultant when the force of 10 pounds' weight
is reversed in direction.

Draw AB, BO in the directions of MH, NK respec-

tively, and of lengths 24 and 10 units respectively.

In the straight line drawn through B parallel to MN
take any point 0. Draw ML, NL parallel to AO, OC

respectively, to meet in L. Let the straight line drawn

through L parallel to AC meet MN in X. Then XL
is the line of action of the resultant, which is repre-

sented by AG.

On measurement, we find that AG is 33*9 units of

length, and that the angle MXL is 93. Hence the

resultant is 33'9 pounds weight, and makes an angle of

93 with NM. Also MX is found to be 2'9 units of

length; therefore the resultant acts through a point X
in MN distant 2 '9 inches from M.

Produce GB to C', making BC'= CB. Then, if the

force of 10 pounds' weight be reversed, it will be repre-

sented by BC'. Draw NL parallel to OGf

to meet LM
produced in L, and L'X' parallel to AG' to meet NM
produced in X'. Then L'X' is the line of action of the

resultant, which is represented by AG'.

On measurement, we find that the resultant is now
D.S. I



FIG. 88.

FIG. 88 a.
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14'3 pounds' weight in a direction 96 with MN, and

that it acts through a point X' in NM produced, distant

6 '9 inches from M.

74. Ex. 2. If from any point, in the line of action of
the resultant of two forces, perpendiculars be drawn

upon the lines of action of those forces, the lengths of
the perpendiculars are inversely proportional to the

magnitudes of the forces.

In Art. 69 the position of the point is arbitrary.

Let be taken at the other extremity of the diameter

through B to the circle described passing through

A, B, G. Then OA, OG are perpendicular to BA, EG
respectively; therefore LM, LN are the perpendiculars
from L upon the lines of action of the forces P and

Q respectively.

FIG. 89.

Now angle NML = angle AOB = angle A OB,

and angle MNL = angle GOB= angle 'GAB.

.'. the triangle MNL is similar to the triangle GAB.
.-. LM:LN=BG:BA = Q:P.

Now L is a point in the line of action of the resultant;

also MN may be taken in any position, provided only
that it is parallel to BO', therefore, as MN moves,
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remaining parallel to BO, the point L traces out the

line of action of the resultant.

Therefore, from any point on the line of action of

the resultant, the perpendiculars let fall upon the lines

of action of P and Q are proportional to Q and P
respectively.

EXAMPLES VIII.

1. Two parallel forces 5P and IP act at points A and B
respectively. Find the magnitude, direction, and position of

their resultant (i.) when the forces are like, and (ii.) when unlike.

2. Two parallel forces, of 20 and 25 pounds' weight and of

opposite senses, act on a rigid body, the perpendicular distance

between their lines of action being 4 inches ;
find their resultant.

3. ABCD is a square, and E is taken in AD so that AE=\AD.
Find the magnitude and line of action of the resultant of two

forces, one of which is 20 pounds' weight acting at E in direction

EB, and the other is 15 pounds' weight acting at D in direction

DG.

4. Assuming the magnitude, direction, and position of the

resultant of two like parallel forces, deduce the magnitude, direc-

tion, and position of the resultant of two unlike parallel forces.

5. Show how to find the magnitude of a force acting along a

given line, in order that the resultant of this force, and a second

force given in magnitude, direction, and position, may pass through
a given point.

6. Show how to resolve a given force into two others, one of

which is along a given line of action, and the other of which

passes through a given point.

7. If, in the figure of Art. 69, the lines ac, ob intersect in K
and AC, OB in X, then MK : KN=CX : XA.

8. Two forces, whose magnitudes are in a given ratio, act at

points A and B respectively of a rigid body. Prove that, what-
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ever be the directions of the forces, provided only' that they

are either parallel to one another or equally inclined to AB, the

line of action of their resultant always passes through a fixed

point in AB.

9. Show how to resolve a given force into two others which

act each through a given point and are in a given ratio.

10. Two forces P and Q act at two given points M and N
respectively, and the line of action of their resultant meets MN
in K. If P : Q = NK : KM, prove that either P and Q are

parallel, or they are equally inclined to MN.

11. Two forces are represented in magnitude, direction, and

position by the lines AB, CD ;
H and K are the middle points of

A C, BD respectively ; straight lines through A and C parallel to

BH, DH respectively meet in h, and straight lines through
B and D parallel to AK, CK respectively meet in Jc. Prove that

hk is the line of action of the resultant of the two forces.

In particular, show how to make use of the above in deter-

mining the line of action of the resultant of two given parallel

forces.



CHAPTER IX.

EQUILIBEIUM OF THREE FORCES ACTING IN ONE
PLANE UPON A RIGID BODY.

75. Three forces act upon a rigid body~in one plane ;

it is required to consider the conditions of equilibrium.
Let P, Q, R be the measures of three forces acting in

one plane upon a rigid body along the lines be, ca, ab

respectively, and keeping it in equilibrium.

First method.

FIG. 90. FIG. 90 a.

Let BG, GA be drawn in the directions of P and Q
and of length P units and Q units respectively. Then

the resultant of P and Q is represented by BA, and
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acts through the point of intersection of be and ca.

Let P and Q be replaced by this resultant. Then we

have two forces keeping a rigid body in equilibrium.

These two forces must be equal and act in opposite

directions along the same straight line. Therefore AB
is the direction of R and of length R units, and ab,

the line of action of R, must pass through the point
of intersection of be and ca. This point will be called

the point abc.

Hence, if three forces acting in one plane upon a

rigid body keep it in equilibrium, their lines of action

must be concurrent, and the force diagram is a triangle

whose sides represent the forces taken one way round.

76. Second method.

0,0

o..-

.--"&'

a/b

FIG. 91. FIG. 91 a.

As before, let BC, CA be drawn to represent P and

Q in direction and magnitude, and join AB. Take

any point in the force diagram, and connect it with

the points A, B, G.

From a point in the line be draw straight lines ob,

oc parallel to OB, OC respectively. From the point of

intersection of oc and ac draw oa parallel to OA.

We shall show that the lines oa, ob, ab are concurrent.
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Let a, /3, y be the measures of OA, OB, OC respec-

tively. Then the force P may be replaced by two forces

/3 and y acting along the lines bo, oc in the directions

BO, OG respectively. Also the force Q may be replaced

by two forces y and a acting along the lines co, oa

in the directions CO, OA respectively. Let the two
forces P and Q be replaced by these pairs of components.
Then the two forces y, acting in opposite directions

along the line oc, balance one another, and may therefore

be removed. We are now left with three forces /3, a,

R in equilibrium. The first two of these are repre-
sented by BO, OA, and act along the lines bo, oa

respectively. Hence, by the first method above, AB
must represent R in magnitude and direction, and the

three lines ob, oa, ab must be concurrent.

The student should carefully notice the correspon-
dence in the two figures. The straight line in the

force diagram from to the point of intersection of

the lines which represent P and Q, is parallel to the

straight line in the space diagram which connects points
in the lines of action of P and Q, and similarly for

other pairs of forces. The two dotted lines which

intersect on the line of action of one of the forces P,
are parallel to the lines from to the extremities of

the line which represents P in the force diagram.
77. The first of the above two methods is the funda-

mental method, and we have quoted it in dealing with

the second, but it ceases to be of practical use when
the point abc is inaccessible. The second is a more

general method, and is always applicable, as the point

may be taken anywhere in the diagram, so that no

two lines need intersect at very acute angles.
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Instead of choosing the point before drawing the

dotted lines in both figures, we may choose any three

points, one on the line of action of each of the three

forces, and thus draw the triangle whose sides are

oa, ob, OG. Then the straight lines through A, B, G

parallel to oa, ob, oc respectively must be concurrent.

For, take to be the point of intersection of the

straight lines drawn through B and G parallel to ob,

OG respectively. Then, by the preceding bit of work,

the straight line drawn through the intersection of

oc and ac, parallel to AO, must pass through the

intersection of ob and ab. That is, ao is parallel to

AO.

The triangle whose sides are oa, ob, oc can always
be chosen so that the lines cut at convenient angles,

and thus we. have a method applicable to all cases.

78. Third method.

The following method is a particular case of the

preceding method, the point being taken in BG, but

it is of sufficient practical importance to be treated

separately :

As before, let BG be drawn to represent the force P,

and let the lines of action of P, Q, E be marked be, ca,ab

respectively.

Resolve the force P into two parallel forces /3 and y

represented by BO, OG respectively, acting along two

lines bo, oc respectively ;
so that is a point in BG,

and bo, oc are both parallel to be.

Let the lines oc, ca intersect at K, and the lines bo, ab

at L, and let KL be marked ao.

Replacing the force P by its components /3 and y, we
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see that y and Q acting at K must balance /3 and R
acting at L. Therefore the resultant of the first pair
and the resultant of the second pair must be equal and

act in opposite directions along the same straight line ao.

Hence, if GA represents Q, then OA, which represents

the resultant of y and Q, must be parallel to oa.

Also AO must represent the resultant of R and /3,

and therefore, as BO represents /3,
AB must repre-

sent R.

FIG. 92. FIG. 92 a.

Thus, for equilibrium, it is necessary and sufficient

that the straight lines through B
} 0, C parallel to ba,

oa
t
ca respectively should meet at a point A, and that

CA and AB should represent Q and R respectively.

The student should notice that divides BG in the

same ratio that the line be divides KL. The method

becomes practically useful when the points K and

L are given, and when the position of the line

be is known relatively to K and L. The point can

then be quickly determined, and the force diagram

completed.
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79. Parallel Forces.

139

The equilibrium of three parallel forces is a particular
case of the above, the second method alone being appli-

cable.

FIG. 93.

Here the points A, B, G are collinear.

Otherwise. We may proceed as follows : Let two-

parallel forces acting along the lines ab, be be in equi-

librium with a third force acting along the line ca.

Take AB, BG to represent the two forces acting along

ab, be respectively. Draw any straight line AA' to

meet be in A', and let the straight line through C drawn

parallel to AA' meet ab in G'. Draw BB' parallel to

AA' to meet A'C' in R. Then, by Art. 70, B' is a point
in the line of action of the resultant of the two forces

which act along ab, be, and this resultant is represented

by AG. Hence the system is equivalent to two forces-
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in equilibrium the one represented by AC and acting

through B', the other acting along ca. These must be

equal and in opposite directions along the same straight

FIG. 94.

line. Hence B' must be a point in ca, and the force

which acts along ca is represented by CA.

80. A known force, whose measure is P, acts in a

given direction along a given straight line be ; a force

of unknown measure X acts along a given straight line

ca ; and a third force of unknown measure T acts in

an unknown direction through a given point H. It is

required to find the values ofX and Y and the direction

of Y, in order that the three may be in equilibrium.
First method.

Join H to the point of intersection of be and ca, and

let the straight line thus drawn be called ab. Then

ab is the line of action of Y.

Draw BC in the direction of P and of length P units,

,and through B and C let straight lines be drawn parallel
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to ba and ca respectively, to meet in A. Then BCAB
(this way round) is the force diagram for the system.

n

FIG. 95. FIG. 95 a.

Measuring CA and AB, we have X and T respectively,

and the direction of Y has already been determined.

This method fails when the point of intersection of

be and ca is not accessible.

Second method.

X V'>

c\o

H B
b

FIG. 96. FIG. 96 a.

Draw BC in the direction of P and of length P units,

and from G draw GA parallel to the line ca. This
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does not determine the position of A, as we do not

know X. Draw any straight line oc intersecting the

lines be, ca. Let the straight line connecting H with

the intersection of be and co be drawn and called ob, and

let the straight line connecting H with the intersection

of ca and co be drawn and called oa. Through B and

G draw straight lines parallel to bo and co respectively,

meeting in 0, and through draw OA parallel to oa

to meet CA in A. This determines the point A. Then,

joining AB, and measuring CA and AB, we have X
and Y respectively. Also, the line of action of Y is

the straight line ab drawn through H parallel to AB.

Third Method.

a\o
\

B CO
J b P
FIG. 97. FIG. 97 a.

Draw EG in the direction of P, and of length P
units, and from G draw CA parallel to the line ca,

the point A being at present unknown.

Let a straight line ao
} passing through H, meet the

lines bc
}
ca in J and K respectively; and through H

and K draw straight lines ob, oc respectively, each

parallel to be. Find a point in BC such that BO,
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OG represent components of P acting in the lines 06,

OG respectively. This point will divide EG similarly

to the way in which J divides KH, and the method

is practically useful when the relative positions of the

points J", H, K are known.

Through draw OA parallel to oa to meet GA in

A. Then, joining AB, and measuring GA and AB, we
have X and Y respectively. Also, the line of action

of F is the straight line ab drawn through H parallel

to AB.

81. Equilibrium of Four Forces, two of which are

fully known.

The methods of this chapter may be applied to the

consideration of the equilibrium of four forces, two of

which are fully known. We may replace the two known

forces by their resultant, thus reducing the number of

forces to three, one of which is fully known.

82. Centre of Gravity. In the examples which here

follow, it is assumed that the resultant of the weights
of the constituent elements of a body (or of any
material system in which the parts retain the same posi-

tion with regard to one another) acts along a vertical

line, which always passes through a special point of the

body called its centre of gravity, this point retaining

the same position with regard to the different parts of

the body, in whatever position the body is placed ; also,

that the centre of gravity of a body of uniform density

and symmetrical shape, is in the position of the centre

of symmetry.
83. Smooth Hinge. A body is said to be capable of

turning freely about a fixed point 0, or to be smoothly
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hinged to a fixed point 0, when the point of the body
is compelled to remain in the position of the point in

space, the constraint being a force acting through of

the nature of a direct push or pull. Such a force is

self-adjusting, and accommodates itself to prevent the

point of the body from getting away from the point
of space, if possible. It is of any magnitude, and acts

in any direction necessary to preserve equilibrium, but

must act through the point 0.

84. Ex. 1. A thin uniform rod AB, of length 10 feet

and weighing 12 pounds, is capable of turning freely

about a smooth hinge at A. It is supported by a fine

light string, of length 10 feet, connecting B with a point

C, situated 16 feet from A in a horizontal line. Find
the tension of the string and the action at the hinge.

FIG.

Having constructed the space diagram to scale accord-

ing to the data, draw the straight line kk vertically
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downwards through the middle point of AB, and a

straight line HK, 12 units of length, vertically down-

wards to represent the weight of the rod. Mark the

line BG with the letters kl, and

draw the straight line Ih from

A to the point of intersection

of hk and kl.

Through H and K draw

straight lines parallel to hi and

H respectively, meeting in L.

Then KL represents the tension

of the string, and the action of

the hinge upon the rod is re-

presented by LH, and acts in

the line Ih.

We find that KL=5 units

and LH = 9'85 units. Hence

the tension of the string is

5 pounds' weight, and the

reaction at the hinge is

9 '85 pounds' weight, and is

found to make an angle of 66

with AC.

Otherwise. Instead of drawing the line Ih, draw

through A and B respectively straight lines oh and ok,

each parallel to hk. Bisect HK in 0. Then the weight
of the rod is equivalent to forces represented by HO,
OK acting along the lines ho, ok respectively.

Let AB be marked ol, and draw OL parallel to 61 to

meet in L the straight line drawn through K parallel

to kl. Then, measuring KL, we have the tension of the

string, and the straight line LH gives the magnitude
D.S. K

FIG. 98 a.
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and direction of the action at the hinge. This con-

struction, of course, gives the same result as before.

85. Ex. 2. In the above example, let C be situated

4 feet, instead of 16 feet, from A in a horizontal line,

the problem in other respects remaining unaltered.

FIG. FIG. 99 a.

Having constructed the space diagram to scale, we

see that, if we proceed as in the first solution of the

preceding example, the line hk meets kl at a point so

far removed that the figure becomes unmanageable.
The other solution, however, is applicable, and furnishes

the neatest solution of the problem, thus exhibiting the
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practical use of the third method described in Art. 80.

This the student should work out for himself.

Otherwise. Through the middle point of AB draw
the straight line hk vertically downwards, and draw a

straight line HK vertically downwards, and of length
12 units, to represent the weight of the rod.

Mark the straight line BC with the letters kl, and
draw KL parallel to Id, the position of the point L
being at present unknown.

Mark AC with the letters ol, and through A and C
draw straight lines oh and ok respectively, to meet at

some point on the line hk.

Let the straight lines through H and K parallel to

ho and ko respectively meet in 0. Draw OL parallel

to ol to meet KL in L.

Then KL represents the tension of the string, and LH
represents the action of the hinge upon the rod at A.

We find that KL = 3'06 units and LH= 9'02 units
;
also

the angle LHK is found to be 4. Hence the tension

of the string is 3'06 pounds' weight, and the action at

the hinge is 9 '02 pounds' weight in a direction inclined

at an angle of 86 to the horizontal.

86. Ex. 3. Two thin straight rods AFB, CFD, of

given lengths, are freely jointed together at F, the

lengths BF, DF being given ; and the whole is laid on

a smooth horizontal table. If A and G are connected

by a fine string of given length, and -B and D are

pulled apart by given forces P, P in the straight line

BD, required to find the tension of the string.

The data are sufficient to enable us to construct the

space diagram. Let T be the measure of the tension

of the string.
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Consider the forces acting on the rod AFB alone,

It is kept in equilibrium by a given force P acting

along DB, a force T of unknown magnitude along AC,
and the reaction R of the hinge at F of unknown

magnitude and in an unknown direction. Also B, C, F
are points in the lines of action of these three forces-

respectively.

Mi-

FIG. 100. FIG. 100 a.

Hence, to construct the force diagram, with any suit-

able scale we draw LM of length P units in the direction

DB, and MN of unlimited length in direction A C, so

that the point N is not yet determined. We now mark

the lines DB, AC with the letters Im, ran respectively.

The line of action of R, at present unknown, but passing

through F, will be called nl. Hence, also, the lines FB >

BC, CF we now mark ol, om, on respectively.

Through L and M draw LO, MO parallel to lo, mo re-

spectively. This gives us the point 0. Draw ON parallel

to on, to meet MN in N; then, joining NL, we complete
the force diagram. LMNL (this way round) is the

triangle of forces for the rod AB. Measuring MN, we
have the tension of the string.
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87. Ex. 4. A thin rod, of no appreciable weight, is

loaded at some point with a mass of given weight,

and is supported horizontally upon two smooth pegs
in given positions. It is required to determine the

pressures between the rod and the pegs for different

positions of the load.

X..

//

c;

la

K

W

FIG. 101.

Let HK represent the rod, resting upon the pegs at

L and M, and loaded at N with a mass of weight W.

Let P and Q be the measures of the pressures of the

pegs at L and M respectively upon the rod. These must

foe vertical, and are at present of unknown magnitude.
Let the verticals through L, M, N be called be, ca, ab

respectively. Then the force diagram will be a straight

line ACB, in which AB is vertically downwards and of

length W units, and BO, CA represent the pressures
P and Q respectively. Also, if three parallels through

J ME r N

UNIVERSITY
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A
, B, C meet be, ca, ab in A', B', C' respectively, the

points A', B', C' must be collinear.

I. Suppose the position of N is known. We can

draw AB and two parallels AA', BB'. Let AB' meet

ab in C'. Then draw C'G parallel to AA, to meet AB
in C. Measure BC and CA, and we have P and Q
respectively.

II. Suppose that the pegs L and M cannot sustain pres-

sures greater than P and Q respectively. We can draw

AB as before and the two parallels AA, BB'. Take BC\

along BA and AC
2 along AB of lengths P and Q units

respectively. If BC
l
and AC

2
do not overlap, clearly

it will be impossible to support the load. If they do

overlap, the point C may lie anywhere between C
l
and

C
z

. Draw C&, G
2
G

2

'

parallel to AA', to meet AB' in

GI and G
2 respectively. Then C' must lie between (7/ and

G
2 . Draw C^N^ and C

2
N

2 perpendiculars upon HK.
Then the point of attachment of the load may lie any-
where between N^ and j\

T
2

.

If it is required to place the load so that P may
be as much less than P as Q is less than Q ,

then G
must be taken midway between G

{
and G

2
. Hence C r

will be the middle point of C^C2J and N of N^N^.
88. Ex.5. Three forces, represented by B'C',C'A',AB' r

act at points A, B, G respectively of a rigid body, and
are in equilibrium. The line of action of the first

force meets BG in a; Aa is drawn parallel to BG to

meet B'C' in a'. Prove that a' divides B'C' in the same

ratio that a divides BG.

Since B'C', C'A, AB' represent forces in equilibrium,

acting at A, B, G respectively, therefore, by Art. 77,

the lines through A', B\ G', parallel to BG, GA, AB
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respectively, are concurrent in some point 0. Thus,

the straight lines through C' and Bf

, parallel to AB, AC
respectively, meet at a point on A'af.

FIG. 102 a.

Through E draw a straight line parallel to AC, to

meet Aa in a. Then the figure BaaA is similar to

the figure OB'a'C'.

.', a divides aA in the same ratio that a divides B'C'.

But the lines BC
y
aA are similarly divided at a.

.'. a' divides B'C' in the same ratio that a divides BC.

89. Ex. 6. A rigid body is capable of turning freely

in one plane about a fixed point H, and is acted upon
by a given force, represented by AB and acting along
a given straight line ab. An unknown force X is

applied at a given point K of the body. It is required
to represent the different values, corresponding to differ-

ent directions, of X consistent with equilibrium.



152 EQUILIBRIUM OF THEEE FORCES

The force of constraint at H may be of any value

and in any direction.

Let the line HK be marked oc, and draw through
H and K straight lines oa, ob respectively, to meet at

any point chosen on the line ab.

FIG. 103.

Through A and B draw straight lines parallel to ao, bo

respectively, meeting in 0; and through draw OC
parallel to oc.

Then the different values of X are represented by
the different straight lines drawn from B to different

points C in 00.

The shortest of the lines BO will be the perpendicular
from B on 00. Hence X is smallest when it is applied
in a direction perpendicular to HK.

90. Ex. 7. A uniform thin rod HK, of given weight w,
is capable of turning freely in a vertical plane about

the point H, which is fixed. A mass, of given weight

W, hangs from the point K by means of a fine light

string. Show how to find the magnitude of the force
which must be applied at K in a given direction, in

order that the rod may rest in a given position.



ACTING UPON A EIGID BODY. 153

In the position of equilibrium, the string hangs with

the mass vertically below K. Draw AS, BC vertically

downwards to represent w and W respectively, and bisect

AB in 0. Then AC represents the resultant of w and

W, and AO, OB represent components into which this

resultant can be resolved acting at H and K respectively.

A
JJ

O

B

sir

FIG. 104. FIG. 104 a.

Draw OD parallel to HK, to meet in K the straight

line drawn through C parallel to the given direction

of the applied force. Then, measuring CD, we have

the magnitude of the applied force.

91. Ex. 8. A heavy thin rod of given weight, whose

centre of gravity is in a given position, rests on two

given smooth inclined planes whose intersection is a

horizontal line, the rod lying in a vertical plane per-

pendicular to this line of intersection. It is required

to find the direction of the rod, in the position of

equilibrium, and the pressures on the planes.

Let the vertical plane containing the rod be the plane

of the paper, cutting the inclined planes in the lines

QA, OB.
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At the outset we cannot indicate correctly the position
of the rod. Suppose that CD represents the rod in the

position of equilibrium, and let G be its centre of gravity.
Then the lengths CG, GD are known, but not the posi-
tions of C and D.

FIG. 105.

K
FIG. 105 a

The rod is in equilibrium under the influence of its

weight and of the reactions at G and D. The weight is

equivalent to a single force acting vertically downwards

through G, and, as the planes are smooth, the reactions

at G and D are perpendicular to OA and OB respectively.

Draw HK vertically downwards to represent the

weight of the rod, and through H and K draw straight
lines perpendicular to OB and OA respectively, to meet

in L. This can be done although we do not know
the positions of G and D. Then measuring KL, LH
we have the pressures of the planes upon the rod.

Divide HK in g so that Hg : gK=GG : GD. Then
the weight of the rod is equivalent to two forces repre-

sented by Hg, gK acting at D and G respectively. Re-

placing the weight of the rod by these components, we
see that the forces represented by LH and Hg, acting at
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7), balance the forces represented by gK and KL, acting
at C.

.'. gL is parallel to CD.

Hence, to determine the direction of the rod in the

position of equilibrium, we find the points L and g as

above
;
then the rod rests in a position parallel to gL.

(For a complete discussion of this problem, see

Minchin's Statics.)

EXAMPLES IX.

1. A straight uniform thin rod AB of mass 12 pounds, capable
of turning freely in a vertical plane about a fixed point A, rests

in a horizontal position with its extremity B in contact with a

smooth plane inclined at an angle of 30 to the horizon. Find

the actions at A and B.

2. A uniform thin rod. 12 feet long and weighing 50 pounds,
is capable of turning freely about its lower end A, and a point

C of the rod, distant 10 feet from A, is connected by a horizontal

fine string CD to a point D, situated 8 feet vertically above A.

Find the tension of the string and the reaction at A.

3. A straight thin rod AD, of no appreciable weight and of

length 3 feet, is capable of turning freely in a vertical plane
about its lower extremity A. The point C of the rod, distant

2 feet from A, is connected by a light inextensible string 1 foot

6 inches long to a point B, fixed 2 feet 6 inches vertically above

A. At D is attached another fine string supporting a mass of

100 pounds. Find the tension of the string.

4. A straight thin rod AB, of no appreciable weight and of

length 24 inches, is capable of turning freely in a vertical plane
about the extremity A, which is fixed. A fine string, of length
18 inches, has one end attached to a point C of the rod distant

15 inches from A, and the other end to a fixed point D, situated

20 inches vertically above A. A mass of 100 pounds is suspended
from the point B. Find the tension of the string.
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5. A uniform beam, 12 feet in length, has a fixed hinge at

one end, and is supported by a fine light cord, 13 feet long,

attached to the other end and to a fixed point situated 20 feet

vertically above the hinge. Find the tension of the cord, assuming
that the beam weighs 140 pounds.

6. A uniform straight rod AOB, of mass 30 pounds, is capable
of turning freely about a hinge at 0, a point dividing AB in

the ratio 1 : 3. The rod rests with its lower end B in contact

with a smooth inclined plane. If rod and plane are each inclined

at an angle of 30 to the horizon, and the line of greatest slope

of the plane through 1 is in the same vertical plane as the rod,

find the pressure at B and the reaction of the hinge.

7. A straight rod AOB, of no appreciable weight, is capable of

turning freely in a vertical plane about a fixed point 0, such

that AO= 2.0B. A mass of 10 pounds is suspended from B,

and the rod is supported in a horizontal position by a fine string

AC, connecting A with a point C situated vertically below 0.

If the string makes an angle of 30 with the horizon, find its

tension and the action at 0.

8. A uniform straight rod AB, of weight Wf
rests in an inclined

position with the end B against a smooth vertical wall, and the

end A is fixed in position by a smooth hinge. If the height
of B above A is to the horizontal distance between B and A as

3 : 8, express the forces which keep the rod at rest in terms

of W.

9. A uniform horizontal beam AB, of length 12 feet and

weighing 100 pounds, is placed with the end A against a rough
vertical wall AD, and is supported by a fine string CD, of length

10 feet, connecting the point C of the beam, distant 8 feet from

A, with a point D in the wall, situated vertically above A. Find

the tension of the string, and the resistance of the wall. If the

beam is just on the point of slipping, determine the coefficient

of friction between the beam and the wall.

10. A uniform rod AB, of length 2 feet and weighing 55 ounces,

rests with its lower end A in contact with a smooth vertical wall,

foeing inclined to the wall at an angle of 40. It is supported

by a fine string connecting the point C of the rod, distant 8 inches
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from A, with a point D in the wall, situated vertically above A.

Find the length of the string and its tension.

11. A fine rod BC, of no appreciable weight and of length
2 feet 6 inches, is capable of turning freely about the extremity

B, which is fixed. A load of 150 pounds is applied at C, and

the rod EC is supported in a horizontal position by means of

another fine light rod DE, of length 1 foot 10 inches, smoothly

hinged at E to the rod BC and at D to a fixed point vertically

below B. If BE is of length 1 foot 6 inches, find the action

at B and the thrust in DE.

12. A rod ACS, weighing 25 ounces, rests upon a smooth peg
C, and its end A is attached to a fixed point 0, in the same
horizontal line with C, by means of a fine string OA. If

OA = OC=l foot, and the rod rests at an angle of 25 to 0(7,

determine the position of the centre of gravity of the rod, and
the magnitudes of the tension of the string and the pressure
between the rod and the peg.

13. A square lamina ABCD, of uniform density and weighing
4 pounds, can turn in a vertical plane about a hinge at A. Find
the force which, acting along BC, will keep the lamina in a posi-

tion with this side horizontal and below AD
;
find also the magni-

tude and direction of the hinge action at A.

14. A uniform square lamina ABCD is capable of turning in

a vertical plane about a smooth hinge A. It is kept in equili-

brium with AB inclined to the horizon at an angle of 30, measured

downwards, by a horizontal force of 2 pounds' weight applied at

B. Find the mass of the lamina.

15. A uniform square lamina ABCD, of mass 4 pounds, is

capable of turning freely about the point A, which is fixed
;
a

fine string, of length equal to a side of the square, connects B
with a point E, situated in a horizontal line with A. Find the

tension of the string, the angle BAE being 20.

16. A rectangular box, containing a uniform spherical ball of

weight W, stands on a horizontal table, and is tilted about one

of its lower edges through an angle of 30. Find the pressures
between the ball and the box.
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17. A heavy uniform sphere, of weight JF, rests on a smooth

plane inclined at an angle of 60 to the horizon. It is supported

by a fine string of length equal to the radius of the sphere,

connecting a point in the surface of the sphere with a point in

the surface of the plane. Find the tension of the string in the

position of equilibrium, and the pressure between the sphere and

the plane.

18. A uniform spherical ball, whose radius is 1 foot and mass

8 pounds, is fastened by a fine string, 8 inches long, attached

to its surface and to a smooth vertical wall. Find the pressure
on the wall and the tension of the string.

19. A smooth uniform sphere, of mass 60 pounds and diameter

10 inches, is supported in contact with a smooth vertical wall

by a fine string, 8 inches long, fastened to a point on its surface,

the other end being attached to a point in the wall. Find the

tension of the string.

20. A homogeneous solid sphere, of diameter 10 inches and

weighing 30 pounds, rests upon a smooth inclined plane, whose

height is f of its length, being supported by a fine string, 8 inches

long, connecting a point in the surface of the sphere with a point
on the plane. Find the tension of the string, and the pressure
between the sphere and the plane, in the position of equilibrium.

21. A smooth uniform sphere, of mass 52 pounds and radius

10 inches, rests on a smooth inclined plane, whose height is j^
of its length, against a smooth horizontal rail fixed parallel to

the plane. If the pressure between the sphere and the plane
is 33 pounds' weight, find the distance of the rail from the plane
and the pressure between the sphere and the rail.

22. A triangular lamina ABC, of inappreciable weight, rests

in a vertical plane with the middle points of the sides AB, AC
in contact with two smooth pegs, the line joining them being
horizontal and parallel to the base EC. Determine the point in

EC where a mass of weight W may be placed without disturbing
the equilibrium ; and, if AB, AC, and EC be 4, 5, and 6 feet

respectively, find the pressures on the pegs in terms of W.
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23. A rigid framework, of no appreciable weight, in the shape
of an equilateral triangle ABC, rests in a vertical plane with

BC horizontal and uppermost. It is supported in this position

by a fine string DG, parallel to AB, attached at D, the middle

point of BC, and rests against a small smooth peg at F, the

middle point of AB. Determine from what point of the boundary
of the framework a mass of 10 pounds may be suspended, and

find the tension of the string and the pressure at F when the

mass is attached.

24. A uniform beam AB, of mass 20 pounds and length 13

inches, is capable of turning freely about a fixed point A
;

to

the other end B is attached a fine string, which passes over a

small smooth pulley C, situated 2 feet in a horizontal line from A.

Find what mass must be attached to the other end of the string,

in order that, in the position of equilibrium, the beam and the

string may be equally inclined to the horizontal. Find also the

action at the hinge.

25. A lamina, in the shape of a regular hexagon ABCDEF,
lies on a smooth horizontal table. It is in equilibrium under

the action of three forces
; namely, a force of 20 pounds' weight

acting at A in the direction EA, a force of unknown magnitude

acting at F in direction BF, and a force unknown both in magni-
tude and direction acting at C, Determine the magnitudes of

the unknown forces.

26. In example 8, Art. 91, the planes AO and OB are inclined

at angles of 60 and 30 respectively to the horizontal. The point

G divides CD in the ratio 3:1. Find the direction of the rod in

the position of equilibrium.

27. OACB is a horizontal straight line. C is the centre of a

fixed vertical circular disk ADB. A uniform rod OD, of length

equal to the radius of the circle and weighing 2 pounds, is freely

hinged at one extremity to a fixed point 0, and its other extremity
D rests against the smooth rim of the circle. If the rod makes

an angle of 30 with OB, find all the forces which act upon it.

28. A smooth rod BC is passed through a small ring and placed

upon a horizontal plane, with its ends attached to a fixed point
A in the plane by two fine strings AB, AC, which are tight.
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A horizontal force being applied to the ring, find its direction,
and also the position of the ring on the rod, in order that equili-

brium may not be disturbed, the lengths of EC, CA, AB being
25, 20, and 15 inches respectively.

29. A smooth thin wire APB, in the form of a semicircle of

radius 15 inches, is placed upon a smooth horizontal table with

its ends attached to a fixed point by means of fine strings

AO, BO, which are tight. A small ring P is threaded on the

wire, and a horizontal force is applied to the ring ;
find its direc-

tion, and also the position of the ring on the wire, in order that

equilibrium may not be disturbed, the lengths of AO, OB being
24 and 18 inches respectively.

30. A straight piece of stiff wire AB, 13 inches long and of no

appreciable weight, is capable of turning freely in a vertical

plane about one extremity A. A small smooth ring, of no appreci-
able weight, is threaded on the wire and connected by a fine

string, 12 inches long, to a point fixed 13 inches vertically above

A. A mass of 6^ pounds is hung from B. Find the tension of

the string, and the action at the hinge, in the position of equili-

brium.

31. A uniform rod, of weight W, is supported by a fine string
fastened to its ends, of double its own length, which passes over

a smooth horizontal rail. Find the tension of the string, first,

when the rod is hanging at rest in a vertical position, and secondly,

when the rod is at rest in a horizontal position.

32. A straight thin rod AB, of length 1 foot and of no appreci-

able weight, is supported in a horizontal position upon two pegs
situated at its extremities. If the peg at A cannot sustain a

load greater than 27 pounds, and the peg at B cannot sustain

a load greater than 24 pounds, find between what points of the

rod a load of 36 pounds may be placed.

33. In the preceding example, find where the load must be

placed in order that the pressure at A may be 21 pounds' weight.

34. A uniform rod, 2 feet long and weighing 3 pounds, lies

on a horizontal plane ;
find the least force which, applied 5 inches

from one end, will raise that end above the plane.
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35. A horizontal bar AB, 7 feet long, is supported at its ex-

tremities, and a man of 150 pounds' weight hangs from it by his

hands, one being 1 foot from A, the other 3 feet from B. Find

the pressures on the supports due to the weight of the man.

36. A heavy pole, weighing 140 pounds, is carried on the

shoulders of two men, one at each end
;

the centre of gravity

of the pole being 2 feet from one end and 5 feet from the other,

find the load supported by each man.

Also, find what would be the effect of placing each man one foot

nearer to the centre of gravity of the pole.

37. Two levers AOB, COD, of inappreciable weight, whose

lengths are 8 and 9 inches respectively, are freely jointed together
at 0, four inches from B and D. If A and C are connected by a fine

light string 3 inches long, and B and D are pulled apart by forces

each equal to 10 pounds' weight in the straight line BD, find

the tension of the string.

38. Two levers OA, OB, of inappreciable weight and of lengths
3 and 4 feet respectively, can turn freely in a vertical plane about

a common fulcrum 0, and their middle points are connected by
a fine string whose length is 2^ feet. Find the least force which,

applied at A, will keep OB horizontal when a mass of 12 pounds
is suspended from B. Find also the tension of the string.

39. A uniform thin rod AB, which can turn freely in a vertical

plane about a hinge at A, is kept in a horizontal position by a

string BC attached to a fixed point C in the vertical plane, the

angle ABC being obtuse. Show in a diagram the forces acting
on the rod, and prove that two of them are equal.

40. If a heavy body is partly supported by a string and partly

by a smooth horizontal plane, prove that the string must be

vertical.

41. Three forces P, Q, R, in equilibrium, act at points A, B, C
respectively of a rigid body. The lines of action of two of the

forces meet at 0, and the circle described through the points B, C,

meets AO again in A'. Prove that P : Q : R=BC : CA' : A'B.

42. Three forces P, Q, R, in equilibrium, act at points A, B, C
respectively of a rigid body. Prove that if two of the forces

D.S. L
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intersect at any point on the circle which circumscribes the

triangle ABC, then P : Q : R=BC : CA : AB.

43. Three forces act at points A, B, C of a rigid body, and

are respectively proportional to BC, CA, AB. Prove that, if the

forces are in equilibrium, their lines of action must intersect

either at the orthocentre of the triangle ABC, or at a point

on the circle which circumscribes the triangle.

44. Three forces, whose magnitudes are in a given ratio, act

at points A, B, C respectively of a rigid body. Show how to

determine the lines of action of the forces, in order that they

may be in equilibrium. Show that there are in general two

solutions.

45. If, in the preceding example, O
l
and 2 are the two posi-

tions of the point at which the lines of action of the three forces

intersect, prove that each side of the triangle ABC subtends at

the same angle that it subtends at 0.
2

.

46. Two forces Q and R, acting in the lines OB, OC respectively,

are in equilibrium with a third force, acting through A. Prove

that, if Q :R= CA : AB, then, either is a point on the circle

which circumscribes the triangle ABC, or, if BO and CO meet

that circle in O
l
and 2 respectively, the arc 0^0^ is bisected at A.

47. A given force, acting along a given straight line Aa, is

in equilibrium with two unknown forces acting through given

points B and C respectively. If Aa is perpendicular to BC, prove

that the difference between the squares of the measures of the

unknown forces is constant.

48. B, A, C are three given points situated in a straight line.

A force of given magnitude, acting through A in a given direc-

tion, is in equilibrium with two unknown forces, whose magnitudes

are in a given ratio, acting through B and C respectively. Show

how to determine the magnitudes and directions of the unknown

forces, and prove that there are in general two solutions.

49. In the preceding example, prove that if the forces through

B and C are proportional to CA, AB respectively, then, either all

the forces are parallel, or the forces through B and C are equally

inclined to BC.
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50. A rigid body, capable of turning freely about a fixed point

"<c, is kept in equilibrium by two forces P and Q represented by

BC, CA respectively. A straight line through c meets the lines of

action of P and Q in a and b respectively ;
and a straight line

through A parallel to be meets EC in A'. Prove that A' divides EC
in the same ratio that a divides be. In particular, if cab is drawn

making equal angles with P and $, prove that ca:cb= Q:P.
Hence prove that the perpendiculars from c on the lines of action

of P and Q are proportional to Q and P respectively.

51. Three forces in equilibrium act along lines which bisect

at right angles the sides of a triangle. Prove that the forces

must act all outwards or all inwards, and that their magnitudes
are proportional to the sides to which they are respectively

perpendicular.



CHAPTER X.

RESULTANT OF ANY SYSTEM OF COPLANAR
FORCES.

92. To find the resultant of any given system of

forces acting upon a rigid body in one plane.

E

FIG. 106. FIG. 106 a.

First Method.

Let it be required to find the resultant of forces

P, Q, I\, S, T, acting along the given lines indicated

in the. diagram on the left.

Draw straight lines AB, BC, CD, DE, EF, to repre-

sent the forces P, Q, R, S, T respectively in direction

and magnitude. This takes us from A to F. We shall

show that AF represents the resultant in direction and

magnitude, and that its line of action may also be found.
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Let the lines of action of P, Q, R, S, T be now

marked ab, be, cd, de, ef respectively, as in the figure.

Join AC, AD, AE, AF.

The resultant of P and Q is represented by AC, and

acts through the point of intersection of ab and be
;
hence

draw a straight line ac through this point parallel to

AC. Let P and Q be replaced by their resultant, which

we can combine with R. We get as the resultant of

these two forces a force represented by AD, passing

through the point of intersection of ac and cd. Hence

P, Q, R are together equivalent to a force represented

by AD, and acting along a line ad, which we can draw

through the point of intersection of ac and cd parallel

to AD.

Proceeding in the same way as before, we see that

the forces P, Q, R, S may be replaced by a force repre-

sented by AE, and acting along a line ae, which we

can draw through the point of intersection of ad and

de parallel to AE. And, finally, the forces P, Q, R, S, T
are equivalent to a force represented by AF, and acting

along a line af, which we can draw through the inter-

section of ae and ef parallel to AF.

This determines the magnitude, direction, and position

of the resultant of the system.

93. In order that the system may be in equilibrium, it

will be necessary and sufficient that the -force T should

be equal and opposite to, and act along the same straight

line as, the resultant of P, Q, R, S. For this to be

the case, F must coincide with A, and the two straight

lines ae and fe must form one continuous straight line.

That is, F must coincide with A, and the straight line

ad, obtained by the above process, must pass through
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the intersection of de and ef. Thus, for equilibrium, in

constructing the force diagram, the end of the line repre-

senting the last force must coincide with the beginning

of the line representing the first force (this is expressed

by saying the force polygon closes), and in drawing
the dotted lines of the space diagram, we start with

the point of intersection of the first two lines of action,

and end with the point of intersection of the last

two.

94. The method of Art. 92 may be still more abbrevi-

ated in simple cases, as, for instance, in the following :

It is required to find the resultant of four given

forces, P, Q, R, S, acting along the given lines indicated

in the space diagram.

FIG. 107. FIG. 107 a.

Draw straight lines AB, BO, CD, DE, to represent

the forces P, Q, R, S respectively in magnitude and

direction. Let the lines of action of P, Q, R, S be now

marked ab, be, cd, de respectively, as in the figure. Join

A C, A E, CE. Through the intersection of ab and be draw

ac parallel to AC; and through the intersection of cd and

de draw ce parallel to CE. Then we shall show that

the straight line ae, drawn through the intersection of

ac and ce parallel to AE, is the line of action of the
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resultant, and that AE represents the resultant in

magnitude and direction.

For, the forces P and Q are equivalent to a force repre-

sented by A C acting along ac
; also, the forces R and S

are equivalent to a force represented by GE acting along

ce; and, if P, Q, R, S be replaced by these two forces,

they in turn may be replaced by a force represented

by AE, and acting along ae.

For the system to be in equilibrium, it is necessary
and sufficient that A and E should coincide, and that

the lines ac, ce should form one continuous straight line.

Thus, for equilibrium, the force diagram must be a

closed quadrilateral, and a diagonal of the quadrilateral

must be parallel to the line joining the intersection of

one pair of lines of action with the intersection of the

other pair.

95. Second Method.

Let it be required to find the resultant of forces

P, Q, R, S, T, acting along the given lines indicated in

Fig. 108.

As before, draw straight lines AB, EC, CD, DE, EF,
to represent the forces P, Q, R, S, T respectively in

magnitude and direction, and let the lines of action of

P, Q, R, S, T be now marked ab, be, cd, de, ef respectively.

Take any point in the force diagram, and join it

to the points A,B,G, D, E, F.

From any point p in ab draw straight lines oa, ob

parallel to OA, OB respectively. The force P may be

replaced by two forces represented by AO, OB acting

along the lines ao, ob respectively.

From the point of intersection of ob and be draw oc

parallel to OC. Then the force Q may be replaced by
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two forces represented by BO, OC acting along bo, oc

respectively.

Let the forces P and Q be replaced by these pairs of

components ;
then we may remove the two forces re-

presented by OB and BO, which act in opposite directions

along the line ob. Thus the forces P and Q are equi-

valent to forces represented by AO, OC acting along

ao, oc respectively.

FIG. 108. FIG. 108 a.

From the point of intersection of oc and cd draw od

parallel to OD. Then the force R may be replaced by
two forces represented by GO, OD acting along co, od

respectively. So, removing the two equal forces which

act in opposite directions along the line oc, wre see

that the forces P, Q, R are equivalent to forces repre-

sented by AO, OD acting along ao, od respectively.

Carrying on the process, we draw through the inter-

section of od and de a straight line oe parallel to OE
;
and

through the intersection of oe and ef a straight line of

parallel to OF. Then we see that the forces P, Q, R,



FUNICULAR POLYGON. 169

$, T are equivalent to two forces represented by AO, OF

acting along ao, of respectively.

Hence the resultant of the system is a force repre-

sented by AF, and acts along a straight line af drawn

through the intersection of oa and of parallel to AF.

96. The broken line ABCDEF is called a force poly-

gon, and is said to dose when the final point F coincides

with the initial point A.

The polygon formed by the lines oa, ob, oc, od, oe, of
is called a funicular polygon, and is said to close when
the lines oa, of are in one and the same straight line.

The point is called the pole of the force polygon.
The lines drawn from to the angular points of the

force polygon are called rays. The sides of the funi-
cular polygon are called strings.

It should be noticed that the two strings which

intersect in the line of action of any force are parallel

to the two rays drawn to the extremities of the line

representing that force, and the string which connects

the lines of action of two forces is parallel to the ray
drawn to the common extremity of the lines representing
those forces.

97. In order that the system may be in equilibrium, it

will be necessary and sufficient that the two forces

represented by AO, OF, and acting along the lines ao,

of respectively, should be equal and opposite, and act

.along the same straight line. For this to be the case,

.Fmust coincide with A, and of, oa must be in one and

the same straight line. Thus, for equilibrium, a force

polygon must close, and a funicular polygon corre-

sponding to it must also close.

If the force polygon closes, but not the funicular
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polygon, the lines oa, of become parallel, and in this

case the system reduces to a couple.

98. Of the two methods given above, the second is the

more general and includes the first; for, if we take

the pole to coincide with A, and take the first vertex

of the funicular polygon to coincide with the point of

intersection of the lines of action of P and Q, the con-

struction coincides with that given in the first method.

In simple cases the first method may be more suitable

than the second, but it is liable to fail through the

intersections of lines falling at inconvenient distances.

In the second method the pole can generally be so

chosen that none of the rays make very acute angles
with the corresponding forces.

99. In the case of parallel forces, the first method

fails altogether, but the second method does not.

D

FIG. 109. FIG. 109 a.

We append the figures for finding the resultant of

the five parallel forces P, Q, R, S, T, using the same
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letters as above. The forces S and T are taken to be

in the opposite direction to the other three.

The force polygon for a system of parallel forces

reduces to a straight line, which is often called the

line of loads.

100. Some Geometrical Properties of the Funicular

Polygon.

Referring to Art. 95, we showed that the forces

P, Q, R are equivalent to forces represented by AO,
OD acting along ao, od respectively.

.'. the point of intersection of ao, od lies on the line

of action of the resultant of P, Q, R, which is parallel

to AD.

Now, in constructing the funicular polygon, we took

in any arbitrary position in the force diagram, and

the point p was taken in any arbitrary position on the

line ab. If we vary the position of p without altering

the position of 0, we get a new funicular polygon,

having its sides parallel to the corresponding sides of

the old funicular polygon. If we vary the position

of 0, we get a funicular polygon with its sides no

longer parallel to their former directions. But, what-

ever alterations we make in these respects, the lines

oa, od always intersect on a fixed straight line parallel

to AD. Thus,

If different funicular polygons be constructed for
the same system of forces corresponding to the same

force polygon, the locus of the intersection of any two

strings is a straight line parallel to the line joining
the extremities of the corresponding rays.
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101. Again, suppose two funicular polygons are con-

structed, one corresponding to a pole 0, and the other

to a pole 0'.

FIG. 110. FIG. 110 a.

Let oa, o'a meet in a, and ob, o'b in
/3.

We shall

show that a/3 is parallel to 00'.

Suppose that forces represented by A 0, OB, BO', O'A

were to act along the lines oa, ob, o'b, o'a respectively.

They would be in equilibrium; for the first two forces

are equivalent to a force represented by AB acting

along ab, and the other two to a force represented by
BA acting along the same straight line.

.;, forces represented by OB, BO', acting along ob, o'b

respectively, are in equilibrium with forces represented

by O'A, AO acting along o'a, oa respectively. The first

two of these forces are equivalent to a force represented

by 00' acting through /3, and the other two to a force

represented by O'O acting through a.

.-.a force represented by 00' acting through /3 is
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in equilibrium with an equal and opposite force acting-

through a.

.'. a/3 is parallel to 00'.

In the same way, if oc and o'c meet at y, we can

show that /3y is parallel to 00'.

.'. the points a, /3, y lie on a straight line parallel

to OCT.

Proceeding in this way, we see that

Each pair of corresponding sides of any two funi-
cular polygons of a given system of forces intersect on

a straight line, which is parallel to that joining the

poles of the two funicular polygons.

102. Ex. Three forces P, Q, R act along three fixed
lines AB, BC, CD respectively. Prove that, if P, Q, 2i

have any values subject to the relation Q =m . P+ n . R,

where m and n are any given numbers or fractions,

then the line of action of the resultant of the three

forces passes through a fixed point.

. A'

FIG. 111.

Let ab, be, cd be drawn parallel to AB, BC, CD
respectively, representing P, Q, R respectively. Since

Q =m . P+n . R, we can find a point x in be such that

bx =m . ab and xc = n . cd.

Through B and C draw straight lines parallel to a&
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and dx respectively, to meet in X. Then we shall show

that X is a fixed point on the line of action of the

resultant of the forces P, Q, E.

The force Q may be replaced by forces m . P and n . R,

acting along BC at points B and C respectively. The

resultant of P and mP at B is represented by ax, and

therefore acts along BX ;
the resultant of nR and R

at C is represented by xd, and therefore acts along XC.

Hence X is a point in the line of action of the resultant.

Now since ab and bx are drawn in fixed directions, and

such that ab : bx 1 : m, therefore the straight line ax

is in a fixed direction. Therefore BX is a xed straight

line. Similarly CX is a fixed straight line.

.'. the pointX is the intersection of two fixed straight

lines, and is therefore a fixed point.

Thus the line of action of the resultant of P, Q, R
passes through the fixed point X.

/,*/

FIG. 112. FIG. 112 a.

The case in which the points a, x, d are collinear is

interesting. The lines BX, CX are then parallel, and
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there is no point X at a finite distance. Under these

circumstances the resultant of the three forces is in a

fixed direction.

EXAMPLES X.

1. Forces of 2, 1, 3 pounds' weight respectively act along the

sides of an equilateral triangle, taken one way round. Determine

the magnitude, direction, and line of action of their resultant.

2. The sides EC, CA, AS of the triangle ABC are of lengths

14, 15, 13 inches respectively. Forces of magnitudes 16, 60, 52

pounds' weight act along the lines BC, CA, BA respectively. Find

the magnitude, direction, and line of action of their resultant.

3. Forces of 1, 2, 4, 4 pounds' weight act along the sides AB,

BC, CD, DA respectively of a square. Find the magnitude and

direction, and the point of application in the line BC, of the force

which would balance the system.

4. ABCD is a square, each side of which is 1 foot in length.

E is a point in AB distant 3 inches from A, F is in DA produced 14

inches from A, and G is in CB produced 9 inches from B. Find the

magnitude, direction, and line of action of the resultant of the

following system of forces : 45 pounds' weight along AB, 66

pounds' weight along AD, 35 pounds' weight along CE, and 65

pounds' weight along FG.

5. ABCDEF is a regular hexagon. Forces of 5, 3, 5, 3 pounds'

weight respectively act along the straight lines AB, BC, CD, DE.

Find the magnitude, direction, and position of the resultant.

6. Take any five forces, assigning their magnitudes, directions,

and lines of action, and determine the magnitude and direction

of their resultant by constructing a force polygon. Determine the

line of action of the resultant by constructing a funicular polygon

corresponding to an arbitrarily chosen pole 0.

Draw another funicular polygon corresponding to the same pole

0, and a third funicular polygon corresponding to a different pole

0', and see that each funicular polygon gives the same line of

action of the resultant.
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Construct another force polygon by taking the forces in a

different order, and, taking any pole, construct a funicular polygon

corresponding to this, and see that the same result is obtained

as before.

7. Four forces act along, and are represented by, AB, BC, DC,

AD', show that their resultant is represented by 2AC, and acts

through the middle point of BD.

8. Four forces act along, and are represented by, AB, CB, CD,
AD

;
show that their resultant acts along, and is represented by,

4EF, where ^"and Fare the middle points of AC, BD respectively.

9. Three forces P, Q, R, such that P=Q+ R, act along the sides

BC, AC, BA of a triangle ABC ; prove that the line of action of

their resultant passes through the centre of the circle inscribed

to the triangle.

10. Three forces act along the sides of a triangle, taken one

way round. If one of the forces is equal to the sum of the other

two, prove that the line of action of their resultant passes through
the centre of one of the circles escribed to the triangle.

11. Three forces P, X, Fact along the sides BC, CA, BA of

a given triangle ABC. If P is given, while X and Y have any
values subject to the condition that X+n.Y\& constant, where

n is any given number or fraction, prove that the line of action

of the resultant of the three forces passes through a fixed point.

12. Three forces act along, and are represented by, AB, BC,
CD ; prove the following method for determining their resultant :

Take any point x in BC, and let straight lines through B and C,

parallel to Ax, Dx respectively, meet in X
; then the resultant

acts through X, and is represented by AD.

13. A,B,C,D are four fixed points ; any point x is taken in Bfi,

and straight lines through B and C, parallel to Ax, Dx respectively,

meet in X. Prove, by a statical method, that as x moves along

BC, the point X traces out a straight line parallel to AD.



CHAPTER XL

EQUILIBRIUM OF FOUR FORCES HAVING KNOWN
LINES OF ACTION IN ONE PLANE.

103. Before considering examples on the general case

of the equilibrium of coplanar forces, we will consider

the equilibrium of four forces having known lines of

action situated in one plane. This we can do, in general,

without drawing a funicular polygon.

Four forces in one plane are in equilibrium, and

the lines of action of all are given. One of the forces

is fully known; it is required to determine the oilier

three.

FIG. 113.

Let P be the measure of the given force acting

along the given line indicated. Take AB in the direc-

D.S. M
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tion of this force and make it P units of length. We
now mark the line of action of the given force with

the letters ah.

Find the point in which ab intersects one of the other

three given lines, and let this line be denoted by be.

We then mark the remaining two lines cd, da.

Join the point of intersection of ab and be to the point

of intersection of cd and da
;
and let the line so drawn

be called ac.

Let X, Y, Z, at present unknown, be the measures

of the forces acting along be, cd, da respectively. The

resultant of P and X has to balance the resultant of

Y and Z. Hence these two resultants must be equal

and act in opposite directions along the same straight

line. Thus ac must be the line of action of the resultant

of the pair P and X, and also of the resultant of the

pair Y and Z.

Hence, if BO represents the force X, then AC must be

parallel to ac. So, drawing BG parallel to be to meet

in C the straight line drawn through A parallel to ac,

and measuring BG, we have X. Also AC represents

the resultant of P and X, and therefore CA represents

the resultant of Y and Z.

Hence, to find Y and Z, we have merely to draw

straight lines through C and A parallel to cd, da re-

spectively and meeting in D; then, measuring CD and

DA, we have Y and Z respectively.

If the four given lines are concurrent, the solution

is indeterminate. In this case the extremities of the

line ac coincide, and the line AC may be drawn in any
direction.

If the three lines be, cd, da meet in a point which
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is not situated in the line of action of P, the problem
is impossible of solution. In this case ac is in the same

.straight line with be, and the line BC does not meet

the line AC.

If two of the three given lines intersect on the line

of action of P, the force along the third line vanishes.

For instance, if ab, be, cd are concurrent, ac is in the

same straight line with cd, and D coincides with A.

104. If the lines cd, da do not meet at an accessible

point, we can still draw the straight line ac by making
use of the following construction:

To draw through a given point P a straight line

towards the inaccessible point of intersection of two

given straight lines A A', BB'.

A'

K B'

FIG. 114.

Draw straight lines PA, PB to points A and B,

situated one in each of the given straight lines, and

join AB. Draw a straight line parallel to AB inter-

secting the given straight lines in A' and E' respectively.

Draw A'P, E'P' parallel to AP, BP respectively, to

meet in P'. Then PPf

is the straight line required.

The student of elementary geometry will have no

difficulty in proving the* accuracy of this construction.
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105. The foregoing construction enables us to apply
the method of Art. 103 to the case in which ab, he meet

at an accessible point, and cd, da at an inaccessible

point; but the method apparently breaks down when

cd and da are parallel.

FiG. 115 a.

The difficulty, however, is easily overcome. We can

draw the line AC parallel to either of the lines cd, da,

thus determining the point (7. Then, to finish the

problem, we have merely to resolve a force represented

by GA into two parallel components acting along the

lines cd, da. This can be done by any one of the

three methods considered in Art. 72.

106. If the line of action of the given force does not

meet any one of the other three lines in an accessible

point, we may proceed as follows:

As before, take AB to represent the given force, and

let ab denote its line of action. The three unknown

forces will be represented by BC, CD, DA, where the

points C and D are to be found. Let their lines of

action be therefore marked be, cd, da.

The two forces along cd, da are equivalent to a force

which will be represented by GA ,
and which acts through

the point of intersection of cd and da, along a straight line

which would be marked ca. It will not be necessary

to draw the straight line ca, but we may refer to it.
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Draw any straight line ob intersecting the lines ab

and be. From the point of intersection of ob and ab

draw oa, and from the point of intersection of 06 and

be draw oc, both to the point of intersection of ad

and cd (that is, to a point in ca); this can be done

even if ad and cd do not intersect at an accessible point.

FIG. 116. FIG. 116 a.

Draw AO, BO parallel to oa, ob respectively, to meet

in 0. Draw OC, BC parallel to oc, be respectively, to

meet in C. Then, if C be joined to A, BC and CA

represent two forces, which, acting along be and ca

respectively, would be in equilibrium with P.

Draw CD, AD parallel to cd, ad respectively, to meet

in D. Then CD, DA represent two forces, which, acting

along cd, da respectively, would be equivalent to the

force represented by CA acting along ca.

Hence, measuring BC, CD, DA, we have the three

forces required.

If the three lines be, cd, da are parallel to one another

but not to the direction of P, the problem is impossible
of solution. In this case oc is in the same straight line

with be, and the line BC does not meet the line OC.
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If two of the three given lines are each parallel to

the line of action of P, the force along the third line

vanishes. For instance, if ab, be, cd are parallel, C is a

point in AB, and D coincides with A.

If all four lines are parallel, the solution is indeter-

minate. This case will be considered in the next chapter,
107. To resolve a given force into three components

along given lines of action situated in one plane.
If we suppose the given force to be reversed in direc-

tion, it will form a system in equilibrium with the

three components required. Hence this problem reduces

to the preceding.

108. Ex. 1. A triangular lamina ABC, of no appreci-

n

FIG.

'2W

117.
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able weight, whose sides BC, CA, AB are respectively

18, 24, and 30 inches in length, is placed in a vertical

H

FIG. 117 a.

'plane with BC, CA resting upon two fixed smooth pegs
D and E, situated 20 inches apart in the same horizontal

line. If masses, each of weight W, are suspended from
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A and B, and the triangle is kept with AB horizontal

by means of a fine light string connecting G with the

peg D, find the tension of the string and the pressures
on the pegs.

The space diagram is easily constructed to scale.

Consider the forces acting on the lamina. The two

equal forces W, acting vertically downwards at A and

B, can be replaced by a single force 2W, acting verti-

cally downwards through the middle point of AB, along
a line which we draw and mark hk.

Choosing any suitable length to represent W, we draw

HK vertically downwards of length to represent 2 W.

Let P and Q be the pressures of the pegs D and E
respectively upon the lamina

;
these are perpendicular

to CB, CA respectively. Let T be the tension of the

string CD.

The four forces 2W, Q, P, T, acting on the lamina,

are in equilibrium. We see that the lines of action of

the first two of these forces meet in an accessible point,

and the other two act through D. Hence, marking the

lines of action of Q, T, P with the letters Id, Im, mh

respectively, we draw the straight line hi, connecting D
with the point of intersection of hk and kl.

Draw straight lines HL, KL parallel to hi, kl respec-

tively, thus obtaining the point L. Draw straight lines

LM, HM parallel to Im, hm respectively, and we have

the point M.

Then KL, LM, MH represent Q, T, P respectively.

On measuring these lines we find that

Q=(1;43)F,

T=( -18)TF,
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109. Ex. 2. Four forces in equilibrium act in the lines

AB, BC, CD, DA. From any point A' in ED, or BD
produced either way, a straight line is drawn parallel
to AB to meet AC in Bf

; from E a straight line is

drawn parallel to BC to meet BD in C' ; from C' a

straight line is drawn parallel to CD to meet AC in

D ; and the straight line joining D f

,
A' is drawn.

It is required to prove that D'A' is parallel to DA,
and that the forces in the lines AB, BC, CD, DA are

proportional to A'Bf

,
EG'

, C'D', D'A' respectively.

A

FIG. 118.

Let the scale of representation of force be so chosen

that A'E may represent the force which acts in the

line AB. If the force in AB acts in the opposite
direction to A'E

,
we may suppose all four forces to

be reversed; they will still form a system in equili-

brium, provided their magnitudes are unaltered.

Since the resultant of the forces in AB, BC is a

force in the line BD, it follows that EG' must represent
the force in EG. Also, since the resultant of the forces

in BC, CD is a force in the line CA, we see that C'D'
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must represent the force in CD. Hence D'A', which closes

the polygon A'B'C'D
'

,
must represent the force in DA.

Therefore D'A is parallel to DA, and the forces in

the lines AB, EC, CD, DA are proportional to AB',

B'C', C'D, D'A respectively.

Also, the directions of the forces in the lines AB,
BC, CD, DA are determined by the direction arrows

going one way round the quadrilateral AB'C'D'A.

In the figure given above, the directions of the forces

are BA, BC, DC, DA, or, reversing these directions,

AB, CB, CD, AD.
The student should make himself familiar with the

generality of this proposition. In the first of the two

figures given below the directions of the forces are

AB, BC, DC, AD, or these directions reversed; in the

second figure they are one way round.

D <7'\ \ / B

FIG. 119.

As the point A' may be taken anywhere in BD, or

BD produced either way, the student should try the
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effect of making A coincide with B or D. He should

also notice that the figure ABCD has the same relation

to A'&C'ir as A'B'C'D' has to ABCD. Hence, if four

A' C' D

FIG. 120.

forces in equilibrium act in the lines A'B
', B'C\ C'D',

D'A', the figure ABCD may be taken to be the force

diagram for the system.

EXAMPLES XI.

1. A uniform thin rod ACB, of length 3 feet 9 inches, and

weighing 25 pounds, rests with the lower end A upon a smooth

horizontal plane, and against the smooth edge of a step, 1 foot

6 inches high, at C. It is kept from slipping by a fine light

string, 2 feet long, connecting A with a point at the foot of the

step vertically below C. Find all the external forces acting on

the rod.

2. A straight uniform rod AS, of mass 30 pounds, rests against
a smooth horizontal plane at A and against a .smooth fixed rail

at C) where BC=\BA. It is prevented from slipping by a fine

light string AD, connecting A with a point D, situated in the

horizontal plane vertically below C. If the angle BAD is 30,
find the tension of the string, and the pressures at A and C.

If the plane be rough, and there is no string, what must be

the coefficient of friction between the rod and the plane in order

that the rod may be just on the point of slipping?
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3. A square board ABCD is placed upon a smooth horizontal

table, and a given force P acts from E, the middle point of AB,
towards F, the middle point of CD. Determine the magnitudes
of three forces X, Y, Z, which, acting along EC, CA, AB respec-

tively, will make equilibrium with P.

4. The lower extremity E of a uniform beam ED rests on the

ground at the foot of a vertical wall EF, its upper extremity

being attached by a fine light cord DF to a point F, situated

vertically above JS. The mass of the beam being 200 pounds,
find the tension of the cord, and the pressures of the beam against
the wall and ground at E, supposing that EF=ZFD= ED.

5. A uniform beam AB, of mass 100 pounds, is supported by
two fine light strings AC, BD, the latter being vertical, and the

angles DBA and BAG being 100 and 130 respectively. The
beam is maintained in this position by a horizontal force of P
pounds' weight, applied at B. Find the value of P.

6. A uniform square lamina ABCD, weighing 10 pounds, is

constrained at A and B to remain in contact with a smooth fixed

straight vertical rod, A being uppermost. The point C rests in

contact with a smooth fixed plane, inclined at an angle of 60

to the horizon. Find the actions at A, B, C.

7. ABCD is a fine straight rod of no appreciable weight, the

portions AB, BC, CD being of lengths 9, 6, 5 inches respectively.

A mass of 10 pounds is suspended from A, and a mass of unknown

weight is suspended from D. The rod is supported in a horizontal

position by means of two forces applied at B and C in directions

BE, CF respectively, the angles ABE and DCF being each 80.

Determine the weight of the mass suspended from D, and the

magnitudes of the forces applied at B and C.

8. A lamina ABCD, having DC parallel to AB, and such that

AD DC=CB= ^AB, is placed upon a smooth horizontal table,

and a given force P acts from A towards B. Find the magnitudes
of three forces X, Y, Z, which, acting along AD, CD, CB respec-

tively, will make equilibrium with P.

9. ABCDEF is a regular hexagon. Find what forces must

act along AC, AF, DE, to produce equilibrium with a force of

40 pounds' weight acting along EC.
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10. A straight bar ACS, of length 5 feet, and of no appreciable

weight, is supported in a horizontal position with a load of 50

pounds applied at C, 2 feet from A, by means of two strings

AH, BK, such that the angles BAH and ABK are 120 and 150

respectively. Find what force must be applied at Z), the middle

point of AC, in direction DL, in order that the bar may remain

horizontal
;
DL being downwards, and the angle ADL being 60.

Also, determine the tensions of the strings.

11. A uniform rectangular lamina ABCD, weighing 100 pounds,
rests in a vertical position upon a smooth horizontal plane at A,
and against a smooth vertical wall at D. It is supported by a

fine string FC attached to a point in the wall. If, in the position

of equilibrium, the triangle FCD is equilateral, find the tension

of the string, and the pressures at D and A, given that DC=2DA.
12. A uniform beam AB, weighing 100 pounds, is supported

by strings AC, BD, the latter being vertical. It is maintained

in this position by a horizontal force P applied at B. Find the

value of P in pounds' weight, the angles CAB, ABD being each

105.

13. A ladder AB, of
. length 30 feet, inclined at an angle of

60 to the horizon, rests against a smooth wall BC, inclined at

75 to the horizon, and upon a smooth horizontal plane AC. The
end A is kept from slipping by a fine light string, connecting
it with the point C. If the centre of gravity of the ladder, which

weighs 40 pounds, is 12 feet from A, find the tension of the

string, and the pressures at A and B.

14. AHKB is a straight rod, of no appreciable weight, and of

length 10 feet, the points H and K being 1 foot from A and 6 feet

from B respectively. AtH and K are suspended two masses P and

Q respectively, and the rod rests in a horizontal position, being

supported by two fine light strings AC, BD, such that the angles

BAC, ABD are each 150. If P is 10 pounds, find Q, and the

tension of each string.

15. D is the orthocentre of the triangle ABC, whose sides BC,

CA, AB are of lengths 14, 13, 15 inches respectively. Find what
forces must act along the lines CB, DC, DA to be in equilibrium
with a force of 25 pounds' weight acting along AB.
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16. Four forces in equilibrium act in the lines AB, BC, CD,
DA. AS is drawn parallel to BC to meet ED in 8, and By is

drawn parallel to AD to meet AC in y. Prove that y8 is parallel
to CD; also, that the forces in the lines AB, BC, CD, DA are

proportional to AB, 8A, y8, By respectively.

17. Three forces P, Q, R, acting along the lines BC, CA, AB
respectively, are in equilibrium with a force X acting along a

line drawn parallel to BC through a point K in BA produced. A
straight line through A, parallel to KG meets BC in ff. Prove

that P:Q:R:X=HC:CA:AB:BH.
18. Three forces P, Q, R, acting along the lines BC, CA, AB

respectively, are in equilibrium with a force X acting through
K, a point in BA produced. Prove that, whatever be the direction

of the force X, the ratio P : Q is constant.

19. A given force, represented by AB, acts along a given line

ab, and is in equilibrium with three unknown forces, acting along
three given lines be, cd, da. The lines cd, da intersect at the

point 8, and a straight line through 8 intersects ab, be in a and y
respectively. Prove the following method for determining the

magnitudes of the three unknown forces :

Divide AB in C' in the same ratio that a divides y8 ;
let straight

lines through C' and B, parallel to y8 and be respectively, meet in C;
also let straight lines through C and A, parallel to cd and da respec-

tively, meet in D. Then BC, CD, DA represent the magnitudes
of the forces which act along the lines be, cd, da respectively.

Apply the method to the solution of Question 5.

20. A uniform beam AB is supported by two fine light strings

AC, BD, the latter being vertical, and the angles DBA, BAG
equal to one another. The beam is maintained in this position

by a horizontal force applied at B. Show that the tension of

the string AC is equal to half the weight of the beam.

21. In the figure of Art. 103, prove that BD is parallel to the

line joining the intersection of be and cd with the intersection of

ab and da.

22. In the figure of Art. 103, if the parallelogram BADA' be

completed, prove that CA' is parallel to the line joining the

intersection of ab and cd with the intersection of be and da.
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23. A force along AB is in equilibrium with three forces in

the lines .5(7, CD, DA
; prove each of the following :

(i.) If AB, CD are parallel, and in the same direction, the

forces are in directions AB, BC, CD, DA, and are pro-

portional to CD, BC, AB, DA respectively.

(ii.) If AB, CD are parallel, and in opposite directions, the

forces are in directions AB, CB, CD, AD, and are pro-

portional to CD, BC, AB, DA respectively.

(iii.) If AC, BD, are parallel, and either in the same or

opposite directions, the forces act one way round, and
are proportional to the lines along which they respec-

tively act.

(iv.) If ABDC is a parallelogram, or if ABCD is a parallelo-

gram, the forces are proportional to the sides along
which they respectively act.

(v.) If A, B, C, D are points taken one way round on the

circumference of a circle, the forces are in directions

AB, CB, CD, AD, and are proportional to CD, DA,
AB, BC respectively.

(vi.) If A, B, D, C are points taken one way round on the

circumference of a circle, the forces are in directions

AB, BC, CD, DA, and are proportional to CD, DA,
AB, BC respectively.

(vii.) If one of the points A, B, C, D is the orthocentre of

the triangle formed by the joins of the other three,

the forces in the lines AB, BC, CD, DA are propor-
tional to CD, DA, AB, BC respectively.

(viii.) If D is the intersection of the medians of the triangle

ABC, the forces are in directions AB, CB, DC, DA,
and are proportional to AB, BC, 3CD, 3DA respectively.

24. Prove the following geometrical properties of the figures

of Art. 109:

(i.) If D is the centre of the circle which circumscribes the

triangle ABC, prove that B' is the centre of a circle

which touches the sides of the triangle C'D'A'.
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(ii.) If D is the centre of a circle which touches the sides

of the triangle ABC, prove that B' is the centre of

the circle which circumscribes the triangle C'D'A'.

(iii.) If one of the points A, B, C, D is the orthocentre of

the triangle formed by the joins of the other three,

prove that each of the points A', B', C', U is the

orthocentre of the triangle formed by the joins of the

other three.

Prove also that in this case the figures ABCD,
C'D'A'B' are similar.

(iv.) If the points A, B, C, D are coneyclic, so are the points

A', B', C', D'.

Prove that in this case also the figures ABCD,
C'D'A'B' are similar.

(v.) If the figure A'B'C'D' is similar to the figure CDAB,
prove that either the four points A, B, C, D are con-

cyclic, or each is the orthocentre of the triangle formed

by the joins of the other three.

(vi.) If the straight lines AC, BD intersect at 0, prove that

OA . OA'=OB.OB'= OC. OC' = OD.OD'.

Hence show that if distances OA", OB", OC", OD" are

taken along OA, OB, OC, OD respectively, such that

OA . OA"= OB . OB"= OC . OC"= OD . OD",
the forces in AB, BC, CD, DA are proportional to

A"B", B"C", C"D", D"A" respectively.

(vii.) If OA.OB= OC.OD, prove that the forces in AB, CD
are proportional to AB, CD respectively.

(viii.) If the parallelogram B'A'D'a be completed, prove that

C'a is parallel to the line joining the intersection of

BC and DA to the intersection of CD and AB.

25. Four forces in equilibrium act in the lines AB, BC, CD,

DA. Points A', B', C', D' are the centres of the circles which

circumscribe the triangles BCD, CDA, DAB, ABC respectively.

Prove that the forces in the lines AB, BC, CD, DA are pro-

portional to C'D', Df

A', A'B', B'C' respectively.
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26. Four forces in equilibrium act along straight lines, which

bisect AB, BC, CD, DA at right angles ; prove that their directions

must be such that, in going along ABCDA, the forces are all to

the right or all to the left, and that the magnitudes of the forces

are proportional to the lines to which they are respectively per-

pendicular.

27. Two known forces, represented by AB, BC, act along known
lines ab, be respectively, and are in equilibrium with two unknown

forces, one of which acts along a known line cd, and the other

through a known point H. Prove the following method for

determining the unknown forces :

Through the intersection of ab, be draw ac parallel to AC, and
from H draw da to the point of intersection of ac, cd. Through
A and C draw straight lines parallel to ad, cd respectively, to meet

in D. Then CD, DA represent the unknown forces, and cd, da
are their lines of action respectively.

28. In the preceding example, prove also the following method
for determining the unknown forces :

Through H draw ax to the point of intersection of ah and be, and
let the straight line through A, drawn parallel to ax, meet BC in X.

Through ffdr&wxd to the point of intersection of be and cd, and let

straight lines through Xand C, drawn parallel to xd, ^respectively,
meet in D. Join DA, and draw through H a straight line da

parallel to DA. Then CD, DA represent the unknown forces,

and cd, da their lines of action respectively.

D.S. N



CHAPTER XII.

EQUILIBRIUM OF PARALLEL FORCES IN ONE
PLANE.

110. We have seen that, in order to -insure equili-

brium, it is necessary and sufficient that a force polygon
and a funicular polygon corresponding to it should

both close.

The general method of work in solving problems is

as follows : A rigid body is in equilibrium under the

A
~

B

FIG. 121 a.

influence of a number of forces, some partly or wholly

known, and others partly or wholly unknown. From
the data we construct as much of the force polygon
and funicular polygon as we can, planning out first

those forces which are wholly known, and then we
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endeavour to complete both polygons, making them
both close.

We append the space diagram and force diagram for

a system of five forces P, Q, R, S, T in equilibrium.
The student cannot make himself too familiar with the

manner in which the two figures correspond.
111. In this chapter we confine ourselves to the case

in which the forces are parallel. The force polygon
reduces to a straight line, or rather, a double straight
line. Let a system of parallel forces whose measures

are P, Q, R, X, T be in equilibrium. Let ABGDEA
be the force polygon for the system, so that AB, EG,

CD, DE, EA represent the forces P, Q, R, X, Y respec-

tively, and let the lines of action of these forces be

marked ab, be, cd, de, ea respectively.

Q

FIG. 122. FIG. 122 .

Suppose that the forces P, Q, R are known com-

pletely, but that the forces X and Y are at present

partly or wholly unknown. We are able to construct

the force polygon to this extent : we can with any
suitable scale construct ABCD, but the point E is at

present unknown.
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Take any pole and draw OA, OB, OC, OD. We
can then construct the funicular polygon to this extent :

we can draw the strings oa, ob, oc, od, the point of

intersection of oa and ob being chosen anywhere in ab
r

but the string oe cannot at present be drawn.

Thus we see that there are three points to be deter-

mined, viz., the point E and the extremities of the

string oe, and these points are subject to this con-

dition, that OE shall be parallel to oe. The position of

E determines the magnitudes and directions of X and F.

The work now falls under the following cases :

I. Let the magnitude and direction of one of the

two forces X and T be known, and the line of action

of one of them also known.

The knowledge of the magnitude and direction of

one gives the point E immediately, and determines the

magnitude and direction of the other also. The know-

ledge of the line of action of one (say X) gives one

extremity of the string oe, for we can find the point of

intersection of od and de. We can then draw oe parallel

to OE, and the point of intersection of oa and oe is a

point in the line of action of the remaining force (F).

II. Let the lines of action of the two forces X and

Y be known. Then we have at once both extremities

of the string oe. We then draw OE parallel to oe,

and thus determine the position of E, and with it the

magnitudes and directions of X and Y.

112. As an example of the above, let it be required to

find three forces acting along the given lines be, cd, da,

which are in equilibrium with a given force whose

measure is P acting along the given line ab\ the

straight lines ab, be, cd, da being all parallel.
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Take AB to represent the given force, and in AB
take any point C. We can then find, by the method

given above, two forces acting along cd, da, which are

in equilibrium with the given force and a force repre-

sented by BC acting along be.

n

FIG. 123. FIG. 123 a.

Thus the problem is indeterminate, as we may take

anyiuhere in AB.

So, also, the problem of resolving a given force into

three parallel forces, along known lines parallel to

its own direction, is indeterminate.

113. Ex. 1. A rigid beam, acted upon by a given

system of vertical forces, rests in a given horizontal

position, being supported by two smooth pegs, situated

at given points. It is required to determine the -pres-

sures between the beam and the pegs.

Let AB, BC, CD, DE be taken to represent the given

forces, and let their lines of action be marked ab, be,

cd, de respectively.
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The pressures of the pegs upon the beam will be

both vertical. Let the verticals through the pegs be

called ef, fa.

Take any pole 0, and draw OA, OB, OC, OD, OE.

Starting from any point in ab, we can draw the strings

oa, ob, oc, od, oe of the funicular polygon. Also, joining

A

FIG. 124 a,

the point of intersection of oa and a/ with the point

of intersection of oe and ef, we have the string of com-

pleting the funicular polygon.
Draw OF parallel to of, to meet AE in F. Then

EF, FA represent the pressures of the pegs upon the

beam acting along ef, fa respectively.

114. Ex. 2. A fine rod AB, whose centre of gravity
is in a given position G, and whose iveight is of given

magnitude w, rests in a horizontal position upon two

smooth pegs C and D, situated in given positions. The

pegs C and D cannot sustain pressures greater than

P and QQ respectively. It is required to find the
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portion of the rod, at any point of which a given
load W may be applied.

H

K

M2

M

FIG. 125. FIG. 125 a.

Suppose the rod is in equilibrium when the load W
is applied at X. Let P and Q be the pressures of the

pegs C and D respectively upon the rod.

Draw HK, KL to represent w and W respectively,

and let the verticals through G, X, D, C be marked

hk, kl, Im, mh respectively. Take any pole 0.

From any point p in mh draw the string oh, and

from the point of intersection of oh and hk draw the

string ok, meeting kl in x. From x draw the string

ol, meeting Zm in q. Then, joining pq, we have the

string om, completing the funicular polygon. Draw
OM parallel to om, to meet HL in M. 'Then LM, MH
represent Q and P respectively.

For different positions Xl
and X

2
of X, we have

different positions x
l
and X

2
of x, which give different

positions ql
and g2

of g; and these lead to different

positions M^ and M
2
of M.
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Measure HM
l vertically downwards to represent P ,

and LM
2 vertically upwards to represent Q . Then,

unless HM
l
and LM

2 overlap, it will be impossible to

support the load. If they do overlap, the point M
must lie between M

l
and M

2
.

By drawing pq: , pq2 parallel to OMV OM2 respectively,

we easily get the points gx
and q2 ,

and from these

the points a^ and x
z ,
and then the points X^ and X

2
.

Hence X must be some point between X
1
and X

2
.

Thus X^X2
is the required portion of the rod.

115. Ex. 3. A fine heavy rod AGDB rests in a

horizontal position upon two smooth pegs C and D,

situated in given positions. The greatest load which

can be applied at A without disturbing the equili-

brium is of given weight P, and the greatest load

ivhich can be applied at B ivithout disturbing the

equilibrium is of given weight Q. It is required
to determine the weight of the rod, and the position

of its centre of gravity.

II

K

FIG. 126. FIG, 126 a.

When the load P is applied at A, the rod is on the

point of turning about (7; thus there is no pressure
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between the rod and the peg D, and the pressure of

the peg C upon the rod is an unknown force X verti-

cally upwards.
When the load Q is applied at B, there is no pressure

at C, and the pressure of the peg D upon the rod is

an unknown force F vertically upwards.
The weight of the rod balances the two forces P

and X
;

it also balances the two forces Q and F. Hence,
if we reverse the two forces Q and F, the four forces

P, X, Q reversed and F reversed form a system in

equilibrium.

Draw HK, KL to represent the force P and the

reversed force Q respectively, and mark the verticals

through A and B with the letters hk, kl respectively ;

also, let the verticals through D and C be called Im,

mh respectively.

Take any pole 0, and draw OH, OK, OL. Starting
from any point on hk, draw the strings oh, ok, ol, and

complete the funicular polygon by drawing the string

om. Draw OM parallel to om, to meet HK produced
in M. Then MH represents X.

Now the forces represented by MH, HK, acting

along the lines mh, hk respectively, are in equilibrium
with the weight of the rod. Therefore the weight of

the rod is represented by KM, and acts along a vertical

line through the intersection of om and ok. Hence,

drawing a vertical line through the intersection of the

strings om, ok to meet the rod in G, we see that the

point G so determined is the centre of gravity of the

rod, whose weight is represented by KM.
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EXAMPLES XII,

1. A bookshelf, supported at its extremities, is just filled by
two sets of books, the books of each set being placed together.
One set consists of 14 volumes, each 1^ inches thick, and each

weighing 2 pounds; the other consists of 12 volumes, each 1|
inches thick, and each weighing 2 pounds. Find the pressures
on the supports, the mass of the shelf being 8 pounds.

2. A bent lever, of weight W, consists of two uniform, heavy,

straight rods, whose lengths are as 3 to 4
;
find the weight of the

mass, which must be attached to the end of the shorter rod, in

order that the fulcrum being at the junction of the two rods,

which are of the same material and thickness they may make

equal angles with the horizon.

3. A uniform straight rod, of length 18 inches, and weighing
9 pounds, is suspended from its extremities by two vertical strings,

neither of which can support a tension greater than 50 pounds'

weight. Find the greatest load which may be applied to the

rod at a point 5 inches from one end.

4. A heavy uniform beam, of length 20 feet, and weighing
50 pounds, is suspended horizontally by two vertical strings
attached to its extremities, each of which can sustain a tension

of 40 pounds' weight. How far from the centre of the beam
must a mass of 20 pounds be placed, so that one of the strings

may just break ?

5. A uniform rod AB, of length 1 foot, and mass 10 pounds,
is suspended at A and B, in a horizontal position, by two
vertical strings, each of which can support a tension of 26 pounds'

weight ; how far from the centre of the rod must a mass of 28

pounds be placed, so that one of the strings may just break?

6. A heavy straight rod ACDB, of length 12 inches, rests upon
two smooth pegs C and D, distant 3 inches and 2 inches respec-

tively from A and B. The greatest loads which can be applied
in' turn at A and B, without disturbing the equilibrium, are

8 and 9 pounds respectively. Find the weight of the rod, and
the position of its centre of gravity.
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7. A heavy straight rod AB, of length 15 inches, balances

about a point 2 inches from A, when a mass of 6 pounds is

suspended from A. It balances about a point 2 inches from

Z?, when a mass of 5 pounds is suspended from B. Find the

weight of the rod and the position of its centre of gravity 1

8. A heavy uniform bar ACDB rests in a horizontal position

upon two fixed supports C and D, whose distance apart is 6 inches,

and equal to the length of the projecting part AC of the bar.

If an upward force of 2 pounds' weight, applied at A, just lifts,

the bar off the support (7,
and a downward force of 8 pounds'

weight at A just lifts it off Z>, find the length and weight of

the bar.

9. A rod ABC, 16 inches long, rests in a horizontal position

upon two supports at A and B, one foot apart, and it is found

that the least upward and downward forces applied at (7, which

would move the rod, are 4 ounces' weight and 5 ounces' weight

respectively. Find the weight of the rod, and the position of

its centre of gravity.



CHAPTEE XIII.

EQUILIBRIUM OF COPLANAR FORCES.

116. We do not propose to discuss here in detail the

different cases which may arise in solving problems on

the equilibrium of a system of forces acting upon a

rigid body in one plane. It will suffice to discuss the

following two cases of frequent occurrence.

117. I. A number of forces in one plane are in

equilibrium. All are known completely with the ex-

ception of two. Of these, the line of action of one is

known, and the point of application of the other. It

is required to determine the unknown forces completely.

Let P, Q, R, X, Y be the measures of five forces in

equilibrium, P, Q, R being all known and X and Y at
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present unknown. Let the lines of action of P, Q, R, X
be also given and represented by those indicated in the

figure on the left, and let H be a given point in the

unknown line of action of the force Y.

Draw lines AB, BG, CD to represent in magnitude
and direction the given forces P, Q, R respectively.

Draw also DE in the direction of X. Mark the lines

of action of the forces P, Q, R, X by the letters ab,

bo, cd, de respectively.

To complete the force polygon we have only to find

the remaining vertex, which is somewhere in DE, and

will be denoted by E. The line EA will represent Y,

and its line of action will be denoted by ea, but at

present the position of E and the direction of ea are

unknown.

Take any pole and draw the rays OA, OB, OC,

OD. The remaining ray OE cannot at present be

drawn.

As H is the only point known in the line of action

of Y, we will commence to construct our funicular

polygon at H. Draw through H a straight line ao

parallel to AO. From the point of intersection of oa

and ab draw ob parallel to OB. From the intersection

of ob and be draw oc parallel to 00. From the inter-

section of oc and cd draw od parallel to OD. To

complete the funicular polygon we have merely to

join H to the point of intersection of od and de. The

line so drawn we call oe, and it must be parallel to

the remaining ray of the force polygon.
Hence draw OE parallel to oe to meet DE in E, and

join E, A. Then DE gives us X, and EA gives the

magnitude and direction of Y.
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118. II. A number of forces in one plane are in

equilibrium. All are known completely with the ex-

ception of three ivhose lines of action are known. It

is required to determine the magnitudes of the un-

known forces.

We can deduce this from the preceding case. Let

P, Q, R, Xv X2 , X% be the measures of six forces acting

along known lines, and keeping a rigid body in equi-

librium, the three P, Q, R being known, and the three

Xv X2 ,
X

3 at present unknown.

Find H, the point of intersection of the lines of

action of X
2
and X%. Then the two forces X

2
and X

3

are equivalent to an unknown force whose measure is

Y (say) acting through H in an unknown direction.

Hence we proceed exactly as in the preceding case.

Having determined in this way the position of E, we
know that EA represents Y. Then, denoting the lines

of action of X
2
and X% by ef, fa respectively, we draw

through E and A straight lines parallel to ef, af respec-

tively to meet in F.

FIG. 128 a.

The three unknowns Xv X
2 ,
X

3
are found by

measuring DE, EF, FA respectively.
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If no two of the lines of action of Xv X2 ,
X

3
meet

in an accessible point, we may proceed as follows :

Before choosing the position of the pole 0, draw

from a point in ab a straight line oa towards the

inaccessible point of intersection of the lines of action

of X
2
and X

3 . This we can do by the method described

in Art. 104.

Through A draw AO parallel to ao, in AO choosing

any point 0, and draw the rays OB, OC, OD. Then we

may proceed as before, completing the funicular polygon

by drawing a straight line oe from the point of inter-

section of od and de towards the inaccessible point of

intersection of the lines of action of X
2
and X

B
.

119. Ex. A uniform ladder, weighing 85 pounds, and

of length 20 feet, rests ivith one end against a smooth

vertical wall and the other end upon the smooth hori-

zontal ground. A man weighing 150 pounds stands

on the ladder at a point three-quarters of the way up,

and it is kept from slipping by a fine horizontal

string of length 9 feet, attached to the ladder at a

point a quarter of the way up, and to the wall at a

point vertically belovj the top of the ladder. Find the

tension of the string and the reactions of the ground
and the wall.

We can construct the space diagram to scale from

the data. Let AB represent the ladder, D its middle

point, C and E the middle points of AD and DB
respectively, CF the horizontal string attached to the

ladder at C and to the wall BQ and F.

Consider the external forces acting on the ladder

and man as one system. They are: 85 pounds' weight

acting vertically downwards through D, 150 pounds'
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weight acting vertically downwards through E, the

tension (T pounds' weight) of the string along CF,
the reaction of the ground (R pounds' weight) vertically

upwards through A, and the reaction of the wall ($

pounds' weight) acting horizontally through B. Thus
we have an example of Case II. above.

II

FIG. 129.

Let the lines of action of R and 8 intersect at H.

Then R and S are equivalent to an unknown force

acting through H.
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K

85

-*JV
FIG. 129 a.

With any suitable scale draw KLM vertically down-

wards, making KL, LM of lengths 85 and 150 units

respectively, and mark the verticals through D and E
D.S.
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with the letters kl, Im respectively ;
also mark the lines of

action of T, R, S with the letters mn, np, pk respectively.

Take any pole and draw the rays OK, OL, OM.

Through H draw ok parallel to OK
; through the point

of intersection of ok and kl draw ol parallel to OL',

through the point of intersection of ol and Im draw

om parallel to OM
; through H draw the line on to

the point of intersection of om and mn, thus com-

pleting the funicular polygon. Draw ON parallel to on

to meet the horizontal through M in N, and let the

vertical through N meet the horizontal through K
in P. Then KLMNPK (this way round) is the force

polygon.
On measuring the lines MN, NP, PK we find that

T=155, J2= 235, = 155. Thus

f Tension of string =155 pounds' weight,

j

Reaction of ground= 235 pounds' weight.

\ Reaction of wall =155 pounds' weight.

Otherwise. The force polygon KLMNPK will evi-

dently be a rectangle. This shows at once that R = 235

and S=T.
Now the weight of the ladder is equivalent to two

forces each of 42J pounds' weight acting vertically

downwards through A and B. The weight of the

man is equivalent to a load of 37 J pounds at A and

112J pounds at B. Also the tension of the string is

equivalent to JT along AG and \T along HL.

Considering only those forces which may be taken

as acting at A, we see that we have

jR 42J 37 \, i.e. 155 pounds' weight, vertically upwards,

and IT along AG.
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These two forces balance forces at B. Therefore

their resultant acts in the line AB.

FIG. 1296.

Hence, draw a/3 vertically upwards of length 155

units, and let the straight line drawn through a parallel

to AB meet the horizontal through ft in y. Then

/3y represents f T.

On measuring /3y, we find that

fT= 116-25,
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EXAMPLES XIII.

1. A uniform ladder, weighing 190 pounds, and of length 41

feet, rests with one end against a smooth vertical wall, and with

the other end upon the ground ;
if it is prevented from slipping

by means of a peg at its lowest point, which is distant 9 feet

from the wall, find the pressures on the peg, the ground, and

the wall, when a man of 10 stone is standing on the ladder three-

quarters of the way up.

2. A uniform ladder, weighing 120 pounds, and of length 34

feet, rests with one end against a smooth vertical wall, and with

the other end upon the ground ;
if it is prevented from slipping

by means of a peg at its lowest point, distant .16 feet from the

wall, find the reactions of the peg, the ground, and the wall,

when a man weighing 150 pounds is standing two-thirds of the

way up.

3. A uniform ladder is placed against a smooth vertical wall ;

the bottom of the ladder is 6 feet from the wall, and the top 8 feet

from the ground ;
the mass of the ladder is 12 pounds, and a

man of 10 stone stands on the ladder 2 feet from the bottom.

Find the pressure of the ladder on the wall, and the reaction

of the ground in direction and magnitude.

4. A uniform rod AB, of length one foot, and mass 8 pounds,
is capable of turning freely in a vertical plane about a point

0, distant 3 inches from A. The end B is loaded with 16

pounds, and the rod is kept in a horizontal position by a string

AC, 5 inches long, attached to the end A, and to a fixed point

<7, situated vertically below 0. Find the tension of the string,

and the action at in direction and magnitude.

5. A uniform rod AOB, of mass 5 pounds, is capable of turning

freely about a fixed point 0. The end B rests against a smooth

vertical wall, and from the end A is suspended a mass of 7 pounds.
Find the reaction of the wall at B, and also the action at the

hinge 0, supposing that AO= ^AB, and that the distance of A
from the wall is 4 times its distance above B.



CHAPTER XIV.

POLYGON OF FINE LIGHT RODS SMOOTHLY
JOINTED AT THEIR EXTREMITIES.

120. A number of fine light rods are freely jointed
at their extremities to form a closed plane polygon ; the

framework is in equilibrium under the influence of

forces applied at the joints in the plane of the polygon.
It is required to consider the conditions of equilibrium,
and to determine the stresses in the rods.

FIG. 130. FIG. 130 <

Let the figure on the left represent the polygon of

rods, in equilibrium under the influence of forces applied
at the joints in the directions indicated.

The framework of rods and the lines of action of

the applied forces divide the plane, in which the space
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diagram is drawn, into a number of portions which are

lettered o, a, b, c, d, e in the figure. The rod separating-

the space o from the space a is called the rod oa; the

line separating the space a from the space 6 is called

the line ab, and so on. The joint at the common

extremity of the rods oa, ob is called the joint oab r

and so on.

The whole framework must be in equilibrium con-

sidered as a rigid body. That is, if the joints were to

become stiff so that they would not work, and if the

same forces were applied as before, the polygon of rods

would still be in equilibrium.

Hence, if straight lines AB, BO, CD, DE be drawn

to represent the forces applied in the straight lines

ab, be, cd, de respectively, the straight line EA, which

closes the force polygon, must represent the remaining-

force applied in the line ea.

We might now proceed to construct a funicular

polygon corresponding to an arbitrarily chosen pole,

but we shall have to consider the equilibrium of the

different parts of the framework, and we shall see

that the polygon of rods is itself a funicular polygon

corresponding to a pole which we can find.

The consideration of the equilibrium of each rod

separately, tells us that each rod is in a state of direct

compression or tension.

Now consider the equilibrium of the portion of matter

in the immediate neighbourhood of the joint oab. It

is acted upon by three concurrent forces, namely, the

force applied in the straight line ab, and the reactions

of the adjoining portions of the rods oa, ob. Draw

AO, BO parallel to the rods ao, bo respectively, to meet
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in 0. Then ABOA (this way round) is the triangle of

forces for the joint abo.

Now consider the equilibrium at the joint bco. Since

BO represents the action of the rod bo at the joint abo
y

OB must represent the action of the same rod at the

joint bco. Also EG represents the force applied in the

line be. Therefore, joining 00, we see that BCOB (this

way round) is the triangle of forces for the joint bco.

So that CO is parallel to the rod co, and represents its

action upon the joint bco.

Proceeding in this way, and joining OD, OE, we see

that OD, OE are parallel to the rods od, oe respectively
and represent the stresses in those rods. Also, in con-

sidering the equilibrium of any joint, the direction

arrows round the triangle determine whether the rods

which meet at that joint are struts or ties. All tie

rods may be replaced by strings.

We see that for equilibrium it is necessary and

sufficient that the force polygon should close, and that

the lines drawn from the angular points of the force

polygon parallel to corresponding rods should be con-

current, these lines representing the stresses in the rods.

The student should notice particularly the exact

manner in which the diagrams correspond. The line

representing the stress in any rod is drawn from the

common extremity of the lines which' represent the

forces applied at the extremities of that rod. The

polygon of rods is, in fact, a funicular polygon for the

system of applied forces corresponding to the pole 0.

121. As a typical example, let us consider the following:
The framework considered above rests in a given

position of equilibrium. One of the applied forces is
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known completely, and the lines of action, but not

the magnitudes, of all the others are known with one

exception, the remaining force being wholly unknown.
It is required to find the unknown forces and the

stresses in the rods.

\

FIG. 131. FIG. 131 a,

Let the lines ab, be, de, ea be known, the dotted line

cd being at present unknown. Then we can draw the

space diagram with the exception of the dotted line.

Let the force applied in the line ab be known, the

other forces being at present unknown.

To construct the force diagram, we take AB to repre-

sent the given force applied in the line ab. Then we
draw AO, BO parallel to ao, bo respectively, to meet

in 0. We are then able to draw the directions of 0(7,

OD, OE parallel to oc, od, oe respectively. The point C
is given by drawing BG parallel to be, to meet OC in C.

Similarly we get the point E, and then the point D.

Joining CD, we have the magnitude and direction of

the force applied at the joint ocd. The force diagram
is now fully drawn, and the magnitudes of any of the

unknown forces can be found by measuring the lines of
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the force diagram. The space diagram is completed by

drawing cd parallel to CD.

122. The simplest example is that in which the

framework is triangular. The figure below represents
a triangular framework resting in a vertical plane on

smooth horizontal supports at the joints obc, oca', the

rod oc is horizontal, and a given vertical load is applied
at the joint oab.

A

FIG. 132. FIG. 132 a.

The force diagram is shown on the right. The rod

oc is a tie, and the other two are struts.

It is often convenient to indicate in the space diagram
which of the rods are ties, and which are struts. This

we can do by drawing a double or thick line to indicate

a strut, and a single or thin line to indicate a tie. Thus :

FIG. 133.

Or, it is found convenient to mark a strut + , and a tie .
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123. Ex. 1. Four fine light rods, of lengths 4, 3, 4, 3

feet respectively, are freely jointed at their extremities

to form a parallelogram. To one of the o.ngular points

\

there is attached a mass of 60 pounds, and the whole

is supported at the opposite angular point. What
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horizontal forces must be applied at the other two-

angular points, in order that the framework may rest

with the lowest joint 5 feet vertically below the point

of support ? Find also the stresses in the rods.

FIG. 134 a.

Having constructed the space diagram to scale, let

the different portions of the figure be marked with the

letters o, a, b, c, d, as indicated. The line cd, being the

line of action of the force of constraint at the point
of support, is at present unknown.

With any suitable scale, draw AB vertically down-

wards, of length 60 units, to represent -the tension of

the string which supports the mass. Draw through
A and B straight lines AOG, BOD parallel to ao, bo

respectively, to meet the horizontals through B and A
in C and D respectively.

On measuring the lines OA, OB, OC, OD, BC, DA,
we find that the tensions of the rods oa, ob, oc, od and
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the two horizontal forces are 36, 48, 64, 27, 80, 45

pounds' weight respectively.

Also, GD determines the magnitude and direction of

the force of constraint at the point of support.
124. Ex. 2. The extremities H and K of a fine light

rod, of given length, are connected with a fixed point L
by tivo fine light strings, each of given length. From
H and K are suspended two masses of given iveights.

It is required to find the position of equilibrium,
the tension of each string, and the thrust in the

rod.

The data are sufficient to enable us to construct the

shape of the framework, but not its position relatively
to the vertical.

Let W
l
and W

2
be the measures of the loads applied

at H and K respectively.

of IB

FIG. 135. FIG. 135 a.

Considering the equilibrium of the triangle HKL as

one rigid body, we see that the action at L has to
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balance two vertical forces W
1
and W2

at H and K
respectively. Hence we divide HK in the point N, so

that HN:NK=W2 : Wr Then LN must be vertical.

This determines the position of equilibrium, and the

force diagram can now be constructed.

125. Ex. 3. In the system, indicated below, the

point obc is fixed, and the joint oca is connected

with another fixed point by a fine light rod ac. A
given force is applied in a given direction ab to the

joint oab. It is required to find the stresses in the

rods.

FIG. 136. FIG. 136 a.

We can draw AB to represent the given force
;
then

AO and BO, determining the point 0} then 00 and

AC, determining the point (7.

The straight line BO represents the constraint upon
the hinge obc

;
the straight line CA represents the con-

straint upon the rod ac at its fixed extremity.
126. Ex. 4. The accompanying figure represents a

frameivork of four light rods freely jointed at their
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extremities. The points obc and oda are fixed, and

forces P and Q of given magnitudes are applied in

given directions at the other two joints, as indicated.

It is required to find the stresses in the rods, and the

actions at the two fixed points.

FIG. 137.

n

FIG. 137 a.

Draw AB to represent P (which acts along the line

ab) in magnitude and direction. Draw AO, BO parallel

to ao, 60 respectively. This gives the point 0. The

directions of OC, OD can be drawn parallel to oc, od

respectively.

Take any point C' in OC, and draw C'jy to represent

Q (which acts along cd) in magnitude and direction.

Draw D'D parallel to CO, to meet OD in D. Through
D draw DC parallel to DC', to meet OC in C. Thus

we have the points C and D. We complete the force

diagram by joining B, C and D, A. Then BC and

DA represent the actions at obc and oda respectively,

and the stresses in the rods are given by OA, OB,

OC, OD.
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Below we give the figures for the case in which

P and Q are parallel, and in the same direction.

FIG, 138.

EXAMPLES XIV.

1. Two fine light rods AB and 5(7, each of length 5 feet, are

freely jointed at B, and rest in a vertical plane, upon a smooth

horizontal plane at A and C. A load of 40 pounds is applied

at By and the system is kept from collapsing by a fine light

string, of length 6 feet, connecting the extremities A and C of

the rods. Find the reactions at A and C, the tension of the

string, and the thrusts in the rods.

2. The extremities H and K of a fine light rod are connected

with a fixed point L by two fine light strings, each equal in

length to the rod. From H and K are suspended masses of 21 and

35 pounds respectively. Find the position of equilibrium, the

tensions of the strings, and the thrust in the rod.
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3. Three fine light rods EC, CA, AB, of lengths 15, 13, 14

inches respectively, are freely jointed at their extremities to form
the triangular framework ABC, which is capable of turning freely
about the fixed point A. To the joint C there is applied a force

of 56 pounds' weight in a direction perpendicular to AB, and
outwards from the triangle. What force must be applied at the

joint B, in a direction perpendicular to the rod CA, to preserve

equilibrium ? Find also the stresses in the rods and the action

at the hinge A.

4. Three equal rods, of no appreciable weight, are freely jointed

together at their extremities to form a triangular framework

ABC, which is capable of turning freely in a vertical plane about

the joint A, which is fixed. A mass of 100 pounds is suspended
from B, and the framework is sustained in a position in which
AB is horizontal, and C uppermost, by means of a horizontal

fine string CD, which connects C with a fixed point D. Find

the tension of the string and the stresses in the rods
; determine

also the magnitude and direction of the reaction at A.

5. The triangular framework of Question 3 is capable of turning

freely about the joint B, which is fixed
;
a load of 168 pounds

is applied at C, and the whole is supported with AB horizontal,

and C below AB, by means of a vertical force applied at A.

Find the magnitude of this force, the reaction at B, and the

stresses in the rods.

6. Four fine light rods are freely jointed at their extremities

to form a quadrilateral ABCD, the rods AB, AD being each of

length 7*5 inches, and the rods BC, CD each of length 11 '7 inches.

A mass of 48 pounds is attached at C, and the whole is supported
at A. What horizontal forces must be applied at B and D so

that the points B and D may rest 9 inches apart in a horizontal

line? Find also the tensions of the rods.

7. Four fine rods, of no appreciable weight, and each of length
5 feet, are freely jointed at their extremities to form a rhombus

ABCD, which is placed between two parallel walls, distant 8 feet

apart, so that the framework touches the walls at B and D, and

the straight line BD is horizontal and perpendicular to the walls.
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If the joints A and C are pressed towards one another, with forces

each of 60 pounds' weight, find the pressures upon the walls.

8. In Art. 123, suppose that the line da passes through the

opposite angular point, and that otherwise the data are unaltered.

Find the forces applied in the lines be, da, and the stresses in

the rods.

9. Four fine light rods are freely jointed together at their

extremities to form a parallelogram ABCD, AD being of length

9 inches and AB of length 13 inches. The point A is fixed, and

is attached to a fixed point E, by a fine elastic string, so that

the points A, C, E are in one straight line. The points B and

D are pulled apart 10 inches by forces of 100 pounds' weight,

applied at B and D in the line BD. Find the tension of the

string and the actions in the rods.

10. A fine light string ABCDEF, of length 33 inches, has its

extremities fixed at two points A and F, situated 27 inches apart
in a horizontal line. The portions of string AB, EC, CD, DE, EF
are of lengths 8^, 5, 6, 5, 83 inches respectively, and another light

string, of length 12 inches, connects the points B and E. Two

masses, each of 24 pounds, are suspended from C and D, and

the whole system rests in a symmetrical position with BE and

CD horizontal. Find the tension of each portion of string.

11. A light rod AB, of length 1 foot, rests in a horizontal

position, with masses each of 16 pounds suspended from A and

B. A fine light string ACDB, of length 16 inches, has its ex-

tremities attached at A and B, and the whole is supported by
means of two vertical forces applied at C and D. The portions

of string AC, CD, DE are of lengths 5, 6, 5 inches respectively,

and the whole rests in a symmetrical position with CD hori-

zontal. Find the tension of each portion of string.

12. Four fine light rods, each of length 5 feet, are freely

jointed at their extremities to form the rhombus ABCD. The

joints B and D are fixed, B being 6 feet vertically above D, and

masses of 30 and 60 pounds are hung from A and C respectively.

Find the stresses in the rods and the magnitudes of the reactions

at B and D.

D.S. P
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13. Two fine light rods AB, EC, each of length 2 feet, are

freely jointed together at the point B, which is fixed. The rods

rest in a horizontal position, with masses of 70 and 84 pounds

hung from A and C respectively, being supported by two fine

strings connecting A and C with a fixed point D, situated 7 inches

vertically above B. Find the magnitudes of the actions at B
and D, the tensions of the strings, and the stresses in the rods.

14. A fine light string ABODE, of length 49 inches, has its

extremities attached to the fixed points A and E, situated 33 '8

inches apart in a horizontal line, and supports at its middle point

C a mass of 78 pounds. Two fine light rods BF, FD, each of

length 15 '6 inches, are capable of turning freely about the fixed

point F, which is situated at the middle point of AE
;

the rods

are attached to the string at points B and D, distant 6'5 inches

from A and 6 '5 inches from E respectively. Find the tensions

of the different parts of the string, and the thrusts in the rods.

15. Three fine light rods are jointed together at their ex-

tremities to form a triangle ABC, which is right-angled at B.

The framework rests in a vertical plane upon a smooth horizontal

plane at A and C, and supports a load at B. If BD is drawn

perpendicular on AC, prove that the reactions at A and C, the

load at B, the thrusts in the rods AB, BC, and the tension

of the rod AC are proportional to DC, AD, CA, BC, AB, BD
respectively.

16. Four fine light rods are freely jointed at their extremities

to form a parallelogram ABCD, which is in equilibrium under

the influence of forces P, Q, R, S, acting at A, B, C, D respectively.

If the forces P and R are equal and opposite, their lines of action

passing through the middle points of BC, DA respectively, prove

that the forces Q and S are also equal and opposite, and that their

lines of action pass through the middle points of DA, BC respec-

tively. Prove also that, if H be the middle point of BC, the

forces P and Q, and the tensions of the rods AB, BC, CD, DA,
are proportional to HA, DH, AB, BH, CD, EC respectively.

17. Four fine light rods are freely jointed at their extremities

to form a quadrilateral framework ABCD, which is in equilibrium
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under the influence of forces applied at A, B, C, D. If the forces

applied at A and B are equal, and in opposite directions, prove
that BG must be parallel to AD, arid that the forces at C and

D are also equal and in opposite directions.

18. Four fine light rods are freely jointed at their extremities

to form a quadrilateral framework ABCD, in which AD is parallel

to BC, and the framework is kept in equilibrium under the

influence of forces P, P, Q, Q, applied at A, B, C, D, in directions

CD, DC, AB, BA respectively. Prove that the forces P and Q,

and the stresses in the rods AB, BC, CD, DA, are proportional
to CD, AB, AB, BC-AD, CD, BC ~ AD respectively.

19. Three fine light rods are freely jointed at their extremities

to form a triangular framework ABC, which is in equilibrium
under the influence of three forces applied at A, B, C, in the

lines OA, OB, OC respectively. Any point A' is taken in BC,
and straight lines through A', parallel to BO and CO, meet AO
in C' and B' respectively. Prove that

(i.) The straight lines through C' and B', parallel to AB
and CA respectively, meet at a point 0' in BC.

(ii.) The forces in the lines OA, OB, OC, and the stresses

in the rods BC, CA, AB, are proportional to B'C',

C'A, AB', O'A', O'B', O'C' respectively.

{iii.) If is the centre of a circle which touches each side

of the triangle ABC, 0' is the centre of the circle

which circumscribes the triangle A'B'C', and hence

the stresses in the three rods are equal to one

another.

{iv.) If is the orthocentre of the triangle ABC, the figure

A'B'C'O' is similar to the figure ABCO, and hence

the forces in the lines OA, OB, OC, and the stresses

in the rods BC, CA, AB are proportional to BC, CA,

AB, OA, OB, OC respectively.

{v.) If is any point on the circle which circumscribes the

triangle ABC, the figure A'B'C'O' is similar to the

figure ABCO, and hence as in (iv.).
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(vi.) If is the intersection of the medians of the triangle

ABC, 0' is the intersection of the medians of the

triangle A'B'C'
;

also the forces in the lines OA,

OB, 00, and the stresses in the rods BO, OA, AB
are proportional to 30A, SOB, WC, BC, OA, AB
respectively.

(vii.) If ABOO is a parallelogram, O'A'B'O' is similar to

OBAC, and hence the forces in the lines OA, OB,

00, and the stresses in the rods BC, CA, AB are

proportional to OA, OB, AB, BC, CA, OC respectively.

20. A number of fine light rods are jointed together at their

extremities to form a closed plane polygon. is any point in

the plane of the polygon. Show that a system of forces can be

found such that, acting at the joints along straight lines which

intersect at 0, they will keep the framework in equilibrium.

Prove also that the stresses in the different rods are inversely

proportional to the lengths of the perpendiculars from upon
those rods respectively.

21. Four fine light rods are freely jointed at their extremities

to form a parallelogram ABCD. is a point which divides AC
in the ratio of 2:1. The framework is in equilibrium under

the influence of forces applied at the joints A, B, C, D, in the

directions OA, OB, OC, OD respectively. Prove that the forces

in the lines OA, OB, OC, OD, and the tensions of the rods AB,

BC, CD, DA, are respectively proportional to 30.4, GOB, 12(9(7,

GOD, 2AB, 4BC, CD, 2DA.

22. A number of fine light rods are jointed freely at their

extremities to form a closed polygon ABCD ...
,
which is in equili-

brium under the influence of forces acting at the joints A, B,

C, D, ..., in the lines OA, OB, OC, OD, ... respectively. Prove

that, if the stresses in the rods AB, BC, CD, . . .
,
and the forces

at the joints A, B, C, D, ... are proportional to AB, BC, CD, ...,

OA, OB, OC, OD, ... respectively, (i.) the number of rods is six,

(ii.) opposite rods are equal to one another, (iii.) each diagonal

is parallel to each of two opposite sides and equal to the sum

of those sides, (iv.) the point is the middle point of each

diagonal.



CHAPTER XV.

OPEN POLYGON OF FINE LIGHT RODS.

SUSPENSION BRIDGE.

127. Let us suppose that in a framework, like that

considered in the last chapter, one of the rods is

missing, and that the two extreme rods are freely

hinged at their extremities to two fixed points.

The figure below indicates such a system of rods,

the extreme rods oa and oe being hinged to the fixed

points H and K respectively.

FIG. 139. FIG. 139 a.

The external forces acting upon the rods oa and oe,

at their extremities H and K respectively, are evidently

in the directions of the rods themselves.
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The student will have no difficulty in constructing

the force diagram, which is done just as in the preceding

chapter. The polygon OABCDEO is the force polygon
for the whole system. For the joint abo we have the

triangle ABOA ;
for the joint bco the triangle OBCO,

etc.

I. If the rods are all given in position, and also the

directions of the applied forces, we can draw the force

diagram, provided we know the magnitude of one only

of the applied forces.

Suppose, for instance, that all the lines of the space

diagram are given, and that the force which acts along

the line be is fully known. We can then draw BO
and the straight lines BO, CO meeting in 0. Then

the directions of the lines OA, OD, OE can all be

drawn. We can also draw the directions of BA, CD,
thus determining the points A and D respectively ;

and

from D we can draw DE.

II. If the applied forces are all fully known, that

is, in magnitude, direction, and line of action, we can

complete both diagrams, provided we know the positions

of two adjoining rods only.

For, as the forces are all known, we can construct

the line ABODE. If also the rods ob, oc are given in

position, we can draw OB, OC, thus determining the

point ;
and the rest of both figures is easily com-

pleted. This will not, however, give us the positions

of the points H and K, unless the lengths of the

extreme rods are given.

128. A fine light string is attached at its extremities

to two fixed points, and rests in a vertical plane under

loads applied to it at different points.
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This is a particular case of the preceding. The line

ABODE is now straight and vertically downwards.

A
H

K

FIG. 140.

If we imagine the different portions of the string

to be replaced by bars, and the whole polygon inverted

and changed from left to right, the shape remaining

unaltered, the same force diagram would apply.

In this case, however, the slightest disturbance would

cause the whole thing to collapse. The equilibrium is

what is called unstable. See Art. 41.

129. The case in which a fine light string rests

under loads, which are all equal and at equal horizontal

distances apart, is important.
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The student is recommended to draw the figures for

himself. He will take a number of equidistant parallel
vertical lines, marking the spaces between them a, ~b,

c, d, etc. Then he will draw the straight line ABGD ...

vertically downwards, marking off AB, BC, CD, etc.,

FIG. 142. FIG. 142 a.

all equal to one another. He will draw two straight
lines od, oe across the spaces marked d and e respec-

tively, and OD, OE parallel to od, oe respectively.
This gives the point 0, and the rest easily follows.

An examination of the two figures will show at once

that the tension of each portion of the string is pro-

portional to its length.

130. We have drawn in the space diagram of the

preceding article a closed curve intersecting two of the

strings ob, oh, and enclosing a portion of the system
within it.

Regarding the matter included within this curve as

one rigid body, let us consider the equilibrium of the
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forces acting externally upon it. These are: The ten-

sions of the two strings ob, oh, together with the

weights of all the parts included. The weights of

all these parts reduce to a single force represented by
Btf, and acting along a vertical straight line situated

midway between be and gh.

.'. the strings ob, oh intersect at a point midway
between be and gh, and the triangle of forces for this

portion of the system is OBHO.
This gives a method of constructing the space diagram

without drawing the force diagram:

Let Aa, Bb, Cc, etc., be consecutive parallel lines

in which the loads are applied, and let the strings

be denoted by AB, BG, CD, etc. We will suppose that

the two strings AB, EG are given.
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Produce the line AB to meet Cc, Dd, Ee, etc., in

the points #, 4, 6, etc., and find the middle points 1,

3, 5, etc., of B%, 24, 46, etc.

Then, joining 1C, and producing to D, we have the

string CD
;
also D gives the string DE, 3E gives EF,

and so on.

131. Now let us suppose that the loads are sufficiently

numerous to enable us to look upon the string as a

continuous curve instead of a series of straight lines.

The above piece of work will enable us to examine the

nature of this curve.

We will suppose that the points H and K are situated

in a horizontal line. Let P and Pf

be any two points on

the curve, and let the tangents at P and P' intersect

in Q. Draw PN, QR, P'N' perpendiculars to HK.

K N' B 7? N H

P'

FIG. 144. FIG. 144 a.

Then the curve must be such that the point Q lies mid-

way between PN and P'N' for all positions of P and

Pf

;
that is, R must be the middle point of NN'. Also,

the force diagram for the portion of string between

P and P' is a triangle pp'Op, in which pp' represents
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the total weight supported between P and P', and is

therefore proportional to NN', and p'O, Op are parallel

to the tangents at P' and P respectively, and represent

the tensions at those points.

K B H

A
FIG. 145.

E D

If P and P' be taken to coincide with H and K
respectively, Q will lie vertically below B, the middle

point of HK, and, as H and K
^

may be taken to be any two points

of the string which lie in a hori-

zontal line, it follows that the figure

is symmetrical about the vertical

through B. Let A be the lowest

point of the curve, then A is verti-

cally below B.

Take Pf

to coincide with A, and

let the tangent at P and the verti-

cal through P meet the horizontal

FIG. 145 a.
through A in L and M respectively. O

Then L is the middle point of AM,
and the triangle of forces for the portion AP is paOp,
where aO is horizontal, and represents the tension at

A, Op is parallel to ZP, and represents the tension at
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P, and pa represents the whole weight supported be-

tween A and P, and is proportional to AM.
Now let P move up to H, and let L, M, p become

E, D, h respectively for this new position of P. Then

E is the middle point of AD, and ha represents half

of the whole weight supported by the string. Thus

ap :ah=AM: AD
[We have

PMl PMl ol a ak AM DH

_AM AB
-~BH'BH'

PM fAM\z

.'.
~A~R \ftlj)

That is, PM varies as the square

of AM.
The student of Higher Mathematics will know that

this shows that the curve is a parabola, with its axis

vertically upwards.]
132. If we know the positions of the points H, K, A

and the whole weight supported, we can determine (i.)

the directions of the string at H and K, and the tensions

at those points and at A
; (ii.) the tension at any

point of the string where its direction is given ; (iii.)

the tension at any given horizontal distance from A
;

and (iv.) the position of any number of points on the

string.

(i.) The positions of the points H, K> A determine

the rectangle ADHB. We can therefore find E, the

middle point of AD, and, joining EH, we have at once

the direction of the string at H.

If the whole weight supported is known, we can

draw ha vertically downwards, and of such a length
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that it represents half the weight. Then we draw hO

parallel to HE, to meet the horizontal through a in 0.

Measuring Oh and aO, we have the tensions at H and A

respectively.

(ii.) Draw Op in the given direction, to meet ah in p.

Then Op represents the tension at that point of the

string where it is parallel to Op.

(iii.) Take AM equal to the given horizontal distance,

and find a point p in ah such that ap : ah=AM : AD.

Then Op represents the tension at the point P, which

is vertically over M.

(iv.) We can obtain the position of the point P, cor-

responding to a given position of M, by bisecting AM
in L, and drawing LP parallel to Op, to meet the vertical

through M in P. By varying the position of M we
can get as many points as may be required.

133. The problem we have been discussing is ap-

proximately that of the ordinary suspension bridge.

Here we may neglect the weight of the chain, and

that of the suspending rods, in comparison with that

of the roadway. The loads suspended from successive

portions of the chain are equal portions of the

roadway. If the lengths of the pieces are so adjusted

that the curve of the string takes up the shape we
have been considering, the tensions of the supporting

rods would not then tend to break or bend the roadway,
which must be made strong enough to bear without

bending, the strain due to loads moving across it.

134. Ex. 1. The figure below represents a beam, of

length 50 feet, and weighing 100 pounds, resting in a

horizontal position, being supported by five light ver-

tical strings connecting it with a light chain. The
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strings are at equal horizontal distances apart of 10

feet, the middle one being attached to the middle point
of the beam. The lowest parts of the chain are each

inclined at an angle of 85 to the vertical. Determine
the directions of the remaining parts of the chain, and
the tensions of those parts, in order that the tensions

of the five strings may le equal to one another.

FIG. 146.

We cannot at the outset draw the whole chain. Take

a straight line ABGDEF vertically downwards, of length

A

o-

FIG. 146 a.

100 units, and make AB = BC
units.

CD

E

F

EF=20
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Make the angles DCO, CDO each equal to 85, thus

determining the point 0, and draw OA, OB, OE, OF.

Then, on measuring the lines OA, OB, OC, we see

that

the tensions of oc, od are each 115 pounds' weight,

ob, oe 118

oa, of 125

Also the angles OBE, OEB are found to be each

75J, and the angles OAF, OFA each 66J. Hence the

strings ob, oe are each inclined at 75J to the vertical,

and the strings oa, of each at 66J.
135. Ex. 2. A suspension bridge, 20 feet broad, and

of 120 feet span, is supported by two parallel chains,

each of which dips down 16 feet in the middle. The

n

A
FIG. 147.

M. 1)

FIG. 147 a.

mass of the roadway is 100 pounds per square foot ;

find the tension of each chain at the lowest point, and
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also at points a quarter of the way across the bridge.

If the shortest distance between the chains and the

roadway is 2 feet, find the distances of the roadway
below the chains at intervals of 15 feet, commencing at

the centre of the bridge.

The total mass of the roadway = 120 X 20 x 100 pounds,
therefore the total load upon each chain= 120,000 pounds.
Draw a horizontal straight line HBK, of length 120

units, to represent the span of the bridge. Through B,

the middle point of HK, draw BA vertically downwards,
of length 16 units, and let the horizontal through A
meet the vertical through H in D. The point A re-

presents the lowest point of the chain.

In AD take points M lt
M

2 ,
M

3
so that

each portion representing 15 feet.

Draw ha vertically downwards, of length 60,000 units,

to represent half the load supported by each chain,

and let the horizontal through a meet in the straight
line drawn through h parallel to HM

2
. Then Oa repre-

sents the tension of each chain at its lowest point.

In ah take points pv p2 , pB so that

Then Op2 represents the tension of each chain at points
a quarter of the way across the bridge.

Let the straight line through the middle point of

AMV parallel to Oplt
meet the vertical through M1

in

P
lt

also the straight line through Mlt parallel to Op2 ,

meet the vertical through M2
in P

2 ,
and the straight

line through the middle point of M^M^ y parallel to Op3 ,

meet the vertical through M3
in P3 . Then the points
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P
a ,
P

2 ,
P

3 represent points on the curve formed by one

of the chains.

On measurement we find that

Oa = 113,000, 0^2
= 116,000.

Therefore the tension at the lowest point of each chain

is 113,000 pounds' weight, and at a point a quarter
of the way across the bridge 116,000 pounds' weight.

Also we find Pflfl

and, as the roadway is 2 feet below A, we see that

the distances of the roadway below the chains at

intervals of 15 feet, commencing at the centre of the

bridge, are 2, 3, 6, 11, 18 feet.

EXAMPLES XV.

1. The light rods AB, BC, CD are freely jointed at B and (7,

and the points A and D are smoothly hinged to two fixed points

situated in a horizontal line. If the figure ABCD is one half of

a regular hexagon when two masses are suspended from B and

C, prove that the weights of the two masses are equal, and

determine the stresses in the rods in terms of the weight of

either mass.

2. Three light rods AB, EG, CD, of lengths 8, 5, 5 inches respec-

tively, are freely jointed at B and (7, and the points A and D
are smoothly hinged to two fixed points, D being situated 7 inches

vertically above A. A mass of 7 pounds is suspended from B,
and the system rests with AB parallel to DC, being supported

by a force applied at C in a direction opposite to the bisector of

the angle BCD. Find the magnitude of this force and the stresses

in the rods.

D.S. Q
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3. A light rod AB, of length 17 inches, is capable of turning

freely about the end A which is fixed. A fine string, of length
28 inches, has one extremity attached at B, and the other extremity
at D, a fixed point situated 3 inches vertically above A. Find

what vertical force must be applied at C, a point of the string
15 inches from D, in order that the rod may rest in a horizontal

position, with a mass of 48 pounds attached at B. Find also the

tensions of both parts of the string and the stress in the rod.

4. A light rod AB is capable of turning freely in a vertical

plane about the fixed point A. It is supported in a horizontal

position, with a mass of 30 pounds attached at B, by means of a

fine string BCD attached to a point D vertically above A. Find

what force must be applied at the point C, in the direction AC, to

preserve equilibrium, supposing that ACB is an equilateral tri-

angle, and DCB a right angle. Find also the tensions of both

parts of the string and the stress in the rod.

5. A fine light string ABCD has its extremities fixed at A
and D, and supports a mass of 100 pounds at B. What load must

be applied at (7, in order that BC may be horizontal, and the

angles ABC, BCD equal to 120 and 150 respectively? Find

also the tensions in the different parts of the string.

6. A beam weighing 100 pounds is supported in a horizontal

position by means of four light vertical strings, arranged at in-

tervals of 10 feet, which connect it with a light chain supported
at its extremities. The extreme parts of the chain are inclined

at angles of 40 to the vertical ;
determine (i.) the directions,

(ii.) the lengths, (iii.) the tensions, of the other parts of the chain,

in order that the tensions of the vertical strings may be equal

to one another.

7. A suspension bridge, of 60 feet span, is 10 feet broad, and

is supported by two parallel chains, each of which dips down

32 feet in the middle. The mass of the roadway is 40 pounds

per square foot, and the shortest distance between the roadway
and either chain is 1 foot. Find (i.) the inclination of the chain

to the vertical at each end of the bridge, (ii.) the tension at each

end, (iii.) the tension at the lowest point, (iv.) the distance of the
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roadway below the chain at a point one-third of the way across

the bridge.

8. A fine light string ABCD has its extremities A and D
fixed, and is in equilibrium under the influence of forces acting

at B and C in directions DB, AC respectively. If the figure

ABCD is a parallelogram, prove that the tensions of AB, BC,
CD and the forces acting at B and C are proportional to AB,
BC, CD, DB, AC respectively.

9. A fine light string HPAK has its extremities fixed at two

points H and K, situated in a horizontal line, and rests in a

vertical plane under the influence of a load distributed uniformly
in a horizontal direction. A is the lowest point and P any other

point of the string in the position of equilibrium. The horizontal

through A meets the verticals through P and H in M and D
respectively, and L is the middle point of AM. A straight line

through M perpendicular to LP meets the vertical through A
in 0. Prove that, for all positions of P,

(L) is a fixed point.

(ii.) The tension at P, the tension at A, and the weight
of the whole load supported are proportional to OM,

OA, 2AD respectively.

(iii.) If S is the middle point of OA, SP=MP+AS.

(iv.) LP 'bisects the angle SPM.

(v.) If OM and SP intersect at N, PM=PN, and the locus

of N is a circle with its centre at S.

(vi.) AM2 =20A.PM.

(vii.) IfAM= n. AD, n being a numerical fraction, PM=nz
. HD.

(viii.) If a straight line through A, perpendicular to OM, meets

J/Pin Q, QM=2.PM.

(ix.) Without making use of the point 0, let a straight line

through L, perpendicular to LP, meet the vertical

through A in S. Then S is a fixed point, and the

tension at P, the tension at A, and the weight of
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the whole load supported are proportional to SLr

SA, AD respectively ;
also S is the same point as

before.

(x.) If AD=2.ffD, the tension at A is half the weight of

the whole load supported, and the string at H makes

an angle of 45 with the vertical.

(xi.) At a point where the tension of the string is double

the tension at the lowest point, the string makes-

an angle of 60 with the horizontal.



CHAPTER XVI.

STIFF QUADRILATERAL FRAMEWORK OF FINE
LIGHT RODS.

136. Four fine light rods are freely jointed at their

extremities to form a quadrilateral, ivhich is stiffened

by another fine light rod connecting two opposite joints.

FIG. 148. FIG. 148 a.

It is required to consider the equilibrium of the frame-
work under the influence of forces applied at the

joints.
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Let Pv Xv P
2 ,
X

2
be the measures of the forces

applied at the joints abov o-pco2 ,
o
2cd, o

2
dao

l}
as indicated

in the left-hand figure.

The force diagram for the point abo
l
will be a triangle

ABO^ (this way round), in which AB represents Px
and

AOV B0t
are parallel to the rods ao

lf
bo

l respectively.

Now let BO be drawn representing Xl ;
then O

l
B

r

BC represent two of the forces acting upon the joint

O
1
6co

2
. The force diagram for the point o^bco2

is there-

fore the quadrilateral O^BCO^O^ (this way round), in

which CO
g, X 2

are drawn parallel to the rods co
2 ,
o
a
o2

respectively.

If now CD be drawn to represent P2 ,
then 2 (7,

CD

represent two of the forces acting upon the joint o2
cd.

Therefore D02
must represent the remaining one, i.e.

D02
must be parallel to the rod do

2
and represent the

action of that rod upon the joint o
2cd. The triangle

of forces for the joint o
2
cd is thus

2
CD0

2 (this way
round).

Now, considering the joint ao^o2d, we see that three

of the forces acting upon it are represented by A0
lf

1 2 , 2
D. Hence the remaining one X

2
must be re-

presented by DA, and the force diagram for the joint

ao^d is the quadrilateral AO^O^DA (this way round).

Thus we see that for equilibrium it is necessary and

sufficient that the force polygon representing the ex-

ternal forces applied to the framework should close r

and that the line
1 2

should be parallel to the rod

o^, where O
l

is found by drawing AOV B0
l parallel

to the rods aov bo
: respectively, and 2 is found by

drawing C02 ,
D0

2 parallel to the rods co2 ,
do2 respec-

tively. When the figure is in this way completed the
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lines drawn parallel to corresponding rods represent

the stresses in the rods.

137. It will be noticed that the framework in this

case is not deformable, and is practically a rigid body.
As the stresses in the rods can be of any magnitude
and in either direction, it is necessary and sufficient

for equilibrium that the four forces Pv Xv P
2,
X

z

should form a system in equilibrium. For this the

force polygon must close, and any funicular polygon
which corresponds to a pole must also close.

In particular cases it is sometimes more advantageous
to make use of such a funicular polygon in finding

any of the applied forces which may be unknown. The

points O
l
and

2
can then be found, and thus the

stresses in the rods determined.

138. The force diagram becomes greatly simplified

if one of the forces X
2
vanishes. We give the figures

below, which the student should think out for himself.

FIG. 149 a.

Here it may be advantageous to make use of the fact

that the lines of action of P
lt X, P2

must be concurrent.
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If the point of concurrence is inaccessible we might
then make use of the funicular polygon.
We give below the figures for the case in which P

lt

P
2 ,
and X are parallel.

Or thus :

C'

-^ 0)

FIG. 150 a.

B

FIG. 151.
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The case in which X^ and X
2
both vanish has been

considered in Art. 43.

139. In the general case above, suppose that one side

of the framework is fixed in position. The extremities

of this rod then become fixed points, and we may
suppose the rod itself removed. The figures of Art. 136

then become as below, the rod o
2
d having been removed,

and the lines of the force diagram which meet in D
having all been cut out.

B

FIG. 152. FIG. 152 a.

The student should think out the problem for himself

independently of the general case.

The points / and J are fixed points.

If we join 2A, we have a straight line represent-

ing the reaction at the hinge /.

140. Ex. 1. Four rods HK, KL, LM, MH, of lengths

3, 4, 3, 4 feet respectively, are freely jointed at their

extremities to form a rectangular framework, which

is stiffened by another fine light rod connecting the

hinges K and M. The framework is capable of turning

freely in a vertical plane about the point H which is
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fixed, and rests with KM horizontal under a load of
100 pounds applied at L and an unknown horizontal

force applied at M. Find the magnitude of the force
at M and the action in each rod.

100

FIG. 153.

Having constructed the space diagram to scale, we
mark it with the letters a, b, c, ov o

2 ,
as in the figure.

With any suitable scale, draw AB vertically down-
wards of length 100 units, to represent the weight of
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the mass supported at L. Draw AOV B0
l parallel to

aov bc>i respectively, thus obtaining the point O
l ;

draw

A0.2 , 0^2 parallel to ao2 ,
o
{
o2 respectively, thus ob-

taining the point 2 ;
draw ZG, BG parallel to o

2c,
be

respectively, thus obtaining the point C.

The triangle of forces for the joint abo
1

is ABO^
(this way round) ;

hence the rods KL, LM are tie rods.

A

B C
FIG. 153 a.

For the joint o^bco^ we have O^BCO^O-^ (this way round);

hence MH is a tie rod and KM a strut.- For the joint

o
1
o
2
a we have

1 2
A0

1 (this way round); hence KH
is a tie rod.

On measuring the lines of the force diagram, we see that

the force applied at M is 58'3 pounds' weight,

the actions in the rods HK, EL, LM, MH are ties

of 45, 60, 80, 106'7 pounds' weight respectively,
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and the action in the rod KM is a strut of 75

pounds' weight.
The force of constraint at H is represented by CA

t

and it will be found that this line is parallel to the

line joining H to the point where the vertical through
L meets KM.

141. Ex. 2. HKLM is a framework of four light rods

f given lengths loosely jointed at their extremities.

The hinges H and L are connected by means of a

fine string of given length. Given loads are attached

at K and M and the whole is suspended from H. It

is required to find the position of equilibrium, the

tension of the string, and the stresses in the rods.

FIG. 154.

The data are sufficient to enable us to construct the

.shape of the framework, but not its position relatively

to the vertical.

Let W
l
and W2 be the weights of the loads suspended

from K and M respectively. Divide KM in the point N
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so that MN:NK=W
l
:W

2
. Then the point N must

be vertically below H. This determines the position

of equilibrium.

Having lettered the portions of the space diagram as

indicated, we draw GAB parallel to HN, making CA r

AB of lengths W2
and W

1
units respectively. Draw C0

2 ,

A
2 parallel to the rods co

2 ,
ao

2 respectively ;
this gives

us the point 2
. Draw AOV BO^ parallel to the rods

aov 60J respectively, and we have the point Or Then

2 l
must be parallel to the string o

2
or

On measuring the lines of the force diagram we
have all the stresses required.

142. Ex. 3. The accompanying figure represents a

framework of light rods resting on tivo smooth hori-

FIG. 155.

zontal supports and loaded at the joint abo^ with a

mass of given weight W. It
.
is required to find the

pressures on the supports and the stresses in the rods.
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Let R and S be the reactions of the supports acting

along the lines be, ca respectively, as indicated.

Draw AB to represent W, and let two parallel lines

through A and B meet be and ca in A' and Bf

re-

spectively. Let AB' meet the line ab in C". Draw
C'C parallel to AA to meet AB in C. Then BC and

(M represent R and $ respectively.

We can now construct the triangles of forces BCO^B,
CA0

2
C for the joints bcov cao

2 respectively. X 2
must

then be parallel to the rod o^, and represent the

stress in that rod.

The two lower rods and the middle
v

rod are seen

to be ties, and the two upper rods struts.

143. Ex. 4. The framework of light rods represented

below rests upon two smooth supports situated in a

horizontal line, as indicated in the diagram. Loads

FIG. 156. FIG. 156 a.

of given weight Wl
and W2

are applied at the joints

abov bco
2
ov as indicated. It is required to find the

pressures on the supports and the stresses in the rods.
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Taking AB vertically downwards of length Wt units,

we can construct the triangle ABO^A, the force diagram
for the joint abor Then drawing BC vertically down-

wards of length W2 units, we can draw the lines C0
2 ,

0^02 ,
and thus complete the force diagram for the

joint bco
2
or Then, drawing 2

D parallel to the rod O
2
d

to meet AC in D, the force diagram is complete.

EXAMPLES XVI.

1. Four rods, of no appreciable weight, and each of length 4

feet, are hinged together at their extremities to form a rhombus

ABCD, and the hinges A and C are connected by a fine light

string of length 7 feet. If the rhombus is suspended from A,
and masses, each weighing 1 cwt., are suspended from B and D,
determine the tension of the string and the stresses in the rods.

2. ABCD is a framework of four light rods freely jointed

together at their extremities, AB and AD being each of length
4 feet, BC and CD each of length 2 feet. The' hinge C is con-

nected with A by means of a fine light string of length 5 feet,

masses of 100 pounds each are attached at B and D, and the

whole is suspended from A. Find the tension of the string and

the stresses in the rods.

3. Three fine light rods BC, CD, DB, of lengths 8, 17, 15

inches respectively, are freely jointed at their extremities to form

a triangular framework BCD, which is capable of turning freely

about the fixed point D. Another light rod AB, of length 9

inches, connects B with a fixed point A, situated 12 inches verti-

cally above D. To the joint C is attached a mass of 300 pounds ;

find the stresses in the rods.

4. Four light rods, each of length 20 inches, are freely jointed

together at their extremities to form a rhombus ABCD. The

hinges A and C are connected by a fine string, of length 24 inches.

Loads of 7 and 25 pounds are applied at B and D respectively,

and the whole is suspended from A. Find the position of equili-

brium, the tension of the string, and the stresses in the rods.
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5. ABCD is a framework of four light rods freely jointed

together at their extremities, AB and EC being each of length
20 inches, CD and DA each of length 15 inches. A fine stringr

of length 2 feet, connects the hinges A and C. A mass of 108

pounds is suspended from B, and the whole is supported at A,

What load must be applied at D in order that AC may be
vertical? Find also the tension of the string and the stresses-

in the rods.

6. The framework of Art. 140 is capable of turning freely

about H, which is fixed, and rests with MK vertically down-

wards, under a load of 100 pounds applied at K and a vertical

force at L. Find the magnitude of the force at L and the

stresses in the different rods.

7. Four light rods AB, BC, CD, DA, of lengths 10, 17, 17, 10

inches respectively, are freely jointed at their extremities to

form the quadrilateral framework ABCD, which is stiffened by
another light rod, of length 16 inches, connecting the hinges B
and D. The framework is capable of turning freely in a vertical

plane about a fixed point A, and rests with DB vertically

downwards, under a load of 1 cwt. applied at B and a vertical

force applied at C. Find the magnitude of the force at C and

the stresses in the rods.

8. Four light rods, each of length 5 feet, are freely jointed

at their extremities to form a rhombus ABCD, which is stiffened

by another light rod, of length 6 feet, connecting the hinges
B and D. The framework rests with DB vertically downwards,
a mass of 192 pounds being suspended from B, and is supported

by two forces applied at A and C, in directions perpendicular to

DA, DC respectively. Find the magnitudes of these forces and

the stresses in the rods.

9. AB, BC, CD are three equal rods, of no appreciable weight,

smoothly hinged together at B and C and to fixed points at A
and D, the figure forming one half of a regular hexagon, with

BC horizontal and below AD. The framework is stiffened by
another light rod AC, and loads of 10 and 30 pounds respectively

are applied at B and C. Find the stresses in the rods.
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10. Four light rods AB, BC, CD, DA are freely jointed together
at their extremities to form half of a regular hexagon, the rod

DA being double the length of each of the others. The frame-

work is stiffened by another light rod AC, and the whole rests

with AD horizontal upon two supports at A and D. Loads of

10 and 30 pounds respectively are applied at B and C. Determine

the stresses in the rods and the reactions of the supports.

11. Find the stresses in the rods in the case indicated in

Fig. 157, the lengths of the rods being indicated in feet, and

the 5-foot rod being vertical.

6000 Ibs.

FIG. 157. FIG. 158. FIG. 159.

12. Find the stresses in the rods in the case indicated in

Fig. 158, the 11 -foot rod being vertical.

13. Find the stresses in the rods in the case of the derrick

crane indicated in Fig. 159, the 12-foot rod being vertical and

the ground horizontal. Find also the strain on the hinge A.

14. In the general case considered in Art. 136, suppose that the

external forces applied to the framework are all given in position,

and that the magnitude of one is known, and of the others un-

known. Show how to determine the magnitudes of the other

three forces and the stresses in the rods.

15. Suppose that P
l
and P2 are given in magnitude and

direction, Xl
in direction only, and X2 wholly unknown. Show

how to find the unknown forces and the stresses in the rods.

16. In the case where X2 is zero, suppose that P
1

is given

completely, P2 only in direction, and X
l wholly unknown. Show

how to find the unknown forces and the stresses in the rods.

17. Four light rods are freely jointed at their extremities to

form a parallelogram ABCD, which is stiffened by another light

rod connecting the hinges B and D. The framework is capable
D.S. R
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of turning freely in a vertical plane about a fixed point A, and

rests with DB vertically downwards, a mass of weight W being

suspended from B, and a vertical force applied at C. Show that

the force applied at C, the tension of the rod BD, and the force

of constraint at A are each equal to ^ W, and that the tensions

of the rods AB, BC, BD and the compressions of the rods CD,
DA are proportional to AB, BC, BD, CD, DA respectively.

18. Four fine light rods are freely jointed at their extremities

to form a parallelogram ABCD, which is stiffened by another fine

light rod connecting B and D. The framework rests with B
vertically below E, the middle point of DC, and is loaded at B,

being supported by vertical forces at A and C. Prove that the

weight of the load at B, the forces at A and C, the tensions of

the rods AB, BD, BC, and the compressions of the rods CD,
DA are proportional to 3 . BE, BE, 2. BE, \.AB, ED, 2 . BC,

CD, DA respectively.

19. In the figures of Art. 141, prove that MK is parallel to

the straight line joining A to the point of intersection of B0
l

and C02.

20. In Art. 141, if HL meets MK in /, and W
1

: W2
=MI : IK,

prove that, in the position of equilibrium, HL is vertical,

and that, if T is the measure of the tension of the string,

T : W
1 + WZ

=LI : LH'; if, in addition, HM is parallel to KL,
then T= W

2.

21. Four fine light rods are freely jointed at their extremities

to form a convex quadrilateral framework ABCD, which is stiffened

by another fine light rod connecting B and D. A mass of weight
W is suspended from B, and the whole system is supported,

with DB vertically downwards, by vertical forces applied at

A and C. Prove that, if T is the tension of the rod DB, and

E the point where the straight line AC intersects BD, then

T\ W=DE:DB; in particular, if AC bisects DB, then T=\W.
22. If, in the preceding example, AB is parallel to DC, the

tension of the string is equal to the force applied at A.

23. In the figures of Art. 136, prove that the line joining the

intersection of AO^ and D02 with the intersection of B0l
and

<702 is parallel to the line joining abo
l
to cdo%.
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24. In the figures of Art. 138, prove that the line joining A
to the intersection of B0

l
and C02 is parallel to the line joining

abo
1

to cao2 .

25. Four fine light rods are freely jointed at their extremities

to form a convex quadrilateral framework ABCD, which is stiffened

by another fine light rod connecting B and D. The straight

line AC meets BD in E, and the shape of the framework is such

that E is the middle point of AC. A mass of weight W is

suspended from B, and the whole system is supported with DB
vertically downwards, by means of two forces applied at A and (7,

in directions CD and AD respectively. If T is the tension of

the rod DB, prove that W- T : W+ T=DE : EB.



CHAPTER XVII.

STIFF FRAMEWORKS OF FINE LIGHT RODS
SMOOTHLY JOINTED AT THEIR EXTREMITIES.

144. IN the preceding chapter we have confined our

attention to the consideration of the equilibrium of a

stiff quadrilateral framework, and to the determination
'

of the stresses induced in the different rods. The same

method can, however, be applied to all frameworks of

fine light rods jointed at their extremities.

In the case of indeformable or stiff frameworks, i.e.,

frameworks whose angles do not admit of variation,

it is necessary and sufficient for equilibrium that the

external forces acting on the framework should form

a system in equilibrium. The stresses in the rods are

found by considering the equilibrium of each joint

separately; if we know the stresses in all but two of

the rods which meet at any joint we can determine

the stresses in the remaining two by making the poly-

gon of forces for that joint close.

The method will be made clear by working out a

few typical examples.

145. Ex. 1. The framework represented below, re-

sembling a bent crane, is loaded at the joint abo
l

with a mass of given weight W. It is required to

determine the stresses in the various rods.
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Draw AB vertically downwards and of length W
units. Then AOV B0

1
can be drawn parallel to the

rods aov bo
l respectively, thus forming the force tri-

angle ABO^ (this way round) for the joint 6o
1

. The
rod ao

l
is therefore a strut and the rod bo

l
a tie.

0,

FIG. 160.

Draw B02 , 0^02 parallel to the rods 6o
2 , o^ re-

spectively, and we have the force triangle 1
B02 1

(this way round) for the joint ojx)^ Thus the rod 6o2
is a tie and o

2
o

l
is a strut.

Now consider the joint ao
1
o
2
o3. A0

l
and 002

represent two of the forces acting on this joint. Hence,

drawing 2 3 ,
AO

B parallel to the rods O
2
o
3 ,

ao3

respectively, we have the force polygon

(this way round) for the joint ao^
o
3a are both struts.

Now consider the joint O3o2bc. 3 2
and

2
B represent

two of the forces acting on this joint. Hence, drawing

3(7,
BC parallel to the rods o

3c, be respectively, we
have the force polygon 3 2BCOB (this way round) for

the joint O3o2
6c. Thus the rod be is a tie and co3 is a

strut.

Thus O
2
o3 and
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ABOA (this way round) is the triangle of forces for

the whole framework considered as one rigid body.

The action X at the joint aoB
c is represented by CA.

The force triangle for this joint is CAOju (this way
round).

146. Ex. 2. The framework indicated below is sup-

ported at the joints abov bco%, and supports a mass

of given weight W at the joint cao-^o^. It is required
to determine the pressures on the supports and the

stresses in the rods.

C'

\

A'
c

FIG. 161.

Here the only force known is W, but we cannot

construct the force polygon for the joint acoBo2
ov as

the stresses in the four rods which meet at this joint

are all unknown. We therefore determine first the

pressures R and 8 between the framework and the

supports, by considering the equilibrium of the whole

framework as a rigid body.
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Draw CA vertically downwards of length W units,

and let two parallels through G and A meet the lines

ab, be in (7 and A' respectively. Let C'A' meet the

line ca in B
',
and draw B'B parallel to A'A to meet

AC in B. Then AB, BC represent the forces R and

S which act in the lines ab, be respectively.

We can now draw the force triangles ABO^, BCOBB
for the joints abov bcos respectively. Then

1 2 , 3 2

can be drawn parallel to the rods o-fi^ o
3
o
2 respectively,

and B02 must be parallel to the rod bo
2

.

On examining the force diagram for each joint

separately, it will be seen that the three top rods are

struts and the other four ties.

147. Ex. 3. The framework represented below, re-

sembling a portion of a Warren girder, is supported
at the joints abov bco

5)
and carries loads of given

-
- o

FIG. 162. FIG. 162 a.

weight Wt
and W2 applied at the joints O

1
o
2
o
3c?a, O

3o^o5cd

respectively. It is required to determine the pressures
on the supports and the stresses in the rods.
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We first consider the equilibrium of the whole

framework as a rigid body, and thus determine the

reactions R and S of the supports. Draw CDA ver-

tically downwards, making CD of length W2 units, and

DA of length W1
units. Take any pole 0, and from

any point in the line ab draw the string ao parallel
to A 0. From the point of intersection of ao and ad
draw do parallel to DO. From the point of inter-

section of do and dc draw co parallel to CO. The

straight line ob, drawn from the point of intersection

of oa and ab to that of oc and be, completes the funicular

polygon. Draw OB parallel to ob, to meet CA in B.

Then ABCDA is the force polygon for the whole

system, AB and BG representing R and S respectively.
In constructing the diagram for the stresses in the

rods, we commence with the joint abor This gives the

triangle ABOA (this way round). Then we construct

the triangle 1
B02

O
l (this way round) for the joint

Oi6o2 ;
then the polygon DAO-fl^OJ} (this way round)

for the joint dao^o^ ;
then the polygon 3 2

B0
4 3 (this

way round) for the joint O3o2
6o

4 ;
then CD0

3 4 5
C (this

way round) for the joint cdo3o^o5 . Finally, joining B0 5 ,

the triangle 50B05 (this way round) is the force tri-

angle for the joint O
5
o
46, and the triangle 5BC05 (this

way round) is the force triangle for the joint o
5bc.

148. Sometimes it is not required to determine the

stresses in all the rods. The following method is

then very useful:

Suppose that, in the preceding example, it is required
to determine the stress in the rod o3d. Construct the

force polygon ABCDA as before for the equilibrium
of the whole system, thus determining R and S.
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Draw a line XY intersecting the rods o
46,

O
4
o3 ,

o
3cZ;

and consider the equilibrium of the portion of the

framework to the right of this line as one rigid body.

The external forces acting upon it are the known forces

S and Wz, together with the unknown forces acting at

the points U, V, Z. The lines of action of these three

unknown forces are all known, and therefore the

problem comes under the head of that considered in

Art. 118.

K

A

FIG. 163. FIG. 163 a.

Take a pole 0, and draw OB, OC, OD. From H,

the point of intersection of the rods o
3
o
4 ,

o
46, draw the

line ob parallel to OB. From the point 'of intersection

of ob and be draw oc parallel to OC. From the point of

intersection of oc and cd draw od parallel to OD. From
H draw the line oo3

to the point of intersection of od

and do
3 ,
thus completing the funicular polygon. Draw

00
3 parallel to oo

3 ,
to meet the horizontal through D

in
3

. Draw BO^ 3 4 parallel to the rods 6o
4 ,

O
3
o4
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respectively, meeting in
4

. Then BCDO^O^B (this

way round) is the force polygon for the portion of the

framework under consideration. Thus the rod do
s

is

in a state of tension, and its tension is represented by
DOS . We have also at the same time determined the

actions in the other two rods intersected by the straight

line XY.
In applying this method care must be taken not to

intersect more than three rods. If the stress in one of

three rods intersected is known, the stresses in the

other two can be found without the aid of a funicular

polygon.

149. Another point of practical importance is ex-

hibited in the following example:
Ex. 4. The framework of Ex. 2 rests on supports as

before, and is loaded at each of the other three joints

in the manner indicated below. It is required to

determine the pressures on the supports and the stresses

in the rods.

We first plan out a force diagram for the whole

system, thus determining the pressures R and S on the

supports. .
As the loads are all known we take the

forces in the order W
lt
W

2 ,
W

B, S, R, determining the

unknown forces S and R with the aid of a funicular

polygon. The order Wv W2 ,
TT3 , S, R is not, however,

convenient for determining the internal stresses. After

determining S and R, we therefore plan out another force

diagram, taking the forces in the order R, Wv WB , S, W2 ,

taken one way round the framework, and commencing
at a joint where there are only two rods. We can then

complete the stress diagram.
For the purpose of the first force diagram, we mark
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the lines of action of the forces Wv W2 ,
W

z , S, R with

the letters fg, gh, hk, kl, If, as in the figure.

FIG. 1646.

Take FG, GH, HK to represent Wv W2 ,
W

B respec-

tively, and draw the strings of, og, oh, ok corresponding
to the pole 0. Draw OL parallel to ol, which com-

pletes the funicular polygon, and let OL meet FK in L.

Then KL and LF represent S and R respectively.

Now draw another force diagram ABODEA, taking

AB, BO, CD, DE equal to and in the same direction as

LF, FG, HK, KL, and therefore EA equal to and in

the same direction as GH.
Draw B0

l parallel to the rod bo
l
to meet the horizontal

through A in Ov and DOS parallel to the rod do
s to meet

the horizontal through E in
3

. Through 3 and O
l

draw 3 2 , X 2 parallel to the rods O
3
o
2 ,

O
1
o
2 respec-
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tively, to meet in
2

. Then C0
2 must be parallel to

the rod co
2

.

The triangle of forces for the joint abo
l
is ABO^A (this

way round). The force diagram for the joint ojbco2

is
1
BCO

<2 1 (this way round) ;
for the joint o^o^ea,

1 2 3
EAO

l (this way round); for the joint O
3
o
2cd,

3 2CDOS (this way round) ;
for the joint o

3de, 3
DEO

S

(this way round).

EXAMPLES XVII.

1. OABCD is a framework of light rods smoothly jointed at

their extremities
;
the rods OA, OB, 0(7, OD being each of length

25 inches
;

the rods AB, CD each of length 14 inches
; and the

rod BC of length 30 inches. Two masses, weighing 100 pounds
each, are suspended from A and D, and the whole is supported
at 0. Find the stresses in the rods.

2. In Art. 146, each of the triangles o
1?

o2,
o3 is equilateral.

Find the stresses in the rods when the load is 1000 pounds.

3. In the same Example, each of the lower rods is of length
6 feet

;
the top middle rod is also of length 6 feet, and the other

four rods are each of length 5 feet. Find the stresses in the

rods when the load is 400 pounds.

4. Draw the stress diagram for the framework considered in

Art. 147, when three equal loads are applied at the upper joints,

and no loads are applied at the lower joints.

5. In the framework considered in Art. 147, each of the

horizontal rods is of length 2 feet 6 inches, and each of the

others of length 3 feet 3 inches. Find the stresses in the rods

4o6,
6o4 ,

co5v when the only load supported is 1 ton at the

joint OjOgOgC&z,

6. Draw the stress diagram for a Warren Girder of 4 bays

(instead of 3, as in Art. 147), when the only load applied is a

mass of weight W at the middle lower joint.
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7. In the preceding example the load is 1 ton, each of the

horizontal rods is of length 2 feet 6 inches, and each of the

other rods of length 3 feet 3 inches
;

find the stresses in all

the horizontal rods, and examine whether the other rods are

struts or ties.

8. Draw the stress diagram for the framework indicated in

Fig. 165.

9. If, in Fig. 165, each of the horizontal rods is of length
4 feet, each of the uprights 3 feet, and each of the others 5 feet,

find the stresses in the three rods intersected by the line XY,
each of the three loads being 1 ton.

X
| TV ir\ liy

W' W 'W
Y

FIG. 165. FIG. 166.

10. Draw the stress diagram for the framework indicated in

Fig. 166. Notice that the points 1
and 4 coincide.

11. Draw the stress diagram for the framework indicated in

Fig. 167.

12. Find the stresses in the three members intersected by the

line XY in Fig. 167, the rods which meet at the vertex being
of lengths 10, 5, 5, 10 feet, the horizontal rod of length 6 feet,

the span 16 feet, and the load being 1 cwt.

13. Draw the stress diagram for the framework indicated in

Fig. 168. Notice that the points O
l
and Ob coincide.

\W

'W, W 'W,

FIG. 168. FIG. 169.

14. Draw the stress diagram for the framework indicated in

Fig. 169.
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15. Draw the stress diagram for the framework indicated in

Fig. 170, the whole system being suspended from the point H.

V \ x w
FIG. 170.

16. In the figures of Art. 148, prove that 4(7 is parallel to

the line joining the point O3o4o5cc to the intersection of be and

6o4. Hence give a method for determining the stresses in the

intersected rods without drawing a funicular polygon.



CHAPTER XVIII.

SYSTEMS OF KODS, SOME, OR ALL, OF WHICH ARE
ACTED UPON BY FORCES NOT AT THEIR EX-

TREMITIES.

150. The accompanying figure represents three rods

of a framework smoothly jointed at their extremities.

The rods are drawn separated, so that the forces acting
on each rod may be clearly indicated. The space on

the one side of the rods is named o, and on the other

sides the spaces are marked a, b, c, so that the three

rods are denoted by oa, ob, oc. Let the hinges be de-

noted by the numbers 1, 2, 3, 4, as indicated.

FIG. 171. FIG. 171 a.

Suppose that each rod is acted upon by a system
of forces in addition to the constraints at the hinges.
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Let the forces acting on the rod oa (apart from the

constraints at its extremities) be resolved into two

forces A
l
and A 2 acting at its extremities 1 and 2 re-

spectively. Similarly, let the forces on the rods ob

and oc be resolved into the pairs of forces B
2 ,
B

3
and

(7
3 ,

(7
4 ,

as indicated.

Let R
1
be the action at the joint 1 upon the rod oa,

R
2
the action at the joint 2 upon the same rod. Then

R
2
in the opposite direction is the action at the joint

2 upon the rod ob. Similarly, let R
3
and R be the

actions at the joints 3 and 4 respectively.

Consider the equilibrium of the rod oa. The resultant

of Rl
and A

l
must balance the resultant of R

2
and A

z
.

Therefore ao must be the line of action of these two

resultants. If then we draw 01, 1A to represent Rl

and A
1 respectively, OA will have to be parallel to oa,

and AO will represent the resultant of R.
2
and A

2
.

Hence if A2 represents A 2 ,
then 20 must represent Rz

.

Thus the force diagram for the rod ao is 01A20 (this

way round), in which OA is parallel to the rod ao, and

1A, A2 represent A
l
and A

2 respectively.

Similarly, the force diagram for the rod ob is

02B30, in which OB is parallel to the rod ob, and

2B, B3 represent B
2
and J5

3 respectively. Also the

force diagram for the rod oc is 03040, in which OC
is parallel to the rod oc, and 3G, C4 represent 3

and

4 respectively.

The actions at the hinges 1, #, 3, 4 are given by

01, 02, 03, 04 respectively, the direction being deter-

mined according to which rod is under consideration.

The student should notice that the lines 12, 23, 34

of the force diagram represent the resultants of the
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forces (other than the constraints at the hinges) that

act upon the rods 12, 23, 34 respectively.

We may, if we please, resolve the forces upon each

rod into parallel forces at its extremities. In this case

1A2, 2B3, 3C4 become straight lines.

The rods may be replaced by rigid bodies of any

shape hinged together at the points ./, 2, 3, 4, and the

same piece of work applies, the straight lines oa, ob, oc

being drawn connecting the hinges.

151. The question may be asked, "What forces do OA,

OB, OC represent?" The student may be inclined to say
that these lines represent the stresses in the rods oa, ob,

oc respectively. This is not so. If the forces acting
on the rod oa were actually A 1

and A
2
at its extremi-

ties, the rod would be in a state of direct compression
or tension, and OA would represent the strain at every

point of the rod. But in the actual state of affairs, the

strain is different at different points of the rod, and the

tendency of the forces is to bend the rod as well as

to compress it or stretch it. In replacing the forces

acting on the rod by an equivalent system, we do not

interfere with the equilibrium of the rod as a rigid

body, but we do interfere with the nature of the internal

stresses induced. We make no endeavour to interpret

the meaning of the lines OA, OB, 0(7; the nature of the

internal stresses in such cases is beyond the scope of

the present volume.

152. As a particular case of the above, suppose that

four uniform heavy rods are freely jointed together, and

hang in a vertical plane, the points 1 and 5 being fixed.

Let the weights of the rods oa, ob, oc, od be given.

Suppose also that the rods ob, oc are given in position,
D.S. s
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and that it is required to find the positions of the rods

oa, od and the actions at the hinges.

The weight of each rod can be broken up into half

its weight applied at each end. Hence, in constructing

the force diagram, draw 1A2, 2B3, 3C4, 4D5, to represent

the weights of the rods oa, ob, oc, od respectively,

A, B, C, D being the middle points of the lines 12, 23,

34, 45 respectively.

FIG. 172. FIG. 172 a.

As the rods ob, oc are given in position, we can draw

BO, CO parallel to these rods respectively, and this

determines the point 0. Join OA, OD, and we have

the directions of the rods oa, od. Also 01, 02, 03,

04, 05 give the actions at the hinges 1, 2, 3, 4, 5 respec-

tively. The force diagram for the rod oa is 1201 (this

way round), so that 20 represents the action of the hinge
# upon the rod oa. Similarly for the other hinges.

153. We have hitherto supposed that all external

forces are applied to the rods themselves, the hinges
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being left perfectly free, so that the rods act and react

upon one another directly through the hinges. Let us

now suppose that a hinge consists of a separate piece (a

small pin for instance) of no appreciable size or weight,
and that external forces are applied directly upon the

hinges. Each hinge is supposed to be perfectly smooth,
and its effect upon any rod is to compel the extremity
of the rod to remain in a definite position by a direct

push or pull exerted upon the rod at its extremity.
We shall now have to consider the equilibrium of each

hinge as well as of each rod, and the actions of a

hinge upon two adjoining rods will not now be equal
and opposite.

154. Take the system of rods of Art. 150 acted upon
by the same external forces, and in addition let forces

F
2
and F

s ,
in the directions indicated, act upon the

A,

FIG. 173. FIG. 173 a.

hinges # and 3 respectively. In the diagram the rods

and hinges are drawn separated, so as to indicate clearly
the forces acting upon the separate pieces.
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Let the action between the hinge 2 and the rod oa

be aR2 ,
and let the action between the hinge 2 and

the rod ob be bR2 ,
a similar notation denoting the

actions at the other hinges.

In constructing the force diagram, we have for the

rod oa the figure A l
AA

2
OA

l (this way round), in which

OA^ represents aR1} while Aj^A and AA
2 represent A l

and A
2 respectively, A

2 represents aR2) and OA is

parallel to the rod oa. For the hinge 2 we have

the triangle OA
2
B

2 (this way round), in which A
2
B2

represents F
2 ,

and B
2 represents bR2 . For the rod

ob we have OB
2
BB

B (this way round), in which B
2
B

and BB
B represent B

2
and B

B respectively, B
B repre-

sents bR3j and OB is parallel to the rod ob. For the

hinge S we have the triangle OB
B
C

B (this way round),

in which BBCB represents F
B ,

and C
3 represents CR3 .

For the rod oc we have OC
BCC^O (this way round), in

which CB
C and (704 represent GB and (7

4 respectively,

(7
4 represents c jK4 ,

and OC is parallel to the rod oc.

This piece of work, of course, includes that of Art. 150.

If we make F
2
and F

B each zero, the points A 2
and B2

will coincide with the point 2 of Art. 150, and the

points BB
and GB

with the point 3 of that article.

155. It is important that the student should notice

that if we suppose the forces A
2 ,
F

2 ,
B

2
collected

together and applied at the joint 8, we get the correct

position for the points A and B of the force diagram.

Thus, if we do not require to know the exact nature

of the constraints in the immediate neighbourhood of

the joint, we do not trouble to separate the forces

into those which act on the rod oa, those which act

on the joint, and those which act on the rod ob. The
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straight line AB, in fact, represents the resultant of

The student should carefully think over the two

examples which here follow. In the first of these, we
have worked out the problem twice over on two

different suppositions, but they lead to the same diagram.
In the second, we require only the tensions of two

strings, and do not trouble ourselves with the nature

of the actions at the joints.

156. Ex. 1. Two heavy uniform rods of weight
w and w' are smoothly hinged together at the point 2,

and to fixed points at the points 1 and 3, as repre-
sented in the figure on the left. A mass of weight W
is supported at the point 2. It is required to find
the stresses at the hinges.

FIG. 174.

First, suppose that the mass of weight W is attached

to the rod oa at a point indefinitely close to the hinge 2.

The weight of each rod can be broken up into half

its weight at each extremity.



278 SYSTEM OF JOINTED RODS

Draw 1A&B3 vertically downwards, taking 1A, A*2,

2B, B3 to represent \w, \w-\- Wt \wi', \w' respectively.

Draw AO, BO parallel to the rods ao, bo respectively,

meeting in 0. Then 01, 02, 03 give the actions at the

hinges 1,2,3 respectively.

Secondly, suppose that the mass of weight W is

attached directly to the hinge 2, which is a separate

piece.

Draw 1A, AA 2 ,
A

2
B

2 ,
B

2B, B3 to represent \w, \w, W,

\\v' , \w' respectively. Draw AO, BO as before. Then

the actions at the hinges 1 and 3 are given by 01, 03

respectively, and are the same as in the first case. The

action between the hinge 2 and the rod oa is given by
OA

2 ,
and the action between the same hinge and the rod

ob is given by OB2 ,
and is the same as in the first case.

157. Ex. 2. Three equal uniform rods FG, GH, HK,
each of weight w, are freely jointed together at G and

H, and laid in a vertical plane upon a smooth hori-

F
FIG. 175.

zontal table at F and K. Two fine light strings FH,
GK keep the system in the form of one-half of a regular
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hexagon, and a mass of weight W is placed at the

middle point of OH. Determine the tensions of the

strings.

The reactions at F and K are evidently each equal
to \W+\w. The weight of each rod may be replaced

by \w acting at each of its extremities. Hence, for the

purpose of finding the tensions of the strings, we may
suppose that the system is a jointed framework of fine

light rods, in equilibrium under the influence of forces

\W+w acting vertically upwards at F, \W-\-w verti-

cally downwards at 0, l,W-}-w vertically downwards

at H, and \W-\-w vertically upwards at K.

.A

FIG. 175 a.

Also, it is convenient for the purpose of constructing
a force diagram to suppose the strings knotted together

at the point L where they intersect, so that we may
look upon the two strings as four separate members

attached together at the point L. This will evidently

put no additional strain upon either string; the force
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diagram for the point L will be a parallelogram, giving
the tension of the two parts of the same string as equal
in magnitude.
Now mark the portions of the space diagram with

the letters a, b, c, d, ov 2 ,
o
3 ,

as indicated. Draw DA
vertically upwards to represent ^W+w, and let AOV
DOV be drawn parallel to aov do

: respectively. This

gives the point Or
Draw AB vertically downwards to represent ^W+w;

evidently B coincides with D. Draw B0
2 , 1 2 parallel

to 6o
2 , o^ respectively. This gives the point 2

.

There is no necessity to draw any more of the force

diagram. X 2
and D0 represent the tensions of the

strings.

It is easy to see that the figure AD0
1 2

is also

one half of a regular hexagon. Hence the tension of

each string is ^W-\-w.
158. Ex. 3. Three uniform rods HK, KL, LM, of

lengths 15, 14, 15 inches respectively, and of weights

W, W'
t W respectively, are freely hinged together at K

and L, and supported from a fixed point F by means

of three fine light strings FH, FG, FM of lengths 20,

24, 20 inches respectively, the point G being the middle

point of KL. The system rests with FG vertical and
KL horizontal. Determine the tensions of the strings,

and the actions at the hinges.

Having constructed the space diagram to scale, let

the lines HK, KL, LM, MF, FH be marked oa, ob, oc,

od, oe respectively, and let the hinges K and L be

called 1 and 2 respectively.

Draw a straight line El vertically downwards to

represent W, and take A the middle point of El. Let
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straight lines through E and A, parallel to eo, ao respec-

tively, meet in 0. Then OEA10 (this way round) is

the force diagram for the rod oa.

K b G

FIG. 176. FIG. 176 a.

Draw OB parallel to ob to meet El in B, and pro-

duce IB to 2, making B2= 1B. Then 01B20 (this way
round) is the force diagram for the rod ob. The straight

line 1B2 represents the resultant of the forces (other

than the actions at the joints) which act upon the

rod ob. Hence, if T be the tension of the vertical

string, 1B2 represents T W.
On measurement, we find that the lengths of the
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lines OE, 01, IB are respectively '3W, '85 W, 1'64TF;

also the angle 01B= \\.
Hence the tensions of the strings FH, FG, FM are

respectively -3TF, 1'64F+ W, '3TT; also the actions at

the hinges K and L are each '85 W, and are each inclined

at an angle of 16J to the vertical.

159. Ex. 4. Two uniform rods KL, LM, each of

weight W and length 5 feet, are freely jointed together

at L, and connected with a fixed point H by means

of two fine light strings KH, HM of lengths 8 and 6

feet respectively. Another fine light string connects H

FIG. 177.

with L and is of such a length that when the strings

are all tight KL and LM are in one straight line.

Find what load must be applied at M in order that,

in the position of equilibrium, KLM may be hori-

zontal; determine also the tensions of the strings.
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Having constructed the space diagram to scale, mark

the lines KL, LM, MH, HK with the letters oa, ob,

oc, od respectively.

FIG. 177 a.

We will suppose that the string HL is attached to

the hinge at L, which is a separate piece. We denote

the hinge by the figure 1, and mark the straight line

HL with the letters a->v

With any suitable scale, draw DA vertically down-

wards to represent TF, and bisect in A the line so
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drawn. Let the straight line through D parallel to do

meet the horizontal through A in 0. Then ODAA^O
(this way round) is the force diagram for the rod oa.

Draw A
l
B

l parallel to a
l
br The point B

l
is at

present unknown; it will have such a position that, if

B^B is drawn vertically downwards to meet OA in B,

B^B must represent ^W. Hence, to obtain the position
of Bv draw DB

l parallel to OA to meet A
1
B

1
in Bv

Then OA^B^O (this way round) is the force diagram
for the hinge ./.

Draw 00 parallel to oc, to meet the vertical through
B

l
in 0. Then OB^BGO (this way round) is the force

diagram for the rod ob.

The line BO represents the sum of half the weight
of the rod ob and the weight of the load applied at

M. Hence, drawing A{m horizontal to meet BO in m,
we see that mC represents the weight of the load sup-

ported at M.

On measuring the lines mO, OD, A^B^ GO we find

that

the weight of the load at M= '78W,
the tension of HK = -83 W,
the tension of HL =r04F,
the tension of HM=l'QOW.

160. Ex. 5. Two uniform beams HL, KL, of lengths

7 ft. 6 ins. and 6 feet 6 ins. respectively, and weighing
16 and 12 pounds respectively, are freely jointed at L,

and rest in a vertical plane upon a smooth horizontal

plane at H and K. A fine light cord MN, of length

4 feet 8 ins., is attached at its extremities to the two

beams at the points M and N which divide LH and LK
respectively each in the ratio 2:1. Find the tension of



UNDER ANY FORCES. 285

the string, the reactions at H and K, and the action at

the hinge.

Having constructed the space diagram we proceed

to find first of all the reactions at H and K. For

this purpose we consider the equilibrium of the whole

system as one rigid body. Let the lines HL, LK and

the verticals through K and H be marked oa, ob, oc,

od respectively, and let the hinge L be denoted by 1.

Let the verticals through the middle points of HL and

LK be marked de, ec respectively.

Draw DE, EG vertically downwards and of lengths

16 and 12 units respectively. Take away pole 0' and

construct the sides do', eo', co' of a funicular polygon

corresponding to the pole 0'. Draw the string oo',

which completes the funicular polygon, and the line

O'O parallel to oo' to meet DC in 0. Then CO, OD

represent the reactions at K and H respectively.

Now consider the equilibrium of the rod oa alone.

We may take the weight of the rod as equivalent to

8 pounds' weight acting at H and 8 pounds' weight

acting at K
;
also the tension T of the string is equiva-

lent to fT at H and JT at L. Hence, bisecting DE in

m, draw OA parallel to oa to meet in A the hori-

zontal through m. Then mA represents fT. Produce

mA to n, making An = J . mA, and draw nl vertically

downwards of length 8 units. Then ODmAnlO (this

way round) is the force diagram for the rod oa.

We have completed the figure so as to show the

force diagram for the rod ob, but this is unnecessary.

On measurement, we find that CO, OD, mn, 01

are of lengths 15, 13, 5*6, 6*4 respectively; also the

angle Oln is 62.
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L

oc

0'"

\
d/ .

\c
o'\

FIG. 178.

Hence the tension of the string and the actions at H
and K are respectively 5*6, 13, 15 pounds' weight ;

also
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the action at the hinge L is 6*4 pounds' weight in a

direction making an angle of 62 with the vertical.

D

E

m' *

\
G

FIG. 178 a.

Another method of solving this example is considered

in the next chapter.

161. Ex. 6. Four uniform heavy rods are freely

jointed at their extremities to form the quadrilateral

framework indicated below. A fine string, connecting
two opposite hinges, keeps the quadrilateral in a given

shape, and the whole rests in a vertical plane with the

rod oc held in a given position. It is required to

determine the tension of the string.

Draw AT, %BB to represent the weights of the rods

oa, ob respectively, and take A the middle point of A$
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and B the middle point of 8B
B . Draw AO, BO parallel

to the rods oa, ob respectively, to meet in 0.

The weight of the rod od will be represented by some

straight line 4DDi> drawn so that D is the middle point

of 4A and OD is parallel to od, and also J)
1
A

1
must be

parallel to the string, and must represent its tension.

Hence, to complete the force diagram, draw A^D'4-'

vertically upwards, so that 4'A^ represents the weight

Fm. 179.

D

FIG. 179 a.

of the rod od and D' is the middle point of 4'AY
Draw D'D parallel to the string to meet in D the line

drawn through parallel to od, and let the straight

lines through A
1
and Jf parallel to the string, meet the

vertical through D in D^ and 4 respectively. Then,

measuring DA^ we have the tension of the string,

The rest of the force diagram can be easily completed,
and the actions at the hinges determined.
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162. Ex. 7. The framework indicated below is com-

posed of fine light rods, freely jointed at their ex-

tremities, and is at rest under the influence of forces

P, Q, R, applied as indicated. It is required to deter-

mine the stresses in the rods, the hinges a and y being

fixed.

n

FIG. 180. FIG. 180 a.

This is a framework like those treated of in the

preceding chapter, but in constructing the force diagram
we here meet with a difficulty which can be overcome

by the methods of the present chapter. At every joint

there are more than two unknown forces, so that we

cannot at the outset construct the force polygon for

any joint.

The reactions at the hinges a and y are in some

unknown directions which will be denoted by ae, de

D.S. T
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respectively. We can find these reactions in the follow-

ing manner:

Consider the triangles Oj and o2 as one single rigid

body, and the triangles 3
and o

4
as another rigid body.

Draw the straight lines joining the hinges a, /3 and

ft, y. Draw AB, BC, CD to represent the forces P, Q, R
applied in the lines ab, be, cd respectively.

Divide AB in M, so that AM, MB represent com-

ponents of P through a and /3 respectively ;
and divide

CD in N, so that CN, ND represent components of R
through /3 and y respectively. These, can be done by
Art. 72.

Draw ME, NE parallel to a/3, /3y respectively, to meet

in E. Then, by the methods laid down in this chapter,

EA and DE must represent the reactions of the hinges

a and y respectively.

There is now no difficulty in completing the force

diagram. EA 0-^E (this way round) is the force triangle

for the joint eaov ABO^O^A (this way round) is the

force polygon for the joint abo
2
ov EO^O^E for the joint

eo-ipfr 2BCO^E02 ,
for the joint O

2
6co

3e, etc.

EXAMPLES XVIII.

1. Three uniform rods KL, LM, MN, of lengths 33, 30, 33

inches respectively, and weighing 20 ounces, 16 ounces, 20 ounces

respectively, are freely jointed together at L and J/, and suspended
from a fixed point H by means of four fine light strings HK,
HL, HM, HN, of lengths 52, 25, 25, 52 inches respectively. Find

the tensions of the strings.

2. Three uniform rods 7fZ, LM, MN, of lengths 33, 30, 33

inches respectively, and weighing 20 ounces, 16 ounces, 20 ounces

respectively, are freely jointed together at L and M, and suspended
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from a fixed point H by means of three fine light strings HK,
HF, HN, of lengths 52, 20, 52 inches respectively, the point F
being the middle point of LM. Find the tensions of the strings

and the actions at the hinges L and M.

3. Three uniform rods KL, LM, MN, of lengths 15, 14, 15

inches respectively, and weighing 3, 5, 3 pounds respectively, are

freely jointed together at L and M
t
and suspended from a fixed

point H by means of four fine light strings HK, HL, HM, JIN,

of lengths 20, 25, 25, 20 inches respectively. Find the tensions

of the strings.

4. Two uniform beams ffL, KL, each of length 13 feet, and

weighing 15 pounds, are freely jointed together at Z, and sup-

ported from a fixed point M by means of two fine light strings

MH, MK, each of length 15 feet. A fine light rod RS, of length
16 feet, is freely jointed to the two beams at the points R and S,

which divide LH and LK respectively, each in the ratio 2:1.

Find the thrust in the cross-rod, the tension of each string, and

the action at the hinge.

5. Six equal uniform rods, each of weight TF, are freely jointed

at their extremities to form a regular hexagon ABCDEF. The
rod AF is supported in a horizontal position, and distortion is

prevented by a fine light rod, connecting the middle points of

BC and DE. Find the thrust of the cross rod and the actions

at the hinges.

6. Four equal uniform rods, each of weight W, are freely jointed

together at their extremities to form a rhombus HKLM. The

rod HK is supported in a horizontal position, and a fine light

string, equal in length to one of the rods, connects the hinges
M and K. Find the tension of the string and 'the actions at

the hinges H and Z.

7. Two equal uniform rods ffL, KL, each of weight W, are

freely jointed together at L, and supported from a fixed point M
by means of three fine light strings HM, LM, KM, each equal
in length to one of the rods. Find what load must be applied
at K, so that LK may rest in a horizontal position ;

determine

also the tensions of the strings.
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8. Four equal uniform rods, each of weight W, are freely jointed

together at their extremities to form a rhombus HKLM, which

is supported at H. A fine light string, in length equal to half

of one of the rods, connects the middle points of LM and HM. Find

the tension of the string and the actions at the hinges K, L, M.

9. Work out the preceding example, supposing the string to-

be of length equal to three-quarters of one of the rods, and to

be attached to the rods LM, HM at points which divide LM,
HM each in the ratio 1 : 3.

10. Three uniform rods FG, GH, HK, each weighing 15 pounds
and of length 25 inches, are freely jointed together at G and H, and

rest in a vertical plane upon a smooth horizontal table at F and

K. Two fine light strings FH, GK, each of length 40 inches,

help to support the framework, and a mass of 90 pounds is placed

at the middle point of GH. Determine the tensions of the strings.

11. In the preceding example, determine the tensions of the

strings when the mass of 90 pounds is placed at a distance of

6 inches from H.

12. Two equal uniform rods BC, CD, each of weight W, are

freely jointed together at C, and connected with a fixed point A
by means of three fine light strings AB, AC, AD, the first and

the third being equal in length. The whole system rests with AC
vertically downwards. Prove that if E is the point where BD
intersects AC, and F the middle point of AE, then the weight W,
the tension of the string AB, and the tension of AC are respectively

proportional to 2. AC, AB, 4 . CF.

13. Two uniform rods KL, LM, equal in length and weight,
are freely jointed together at L, and connected with a fixed point
H by means of two fine light strings KH, Mff. Another fine

light string connects H with L, and is of such a length that,

when the strings are all tight, KL and LM are in one straight

line, and KHM a right angle. The whole is allowed to rest in

a vertical plane, being supported at H. Prove that, in the position

of equilibrium, the tensions of the strings HK, HL, HM are

proportional to HK, 2 . HL, HM respectively, the tension of the

string HL being equal to the weight of either rod.
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Prove also that, if the hinge at L is a separate piece to which

the string HL is attached, the actions between the hinge and

the rods KL, ML are respectively parallel to HM, HK.
If equal loads are applied at K and M, prove that the tensions

of the strings HK, HM are increased in the same ratio, the

tension of HL remaining the same as before.

14. Four uniform rods are freely jointed together at their

extremities to form a quadrilateral framework ABCD, the rods

AB, AD being equal in length, and each of weight W, and the

rods BC, CD equal, and each of weight w. A fine light string

connects the hinges A and C, and the whole framework is sup-

ported at A. The straight line BD intersects AC at E\ prove

that, if T is the tension of the string,

T-w:W+w=CEi CA.

15. Four equal uniform rods, each of weight W, are freely

jointed together at their extremities to form a rhombus ABCD,
which is stiffened by a fine light rod connecting the hinges B and D.

The whole is supported at A. Show that, if P is the thrust of

the cross rod, P : 2W=D : AC.

Show also that the action of the hinge C is JP.

16. Three equal uniform rods HK, KL, LM, each of weight TF,

are freely jointed together at K and L, and supported by four fine

light strings FH, FK, GL, GM from two fixed points F and G,

which are situated in a horizontal line at a distance apart equal
to the length of one of the rods. The strings FH, FK are respec-

tively equal to GM, GL, so that the system occupies a symmetrical

position of equilibrium with KL horizontal. If S and T are the

tensions of the strings FH and FK respectively, prove that

8 : iTF : T- W=HF: FK : K#,
N being the point where the straight line HM intersects FK.

17. Three uniform rods FG, GH, HK, of weights W, W, W
respectively, the two FG, HK being equal in length, are freely

jointed to one another at O and H, and laid in a vertical plane

upon a smooth horizontal table, the extremities F and K being
connected by a fine light string. The system takes up a sym-
metrical position of equilibrium with GH horizontal. Prove that,
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if T is the tension of the string,

2T: W+W'=FL:LG,
where L is the point of FK vertically below G. Also, if GL be

divided in M so that GM:ML= W : W, prove that FM is parallel

to the action at the hinge G.

18. If, in the preceding example, the string is attached to points
which divide FG, KH each in the ratio m : n, prove that

2n. T:(m+n)(W+ W')=FL : LG.

19. Four heavy uniform rods a, b, c, d are freely jointed at

their extremities to form a quadrilateral framework. A fine light

string connects the hinges ab and cd, and the framework rests

in a vertical plane with the rod d held in a given" position. Prove

the following method for determining the tension of the string :

Draw TBC vertically downwards, making TB to represent half

the sum of the weights of a and b, and EG half the sum of the

weights of b and c. Let the straight lines through B and (7, parallel

to the rods b and c respectively, meet in 0. Draw TA and OA,

parallel to the string and the rod a respectively, to meet in A.

Then AT represents the tension of the string.

20. HKL is a fixed upright beam, the point H being at the

bottom. Two horizontal uniform beams HM, KN are freely

jointed to the fixed upright at the points H and K, and a vertical

beam MN is freely jointed to the horizontal beams at the points
M and N. The rectangular shape of HMNK is preserved by means
of a fine light string connecting M with Z, the whole system

resembling a gate. Show that, if T is the tension of the string,

JFj the weight of HM
t
w of MN, and W

2 of KN, then

Show also that the actions at the hinges K and N are both

vertical
;
also that, if G be taken in MN such that

MO : HL= \Wi : J(T?i+ W2)+ w,

then EG is the line of action of the constraint at H, which is of

magnitude R such that



CHAPTER XIX.

SOME MISCELLANEOUS PKOBLEMS.

163. Ex. 1. Two rods AB, AC, of given lengths and

of no appreciable weight, are smoothly jointed together

at A, and rest in a vertical plane upon a smooth

horizontal plane at B and C, the points B and C being

F

K

FIG. 181.

connected by a fine light string of given length. From
a given point E of the rod AC is suspended a mass

of given weight W. It is required to find the tension

of the string, the action at A, and the pressures at

B and G.
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The data are sufficient to enable us to construct the

space diagram. Let R and S be the reactions at B and

C respectively, T the tension of the string, Q the

mutual action of the hinge on either rod.

The rod AB is in equilibrium under the influence of

forces acting only at its extremities. It is therefore

in a state of direct compression or tension. Therefore

the mutual action between the rods at A is in the

line AB.
Thus the rod AC is in equilibrium under the influence

of four forces whose lines of action are ^all known, but

the magnitude of only one. We have, therefore, an

example of Art. 103.

Draw FG vertically downwards, making it W units

of length, and mark the vertical through E with the

letters fg. Let the line BA and the horizontal and ver-

tical through C be called gh, hk and kf respectively.

Draw the straight line fh from C to the point of inter-

section of fg and gh. Draw FH, GH parallel to fh,

gh respectively to meet in H, and HK horizontal to

meet FG in K.

Then FGHKF (this way round) is the force polygon
for the rod AC, the forces Q, T and S being represented

by GH, HK and KF respectively.

Also GKHG (this way round) is the triangle of forces

for the rod AB, so that GK represents R.

Otherwise: We may break up W into two forces

acting at A and C, and proceed as in the preceding

chapter.

164. Ex. 2. AB and AC are two rods of no appreci-

able weight, smoothly jointed at A, and resting at B
and C upon a smooth horizontal plane. A fine string
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connects the point F of the rod AB with ike point G

of the rod AC. The rod AB is loaded at D with a

mass of given weight Wv and the rod AG is loaded at

E with a mass of given weight W2
. It is required to

Jind the tension of the string, the reactions at B and G,

and the action at A.

FIG. 182.

First, consider the equilibrium of the two rods to-

gether as one system. Let the verticals through

D, E, G, B be marked hk, kl, Im, mh respectively. Take

HK, KL to represent Wl
and W

2 respectively. Take any

pole 0, and from any point in mh draw oh parallel to

OH. From the point of intersection of oh and hk draw

ok parallel to OK. From the point of intersection of

ok and kl draw ol parallel to OL. Draw the straight

line om, joining the point of intersection of ol and Im
with the point of intersection of oh and hm. This com-

pletes the funicular polygon. Draw OM parallel to om
to meet HL in M. Then LM

,
MH represent the reactions

at G and B respectively.
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Now consider the equilibrium of the rod AB alone.

The forces acting on it are the known forces along mh
and hk, the tension T of the string in the direction FG,
which we mark kn, and the unknown action at A in

some line which will be denoted by nm. Draw KN
parallel to kn. Then the force polygon will be MHKNM
(this way round), where at present the point N is un-

known. The pole now gives an awkward figure ;

we therefore take a new pole 0'. Starting from A,
we draw the strings o'm, o'h, o'k of the funicular

polygon, which we complete by drawing the string on
from A to the intersection of ok and kn. Draw O'N

parallel to o'n to meet KN in N. Then, joining MN,
we complete the force polygon. KN represents the

tension of the string, and NM the action of the hinge

upon the rod AB.
The force polygon for the rod AC is KLMNK (this

way round).

165. Ex. 3. Four rods, of no appreciable weight, are

freely jointed together at their extremities to form the

quadrilateral ABCD. The framework is stiffened by
another light rod smoothly hinged to the point E of
the rod AB, and to the point F of the rod AD.

Equal forces P are applied at A and G in opposite

directions along the line AC. It is required to find
the stress in the cross rod, and the actions at the hinges.

The three rods BC, CD, EF are in equilibrium under

the influence of forces acting only at their extremities.

They are therefore in a state of direct compression or

tension. Thus the actions at B and D are in the lines

BC, CD respectively, and the actions at E and F are

both in the line EF.
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Let EF produced both ways meet CB produced and

CD produced in L and M respectively. Then, consider-

ing the equilibrium of the rod AB, we see that the

action of the hinge A upon this rod is in the line AL.

Similarly the action of the hinge A upon the rod AD
is in the line AM.

FIG. 183.

H
FIG. 183 a.

Now let the space inside the triangle LMA be denoted

by ov and the space within the triangle LMC by o
2
.

Also let the space outside the figure and to the right
of AC be denoted by h, and the space outside the

figure and to the left of AC by k.

For the equilibrium of the joint C
}
we have the

triangle KHO^K (this way round), in which KH re-

presents P, and H0
2 ,
KO

Z are parallel to the lines ho
2 ,
ko

2

respectively.

For the equilibrium of the rod AB we have the

triangle KOjO^K (this way round), in which
2 V R0l

are parallel to the lines o
2
ov ko^ respectively.

Hence, joining O^H, the triangle HO^O^H must be the

triangle of forces for the rod AD, so that 0-^H must be

parallel to the line oji.
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Also, if we consider the equilibrium of the hinge
alone at A, the triangle of forces is HKO^H (this way
round).

The student will see that the force diagram is the

same as for the equilibrium of rods LA, AM, MC, CL,

stiffened by a rod LM, and under the same external

forces P, applied at A and C.

166. Ex. 4. Four rods, of no appreciable weight, are

freely jointed together at their extremities to form the

quadrilateral ABCD. The frameivork is stiffened by
another light rod, connecting the hinge D with a point
E of the rod BC. Equal forces P are applied at A
und C in opposite directions along the line AC. It is

required to determine the stress in the cross rod.

FIG. 184. FIG. 184 a.

This, of course, can be worked out in the same way
.as the preceding problem, of which it is a particular

case, but as we require only the stress in the cross rod,

we may proceed as follows:
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Draw a line XY intersecting the three rods AB, ED,
DC in F, G, H respectively, and consider the equilibrium
of the portion FBECHG as a rigid body. The three

rods intersected are all in a state of direct compression
or tension.

The external forces acting upon this part of the

framework are : the force P at G, and the actions at

F, G, H, which are in the lines AB, ED, DC respectively.

The force P and the action at G must balance the

actions at F and H. Find L and M, the points of inter-

section of AC, ED and BA, CD respectively. Then LM
must be the line of action of the resultant of the force P
and the action at G.

Hence, drawing a/3 to represent the force P acting
at C, let straight lines through a and /3, parallel to ED
and LM respectively, meet in y. Then ya represents
the action of the portion DG upon the portion GE, thus

determining the stress in the rod ED, and showing
whether the rod is a tie or a strut.

The method is applicable even if the point M is

inaccessible, for we only require the direction of LM,
and we can draw the straight line from L towards the

inaccessible point of intersection of AB and CD.

In applying this method care must be taken to inter-

sect only such rods as are acted upon by forces at their

extremities only.

EXAMPLES XIX.

1. Two rods AB and AC, each of length 2 feet 3 inches and

of no appreciable weight, are smoothly jointed together at A,
and placed, in a. vertical plane, with B and C on a smooth hori-

zontal plane. The points B and C are connected by a fine string,
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of length 2 feet 8 inches, and from a point E of the rod AC,
distant 1 foot from (7, is suspended a mass of 30 pounds. Find

the tension of the string.

2. AB and AC are two equal rods, of no appreciable weight,

smoothly jointed together at A, and resting in a vertical plane

upon a smooth horizontal plane EC. D is a point in AB such that

AD=\AB, and E and ^are points in AC such that AE=EF=FC.
A fine string connects D with F, and is of such a length that the

angle A is 60. Find the tension of the string when a mass of

60 pounds is suspended from E. Determine, also, the magnitude
of the action at A.

3. AB and CD are two rods, each of length 4 feet and of no

appreciable weight, freely jointed together at C, the middle point

of AB. A fine string, 5 feet long, connects A and D, and the whole

rests in a vertical plane upon a smooth horizontal plane AD, a mass

of 100 Ibs. being suspended from B. Find the tension of the string

AD and the thrust in the rod CD.

4. Solve Ex. 5, Art. 160, by the method explained in Art. 164.

5. ABCD is a rhombus formed by four rods, of no appreciable

weight, freely jointed together, and the figure is stiffened by
another rod, of inappreciable weight and of half the length of each

side of the rhombus, jointed to the middle points of AB and AD.

If this framework is suspended from A, and a mass of 100 pounds
attached to it at C, find the thrust of the cross rod.

6. ABCD is a rhombus formed of four rods, of no appreciable

weight, loosely jointed together, so that ABD and BCD are equi-

lateral triangles. The framework is stiffened by another light rod

DE, connecting D with the middle point of BC. If this framework

is suspended from A, and a mass of weight W attached to it at (7,

find the thrust of the cross rod.

7. In the example of Art. 163, the vertical through E meets BC
in X, and the straight line through C, drawn perpendicular to

AB, meets EX in Y. Prove that

W: T:R:S:Q=BC:YX:CX:XB'.CY.
8. In the preceding example, suppose that the weight of the mass

is given, but that the point E may be anywhere in AC. Show that

the tension of the string varies as CE.
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9. Two rods AB and AC, of no appreciable weight, are smoothly

jointed together at A, and rest in a vertical plane upon a smooth

horizontal plane at B and C, the point B being connected with a

point D in AC by a fine string. From a point E of the rod AC
is suspended a heavy body. The vertical through E meets BC
in X, and straight lines through X and C, perpendicular to BD
and BA respectively, meet in Y. Prove that the weight of the

body, the tension of the string, and the stress in AB are pro-

portional to BC, XY, CY respectively.

10. Four rods, of no appreciable weight, are freely jointed

together at their extremities to form a quadrilateral ABCD, such

that AB is parallel to DC. The framework is stiffened by another

light rod connecting the hinge D with a point E of the rod BC.

Equal forces P are applied at A and C in opposite directions in

the line AC, which intersects ED at the point F. Prove that, if

T is the stress in the rod ED, then

T:P=DF:FC.



CHAPTER XX.

FKICTION.

167. SUPPOSE that a rigid body rests jn equilibrium

against a rough surface at one point, being acted upon

by a given system of forces in one plane, in addition

to the resistance of the surface.

FIG. 185.

Let the body rest against the surface at P.

Draw PN, the normal, away from the surface at P.

Make angle NPL = angle of friction (X)= angle NPL'.

Then the total resistance at P can be of any magni-

tude, but must act in a direction intermediate to PL
and PL'. For equilibrium, then, it is necessary and
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sufficient that the resultant of the given system of

forces should pass through P and be in a direction

intermediate to LP and L'P.

168. For example, suppose it is required to support
a given heavy rod in a given position with one end

resting against a given rough inclined plane, by
applying at some point of the rod a force in a given
direction.

FIG. 186. FIG. 186 a.

Let AB be the rod resting against the plane at B.

Draw BL and BL
', making the angle of friction on

either side with the normal drawn away from the

plane at B. Let the vertical through G, the centre

of gravity of the rod, meet BL, BL' in L and L'

respectively.

Draw LM and L'M' each parallel to the given direc-

tion of the applied force, to meet AB in M and M'

respectively. Then the force must be applied at some

point between M and M'.

For, the only external forces acting on the rod are

its weight ( W), the total resistance x)f the plane (E),

and the applied force (F). The lines of action of the
D.S. u
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first two of these forces intersect at a point between L
and L'. Hence the line of action of F must pass

through some point between L and L'. Thus, for

equilibrium, it is necessary that the force F should be

of suitable magnitude, and should be applied at some

point H between M and M'.

For any given point H between M and M' we can

determine the magnitude of the applied force, and the

total resistance at B. Draw HO in the given direction

of the applied force, to meet LL' in 0. Then BO must

be the line of action of R.

Draw a/3 to represent the weight of the rod, and let

straight lines be drawn through a and /3 parallel to OB
and HO respectively, to meet in y. Then /3y represents

the force F, and ya the force R.

It will be seen that we have taken the inclination

of the plane as greater than the angle of friction. If

the inclination is less than the angle of friction, the

vertical through G will not meet EL' above B. In

this case the point may have any position above L.

169. In the preceding article, we have said that,

for equilibrium, it is necessary that the force F should

be applied at some point H between M and M'. This,

however, is not the only condition of equilibrium. We
have to take into account another consideration; the

resistance at B must be in direction BO and not OB.

It is necessary, therefore, to examine the direction

arrows in the triangle a/3y, and see that ya indicates

a push at B and not a pull.

For instance, suppose that M' lies in AB produced,
the inclination of the plane being greater than the

angle of friction. It will be found that, if H is taken
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anywhere except between B and M', the triangle of

forces indicates that a pull would be required at B;

and, as the force F cannot be applied at a point in

AB produced, it follows that in this case the rod

cannot be supported.

170. A rigid rod AB, whose centre of gravity is at

G, rests against a rough horizontal plane at A, and

a rough vertical wall at B. The angles of friction

between the rod and the ground, and between the rod

and the wall are X and X' respectively. It is required
to consider the conditions of equilibrium when any
system of forces is applied to the rod.

FIG. 187 a.

Let AM, BN be drawn normals to the ground and

wall respectively. Draw AK, AK', each making with

AM on opposite sides an angle X, and draw BL, BL',

each making with BN on opposite sides an angle X'.

The total resistance at A may be of any magnitude,

but must act within the angle KAK', and the total

resistance at B may be of any magnitude, but must
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act within the angle LBL'. Hence the lines of action

of the total resistances at A and B intersect at some

point within the quadrilateral KLK'L'. If it is possible ,

these resistances will be so adjusted as to produce

equilibrium. Hence, for equilibrium, it is necessary and

sufficient that the resultant of all the other forces

acting on the rod should be a force whose line of

action intersects the quadrilateral KLK'Lf, and whose

direction is such as to produce pressures at A and B.

The limits to the direction of this resultant force are

determined in this way : Let OP represent the resistance

at A, and PQ the resistance at B. Then QO must

represent the resultant of all the other forces acting

on the rod. The point P lies anywhere within the

angle 101', where 01, 01' are drawn in the directions of

AL, AL' respectively; and the point Q lies anywhere
within the angle kPk', where Pk, Pk' are drawn in the

directions of BK, BK' respectively. Hence, drawing Om
in the direction of Pk, we see that the only limitation

upon the position of the point Q is that it must be

somewhere within the angle mOL Hence the resultant

of all the forces acting on the rod, other than the

resistances at its extremities, must be intermediate in

direction between KA and KB.

171. If the only forces acting on the rod are its

weight and the resistances at its extremities, then, for

equilibrium, it is necessary and sufficient that the ver-

tical through G should intersect the area KLK'L'. If

G is vertically below L, the equilibrium is limiting, and

the actions at A and B are then along AL and BL

respectively, and are determinate. In other cases these

resistances cannot be found.
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Fig. 187 represents a possible position of equilibrium,

as the vertical through G intersects the area KLK'L'.

Let w be the weight of the rod, and let the vertical

through L meet AB in H. Then it is clear that if any
load be applied to the rod at a point between A and H,

equilibrium will not be disturbed. If, however, a load

W be applied at a point J between H and B, equilibrium

will, or will not, be disturbed, according as the resultant

of w and W acts above or below H.

172. Let the point J be given, and suppose it is

required to determine the greatest value of W con-

sistent with equilibrium. We may measure GH and

HJ, and find W from the equation
W _GH
w~HJ'

Or, we may obtain the same result as follows:

,Bs
W

FIG. 188.

Draw a/3 to represent w, and let two parallel lines

through a and /3 meet the verticals through J and H in

a and f respectively. Produce a/3' to meet the vertical
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through G in y', and draw y'y parallel to a a to meet a/3

produced in y. Then /3y represents W.

For any smaller load applied at J", the equilibrium

will not be broken, and for any larger load equilibrium

will be impossible.

173. Again, let W be given, and let it be required

to find the extreme position of J consistent with

equilibrium.

Here we can measure GH, and find HJ from the

HJ ^<;

equation _=__.

Or, we may obtain the same result as follows :

Draw aft, /3y to represent w and W respectively,

and let two parallel lines through /3 and y meet the

verticals through H and G in /3'
and y' respectively.

Produce y'/3' to meet the parallel through a in a', and

draw a'J in a vertical direction to meet AB in J.

If the load be placed below /, the equilibrium will

not be broken
;
if above J, equilibrium will be impossible.

174. Suppose that a body rests in equilibrium against

a rough inclined plane, a flat portion of the surface of

the body being in contact with the plane. Let it be

acted upon by a given system of forces, all situated in

the vertical plane through a line of greatest slope of

the inclined plane, these forces being in addition to the

resistances of the inclined plane, which prevent the body
from either penetrating, or slipping along, the inclined

plane.

The resultant resistance of the plane now acts at some

point within the portion of the plane in contact with

the body, and makes an angle with the normal at that

point not greater than the angle of friction.
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Hence, for equilibrium, it is necessary and sufficient

that the resultant of the given system of forces should

act tmvards the plane, and intersect the body at a point
within the extreme limits of the surface in contact, and

that it should not make with the normal to the plane
an angle greater than the angle of friction.

If the resultant of the given system of forces acts

along a line outside the figure formed by a string

drawn tightly round the portion of the body in contact

with the plane, the tendency of the forces is to overturn

the body. If the resultant of the given system of forces

makes an angle with the normal greater than the angle
of friction, the tendency is to make the body slip along
the plane.

175. For instance, consider the following problem:
A lamina of given shape, and of weight W, rests with

a straight edge AB in contact with a rough inclined

plane, B being above A. It is supported by a force

W

FIG. 189. FIG. 189 a.

applied in a given direction at a given point C. This

force is gradually increased until motion ensues. It

is required to find whether the lamina slips or topples

over.
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Let CD be the line of action of the force applied at C
in a direction tending to move the body up the plane.

Let be the centre of gravity of the body, and let

the vertical through G meet DC produced (if necessary)
in 0. Draw ON normal to the plane and OH, making
with ON the angle of friction, such that NH is up the

plane.

If H lies within AB, the body will slide
;

if without,

the body will topple over round B.

For, draw a/3 to represent W, and let straight lines

be drawn through parallel to OH, OB 4;o meet a line

through /3 parallel to CD in y and 3 respectively. If

the force applied at C is increased until it has a

value represented by /3y, the body will be just on the

point of sliding; if it is increased until it has a

value represented by /3S, the body will be just on the

point of toppling over. To ascertain what actually
takes place, we have merely to see which is the smaller,

j3y or /3S ; and, clearly, fty will be less or greater than

/3S according as H lies within or without AB.
176. Ex. 1. A and B are two fixed pegs, B being at a

higher level than A, and a heavy rod rests on B and

passes under A. The angle of friction between the rod

and the pegs being the same for both, it is required to

determine the conditions of equilibrium.
Let a be the inclination of AB to the horizon, X the

angle of friction.

Draw AM; nBN, the normals at A and B respectively.

Make angle KAM= X = angle MAK'. Also draw LBl,

L'Bl', making each an angle X with nBN, and let Bl

meet AK' in H, as in the figure. Draw BFG vertically

downwards, meeting AK' in F. Then angle GBn = a.
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The resistance at A acts in a direction intermediate

to AK and AK'. That at B acts in a direction inter-

mediate to IB and I'B. Hence the lines of action of

these two resistances intersect at a point within the

area lHK'
y
and equilibrium is possible only when the

line of action of the resultant weight of the rod inter-

sects the same area.

I. Let a be < X. Then BG is within the angle IBn,

so that FG divides the area IHK' into two parts. The

line of action of the weight of the rod must not fall

within the area IHFG, otherwise it would be necessary

for the peg at A to pull instead of press the rod.

Hence, for equilibrium, it is necessary and sufficient

that the vertical through the centre of gravity of the

rod should intersect the area GFK'. Thus the rod will

rest with its centre of gravity anywhere above B.
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II. Let a be > X. Then BG is without the angle IBn.

In this case equilibrium will always exist so long as

the line of action of the resultant weight of the rod

intersects the area IHK'.

FIG. 191.

Hence, if the vertical through H meets AB in X,

equilibrium will exist so long as the centre of gravity
of the rod is not below X.

177. Ex. 2. A uniform heavy beam rests with one

end against a vertical wall and the other on the ground,

being inclined to the wall at an angle of 45. Compare
the least horizontal forces which, applied to the foot of the
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beam, will move it towards or from the foot of the wall,

the coefficients of friction being J for each end of the

beam.

Draw AB to represent the beam inclined at an angle
of 45 to AD, which represents the ground, and to

BD, which represents the wall. (For figure, see next

page.)

Let the normals at A and B intersect at N
t
and draw

AH and AK, intersecting BN in E and F respectively,

where EN=\AN=NF. Then

angle HAN = angle of friction= angle NAK.

Similarly, make

angle HBN= angle of friction = angle NBK.

Then the lines of action of the total resistances at

A and B intersect at some point within the shaded area

of the figure.

Let the vertical through the middle point of the beam
meet the horizontal through A in 0. Let W be the

weight of the beam, and suppose it is at rest when a

force X is applied at A in a horizontal direction towards

the wall.

The line of action of the resultant of X and W
passes through 0. If it is possible for the resistances at

A and B to adjust themselves so as to balance the

resultant of X and W, they will do so. Hence, for

equilibrium, it is* necessary and sufficient that the line

of action of the resultant of X and W should pass

through the shaded area. Thus the line of action of

the resultant of X and W must lie between the positions

HO and KO. If it is beyond these limits, the beam

slips ;
if it is along HO, the beam is on the point of
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slipping towards the wall
;

if along KO, the beam is on

the point of slipping aivay from the wall.

FIG. 192.

Draw a/3 vertically downwards to represent W, and

draw straight lines through a parallel to HO, KO to

meet the horizontal through /3 in y and 6' respectively.

Then /3y, f$& represent the greatest and least values

of X consistent with equilibrium.

On measurement, we find that fiy is 5| times as long
as /3S, therefore the force necessary to move the beam

towards the wall is 5J times as great as the force
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necessary to prevent it from slipping away from the

wall.

FIG. 192 a.

178. Ex. 3. A ladder is placed with one end on a

rough horizontal plane and the other against a rough
vertical wall; find, by geometrical construction, the

limiting position of equilibrium, being given the co-

efficients of friction and the centre of gravity of the

ladder.

If an additional load be placed at any point on the

ladder, in this limiting position, find whether the equi-
librium will be disturbed or not.

We will assume a position of limiting equilibrium,
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and postpone for the present any attempt to draw the

figure to scale.

Let AB represent the ladder, resting against the

ground AD at A and the wall BD at B. Let G be

the centre of gravity of the ladder, /x and // the co-

efficients of friction for the ladder and ground and for

the ladder and wall respectively. Then /m and // are

known fractions, and the lengths of AG and GB are

known.

D
FIG. 193.

Let the normals at A and B intersect at N. Suppose
that NAO is taken equal to the angle of friction for

the end A, and NBO the angle of friction for the end B,

the first angle being measured from NA towards the

wall and the second upwards from NB. Then, as the

ladder is in limiting equilibrium, the vertical through G
must pass through 0. Let the vertical through A meet

the horizontal through in E and BO produced in F.
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Then EAO, EOF are the angles of friction for the ends

A and B respectively.

.-. EO = /ji.EA and EF=^.EO.
Also FO:OB= AG:GB.

Hence we have the following method for constructing
the figure :

Take any straight line EA vertically downwards.

Through E draw EO in a horizontal direction equal
to /a . EA, and produce AE to F, making EF=/ui . EO.

Produce FO to B, making the ratio FO:OB equal
to the known ratio AG : GB. Then AB may be taken

to represent the ladder.

In the construction indicated above, EA is taken of

any suitable length, without reference to a scale, and

the line AB is constructed, its length depending upon
the length chosen of EA. We can then choose our

scale so that AB may represent the known length of

the ladder; or, if this is inconvenient, we can draw
another figure, similar to the figure obtained, com-

mencing with AB, which is first drawn to scale.

If an additional load be placed on the ladder between

A and G, the resultant weight of ladder and load will

act along a vertical line to the left of 0, and therefore

the equilibrium will not be disturbed.

If, however, an additional load be placed on the

ladder between G and B, the resultant weight will act

along a vertical line to the right of 0, and therefore

equilibrium will become impossible.

179. Ex. 4. The uniform square lamina ABCD rests

vertically with the side BO upon a horizontal plane,

coefficient of friction \ y and has a fine string attached

at D and passing over a small smooth peg at the point



320 FRICTION.

E in BA produced till EA is equal to AB. If the

string be pulled, find the greatest force which can be

applied, consistent with equilibrium, and whether the

initial motion of the lamina will be tilting or sliding.

E

FIG. 194.

Let W be the weight of the lamina, and G its centre

of gravity. Let the vertical through G meet AD in F
and DE in

; join BF and BO.

The point F bisects AD, and therefore AF=^AB.
Hence ABF is the angle of friction.

Take a/3 vertically downwards to represent W, and

draw j8y, a straight line of unlimited length, parallel

to DE.
'



FEICTION. 321

If the point y be taken so that ay is parallel to FBy

the straight line /3y will represent the pull of the string-

when the lamina is on the point of sliding. If y be

taken so that ay is parallel to OB, then /3y will repre-
sent the pull of the string when the lamina is on the

point of tilting round B. As FB is inclined to the

vertical at a greater angle than OB, it follows that the

second of these alternatives gives the shorter value of

/3y. Hence the initial motion is one of tilting.

W

FIG. 194 a.

Also, drawing ay parallel to OB, we find, on measure-

ment, that /3y = '35 of aft. Therefore, the greatest value

of the applied force, consistent with equilibrium, is

35 W.

EXAMPLES XX.

1. A uniform beam AB, whose length is 12| feet, rests with

one extremity A on a rough horizontal plane AC, and is kept
from falling forwards by a fine cord BC, 20 feet long, whose

extremity is attached to a fixed point C in the plane, directly
behind the beam. If the beam is on the point of slipping when
AC= AB, find the coefficient of friction.

D.S. X
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2. A uniform beam of weight H7

,
laid on a horizontal plane,

can be just moved in its own direction by pushing it with a

horizontal force '58 W. Find the least force which can move it

in its own direction, and determine the direction of this force.

If the beam be pulled by a gradually increasing force applied

by a fine string attached at one end A, determine the least

inclination of the string to the horizon, in order that A may be

raised from the ground.

3. A uniform ladder 70 feet long is equally inclined to a

vertical wall and the horizontal ground, both rough ;
a man,

ascending the ladder, weighs with his burden 2 cwt., and the

ladder weighs 4 cwt.; how far up the ladder can the man ascend

before it slips, the coefficient of friction for the ladder and wall

being ^, and for the ladder and ground ^?

4. A ladder AB, 15 feet long, rests against the ground at A
and against a rough vertical wall at B, the coefficients of friction

at A and B being and ^, respectively ;
the centre of gravity,

G, is 6 feet from A : find the inclination to the horizon at which

the ladder will be just about to slip.

5. If the ladder of the preceding question is placed so that

the distance of A from the wall is twice as great as the distance

of B above the ground, and a boy, whose mass is one-fifth of that

of the ladder, ascends it in this position, how far will he be

able to go before the ladder begins to slip ?

6. A uniform ladder rests between a vertical wall and the

horizontal ground, both rough; if the coefficient of friction for

the ladder and wall is
,
and for the ladder and ground f, find

the angle which the ladder makes with the ground when it just

begins to slide.

7. A rectangular block ABCD, whose height is double its base,

stands with its base AD on a rough floor, coefficient of friction

^. If it is pulled by a horizontal force at C till motion ensues,

determine whether it will slip on the floor or begin to turn over

round D.

8. A uniform cubical block is sustained on a rough inclined

plane by a fine string, which is parallel to the plane, and is
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attached to the middle point of the upper edge of the cube,

which is horizontal. The string lies in the vertical plane which

contains the centre of the cube, and which is perpendicular to

the inclined plane. The angle of friction being given, show how
to determine the greatest inclination of the plane consistent with

equilibrium.

Show that the greatest inclination is such that the ratio of

the height of the plane to its base is 1 + 2/z, : 1, where /x is the

coefficient of friction.

9. A heavy rigid beam rests against a rough horizontal plane
and against a rough vertical wall, the vertical plane through the

beam being at right angles to the wall. Show that if the beam
is inclined to the vertical at an angle less than the angle of

friction for the beam and the ground, equilibrium cannot be

broken, whatever loads be applied to the beam.

10. A heavy ladder is placed in a given position between a

vertical wall and the horizontal ground, both being equally

rough ;
a workman of given weight ascends the ladder with a

given load, show how to determine by a geometrical construction

whether the ladder will slip.

11. In Example 3, Art. 178, show that, if the ladder is uniform,
BD:DA =I-w :2[ji.

If, in addition, ft>
=

^', show that the limiting inclination of the

ladder to the vertical is twice the angle of friction.

12. A ladder AB, whose centre of gravity is at G, rests against
a rough horizontal plane at A, and a rough vertical wall at B,
the coefficients of friction for the ground and the wall being

[L and // respectively. Show that, if AG is less than /x/x' . BG, the

ladder will rest at any inclination to the wall.

13. A uniform ladder rests in limiting equilibrium against a

rough vertical wall and rough horizontal ground. Show that a

man can ascend to the top of the ladder, while in this position,

provided that a man, of not less weight than himself, stands on

the ladder at the bottom.

14. A ladder, loaded in any manner, rests against a rough
vertical wall and rough horizontal ground, being prevented from
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slipping by means of a force applied at the foot of the ladder.

Show that slipping is most easily prevented by applying the

force downwards at an inclination to the ground equal to the

angle of friction between the ladder and the ground.

15. A heavy rectangular block ABCD rests with AB on the

ground ; a fine string is attached to the corner C, and pulled

round a fixed smooth peg P, situated vertically over D, till motion

ensues. All particulars being given, obtain a geometrical con-

struction for determining the least height for the peg P, if the

block is to begin to revolve round A, without slipping along the

ground.



ANSWERS TO THE EXAMPLES.

EXAMPLES I.

1. (i.) 7 pounds' weight ; 21|;

(ii.) 7 pounds' weight ; 38j ;

(iii.) 7 pounds' weight ; 21f.

2. 3'46 pounds' weight, parallel to AS, through the intersection

of FB and AE.

3. 3 pounds' weight, acting through C in direction AB. 3 pounds'

weight, acting through C in direction perpendicular to CA.

4. 56 pounds' weight, acting along the perpendicular from A
upon EC.

5. 264'6 pounds' weight, acting at an angle of 19 with the first

force.

6. 22*69 pounds' weight, acting at an angle of 73^ with the first

force.

7. The other component is a force of 7 pounds' weight, acting at

an angle of 81f with the given component.

8. 47^.

9. 29'8, 45-9 pounds' weight.

10. 3 or 5 pounds' weight.

11. 11 or 24 pounds' weight.

12. An equal force, acting along the bisector of the angle between

the given forces.

30. OB : OA.
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EXAMPLES II.

1. 173*2, 200, 173-2 pounds' weight. 360'6 pounds' weight, acting

at an angle of 46 with AB.

2. 0.

3. 0.

4. A force represented by twice AC.

5. 7*55 P, within the angle BOG, in a direction 53^ with OC.

6. 5.

7. 2'75 pounds' weight in direction BA.

8. 3*73, in the direction of the force 2.

9. P=3-80, $= 6'12.

10. 2'64, in a direction making 106 with the force 3.

11. P=l'732 = .

12. 7 pounds' weight, acting at an angle of 21| with the middle

force.

13. 7 pounds' weight, acting at an angle of 38^ with the first

force.

14. 17 pounds' weight, acting at an angle of 28 with AD.

15. 1-27.

16. 4*09 pounds' weight, acting at an angle of 83 with BC.

17. 7 pounds' weight, acting along OD.

18. 105 pounds' weight, acting along OF, where F is in AB at a

distance of 3 inches from B.

19. 42*77 pounds' weight, acting at an angle of 70^ with the first

force.

20. 7*89.

21. 13'2 pounds' weight ; 45|.

22. 1-155.

23. (i.) The forces cannot be arranged so as to produce equi-

librium.

(ii.) 135; (iii.) 90; (iv.) 120;

(v.) 120; (vi.) 60.
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EXAMPLES III.

1. 21-5, 6'4 pounds' weight.

2. 11 : 7.

3. 12, 16 pounds' weight.

4. 150 pounds' weight each.

5. 78, 50 pounds' weight.

6. 253, 91 pounds' weight.

7. 34, 20 pounds' weight.

8. P=60 pounds' weight ;
the tension of each portion of the

string= 50 pounds' weight.

9. Tension in .5(7=25 pounds' weight = tension in CA.

Tension in AB= 16'2l pounds' weight.

Each of the applied forces= 39 '2 pounds' weight.

10. Force applied at 5= 51 pounds' weight.

Tensions in BC, CA, J.J5= 40, 68, 13 pounds' weight respec-

tively.

Action at ^4 = 75 pounds' weight, in direction perpendicular

to EC.

11. 33 pounds' weight.

12. 35 pounds' weight, 13 inches.

EXAMPLES IV.

1. 45 pounds' weight, 75 pounds' weight, 75 pounds' weight in

direction AB.

120 pounds.
19 or 53 downwards from the horizontal.

2. In AC, a thrust equal to the weight of 2*63 cwt.; and in BC, a

tie equal to the weight of 1'75 cwt.

A force equal to the weight of 9 cwt., acting in a direction

perpendicular to AC and downwards.

15-2 cwt.

3. 64'66 pounds' weight.
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4. In each side of the rhombus, tension of 84'66 pounds' weight.
In the cross rod, thrust of 127"0 pounds' weight.

5. 76'92 pounds' weight.

6. 31 '6 pounds' weight.

7. AC is vertically downwards
;
the tensions of the sides of the

parallelogram are 80, 60, 80, 60 pounds' weight respectively ;

the thrust in BD is 124 pounds' weight.

8. A C is vertically downwards
; the tensions of the sides of the

parallelogram are 40, 30, 40, 30 pounds' weight respec-

tively ;
the thrust in BD is 34 pounds' weight.

9. MN is vertically downwards, and the rod is inclined at an

angle of 55^ to the vertical
; the tensions of HM, MK,

KN) NH are 52, 56, 52, 16 pounds' weight respectively ;

the thrust in the rod is 60 pounds' weight.

EXAMPLES V.

1. 1*414 P, acting at an angle of 45 with the vertical.

2. 16, 12 pounds' weight.

3. W at each peg, in a direction making 30 with the horizontal.

4. At (7, 10 pounds' weight at an angle of 60 with the vertical.

At B, 17'32 pounds' weight in a horizontal direction.

5. 4472 pounds' weight, acting at an angle of 26| with the

vertical.

6. 39'22 pounds' weight, acting at an angle of 11^ with the

vertical.

7. At B, 11 "10 pounds' weight at an angle of 56
3-

with the

vertical.

At C, 16-64 pounds' weight at an angle of 33| with the

vertical.

8. 41'23 pounds' weight each, at an angle of 14 with the

horizontal.

9. 3 pounds' weight ; 13"93 pounds' weight.

10. 1'56 pounds' weight.

11. 3-38 ounces' weight.
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12. C rests 3 inches below, and 4 inches to the right of, A.

10 pounds' weight.

13. The ring rests at a point distant 7 inches from A and 25 inches

from B, the angle at A being a right angle.
10 pounds' weight.

14. At B and (7, 6 pounds' weight each in a horizontal direction.

At J, 8 pounds' weight in a vertical direction.

Tension= 5 pounds' weight.

15. Tension = 10 pounds' weight.
At B and C, 16 pounds' weight each in a horizontal direction.

At A, 12 pounds' weight in a vertical direction.

16. Tension= 10 pounds' weight.
At A, 8'94 pounds' weight at an angle of 63^ with the vertical.

At B, 17-89 pounds' weight at an angle of 26^ with the

vertical.

At C, 16 pounds' weight in a horizontal direction.

17. In the direction CO, where C is in AB at a distance of 3 inches

from A.

Tension = 8 '94 pounds' weight.
At A, 12'65 pounds' weight at an angle of 45 with AB.
At B, 16'97 pounds' weight at an angle of 18| with BA.

18. 95, 65 pounds' weight.

19. 1'75 inches
;
40 pounds' weight.

20. 6 pounds' weight, at an angle of 41^ with the vertical.

21. When the rod is vertical, the tension of each string is

8 pounds' weight.
When the rod is horizontal, the tensions of ACB and ADB

are 10 and 17 pounds' weight respectively.

EXAMPLES VI.

1. 5, 4 pounds' weight.

2. 17-32, 20 ounces' weight.

3. 36, 20 ounces' weight.

4. 1'15 pounds' weight each.
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5. 12 pounds' weight.

6. *866 JF, at an angle of 30 with the vertical.

7. 7'66, 6'43 pounds' weight.

8. (a) 1'82 pounds' weight.

(b) 1*71 pounds' weight.

9. 6 feet 8 inches.

10. 10 pounds' weight; 31 '62 pounds' weight.

11. 40 pounds' weight.

12. 12 ounces' weight.

13. 9'66, 673 pounds' weight.

14. 60, 17'32 pounds' weight. 3'46 inches.

15. 7, 15 ounces' weight.

16. 5*2 ounces' weight.

17. 1 foot, 7'66 pounds' weight.

EXAMPLES VII.

1. (i.) 4-66, 11-03 ounces' weight ;

(ii.) 4-29, 9'81 ounces' weight ;

(in.) 9'41 ounces' weight, at an angle of 23| with the vertical ;

(iv.) 4'23 ounces' weight, in an upward direction inclined at an

angle of 25 to the horizontal.

2. (i.) 56'7 ounces' weight ;

(ii.) 577 ounces' weight ;

(iii.) 9'85 ounces' weight, at an angle of 10 with the vertical ;

(iv.) 5 ounces' weight, at an angle of 60 with the vertical.

3. (i.) 7 '09 ounces' weight;

(ii.) 1'92 ounces' weight;

(iii.) 6'43 ounces' weight, at an angle of 50 with the vertical ;

(iv.) 1'74 ounces' weight, at an angle of 80 with the vertical.

4. 22 ounces' weight ;
1*31 ounces' weight.

5. -75 ; 3'6 pounds' weight. 2'88 pounds' weight, at an angle of

73| with the horizontal.

6. 1'15 pounds' weight.

7. 10 and 50 from the highest and lowest points of the hoop.
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EXAMPLES VIII.

1, (i.) 12 P, in the same direction as each of the given forces,

through a point C in AB, such that AC= "58 of AE.

(ii.) 2 P, in the direction of the 7 P, through a point C in .41?

produced, such that AC=3'5 of .45.

2, 5 pounds' weight, in the direction of the second force, at a

distance of 16 inches beyond that force.

3, 34*83 pounds' weight along the line XT, where X is a point in

DA, such that DJT='45 of DA, and T is a point in CE,

such that CT= '56 of CB.

EXAMPLES IX.

1. 6 '93 pounds' weight each, at an angle of 30 with the vertical.

2. 22'5 pounds' weight ;
2T93 pounds' weight, at an angle of 24|

with the vertical.

3. 90 pounds' weight.

4. 144 pounds' weight.

5. 45'5 pounds' weight.

6. 17'32 pounds' weight; 17 '32 pounds' weight, in a direction

perpendicular to the rod.

7. 10 pounds' weight ;
17*32 pounds' weight, at an angle of 30

with the vertical.

8. Reaction at B= W in a horizontal direction.

Reaction at the hinge= |-
W at an angle of 53 with the vertical.

9. 125 pounds' weight; 103'1 pounds' weight, at an angle of 14

with the horizontal. '25.

10. 13'29 inches, 59 '64 ounces' weight.

11. 369'5 pounds' weight, at an angle of 15f with the horizontal ;

260 '9 pounds' weight.

12. 1-42 feet from A ; 11 "66, 1773 ounces' weight.

13. 2 pounds' weight; 4 '47 pounds' weight, at an angle of 26^

with the vertical.
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14. 5*46 pounds.

15. 1'86 pounds' weight.

16. -5JF, -866 TF.

17. TFeach.

18. 6, 10 pounds' weight.

19. 65 pounds' weight.

20. 26, 28 pounds' weight.

21. 4 inches, 25 pounds' weight.

22. The middle point ; f W, f W.

23. Either from a point dividing AC in the ratio. 1 : 3, or from a

point dividing BCin the ratio 5:3; 8'66, 5 pounds' weight.

24. 13 pounds; 19*2 pounds' weight, at an angle of 38| with the

vertical.

25. 30, 26'46 pounds' weight.

26. Horizontal.

27. Pressure at D= l pound weight, at an angle of 30 with the

horizontal.

Action at = 1'73 pounds' weight, at an angle of 60 with the

horizontal.

28. Perpendicular to SC, 9 inches from B.

29. In direction OP, where P is at distances of 18 and 24 inches

respectively from A and B.

30. 15*6 pounds' weight; 9'92 pounds' weight, at an angle of 52|
measured downwards from the horizontal.

31. -5F,-577TF.

32. Between 3 and 8 inches from A.

33. 5 inches from A.

34. 1'895 pounds' weight.

35. 96'43, 53'57 pounds' weight.

36. 100, 40 pounds. The first man would support 12 pounds more,
and the other 12 pounds less.

37. 9-49 pounds' weight.

38. 16 pounds' weight ; 40 pounds' weight.
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EXAMPLES X.

1. 1"73 pounds' weight, in a direction perpendicular to the first

side, through a point which divides that side externally
in the ratio 1 : 3.

2. 96 pounds' weight, in a direction perpendicular to BO, through
the middle point of EC.

3. 3'6 pounds' weight along FG, where G is in BC produced such

that CG= .BC, and F is in AD produced such that

DF=AD.
'

4. 105 pounds' weight along LB, where L is in DA produced
9 inches from A.

5. 7 pounds' weight, at an angle of 81f
3
with AB, through in

.PC' produced, where C0= side of hexagon.

EXAMPLES XI.

1. Tension of string = 9 pounds' weight.
Pressure of step =15 pounds' weight.
Pressure of ground= 13 pounds' weight.

2. 8-66, 15, 17-32 pounds' weight; '58.

3. - '5 P, -71 P
t

"5 P.

4. 50, 48'4, 187-5 pounds' weight.

5. 49-24.

6. 5, 12'32, 20 pounds' weight.

7. 15, 12-69, 12*69 pounds' weight.

8. P,2P,P.

9. 10, 17-32, 34-64 pounds' weight.

10. 28-87 pounds' weight.
Tension of ^#=5774 pounds' weight.

Tension of BK=oO pounds' weight.

11. 41-6, 79-2, 36-0 pounds' weight.

12. 25 pounds' weight.

13. 8, 37'86, 8-28 pounds' weight.
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14. 10 pounds.
Tension of BD= \Q pounds' weight.
Tension of AC= 17 '32 pounds' weight.

15. 33, 60, 56 pounds' weight.

EXAMPLES XII.

1. 33'79, 33'21 pounds' weight.

2. IW.
3. 63 pounds.

4. 5 feet.

5. 3 inches.

6. 6 pounds' weight, 7 inches from A.

7. 2 pounds' weight, 8 inches from A.

8. 20 inches, 12 pounds' weight.

9. 7 pounds' weight, 9'14 inches from A.

EXAMPLES XIII.

1. 45, 330, 45 pounds' weight.

2. 85 '33, 270, 85-33 pounds' weight.

3. 25"5 pounds' weight; 154*2 pounds' weight, at an angle of

80^ with the ground.

4. 70 pounds' weight; 90"4 pounds' weight, at an angle of 27|
with the vertical.

5. 9 pounds' weight ;
15 pounds' weight, at an angle of 37 with

the vertical.

EXAMPLES XIV.

1. 20 pounds' weight each, 15 pounds' weight, 25 pounds' weight
each.

2. The rod is inclined at an angle of 81| to the vertical, H being

the highest point; the tensions of LH and LK are 24 and

40 pounds' weight respectively ;
the thrust in the rod is

15 pounds' weight.
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3. 52 pounds' weight. The tensions of the rods BC, CA, AB are

25, 39, 33 pounds' weight respectively ; the action at A is

60 pounds' weight, in a direction perpendicular to EG.

4. Tension of string = 115*5 pounds' weight.

In AB, a thrust of 57*7 pounds' weight.

In BC, a tension of 115*5 pounds' weight.

In CA, a thrust of 115*5 pounds' weight.
Action at A = 152*8 pounds' weight, at an angle of 41 with AB.

5. The force applied at A = 108 pounds' weight.

Reaction at B= 60 pounds' weight vertically upwards.
In BC and CA, tensions of 75 and 117 pounds' weight

respectively.

In AB, a thrust of 45 pounds' weight.

6. 28 pounds' weight each.

In AB, BC, CD, DA, tensions of 30, 26, 26, 30 pounds' weight
respectively.

7. 80 pounds' weight each.

8. The forces in the lines be, da, and the tensions of the rods oa,

ob, oc, od are 80, 60, 36, 48, 64, 48 pounds' weight respec-

tively.

9. Tension of string = 200 pounds' weight.

In AB, BC, CD, DA, tensions of 130, 90, 130, 90 pounds'

weight respectively.

10. In AB and EF, tensions of 51 pounds' weight each.

In BC and DE, tensions of 30 pounds' weight each.

In CD, tension of 18 pounds' weight.

In BE, tension of 27 pounds' weight.

11. In AC, CD, DB, tensions of 20, 12, 20 pounds' weight respec-

tively.

12. In AB and BC, tensions of 25 and 50 pounds' weight re-

spectively.

In AD and DC, thrusts of 25 and 50 pounds' weight respectively.

The reactions at B and D are 49*24 pounds' weight each.
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13. The actions at B and D are 48 and 161 '3 pounds' weight

respectively.

In AD and DC, tensions of 250 and 300 pounds' weight

respectively.

In AS and BC, thrusts of 240 and 288 pounds' weight

respectively.

14, In AB, BO, CD, DE, tensions of 56, 65, 65, 56 pounds' weight

respectively.

In JJjPand FD, thrusts of 33 pounds' weight each.

EXAMPLES XV.

1. In AB, BC, CD, tensions of T155TT, '577 W, 1 -15517

respectively, where W is the weight of each mass.

2. 8'66 pounds' weight.
In AB, a thrust of 3 pounds' weight.

In BC and CD, tensions of 5 pounds' weight each.

3. 63 pounds' weight.

In BC and CD, tensions of 52 and 25 pounds' weight respec-

tively.

In AB, a thrust of 20 pounds' weight.

4. 69*29 pounds' weight.

In BC and CD, tensions of 34*6 and 60 pounds' weight respec-

tively.

In AB, a thrust of 17'3 pounds' weight.

5. 33'3 pounds.

In AB, BC, CD, tensions of 115*5, 577, 667 pounds' weight

respectively.

6. (i.) 59J, 90, 59i to the vertical;

(ii.) 11-64, 10, 11 -64 feet;

(iii.) 48-85, 41'95, 48'85 pounds' weight.

7. (i.) 25
;

(ii.) 6627 pounds' weight ;

(iii.) 2813 pounds' weight ;

(iv.) 4-56 feet.
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EXAMPLES XVI.

1. In AC, a tension of 112 pounds' weight.

In AB and AD tensions, in EG and CD thrusts, each of

64 pounds' weight.

2. In AC, a tension of 52 pounds' weight.

In AB and AD, tensions of 80 pounds' weight each.

In BC and CD, thrusts of 40 pounds' weight each.

3. In DC, a thrust of 272 pounds' weight.

In BC, a tension of 308 pounds' weight.

In DB, a thrust of 231 pounds' weight.

In AB, a tension of 385 pounds' weight.

4. AB is horizontal.

In AC, AB, DA, tensions of 8'75, 2'04, 26'04 pounds' weight

respectively.

In BC and CD, thrusts of 7 '29 pounds' weight each.

5. 192 pounds.

In AC, a tension of 150 pounds' weight.

In AB a tension and in BC a thrust, each of 90 pounds' weight.

In AD a tension and in DC a thrust, each of 120 pounds'

weight.

6. 50 pounds' weight.

In KH, KM, KL, tensions of 30, 50, 40 pounds' weight

respectively.

In ME and ML, thrusts of 40 arid 30 pounds' weight respec-

tively.

7. 32 pounds' weight.

In BA, BD, BC, tensions of 50, 56, 34 pounds' weight respec-

tively.

In DA and DC, thrusts of 50 and 34 pounds' weight respec-

tively.

8. The forces applied at A and C are 120 pounds' weight each.

In BA, BD, BC, tensions of 125, 42, 125 pounds' weight

respectively.

In DA and DC, thrusts of 35 pounds' weight each.

D.S. Y
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9. In AB, EC, CD, CA, tensions of 11'55, 577, 28'87, 10 pounds'

weight respectively.

10. In AB, BC, CD, CA, thrusts of 11-55, 577, 28'87, 10 pounds'

weight respectively.

In AD, a tension of 14'43 pounds' weight.
The reactions at A and D are 15 and 25 pounds' weight

respectively.

11. In the lower rods, tensions of 120 pounds' weight each.

In the upper rods, thrusts of 130 pounds' weight each.

In the upright, a tension of 100 pounds' weight.

12. In the lower rods, tensions of 125 pounds' weight each.

In the upper rods, thrusts of 150 pounds' weight each.

In the upright, a tension of 180 pounds' weight.

13. In the 28-foot rod, a thrust of 14,000 pounds' weight.
In the 20-foot rod, a tension of 10,000 pounds' weight.

In the upright, a thrust of 15,780 pounds' weight.
In the 13-foot rod, a tension of 22,520 pounds' weight.
The action at A is 28,150 pounds' weight, at an angle of 18*

with the vertical.

EXAMPLES XVII.

1. In BC, a thrust of 117 pounds' weight.

In OB and OC, ties of 97 '5 pounds' weight each.

In OA and OD, ties of 62 '5 pounds' weight each.

In BA and CD, thrusts of 97*5 pounds' weight each.

2. In the two lower rods, tensions of 288 '7 pounds' weight each.

In the three upper rods, thrusts of 577*4 pounds' weight each.

In the two internal rods, tensions of 577'4 pounds' weight each.

3. In the two lower rods, tensions of 150 pounds' weight each.

In the two side rods, thrusts of 250 pounds' weight each.

In the top middle rod, a thrust of 300 pounds' weight.
In the two internal rods, tensions of 250 pounds' weight each.

5. Tension of 808 '9 pounds' weight, thrust of 622 '2 pounds'

weight, tension of 3111 pounds' weight.
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7. In the lower horizontal rods, tensions of 4667, 1400, 1400,

4667 pounds' weight.

In the upper horizontal rods, thrusts of 933'3, 18667, 933'3

pounds' weight.

The other rods, taken in order, are : strut, tie, strut, tie, tie,

strut, tie, strut.

9. In the top rod, a thrust of 4480 pounds' weight.

In the bottom rod, a tension of 5973 pounds' weight.

In the internal rod, a thrust of 1867 pounds' weight.

12, In the horizontal rod, a tension of 112 pounds' weight.

In the top rod, a thrust of 200 pounds' weight.

In the internal rod, a tension of 80 pounds' weight.

EXAMPLES XVIII.

1. 26, 22*5, 22*5, 26 ounces' weight.

2. In HK, HF, HN, tensions of 26, 36, 26 ounces' weight respec-

tively.

The actions at L and Jfare each 26 ounces' weight, in directions

parallel to HN, HK respectively.

3. 2'5, 4'2, 4'2, 2'5 pounds' weight.

4. Thrust in the cross-rod= 57 pounds' weight.

Tension of each string= 25 pounds' weight.

Action at the hinge =37 pounds
3

weight, in a horizontal

direction.

5. Thrust in the cross-rod=3'46 W.

The actions at the hinges are :

At A and jP, 275 W each, at an angle of 24| with the vertical.

At B and E, 1'89W each, at an angle of 37 with the vertical.

At C and D, 2 '36W each, at an angle of 77| with the vertical.

6. Tension of string= 1*1 5 W.

Action at H= '5 W, in a vertical direction.

Action at Z=76 JF, at an angle of 49 with the vertical.

7. 1-5W
; '29 W, 173 W, 2'31 W.
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8. Tension of string= 4 W.

Action at K= *87 W, in a horizontal direction.

Action at Z=l*32 TF, at an angle of 41 with the vertical.

Action at J/=2'18JF, at an angle of 23^ with the vertical.

9. Tension of string
= 2 '67 W.

Action at K= "87 W, in a horizontal direction.

Action at Z= 1*32TF, at an angle of 41 with the vertical.

Action at J/"=1*09TF, at an angle of 52 with the vertical.

10. 28 pounds' weight each.

11. Tension of FH= 21 pounds' weight.

Tension of GK=35 pounds' weight.

EXAMPLES XIX.

1. 4*9 pounds' weight.

2. 30, 26*46 pounds' weight.

3. 126-59, 136-85 pounds' weight.

5. 115*5 pounds' weight.

6. W.

EXAMPLES XX.

1. '164.

2. *5 W, 30 with the horizontal. 60.

3. 50 feet up the ladder.

4. 16|.

5. To the top of the ladder.

6. 45.

7. It slips.
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