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PREFACE.

It has long been my firm conviction that the teaching
of Elementary Statics would gain in clearness and
educational value by a more general use of geometrical
methods. The fundamental propositions of the subject
are essentially geometrical, but it is usual for the
beginner to abandon the direct use of the geometrical
methods in favour of -the analytical formulae to which
they give rise. This is a pity. Mathematical formulae
fail to appeal to the eye with the direct force of a
geometrical figure, and the power and neatness of the
geometrical methods are unquestionable. The practical
engineer makes considerable use of Graphic Statics, but
the subject has been much neglected in this country,
and there seems to be no book which leads up by easy
stages to the mastery of a subject at once interesting
and instructive, and which can be systematically dealt
with in a scientific manner. In most recently published
text-books on Klementary Statics, an attempt is made
to deal with the subject of Graphic Statics in a short
chapter or a few articles, but the matter is worthy of
better treatment, and there seems to be a growing
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need for some such volume as the present, which deals
with Geometrical Statics alone. The book is essentially
an elementary one, and is intended to prepare the way
for such works as Major Clarke’s Graphic Statics or
Professor Hoskins' Elements of Graphic Statics.

Rather against the advice of friends, I have not
attempted to write a treatise independent of existing
text-books. My wish is to supplement, not to compete
with, such. Hence the Principle of Transmissibility
of Force and the Parallelogram of Forces have been
assumed, and a direct plunge taken into the geometrical
aspect of the subject. For the groundwork and, later
on, for an exposition of the Laws of Friction, the
student is referred, by permission, to Professor Loney’s
Elements of Statics.

In preparing this work, I have consulted most
available English books which bear upon the subject,
and, in particular, Professor Hoskins' FElements of
Graphic Statics. The method of lettering the diagrams
is the extension of Bow’s notation adopted in that
volume.

Each chapter concludes with a number of worked-
out examples, which are followed by a set of exercises
for the student. Each set contains a collection of
numerical examples, followed, in most cases, by others
of a more general kind, which are intended to be
worked with the aid of elementary pure geometry. The
pumerical examples are designed primarily for solution
by means of accurately drawn figures; a careful



PREFACE. vii

worker, however, can in the more simple cases obtain
fairly accurate results by freehand drawing, while the
student of Trigonometry can calculate the lengths of
the lines of his force diagram, and thus obtain accurate
solutions.

I may claim most of the examples as my own original
problems, accumulated during the last six years while
teaching the subject to Woolwich pupils. Those which
are not original are taken, for the most part, from recent
examination papers set to candidates for admission to
the Royal Military Academy.

The figures have, in most cases, been reduced in
size from my original drawings, so as to admit of
space diagram and force diagram being placed side
by side on the same page. Those, however, which
constitute the answers to numerical questions, are
reproduced, in general, on the scale in which they
were originally drawn. This has, in some cases,
necessitated corresponding figures being placed on
different pages facing each other. Attention is drawn
to the numbering of the figures. Corresponding to
the space diagram 108, we have the force diagram
108a, etc.

In conclusion, I take this opportunity of tendering
my warmest thanks to several mathematical friends, to
whom I am indebted for much kindly encouragement
and assistance. My former mathematical master, the
Rev. Henry Williams, read through the work in manu-
seript, and again as it went through the press, and
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FUNDAMENTAL PRINCIPLES.

Thus, in the accompanying figure, we have a diagram
representing some material system, and the point O
of the diagram represents a material point of the
system. The straight line OL is drawn in such a
direction that it represents, relatively to the rest of
the system, the direction of a force whose measure is
6 applied at the point O; and OL is taken 6 units
of length, and in this way represents graphically the
magnitude also of the force.

2. Now it is to be noticed that, in the above figure,
we have two different scales. The outline of the figure
and the position of the point O represent the configura-
tion of the material system under consideration, on a
scale in which length represents length—for instance,
one inch may be taken to represent one foot; while
the line OL does mot represent a material line of the
system, for in this part of the diagram length represents
force—for instance, one inch may be taken to represent
the weight of one pound.

F1G. 2. F1e. 2a.
In order to avoid the confusion which would other-
wise arise when a number of forces are represented
in this way, it is found convenient to draw two separate
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figures—one, a diagram of the material system under
consideration, in which length represents length, called
a space diagram; and the other, a diagram in which
lines represent forces, called a force diagram.

Thus HL, 6 units long, represents in the force diagram
a force whose measure is 6 applied at the point which
is represented by O in the space diagram.

3. Principle of the Transmissibility of Force.

We take it as axiomatic, that two equal forces acting
in opposite directions at two points 4, B of a rigid
body, so that the force acting at A is in direction 4B,
and that acting at B in direction BA, produce no effect
upon the body as a whole. The tendency is merely
to compress the portions of the body between 4 and
B, and as we are dealing with an ideally rigid body,
that is, a body in which the several parts are so in-
separably connected that they retain the same positions
with regard to one another under all circumstances,
the effect upon the body as one solid piece is mil.
Similarly, if the two equal and opposite forces act
outwards instead of inwards, they produce no effect
upon the body as a whole. From this axiom we
deduce, as in Art. 19 of Loney’s Klements of Statics,
the Principle of Transmissibility of Force, which states
that a force acting at 4 in the direction AB has the
same effect upon the body as a whole as an equal force
acting in the same direction at any point of the rigid
body situated in AB or AB produced either way.
Thus there are a succession of points of the body, all
situated in the same straight line, any one of which
may be considered to be the point of application of
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the force. This line is called the line of action of the
force, and the force is said to act along its line of
action. IFurther, the line of action may be extended
beyond the limits of the body, and the force considered
as applied at a point outside the actual body alto-
gether, if we suppose the body to be ideally extended
so as to include this point, which must be treated as
a point of the body.

4. In practice, in representing a force geometrically,
we do not trouble about indicating the point of applica-
tion. In the space diagram we draw a line X ¥ showing
the line of action of the force, and insert an arrow
to indicate the direction in which the force acts along
its line of action; and in the force diagram another
line HL, parallel to XY, shows graphically the mag-
nitude of the force. The force is described as acting
along XY when its direction is from X towards Y,
and as acting along YX when its direction is from ¥
towards X.

%

h

X H
Fic. 3. F16. 3a.
A very convenient notation, and one which will after-
wards be found to be extremely useful, is indicated in
the figure. The letter % is placed on one side of the
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line X Y, and the letter [ on the other; then the straight
line separating the spaces marked h and [ respectively
is called the line Al, and the force which acts along
the line Al is represented in the force diagram by H L.

5. The converse of the axiom above referred to (Art. 3)
is equally important ; namely, two forces acting upon a
rigid body cannot balance one another unless they are
equal and opposite and act in the same straight line.
This we also take as axiomatic, and it leads to the
converse of the principle of transmissibility of foree,
which is as important as the principle itself. It is this,
—if a force acting at A has the same effect upon a rigid
body as a whole as another force acting at B, then B
must be a point in the line of action of the first force, and
the two forces must be equal and in the same direction.

6. The Parallelogram of Forces.

If two forces act along, and are represented by, the
two sides of a parallelogram drawn from one of its
angular points, their resultant acts along, and s repre-
sented by, the diagonal of the parullelogram drawn from
that angular point. B c

Thus, if a force whose
measure is P acts along
04 and is represented

by 04, so that 04 con- fid
tains P units of length; o P il
and if a force whose Fre. 4.

measure is @ acts along OB and is represented by
OB, so that OB contains @ units of length; then,
completing the parallelogram OACB, the resultant of
P and @ acts along OC and is represented by OC.
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Hence, if OC contains R units of length, the resultant
of P and @ is a force whose measure is R acting
along OC.

This gives the following method for finding graphically
the resultant of two given forces:

Fic. 5.

Let two given forces whose measures are P and @ act
along the given lines AB, CD; it is required to find
their resultant. Let the given lines 4B, CD intersect at
0. Then both forces may be supposed to act at O.
Along OB measure OL to contain P units of length,
and along OD measure OM to contain ¢ units of length.
Complete the parallelogram OLNM and measure ON.
Suppose ON contains R units of length. Then the
resultant of the two forces acts along O and its measure
is R. Its point of application may be taken to be
any point in ON, or ON produced either way.

For the proof of this very important proposition
see Loney’s Elements of Statics, Art. 43. The student
should notice that the two forces are represented by
OL, OM, both drawn away from O, and that the
resultant is intermediate in direction to the directions
of P and (.
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The force whose measure is R, and whose line of
action is ON, is not an actual force applied to the
body; it is, rather, an ideal force which may be con-
ceived to replace the given forces in their effect upon
the body as a whole. We cannot locate the point of
application of the resultant, although we are able to
determine its line of action. This line of action may
fall altogether outside the limits of the body on which
the forces act. In such a case the interpretation is,
that if the body be supposed to be ideally extended so
as to include a portion of the line ON, the given forces
may be conceived to be replaced by a force whose
measure is R, applied, in the direction of ON, at a point
of ON supposed to be rigidly connected with the body.

7. In the above direct use of the Parallelogram of
Forces it will be noticed that we have our space diagram
and our force diagram in one; in fact the force diagram
has been constructed over the space diagram. This, in
practice, would cause a great amount of confusion; but
we can separate the two diagrams thus:

D
@ - 4
C £ @
r S P L
Fie. 6. Fig. 6a.

Instead of measuring a line along OB to represent
the force P, draw SL in the direction of the force P
to contain P units of length; also draw SM in the
direction of the force @ to contain @ units of length.
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Then, completing the parallelogram SLN M, the resultant
is represented in magnitude and direction by SN, and
its line of action is a straight line through O drawn
parallel to SNV.

8. But now we notice that we do not require to draw
the whole parallelogram in the force diagram. All that
is necessary is to draw one half of it, namely the
triangle SLAN.

Hence, finally, we have the following simplified
method :

To find graphically the resultant of two given forces.
Let P, Q be the measures of two given forces acting
along the two given lines 4B, CD respectively.

D,
P N
Q "
S
Q
/2 B S P L
Fic. 7. Fi16. 7a.

Starting from some suitable point S, and with any
suitable scale, draw SIL equal to P units of length in
the direction of the force P. This takes us to the
point L. From L draw LN equal to § units of length
in the direction of the force @. Then the straight
line from S, where we started, to N, where we finished,
represents in magnitude and direction the resultant of
the two given forces. We measure SN and find it is
(say) R units of length. Find O, the point of inter-
section of AB and CD. Then the resultant is R units
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of force and acts along a line through O drawn. parallel
to SNV.

This is the fundamental method of constructing the
resultant of two given forces, and is the foundation of
Graphic Statics. We see that the method fails when
the point O is inaccessible. We will return to this case
in a future chapter.

It is to be particularly noticed that the angle SLA is
the supplement of the angle between the directions of
the forces P, Q.

9. Conversely, to resolve a given force into two com-
ponents in two given directions.

Let OL be the line of action of the given force
whose measure is P. We may take any point O in

Fi1c. 8. Fia. 8a.

OL as its point of application. Let OH, OK be straight
lines through O in the given directions.

Draw AB in the direction of OL and of length equal
to P units; then draw AC parallel to OH, and BC
parallel to KO, meeting in C.

Measure AC, CB. Let AC contain X units, and CB
Y units; then X, ¥ are the measures of the components
required along OH, OK respectively. For, by the pre-
ceding piece of work, the resultant of X and Y is
represented by AB and acts along OL.



10 FUNDAMENTAL PRINCIPLES.

10. If two forces acting along OA and OB are repre-
sented by m times OA and m times OB respectively,
their resultant acts along OC, and is represented by
m-+mn times OC, where C is a point in AB such that
m times AC=n times CB.

B

A
Fic. 9.

The force which acts along 04 is equivalent to two
forces acting through O represented by m times OC
and m times CA respectively,

The force which acts along OB is equivalent to two
forces acting through O represented by = times OC
and n times CB respectively.

Let the two given forces be replaced by these two
pairs of components. Then the two forces represented
by m times C4 and n times OB, both acting at O,
balance one another, and can therefore be removed.
Also the two forces represented by m times OC and
n times OC, both acting along OC, are equivalent to a
single force represented by m-+m times OC acting
along OC.

Hence the resultant acts along OC and is represented
by m+n times OC.

In particular, if the forces are represented by OA
and OB, their resultant acts along OC and is represented
by twice OC, where C is the middle point of AB.
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11. Ex. 1. Find the resultant of two forces 43 and
21 pounds weight acting at an angle of 1053°.

o

4 73 B
Fie. 10.

With any suitable scale make AB of length 43
units. Make angle AB('=supplement of 105}° =744,
and make BC of length 21 units. Join AC. Then, on
measurement, AC is found to be of length 425 units,
and the angle BAC of magnitude 283°. Hence the
resultant is 425 pounds’ weight, making an angle of
281° with the direction of the first force.

12. Ex. 2. Two forces, one of which is of given mag-
nitude, are inclined at a given angle. Show how to
Jfind the second force in order that the resultant may
be of given magnitude.

Taking AB to represent the given force to scale,
make the angle ABX equal to the supplement of the
given angle, BX being taken of unlimited length.
Then the second force will be represented by some
line BC taken along BX. To get the position of C
we describe a circle with its centre at 4, and its
radius of such a length that it represents to scale the
given magnitude of the resultant.

The points, if any, in which the circle intersects
BX are possible positions of the point C. If, as in
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Thus 4’, C, B are points on a circle of centre 4;
. angle A’CB, being an angle in a semi-circle, is a
right angle, 7.e. the new resultant is at right angles
to the force represented by BC.

14. Ex. 4. Show that the wresultant of two forces
P+Q and P, acting at 120°, is of the same magnitude
as the resultant of two forces P+ and Q, acting at
the same angle.

Take BDC a straight line, so that BD and DC are
respectively P and @ units of length, and on it describe
the equilateral triangle A4 BC.

Then AD represents in magnitude and direction

(i.) the resultant of forces represented by AB, BD;
also (ii.) the resultant of forces represented by AC, CD.
That is, 4D represents

(i.) the resultant of forces P+ and P acting at
120°; also (ii.) the resultant of forces P+ and @
acting at 120°.

.". the resultant of the first pair is equal in magni-
tude to the resultant of the second pair.

15. Ex. 5. If one of two equal forces be reversed
and doubled, the other remaining—wnaltered, it is

,’”.% “o - \ \
N IY }
Yy 4
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Sfound that the magnitude of the resultant is unaltered.
Find the original angle between the forces.

Let two equal forces P be represented by AB, BC,
so that their resultant is represented by 4C. Produce
c CB to D making BD=2CB. Then

AD represents the resultant of one

of the forces P unaltered, and the

other doubled and reversed.
Hence, by the question,
AD=AC,
and therefore angle ACB =angle
ADB.
Bisect DB in E. Then
DE=EB=BC.
/ In the triangles ADE, ACB the
D sides 4D, DE and the included
ey T angle D are respectively equal to
the sides AC, OB and the included angle C;
AE=AB;
ABE is an equilateral triangle;
the original angle between the forces is 60°.

16. Ex. 6. Two given forces act in one plane at
two given points of a rigid body ; if they are turned
round those points in the same direction through any
two equal amgles, show that their resultant will always
pass through a fixed point.

Let two forces, P and @, act at two fixed points,
H and K, in the directions OH and OK respectively,
O being the point of intersection of their lines of
action.

Take AB, BC to represent the forces P and @
respectively. Then AC represents their resultant R,
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which acts along a line through O drawn parallel to
AC.

Now let the forces be turned in the same sense
round H and K through the same angle, so that their
new lines of action meet at (O’. Then, since angle
OHO =angle OKO’, the locus of O is the circle de-
scribed through H, K, O; and angle HO'K=angle
HOK, so that the forces are inclined at the same angle
as before.

If we suppose the triangle ABC altered so as to
become the force triangle for the new position of the

Fic. 15a.

forces, the lines AB, BC remain of the same lengths
as before, and contain the same angle. But two sides
and the included angle are sufficient to-determine the
triangle in size and shape. Hence the resultant remains
of the same magnitude as before, and is inclined to its
components at the same angles as before. If, then,
OJ is the line of action of the resultant in the first
pdsition, and J the point where this line meets the
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circle HKO, O’J must be the line of action of the
resultant in the new position.

Thus we see that the resultant passes through the
fixed point J, it remains of the same magnitude as
before, and it has turned through the same angle as
either of its components.

EXAMPLES L

1. Find the resultant of
(i) 8 and 3 pounds’ weight acting at an angle of 120°;
(ii) 8 and 5 pounds’ weight acting at an angle of 120°;
(iii) 5 and 3 pounds’ weight acting at an angle of 60°;
and in each case give the angle that the resultant makes with
the larger force.

2. ABCDEF is a regular hexagon. Find the magnitude, direc-
tion, and position of the resultant of forces of 4 pounds’ weight
acting along /'B, and 2 pounds’ weight acting along AZ.

3. ABC is a triangle such that AB=3 inches, BC=4 inches,
04 =5 inches. If 1 inch be taken to represent a force equal to
the weight of 1 pound, find the magnitude, direction, and position
of the resultant of two forces acting along and represented by
AC and OB respectively.

Find also the magnitude, direction, and position of the resultant
of 4 pounds’ weight acting along AC, and 5 pounds’ weight
acting along CB.

4. ABC is a triangle, having its sides BC, 04, AB of lengths
14, 13, 15 inches respectively. Two forces, of magnitudes 25 and 39
pounds’ weight, act along the lines 4B and A C respectively. Find
the magnitude, direction, and position of their resultant.

5. Find the resultant of forces of 200 and 100 pounds’ weight
acting at an angle of 60°

6. Find the resultant of forces 158 and 237 pounds’ weight
acting at an angle of 113%°.
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7. Resolve a force of 8 pounds’ weight into two components,
one of which is 3 pounds’ weight in a direction making 60° with
the given force.

8. Find the angle at which two forces of 16 and 20 pounds’ weight
must be inclined, in order that their resultant may be 33 pounds’
weight.

9. Resolve a force of 31 pounds’ weight into two components,
making 98° and 40° with it ou opposite sides.

10. The resultant of two forces P and ¢ is 8 pounds’ weight,
and makes an angle of 60° with the direction of 2. If @ is
7 pounds’ weight, determine /’, and account for the double result.

11. The resultant of two forces, which act at an angle of 120°,
is 31 pounds’ weight, and one of the forces is 35 pounds’ weight.
Find the other force, and account for the double result.

12. Find the resultant of two equal forces acting at an angle
of 120°

13. If the magnitudes of two forces are given, their resultant
is greatest when they act in the same direction, and least when
they act in opposite directions.

14. The greatest and least resultants of two forces, of constant
_magnitudes, are given. Show how to find their resultant when
they are inclined at a given angle.

15. E is a point in the side 4B of the parallelogram A4BCD.
Show that the resultant of the two forces, represented in magni-
tude, direction, and position by €4 and ED, is parallel to one of
the sides of the parallelogram. Find also the line of action of
the resultant.

16. If D is the middle point of the base BC of a triangle 4BC,
and the resultant of forces represented by BA, BD is equal to
the resultant of those represented by Cd, CD, show that the
triangle ABC is isosceles.

17. It is required to apply to a given point two forces of given
magnitudes, in order that their resultant may be of given magni-
tude and in a given direction. Explain how the directions of
the two forces may be determined by geometrical construction.

Under what circumstances does the construction fail ?
D.S. B
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18. A given force is to be resolved into two components, one
of which is of given magnitude and acts in a given direction.
Explain how the magnitude and direction of the other component
may be determined by geometrical construction.

19. One of two forces is fully known, and the direction of the
other is known. Show how to find the magnitude of the second,
in order that the resultant may be in a given direction. i

20. One of two forces is fully known, and the magnitude of
the other is known. Show how to determine the direction of
the second, in order that the resultant may be in a given direction.

21. Show how to resolve a given force into two others, one of
which is of given magnitude, and the other in a given direction.

22. Show how to resolve a given force into two components,
such that their sum may be of given magnitude and one of them
in a given direction.

23. The resultant of two forces, one of which is fully known,
is of given magnitude. If the known force be reversed, the
resultant is of another given magnitude. Show how to determine
the other force.

24. The resultant of two forces 7 and @ is in a direction per-
pendicular to that of 2. Show that if 7 be doubled, @ remaining
unaltered, the new resultant will be equal in magnitude to Q.

25. A straight line DE is drawn parallel to the base BC of
a triangle ABC to meet the sides 4B, AC in D, I respectively.
Show that the resultant of forces represented by BE and DC is
equal to a force represented by a line parallel to BC and equal
to the sum of BC' and DE.

26. Two forces P and @ act at an angle of 60°. Show that
the magnitude of the resultant is unaltered if either of the given
forces be replaced by a force P 4 @ acting in the opposite
direction.

27. The sides 4B, BC, CD, DA of the quadrilateral ABCD
are bisected at £, F, G, H respectively. Prove that the resultant
of the two forces acting along, and represented by, £G and HF
is represented in magnitude and direction by AC. What is the
line of action of the resultant ?
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tude and direction, and its point of application is
0.

For, the resultant of P and @ acts at O and is
represented by AC. Let P and @ be replaced by their
resultant. The resultant of this force and R acts at
O and is represented by A.D; therefore the resultant
of P, (), and R acts at O and is represented by AD.

Proceeding in this way, we see that the resultant
of the whole system acts at O and is represented by
APF.

The method is applicable to any number of forces,
and the forces may be taken in any order. Also the
lines in the force diagram may cross and recross one
another any number of times. It is only necessary
that the arrows in the force diagram should go one
way round.

18. The student will, in the following manner, be
able to satisfy himself that he gets the same result
in whatever order he takes the forces. Let it be re-
quired to find the resultant of three. forces, whose
measures are P, @, R, acting in known directions at
the point O. :

As before, take 4B, B,C,, ;D to represent P, @, R
respectively in magnitude and direction.

If we had taken the forces in the order P, R, Q,
we should have obtained the figure 45,C,D, thus com-
pleting the parallelogram B,C\.DC, .

If we had taken the forces in the order @, P, R, we
should have obtained the figure 4 B,C, D, thus completing
the parallelogram 4 B,C|B,.

So @, R, P gives AB,C,D, completing the parallelo-
gram B,0,DC,. R, P, @ gives AB,C,D, completing
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the parallelogram AB,C,B,, and R, Q, P gives AB,0,D,
B,0; clearly being equal and parallel to A4B,.

0 r

F1e. 17. F1e, 17 a.

Thus we see that if we start at the point 4, we
always finish up at the point D, in whatever order
we take the forces.

The resultant of the system acts at O and is repre-
sented by AD.

19. Equilibrium of a system of forces acting at a
point in onme plane.

If, in the force diagram of Art. 17, the point F coin-
cides with the point A, the resultant of the system
vanishes. In this case, replacing the forces P, @, R, S
by their resultant represented by AL acting at O, we
see that the system is equivalent to two forces acting
at O, the one represented by AZ, and the other, 7
represented by EA. Thus the system reduces to two
equal and opposite forces acting in the same straight
line. Therefore the forces are in equilibrium.

Hence we have the proposition known as
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The Polygon of Forces.

If any number of forces, acting at a point, be re-
presented in magnitude and dirvection by the sides
of a polygon taken one way round, the forces are in
equilibrium.

This of course includes, as a particular case,

The Triangle of Forces.

1f three forces, acting at a point, be represented in
magnitude and dirvection by the sides of a triangle
taken one way round, the forces are in equilibrium.

It is to be particularly noticed that, in the Polygon
of Forces, the polygon is essentially a force diagram.
The forces do not act along the lines which represent
them. So also in the Triangle of Forces.

20. Conversely, if a system of forces acting at a point
in one plane be in equilibrium, and a force diagram
be constructed, so that the forces are represented by
straight lines each commencing where the preceding
line ends, the arrows going one way round, then the
last point must coincide with the first.

For, otherwise, the system would be equivalent to
a resultant represented in magnitude and direction by
the straight line drawn from the first point of the
force diagram to the last point.

It is sometimes said that the converse of the Polygon
of Forces is not true. But here we have a true converse,
namely :

If a number of forces, acting at a point, be in equi-
Librium, 4t is possible to construct a closed polygon,
whose sides taken one way rownd shall represent the
forces in magwitude and direction.
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This, of course, includes the following converse to
the Triangle of Forces:

If three forces, acting at a point, be in equilibrium,
it s possible to construct a triangle whose sides taken
one way round shall represent the forces in magnitude
and divection.

21. But there is a more general converse to the
Triangle of Forces, namely :

If three forces, ucting at a point, be in equilibrium,
and straight lines be drawn parallel to their lines of
action so as to form a triangle, then the sides of the
triangle are proportional to the forces to which they
are respectively parallel.

For, let P, , R be the measures of three forces in
equilibrium, acting at the point 0. Take BC in the
direction of P and make it P units of length. Take
CA4 in the direction of @ and make it @ units of length.

4

B r C

Fic. 18, Fi16. 18a.

Then the straight line drawn from 4 in the direction
of R and of length R units, must terminate at B;
otherwise the forces would not be in equilibrium.

Now any triangle drawn with its sides parallel to
the lines of action of P, ), B will be similar to the
triangle ABC, and will therefore have its sides pro-
portional to P, @, R.
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In this wider sense the converse of the Polygon of
Forces is not true, since two polygons with their sides
respectively parallel are not necessarily similar.

22. Three forces, of given magwitudes, act at a point
in one plane. It is required to determine how these
Jforces must be arranged so as, if possible, to produce
equilibrium.

Let P, @, R be the given measures of the forces, and
O the point at which they act.

X 4

B P C
Fic. 19. Fic. 19a.

Construct a triangle ABC whose sides BC, C4, AB
are of lengths P, Q, R units respectively.

From O draw straight lines in the directions of BC,
CA, AB. Then, if the forces P, @, R be arranged to
act in these directions respectively, they will, by the
Triangle of Forces, produce equilibrium.

This determines the relative directions of the three.

The method fails if any one of the forces is greater
than the sum of the other two, as no triangle can be
constructed having one side greater than the sum of
the other two. In this case the prob]em is impossible
of solution.

If one of the forces, P, be equal to the sum of the
other two, the triangle becomes a straight line, the
point A4 falling in BC. This shows that @ and B must
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be arranged to act in one and the same direction, and P
in the opposite direction.

The student should notice that the angle between
the directions of any two of the forces is the supple-
ment of the corresponding angle of the triangle.

23. Let P, @, R, S be the measures of known forces
acting in known directions at a point O; and let X, V
be the measures of two other forces acting at O, at
present unknown in magnitude or direction or both,
which preserve equilibrium with the known forces;
all the forces being in one plane.

Fia. 20. F1c. 20a.

We can plan out the known forces in a force diagram
at once. Thus, take AB, BC, CD, DE in the directions
of P, Q, R, S and of lerigths P, Q, R, S units respec-
tively. This takes us from 4 to Z.

In completing the forece polygon, we shall have to
go from £ to 4 in two steps, as EK, KA, where EK
represents X in magnitude and direction, and K4
represents Y.

To complete the figure, we must know
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either (i.) both magnitude and direction of one of the
remaining two forces, say X ;

or, (ii.) the directions of both of the remaining forces ;

or, (iil.) the direction of one,say X, and the magnitude
of the other, Y; '

or, (iv.) the magnitudes of both X and Y.

For, (i) suppose the force X is known completely.
Then we can draw EK, and joining K to A we have a
straight line which represents the remaining force ¥
in magnitude and direction.

Here, we see, we always get one solution, and one
only.

(ii.) Suppose the directions of X and Y are both
known, but not their magnitudes.

/I/E
K
7 i
Fic. 21.

Draw EL in the direction of X, AM in the direction
opposite to that of Y, and let KL, AM intersect at K.
Then, measuring FK, KA, we have X, Y respectively.

It may be that LE has to be produced through Z,
in order to meet AM. In this case X is negative.
Or, MA may have to be produced through A to meet
EL. In this case Y is negative.
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Here, also, we always get one solution, and one
only.

(iii.) Suppose the direction of X is known and the
magnitude of Y.

Fic. 22.

Draw EL in the direction of X, and with centre 4,
and radius whose measure is Y, describe a circle, which
may cut L in two points K, and K, giving two
solutions.

Measuring EK, we have one value of X, and K A
is the correspondmg direction of Y. LK, gives another
value of X, and K A is the corresponding direction
of Y.

The circle may touch the line EL, in which case
the two solutions coincide; or, the circle may not meet
the line, in which case there is no solution.

(iv.) Suppose the magnitudes of X and Y are known.
With centre £, and radius whose measure is X, describe
a cirele, and with centre 4, and radius whose measure
is Y, describe another circle.

These circles may or may not intersect in two points.
Suppose they intersect in two points K,, K, Then,
again, we have two solutions.
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The directions of X, Y are either those of £K,, K A
respectively, or those of KK, K,A respectively.

Fi1a. 23.

The two solutions coincide when X =Y, for then
EK AK, is a parallelogram.

It appears, then, that if we have a number of forces
in equilibrium acting at a point in one plane, and if
everything is known about the system except two
details, namely, either the magnitude of one of the
forces and the direction of one of the forces, or the
magnitudes of two of the forces, or the directions of
two of the forces, we can in general determine the
two unknowns by the graphical method.

24. Ex. 1. Find the resultant of forces of 4, 5, 6
pounds’ weight acting at a point in one plane, the angle
between the first two forces being 37°, and between the
Jirst and the third o mght angle measured in the same
direction.

Take any straight line OH, and make the angles
HOK, HOL equal to 37° and 90° respectively.

With any suitable scale, draw 4B of length 4 units
in the direction of OH, BC of length 5 units in the
direction of OK, CD of length 6 units in the direc-
tion of OL.
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Then AD represents the resultant, and a straight line
OR, drawn through O parallel to 4 D, is its line of action.

P D
B,
A = 5
5 ’
/' 375 ‘-‘l
0 4
Fic. 24. Fic. 24a.

. On measurement, we find that 4D is of length 12
units, and that the angle BAD is 481°.

Hence, the resultant is 12 pounds’ weight in a
direction making 481° with the first force.

25. Ex. 2. Find the magnitudes of the forces P, Q,
im order that the system of forces, represented in figure
25, may be in equilibrium.

Draw AB of length 4 units in the direction of the
force marked 4, BC of length 2 units in the direction
of the force marked 2, CD of length 3 units in the
direction of the force marked 3.

Through D and 4 draw straight lines parallel to the
lines of action of the forces P and ¢ respectively, to meet
in £. Then DE and KA represent P and () respectively.

On measuring DE, EA we find that

{P=5'8,
Q=
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26. Ex. 3. Two equal forces P are in equilibriwm with
two equal forces Q, all four being in one plane and
acting at the same point. Prove that either (i.) the
two forces P are im opposite directions and the two
forces Q in opposite directions, or (ii.) the bisector
of the angle between the two forces P is in the same
straight line as the bisector of the amgle between the
two forces Q.

B

Fic. 26. Fic. 26a.

Let a force polygon be constructed taking the forces
in the order P, P, @, Q. This will be a quadrilateral
ABCD in which AB, BC are each of length P units,
and CD, DA each of length  units. Hence the
triangles DAB, DCB are equal in all respects, so that
DA and DC are equally inclined to DB, and 4B, CB
are equally inclined to the same line.

(i) Let 4 and C be on the same side of DB,

In this case 4 and C must coincide. Therefore the
forees represented by 4B, BC are in opposite direetions,
and the forces represented by CD, DA are in opposite
directions.
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Hence, take P at the middle point of KGF. Then
we know that the forces represented by PA, PB, PC,
PD are in equilibrium, and therefore, in the same
way as above, P> must be the middle point of the
straight line joining F and H, the middle points of
BC and DA respectively.

Thus, we have here an independent proof of the
geometrical property of the quadrilateral, that the
straight lines joining the middle points of opposite
sides bisect one another.

EXAMPLES II 4

1. If the side of a regular hexagon 4 BODEF represents a force
of 100 pounds’ weight, find the magnitudes of the forces repre-
sented by the straight lines AZ, 4D, FB; and, supposing them
to act at a point, determine the magnitude and direction of the
resultant of the three forces. '

2. If a straight line 4B represents a force equal to the weight
of 1 pound, construct a line which shall represent a force equal
to the weight of 3,/2 pounds.

4, B, 0, D are the angular points of a square taken one way
round, and forces represented in direction by the lines 4B, BD,
D4, and AC, and in magnitude by the numbers 1, 2,/2, 3 and /2,
act at a point; find their resultant.

3. Forces 1, 2, 3 and 24/2 act at a point in the directions of
the sides 483, BC, CD and the diagonal DB of a square ABCD
respectively ; determine their resultant.

4. ABCD is a square ; find the resultant of the forces repre-
sented by the straight lines 4B, AC, and 4D.

5. 04, OB, OC are three straight lines inclined at angles of
120° to one another; a force 32 acts from 4 towards O, a force
4P from O towards B, and a force 5 from O towards C.
Determine the magnitude and direction of the resultant of the
three forces. '
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6. Forces of 2, 3, # pounds’ weight act at a point in one plane,
the middle one being inclined to each of the others at an angle
of 60°. If the force of 2 pounds’ weight is removed, the resultant
is of the same magnitude as before. Find «.

7. The triangle ABC has its sides BC, Cd, AB of lengths §,
12, 15 inches respectively. A particle is acted upon by forces
of 2, 3, 1 pounds’ weight parallel to and in the direction of BC,
04, AD respectively. Find the resultant.

8. Find the resultant of forces 4, 2, 5, 3 acting at a point in
one plane, the angles hetween 4 and 2, 2 and 5, 5 and 3 being
90°, 30°, 120° respectively, and all angles being taken the same
way round.

9. Forces 3, P, 5, 2, @ act at a point in one plane, the angles
between 3 and P, P and 5, 5 and 2, 2 and € being 90°, 60°, 60°,
90° respectively, all taken the same way round. Find P and @
in order that the system may be in equilibrium.

10. Find the resultant of forces 3, 5, 2, 4 acting at a point in
one plane, the angles between 3 and 5, 5 and 2, 2 .and 4 being
90°, 60°, 90° respectively, all taken the same way round.

11. Forces 2, P, 1, €, 3 act at a point in one plane, the angles
between 2 and £, Pand 1, 1 and ¢, @ and 3 being 30°, 90°, 30°, 90°
respectively, all taken the same way round. Find P and @ in
order that the system may be in equilibrium.

12. Find the resultant of forces 5, 3, 2 pounds’ weight acting
in one plane at a point, the middle one being inclined to each
of the others at an angle of 60°

13. Find the resultant of forces 11, 8, 3 pounds’ weight acting
in one plane at a point, the angle between each pair being 120°.

14. ABCDEF is a regular hexagon. Upon a particle at 4
forces of 6, 8, 9, 8, 6 pounds’ weight act in the directions 4B,
AC, AD, EA, AF respectively. Find their resultant in magnitude
and direction.

15. ABCDEF isa regular hexagon. Upon a particle at 4 forces
of 12, 17, 6, 2, # pounds’ weight act in directions 4B, A0, 4D,
AE, AF respectively. Find 2 in order that the resultant may
be in the direction AC.



36 FORCES ACTING AT A POINT.

16.. ABC is an equilateral triangle, and D is the middle point
of BC. Find the magnitude and direction of the resultant of
the following three forces acting at 4 : 3 pounds’ weight in direc-
tion AB, 2 pounds’ weight in direction DA, 4 pounds’ weight in
direction AC.

17. OABC is a square, and D is a point in A5 such that
ADis # of AB. Find the magnitude and direction of the resultant
of forces of 4, 2, 3 pounds’ weight acting at O in directions 04,
0D, OC respectively.

18. 0ABC is a square, each side of which is 1 foot in length.
D is a point in AB 5 inches from 4, and £ is a point in BC
3 inches from B. Find the magnitude and direction of the
resultant of the following system of forces acting at O : 45 pounds’
weight along 04, 656 pounds’ weight along 0D, 35 pounds’ weight
along £0, 66 pounds’ weight along OC.

19. Let O be the position of a particle, and 04 a straight
line drawn through 0. Find the magnitude and direction of the
resultant of forces of 10, 18, 20, 16 pounds’ weight acting on the
particle, when their directions make with 04 angles of 0°, 30°
90°, 135° respectively, all measured in the same sense.

20. Forces of magnitudes 3, 4, and 5 act at a point O in direc-
tions lying in one plane, and making angles of 15° 60°, and
135° respectively, with a line 04 in the same plane. Find the
magnitude of the resultant.

21. Forces of 3, 4, and 6 pounds’ weight make angles of 90°
60°, and 30° respectively with a force of 2 pounds’ weight (the
angles being measured in the same direction). Find the magni-
tude of the resultant, and the angle its direction makes with
the force of 2 pounds’ weight.

22. ABCDEF is a regular hexagon; forces of 1, P, 2, @, 6
pounds’ weight respectively act along the lines 4B, AC, AD,
AE, AF. Find the value of P in order that the resultant of
the system may be along A4Z.

23. A particle is acted upon by three forces of given magni-
tudes ; show how these forces must be arranged so as, if possible,
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to produce equilibrium, and determine the angle between the
last two forces, when the measures of the forces are
@d) 6, 11, 18;
Gi) 1, 1, /2;
(i) 17, 15, 8;
(iv.) 13, 15, 7;
(v.) 13, 15, 8;
(vi) 13, 8, 7.

24. Two equal forces are in equilibrium with a third force
which is fully known. If the direction of one of the equal forces
be known, show how to determine the direction of the other
and the magnitude of each.

25. Find a point P within a triangle ABC, so that the forces
represented by P4, PB, PC may be in equilibrium. Make use
of this to prove the geometrical theorem, that the three medians
of a triangle are concurrent; and that the distance of their point
of concurrence from a corner is two-thirds of the length of the
median along which it is measured.

26. Extend Art. 10 to include the case of any number of forces
acting at a point.

27. Four forces in equilibrium, acting at a point, are represented
in magnitude and direction by 4B, CD, AD, CB. Show that
4, B, ¢, D must be the angular points of a parallelogram.

28. A number of forces, acting at a point in one plane, are in
equilibrium. If one of them be turned about its point of applica-
tion through a given angle, show how to find the resultant of
the system, and, if the inclination of the force continue to alter,
show that the inclination of the resultant alters by half the amount.

29. Three forces, whose measures are P, ¢, X, are in equili-
brium when acting at a point; the first force is given in magnitude
and position, the second in magnitude only, the third in direction
only, making an angle § with the direction of the first. Show
how to determine the direction of the second and the measure of
the third. Show that there are generally two solutions, and that,
if P> @), there are limits to the angle 6, beyond which the ques-
tion is impossible of solution.

As an example, take the case in which P=15, ¢=13, §=120°
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30. In the preceding question, show that the product of the
two values of X is equal to the difference between the squares
of P and 0.

31. Three forces P, @, R act at a point O, and are in equilibrium.
A circle through O cuts their lines of action in p, g, 7 respec-
tively. Prove that P:Q :R=qr:rp:pq.

32. Three forces, acting at a point, are in equilibrium. Show
that if a triangle be formed by drawing straight lines perpen-
dicular to the directions of the forces, its sides will be proportional
to the forces to which they are respectively perpendicular.

33. Three forces P, @, I, in equilibrium, act along the lines
04, OB, 0C, where O is the orthocentre of the triangle AZBC.
Prove that P:Q: R=DBC:C04 : AB.

34. I is the centre of the circle inscribed in the triangle A4 BC.
Three forces P, @, R, in equilibrium, act along the lines 74, 71,
10 respectively. Prove that P:Q:R=DBC:CE: ED, where £
is the centre of the circle which touches BC, 4B produced and
AC produced.

35. E is the centre of the circle which touches BC, AD pro-
duced and AC produced. Three forces P, ¢, R, in equilibrium,
act along the lines AE, EB, EC respectively. Prove that
P:@Q: R=BC: CI:IDB, where I is the centre of the circle in-
seribed in the triangle 4BC.

36. 4, B, C are three points on the lines of action of three
forces P, @, R respectively, which act at O and are in equi-
librium. Prove that if P:Q: R=BC:(CA : AB, then O is either
the orthocentre of the triangle 4BC, or it is some point on the
circle which passes through 4, B, C.

37. Inthe preceding example, prove that if 72:Q:R=BC:AB:CA4,
then either BC is a common tangent to the circles B0OA, COA,
or O coincides with 4 ; and that, in each case, the line of action
of P passes through the middle point of BC.



CHAPTER III

EQUILIBRIUM OF FINE LIGHT STRINGS IN A
STATE OF TENSION.

28. By a light string we mean one whose weight
is inappreciable. By a fine string we mean one whose
thickness is inappreciable.

29. When a string in a state of tension has taken
up a position of equilibrium, we may treat any portion
of it as a rigid body at rest under the influences of
the forces which act externally upon that portion.

This is a particular case of the following important
general principle: The conditions of equilibrium of a
body not rigid are the same as those of an ideally
rigid body with these additions:—(i.) Every portion
into which the body can be conceived to be divided
must be in equilibrium under the external forces
which act upon that portion considered as a rigid
body. (ii.) The external forces acting upon the body
must not be such as to induce internal actions within
the body sufficient to break or fracture it.

The first of these additional conditions enables us
to find, when necessary, the internal actions at any
point within a body; the second we generally ignore
in the elementary statics, as we generally assume that
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the material system under -consideration is strong
enough to bear any strain to which it may be subjected.
In practical applications this, of course, has to be taken
into account.

30. Now let AB be a portion of a fine light string
in equilibrium in a state of tension, and suppose that
between the points A and B the string is quite free.

K

T

A
Fia. 29.

Take any two points P and @ of the string between
A and B, and consider the equilibrium of the portion
PQ of the string.

The fibres at P are in a state of tension, so that
the adjoining piece of string AP is pulling upon the
piece PQ at P with a force S in the direction of
the tangent PH.

Similarly, the fibres at @ are in a state of tension,
so that the adjoining piece of string @B is pulling
upon the piece PQ at @ with a force 7' in the direction
of the tangent QK.

Now we assume that between P and  the string
is strong enough to bear all strain to which it is
subjected, and that if a rigid body of the same size
and shape as PQ were substituted for the string PQ,
it would be in equilibrium under the same external
forces.
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But, if a rigid body is in equilibrium under the
influence of two forces, those forces must be equal
and opposite and act in the same straight line.

. S=1T, and HP and QK are parts of the same
straight line.

Also, as P and @ were taken to be any two points
between A and B, we see that the magnitude of the
tension is the same at every point between A and
B, and that the tangents at all points of AB are in
one and the same straight line. Hence the portion
AB must be straight.

Thus, if a fine light string is in equilibrium in a
state of tension, every free portion of it is straight,
and the tension is the same at every point of such
a portion,

31. In particular, let a fine light string AB rest in
equilibrium with one extremity A4 attached at a fixed
point, and with a force whose measure is F applied
at B in a fixed direction.

;|

Fia. 30.

By Art. 30, we see that AB must be straight, and
the tension at any point is the same throughout the
string. Let 7' be the measure of this tension.

Take any point P of the string, and consider the
equilibrium of the portion PB as a rigid body.

The external forces acting upon it are F in the
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fixed direction and 7' in the direction PA. These

must be equal and opposite.
- T=F,

and AB is in the direction of the force F.

Thus the string takes up a position of equilibrium
such that 4B is in the direction of the force applied,
and the fibres of the string pull both ways at every
point with a force equal in magnitude to the force
applied.

If a heavy mass is attached at B, then AB takes
up the vertical position with B below A4, and the
tension of the string at every point is equal to the
weight of the mass supported. -

32. Suppose now that a number of fine light strings
04, OB, OC, OD, in a state of tension, are knotted
together at the point O, and that they have taken
up some position of equilibrium.

F1e. 31.

The tension of the string 04 is the same at every
point. Let its measure be 7'

Similarly let U, V, W be the measures of the tensions
of 0B, 0C, OD respectively.
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Consider the equilibrium of the portion of string in
the immediate neighbourhood of 0. We have drawn
a closed curve round O cutting off the portions OP,
0Q, OR, OS from the strings. The portion of string
within this closed curve we treat as a rigid body in
the manner explained above.

The forces acting externally upon this portion are
as follows:

At P it is being pulled in direction PA with a force T.

A't' Q » » QB » U-'
At R 1 . RC » V.
At S 1 Y SD . w.

The lines of action of these forces meet at the point
0, and we may treat them as though they all acted
at 0. Hence the consideration of the equilibrium of
this portion of matter round O comes under the case
of the consideration of the equilibrium of a number
of forces acting at a point. The force polygon will
have its sides parallel to the lines 04, OB, 0C, 0D,
and the arrows must go one way round.

The consideration of the equilibrium of the portion
of the system in the neighbourhood of O is briefly
deseribed as considering the equilibrium of O, and
the force polygon is called the force polygon for the
point O.

33. An endless fine light string LMN is in a given
position, in the form of a triamgle, with the point N
Sized. To the point L vs applied a known force, whose
measure i8 P, in a given direction LH outwards from
the triangle. It is required to find the measure of a
force which must be applied at M in a given direction
MK, in order that the system may be in equilibrium,
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and also to determine the tensions in the different parts
of the string and the force of constraint at N.

Let X be the unknown measure of the force applied
at M, and let NV be the unknown direction, ¥ the
unknown measure, of the constraint at V.

Vi
JOE
1
N
]
\ o
'
/I§/ c
H
Fie. 32 Fia. 32a.

We will make use of the notation suggested in
Art. 4, and the student will at once see the advantage
of doing so. The lines of the space diagram divide it
into four parts which we letter o, a, b, ¢ as in the
figure. We have now no further use for the letters
L, M, N, H, K,V in the diagram. The straight lines
LH, LM, etc.,, we now call be, oc, ete. The point L,
where the spaces b, ¢, o meet, we now call beo, ete.

Take BC of length P units in the direction of the
given force P, ie. parallel to be, and draw BO, CO
parallel to bo, co respectively, meeting in O. Then
BCOB (this way round) is the triangle of forces for
the point beco, so that CO and OB represent the pulls
of the strings co and ob respectively upon the point beo.
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Now consider the equilibrium of the point oca. The
pull of the string co at this point is represented by OC.
Draw (4, OA parallel to ca, oa respectively, meeting in
A. Then OCAO (this way round) is the triangle of
forces for the point oca, so that AO represents the
pull of the string ao at the point oca, and CA represents
the force applied at M.

Now consider the equilibrium of the point oab. The
pulls of the strings bo, ao at this point are represented
by BO, OA respectively. Therefore the remaining force
of constraint at N, which balances these two, must be
represented by A B, the triangle of forces for the point
oab being OABO (this way round).

Measuring the lines of the force diagram, we have
X, Y and the tensions of the three parts of the string,
and AB gives us the direction also of the force of
constraint.

34. Ex. 1. The fine string ABCDE, of length 3 feet,
has its extremities attached to the two points A and E,
situated 18 inches apart in o horizontal line. Another
JSine string, of length 10 inches, connects the points B
and D, situated 5 inches each from A and E respectively,
and to the middle point C of the first string is attached
« mass of 24 pounds. The whole is allowed to take
e . mmetrical position of equilibrium. Find the
tensv.  of each portion of the string.

There is no difficulty in constructing the space diagram
to scale; this the student should do for himself. We
then mark the portions of the space diagram, as in the
figure, with the letters o, &, &, L.

- With any suitable scale, draw HK 24 units of length
vertically downwards to represent the tension of the
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KL, LH representing the external forces which act upon
the triangle CBD at the points C, B, D respectively.

On measuring the lines of the force diagram, we
have LK =20=LH, OK=13=0H, LO=11.

.. The tensions of the strings BC, CD are each 13
pounds’ weight, of 4B, DE each 20 pounds’ weight,
and of BD 11 pounds’ weight.

35. Ex. 2. A fine light string ACB is placed on.a
smooth horizontal tuble, and has its extremities fastened
to two given fixed points A, B. A force is applied in
the plane of the table to the string at the poimt C,
which is at given distances measured along the string
from A and B. It is rvequired to find the conditions
wnder which the string will rest in equilibrium with
both portions in « state of tension, and, when the
applied force is given satisfying these conditions, to
determine the tensions of each portion of the string.

A A B

Fic. 34.

At the outset we do not know the position of equi-
librium, but, in any position of equilibrium in which
both portions of the string are in a state of tension, each
of those portions will be straight. Now we are given
the lengths of the portions AC, BC, and also the
positions of the points A, B. Hence the point ¢ will
take up one or other of two positions C;, C,, which
we can find, situated symmetrically on opposite sides
of AB.
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Let HK represent the applied force. Having found
the positions of the points C,, C,, draw Ha,, Hb,, Ha,,
Hb, in the directions of the lines AC,, BC,, AC,, BC,
respectively.

R

K
Fic. 35. Fic. 35a.

If AC,B is the position of equilibrium, considering
the equilibrium of the portion of string in the neigh-
bourhood of the point C,, we see that the applied force
will have to balance two forces in the directions C;4,
C,B, and therefore HK must lie within the angle
a,Hb,. Similarly, for the position AC,B, HK must lie
within the angle a,Hb, Thus, for the string to rest
with both portions in a state of tension, the applied
force must be between the directions Ha, and Hb,, or
between Ha, and Hb, If there is no limit to the
possible tension of the string, there .is no further
limitation upon the magnitude or direction of the
applied force.

If the line HK be given, within, say, the angle
a,Hb,, then, drawing KL parallel to a,H to meet Hb,

in L, HKLH (this way round) is the triangle of
D.S. D
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forces for the point C, and the position of equilibrium
is AC\B.

If the string can stand at every point tension up
to, but not beyond, a certain given value, describe
with centre H, and radius representing this maximum
tension, a circle intersecting Ha,, Hb,, Ha, Hb, in
a,, by, a, b, respectively, and complete the parallelo-
grams b Ha, K,, b,Ha,K,.

Fra. 36.

Then the point K must lie within one or other of
these two parallelograms.

If it be required to find the greatest force which
can be applied in any given direction without breaking
the string, we have merely to find the point X where
the straight line drawn from H in the given direction
meets a, Kb, or a,K,b,, Then HX represents the
force required.

36. Ex. 3. If, in the preceding example, the line of
action of the applied force passes through D, the middle
point of AB, then the tensions of the two portions of
the string are proportional to their lengths.
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Draw through A a straight line parallel to CB to
meet D produced in £. Then the triangles ADE,
BDC are similar, and, as AD=DB, it follows that
AE=CB.

Now the triangle CAE has its sides parallel to the
three forces which keep the portion of string at (' in

Fra. 37.

equilibrium ; therefore its sides are proportional to the
forces to which they are respectively parallel.

the tensions of the strings C4, CB are propor-
tional to CA, AFE, that is to C4, CB.

EXAMPLES III

1. A mass of 24 pounds is supported by two fine light strings
inclined at angles of 15° and 60° with the vertical. TFind the
tensions of the strings.

2. A and B are two fixed points distant 8 feet apart in a
horizontal line. Two fine light strings AC, BC, of lengths 5 and 7
feet respectively, support a mass at ¢. Compare their tensions.

3. BAC is a fine light string, of length 14 inches, attached at
its extremities to two points B and O, situated 10 inches apart.
At the point 4, 6 inches from B, is knotted another string AD,
which is pulled with a force equal to the weight of 20 pounds.
If DA produced passes through E, the middle point of BC, find
the tensions in the strings B4 and AC.



52 EQUILIBRIUM OF FINE LIGHT STRINGS.

4. Two fine light strings 4B, BC, each of length 5 feet, are
knotted together at B and attached at their other extremities
to fixed points 4 and C, situated 8 feet apart in a horizontal line.
A mass of 180 pounds is supported by another fine light string
attached at B. Find the tension in each of the strings 4D, BC.

5. Two fine light strings 45, BC, of lengths 13 and 15 inches
respectively, are knotted together at B, their other extremities
being attached to two points 4 and O, situated 14 inches apart
in a horizontal line. A third string, attached at B, supports a
mass weighing one cwt., and the whole is allowed to hang freely.
Find, in pounds’ weight, the tensions of the strings.

6. A mass of 300 pounds is supported by two fine light strings,
of lengths 17 and 26 inches respectively, attached to the same
point of the mass, the other extremities of the strings being
respectively attached to two points, situated 25 inches apart in a
horizontal line. F¥ind the tensions of the strings.

7. A mass of 42 pounds is supported by two strings 4C, BC,
of lengths 17 and 25 inches respectively, attached to two points
A, B situated 28 inches apart in a horizontal line. Find the
tensions of the strings.

8. Four fine light strings, each of length 5 inches, are knotted
together to form a rhombus ABCD, which is suspended from 4.
A mass of 80 pounds is attached at C, and B, D are kept 6 inches
apart in a horizontal line by two equal and opposite forces P
acting at B and /. Represent the forces acting upon each of
the knots B, C' by the sides of a triangle, and find the magnitude
of P and the tension of the string.

9. Three fine light strings are knotted together to form a tri-
angle ABC, the strings 4B, BC, U4 being of lengths 8, 5, 5 inches
respectively. If a mass of 30 pounds is suspended from C, and
the whole is supported, with 42 horizontal, by two forces applied
at 4 and B in directions making 22}° with the horizontal, find
the tension of each portion of the string and the magnitude of
each of the applied forces.

~ 10. Three fine light strings are knotted together to form a
triangle A BC, the strings 4B, BC, €4 being of lengths 28, 25,
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17 inches respectively. The point 4 is fixed, and a mass of
84 pounds is suspended from €. If the triangle and mass are
supported, with 4B horizontal, by a force applied at B in direc-
tion perpendicular to AC, find the magnitude of this force, the
tension of each portion of the string, and the magnitude and
direction of the action at A.

11. A fine light string ABCDE, of length 5} feet, has its ex-
tremities attached to two points 4 and £ situated 4 feet apart
in a horizontal line. Another piece of string, of length 2 feet,
connects the points 5 and D, situated 13 inches each from 4 and ¥
respectively ; and to the middle point ¢ of the first string is
attached a mass weighing 40 pounds. The whole is allowed to
take up a symmetrical position of equilibrium. Find the ten-
sion of BD.

12. A fine light string ABC supports a mass, of given weight,
at C, and is attached to a fixed point at 4. To the point B of
the string, situated at a given distance from A measured along
the string, a given force is applied in a given direction. Show
how to find the position of equilibrium, and the tension of 4 B.

For example, if the mass supported is 40 pounds, and the given
force is equal to the weight of 15 pounds, and acts in a direction
of 60° with the upward vertical direction, find the tension of
AB and the vertical distance of B below A4, the distance 4B
being 14 inches.

13. In the preceding example, show how to find the magnitude
and direction of the smallest force which will cause the string
to rest in a given position.

14. A fine light string of given length has its extremities
attached to two given fixed points. Show how to find the greatest
load that can be applied to a given point of the string without
breaking it, supposing that string can bear any tension up to a
certain given value.



CHAPTER 1IV.

EQUILIBRIUM OF FINE LIGHT RODS, FREE
EXCEPT AT THEIR EXTREMITIES.

37. By a light rod we mean one whose weight is
inappreciable. By a fine rod we mean one whose
thickness is inappreciable.

38. We shall in this chapter confine our attention
to straight rods of no appreciable weight or thickness,
which are in equilibrium under forces applied only
at their extremities, so that each rod is quite free
throughout its length.

If a framework of rods is in equilibrium, each in-
dividual rod must be in equilibrium, and each part
of the structure must be in equilibrium considered as
a rigid body, whether such part consists of a certain
number of the rods which make up the structure, or
of parts of the rods themselves.

In considering the equilibrium of a system of such
rods jointed together at their extremities to form a
framework, as we neglect the thicknesses of the rods,
so also we shall neglect the sizes of the hinges. We
shall suppose that all hinges are smooth, and that the
effect of a hinge upon a rod is to compel that extremity
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of the rod to remain in a definite position by means
of a direct push or pull applied at that point. The
constraint is a self-adjusting force, and accommodates
itself to prevent, if possible, the extremity of the rod
from getting away from the part of the structure to
which it is attached. It is of any magnitude, and
acts in any direction necessary to preserve equilibrium,
but must act through the extremity of the rod, which
extremity is here treated as a mere point.

39. Let AB represent a rod in equilibrium, being
jointed freely at A and B to the adjoining parts of the
structure. Suppose also that its weight is inappreciable,
and that it is quite free between 4 and B, so that
the only external forces that act upon it are applied
at A and B.

F1a. 39.

The forces that act upon it at A- are equivalent
to a single force acting upon it at 4. So also the
forces at B are equivalent to a single force at B.
Thus the forces acting externally upon the rod are
equivalent to two forces, one acting at 4 and the
other at B. These two must be equal and opposite
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and act along the same straight line. Therefore AB
must be the line of action of both foreces. Also the
resultant actions at 4 and B must be either (i.) both
inwards, in which case the rod is in a state of com-
pression, and its effect is to keep the two parts of the
structure at 4 and B apart from one another; such
a rod is called a strut; or (ii.) both outwards, in
which case the rod is in a state of tension, and its
effect is to bind together the two parts of the structure
at A and B; such a rod is called a tie.

In the case of a struf, the rod pushes the structure
at each end in its own direction. In the case of a
tie, the rod pulls the structure at each end in its
own direction.

40. Let us consider the equilibrium of the portion
AP of the rod AB, which is acted upon by forces at A
and B only. Since the portion AP is in equilibrium,

A

P
B
Fia. 40.

the action of the adjoining piece PB at P upon the
portion AP, must be equal and opposite to and in the
same straight line as the action at 4. Therefore, in
the case of a strut, the portion PB presses against the
portion AP with a force equal and opposite to the
resultant of the forces which act upon the rod at A.
In the case of a tie, the portion PB pulls at the portion
AP with a force equal and opposite to the resultant
of the forces which act upon the rod at A.



FREE EXCEPT AT THEIR EXTREMITIES. 57

In the one case the fibres at P are in a state of
compression, in the other case in a state of tension.
In both cases the action at P of one part upon the
other is in the direction of the rod, and is of the
same intensity at every point of the rod.

In the case of a tie, we might replace the rod by
a string which would answer the purpose theoretically
just as well.

If a rod is mot free between its extremities, or if
it is of appreciable weight, then the action at each
end is not necessarily in its own direction, and the
internal strains may be different at every point of
the rod.

41. The equilibrium of a tie is stable; for, if it be
twisted a little out of its position, the external forces
acting upon it at its extremities tend to restore it to

Fic. 41.

Fic. 42.

its original position. The equilibrium of a strut is
unstable; for, if it be displaced, the external forces
acting upon it at its extremities tend to twist it still
further from its original position.
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42. Now suppose that several rods, all coming under
the case above described, are jointed together at a
common extremity.

Let the rods 04, OB, OC, OD be freely jointed at O.

Draw a closed curve round O, cutting off portions
OP, 0Q, OR, OS from the rods, and consider the
equilibrium of the matter contained within this curve

Fic. 43.

as a rigid body. Its weight is inappreciable, and the
only forces acting externally upon it are the actions
at P, @, R, S which are along the lines (inwards or
outwards) OA, OB, OC, OD respectively. Hence the
consideration of the equilibrium of this portion of
matter round O comes under the case of the con-
sideration of the equilibrium of a number of forces
acting at a point. The force polygon for the system
under consideration will consist of a polygon having
its sides parallel to the lines OA, OB, OC, OD, and
the arrows must go one way round. The direction
of the arrow decides in each case, not already known,
whether the rod is a strut or a tie

The consideration of the equilibrium of the portion
of the system in the neighbourhood of O is briefly
described as considering the equilibrium of O, and the
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force polygon is called the force polygon for the
point O.

43. Four fine light rods are freely jointed at their
extremities to form a quadrilateral, which is stiffened
by another fine light rod connecting two opposite joints.
It is required to consider the equilibrium of the
framework under the influence of two forces applied
at the remaining two joints.

Let the spaces inside the quadrilateral be denoted
by o,, 0,, and the spaces outside by « and b, as indicated
in the diagram.

0,

2
F1c. 44. Fr1e. 44a.

Let P,, P, be the measures of the forces applied at
the joints abo,, bao, respectively.

We will first consider the equilibrium of the whole
framework as one rigid body. It will be seen that
the framework is not deformable and behaves as a
rigid body. As the stresses in the rods can be of
any magnitude and in either direction, it is necessary
and sufficient for equilibrium that the forces acting
externally upon the framework should form a system
in equilibrium. In order to ensure, therefore, the



60 EQUILIBRIUM OF FINE LIGHT RODS,

equilibrium of the framework, it is necessary and
sufficient that P, and P, should form a system in
equilibrium. Thus, P, and P, must be equal and in
opposite directions along the same straight line, either
both inwards or both outwards. If P, and P, satisfy
these conditions, the framework is in equilibrium, and
we can determine the stresses in the rods.

Taking P, and P, as both outwards, the force diagram
for the point abo, is a triangle 4 BO, 4 (this way round),
in which AB represents P, and 40, BO, are parallel
to the rods ao,, bo, respectively. The triangle of forces
for the point o,bo, is 0,B0,0, (this way round), in
which B0,, 0,0, are parallel to the rods bo,, 0,0, respec-
tively. Now considering the joint «o,0,, we see that
two of the forces acting upon it are represented by
40, 0,0,. Hence, joining A0,, the straight line A0,
must be parallel to the rod ao, and the triangle of
forces for the point ao,0, is 40,0,4 (this way round).
Also the triangle of forces for the point o,ba is 0,BA0,
(this way round).

We see that the outside rods are ties and the cross rod
a strut. We might replace the outside rods by strings.

If P, and P, both act inwards, it will be found that
the outside rods are struts and the cross rod a tie.
The force diagram will be the same as before, but the
directions will in each case be the opposite way round.
We might now replace the cross rod by a string.

In the above, the two equal and opposite forces
P, and P, may be applied by means of another fine
light rod, in a state of stress, connecting the joints
abo, and bao, For instance,in a quadrilateral frame-.
work, if there are two diagonal ties and no external
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forces, we can determine the stresses in all the members
provided we know the stress in one of them.

44 Ex. 1. A fine light vod HK, of length 9 inches,
is capable of turning freely in a vertical plane about
the point H, which is fixed. To the point K is attached
a fine light string, supporting at its other extremity a
mass of 40 pounds. Amnother fine light string, of length
7 inches, connects K with the fized point L, situated
8 inches vertically above the point H. Find the tensions
of the strings, the stress in the rod, and the action at H.

In the position of equilibrium, the two strings are
straight and the mass rests vertically below K. The
data are sufficient to enable us to construct the space
diagram to scale. This done, we mark the portions
of the space diagram with the letters «, b, o, as
indicated in the figure on the next page.

The rod is at rest under forces acting only at H
and K. Therefore the stress in the rod is at every
point in its own direction, and the action at H is in
the line HK.

The tension of the vertical string we see at once is
40 pounds’ weight. Hence, draw AB vertically down-
wards of length 40 units, and through 4 and B draw
40, BO parallel to ao, bo respectively, to meet in O.
Then ABOA (this way round) is the triangle of forces
for the equilibrium of the portion of matter in the
neighbourhood of K. On measuring, we find that BO
and OA are of lengths 45 and 35 units respectively, and
the direction BO shows that the rod is a strut. Hence
the thrust of the rod is 45 pounds’ weight, the tension
of KL is 35 pounds’ weight, and the action at H is
45 pounds’ weight in direction HK.
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between MN and HK we find that it is a right
angle. Hence, in the position of equilibrium, HK is
horizontal.

Having marked the parts of the space diagram with
the letters a, b, 0,, 0, as in the figure, we draw AB
vertically downwards, and of length 112 units. The
point O, is obtained by drawing through A and B
straight lines parallel to the strings «o, and bo,
respectively , the point O,, by drawing through O, and
B straight lines parallel to 0,0, and bo, respectively;
then, joining 40,, we complete the force diagram.

On measuring the lines BO,, 0,4, A0,, 0,B, 0,0,,
we find that the tensions of the strings KN, NH, HM,
MK, and the thrust of the rod are 78, 50, 104, 120,
and 126 pounds’ weight respectively.

46. Ex. 3. Four fine light rods are smoothly jointed
at their extremities to form a quadrilateral, which can
be inscribed im a circle. The opposite joints are con-
nected by two fine light strings in a state of tension.
Prove that the thrusts in the rods and the tensions of
the strimgs are proportional to the opposite sides amd
diagonals of the quadrilateral respectively.

Let ABCD be the framework, AC and BD being
the diagonal ties.

Mark the line AB with the letters ¢'d’, placing one
letter on each side of the line; AC with the letters
1.b’ol’, BC with the letters a'd’, ete.

Then the force diagram will be the quadrilateral
A’BC’D, in which A’B’ is parallel to a't’, A’C" to a’c
B'C’ to V¢, and so on. )

We can now prove that the figure A’B'C’D’ is similar
to the figure ABCD, the correspondence being shown
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by using the same letters. For,

angle D'("A’=angle DBA =angle DCA ;
also, angle D’A’C"=angle DBC=angle DAC;
therefore the triangles D'A’C" and DAC are similar.
In the same way we can show that any other triangle
of the figure A’B’'C'D) is similar to the corresponding
triangle of the figure ABCD; therefore the two figures
are similar.

D'

Bl
F1c. 47. F16. 47 a.

Now the thrusts in the rods AB, BC, CD, DA,
and the tensions of the strings AC, BD—that is, the
thrusts in the rods ¢d’, d'a’, a’t’, b’¢’, and the tensions
of the strings b'd’, a'c’;—are represented by C'D’, D'4’,
A'B, B'C, BD, A'C" respectively, and are therefore
proportional to CD; DA, AB, BC, BD, AC respectively.
Thus the thrusts in the rods and the tensions of the 4
strings are proportional to the opposite sides and
diagonals of the quadrilateral.

47. Ex. 4. Two fine light rods AC, OB rest in a
given position, being smoothly jointed to one another at
C and to two fixed points at A and B. A given force
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18 applied at C in the plane ABC. It is required to
determine the stresses in the rods, and to examine the
nature of those stresses for different directions of the
applied force.

Let HK represent the applied force. Draw through
H straight lines bHV, aHa' in the directions of OB,
CA respectively. Through K draw KL parallel to
CA to meet bHY in L. Then KL, LH represent the
actions of the rods CA, CB respectively upon C.

If HK is within the angle aflb, both rods are ties;
if within the angle «H¥, the rod AC is a tie and CB
a strut; if within the angle o), the rod AC is a
strut and CB a tie; if within the angle «’HV’, both
rods are struts.

F1e. 48. Fic. 48a.

Suppose that the maximum tension and compression
that each rod can bear without breaking are known.
Take Ha, Hb to represent the maximum tensions of
the rods AC, BC respectively, and Ha', HV the maxi-
mum compressions of the rods AC, BC respectively.
Through «, o’ draw parallels to bH, and through b, &’
parallels to aH. Then the point K must lie within
the parallelogram so formed.
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EXAMPLES IV.

1. A fine light rod A B, of length 15 inches, is capable of turning
freely in a vertical plane about the end 4, which is fixed. A
mass of 60 pounds is suspended from B, and the whole is sup-
ported by a horizontal string BC, of length 14 inches, attached
to a fixed point C, distant 13 inches from 4. Find the tension
of the string, the thrust in the rod, and the action at 4.

If the string cannot bear a tension greater than 90 pounds’
weight, find the least load which, applied at B, will break the
string.

Also, if there is no load supported at B, find in what direction
a force of 75 pounds’ weight must be applied at B, in order to
be just on the point of breaking the string.

2. Two fine light rods AC and CB, of lengths 25 feet 8 inches and
17 feet 1 inch respectively, are jointed together at ¢ and to two
fixed points 4 and B, the point B being 9 feet 9 inches vertically
above A. A mass of 1 cwt. is suspended from C. Find the
stresses in the rods. '

If the greatest thrust that the rod 4C can bear is the weight
of 40 cwt., and the greatest tension that the rod BC can bear
the weight of 41 cwt., find the magnitude and direction of the
force which, applied at €, will be on the point of breaking both
rods simultaneously.

Find also the greatest load which can be sustained at C.

3. Four equal rods, of no appreciable weight, are hinged together
to form the rhombus ABCD, and the hinges at B and D are
joined by another equal rod BD, of no appreciable weight. If
the rhombus is supported at 4, and a mass of 1 cwt. is sus-
pended from €, find the thrust in BD.

4. Tf, in the preceding example, the cross rod B is half as
long again as each of the other rods, find the stress in each rod
under the same load as before.

5. ABCD is a framework of four light rods loosely jointed
together, AB and AD being each of length 4 feet, BC and CD
each of length 2 feet. A mass of 100 pounds is attached to the

.
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hinge €, and the whole framework, which is stiffened by a light
rod of length 3 feet connecting the hinges B and D, is suspended
from 4. Find the thrust in the rod ZBD.

6. ABCD is a framework of four light rods loosely jointed
together, 4B and 4D being each of length 4 feet, BC and 0D
each of length 2 feet. The hinge Cis connected with 4 by means
of a fine string of length 5 feet, and the whole is placed on a
smooth horizontal table. If the hinges Band D are pressed towards
one another by two forces each equal to 25 pounds’ weight in
the straight line BD, find the tension of the string.

7. Four fine light rods, of lengths 20, 15, 20, 15 inches, are
smoothly hinged together to form a parallelogram A4BCD, and
the hinges B and D are connected by another fine light rod of
length 31 inches. If the system is suspended from 4, and a
mass of 68 pounds is attached at C, find the position of equili-
brium and the stress in each rod.

8. In the preceding example the cross rod BD is of length
17 inches. Find the position of equilibrium and the stress in
each rod when a mass of 62 pounds is attached at C.

9. A fine light rod ZK, of length 15 inches, is connected with
a fixed point M by two fine light strings ZM and A M, of lengths
13 and 4 inches respectively. Another fine light string, of length
27 inches, has its extremities attached to the points H and A,
and supports a mass of 60 pounds at the point A, situated 14
inches along the string from /7. The whole is allowed to rest
in a vertical plane. Find the position of equilibrium, the tension
of each portion of string, and the thrust in the rod.

10. Four fine light rods are smoothly jointed at their ex-
tremities to form a parallelogram. The opposite joints are con-
nected by two fine light strings in a state of tension. Prove that
the thrusts of the rods and the tensions of the strings are pro-
portional to the lengths of the rods and strings respectively.

11. Four fine light rods are smoothly jointed at their extremities
to form a trapezium. The opposite joints are connected by two
fine light strings in a state of tension. Prove that the thrusts in
the parallel rods are inversely proportional to the lengths of
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those rods, and that the thrusts in the non-parallel rods and the
tensions of the strings are proportional to the lengths of those
rods and strings respectively.

12. Four fine light rods are smoothly jointed at their extremities
to form a quadrilateral ABCD. The opposite joints are connected
by two fine light strings AC, BD in a state of tension. A8 is
drawn parallel to BC to meet BD in 8, and By is drawn parallel
to AD to meet AC in y. Prove that yd is parallel to 0 ; also
that the thrusts in the rods 4B, BC, (D, DA and the tensions
of the strings AC, BD are proportional to AB, 48, y8, By, 4y,
B3 respectively.

13. Four fine light rods are smoothly jointed at their extremities
to form a quadrilateral framework. The opposite joints are con-
nected by two fine light strings in a state of tension. Prove
that if the thrusts in two opposite rods are proportional to the
lengths of those rods, the other two rods must be parallel.

14. Four fine light rods are smoothly jointed at their extremities
to form a quadrilateral ABCD. The opposite joints are connected
by two fine light strings AC, BD in a state of tension. Prove
that if the diagonal BD bisects the diagonal AC, (i.) the thrusts
in the rods 4B, BC are proportional to the lengths of those rods ;
and (ii.) the thrusts in the rods CD, DA are proportional to the
lengths of those rods.

Conversely, if the thrusts in the rods 4B, BC are proportional
to the lengths of those rods, prove that (i.) DB bisects AC, and
(ii.) the thrusts in the rod CD, DA are proportional to the lengths
of those rods.



CHAPTER V.

FINE LIGHT STRINGS IN CONTACT WITH
SMOOTH SURFACES.

48. Let a portion of a fine light string, in a state
of tension, rest in contact with a smooth surface into
which it does not penetrate. This portion takes up
the shape of the surface against which it rests, and
the surface, being smooth, presses it, at every point
where it touches it, in a direction perpendicular to
the tangent at that point, that is in the direction of
the normal at that point.

It is usual for the beginner to assume that under
these circumstances the tension of the string is the
same at every point. We offer here a proof of this
proposition by the graphical method.

49. Let the portion AB of the string HABK rest
against a smooth surface. Divide this portion up into
a number of parts in the points P, P, P, P,

Let T, T, Té, T,, T, T” be the measures of the
tensions at the points 4, P, P,, P,, P,, B respectively.

Draw HAQ,, Q\P,Qy Q505 Q:P3Qy QP @:BK
the tangents at 4, P,, P, P,;, P, B respectively.

Consider the equilibrium of the portion AP, as a
rigid body. The external forces acting upon it are,—
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the tension 7' in direction AH, the tension 7, in
direction P,(),, and the forces with which the surface
presses it outwards at every point. These pressures
together balance the first two forces and must therefore
be equivalent to a resultant pressure equal and opposite
to the resultant of the two forces 7' and 7.

H

F1e. 49. F1¢. 49a.

Hence a force diagram «aOp, can be constructed, in
which @O represents 7, Op, represents 7, and p,a
represents the resultant pressure of the surface upon
the portion of string 4P,

Similarly, if we consider the equilibrium of the
portion P P, we have the force diagram p,Op,, in
which Op, represents 7', and p,p, represents the resultant
pressure of the surface upon the portion of string P, P,.

Proceeding in this way, we have the force diagram
indicated above, in which Op,, Op,, Ob represent the
tensions at P, P, B respectively; and p,p,, p,ps bp,
represent the resultant pressures of the surface upon
the portions of string PP, PP, BP, respectively.
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Now suppose the points P,, P, P, ... to be inde-
finitely increased in number and taken indefinitely
close together. Then the straight lines Oa, Op,, Op,,
Ops, ... become indefinitely close together, and ap, p,p; ...
becomes ultimately a continuous curve ab.

Now the pressure on any element P of the string is
represented by the little element of the curve ba at p.
But the pressure is normal at P, and therefore perpen-
dicular to the tension at P, which is represented by Op.

. the direction of the curve apb at p is perpendicular
to Op.

In other words, Op is the normal at any point p
of the curve apb.

. the curve apb must be a circle with centre O.

. Op is constant for all positions of p and equal to
Oa or Ob.

In other words, the tension at any point P of the
string is the same as at 4 or B.

50. Resultant pressure between a fine light string,
m a state of tension, and a smooth peg, round which
it passes.

Let the string ABC, in a state of tension, pass round
a smooth peg at B. The tension of the string is the
same at every point; let its measure be 7.

Consider the equilibrium of the portion of string
HBK in the neighbourhood of the peg. The external
forces acting upon it are—the tension 7' at H in the
direction HA, the tension 7 at K in direction KC,
and the forces with which the peg presses the string
at every point of contact. These pressures must
produce a resultant pressure equal and opposite to the
resultant of the first two forces.
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Hence a triangle of forces LMN can be constructed,
in which LM and MN are each of length 7' units, and
parallel to HA and KC respectively, and in which
NL represents the resultant pressure of the peg upon
the string. This is equally inclined to LM and MV,
and is therefore in the opposite direction to the internal

F1a. 50. F16. 50 a.
)

bisector of the angle ABC. Also the line of action
of this pressure passes through the point of inter-
section of 4H and (UK.

The pressure of the string upon the peg is equal
and opposite to the pressure of the peg upon the
string, and is therefore in the direction of the bisector
of the angle ABC.

51. Ex. 1. A fine light string has. its extremities
attached to two masses, each weighing 5 pounds, and
passes over two small smooth pegs H, K. The peg K 1is
situated T inches farther from the ground thom H,
and 24 inches horizontally to the right of H. Find the
resultant pressures of the string wpon the pegs.
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In the position of equilibrium, the portion of the
string between H and K is straight, and the other two
portions hang vertically downwards. Also, the tension
of the string is everywhere 5 pounds’ weight.

Having constructed the space diagram to scale, we
mark the three portions of the string with the letters
oa, ob, oc, as in the figure. Draw the straight line «b
bisecting the angle between the portions of the string

O Q)5
Fic. 51.
at H, and the straight line bc bisecting the angle be-
tween the portions of the string at K.

Draw OA4, of length 5 units, vertically downwards,
to represent the tension of the string oa. Through O
and A draw straight lines OB, AB parallel to ob, ab
respectively. This gives the point B. Draw BC parallel
to be to meet A0 produced in C. Then OABO (this
way round) and OBCO (this way round) are the tri-
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and radius 04, and by drawing OB in the direction of
KH to meet this circle in B.

52. Ex. 2. A fine light string, 31 inches long, passes
through a small ring of mass 4 ounces, and has its
extremities fixed at two points 25 inches apart in the
same horizontal line. Find the magnitude of the
horizontal force which, applied to the ring, will cause
it to rest at a point T inches from the mearer end of
the string. Also determine the temsion of the string.

A B

F1e. 52.

Take A and B to represent the two given points 25
inches apart. In the position of equilibrium the two
portions of the string are straight, and, as the string
rests against the smooth surface of the ring, its tension
is the same on either side of the ring, and therefore
the same throughout. The position of the ring will be
at C, which is 7 inches from A4 and 24 inches from B.
Having found the position of C, draw CD bisecting
the angle BCA.
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a straight line parallel to DC to meet the horizontal
through X in L. Through H and L draw straight lines
parallel to BC and CA respectively, to meet in M. Then
KL represents the horizontal force, and LM, MH each
represent the tension of the string.

On measuring the lines of the force diagram, we find
that the horizontal force is 219 ounces’ weight, and
the tension of the string is 3:23 ounces’ weight.

53. Ex. 3. 4 fine straight rod HK, of no appreciable
weight and of given length, has two pieces of fine light
string of given lengths attached to it in the manner
indicated in the diagram. One of these strings passes
through a small smooth ring L of mo appreciable weight,
which is connected by means of another fine light string

Fie. 53.

to a mass N of given weight. The other string is then
placed over a small smooth fized peg M. Prove that,
wm a position of equilibrium, the rod is either vertical
or horizontal, and show how to determine in each case
the tension of the string and the thrust in the rod.
In a position of equilibrium both strings are in a state
of tension, and hence the portions HL, LK, KM, MH



WITH SMOOTH SURFACES. 81

are all straight ; also, the string supporting the mass N
hangs vertically below L.

As we are unable at the outset to draw accurately
a space diagram for the system in equilibrium, we
assume a position of equili- '
brium, making no attempt to 0
construct the diagram to scale,
and endeavour to ascertain the
properties of the figure.

We will consider first the
equilibrium of the rod HK, the
strings HMK, HLK, and a por-
tion LX of the string LN, all
together as one rigid body. The 9
only forces acting externally v
upon this portion of the system é
are the pressure of the peg N
upon the string at M and the
tension of the string LX at X. These two forces must
be equal and in opposite directions along the same
straight line.

. ML is vertical and in the same straight line with LN.

As the strings HMK and HLK rest against smooth
surfaces at M and L respectively, their tensions are
in each case the same throughout. Now consider the
equilibrium of a portion of the system included within
a closed curve drawn round L. This shows at once
that the vertical through L bisects the angle HLK.
Similarly, considering the equilibrium of a portion of
the string in the neighbourhood of M, we see that the
pressure of the peg upon the string at M, already shown

to be vertical, must balance the two equal tensions of
D.S. F

Fic. 54.
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the string, and therefore the vertical through M bisects
the angle HMK.

Thus, the position of equilibrium is such that LM is
vertical, and bisects the angles between the strings at
L and M respectively.

1. The strings HM, MK may both be vertical. The
points H and K are then both in the line ML, and the

o 4 sStrings HL, LK are also vertical.
This gives two positions of equili-
H g brium, namely, with X above K, or

with K above H.

The diagram in each case is readily
drawn as the lengths -of the strings
HMEK, HLK and of the rod are all
known.

L II. If HM, MK are not vertical,

they are equally inclined to ML, and
oN ON the points H, K are on opposite sides
L5 b Fi6. 3. of MI. In this case, in the triangles
HML, KML, the side ML is common, and the angles
HML, HLM are respectively equal to the angles KML,
KLM.

.. the triangles HML, KML are equal in all respects.

This shows that the figure is symmetrical with respect
to the vertical LM, and hence that HK is horizontal.

The space diagram is now readily constructed to
scale; for the lines HM, MK are each half of the given
length of the string HMK, and the lines HL, LK are
each half of the given length of the string HLK.

Having constructed the space diagram to scale and
marked it with the letters a, b, 0, 0,, as indicated, we
draw AB to represent the given weight of the mass .

K LH
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A0, BO,, AO,, BO, are then drawn parallel to the lines
ao,, bo,, ao,, bo, respectively, and joining the points 0y, O,
thus obtained, we have the complete force diagram.

F1c. 57. Fic 57a.

In the cases I., where the strings are all vertical, the
points 0,, O, coincide with the middle point of AB.
Therefore the thrust in the rod is zero, and the tension
of each string is half the weight of the mass.

54. Ex. 4. A fine light string, of given length, is
passed through a smooth ring, of no appreciable weight
or size, and is attached at its extremities to two given
points. A force, given in magnitude and direction,
is applied to the ring. It is vequired to find the
position of equilibrium and the tension of the string.

Here, at the outset, we are unable to construct the
space diagram, as we do not know the position of
equilibrium. We therefore assume a position of equili-
brium and represent it in a diagram without any
attempt at first to construct it to scale.
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Let AMB represent the string in the position of
equilibrium, A and B being the two fixed points and
M the position of the ring.

Let P be the measure of the force applied at M in
direction ML, and let CD be drawn P units of length
in the given direction of this force; thus ML and CD
are parallel.

A B

F1c. b8, Fia. 58a.

As the string, in passing through the ring, rests
against a smooth surface, its tension is the same on
one side of the ring as on the other, and therefore
its tension is the same throughout. Let T be the
measure of this tension.

Consider the equilibrium of the ring, together with
the portion HMK of the string in its immediate
neighbourhood, as one rigid body. The forces acting
externally upon this are,—the tension 7' at H in
direction HA, the tension T at K in direction KB,
and the force P. Hence our force diagram for 'this
system will be a triangle CDN in which DN, NC are
parallel to MA, MB respectively, and each T’ units of
length. Hence CD must be equally inclined to NC
and DN, and therefore LM produced must bisect the
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angle AMB. This gives the following construction
for finding the position of M:

Fie. 59. F16. 59a.

Through B draw BE in the direction of CD. With
centre A, and radius representing the given length of
the string, describe a circle cutting BE in F. Let the
straight line which bisects BF at right angles meet
AF in M. Then M is the position of the ring.

The student will have no difficulty in proving that
AMB is of the proper length, and that the straight
line drawn through M in the direction of DC is the
bisector of the angle AMB. _

Draw CN parallel to BM and DN parallel to M 4, and
let CN and DN meet at N. Then, measuring either of the
two lines DN and CN, we have the tension of the string.

We must see that the point F is taken in BE, and
not £B produced. Also the string must evidently be
longer than AB; this being so, we get one, and only
one, position of equilibrium.,
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55. Ex. 5. To the extremities of a fine light string,
which passes round two small smooth pegs given in posi-
tion, are applied two given forces in given directions,
one at each end. To a point of the string between the
pegs is applied a third given force in a given direction.
It is requirved to find the position of equilibrium and
the pressures between the string and the pegs.

Without attempting at the outset to construct a
space diagram to scale, suppose the string takes up
the position HALBK, A and B being the two given

pegs.

F1a. 60. Fic. 60a.

Let P and @ be the measures of the given forces applied
at H and K respectively, and R the measure of the
given force applied at L. The directions of A/ and
BEK are of course the given directions of P and @,
but the directions of AL and BL are at present
unknown.

Since the peg A is smooth, the tension of the string
HAL is the same at every point, and therefore its
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measure is P. Similarly the measure of the tension
of the string LBK is @ at every point.

Hence the force diagram for the point L will be a
triangle CDN in which CD is R units of length in
the given direction of the force R; and DN, NC are
respectively P, @ units of length and parallel to L4, LB
respectively.

Also, if CE be drawn in the direction of KB and
equal to CN, and if DF be drawn in the direction of
AH and equal to DN, then NF and £N will represent
the pressures of the string upon the pegs at 4 and B
respectively.

Hence we have the following construction: Draw
EC, CD, DF parallel to the directions of the given
forces @, R, P and of lengths @ units, B units, P units
respectively. With centre ' and radius CE describe
a circle, and with centre D and radius DF describe
another circle intersecting the first circle in .

Draw AL and BL parallel to ND and CN respec-
tively. This gives the position of L, and the directions
of AH, BK are already known.

Then, measuring NF and EN, we have the pressures
at A and B respectively.

As the circles may intersect in two points, this ap-
parently gives two solutions, but the student will
readily see that if he takes the point of intersection
of the circles on the other side of €D, he will get an
inadmissible result.
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EXAMPLES V.

1. One end B of a fine light cord is fixed ; the cord passes over
a small smooth fixed peg 4 in the horizontal line through B, and
supports at its other end € a mass of weight />; find the magni-
tude and direction of the pressure on the peg.

2. A fine light string ACB, of length 14 inches, has its extremities
attached to two fixed points 4 and B, situated 10 inches apart
on a smooth horizontal table. To a point (' of the string, 8
inches from 4, is knotted another fine light string CD, which
passes over the smooth edge of the table and supports at its free
end a mass of 20 pounds. Find the tensions in AC and BC, sup-
posing that DC produced passes through the middle point of AB.

3. An endless fine light string, of length 3 feet, on which a
small heavy ring of weight W is capable of sliding freely, is sup-
ported on two small fixed pegs situated 1 foot apart in a horizontal
line. Find the pressure between the string and each peg.

4. A fine light string ABCD has one extremity 4 fixed, and
passes over two small smooth pegs at B and (), supporting at
its free end D a mass of 10 pounds. If ABC is an equilateral
triangle, having the side AC vertical and 4 uppermost, determine
the pressure between the string and each peg.

5. A fine light string has one end attached to a fixed point 4.
It passes over a small smooth peg B, situated 1 foot 4 inches to
the right and 1 foot above A, and supports at its other extremity
a mass of 25 pounds. Find the pressure between the string and
the peg.

6. A fine light string has one extremity attached to a fixed
point A4, passes over a small smooth peg 5, and supports at its
other extremity a mass of 20 pounds. The peg B is situated
5 inches to the left of 4 and 12 inches above it. Find the pressure
on the peg.

7. B and C are two smooth rings fixed in space at a distance
apart equal to 13 inches, B being 10 inches and € 15 inches above
the ground. A fine light string ABCD passes through the
rings, and supports at its extremities masses weighing 10 pounds
each. Find the pressures between the string and the rings.
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8. A fine light string, of length 64 inches, passes over two
small smooth pegs fixed 30 inches apart in a horizontal line.
Both extremities of the string are attached at the same point to
a mass of 20 pounds. Find the pressure between each peg and
the string.

9. A fine light string, 28 inches long, passes through a small
smooth ring, to which is attached a mass of 24 pounds, and has
its extremities fixed at two points situated 14 inches apart in
the same horizontal line. Find the magnitude of the horizontal
force which, applied to the ring, will cause it to rest at a point
13 inches from the nearer end of the string. Also determine
the tension of the string.

10. A fine light string, of length 25 inches, has its extremities
attached to two points, situated in a horizontal line 7 inches apart.
A small smooth ring, of mass 3 pounds, is capable of sliding freely
on the string., TFind the tension of the string in the position of
equilibrium.

11. A fine light string, 31 inches long, passes through a small
ring of 4 ounces’ weight, and has its extremities fixed at two points
25 inches apart in the same horizontal line. Find the tension of
the string in the position of equilibrium.

12. A fine light string, of length 15 inches, is passed through a
small smooth ring € of no appreciable weight, and is attached at
its extremities to two fixed points 4 and B. The point B is
situated 3 inches farther from the ground than 4 and 1 foot
horizontally to the right of 4. If a mass of 12 pounds is con-
nected with the ring ¢ by means of another fine light string,
find the position of equilibrium and the tension of the string.

13. A fine light string, of length 32 inches, is passed through a
small smooth ring of no appreciable weight, and is attached at its
extremities to two points 4 and B situated 24 inches apart. A force
of 16 pounds’ weight is applied to the ring in a direction making
an angle of 53° with BA. Find the position of equilibrium and
the tension of the string.

14. A fine endless string, of length 20 inches, rests on three
smooth pegs 4, B, C, the pegs B and € being situated in a horizontal
line 6 inches apart, and 4 4 inches vertically over the middle point
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of BC. To a point D of the loop of string below BC is attached
a mass of 8 pounds. Find the pressures on the pegs and the
tension of the string.

15. 4, B, C are three smooth pegs fixed in a vertical plane,
4 being 3 feet vertically above the middle point of BC, which
is horizontal and 8 feet long. A string, 20 feet long, passes round
the three pegs, and has its extremities attached at the same point
to a mass of 12 pounds. Find the tension of the string and the
resultant pressures on the pegs.

16. 4, B, C are three smooth pegs fixed in a vertical plane,
A being 3 feet vertically below B and 4 feet horizontally to the
right of C. A fine light string, 13 feet long, passes round the
three pegs, and has its extremities attached at the same point
to a mass of 12 pounds. Find the tension of the string and the
resultant pressure on each peg. h

17. A fine light string 0A4BO, 2 feet long, passes round two
smooth small pegs at 4 and DB, situated 8 inches apart on a
smooth horizontal table. The two ends of the string are knotted
together at O, 6 inches from 4. In what direction must a hori-
zontal force of 16 pounds’ weight be applied to the knot 0, in
order that the string may remain stretched without slipping over
the pegs? If the force has this direction, find the tension of
the string and the pressures upon the pegs.

18. A fine light string ACB, of length 20 inches, has its ex-
tremities attached to two points 4 and B, situated 16 inches apart
in a horizontal line. To the middle point ' of the string is
attached a small smooth ring of no appreciable weight. Another
string has one extremity attached at D, 21 inches vertically below
B, and passes through the ring, supporting at its other extremity
a mass of 51 pounds. Find the tensions of AC and BC.

19. A fine light string, passing over two smooth parallel bars
one foot apart in a horizontal plane, has two masses each weighing
25 pounds fastened to its extremities, and another mass weighing
14 pounds is attached to a point P of the string between the
bars ; in the position of equilibrium find the depth of P below
the level of the bars; find also the magnitude of the pressure
upon each bar.
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20. A fine light string ABCD is attached at one extremity to
a fixed point 4. It passes through a small smooth ring B, of
mass 1 pound, and over a smooth peg C, and supports at its
extremity D a mass of 4 pounds. Find the pressure between the
string and the peg in the position of equilibrium.

21. A fine straight rod 425, of no appreciable weight and of
length 30 inches, has two pieces of fine string ACB and ADB, of
lengths 50 and 34 inches respectively, attached to it at 4 and B.
The shorter string passes through a small smooth ring, of no
appreciable weight, which is connected by another fine string
with a mass of 16 pounds. The longer string is placed over a
small smooth fixed peg. Show that, in the position of equilibrium,
the rod is either vertical or horizontal, and in each case determine
the tensions of the strings.

22. 4, B, C are three points in a vertical plane, 4 and (' lying
on opposite sides of the vertical line through the highest point B.
A fine light string ADBCDE, having one end fixed at A, passes
in succession through a light smooth ring D, round pegs at B
and (), again through the ring, and is attached to a heavy mass
at its free extremity £Z. Prove that, in the position of equilibrium,
the ring and the mass hang vertically below B.

23. A fine light string AXZB( is attached at one extremity to
a fixed point 4. It passes over a smooth peg B, and supports at
its extremity (' a mass of given weight. Show how to determine
at what point X, between 4 and B, another mass of given weight
must be attached, in order that, in the position of equilibrium,
AX may be in a given direction. Show that there may be two
solutions, but that the length of X'B is the same in both cases.



CHAPTER VI

EQUILIBRIUM OF A PARTICLE RESTING IN CON-
TACT WITH A SMOOTH SURFACE OR CURVE.

56. Suppose that a particle, acted upon by a system
of forces, rests in contact with a smooth surface at P.
Then, in addition to the other forces that act upon it,

Fi6. 61.

there is the force R, with which the surface resists
any tendency that the particle may have to penetrate it.
If the surface is smooth it cannot resist any tendency
to slide over it; it can only press outwards in the
direction of the normal at P. If we assume that the
material of which the surface is composed is sufliciently
strong for all purposes, then there is no limit to the
magnitude of this force B. This force, which is called
the reaction of the surface, is a self-adjusting force,
that is, it will be of the magnitude required to pre-
serve equilibrium, if equilibrium is possible. Hence,
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for equilibrium, it is necessary and sufficient that the
resultant of all the other forces acting upon the particle
should be in the direction of the normal at P, and
inwards—that is, towards the surface.

If, instead of the surface, we have a material plane
curve on which the particle can slide, as a bead threaded
on a wire, or a fine tube in which the particle is placed ;
and if the forces acting on the particle are all in the plane
of the curve, then the reaction of the curve may be
in either direction, inwards or outwards, and for equili-
brium it is only necessary that the resultant of all the
other forces acting upon the particle should be per-
pendicular to the tangent at P.

If we suppose applied to the particle a force R
identical with the reaction of the surface or curve, we
may suppose the latter removed altogether, and then
consider the particle as in equilibrium under the influ-
ence of the given system of forces that act upon it
together with the force K. Thus the consideration of
the equilibrium of the particle is the same as for a
particle free to move, with this difference,—that there
are certain limitations upon the direction of the force R.

57. Equilibrium of a Heavy Particle on a Smooth
Inclined Plane.

A particle of given weight is placed on a smooth
plane inclined at a given angle to the horizon, and
is sustained by some force applied to it im some direc-
tion which s in a vertical plane with the line of
greatest slope. It is required to represent graphically
the different values of the sustaining force correspond-
ing to the different directions in which it may be
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applied, and to find in each case the pressure between
the particle and the plane.

Let O be the position of the particle, AOB the line
of greatest slope making the given angle with the
horizontal AC. Suppose the particle is sustained by
a force whose measure is P applied in direction OH.
Let W be the measure of the weight of the particle,
and let it be represented by EF drawn vertically down-
wards W units of length.

i B
: H
K
R P B
9 X W
N
A \ C
W
N \p
F1a. 63. Fia. 63a.

The- only effect of the presence of the inclined plane
is to produce a normal reaction outwards, of such
magnitude as to balance, if possible, the other two
forces acting on the particle. Let R be the measure
of the reaction of the plane, and let OK be the straight
line drawn from O away from the plane, and in a
direction perpendicular to it. Then the two forces P
and W are in equilibrium with a force R, which may
be of any magnitude, but must be in the direction OK.
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Draw FD a straight line of unlimited length from
F in the direction OK. The triangle of forces for the
particle at O will be a triangle FGE, in which G is
some point in FD, and GE is parallel to OH, and of
length P units.

Draw FEL in the direction FD. Then we see that,
as G may have any position in FD, GE may have any
direction between FE and LE. Hence, drawing OM
vertically upwards, and producing KO to N, we see
that the sustaining force may be applied in any direc-
tion between OM and ON. The smallest value of P
is obtained by drawing E'G, perpendicular to #D. Then
G.E is parallel to AB. Hence, if the sustaining force
is to be as small as possible, it must be applied straight
up the plane, and its measure is P;, where G4 E is P,
units of length.

If the direction of the sustaining force be some
given straight line OH between OM and ON, we have
merely to draw EG parallel to HO to meet FD in G.
Then, measuring F'G and GE, we have the measures of
the reaction of the plane, and of the sustaining force
respectively. '

If the measure of the sustaining force be some given
number P greater than P,, we describe a circle with
centre % and radius P, units of length, and this will
cut D in two points, giving two directions for the
sustaining force equally inclined to OB and on opposite
sides of it.

We see from the force diagram, that if the sustaining
force be applied in any direction between OB and OM,
then its value will be less than that of the weight of
the particle.
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59. Ex. 2. A fine straight smooth rod AB is fixed in
a given position inclined to the vertical with the end A
wppermost. A small smooth ring P, of mo appreciable
weight, is capable of sliding on the rod; and a fine
light string having one end fixed at the point C, situated
at a given distance vertically below A, passes through
the ring and supports at its other extremity D a mass
of given weight. Prove that in the position of equi-
librium AC=CP, and show how to find the pressure
between the ring and the rod.

L

K
F16. 65. F1c. 65a.

In the position of equilibrium, the tension of the
string is at every point equal to the given weight of
the mass, the two portions are straight, and the part
PD is vertically downwards; but at present we do not
know the position of P.

Draw HK vertically downwards of such length as to
represent the weight of the mass. With centre H and
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radius HK, describe a circle meeting the straight line
drawn through X perpendicular to 4B in L.

Then HKLH (this way round) is the triangle of
forces for the system consisting of the ring and of the
portion of string in its immediate neighbourhood.

Hence, to find the position of P, we draw CP parallel
to HL to meet AB in P,

As HK, HL are equally inclined to the straight line
LK which is perpendicular to 4B, they are also equally
inclined to AB.

o AC, CP, which are respectively parallel to HK, HL,
are also equally ineclined to AB.

. AC=CP.
Also, measuring KL, we have the pressure between
the rod and the ring.

60. Ex. 3. AB 48 a smooth straight wire fized in a
gwen inclined position with B uppermost. A small
heavy ring of given weight, capable of sliding freely
on the wire, is comnected with B by a fine string of
given length, which passes through a second small smooth
ring of given weight, hanging freely on the string. It
is required to find the tension of the string, and the
pressure between the ring and the wire.

Assume a position of equilibrium BCD. Let W,, W,
be the measures of the weights of the rings, and R the
reaction of the wire, which is perpendicular to AB.
The tension of the string is the same throughout; let
its measure be 7.

Take EF, F@G vertically downwards, of length W, W,
units respectively. Then, if EFK be the triangle of
forces for the point C, K will lie on the straight line
which bisects £F at right angles. Also KFG will be
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the triangle of forces for the point D, so that GK is
perpendicular to A4B.

Hence, having taken the points E, F, ¢, we proceed
to complete the force diagram by drawing GH per-
pendicular to BA, meeting in K the line bisecting EF
at right angles. Then, measuring KE and GK, we
have the tension of the string and the reaction of the
wire.

F1a. 66. Fic. 66a.

To finish the space diagram, we draw BL parallel
to EK, and of such length as to represent the given
length of the string; then we draw LD parallel to GF
to meet AB in D, and DC parallel to KF to meet LB
in €. Thus we have the positions of the rings and
of the string.

61. Ex. 4. A smooth circular hoop is fixed in a
vertical plane. Two small smooth rings of given weight,
each capable of sliding freely on the hoop, are connected
by a fine string of given length less than the diameter of
the hoop. It is required to find the position of equili-
brium in which the string s tight, the tension of the
string, and the pressures between the rings and the hoop.
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Suppose P and @ are the positions® of the rings:in
equilibrium, O the centre of the hoop Take AB, BC.J
to represent W, W, the welghts of*the rings’ 0, P"
respectively. Let R;, R, be the reactions of the hoop
at P and @ respectively. These will be in directions
0P, 0Q respectively, and therefore equally inclined to
the string.

A

W,

W

F1c. 67. Fig. 67a.

The force diagram for the point  will be a triangle
ABEA (this way round), in which BE is parallel to
QP and represents I' the tension of the string, and
EA4 is parallel to OQ and represents R,.

Hence, considering the equilibrium of the ring P, we
see that CE must be parallel to OP and represent I,
Hence EB bisects the angle 4 £C.

Now the magnitude of the angle PO can be found,
as it is subtended by a chord of given, length at the
centre of a given circle. Also the angle CEA4 is the
supplement of this angle. Hence we have the follow-
ing construction for the force diagram: Having drawn
AB, BO, describe through A4, C the circle ADCE such
that the segment ADC contains an angle equal to the
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angls subtende:l by. the string at the centre O of the
hoop.. Find-D the middle point of the arc ADC, and
let DB meet the circumference again in .

To construct the space diagram, we then draw OP
and OQ parallel to CE and EA respectively; then we
have the positions of the rings P and @ in equilibrium.

EXAMPLES VI

1. ADB is a fixed smooth vertical rod on which a small smooth
ring, of mass 3 pounds, is capable of sliding. The ring is supported
by a fine light string, of length 10 inches, attached to a fixed
point O. If O is at a distance of 8 inches from the rod 4B, find
the tension of the string and the pressure between the rod and
the ring.

2. A is the lowest point of a smooth circular wire fixed in a
vertical plane. A small smooth bead, of mass 10 ounces, rests
on the wire at P, being supported by a horizontal force /. Find
the magnitude of # and the pressure of the wire, if the arc AP
subtends an angle of 60° at the centre.

3. A small heavy bead, of mass 20 ounces, is capable of sliding
freely on a smooth fixed vertical circular hoop, of radius 5 inches.
It is supported by a fine light string, of length 9 inches, attaching
it to the highest point of the hoop. Find the tension of the
string and the pressure between the bead and the hoop.

4. ABC is a smooth wire fixed with B4 vertically upwards,
the portions AB, BC being straight, and inclined at an angle
of 120°. A small smooth ring, of mass 2 pounds, rests upon the
wire at P in BC, where BP=BA, and is kept from falling by
a fine string connecting it with the point 4. Find the tension
of the string and the pressure between the ring and the wire.

5. A small ring C rests upon a fixed smooth horizontal rod
ADB, whose length is 13 feet. To the ring are attached two strings,
one of which is 7 feet long and has its other extremity fixed at
A, while the other passes over a smooth hook, situated 8 feet
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below B, and supports a mass of 20 pounds. Find the tension
of the string AC.

6. A small ring of weight W, which can move without friction
on a circular wire fixed in a vertical plane, is in equilibrium at
a point P, on the lower half of the wire, under the action of a
force R in the direction of the tangent at P to the wire. If
the pressure of the ring on the wire is equal to 3 W, find the
magnitude and direction of the force Z.

7. A small heavy ring of mass 10 pounds, which can slide
freely upon a smooth thin rod 4B, is attached to the end 4 of
the rod by a fine string. If the rod is held, with 4 uppermost, in
a position inclined at an angle of 40° to the vertical, find the
tension of the string and the pressure between the rod and the
ring.

8. ¥ind the force necessary to sustain a particle of mass 5
pounds placed on a smooth plane inclined at an angle of 20° to
the horizontal—

(a) when the force is horizontal ;
(b) when it acts along the inclined plane.

9. Find the greatest vertical height through which a force
2 pounds’ weight can raise a particle of mass 6 pounds by drawing
it up a smooth sloping plank 20 feet in length.

10. Find what force, acting horizontally, will support a mass
of 30 pounds resting on a smooth inclined plane, the base of the
plane being three times its height; also find the pressure on
the plane.

11. A small smooth ring 2 rests upon a fixed smooth horizontal
rod 4B of length 14 feet. To the ring are attached two strings,
one of which is 10 feet long and has its other:extremity fixed at
O, situated 8 feet vertically below 4 ; the other passes over a small
smooth hook, situated 6 feet vertically below B, and supports a
mass of 30 pounds. Find the tension of the string PC.

12. 4 and B are the highest and lowest points respectively
of a smooth thin circular wire, of radius 5 inches, fixed in a
vertical plane. A small bead P, weighing 5 ounces, is threaded



104 PARTICLE ON A SMOOTH SURFACE.

on the wire, and is attached to 4 by a fine string of length 8
inches. A second string is attached to the bead and passes over
a small smooth peg at B, supporting at its other extremity another
bead weighing 3 ounces. Find the tension of 4P.

13. A smooth straight rod AB is fixed in a position inclined
at an angle of 60° with the vertical, the end B being uppermost.
A small smooth ring €, of mass 2 pounds, is threaded upon the
wire, and is connected with B by a fine string; a second string
is attached to the ring, and passes over a small smooth peg at
D fixed vertically below A, supporting at its free end a mass of
10 pounds. If AC=A4D, find the tension of the string BC and
the pressure between the ring and the wire.

14. A smooth straight rod AB is fixed in a position making
an angle of 60° with the vertical. A fine light string, one end
of which is attached to A4, the highest point of the rod, passes
through a small smooth ring D, to which a mass of 30 pounds
is attached, and the other end of the string is attached to a small
smooth ring (' capable of sliding freely along the rod. Find
the angle ADC and the tension of the string in the position of
equilibrium, the weights of the rings ¢'and D being inappreciable.
Find also the distance of ¢ from 4 in the position of equilibrium,
given that the length of the string is 6 inches.

15. ACB is a smooth thin wire in the form of a semicircle of
radius 5 feet, and it is fixed in a vertical plane with 4B hori-
zontal and uppermost. A small heavy bead C, of mass 20 ounces,
is threaded on the wire and attached to 4 by means of a fine light
string, of length 6 feet. Find the tension of the string and the
pressure between the bead and the wire.

16. ACB is a smooth thin wire in the form of a semicircle,
and it is fixed in a vertical plane with AB horizontal and the
curve uppermost. A small smooth bead C, of mass 3 ounces, is
threaded on the wire, and is attached to 4 by means of a fine
light string equal in length to the radius. Another fine string
is attached to the bead and passes through a smooth hook fixed
at B, supporting at its other end a mass of 12 ounces. Find the
tension of the string AC.
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17. A small ring P, of no appreciable W‘Eight, is capable of
sliding freely on a smooth straight piece of stiff wire 4B, fixed
in a position inclined 40° to the horizontal with 4 uppermost.
To a fixed point 0, situated 1 foot vertically below 4, is attached
a fine light string which passes through the ring and supports
at its free extremity a mass of 5 pounds. Find the length of
OP in the position of equilibrium, and the pressure between the
ring and the wire.

18. ABC is a smooth fixed wire, the portions 4B, BC being
straight, and B situated at a higher level than 4 and C. A
small smooth ring of given weight, capable of sliding freely on
AD, is connected by a fine light string of given length with a
small smooth ring of given weight, capable of sliding freely on
BC. Show how to obtain the position of equilibrium, the tension
of the string, and the pressures between the wire and the rings.

19. Show that the weight of the greatest mass, which a given
force can sustain on a smooth inclined plane of given height, is
proportional to the length of the plane.

20. Two smooth inclined planes, of equal height, are placed
back to back. Two particles, one on each plane, are connected
by a fine light string which passes over the common vertex of
the planes. Prove that, if the system is in equilibrium, the
weights of the particles are proportional to the lengths of the
planes on which they respectively rest.
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must be in a direction intermediate between PH and
PK. 1If it has either of these two limiting directions,
the particle is just on the point of slipping.

63. Equilibrium of a Heavy Particle on a Rough
Inclined Plane.

A particle of given weight is placed on a rough plane,
inclined at @ given angle to the horizon, and is sustained
by some force applied to it in some direction which is
in a vertical plane with the line of greatest slope. The
angle of friction between the particle and the plane
being given, it is required to consider the conditions
of equilibrium.

F1e. 70. F1e. 70a.

Let O be the position of the particle, AOB the line
of greatest slope making the given angle with the
horizontal AC. Suppose the particle is sustained by
a force, whose measure is P, applied in direction OL.
Let W be the measure of the weight of the particle
and let it be represented by EF drawn vertically down
wards W units of length.
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Let ON be the straight line drawn from O away from
the plane and in a direction perpendicular to it. Make
angle NOH =angle NOK =angle of friction=2; so that
OH, OK are within the angles BON, AON respectively.
Then the resistance of the plane must be in some direc-
tion intermediate between OH and OK, and may be of
any magnitude.

Draw FS, FT, straight lines of unlimited length, from #
in the directions of OH, OK respectively. The triangle
of forces for the particle at O will be a triangle FGE,
in which G is some point within the angle SFT, and
GE is parallel to OL and of length P units. If G lies
in the line FS, the particle is only just prevented from
slipping down the plane, if in the line #7) it is on the
point of slipping up the plane.

If the direction of the sustaining force be some given
straight line OL, we draw KEG,G, parallel to LO to
meet FS and FT in G, and G, respectively. Measure
GLE, G, ; let them be respectively P, P, units of
length. Then, for equilibrium, P must lie between P,
and P,

Draw Eg,, Eg, perpendiculars to FS, F'T respectively.
Then ¢,F represents in magnitude and direction the
smallest force that can prevent the particle from slipping
down the plane, and g¢,£ represents the smallest force
necessary to drag the particle wp the plane. Now
OH, OK make angles A with the normal to the plane,
therefore g, &, g,/, which are perpendicular respectively
to OH, OK, must make angles A with the plane itself.
Thus, to prevent the particle from slipping down the
plane, the end is achieved with the least exertion by
applying the force in a direction making the angle of
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however great, applied between the directions OH’ and
OK’ can drag the body up the plane.

64. Throughout the above piece of work we have taken
the inclination of the plane as greater than the angle
of friction. The consideration of the case in which the
inclination of the plane is less than the angle of friction
is left as an exercise for the student. He will see that,
in this case, £ lies within the angle TFS, and equilibrium
is possible for all directions of P. It will be seen that
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Fic. 74. F1a. 74a.

no foree applied between the directions OH’ and OK’ can
move the particle. To move it up the plane, the force
must be applied between the directions OK’ and OM;
to move it down, between the directions OH’ and OM.

>/ £,

Fic. 75. F1c. 76.

Also the left-hand figure shows the easiest way of
moving the particle down the plane; the right-hand
figure the easiest way of moving it up.
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As E lies within the angle T'FS, the particle will rest
in equilibrium if P vanishes; then the total resistance
of the plane is represented by FE, i.e. the resistance
is equal and opposite to the weight of the particle.

If the inclination of the plane is equal to the angle
of friection, FS coincides with FZ. In this case, if P
vanishes, the particle is just on the point of "slipping
down the plane.

Conversely, if the particle is just on the point of
slipping down the plane under the action of its weight
and the resistance of the plane only, the angle of in-
clination of the plane to the horizon is equal to the
angle of friction. This gives a method for determining
the angle of friction experimentally.

65. It is required to find at what point, or points,
of a given rough curve, fixed in a vertical plane, a
particle of given weight may rest in limiting equilibrium
bemg supported by a gwen force applied to it in a
given direction.

Fi1c. 77.

Draw AB, BC to represent in magnitude and direc-
tion the given sustaining force and the weight of the
particle respectively. Then CA must represent the
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particle from slipping down, find the force acting in
the same direction, which will cause the particle to be
on the point of moving wp the plane.

Draw EF vertically downwards 16 units of length
to represent the weight of the particle. Draw EA so
that the angle FEA is 60°; then AZ is parallel to the
line of greatest slope on the inclined plane. Take S
in AF so that SE is of length 2 units, and join FS.
Draw FN perpendicular to AZ. Then angle NFS is
- the angle of friction. Make angle NFT equal to angle
NFS, and let F1I' meet £A in T. Then TE represents
the force required.

We find that 7K is 14 units of length; therefore the
force required is the weight of 14 ounces.

67. Ex. 2. 4 particle A, of given weight, is placed
upon a given rough inclined plane AD. It is required
to determine at what different points of the plane it can
be supported by a fine light string ABC, of wnlimited
length, which passes over a small smooth peg B, situated
in a given position, and supports at its other extremity
another particle C of given weight. The plane of BAD
18 vertical, and the line AD a line of greatest slope of
the imclined plane.

The triangle of forces for the particle 4 will be
OHPO (this way round), in which OH is vertically
downwards and represents the weight of the particle
A, PO is parallel to 4B, and represents the weight of
the particle C, and HP represents the total resistance
of the plane.

Having drawn OH, the point P lies on the circumfer-
ence of a circle having its centre at O, and its radius of

such length as to represent the weight of the particle C.
D.S. H
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In the case considered in the accompanying diagram,
the only portions of the circumference of the circle
contained within the triangle SHT are the arcs kl, mn.
Draw BL, BM, BN parallel to Ol, Om, On respectively,
to meet AD in L, M, N respectively. Then equilibrium
is possible if 4 lies anywhere between M and N, or -
anywhere below L.

The student will have no difficulty in interpreting
any other case which may occur.

68. Ex. 3. Two equal heavy particles, on two equally
rough inclined planes of the same height placed back
to back, are connected by a fine light string which
passes over the smooth top edge of the planes; show
that, if the particles are on the point of moving, the
difference of the inclination of the planes is double the
angle of friction.

F1c. 80. F1c. 80a.

Let P and @ be the particles, each of weight W, rest-
ing on the planes HJ, JK respectively, and just on the
point of slipping in the direction HJK. Let 7' be the
measure of the tension of the string.

Take AB vertically downwards to represent W, and
let BM, BN, parallel to HJ, KJ respectively, be each
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of length T units. Then MA and NA represent the re-
sistances of the planes at P and @ respectively. Hence
NA must be inclined to the normal at ¢ at an angle A
measured upwards from the outward normal, and M4
must make angle A with the normal at P measured
downwards, A being the angle of friction.

Draw MO, NO perpendiculars to BM, BN respectively.
Then the angles OMA, ONA each equal A. Hence the
circle on OB as diameter passes through M, N, A.

Since BM = BN, the arc BM=arc BN,

arc MO=arc NO.
arc MA —arc NA =twice arc A0.
angle A BM —angle ABN =2},

i.e., the difference of the inclination of the planes to
" the vertical =2,

EXAMPLES VII

1. A particle, of mass 10 ounces, rests on a rough lkorizontal
plane, the angle of friction between the particle and the plane
being 25°. Find

(i.) the least horizontal force which will move the particle,
and determine the total resistance when this force is
applied ;

(ii.) the least force which, acting in an upward direction at an

angle of 15° with the horizontal, will move the particle,
and determine the total resistance ;

(iii.) the magnitude and direction of the total resistance, when
a force of 4 ounces’ weight is applied in an upward
direction making an angle of 20° with the horizontal ;

(iv.) the magnitude and direction of the least force necessary
to move the particle.
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2. A particle, of mass 10 ounces, rests on a rough plane inclined
at an angle of 35° to the wvertical, the angle of friction between
the particle and the plane being 25°. Find

(i.) the least horizontal force which will move the particle
up the plane;

(ii.) the least horizontal force which will prevent the particle

from slipping down the plane ;

(iii.) the magnitude and direction of the least force necessary

to move the particle up the plane;

(iv.) the magnitude and direction of the least force necessary

to prevent the particle from slipping down the plane.

3. A particle, of mass 10 ounces, rests on a rough plane inclined
at an angle of 15° to the horizontal, the angle of friction between
the particle and the plane being 25°. Find

(i) the least force which will produce motion when acting
up the plane ;

(ii.) the least force which will produce motion when acting
down the plane ;

(iii.) the magnitude and direction of the least force necessary
to move the particle up the plane;

(iv.) the magnitude and direction of the least force necessary
to move the particle down the plane.

4. A particle, of mass 19 ounces, is placed on a rough plane
of height 5 feet and length 13 feet, the coeflicient of friction
being 4; find the magnitude of the horizontal force which will
just suffice to push the particle up the plane.

What is the magnitude of the horizontal force which will just
suffice to drag the particle down ?

5. A particle, of mass 3 pounds, is just supported on a rough
inclined plane, whose height is three-fifths of”its length, being
acted upon by no forces other than its weight and the resistance
of the plane. Find the coefficient of friction between the particle
and the plane, and determine the magnitude of the force which,
acting parallel to the plane, will be just on the point of moving
the particle up the plane. Find also the magnitude and direction
of the least force necessary to move the particle up the plane,
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6. 4 is the lowest point of a rough circular hoop fixed in a
vertical plane. A small ring, of mass 2 pounds, is threaded on
the hoop at P, where the arc 4P subtends 50° at the centre of
the hoop. Find the magnitude of the smallest horizontal force
which will support the ring, the angle of friction between the
ring aud the hoop being 20°.

7. A particle, of weight W, is sustained in limiting equilibrium
on a rough circular hoop, fixed in a vertical plane, by a force
W acting at an angle of 60° with the vertical and upwards. The
angle of friction between the particle and the hoop being 20°,
find the positions of limiting equilibrium.

8. A ring P, of inappreciable weight, is capable of sliding on
a rough straight piece of wire A4CB, which is fixed in a position
inclined at an angle of 65° to the vertical. A fine light string
has one extremity attached to the ring P, passes through a
small smooth ring D, fixed at a distance of 10 inches vertically
below O, and supports at its free end a mass of weight W. If
the coefficient of friction between the ring and the wire is 2, show
that there is a portion of wire, of length about 7} inches, at
any point of which the ring can rest in equilibrium, and that
beyond either end of this portion equilibrium is impossible.

9. A body is placed on a rough inclined plane. Prove that
the force which must be applied to it in a fixed direction, in
order to just prevent it from slipping down, is the same as if
the plane were made smooth and its inclination to the horizon
were decreased by the angle of friction.

10. A heavy body is supported on a rough plane inclined at
an augle 2\ to the wvertical, A being the angle of friction. It is
just on the point of moving up the plane when acted upon by
a force parallel to the plane. Show that the applied force must
be equal to the weight of the body.

11. A particle is supported on a rough inclined plane by a
force equal to the weight of the particle. Show that the force
must be applied in some direction within a fixed angle equal to
four times the angle of friction.
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12. A particle, placed on a rough inclined plane, is on the
point of slipping down the plane, being acted upon by no force
other than its weight and the resistance of the plane. Show
that the least force which, acting parallel to the plane, will move
it up the plane, is twice as great as the force which would support
it, if the plane were smooth. Prove also, that the total resistance
of the plane, in the first case, is equal to the weight of the particle.

13. A particle, of weight 1V, is supported on a rough inclined
plane by a force acting up the plane. It is on the point of moving
up the plane when the force has the value P, and of moving douwn
the plane when the force has the value P, Show that a force
(P + P,), acting up the plane, would support the same particle
on a smooth plane of the same inclination.

14. A heavy particle is placed on a rough /Zorizontal plane,
the angle of friction between the particle and the plane being A.
‘When the particle is on the point of moving, under the influence
of a horizontal force, the total resistance of the plane is of magni-
tude R. Show that the force, which, applied at an angle 3\ with
the downward vertical, is just sufficient to move the particle, is
of magnitude 2.

15. Show how to determine all possible positions of equili-
brium of a heavy bead on a rough circular wire, which is fixed
in a vertical plane.

16. A small bead, of no appreciable weight, is capable of moving
on a circular wire, fixed in a vertical plane. A fine light string,
attached at one extremity to the bead, passes over a small smooth
peg, situated at a point on the wire, and supports at its other
extremity a heavy body. Show that the bead can rest in equili-
brium at any point of a particular arc, which subtends, at the
centre of the wire, an angle equal to four times the angle of
friction.

17. The triangle ABC, right-angled at C, is the vertical section
o a rough inclined plane. When the plane is placed with 4C
horizontal and BC vertical, a certain force of unknown magnitude
X, acting parallel to the plane, can just move a mass of given
weight W, up the plane; when the plane is placed with B¢ hori-



120 PARTICLE ON A ROUGH SURFACE.

zontal and AC vertical, the same force X, acting parallel to the
plane, can just prevent a mass of given weight W, from moving
down the plane. Prove the following construction for determining
the angle of friction, which is the same for both masses, and
the value of X :

Take LH and LK at right angles, to represent W, and W,
respectively, and make angle ALM equal to the angle BAC, so
that LM meets HK in M. Draw LN perpendicular to ZK. Then
LM represents X, and MLLY is the angle of friction.

18. Prove the following particular cases of the preceding
example :

(i) If W, :W,=A4C : BC, the plane is smooth.

(ii.) If W, : W,=DBC: AC, the total resistance of the plane, in
both positions, and the force X have the same magnitude;
also, half of the angle of friction is equal to the difference
between 45° and the angle BAC.

(iii.) If AC=BC, then, in turning the plane round, the total
resistance is changed in the ratio W : W,

(1v) If W;, Wyand X are all known, while the inclination of the
plane and the coefficient of friction are to be determined,
there may be two planes of different inclinations, but
of the same coefficient of friction, satisfying the given
conditions.

19. The triangle 4 BC, right-angled at C, is the vertical section
of a rough inclined plane. When the plane is placed with AC
horizontal and BC vertical, a given force P, acting parallel to
the plane, can just move a mass of unknown weight IV up the
plane; when the plane is placed with BC horizontal and AC
vertical, another given force @, acting parallel to the plane, can
just prevent the same mass from slipping down the plane.
Prove the following construction for determining the weight
of the mass and the angle of friction between the mass and the
plane :

Draw LH and LK at right angles, to represent P and ¢ respec-
tively, and make angle AL} equal to the angle BAC, so that
LM meets the circle LK in }. Draw the diameter LV of this






CHAPTER VIIL

TWO FORCES WHOSE LINES OF ACTION DO NOT
INTERSECT AT AN ACCESSIBLE POINT.

69. To find the resultant of two given forces, when
the poimt of intersection of their lines of action is
wnaccessible.
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Let two forces, whose measures are P and @, act along
two given lines. Draw AB of length P units in the
direction of the force P, and BC of length @ units in
the direction of the force . Then AC represents the
resultant in magnitude and direction. If AC is found
to contain R units of length, R is the measure of the
resultant. We have to find its line of action.
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Take any two points, M and N, in the lines of action
of P and @ respectively. Draw BO parallel to MN,and,
taking any point O in BO, join 4, O and C, 0. Draw
ML and NL parallel to A0 and OC respectively, to meet
in L. Then we shall show that L is a point in the
line of action of the resultant.

The force P can be replaced by two forces represented
by A0, OB acting in the lines ML, NM respectively;
and the force @ can be replaced by two forces re-
presented by BO, OC acting in the lines MN, NL
respectively. Let P and ¢ be replaced by these pairs
of components. Then the two forces represented by
OB and BO acting in the line MN balance one another,
having no effect on the body as a whole, and may
therefore be removed.

Hence the two given forces have the same resultant
as forces represented by 40, OC acting in the lines
ML, NL respectively.

Hence a straight line drawn through L parallel to
AC is the line of action of the resultant, and the measure
of the resultant is R.

The correspondence between the two figures will be
made clearer if we use the notation suggested in Art. 4.
The two forces P and @ are represented by 4B and BC
respectively ; we therefore denote their lines of action
by ab and be respectively, placing one of the small letters
on each side of the line indicated. The straight line MX,
‘connecting a point in ab with a point in be, is denoted
by ob, and the line OB of the force diagram is parallel
to it. Through the intersection of ab and bo is drawn
ao parallel to A0, and through the intersection of be
and bo is drawn oc parallel to OC. The intersection of
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oc and ao gives us a point in ac¢, which is the line of
action of the resultant represented by AC.

The above method is, of course, applicable to the case
in which the lines bec and ab intersect at an accessible
point. We know that the line of action of the resultant
passes through that point. It can be proved geometri-
cally that the line ac passes through the point of inter-
section of ab and be.

70. Parallel Forces.

The construction for the resultant of two parallel
forces is a particular case of the above.

Case I. Let the two forces P and  be parallel and
in the same direction. Making the construction of the
preceding article, we see that the resultant is equal to
the sum of the forces, and is in the same direction

4

Fic. 82. F1c. 82a.

as each of its components. Also, if the line of action
of the resultant meets MN in K, we have
MK MK KL OB BC BC Q@
KN~ KL KN BA' OB BA™ P
.. the point K divides MN internally in the inverse
ratio of P to Q. If we make use of this result, we can






126 RESULTANT OF TWO FORCES.

Also, if the line of action of the resultant meets NM
produced in X, we have

MK MK KL OB BC BC_Q
KN KL KN BA OB BA P

. the point K divides MNV eocternally in the inverse
ratlo of P to Q.

We see that the above construetion fails if I’ is equal
and opposite to @ In that case C' coincides with 4,
and the straight lines o, oc become parallel, so that
there is no point L at a finite distance. Two equal
parallel forces acting in opposite directions therefore
have no resultant; they are said to form a couple.

The result obtained above gives the same simplified
construction for finding the resultant of two parallel
forces in opposite directions as for finding the resultant
of two parallel forces in the same direction. The figure
is shown below :

Fi1c. 85.

T1. To resolve a given force into two others passing
through two given poimts.

Let the given force be represented by AB, and let
its line of action be marked ab. Let H and K be the
given points.
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From I and K draw straight lines oa, ob respectively,
to meet at any point chosen on ab; draw 40, BO
parallel to ao, bo respectively, to meet in 0. Join H, K,
and let the straight line so drawn be called ox. Draw
OX parallel to oz, and in OX take any point X.

Fic. 86. F1c. 86a.

Then AX and XB represent components of the given
force acting through the points H and K respectively.
As X may be taken anywhere in the line through O
drawn parallel to HK, the problem is indeterminate.

If the two components are required to be parallel,
we take X in AB; if equal, we take X in the straight
line which bisects AB at right angles. In the former
case the lines of action of the components are each
parallel to ab.

72. To resolve a given force into twe others acting
along two given straight lines each parallel to the line
of action of the given force.

This is a particular case of the preceding article,
and can be solved in the manner there indicated. We
choose the points H, K anywhere in the lines of action
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of the required components respectively, and resolve
the given force into two parallel forces acting through
the points H, K.

Or we may proceed thus:

Fie. 87.

Let the given force be represented by AB, and let
its line of action be marked ab. Of the lines of action
of the required components mark one ax, the other ab.
Draw two parallel lines through A4, B to meet bz, ax
in 4’, B respectively. Let A’B’ meet ab in X', and
draw X’X parallel to 4’A to meet AB in X. Then,
clearly, AX:XB=A'X": X'B’, and therefore AX and
XB represent the components required along axz and
xb respectively.

We have drawn the figures for the case in which
the given force lies between the lines of action of its
components. The method is, however, quite general.

We might dispense with the force diagram altogether,
and proceed as follows:

Draw any straight line A’X’B’ meeting the lines
bx, ab, za in the points A’, X', B’ respectively.

Measure A’X" and X'B’, and divide the given force into
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two parts in the ratio 4’X’: X'B. The first part is
the component along ax, the other that along xb.

73. Ex. 1. Forces of 24 and 10 pounds’ weight act
along the straight lines MH and NK respectively ; the
angles HMN and MNK are 90° and 100° respectively,
and the points H, K are on the same side of MN,
which is 10 inches long. Find the magnitude and
direction of the resultant of the forces, and determine
the point where its line of action cuts MN. Find
also the resultant when the force of 10 pounds’ weight
8 reversed in direction.

Draw AB, BC in the directions of MH, NK respec-
tively, and of lengths 24 and 10 units respectively.
In the straight line drawn through B parallel to MN
take any point O. Draw ML, NL parallel to 40, OC
respectively, to meet in L. Let the straight line drawn
through L parallel to AC meet MN in X. Then XL
is the line of action of the resultant, which is repre-
sented by AC.

On measurement, we find that 4AC is 839 units of
length, and that the angle MXLZL is 93°. Hence the
resultant is 339 pounds weight, and makes an angle of
93° with NM. Also MX is found to be 2'9 units of
length ; therefore the resultant acts through a point X
in MN distant 29 inches from M.

Produce CB to (', making BC'=CB. Then, if the
force of 10 pounds’ weight be reversed, it will be repre-
sented by BC. Draw NL’ parallel to OC" to meet LM
produced in I/, and L'X’ parallel to AC’ to meet NM
produced in X. Then L’X’ is the line of action of the
resultant, which is represented by AC"

On measurement, we find that the resultant is now
D.S. I
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143 pounds’ weight in a direction 96° with MN, and
that it acts through a point X’ in NM produced, distant
69 inches from M.

74. Ex. 2. If from any point, in the line of action of
the resultamt of two forces, perpendiculars be drawn
upon the lines of action of those forces, the lengths of
the perpendiculars are imversely proportional to the
magnitudes of the forces.

In Art. 69 the position of the point O is arbitrary.
Let O be taken at the other extremity of the diameter
through B to the circle described passing through
4, B, €. Then OA, OC are perpendicular to BA, BC
respectively ; therefore LM, LN are the perpendiculars
from L upon the lines of action of the forces P and
Q respectively.

Fic. 89. F1c. 89a.

Now angle NML=angle AOB=angle ACB,
and angle MNL=angle COB=angle CAB.
the triangle MNL is similar to the triangle CAB.
LM:LN=BC:BA=Q:P.
Now L is a point in the line of action of the resultant;
also MN may be taken in any position, provided only
that it is parallel to BO; therefore, as MN moves,
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remaining parallel to BO, the point L traces out the
line of action of the resultant.

Therefore, from any point on the line of action of
the resultant, the perpendiculars let fall upon the lines
of action of P and @ are proportional to ¢ and P
respectively.

EXAMPLES VIIL

1. Two parallel forces 57 and 7P act at points 4 and B
respectively. Find the magnitude, direction, and position of
their resultant (i.) when the forces are like, and (ii.) when unlike.

2. Two parallel forces, of 20 and 25 pounds’ weight and of

opposite senses, act on a rigid body, the perpendicular distance
between their lines of action being 4 inches ; find their resultant.

3. ABCD is a square, and X is taken in 4D so that AE=}4D.
Find the magnitude and line of action of the resultant of two
forces, one of which is 20 pounds’ weight acting at £ in direction
EB, and the other is 15 pounds’ weight acting at 2D in direction
DC.

4. Assuming the magnitude, direction, and position of the
resultant of two like parallel forces, deduce the magnitude, direc-
tion, and position of the resultant of two wunlike parallel forces.

5. Show how to find the magnitude of a force acting along a
given line, in order that the resultant of this force, and a second
force given in magnitude, direction, and position, may pass through
a given point.

6. Show how to resolve a given force into two others, one of
which is along a given line of action, and the other of which
passes through a given point.

7. If, in the figure of Art. 69, the lines ac, ob intersect in K
and AC, OB in X, then MK : KN=0CX : XA4.

8. Two forces, whose magnitudes are in a given ratio, act at
points 4 and B respectively of a rigid body. Prove that, what-
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acts through the point of intersection of bc and ca.
Let P and @ be replaced by this resultant. Then we
have two forces keeping a rigid body in equilibrium.
These two forces must be equal and act in opposite
directions along the same straight line. Therefore AB
is the direction of R and of length R units, and ab,
the line of action of R, must pass through the point
of intersection of bc and ca. This point will be called
the point abe.

Hence, if three forces acting in one plane upon a
rigid body keep it in equilibrium, their lines of action
must be concurrent, and the force diagram is a triangle
whose sides represent the forces taken one way round.

76. Second method.
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' Fie. 91. F1c. 9 a.

As before, let BC, 04 be drawn to represent P and
Q in direction and magnitude, and join AB. Take
any point O in the force diagram, and connect it with
the points 4, B, C.

From a point in the line bc draw straight lines ob,
oc parallel to OB, OC respectively. From the point of
intersection of oc and ac draw oa parallel to OA.
We shall show that the lines oa, ob, ab are concurrent.
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Let a, 8, y be the measures of 04, OB, OC respec-
tively. Then the force P may be replaced by two forces
B and y acting along the lines bo, oc in the directions
BO, OC respectively. Also the force ¢ may be replaced
by two forces y and o acting along the lines co, oa
in the directions CO, OA respectively. Let the two
forces P and @ be replaced by these pairs of components.

Then the two forces vy, acting in opposite directions
along the line oc, balance one another, and may therefore
be removed. We are now left with three forces f3, a,
R in equilibrium. The first two of these are repre-
sented by BO, 04, and act along the lines bo, oa
respectively. Hence, by the first method above, AB
must represent R in magnitude and direction, and the
three lines ob, oa, ab must be concurrent.

The student should carefully notice the correspon-
dence in the two figures. The straight line in the
force diagram from O to the point of intersection of
the lines which represent P and @, is parallel to the
straight line in the space diagram which connects points
in the lines of action of P and @, and similarly for
other pairs of forces. The two dotted lines which
intersect on the line of action of one of the forces P,
are parallel to the lines from O to the extremities of
the line which represents P in the force diagram.

77. The first of the above two methods is the funda-
mental method, and we have quoted it in dealing with
the second, but it ceases to be of practical use when
the point abc is inaccessible. The second is a more
general method, and is always applicable, as the point
O may be taken anywhere in the diagram, so that no
two lines need intersect at very acute angles.
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Instead of choosing the point O before drawing the
dotted lines in both figures, we may choose any three
points, one on the line of action of each of the three
forces, and thus draw the triangle whose sides are
oa, ob, oc. Then the straight lines through 4, B, C
parallel to oa, ob, oc respectively must be concurrent.
For, take O to be the point of intersection of the
straight lines drawn through B and C parallel to ob,
oc respectively. Then, by the preceding bit of work,
the straight line drawn through the intersection of
oc and «ac, parallel to AO, must pass through the
intersection of ob and ab. That is, ao is parallel to
AO.

The triangle whose sides are oa, ob, oc can always
be chosen so that the lines cut at convenient angles,
and thus we. have a method applicable to all cases.

78. Third method.

The following method is a particular case of the
preceding method, the point O being taken in BC, but
it is of sufficient practical importance to be treated
separately :

As before, let BC be drawn to represent the force P,
and let the lines of action of P, @, R be marked be, ca, ab
respectively.

Resolve the force P into two parallel forces B and y
represented by BO, OC respectively, acting along two
lines bo, oc respectively; so that O is a point in BC,
and bo, oc are both parallel to be.

Let the lines oc, ca intersect at K, and the lines bo, ab
at L, and let KL be marked ao.

Replacing the force P by its components 3 and y, we
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see that o and @ acting at K must balance 8 and R
acting at L. Therefore the resultant of the first pair
and the resultant of the second pair must be equal and
act in opposite directions along the same straight line ao.
Hence, if ¢4 represents @, then OA, which represents
the resultant of 5 and (), must be parallel to oa.
Also AO must represent the resultant of R and g,
and therefore, as BO represents 3, AB must repre-
gent I,

Fic. 92. Fic. 92a.

Thus, for equilibrium, it is necessary and sufficient
that the straight lines through B, O, C parallel to ba,
oa, ca respectively should meet at a point 4, and that
C4 and AB should represent ¢ and R respectively.

The student should notice that O divides BC in the
same ratio that the line be divides KL. The method
becomes practically useful when the points K and
L are given, and when the position of the line
be is known relatively to K and L. The point O can
then be quickly determined, and the force diagram
completed.
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79. Parallel Forces.

The equilibrium of three parallel forces is a particular
case of the above, the second method alone being appli-
cable.

F1e. 92

Here the points A, B, €' are collinear.

Otherwise—We may proceed as follows: Let two
parallel forces acting along the lines ab, be be in equi-
librium with a third force acting along the line ca.
Take AB, BC to represent the two forces acting along
ab, be respectively. Draw any straight line 44’ to
meet be in 4’, and let the straight line through €' drawn
parallel to AA" meet ab in C’. Draw BB’ parallel to
AA’ to meet A’C" in B’. Then, by Art. 70, B’ is a point.
in the line of action of the resultant of the two forces
which act along ab, be, and this resultant is represented
by AC. Hence the system is equivalent to two forces
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in equilibrium—the one represented by AC and acting
through B’, the other acting along ca. These must be
equal and in opposite directions along the same straight

D ] T B LT e pp—— C

Fic, 94.

line, Hence B’ must be a point in c«, and the force
which acts along ca is represented by CA.

80. A known force, whose measure is P, acts in a
given direction along a given straight line be; a force
of unknown measure X acts along o given straight line
ca; and a third force of unknown measure Y acts in
an unknown direction through a given point H. It is
required to find the values of X and Y and the dirvection
of Y, in order that the three may be in equilibrium.

First method.

Join H to the point of intersection of bc and ca, and
let the straight line thus drawn be called ab. Then
ab is the line of action of Y.

Draw BC in the direction of P and of length P units,
and through B and C let straight lines be drawn parallel
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does not determine the position of A, as we do not
know X. Draw any straight line oc intersecting the
lines be, ca. Let the straight line connecting H with
the intersection of be and co be drawn and called ob, and
let the straight line connecting H with the intersection
of ca and co be drawn and called oa. Through B and
C draw straight lines parallel to bo and co respectively,
meeting in O, and through O draw 04 parallel to oa
to meet A in A. This determines the point A. Then,
joining AB, and measuring 04 and AB, we have X
and Y respectively. Also, the line of action of Y is
the straight line ab drawn through H parallel to AL.

Third Method.
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Draw BC in the direction of P, and of length P
units, and from C draw CA parallel to the line ca,
the point A being at present unknown.

Let a straight line ao, passing through H, meet the
lines be, ca in J and K respectively; and through H
and K draw straight lines ob, oc respectively, each
parallel to be. Find a point O in BC such that BO,
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OC represent components of P acting in the lines ob,
oc respectively. This point O will divide BC similarly
to the way in which J divides KH, and the method
is practically useful when the relative positions of the
points J, H, K are known.

Through O draw OA parallel to oax to meet C4 in
A. Then, joining AB, and measuring CA and AB, we
have X and Y respectively. Also, the line of action
of Y is the straight line ab drawn through H parallel
to AB.

81. Equilibrium of Four Forces, two of which are
fully known.

The methods of this chapter may be applied to the
consideration of the equilibrium of four forces, two of
which are fully known. We may replace the two known
forces by their resultant, thus reducing the number of
forees to three, one of which is fully known.

82. Centre of Gravity. In the examples which here
follow, it is assumed that the resultant of the weights
of the constituent elements of a body (or of any
material system in which the parts retain the same posi-
tion with regard to one another) acts along a vertical
line, which always passes through a special point of the
body called its centre of gravity, this point retaining
the same position with regard to the different parts of
the body, in whatever position the body is placed; also,
that the centre of gravity of a body of uniform density
and symmetrical shape, is in the position of the centre
of symmetry.

83. Smooth Hinge. A body is said to be capabdle of
turning freely about a fixed point O, or to be smoothly
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hinged to a fixed point O, when the point O of the body
is compelled to remain in the position of the point O in
space, the constraint being a force acting through O of
the nature of a direct push or pull. Such a force is
self-adjusting, and accommodates itself to prevent the
point O of the body from getting away from the point
O of space, if possible. It is of any magnitude, and acts
in any direction necessary to preserve equilibrium, but
must act through the point O.

84. Ex. 1. A thin uniform rod AB, of length 10 feet
and weighing 12 pounds, is capable of turning freely
about a smooth hinge at A. It is supported by a fine
light string, of length 10 feet, connecting B with a point
C, situated 16 feet from A in a horizontal line. Find
the tension of the string and the action at the hinge.
4

12

Fi1a.

Having constructed the space diagram to scale accord-
ing to the data, draw the straight line Ak vertically
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downwards through the middle point of AB, and a
straight line HK, 12 units of length, vertically down-
wards to represent the weight of the rod. Mark the
line BC with the letters kI, and
draw the straight line [k from
A to the point of intersection
of hk and Xl

Through H and K draw
straight lines parallel to 2l and
kl respectively, meeting in L.
Then KL represents the tension
of the string, and the action of
the hinge upon the rod is re-
presented by LH, and aects in
the line [h.

We find that KL=5 umts
and LH =985 units. Hence
the tension of the string is
5 pounds’ weight, and the
reaction at the hinge is
985 pounds’ weight, and is
found to make an angle of 66° &
with AC.

Otherwise.—Instead of drawing the line [k, draw
through 4 and B respectively straight lines oh and ok,
each parallel to k. Bisect HK in 0. Then the weight
of the rod is equivalent to forces represented by HO,
OK acting along the lines ho, ok respectively.

Let AB be marked ol, and draw OL parallel to ol to
meet in L the straight line drawn through XK parallel
to kl. Then, measuring KL, we have the tension of the

string, and the straight line LH gives the magnitude
D.S. K

H,

Fi6. 98a.
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practical use of the third method described in Art. 80.
This the student should work out for himself.

Otherwise.—Through the middle point of 4B draw
the straight line hk vertically downwards, and draw a
straight line HK vertically downwards, and of length
12 units, to represent the weight of the rod.

Mark the straight line BC with the letters ki, and
draw KL parallel to ki, the position of the point L
being at present unknown.

Mark AC with the letters ol, and through 4 and ¢
draw straight lines ok and ok respectively, to meet at
some point on the line Ak.

Let the straight lines through H and K parallel to
ho and ko respectively meet in O. Draw OL parallel
to ol to meet KL in L.

Then K I represents the tension of the string, and LH
represents the action of the hinge upon the rod at 4.

We tind that KL =306 units and LH =902 units; also
the angle LHK is found to be 4°. Hence the tension
of the string is 3:06 pounds’ weight, and the action at
the hinge is 902 pounds’ weight in a direction inclined
at an angle of 86° to the horizontal.

86. Ex. 3. Two thin straight rods AFB, CFD, of
given lengths, are freely jointed together at F, the
lengths BF, DF being given ; and the whole is laid on
a smooth horizontal table. If A and C are connected
by a fine string of given length, and B and D are
pulled apart by given forces P, P in the straight line
BD, required to find the tension of the string.

The data are sufficient to enable us to construct the
space diagram. Let T' be the measure of the tension
of the string.



148 EQUILIBRIUM OF THREE FORCES

Consider the forces acting on the rod AFB alone.
It is kept in equilibrium by a given force P acting
along DB, a force T' of unknown magnitude along AC,
and the reaction R of the hinge at F of unknown
magnitude and in an unknown direction. Also B, C, ¥
are points in the lines of action of these three forces
respectively.

Fic. 100. Fic. 100 a.

Hence, to construct the force diagram, with any suit-
able scale we draw LM of length P units in the direction
DB, and MN of unlimited length in direction AC, so
that the point IV is not yet determined. We now mark
the lines DB, AC with the letters /m, mn respectively.
The line of action of R, at present unknown, but passing
through ¥, will be called nl. Hence, also, the lines F'B,
BC, CF we now mark ol, om, on respectively.

Through L and M draw LO, MO parallel to lo, mo re-
spectively. This gives us the point 0. Draw ON parallel
to on, to meet MN in NV; then, joining NL, we complete
the force diagram. LMNL (this way round) is the
triangle of forces for the rod AB. Measuring MN, we
have the tension of the string.
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87. Ex. 4. A thin rod, of no appreciable weight, is
loaded at some point with « mass of given weight,
and is supported horizontally wpon two smooth pegs
in given positions. It is required to determine the
pressures between the rod and the pegs for different
positions of the load.
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Let HK represent the rod, resting upon the pegs at
L and M, and loaded at NV with a mass of weight W.
Let P and @ be the measures of the pressures of the
vegs at L and M respectively upon the rod. These must
be vertical, and are at present of unknown magnitude.

Let the verticals through L, M, N be called be, ca, ab
respectively. Then the force diagram will be a straight
line ACB, in which AB is vertically downwards and of
length W units, and B{, CA represent the pressures
P and () respectively. Also, if three parallels through

ﬁm

{ Ul
b\
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A, B, C meet be, ca, ab in A, B', (" respectively, the
points 4’, B, (" must be collinear.

I. Suppose the position of N is known. We can
draw AB and two parallels A4’, BB. Let A’B’ meet
ab in C". Then draw C’C parallel to 4’4, to meet AB
in €. Measure BC and C4, and we have P and @
respectively.

II. Suppose that the pegs L and M cannot sustain pres-
sures greater than Pjand (), respectively. We can draw
AB as before and the two parallels AA’, BB Take BC,
along BA and AC, along AB of lengths Pj and (), units
respectively. If BC, and AC, do not overlap, clearly
it will be impossible to support the load. If they do
overlap, the point ¢ may lie anywhere between () and
O, Draw C,C/, C,C) parallel to 44’, to meet A’B’ in
0, and 0, respectively. Then (" must lie between C)" and
C,. Draw C/N, and C,N, perpendiculars upon HK.
Then the point of attachment of the load may lie any-
where between N, and N,

If it is required to place the load so that P may
be as much less than P, as @ is less than @, then ¢
must be taken midway between C] and C, Hence C”
will be the middle point of C,'C,, and N of NN,

88. Ex. 5. Three forces, represented by B'C',C’A", A’
act at points A, B, C respectively of a rigid body, and
are in equilibrium. The line of action of the first
Jforce meets BC in a; A'a’ is drawn parallel to BC to
meet B'C’ in /. Prove that o divides B'C’ in the same
ratio that a divides BC.

Since B'(", ("4’, A’B’ represent forces in equilibrium,
acting at A, B, C respectively, therefore, by Art. 77,
the lines through A’, B, (", parallel to BC, (4, AB
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respectively, are concurrent in some point 0. Thus,
the straight lines through C” and B, parallel to 4B, AC
respectively, meet at a point O on A'a’.

Fic. 102. Fi1c. 102a.

Through B draw a straight line parallel to AC, to
meet Aa in a. Then the figure Baad is similar to
the figure OB'a’C".

. a divides a4 in the same ratio that ¢  divides B'C".

But the lines BC, a4 are similarly divided at a.

. o divides B'C’ in the same ratio that « divides BC.

89. Ex. 6. A rigid body s capable of turning freely
in one plane about o fized point H, and is acted wpon
by a given force, represented by AB and acting along
a given straight line ab. An unknown force X is
applied at a given point K of the body. It is required
to represent the different values, corresponding to differ-
ent directions, of X consistent with equilibrium.
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The force of constraint at H may be of any value
and in any direction.

Let the line HK be marked oc, and draw through
H and K straight lines o, ob respectively, to meet at
any point chosen on the line ab.

X
[
(/
H c K
e \
“““““ Y
[
Fig. 103. F1c. 103 a.

Through 4 and B draw straight lines parallel to «o, bo
respectively, meeting in O; and through O draw 0OC
parallel to oc.

Then the different values of X are represented by
the different straight lines drawn from B to different
points C in OC.

The shortest of the lines BC will be the perpendicular
from B on OC. Hence X is smallest when it is applied
in a direction perpendicular to HK.

90. Ex. 7. A uniform thin rod HK, of given weight w,
18 capable of twrning freely in a vertical plane about
the poimt H, which is fixed. A mass, of given weight
W, hangs from the point K by means of a fine light
string. Show how to find the magnitude of the force
which must be applied at K in a given dirvection, in
order that the rod may vest in a given position.
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In the position of equilibrium, the string hangs with
the mass vertically below K. Draw AB, BC vertically
downwards to represent w and W respectively, and bisect
ABin 0. Then AC represents the resultant of w and
W, and 40, OB represent components into which this
resultant can be resolved acting at /1 and K respectively.
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F1e. 104. F1¢. 104a.

Draw OD parallel to HK, to meet in K the straight
line drawn through C parallel to the given direction
of the applied force. Then, measuring CD, we have
the magnitude of the applied force.

91. Ex. 8. A4 heavy thin rod of given weight, whose
centre of gravity is in a given position, rests on two
given smooth inclined planes whose imtersection is a
horizontal line, the rod lying in a wvertical plane per-
pendicular to this line of intersection. It is required
to find the dirvection of the rod, in the position of
equilibriwm, and the pressures on the planes.

Let the vertical plane containing the rod be the plane
of the paper, cutting the inclined planes in the lines
04, 0B.



154 EQUILIBRIUM OF THREE FORCES

At the outset we cannot indicate correctly the position
of the rod. Suppose that CD represents the rod in the
position of equilibrium, and let G be its centre of gravity.
Then the lengths CG, GD are known, but not the posi-
tions of C and D.

D

0

Fic. 105. Fic. 105a.

The rod is in equilibrium under the influence of its
weight and of the reactions at ' and D. The weight is
equivalent to a single force acting vertically downwards
through G, and, as the planes are smooth, the reactions
at € and D are perpendicular to 04 and OB respectively.

Draw HK vertically downwards to represent the
weight of the rod, and through [ and K draw straight
lines perpendicular to OB and 04 respectively, to meet
in L. This can be done although we do not know
the positions of ¢ and D. Then measuring KL, LH
we have the pressures of the planes upon the rod.

Divide HK in g so that Hg:gK=CG: GD. Then
the weight of the rod is equivalent to two forces repre-
sented by Hy, gK acting at D and C respectively. Re-
placing the weight of the rod by these components, we
see that the forces represented by LH and Hyg, acting at
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D, balance the forces represented by gK and KL, acting

at C.
gL is parallel to CD.

Hence, to determine the direction of the rod in the
position of equilibrium, we find the points L and g as
above; then the rod rests in a position parallel to gL.

(For a complete discussion of this problem, see
Minchin’s Statics.)

EXAMPLES IX.

1. A straight uniform thin rod 428 of mass 12 pounds, capable
of turning freely in a vertical plane about a fixed point 4, rests
in a horizontal position with its extremity B in contact with a
smooth plane inclined at an angle of 30° to the horizon. Find
the actions at A and B.

2. A uniform thin rod, 12 feet long and weighing 50 pounds,
is capable of turning freely about its lower end 4, and a point
C of the rod, distant 10 feet from ., is connected by a horizontal
fine string C'D to a point D, situated 8 feet vertically above A.
Find the tension of the string and the reaction at A.

3. A straight thin rod 4D, of no appreciable weight and of
length 3 feet, is capable of turning freely in a vertical plane
about its lower extremity 4. The point € of the rod, distant
2 feet from .1, is connected by a light inextensible string 1 foot
6 inches long to a point B, fixed 2 feet 6 inches vertically above
A. At D is attached another fine string supporting a mass of
100 pounds. Find the tension of the string.

4. A straight thin rod 4B, of no appreciakle weight and of
length 24 inches, is capable of turning freely in a vertical plane
about the extremity A, which is fixed. A fine string, of length
18 inches, has one end attached to a point € of the rod distant
15 inches from 4, and the other end to a fixed point D, situated
20 inches vertically above 4. A mass of 100 pounds is suspended
from the point B. Find the tension of the string.
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5. A uniform beam, 12 feet in length, has a fixed hinge at
one end, and is supported by a fine light cord, 13 feet long,
attached to the other end and to a fixed point situated 20 feet
vertically above the hinge. Find the tension of the cord, assuming
that the beam weighs 140 pounds.

6. A uniform straight rod 408, of mass 30 pounds, is capable
of turning freely about a hinge at O,—a point dividing 4B in
the ratio 1:3. The rod rests with its lower end B in contact
with a smooth inclined plane. If rod and plane are each inclined
at an angle of 30° to the horizon, and the line of greatest slope
of the plane through JB is in the same vertical plane as the rod,
find the pressure at B and the reaction of the hinge.

7. A straight rod 40B, of no appreciable weight, is capable of
turning freely in a vertical plane about a fixed point 0, such
that 40=2.08. A mass of 10 pounds is suspended from 2,
and the rod is supported in a horizontal position by a fine string
AC, connecting 4 with a point C situated vertically Lelow O.
If the string makes an angle of 30° with the horizon, find its
tension and the action at O.

8. A uniform straight rod 4B, of weight ¥, rests in an inclined
position with the end B against a smooth vertical wall, and the
end 4 is fixed in position by a smooth hinge. If the height
of B above 4 is to the horizontal distance between B and 4 as
3 :8, express the forces which keep the rod at rest in terms
of W.

9. A uniform horizontal beam AB, of length 12 feet and
weighing 100 pounds, is placed with the end . against a rough
vertical wall 4D, and is supported by a fine string €D, of length
10 feet, connecting the point ' of the beam, distant 8 feet from
A, with a point D in the wall, situated vertically above 4. Find
the tension of the string, and the resistance of the wall. If the
beam is just on the point of slipping, determine the coefficient
of friction between the beam and the wall.

10. A uniform rod 4B, of length 2 feet and weighing 55 ounces,
rests with its lower end 4 in contact with a smooth vertical wall,
being inclined to the wall at an angle of 40°. It is supported
by a fine string connecting the point € of the rod, distant 8 inches
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from A, with a point 0 in the wall, situated vertically above A.
Find the length of the string and its tension.

11. A fine rod BC, of no appreciable weight and of length
2 feet 6 inches, is capable of turning freely about the extremity
B, which is fixed. A load of 150 pounds is applied at C, and
the rod BC is supported in a horizontal position by means of
another fine light rod DE, of length 1 foot 10 inches, smoothly
hinged at £ to the rod BC and at D to a fixed point vertically
below B. If BE is of length 1 foot 6 inches, find the action
at £ and the thrust in DE.

12. A rod 4CB, weighing 25 ounces, rests upon a smooth peg
C, and its end .l is attached to a fixed point O, in the same
horizontal line with €, by means of a fine string 0d4. If
04 =00=1 foot, and the rod rests at an angle of 25° to 0C,
determine the position of the centre of gravity of the rod, and
the magnitudes of the tension of the string and the pressure
between the rod and the peg.

13. A square lamina AB0D, of uniform density and weighing
4 pounds, can turn in a vertical plane about a hinge at 4. Find
the force which, acting along BC, will keep the lamina in a posi-
tion with this side horizontal and below 4D ; find also the magni-
tude and direction of the hinge action at 4.

14. A uniform square lamina ABCD is capable of turning in
a vertical plane about a smooth hinge A. It is kept in equili-
brium with 4B inclined to the horizon at an angle of 30°, measured
downwards, by a horizontal force of 2 pounds’ weight applied at
B. Find the mass of the lamina.

15. A uniform square lamina ABCD, of mass 4 pounds, is
capable of turning freely about the point 4, which is fixed; a
fine string, of length equal to a side of the square, connects B
with a point E, situated in a horizontal line with 4. Find the
tension of the string, the angle BAE being 20°.

16. A rectangular box, containing a uniform spherical ball of
weight 17, stands on a horizontal table, and is tilted about one
of its lower edges through an angle of 30°. Find the pressures
between the ball and the box.
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17. A heavy uniform sphere, of weight I, rests on a smooth
plane inclined at an angle of 60° to the horizon. It is supported
by a fine string of length equal to the radius of the sphere,
connecting a point in the surface of the sphere with a point in
the surface of the plane. Find the tension of the string in the
position of equilibrium, and the pressure between the sphere and
the plane.

18. A uniform spherical ball, whose radius is 1 foot and mass
8 pounds, is fastened by a fine string, 8 inches long, attached
to its surface and to a smooth vertical wall. Find the pressure
on the wall and the tension of the string.

19. A smooth uniform sphere, of mass 60 pounds and diameter
10 inches, is supported in contact with a smooth vertical wall
by a fine string, 8 inches long, fastened to a point on its surface,
the other end being attached to a point in the wall. Find the
tension of the string.

20. A homogeneous solid sphere, of diameter 10 inches and
weighing 30 pounds, rests upon a smooth inclined plane, whose
height is 4 of its length, being supported by a fine string, 8 inches
long, connecting a point in the surface of the sphere with a point
on the plane. Find the tension of the string, and the pressure
between the sphere and the plane, in the position of equilibrium.

21. A smooth uniform sphere, of mass 52 pounds and radius
10 inches, rests on a smooth inclined plane, whose height is %
of its length, against a smooth horizontal rail fixed parallel to
the plane. If the pressure between the sphere and the plane
is 33 pounds’ weight, find the distance of the rail from the plane
and the pressure between the sphere and the rail.

22. A triangular lamina ABC, of inappreciable weight, rests
in a vertical plane with the middle points of the sides 4B, AC
in contact with two smooth pegs, the line joining them being
horizontal and parallel to the base BC. Determine the point in
BC where a mass of weight W may be placed without disturbing
the equilibrium ; and, if 4B, 4C, and BC be 4, 5, and 6 feet
respectively, find the pressures on the pegs in terms of 1V,
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23. A rigid framework, of no appreciable weight, in the shape
of an equilateral triangle ABC, rests in a vertical plane with
BC horizontal aud uppermost. It is supported in this position
by a fine string DG, parallel to 4B, attached at D, the middle
point of BC, and rests against a small smooth peg at /) the
middle point of 48. Determine from what point of the boundary
of the framework a mass of 10 pounds may be suspended, and
find the tension of the string and the pressure at /' when the
mass is attached.

24. A uniform beam 4B, of mass 20 pounds and length 13
inches, is capable of turning freely about a fixed point 4; to
the other end Z is attached a fine string, which passes over a
small smooth pulley C, sitnated 2 feet in a horizontal line from A.
Find what mass must be attached to the other end of the string,
in order that, in the position of equilibrium, the beam and the
string may be equally inclined to the horizontal. Find also the
action at the hinge.

25. A lamina, in the shape of a regular hexagon ABCDEF,
lies on a smooth horizontal table. It is in equilibrinm under
the action of three forces; namely, a force of 20 pounds’ weight
acting at 4 in the direction Ed4, a force of unknown magnitude
acting at F in direction BF, and a force unknown both in magni-
tude and direction acting at C. Determine the magnitudes of
the unknown forces.

26. In example 8, Art. 91, the planes 40 and OB are inclined
at angles of 60° and 30° respectively to the horizontal. The point
G divides €D in the ratio 3:1. Find the direction of the rod in
the position of equilibrium.

27. 0ACD is a horizontal straight line. (' is the centre of a
fixed vertical circular disk ADB. A uniform rod 0D, of length
equal to the radius of the circle and weighing 2 pounds, is freely
hinged at one extremity to a fixed point O, and its other extremity
D rests against the smooth rim of the circle. If the rod makes
an angle of 30° with OB, find all the forces which act upon it.

28. A smooth rod BC is passed through a small ring and placed
upon a horizontal plane, with its ends attached to a fixed point
4 in the plane by two fine strings 4B, AC, which are tight.
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A horizontal force being applied to the ring, find its direction,
and also the position of the ring on the rod, in order that equili-
brium may not be disturbed, the lengths of BC, C4, AB being
25, 20, and 15 inches respectively.

29. A smooth thin wire APB, in the form of a semicircle of
radius 15 inches, is placed upon a smooth horizontal table with
its ends attached to a fixed point O by means of fine strings
A0, BO, which are tight. A small ring 2 is threaded on the
wire, and a horizontal force is applied to the ring; find its direc-
tion, and also the position of the ring on the wire, in order that
equilibrinm may not be disturbed, the lengths of 40, OB being
24 and 18 inches respectively.

30. A straight piece of stiff wire 4B, 13 inches long and of no
appreciable weight, is capable of turning freely in a vertical
plane about one extremity 4. A small smooth ring, of no appreci-
able weight, is threaded on the wire and connected by a fine
string, 12 inches long, to a point fixed 13 inches vertically above
A. A mass of 6} pounds is hung from B. Find the tension of
the string, and the action at the hinge, in the position of equili-
brium.

31. A uniform rod, of weight IV, is supported by a fine string
fastened to its ends, of double its own length, which passes over
a smooth horizontal rail. Find the tension of the string, first,
when the rod is hanging at rest in a vertical position, and secondly,
when the rod is at rest in a horizontal position.

32. A straight thin rod 4B, of length 1 foot and of no appreci-
able weight, is supported in a horizontal position upon two pegs
situated at its extremities. If the peg at 4 cannot sustain a
load greater than 27 pounds, and the peg at B cannot sustain
a load greater than 24 pounds, find between what points of the
rod a load of 36 pounds may be placed.

33. In the preceding example, find where the load must be
placed in order that the pressure at 4 may be 21 pounds’ weight,

34. A uniform rod, 2 feet long and weighing 3 pounds, lies
on a horizontal plane ; find the least force which, applied 5 inches
from one end, will raise that end above the plane.
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35. A horizontal bar 4B, 7 feet long, is supported at its ex-
tremities, and a man of 150 pounds’ weight hangs from it by his
hands, one being 1 foot from A, the other 3 feet from 5. Find
the pressures on the supports due to the weight of the man.

36. A heavy pole, weighing 140 pounds, is carried on the
shoulders of two men, one at each end; the centre of gravity
of the pole being 2 feet from one end and 5 feet from the other,
find the load supported by each man.

Also, find what would be the effect of placing each man one foot
nearer to the centre of gravity of the pole.

37. Two levers AOB, COD, of inappreciable weight, whose
lengths are 8 and 9 inches respectively, are freely jointed together
at O, four inches from Band 0. If 4 and C are connected by a fine
light string 3 inches long, and B and D are pulled apart by forces
each equal to 10 pounds’ weight in the straight line BJ), find
the tension of the string.

38. Two levers 04, OB, of inappreciable weight and of lengths
3 and 4 feet respectively, can turn freely in a vertical plane about
a common fulerum O, and their middle points are connected by
a fine string whose length is 2} feet. Find the least force which,
applied at A, will keep OB horizontal when a mass of 12 pounds
is suspended from B. Find also the tension of the string.

39. A uniform thin rod 42, which can turn freely in a vertical
plane about a hinge at A4, is kept in a horizontal position by a
string BC attached to a fixed point €' in the vertical plane, the
angle .1 BC being obtuse. Show in a diagram the forces acting
on the rod, and prove that two of them are equal.

40. If a heavy body is partly supported by a string and partly
by a smooth horizontal plane, prove that the string must be
vertical. ’

41. Three forces P, @, R, in equilibrium, act at points 4, B, ¢
respectively of a rigid body. The lines of action of two of the
forces meet at 0, and the circle described through the points B, C,
O meets A0 again in 4. Prove that P:Q: R=BC:0C4" : A'B.

42. Three forces P, @, £, in equilibrium, act at points 4, B, ¢
respectively of a rigid body. Prove that if two of the forces
D.S. L
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intersect at any point on the circle which circumscribes the
triangle ABC, then P:@Q : R=BC:04:4D.

43. Three forces act at points 4, B, C of a rigid body, and
are respectively proportional to BC, CA, AB. Prove that, if the
forces are in equilibrium, their lines of action must intersect
either at the orthocentre of the triangle ABC, or at a point
on the circle which circumscribes the triangle.

44. Three forces, whose magnitudes are in a given ratio, act
at points 4, B, C respectively of a rigid body. Show how to
determine the lines of action of the forces, in order that they
may be in equilibrium. Show that there are in general two
solutions.

45. 1f, in the preceding example, O; and 0, are the two posi-
tions of the point at which the lines of action of the three forces
intersect, prove that each side of the triangle ABC subtends at
0, the same angle that it subtends at 0,

46. Two forces @ and R, acting in the lines OB, OC respectively,
are in equilibrium with a third force, acting through 4. Prove
that, if @ : R=CA : AB, then, either O is a point on the circle
which circumscribes the triangle ABC, or, if BO and C0O meet
that circle in O; and O, respectively, the arc 0,0, is bisected at .1.

47. A given force, acting along a given straight line Ada, is
in equilibrium with two unknown forces acting through given
points B and (' respectively. If Aa is perpendicular to B0, prove
that the difference between the squares of the measures of the
unknown forces is constant.

48. B, A, (' are three given points situated in a straight line.
A force of given magnitude, acting through A in a given direc-
tion, is in equilibrium with two unknown forces, whose magnitudes
are in a given ratio, acting through B and ' respectively. Show
how to determine the magnitudes and directions of the unknown
forces, and prove that there are in general two solutions.

49. In the preceding example, prove that if the forces through
B and C are proportional to €4, AB vrespectively, then, either all
the forces are parallel, or the forces through B and (' are equally
inclined to BC.
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Let the lines of action of P, @, R, S, T be now
marked ab, be, cd, de, ef respectively, as in the figure.
Join AC, AD, AE, AF.

The resultant of P and @ is represented by AC, and
acts through the point of intersection of ab and be; hence
draw a straight line ac through this point parallel to
AC. Let P and @ be replaced by their resultant, which
we can combine with R. We get as the resultant of
these two forces a force represented by AD, passing
through the point of intersection of ac and cd. Hence
P, @, R are together equivalent to a force represented
by AD, and acting along a line ad, which we can draw
through the point of intersection of ac and cd parallel
to AD.

Proceeding in the same way as before, we see that
the forces P, @, R, S may be replaced by a force repre-
sented by AE, and acting along a line ae, which we
can draw through the point of intersection of ad and
de parallel to AE. And, finally, the forces P, Q, R, S, T
are equivalent to a force represented by AF, and acting
along a line af, which we can draw through the inter-
section of ae and ef parallel to AF.

This determines the magnitude, direction, and position
of the resultant of the system.

93. In order that the system may be in equilibrium, it
will be necessary and sufficient that the -force 1’ should
be equal and opposite to, and act along the same straight
line as, the resultant of P, @, R, S. For this to be
the case, F must coincide with A, and the two straight
lines ae and fe must form one continuous straight line.
That is, ¥ must coincide with A, and the straight line
ad, obtained by the above process, must pass through
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the intersection of de and e¢f. Thus, for equilibrium, in
constructing the force diagram, the end of the line repre-
senting the last force must coincide with the beginning
of the line representing the first force (this is expressed
by saying the force polygom closes), and in drawing
the dotted lines of the space diagram, we start with
the point of intersection of the first two lines of action,
and end with the point of intersection of the last
two.

94. The method of Art. 92 may be still more abbrevi-
ated in simple cases, as, for instance, in the following:

It is requirved to find the rvesultant of four given
forces, P, Q, R, 8, acting along the given lines indicated
in the space diagram.

Fre. 107. F1c. 107 a.

Draw straight lines AB, BC, 0D, DE, to represent
the forces P, @, R, S respectively in magnitude and
direction. Let the lines of action of P, Q, R, S be now
marked ab, be, cd, de respectively, as in the figure. Join
AC,AE,CE. Through the intersection of ab and b¢ draw
ac parallel to AC'; and through the intersection of cd and
de draw ce parallel to CE. Then we shall show that
the straight line ae, drawn through the intersection of
ac and ce parallel to AE, is the line of action of the
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resultant, and that AZX represents the resultant in
magnitude and direction.

For, the forces P and ) are equivalent to a force repre-
sented by 4 C acting along ac; also, the forces R and S
are equivalent to a force represented by CE acting along
ce; and, if P, Q, R, S be replaced by these two forces,
they in turn may be replaced by a force represented
by AE, and acting along «e.

For the system to be in equilibrium, it is necessary
and sufficient that A and £ should coincide, and that
the lines ac, ce should form one eontinuous straight line.

Thus, for equilibrium, the force diagram must be a
closed quadrilateral, and a diagonal of the quadrilateral
must be parallel to the line joining the intersection of
one pair of lines of action with the intersection of the
other pair.

95. Second Method.

Let it be required to find the resultant of forces
P, Q, R, S, T, acting along the given lines indicated in
Fig. 108.

As before, draw straight lines AB, BC, CD, DE, EF,
to represent the forces P, @, R, S, T respectively in
magnitude and direction, and let the lines of action of
P,Q, R, S, T be now marked ab, be, ed, de, ef respectively.

Take any point O in the force diagram, and join it
to the points 4, B, C, D, E, F. .

From any point p in ab draw straight lines oa, 0b
parallel to OA, OB respectively. The force P may be
replaced by two forces represented by A0, OB acting
along the lines ao, ob respectively.

From the point of intersection of ob and be draw oc
parallel to OC. Then the force  may be replaced by



168 RESULTANT OF COPLANAR FORCES.

two forces represented by BO, OC acting along bo, oc
respectively.

Let the forces I’ and @ be replaced by these pairs of
components; then we may remove the two forces re-
presented by OB and BO, which act in opposite directions
along the line ob. Thus the forces P and @ are equi-
valent to forces represented by A0, OC acting along
ao, oc respectively.

Fic. 108. F1c. 108a.

From the point of intersection of oc and c¢d draw od
parallel to OD. Then the force B may be replaced by
two forces represented by CO, OD acting along co, od
respectively. So, removing the two equal forces which
act in opposite directions along the line oc, we see
that the forces P, @, R are equivalent to forces repre-
sented by A0, OD acting along ao, od respectively.

Carrying on the process, we draw through the inter-
section of od and de a straight line oe parallel to OF ; and
through the intersection of oe and ef a straight line of
parallel to OF. Then we see that the forces P, @, R,
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S, T are equivalent to two forces represented by 40, OF
acting along «o, of respectively.

Hence the resultant of the system is a force repre-
sented by AF, and acts along a straight line af drawn
through the intersection of oax and of parallel to AF.

96. The broken line ABCDEF is called a force poly-
gon, and is said to close when the final point ¥ coincides
with the initial point A.

The polygon formed by the lines oa, 0b, oc, od, oe, of
is called a funicular polygon, and is said to close when
the lines oa, of are in one and the same straight line.

The point O is called the pole of the force polygon.
The lines drawn from O to the angular points of the
force polygon are called rays. The sides of the funi-
cular polygon are called strings.

It should be noticed that the two strings which
intersect in the line of action of any force are parallel
to the two rays drawn to the extremities of the line
representing that force, and the string which connects
the lines of action of two forces is parallel to the ray
drawn to the common extremity of the lines representing
those forces.

97. In order that the system may be in equilibrium, it
will be necessary and sufficient that the two forces
represented by A0, OF, and acting along the lines «o,
of respectively, should be equal and opposite, and act
along the same straight line. For this to be the case,
F must coincide with A4, and of, oa must be in one and
the same straight line. Thus, for equilibrium, a force
polygon must close, and o funicular polygon corre-
sponding to it must also close.

If the force polygon closes, but not the funicular
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polygon, the lines oa, of become parallel, and in this
case the system reduces to a couple.

98. Of the two methods given above, the second is the
more general and includes the first; for, if we take
the pole O to coincide with 4, and take the first vertex
of the funicular polygon to coincide with the point of
intersection of the lines of action of P and @, the con-
struction coincides with that given in the first method.

In simple cases the first method may be more suitable
than the second, but it is liable to fail through the
intersections of lines falling at inconvenient distances.
In the second method the pole can generally be so
chosen that none of the rays make very acute angles
with the corresponding forces.

99. In the case of parallel forces, the first method
fails altogether, but the second method does not.
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We append the figures for finding the resultant of
the five parallel forces P, @, R, S, T, using the same
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letters as above. The forces S and 7 are taken to be
in the opposite direction to the other three.

The force polygon for a system of parallel forces
reduces to a straight line, which is often called the
line of loads.

100. Some Geometrical Properties of the Funicular
Polygon.

Referring to Art. 95, we showed that the forces
P, @, R are equivalent to forces represented by 4O,
0D acting along «o, od respectively.

.". the point of intersection of ao, od lies on the line
of action of the resultant of P, @, E, which is parallel
to AD.

Now, in constructing the funicular polygon, we took
O in any arbitrary position in the force diagram, and
the point p was taken in any arbitrary position on the
line ab. If we vary the position of p without altering
the position of O, we get a new funicular polygon,
having its sides parallel to the corresponding sides of
the old funicular polygon. If we vary the position
of O, we get a funicular polygon with its sides no
longer parallel to their former directions. But, what-
ever alterations we make in these respects, the lines
oa, od always intersect on a fixed straight line parallel
to AD. Thus,

If different funicular polygons be constructed for
the same system of forces corresponding to the sawme
force polygon, the locus of the intersection of any two
strings s a straight line parallel to the line joining
the extremities of the corresponding rays.
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101. Again, suppose two funicular polygons are con-
structed, one corresponding to a pole O, and the other
to a pole 0.

F1c. 110. F1c. 110a.

Let oa, o’a meet in a, and ob, b in B. We shall
show that a8 is parallel to 00"

Suppose that forces represented by A0, OB, BO', 0'A
were to act along the lines oa, ob, 0'b, 0’a respectively.
They would be in equilibrium; for the first two forces
are equivalent to a force represented by AB acting
along ab, and the other two to a force represented by
BA acting along the same straight line.

.". forces represented by OB, B0, acting along ob, 0
respectively, are in equilibrium with forces represented
by 0’4, AO acting along o’a, oa respectively. The first
two of these forces are equivalent to a force represented
by OO acting through B, and the other two to a force
represented by 0’0 acting through a.

‘. a force represented by 0O’ acting through £ is
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in equilibrium with an equal and opposite force acting
through a.

“. af3 is parallel to 00"

In the same way, if oc and o'c meet at y, we can
show that Bv is parallel to 00"

.. the points a, B8, ¥ lie on a straight line parallel
to 00

Proceeding in this way, we see that

Each pair of corresponding sides of any two funi-
cular polygons of a given system of forces intersect on
a straight line, which is parallel to that joining the
poles of the two funicular polygons.

102. Ex. Three forces P, @), R act along three fixed
lines AB, BC, OD wvespectively. Prove that, if P, @, R
have any values subject to the relation Q=m .P+n. R,
where m and n are any given numbers or fractions,
then the line of action of the resultant of the three
forces passes through a fized point.

52X
Fre. 111. Fié. 11la:

Let ab, be, ¢d be drawn parallel to 4B, BC, CD
respectively, representing P, @, R respectively. Since
Q=m.P+mn.R, we can find a point = in bc such that
be=m.ab and xc=n.cd.

Through B and C draw straight lines parallel to ax
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and dz respectively, to meet in X. Then we shall show
that X is a fixed point on the line of action of the
resultant of the forces P, @, R.

The force @ may be replaced by forces m . P and n. R,
acting along BC at points B and C respectively. The
resultant of P and m.P’ at B is represented by ax, and
therefore acts along BX; the resultant of nR and R
at C is represented by xd, and therefore acts along XC.
Hence X is a point in the line of action of the resultant.

Now since ab and bx are drawn in fixed directions, and
such that ab:bx=1:m, therefore the straight line uz
is in a fixed direction. Therefore BX is a fixed straight
line. Similarly CX is a fixed straight line.

.*. the point X is the intersection of two fixed straight
lines, and is therefore a fixed point.

Thus the line of action of the resultant of P, @, R
passes through the fixed point X.
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The case in which the points «, =, d are collinear is
interesting. The lines BX, CX are then parallel, and
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there is no point X at a finite distance. Under these
circumstances the resultant of the three forces is in a
fixed direction.

EXAMPLES X.

1. Forces of 2, 1, 3 pounds’ weight respectively act along the
sides of an equilateral triangle, taken one way round. Determine
the magnitude, direction, and line of action of their resultant.

2. The sides BC, ('d, AB of the triangle ABC are of lengths
14, 15, 13 inches respectively. Forces of magnitudes 16, 60, 52
pounds’ weight act along the lines BC, €4, BA respectively. Find
the magnitude, direction, and line of action of their resultant.

3. Forces of 1, 2, 4, 4 pounds’ weight act along the sides AB,
BC, CD, DA respectively of a square. Find the magnitude and
direction, and the point of application in the line BC, of the force
which would balance the system.

4. ABCD is a square, each side of which is 1 foot in length.
Eis a point in 4B distant 3 inches from 4, F is in DA produced 14
inches from 4, and @ is in CB produced 9 inches from B. Find the
magnitude, direction, and line of action of the resultant of the
following system of forces:—45 pounds’ weight along ADB, 66
pounds’ weight along A0, 35 pounds’ weight along CF, and 65
pounds’ weight along F¢.

5. ABCDEF is a regular hexagon. Forces of 5, 3, 5, 3 pounds’
weight respectively act along the straight lines 45, BC, CD, DE.
Find the magnitude, direction, and position of the resultant.

6. Take any five forces, assigning their magnitudes, directions,
aiid lines of action, and determine the magnitude and direction
of their resultant by constructing a force polygon. Determine the
line of action of the resultant by constructing a funicular polygon
corresponding to an arbitrarily chosen pole O.

Draw another funicular polygon corresponding to the same pole
0, and a third funicular polygon correspounding to a different pole
0, and see that each funicular polygon gives the same line of
action of the resultant.
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Construct another force polygon by taking the forces in a
different order, and, taking any pole, construct a funicular polygon
corresponding to this, and see that the same result is obtained
as before.

7. Four forces act along, and are represented by, 4B, BC, DC,
AD; show that their resultant is represented by 240, and acts
through the middle point of BD.

8. Four forces act along, and are represented by, 4B, CB, CD,
AD ; show that their resultant acts along, and is represented by,
4 FF, where £ and F are the middle points of 40, BD respectively.

9. Three forces P, @, R, such that P=@+ R, act along the sides
BC, AC, BA of a triangle ABC'; prove that the line of action of
their resultant passes through the centre of the circle inscribed
to the triangle. h

10. Three forces act along the sides of a triangle, taken one
way round. If one of the forces is equal to the sum of the other
two, prove that the line of action of their resultant passes through
the centre of one of the circles escribed to the triangle.

11. Three forces P, X, T act along the sides BC, C4, B4 of
a given triangle ABC. If P is given, while .X and Y have any
values subject to the condition that X'+4#%.Y is constant, where
7 is any given number or fraction, prove that the line of action
of the resultant of the three forces passes through a fixed point.

12. Three forces act along, and are represented. by, 4B, BC,
CD; prove the following method for determining their resultant :
Take any point # in BC, and let straight lines through 5 and C,
parallel to Az, Dz respectively, meet in X'; then the resultant
acts through X, and is represented by AD.

13. 4, B, C, D are four fixed points ; any point x is taken in B(,
and straight lines through B and C, parallel to Az, Dx respectively,
meet in X. Prove, by a statical method, that as # moves along
BC, the point X traces out a straight line parallel to AD.
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tion of this force and make it P units of length. We
now mark the line of action of the given force with
the letters ab. ’

Find the point in which ab intersects one of the other
three given lines, and let this line be denoted by be.
We then mark the remaining two lines cd, da.

Join the point of intersection of ab and b¢ to the point
of intersection of e¢d and da; and let the line so drawn
be called ac.

Let X, Y, Z, at present unknown, be the measures
of the forces acting along be, cd, da respectively. The
resultant of P and X has to balance the resultant of
Y and Z. Hence these two resultants must be equal
and act in opposite directions along the same straight
line. Thus ac must be the line of action of the resultant
of the pair P and X, and also of the resultant of the
pair ¥ and Z

Hence, if BC represents the force X, then AC must be
parallel to ac. So, drawing BC parallel to be to meet
in C the straight line drawn through A parallel to ac,
and measuring BC, we have X. Also AC represents
the resultant of P and X, and therefore C'4 represents
the resultant of Y and Z.

Hence, to find ¥ and Z, we have merely to draw
straight lines through C and A parallel to ¢d, da re-
spectively and meeting in D; then, measuring CD and
DA, we have Y and Z respectively.

If the four given lines are concurrent, the solution
is indeterminate. In this case the extremities of the
line ac coincide, and the line AC' may be drawn in any
direction.

If the three lines be, cd, da meet in a point which
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is not situated in the line of action of P, the problem
is impossible of solution. In this case ac is in the same
straight line with ¢, and the line BC' does not meet
the line AC.

If two of the three given lines intersect on the line
of action of P, the force along the third line vanishes.
For instance, if ab, be, ¢d are concurrent, ac is in the
same straight line with ¢d, and D coincides with A.

104. If the lines cd, da do not meet at an accessible
point, we can still draw the straight line ac by making
use of the following construction:

To draw through « given point P a straight line
towards the inaccessible point of intersection of two
given straight lines AA’, BB

Fie. 114,

Draw straight lines P4, PB to points A and B,
situated one in each of the given straight lines, and
join AB. Draw a straight line parallel to AB inter-
secting the given straight lines in 4" and B’ respectively.

Draw A'P’, B'P’ parallel to AP, BP respectively, to
meet in . Then PP’ is the straight line required.

The student of elementary geometry will have no
difficulty in proving the’ accuracy of this construction.
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105. The foregoing construction enables us to apply
the method of Art. 103 to the case in which ab, bc meet
at an accessible point, and cd, da at an inaccessible
point; but the method apparently breaks down when
ed and da are parallel

Fic. 115. Fie. 115a.

The difficulty, however, is easily overcome. We can
draw the line AC parallel to either of the lines cd, da,
thus determining the point C. Then, to finish the
problem, we have merely to resolve a force represented
by CA into two parallel components acting along the
lines cd, da. This can be done by any one of the
three methods considered in Art. 72.

106. If the line of action of the given force does not
meet any one of the other three lines in an accessible
point, we may proceed as follows:

As before, take A B to represent the given force, and
let ab denote its line of action. The three unknown
forces will be represented by BC, CD, DA, where the
points €' and D are to be found. Let their lines of
action be therefore marked be, cd, da.

The two forces along ¢d, da are equivalent to a force
which will be represented by C4, and which acts through
the point of intersection of cd and da, along a straight line
which would be marked ca. It will not be necessary
to draw the straight line ca, but'we may refer to it.
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Draw any straight line ob intersecting the lines ab
and be. From the point of intersection of ob and ab
draw oa, and from the point of intersection of ob'and
be draw oc, both to the point of intersection of ad
and c¢d (that is, to a point in ca); this can be done
even if ad and cd do not intersect at an accessible point.
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Fic. 116, F1c. 116a.

Draw A0, BO parallel to oa, ob respectively, to meet
in 0. Draw OC, BC parallel to oc, be respectively, to
meet in . Then, if ¢ be joined to 4, BC and C4
represent two forces, which, acting along bc and ca
respectively, would be in equilibrium with P.

Draw CD, AD parallel to cd, ad respectively, to meet
in D. Then CD, DA represent two forces, which, acting
along cd, da respectively, would be equivalent to the
force represented by CA acting along ca.

Hence, measuring BC, CD, DA, we have the three
forces required.

If the three lines be, ¢d, da are parallel to one another
but not to the direction of P, the problem is impossible
of solution. In this case oc¢ is in the same straight line
with be, and the line BC does not meet the line OC.
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If two of the three given lines are each parallel to
the line of action of P, the force along the third line
vanishes. For instance, if ab, be, ¢cd are parallel, C is a
point in AB, and D coincides with 4.

If all four lines are parallel, the solution is indeter-
minate. This case will be considered in the next chapter.

107. To resolve a given force into three components
along given lines of action situated in one plane.

If we suppose the given force to be reversed in direc-
tion, it will form a system in equilibrium with the
three components required. Hence this problem reduces
to the preceding.

108. Ex. 1. 4 to*zcmgular lamina ABC, of no appreci-

2W
Fic. 117.
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4 and B, and the triangle is kept -with AB horizontal
by means of a fine light string comnecting C with the
peg D, find the tension of the string and the pressures
on the pegs. ‘

The space diagram is easily constructed to scale.

Consider the forces acting on the lamina. The two
equal forces W, acting vertically downwards at 4 and
B, can be replaced by a single force 2W, acting verti-
cally downwards through the middle point of 4B, along
a line which we draw and mark hk.

Choosing any suitable length to represent W, we draw
HK vertically downwards of length to-represent 2W.

Let P and @ be the pressures of the pegs D and £
respectively upon the lamina; these are perpendicular
to OB, CA respectively. Let 7' be the tension of the
string CD.

The four forces 2W, @, P, T, acting on the lamina,
are in equilibrium. We see that the lines of action of
the first two of these forces meet in an accessible point,
and the other two act through D. Hence, marking the
lines of action of @, 7', P with the letters kI, lm, mh
respectively, we draw the straight line kI, connecting D
with the point of intersection of hk and i

Draw straight lines HL, KL parallel to hl, kl respec-
tively, thus obtaining the point L. Draw straight lines
LM, HM parallel to Im, hm respectively, and we have
the point M.

Then KL, LM, MH represent Q, T, P respectively.
On measuring these lines we find that

Q=(143)W,
T=( "18)W,
P=(1200W.
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109. Ex. 2. Four forces in equilibrium act in the lines
AB, BC, CD, DA. From any point A" in BD, or BD
produced either way, a straight line is drawn parallel
to AB to meet AC in B'; from B’ a straight line is
drawn parallel to BC to meet BD in C’; from C' a
straight line s drawn parallel to CD to meet AC in
D’; and the straight line joining D', A’ is drawn.
It is required to prove that D'A’ is parallel to DA,
and that the forces in the lines AB, BC, CD, DA are
proportional to A'B’, B'C', C"D’, D'A’ respectively.

Fic. 118.

Let the scale of representation of force be so chosen
that A’B" may represent the force which acts in the
line AB. If the force in AB acts in the opposite
direction to A'B’, we may suppose all four forces to
be reversed; they will still form a system in equili-
brium, provided their magnitudes are unaltered.

Since the resultant of the forces in AB, BC is a
force in the line BD, it follows that B’C” must represent
the force in BC. Also, since the resultant of the forces
in BC, CD is a force in the line CA, we see that C'D’
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must represent the force in CD. Hence IV A’, which closes
the polygon A’B’C’D’, must represent the force in DA.

~ Therefore A4’ is parallel to DA, and the forces in
the lines AB, BC, CD, DA are proportional to A'B’,
B'C’, C'D’, D’A’ respectively.

Also, the directions of the forces in the lines 4B,
BC, CD, DA are determined by the direction arrows
going one way round the quadrilateral A’B'C’D’'A’.
In the figure given above, the directions of the forces
are BA, BC, DC, DA, or, reversing these directions,
AB, CB, CD, AD.

The student should make himself familiar with the
generality of this proposition. In the first of the two
figures given below the directions of the forces are
AB, BC, DC, AD, or these directions reversed; in the
second figure they are one way round.

Fic. 119.

As the point A’ may be taken anywhere in BD, or
BD produced either way, the student should try the
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effect of making A4 coincide with B or D. He should
also notice that the figure ABCD has the same relation
to A’B'C’'D" as A’B'C'D" has to ABCD. Hence, if four

Fic. 120.

forces in equilibrium act in the lines 4’5, B'CY, C'D’,
D'A’, the figure ABCD may be taken to be the force
diagram for the system.

EXAMPLES XI.

1. A uniform thin rod ACB, of length 3 feet 9 inches, and
weighing 25 pounds, rests with the lower end 4 upon a smooth
horizontal plane, and against the smooth edge of a step, 1 foot
6 inches high, at €. It is kept from slipping by a fine light
string, 2 feet long, connecting 4 with a point at the foot of the
step vertically below C. Find all the external forces acting on
the rod.

2. A straight uniform rod 425, of mass 30 pounds, rests against
a smooth horizontal plane at 4 and against a smooth fixed rail
at C, where BC=}BA4. Tt is prevented from slipping by a fine
light string 4D, connecting 4 with a point J), situated in the
horizontal plane vertically below C. If the angle BAD is 30°,
find the tension of the string, and the pressures at 4 and C.

If the plane be rough, and there is no string, what must be
the coefficient of friction between the rod and the plane in order
that the rod may be just on the point of slipping?
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3. A square board ABCD is placed upon a smooth horizontal
table, and a given force P acts from E, the middle point of AB,
towards #, the middle point of C'D. Determine the magnitudes
of three forces .Y, ¥, Z, which, acting along BC, CA, ADB respec-
tively, will make equilibrium with P.

4. The lower extremity £ of a uniform beam ED rests on the
ground at the foot of a vertical wall EF, its upper extremity
being attached by a fine light cord DF to a point F, situated
vertically above £, The mass of the beam being 200 pounds,
find the tension of the cord, and the pressures of the beam against
the wall and ground at E, supposing that EF=2FD=ED.

5. A uniform beam 4B, of mass 100 pounds, is supported by
two fine light strings AC, BD, the latter being vertical, and the
angles DBA and BAC being 100° and 130° respectively. The
beam is -maintained in this position by a horizontal force of I
pounds’ weight, applied at B. Find the value of .

6. A uniform square lamina ABCD, weighing 10 pounds, is
constrained at 4 and B to remain in contact with a smooth fixed
straight vertical rod, 4 being uppermost. The point ¢ rests in
contact with a smooth fixed plane, inclined at an angle of 60°
to the horizon. Find the actions at A, B, C.

7. ABCD is a fine straight rod of no appreciable weight, the
portions 4B, BC, CD being of lengths 9, 6, 5 inches respectively.
A mass of 10 pounds is suspended from 4, and a mass of unknown
weight is suspended from . The rod is supported in a horizontal
position by means of two forces applied at B and € in directions
BE, CF respectively, the angles ABE and DCF being each 80°,
Determine the weight of the mass suspended from 1, and the
magnitudes of the forces applied at B and C.

8. A lamina 4ABCD, having DC parallel to 4B, and such that
AD=DC=CB=4%4B, is placed upon a smooth horizontal table,
and a given force P acts from 4 towards B. Find the magnitudes
of three forces X, ¥, Z, which, acting along 40, CD, (B respec-
tively, will make equilibrium with 2.

9. ABCDEF is a regular hexagon. Find what forces must
act, along AC, AF, DE, to produce equilibrium with a force of
40 pounds’ weight acting along EC.
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10. A straight bar ACB, of length 5 feet, and of no appreciable
weight, is supported in a horizontal position with a load of 50
pounds applied at €, 2 feet from 4, by means of two strings
AH, BK, such that the angles BAH and ABK are 120° and 150°
respectively. Find what force must be applied at D, the middle
point of AC, in direction DL, in order that the bar may remain
horizontal ; DL being downwards, and the angle 4DL being 60°.
Also, determine the tensions of the strings.

11. A uniform rectangular lamina 480D, weighing 100 pounds,
rests in a vertical position upon a smooth horizontal plane at A,
and against a smooth vertical wall at D. It is supported by a
fine string #'C attached to a point in the wall. If, in the position
of equilibrium, the triangle FCD is equilateral, find the tension
of the string, and the pressures at D and 4, given that DC=2DA. .

12. A uniform beam A, weighing 100 pounds, is supported
by strings AC, BD, the latter being vertical. It is maintained
in this position by a horizontal force £ applied at B. Find the
value of 2 in pounds’ weight, the angles CdB, ABD being each
105°.

13. A ladder ADB, of length 30 feet, inclined at an angle of
60° to the horizon, rests against a smooth wall BC, inclined at
75° to the horizon, and upon a smooth horizontal plane 4C. The
end 4 is kept from slipping by a fine light string, connecting
it with the point C. If the centre of gravity of the ladder, which
weighs 40 pounds, is 12 feet from A, find the tension of the
string, and the pressures at 4 and B.

14. AHKB is a straight rod, of no appreciable weight, and of
length 10 feet, the points  and X being 1 foot from 4 and 6 feet
from B respectively. At H and A are suspended two masses £ and
@ respectively, and the rod rests in a horizontal position, being
supported by two fine light strings AC, 5D, such that the angles
BAC, ABD are each 150°. If P is 10 pounds, find ¢, and the
tension of each string.

15. D is the orthocentre of the triangle ABC, whose sides BC,
CA4, AB are of lengths 14, 13, 15 inches respectively. Find what
forces must act along the lines B, DC, DA to be in equilibrium
with a force of 25 pounds’ weight acting along A4B.
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16. Four forces in equilibrium act in the lines AB, BC, CD,
Dd. A3 is drawn parallel to BC to meet BD in §, and By is
drawn parallel to 4D to meet AC in y. Prove that 8 is parallel
to OD; also, that the forces in the lines 4B, BC, CD, DA are
proportional to 4B, 84, y8, By respectively.

17. Three forces P, @, R, acting along the lines BC, C4, AB
respectively, are in equilibrium with a force X acting along a
line drawn parallel to BC through a point A in BA produced. A
straight line through 4, parallel to AC meets BC in H. Prove
that P2: Q: R: X=HC:CA: AB: BH.

18. Three forces P, @, R, acting along the lines BC, C4, AB
respectively, are in equilibrium with a force .\ acting through
A, a point in B4 produced. Prove that, whatever be the direction
of the force X, the ratio 7 : Q is coustant.

19. A given force, represented by 4B, acts along a given line
ab, and is in equilibrium with three unknown forces, acting along
three given lines be, ed, da. The lines cd, da intersect at the
point 8, and a straight line through & intersects ab, be in « and y
respectively. Prove the following method for determining the
magnitudes of the three unknown forces:

Divide 45 in (" in the same ratio that a divides y& ; let straight
lines through € and B, parallel to y8 and be respectively, meet in C;
also let straight lines through €' and 4, parallel to ¢d and da respec-
tively, meet in D. Then BC, (D, DA represent the magnitudes
of the forces which act along the lines be, ¢d, da respectively.

Apply the method to the solution of Question 5.

20. A uniform beam 4B is supported by two fine light strings
AC, BD, the latter being vertical, and the angles DBA, BAC
equal to one another. The beam is maintained in this position
by a horizontal force applied at B. Show that the tension of
the string AC is equal to half the weight of the beam.

21. In the figure of Art. 103, prove that BD is parallel to the
line joining the intersection of bc and ed with the intersection of
ab and da.

22. In the figure of Art. 103, if the parallelogram BADA' be
completed, prove that ('A’ is parallel to the line joining the
intersection of ab and c¢d with the intersection of be¢ and da.
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23. A force along AB is in equilibrium with three forces in
the lines BC, CD, DA ; prove each of the following :

(i) If AB, CD are parallel, and in the same direction, the
forces are in directions AB, BC, CD, DA, and are pro-
portional to CD, BC, AB, DA respectively.

(ii.) If 4B, CD are parallel, and in opposite directions, the
forces are in directions 4B, OB, CD, AD, and are pro-
portional to OD, BC, AB, DA respectively.

(iii.) If AC, BD, are parallel, and either in the same or
opposite directions, the forces act one way round, and
are proportional to the linés along which they respec-
tively act.

(iv.) If ABDC is a parallelogram, or if ABCD is a parallelo-
gram, the forces are proportional to the sides along
which they respectively act.

(v.) If 4, B, ¢, D are points taken one way round on the
circumference of a circle, the forces are in directions
AB, OB, CD, AD, and are proportional to C'D, DA,
AB, BC respectively.

(vi.) If 4, B, D, C are points taken one way round on the
circumference of a circle, the forces are in directions
AD, BC, CD, D4, and are proportional to CD, DA,
ADB, BC respectively.

(vii.) If one of the points 4, B, C, D is the orthocentre of
the triangle formed by the joins of the other three,
the forces in the lines 4B, BC, CD, DA are propor-
tional to CD, DA, AB, BC respectively.

(viii.) If D is the intersection of the medians of the triangle
ABC, the forces are in directions 4B, OB, DC, DA,
and are proportional to AB, BC, 30D, 3D A respectively.

24. Prove the following geometrical properties of the figures
of Art. 109: )
(i) If D is the centre of the circle which circumscribes the
triangle ABC, prove that B’ is the centre of a circle
which touches the sides of the triangle "V A4’
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' (ii.)~If D is the centre of a circle which touches the sides

of the triangle ABC, prove that 5 is the centre of
the circle which circumscribes the triangle ¢"D'4’.

(iii.) If one of the points 4, B, €, D is the orthocentre of

the triangle formed by the joins of the other three,
prove that each of the points A', I, ¢, D' is the
orthocentre of the triangle formed by the joins of the
other three.

Prove also that in this case the figures ABCD,
C'D'A'L are similar.

(iv.) Tf the points 4, B, €, D are concyclic, so are the points

B, ', D.
Prove that in this case also the figures ABCD,
C'D'A'D are similar.

(v.) If the figure A'B'C’D is similar to the figure CDAL,

prove that either the four poiuts 4, B, ¢, D are con-
cyclie, or each is the orthocentre of the triangle formed
by the joins of the other three.

(u) If the straight lines AC, BD intersect at O, prove that

04.04'=0B.0B'=0C.00"=0D.0D.

Hence show that if distances 04", 0B", 0C”, OD" are
taken along 04, OB, OC, OD respectively, such that
04.04"=0B.0B"=00.0C0"=0D.0D",
the forces in AB, BC, CD, DA are proportional to

A"B", B"C",.C"D", I'A" respectively.

(vii.) If 04.0B=0C.0D, prove that the forces in 4B, CD

are proportional to A5, CD respectively.

. (viii.) If the parallelogram B'A’D'a be completed, prove that

(o is parallel to the line joining the intersection of
BC and DA to the intersection of /D and A4B.

25. Four forces in equilibrium act in the lines AB, BC, CD,
DA. Points 4’, B, €', D are the centres of the circles.which
circumscribe the triangles BCD, CDA, DAB, ABC respectively.
Prove that the forces in the lines AB, BC, CD, DA are pro-
portional to "D, D'A’, A'B, B'C" respectively.



EXAMPLES XI. 193

26. Four forces in equilibrium act along straight lines, which
bisect B, BC, CD, D.1 at right angles; prove that their directions
must be such that, in going along 4BCDA, the forces are all to
the right or all to the left, and that the magnitudes of the forces
are proportional to the lines to which they are respectively per-
pendicular.

27. Two known forces, represented by AB, BC, act along known
lines ab, be respectively, and are in equilibrium with two unknown
forces, one of which acts along a known line ed, and the other
through a known point Z. Prove the following method for
determining the unknown forees :

Through the intersection of ab, be draw ac parallel to A C, and
from X draw da to the point of intersection of ac, cd. Through
A and ¢ draw straight lines parallel to ad, cd respectively, to meet
in D. Then CD, DA represent the unknown forces, and cd, du
are their lines of action respectively.

28. In the preceding example, prove also the following method
for determining the unknown forces :

Through A draw ax to the point of intersection of ab and be, and
let the straight line through 4, drawn parallel to ez, meet BC in X.
Through # draw xd to the point of intersection of be and ed, and let
straight lines through Yand C, drawn parallel to zd, cd respectively,
meet in D, Join OA, and draw through A a straight line da
parallel to DA. Then CD, DA represent the unknown forces,
and cd, do their lines of action respectively.

D.S. N
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endeavour to complete both polygons, making them
both close.

We append the space diagram and force diagram for
a system of five forces P, @, R, S, T in equilibrium.
The student cannot make himself too familiar with the
manner in which the two figures correspond.

111. In this chapter we confine ourselves to the case
in which the forces are parallel. The force polygon
reduces to a straight line, or rather, a double straight
line. Let a system of parallel forces whose measures
are P, Q, R, X, ¥ be in equilibrium. Let ABCDEA
be the force polygon for the system, so that 4B, BC,
CD, DE, EA represent the forces P, @, R, X, Y respec-
tively, and let the lines of action of these forces be
marked ab, be, cd, de, ea respectively.

1)
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Fie. 122. Fig. 122 a.

Suppose that the forces P, €, R are known com-
pletely, but that the forces X and Y are at present
partly or wholly unknown. We are able to construct
the force polygon to this extent: we can with any
suitable scale construct ABCD, but the point % is at
present unknown.
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Take any pole O and draw 04, OB, 0C, OD. We
can then construct the funicular polygon to this extent:
we can draw the strings oa, ob, oc, od, the point of
intersection of oa and ob being chosen anywhere in ab,
but the string oe cannot at present be drawn.

Thus we see that there are three points to be deter-
mined,—wviz., the point £ and the extremities of the
string oe,—and these points are subject to this con-
dition, that OF shall be parallel to oe. The position of
E determines the magnitudes and directions of X and 1

The work now falls under the following cases:

I Let the magnitude and direction -of one of the
two forces X and Y be known, and the line of action
of one of them also known.

The knowledge of the magnitude and direction of
one gives the point £ immediately, and determines the
magnitude and direction of the other also. The know-
ledge of the line of action of one (say X) gives one
extremity of the string oe, for we can find the point of
intersection of od and de. We can then draw oe parallel
to OF, and the point of intersection of o« and oe is a
point in the line of action of the remaining force (1)

II. Let the lines of action of the two forces X and
Y be known. Then we have at once both extremities
of the string oe. We then draw OZ parallel to oe,
and thus determine the position of %, and with it the
magnitudes and directions of X and 1.

112. As an example of the above, let it be required to
find three forces acting along the given lines be, cd, da,
which are in equilibrium with a given force whose
measure is P acting along the given line ab; the
straight lines ab, be, ¢d, da being all parallel.
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Take AB to represent the given force, and in AB
take any point . We can then find, by the method
given above, two forces acting along c¢d, da, which are
in equilibrium with the given force and a force repre-
sented by BC acting along be.
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Fie. 123. Fic. 123a.

Thus the problem is indeterminate, as we may take
C anywhere in AB.

So, also, the problem of resolving a given force into
three parallel forces, along known lines parallel to
its own direction, is indeterminate.

113. Ex. 1. 4 rigid beam, acted wpon by a given
system of wertical forces, rests in a given horizontal
position, being supported by two smooth pegs, situated
at given points. It is required to determine the-pres-
sures between the beam and the pegs.

Let AB, BC, (D, DE be taken to represent the given
forces, and let their lines of action be marked ab, be,
cd, de respectively.
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The pressures of the pegs upon the bheam will be
both vertical. Let the verticals through the pegs be
called ef, fa.

Take any pole O, and draw 04, OB, 0C, 0D, OL.
Starting from any point in ab, we can draw the strings
oa, ob, oc, od, oe of the funicular polygon. Also, joining

Fic. 124, Fic. 124a.
the point of intersection of oa and af with the point
of intersection of oe and ef, we have the string of com-
pleting the funicular polygon. '

Draw OF parallel to of, to meet AE in F. Then
EF, FA represent the pressures of the pegs upon the
beam acting along ef, fa respectively.

114 Ex. 2. 4 fine rod AB, whose centre of gravity
is in a given position G, and whose weight is of given
magnitude w, rests in a horizontal position upon two
smooth pegs C and D, situated in given positions. The
pegs C and D cannot sustain pressures greater than
P, and Q, respectively. It is required to find the
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portion of the rod, at any point of which a given
load W may be applied.

Il

o,
Wi
M,

“ -
Fig. 125. F16, 125a.

Suppose the rod is in equilibriumn when the load W
is applied at X. TLet P and @ be the pressures of the
pegs € and D respectively upon the rod.

Draw HK, KL to represent w and W respectively,
and let the verticals through G, X, D, C be marked
Lk, kl, lm, mh respectively. Take any pole O.

From any point p in mh draw the string ok, and
from the point of intersection of ok and hk draw the
string ok, meeting Al in x. From a2 draw the string
ol, meeting Im in g. Then, joining pg, we have the
string om, completing the funicular polygon. Draw
OM parallel to om, to meet HL in M. Then LM, MH
represent ¢ and P respectively.

For different positions X, and X, of X, we have
different positions «; and x, of #, which give different
positions ¢, and ¢, of ¢; and these lead to different
positions M, and M, of M.
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Measure HM, vertically downwards to represent P,
and LM, vertically upwards to represent ¢, Then,
unless M, and LM, overlap, it will be impossible to
support the load. If they do overlap, the point M
must lie between M, and MM,

By drawing pq,, pg, parallel to OM,, OM, respectively,
we easily get the points ¢, and g¢,, and from these
the points z; and x,, and then the points X, and X,.
Hence X must be some point between X, and X,
Thus X,X, is the required portion of the rod.

115. Ex. 3. A4 fine heavy rod ACDB rests in a
horizontal position wpon two smooth pegs C and D,
situated in given positions. The greatest load which
can be applied at A without disturbing the equili-
brium s of given weight P, and the greatest load
which can be applied at B without disturbing the
ecquilibrium is of given weight Q. It is required
to determine the weight of the rod, and the position
of its centre of gravity.
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Fic. 126. F1g, 126a.

When the load P is applied at 4, the rod is on the
point of turning about C; thus there is no pressure
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between the rod and the peg D, and the pressure of
the peg C upon the rod is an unknown force X verti-
cally upwards.

When the load  is applied at B, there is no pressure
at C, and the pressure of the peg D upon the rod is
an unknown force ¥ vertically upwards.

The weight of the rod balances the two forces P
and X ; it also balances the two forces Q and Y. Hence,
if we reverse the two forces @ and Y, the four forces
P, X, Q reversed and Y reversed form a system in
equilibrium.

Draw HK, KI to represent the forece P and the
reversed force  respectively, and mark the verticals
through 4 and B with the letters hk, kI respectively ;
also, let the verticals through D and C be called Im,
mh respectively.

Take any pole O, and draw OH, OK, OL. Starting
from any point on hk, draw the strings ok, ok, ol, and
complete the funicular polygon by drawing the string
om. Draw OM parallel to om, to meet HK produced
in M. Then MH represents X.

Now the forces represented by MH, HK, acting
along the lines mh, hk respectively, are in equilibrium
with the weight of the rod. Therefore the weight of
the rod is represented by KM, and acts along a vertical
line through the intersection of om and ok. Hence,
drawing a vertical line through the intersection of the
strings om, ok to meet the rod in @, we see that the
point G so determined is the centre of gravity of the
rod, whose weight is represented by KM.
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EXAMPLES XII

1. A bookshelf, supported at its extremities, is just filled by
two sets of books, the books of each set being placed together.
One set consists of 14 volumes, each 1% inches thick, and each
weighing 24 pounds; the other consists of 12 volumes, each 1}
inches thick, and each weighing 2 pounds. Find the pressures
on the supports, the mass of the shelf being 8 pounds.

2. A bent lever, of weight 1V, consists of two uniform, heavy,
straight rods, whose lengths are as 3 to 4 ; find the weight of the
mass, which must be attached to the end of the shorter rod, in
order that—the fulcrum being at the junction of the two rods,
which are of the same material and thickness—they may make
equal angles with the horizon. \

3. A uniform straight rod, of length 18 inches, and weighing
9 pounds, is suspended from its extremities by two vertical strings,
neither of which can support a tension greater than 50 pounds’
weight. Find the greatest load which may be applied to the
rod at a point 5 inches from one end.

4. A heavy uniform beam, of length 20 feet, and weighing
50 pounds, is suspended horizontally by two vertical strings
attached to its extremities, each of which can sustain a tension
of 40 pounds’ weight. How far from the centre of the beam
must a mass of 20 pounds be placed, so that one of the strings
may just break?

5. A uniform rod AB, of length 1 foot, and mass 10 pounds,
is suspended at 4 and B, in a horizontal position, by two
vertical strings, each of which can support a tension of 26 pounds’
weight ; how far from the centre of the rod must a mass of 28
pounds be placed, so that one of the strings may just break?

6. A heavy straight rod ACDB, of length 12 inches, rests upon
two smooth pegs ¢ and D, distant 3 inches and 2 inches respec-
tively from 4 and B. The greatest loads which can be applied
in' turn at 4 and B, without disturbing the equilibrium, are
8 and 9 pounds respectively. Find the weight of the rod, and
the position of its centre of gravity.
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present unknown. Let the lines of action of P, @, R, X
be also given and represented by those indicated in the
figure on the left, and let H be a given point in the
unknown line of action of the force Y.

Draw lines 4B, BC, CD to represent in magnitude
and direction the given forces P, @, R respectively.
Draw also DE in the direction of X. Mark the lines
of action of the forces P, @, R, X by the letters ab,
be, cd, de respectively.

To complete the force polygon we have only to find
the remaining vertex, which is somewhere in D, and
will be denoted by Z. The line £4 will represent Y,
and its line of action will be denoted by ea, but at
present the position of X and the direction of ea are
unknown.

Take any pole O and draw the rays 04, OB, OC,
OD. The remaining ray OFE cannot at present be
drawn.

As H is the only point known in the line of action
of Y, we wiil commence to construct our funicular
polygon at H. Draw through H a straight line ao
parallel to AO. From the point of intersection of oa
and ab draw ob parallel to OB. From the intersection
of ob and be draw oc parallel to OC. From the inter-
section of oc and ¢d draw od parallel to OD. To
complete the funicular polygon we have merely to
join H to the point of intersection of od and de. The
line so drawn we call oe, and it must be parallel to
the remaining ray of the force polygon.

Hence draw OF parallel to oe to meet DE in £, and
join B, A. Then DE gives us X, and XA gives the
magnitude and direction of Y.
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118. II. A number of forces im one plane are in
equilibrium. Al are known completely with the ex-
ception of three whose lines of action are known. It
is requirved to determine the magnitudes of the un-
known forces.

We can deduce this from the preceding case. Let
P, Q, R X, X, X, be the measures of six forces acting
along known lines, and keeping a rigid body in equi-
librium, the three P, @), R being known, and the three
X, X,, X; at present unknown.

Find H, the point of intersection of the lines of
action of X, and X, Then the two foreces X, and X,
are equivalent to an unknown force whose measure is
Y (say) acting through I in an unknown direction.

Hence we proceed exactly as in the preceding case.
Having determined in this way the position of E, we
know that ZA represents Y. Then, denoting the lines
of action of X, and X, by ef, fa respectively, we draw
through £ and A straight lines parallel to ef, af respec-
tively to meet in F.

Fic. 128, Fic. 128,

The three unknowns X,, X, X, are found by
measuring DE, EF, FA respectively.
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If no two of the lines of action of X, X, X, meet
in an accessible point, we may proceed as follows:

Before choosing the position of the pole O, draw
from a point in ab a straight line oa towards the
inaccessible point of intersection of the lines of action
of X, and X, This we can do by the method described
in Art. 104

Through 4 draw AO parallel to ao, in 40 choosing
any point 0, and draw the rays 0B, 0C, OD. Then we
may proceed as before, completing the funicular polygon
by drawing a straight line oe from the point of inter-
section of od and de towards the inaccessible point of
intersection of the lines of action of X, and X,

119. Ex. A uniform ladder, weighing 85 pounds, and
of length 20 feet, rests with one end against a smooth
vertical wall and the other end upon the smooth hori-
zontal ground. A man weighing 150 pounds stands
on the ladder at a point three-quarters of the way up,
and it is kept from slipping by a fine horizontal
string of length 9 feet, attuched to the ladder ot «
point a quarter of the way up, and to the wall at a
point vertically below the top of the ladder. Find the
tension of the string and the reactions of the ground
and the wall.

We can construct the space diagram to scale from
the data. Let AB represent the ladder, D its middle
point, ¢ and E the middle points of AD and DB
respectively, CF the horizontal string attached to the
ladder at C and to the wall BG and F.

Consider the external forces acting on the ladder
and man as one system. They are:—85 pounds’ weight
acting vertically downwards through D, 150 pounds’
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with the letters &/, Im respectively ; also mark the lines of
action of 7', R, S with the letters mn, np, pk respectively.

Take any pole O and draw the rays OK, OL, OM.
Through H draw ok parallel to OK ; through the point
of intersection of ok and kl draw ol parallel to OL;
through the point of intersection of ol and Im draw
om parallel to OM; through H draw the line on to
the point of intersection of om and mn, thus com-
pleting the funicular polygon. Draw ON parallel to on
to meet the horizontal through M in N, and let the
vertical through N meet the horizontal through K
in P. Then KLMNPK (this way round) is the force
polygon.

On measuring the lines MN, NP, PK we find that
T=155 R=235, S=155. Thus

Tension of string =155 pounds’ weight.
Reaction of ground=235 pounds’ weight.
[Reaction of wall =155 pounds’ weight.

Otherwise.—The force polygon KLMNPK will evi-
dently be a rectangle. This shows at once that R=235
and S=T.

Now the weight of the ladder is equivalent to two
forces each of 42} pounds’ weight acting vertically
downwards through A and B. The weight of the
man is equivalent to a load of 37} pounds at A and
112} pounds at B. Also the tension of the string is
equivalent to 27" along AG and }7 along Hb.

Considering only those forces which may be taken
as acting at 4, we see that we have

R —42} —87},4.e. 155 pounds’ weight, vertically upwards,
and 37 along AG.
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EXAMPLES XIIL

1. A uniform ladder, weighing 190 pounds, and of length 41
feet, rests with one end against a smooth vertical wall, and with
the other end upon the ground ; if it is prevented from slipping
by means of a peg at its lowest point, which is distant 9 feet
from the wall, find the pressures on the peg, the ground, and
the wall, when a man of 10 stone is standing on the ladder three-
quarters of the way up.

2. A uniform ladder, weighing 120 pounds, and of length 34
feet, rests with one end against a smooth vertical wall, and with
the other end upon the ground; if it is prevented from slipping
by means of a peg at its lowest point, distant 16 feet from the
wall, find the reactions of the peg, the ground, and the wall,
when a man weighing 150 pounds is standing two-thirds of the
way up.

3. A uniform ladder is placed against a smooth vertical wall ;
the bottom of the ladder is 6 feet from the wall, and the top 8 feet
from the ground; the mass of the ladder is 12 pounds, and a
man of 10 stone stands on the ladder 2 feet from the bottom.
Find the pressure of the ladder on the wall, and the reaction
of the ground in direction and magnitude.

4. A uniform rod 4B, of length one foot, and mass 8 pounds,
is capable of turning freely in a vertical plane about a point
0, distant 3 inches from .. The end B is loaded with 16
pounds, and the rod is kept in a horizontal position by a string
AC, 5 inches long, attached to the end 4, and to a fixed point
C, situated vertically below 0. Find the tension of the string,
and the action at O in direction and magnitude.

5. A uniform rod 40B, of mass 5 pounds, is capable of turning
freely about a fixed point 0. The end B rests against a smooth
vertical wall, and from the end A is suspended a mass of 7 pounds.
Find the reaction of the wall at B, and also the action at the
hinge O, supposing that 40=14D, and that the distance of 4
from the wall is 4 times its distance above B.
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diagram is drawn, into a number of portions which are
lettered o, a, b, ¢, d, € in the figure. The rod separating
the space o from the space « is called the rod oa; the
line separating the space a¢ from the space b is called
the line «b, and so on. The joint at the common
extremity of the rods oa, ob is called the joint oab,
and so on.

The whole framework must be in equilibrium con-
sidered as a rigid body. That is, if the joints were to
become stiff' so that they would not work, and if the
same forces were applied as before, the polygon of rods
would still be in equilibrium. A

Hence, if straight lines AB, BC, D, DE be drawn
to represent the forces applied in the straight lines
ab, be, od, de respectively, the straight line £A4, which
closes the force polygon, must represent the remaining
force applied in the line ea.

We might now proceed to construct a funicular
polygon corresponding to an arbitrarily chosen pole,
but we shall have to consider the equilibrium of the
different parts of the framework, and we shall see
that the polygon of rods is itself a funicular polygon
corresponding to a pole which we can find.

The consideration of the equilibrium of each rod
separately, tells us that each rod is in a state of direct
compression or tension.

Now cousider the equilibrium of the portion of matter
in the immediate neighbourhood of the joint oab. It
is acted upon by three concurrent forces, namely, the
force applied in the straight line «b, and the reactions
of the adjoining portions of the rods oa, ob. Draw
A0, BO parallel to the rods ao, bo respectively, to meet
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in 0. Then ABOA (this way round) is the triangle of
forces for the joint abo.

Now consider the equilibrium at the joint bco. Since
BO represents the action of the rod bo at the joint abo,
OB must represent the action of the same rod at the
joint beo. Also BC represents the force applied in the
line be. Therefore, joining OC, we see that BCOB (this
way round) is the triangle of forces for the joint bco.
So that CO is parallel to the rod co, and represents its
action upon the joint beo.

Proceeding in this way, and joining 0D, OF, we see
that OD, OF are parallel to the rods od, oe respectively
and represent the stresses in those rods. Also, in con-
sidering the equilibrium of any joint, the direction
arrows round the triangle determine whether the rods
which meet at that joint are struts or ties. All tie
rods may be replaced by strings.

We see that for equilibrium it is necessary and
sufficient that the force polygon should close, and that
the lines drawn from the angular points of the force
polygon parallel to corresponding rods should be con-
current, these lines representing the stresses in the rods.

The student should notice particularly the exact
manner in which the diagrams correspond. The line
representing the stress in any rod is drawn from the
common extremity of the lines which" represent the
forces applied at the extremities of that rod. The
polygon of rods is, in fact, a funicular polygon for the
system of applied forces corresponding to the pole O.

121. Asa typical example,let us consider the following:

The framework considered above rests in a given
position of equilibrium. One of the applied forces s
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kmown completely, and the lines of action, but mot
the magnitudes, of all the others are known with one
exception, the remaining force being wholly unknown.
It is requirved to find the unknown forces and the
stresses in the rods.

Fie. 131, Fi6. 13la.

Let the lines ab, be, de, e« be known, the dotted line
cd being at present unknown. Then we can draw the
space diagram with the exception of the dotted line.

Let the force applied in the line ab be known, the
other forces being at present unknown.

To construct the force diagram, we take 4B to repre-
sent the given force applied in the line ab. Then we
draw A0, BO parallel to ao, bo respectively, to meet
in 0. We are then able to draw the directions of OC,
0D, OF parallel to oc, od, oe respectively. The point €
is given by drawing BC parallel to be, to meet OC in C.
Similarly we get the point Z, and then the point D.
Joining CD, we have the magnitude and direction of
the force applied at the joint ocd. The force diagram
is now fully drawn, and the magnitudes of any of the
unknown forces can be found by measuring the lines of
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the force diagram. The space diagram is completed by
drawing ¢d parallel to CD. :

122. The simplest example is that in which the
framework is triangular. The figure below represents
a triangular framework resting in a vertical plane on
smooth horizontal supports at the joints obe, oca; the
rod oc is horizontal, and a given vertical load is applied
at the joint oab.

A
5 b 0 ¢
o
7 : 7 2
Fig. 132. Fic. 132a.

The force diagram is shown on the right. The rod
oc is a tie, and the other two are struts.

It is often convenient to indicate in the space diagram
which of the rods are ties, and which are struts. This
we can do by drawing a double or thick line to indicate
a strut, and a single or thin line to indicate a tie. Thus:

7 7
Fia. 133.

Or, it is found convenient to mark a strut 4, and a tie —.
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horizontal forces must be applied at the other two
angular points, in order that the framework may rest
with the lowest joint 5 feet wvertically below the point
of support? Find also the stresses in the rods.
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Fig. 134a.

Having constructed the space diagram to scale, let
the different portions of the figure be marked with the
letters o, a, b, ¢, d, as indicated. The line cd, being the
line of action of the force of constraint at the point
of support, is at present unknown.

With any suitable scale, draw AB vertically down-
wards, of length 60 units, to represent -the tension of
the string which supports the mass. Draw through
A and B straight lines 40C, BOD parallel to ao, bo
respectively, to meet the horizontals through B and 4
in C and D respectively.

On measuring the lines 04, OB, OC, 0D, BC, DA,
we find that the tensions of the rods oa, 0b, oc, od and
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the two horizontal forces are 36, 48, 64, 27, 80, 45
pounds’ weight respectively.

Also, CD determines the magnitude and direction of
the force of constraint at the point of support.

124 Ex. 2. The extremities H and K of a fine light
rod, of given length, are connected with a fized point L
by two fine light strings, each of given length. From
H and K are suspended two masses of given weights.
It is required to find the position of equilibrium,
the tension of ecach string, and the thrust im the
rod.

The data are sufficient to enable us to construct the
shape of the framework, but not its position relatively
to the vertical

Let W, and W, be the measures of the loads applied
at H and K respectively. :

S

b
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F1a. 135. Fie. 135a.

Considering the equilibrinin of the triangle HK L as
one rigid body, we see that the action at L has to
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balance two vertical forces W, and W, at H and K
respectively. Hence we divide HK in the point I, so
that HN: NK=W,: W,. Then LN must be vertical.
This determines the position of equilibrium, and the
force diagram can now-be constructed.

125. Ex. 3. In the system indicated below, the
point obc is fixed, and the joint oca s connected
with another fixed point by a fine light rod ac. A
given force is applied in a given direction ab to the
Joint oab. It is requirved to find the stresses im the
rods.

Fic. 136. F1c. 136a.

We can draw AB to represent the given force; then
AO and BO, determining the point O; then OC and
AC, determining the point C.

The straight line BC represents the constraint upon
the hinge obc; the straight line C4 represents the con-
straint upon the rod ac at its fixed extremity.

126. Ex. 4. The accompanying figure represents a
Sframework of four light rods freely joimted at their
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extremities. The points obc and oda are fized, and
Jorces P and Q of given magnitudes are applied in
given directions at the other two joimts, as indicated.
It is required to find the stresses in the rods, and the
actions at the two fized points.

A

Fic, 137, Fic. 137a.

Draw AB to represent P (which acts along the line
ab) in magnitude and direction. Draw A0, BO parallel
to ao, bo respectively. This gives the point 0. The
directions of OC, OD can be drawn parallel to oc, od
respectively.

Take any point €’ in OC, and draw C’D’ to represent
@ (which acts along ¢d) in magnitude and direction.
Draw D'D parallel to CO, to meet OD in D. Through
D draw DC parallel to D'C", to meet OC in C. Thus
we have the points €' and D. We complete the force
diagram by joining B, ¢ and D, 4. Then BC and
DA represent the actions at obe and oda respectively,
and the stresses in the rods are given by OA, OB,
0¢, 0D.
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3. Three fine light rods BC, CA4, AB, of lengths 15, 13, 14
inches respectively, are freely jointed at their extremities to form
the triangular framework 4BC, which is capable of turning freely
about the fixed point 4. To the joint € there is applied a force
of 56 pounds’ weight in a direction perpendicular to 4B, and
outwards from the triangle. What force must be applied at the
joint B, in a direction perpendicular to the rod C., to preserve
equilibrium ? Find also the stresses in the rods and the action
at the hinge d.

4. Three equal rods, of no appreciable weiglht, are freely jointed
together at their extremities to form a triangular framework
A BC, which is capable of turning freely in a vertical plane about
the joint .{, which is fixed. A mass of 100 pounds is suspended
from B, and the framework is sustained in a position in which
AB is horizontal, and € uppermost, by means of a horizontal
fine string CD, which connects ¢ with a fixed point 2. Find
the tension of the string and the stresses in the rods; determine
also the magnitude and direction of the reaction at ..

5. The triangular framework of Question 3 is capable of turning
freely about the joint B, which is fixed ; a load of 168 pounds
is applied. at C, and the whole is supported with 4B horizontal,
and C below ADB, by means of a vertical force applied at .1.
Find the magnitude of this force, the reaction at B, and the
stresses in the rods.

6. Four fine light rods are freely jointed at their extremities
to form a quadrilateral ABCD, the rods 4B, AD being each of
length 7-5 inches, and the rods BC, CD each of length 117 inches.
A mass of 48 pounds is attached at C, and the whole is supported
at 4. What horizontal forces must be applied at B and D so
that the points B and D may rest 9 inches apart in a horizontal
line? Find also the tensions of the rods.

7. Four fine rods, of no appreciable weight, and each of length
5 feet, are freely jointed at their extremities to form a rhombus
ABCD, which is placed between two parallel walls, distant 8 feet
apart, so that the framework touches the-walls at B and D, and
the straight line BD is horizontal and perpendicular to the walls.
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If the joints 4 and C are pressed towards one another, with forces
each of 60 pounds’ weight, find the pressures upon the walls.

8. In Art. 123, suppose that the line da passes through the
opposite angular point, and that otherwise the data are unaltered.
Find the forces applied in the lines be, da, and the stresses in
the rods.

9. Four fine light rods are freely jointed together at their
extremities to form a parallelogram ABCD, AD being of length
9 inches and 4B of length 13 inches. The point 4 is fixed, and
C is attached to a fixed point £, by a fine elastic string, so that
the points 4, €, £ are in one straight line. The points B and
D are pulled apart 10 inches by forces of 100 pounds’ weight,
applied at B and D in the line BD. Find the tension of the
string and the actions in the rods.

10. A fine light string ABCDEF, of length 33 inches, has its
extremities fixed at two points 4 and F) situated 27 inches apart
in a horizontal line. The portions of string 48, BC, CD, DE, EF
are of lengths 8%, 5, 6, 5, 8% inches respectively, and another light
string, of length 12 inches, connects the points B and E. Two
masses, each of 24 pounds, are suspended from ¢ and D, and
the whole system rests in a symmetrical position with BZ and
CD horizontal. Find the tension of each portion of string.

11. A light rod 4B, of length 1 foot, rests in a horizontal
position, with masses each of 16 pounds suspended from A4 and
B. A fine light string ACDDB, of length 16 inches, has its ex-
tremities attached at 4 and B, and the whole is supported by
means of two vertical forces applied at ¢ and D. The portions
of string AC, CD, DB are of lengths 5, 6, 5 inches respectively,
and the whole rests in a symmetrical position with CD hori-
zontal. Find the tension of each portion of string.

12. Four fine light rods, each of length 5 feet, are freely
jointed at their extremities to form the rhombus ABCD. The
joints B and D are fixed, B being 6 feet vertically above D, and
masses of 30 and 60 pounds are hung from 4 and C respectively.
Find the stresses in the rods and the magnitudes of the reactions

at B and D.
D.S. P
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13. Two fine light rods 4B, BC, each of length 2 feet, are
freely jointed together at the point B, which is fixed. The rods
rest in a horizontal position, with masses of 70 and 84 pounds
hung from 4 and C respectively, being supported by two fine
strings connecting 4 and € with a fixed point D, situated 7 inches
vertically above B. Find the magnitudes of the actions at B
and D, the tensions of the strings, and the stresses in the rods.

14. A fine light string 4BCDE, of length 49 inches, has its
extremities attached to the fixed points 4 and E, situated 338
inches apart in a horizontal line, and supports at its middle point
C a mass of 78 pounds. Two fine light rods BF, FD, each of
length 156 inches, are capable of turning freely about the fixed
point F, which is sitnated at the middle point of AZ; the rods
are attached to the string at points B and D, distant 65 inches
from A and 65 inches from Z respectively. Find the tensions
of the different parts of the string, and the thrusts in the rods.

15. Three fine light rods are jointed together at their ex-
tremities to form a triangle ABC, which is right-angled at B.
The framework rests in a vertical plane upon a smooth horizontal
plane at 4 and C, and supports a load at B. If BD is drawn
perpendicular on AC, prove that the reactions at 4 and C, the
load at B, the thrusts in the rods 4B, BC, and the tension
of the rod AC are proportional to DC, 4D, CA, BC, AB, BD
respectively.

16. Four fine light rods are freely jointed at their extremities
to form a parallelogram ABCD, which is in equilibrium under
the influence of forces P, @, R, S, acting at 4, B, C, D respectively.
If the forces P and R are equal and opposite, their lines of action
passing through the middle points of BC, DA respectively, prove
that the forces @ and S are also equal and opposite, and that their
lines of action pass through the middle points of DA, BC respec-
tively. Prove also that, if H be the middle point of BC, the
forces P and ¢, and the tensions of the rods 4B, BC, CD, DA,
are proportional to HA, DH, AB, BH, CD, H( respectively.

17. Four fine light rods are freely jointed at their extremities
to form a quadrilateral framework 4BCD, which is in equilibrium
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under the influence of forces applied at 4, B, C; D. If the forces
applied at 4 and B are equal, and in opposite directions, prove
that BC must be parallel to 4D, and that the forces at € and
D are also equal and in opposite directions.

18. Four fine light rods are freely jointed at their extremities
to form a quadrilateral framework ABCD, in which 4D is parallel
to BC, and the framework is kept in equilibrium under the
influence of forces P, P, Q, (), applied at 4, B, C, D, in directions
OD, DC, AB, BA respectively. Prove that the forces P and @,
and the stresses in the rods AB, BC, CD, DA, are proportional
to CD, AB, AB, BC~AD, CD, BC ~AD respectively.

19. Three fine light rods are freely jointed at their extremities
to form a triangular framework ABC, which is in equilibrinm
under the influence of three forces applied at 4, B, C, in the
lines 04, OB, OC respectively. Any point A’ is taken in BC,
and straight lines through A4’, parallel to BO and CO, meet A0
in ¢’ and B’ respectively. Prove that

(i.) The straight lines through ¢’ and B/, parallel to 4B
and CA respectively, meet at a point O’ in BC.

(ii.) The forces in the lines 04, OB, OC, and the stresses
in the rods BC, (4, AD, are proportional to B'C",
C'A, A'B', 04’y OB, O’C" respectively.

(iii.) If O is the centre of a circle which touches each side
of the triangle ABC, (/ is the centre of the circle
which circumscribes the triangle 4'B'C”, and hence
the stresses in the three rods are equal to one
another.

(iv.) If O is the orthocentre of the triangle 4 BC, the figure
A'BC'0O is similar to the figure 4 BCO, and hence
the forces in the lines 04, 0B, 0C, and the stresses
in the rods BC, CA, AB are proportional to BC, (4,
AB, OA, 0B, OC respectively.

{v.) If O is any point on the circle which circumscribes the
triangle ABC, the figure A'B'C'0' is similar to the
figure ABCO, and hence as in (iv.).
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(vi.) If O is the intersection of the medians of the triangle
ABC, (/ is the intersection of the medians of the
triangle A’B'C"; also the forces in the lines O,
OB, 0C, and the stresses in the rods BC, C4, AB
are proportional to 304, 30B, 30C, BC, C4, 4B
respectively.

(vii.) If ABOC is a parallelogram, ("A'B'0’ is similar to
0BAC, and hence the forces in the lines 04, 0B,
0C, and the stresses in the rods BC, C4, AB are
proportional to 04, 0B, AB, BC, C4, OC respectively.

20. A number of fine light rods are jointed together at their
extremities to form a closed plane polygon. O is any point in
the plane of the polygon. Show that a system of forces can be
found such that, acting at the joints along straight lines which
intersect at O, they will keep the framework in equilibrium.
Prove also that the stresses in the different rods are inversely
proportional to the lengths of the perpendiculars from O upon
those rods respectively.

21. Four fine light rods are freely jointed at their extremities
to form a parallelogram ABCD. O is a point which divides AC
in the ratio of 2:1. The framework is in equilibrium under
the influence of forces applied at the joints 4, B, (, D, in the
directions 04, OB, OC, OD respectively. Prove that the forces
in the lines OA, OB, OC, OD, and the tensions of the rods 4B,
BC, CD, DA, are respectively proportional to 304, 605, 120C,
60D, 248, 4BC, 4CD, 2DA.

22. A number of fine light rods are jointed freely at their
extremities to form a closed polygon ABCD ..., which is in equili-
brium under the influence of forces acting at the joints 4, B,
C, D, ..., in the lines 04, OB, OC, 0D, ... respectively. Prove
that, if the stresses in the rods 4B, BC, CD, ..., and the forces
at the joints 4, B, C, D, ... are proportional to 4B, BC, CD, ...,
04, OB, 0C, 0D, ... respectively, (i.) the number of rods is six,
(ii.) opposite rods are equal to one another, (iil.) each diagonal
is parallel to each of two opposite sides and equal to the sum
of those sides, (iv.) the point O is the middle point of each
diagonal.
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The student will have no difficulty in constructing
the force diagram, which is done just as in the preceding
chapter. The polygon OABCDEQ is the force polygon
for the whole system. For the joint abo we have the
triangle AB0OA ; for the joint bco the triangle OBCO,
ete.

I. If the rods are all given in position, and also the
directions of the applied forces, we can draw the force
diagram, provided we know the magnitude of one only
of the applied forces.

Suppose, for instance, that all the lines of the space
diagram are given, and that the force which acts along
the line be is fully known. We can then draw BC
and the straight lines BO, CO meeting in 0. Then
the directions of the lines 04, OD, O can all be
drawn. We can also draw the directions of B4, CD,
thus determining the points A and D respectively; and
from D we can draw DE.

II. If the applied forces are all fully known, that
is, in magnitude, direction, and line of action, we can
complete both diagrams, provided we know the positions
of two adjoining rods only.

For, as the forces are all known, we can construct
the line ABCDE. If also the rods ob, oc are given in
position, we can draw OB, OC, thus determining the
point O; and the rest of both figures is easily com-
pleted. This will not, however, give us the positions
of the points H and K, unless the lengths of the
extreme rods are given.

128. A fine light string is attached at its extremities
to two fized points, and rests in a vertical plane under
loads applied to it at different points.
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The student is recommended to draw the figures for
himself. He will take a number of equidistant parallel
vertical lines, marking the spaces between them a, b,
¢, d, etec. Then he will draw the straight line 4 BCD ...
vertically downwards, marking off AB, BC, CD, ete.,

A

Fic. 142, Fi6. 142a.

all equal to one another. He will draw two straight
lines od, oe across the spaces marked d and e respec-
tively, and OD, OE parallel to od, oe respectively.
This gives the point O, and the rest easily follows.

An examination of the two figures will show at once
that the tension of each portion of the string is pro-
portional to its length.

130. We have drawn in the space diagram of the
preceding article a closed curve intersecting two of the
strings ob, oh, and enclosing a portion of the system
within it.

Regarding the matter included within this curve as
one rigid body, let us consider the equilibrium of the
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forces acting externally upon it. These are: The ten-
sions of the two strings ob, oh, together with the
weights of all the parts included. The weights of
all these parts reduce to a single force represented by
BH, and acting along a vertical straight line situated
midway between be and gh.

. the strings ob, oh intersect at a point midway
between be and gh, and the triangle of forces for this
portion of the system is OBHO.

This gives a method of constructing the space diagram
without drawing the force diagram:

A D
B C
\,‘(
5/
3 s
4
iy S,
a h ¢ d ¢ J g
F1c. 143,

Let Aa, Bb, Cec, ete., be consecutive parallel lines
in which the loads are applied, and let the strings
be denoted by AB, BC, CD, etec. We will suppose that
the two strings AB, BC are given.
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Produce the line AB to meet Cc, Dd, Ee, etc., in
the points 2, 4, 6, etc.,, and find the middle points 7,
3, 5, ete., of B2, 24, 46, ete.

Then, joining IC, and producing to D, we have the
string CD; also 2D gives the string DE, 3E gives EF,
and so on.

131. Now let us suppose that the loads are sufficiently
numerous to enable us to look upon the string as-a
continuous curve instead of a series of straight lines.
The above piece of work will enable us to examine the
nature of this curve.

We will suppose that the points I and K are situated
in a horizontal line. Let P and P’ be any two points on
the curve, and let the tangents at P and P’ intersect
in Q. Draw PN, QR, P'N’ perpendiculars to HK.

K N B R N H
p
/P
r 14../
(0]

Q

p’

Fic. 144. Fic. 144a.

Then the curve must be such that the point ¢ lies mid-
way between PN and P’N’ for all positions of P and
P’; that is, R must be the middle point of NN’. Also,
the force diagram for the portion of string between
P and P’ is a triangle pp’Op, in which pp’ represents
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the total weight supported between P and I, and is
therefore proportional to NN, and p’0, Op are parallel
to the tangents at P’ and P respectively, and represent
the tensions at those points.

K B H

A L E M D
Fie. 145.

If P and P’ be taken to coincide with H and K
respectively, @ will lie vertically below B, the middle
point of HK, and, as H and K
may be taken to be any two points
of the string which lie in a hori-
zontal line, it follows that the figure
is symmetrical about the vertical v
through B. Let 4 be the lowest
point of the curve, then 4 is verti-
cally below B.

Take P’ to coincide with 4, and
let the tangent at P and the verti-
cal through P meet the horizontal
through A in L and M respectively. 0 a
Then L is the middle point of AM, =Y
and the triangle of forces for the portion AP is paOp,
where ¢0 is horizontal, and represents the tension at
A, Op is parallel to LP, and represents the tension at

7
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P, and pa represents the whole weight supported be-
tween A and P, and is proportional to AM.

Now let P move up to H, and let L, M, p become
E, D, h respectively for this new position of P. Then
£ is the middle point of 4D, and ha represents half
of the whole weight supported by the string. Thus

ap:ah=AM: AD

[We have
PM_1 PM 1 ap 1 ap ah 1 AM DH
AM™2 LM~ 2 0a” 2 ah'Oa~ 2" AD ED
_AM AB,
~ BH BH’
Z)—ABI=(%)2. That is, PM varies as the square
of AM.

The student of Higher Mathematics will know that
this shows that the curve is a parabola, with its axis
vertically upwards.]

132. If we know the positions of the points H, K, A
and the whole weight supported, we can determine (i.)
the directions of the string at I and K, and the tensions
at those points and at A; (ii) the tension at any
point of the string where its direction is given; (iii.)
the tension at any given horizontal distance from A ;
and (iv.) the position of any number of points on the
string.

(i.) The positions of the points H, K, A determine
the rectangle ADHB. We can therefore find £, the
middle point of A D, and, joining KH, we have at once
the direction of the string at H.

If the whole weight supported is known, we can
draw ha vertically downwards, and of such a length
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that it represents half the weight. Then we draw 2O
parallel to HE, to meet the horizontal through ¢ in O.
Measuring Ok and 0, we have the tensions at H and 4
respectively.

(ii.) Draw Op in the given direction, to meet ah in p.
Then Op represents the tension at that point of the
string where it is parallel to Op.

(iii.) Take AM equal to the given horizontal distance,
and find a point p in ah such that ap:ah=AM:AD.
Then Op represents the tension at the point P, which
is vertically over M.

(iv.) We can obtain the position of the point I, cor-
responding to a given position of M, by bisecting AM
in L, and drawing LP parallel to Op, to meet the vertical
through M in P. By varying the position of M we
can get as many points as may be required.

133. The problem we have been discussing is ap-
proximately that of the ordinary suspension bridge.
Here we may neglect the weight of the chain, and
that of the suspending rods, in comparison with that
of the roadway. The loads suspended from successive
portions of the chain are equal portions of the
roadway. If the lengths of the pieces are so adjusted
that the curve of the string takes up the shape we
have been considering, the tensions of the supporting
rods would not then tend to break or bend the roadway,
which must be made strong enough to bear without
bending, the strain due to loads moving across it.

134. Ex. 1. The figure below represents a beam, of
length 50 feet, and weighing 100 pounds, resting in a
horizontal position, being supported by five light ver-
tical strings commecting it with a light chain. The
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also at points « quarter of the way across the bridge.
If the shortest distance between the chains and the
roadway s 2 feet, find the distances of the roadway
below the chains at intervals of 15 feet, commencing at
the centre of the bridge.

The total mass of the roadway =120 x 20 x 100 pounds,
therefore the total load upon each chain=120,000 pounds.

Draw a horizontal straight line HBK, of length 120
units, to represent the span of the bridge. Through B,
the middle point of HK, draw B4 vertically downwards,
of length 16 units, and let the horizontal through A
meet the vertical through H in D. The point 4 re-
presents the lowest point of the chain.

In AD take points M,, M, M, so that

AM,=MM,=M,M,=M,D,
each portion representing 15 feet.

Draw ha vertically downwards, of length 60,000 units,
to represent half the load supported by each chain,
and let the horizontal through « meet in O the straight
line drawn through % parallel to HM,. Then Oa repre-
sents the tension of each chain at its lowest point.

In ah take points p;, p, p; so that

APy = PrPy= Doy = Pih-
Then Op, represents the tension of each chain at points
a quarter of the way across the bridge.

Let the straight line through the middle point of
ADM,, parallel to Op,, meet the vertical through M, in
P,, also the straight line through M, parallel to Op,,
meet the vertical through M, in P,, and the straight
line through the middle point of M,M,, parallel to Op,,
meet the vertical through M, in P,. Then the points



SUSPENSION BRIDGE. 241

P,, P,, P, represent points on the curve formed by one
of the chains.
On measurement we find that

0a=113,000, Op,=116,000.
Therefore the tension at the lowest pbint of each chain

is 113,000 pounds’ weight, and at a point a quarter
of the way across the bridge 116,000 pounds’ weight.

Also we find PM =1,
P,M,=4,
P,M,=9,

and, as the roadway is 2 feet below A, we see that
the distances of the roadway below the chains at
intervals of 15 feet, commencing at the centre of the
bridge, are 2, 3, 6, 11, 18 feet.

EXAMPLES XV.

1. The light rods 4B, BC, CD are freely jointed at B and C,
and the points 4 and D are smoothly hinged to two fixed points
situated in a horizontal line. If the figure ABCD is one half of
a regular hexagon when two masses are suspended from B and
C, prove that the weights of the two masses are equal, and
determine the stresses in the rods in terms of the weight of
either mass.

2. Three light rods 4B, BC, CD, of lengths 8, 5, 5 inches respec-
tively, are freely jointed at B and C, and the points 4 and D
are smoothly hinged to two fixed points, D being situated 7 inches
vertically above 4. A mass of 7 pounds is suspended from B,
and the system rests with 4B parallel to DC, being supported
by a force applied at € in a direction opposite to the bisector of
the angle BCD. Find the magnitude of this force and the stresses
in the rods. ) '

D.S. Q
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3. A light rod AB, of length 17 inches, is capable of turning
freely about the end 4 which is fixed. A fine string, of length
28 inches, has one extremity attached at B, and the other extremity
at D, a fixed point situated 3 inches vertically above 4. Find
what vertical force must be applied at C) a point of the string
15 inches from D, in order that the rod may rest in a horizontal
position, with a mass of 48 pounds attached at B. Find also the
tensions of both parts of the string and the stress in the rod. }

4. A light rod 4B is capable of turning freely in a vertical
plane about the fixed point 4. Tt is supported in a horizontal
position, with a mass of 30 pounds attached at 3, by means of a
fine string BCD attached to a point D vertically above 4. Find
what force must be applied at the point €, in the direction 4C, to
preserve equilibrium, supposing that ACB is an equilateral tri-
angle, and DCB a right angle. Find also the tensions of both
parts of the string and the stress in the rod.

5. A fine light string ABCD has its extremities fixed at 4
and D), and supports a mass of 100 pounds at B. What load must
be applied at C, in order that BC may be horizontal, and the
angles ABC, BCD equal to 120° and 150° respectively? Find
also the tensions in the different parts of the string.

6. A beam weighing 100 pounds is supported in a horizontal
position by means of four light vertical strings, arranged at in-
tervals of 10 feet, which connect it with a light chain supported
at its extremities. The extreme parts of the chain are inclined
at angles of 40° to the vertical ; determine (i.) the directions,
(ii.) the lengths, (iii.) the tensions, of the other parts of the chain,
in order that the tensions of the vertical strings may be equal
to one another.

7. A suspension bridge, of 60 feet span, is 10 feet broad, and
is supported by two parallel chains, each of which dips down
32 feet in the middle. The mass of the roadway is 40 pounds
per square foot, and the shortest distance between the roadway
and either chain is 1 foot. Find (i.) the inclination of the chain
to the vertical at each end of the bridge, (ii.) the tension at each
end, (iil.) the tension at the lowest point, (iv.) the distance of the
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roadway below the chain at a point one-third of the way across
the bridge.

8. A fine light string ABCD has its extremities 4 and D
fixed, and is in equilibrium under the influence of forces acting
at B and C in directions DB, AC respectively. If the figure
ABCD is a parallelogram, prove that the tensions of 4B, BC,
€D and the forces acting at B and (' are proportional to 4B,
BC, CD, DB, AC rvespectively.

9. A fine light string HAPAK has its extremities fixed at two
points /{ and A, situated in a horizontal line, and rests in a
vertical plane under the influence of a load distributed uniformly
in a horizontal direction. A is the lowest point and P any other
point of the string in the position of equilibrium. The horizontal
through 4 meets the verticals through P and A in M and D
respectively, and L is the middle point of AM. A straight line
through Jf perpendicular to LP meets the vertical through 4
in O. Prove that, for all positions of P,

(1) O is a fixed point.

(ii.) The tension at P, the tension at 4, and the weight
of the whole load supported are proportional to 0N,
04, 24D respectively.

(iii.) If S is the middle point of 04, SP=MP+ AS.
(iv.) LP bisects the angle SPM.

(v.) If OM and SP intersect at N, PM=PJN, and the locus
of IV is a circle with its centre at S.

(vi) AM?=204 . PM.
(vil.) If AM=n.AD,nbeinganumerical fraction, PM =n?. HD.
(viii.) If a straight line through 4, perpendicular to O3/, meets
MP in Q, QM=2. PA.

(ix.) Without making use of the point O, let a straight line
through Z, perpendicular to ZP, meet the vertical
through 4 in 8. Then § is a fixed point, and the
tension at P, the tension at 4, and the weight of
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Let P, X,, P,, X, be the measures of the forces
applied at the joints abo,, 0,bco,, 0,¢d, 0,dao,, as indicated
in the left-hand figure.

The force diagram for the point abo, will be a triangle
ABO,A (this way round), in which 4B represents P, and
AO,, BO, are parallel to the rods ao;, bo, respectively.

Now let BC be drawn representing X,; then OB,
BC represent two of the forces acting upon the joint
0,bc0,. The force diagram for the point o,bco, is there-
fore the quadrilateral 0,BC0,0, (this way round), in
which CO,, 0,0, are drawn parallel to the rods coy, 0,0,
respectively.

If now CD be drawn to represent P,, then 0 C, CD
represent two of the forces acting upon the JOlnt ocd.
Therefore DO, must represent the remaining one, i.e.
DO, must be parallel to the rod do, and represent the
action of that rod upon the joint o,d. The triangle
of forces for the joint o,cd is thus 0,CDO, (this way
round). ‘

Now, considering the joint ao,0,d, we see that three
of the forces acting upon it are represented by A0,
0,0,, 0,D. Hence the remaining one X, must be re-
presented by DA, and the force diagram for the joint
a0,0,d is the quadrilateral 40,0,DA (this way round).

Thus we see that for equilibrium it is necessary and
sufficient that the force polygon representing the ex-
ternal forces applied to the framework should close,
and that the line 0,0, should be parallel to the rod
0,05, where O is found by drawing 40,, BO, parallel
to the rods ao,, bo, respectively, and O, is found by
drawing CO,, DO, parallel to the rods co,, do, respec-
tively. When the figure is in this way completed the
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lines drawn parallel to corresponding rods represent
the stresses in the rods.

137. It will be noticed that the framework in this
case is not deformable, and is practically a rigid body.
As the stresses in the rods can be of any magnitude
and in either direction, it is necessary and sufficient
for equilibrium that the four forces P, X,, P, X,
should form a system in equilibrium. For this the
force polygon must close, and any funicular polygon
which corresponds to a pole O must also close.

In particular cases it is sometimes more advantageous
to make use of such a funicular polygon in finding
any of the applied forces which may be unknown. The
points O, and O, can then be found, and thus the
stresses in the rods determined.

138. The force diagram becomes greatly simplified
if one of the forces X, vanishes. We give the figures
below, which the student should think out for himself.

Fic. 149. F1c. 149a.

Here it may be advantageous to make use of the fact
that the lines of action of P,, X, P, must be concurrent.
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The case in which X, and X, both vanish has been
considered in Art. 43.

139. In the general case above, suppose that one side
of the framework is fixed in position. The extremities
of this rod then become fixed points, and we may
suppose the rod itself removed. The figures of Art. 136
then become as below, the rod 0,d having been removed,
and the lines of the force diagram which meet in D
having all been cut out.

Fie. 152, F1e. 152a.

The student should think out the problem for himself
independently of the general case.

The points I and J are fixed points.

If we join 0,4, we have a straight line represent-
ing the reaction at the hinge I

140. Ex. 1. Four rods HK, KL, LM, MH of lengths
3, 4, 3, 4 feet respectively, are freely jointed at their
extremities to form a rectongular framework, which
is stiffened by another fine light rod connecting the
hinges K and M. The framework is capable of turning
Jreely in a vertical plane about the point H which is

y\
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and the action in the rod KM is a strut of 75
pounds’ weight.

The force of constraint at H is represented by CA4,
and it will be found that this line is parallel to the
line joining H to the point where the vertical through
L meets KM.

141. Ex. 2. HKLM is a framework of four light rods
of given lengths loosely jointed at their extremities.
The kinges H and L are conmnected by means of a
Jine string of given length. Given loads are attached
at K and M and the whole is suspended from H. It
is required to find the position of equilibrium, the
tension of the string, and the stresses in the rods.

Fic. 154. Fie. 154a.

The data are sufficient to enable us to construet the
shape of the framework, but not its position relatively
to the vertical.

Let W, and W, be the weights of the loads suspended
from K and M respectively. Divide KM in the point N
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so that MN:NK=W,:W, Then the point N must
be vertically below ZH. This determines the position
of equilibrium.

Having lettered the portions of the space diagram as
indicated, we draw CADB parallel to N, making 04,
AB of lengths W, and W, units respectively. Draw C0,,
A0, parallel to the rods co,, ao, respectively; this gives
us the point 0, Draw AO,, BO, parallel to the rods
a0,, bo, respectively, and we have the point 0,. Then
0,0, must be parallel to the string o0,0,.

On measuring the lines of the force diagram we
have all the stresses required.

142. Ex. 3. The accompanying figure represents a
Sframework of light rods resting on two smooth hori-

B Ll ,_,‘— ______________ /

F1e. 155.
zontal supports and loaded at the joint abo,o, with «
mass of given weight W. It is réquired to find the
pressures on the supports and the stresses im the rods.
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Let R and S be the reactions of the supports acting
along the lines be, ca respectively, as indicated.

Draw AB to represent W, and let two parallel lines
through A and B meet bc and ca in A" and B’ re-
spectively. Let A’B° meet the line ab in (. Draw
C'C parallel to A’A to meet AB in C. Then B( and
CA represent R and S respectively.

We can now construct the triangles of forces BCO,B,
C40,C for the joints bco,, cao, respectively. 0,0, must
then be parallel to the rod 0,0, and represent the
stress in that rod.

The two lower rods and the middle rod are seen
to be ties, and the two upper rods struts.

143. Ex. 4. The framework of light rods represented
below rests wpon two smooth supports situated in a
horizontal line, as indicated in the diagram. Loads

A
% B
02 D
c
F1e. 156. F1c. 156 a.

of given weight W, and W, are applied at the joints
abo,, beoyo,, as indicated. It is required to find the
pressures on the supports and the stresses in the rods.
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Taking A B vertically downwards of length W, units,
we can construct the triangle 4 BO, 4, the force diagram
for the joint abo,. Then drawing BC vertically down-
wards of length W, units, we can draw the lines CO,,
0,0,, and thus complete the force diagram for the
joint beoyo,. Then, drawing O,D parallel to the rod o,d
to meet AC in D, the force diagram is complete.

EXAMPLES XVI.

1. Four rods, of no appreciable weight, and each of length 4
feet, are hinged together at their extremities to form a rhombus
ABCD, and the hinges 4 and € are connected by a fine light
string of length 7 feet. If the rhombus is suspended from A4,
and masses, each weighing 1 cwt., are suspended from 73 and D,
determine the tension of the string and the stresses in the rods.

2. ABCD is a framework of four light rods freely jointed
together at their extremities, A5 and 4D being each of length
4 feet, BC and OD each of length 2 feet. The hinge € is con-
nected with 4 by means of a fine light string of length 5 feet,
masses of 100 pounds each are attached at B and D, and the
whole is suspended from 4. Find the tension of the string and
the stresses in the rods.

3. Three fine light rods BC, CD, DB, of lengths 8, 17, 15
inches respectively, are freely jointed at their extremities to form
a triangular framework BCD, which is capable of turning freely
about the fixed point D. Another light rod AB, of length 9
inches, connects B with a fixed point 4, situated 12 inches verti-
cally above D. To the joint € is attached a mass of 300 pounds;
find the stresses in the rods.

4. Four light rods, each of length 20 inches, are freely jointed
together at their extremities to form a rhombus ABCD. The
hinges 4 and (' are connected by a fine string, of length 24 inches.
Loads of 7 and 25 pounds are applied at B and D respectively,
and the whole is suspended from 4. Find the position of equili-
brium, the tension of the string, and the stresses in the rods.
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5. ABCD is a framework of four light rods freely jointed
together at their extremities, 4B and BC being each of length
20 inches, D and DA each of length 15 inches. A fine string,
of length 2 feet, connects the hinges 4 and C. A mass of 108
pounds is suspended from B, and the whole is supported at A.
What load must be applied at D in order that AC may be
vertical? Find also the tension of the string and the stresses
in the rods.

6. The framework of Art. 140 is capable of turning freely
about A, which is fixed, and rests with /K vertically down-
wards, under a load of 100 pounds applied at A and a vertical
force at L. Find the magnitude of the force at L and the
stresses in.the different rods.

7. Four light rods 4B, BC, CD, DA, of lengths 10, 17, 17, 10
inches respectively, are freely jointed at their extremities to
form the quadrilateral framework ABCD, which is stiffened by
another light rod, of length 16 inches, connecting the hinges B
and D. The framework is capable of turning freely in a vertical
plane about a fixed point A4, and rests with DB vertically
downwards, under a load of 1 cwt. applied at B and a vertical
force applied at C. Find the magnitude of the force at ¢ and
the stresses in the rods.

8. Four light rods, each of length 5 feet, are freely jointed
at their extremities to form a rhombus 4 BCD, which is stiffened
by another light rod, of length € feet, connecting the hinges
B and D. The framework rests with DB vertically downwards,
a mass of 192 pounds being suspended from B, and is supported
by two forces applied at 4 and C, in directions perpendicular to
DA, DC respectively. Find the magnitudes of these forces and
the stresses in the rods.

9. AB, BC, CD are three equal rods, of no appreciable weight,
smoothly hinged together at B and € and to fixed points at 4
and D, the figure forming one half of a regular hexagon, with
BC horizontal and below A4D. The framework is stiffened by
another light rod 4C, and loads of 10 and 30 pounds respectively
are applied at B and C. TFind the stresses in the rods.
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10. Four light rods 4B, BC, CD, DA are freely jointed together
at their extremities to form half of a regular hexagon, the rod
DA being double the length of each of the others. The frame-
work is stiffened by another light rod AC, and the whole rests
with 4D horizontal upon two supports at 4 and D. Loads of
10 and 30 pounds respectively are applied at B and €. Determine
the stresses in the rods and the reactions of the supports.

11. Find the stresses in the rods in the case indicated in
Fig. 157, the lengths of the rods being indicated in feet, and
the 5-foot rod being vertical.

13 |5 13 30, J0
12 I2
7] VA & @
; 110 lbs.
100 lbs.
Fic. 157. ’ Fia. 158. Fre. 159.

12. Find the stresses in the rods in the case indicated in
Fig. 158, the 11-foot rod being vertical.

13. Find the stresses in the rods in the case of the derrick
crane indicated in Fig. 159, the 12-foot rod being vertical and
the ground horizontal. Find also the strain on the hinge 4.

14. In the general case considered in Art. 136, suppose that the
external forces applied to the framework are all given in position,
and that the magnitude of one is known, and of the others un-
known. Show how to determine the magnitudes of the other
three forces and the stresses in the rods.

15. Suppose that £; and P, are given in magnitude and
direction, X; in direction only, and X, wholly unknown. Show
how to find the unknown forces and the stresses in the rods.

16. In the case where X, is zero, suppose that P, is given
completely, P, only in direction, and X; wholly unknown. Show
how to find the unknown forces and the stresses in the rods.

17. Four light rods are freely jointed at their extremities to
form a parallelogram ABCD, which is stiffened by another light

rod connecting the hinges B and D. The framework is capable
D.S. R
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of turning freely in a vertical plane about a fixed point 4, and
rests with DB vertically downwards, a mass of weight 17 being
suspended from B, and a vertical force applied at ¢! Show that
the force applied at €, the tension of the rod BD, and the force
of constraint at 4 are each equal to 37, and that the tensions
of the rods 4B, BC, BD and the compressions of the rods CD,
DA are proportional to AB, BC, BD, CD, D4 respectively.

18. Four fine light rods are freely jointed at their extremities
to form a parallelogram ALCD, which is stiffened by another fine
light rod connecting B and D. The framework rests with B
vertically below E, the middle point of D(, and is loaded at B,
being supported by vertical forces at 4 and C. Prove that the
weight of the load at B, the forces at 4 and C, the tensions of
the rods AB, BD, BC, and the compressions of the rods CD,
D4 are proportional to 3.BE, BE, 2.BE, .AB, BD, 2. BC,
CD, DA respectively. )

19. In the figures of Art. 141, prove that MA is parallel to
the straight line joining A to the point of intersection of B0,
and CO,

20. In Art. 141, if HL meets MK in I, and W, : Wo=MI:IK,
prove that, in the position of equilibrium, HZL is vertical,
and that, if 7 is the measure of the temsion of the string,
T:W+W,=LI: LH; if, in addition, /} is parallel to AL,
then 7=W,

21. Four fine light rods are freely jointed at their extremities
to form a convex quadrilateral framework ABCD, which is stiffened
by another fine light rod connecting B and D. A mass of weight
W is suspended from B, and the whole system is supported,
with DB vertically downwards, by vertical forces applied at
A and C. Prove that, if 7" is the tension of the rod DB, and
E the point where the straight line AC intersects BD, then
T:W=DE:DB; in particular, if AC bisects DB, then T=%1.

22. If, in the preceding example, AB is parallel to DC, the
tension of the string is equal to the force applied at 4.

23. In the figures of Art. 136, prove that the line joining the
intersection of A0, and DO, with the intersection of BO, and
(0, is parallel to the line joining abo; to cdo,.






CHAPTER XVIL

STIFF FRAMEWORKS OF FINE LIGHT RODS
SMOOTHLY JOINTED AT THEIR EXTREMITIES.

144. In the preceding chapter we have confined our
attention to the consideration of the equilibrium of a
stiff quadrilateral framework, and to the determination
of the stresses induced in the different rods. The same
method can, however, be applied to all frameworks of
fine light rods jointed at their extremities.

In the case of indeformable or stiff frameworks, 7.c.,
frameworks whose angles do not admit of variation,
it is necessary and sufficient for equilibrium that the
external forces acting on the framework should form
a system in equilibrium. The stresses in the rods are
found by considering the equilibrium of each joint
separately ; if we know the stresses in all but two of
the rods which meet at any joint we can determine
the stresses in the remaining two by making the poly-
gon of forces for that joint close.

The method will be made clear by working out a
few typical examples.

145. Ex. 1. The framework vrepresented below, re-
sembling « bent crane, is loaded at the joint abo,
with o mass of given weight W. It is required to
determine the stresses in the various rods.
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Draw AB vertically downwards and of length W
units. Then AO,, BO, can be drawn parallel to the
rods ao,, bo, respectively, thus forming the force tri-
angle ABO,A (this way round) for the joint abo,. The
rod ao, is therefore a strut and the rod bo, a tie.

/ /.
) AX
/ 0 e

F1ac. 160. F1c. 160 a.

Draw BO,, 0,0, parallel to the rods bo,, 0,0, re-
spectively, and we have the force triangle 0,B0,0,
(this way round) for the joint o0,bo,, Thus the rod bo,
is a tie and 0,0, is a strut.

Now consider the joint a0,0,0,, A0, and 0,0,
represent two of the forces acting on this joint. Hence,
drawing 0,05, AO; parallel to the rods 0,05, ao,
respectively, we have the force polygon 40,0,0,4
(this way round) for the joint @0,0,0,, Thus 0,0, and
0,0 are both struts. )

Now consider the joint 040,bc. 0,0, and O,B represent
two of the forces acting on this joint. Hence, drawing
0,0, BC parallel to the rods o4, be respectively, we
have the force polygon 0,0,BC0, (this way round) for
the joint o040,bc. Thus the rod be is a tie and co, is a
strut.
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ABCA (this way round) is the triangle of forces for
the whole framework considered as one rigid body.
The action X at the joint ao,c is represented by CA.
The force triangle for this joint is CAO0,C (this way
round).

146. Ex. 2. The framework indicated below is sup-
ported at the joimts abo,, beos, and supports a mass
of given weight W at the joint ca0,0,0, It is required
to determine the pressures on the supports and the
stresses in the rods.

-.\\ ________________________________ 02
BT
alc R IRy
AT
c(b
Fig. 161.

Here the only force known is W, but we cannot
construct the force polygon for the joint aco,0,0,, as
the stresses in the four rods which meet at this joint
are all unknown. We therefore determine first the
pressures R and S between the framework and the
supports, by considering the equilibrium of the whole
framework as a rigid body.
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Draw CA vertically downwards of length W units,
and let two parallels through ¢ and A meet the lines
ab, be in " and A’ respectively. Let (A’ meet the
line ca in B, and draw B'B parallel to 4’4 to meet
AC in B. Then AB, BC represent the forces R and
S which act in the lines ab, be respectively.

We can now draw the force triangles 4B0, 4, BCO,B
for the joints abo,, bco, respectively. Then 0,0, 0,0,
can be drawn parallel to the rods o0,0,, 0,0, respectively,
and BO, must be parallel to the rod bo,.

On examining the force diagram for each joint
separately, it will be seen that the three top rods are
struts and the other four ties.

147. Ex. 3. The framework represented below, re-
sembling a portion of o Warren girder, is supported
at the joimts abo,, beos,, and carries loads of given

b
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Fic. 162. Fre. 162a.

weight W, and W, applied at the joints 0,0,05da, 040,0,cd
respectively. It is required to determine the pressures
on the supports and the stresses in the rods.
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We first consider the equilibrium of the whole
framework as a rigid body, and thus determine the
reactions B and S of the supports. Draw CDA ver-
tically downwards, making C'D of length W, units, and
DA of length W, units. Take any pole O, and from
any point in the line ab draw the string ao parallel
to AO. From the point of intersection of ao and ad
draw do parallel to DO. From the point of inter-
section of do and dc draw co parallel to CO. The
straight line ob, drawn from the point of intersection
of oa and ab to that of oc and be, completes the funicular
polygon. Draw OB parallel to ob, to meet C4A in B.
Then ABCDA is the force polygon for the whole
system, AB and BC representing R and S respectively.

In constructing the diagram for the stresses in the
rods, we commence with the joint abo,. This gives the
triangle ABO, A (this way round). Then we construct
the triangle 0,B0,0, (this way round) for the joint
0,bo,; then the polygon DAO0,0,0,D (this way round)
for the joint dao,0,0,; then the polygon 0,0,B0,0, (this
way round) for the joint o40,b0,; then CDO0,0,0,C (this
way round) for the joint c¢dos0,0,, Finally, joining BO,,
the triangle 0,0,BO0; (this way round) is the force tri-
angle for the joint 0,0,0, and the triangle O,BCO, (this
way round) is the force triangle for the joint obe.

148. Sometimes it is not required to determine the
stresses in all the rods. The following method is
then very useful:

Suppose that, in the preceding example, it is required
to determine the stress in the rod o,d. Construct the
force polygon ABCDA as before for the equilibrium
of the whole system, thus determining R and S
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Draw a line XY intersecting the rods o, 0,05 04d ;
and consider the equilibrium of the portion of the
framework to the right of this line as one rigid body.
The external forces acting upon it are the known forces
S and W,, together with the unknown forces acting at
the points U, V, Z. The lines of action of these three
unknown forces are all known, and therefore the
problem comes under the head of that considered in
Art. 118.

Fic. 163. Fi6. 163a.

Take a pole O, and draw OB, OC, OD. From H,
the point of intersection of the rods 040,, 0,b, draw the
line ob parallel to OB. From the point of intersection
of ob and be draw oc parallel to OC. From the point of
intersection of oc and ¢d draw od parallel to OD. From
H draw the line oo, to the point of intersection of od
and dog, thus completing the funicular polygon. Draw
OO3 parallel to oo, to meet the horizontal through D
in O,, Draw BO,, 0,0, parallel to the rods bo4, 0,0,
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respectively, meeting in O,, Then BCDO,0,B (this
way round) is the force polygon for the portion of the
framework under consideration. Thus the rod do, is
in a state of tension, and its tension is represented by
DO, We have also at the same time determined the
actions in the other two rods intersected by the straight
line XY.

In applying this method care must be taken not to
intersect more than three rods. If the stress in one of
three rods intersected is known, the stresses in the
other two can be found without the aid of a funicular
polygon.

149. Another point of practical importance is ex-
hibited in the following example:

Ex. 4. The framework of Ex. 2 rests on supports as
before, and is loaded at each of the other three joimts
in the manner indicated below. It is required to
determine the pressures on the supports and the stresses
m the rods.

We first plan out a force diagram for the whole
system, thus determining the pressures R and S on the
supports. . As the loads are all known we take the
forces in the order W,, W,, W,, S, R, determining the
unknown forces S and R with the aid of a funicular
polygon. The order W, W,, W,, S, R is not, however,
convenient for determining the internal stresses. After
determining S and R, we therefore plan out another force
diagram, taking the forces in the order R, W, W,, S, W,,
taken one way round the framework, and commencing
at a joint where there are only two rods. We can then
complete the stress diagram.

For the purpose of the first force diagram, we mark
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the lines of action of the forces W,, W,, W, S, R with
the letters fg, gh, hk, ki, If, as in the figure.
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Take FG, GH, HK to represent W,, W,, W, respec-
tively, and draw the strings of, og, oh, ok corresponding
to the pole O. Draw OL parallel to ol, which com-
pletes the funicular polygon, and let OL meet FK in L.
Then KL and LF represent S and R respectively.

Now draw another force diagram ABCDFEA, taking
AB, BC, CD, DE equal to and in the same direction as
LF, FG, HK, KL, and therefore £A equal to and in
the same direction as GH.

Draw BO, parallel to the rod bo, to meet the horizontal
through 4 in O,, and DO, parallel to the rod do, to meet
the horizontal through £ in O, Through O, and O,
draw 0;0,, 0,0, parallel to the rods oy0,, 0,0, respec-

1)
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tively, to meet in 0, Then CO, must be parallel to
the rod co,.

The triangle of forces for the joint abo, is A BO, 4 (this
way round). The force diagram for the joint o,bco,
is 0,BC0,0, (this way round); for the joint 0,0,0.eq,
0,0,0,EA0, (this way round); for the joint o0,cd,
0,0,CD0, (this way round); for the joint oyde, O,DEO,
(this way round).

EXAMPLES XVII

1. 0ABCD is a framework of light rods smoothly jointed at
their extremities ; the rods 04, OB, OC, OD being each of length
25 inches; the rods AB, CD each of length 14 inches; and the
rod BC of length 30 inches. Two masses, weighing 100 pounds
each, are suspended from 4 and D, and the whole is supported
at 0. Find the stresses in the rods.

2. In Art. 146, each of the triangles o), 0, 05 is equilateral.
Find the stresses in the rods when the load is 1000 pounds.

3. In the same Example, each of the lower rods is of length
6 feet ; the top middle rod is also of length 6 feet, and the other
four rods are each of length 5 feet. Find the stresses in the
rods when the load is 400 pounds.

4. Draw the stress diagram for the framework considered in
Art. 147, when three equal loads are applied at the upper joints,
and no loads are applied at the lower joints.

5. In the framework considered in Art. 147, each of the
horizontal rods is of length 2 feet 6 inches, and each of the
others of length 3 feet 3 inches. Find the stresses in the rods
0405, boy, co;,. when the only load supported is 1 ton at the
joint 0,0,0,da.

6. Draw the stress diagram for a Warren Girder of 4 bays
(instead of 3, as in Art. 147), when the only load applied is a
mass of weight W at the middle lower joint.
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7. In the preceding example the load is 1 ton, each of the
horizontal rods is of length 2 feet 6 inches, and each of the
other rods of length 3 feet 3 inches; find the stresses in all
the horizontal rods, and examine whether the other rods are
struts or ties.

8. Draw the stress diagram for the framework indicated in
Fig. 165.

9. If, in Fig. 165, each of the horizontal rods is of length
4 feet, each of the uprights 3 feet, and each of the others 5 feet,
find the stresses in the three rods intersected by the line XY,
each of the three loads being 1 ton.

X
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Fre. 165. F1c. 166. Fia. 167.

10. Draw the stress diagram for the framework indicated in
Fig. 166. Notice that the points O; and O coincide.

11. Draw the stress diagram for the framework indicated in
Fig. 167.

12. Find the stresses in the three members intersected by the
line XY in Fig. 167, the rods which meet at the vertex being

of lengths 10, 5, 5, 10 feet, the horizontal rod of length 6 feet,
the span 16 feet, and the load being 1 cwt.

13. Draw the stress diagram for the framework indicated in
Fig. 168. Notice that the points O; and Oj coincide.

o
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Fre. 168. Fic. 169.

14. Draw the stress diagram for the framework indicated in
Fig. 169.
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Let the forces acting on the rod oa (apart from the
constraints at its extremities) be resolved into two
forces A, and A, acting at its extremities 7 and 2 re-
spectively. Similarly, let the forces on the rods ob
and oc be resolved into the pairs of forces B,, B; and
C,, C,, as indicated.

Let R, be the action at the joint 7 upon the rod oa,
R, the action at the joint 2 upon the same rod. Then
R, in the opposite direction is the action at the joint
2 upon the rod ob. Similarly, let R; and R, be the
actions at the joints & and 4 respectively.

Consider the equilibrium of the rod oa. The resultant
of R, and A, must balance the resultant of R, and 4,.
Therefore a0 must be the line of action of these two
resultants. If then we draw O, 74 to represent I,
and A, respectively, O4 will have to be parallel to oa,
and AO will represent the resultant of R, and A,
Hence if A2 represents A, then 20 must represent R,.
Thus the force diagram for the rod ao is 0ZA20 (this
way round), in which 04 is parallel to the rod ao, and
1A, A2 represent A, and A, respectively.

Similarly, the force diagram for the rod ob is
02B30, in which OB is parallel to the rod ob, and
2B, B3 represent B, and B, respectively. Also the
force diagram for the rod oc is 03C40, in which OC
is parallel to the rod oc, and 30, C4 represent C; and
C, respectively.

The actions at the hinges 1, 2, 3, 4 are given by
01, 02, 03, 04 respectively, the direction being deter-
mined according to which rod is under consideration.

The student should notice that the lines 12, 23, 34
of the force diagram représent the resultants of the
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forces (other than the constraints at the hinges) that
act upon the rods 12, 23, 8} respectively.

We may, if we please, resolve the forces upon each
rod into parallel forces at its extremities. In this ease
142, 2B3, 3C} become straight lines.

The rods may be replaced by rigid bodies of any
shape hinged together at the points I, 2, 3, 4, and the
same piece of work applies, the straight lines oa, 0b, oc
being drawn connecting the hinges.

151. The question may be asked, “ What forces do 04,
OB, OC represent?” The student may be inclined to say
that these lines represent the stresses in the rods oa, ob,
oc respectively. This is mot so. If the forces acting
on the rod oa were actually 4, and 4, at its extremi-
ties, the rod would be in a state of direct compression
or tension, and 04 would represent the strain at every
point of the rod. But in the actual state of affairs, the
strain is ditferent at different points of the rod, and the
tendency of the forces is to bend the rod as well as
to compress it or stretch it. In replacing the forces
acting on the rod by an equivalent system, we do not
interfere with the equilibrium of the rod as a rigid
body, but we do interfere with the nature of the internal
stresses induced. We make no endeavour to interpret
the meaning of the lines 04, 0B, OC'; the nature of the
internal stresses in such cases is beyond the scope of
the present volume.

152. As a particular case of the above, suppose that
four uniform heavy rods are freely jointed together, and
hang in a vertical plane, the points 7 and 4 being fixed.

Let the weights of the rods oa, ob, oc, od be given.

Suppose also that the rods 0b, oc are given in position,
D.S. s
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and that it is required to find the positions of the rods
oa, od and the actions at the hinges.

The weight of each rod can be broken up into half
its weight applied at each end. Hence, in constructing
the force diagram, draw 142, 2B3,3C4, 4D5, to represent
the weights of the rods oa, ob, oc, od respectively,
4, B, C, D being the middle points of the lines 72, 23,
84, 45 respectively.

Fie. 172. F1c. 172a.

As the rods ob, oc are given in position, we can draw
BO, CO parallel to these rods respectively, and this
determines the point 0. Join 04, 0D, and we have
the directions of the rods oa, od. Also 01, 02, 03,
04, 05 give the actions at the hinges 1, 2, 3, 4, 6 respec-
tively. The force diagram for the rod oa is 71201 (this
way round), so that 20 represents the action of the hinge
2 upon the rod oa. Similarly for the other hinges.

153. We have hitherto supposed that all external
forces are applied to the rods themselves, the hinges
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being left perfectly free, so that the rods act and react
upon one another directly through the hinges. Let us
now suppose that a hinge consists of a separate piece (a
small pin for instance) of no appreciable size or weight,
and that external forces are applied directly upon the
hinges. Each hinge is supposed to be perfectly smooth,
and its effect upon any rod is to compel the extremity
of the rod to remain in a definite position by a direct
push or pull exerted upon the rod at its extremity.
We shall now have to consider the equilibrium of each
hinge as well as of each rod, and the actions of a
hinge upon two adjoining rods will not now be equal
and opposite.

154. Take the system of rods of Art. 150 acted upon
by the same external forces, and in addition let forces
F, and F,, in the directions indicated, act upon the

ER R, +R Rg
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B, B

Fre. 173. F1e. 173a.
hinges 2 and 3 respectively. In the diagram the rods
and hinges are drawn separated, so as to indicate clearly
the forces acting upon the separate pieces.
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Let the action between the hinge 2 and the rod o«
be 4R, and let the action between the hinge 2 and
the rod ob be R, a similar notation denoting the
actions at the other hinges.

In constructing the force diagram, we have for the
rod oa the figure A, 44,04, (this way round), in which
OA, represents ,R,, while 4,4 and AA, represent 4,
and A, respectively, 4,0 represents I, and 04 is
parallel to the rod oa. For the hinge 2 we have
the triangle 0A4,B,0 (this way round), in which 4,5,
represents F, and B,0 represents R, - For the rod
ob we have OB,BB,0 (this way round), in which B,B
and BB, represent B, and B, respectively, B,0 repre-
sents ,R; and OB is parallel to the rod ob. For the
hinge & we have the triangle OB;C;0 (this way round),
in which B;C, represents F,;, and C,0 represents R,
For the rod oc we have 0C,CC,0 (this way round), in
which C,C and CC, represent C; and C, respectively,
C,0 represents R, and OC is parallel to the rod oc.

This piece of work, of course, includes that of Art. 150.
If we make F, and F; each zero, the points A, and B,
will coincide with the point 2 of Art. 150, and the
points B, and C, with the point & of that article.

155. It is important that the student should notice
that if we suppose the forces A4, F, B, collected
together and applied at the joint 2, we get the correct
position for the points 4 and B of the force diagram.
Thus, if we do not require to know the exact nature
of the constraints in the immediate neighbourhood of
the joint, we do not trouble to separate the forces
into those which act on the rod oa, those which act
on the joint, and those which act on the rod ob. The



UNDER ANY FORCES. 277

straight line 4B, in fact, represents the resultant of
A4, F,, B,

The student should carefully think over the two
examples which here follow. In the first of these, we
have worked out the problem twice over on two
different suppositions, but they lead to the same diagram.
In the second, we require only the tensions of two
strings, and do not trouble ourselves with the nature
of the actions at the joints.

156. Ex. 1. Two heavy wuniform rods of weight
w and W' are smoothly hinged together at the point 2,
and to fized points at the points 1 and 3, as repre-
sented in the figure on the left. A mass of weight W
is supported at the point 2. It is required to find
the stresses at the himges.

3
b
0
w’
2
0,
a
w
7 w
F1c. 174. F1c. 17T4a. Fi6. 174b.

First, suppose that the mass of weight W is attached
to the rod oa at a point indefinitely close to the hinge 2.

The weight of each rod can be broken up into half
its weight at each extremity.
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Draw 742B3 vertically downwards, taking 14, A2,
2B, B3 to represent jw, Jw+ W, I/, 4w’ respectively.
Draw A0, BO parallel to the rods ao, bo respectively,
meeting in 0. Then 01, 02, O3 give the actions at the
hinges 1, 2, 3 respectively.

Secondly, suppose that the mass of weight W is
attached directly to the hinge 2, which is a separate
piece.

Draw 14, AA,, A,B,, B,B, B3 to represent {w, }w, W,
tw’, 3w’ respectively. Draw AO, BO as before. Then
the actions at the hinges I and 3 are given by 01, 03
respectively, and are the same as in the first case. The
action between the hinge 2 and the rod oa is given by
04,, and the action between the same hinge and the rod
ob is given by OB,, and is the same as in the first case.

157. Ex. 2. Three equal uniform rods FG, GH, HK,
each of weight w, are freely jointed together at G and
H, and laid in a wvertical plane wpon a smooth hori-
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zontal table at F and K. Two fine light strings FH,
GK keep the system in the form of one-half of a regular
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hexagon, and a mass of weight W is placed at the
middle point of GH. Determine the tensions of the
strings.

The reactions at F and K are evidently each equal
to : W+3w. The weight of each rod may be replaced
by iw acting at each of its extremities. Hence, for the
purpose of finding the tensions of the strings, we may
suppose that the system is a jointed framework of fine
light rods, in equilibrium under the influence of forces
L W+w acting vertically upwards at F, 1 W+w verti-
cally downwards at G, 1 W+w vertically downwards
at H, and { W+ w vertically upwards at K.

A

0,
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Fia. 175a.

Also, it is convenient for the purpose of constructing
a forece diagram to suppose the strings knotted together
at the point L where they intersect, so that we may
look upon the two strings as four separate members
attached together at the point L. This will evidently
put no additional strain upon either string; the force
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diagram for the point L will be a parallelogram, giving
the tension of the two parts of the same string as equal
in magnitude.

Now mark the portions of the space diagram with
the letters a, b, ¢, d, 0}, 0, 0,, as indicated. Draw DA
vertically upwards to represent {W+w, and let A0,
DO,, be drawn parallel to ao,, do, respectively. This
gives the point O,.

Draw AB vertically downwards to represent 3 W+4w;
evidently B coincides with D. Draw BO,, 0,0, parallel
to bo,, 0,0, respectively. This gives the point O,.

There is no necessity to draw any more of the force
diagram. 0,0, and DO, represent the tensions of the
strings.

It is easy to see that the figure ADO,0, is also
one half of a regular hexagon. Hence the tension of
each string is $ W4 w.

158. Ex. 3. Three wniform rods HK, KL, LM, of
lengths 15, 14, 15 inches respectively, and of weights
W, W', W respectively, are freely hinged together at K
and L, and supported from a fixed point F by means
of three fine leght strings FH, FG, FM of lengths 20,
24, 20 inches respectively, the point G being the middle
point of KL. The system vests with FG vertical and
KL horizontal. Determine the tensions of the strings,
and the actions at the hinges.

Having constructed the space diagram to scale, let
the lines HK, KL, LM, MF, FH be marked oa, 0b, oc,
od, oe respectively, and let the hinges K and L be
called 7 and 2 respectively.

Draw a straight line Z7 vertically downwards to
represent W, and take A the middle point of K7. Let
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lines OF, 01, 1B2 are respectively 3W, 85W, 1:64W;
also the angle 01B=16}".

Hence the tensions of the strings FH, FG, FM are
respectively 3W, 1-64 W+ W', -3W; also the actions at
the hinges K and L are each ‘85W, and are each inclined
at an angle of 16}° to the vertical.

159. Ex. 4. Two uwiform rods KL, LM, each of
weight W and length 5 feet, are freely jointed together
at L, and connected with a fixred point H by means
of two fine light strings KH, HM of lengths 8 and 6
feet respectively. Amother fine light string commects H

M

F1c. 177.

with L and s of such a length that when the strings
are all tight KL and LM are in one straight line.
Find what load must be applied at M in order that,
in the position of equilibrium, KLM may be hori-
zontal ; determine also the temsions of the strings.
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drawn. Let the straight line through D parallel to do
meet the horizontal through 4 in O. Then ODAA,0
(this way round) is the force diagram for the rod oa.

Draw A B, parallel to «,b;. The point B, is at
present unknown; it will have such a position that, if
BB is drawn vertically downwards to meet O4 in B,
BB must represent }W. Hence, to obtain the position
of B,, draw DB, parallel to 04 to meet 4,B, in B,.
Then OA,B,0 (this way round) is the force diagram
for the hinge 1.

Draw OC parallel to oc, to meet the vertical through
B, in . Then OB,BCO (this way round) is the force
diagram for the rod ob.

The line BC represents the sum of half the weight
of the rod ob and the weight of the load applied at
M. Hence, drawing A4,;m horizontal to meet BC in m,
we see that m(C represents the weight of the load sup-
ported at M.

On measuring the lines mC, 0D, 4,B,, CO we find
that

the weight of the load at M= -78W,
the tension of HK = ‘83W,
the tension of HL =104W,
the tension of HM=160W.

160. Ex. 5. Two wniform beams HL, KL, of lengths
T ft. 6 ins. and 6 feet 6 ins. respectively, and weighing
16 and 12 pounds respectively, are freely jointed at L,
and, rest in o vertical plane wpon a smooth horizontal
plane at H and K. A fine light cord MN, of length
4 feet 8 ims., is attached at its extremities to the two
beams at the points M and N which divide LH and LK
respectively each in the ratio 2:1. Find the tension of
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the string, the reactions at H and K, and the action at
the Linge.

Having constructed the space diagram we proceed
to find first of all the reactions at H and K. For
this purpose we consider the equilibrium of the whole
system as one rigid body. Let the lines HL, LK and
the verticals through X and H be marked oa, 0b, oc,
od respectively, and let the hinge L be denoted by I.
Let the verticals through the middle points of HL and
LK be marked de, ec respectively.

Draw DE, EC vertically downwards and of lengths
16 and 12 units respectively. Take away pole 0" and
construct the sides do’, eo’, co’ of a funicular polygon
corresponding to the pole 0. Draw the string o0,
which completes the funicular polygon, and the line
0’0 parallel to 00" to meet DC in 0. Then €O, OD
represent the reactions at K and H respectively.

Now consider the equilibrium of the rod oa alone.
We may take the weight of the rod as equivalent to
8 pounds’ weight acting at H and 8 pounds’ weight
acting at K ; also the tension T’ of the string is equiva-
lent to 37 at H and 17T at L. Hence, bisecting DE in
m, draw OA parallel to oa to meet in A the hori-
zontal through m. Then mA represents 31. Produce
mA to m, making An=3%.md, and draw nl vertically
downwards of length 8 units. Then ODmAn10 (this
way round) is the force diagram for the rod oa.

We have completed the figure so as to show the
force diagram for the rod ob, but this is unnecessary.

On measurement, we find that CO, OD, mn, 01
are of lengths 15, 13, 56, 6'4 respectively; also the
angle OIn is 62°.
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and B the middle point of 2B, Draw A0, BO parallel
to the rods oa, 0b respectively, to meet in O.

The weight of the rod od will be represented by some
straight line 4DD,, drawn so that D is the middle point
of 4D, and OD is parallel to od, and also D; 4, must be
parallel to the string, and must represent its tension.
Hence, to complete the force diagram, draw 4,04
vertically upwards, so that 4’4, represents the weight

B

1’)3
Fic. 179. Fi1e. 179a.

of the rod od and D’ is the middle point of 4'A4,.
Draw I’D parallel to the string to meet in D the line
drawn through O parallel to od, and let the straight
lines through A4, and 4 parallel to the string, meet the
vertical through D in D, and 4 respectively. Then,
measuring D, A4,, we have the tension of the string.
The rest of the force diagram can be easily completed,
and the actions at the hinges determined.
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162. Ex. 7. The framework indicated below is com-
posed of fine light vods, freely jointed at their ex-
tremities, and is at rest under the influence of forces
P, Q, R, applied as indicated. It is required to deter-
mine the stresses in the rods, the hinges a and y being
JSized.

A

Fre. 180. F1c. 180a.

This is a framework like those treated of in the
preceding chapter, but in constructing the force diagram
we here meet with a difficulty which can be overcome
by the methods of the present chapter. At every joint
there are more than two unknown forces, so that we
cannot at the outset construct the force polygon for
any joint.

The reactions at the hinges a and v are in some

unknown directions which will be denoted by ae, de
D.S. T
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respectively. We can find these reactions in the follow-
ing manner:

Consider the triangles o, and o, as one single rigid
body, and the triangles o; and o, as another rigid body.

Draw the straight lines joining the hinges a, 8 and
B,v. Draw AB, BC, CD to represent the forces P, @, R
applied in the lines ab, be, cd respectively.

Divide 4B in M, so that AM, MB represent com-
ponents of P through « and B respectively; and divide
CD in N, so that CN, ND represent components of R
through B and y respectively. These.can be done by
Axt. 72

Draw ME, NE parallel to o3, By respectively, to meet
in . Then, by the methods laid down in this chapter,
LA and DE must represent the reactions of the hinges
a and y respectively.

There is now no difficulty in completing the force
diagram. FEAO,E (this way round) is the force triangle
for the joint eao,, ABO,0,A (this way round) is the
force polygon for the joint aboy,, £O,0,F for the joint
0,05, 0,BCO,E0,, for the joint o,bcose, ete.

EXAMPLES XVIII

1. Three uniform rods KL, LM, MN, of lengths 33, 30, 33
inches respectively, and weighing 20 ounces, 16 ounces, 20 ounces
respectively, are freely jointed together at Z and A/, and suspended
from a fixed point Z by means of four fine light strings A&,
HL, HM, HN, of lengths 52, 25, 25, 52 inches respectively. Find
the tensions of the strings.

2. Three uniform rods KZL, LM, MN, of lengths 33, 30, 33
inches respectively, and weighing 20 ounces, 16 ounces, 20 ounces
respectively, are freely jointed together at Zand A/ and suspended
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from a fixed point A by means of three fine light strings HK,
HF, HN, of lengths 52, 20, 52 inches respectively, the point F
being the middle point of LM. Find the tensions of the strings
and the actions at the hinges L and M.

3. Three uniform rods KL, LM, MN, of lengths 15, 14, 15
inches respectively, and weighing 3, 5, 3 pounds respectively, are
freely jointed together at L and J/, and suspended from a fixed
point H by means of four fine light strings HK, HL, HM, HN,
of lengths 20, 25, 25, 20 inches respectively. Find the tensions
of the strings.

4. Two uniform beams HL, AL, each of length 13 feet, and
weighing 15 pounds, are freely jointed together at Z, and sup-
ported from a fixed point M by means of two fine light strings
MH, MK, each of length 15 feet. A fine light rod RS, of length
16 feet, is freely jointed to the two beams at the points £ and S,
which divide LH and LK respectively, each in the ratio 2: 1.
Find the thrust in the cross-rod, the tension of each string, and
the action at the hinge.

5. Six equal uniform rods, each of weight IV, are freely jointed
at their extremities to form a regular hexagon ABCDEF. The
rod AF is supported in a horizontal position, and distortion is
prevented by a fine light rod, connecting the middle points of
BC and DE. Find the thrust of the cross rod and the actions
at the hinges.

6. Four equal uniform rods, each of weight 7, are freely jointed
together at their extremities to form a rhombus HKLM. The
rod HK is supported in a horizontal position, and a fine light
string, equal in length to one of the rods, connects the hinges
M and K. Find the tension of the string and’the actions at
the hinges A and L.

7. Two equal uniform rods HL, KL, each of weight W, are
freely jointed together at L, and supported from a fixed point M
by means of three fine light strings HM, LM, KM, each equal
in length to one of the rods. Find what load must be applied
at K, so that LA may rest in a horizontal position; determine
also the tensions of the strings.
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8. Four equal uniform rods, each of weight 17, are freely jointed
together at their extremities to form a rhombus HAK LM, which
is supported at /. A fine light string, in length equal to half
of one of the rods, connects the middle points of LM and #M. Find
the tension of the string and the actions at the hinges K, L, M.

9. Work out the preceding example, supposing the string to
be of length equal to three-quarters of one of the rods, and to
be attached to the rods LM, HM at points which divide LJ/,
HM each in the ratio 1:3.

10. Three uniform rods FG, GH, HK, each weighing 15 pounds
and of length 25 inches, are freely jointed together at ¢ and #, and
rest in a vertical plane upon a smooth horizontal table at /7 and
K. Two fine light strings FH, GK, each of length 40 inches,
help to support the framework, and a mass of 90 pounds is placed
at the middle point of GH. Determine the tensions of the strings.

11. In the preceding example, determine the tensions of the
strings when the mass of 90 pounds is placed at a distance of
6 inches from A.

12. Two equal uniform rods BC, CD, each of weight W, are
freely jointed together at C, and connected with a fixed point 4
by means of three fine light strings 4B, AC, AD, the first and
the third being equal in length. The whole system rests with 4¢
vertically downwards. Prove that if £ is the point where B/
intersects AC, and F the middle point of A, then the weight W,
the tension of the string 4B, and the tension of AC'are respectively
proportional to 2. 4C, 4B, 4.CF.

13. Two uniform rods KL, LM, equal in length and weight,
are freely jointed together at L, and connected with a fixed point.
H by means of two fine light strings KH, MH. Another fine
light string connects # with L, and is of such a length that,
when the strings are all tight, £Z and LM are in one straight
line, and AHM a right angle. The whole is allowed to rest in
a vertical plane, being supported at H. Prove that, in the position
of equilibrium, the tensions of the strings HA, HL, HM are
proportional to HK, 2.HL, HM respectively, the tension of the
string HL being equal to the weight of either rod.
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Prove also that, if the hinge at L is a separate piece to which
the string ZL is attached, the actions between the hinge and
the rods AL, ML are respectively parallel to HM, HK.

If equal loads are applied at A and M, prove that the tensions
of the strings HK, HM are increased in the same ratio, the
tension of KL remaining the same as before.

14. Four uniform rods are freely jointed together at their
extremities to form a quadrilateral framework ABCD, the rods
AB, AD being equal in length, and each of weight W, and the
rods BO, CD equal, and each of weight ». A fine light string
connects the hinges 4 and C, and the whole framework is sup-
ported at 4. The straight line BD intersects AC at E; prove
that, if 7' is the tension of the string,

T~w:Wt+w=CF: CA.

15. Four equal uniform rods, each of weight W, are freely
jointed together at their extremities to form a rhombus 4BCD,
which is stiffened by a fine light rod connecting the hinges B and D.
The whole is supported at 4. Show that, if P is the thrust of
the cross rod, P:2W=BD: AC,

Show also that the action of the hinge € is }P.

16. Three equal uniform rods HA, KL, LM, each of weight W,
are freely jointed together at A and Z, and supported by four fine
light strings FH, FK, GL, G} from two fixed points /" and @,
which are situated in a horizontal line at a distance apart equal
to the length of one of the rods. The strings F'H, FK are respec-
tively equal to GM, GL, so that the system occupies a symmetrical
position of equilibrium with AZ horizontal. If S and 7 are the
tensions of the strings F'H and FA respectively, prove that

S:yW:T- W=HF:FK: KN,
N being the point where the straight line HM intersects FA.

17. Three uniform rods FG, GH, HK, of weights W, W', W
respectively, the two FG, HK being equal in length, are freely
jointed to one another at & and H, and laid in a vertical plane
upon a smooth horizontal table, the extremities # and A being
connected by a fine light string. The system takes up a sym-
metrical position of equilibrium with GH horizontal. Prove that,
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if 7 is the tension of the string,

207: W+ W'=FL: LG,
where L is the point of FA vertically below G. Also, if G'Z be
divided in 3 so that GM : ML= W : W, prove that F.I/ is parallel
to the action at the hinge 6.

18. 1If, in the preceding example, the string is attached to points
which divide #'G, KH each in the ratio m :#, prove that

2. T: (m+n)(W+ W)=FL: LG.

19. Four heavy uniform rods a, b, ¢, d are freely jointed at
their extremities to form a quadrilateral framework. A fine light
string connects the hinges ab and cd, and the framework rests
in a vertical plane with the rod d held in a given position. Prove
the following method for determining the tension of the string:
Draw TBC vertically downwards, making 7B to represent half
the sum of the weights of a and b, and BC half the sum of the
weights of b and ¢. Let the straight lines through B and C, parallel
to the rods & and ¢ respectively, meet in O. Draw 74 and OA,
parallel to the string and the rod @ respectively, to meet in 4.
Then AT represents the tension of the string.

20. HKL is a fixed upright beam, the point / being at the
bottom. Two horizontal uniform beams HJM, KN are freely
jointed to the fixed upright at the points A and A, and a vertical
beam MY is freely jointed to the horizontal beams at the points
M and N. The rectangular shape of HMNK is preserved by means
of a fine light string connecting M with Z, the whole system
resembling a gate. Show that, if 7' is the tension of the string,
W, the weight of HM, w of MN, and W, of KN, then

T:5(W,+ Wy)+w=LM: LH.
Show also that the actions at the hinges A and N are both
vertical ; also that, if ¢ be taken in MV such that
MG HL=5W, : 3(W+ W)+,
then HG is the line of action of the constraint at H, which is of
magnitude 22 such that
R:3W,=HG:GM.
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The data are sufficient to enable us to construct the
space diagram. Let R and S be the reactions at B and
C respectively, T' the tension of the string, @ the
mutual action of the hinge on either rod.

The rod AB is in equilibrium under the influence of
forces acting only at its extremities. It is therefore
in a state of direct compression or tension. Therefore
the mutual action between the rods at A is in the
line AB.

Thus the rod AC is in equilibrium under the influence
of four forces whose lines of action are .all known, but
the magnitude of only one. We have, therefore, an
example of Art. 103.

Draw FG vertically downwards, making it W units
of length, and mark the vertical through £ with the
letters fg. Let the line B4 and the horizontal and ver-
tical through C be called gh, hk and kf respectively.
Draw the straight line fh from C to the point of inter-
section of fy and gh. Draw FH, GH parallel to fh,
gh respectively to meet in H, and HK horizontal to
meet FG in K.

Then FGHKF (this way round) is the force polygon
for the rod AC, the forces @, T' and S being represented
by GH, HK and KF respectively.

Also GKHG (this way round) is the triangle of forces
for the rod AB, so that GK represents R.

Otherwise: We may break up W into two forces
acting at 4 and C, and proceed as in the preceding
chapter.

164. Ex. 2. AB and AC are two rods of no appreci-
able weight, smoothly jointed at A, and resting at B
and C wpon a smooth horizontal plane. A fine string
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connects the point F of the rod AB with the point G
of the rod AC. The rod AB is loaded at D with a
mass of given weight W, and the rod AC is loaded at
E with a mass of given weight W, It is required to
Jind the tension of the string, the reactions at B and C,
and the action at A.
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Fie. 182. F1c. 182a.

First, consider the equilibrium of the two rods to-
gether as one system. Let the verticals through
D, E, C, B be marked Ak, kl, lm, mh respectively. Take
HK, KL to represent W, and W, respectively. Take any
pole O, and from any point in mh draw ok parallel to
OH. From the point of intersection of ok and hk draw
ok parallel to OK. From the point of intersection of
ok and kI draw ol parallel to OL. Draw the straight
line om, joining the point of intersection of ol and Im
with the point of intersection of ok and Am. This com-
pletes the funicular polygon. Draw OM parallel to om
to meet HLin M. Then LM, MH represent the reactions
at ¢ and B respectively.
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Now consider the equilibrium of the rod 4B alone.
The forces acting on it are the known forces along mh
and Ak, the tension 7' of the string in the direction F@,
which we mark kn, and the unknown action at 4 in
some line which will be denoted by nmm. Draw KN
parallel to kn. Then the force polygon will be MHKNM
(this way round), where at present the point I is un-
known. The pole O now gives an awkward figure;
we therefore take a new pole 0. Starting from A4,
we draw the strings om, o'k, o’k of the funicular
polygon, which we complete by drawing the string o'n
from A to the intersection of ok and kn. Draw O'N
parallel to o'n to meet KN in N. Then, joining MN,
we complete the force polygon. KN represents the
tension of the string, and NM the action of the hinge
upon the rod AB.

The force polygon for the rod AC is KLMNK (this
way round).

165. Ex. 3. Four rods, of no appreciable weight, are
freely jointed together at their extremities to form the
quadrilateral ABCD. The framework is stiffened by
another light rod smoothly hinged to the point E of
the rod AB, and to the point F of the rod AD.
Equal forces P are applied at A and C in opposite
directions along the line AC. It is requirved to find
the stress in the cross rod, and the actions at the hinges.

The three rods BC, CD, EF are in equilibrium under
the influence of forces acting only at their extremities.
They are therefore in a state of direct compression or
tension. Thus the actions at B and D are in the lines
BC, OD respectively, and the actions at £ and F are
both in the line EF.
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Let EF produced both ways meet CB produced and
CD produced in L and M respectively. Then, consider-
ing the equilibrium of the rod 4B, we see that the
action of the hinge A4 upon this rod is in the line 4 L.
Similarly the action of the hinge 4 upon the rod 4D
is in the line AM.

Fie. 183. FI1c. 183a.

Now let the space inside the triangle LMA4 be denoted
by o,, and the space within the triangle LMC by o,
Also let the space outside the figure and to the right
of AC be denoted by %, and the space outside the
figure and to the left of AC by £k

For the equilibrium of the joint C, we have the
triangle KHO,K (this way round), in which KH re-
presents P, and HO,, KO, are parallel to the lines ho,, ko,
respectively. '

For the equilibrium of the rod AB we have the
triangle K0,0,K (this way round), in which 0,0,, KO,
are parallel to the lines 0,0,, ko, respectively.

Hence, joining 0,H, the triangle H0,0,H must be the
triangle of forces for the rod 4.D, so that O, must be
parallel to the line o,h.
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Also, if we consider the equilibrium of the hinge

alone at A4, the triangle of forces is HKO H (this way
round).

The student will see that the force diagram is the
same as for the equilibrium of rods L4, AM, MC, CL,
stiffened by a rod LM, and under the same external
forces P, applied at 4 and C.

166. Ex. 4. Four rods, of mo appreciable weight, are
freely joimted together at their extremities to form the
quadrilateral ABCD. The framework is stiffened by
another light rod, connecting the hinge D with a point
E of the rod BC. Equal forces P are applied at A
and, C in opposite directions along the line AC. It is
required to determine the stress im the cross rod.

F1c, 184. Fic. 184 a.

This, of course, can be worked out in the same way
as the preceding problem, of which it is a particular
case, but as we require only the stress in the cross rod
we may proceed as follows:

td
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Draw a line XY intersecting the three rods 4B, ED,
DCin F, G, H respectively, and consider the equilibrium
of the portion FBECHG as a rigid body. The three
rods intersected are all in a state of direct compression
or tension.

The external forces acting upon this part of the
framework are: the force P at C, and the actions at
F, @, H, which are in the lines 4B, D, DC respectively.
The force P and the action at G must balance the
actions at ¥ and H. Find L and M, the points of inter-
section of AC, ZD and BA, CD respectively. Then LM
must be the line of action of the resultant of the force P
and the action at G.

Hence, drawing o to represent the force P acting
at C, let straight lines through « and @, parallel to £D
and LM respectively, meet in y. Then ya represents
the action of the portion DG upon the portion GE, thus
determining the stress in the rod ZD, and showing
whether the rod is a fie or a strut.

The method is applicable even if the point M is
inaccessible, for we only require the direction of LM,
and we can draw the straight line from L towards the
inaccessible point of intersection of 4B and CD.

In applying this method care must be taken to inter-
sect only such rods as are acted upon by forces at their
extremities only. '

EXAMPLES XIX.

1. Two rods AB and AC, each of length 2 feet 3 inches and
of no appreciable weight, are smoothly jointed together at A,
and placed, in a.vertical plane, with.B and € on a smooth hori-
zontal plane. The points B and C are connected by a fine string,
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of length 2 feet 8 inches, and from a point £ of the rod AC,
distant 1 foot from O, is suspended a mass of 30 pounds. Find
the tension of the string.

2. AB and AC are two equal rods, of no appreciable weight,
smoothly jointed together at 4, and resting in a vertical plane
upon a smooth horizontal plane BC. D is a point in 4B such that
AD=%A4B, and £ and F are points in AC such that AE=EF=FC.
A fine string connects /) with /7, and is of such a length that the
angle 4 is 60°. Find the tension of the string when a mass of
60 pounds is suspended from £. Determine, also, the magnitude
of the action at A.

3. 4B and COD are two rods, each of length 4 feet and of no
appreciable weight, freely jointed together at C, the middle point
of AB. A fine string, 5 feet long, connects 4 and D, and the whole
rests in a vertical plane upon a smooth horizontal plane 4D, a mass
of 100 1bs. being suspended from B. Find the tension of the string
AD and the thrust in the rod CD.

4. Solve Ex. 5, Art. 160, by the method explained in Art. 164.

5. ABCD is a rhombus formed by four rods, of no appreciable
weight, freely jointed together, and the figure is stiffened by
another rod, of inappreciable weight and of half the length of each
side of the rhombus, jointed to the middle points of 45 and 4D.
If this framework is suspended from 4, and a mass of 100 pounds
attached to it at €, find the thrust of the cross rod.

6. ABCD is a rhombus formed of four rods, of no appreciable
weight, loosely jointed together, so that ABD and BCD are equi-
lateral triangles. The framework is stiffened by another light rod
DE, connecting D with the middle point of BC. If this framework
is suspended from 4, and a mass of weight W attached to it at C,
find the thrust of the cross rod.

7. In the example of Art. 163, the vertical through £ meets 5C
in &, and the straight line through C, drawn perpendicular to
AB, meets EX in Y. Prove that

W:T:R:8:Q=BC:YX:CX:XB:CY.

8. In the preceding example, suppose that the weight of the mass
is given, but that the point £ may be anywhere in AC. Show that
the tension of the string varies as CE.
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sufficient that the resultant of the given system of
forces should pass through P and be in a- direction
intermediate to LP and L'P.

168. For example, suppose it is required to support
a given heavy rod in a given position with one end
resting against a given rough inclined plane, by
applying at some point of the rod a force in a given
direction.

——

F1c. 186a.

Let AB be the rod resting against the plane at B.
Draw BL and BL, making the angle of friction on
either side with the normal drawn away from the
plane at B. Let the vertical through , the centre
of gravity of the rod, meet BL, BL in L and L’
respectively.

Draw LM and L'M’ each parallel to the given direc-
tion of the applied force, to meet AB in M and M’
respectively. Then the force must be applied at some
point between M and M’

For, the only external forces acting on the rod are
its weight (W), the total resistance .of the plane (R),

and the applied force (#). The lines of action of the
D.S. U
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first two of these forces intersect at a point between L
and I’. Hence the line of action of F must pass
through some point between L and L. Thus, for
equilibrium, it is necessary that the force F should be
of suitable magnitude, and should be applied at some
point H between M and M.

For any given point H between M and M we can
determine the magnitude of the applied force, and the
total resistance at B. Draw HO in the given direction
of the applied force, to meet LL in 0. Then BO must
be the line of action of R. .

Draw af3 to represent the weight of the rod, and let
straight lines be drawn through a and 3 parallel to OB
and HO respectively, to meet in 9. Then By represents
the force F, and ya the force R.

It will be seen that we have taken the inclination
of the plane as greater than the angle of friction. If
the inclination is less than the angle of friction, the
vertical through G will not meet BL" above B. In
this case the point O may have any position above L.

169. In the preceding article, we have said that,
for equilibrium, it is necessary that the force # should
be applied at some point H between M and M’. This,
however, is not the only condition of equilibrium. We
have to take into account another consideration;—the
resistance at B must be in direction BO and not OB.
It is necessary, therefore, to examine the direction
arrows in the triangle o3y, and see that ya indicates
a push at B and not a pull.

For instance, suppose that M’ lies in AB produced,
the inclination of the plane being greater than the
angle of friction. It will be found that, if H is taken
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anywhere except between B and M’, the triangle of
forces indicates that a pull would be required at B;
and, as the force F' cannot be applied at a point in
AB produced, it follows that in this case the rod
cannot be supported.

170. 4 rigid rod AB, whose centre of gravity is at
@, rests against a rough horizontal plane at A, and
a rough wertical wall at B. The angles of friction
between the rod and the ground, and between the rod
and the wall are X and N respectively. It is required
to consider the conditions of equilibrium when any
system of forces is applied to the rod. '

K.

Fic. 187. Fic. 187 a.

Let AM, BN be drawn normals to the ground and
wall respectively. Draw AK, AK’, each making with
AM on opposite sides an angle A, and draw BL, BL/,
each making with BN on opposite sides an angle N’

The total resistance at 4 may be of any magnitude,
but must act within the angle KAK’, and the total
resistance at B may be of any magnitude, but must
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act within the angle LBL. Hence the lines of action
of the total resistances at A and B intersect at some
point within the quadrilateral KLK'L. If it is possible,
these resistances will be so adjusted as to produce
equilibrium. Hence, for equilibrium, it is necessary and
sufficient that the resultant of all the other forces
acting on the rod should be a force whose line of
action intersects the quadrilateral KLK'L’, and whose
direction is such as to produce pressures at A and B.

The limits to the direction of this resultant force are
determined in this way : Let OP represent the resistance
at A, and P@ the resistance at B. Then QO must
represent the resultant of all the other forces acting
on the rod. The point P lies anywhere within the
angle (Ol', where Ol, Ol are drawn in the directions of
AL, AL respectively; and the point @ lies anywhere
within the angle kPk’, where Pk, Pk’ are drawn in the
directions of BK, BK’ respectively. Hence, drawing Om
in the direction of Pk, we see that the only limitation
upon the position of the point @ is that it must be
somewhere within the angle mOl. Hence the resultant
of all the forces acting on the rod, other than the
resistances at its extremities, must be intermediate in
direction between KA and KB.

171. If the only forces acting on the rod are its
weight and the resistances at its extremities, then, for
equilibrium, it is necessary and sufficient that the ver-
tical through G should intersect the area KLK'L'. If
G is vertically below L, the equilibrium is limiting, and
the actions at 4 and B are then along AL and BL
respectively, and are determinate. In other cases these
resistances cannot be found.
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Fig. 187 represents a possible position of equilibrium,
as the vertical through G intersects the area KLK'L'.

Let w be the weight of the rod, and let the vertical
through L meet 4B in H. Then it is clear that if any
load be applied to the rod at a point between 4 and H,
equilibrium will not be disturbed. If, however, a load
W be applied at a point J between H and B, equilibrium
will, or will not, be disturbed, according as the resultant
of w and W acts above or below H.

172. Let the point J be given, and suppose it is
required to determine the greatest value of W con-
sistent with equilibrium. We may measure GH and
HJ, and find W from the equation

W _GH
w HJ
Or, we may obtain the same result as follows:

W

97
Fic. 188,

Draw of to represent w, and let two parallel lines
through « and 8 meet the verticals through J and H in
o and B’ respectively. Produce o'8" to meet the vertical
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through G in v/, and draw 7'y parallel to a’a to meet o3
produced in y. Then By represents W.

For any smaller load applied at J, the equilibrium
will not be broken, and for any larger load equilibrium
will be impossible.

173. Again, let W be given, and let it be required
to find the extreme position of J consistent with

equilibrium.
Here we can measure GH, and find HJ from the
equation i =]
GH W

Or, we may obtain the same result as follows:

Draw af, By to represent w and W respectively,
and let two parallel lines through 8 and vy meet the
verticals through H and @ in 8’ and v respectively.
Produce 93" to meet the parallel through « in «, and
draw o'J in a vertical direction to meet' AB in J.

If the load be placed below J, the equilibrium will
not be broken ; if above J, equilibrium will be impossible.

174. Suppose that a body rests in equilibrium against
a rough inclined plane, a flat portion of the surface of
the body being in contact with the plane. Let it be
acted upon by a given system of forces, all situated in
the vertical plane through a line of greatest slope of
the inclined plane, these forces being in addition to the
resistances of the inclined plane, which prevent the body
from either penetrating, or slipping along, the inclined
plane.

The resultant resistance of the plane now acts at some
point within the portion of the plane in contact with
the body, and makes an angle with the normal at that
point not greater than the angle of friction.
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Hence, for equilibrium, it is necessary and sufficient
that the resultant of the given system of forces should
act towards the plane, and intersect the body at a point
within the extreme limits of the surface in contact, and
that it should not make with the normal to the plane
an angle greater than the angle of friction.

If the resultant of the given system of forces acts
along a line outside the figure formed by a string
drawn tightly round the portion of the body in contact
with the plane, the tendency of the forces is to overturn
the body. If the resultant of the given system of forces
makes an angle with the normal greater than the angle
of friction, the tendency is to make the body slip along
the plane.

175. For instance, consider the following problem :

A laomina of given shape, and of weight W, rests with
o straight edge AB in contact with a rough inclined
plane, B being above A. It is supported by a force

w

B

Fia, 189. Fie. 189a.
applied in a given dirvection at a given point C. This -
force is gradually increased until motion ensues. It
8 required to find whether the lamina slips or topples
over.
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Let OD be the line of action of the force applied at C
in a direction tending to move the body up the plane.
Let G be the centre of gravity of the body, and let
the vertical through G meet DC produced (if necessary)
in 0. Draw ON normal to the plane and OH, making
with ON the angle of friction, such that NH is up the
plane.

If H lies within AB, the body will slide; if without,
the body will topple over round B.

For, draw af to represent W, and let straight lines
be drawn through « parallel to OH, OB to meet a line
through @ parallel to CD in y and ¢ respectively. If
the force applied at C is increased until it has a
value represented by (v, the body will be just on the
point of sliding; if it is increased until it has a
value represented by (36, the body will be just on the
point of toppling over. To ascertain what actually
takes place, we have merely to see which is the smaller,
Bv or BS; and, clearly, By will be less or greater than
(88 according as H lies within or without AB.

176. Ex. 1. A and B are two fixed pegs, B being at
higher level than A, and a heavy rod rests on B and
passes under A. The angle of friction between the rod
and the pegs being the same for both, it is required to
determine the conditions of equilibrium.

Let a be the inclination of AB to the horizon, \ the
angle of friction.

Draw AM,nBN, the normals at A and B respectively.
Make angle KAM =\=angle MAK' Also draw LBI,
L'Bl', making each an angle A\ with nBN, and let Bl
meet AK’ in H, as in the figure. Draw BFG vertically
downwards, meeting AK’ in F. Then angle GBn=a.
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The resistance at 4 acts in a direction intermediate
to AK and AK’. That at B acts in a direction inter-
mediate to B and I'B. Hence the lines of action of
these two resistances intersect at a point within the
area HK’, and equilibrium is possible only when the
line of action of the resultant weight of the rod inter-
sects the same area.

Fic. 190.

I Let a be <A. Then B@ is within the angle IBn,
so that FG divides the area [HK’ into two parts. The
line of action of the weight of the rod must not fall
within the area [HF@, otherwise it would be necessary
for the peg at A to pull instead of press the rod.
Hence, for equilibrium, it is necessary and sufficient
that the vertical through the centre of gravity of the
rod should intersect the area GFK'. Thus the rod will
rest with its centre of gravity anywhere above B.
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beam, will move it towards or from the foot of the wall,
the coefficients of friction being } for each end of the
beam.

Draw AB to represent the beam inclined at an angle
of 45° to AD, which represents the ground, and to
BD, which represents the wall. (For figure, see next
page.)

Let the normals at A and B intersect at N, and draw
AH and AK, intersecting BN in E and F respectively,
where EN=1AN=NF. Then

angle HAN =angle of friction=angle NAK.
Similarly, make
angle HBN =angle of friction =angle NBK.

Then the lines of action of the total resistances at
A and B intersect at some point within the shaded area
of the figure.

Let the vertical through the middle point of the beam
meet the horizontal through 4 in 0. Let W be the
weight of the beam, and suppose it is at rest when a
force X is applied at 4 in a horizontal direction towards
the wall.

The line of action of the resultant of X and W
passes through 0. If it is possible for the resistances at
A and B to adjust themselves so as to balance the
resultant of X and W, they will do so. Hence, for
equilibrium, it is necessary and sufficient that the line
of action of the resultant of X and W should pass
through the shaded area. Thus the line of action of
the resultant of X and W must lie between the positions
HO and KO. If it is beyond these limits, the beam
slips; if it is along HO, the beam is on the point of
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and postpone for the present any attempt to draw the
figure to scale.

Let AB represent the ladder, resting against the
ground AD at A and the wall BD at B. Let G be
the centre of gravity of the ladder, u and u’ the co-
efficients of friction for the ladder and ground and for
the ladder and wall respectively. Then u and ' are
known fractions, and the lengths of AG and GB are
known.

F,

7 0

N B
7

4 D

Fie. 193.

Let the normals at 4 and B intersect at N. Suppose
that VA0 is taken equal to the angle of friction for
the end 4, and NBO the angle of friction for the end B,
the first angle being measured from NA towards the
wall and the second upwards from NB. Then, as the
ladder is in limiting equilibrium, the vertical through G
must pass through O. Let the vertical through 4 meet
the horizontal through O in £ and BO produced in F.
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Then EAO, EOF are the angles of friction for the ends
A and B respectively.

. EO=p.EA and EF=y’. EO.
Also FO:0B=AG:GB.

Hence we have the following method for constructing
the figure:

Take any straight line KA vertically downwards.
Through X draw KO in a horizontal direction equal
to u. /A, and produce AE to F, making EF=y’. EO.

Produce FO to B, making the ratio FO:0B equal
to the known ratio AG:GB. Then AB may be taken
to represent the ladder.

In the construction indicated above, KA is taken of
any suitable length, without reference to a scale, and
the line AB is constructed, its length depending upon
the length chosen of £4. We can then choose our
scale so that 4B may represent the known length of
the ladder; or, if this is inconvenient, we can draw
another figure, similar to the figure obtained, com-
mencing with 4B, which is first drawn to scale.

If an additional load be placed on the ladder between
A and @G, the resultant weight of ladder and load will
act along a vertical line to the left of O, and therefore
the equilibrium will not be disturbed.

If, however, an additional load be placed on the
ladder between G and B, the resultant weight will act
along a vertical line to the right of O, and therefore
equilibrium will become impossible.

179. Ex. 4. The uniform square lomina ABCD rests
vertically with the side BC wpon a horizontal plane,
coefficient of friction %, and has a fine string attached
at D and passing over a small smooth peg at the point
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E in BA produced till EA is equal to AB. If the
string be pulled, find the greatest force which cam be
applied, consistent with equilibriuwm, and whether the
initial motion of the lamina will be tilting or sliding.

y

Fic. 194,

Let W be the weight of the lamina, and G its centre
of gravity. Let the vertical through G meet AD in F
and DE in O; join BF and BO.

The point F bisects AD, and therefore AF=}AB.
Hence ABF is the angle of friction. :

Take «B vertically downwards to represent W, and
draw By, a straight line of unlimited length, parallel
to DE.
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If the point y be taken so that ay is parallel to FB,
the straight line 8y will represent the pull of the string
when the lamina is on the point of sliding. If y be
taken so that ay is parallel to OB, then By will repre-
sent the pull of the string when the lamina is on the
point of tilting round B. As FB is inclined to the
vertical at a greater angle than OB, it follows that the
second of these alternatives gives the shorter value of
By. Hence the initial motion is one of tilting.

a

W

F1e. 194 a.

Also, drawing ay parallel to OB, we find, on -measure-
ment, that By =35 of a3. Therefore, the greatest value
of the applied force, consistent with equilibrium, is
35 W.

EXAMPLES XX,

1. A uniform beam AB, whose length is 12} feet, rests with
one extremity 4 on a rough horizontal plane AC, and is kept
from falling forwards by a fine cord BC, 20 feet long, whose
extremity is attached to a fixed point ¢ in the plane, directly
behind the beam. If the beam is on the point of slipping when

AC=AB, find the coefficient of friction.
D.S. X
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2. A uniform beam of weight I, laid on a horizontal plane,
can be just moved in its own direction by pushing it with a
horizontal force 58 W. Find the least force which can move it
in its own direction, and determine the direction of this force.

If the beam be pulled by a gradually increasing force applied
by a fine string attached at one end A4, determine the least
inclination of the string to the horizon, in order that 4 may be
raised from the ground.

3. A uniform ladder 70 feet long is equally inclined to a
vertical wall and the horizontal ground, both rough; a man,
ascending the ladder, weighs with his burden 2 cwt., and the
ladder weighs 4 cwt.; how far up the ladder can the man ascend
before it slips, the coefficient of friction for the ladder and wall
being %, and for the ladder and ground }?

4. A ladder 4B, 15 feet long, rests against the ground at 4
and against a rough vertical wall at B, the coefficients of friction
at 4 and B being % and %, respectively ; the centre of gravity,
@, is 6 feet from 4 : find the inclination to the horizon at which
the ladder will be just about to slip.

5. If the ladder of the preceding question is placed so that
the distance of 4 from the wall is twice as great as the distance
of B above the ground, and a boy, whose mass is one-fifth of that
of the ladder, ascends it in this position, how far will he be
able to go before the ladder begins to slip?

6. A uniform ladder rests between a vertical wall and the
horizontal ground, both rough; if the coefficient of friction for
the ladder and wall is }, and for the ladder and ground %, find
the angle which the ladder makes with the ground when it just
begins to slide.

7. A rectangular block 4BCD, whose height is double its base,
stands with its base 4D on a rough floor, coefficient of friction
3. If it is pulled by a horizontal force at €' till motion ensues,

determine whether it will slip on the floor or begin to turn over
round D.

8. A uniform cubical block is sustained on a rough inclined
plane by a fine string, which is parallel to the plane, and is
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attached to the middle point of the upper edge of the cube,
which is horizontal. The string lies in the vertical plane which
contains the centre of the cube, and which is perpendicular to
the inclined plane. The angle of friction being given, show how
to determine the greatest inclination of the plane consistent with
equilibrium.

Show that the greatest inclination is such that the ratio of
the height of the plane to its base is 142 :1, where u is the
coefficient of friction.

9. A heavy rigid beam rests against a rough horizontal plane
and against a rough vertical wall, the vertical plane through the
beam being at right angles to the wall. Show that if the beam
is inclined to the vertical at an angle less than the angle of
friction for the beam and the ground, equilibrium cannot be
broken, whatever loads be applied to the beam.

10. A heavy ladder is placed in a given position between a
vertical wall and the horizontal ground, both being equally
rough ; a workman of given weight ascends the ladder with a
given load, show how to determine by a geometrical construction
whether the ladder will slip.

11. In Example 3, Art. 178, show that, if the ladder is uniform,
BD:DA=1—pp : 2p.

If, in addition, p=y’, show that the limiting inclination of the
ladder to the vertical is twice the angle of friction.

12. A ladder 4B, whose centre of gravity is at G, rests against
a rough horizontal plane at 4, and a rough vertical wall at B,
the coefficients of friction for the ground and the wall being
pand p' respectively. Show that, if 4G is less than pp’. BG, the
ladder will rest at any inclination to the wall.

13. A uniform ladder rests in limiting equilibrium against a
rough vertical wall and rough horizontal ground. Show that a
man can ascend to the top of the ladder, while in this position,
provided that a man, of not less weight than himself, stands on
the ladder at the bottom.

14. A ladder, loaded in any manner, rests against a rough
“vertical wall and rough horizontal ground, being prevented from
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ANSWERS TO THE EXAMPLES.

In each side of the rhombus, tension of 84'66 pounds’ weight.
In the cross rod, thrust of 1270 pounds’ weight.

76'92 pounds’ weight.

316 pounds’ weight. '

AC is vertically downwards ; the tensions of the sides of the
parallelogram are 80, 60, 80, 60 pounds’ weight respectively ;
the thrust in BD is 124 pounds’ weight.

AC is vertically downwards ; the tensions of the sides of the
parallelogram are 40, 30, 40, 30 pounds’ weight respec-
tively ; the thrust in BD is 34 pounds’ weight.

MN is vertically downwards, and the rod is inclined at an
angle of 554" to the vertical ; the tensions of HM, MK,
KN, NH are 52, 56, 52, 16 pounds’ weight respectively ;
the thrust in the rod is 60 pounds’ weight.

EXAMPLES V.

1414 P, acting at an angle of 45° with the vertical.
16, 12 pounds’ weight.

IV at each peg, in a direction making 30° with the horizontal.
At C, 10 pounds’ weight at an angle of 60° with the vertical.
At B, 17°32 pounds’ weight in a horizontal direction.

4472 pounds’ weight, acting at an angle of 26}° with the
vertical.

39'22 pounds’ weight, acting at an angle of 11}° with the
vertical.

At B, 1110 pounds’ weight at an angle of 561° with the
vertical. '

At () 16'64 pounds’ weight at an angle of 33%° with the
vertical.

41'23 pounds’ weight each, at an angle of 14° with the
horizontal.

3 pounds’ weight ; 1393 pounds’ weight.

156 pounds’ weight.

338 ounces’ weight.
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O rests 3 inches below, and 4 inches to the right of, 4.

10 pounds’ weight.

The ring rests at a point distant 7inches from 4 and 25 inches
from B, the angle at 4 being a right angle.

10 pounds’ weight.

At B and 0, 6 pounds’ weight each in a horizontal direction.

At 4, 8 pounds’ weight in a vertical direction.

Tension=5 pounds’ weight.

Tension =10 pounds’ weight.

At B and C, 16 pounds’ weight each in a horizontal direction.

At 4, 12 pounds’ weight in a vertical direction.

Tension=10 pounds’ weight.

At 4,894 pounds’ weight at an angle of 633° with the vertical.

At B, 1789 pounds’ weight at an angle of 26}° with the
vertical.

At (), 16 pounds’ weight in a horizontal direction.

In the direction CO, where C is in AB at a distance of 3 inches
from 4.

Tension =894 pounds’ weight.

At 4, 12'65 pounds’ weight at an angle of 45° with 4.

At B, 1697 pounds’ weight at an angle of 184° with BA.

95, 65 pounds’ weight.

1-75 inches ; 40 pounds’ weight.

6 pounds’ weight, at an angle of 414° with the vertical.

‘When the rod is vertical, the tension of each string is
8 pounds’ weight.

‘When the rod is horizontal, the tensions of ACB and ADB
are 10 and 17 pounds’ weight respectivély.

EXAMPLES VI

5, 4 pounds’ weight.
17-32, 20 ounces’ weight.
36, 20 ounces’ weight.
115 pounds’ weight each.
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10.
11
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13.
14,
15,
16.
17.
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12 pounds’ weight.

‘866 W, at an angle of 30° with the vertical.
7'66, 643 pounds’ weight.

(a) 1'82 pounds’ weight.

(b) 1°71 pounds’ weight.

6 feet 8 inches.

10 pounds’ weight; 31'62 pounds’ weight.
40 pounds’ weight.

12 ounces’ weight.

966, 673 pounds’ weight.

60°, 17-32 pounds’ weight. 346 inches.
7, 15 ounces’ weight.

5'2 ounces’ weight.

1 foot, 7-66 pounds’ weight.

EXAMPLES VIL

(i.) 466, 11'03 ounces’ weight ;

(ii.) 4-29, 981 ounces’ weight ;
(iii.) 941 ounces’ weight, at an angle of 23}° with the vertical ;
(iv.) 4'23 ounces’ weight, in an upward direction inclined at an

angle of 25° to the horizontal.

(i.) 567 ounces’ weight ;

(ii.) 5°77 ounces’ weight ;
(iii.) 985 ounces’ weight, at an angle of 10° with the vertical;
(iv.) 5 ounces’ weight, at an angle of 60° with the vertical.

(i) 7°09 ounces’ weight; )

(ii.) 1-92 ounces’ weight;

(iii.) 6'43 ounces’ weight, at an angle of 50° with the vertical;

(iv.) 1'74 ounces’ weight, at an angle of 80° with the vertical.

22 ounces’ weight ; 1'31 ounces’ weight.

“75; 3'6 pounds’ weight. 288 pounds’ weight, at an angle of
733° with the horizontal.

1'15 pounds’ weight.

10° and 50° from the highest and lowest points of the hoop.
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EXAMPLES VIIL

(i.) 12 P, in the same direction as each of the given forces,
through a point €' in 4B, such that AC=-58 of 4B.

(ii.) 2 P, in the direction of the 7 P, through a point ¢ in 4B
produced, such that 4C=35 of AB.

5 pounds’ weight, in the direction of the second force, at a
distance of 16 inches beyond that force.

34'83 pounds’ weight along the line XY, where X is a point in
DA, such that DX=+45 of DA, and Y is a point in OB,
such that CY="56 of CB.

EXAMPLES IX.

693 pounds’ weight each, at an angle of 30° with the vertical.

225 pounds’ weight ; 21'93 pounds’ weight, at an angle of 24}°
with the vertical.

90 pounds’ weight.

144 pounds’ weight.

455 pounds’ weight.

17-32 pounds’ weight; 17'32 pounds’ weight, in a direction
perpendicular to the rod.

10 pounds’ weight; 17°32 pounds’ weight, at an angle of 30°
with the vertical.

Reaction at B=4 W in a horizontal direction.

Reaction at the hinge=§ W at an angle of 53° with the vertical.

125 pounds’ weight; 1031 pounds’ weight, at an angle of 14°
with the horizontal. -25.

1329 inches, 5964 ounces’ weight.

3695 pounds’ weight, at an angle of 153" with the horizontal;
2609 pounds’ weight.

142 feet from 4 ; 1166, 17°73 ounces’ weight.

2 pounds’ weight; 447 pounds’ weight, at an angle of 26}°
with the vertical.
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14, 546 pounds.

15, 186 pounds’ weight.

16. 5W, 866 W.

17. W each.

-18. 6, 10 pounds’ weight.

19. 65 pounds’ weight.

20. 26, 28 pounds’ weight.

21, 4 inches, 25 pounds’ weight.

22, The middle point; 2 W, § W.

23, Either from a point dividing AC in the ratio 1 : 3, or from a
point dividing BC in the ratio 5 : 3; 866, b pounds’ weight.

24, 13 pounds; 192 pounds’ weight, at an angle of 38%° with the
vertical.

25, 30, 2646 pounds’ weight.

26. Horizontal.

27. Pressure at D=1 pound weight, at an angle of 30° with the
horizontal.

Action at 0=173 pounds’ weight, at an angle of 60° with the
horizontal.

28. Perpendicular to BC, 9 inches from B.
29. In direction OP, where P is at distances of 18 and 24 inches
respectively from 4 and B.

30. 15'6 pounds’ weight; 992 pounds’ weight, at an angle of 523°
measured downwards from the horizontal.

81, 5W, 5TTW.

32. Between 3 and 8 inches from A.
33. 5 inches from A.

34, 1895 pounds’ weight.

35, 9643, 53'57 pounds’ weight.

36. 100, 40 pounds. The first man would support 12 pounds more,
and the other 12 pounds less.

37, 949 pounds’ weight.
38, 16 pounds’ weight; 40 pounds’ weight.
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EXAMPLES X.

1-73 pounds’ weight, in a direction perpendicular to the first
side, through a point which divides that side externally
in the ratio 1:3.

96 pounds’ weight, in a direction perpendicular to BC, through
the middle point of BC.

3'6 pounds’ weight along FG, where @ is in BC produced such
that CG=%.BC, and F is in AD produced such that
DF=AD.

105 pounds’ weight along LD, where L is in DA produced
9 inches from 4.

7 pounds’ weight, at an angle of 813> with 4B, through O in
FC produced, where CO=side of hexagon.

EXAMPLES XI.

Tension of string = 9 pounds’ weight.
Pressure of step =15 pounds’ weight.
Pressure of ground=13 pounds’ weight.

866, 15, 17-32 pounds’ weight; '58.
-5 P, 71 P, 5 P.

50, 484, 1875 pounds’ weight.
4924,

5, 12-32, 20 pounds’ weighf.

15, 1269, 12°69 pounds’ weight.
BRI 18

10, 17-32, 34'64 pounds’ weight.
2887 pounds’ weight.

Tension of 4H=5774 pounds’ weight.
Tension of BA =50 pounds’ weight.

41°6, 792, 36'0 pounds’ weight.
25 pounds’ weight.
8, 37'86, 8:28 pounds’ weight.
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52 pounds’ weight. The tensions of the rods BC, €4, AB are
25, 39, 33 pounds’ weight respectively ; the action at 4 is
60 pounds’ weight, in a direction perpendicular to BC.

Tension of string=115"5 pounds’ weight.

In 4B, a thrust of 57'7 pounds’ weight.

In BC, a tension of 1155 pounds’ weight.

In C4, a thrust of 1155 pounds’ weight.

Action at A=152'8 pounds’ weight, at an angle of 41° with 4B.

The force applied at 4 =108 pounds’ weight.

Reaction at B=60 pounds’ weight vertically upwards.

In BC and C4, tensions of 75 and 117 pounds’ weight
respectively.

In AB, a thrust of 45 pounds’ weight.

28 pounds’ weight each.

In 4B, BC, 0D, DA, tensions of 30, 26, 26, 30 pounds’ weight
respectively.

80 pounds’ weight each.

The forces in the lines be, da, and the tensions of the rods oa,
0b, oc, od are 80, 60, 36, 48, 64, 48 pounds’ weight respec-
tively.

Tension of string =200 pounds’ weight.

In 4B, BC, CD, DA, tensions of 130, 90, 130, 90 pounds’
weight respectively.

In AB and EF, tensions of 51 pounds’ weight each.

In BC and DE, tensions of 30 pounds’ weight each.

In 0D, tension of 18 pounds’ weight.

In BE, tension of 27 pounds’ weight.

In A0, OD, DB, tensions of 20, 12, 20 pounds’ weight respec-
tively.

In AB and BC, tensions of 25 and 50 pounds’ weight re-
spectively.

In ADand DC, thrusts of 25 and 50 pounds’ weight respectively.

The reactions at B and D are 49-24 pounds’ weight each.
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The actions at B and D are 48 and 1613 pounds’ weight
respectively.

In AD and DC, tensions of 250 and 300 pounds’ weight
respectively.

In AB and BC, thrusts of 240 and 288 pounds’ weight
respectively.

In 4B, BC, CD, DE, tensions of 56, 65, 65, 56 pounds’ weight
respectively.

In BF and FD, thrusts of 33 pounds’ weight each.

EXAMPLES XV.

In AB, BC, COD, tensions of 1155W, -577W, 115656W
respectively, where W is the weight of each mass.
8'66 pounds’ weight.
In AD, a thrust of 3 pounds’ weight.
In BC and CD, tensions of 5 pounds’ weight each.
63 pounds’ weight.
In BC and COD, tensions of 52 and 25 pounds’ weight respec-
tively.
In 4B, a thrust of 20 pounds’ weight.
6929 pounds’ weight.
In BC and CD, tensions of 346 and 60 pounds’ weight respec-
tively.
In AB, a thrast of 17-3 pounds’ weight.
333 pounds.
In 4B, BC, CD, tensions of 1155, 57'7, 66°7 pounds’ weight
respectively.
(i) 591°, 90°, 591° to the vertical;
(ii.) 1164, 10, 1164 feet;
(iii.) 48-85, 41°95, 4885 pounds’ weight.
(i) 25°;
(ii.) 6627 pounds’ weight;
(iii.) 2813 pounds’ weight ;
(iv.) 4'56 feet.
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EXAMPLES XVI

In AC, a tension of 112 pounds’ weight.

In AB and AD tensions, in BC and CD fhrusts, each of
64 pounds’ weight.

In AC, a tension of 52 pounds’ weight.

In AB and 4D, tensions of 80 pounds’ weight each.

In BC and CD, thrusts of 40 pounds’ weight each.

In DC, a thrust of 272 pounds’ weight.

In BC, a tension of 308 pounds’ weight.

In DB, a thrust of 231 pounds’ weight.

In AB, a tension of 385 pounds’ weight.

AB is horizontal.

In AC, AB, DA, tensions of 875, 2:04, 26'04 pounds’ weight
respectively.

In BCand CD, thrusts of 7-29 pounds’ weight each.

192 pounds.

In AC, a tension of 150 pounds’ weight.

In AB a tension and in BC a thrust, each of 90 pounds’ weight.

In AD a tension and in DC a thrust, each of 120 pounds’
weight.

50 pounds’ weight.

In KH, KM, KL, tensions of 30, 50, 40 pounds’ weight
respectively.

In MH and ML, thrusts of 40 and 30 pounds’ weight respec-
tively.

32 pounds’ weight.

In BA, BD, BC, tensions of 50, 56, 34 pounds’ weight respec-
tively.

In DA and DC, thrusts of 50 and 34 pounds’ weight respec-
tively.

The forces applied at 4 and € are 120 pounds’ weight each.

In BA, BD, BC, tensions of 125, 42, 125 pounds’ weight
respectively.

In DA and DO, thrusts of 35 pounds’ weight each.
D.S. Y
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9, In 4B, BC, CD, CA, tensions of 1155, 5777, 28'87, 10 pounds’
weight respectively.
10. In 4B, BC, CD, C4, thrusts of 11'55, 577, 28'87, 10 pounds’
weight respectively.
In AD, a tension of 1443 pounds’ weight.
The reactions at 4 and D are 15 and 25 pounds’ weight
respectively.
11, In the lower rods, tensions of 120 pounds’ weight each.
In the upper rods, thrusts of 130 pounds’ weight each.
In the upright, a tension of 100 pounds’ weight.
12, In the lower rods, tensions of 125 pounds’ weight each.
In the upper rods, thrusts of 150 pounds’ weight each.
In the upright, a tension of 180 pounds’ weight.

13. In the 28-foot rod, a thrust of 14,000 pounds’ weight.
In the 20-foot rod, a tension of 10,000 pounds’ weight.
In the upright, a thrust of 15,780 pounds’ weight.
In the 13-foot rod, a tension of 22,520 pounds’ weight.
The action at 4 is 28,150 pounds’ weight, at an angle of 18°
with the vertical.

EXAMPLES XVII

1, In BC,a thrust of 117 pounds’ weight.
In OB and OC, ties of 97'5 pounds’ weight each.
In 04 and 0D, ties of 62'5 pounds’ weight each.
In BA and CD, thrusts of 97'5 pounds’ weight each,

2. In the two lower rods, tensions of 2887 pounds’ weight each.
In the three upper rods, thrusts of 5774 pounds’ weight each.
In the two internal rods, tensions of 577'4 pounds’ weight each.

8. In the two lower rods, tensions of 150 pounds’ weight each.
In the two side rods, thrusts of 250 pounds’ weight each.
In the top middle rod, a thrust of 300 pounds’ weight.
In the two internal rods, tensions of 250 pounds’ weight each.

5, Tension of 8089 pounds’ weight, thrust of 622'2 pounds’
weight, tension of 311°1 pounds’ weight.
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In the lower horizontal rods, tensions of 4667, 1400, 1400,
466°7 pounds’ weight.

In the upper horizontal rods, thrusts of 933-3, 18667, 933'3
pounds’ weight.

The other rods, taken in order, are :—strut, tie, strut, tie, tie,
strut, tie, strut.

In the top rod, a thrust of 4480 pounds’ weight.
In the bottom rod, a tension of 5973 pounds’ weight.
In the internal rod, a thrust of 1867 pounds’ weight.

In the horizontal rod, a tension of 112 pounds’ weight.
In the top rod, a thrust of 200 pounds’ weight.
In the internal rod, a tension of 80 pounds’ weight.

EXAMPLES XVIIL

26, 22°5, 225, 26 ounces’ weight.

In HEK, HF, HN, tensions of 26, 36, 26 ounces’ weight respec-
tively.

The actions at L and M are each 26 ounces’ weight, in directions
parallel to HN, HK respectively.

25, 4'2, 4'2, 2'5 pounds’ weight.

Thrust in the cross-rod =57 pounds’ weight.

Tension of each string=25 pounds’ weight.

Action at the hinge =37 pounds’ weight, in a horizontal
direction.

Thrust in the cross-rod =346 W.

The actions at the hinges are:—
At A and F, 2°75 W each, at an angle of 243° with the vertical.
At Band E, 1'89 W each, at an angle of 374" with the vertical.
At C and D, 2:36 W each, at an angle of 774° with the vertical.

Tension of string=1-15W.
Action at H=5W, in a vertical direction.
Action at L="76W, at an angle of 49° with the vertical.

1-5W; 29W, 1-73W, 2:31 W.
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