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PREFACE

TO

THE SIXTH EDITION.

IN 1sSUING the Sixth Edition of the present work, it may
not be improper to mention that the Second Edition,
published in 1863, was altered in several respects from
the First Edition, published in 1860, and that each sub-
sequent Edition has undergone a careful revision. In
the present Edition some changes have been made in
the technical terms employed, and two chapters have
been rewritten : viz. Chapter IX., Part I., on the ¢De-
flection and Rupture of Beams;’ and Chapter III.,
Part II., on ¢Force and Motion.” At the end of the
latter will be found the three laws of motion, as stated
by Newton, together with his illustrations of them,
translated from the Introduction to the ¢ZPrincipia.’
All the Examples have been worked through several
times, and it may be presumed that the Answers are
correct, with few exceptions. The unit of force in
which they are expressed—with such exceptions as are
apparent from the context—is the grawitation wumit,
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the force of one pound, as defined on p. 48. What is
meant by the absolute unit of force is explained in
‘Chapter III. of Part II., and the subject is illustrated
by some Examples. On the whole, it is hoped that the
later Editions have been considerably improved.

J.F.T.
October 1, 1£89.
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THE FIRST EDITION.

e —

THE FOLLOWING TREATISE is designed to be an Introduction
to the science of Applied Mechanics : in this it differs
from all the elementary works commonly in use, which
are introductory to Rational Mechanics. How great a
difference is caused by this circumstance will appear from
an inspection of the Contents; it may, however, be men-
tioned that, at the least, one-half of the present work has
no counterpart in any Elementary Treatise that has fallen
under the author’s notice. That so great a divergence from
the usual type should be possible seems sufficient reason for
believing that something is wanting in the ordinary works ;
but how far the present will supply that want is, of course,
another question. It was originally intended to be a book
of Examples, and a supplement to others already in exist-
ence: it was, however, found that by a few additions
it could be made independent, and it was thought that
what was gained in point of convenience by completeness,
would more than compensate a small increase of size and
cost.
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The work isintended to comprise two courses : the first
is contained in Chapter I., the first section of Chapter II.,
and Chapter III. of Part I., and in Chapter I. of Part IIL ;
the second forms the remainder of the book. The first
course may be read by any one who understands arithmetic,
a little algebra, practical geometry, and the rules of men-
suration ; in many of the Examples it is intended that a
geometrical construction should take the place of calcu-
lation : instances of the use of comstruction are given in
Examples 178, 216, &c. In this course the principles of
the science are merely stated, their formal demonstra-
tion being reserved to the second course ; in other words,
the order most convenient for teaching and learning has
been followed at some sacrifice of the systematic develop-
ment of the subject. The second course presupposes that
the reader is acquainted with Euclid, algebra, and trigo-
nometry, as commonly taught in schools; a very few
Examples are inserted which require some acquaintance
with co-ordinate geometry and the differential calculus ; *
the reason for their insertion will generally be obvious
from the context in which they occur. Frequent use has
been made of simple geometrical limits ; they will pro-
bably present but little difficulty to the reader: some
remarks on the subject of limits will be found in the
Appendix.

Very many Examples require numerical answers ; it is
hoped that but few of the arithmetical operations will
prove laborious to any one who possesses a proper facility
in manipulating numbers, and it must be remembered

* Most of these Examples are contained in Chap. IX,, Part L. ; the
others are distinguished by an asterisk.
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that few things are more important to a learner in the
_earlier stages of his progress than that he should be con-
tinually referred to the numerical results that follow from
the formul he investigates. Hints and explanations have
been freely given in connection with the more difficult
Examples, and it is hoped they will be found sufficient to
enable the reader to complete the solutions, though many
of them are important mechanical theorems, and some of
them but rarely to be met with (e.g. Examples 134, 149,
393, 429, 522, 553, 566, &e.).

A list is subjoined of the principal works referred to in
drawing up the present Treatise ; particular instances of
obligation are acknowledged in the footnotes in the course
of the work. A more explicit recognition of assistance is
due to the Rev. H. Moseley, Canon of Bristol ; about two
hundred of the Examples were given by him to his classes
at King’s College, London, in the years 1840, 1, 2, 3;
these he very kindly placed at the author’s disposal, and
also gave him permission to use freelyhis excellent Treatise
on the ¢ Mechanical Principles of Engineering >—a permis-
sion of which great use has been made.

StaFr CoLLEGE : dugust 1860,
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PRACTICAL MECHANICS.
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CHAPTER I.

ON SOME OF THE PHYSICAL PROPERTIES OF MATERIALS.

1. Properties of Materials.—The present chapter is
intended to serve as an introduction to those that follow.
It contains examples illustrative of the more obvious
physical properties of the materials commonly used in
construction and machinery. These physical properties
are (1) Weight; (2) Expansion or Contraction, produced
by change of temperature ; (3) Elongation and Compres-
sion, produced by Tension or Pressure; (4) Resistance
offered to Rupture by Tension ; (5) Resistance offered to
Rupture by Compression.

2. Weight.—For estimating the weight of bodies with
sufficient accuracy it may be assumed that the weight of
a cubic foot of water is 1000 oz. This number is easily
remembered, and is within a very little of the truth. In
every example contained in the following pages wherein
the weight of bodies is concerned, it will be assumed that
the weight of a cubic foot of water is 1000 oz., unless the
contrary is specified. As a matter of fact, a cubic foot of
pure water at 39° F. (when its density is greatest) weighs
998:8 oz. It may also be convenient for the reader to
remember that a gallon contains 277-274 cubic inches,

B



2 PRACTICAL MECHANICS.

and that a gallon of water at the standard temperature
(62° F.) weighs 10 lbs.

Ezx, 1.—A reservoir is internally 12 ft. long, 5 ft. wide, and 3 ft. deep:
determine the weight of the water it contains when full, and the least
error produced by considering that each cubic foot weighs 1000 oz.
. Ans. Weight, b tons, 0 cwt. 50 1bs,
Error, 13} 1bs.

Ez,2,—A cylindrical boiler terminated by plane ends, is internally 15 ft.
long and 4 ft. in diameter; through the lower half pass lengthwise 50 fire~
tubes, 3 in. in external diameter: determine the volume and weight of the
" water contained in it when the surface of the water passes through the
centres of the ends, Ans, Vol. 57'43 cubic ft.

Weight, 1 ton, 12 ewts. 0 gr. 55 lbs,

Ez. 3.—The surface of a pond measures 10 acres; in the course of a
period of dry weather the surface falls 1} in. by evaporation : what is the
weight of the water that has been withdrawn? 4ns. 1520 tons, nearly.

3. Specific Gravity.—The specific gravity or specific
density of a solid or liquid substance is the proportion
which the weight of a certain volume of that substance
bears to the weight of an equal volume of water; thus
when it is stated that the specific gravity of cast iron is
7-2070, it means that a cubic foot, or a cubic inch, &ec.,
of cast iron weighs 72070 times as much as a cubic foot,
cubic inch, &c., of water; consequently a cubic foot of
cast iron will weigh 7207 oz., and in general, if s is the
specific gravity of a substance, a cubic foot of it will weigh
1000 S oz., at least with sufficient accuracy in almost all
cagses. The following table gives the specific gravities of
some common materials :—

Tasre I
SPECIFIC GRAVITIES,

Metals.
Platinum (laminated) . 22:0690 | Brass (cast) . . . 83958
Pure Gold (hammered) . 19:3617 | Steel (hard) . . ., 7-8163
Gold 22 carat (d0.) . . 175894 | Iron (cast) . . . 7-2070
Mercury . . . . 136681 » (wrought). « . 77880
Lead (cast) . . . 113523 | Tin (cast). .. 72914
Pure Silver (hammered) . 10-56107 | Zine (cast) . . 71908

Copper (cast) « . . 87880
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Stones and Earth,
Marble (white Italian) . 2638 | Portland Stone. - , . 2145
. Slate (Westmoreland) . 2:791 | Coal (Newcastle) . . 1.2700
Granite (Aberdeen) . . 2625 | Brick(Red) . . . 2168
PavingStone ., . . 24158 | Clay. . . . ., 1919
MillStone . . . 24835 | Sand (River) . . . 1886
Grindstone , , , 21429 | Chalk (mean) , ., ., 2315

Woods (Dry).
Em. . , . . 0588 | Oak(English) . , ., 093¢
Fir (Riga) ¢ « o« 0758 | Teak (Indian) . . . 0657
Larch . . . . 0522 Cork . . . . 02400
Mahogany (Spanish), . 0800

1 foot length of Hempen rope weighs in 1bs. 0:045 x (circ. in inches)?
« 1, »” Cable weighs in 1bs. 0-027 x (cire. in inches)®,
1 cubic foot of Brickwork weighs 112 lbs.

Norr.—The above numbers, where printed to four places of decimals,
are taken from Dr. Young’s Lectures on Natural Philosophy, vol. ii. p. 503 ;
where printed to three places of decimals, from Mr. Moseley’s Meckanics of
Engineering, 1st ed. p. 622. A definite specific gravity is assigned to each
substance to prevent ambiguity in working the following examples. It will
be remarked, however, that different specimens of the same substance have
different specific gravities: thus of 16 specimens of cast iron the specific
gravities have been found to vary from 7-295 to 6:968. The reader must,
therefore, bear in mind that the numbers in the text give mean values from
which the specific gravity of any specimen of & given substance will not
largely vary—though the limits of variation are greater with some sub-
stances than with. others. A similar remark applies to all quantities
determined by experiment.

Ex, 4—What is the weight of a rectangular block of marble 63 ft. long,
and in section 12 ft. square ? Ans. Weight, 667 tons, 14 cwts. 3 grs,

Ezx. 5.—The girth of a tree is 3 ft. at top, 3 ft. 9 in. at bottom, it is 14 ft.
long. Determine its weight according as it is larch, oak, or mahogany.
Also, its value at the following prices: larch, 2s. 6d.; oak, 7s.; mahogany,
192, per cubic foot rough.

Ans. Vol. 1274 cubic ft.
‘Weight: Larch, 416 lbs. Oak, 744 lbs. Mah. 637 lbs.
Price: » 1.11s.10d. ,, 4l 9s. 2d. » 121 25, 1d.
[The volume to be determined as that of the frustum of a cone.]

Ez, 6.—Find the weight of a rectangular mass of oak, 12 ft. long, 4 ft.
broad, and 2} feet thick. What would be the weight of a mass of granite
of the same dimensions ? Ans, Oak, 62 cwts, 2 qrs. 5 lbs,

Granite, 1756 cwts. 3 qrs. 3§ lbs.

B2



4 PRACTICAL MECHANICS.

Ez. 7.—Find the separate weights of a cast-iron ball, 4 in. in radius, and
of a copper cylinder 3 ft. long, the diameter of whose base is 1 in. Deter-
mine alsp the diminution in the weight of the ball if a hole were cut through
it which, the cylinder would exactly fit, the axis of the cylinder passing
through the centre of the sphere. Also, find the error that results from
considering the part cut away a perfect cylinder.

. . . Ans. Weight of sphere, 111809 oz,
. cylinder, 143-8 oz.
” part cat from sphere, 26:204 oz.
Error, 0102 oz.

Ez, 8.—If a 10-in. shell were of cast iron, and were 2 in. thick, what
would be its weight supposing it complete ? If the weight of a 10-in. shell
were 86 1bs., what would be its thickness supposing it complete ?

. Ans. (1) 107 1bs. (2) 1'41 in.

Ez, 9.——A hammer consists of a rectangular mass of wrought iron, 8 in:
Iong, and 8 in. by 2 in. in section; its handle is of oak, and is a cylinder
8 ft. 6 in. long, on a base of 1 in. in radius, Determine its weight.

Ans. 12:83 lbs.

Ex. 10.—A pendulum consists of a cylindrical rod of steel 40 in. long, on
a base whose diameter measures } in.; to the end of this is screwed a steel
cylinder } in. thick, and 1} in. in radius, which fits accurately a hollow
‘eylinder of glass, containing mercury 6 in. deep, the glass vessel weighing
3 0z. Determine the weight of the pendulum, Ans. 3608 oz.

Ex. 11,—Determine the weight of a leaden cone whose height is 1 ft. and
radius of base 6 in.; determine also the external radius of that hollow cast
iron sphere which is 1 in. thick, and equals the cone in weight.

Ans. (1) 18574 1bs. (2) 8:02 in.

Ex. 12.—A rectangular mass of cast iron 6 ft. long, 6 in. wide, and 8 in,
deep, has fitted square to its end a cube of the same materials whose edge
is 14 ft. long; find its weight. Ans. 1858 1bs,

Ex. 13.—1It is reckoned that a foot length of iron pipe weighs 64:4 Ibs,
when the diameter of the bore is 4 in. and the thickness of the metal 1} in,:
what does this assume to be the specific gravity of iron ? Ans. 7°197.

Ez. 14,—A cast-iron column 10 ft. high and 6 in. in diameter will safcly
support a weight of 17} tons, whether it be solid, or hollow and 1 in. thick ;
determine :—(1) the weight of a solid column ; (2) the number of equally
-strong hollow columns that can be made out of 500 solid columns; (3) the
price of 500 solid columns at 10s. per ewt. and of 500 hollow columns at
11s. 8d. per cwt.; (4) the cost of sending the 500 solid and the 500 hollow
columns to & given place at the rute of 10s. 6d. per ton.

Ans. (1) 8844 1bs. (2) 900. (3) 19741, 3s. solid, 1288/, 16s. hollow.

(4) 1031. 13s. solid. 5671, 125, hollow.
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Ez. 15.—Determine the weight of a hollow leaden cylinder whose length
is 3 in., internal radius 1} in., and thickness 1} in, Ans. 26:121 1bs,

Ez. 16.—Determine the weight of a grindstone 4 ft. in diameter and 8 in.
thick, fitted with a wrought-iron axis of which the part within the stone is
2 in. square, and the projecting parts each 4 in. long with a section 2 in. in

diameter. Ans. 1135 1bs.
Ex. 17.—Determine the weight of an osk door 7 ft. high, 3 ft. wide, and
1} in. thick, Ans. 163} 1bs.

Exz, 18.—There is a fly wheel of cast iron the external radius of whose
rim is 5 ft. and internal radius 4 ft. 6 in.; itis 4 in. thick,and is connected
with the centre by 8 spokes 4 in. wide and 1 in. thick, strengthened by a
flange on each side 1 in. square (so that their section is a cross 4 in. long
and 3 in. wide), each spoke is 4 ft. long; the centre to which they join the
rim has the same thickness as the rim, is solid, and (of course) 6 in. in
radius : determine the weight of the whole, Ans. 2959 lbs.

Ez, 19.—There are two rooms each 100 ft. long and 30 ft. wide ; the one is
floored with oak planking 1} in. thick ; the other with deal planking (Riga
fir) 1} in. thick. Determine the weights of the floors and their cost, the
price of deal being 3s. and oak 7s. per cubic foot.

Ans. Deal fioor weighs 17,648 lbs. costs 56L. 5s.

Oak 18,242 1bs. ,, 109l 7s. 6d.
Ez. 20.—A cubic foot of copper is drawn into wire ¢ of an inch in dia-
meter; what length of wire is made ? Ans. 46,936 ft.

Ex. 21.—It is said that gold can be drawn into wire one millionth part
of an inch thick ; what will be the length of such a wire that can be mude
from an ounce of pure gold ? Ans. 1,793,448 miles.

Ez. 22.—1t is said that silver leaf can be made yzgys5 of an inch thick ;
how many ounces of silver would be required to make an acre of such silver
leaf? Ans. 2648 oz.

4. Brickwork.—The measurement and determination
of the weight of brickwork depend upon the following
data :—

(1) A rod of brickwork has a surface of 1 square rod
(or 30} square yards) and a thickness of a brick and a
half, i.e. of 1 ft. 1} in., or it contains 306 cubic feet.

(2) A rod of brickwork contains about 4500 bricks in
mortar, or 5000 bricks laid dry.

(3) A rod of brickwork requires 3} loads (i.e. 3} cubic
yards) of sand and 18 bushels of stone lime.
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(4) A brick measures 84 x 4} x 2§ inches, i.e. a quarter
of an inch each way less than 9 x 4} x 3 inches.

(6) Abricklayer’s hod measures 16 x 9 x 9 inches, and
can contain 20 bricks. Labourers, however, commonly
put 10 or 12 bricks into it.*

Ez. 23.—How many rods of brickwork are there in a square tower 117 ft.
high and 28 ft. by 7 ft. at its base, externally, and 8 bricks thick ? Deter-
mine the number of bricks required to build the tower and their price
at 1/, 10s. per thousand. '

Ans. (1) 52+43 rods. (2) 236,000 bricks. (8) 3541,

Ez. 24.—A tower the base of which measures externally 9 ft. square is
50 ft. high and 2 bricks thick ; how many bricks are required to build it,
and how many loads of sand and bushels of lime? Determine also the cost
of the materials if the bricks cost 1/, 10s. per thousand, saud 5s. 4d. per
load, and lime 1s. 8d. per bushel.

Ans. (1) 7-856 rods.  (2) 33,000 bricks, 25% loads of sand,
1324 bushels of lime. (3) Cost 67. 8s. 2d.

Ez, 256.—How many rods of brickwork are there in a reservoir of a rect-
angular form, the internal measurements of which are 20 ft. long, 6 ft.
wide, and 12 ft. deep; the work being 2 bricks thick, viz. both walls and
floor ; and the reservoir being open at the top ? Ans. 443,

Ez. 26.—Find how many rods of brickwork there are in a wall 360 ft.
long, 17 ft. high, and 2 bricks thick ; and determine the cost of the material
from the data in Er. 24. Ans. (1) 80 rods. (2) 2750, 10s.

Ez, 27.—If the wall in the last example had an additional 2 ft. of foun-
dation 3 bricks thick, and were supported by 20 square buttresses reaching
to the top of the wall 2 bricks thick, on foundations 8 bricks thick, and
measuring 24 ft.in a direction perpendicular to the face of the wall; deter-
mine the number of rods of brickwork in the foundations and buttresses,

Ans, 10°2 rods.

Ez, 28.—What would be the cost of the earriage of the bricks in the
wall described in the last two examples at 6s. 6d. per thousand ?

. Ans. 491. 158,

Ez. 29.—The following are the actual dimensions of the brickwork of the
outer shell of the chimney of St. Rollox, Glasgow. Commencing from the
top, there are flve divisions; the tops of these divisions are respectively
4354, 8504, 2104, 1144, 54} ft. above the ground ; the external diameters
&t the fops of the divisions are respectively 13 ft. 6 in., 16 ft. 9 in., 24 ft.,
30 ft. 6 in,, 35 ft. The diameter on the ground is 40 ft.; the thicknesses of

* Weale's Contractor's Price Book for 1859, p. 280.
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the divisions are respectively 13, 2, 23, 3, and 3} bricks; below ground the
brickwork reaches 14 ft., with a uniform external diameter of 40 ft.; the
first 8 feet are 3 ft. thick; in the remaining 6 feet the thickness gradu-
ally increases to 12 ft. Determine the number of rods -of brickwork
contained in the chimney; the number of bricks employed, their cost
at 17, 113, 3d. per thousand ; also, if the mortar were of sand and stone
lime, determine the number of loads of sand and bushels of stone lime
required, and their cost at 56s. 4d. per load, and 1s, 84, per bushel re-
spectively.

[The surface of each division of the chimney may be considered as that
of a conic frustum ; the real volume of each division will be the difference
between the volumes of two conic frustums., A sufficiently close approxi-
mation may be obtained .by multiplying the mean surface by the thickness
and considering the slant side equal to the height ; the volume of the part
below ground is to be determined accurately.]

Ans, (1) 218 rods, or 981,000 bricks. (2) Cost of bricks,
1532l. 16s. 3d. (3) 763 loads of sand, costing
2030. 9s. 4d. (4) 3924 bushels of lime, costing 3277,

5. Expansion and contraction by heat.—It is found
that all bodies experience a small change of volume on the
application of heat. In general, the change is one of in-
crease,* and with sufficient accuracy may be considered to
obey the following law within moderate ranges of tempera-
ture. If a volume v be increased by k v when its tem-
perature is raised one degree, it will be increased by n x k v
when the temperature is raised n degrees, i.e. the in-
crease of volume is proportional to the increase of tem-
perature. The same rule holds for the expansions in length,
which a body experiences from an increase of temperature.
In order to fix the conception of a degree of temperature
(with sufficient accuracy for our present purpose), it will
be proper to mention that when heat is applied to ice the
water produced by melting retains a constant temperature
until the whole of the ice is melted. This temperature
serves as one fixed point, and is called the freezing point.
Moreover, boiling water in free contact with the air also
keeps at a constant temperature (at least when the baro-

* Water, near freezing point, is & conspicuous exception.
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meter stands at a given height). This fact, therefore,
supplies a second fixed point, and is called the boiling
point, viz., when the barometer stands at thirty inches.
These two points being fixed, the graduation is arbitrary.
The scale of Fahrenheit’s thermometer (which is commonly
used in England) is constructed by dividing the space be-
tween the freezing and boiling points into 180 equal parts,
termed degrees, and by commencing the graduation 32°
below freezing point, so that the freezing point is marked
32° and the boiling point 212°. In the centigrade ther-
mometer (now commonly used in scientific investigation)
the graduation begins at the freezing point and the in-
terval between the freezing and boiling points is divided
into 100 equal parts called degrees.* It is easy to see
that if at any temperature Fahrenheit’s thermometer
stood at ¥° and the centigrade at c°, we should have

0

F82_, ¢
180 100

Ez. 30.—The density of water is greatest at 3°9 on thecentigrade scale ;
what is the same temperature called on Fahrenheit's scale? 4ns. 39°-02 F.

Ex, 31.—The standard temperature not unfrequently referred to in
English experiments is 60°F.; what would the same temperature be called
on the centigrade scale? Ans. 15°°56 C.

Ex. 32.—If the centigrade thermometer stood at 5° below zero, or at
—5° C, what would thesame temperature be marked on Fahrenheit's scale ?

Ans, 23° F.,
Er, 33.—What degree on the centigrade scale would be the equivalent
to —4° on Fahrenheit’s scale? Ans. —20° C.

The following table gives the fractional part of the '
whole by which substances expand when heated : —

* In Réaumur’s thermometer the freezing point is marked zero, and the

. . F°—-32 &r°
boiling point 80°: consequently 80 =86"

t From Dr. Young's Natural Phkilosophy, vol. ii. p. 390.
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Tasre IL
EXPANSION PRODUCED BY HEAT.
T ture raised [ Temperature
from 3310 312 F. | raised IOF, | Authority
In length : Glass Tube 000077615 000000431 | Roy
. Platinum 0-000856 0-00000476 | Borda
»” Cast Iron 00011094 000000617 | Roy
" W““gh‘} 0:001156 0:00000642 | Bord
» Iron 8
” Steel rods 00011447 000000636 | Roy
”» Brass rods 00018928 0000010562 | Roy
» Lead . 0°002867 000001592 | Smeaton
»  Copper .| 0001700 0:00000944 | Smeaton
In volume : Mercury . . . 0°00010415 | Roy
» N
» glass (ap- .o 000008696 | Committee of
parent) J Royal Society

Ex. 34.—The length of the base line of the Ordnance Survey om
Hounslow Heath was found to be 27,404 ft.; this was measured first by
glass tubes, and then by steel chains; if, in correcting the glass tubes for
temperature, a uniform error of 1° in excess had been committed, and in
correcting the steel chain an error of 1° in defect had been committed, what
would have been the difference between the apparent measurements ?

Ans. 351 in.

Ex. 35.—If the wrought~iron rails on a railway are 10 miles long when
at a temperature of 32° below freezing, by how much will they lengthen if
their temperature is raised to 88° F.? Ans. 2983 ft. .

Ex. 36.—Ramsden’s brass yard exceeded Shuckburgh’s by 0-002505 of
an inch ; what would be the difference of their temperatures when accu-
rately the same length ? Ans. 6°6 F.

Ex, 37.—Two rods, respectively of iron and brass, A B and ¢ p, are fas-
tened together in the

middle; they areaccu- = Fe.1. _

rately the same length, \

at 62°F.; totheirends / ‘\

are fastened by pivots A Bl

tongues cAEandD BF L'o [ \
D

which are perpendi-
cular to the bars, at 62°F.; inconsequence of the unequal expansion or con-
traction of the bars the tongues will assume different positions, as shown by
the dotted lines ; it is required to determinethe length of c E, that the point B
may remain unmoved by the expansion or contraction of the bar. The length
of A Bis 10 ft. and the distance A ¢ is 1'725 in. Ans. c E=4'426 in,
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Ex. 38.—If the expansion in length of a substanceis e times the length
at a given temperature, show that the expansion in volume will be very
nearly 3 e times the volume at that temperature,

Ez. 39.—The volume of a mass of lead being a cubic foot at 60° F., what
will be its volume at 0° F.? and what at 88° F.?

Ans. At 0° F. 0°997134 cubic ft.
At 88° F. 1:00133728 cubic ft.

Ez. 40.—There is half a cubic inch of mercury in a thermometer at 32°
F.; when the temperature is raised to 92° F. the mercury ascends 4 in.;
what is the diameter of the bore of the glass tube ? Ans, 00288 in.

6. Elongation produced by tension.—The principle
‘on which this determination is made is the following :—
Suppose the length of a beam or bar to be L feet, the area
of its section to be K square inches, then if by the appli-
‘cation of a tension of P lbs. its length becomes L+1, it

appears from experiment that

l:La -l;z tE
where E is a constant number depending on the nature of
the material, and called the Modulus of Elasticity.

It is found that all substances obey this law when the
degree of extension does not exceed certain limits; the
limits are different in different substances, and in many
are very narrow. It appears also that within these limits
(i.e. the limits of elasticity) a tension producing a certain
degree of extension will, if applied in the opposite direc-
tion so as to become a pressure, produce an equal degree
of compression.

It will be observed that E is the tension or pressure
per square inch of the section of the beam or bar. It is
also plain that if Ewere equal to E then would  be equal

to L, so that the modulus of elasticity is that tension
per square inch of the section of a bar which would double
its length if its elasticity continued perfect. It is, per-
haps, unnecessary to remark that no solid substance has
limits of elasticity any way approaching this in extent.
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Tasre III.
MODULI OF ELASTICITY.*

Material Modulus Material Modulus

‘Wrought Ironbars | 29,000,000 Oak (English) . 1,450,000
Cast Iron . . 17,000,000 Larch . . 1,050,000

» DBrass . . 8,930,000 Fir (Riga) . 1,330,000
Steel (hard) . . 29,000,000 Elm . . 700,000
Copper wire . . 17,000,000

Ez. 41.—By how much would a bar of wrought iron } of an inch square
and 100 ft. long lengthen under a tension of 2 tons (neglecting the weight
of the bar)? - Ans. 0°247 fv,

Ex. 42.—Determine the elongation of a steel bar 2 in. square and 40 ft.
long when subjected to a tension of 40 tons. What would have been its
elongation had it been of cast brass?  4ns. Steel 0003 ft. Brass 01 ft.

Ez. 43.—A bar of wrought iron 2 in. square has its ends fixed between
two immovable blocks when the temperature is 20° F.; what pressure will
it exert against them if the temperature becomes 96°F.? 4ns. 26} tons,

Ez. 44.—A wall of brickwork 2 ft. thick and 12 ft. high is supported by
columns of oak 6 in. in radius, 18 ft. high and 14 ft. apart from centre to
centre ; determine the pressure per square inch of the section of the
columns, and the amount of their compression.

’ Ans. (1) 3327 1bs.  (2) 55 in. nearly.

Ez. 45.—In thelast example if the wall had been of Portland stone and
1} ft. thick, what would have been the pressure per square inch and the
degree of compression ? Ans, (1) 2489 Ibs. (2) & in.

Ez. 46.—In the last example if the oak columns were replaced by
wrought-iron bars 2 in. square what would be the degree of compression ?
and at what temperature would one of the iron bars have the same length
as it has when unpressed at 32° F.? Ans. (1) 25 in.  (2) 69'8° F.

Ex, 47.—A bar of wrought iron a square inch in section is fixed firmly
between two immovable blocks which are 50 ft. apart ; if the temperature is
raised 50°F. above that which the bar had when fixed, find the pressure
produced against these blocks. Ans. 9309 1bs.

Ez, 48.—In the last example, if only one of the blocks were immovable
and the other were capable of revolving round a joint 12 ft. below the
point at which it is met by the rod, determine the angle through which
it will be turned by the expansion of the rod. Ans. 0° 4’ 36",

* Based on Mr. Moseley'’s Mech. Eng, p. 622, compared with Mr.
Rankine’s Applied Mechanics, p. 631.
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Ez. 49.—Tt is observed that two opposite walls of an ancient building
are each 3° out of the vertical, the inclination being outward ; to bring them
into the perpendicular, the following means are employed ; at certain inter-
vals iron bars are placed across the building, their ends passing through the
walls and projecting on- the outside, on these ends strong plates or washers
are screwed ; the rods are then heated and expand ; in this state the washers
are screwed tightly against the outside of the walls and the rods allowed to
gool, when they contract and draw the walls together; the process being
continued until the walls become vertical.* If we suppose the rods to be
580 ft, long and 3 square inches in section, and to be fastened 15 ft. above
the joint of the masonry, round which walls will be made to turn; and if
the range of temperature is from 60° F. to 240° F.; determine the number
of times the bars must be heated before the operation is complete, and the
tension which would tend to draw the walls together if they were entirely
immovable. Ans, (1) 27 times. (2) 100,572 1bs.

7. Resistance to rupture by tearing or tenacity.—
When the tension which elongates a bar attains a certain
magnitude, the bar will break. If we determine by ex-
periment this tension in lbs. per square inch, we obtain
the tenacity of the substance. It is manifest that the
tension which will tear a bar whose section is n square
inches will be » times the tenacity.

Tasrs IV,
TENACITIES.
Material ! Tenacity Material Tenacity
‘Wrought Iron Oak (English) .| 17,300 lbs.
(bars) . 67,200 Ibs. || Larch .| 10000 ,,

Cast Iron (average) | 16,500 ,, Fir (Riga) .| 12,000 ,,
Iron wire ropes . | 90,000 ,, Elm . . .| 13,500 ,,
Cast Brass . . | 18,000 ,, Hempen ropes . 5,600 ,,
Copper wire . .| 60,000 ,,

Ez. 50.—How great a tension will a cylindrical bar of wrought iron
bear which is } of an inch in diameter ? and by what fraction of its length
would it lengthen under this tension if the elasticity continued perfect?

Ans. (1) 3298 1bs. (2) 0:0023.

Ez. 51.—How many iron wires {; of an inch in diameter must be put

together to sustain a weight of 3 tons ? Ans. 13,

. * The walls of Armagh Cathedral were restored to. & vertical position
by this process. Daniell's Chemistry, p. 103.
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Ez. 52.—What is the length of a bar of wrought iron which, being sus-
pended vertically, would break by its own weight ? Ans. 19,880 ft.
Ez. 53.—~What tension willa bar of oak 1} in. square sustain ?
Ans. 38,925 1bs.
Ex. 64—What tension will a cylindrieal bar of larch 14 in. in diameter
sustain ? ) Ans. 17,671 1bs.
Ez. 55.—1If a rope be made of wires whose diameter is d, show that the
number of wires in each square inch of the section of the rope is very

2 8
nearly given by the formula—a—=5 or ;o

Exr, 566.—How many wires &; of an inch in diameter must be put together
to form a rope & square inch in section ? Ans. 115.

Ez. 57.—1If the number of wires J; of an inch in diameter which must
be put together to form a rope one square inch in section be determined by
each of the formule in Bz, 55, what is the difference between the results?

Ans, 4'8.

Ex. 568.—Show that the number of 1bs. weight in a foot length of a rope
" made of irdn wire is given by the formula (circ. in inches)?x 0-244 very
nearly ; the specific gravity of iron wire being assumed to be the same as
that of wrought iron,

Ez. 59.—Show that if a rope of hemp and a rope of iron wire have the
same strength, the circumference of the latter is about } of the ecircum-
forence, and its weight about } of the weight of the former.

8. Resistance to rupture by pressure.—There are as
many as five forms which the results of crushing assume
in different bodies. They are enumerated as follows by
Mr. Rankine: *—

(1) Crushimg by splitting, when the substance divides
in a direction nearly parallel to the direction of the pres-
sure. This occurs in the case of hard homogeneous sub-
stances of a glassy texture.

(2) Crushing by shearing, when the substance divides
along a plane inclined at a certain angle to the direction .
of the force, the upper part of the substance sliding upon
the lower. This fact was ascertained, and its conditions
investigated, by Mr. Hodgkinson. It takes place in the
case of substances of a granular texture, such as cast iron,

* Applied Mechanics, p. 303. See also Mr. Moseley's Meckanics af
Engineering, pp. 549, 579,
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and most kinds of stone and brick. To exhibit its effects
the height of the block to be crushed must be at the least
one and a half times its thickness. In the above cases
the resistance to crushing is considerably greater than the
tenacity. In the case of cast iron the resistance is more
than six times the tenacity.

(3) COrushimg by bulging, when the material spreads
like compressed dough. This takes place with ductile
substances, such as wrought iron in short blocks. In this
case the ‘resistance is somewhat less than the tenacity,
being in wrought iron about § of the tenacity.

(4) Crushing by crippling, which is characteristic of
fibrous substances, and takes place when the thrust acts
along the fibres in timbers and in bars of wrought iron
that are too long to yield by bulging. It consists in a
lateral yielding, and sometimes separation of the fibres,
In the case of dry timber the resistance is about 4 of the
tenacity, in the case of moist timber about } of the
tenacity ; consequently moist timber is only half as strong
as dry when subjected to a crushing force.

(56) Crushing by crossbreaking, which is the mode of
fracture in columns and struts where the length greatly
exceeds the diameter. Under the breaking load they
yield sideways, and are broken across like beams under a.
transverse pressure.

Tasie V.
CRUSHING PRESSURE IN LBS. PER SQUARE INCH.

Material Pressure ; Material Pressure
‘Wrought Iron . 36,000 | Granite (average). 8,000
Cast Iron (a.verage) 112,000 Oak (Enghsh) dry 9,500

,» DBrass . 10,300 Larch dry 5,500
Brick . . . 800 Fir (Riga) dry . 6,000
Sandstone . 4000 | Elm ., . . 10,300
leestone (granu-

lar) . 4,000
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Ez. 60.—What must be the height of a column of cast iron producing
that pressure per square inch which would crush a small column of the same
material ? Ans. 35,805 ft.

Exz. 61,—Compare the heights of columns of cast iron, wrought iron, cast
brass, and larch fir, which would produce the pressure per square inch
requisite for crushing short columns of their respective materials ?

Ans. 1°475:0°439: 0-116: 1.

9. Ultimate and proof strength and working stress.—
It must be borne in mind that no material is in practice
subjected to the stress which it is capable of supporting.
This will appear very clearly from the following defi-
nitions ; *—

(1) The ultimate strength of a solid is the stress re-
quired to produce fracture in some specified way.

(2) The proof strength is the stress required to produce
the greatest strain in some specified way consistent with
safety. A stress exceeding the proof strength, though it
does not produce immediate fracture, will produce it by
long application or frequent repetition.

(3) The working stress is always made less than the
proof strength in a certain ratio determined by experience.

In cases of wrought-iron boilers, timber, brick, and
stone, the ultimate strength is from 2 to 3 times the
proof strength, and from 8 to 10 times the working
stress. In the following examples the working stress is
assumed to be ;4;th of the ultimate strength :—

Er. 62—A wall of brickwork 3 ft. thick is supported at intervals of

10 ft. by sandstone columns 9 in. in diameter ; to what height can the wall
be carried ? Ans, 7°6 ft.

Ez, 63.—If in the last example tbevcolumns had been of brickwork 2 ft,
thick, to what height could the work then be carried ? Ans. 10-8 ft.

Ez, 64.—To what height could the wall in Ez. 44 be carried with safety

so far as the strength of the columns is concerned ? Ans. 34-26 ft,
Ex, 65.—Muke the same determination with regard to Ex. 45.
Ans. 456°8 ft,

* Rankine, Applied Mechanics, p. 273.
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Ex. 66.—What would have been the heights in each of the last examples
if the columns had been of brickwork? What if of limestone? What. if of
granite ? Ans. Brickwork, 29 ft. 39 ft,

Limestone, 14°4 ft. 19-3 ft.
Granite, 289 ft. 386 ft.

Ex. 67.—A wall of brickwork, 50 ft. high and 3 ft. thick, isto be carried
by columns of brickwork 20 ft. apart, from centre to centre ; determine the
least diameter consistent with safety. Make the same determination if the
columns were of granite. Ans, 73} in. brickwork. 23} in. granite.

10. Strength of cast-iron columns.—The columns in
the preceding examples are supposed to follow the law of
the crushing of short columns. It may be instructive to
add the following particulars, which have reference to the
crushing of cast-iron columns exceeding that length. The
greatest part of our knowledge of this subject is due to ex-
periments conducted by Mr. Hodgkinson, who thus states
his conclusions with regard to the form of the ends of iron
columns :—*¢ 1st. A long circular pillar, with its ends flat,
is about three times as strong as a pillar of the same length
and diameter with its ends rounded in such a manner that
the pressure would pass through the axis. . . . . 2nd. If
a pillar of the same length and diameter as the preceding
has one end rounded and one flat, the strength will be
twice as great as that of one with both ends rounded.
3rd. If, therefore, three pillars be taken, differing only in
the forms of their ends, the first having both ends rounded,
the second having one end rounded and one flat, and
the third both ends flat, the strength of these pillars will
be as 1—2—3 nearly.” Mr. Hodgkinson further considers
that the breaking weight w of a hollow column is given
in tons by the formula

D35 3.5

w=MX—Z_|T.

and that of a solid column by the formula

D35
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where M and m are constants depending on the nature of
the iron, p the external and d the internal diameters of
the column in inches, and I the length in feet. The
values of M and m vary considerably with different kinds
of iron, but may be taken at 42 tons. The limits of
variation in the values of m are 49:94 and 39°60.*

Ez. 68.—Determine the breaking weight of a solid cast-iron column

20 ft. high and 6 in. in diameter. Ans. 168'3 tons.
Ex. 69.—Determine the breaking weight of the column in the last ex-
ample if it were hollow and 1 in. thick. Ans. 127-6 tons. .

Exr. 70.—Determine the thickness of a column 20 ft, high and 7 in. in
external diameter, which is as strong as that in Ez. 68. Ans. 0'774 in.

* Proceedings of the Royal Society, vol. viii. p. 318.
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' CHAPTER II.

ON WORK; OR, THE EFFICIENCY OF AGENTS.

11. Definition of work.— An agent is said to do work
when it causes the point of application of the force it exerts
to move through a certain distance; thus a carpenter em-
ployed in planing wood works, since he causes the point of
application of the force he exerts to move through a cer-
tain distance, and the same is true of any agent that works
in the sense here intended. For the sake of distinctness it
may be observed that the union of force and motion is essen-
tial to the conception of work; thus when the expansive
force of steam lifts the piston of a steam engine it does work.
In the boiler, though it produces an enormous pressure, it
does no work, since the pressure is unaccompanied by mo-
tion. The unit by which the work of different agents is
expressed numerically according to the practice of English
writers is called a foot-pound ; it is defined as follows :—

Def.—The work done when the force of 1 1b.is exerted
through a distance of 1 ft. in the direction of the force is
a foot-pound.

The following important principle is closely corinected
with this definition. When a force of P Ibs. is exerted
through a distance of s ft., it does P 8 foot~pounds, the force
being exerted along the line in which its point of applica-
tion is made to move. For since a foot-pound is done when
a force of 1 1b. is exerted through 1 ft., there must be 2
foot-pounds done when a force of 2 Ibs. is exerted through
1 ft., 3 foot-pounds when a force of 3 lbs. is exerted through
1 ft., and generally P foot-pounds when a force of P lbs. is
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exerted through 1 ft. Again, since P foot-pounds are done
when a force of P lbs. is exerted through 1 ft., there must
be 2 P done when it is exerted through 2 ft., 3 P when it is
exerted through 3 ft., and generally P s foot~-pounds must
be done when the force of P lbs, is exerted through s ft.

Ez. 71.—How many foot-pounds are expended in raising 2 cwts. through
80 fathoms? Ans. 40,320.

Ez, 72.—The mean pressure on the piston of a steam engine is 15 lbs.
per 8q. in., the length of the stroke is 6 ft.; if the area of the piston is
448 sq. in., how many foot-pounds are done per stroke?  Ans. 40,320.

12. Comparison of the efficiency of agents.—If the
above examples are compared, it will be seen that the
work done during each stroke by the steam on the piston
of the engine is equivalent to the work expended in
raising 2 cwts. through a height of 80 fathoms; and
whatever agent raises this weight must do as much work
as that done by the steam. In these examples we have
not considered the time in which the work is done; let
us then suppose that the engine in Ex. 72 makes 10
strokes per minute; the expansive force of the steam will
then do 403,200 foot-pounds per minute. Now, if we
suppose an agent, or a number of agents, to raise a
weight of 1 ton through 30 fathoms in one minute, they
will do exactly 2240 x 180 or 403,200 foot-pounds per
minute. It is plain that under these circumstances
the comparison is complete between the efficiency of the
expansive force of the steam and the efficiency of the
other agents, and that they are reciprocally equivalent.
Hence we infer the general principle—

The number of foot-pounds of work yielded by any
agent in a given time i8 a true measure of its efficiency
or working power, i.e. of its rate.of doing work.

Of course it follows from this principle that the working
powers of two agents or their rates of doing work are in
the ratio of the number of foot-pounds done by them in

the same time. :
’ ¢2
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The most familiar instance of this mode of measuring
the power of an agent is furnished by the steam engine,
whose efficiency is estimated in horse-power, as when we
speak of an engine of ¢ twenty horse-power.’ From some
experiments, Mr. Watt concluded that a horse is capable
of yielding 33,000 foot-pounds per minute. The con-
clusion, as far as regards the efficiency of the animal, is
not very correct ; it has, however, fixed the meaning of
the term horse-power when applied to a steam engine.
Hence

Def.—A steam engine works with one horse-power
when it yields 33,000 foot-pounds per minute.

Of course an engine of » horse-power yields » times
33,000 foot-pounds per minute.

Ezx. 73.—The piston of a steam engine is 15 iu. in diameter, its stroke
is 24 ft. long; it makes 40 strokes per minute; the mean pressure of the
steam on it is 15 lbs. per square inch; what number of foot-pounds is
done by the steam per minute, and what is the horse-power of the engine ?

Ans. 265,072 ft.-pds. 803 H.-P.

Ez. 74.—A weight of 1} tons is to be raised from a depth of 50 fathoms
in 1 minute; determine the horse-power of the engine capable of doing the
work. Ans. 30 & H.-P.

Ez. 75.—The resistance to the motion of a certain body is 440 lbs;
how many foot-pounds must be expended in making this body move over
30 miles in one hour? What must be the horse-power of an engine that
does the same number of foot-pounds in the same time ?

Ans. 69,696,000 ft.-pds. 35} H.-P.

13. Application of the foregoing principles.—A con-
siderable number of practical questions can be answered by
means of the principles already laid down, viz. such ques-
tions as the horse-power of the engine required to do a
certain amount of work, the time in which an engine of a
certain power will do a certain amount of work, &ec. . . . .
They are all done by following the same method, viz. First,
from a consideration of the work to be done, obtain the
number of foot-pounds that must be expended in a certain
time. Next from a consideration of the power of the agent
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obtain the number of foot-pounds yielded in the same time.
One of these expressions will contain an unknown quantity,
but, since by the terms of the question they are equal,
they will form an equation from which the unknown
quantity can be readily determined.

Ez. 76.—An engine is required to raise a weight of 13 cwts. from a
depth of 140 fathoms in 3 minutes; determine its horse-power.

Let z be the required horse-power; then the number of foot-pounds
yielded in 3 minutes will equal 33,000 x z x 3 ; also the number of foot-
pounds required to raise 13 cwts, from a depth of 140 fath. equals 13 x 112

x 140 x 6. And since these two numbers are equal we have
83,000 x 3 xr=13x112 x 140 x 6,
. r=12'35 H.-P.

Ez. 77.—In how many minutes would an engine working at 25 horse-
power raise a load of 12 cwts. from a depth of 160 fathoms ?

Ans. 1°564 min.

Exz. 78.—A locomotive engine draws a gross load of 60 tons at the rate
of 20 miles an hour; the resistances are at the rate of 8 1bs. per ton; what
must be the horse-power of the engine ?

[The reader must bear in mind that the work to be done is to overcome
a resistance of 480 lbs. through 20 miles in one hour.] A4ns. 256 H.-P.

Ez. 79.—What must be the horse-power of an engine that raises 20 cubie
feet of water per minute from a depth of 200 fathoms ? 4ns. 46 & H.-P.

Ez. 80.—How many cubic feet of water would an engine working at 100
horse-power raise per minute from a depth of 25 fathoms?  Ans. 852,

Ez. 81.—How many cubic feet of water will an engine of 250 horse-
power raise per minute from a depth of 200 fathoms? Ans. 110 cub. ft.

Ex. 82.—It being required to raise 100 cubic feet of water per minute
from a depth of 495 ft., what must be the horse-power of the engine ?

Ans, 933 H.-P.

Ez. 83.—There is a mine with three shafts which are respectively 300,
450, and 500 ft. deep: it is required to raise from the first 80, from the
second 60, from the third 40 cubic feet of water per minute; what must
be the horse-power of the engine ? Ans, 1343} H.-P.

Ez. 84.—At what rate per hour will a locomotive engine of 30 horse-
power draw a train weighing 90 tons gross, the resistances being 8 1bs. per
ton? Ans. 15°626 miles.

Er. 85.—What is the gross weight of a train which an engine of 25
horse-power will draw at the rate of 26 miles an hour, resistances being 8
1bs. per ton? Ans. 46'875 tons.

Ez. 86,—A train whose gross weight is 80 tons travels at the rate of
20 miles an hour; if the resistance is 8 lbs. per ton, what is the horse-
power of the engine? Ans. 347 H.-P.
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Ez. 87.—An engine working with the same power as that in the last
example draws & train at the rate of 30 miles an hour; the resistances
being 7 1bs. per ton, what is the gross weight of the train ?

Ans. 6033 tons.

Ez. 88.—What must be the length of the stroke of the piston of an
engine, the surface of which is 1500 square inches, which makes 20 strokes
per minute, 8o that with a mean pressure of 12 1bs. on each square inch of
the piston, the engine may be of 80 horse-power ? Ans. T} ft.

Ez. 89.—The diameter of the piston of an engine is 80 in., the length
of the strokeis 10 ft., it makes 11 strokes per minute, and the mean pressure
of the steam on the piston is 12 lbs. per square inch: what is the horse-
power? Ans. 201°06 H.-P.

Ez. 90.—Find the horse-power of an engine that will raise in one minute
100 cubic feet of water from a depth of 600 feet. Ans. 1137 H.-P.

~ Ez. 91.—A train weighing 50 tons is drawn along a railway at the rate

of 20 miles an hour; the resistances being 8 lbs. per ton, find the horse-
power of the engine. Ans. 213 H.-P.

Ex, 92.—The cylinder of a steam engine has an internal diameter of 3

ft. ; the length of the stroke is 6 ft. ; it makes 6 strokes per minute ; under

what effective pressure per square inch would it have to work in order that
756 horse-power may be done on the piston ? Ans. 6764 lbs,

Ez. 93.—What must be the horse-power of a stationary engine that
draws a weight of 150 tons along a horizontal road at the rate of 30 miles
per hour, friction being-8 1bs. per ton ? Ans. 96 H.-P.

14. Modulus of a machine.—An agent rarely, if ever,
does a considerable amount of useful work directly, but
nearly always through the intervention of a machine, by
which the motive power of the agent is so applied as to
overcome the resistance in the most convenient manner.
For instance, when a steam engine raises water out of a
shaft, the motive power is the pressure of the steam on
the piston, the resistance to be overcome is the weight of
the water, the beam, crank, &c., of the engine are the
means by which the motive power is applied so as to
overcome the resistance. Now it will be remarked that
each part of the machine offers more or less resistance to
the motion, so that a certain part of the work done by
the motive power must be expended in overcoming
these resistances, i.e. in reference to the purpose of the
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.machine, must be expended uselessly. The remainder of
the work done by the motive power will be expended °
usefully in accomplishing that purpose.

If the number of foot-pounds done by the agent is
represented by U, the number expended in overcoming
prejudicial resistances by Uy, and the number expended
usefully by U}, all in the same given time, then it admits
-of proof in the case of a machine moving uniformly, that
, U=U,+U, '

It also appears that in most machines U, bears to U a
constant ratio, so that

U,=KU
where the letter K denotes some proper fraction, depending
on the nature of the machine ; this fraction is called the
modulus of the machine ; the following table, taken from
"General Morin’s Aide-Mémoire de Mécanique Pratique,
gives the value of K for different classes of steam engines:—

TaeLe VL

MODULI OF STEAM ENGINES.

Value of X

Description of Machine Horse-power Best working | Ordinary do.
‘Watt’s low-pressure engine 4to 8 050 042
P e 10, 20 0-56 047
30 ,, 100 0-60 0-54
Cornish engines, working | upto 30 044 0-36
by expansion and con-| 30, 40 0-49 0-39
densation 40, 60 0-57 048
50, 60 062 0:50
60, 70 0-66 053
70, 80 082 066
80 ,, 100 070 059
High-pressure  engines,| upto 10 0-50 040
working without ex- 10, 20 0-56 044
pansion or condensation 20, 30 0-60 048
30, 40 0656 062
above 40 070 056




24 - PRACTIC:&L MECHANICS.

Ez. 94.—The diameter of the piston of & steam engine is 60 in.; it
makes 11 strokes per minute; the length of each stroke is 8 Tt.; the mean
pressure per square in. 15 lbs. The modulus of the engine bemg 065,
determine the number of cubic feet of water it will raise per hour from a
depth of 50 fathoms.

[The number of foot-pounds dome by steam on piston in one hour
equals 7 x 30?x 8 x 15 x 11 x 60 ; this number multiplied by 0-65 will give
the number of foot-pounds usefully spent in raising water; hence the
number of cubic feet of water is found.] Ans. 7763 cub. ft.

Ezx. 95.—The diameter of the piston of an engine is 80 in., the mean
pressure of the steam is 12 bs. per square inch, the length of the stroke is
10 ft., the number of strokes made per minute is 11. How many cubic
feet of water will it raise per minute from a depth of 250 fathoms, its
modulus being 06 ? Ans, 42°46 cub, ft.

Ex. 96.—If the engine in the last example had raised 56 cubic feet of
water per minute from a depth of 250 fathoms, what would have been its
modulus ? Ans. 0°7771.

Ez. 97.—How many strokes per minute must the engine in Ex. 956 make
in order to raige 15 cubic feet of water per minute from the given depth ?

Ans. 4.

Ez. 98.—What must be the length of the stroke of an engine whose
modulus is 0°65, and whose other dimensions and conditions of working are
the same as in Ez. 95, if they both do the same quantity of useful work ?.

Ans. 923 ft.

Ex. 99.—The diameter of the cylinder of an engine is 80 inches, the
piston makes per minute 8 strokes of 10} ft. under a mean pressure of 156
1bs. per square inch; the modulus of the engine is 0'55. How many cubic
feet of water will it raise from a depth of 112 ft. in one minute ?

Ans. 48578 cub. ft.

Ez..100.—If in the last example the engine raised a weight of 66,433
1bs. through 90 ft. in one minute, what must be the mean pressure per
square inch on the piston ? Ans. 26-37 1bs.

Ezx. 101.—If the diameter of the piston of the engine in Ez. 99 had
been 85 in., what addition in horse-power would that make to the useful
power of the engine ? Ans. 1828 H.-P.

15. Work of water-wheels.—Hitherto we have con-
sidered only one kind of motive power, viz. the pressure
of steam. The same principles are applicable to machines
worked by any other motive power, as by the muscular
force of animal agents, the pressure of moving air, or of
falling water. = The last of these, viz. the power of falling
water, is, next, to steam, the most conspicuous example of
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work done on a large scale by an inanimate agent. We
shall therefore consider somewhat particularly the appli-
cation of this power by means of water-wheels.

It is plain that 1 1b. of water, in descending through 1
foot, must accumulate as much work as would be required
to raise it through 1 foot, and hence if P Ibs. of water
descend through  feet, they will accumulate p A foot-pound
of work ; and if, moreover, we suppose this water to descend
against an obstacle, such as the float boards of a water-
wheel, the amount of work so accumulated will be done
upon the wheel, and this work may then be applied to
any useful purpose after a certain deduction has been
made on account of prejudicial resistances.

It must be borne in mind that the height of the fall is
the difference between the levels of the surface of the water

Fia. 2. Fia. 8.

PURT 2%
N

/ & o

in the reservoir and in the exit canal or tail-race; in the
case of overshot wheels it is supposed that the extreme
circumference of the wheel is just in contact with the sur-
face of the water in the tail-race. The height is represented
by A B in the accompanying figures; of which fig. 2 repre-
sents the ordinary undershot wheel with plane float boards ;
fig. 3 the breast wheel, in which the water acts upon the
float boards considerably above the level of the tail-race.
Fig. 4 represents the overshot wheel.
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Fia. 4.

The following table exhibits the moduli of various kinds
of water-wheels. It is founded on results given in General
Morin’s Aide-Mémoire. In the table H denotes the length
of the line A B in figs. 2, 3, 4, and A denotes the length of
B C in fig. 3 :—

Tasrs VIL
MODULI OF WATER-WHEELS.

Description Modulus

(1) Undershot wheels, with flat float boards . . | 025 to 0:30

(2) Breast wheels with flat float boards
(8 whenﬁ =1, . . . 040 to 045

H
O 042 ,, 049
© » % -3. .| oar
@ . ’é=g. . . .| 055
© » ﬁ -1. . . .| o865, 070

(3) Breast wheels with curved float boards (Pon-
celet’s construction) . . 060 to 0°65
for m greater than 83 foet :

(4) Overshot wheels, when the veloclty is small and
the buckets half filled . 070 to 0:76
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Exr. 102.—The mean section of a stream is § ft. by 2 ft.; its mean velo-
tity is 35 ft. per minute ; there is a fall of 13 ft. on this stream, at which is
erected a water-wheel whose modulus is 065 ; determine the horse-power
of the wheel. Ans. 56 H.-P.

Ez.103.—In how many hours would the wheel in the last example grind
1000 quarters of wheat, it being assumed that each horse-power will grind

1 bushel per hour? Ans. 1428 hours.
Ex. 104.—How many quarters of wheat will the same wheel grind in 72
hours ? Ans. 5041 quarters.

Ez. 105.—Suppose the wheel in Ez. 102 to have replaced an undershot
wheel with flat float boards, whose modulus was 0'25, determine the num-
ber of quarters of wheat each wheel will grind in 24 hours.

Ans. (1) 6:5. (2) 16'8.

Ez. 106.—How many cabic feet of water must be made to descend the
fall per minute in Ez. 102, 3, that the wheel may grind at the rate of 3}
quarters per hour ? Ans. 1749°5.

Ex. 107.—Given the stream in Ez. 102, 3, what must be the height of
the fall to grind 1} quarters per hour; first, if the modulus of the wheel
is 0-40, next, if it is 047, and lastly, if it is 0°65?

Ans. (1) 377 fr. (2) 82 fr. (3) 23:2 .

Ez. 108.—The mean section of a stream is 8 ft. by 1 ft.; its mean velo-
city is 40 ft. per minute ; it has a fall of 17§ ft.; itis required to raise water
to a height of 300 ft. by means of a water-wheel whose modulus is 0°7 ; how

many cubic feet will it raise per minute ? Ans. 13-07 cub. ft.
Ex. 109.—To what height would the wheel in the last example raise
2} cubic feet of water per minute ? Ans, 17423 ft.

Ez. 110.—The mean section of a stream is 1} ft. by 11 ft.; its mean
velocity is 24 miles per hour; there is on it a fall of 6 ft. on which is erected
& wheel whose modulus is 07 ; this wheel is employed to raise the hammers
of a forge, each of which weighs 2 tons, and has a lift of 1} ft.; how many
lifts of a hammer will the wheel yield per minute ? Ans. 142 nearly.

Ez. 111.—In the last example determine the mean depth of the stream
if the wheel yields 135 lifts per minute. Ans, 1°43 ft.

Ex. 112.—In Ez.110 how many cubic feet of water must descend the fall
per minute to yield 97 lifts of the hammer per minute ? Ans. 2483 cub. ft.

Ez. 113.—Determine how many quarters of corn the mill in Er. 110
might be made to grind in six days if it were to work for 13 hours daily.

Ans. 2815 quarters.

Ez. 114.—Down a 14-ft. fall 200 cub. ft. of water descend every minute,
and turn a wheel whose modulus is 0°6. The wheel lifts water from the
bottom of the fall to a height of 54 ft.; how many cubic feet will be thus
raised per minute? If the water were raised from the top of the fall to the
same point, what would the number of cubic feet then be ?

Ans. (1) 31°1 cub. ft. (2) 34°7 cub. ft.

[Of course in the second case the number of cubic feet of water taken
from the top of the fall being z, the number of feet that turn the-wheel will
be 200—2.]
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Ez, 115.—Water has to be raised from a mine 120 ft. deep, the whole of
the water raised forms a stream with a fall of 30 ft., the machinery by
which the water is raised is worked by a steam engine of 50 horse-power, and
an overshot wheel whose modulus is 0°715 turned by the steam ; determine
the whole number of cubic feet raised per minute.  A4ns. 2678 cub. ft.

Exz. 116.—In the last example, if the ground allowed an exit to be made
for the water 30 ft. below the mouth of the shaft (by which of course the
fall is entirely lost), what must be the horse-power of the engine to raise per
minute the same amount of water as before ? Ans. 456 H.-P.

16. The work of living agents.—The efficiency of men
and animals is estimated in the same manner as that of the
inanimate agents already considered, viz., by the number of
foot-pounds of work they are capable of yielding in a given
time. The number yielded under given circumstances by
any particular agent must of course be determined by expe-
riment. The results of experiment on this matter are re-
gistered in the tables that follow; they are based on similar
tables given in General Morin’s Aide-Mémoire. It must
be borne in mind that these tables give mean results when
the agent works in the best manner. It would be very
possible for the agents to work with greater velocities than
those assigned, but were this done they would yield a much
smaller daily amount of work—compare the work done
by a horse walking with that done by a horse trotting.

Tasre VIII.
WORK DONE BY MEN AND ANIMAILS.
Daily Foot. | Founds Velocity
Dura- | poot.pounds | pounds | Faised :
Nature of Labour tion of o tennd L or Mean| Feet | Miles
. [Work in| Per U8y Nin. | Force | per | per
Hours * |exerted | Min.| Hour

(1) Raising weights ver-

tically.

A manmountinga gentle
incline or ladder with-
out burden, i.e. raising
his own weight.

80 | 2,032,000 | 4230 | 1456 | 29 | 0'33

Labourer raising weights

with rope and pulley, . .
the rope returning 60 563,000 | 1560 | 40 | 39 | 0-44

without load
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TasLe VIII. (continued).
Daily Foot. |Pounds| Velocity
Dura- raised |——
Natare of Labour tion of | Foot-pounds | pounds oy yoan| peey| Miles
Work in| PTD8Y | B | 'Forco | per | _per
Hours exerted | Min.| Hour
Labourer lifting weights | . .
by hand 60 531,000 | 1480 44 34| 038
Labourer carrying
weights on his back
up a gentle incline or | 6°0 406,000 | 1130 | 145 8| 009
up a ladder and re-
turning unladen
Labourer wheeling ma-
terials in a barrow up
an incline of 1 in 12 | 10:0 313,000 520 | 130 4| 0045
and returning with the
empty barrow
Labourer lifting earth
with a spade to a mean | 100 281,000 | 470 6 | 78] 09
height of 5} feet .
(2) Action on Mackines.
Labourer walking and
gushing or pulling | 80 | 1,500,000 | 3130| 27 |116| 1-32
orizontally :
Labourerturninga winch 80 1,250,000 | 2600 18 |144| 1-64
Labourer pulling and
pushing alternately in | 8'0 | 1,146,000 | 2390 | 11 |216]| 2:70
a vertical direction
Horse yoked to a cart . .
and walking 100 {15,688,000 {26,150 | 150 |175| 200
Do. toa whim gin 80 | 8,440,000 17,600 100 |[175| 2-00
Do. do. trotting 45 | 7,036,000 {26,060 | 663 |391| 4-44
Ox yoke& to a whim gin .
and walking 80 | 8,127,000 16,930 | 146 [117| 1:33
Mule do. do. 80 | 5,627,000 111,720 | 663 |176| 2:00
4ss  do. do. 8:0 | 2,417,000 | 5030| 30 (168|195
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The following table gives the useful effect of men and
animals employed in the horizontal transport of burdens.
The second and third columns give the useful effect, viz.
the product of the weight in lbs. and the distance in feet.
The reader must not mistake this for the foot-pounds
done by the agent, the agent being employed not in rais-
ing the weight, but in overcoming the passive resistances,
friction, &ec., which depend on the weight indeed, but are
only a fraction of it.

Tasre IX,

USEFUL EFFECT OF AGENTS EMPLOYED IN THE
HORIZONTAL TRANSPORT OF BURDENS.

Agent

Dura-
tion of
Daily
‘Work

Useful Effect
Daily

Useful
Effect per
Minute

Pounds
Trans-
ported.*

Feet
Iper Min,

Velocity

Miles
per Hr.

Man walking on &
horizontal  road
without burden,
ie. transporting
his own weight

10°0

25,398,000

42,330

146

292

3-32

Labourertransport-
ing materials in
a truck on two
wheels, returning
with it empty for
a new load

100

13,025,000

21,710

220

99

1112

Do. do. in a wheel-
barrow

10°0

7,815,000

13,030

130

100

114

Labourer walking
with a weight on
his back

70

5,470,000

13,030

90

145

1-64

Labourer transport-
ing materials on
his back and re-
turning unburden-
ed for 8 new load

60

5,087,000

14,110

145

97

* Exclusive of the weight of the barrow, truck, cart, &e. (Poncelet,

Mie. Ind. p. 247.)
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Tasre IX. (continued).

Dura- Velocity
Agent tion of | Useful Effect Eg.gttm m‘

Daily | Dally | “jpino B | SR | Feet | Miles

Work iper Min.| per Hr.

Do. do. on a hand-

1 - 100 | 4,298,000, 7160 | 110 66 | 074

Horse transporting

materialsinacart, . Y .
walking, always 10-0 {200,582,000| 334,300 | 1500 | 223 | 2-563

laden

Do. do. trotting 4-6 | 90,262,000| 334,300 | 750 | 446 | 506

Do. transporting
materialsinacart,
returning with the | 10°0 109,408,000 182,350 | 1500 | 121 | 1:38
cart empty for a
new loatr

Horse walking with
a weight on his | 100 | 34,385,000, 57,310 | 270 | 212 | 2-41
back

Do. do. trotting 7:0 | 32,092,000( 76,410 | 180 | 424 | 482

Ez. 117.—How many men would be required to raise by means of
a capstyn an anchor weighing 1 ton from a depth of 30 fathoms, in 15
mingtes ? Ans. 9 nearly.
Ez. 118.—In what time would 20 men raise the anchor in the last
example ? Ans. 64 min.
Exz. 119.—Through how great a distance would 30 men raise the anchor
in Ez. 117 in each minute ? Ans. 42 ft. nearly.
Ez. 120.—There is a well 150 ft. deep, a labourer raises water from it by
a rope and pulley ; how many cubic feet of water will he raise in a day ?
Ans. 60 cub, ft,
Ez. 121.—How many cubic feet of water would a steam engine of 10
horse-power raise from this well in 24 hours? How many labourers would
be required to do the same amount of work if they raised the water by
wheel-and-axles, and how many if they raised it by means of capstans?
How many horses would do the same amount of work walking in whim
gins ? Ans. (1) 60,688 cubic feet. (2) 380 labourers,
(8) 317 labourers. (4) 66 horses.
Ez. 122.—In how many minutes could 20 men working on a capstan
raise an anchor weighing 2 tons from a depth of 200 fathoms ?
Ans. 85°88 min.
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Ez. 128.—How many men would in 40 minutes raise the anchor in the

last example ? Ans. 43 men.
Ez. 124.—Through how many fathoms could 15 men raise the anchor of
Ex. 122 in 10 minutes ? Ans. 174 nearly.

Ez. 125.—If 13 men are required to raise an anchor through 180 fathoms
in 20 minutes, what must be the weight of that anchor? 4ns. 753} lbs.

Ex. 126.—A town is situated 25 miles from the mouth of a coal pit,
from which coal is taken to the town by a level railway on which the re-
sistance is 10 lbs, per ton; the engine employed is of 15 horse-power and
weighs with its tender 10 tons ; each truck weighs 3 tons and contains
7 tons of coal; on each journey the engine takes 5 full trucks and returns
with 5 empty trucks; supposing no time to be lost at the ends of the
Journey, how many tons of coals will be taken to the town in 48 hours?
How many horses would be required to convey the same quantity of coals
in the same time ? Ans. (1) 445 tons, (2) 665 horses.

17. Remarks on the work yielded by different agents.
—The following remarks upon the preceding tables and
examples are worthy of the attention of the reader :—

(1) Every agent must be allowed to move at a certain
rate in order to do the greatest amount of work it is cap-
able of yielding; thus, a horse walking does considerably
more work than a horse trotting, as an inspection of the
tables will show. And this is true not of animate agents
only, but also of inanimate ; thus the work yielded by the
consumption of a given quantity of coal will be larger in
the case of a slow than of a fast engine.

(2) Also, in order that an animate agent may do its
greatest amount of work, it must not be required to exert
more than a certain force. This is also plain from an
inspection of the table.

(3) It follows from the above comsiderations that
though two agents may be capable of doing the same work
in the same time, it may be in practice impossible or dis-
advantageous to substitute the one for the other. Thus
an ox and a horse walking in a whim gin do very nearly
the same amount of work; but since the ox moves more
slowly, and exerts a greater force than the horse, it
would generally be disadvantageous to substitute a horse
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for an ox in a machine requiring a slow heavy pressure.
Again, in cases where great speed is a desideratum, it
would generally be impracticable by any machinery to
make the slow agent perform the labour of the rapid
agent ; as, for instance, in the case of locomotion.

18. On the cost of labour.—The chief elements in
the cost of labour may be enumerated as follows : —

(1) In the case of human labour, the whole cost is the
wages paid.

(2) In the case of a horse, the elements of expense are
attendance, keep, and the original cost ; the last is but a
small portion of the expense. Thus, if we suppose a horse
to cost 20l. and to continue in working order for ten
years, and reckon the value of money at four per cent.
per annum, the element of cost would be 2:465l. yearly,
or not quite 1s. per week.

(3) In the case of a steam engine, the chief elements
are the original cost and subsequent repairs, attendance,
and fuel. Of these elements the most important is that
of fuel; and accordingly there is a special definition of
the power of an engine with reference to the consumption
of fuel. The definition is as follows :—

Def.—The number of foot-pounds of work yielded by
an engine in consequence of the consumption of 1 bushel
(i.e. 84 1bs.) of coal, is called the duty of that engine.

The extent to which the economy of fuel may be carried
is very remarkably illustrated by the engines employed to
drain the mines in Cornwall. In 1815, the average duty
of these engines was 20 millions; in 1843, by reason of
successive improvements, the average duty had become
60 millions, effecting a saving of 85,000l. per annum ;*

* Bourne on the Steam Engine, p. 171. It may be remarked that this
result depends largely on the construction of the boiler; 1 1b. of coal in
the Cornish boiler evaporates 11} Ibs. of water, while in the waggen-shaped
boiler 87 is the maximum,—Famrsairy, ‘Useful Information, p. 177,

D
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it is stated also, that, in the case of one engine, the duty
was raised to 125 millions.

The actual cost of 1,000,000 foot-pounds of work, when
dune by different agents, cannot be specified with great
precision ; but a sufficiently accurate notion of the relative
cost of different agents may perhaps be obtained from the
annexed table, which has been calculated upon the follow-
ing suppositions :—

(1) The wages of a labourer, 3s. a day.

(2) Keep of a horse, 2s. a day; attendance of 6 horses,
3s. a day; cost of each horse, 2d. a day.

(3) Steam engine of 50 horse-power, at an annual cost
of 5l. per horse-power; attendance, 12s. a day; coal, 6d.
a bushel.*

Tase X.
COST OF LABOUR.
Character of Agent m“wﬂ‘{:"
(1) Labourer carrying weights up a ladder - . 88°67 pence
(2) Labourer raising weights by rope and pul'ey . 6394 ,,
(3) Labourer turning a winch . . 2880 ,,
(4) Labourer turning a capstan . . . 2400
(5) Horse in & whim gin trotting . . . 4548 ,,
(6) Horse in a whim gin walking . . . . 3791 ,,
(7) Horse walking in a cart . . e e 2040 ,,
(8) Steam engiue, duty 20 millions. . . . 0429 ,,
(9) Steam engine, duty 90 millions. . . . 0196 ,,

* In Wealse's Contractor’s Price Book for 1859 the prices of various steam
engines are estimated to be from 25l. to 35i. per horse-power, boilers
and fittings included ; as the nominal horse-power (which is determined
by measurement) is considerably less than the working horse-power, the
estimate in the text is very ample ; that estimate assumes 507, to be the cost
of a horse-power, and that 10 per cent. will represent interest on eapital,
repairs, and restitution. It may interest the reader to consider the following
statement taken from Mr. R. Stephenson’s paper on Railway Economy which
forms an appendix to Mr. Smiles's Life of George Stephemson. In 1854
there were in the United Kingdom 5,000 locomotive engines costing from
20001, to 2500!. apiece, and consuming annually 18 million toms of coke,
made from 20 million tons of coal. It appears moreover that if a railway
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- Er, 137.—How many bushels of coal must be expended in a day of 24
hours ix raising 150 cubic feet of water per minute from a depth of 100
fathoms ; the duty of the engine being 60 millions ?  4ms. 135 bushels,

Ez. 128.—Determine the number of horses working in whim gins re-
quired to do the work of the last example. Determine also the weekly
saving effected by employing steam power, supposing the total weekly ex-
pense of the engine to be double the price of coals consumed; the coals
costing 10s. & ton ; and each horse 20s. a week.

Ans. (1) 960 horses. (2) 9241. 11s. 0d. weekly saving.

Ex, 129.—Thers are three distinct levels to be pumped in 8 mine, the
first 100 fathoms deep, the second 120, the third 150 ; 30 cubic feet of water
are to come from the first, 40 from the second, and 60 from the third per
minute ; the duty of the engine is 70 millions. Determine its working
horse-power and the consumption of coal per hour:

Ans. (1) 191 H.-P. (2) 5°4 bushels,

Ez. 130.—In the last example suppose there is another level of 160
fathoms to be pumped, that the engine does as much work as before for the
other levels, and that the utmost power of the engine is 275 H.-P. Find
the greatest number of cubic feet of water that can be raised from the
fourth level. " Ans. 46 cub. ft,

Ez. 131.—An engine raises every minute A cubic feet of water from a
depth of @ fathoms, B cubic feet of water from a depth of & fathoms, and
c cubic feet of water from a depth. of ¢ fathoms. The diameter of the
piston of the steam engine is d in., the length of the stroke ! ft., it makes »
strokes per minute; also it consumes o bushels of coal in twenty-four hours,
and has a modulus m, Determine (1) the pressure per square inch upon
the piston ; (2) the horse-power of the engine (as measured by pressure of
steam on piston) ; (3) its duty.

1500(Aa + Bb + c¢) Aa +Bb +ce
Ane. (1) walmn. @ 88m
540,000(aa + Bb + cc)
OF om

Ez. 132,—Water is to be raised from three levels of 20, 30, and 40
fathoms respectively ; 10 cubic feet of water are to be taken per minute
from the first, 20 from the second, and 40 from the third. The engine con-
sumes 15 bushels of coal in a day. The diameter of the piston is 4 ft., it
makes 10 strokes of 6 ft. each per minute, The modulus of the engine is
065. Find the pressure per square inch on the piston, the horse-power
(as measured by pressure of steam) and the duty of the engine.

Ans. (1) 1375 1bs.  (2) (nearly) 42 H.-P. (3) 133,000,000 duty.

company start with 100 new engines, about 20 or 25 will need repair at the
end of four years, and after that there will always be about 25 in the
workshop.

D 2
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Ez, 133.—In Ex. 126 suppose the engine and trucks on the one hand, and
the horses and carts on the other, to want renewal every ten years; suppose
also that each horse and cart costs 40l., that one man attendsto every six
horses and is paid 3s. a day, that each horse’s keep is 1s. 6d. a day, that
there are two turnpikes on the road at each of which there is a toll of 6d.;
determine the cost of transporting 445 tons of coals. Next suppose the
engine and tonder to cost 1000/., each truck 120l. (15 trucks are required
to prevent loss of time); that there ‘are three drivers and three stokers
each at 6s. a day ; that money is worth 5 per cent., and that each mile of
road cost 10,000/. to make, and 365l. a year to keep in repair; determine
in this case the cost of transporting 445 tons of coals. Also if coal cost 3s.
a ton at the pit mouth, what will it cost in the town according to each
method of transport, neglecting profit ?

Ans. (1) 2145 (2) 1281 (3) 12s. 6d. a ton Ly cart.
(4) 8s. 6d. a ton by rail.

[Interest on the cost price of engine, trucks, horses and carts can be
_ mneglected.]

Secrion II.

19. On the work dome by a wvariable force—There
are two important questions in the subject of work which
we shall treat in the present section: they are, (1) the
work done by a variable force, when exerted through a
certain distance; (2) the total amount of work dome in

Fo.s.  Taising a number of weights through differ-

o ¢ ent heights.

As an introduction to the theorem which
follows, it may be remarked that, if a con-
stant force of P Ibs. act through a distance of
8 feet, and if a rectangle ABCD be drawn, of
which the base A B represents the s feet on
scale, and the perpendicular A D represents
the P 1bs. on the same scale: then, since the
area of ABCD contains PS8 square units on

the same scale, the area will correctly represent the work
done by p.

A B
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Proposition 1.

If avariable force act through a certain distance, and
if @ curve be drawn in such a manner that the abscissa
and corresponding ordinate of any point represent re-
spectively the distance through which the force has acted
and the magnitude of the force, then will the area of the
curve between any two ordinates represent the work done
by the force while acting through a distance represented
by the difference between the extreme abscissce.

‘When the force has acted through a distance represented
on a certain scale by A N, suppose it to be represented on
the same scale by PN; also, Fia. 6,
when it has acted through a
a distance A M, suppose it to P
be represented on the scale
by @M; let the curve P Q Pl
be drawn in such a manner
that any ordinate (P,N;)
represents the force when it :
has acted through a distance AN, ; we have to prove that
the area PNMQ represents the work done by the force
while acting through the distance N M.

Divide N M into any number of equal parts in N,, N,, N,
+ « « . draw the ordinates PN, P,N,,P,N, . . . . and com-
plete the rectangles PN, P\N,, P,N, . . . . Now, we shall
nearly represent the actual case if we suppose the force,
while acting successively through the short distances NN,
N,Ng, NN, . . . . toretain unchanged the magnitude it has
at the beginning of those distances respectively ; and we
shall represent the case more nearly the smaller we make
the distances, i.e. the greater the number of parts into
which we divide N M: the actual case being the limit con-
tinually approached as the number of parts is increased.

But if the force acts uniformly through each distance,

M
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it will do a number of units of work represented by the
sum of the rectangular areas PN, P\N,, P,N, . . . ., and

“this- being true whatever be the number of the small

. distances, the work actually done will be properly repre-

.sented by the limit of the sum of these rectangles, i.e.

by the curvilinear area PNMQ.

Cor.—It must be borne in mind that the scale must

- be the same for lbs. and for feet ; thus, if the scale be in

. inches, P N must be as many inches long as the force con-
tains lbs., and NM must be as many inches long as the

“distance represented contains feet ; this being so, the area
of the curve in square inches will give the number of foot~
pounds of work.

\ Ex. 134.—A rope ! ft. long and weighing w 1bs. per foot hangs by one
end ; determine the number of foot-pounds of work required to wind up a
ft. of the length. o

F6. 7, Take A B on scale equal to I, draw A ¢
c at right angles to A B and on the same scale
equal to wl, join Bc; in AB take any point

N, draw P N parallel to A c, then

© PNINBilcAiABlw:! L
Therefore P = N B, i.e. the ordinate px

\ represents on scale the weight of the rope
\ left banging when the extremity has been

) B raised through a space AN, Therefore the

. area ABC represents the number of foot-
pounds required to wind up the whole rope, and the area ¢ A P x the nnmber
of foot-pounds required to wind up a Jength A x of the rope. Hence if U
is the required number of foot-pounds,

v-wa(l—z)

Hence slso the number of foot-pounds (v,) required top wind up the

whole rope is given by the formula
v, ={wis. ‘

Ez. 185.—A w_ei@t of 2 cwt. has to be raised from a depth of 100
fathoms by a rope 3 in. in circumference ; determine the number of foot-
'ponnds that must be expended in raising it, and the number of minutes
in which 4 men wonid do the work by means of a capstan.

Ane. (1) 207,300 ft.-pds. (2) 16°5 min.

s

el
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Ez. 136.—How heavy will that anchor be which 13 men will raise by
means of a capstan from a depth of 180 fathoms in 40 min., supposing the
cable to weigh 1125 lbs. (neglecting the buoyancy of the water) ?

' . Ans, 945 bs,

Ez, 137.—A chain each foot of which weighs 8 lbs. is suspended from
the top of a shaft, the depth of which is 50 fathoms; determine the number
of foot-pounds required to wind up each successive 100 ft. of its length ;
determine also the length of the chain which will require twice as many
foot-pounds to wind it up.

Ans. (1) 200,000, 120,000, 40,000 ft.-pds. respectively. (2) 424 ft.

Exr. 138.—If a chain 300 ft. long and weighing 8 1bs. per foot is wound
up in 4 min., how many men working on a capstan would do it? How
many horses walking in a whim gin? How many steam horses? How
many of each agent would be required if the weight per foot of the chain
were doubled? And how many if the length of the chain were doubled ?

Ans. (1) 29 men. (2) 5°1 horses. (3) 24 horse-power.
(4) 67 men. 10-2 horses. 5+¢ horse-power.
(5) 1156 men. 204 horses. 104¢ horse-power.

Ex, 139.—A chain is a ft. long; divide it into = parts such that the

winding up of each may require the same number of foot-pounds.
Ans.

a -—a,
— (e T—=1) —— 1ot — - An—
,,/;(“/” V/n-1), J.(«/» 1-/n-2), f( vn—2— +/n-3) &ec.

Ezx, 140.—Coul is raised from the bottom to the mouth of a pit 150 ft.
deep in loads of a quarter of a ton ; the box containing it weighs 1 cwt., the
rope by which it is raised is 3 in. in circumference; determine the number
of foot-pounds spent in raising the coal, and the number spent in raising
the box and rope. I the lifting engine works with 10-horse power,
determine the weight of coals raised in 2 hours, supposing the ascent and
descent of the box to take equal times.

Ans, (1) 84,000 ft.-pds. to raise coal. (2) 21,356} ft.-pds. to raise
box and rope, (3) 47 tons.

Ez. 141.—In the last example suppose machinery to be employed by
means of which the same drum winds up the rope of an ascending box and
unwinds that of a descending box. Determine the number of tons raised in
2 hours.* Ans. 118 tons,

[Of course the work done by the descending box and rope will nearly
equal that expended on the ascending box and rope—the weight of box
and rope can therefore be neglected.]

* The primry object of this mode of working was, probably, to save
mne, the saving of labour being an accidental result; though that savmg
is very considerable, -
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Ez. 142.—Determine the number of tons raised under the conditions of
Er. 140 and 141, supposing } a minute is expended in filling or emptying
the box. ' Ans. (1) 18% tons.  (2) 393 tons.

Ez. 113.—If 4 cwt. of material are drawn from a depth of 80 fathomsbya
rope 5 in. in circumference, how many foot-pounds are expended in raising
them, and what horse-power is necessary to raise them in 4} minutes?

Ans, (1) 344,640 ft.-pds. (2) 232 H.-P.

Exr, 144.—A rope 3 in. in circumference is strong enough to bear a
working tension of 4 cwt.; how many foot-pounds are wasted in the last
example by using a rope § in. in circumference ? Ans. 82,944 ft. pds.

_ Ex. 145.—A winding engine raises to the surface a load of 12 cwt. in

64 minutes from a depth of 115 fathoms ; the rope employed is a flat rope
composed of 3 ropes each 3 in. in circumference, What is the horse-power
of the engine? . Ans, 567 H.-P.

Ez, 146.—If the engine in the last example have a cylinder 20 in. in
diameter, and makes per minute 15 strokes of 2 ft. 10in., under what mean
pressure per square inch of steam does it work if its modulus is 0565 ?

. Ans. 255 1bs.
20. The steam indicator.—A very instructive appli-
cation of Proposition 1 occurs in the steam indicator, which
Fre. 8. may be sufficiently described as fol-
' lows: AB is a small hollow cylinder
containing a powerful spring, which
can be partly secn through the aper-
ture EF; within the indicator is a
small piston or plunger (marked in
the figure by dotted lines) which is
kept down by the spring, so that if it
is forced up, the compression of the
spring gives the amount of the com-
pressing force, which can be read off
on the scale ¢p by means of the
pointer G H, which rises and falls with
the plunger. The end = of the pointer
A carries a pencil, the point of which
rests against a sheet of paper wrapped round a cylinder
K L; if this cylinder be stationary, and the pencil move,
a vertical straight line will be described ; if the pencil be

.

a e %) '
»n
! £
= 2

[
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stationary, and the cylinder revolve, a horizontal straight
line will be described ; but if both the pencil move and
the cylinder revolve, a curved line will be described. To
obtain the required curve it is necessary that the cylinder
K L should turn in contrary directions during the up and
down strokes of the piston. This is effected by means of
a clockspring placed within the cylinder x L. On the up
stroke the string M N, which is fastened round the cylin-
der, is pulled in the direction MN, causing the cylinder to
turn from left to right and winding up the spring. On
the down stroke the string tends to slacken, the spring
uncoils and turns KL back from right to left.

The instrument is used in the following manner :—
The end A being screwed into an aperture properly con-
structed, the steam in the interior of the cylinder of the
steam engine can be admitted into the indicator by opening
the cock P; at first, however, the cock P is shut, so that
the pointer remains stationary. The end of the string MN
is attached to some part of the engine * in such a manner
that the cylinder K L makes one revolution while the piston
of the steam engine makes a stroke; this being done, and
the cock kept shut, the pencil will trace on the paper a
straight line called the atmospheric line: on the next
stroke the cock is opened, and now the steam pressing on
the plunger the pencil will rise or fall according as the
pressure of the steam is greater Fre. 9.
or less than that of the atmo- » ¢
sphere, and will describe a curve [ \r
that will return into itself at the A N —
end of a double stroke (orrevolu- l
tion). The area of the curve
thus described will give the amount of work done by the
steam during a single stroke.

F Q E

* Generally the radius-shaft.



) PRACTICAL MECHANICS.

To explain this, suppose A BC D EF to be the curve given
by the indicator (which, it may be remarked, is described
continuously in the direction ABCDEFA), AG the atmo-
spheric line; draw PNQ any double ordinate, then PN
represents the excess of the steam pressure above that of
the atmosphere when the ascending piston is at a certain
point, and N Q represents the defect of the vacuum pres-
sure below that of the atmosphere when the descending
piston is at the same point. Now the effective pressure
of the steam is the excess of the steam pressure above the
vacuum pressure ; but

P N=steam pressure —atmospheric pressure,
NQ=atmospheric pressure —vacuum pressure,
.*.PN+NQ=steam pressure —vacuum pressure ;

therefore P Q represents the effective pressure of the steam
when the ascending piston is at the point corresponding
to N, i.e. assuming the vacuum pressure at any point of
one stroke to be the same at the same point of the next
stroke. If, then, for the sake of distinctness,* we suppose
each inch of the ordinate to denote a pressure of 1 1b. and
each inch of the abscissa (i.e. of the atmospheric line) to
denote a foot of the stroke, the area of the curve will give
the number of foot-pounds of work done during a single
stroke by the steam on an area equal to that of the
plunger, and if the area of the piston of the steam engine
be » times that of the plunger, the work done by the steam
during a single stroke will be n times that given by the
curve.

The area of the curve may be found by Simpson’s rule,
viz.—Divide A G into any even number of equal parts, and
draw the corresponding ordinates; take the sum of the
extreme ordinates, four times the sum of the even ordi-
nates, and twice the sum of the odd ordinates (i.e. ex-

* In practice the scale would be considerably less than this.
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‘cepting the first and last), add them together, and multiply
the sum by one of the parts of the abscissa; the product
will be three times the area of the curve.*

Ez. 147.—Let the curve shown in the figure be that given by a stroke
of 5 ft.; let ABbedivided into 10 equal parts, and let the ordinates 1, 2, 3,

4, ... .bedrawn; suppose them to represent Fra. 10,
respectively 19, 22, 22, 17°5, 13, 11, 9, 7'5, 6, p1

65, 4 1bs: pressures per square inch. The N

radius of the piston being 20 in., determine ~ =
the number of foot-pounds of work done per

stroke, and the mean effective pressure per 1 8.3 4 8 ¢ 7 8 8 W I
‘square inch on the piston—i.e. the constant pressure that would do the
same work. Ana. (1) 79,000 ft.-pds. (2) 126 1bs.
Ez. 148.—Determine the number of foot-pounds of work and the mean
preasure per square inch on a piston 34 feet in diameter having a stroke of
5 feet, if the ordinates measured at intervals corresponding to three inches
of the stroke give the following pressures—503, 12:57, 18:04, 2073, 2103,
21-11, 21-25, 20°72, 20°14, 1863, 15°45, 13-24, 10°83, 8'53. 6-49, 487, 3-99,
374, 3:52, 325, 275,  Ans. (1) 87, 600 ft.-pds. (2) 12'65 lbs. per sg. in.

21. Work expended on the elongation of bars.—It
is plain that if a rod be lengthened by a gradually in-
creasing force, the force exerted at any degree of elongation
will be proportional to that elongation; so that if the
absciss® represent the degree of elongation, and the
ordinates  the stretching force, the area which gives the
units of work will be a triangle. Hence:

Ez. 149.—There is a bar the length of which is . and section x; it is
gradually elongated by a length I; if its modulus of elasticity be &, show
that the work expended on its elongation will be given by the formula

B
U= 2—Ln

Ex. 1560.—The pumping apparatus of a mine is connected with the engine
by means of a series of wrought-iron rods 200 ft. long; the section of esch
rod is § of a square inch ; the tension when greatest is estimated at 6 tons ;
how many foot-pounds of work are expended at every stroke upon the
elongation of the bars ? Ans. 830 ft.-pds.

* The curve given by the indicator is useful in other ways besides that
mentioned in the text.—Boxurne on the Steam Engine, p. 246,
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Er, 151.—A bar of wrought iron 100 ft. long with a section of 2 square
inches bas its temperature raised from 32° F. to 212° F.; how many foot-
pounds of work has the heat done? Ans. 3875 ft.-pds,

22, The work expended in raising weights through
various heights.—The questions arising out of this im-
portant part of the present subject are solved by means
of the following proposition.

' 2

Proposition 2.

When any weights are raised through different heights,
the aggregate of the work expended is equal to the work
that would be expended in lifting a weight equal to
the sum of the weights through the same height as that
through which the centre of gravity of the weights has
been raised.

Letw,, W, W, . . . . . be the weights of each separate
body ; conceive a horizontal plane to pass below them all ;
let kyy gy hy . . . . be the heights of those bodies above
the plane before they are lifted, and let m be the height
of their common centre of gravity ; then (Prop. 16)

H(W,+Wat Wy o0 )Wk +Wohy +Wehyt+ . o o )

Also, let &, kg ks . . . . be the heights of the weights
respectively, after they have been lifted, and x the height
of their common centre of gravity ; then

E(W+W+ Wy o o0 JmWk + Wk +Woky+ 4 0o (2)
hence, subtracting (1) from (2), we obtain
(R —8) (W, + Wy + Wy ) = W, (B, —By) + Wy (By—Ry) + W, (B —By)..e ®)

Now, W, Wy, W,y . . . . are severally raised through
the heights k,—h, ky—hyy ky—hy « . . .; therefore the
right-hand side of equation (3) gives the aggregate work
expended in lifting them ; hence that work is equal to

(B—H) (W, + W+ Wy o o . ),
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i.e. to the work that must be expended in lifting a weight
W,+W,+W,+ ... through a height k—n. (Q. E.D.)

Cor.—1In the case of the transport of bodies along any
parallel lines, the principle enunciated in the theorem
will hold good, since the resistances bear a constant
ratio to the weights.

Ez. 152.—How many foot-pounds of work must be expended in raising
the materials for building a column of brickwork 100 ft. high and 14 ft.
square ? and in how many hours would an engine of 2 horse-power raise
them ? Ans. (1) 109,760,000 ft pde. (2) 27-71 hours.

[Since the material has to be raised from the ground, the common centre
of gravity will have to be raised from the ground to the centre of gravityof
the column, i.e. to its middle point 50 ft. above the ground.]

Ex. 153.—A shaft has to be sunk to the depth of 130 futhoms through
chalk; the diameter of the shaft is 10 ft.; how many foot-pounds of work
maust be expended in raising the materials? In how long a time could this
be done by a horse walking in a whim gin? How many men working in a
capstan would do it in the same time ? Determine the expense of the work
supposing the horse to cost 3s. 6d. a day, and the wages of a labourer to be
23, 6d. a day.

Ans. (1) 3457 million ft.-pds. (2) 409'6 days. (3) 5:62 men,
(4) Cost of horse 711 14s. (Cost of men 288!,

Ex. 154.—If the work in the last example is to be done in 24 weeks by
a steam engine working 8 hours a day, 6 days a week, what must be the
horse-power of the engine ? Ans, 1-621 H.-P.

Exz. 165.—In Ex. 153 suppose the box in which the material is raised to
weigh } cwt., the rope to be 8 in. in diameter, and each load to be 4 cwt. of
chalk, also suppose the box to take as long in ascending as in descending
and that } of a minute is lost in unhooking and hooking at the bottom of
the shaft and the same at the top; when the shaft is 100 ft. deep determine
the time that elapses between the starting of one load and the starting of
the next ; the engine working at 1} horse-power. Ans. 262 min.

Ex, 156.—Determine the same as in the last example when the shaft is
z ft. deep, Ans, 1122+ 0-04522

6500

Exz. 157.—Determine the whole time of raising the materials of the shaft
in Ex. 153 under the conditions of Ex. 155. Ans. 3331 hours.

Ex. 158.—Referring to Ex. 153, 1565, suppose the drum of the winding
machine to have two ropes wound round it in contrary directions, so that
it unwinds one rope while winding up the other, and that consequently an

+ 05 min,
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empty box descends while a full one is being raised (a8 in Ex. 141); deter-
mine the time that must elapse between two consecutive lifts of 4 cwt.

when the shaft is 100 ft. deep. ) Ans. 1°156 min.,
Ez. 169.—Obtain a determination similar to that in the last example,
when the shaft is = ft. deep. 448z | .
Ans. 19,500 +0°25 min,
Ez. 160.—Obtain the whole time of lifting the materials from the shaft
under the circumstances of Exr. 158. Ans. 1246 hours,

Ez. 161.—In how long a time would a 15 horse-power engine empty a
shaft full of water, the diameter of the shaft being 8 ft. and the depth 200
fathoms ? If the engine has a duty of 80 millions determine the amount of
coal consumed in emptying the shaft.

Ans. (1) 76 hours, (2) 754 bushels.

Ex. 162.—There is a certain railway 200 miles long ; it may be assumed
that in the course of 10 years there will be 50,000 tons of iron railing laid
down, and that it will be equally distributed.along the line. How many
foot-pounds of work must be expended in conveying the rails (neglecting the
weight of the trucks), if the depdt is at one end of the line? And how
many if the depbt is in the middle of the line? The resistances being
reckoned at 8 Ibs. per ton.

Ans. (1) 211,200 million ft.-pds.  (2) 105,600 million ft.-pds.

Er. 163.—How many journeys of 200 miles performed by a train weigh-
ing 50 tons does the difference of the results in the lust example represent ?
Resistances 8 1bs. per ton, Ans. 250 journeys,
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CHAPTER III.

ELEMENTARY STATICS.

23. Mechanics.—The science of Mechanics is that
which treats of the motion and rest of bodies as produced
by force. The words, ¢as produced by force,” are added in
order to exclude the science of pure motion or mechanism,
which treats of the forms of machines, and in which ma-
chines are regarded merely as modifiers of motion. Into
all questions which are properly mechanical the idea of
Jorce must enter.

Force may be defined to be any cause which puts a
body in motion, or which tends to put a body in motion
when its effect is hindered by some other cause. On this
definition the following remark is to be made: Suppose
a given weight is supported by a string passing over a
pulley and fastened to a fizxed point at the other end;
next, suppose an equal weight to be supported by a man’s
hand ; lastly, suppose an equal weight to be supported
by the elastic force of a spring. Now, here we have
three physical agents, viz. the reaction of the fixed point
transmitted through the string, the muscular power of a
man, and the elastic force of a spring, very different in
many respects, but agreeing in their common capacity to
support a given weight. They may clearly be regarded
as equal, when viewed with reference to that capacity.
In short, as,in geometry, we regard all bodies as equal
which can successively fill the same space, without any
regard to their physical qualities, such as weight, colour,
&c., 80 in mechanics we regard all forces as equal which
will severally balance by direct opposition a given weight
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irrespectively of their physical origin. By the weight of
a body is meant the mutual attraction between the earth
and that body; as this attraction has different amounts
when the body is at different places, the weight of a
body, when used as a standard of force, must be deter-
mined with reference to some assigned place. Thus:—
there is kept in the Exchequer Office a piece of platinum
called the standard pound (avoirdupois); the attraction
of the earth on that body at London is a force of 1 1b.,
and any force which hy direct opposition can support that
body in London is also a force of 1 Ib. If we suppose
two forces each of 1 1b. to act in the same direction at a
point and to be balanced by a single force, that force is
one’of 2 1bs.; and similarly a force of three, four, or more
pounds can be defined.

24, Statics and dynamics.—It follows, from the de-
finition, that, in Mechanics, we can consider a force either
as producing motion, or as concurring with others in
producing rest. Accordingly, the science of mechanics
is divided into two distinct though closely connected
branches, viz. statics and dynamics. Of these, statics is
that science which determines the conditions of the equi-
librium of any body or system of bodies under the action
of forces. Dynamics is that science which determines
the motion, or the change of motion, that ensues in a
body or system of bodies subjected to the action of a force
or forces that are not in equilibrium.

25. Determination of a Force.—From what has al-
ready been said, it appears that the magnitude of any
force is assigned by considering the weight it would just
support if applied directly upward; in other words, we
arrive at the magnitude of any force by comparing it
with the most familiar and measurable of forces, viz.
weight. A little consideration will show that the effect
of a force in any case depends not only on its amonnt, but
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also on its point of application, and the line along which
it acts. We may say, therefore, in general terms, that a
force is completely determined when we know (1) its
magnitude, (2) its point of appli-
cation, (3) its line of action, and
(4) its direction along that line.*
A line is frequently said to repre-
sent a force ; when this is the case
it must be drawn from the point
of application of the force along
the line of its action, and must
contain as many units of length B
(say inches) as the force con- a

tains units of force (say lbs.) *

It is of great importance that the

student should attend to all the conditions which must
meet when a line correctly represents a force. Suppose
a force of P lbs. (fig. 11) to act on a body at the point A
if the force is a pull, as in the first figure, the line A B
containing as many inches as P contains lbs. will repre-
sent the force; but if the force is a push, A B must be
measured, as in the second figure.

26. Resultant and components.—If we consider any
forces that keep a body in equilibrium, it is plain that
any one of them balances all the Fre. 12,
others: thus, if three strings be
knotted together at A, and be pulled
by forces of P 1bs., Q lbs., and R lbs.
respectively so adjusted as to bal-
ance one another, it is plainly a
matter of indifference whether we
consider that P balances Q and R, or that balances R and

* The student must notice the distinction between the line of action
and the direction of a force: e.g. in fig. 14 (p. 52) P and q act in the same
direction along different lines,

E
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P, or that R balances P and Q. Let us consider that R
balances P and Q; now R would of course balance a
force R’ exactly equal and opposite to itself: so that if we
substitute R’ for P and @, or wice versd, P and Q for R/, in
either case R is balanced, and the force R’ is equivalent
to P and Q; under these circumstances, R’ is called the
resultant of P and Q; and P and Q are called the com-
ponents of R. Hence we may state generally, '

Def.—That force which is equivalent to any system of
forces is called their resultant.

Def.—Those forces which form a system equivalent to
a single force, are called its components.

27. Resultant of forces acting along the same straight
line.—If the forces act in the same direction the re-
sultant must be their sum. If some act towards the right
and some towards the left, the first set can be formed
into a single force (P) acting towards the right, the
second set can be formed into a single force (Q) acting
towards the left : the resultant of these two,and therefore
of the original set of forces, will be equal to the differ-

-ence between P and Q and will act in the direction of the

greater. If the forces are in equilibrium, the sum of those
acting towards the right must equal the sum of those
acting towards the left.

Ex. 164.—If three men pull on a rope to the right with forces of 31,
20, and 27 1bs, respectively, and are balanced by two men who pull with
forces of 40 and P lbs. respectively, find p. Ans. 38 1bs,

Ez. 1656.—In the last example find the resultant of the 5 forces (1) if p
=30 1bs.; (2)if P=401bs.  Ans. (1) 8 lbs. acting towards the right.
(2) 2 1bs. acting towards the left.

- Ex, 166.—There is a rope AB and men pull along it in the following
* manner: the first with a force of 50 lbs. towards A ; the second with a
force of 37 lbs. towards B; the third with a force of 35 lbs. towards A ;
the fourth with a force of 20 lbs. towards a; the fifth with a force of 64
1bs. towards B ; the sixth with a force of 27 lbs. towards a ; the seventh
with a force of 62 1bs. towards » ; the eighth with a force of 30 lbs. towards .
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Netermine the single force that must act along A B to balance them, and
ind whether it acts towards A or B.  Ans. 41 lbs, acting towards B.

Ez. 167.—In the last example suppose the second force to act towards
A, find the resultant, , Ans, 33 1bs. acting towards a.

28. The terms reaction, thrust, and tension are
of frequent occurrence in' Mechanics, and it is important
that their meaning should be distinctly understood.
With regard to the first of them, it must be borne in
mind that the only forces with which we are acquainted
are exerted between different portions of matter; and if,
for the sake of distinctness, only two bodies, A and B, are con-
sidered, the following statement is found to be universally
true :—If A exerts a force on B, then B exerts an equal oppo-
site force on A—a fact commonly expressed by saying that
to every action there is an equal opposite reaction. Now
let A B (fig. 13) be a body urged by a force T against a
fixed plane A c, and let the motion which T tends to commu-
nicate to the body be prevented by the fixed plane; that
fixed plane must supply a force () which exactly balances
T; and the body A B is really compressed between two
forces R and T, of which the former is the
Reaction of the fixed plane, and the
latter the Thrust along AB. A Thrust
and a Reaction compress or tend to com-
press the body on which they act. If,
on the contrary, the body (a B) had been
acted on by two equal opposite forces T
and R tending to produce elongation, it A©
is said to sustain a tension T. One of the forces pro-
ducing a tension may, of course, be a reaction; thus, if
one end of a string is tied to a nail fast in a post, and the
other end to a suspended weight of 10 lbs., the string is’
stretched by two forces each of 10 lbs., viz. the weight
and the reaction of the nail, and the string is said to
sustain a tension of 10 lbs.

E2

¥ie. 18,
T
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29. Resultant of two parallel forces.—First, let P
and Q (fig. 14) be the two parallel forces acting in the

Fie. 14, same direction at the points A and B; join
X AB and divide it in ¢ in such a manner
that
A _c] s AC:CB:Q:P

then the resultant (®’) equals P+Q and
acts through c along a line parallel to A p
or BQ and in the same direction as p and Q.

If c rests on a fixed point P and Q will balance about
¢ and the fixed point will sustain a pressure R'.

Secondly, let P and Q (fig. 15) be the
two parallel forces acting at A and B in

Q ¥ opposite directions. Suppose @ to be
A ¢ the greater. In AB produced take a
point ¢ such that

AC:CB::Q: P

then the resultant (") equals Q—P and acts through ¢
along a line parallel to AP and BQ and in the same direc-
tion as Q.

If ¢ rests on a fixed point P and Q will balance about
¢ and the fixed point will sustain a pressure ®'.

P R

Fia. 15.

Ez. 168.—If weights of 12 1bs. and 8 Ibs. are hung from A and B respec-
tively, the ends of a rod 5 ft. long, and if the weight of the rod is neglected,
determine the distance from A of the point round which these forces balance,
and the pressure on that point. ° Ans. (1) 2 fr.  (2).20 1bs.

Ez. 169.—Let A B be a rod 12 ft. long (whose weight is neglected),
from A a weight of 20 1bs. is hung, and an unknown weight (?) from B, it
is found that the two balance about a point 3 ft. from A ; determine ».

Ans. 63 Ibs.

Ex, 170,—If a weight of 16 1bs. is hung from the end A, and 12 1bs. from
the end B of a rod (whose weight is neglected), and if they balance about a_
point ¢, whose distance from A is 4} ft., what is the length of the rod?

Ans. 10 § £,

Ez. 171.—Draw astraight line A B, 8 ft. long ; forces of 5 1bs. and 7 Ibs.
act at A and B respectively at right anglw to &3 and in opposite directions.
Determine their resultant. 21
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30. Conditions of equilibrium of three parallel
Jorces.—1In the last article we saw that the forces P and
Q acting severally at A and B are equivalent to the force
¥ acting at ¢; now R’ will clearly be balanced by an equal
opposite force R ; and therefore P and Q acting at A and
B will be balanced by the force R acting at c. Hence the
following conditions must be fulfilled by three parallel
forces that are in equilibrium on a given body :— -

(@) Two of the forces (P and Q) must act in the same
direction, and the remaining force (R) in the opposite
direction, the line along which the latter acts lying be-
tween those along which the former severally act.

(b) The sum of the former forces (P and Q) must equal
the latter force (®).

(¢) If any line be drawn cutting the lines of action of
the forces (P, Q, R, in 4, B, C, respectively) the portion of
the line between any two forces is proportional to the
remaining force, i.e.

BC:CAIP:Q
CA:ABIQ:R
AB:BC*:R:P

31. Centre of gravity.—Since each part of a body is
heavy, it follows that the weight of a body is distributed
throughout it; there exists, however, in every body a
certain point called its centre of gravity, through which
we may suppose the whole weight of the body to act,
whenever that weight is one of the forces to be considered
in a mechanical question. It admits of proof that the
centre of gravity of any uniform prism or cylinder is the
middle point of its geometrical axis: and as a uniform
rod is merely a thin cylinder, its centre of gravity will be
at its middle point.

Ez. 172.—Two men, A and B, carry a weight of 3 cwt. slung on a pole,

the ends of which rest on their shoulders; the distance of the weight from
Ais 6 ft.,, and from B is 4 ft. Find the pressure sustained by each man,
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If p is the pressure sustained by a and q that sustained by B

P+Q=3 cwt.
and 6:4::q:®
therefore =1} cwt. and g=1¢ cwt.

Ez, 173.—There is a beam of oak 30 ft.long and 2 ft. square; at a dis-
tance of 1 ft. from one end is hung a weight of 1 ton; how far from that
end must the point of support be on which the beam when horizontal will
rest, and what will be the pressure on that point ?

Ana. (1) 1161 ft. (2) 9245 Ibs.

Ez. 174.—If a mass of granite 30 ft. long, 1 ft. high, and 3 ft. wide is
supported in a horizontal position on two points each 3 inches within the
ends (and therefore 294 foet apart), find the pressure on each point of
support. Ans. 7383 1bs.

Ex. 175.~If in the last example another mass of granite with the same
section and half as long is laid lengthwise on the former, their ends being
square with each other; determine the single force to which their two
weights are equivalent, and the line along which it acts, and hence the
pressure on the two points of support.

Ans. (1) Resultant acts 17-5 feet from one end.

(2) Pressures on points of support respectively 9197 and 12,950 1bs.

" Ez.176.—If in the last case the upper block is shifted round through a

right angle in such & manner that the middle point of the upper block is

exactly over a point in the axis of the lower, and the end of the lower in

the same plane with one face of the latter, determine the pressures on the
points of support. Ans. 7695 1bs. and 14,452 Ibs.

Ez. 177.—A ladder A B, 50 ft.long, weighs 120 1bs. ; its centre of gravity
is 10 ft. from a ; if two men carry it so that its ends rest on their shoulders,
determine how much of the weight each must support. If the one of them
nearer to the end B is to support the weight of 40 1bs., where must he stand ?

Ans. (1) 96 1bs. and 24 Ibs. (2) 20 ft. from ».

32. The parallelogram of forces—When two forces
act at a point along different lines, their resultant is
determined by the following rule, which is called the
principle of the parallelogram of forces:—If two forces
act at a point, and if lines be drawn representing those
forces, and on them as sides a parallelogram be con~
structed, that diagonal which passes through the point
will represent the resultant of the forces. The student,
when applying this principle to any particular case, must
bear in mind the meaning of the words a line represents
a force (Art. 25).






A

5.
Fig. a, page 6
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Ex, 178.—If at a point A of & body two ropes o P and A q are fastened
and are pulled in directions A P, AQ at right angles to each other by forces
of 120 and 100 1bs. respectively ; determine the magnitude and direction of
the resultant pull on the point A. (See fig. a.)

Along* A P measure on scale A B containing 120 units of length, and
along A Q measure A C containing 100 units of length ; complete the rect-
angle B¢ and drawthe diagonal A ; this line represents the magnitude and
direction of the resultant. In fig. a the scale employed is 1 in. for 40 lbs. ;
the results obtained by construction were the following R=1566'8 lbs.
and PAR = 40° §'; the measurement of the angle was made with a
common ivory protractor, so that the number of minutes was determined
by judgment : on calculating the parts of the triangle A BD, the results
obtained were R=1562 lbs, and PA R=239° 48’. It will be observed that
when the construction is made on a small scale and with common instru-
ments we can obtain by the exercise of moderate care a result that can be

trusted to within the one-hundredtch part of Fia. 16,

the quantity to be determined. The same

remark applies fo all the questions that \ A B
were solved by the constructions from which P

the figures in the present volume were
copied. If inthis example the point A were

to be pushed along the line A p by a force of ¢ v
120 Ibs., the resultant would of course be - \ Y
determined by the construction shown in the \L

annexed figure. 3

Ex. 179.—Draw A B and A ¢ two lines at right angles to each other, a
foree of 50 1bs. acts from A to B, and one of 70 1bs. from A to c¢. Find their
resultant by construction to scale.

Ex. lSO.—ﬁodify the construction of the last example, when the second
foree is made to act from c to A

Ez, 181.—Draw an isosceles triangle, A Bc, right-angled at c; forces of
60 1bs. act from A to B and from B to crespectively. Show by construction
that the resultant is a force of about 46 lbs. and that the line representing
it bisects the angle between ¢ B and A B produced.

Ex, 182.—Draw two lines A B and A c at right angles to each other; a
force of 50 1bs, acts along a line A D bisecting the angle Bac. Determine
by construction the components of the force along A5 and ac.

Ex. 183.—Draw A B and A c lines containing an angle of 135°; within
this angle draw A D at right angles to A B ; suppose a force of 100 1bs. to act
from Atop. Show by construction that it is equivalent to forces of 100
and 1414 lbs, acting respectively from A to B and from A to c.

* The examples in the ;.n'esent chapter may be worked by construction ;
if solved by calculation, some will be found to lead to very long arithmetical
work, e.g. Ex. 184,
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33. Resultant of more than two forces.—Since the
rules of Arts. 27, 29, and 32 enable us to determine the
resultant of any two forces (with one exception, explained
in the next chapter) acting in the same plane, it is
obvious that the resultant of three forces can be found, by
finding the resultant of any two of the forces and then
finding the resultant of that resultant and the third force,
as shown in the following example. The same method
can be extended to four or more forces.

Ex. 184.—Let ABc be an isosceles triangle, right-angled at c; a force
of 100 Ibs. acts from Ao to B, a force of 80 lbe. acts from A to c, a force of
80 1bs. acts from B to c. Find the resultant of the three forces.

Pa. 17. Draw the triangle A B ¢ and mark by arrow-

A heads the direction of the forces acting along

the lines. On any scale take c p and C E to re-

G v present the forces acting from B to c and A to

c respectively. Complete the parallelogram

L H cDFE; the diagonal cFrepresents the resultant

B 5 C D ofthe twoforces of 80 Ibs. Produce ¥ ¢ to meet

\l/ ABin g, take 6 H equal to cF, and GL on the

E g r tame scale to represent the force acting from

A to B; complete the parallelogram ¢ H x L.

Then ¢ x represents the required resultant; which is a force of 151 Ibs.
and acts along the line 6 x in the direction 6 to x.

Ez. 185.—Let o Bc D be the corners of a square taken in order, produce
ABto =, make BE equal to A B, and draw E P parallel to Bc. If forces of
10 lbs. apiece act from A to B, Bto c, and c to D respectively; show that
their resultant will be a force of 10 1bs. acting along & ¥ in the direction Btoc.

Ez. 186.—In the last example if the force along ¢ B has its direction
reversed so as to act from ¢ to B; show the resultant is still a force of 10
1bs. but acts along » A from D to A. .

Ez, 187.—In Ez. 185 suppose an additional force of 15 1bs. to act from
D to A ; show that the resultant of the four forces is determined as follows :—
produce B A to o, take A 0 equal four times A B, the resultant is a force of
6 1bs. acting through o parallel to p A and in the direction » to A.

Ez. 188.—Draw an equilateral triangle A Bc, let a force of 20 lbs. act
from A to B, one of 20 lbs. from B to c,and one of 30 1bs. from A to ¢ ; show
that the resultant will be a force of 50 lbs. acting in the direction 4 to ¢
along a line parallel to A c, drawn through a point P in Bc such that B is
three-fifths of B c.

Ez. 189.—Determine the resultant in the last case when the direction
of the force along A c is reversed ; the other forces remaining unchanged.
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34. Condition of equilibriwm of three forces.—If
three forces, P, Q, and
R, whose directions are
- not parallel, act -on a b
body, it is necessary
and sufficient for equi-
librium that any one
of them (?) be equal -
and opposite to the re- ¢ 4 ¢
sultant of the other two
(Q and R) ; the resultant
of Q and B being found s
by the parallelogram of ® V
forces. It is worthy of b
remark that this condi-
tion involves the condition that the three forces act along
lines which pass through a common point.

F16. 17a.

o

A

Ex. 190.—Three ropes, P A,Q A, R A, are knotted together at the point a ;
on each a man pulls; the angle » A Q=120 q A R=132°, and therefore
B A P=108°; if the man who pulls on A P exerts a force of 245 lbs., find
with what force the other men must pull that the three may balance each
other.

[Produce P A to ¢ and measure off on scale A c=24}, this line must re-
present the resultant of q and B, therefore drawing Bcparalleltoa Qand cp
parallel to A B, the forces  and r will be represented by the lines Apanda B
respectively, and can be found by measuring them on scale or by calculating
their lengths by trigonometry. ]

Ans. Q=3135 1bs. B =2856 lbs.

Ex. 191.—1If in the last example the rope A P were pulled with a force of
28 1bs.; AqQ with a force of 35 1bs.; and A R with a force of 12 lbs., deter-
mine the angles PAQ, QA R, and R A P,

Ans. QAR=134°9, RAP=63°46. PAQ=162°5'

Ez. 192.—If in Ex, 190 P A is pulled by a force of 28 1bs., @ A by a force
of 40 1bs., and theangle p A  is 135°, determine the magnitude of the force
along B A, when they are in equilibrium, and the angles R Aq, and A P.

Ans. QAR =135° 34’ 30".
BAP= 89° 25’ 307,
Br= 2828 lbs,
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Ez. 193.—Let AB D be a rectangle; A8 is 7 ft. long, Bc is 8 ft. long;

join BF the middle points of AD and BC; at B act two forces, P and q,

in such directions that PE F=46° and QB F

Fie. 18 =30°; the force P=5620 Ibs.; find g (1) when

A 3 > the resultant of » and Q acts through B, (2)

when it acts through », (3) when it acts
through c.

Ans. (1) 421 Ibs, (2) 735 lbs.
/ (3) 1420 Ibs,

* \Q Ez. 194.—A boat is dragged along a stream
50 feet wide by men on each bank ; the length
of each rope from its point of attachment to
the bank is 72 feet ; each rope is pulled by a
force of 7 cwt. ; the boat moves straight down
the middle of the stream ; determine the re-
B ¥ ° sultant force in that direction. If, in the next
place, one of the ropes is shortened by 10 ft.,
by how ‘much must the force along it be diminished that the direction of
the resultant force on the boat may be unchanged? What will now be
the magnitude of the resultant force ?
dns. (1) 1313 ewt.  (2) 35 cwt.  (3) 12:08 cwt.
85. Note.—In alarge number of questions the solidity
of the bodies concerned does not enter the question, ex-
cept so far as it affects the determination of their weight ;
it being manifest from the conditions of the question that
Fia. 19, all the forces act in a single plane; in
, many such cases a complete enunciation
¥ would be long and troublesome to the
reader, while an imperfect enunciation
is without any real ambiguity; wherever
this happens the imperfect enunciation
will be preferred; thus, in the next
example all the forces are supposed to
act in a vertical plane passing through
N the centre of gravity; and the dia-
gram ought, strictly speaking, to be
that given above, fig. 19, in which the dark lines are
all that are shown in the figure which accompanies the
example.
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Ez. 195.—Let A B C D vopresent a rectangular mass of oak 2} ft. thick,
ABand AD are respectively 4 ft. and 12 ft. long; it is pulled at » by a

horizontal force p, and is prevented from sliding by a Fra. 20,
small obstacle at A ; find » when the mass of oak ison P D = ¢
the point of turning round a. Ans. 10503 1bs.

[Find e the centre of gravity of ABc D, and
through it draw the vertical line B¥ meeting » ¢ in
E, the weight will act along the line ¥, and the re-
sultant of » and w must pass through a since the body
is on the point of turning round a ;~the remainder of
the investigation is conducted as before.]

Ez. 196.—A BCD represents a block of oak 35 ft.
long and 3 ft. square; the point A is kept from sliding;
the body is held by a rope c & 60 ft. long in such a A+ B
position that the angle pax
i8 §7°; determine the direc-
tion and amount of the pres-
sure on the point A, and the N
tension of the rope. .

[Through @, the centre of
gravity of the block, draw the
vertical line @ w, meeting & ¢
in F; the forces that balance
upon the block are the weight
w, the tension T of the rope w
and the resistance of the
ground at the point A; this force must pass through r, and then we have
three forces acting in known directions through r; &ec.]

Ans, (1) Tension 84563 lbs. (2) Pressure on ground, 23,900 lbs,
making with vertical an angle of 17° 39',

Ez. 197.—On every foot of the length of a wall of brickwork whose
section is A B c D a force acts on the upper angle ¢, in a direction making an
angle of 45° with the inner side Bc; determine this force when the result-
ant of it and of the weight of the wall passes through the angle A at the
bottom of the wall; the height of the wall being 20 ft. and its thickness
4 fr, Ans. 1584 Ibs.

Ez. 198.—If in the last example there were a bracket ¢ ® on the inside
of the wall, ¢ E being in the same line with p c, the top of the wall, and the
force (inclined at the same angle as before) were applied at x, 2 ft. from the
inside of the wall ; what must be its magnitude if the resultant of it and of
the weight of one foot of the length of the wall passes tkrough the point A ?
determine also the point in which the resultant would cut A B, the base of _
the wall, if the force were the same as in the last example.

Ans, (1) 1810 1bs. (2) 23 in.

Fra. 21, c
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Ez. 199.—If A B are two points in the same horizontal line 10 ft.apart ;
A c and B ¢ ropes 10 ft. and 5 ft. long respectively tied by the point c to a
weight w of 3 cwt.; determine the tension of each rope.
Ans. Tension of Ac=868 1bs. Tension of B c=3036 lbs.

[The triangle A B c is, of course, fixed in position, the weight w will act
vertically through c and be supported by the reactions of A and B transmitted
along the ropes.]

36. Triangle of forces.—The reader will remark on
reference to fig. 17a, that if lines be drawn parallel to the
directions of p, Q, and R respectively, they will form a
triangle a b ¢ similar to A B ¢, whose sides will therefore
have to each other the same ratios as the forces, each side
being homologous to that force to whose direction it is
parallel. This fact is frequently of great importance.
Thus in Ex. 195, if A E be joined, the sides of the triangle
A EF are respectively parallel to the forces, so that

EF:FAI:W:P

and since EF, FA, and W are known, P is at once found.
Again, in Ex. 196, if A H be drawn parallel to E ¢, the
sides of the triangle A FH will be parallel to the forces, so
that

FH:HALIW:T
and FH:AFI W :R

from which T, the tension of the rope, and R, the pressure
on the ground (or the reaction of the ground to which it
is equal and opposite) are at once found. Hence also can
be deduced a very simple construction for finding the re-
sultant of any two forces P and Q. Referring to fig. 47,
p- 83, draw any line b ¢ parallel to AP in the direction A
to P; from ¢ draw c @ parallel to A Q in the direction A to
Q and of such a length that

P:Q::bec:iica
join @ b; if ®’ is the required resultant we shall have
R :P:iab:bec
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and R’ will act at A along a line parallel to ba and in the
direction b to a. If the force at A had its direction re-
versed so as to act as R in fig. 47, viz. in the direction a
to b, it will, as we have already seen, balance the forces
P and Q.

37. Reaction of smooth surfaces.—We have already
seen (Art. 28) that if a body is urged against a second
body and thereby kept at rest, the second body reacts
agaiust the first. We have now to add that if we suppose
the bodies to be perfectly smooth the reaction can only
be exerted in the direction of the common perpendicular
to the surfaces of contact. The supposition of perfect
smoothness is commonly very far from the truth, but by
making it we avoid a great deal of complexity in our
reasoning and results. So long as both surfaces resist
the tendency of the pressures to crush them any needful
amount of reaction can be supplied, but, as already stated,
only in the direction of the perpendicular, if the surfaces
are perfectly smooth.

Ex. 200.—A body whose weight is w rests on a smooth plane A B in-
clined at a given sngle BAC to the horizon;
determine the force P which acting parallel to F1e. 22.
the plane will just support the body.

Find g, the centre of gravity of the body, and
through it draw a vertical line G w, cutting in »
the direction of » ; through p draw » E at right
angles to A B, then R, the reaction of the plane,
must act along ED, and we have three forces
», w,and r in equilibrium acting in known direc-
tions ; and since the magnitude of w is known,
that of B and P can be foand by the usual con-
struction: viz. take D B to represent w, draw
H K parallel to » p, and K L parallel to p 1, then
D x is proportional to ® and p L represents P.

Exz. 201.—In the last example show that P:R:W::BC:CA:AB.

Ez, 202.—In Ez, 200 if A were 45° and w were 1000 lbs., find P and k.

Ans. 707 lbs. (each).

Ex. 208.—In Ex. 200 if A were 30° and P were 200 lbs. what weight

could p sapport ? Ans. 400 1bs.
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Ez. 204.—If a cylinder whose weight is w rests between two planes o B

and A c inclined at different angles to the horizon (as shown in the figure) ;
determine the pressures on the planes.

F1e.23. The weight w will act vertically through o,

R and will be supported by the reactions r and &,

of the planes AB and A c: as these forces must

act at right angles to the planes respectively,

their directions will pass through o, and their

magnitudes can be determined as usual. The

pressures on the planes are, of course, equal
E  and opposite Lo B and B, respectively.

Ex. 206.—In the last case if BAp and cAE
are angles of 30° and w a weight of 112 lbs., determine the pressures.
Ans. 64-6 1bs. apiece.

Ez. 206.—Explain the modification that Ex. 204 undergoes if both o B
and 4 ¢ are on the same side of the vertical line drawn through a ; and deter-
mine the pressures when w equals 112 lbs. and cA 8 and BA ¢ are each 30°,

Ans. R=112 lbs., B, =194 lbs,

38. Tramsmission of force by means of a perfectly

Slexible cord.—If a cord is stretched by two equal forces

P and Q, one acting at each end, they will balance each

other, and the tension of the cord is equal to either (Art.

Fio. 24, 28); suppose the cord to pass round a

r A portion A B of a fixed surface, as shown in
the figure, the portions A P and B Q of the -

® cord will be straight, while AB will take

the form of the surface (which is supposed

¢ to be convex), and if P and Q continue in

equilibrium they must be exactly equal, provided the

surface A B is perfectly smooth and the cord perfectly

flexible ; conditions which are supposed to hold good

anless the contrary is specified. Hence force is trans-

mitted without diminution by means of a perfectly flexible

sord which passes over perfectly smooth surfaces.

Ez. 207.—Let A and B be two perfectly smooth points in the same hori-

zontal line, and let w be a weight of 100 lbs. tied at c to cords which pass

«ver A #nd B, and let w be supported by weights P and q tied to the ends

- © these cords respectively, and suppose the whole to come to rest in such a
. ssitivn that B A ¢ equals 30° and A ¢ B equals 90°; find p and Q.
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Since the forces » and q are transmitted without diminution to c, w is
supported by a force P acting along c a and by Q along cB. Hence draw
cc vertically and such that on scale it represents the
vertical force which balances w, and complete the
parallelogram acbe, then ca and cb represent the
transmitted forces that support w:—hence  equals
50 1bs., and Q equals 866 1bs.

Er. 208.—In the last example show that the
pressures on A and B are equal to 86'6 1bs, and 1673
1bs. and that their directions bisect the angles P c
and Q B respectively.

- Fia.26.

39. The principle of moments.—A large class of ques-
tions has reference to the equilibrium of a body one point
of which is fixed ; in these cases it is frequently sufficient
to determine the relation between the forces that tend
to turn the body round the point, the actual amount and
direction of the pressure on the point not being required ;
under these circumstances the relation sought is given
at once by a principle called the PRINCIPLE oOF MOMENTS.
The definition of the moment of a force is as follows: If
P represents any force, and A is any point, and AN is a
perpendicular let fall on P’s direction, then if the number
of units of force in P is multiplied by the number of units
of length in A N, the product is called the moment of the
force P with reference to the point A. The principle of
moments in its general form will be found in the next
chapter; for present purposes the following statement
will be sufficient. If any number of forces acting in the
same plane keep a body in equilibrium round a fixed
point, and if their moments with reference to that
point be taken, the sum of the moments of those forces
which tend to turn the body from right to left round
the fized point, will equal the sum of the moments of
those forces which tend to turn the body from left to
right. A

The following case will exemplify the mode of applying
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the principle of moments. In Ex. 196, let it be required
only to determine the tension of the rope. Construct the
figure to scale (see fig. b); determine G, the centre of
gravity of the block, draw the vertical line G w, cutting
AK in M; draw AN at right angles to cE; if T is the ten-
sion of the rope, and w the weight of the block which can
be found to equal 18,388 lbs., then the moments of T and
W are respectively ANXT and A M x 18,388 ; and the prin-
ciple of moments assures us that these two are equal. In
the construction from which fig. b was drawn, the scale
employed was 1 inch to 10 feet; and it was found that
AM equals 825 ft., and AN equals 18-1 ft.; hence was
obtained for T a value of 8381 lbs.; the value of T as
determined by calculation is 8453 lbs.

The student is recommended, as an exercise, to work
by this method all the previous examples in the present
. chapter to which it can be readily applied, viz. Ex. 172,
173, 174, 175, 176, 177, 195, 197, 198.

40. Thelever.—Thisis the name given toa rod capable
of turning round a fixed point (called the fulerum) and
acted on by the reaction of the fixed point and by two
other forces: as most machines are used for the purpose
of moving bodies, one of these forces is to be overcome,
or opposes motion, and this is called the weight, the
other force which produces the motion is called the power.
When the lever is in equilibrium the moments of the
‘power and the weight with reference to the fulerum must
be equal ; and, of course, those forces will tend to turn
the lever in different directions round the fulcrum.
Levers are sometimes classified as belonging to the first,
second, and third orders respectively ; those of the first
order have the fulcrum between the power and the
weight, as the beam' of a pair of scales, or a poker when
used to stir a fire; levers of the second order have the
weight between the power and the fulerum, as a crowbar
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‘when used to lift a weight one end resting on the ground,
or an oar used in rowing, in which case the water is the
fulcrum ; levers of the third order have the power between
the weight and the fulerum, as the limbs of animals, e.g.
when a man has a weight in his hand and extends his arm
the forearm is a lever of which the elbow is the fulecrum
and the power is the contractile force of the large muscle
of the upper-arm acting by means of tendons fastened into
one of the bones of the forearm—of course in such a case
the power must be very much larger than the weight.
Many simple instruments consist of two levers fastened
together by, and capable of turning round, a common
fulcrum ; these are called double levers, and are classified
as double levers of the first, second, and third orders
respectively ; a pair of scissors and of pincers are of the
first order, a pair of nut-crackers of the second order, and
a pair of tongs of the third order.

Ez. 209.—Let A B be a lever 16 ft. long, movable about a fulcrum » at a
distance of 6 ft. from B; a weight of 28 lbs. is suspended from A and from B
a weight of 336 Ibs. Find the weight that must be hung at & (which is 7 ft.
from D) to balance the lever. Ans. 248 lbs.

Ez, 210.—Let A B be a lever 8 ft. long, the end A resting on a fulecrum ;
a weight of 40 lbs. is hung at c, 3 ft. from A. The lever is held in a
horizontal position by a force », acting vertically upward at B, Find p and
the pressure on falerum.
Ans, P=15 1bs. Pressure on fulerum 25 1bs.

Ez.211.—Let AB and D& Fre. 26.
be levers turning on fulcrums D F K
B and F, connected by a bar A
D G, loosely jointed at pand c; 8 1

aBand D Eare respectively 5 c l
und 6 f. long, ac is 3 ft., and ' F
FE i8 9 in. long; the weight

" P at® equals 1000 Ibs. and is ©
balanced by q acting at A ; find Q. Ans. 573 1bs.

Ez. 212.—A cranexc BD is sustained in a vertical position by the tension
P
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of a rope AE; its dimensions are as follows—zc, BD, B B, and Ac respectively
Fio. 27. " 19, 13, 1}, and 16 ft. long; the
angle ¢ BD equals 108°; a weight
P of 7 cwt. is supported by a
rope that passes over a pulley »
B and is fastened to c. Determine
the temsion of the rope A =
the weight of the crane and the
dimensions of the pulley being

neglected. Ans. 7-329 cwt.

/ Ez, 213.—Let BCD® repre-

sent a block of Portland stone
whose dimensions are 5 ft. long,
P Fie. 28. 2 ft. high, and 2} f. wide; a
rope FPQ is attached to it, which
after passing over a pulley », is
pulled vertically downward by. &
force @, which is just sufficient
to raise the block : determine g
on the supposition that the di-
mensions of the pulley can be
neglected, having given that Er
equals 6 in. and BA and AP re-
¥]  spectively 15 and 13 ft., the point
A being vertically under ».

A ¢ » Ans. 1942 1bs.

Exz. 214.—In the last example determine the amount and direction of
the pressure on the ground through the point c.

41. The steel-yard.—If a beam A B rests on a fine axis
passing through its centre of gravity (), and on the arm
BG is placed a movable weight w,
then if a substance equal in weight
to w is suspended from A, the beam
\ L will balance when w is at a dis-
¥ ™ tance from G equal to AG; if the
substance equals twice the weight of w, the beam will
balance when w’s distance from G equals twice AG; and
so on' in any proportion. Hence, if the beam is made
heavy at the end 4, so that G is very near A, the arm BG
can be divided into equal divisions which shall indicate

F1a. 29.

Bgressas
s

15
| Q
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the weight of a substance suspended at A by means of the

position occupied by W when it balances that substance.

An instrument constructed on this principle is called a

steel-yard, and is used when heavy substances have to be

weighed, and extreme accuracy is not required; the ad-

vantage it possesses arises from the fact that the weights

employed are much less heavy than the substance to be

weighed. A very common application of the principle of

the steel-yard can be seen in the weighing machines"
employed at most railway stations.

Ezx. 215.—Show that the graduations of the steel-yard must be equal
even if the centre of gravity of the beam do not coincide with the axis ;
but that the graduations must begin from that point at which the movable
weight would hold the beam in a horizontal position.

[Let ¥ be the fulcrum, @ the centre of Fie. 80.
gravity, and w the weight of the beam; . apo
suppose that o is so chosen that wato  © =
balances w at 6, then i |

4

FOXW=FaxXw w 0

3 )
e‘—q,

Now, suppose that a body weighing # w is hung at A, and that the beam
is kept horizontal by w at »; then, measuring moments round r, we have

FPXWH+FGXWsFAXNW
Therefore, by addition,
OPXW=FAXNW

Henee, if the weight of the body is w, o» must equal ra; if twice w, o»
must equal twice F A, and so on in any proportion.]

42, The equilibrium of walls.—
The question What is the force which, — /
acting in a certain specified manner % i
on a given wall, will be just sufficient
to overthrow it ? can be answered
by an application of the Principle of ¢
Moments ; the general method of con-
sidering this important question is as
follows :— 4 3

Let A B CD represent the section of a wall, the base a®
being on the level of the ground ; let it be acted on by 2

F3

Fia. 31,
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force p along the line P Q: now, it is considered that a
wall, to be stable, must be capable of standing irrespec-
tively of the adhesion of the mortar;* hence, if we sup-
pose BD to be a continuous mass, and simply to rest on
the section A B, and determine the force P which will be on
the point of turning the mass round the point A, we shall
obtain the greatest force acting in the manmer specified
that the wall can support ; the force is, of course, deter-
mined by the rule that its moment with reference to the
point A equals the moment of the weight of the wall with
reference to the same point..

Ez. 216.—A wall of brickwork 2 ft. thick and 25 ft. high sustains on the
inner edge of its summit a certain pressure on every foot of its length ; the
direction of this pressure is inclined to the horizon at an angle of 60°; find
its amount when it will just not overthrow the wall. (See fig. ¢.)

Draw the section of the wall ABc to scale ; make the angle B A N equal to
30°, then the pressure P acts along the line » N ; draw c N perpendicular to
PN ; through @, the centre of gravity, draw the vertical line 6 M, cuttingc B
in u; the principle of moments gives us

PXCN=WxCM

The weight w equals 5600 lbs. ; c u equals 1 ft.; c N, as obtained by mea-
surement, equals 10'8 ft.; whence p equals 518 lbs. When P is found by
calculation it equals 520 1bs.

Ez. 217.—In the last example suppose the pressure to be applied by
means of a bracket, at a horizontal distance of 3 ft. from the inner edge of
the summit ; determine its amount when it will just not overthrow the
wall. Ans. 685 1bs.

43. The effect of buttresses.—Let fig. 32 represent
the elevation of a wall, fig. 33 its plan, and fig. 34 its
section made along the line A B; if now we neglect the

* ¢Though ordinary mortar sometimes attains in the course of years a
tenacity equal to that of limestone, yet, when fresh, its tenacity is too small
to be relied on in practice as a means of resisting tension at the joints of the
structure, so that a structure of masonry or brickwork, requiring, as it does,
to possess stability while the mortar is fresh, ought to be designed on the
supposition that the joints have no appreciable tenacity.—Rankine, Applied
Mechanics, p. 227.
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weight of the buttresses their effect in supporting the
wall will be understood by inspecting fig. 33; for it is

manifest that the Fia. 32,

wall would fall c A F
by being caused

to turn round the

line x Y ; but,
if the buttresses .
- were removed,
by being caused
to turn round » B

the line # y; so that, in the former case, the moments
must be measured round M (fig. 34), in the latter round x :
in other words, the introduction of buttresses diminishes
the moment of P, and increases that of the weight of the
wall.  Their Fra. 33.

useful effect R ;

is still farther = | | 1 | [~
increased by * v
the fact that if the moment of the weight of the buttress
is taken into account, it increases the moment of the
weight of the wall.

It is to be observed that if cp (fig. 32) and EF be
drawn at equal distances from a B, and
at a distance from each other equal v
to the distance between the centres " /
of two consecutive buttresses, then L /

Fre. 34.

we may consider that the total pres-
sure on CF is supported by the weight
of the portion of the wall between ¢ D
and EF, and by the weight of the
buttress. |
It must be remembered that the MoK
above explanation applies to the case in which the pres-
sure is distributed uniformly along the top of the wally

L
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which in this case is supposed to be so strong as not to
bulge between the buttresses. In many instances, however,
particularly in large ecclesiastical buildings, the whole, or
nearly the whole, weight of the roof and its lateral thrust
act on the buttresses, and not on the portion of the wall
between the buttresses; in such cases the wall serves as a
curtain between the buttresses, and not as a support to
the roof, and, of course, the moment of
the lateral thrust must equal that of the
weight of the buttress.

Ez. 218.—In the last example, if the wall were sup-
ported by buttresses 2 ft. thick,* to what can the pres-
sure on each foot of the length of the wall be increased
without overthrowing it—the weight of the buttresses
being neglected ? Ans. 2609 1bs.

Ez. 219.—In Ez. 216, suppose the wall to be sup-
ported by counterforts reaching to the top of the wall,
1 ft. thick, 1 ft. wide, and 10 ft. apart from centre to
B centre, determine the pressure on each foot of the length
of the wall that can be supported—(1) when the direc-
tion of the pressure is inclined at an angle of 60° to the
horizon; (2) when the direction is inclined at an angle of
30° to the horizon, Ams. (1) 11451bs. (2) 562-8 1bs.

Ex. 220.—In each case of the last example deter-
mine to what the pressure can be increased if the
buttress assumes the form of a Gothic buttress, as
indicated in the annexed diagram, where Ac and c®

FiG. 35.

*E are each a foot square, and cp and AB are respec-
tively 20 and 10 ft. high. A4ns. (1) 1903 lbs. (2) 875 lbs.
Fre. 3. 44. The thrust of props.—Let AB

p Tepresent a beam or prop resting on

a fixed support at the end aA; and

suppose it to be acted on by certain

pressures which are balanced by the

< _ reaction of the end A. That part of
A the reaction which acts along the

* The tAickness of a pier or buttress is supposed to be measured in a
-direction perpendicular to the face of the wall,
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axis of the beam A B is called the thrust of the prop, and
is, of course, equal to the thrust produced by the pres-
sures on the prop, the two being equal and opposite. If no
pressure acts on the beam except at the end B, it is plain
that the whole reaction from A must pass along the beam.
In the following question, which concerns the thrust of
props, it will be assumed that the thickness of the prop
can be neglected, except so far as it affects its weight.

Ez. 221.—A wall of brickwork, 25 ft. high and 2 ft. thick, sustains on
the inner edge of its summit a pressure of 1000 1bs. on every foot of its

length, whose direetion is inclined at an Fra. 87,

angle of 65° tp the vertical; it is supported P

at every § . of its length by a prop 25 ft. /
lowg, resting against a point 3 ft. from the BE

top ; determine the thrust on the prop.
Ans. 7768 1bs,

{If the annexed figure represent a section
of the wall and prop, the forces acting are
w, the weight of the wall, », the pressure
on the summit, and these are balanced by
7, the thrust of the prop, and the reaction
of the ground A B: now, unless the prop is
wedged up against the wall, there will not
be more reaction than is just sufficient to A 1 B
support the wall ; consequently the resultant w
of P, w, and T must pass through a,at which point it will be balanced by
the reaction of the ground; hencs, by measuring moments round o we
can find T.]

45. The thrust along rods comnected by a smooth
hinge.—Let AB be a rod cap- Pic 38
able of moving freely round a
joint .or hinge at A; if it were
acted on by a force it would turn
round A, unless the force acted
through A. Suppose two such
rods, A B and A ¢, to be connected
by a perfectly smooth joint at a,
while their ends B and ¢ rest against immovable dhsacies,
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and let us suppose the rods to be geometrical lines and
without weight ; let a weight w be hung at a, and let it
be required to determine the pressures against the fixed
obstacles caused by w. Now (Art. 44), the reactions at
B and C, which support w, must pass along BA and caA;
hence, if we take A a to represent w and complete the
parallelogram Aba c, the lines Ab and A ¢ will represent
the thrusts caused by w along AB and A C, and these are
respectively equal to the reactions by which they are
balanced (Art. 28).

46. The thrust along a rafter—The case which we
have just explained enables us to determine the thrust
produced on the summit of a wall by
each rafter of an isosceles roof : let A B,
AC, represent two of the principal
rafters of such a roof, and let the
whole weight sustained by each rafter
(including its own weight) be repre-
sented by w; this weight will act at
the middle point of the rafter, and
therefore can be replaced by weights equal to 3w acting
at each end of the rafter; so that the whole weight
sustained by AB and Ac may be distributed as shown
in the figure, viz. it will be equivalent to W acting at
A, 3w at B, and 4w at C; then the thrusts along the
rafter (T) will be produced by w acting at A, and can be
determined as explained above, viz. take Ap to represent
w, and complete the parallelogram A rp g,then Ar and A g
represent the thrusts in question : the total pressure on
the wall at B will be found by compounding T with 3w.
When the determination of the pressure is made for the
purpose of ascertaining whether a certain wall will support:
the roof, it is much better not to compound the pressures
. T and W, but to regard the wall as acted on by the two
_uncompounded forces,
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Ez. 222.—There is a roof weighing 25 lbs. per square foot, the pitch of
which is 60°; the distance between the side walls is 30 ft.; determine the
magnitude and direction of the pressure on the foot of each rafter, the
rafters being 5 ft. apart. (See fig. d.)

Let A B c represent the roof ; then the weight (w) supported on eachrafter
equals 3750 1bs. ; hence, when the weight is distributed, we have w at c;

%’ ata, and;l at B; draw c w vertical, and take cp to represent 3750 lbs. ;

draw D E parallel to B c [which is broken in the figure as indicated by the
letters @, @ and b, 5] ; then c B represents the thrust (T) along the rafter.

The total pressure on the wall (=) is the resultant of ; and T acting at A;

take A F to represent on scale 1875 lbs. and A H equal to cB; complete the
parallelogram F 1 ; then A x gives the magnitude and direction of the re-
sultant B ; it was found from fig. d that ® equals 3885 lbs. and the angle
K AF equals 16°; the results given by calculation are that B equals 3903
1bs., and that the angle x A F equals 16° 6/,

Ez, 228.—1If in the last example the walls were 20 ft. high, 21 ft. thick,
and of Portland stone, would they sapport the roof ?

Ans. The wall will stand—the excess of the moment of the weight of 5

ft. of its length over that of the thrust being 29,620.

Ezx. 224.—If in the last example the walls be supported by buttresses 20
ft. apart from centre to centre, 15 ft. high, 2 ft. wide, and 2} ft. thick, would
these support the wall if its thickness were reduced to 1} ft.; and what
would be the excess of the moment tending to support 20 ft. of the length
of the wall over that which tends to
overthrow it ? Fre, 40,

Ans. (1) Yes. (2) 221,000.

Ez. 225.—Show that the total pres-
sure on each wall is equivalent to a
vertical pressure w, and a horizontal
pressure W xBC+4 AD. (Art. 46.)

Ex. 226. In the case of an equi-
lateral roof show that the horizontal
pressure equals 0-29 w.

47. The equilibrium of a
triangular frame.—A tri-
angular frame A B C consisting i
of rods loosely jointed at the
angles is in equilibrium under
the action of three forces acting one at each angley Wis
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required to find the thrust or temsion to which each
rod is subjected. Let the forces P, @, R act at the angles
A, B, C respectively, and suppose their directions to pass
through a point o. In the first place they must be in
equilibrium, or otherwise they would make the frame
itself move ; draw k h parallel to o R, then we know that
the forces, P, Q, R are proportional to ho, ok, and kh.
Take Aa, Bb, cc equal to ok, 0k, and kh respectively,
and complete the parallelograms A a' @ a”’, BY bb”,
ccdecd'; it will be found that Aa”=8B¥, BbY' =cCd,
and cc¢’=aa’. We see therefore that each rod is under
the action of a pair of equal forces which tend to crush
ABand AC, and to stretch BC; these forces are severally
proportional to Aa”, cc’, and Bb”. These lines there-
fore measure the thrusts of AB and Ac and the tension
of Bc. The magnitudes of these forces can be obtained
by a more simple construction, thus:—Draw b ¢ parallel
to A0, and containing as many units of length as P con-
tains units of force; draw ca, ab parallel to 0B and
0 C Tespectively ; draw a d parallel to Bc, dc to A B, and
join bd (the line bd is parallel to Ac, as the student
~ can prove), and we shall have ca,ab,ad,dc, bd con-
taining as many units of length respectively as the forces
Q, R, the tension of BC, and the thrusts of AB and aAcC
- contain units of force. This is plain from an inspec-
tion of the figure, since a b ¢ is the triangle of forces for
the three forces in equilibrium at the point o, ¢ d a for the
three forces at the point B, d a b for the forces at ¢, and
bcd for those at A. Referring to_Art. 46 ; if the ends
Band C of the rafters are connected by a beam B¢ (fig.
39), called a tie beam, they will constitute a triangular
frame like that we have just considered ; it can be easily
shown that the tie beam is subject to a tension equal to
the horizontal thrust of each rafter, i.e. equal to WxBC
~+4 4D (Ex, 225). Under these circumstances the roof
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will act on the walls merely by its weight, and each wall
- will, of course, support half the whole weight of the roof.

Exz, 227.—If in fig. 40 the point o fall within the triangle, show that all
the bars will be compressed or all stretched.

Ez. 228.—Two rafters Ao B and A c are each 20 ft. long, their feet are tied
by a wrought-iron rod Bc whose length is 35 ft., and a weight of 1 ton is
suspended from A ; determine the tension it produces on the tie, the weight
of the rafters, &c., being neglected. If the rod have a section of a quarter
of a square inch, determine the weight that must be suspended at a to
break it. Ans. (1) 2024 1bs. (2) 18,590 1bs.

Ez, 229.—There is a roof whose pitch is 22° 30/, the rafters are 40 ft.
long; the weight of each square foot of roofing is 18 lbs.; determine the
diameter of the wrought-iron tie necessary to hold the feet of the principal
wafters with safety, supposing them 10 ft. apart. Ans. 1-28 inches,

48. Note.—The foregoing remarks as to the thrusts of
the rafters and the tension of the tie beam, apply to the
cases in which the joints are perfectly smooth : as this is
never the case, the thrusts, &c., may not equal the cal-
culated amount ; but it is generally considered that re-
liance should never be placed on the resistance offered by
a joint to the revolution of a
rod round it. It will be instruc-
tive, however, to consider the case
in which the rods and the joint
at A (fig. 41) are perfectly rigid.
Suppose two points, b and ¢, to
be taken near to A, and joined by
a rod bc; if this rod were inextensible, and if there
were no tendency in the materials to give either by crush-
ing or tearing at b and ¢, then would bc act the part
of a tie beam, and there would be no horizontal thrust
on the wall, which, as before, would merely have to
support the weight of the roof.

If we suppose the rod bc to be replaced by a metal
plate firmly fastened to the beams, as shown by a.b d e

Fie. 41,
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fig. 42, this would tend to render the attachment of the
beams rigid, the horizontal thrust being more or less

Flo. 42. neutralised by the resistance by the
materials to crushing on the bolts,
and to the tearing of the plate across
a d. Hence, under all circumstances,
the walls have to sustain the whole
weight of the roof, and besides
this, a horizontal thrust which will more nearly equal
W X B C-+4 AD, as the joint is less rigid.
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CHAPTER 1V.

THE FUNDAMENTAL THEOREMS OF STATICS.

49. Axioms.—The following chapter contains demon-
strations of the fundamental theorems of statics, so far as
forces acting in one and the same plane on a rigid body are
concerned. It may be well to invite the reader’s attention
to the order of proof adopted. In the first place the case of
two forces and their resultant is fully discussed, together
with the conditions of the equilibrium of three forces,
and the case in which two forces do not have a resultant.
In the next place, the results obtained for two forces are
extended to any number of forces. Lastly, a peculiar
property of parallel forces—the possession of a ¢centre ' —
is proved. The demonstrations are of a very abstract
character, and should be thoroughly mastered. Appli-
cations of several of the theorems have been already
given in Chapter I1I., and many more will be found in the
succeeding chapters. The demonstrations are based on
certain assumed elementary principles or axioms. The
assumption of these principles is, of course, not arbitrary,
but justified by experience of the action of forces. The
axioms are as follow :—

Ax. 1. The line which represents the resultant of two
forces acting at a point, falls within the angle made by
the lines that represent those forces. (See Art. 25.) :

Ax. 2. If two equal forces act at a point, the line that
represents their resultant bisects the angle between the
lines that represent those forces.

Ax. 3. If a force acts upon a body, it may be sup-
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posed to act indifferently at any point in the line of its
action, provided that point is rigidly connected with the
body.

Ax. 4. It is necessary and sufficient for the equilibrium
of any system of forces, that one of them be equal and
opposite to the resultant of all the rest.

Ax. 5. If a system of forces in equilibrium be imposed
on or removed from any system of forces, it will not affect
the equilibrium of that system, if it be in equilibrium,
nor its resultant, if it have a resultant.

Proposition 3.

The principle of the parallelogram of forces (Art.
32)'is true of the direction of the resultant of two equal
forces.

Fio. 43, Let the equal forces P and Q act
at the point A along the lines A P and
AQ; let AB represent the force p,
and Ac the force @, then will A B
equal AC; complete the parallelo-
gram ABCD, and draw the diagonal
AD. We are to show that the resultant
of p and Q acts along the line A D.

Since A C equals A B it equals ¢ D, therefore the angle
CAD is equal to the angle A D C, but since ¢ is parallel
to A B, the angle A D Cis equal to the angle B A D, therefore
the angle BAD equals the angle cAD, and the line AD
bisects the angle P A @; but the line of action of the re-
sultant of P and Q bisects the angle P A @ (Ax. 2), therefore
the resultant acts along aAp. Q. E. D.

50. Remark.—The following proposition may be re-
garded as the foundation of the science of statics; the de-
monstration generally seems obscure to readers who meet
with it for the first time: this results from the somewhat

anusual form of the proof; it may therefore be well to re-
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mark that the demonstration consists of two parts ; in the
first part it is shown that if the principle is true in two
cases, viz. with regard to the pair of forces p and P, and
the pair P and P,, it must also hold good in a third case,
viz. in regard to the pair of forces P and P, +P,; this
part of the proof is purely hypothetical, as much so as
in the case of a demonstration by reduction to an absur-
dity ; the second part of the proof takes up the argument,
but as a matter of fact the proposition is true in two
certain cases ; therefore it must be true in a third case,
therefore in a fourth case, and so on.

Proposition 4.

The principle of the parallelogram of forces is true
of the direction of the resultant of any two commensur-
able forces.

Let the force P act at the point A along the line
AB, and the forces P, and P, at the point A along the
line AC: take AB,AC, CD, Fle. 44.
respectively proportional to AP o < P
P, P, and Py, and complete :
the parallelograms BC, ED,
then is the figure B D a paral- -
lelogram ; draw the diagonals
AE, CF,and A F,and suppose
the points ¢, D, E, F to be rigidly connected with a.

(@) The lines A B and A C represent the forces P and
P,; asswme that their resultant acts along AE; then
can P and P, be replaced by their resultant acting at
A along AE, and, since A and E are rigidly connected, by
that resultant acting at E along A E (Ax. 3); but this re-
sultant acting at E can be replaced by its components
acting at E, viz. by P, along BE, and by P along CE; and
these again, since C and F are rigidly connected with E, by
P, acting at ¥ along BF, and P acting at ¢ along C®.
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. (b) Since A and ¢ are rigidly connected, P, may be
supposed to act at ¢ along cD; then CE represents the
force p, and c D the force p,; asswme that their resultant
acts along CF, then by reasoning in the same manner as
in paragraph (@) it can be shown that the forces p and P,
can be transferred to F.

(¢) Thus it follows from our two assumptions that
the forces p, P,, P, may be supposed to act indifferently
at A or F, therefore each of these must be a point in the
direction of their resultant, i.e. their resultant must act
along the line AF. Now A B represents the force pand A D
the force P, + P, ; hence, if the proposition is true of the
pair of forces P and P, and of the pair of forces p and Pp,,
it must also be true of the pair p and P, + P,.

(d) But it appears from Prop. 3, that the proposition
is true of equal forces, i.e. of any pair p and p, and of
another equal pair p and p, therefore it will be true of the
pair p and p +p, i.e. of P and 2p; again, since the pro-
position is true of the pair p and p, and of the pair p and
2p, it must be true of the pair p and p + 2p, i.e. of p and
3p; similarly it is true of p and 4p, of p and 5p, &e., and
generally of p and mp.

(e) Again, since the proposition is true of the pair of
forces mp and p, and of the pair mp and p, it must be
true of the pair mp and p+p, i.e. of mp and 2p ; simi-
larly it must be true of mp and 3p, of mp and 4p, and
generally of mp and np.

() Now,anytwo commensurable forces p and Q must
have a common unit (e.g. a pound, an ounce, &e.), and
therefore can be represented by mp and np; hence the theo-
rem is true of any two commensurable forces. Q. E.D

Exercise.—The above demonstration may be put into a slightly different
form, as follows: In the first place, suppose the forces P, », and P, to be
equal ; then the reasomng in § (a) and § (3) of Prop. 4 no longer proceeds

from an sssumption, but is based directly on Prop. 8; and the neasomng
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in § (c) establishes the truth of the proposition in the case of the two
forces » and 2p. The reasoning can be repeated for forces p, 2P and P,
and the case P and 3p will be established ; and by a repetition of the
reasoning the cases P and 4, p and 6p, and generally p and mp ave estab-
lished. A slight modification of the figure will then enable the reasoning
to be extended to the case of np, P, and P, 50 that the case np and 2p will
be established, then the cases #p and 3p, np and 4p, and generally np and
mp. The student, having first mastered Prop. 4, will find it a useful exer-
cise to write out the proof in this form.

Proposition 5.

The principle of the parallelogram of forces i8 true of
the direction of the resultant of any two incommensurable
forces. _

Let P and Q be the two forces represented by the lines
ABand AC; complete the parallelogram a B c D, then will
the resultant (R) of P and Q act Fre. 45.
along the line joining A and D.
For if not suppose R to act along
any other line, this line must fall
within the angle PAQ (Ax. 1),
and therefore must cut either
cDor DB; let it cut Bp in the
point E. Now, by continually
bisecting A B, a part can be found less than D E; set off
distances equal to this part along Ac, and let the last
of them terminate at F (it cannot terminate at c, since A B
and AC are incommensurable) ; therefore F C is less than
this part, and therefore also less than DE; draw FG
parallel to cp, this line will cut BD, in a point @ ‘between
p and E, join A G. Suppose AF to represent a force ¢’
" and FC a force g, then will Q equal @’ +¢; now Q” and P
are commensurable, therefore their resultant (r") will act
along the line AG. But the resultant R of P and Q must
equal the resultant of P, @/, and ¢ ; i.e. of R’ and ¢ ; but ¥’
acts along A G, and ¢ along A G, and therefore (Ax. 1) their
resultant R must act within the angle G AQ3; ok the

G
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supposition it acts along AE without the angle Gaq;

which is absurd. Therefore, &c. Q. E. D.

Proposition 6.
The principle of the parallelogram of forces is true
of the magnitude of the resultant.

Let P and Q be the two forces acting at the point a,
and let them be represented by the straight lines A B and
Fio. 46. A C, complete the parallelo-
gram ABCD, and draw the
diagonal Ap; we have to
prove that not only does
the resultant (R) of P and @
act along the line A p, but
also that it is represented
in magnitude by that line.
Suppose R’ to be the force
which balances P and qQ, it
must act along b A produced.
Let A E represent R’ ; complete the parallelogram CE, and
join A F; the resultant of @ and R" must act along A F; but
since P balances Q and R/, it must act along Fa produced;
therefore FAB is one straight line, and is parallel to cp,
so that Fp is a parallelogram. Hence we have F C equal to
A D, but FC equals A E, therefore EA equals AD. But R is
equal and opposite to r’, which is represented by A E, and
therefore R is represented in magnitude by ap. Q. E. D.
51. Application of trigonometry to statics. —It is
manifest that the sides of the triangle A c D (Prop. 6) are
proportional to the three forces P, Q, R’, which are in
equilibrium. And hence if any triangle a cd be drawn
similar to AcD, its sides will be proportional to the
forces. Such a triangle will be formed by drawing lines
respectively parallel to the directions of the forces, each
force being an homologous term to the side parallel to
its direction. The forces at A act in the directions d ¢,
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ca, ad respectively, as shown by the arrow-heads. A
similar remark applies to a triangle formed by drawing
lines at right angles to the directions of three forces in
equilibrium. The relations between three forces in
equilibrium are thus reduced to the relations between
the sides of a triangle; and of course all the trigono-
metrical relations between the sides and angles of that
triangle will be analogous to relations between the forces
and the angles between their directions. The two most
important of these relations are proved in the following
proposition :— '
Proposition 7.

If three forces, P, Q, R, are in equilibrium, and act
at a point A, to show that the following relations
obtain :—

(1) P:Q:usinQAR:sinRAP
Q:R:SIDRAP:SinPAQ
(2) R’=P’+Q*+2PQcosPAQ
(1) Draw the tri- Fia. 47.
angle a bc¢ whose P
sides be,ca,a b are
respectively paral-
lel to the forces

—{a .

P, Q, R. Then it is®
evident that the i E
angles a, b, ¢ are re- . . Y

spectively equal to
180°—~Q AR, 180°—R AP, 180°—PA Q; now
be : ca::sin bac : sin cba ::sin QAR : sin RAP
ca :ab::sin cba : sin achb::sin RAP : sin PAQ
But by Art. 51—
be:caiiP:Q
catab::Q R

G 2

&
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therefore P:Q:sinQAR:SiNRAP
and Q:R:SINRAP:sinPAQ

These proportions are sometimes expressed by the rule,
‘If three forces are in equilibrium, each force is pro-
portional to the sine of the angle contained by the other
two.

(2) Employmg the same figure, we have, by a well-
known theorem in trigonometry,

ab?=bc? +ca?—2 bec . ca . cos bea

" Now bca is the supplement of PAQ,sothatcosPaQ
==cos bca;

tberefore ab?®=bc*+ca?+2 bc. ca . cos P AQ.

But be, ca, ab are respectively proportional to the
forces P, Q, R

therefore R*=P?*+Q?>+2PQCOsPAQ Q. E. D.

Ez. 230.—Show that when three forces are in equilibrium no one of
them is greater than the sum of the other two.

Ez. 231.—Under what circumstances will three equal forces acting at
a point balance each other ?

Ans. Angle between directions of any two equals 120°. .

Ex. 232.—Find the angle at which two forces of 8 1bs. must act so as to
produce on a point a pressure of 12 1bs. Ans. 82° 49'.

Ex. 233.—Let ABC be any triangle, p the middle point of BC; join
AD; if A B and A c represent forces acting at A, show that their resultant
will be represented by twice A .

Ezx. 234.—Explain the action of the forces by which a kite is supported
in the air.

Ez. 235.—Explain the action of the forces by which a ship is made to
sail in a direction nearly opposite to the wind.

Ex. 236.—The resultant of p and q is 12 lbs. when their directions con-
tain an angle of 60° and 11 lbs. when they contain an angle of 90° : find
P and Q. Ans. 10°79 and 2°18 lbs.

Kz, 237.—There are two forces P and q; when the lines representing
them contain an angle 6, their resultant equals +/3(P?+q?); but when those
lines contain an angle 90°—6, the resultant equals +§(*+q?); find 6.

Ans. 63° 26'.
Zr. 238.—p and q are two forces acting in directions at right angles to
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each other; their resultant equals m(+q); if 0 is the angle between the
directions of their resultant and of P or g, show that

m? gin 20=1—m?
Ez. 239.—In the last example show that the ratio of the forces » and
Qis
m2x o/ 2m*—1
1—-m?
1
Between what values must m lie? Ans. 1 and V3

Ez, 240.—If pand P+p are two forces very nearly equal, and if a is
the angle between the lines representing them, then will the angle (in cir-
cular measure) between the direction of the resultant and of P+p be very

nearl;
7 l a—Zmn ot
2 P 2

Proposition 8.
To determine the resultant of two parallel forces act-
ing i the same direction.
Let P and Q be the forces acting on a body at the points
A and B; join AB; suppose any two equal and opposite
forces T, T, to act at A and B Fio. 48.
respectively along the line AB; _c

T Ts
these forces being in equili-
brium will not affect the result- . _ . x 8
ant of p and Q(Ax. 5), therefore ] IR AN
the required resultant will be / vy
that of T, P, Q,and T,,i.e. of U and ¥ v« o
v, if U is the resultant of T and P, and v the resultant of Q
and T,. But since the line representing U falls within the
angle T A P, and that representing v within the angle @B T,
these lines will meet when produced ; let them be pro-
duced and meet in ¢ ; then if ¢ be rigidly connected with
the body, U and v may be supposed to act at ¢; through
C draw C x parallel to AP or BQ; now U acting at C can be
resolved into P, acting along X, and T, acting parallel to
B A, and similarly v can be resolved into Q acting along cx,
and T, acting parallel to A B; hence the required resultant

[t v
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will be that of T, T,, P, and Q, acting at C ; or, since Tand T,
are in equilibrium, that of P and Q acting along ¢ x, i.e.
the resultant is a force equal to P +Q, acting along a line
passing through x parallel to A P or B Q, and acting in the
same direction as P and Q.

Next, to find the position of x. Since U is the resultant
of P and T, those forces will be proportional to the sides of
the triangle Axc;

therefore AX:XCuT:P
similarly CX:XBIQ:T,
therefore AX:XB:Q:P

i.e. the point x divides AB in the inverse ratio of the
forces, which is the proof of the rule already given (Art.
29). Q. E. D.
Cor. 1.—Hence can be immediately deduced the
conditions of the equilibrium of three parallel forces
mentioned in Ait. 30.
Cor. 2.—Hence, also, we can determine the resultant
of two parallel forces acting in contrary directions. Thus
Fio.49, suppose P acting at A and Q acting
° at B to be the forces, and let @ be the
. greater; now if R’ is the force that
- balances P and Q, it must be equal
1 -and opposite to their resultant rR; but
R'+P=Q,and AB : BX::R’ : P,i.e. AB+
BX : BX:!R'4+P :P,0rAX : BX::Q : P;
i.e. the resultant equals Q—P, and acts in the same
direction as Q through a point x, whose distances from a
and B are inversely as the forces, and so taken that the
greater force acts between the resultant and the lesser
force.

Ex. 241.—Two parallel forces of 11 and 12 lbs. act in contrary direc-
tions at A and B respectively. The line A B is 6 ft. long, and is at right
angles to the direction of the forces. Find the resultaunt.

Ans, Ax=T72 ft. (fig.49), R=1 1b,, acting in the same direction as Q.

3

R
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Exz. 242.—A B is a straight rod 12 ft. long ; c a point 4 ft. from B; the
rod rests on a peg at c,and is kept horizontal by a peg placed over it at B;
a weight of 20 lbs. is hung at A ; find the pressure on each peg (neglecting.
the weight of the rod). Ans. Pressure on ¢ 60 1bs., on B 40 lbs, °

Ez. 243.—a and B are the pans of a pair of scales; a substance placed
in A is balanced by p lbs. in B; when placed in B it is balanced by « Ibs.
in A; find its true weight. ° Ans. /7 g lbs,

Exz. 244.—A rod of uniform density A B is divided into any two parts at
the point x ; the middle points of A x,x B, and BaA are P, g, and B respec-
tively ; show that weight of Ax : weight of xB::QR: R P,

Ex. 245.—A Bc i8 an equilateral triangle, kept at rest by three parallel
forces, », 3p, and 2P, acting in the plane of the triangle at a, B, and
respectively. Determine the lines along which the forces must act.

Exercise.—Let o and B be two fixed points, let a force P act through a
and a force @ through B, also let their directions intersect in a point x.
Now, suppose the direction of @ to change in such a manner that the dis-
tance of x from A continually increases, and consequently the angle be-
tween the directions of » and Q continually diminishes. It is plain that
the directions of p and @ will in the limit become parallel. It is required,
by means of this consideration, to deduce the results of Prop. 8 from the

previous Propositions.

52. The use of the positive a'nd negative signs to de-
note the directions of forces.—Since a line can be taken
to represent a force, and since if +a be used to denote a
line of @ feet (or other units), measured to the right from
a fixed point, then —a must be used to denote a line of
a feet measured to the left from that point, it should seem
that the same principle ought to be applicable to forces,
and that if +P denote a force of P units acting to the
right along a given line, then —P must denote a force
of P units acting towards the left along that line. That
the principle so commonly used in geometry is correctly
applied to forces, will be evident from a little considera-
tion. Thus, if P and Q be two forces acting to the right
along a line, and R their resultant, we have

R=P+Q (1)

If Q act to the left and be less than p, r will act to the
right, and we have
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: R=P—Q 2) .
If, however, Q be greater than P, R will act to the left,
and we have
: R=Q—P (3)
Here we have three equations to express a certain

result ; but if we suppose P+Q to be an algebraical sum,
these three equations can be included in one, viz.

; R=P+Q (4)

Tt is quite plain the (4) includes (1) and (2); it also
mcludes (8), since that equation can be written

—R=P—Q

The same principle can be applied to the moments of
forces. If we measure the moment of a force with
reference to a certain point, we may agree to reckon it
positive if the force tend to turn the body round that
point in a direction contrary to that in which the hands of
a watch move. If this assumption be made, then the
moment of any other force must be reckoned negative
which tends to turn the body in the contrary direction

ound the point. It will be remarked that in fig. 51 the
moments of P, Q, R with respect to o are positive; in
fig. 52 the moments of Q and R are positive, and that of p
negative.

53. Representation of a moment by an area.—Let
the line A B represent a force p, and from a point o let fall

Fia. 50. a perpendlcula.r ONon A B Or AB pro-

_ duced ; join 0 A, 0 B; then twice the

/:\ area of the triangle A 0B equals the

{ \ product of ON and A B, i.e. the pro-

ductof the perpendicular on P’s direc-

tion and the line that represents p;

hence, twice the area of the triangle 4 o B represents the
moment of the force p with respect to the point o.
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Proposition 9.
The algebraical sum of the moments of two forces,
whose directions are not parallel, taken with reference to

any point in their plane, equals Fie. 51.
the moment of their resultant P
“with reference to the same point. | 4 i

Let » and Q@ be two forces
whose directions intersect in A;
let 0 be the point with reference A "
to which the moments are to be
taken ; draw oB (fig. 51) parallel to AQ, and take ac
such that

AC:AB:Q:P
then A B and A ¢ will represent the forces P and Q; con-
sequently if the parallelogram A BD C is completed, A D will
represent the resultant () of » and Q. Join 0 4, 0 ¢,and
BC. The moments of P, Q, and R are proportional to the
areas of the triangles 0 A B,0 4 C, and 0 A D (Art. 53). Now
0AC is equal to BAC, which being half of the paral-
lelogram, is equal to ABD. But 04 D is made up of 0AB
and BAD. Consequently,
moment of R=moment of P+ moment of Q

In this case all the moments are positive ; we will there-
fore take a case in which o is so situated that the mo-
ments of R and Q with regard to it are positive, and

that of P negative, and in which consequently we have to
show that

moment of R= —moment of P4 moment of Q

In this case draw (fig. 52) o B parallel to A Q, and find A C
from the proportion

AC:AB:Q:P
so that A B and A © represent the forces P and Q; then on
completing the parallelogram ABDC, AD will represent
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their resultant (R). Joinoa,0c. We see that oac is
half the parallelogram, and consequently equals A D B,

Fia. 52. which is made up of 0 A D and
®, r OAB; hence
Bf—2 & OAD=0AC—OAB

and as these triangles are propor-
tional to the moments of the forces
A ¢ @  with respect to the point o, we have

moment of R= —moment of P+ moment of Q.

Similar results are obtained for any other position of the
point 0 ; and the student will find it instructive to con-
sider one or two other cases, e.g. that in which o falls
within the angle R A Q,in which case the moments of P and
R are both negative and that of Q positive. He will
observe that, by the aid of the rule for the signs of the
moments, all possible cases of two intersecting forces
are included in the one statement given above.

Proposition 10.

The algebraical sum of the moments of two parallel
forces with reference to amy point in their plane is equal
to the moment of their resultant with reference to the
same point.

Let p and Q@ be the two forces,. and let them- act

Fia. 53, in the same direction, R their

. x . Tesultant, o the point about

[ T I which the moments are mea-
sured ; draw a line o B at right

U * ® angles to the lines along which

the forces act, and cutting them in A, B, and x respec-
tively. Now in the case selected the moments of P, Q, and
R are all positive, hence we have to show that

M'R=M'P+M'Q
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Since R=P+Q
we have M'‘R=0 X.R

=0 X.P+0X.Q

=0 AP+AXP+0B.Q—BX.Q
but AxP=BXx.Q (Prop.8)
therefore M'‘R=0 A.P+0B.Q

=M!P+ M'Q

A similar proof will apply to every position of o, and
to cases in which P and Q act in contrary directions.
Hence, &c. Q. E.D.

Ez. 246.—1If the point o (Prop. 9) be taken in the direction of the re-
sultant, show that the moments of p and q are equal and have opposite signs.

Ezercise.—Prop. 3-10 can be proved by reasoning in the following
manner ;—First. Assume as an axiom that the resultant weight of a uni-
form rod acts through its middle point; and bearing in mind the remark
in Article 23, that any force can be substituted for an equal force without
reference to its physical origin, observe that Ez. 244 gives an independent
proof of Prop. 8. Secondly. Observe that it follows from Axiom 2 (Art. 49),
that when a body is acted on by two equal forces in the same plane, and
has one point in the plane fixed, it will be at rest, provided the forces act
at equal perpendicular distances from the point, and tend to turn the body
round the point in opposite directions. This observation, combined with
Prop. 8, will establish Er. 246. Tkirdly. The principle of the parallelo-
gram of forces, so far as the direction of the resultant is concerned, can
be easily deduced from Exz. 246. The student who has first mastered Prop.
8-10 will find it a most instructive exercise to write out proofs of the same
propositions, adopting the method of proof above indicated.

54. Statical couples.—In Cor. 2 to Prop. 8 it was
shown that if P and Q are two parallel Fro. 84,
forces acting at A and B in opposite ,,
directions, then if @ is greater than T
P their resultant R will be a paral- +
lel force acting in the same direc- L
tion as Q through a point x given
by the proportion

AX IBXIQ:'P

or Bx:A_B'P
. Q-P
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Now, if we suppose @ to be gradually diminished, but
AB and P to remain unaltered, the magnitude of R (or
Q—>r) will continually diminish and Bx will continually
increase, and in the limit when @ becomes equal to P, the
magnitude of the resultant is zero, and x is removed
to an infinite distance ; in other words, two equal parallel
forces acting in opposite directions have no resultant,
and therefore cannot be balanced by any single force.
Such a pair of forces constitute what is called a statical
couple. 1If, in fig, 54, we suppose P and Q to be equal, and
A B to be at right angles to their directions, A B is called
the arm of the couple, and A B x P its moment. A little
consideration will show that the sum of the moments of
the forces with regard to any point in the plane of the
couple will equal A BXx P; and moreover, that if the sign
of the sum of the moments with reference to one point is
positive, it will be positive when taken with reference to
any point in the plane of the couple; and if negative,
negative ; e.g. the couple represented in the diagram has
a negative moment.

Proposition 11.

If two couples of equal moments and of opposite
signs act in the same plane on a rigid body they
will balance one another.

First. Let the forces which constitute the two couples

Fre. 55. not act along parallel lines, then
must the four lines by their in-
tersection form a parallelogram.
Let ABcD be the parallelogram
thus formed, and let the forces
. (», ) of the one couple act along
ABand cD, then must the forces
(Q, @) of the other couple act
along AD and CB, since the moments of the couples
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have contrary signs; draw A m and A » at right angles to
c¢D and OB, then since the moments of the couples are
equal

AMXP=ANXQ

also AN XAD=AMXAB

since each product is the area of ABCD ; therefore
ADXP=ABXQ

or P:QIIAB:AD

therefore AB and AD represent (Art. 25) the forces p
and Q, and therefore the diagonal A ¢ represents
their resultant (R).. In like manner »’ and Q' are repre-
sented by cp, and C B respectively, and therefore ca
represents their resultant (r’). Hence, the four forces
P, Q, P/, Q" are equivalent to a pair of equal opposite
forces R and R’, and therefore are in equilibrium.
Secondly. Let the four forces act along parallel lines ;
draw a straight line cutting

a. 56,
those lines at right angles in " o
A, B, C, D, respectively; and let P L [
and Q act in the same direction, ,L o 3 l ]
and ¥ and Q’ in the opposite di- i [
rection, then the moments of the @ 4

couples will have contrary signs; now R the resultant
of Pand Q equals P+Q, let it act through the point x,
then we have

AXXP=CXXQ

also since the moments of the couples are equal
ABXP=CDXQ

therefore BXXP=DXXQ

or BXXP=DXxq

hence the resultant (R") of P and Q' acts throﬁgh the

point X, and as it equals ¥ + @', the four forces p, Q, ¥, Q'
are equivalent to two equal forces, R and X acting W™
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opposite directions along the same line, and therefore are
in equilibrium.

Cor. 1. Hence two couples of equal moments and of
the same sign and acting in the same plane on a rigid
body are equivalent to one another, since either would be
balanced by a couple of equal moment and of contrary sign.
In other words, there will be no change produced in the
effect of a couple by supposing it to act anywhere in its
original plane, and by supposing its arm to be lengthened
or shortened, provided the forces undergo a corresponding
change, so that its moment remains unaltered in sign and
magnitude.

Cor. 2. Hence, also, if Mand N are the moments of
two couples acting in the same plane, they will be equiva-
lent to a single couple whose moment is their algebraical
sum M+N. For let both couples be reduced to equivalent
couples having arms of the same length a, then if P and
P’ are the forces of the one, and Q and Q' of the other,
we shall have a P or a P equal to M, and @ Q or @ @ equal

Fro. o7. to N; now place the couples so that their

t'; arms coincide, then if both moments are

positive, the couples will lie as shown in

r—‘j the figure, i.e. they are equivalent to a
» pair of parallel forces, P+Q and ¥ +¢Q’
Yo constituting a couple whose moment is

a (P+Q) or M+N. If the couples have contrary signs p
and Q will act in contrary directions.

55. Remark.—In the previous propositions of the
present chapter, we have completely discussed the rela-
tions which subsist between two forces acting in the
same plane and their resultant ; we have now to consider
the case of any system of forces acting in one plane on a
rigid body. It may be remarked that in general every
such system will have a resultant ; thus, if we have three

forces, P, P, P,, we can find the resultant R, of P, and

«
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Py, and then the resultant R of R, and p,; the force r
will be the resultant of p,, P,, and P,; the same method
can in general be applied to the determination of the
resultant of any number of forces; two particular cases,
however, may arise, first, when the system is in equili-
brium, secondly, when the system reduces to a couple.
A little consideration will show that no other exception
can possibly arise in the case of a system of forces acting
along lines in a common plane.

Ex, 247.—a, B, ¢, D are the angular points of a square taken in order.
Forces of 5 1bs. each act respectively from A to B, from B to c, and from ¢
to p. Find their resultant.

Ans. Produce A B to X, 80 that A x is twice A B, the resultant is a
force of 5 1bs., acting through x parallel to and in the same
direction as the force along B c.

Ez. 248.—1If in the last example a force of 5 1bs. acted from b to 4, to
what would the four forces reduce ?

Ans. A couple whose moment is 10 A B.

Ez. 249.—1If, in Ex. 247, there are four forces of 10 lbs. apiece acting
respectively from A to B, C to B, ¢ to D, and A to D, to what can the four be
reduced ? . Ans. They are in equilibrium.

Ez. 250.—Again, suppose that a force of 10 lbs. acts from a to B, 11 lbs.
from c to B, 9 lbs. from ¢ to », and 10 lbs. from A to D, to what will the
four forces reduce ?

Ans. A force of 4/2 lbs. acting through c parallel to and in the
same direction as a line drawn from p to B.

Ex. 251.—a B c is an equilateral triangle, three equal forces (P) act res-

pectively from A to B, from A to ¢, and from Bto ¢; what is their resultant ?
" Ans. A force 2p acting parallel to and in the same direction as a
to ¢ through the middle point of Bc.

Ex. 252.—A, B, ¢, D are the angular points of a square taken in order; a
particle at A is acted on by a force of 10 1bs. along A B from A to B, by a force
of 20 1bs. along A ¢ from A to ¢, and by a force of 25 lbs. along A p from A
to p. Find the magnitude and direction of the resultant of the forces.

Ans. 46 lbs. acting in a direction within the right angle a, and
making an angle of 58° 20’ with A B.

Ezx. 2563.—A B c is a triangle right-angled at c; B is an angle of 30°; a
force of 4 lbs. acts along Ao 8 from A to B, of 3 1bs. along ¢ B from ¢ to B,
of 2 1bs. along A ¢ from A to ¢. Determine the magnitude and direction of
the resultant,

Ans. Take » the middle point of B ¢, make B D & an angle of 313 A%
(2 and 4 on opposite sides of BC), the resultant is a fores of
76 1bs, acting from B to E.
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Ex. 254.-~When four forces acting in the same plane at a point are in
equilibrium, show that a quadrilateral figure can be drawn, the sides of
which are related to them in the same manner that the sides of the triangle
in Art. 51 are related to three forces in equilibrium.

Ez. 255.—From the above example show that the resultant of three
forces acting in the same plane at a point can be represented by a side of
a quadrilateral, and state exactly how the quadrilateral must be drawn.

Ez. 256.—Extend the results in Ex, 25¢ and 255 to any number of
forces (v. Art. 59).

56. The resultant of any mumber of forces acting
along the same straight line.—Since the resultant of two
such forces is their (algebraical) sum, the resultant of
those two and a third force must be the (algebraical)
sum of the three, and the same will be true of any
number of forces; hence, if any number of forces
act along the same straight line their resultamnt will
equal their algebraical sum. If their algebraical sum is
zero, the forces will be in equilibrium. In the following
general theorems the term ¢sum’ means ¢algebraical
sum.’

57. The resultant of any number of couples acting in
the same plane.—Since the moment of the resultant of
two such couples is the sum of the moments of the two
couples (Prop. 11, Cor. 2), that of the resultant of those
twoand a third will be the sum of the moments of the three,
and the same will be true of any number of couples;
hence, if any number of couples act in the same plane,
the moment of their resultant equals the sum of their
several moments. If the sum of the moments is zero,
the couples will be in equilibrium ; for if all the couples
are reduced to equivalent couples with equal arms, and
these arms are superimposed on each other, it is plain
that the moment of the resultant couple can only become
zero by each force of the couple becoming zero; i.e.
the whole reduces to two systems of forces which ‘are
severally in equilibrium.
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58. Extension of the principle of moments to any
nwmber of forces.—Let P, Py, Py, . . . . P, be any sys-
tem of forces acting in one plane on a rigid body; let
R, be the resultant of P, and P, R,-of R, and Pp,, and
so on, and R the resultant of R, , and P,. Now, if the
moments are taken with respect to any one point in the
plane, we shall have

MR, =mP, + m'p,
m'R,=m'R, + M'P,

MR=m'R,_, +m'P,
therefore, by addition,
MR=m'P, + M'P,+mPy+. . .+ mP,

Hence, if any forces act in a plane, the sum of
their moments with respect to any point in that plane,
will equal the moment of their resultant with respect to
that point. A little consideration will show that if the
forces reduce to a couple, the moment of the couple
will equal the sum of the moments of the several
forces.

Of course, if the point is taken in the direction of the
resultant, its moment, and therefore the algebraical sum
of the moments of the forces, will equal zero. Now,
if a body acted on by any forces be kept at rest round
a fixed point, the resultant must pass through that point ;
and therefore in this case the algebraical sum of the
moments of the forces round that point will equal zero;
a statement which coincides with that already given
(Art. 39). It is plain that in this case the forces cannot
be reduced toa couple; for if they could be so reduced
they could not be balanced by the reaction of the fixe
point. -

H
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Proposition 12.
To determine the resultant of any system of forces
acting along parallel lines in one plane.
Let p,, P,, P;, . . . . be the forces; take any point o,
and draw 0A at right angles to the direction of the

Fro. 58. forces, and cutting the lines
" along which they act in
' J‘ [ [ Ny, Npy Ny o o o . let ON,=
l P10 Ny=Pg ON; =D, .
° o) A also let R, the resulta.nt of

the forces, act along a line cutting 0 A in M,and let oM=7;
we have to find the magnitudes of R and 7. Now the re-
sultant of any two parallel forces equals their sum, there-
fore the resultant of those two and a third force will
equal the sum of three, and so on for any number of
forces, therefore their resultant must equal their sum, or

R=P1+P’+P3+- o o

again, the moment of R round o must equal the sum of the
moments of the separate forces, therefore

R7=P\p, + P, + P3P, +

The former equation gives R and the latter .

Cor. 1. Let the resultant of P,,P,, . . . . be R, and let
its direction cut 0 A at a distance from o equa.l to 'r’ then
it will be necessary and sufficient for the ethbnum of
Py, Pgy Py, « . « . that P, be equal and opposite to R, i.e. that
7’ equal p,, a.nd that P, + R’ equal zero; but

R'=P,+P;+. ...
and R =P,p,+ P, P, +

Therefore it is necessary and sufficient for the equilibrium
of the system of forces that
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s P +Py+Py+. . . . =0
and PD PPy +PyPy+. . . . =0

By the words ¢ necessary and sufficient for equilibrium’
is meant that on the one hand if the forces are in equi-
librium the above equations will be satisfied, and on the
other hand if the above equations are satisfied the forces
will be in equilibrium. '

Cor. 2. If the equations when formed lead to the fol-
lowing result,

Pi+P+Py+. o .o =0
and P,p,+P,Py+P;Py+. . . .=a finite quantity,
the system of forces reduces to a couple.

Ez. 267.—A uniform rod is 8 ft. long and weighs 2 lbs,; weights of
11b., 8 1bs,, 5 Ibs., and 6 lbs. are suspended on it in order at distances of
1 ft. apart. Determine completely the resultant of the forces.

Ans. 17 1bs. acting along 5's line of action.

Ezx. 258.—Let a horizontal line be drawn from a point A to the right,
and let forces of 5 lbs., 12 lbs., and 19 lbs. act vertically upwards on it,
and of 10 lbs. and 20 lbs, act vertically downwards on it, the former at
distances of 2 ft., 6 ft., and 14 ft., and the latter at distances of 8 ft. and
20 ft. from A. Determine completely their resultant.

Anas, 6 1bs. acting upwards through a point 24 ft. to the left of a.

Ez. 259.—If in addition to the forces in the last example, one of 6 lbs.
acts at a distance of 10 ft. to the right from A, determine the resultant (1)
when the force acts vertically upwards ; (2) when it acts vertically down-
wards.

Ans. (1) 12 1bs. acting vertically upwards 7 ft. to the left of A.
(2) A couple whose moment is —204.

59. The resultant of any nwmber of forces acting in
one plane at a point can be found by a very simple con-
struction called the ¢polygon of forces.’—Let the forces
P, Q, R, 8 act at a point 0 in the directions 0P, 0Q, OR,
08, and let it be required to find their resultant. Draw
any line a B proportional to P in the direction 0o P; from
B draw B C proportional to Q and in the direction 0 Q,from

"2
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¢ draw ¢ D proportional to R and in the direction o R, and
Fro. 59, Fro. 59a. finally DE propor-
0 tional to 8 and in
' the direction os.
Then, if A E be
joined, the result-
ant (T) of P, Q, R,
and s will be a force acting at 0 in the direction A E, and
proportional to AE. This is evident, since by the triangle
of forces (Art. 36) the force at 0 represented by A E is equi-
valent to two forces at o represented by A D and D E; these
to three forces at o represented by A ¢, cD, DE; and these
in turn by four forces at o represented by A B, BC, ¢D, DE,
i.e. P, Q, R,S8. It is immaterial in what order we take the
forces ; for instance (fig. 59a), we may draw A B to repre-
sent P, then B ¢ to represent R, then ¢ D to represent Q, and
finally DE to represent s; the resultant will be, as before,
a force at o represented by A E.

When the polygon is drawn, if it is found that E co-
incides with A, the magnitude of the resultant is zero,and
the forces acting at o are in equilibrium.

To render the calculation of the magnitude and direc-
tion of the resultant intelligible it is necessary in the first
place to explain what are the rectangular components of a
force. Let o, 0y be two rectangular axes,and let P bea

‘ Fra. 60. force acting at o along the lineor;
y " let 0 A be the line which represents
c a_»"  the force P, and let the angle it

makes with the axis of , viz. 0 4,
.equal 6; now, if the parallelogram
0B A C be completed, P will be equi-
valent to two forces respectively represented by o B and o c,
and since these forces are at right angles to one another,
they are called the rectangular components of P with re-
spect to the axes o« and 0y ; again,since 0G=0A sin

° B
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and- oB=04 cosf, it is plain that the rectangular
components of P are P cos § along the axis o0z and P sin 6
along the axis 0y. If we always measure 6 in the same
direction, viz. upwards from F1a. 60a.

oz, so that it increases in a
direction opposite to that in
which the hands of a watch
move, P cos @ and P sin 6
will give not only the mag-
nitudes of the components,
but also the directions in which they act :—thus if we
suppose P to act fowards o, the line which represents the
force is 0 A, so that .6 is not z 0 P, but z 0 A, indicated by
the dotted arc; and then, since @ lies between 180° and 270°,
both P sin fand P cos@will be negative, as they ought to be.

Proposition 13.

To determine the resultant of any system of forces
acting im one plane at @ point : and to infer the condi-
tions of equilibrium of such a system of forces.

(@) Let P, P,y Py, . . . . be the forces acting at any
given point 0 ; through o draw two rectangular axes o  and
oy, and let 6, 6,, 6,, . . . be the angles that the lines
representing the forces make with the axis of . Then
these forces can be replaced by their rectangular compo-
nents along the axes of x and ¥, i.e. by

P, cos 0, P, cos 0,, P, cos 0, . . . along the axis of z, and
P, sin 6,,P, sin 6,, P, sin ,, . . . along the axis of y.

Now, the former set is equivalent to a single force x
acting along the axis of #, and the latter to a single force
Y acting along the axis of y, provided

X=P, cos 0, +P, cos 6,+P, cos ,+. . .
Y=P, sin 6, +P, sin ,+Pysin G4 +. . . .
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Now, if ® be the resultant of x and v, and ¢ the angle
which the line representing it makes with 0z, we must have
R cos =X 1)
and R sin ¢=X (2
which equations determine R and ¢. It will be remarked
the determination is free from ambiguity, since the signs
of x and v will give the signs of cos ¢ and sin ¢, and
therefore determine the gquadrant in which the line
representing R falls. Of course the magnitude of R is
given by the equation
RP=x%4v? . (3)
(b) To obtain the conditions of equilibrium of p,, Py, P, . .
It must be remembered that it is necessary and suffi-
cient for the equilibrium of these forces that p, be equal and
opposite to the resultant of Py, Py, . . . . (Ax. 4), so that the
rectangular components of this resultant must be —Pp, sin 6,
and —P, cos 6,, therefore the required conditions are

—P, sin 0,=P, sin 6,+ P, sin O,+. . . .

and —P, cos 6, =P, cos 6,+P; cos O +. . . .
or P, sin 6, +P, sin 6, + P, sin 6,+. . . .=0
and P, cos 6,4+ P, cos ;4 P, cos O,+. . . .=0

That is to say—* It is necessary and sufficient for the
equilibrium of any system of forces acting in one plane at
Fa. 61. a point, that the sums of their

components along each of two
rectangular axes be separately

- zero.

%]

B Ez. 260.—Let »,, ;, P, be three forces
of 50, 30, and 100 lbs. respectively, acting
- at the point o, as shown in the figure; let
1 the angle @ o p, equal 30°, and @ o p, equel
60°; it is required to determine their re-
sultant by the method of Prop. 13.
In this case , -0, 6,=30° and 6, = 240°, therefore,
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R co8 ¢ =50 eos 0° + 30 cos 30° + 100 cos 240°
and R 8ip ¢=>50 sin 0°+ 30 sin 30°+ 100 sin 240°
or ® €08 ¢ =50+ 2598 —50 = 2598 Fra. 62,
and R sin ¢=15—86'60 =~7160
hence B=76-17 lbs. and ¢=289° 57/, ie. R acts
as indicated in the diagram; this result may be P |J
verified by construction,

Ex. 261.—Let p,, P,, P, be three forces each of SN
100 1bs., let the angle @0 P, be 135°; find their 0 z
resultant by the above method.
Ans. R=41"4 1bs. ¢ =315°,

60. Tramsfer of a force in a parallel direction.—
Let ABand cD be two parallel lines, and p the length
of the perpendicular oN drawn from o Fro. 6.
in AB to ¢D; then if a force P acts » N P oD
from A to B along A B, it will be equi-
valent to.an equal parallel force acting
along cp in the same direction, and a
couple whose moment is P p, the sign of the couple being
positive if o N is to the left of the direction of the force
(as in the diagram), and negative if to the right. For if
two opposite forces ¥, P”, each equal to P, act along CD,
they will be in equilibrium, and the three will be equal
to P; but P and P” constitute a couple with a positive
moment P p, hence P is equivalent to P’ and that couple.

Hence also we can determine the resultant of a force
P, acting along a line A B, and a couple Fia. 64.
whose moment is M; forletMequalPp, , w o 3
from 0 in A B draw a perpendicular o N T
equal to p, and to the right of P’s di-
rection, if the moment of the couple is
positive ; make the arm of the couple coincide with oN
then the couple will consist of the forces P’ and p”, each
equal to P, acting as shown in the figure ; hence the force
and the couple are equivalent to the three forces p, ¥/,
and P”,but P and P” are in equilibrium, therefore the
force P and the couple are equivalent to P’.

L
c N p D
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Ex. 262.—If a, B, ¢, D are the corners of a square taken in order, and 1f
forces act along three of the sides, viz. » from A to B, P from A to'D, and P
from c to b, show that the three are equivalent to a single force p acting
from B to c.

Proposition 14.

To determime the resultant of any system of forces
acting vn a plane.

Take 0, 0y, any two rectangular axes, and let p,, P,,
P, . . . . be the forces, acting along given lines; from o
let fall perpendiculars p,, g, P3y - - - - on these lines; then
P, is equivalent to an equal parallel force acting in the
same direction through o, and a couple whose moment is
P,p,, the like is true-of Py, P, . . . .5 let6,,0,,6,, . . . .
be the angles made with the axis of & by the lines
representing the transferred forces.

Now, let R be the resultant of the transferred forces,
and let ¢ be the angle which the line representing it
makes with the axis of . Therefore,

R cos ¢=P, cos 0, +P, cos ¢,+P, cos O;+. . . . (1)

R 8in ¢=P, sin 6, +P, sin ,+ P, sin O,+ . . . . (2)
also let R 7 be the moment of the resultant of the couples,
therefore,

RTI=P P, + PP, +PPs+. « « « (3)
The equations (1) and (2) completely determine r. Hence
the given system of forces is reduced to a known force and
a couple of known moment; by compounding these we
obtained the required resultant.

Cor. When equations (1)(2) and (3) are formed, if we
obtain

P, cos 6,+P, cos 6,+P, cos §,+. . . =0

P, sin 6, +P, sin 6,+ P, sin 6,4+. . . =0

P\p, + PP, +Pyp;+. . . =afinite quantity
the system manifestly reduces to a couple.
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Exz. 263.—aBC is a triangle right-angled at , its sides A B and A ¢ are
each 10 ft. long. The forces »,, Py Py, each of 100 lbs., Fig. 65.
act as shown in the figure: find their resultant by the ¢
method of Prop. 14.

The force p, is equivalent to an equal parallel force e Py
whose direction passes through A, and a couple whose 2
moment is 5004/2. Hence the three given forces are
equivalent to thethreeforcesof Er.261,andtotheabove 4 BB
couple. Now the latter three forces are equivalent to R, acting through a
parallel to o B, where r equals 100(+/2—1), and the
couple is equivalent to the two forces r’ and B” each F1a. 66.
equal to R acting as shown in the figure where the c
line A X is drawn at right angles to A R, and equals
5004/2+100(+/2—1) or 5(2+ +/2) ft. in length. w»

The required resultant is therefore the force r”.

Ez. 264.—In the last case if p, equals 200 lbs.,
show, by the method of Prop. 14, that the resultant N
equals 100(2— +/2) 1bs. and acts parallel to »’ (fig. R
66) along & line which cuts N A produced at a distance L
of 10(+/2 + 1) ft. from a.

Ex. 265.—If A B is a triangle, each of whose sides is 10 ft. long, and if
a force P acts from A to B, an equal force from B to c, and another equal
force from c to A, show that the three are equivalent to a couple whose
moment is 5p4/3. '

Ex. 266.—If AscD is a square, and if a force equal to 2P acts from
A to B, an equal force from B to c, 3¢ from ¢ to », and an equal force
from D to A, show by the method of Prop. 14 that the resultant equals
P+/2, and acts in a direction parallel to the diagonal c a, along a line
which cuts the diagonal Bp produced in a point whose distance from o
equals 2 B p.

Ez. 267.—Let A B c besn equilateral triangle, draw A p at right angles to
B G, in B¢ produced take » ® equal to D A, let equal forces (®) act from a to
B, from B to ¢, from c to A, and from D to A respectively ; show that their
resultant equals P, and acts through B in direction parallel to » A,

Ez, 268.—In the last case determine the resultant if the fourth force
had acted from A to p.

Ez. 269.—If three parallel forces are in equilibrium, they consist of two
eouples having equal moments of opposite signs.

Ez. 270.—If A Bc is any triangle, and if a force Pacts from A to B,Q from
B to c,and B from c toA; and if P: Q : R::AB: BC: Ca, show that the
resultant of the three forces is a couple whose moment is represented by
twice the area of the triangle.
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Proposition 15.
To determine the conditions of equilibriwm of any
system of forces acting in one plane on a rigid body.

_ Adopting the notation of Prop. 14, let R be the vesult-
ant of P,y Pyy . . . . . Now, the necessary and sufficient
condition of equilibrium is that p, shall be equal and op-
posite to R. But if we transfer P, to the point 0,and then
resolve it along oz and 0y, we obtain a force P, cos 6,
acting along oz, a force P, sin 6, acting along 0 y, and a
couple whose moment is Pp,: and in like manner by
transferring R we shall obtain R cos ¢ along oz, R sin ¢
along 0y, and a couple whose moment is R7. Butin order
that P, and R may be equal and act in opposite directions
along the same line, we must have P, cos 6, equal and op-
posite to R cos ¢, P, sin 6, to R sin ¢, and P,p, to R, i.e.
it is necessary and sufficient for the equilibrium of the
gystem that

P, cos 6, +R cos $=0
P, sin 6, +R sin ¢=0
PP, +R7 =0
But by Prop. 14
R cos ¢=P, cos 0, +P, cos Oy +. . . .
R sin ¢=P, sin 6,4+ P, sin G,+. . . .
RT =P, + P,y +.o.0..
Hence the required conditions are
P, cos 0, +P, cos 6, - P,co8 O, 4. ...=0 (1)
P, sin @, +P, sin 6,4+ P, sin 6;+. . . .=0 2
PP,  +Pp, PP,  +....=0  (3)
These three conditions are sometimes stated thus: ¢It is

necessary and sufficient for the equilibrium of any system
of forces acting in a plane that the sum of their horizontal
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components equal zero, the sum of their vertical compo-
nents equal zero, and the sum of their moments with
respect to any one point equal zero.’

61. Remark.—The determination of the resultwmt of
any system of forces acting in a plane can also be effected
by the following process: Resolve each force into com-
ponents parallel to each of two rectangular axes, then the
original system is replaced by two systems of parallel
forces, viz. One parallel to ox, and the other parallel to
oy. Find (by Prop. 12) the resultants R” and R” of these
systems respectively, and then the resultant of R’ and r”
is the required resultant. The student will find it a
useful exercise to work Ex. 252, 263, 264, 266, and 267
by this method ; he may also prove that when the forces
are in equilibrium the components parallel to oz gene-
rally constitute a couple, and likewise those parallel to
0y,and that these couples have equal moments of opposite
signs.

62. The centre of parallel forces.—If we conceive any
system of Parallel Forces, and suppose that each force
acts at a particular point, then if we suppose the lines
along which the forces act to be turned round the points
through any equal angles so that they still continue
parallel, it will be found that there is a certain fixed point
through which their resultant will always pass, whatever be
the magnitude of the equal angles ; the fixed point in the
line of action of the resultant is called the centre of that
system of parallel forces. If the parallel forces are the
weights of the parts of a heavy body, or of the members
of a system of heavy bodies, the centre of those parallel
forces is the centre of gravity of the body or system of
bodies.

If the parallel forces act at points which lie in a
straight line, their centre can be found thus: Tet e, vy
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Py « « + . be the forces acting at N;, Ny, Ny, « 4+ + « in the
line 0, and let their lines of action make an angle 6 with
that line ; also let ON, =2, ONy=2,, ON; =, . . . .; from
.0 let fall a perpendicular o p cutting the lines of action of
the forces in M,, M,, M;, . . . and let oM, =p,,0M,=p,,
OM,=p, . . . . Let Rbe the resultant of P, P,,P,, . . . and

Fie. 67 let it act along a line cutting oz in
N and op in M, also let oM=p,
and oN=z. "Then (Prop.12) pRr

orp(P,+P,+P;+. . . ')_Plpl+P2p2
227 0 But p=2 sin 6, p,
=, sin 9, p,=x, sin 6, . . There-

fore by substitution we obtain, after dividing out gin 6,

@ (P +P+Pyt. =P +P@+ BT+ o o (1)
Now the value of @ given by this equation is mdependent
of 6, and therefore will be the same whatever value 6 may
have ; hence the line of action of the resultant will always
pass through N, when the lines along which the forces act
are turned through any equal angles round N;y Ng, N, . . ..
and continue parallel. The above equation therefore
both proves the existence of a centre of parallel forces,
and serves to determine it, in the case considered. If
P)y P,y P, . . . are the weights of a number of particles
arranged along a line, the above equation (1) serves to
determine their centre of gravity.

Proposition 16.

To determme the centre of amy system of parallel
forces acting im one plane.

(1) Consider the case of two parallel forces, P, P, ; let
them act at the points Q;, Q; the co-ordinates of which
are O N, =2, N|Q, =Y,, 0 Ng=&,, NQ,=¥,. Divide Q, Q; in
K, 8o that

QK :KQiiP ! P
[
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then the resultant Fia. 68. .
R, of P, and P, will N

equal P,+P, and its X

direction will pass Pu .
through K; let the &
co-ordinates of K be @ n
0M=5, and KM.=37, 3
through @, and x
draw lines n and Kk

Q2

parallel to oz, then o N Hom <
by Eucl. (2—VI.) we
have

Q]K : KQQ Ql m:mn: wl—fbl w,—wl

therefore a:, -z, 1 @, -z, 1P, ‘R
therefore r;,w, P&, =P, %, — Py,
or (P, +P,) =P\, + Py,

Again, since QK : K Q,:: Km : Qk, we shall obtain, by
reasoning in a precisely similar manner, that

%7+ P)=PY, +P, P,

The position of x will not be affected if the lines of

action of P, and P, be turned round q, and q, through

equal angles 80 as to remain parallel ; consequently K is
the centre of P, and P, and its position is determined by
x, and y,.

(2) Suppose there are three forces, P, P, P;. First,
find R, the resultant of P, and P, acling at the point
@, y,; this, from the preceding paragraph, we do by the
equations

R, =P, +P, (1)
_9_31(1’1 +Py)=P )&, + Py, (2)
and Yi(P +P) =Py, + Py, Q&)
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Secondly, find R the resultant of R, and P,, acting at
the point z 3, for which we have the equations

R=R, +P,=P, +P, +P,
“’(Rl +Py) =Ry, + P,

or “’(Pl +P;+P;)= (P, + Ps)‘”l +Pz,  (4)
and (Rl +Py)= RY1+PYs
or y(Pl +P,+P;)=(?,+ Ps)?/t +Py, (5)

Hence, adding together (2) and (4), and also (3) and
(8), we obtain

-é(Pl +Py+Py) =P\, + Py, + Py, (6)
Y(P,+Py+Py)=Py, + Py, + Py, (M

As before, « and y undergo no change if the lines of
action of the forces are turned through equal angles and
continue parallel. They are therefore the co-ordinates of
the centre of the parallel forces.

The same proof can evidently be extended to four,
five, or any number of forces. Q. E.D.

Cor. 1. If the points of application of the forces had
been situated in space of three dimensions, and referred
to three co-ordinate planes, a precisely similar proof
would have given us

‘”(Px"'P +P+. . . )=PE + P2, + P, +
Y +P+Pt. . . )= Pl?/l*"?ﬂa"'?:?/a
z(P,+ P,+P,+. « o )=P2 P2+ P2+ . . .

It will be remembered that the same values of «,
¥, 2 would be obtained in whatever order the forces had
been taken, consequently a system of parallel forces can-
not have more than one centre. It of course follows
from this that a body or system of bodies cannot have
more than one centre of gravity.
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Cor. 2. If the case should arise in which

P, +Py+Pyt. .. .. =0
but P, + Py + Py +. . .=A
and Py + Py +PYs+. . =B

where one at least of A and B has some determinate finite
value, the system reduces to a couple; and in this case
there is no centre of parallel forces in finite space. If the
forces are the weights of parts of a body they act in the
same direction,and therefore their sum can never be zero,
so that every body and system of bodies must have one,
and only one centre of gravity, which can be determined
by the above equations.
N,B.—For examples on this Proposition see Art. 69.
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CHAPTER V.

OF THE CENTRE OF GRAVITY.

63. Definition of the centre of gravity.—It has been
already remarked that the weight of a body is an instance
of a distributed force, and that it can be treated as a
single force by supposing it to be collected at a certain
point, called its centre of gravity., The centre of gravity of
any system of particles is the centre of the system of
parallel forces composed of the weights of those particles.
If the particles form a solid body, it is plain that, if the
centre of gravity be supported, the body will rest in any
position under the action of gravity only, since the re-
sultant of the applied forces will in all cases pass through
the fixed point. It is also plain that no point but the
centre of gravity has this property. That, as a matter of
fact, every body has a centre of gravity, is shown in the
corollary to Proposition 16. In determining the centre of
gravity of any figure, it is assumed that a heavy line is
made up of particles, a heavy plane of heavy parallel
lines, and a solid of heavy paralle] planes. It is also
assumed that every figure is of uniform density, unless the
contrary is specified.

Ez. 271.—Determine the centre of gravity of a uniform straight line A B,

The line AB may be conceived to be made up of a number of equal
particles distributed uniformly along it (like beads on a wire); now if
we take the two extreme particles, the resultant of their weights will pass
through the middle point of A B, and in like manner that of each successive
pair; consequently the weight of the whole will act through the middle
point of A B, which is therefore the centre of gravity of the whole, or of the
heavy line A B. .

64. Method of determining the centre of gravity of
a plane area.—Let ABCD be the plane area; we may
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conceive it to be made up of a set of parallel heavy lines,
such as BD, EF . .. drawn in any Fia. 69.
direction. If we can find a set of paral- -

lel lines all bisected by a single line A c,

the centre of gravity of each line must s v
be in ac, and therefore that of the
whole figure must be in A c. If, more-
over, we can determine a second line
bisecting another set of parallel lines, we
know that the centre of gravity must also
be in this second line, and must there- c

fore be at its point of intersection with Ac. This method
enables us to determine the centre of gra-  Fu. 1.

vity of many simple figures: it also sug- *

gests a practical means of determining the
centre of gravity of any plane area whatever.
Suppose the figure to be cut out carefully ”\
to the required shape in cardboard or tin;

suppose it to be suspended by a fine thread
from any point B; now the forces in equi-

librium are the tension of the string and ¢

the weight of the body; they must therefore
act along the same line, so that the required
centre of gravity must be in the prolongation
BC of AB; this prolongation can easily be
marked by suspending a plumb-line from a.
Again, suspend the body by a fine thread DE
fastened to any other point E, and draw the
prolongation of this line, viz. E F ; the centre
of gravity must be in EF, and therefore at G, the point of
intersection of E ¥ and BC.

Ez, 272.—Show that the centre of gravity of the area of a circle is at
its centre.

Since any diameter bisects all lines in the circle drawn perpendicularly
to it, the centre of gravity must be in any diameter, and therefore at the
centre of the circle.

I
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Exz. 273.—Show that the centre of gravity of an ellipse must be at its
centre.
Ez. 274.—Determine the centre of gravity of a triangle.
Fa. 71. Let ABc be -any triangle, bisect B¢ in p and join
R AD; draw any line x L parallel to BC cutting A p in
H; then by similar triangles we have
K L KH:HAIIBD:DA
HA:EL!!DA:DC
. (ex ®quali) KE ! BEL::BD ! DC
But BD is equal to pc, therefore k 1 is equal to HL, or
K L is bisected by A p; and the same being true of any
B v € line drawn parallel to Bc, the centre of gravity of the
triangle must be in Ap. Again,if Ac is bisected in  and B & is drawn, the
centre of gravity will be in BE, and therefore must be at @, the point of
intersection of Ap and BE.
It can be essily proved that ap=2ap. Forjoin B D,then becausea x=E&c,
and BD=pc we have
ARB ! EC.IBD: DC
and therefore ED is parallel to A B; hence the triangle DB @ is similar to
ABeand EDCtoABC: ’

therefore DG :DE:GA:AB

and DB:DC::AB: BC

therefore (ex squali) DG:DC:IGA!BC .
But DC=4BC..D@=4GA=}DA.

Ez. 275.—Show that the centre of gravity of a parallelogram is at the
intersection of the diagonals.

65. Centre of gravity of solids.—The above method
can easily be extended to the case of solids; we may sup-
pose them to be made up of heavy parallel planes: if we
can show that the centres of gravity of these all lie along
a line, we know that the centre of gravity of the solid
must be in that line, and if two such lines can be found,
the centre of gravity of the solid must be at their point of
intersection.

Ex. 276.—Show that the centre of gravity of a sphere is at its centre.

Ezx. 277.—Show that the centre of gravity of & cylinder is at ths middle
point of its axis.

[It may be regarded as evident that the same rule will hold good of any
prism.]

Ez. 278.—Show that the centre of gravity of a parallelopiped is at the
point of intersection of its diagonals.
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66. Centre of gravity of a figure consisting of two
or more simple figures.—Let W,
and w, be the weights of the simple Flo. 72.
figures and G,, G, their centres of
gravity, join G,G,, divide it in G in
such a manner that ¢ o
GG GGy W, T W, wi

G

Then is G the required centre of "
gravity. :

If there were a third body weighing w, whose centr
of gravity is G,, we can find the centre of gravity of the
three bodies by joining @ 6, and dividing it into parts
inversely proportional to w,+w, and W,; and of course
we could continue the same construction to a fourth or a
fifth weight, &c.

Ex. 279.—Two spheres whosé radii are respectively 4 and 5 in. touch one -
another ; determine the distance of the centre of gravity from the centre of
the smaller sphere when the former is of copper and the latter of cast iren.

Ans. 554 in. |

Ez. 280.—A solid sphere 4 in. in radius touches a hollow sphere 5 in. in
radius and 1 in. thick; they are of the same material; show that their
centre of gravity is 4-392 in. from the centre of the solid sphere.

Ez. 281.—Determine by construction the centre of gravity of the bodies
shown in fig. e, where A B is a beam 20 ft. long, and its section 1 ft. square ;
c and D the centres of two cylinders A ft. thick, the radii of whose bases
are respectively 6 ft. and 4 ft. ; they are of the same material as the beam,
and rest with their centres of gravity vertically over the axis of the beam,
at distances of 6 in. from A and B respectively. )

Construct the figure to scale; this is done in fig. e, to the scale of 1 in.
for 6 ft.—join oD, then the weights of the cylinders being in the proportion
of 9 to 4, divide cp into parts D@, and @,C respectively proportional to 9
and 4 ; this will give the centre of gravity of the two cylinders. The con-
struction may be made as follows, by Eucl.,, Bk. VI.—Take p & any line
containing 18 equal parts (in the figure each part is 1th of an inch) and
measure off D x containing 9 of them, join mc and draw x @, parallel to BC;
then cG, : 6,p::HK KD i.e.::4:9. Find Ethe centre of gravity of the
beam, join BG,; now the united weight of the cylinders is to,the weight of
the beam very nearly in. the ratio 163 : 20, hence, divide B G, in @ so that
EG :GG,::163 : 20, and the point @ is the centre of gravity required.

12
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Ex. 282.—At points 120° apart on the edge of a round table weights of
84 Ibs, and 112 Ibs. are respectively hung. Find where a weight of 224 lbs.
should be placed so as to bring the centre of gravity of the three weights to
the middle of the table.

Ez. 283.—A disc of cast iron 12 in. in radius and 2 in. thick rests on a
disc of lead 24 in. in radius and 3 in. thick ; the circumference of the upper
disc passes through the centre of the lower determine by construction the
centre of gravity of the whole.

Ex. 284.—Show that the centre of gravity of any quadrilateral A BcD
is given by the following construction :—take o the middle point of the
diagonal 8D ; in oA take o pa third of 04, and in o c take o q a third of
oc; join PQ cutting pBin ®; in PQ take PG equal to QH; the centre of
gravity is at 6,

67. The centre of gravity of points lying n @ etnght
_lpne.—The method above explained of finding the centre

Fre. 73. of gravity of a collection of two or more

a s bodies can be applied to all cases ; how-

° '-l___l |~ ever, if there are only two bodies, or if
the centres of gravity of three or more

“* bodies lie in a line, it is commonly more
convenient to determine its distance from some fixed point
in that line. Let G, G, be the centres of gravity of the
two bodies whose weights are w, -and w, respectively;
then the distance G 0 of the centre of gravity of w, and w,,
from 0 is determined by the equation

0G (W, +W,)=0G, XW,+0G, X W,
The method of treating three or more weights is exactly.
the same. It is also plain that if we know 0G and 0g,,
the same equation will give us 0 G,.

Exr. 285.—How far from the one end of the handle is the centre of
gravity of the hammer described in Ex. 9 situated, if we suppose the other
end to fit square with the face of the hammer ?

Fro. 74. [If the annexed ﬁgure Tepresent the ham-
i n mer, we have 0A=42 in. AB=2 in., so that if
g u @, is the centre of gravity of the handle and

b G, that of the head, we have 06,=21 in. 0@,

=4l in. Also the weight of the handle is 4:46 lbs. and of the head 837

Ibs.. Hence 06 x 1283 =21 x 446 + 41 x 837
- o' +0G =84 inches]
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Ez. 286.—How far from the end of the handle is the centre of gravity

of the hammer described in Er. 12?7 Ans. 72§ in.
Ez. 287.—Let A B be the diameter of a circular disc of cast iron 12 in. in
radius; out of the disc is cut a circular hole (whose F1a. 75.

centre is in A B) 4 in. in radius; the shortest distance

between the circumferences is one inch ; find the dis-

tance of G, the centre of gravity of the remainder,. 2 6 8
from A. Ans. 11% in.

Ex. 288.—If in the last example the hole were filled
up with lead, determine the distance of the centre of gravity of the body
from a. Ans. 1242 in,

Ez. 289.—The gnomon A B ¢ is cut out of a parallelogram A ¢; Qetermine
the distance of its centre of gravity from &; having
given that DB and D Bare respectively 20 and 15 ft.
in length. Ans. 6:786 ft.

Ez. 290.—IfABis t,he axis of a cross made up of
six squares, the side of each being 3 in. long; find
the distancg of the centre of gravity from a. A s

Ans. 6% in,
* Er. 291.5A rod capable of turning round a fixed pomt is kept in equili-
brium by two weights suspended by strings of given length from the
_respective ends. Show that the centre of gravity of the weights is fixed
whatever angle the rod makes with the horizon.

Ez. 292.—Weights of 7, 7, and 6 lbs. respectively are placed at the

angular points of a triangle; find their centre of gravity relatively to that
-of the triangle.

Exz. 293.—Out of an isosceles triangle cut a square having two angleson
the base and one on each of the equal sides. Find the centre of gravity of
the remainder.

Ez. 294.—A piece of wire of uniform thickness is bent 8o as to form
three sides of & triangle ; show that the centre of gravity is the centre of
the circle inscribed in the triangle formed by joining the middle points of °
the original triangle.

Fi1a. 76.
D C

68. Remark.—The following examples of the determi-
nation of centres of gravity are similar to those contained
in the former article, but involve somewhat greater geo-
metrical difficulties; in many cases it will be well if the
reader bear in mind, that when bodies are of the same
substance their weights are proportional to their volumes,
so that it frequently happens we may reason upon their
volwmes instead of their weights.
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Ex. 295.—To find the centre of gravity of a triangular pyramid.

Let aBCD bethe pyramid; bisect Bp in B,joina Hand uc; takeFE=}an
and HE=}Hc; draw Fc and A E, then these lines being in the same plane,
viz. AcH, will intersect, let them do so in @ ; this point will be the required
centre of gravity, and B@ will equal
3th part of AB. For draw any plane
b ¢ d parallel to Bc D cutting the plane
AcHIinhAc,thelineABine and A min
h; then A is the middle point of bd ;
and it is evident by similar triangles
that

Fia. 77.

he:ah::EER: AR
and Ak ke:iaR ! HC
S.(exeq.)heizheliHE: HC

but EE=3nC . he=}ke, and ¢ is the
centre of gravity of the triangle bcd;
and the same being true of every
other parallel section, the centre of gravity of the pyramid must be in AE;
in the same manner it can be proved that the centre of gravity of the
pvramid must be in cF; therefore it must be at & the point of intersec-
tion of A® and cF. Next, to show that Ee=%AE. Join FE; then since
HE=4Ecand BF=}F4A, We have HE : EC:IHF:FA, and therefore Fr is
parallel to Ac; hence the triangles 6 ¥ and 6 A ¢ are similar, and we have

GE ! GAI!ERF ! AC!!BH:CH
but Em=1cH,.6E=}cA=2AB. Hence the centre of gravity of a triangular
pyramid is found by the rule: Draw the line joining the centre of gravity
of the base and the vertex of the pyramid, divide it into four equal parts;
the first point of section above the base is the centre of gravity.

Ez. 296.—1If the middle points of any two edges of a triangular pyramid
which do not intersect are joined by a straight line, the middle point of
that line is the centre of gravity of the pyramid.

Ez 297.—Show that the centre of gravity of any pyramid or cone is
found by the same rule as the centre of gravity of a triangular pyramid.

Ez. 298.—If out of any cone a similar cone is cut, so that their axes are

in the same line and their bases in the same plane ; show that the height of

4 h'(

the centre of gravity of the remainder above the base equals }. ;:'—-_h'i

where 4 is the height of the original cone, and 4’ the height of that which
is cut away.

Ez. 299.—If out of any right cylinder is cut a cone of the same base and
height; show that the centre of gravity of the remainder is §ths of the height
above the base
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Ez. 800.—Find the centre of gravity of a trapezoid in terms of the
lengths of the two parallel sides, and of the line joining their middle
points.

Let Ao B c D be the trapezoid, of which A Band » ¢ are the parallel sides ;
produce Ap and BcC to meet in E;
bisect A Bin F, join B F cutting o c in
H, which is its middle point. Take A

B ) . »
FG,=}FE, HG,=}HE; then g, is the
centre of gravity of the whole tri- -b. R
angle A BB and @, of the part cpE; F
therefore G, the centre of gravity of
the remainder, will lie in . Now,
we have given AB=a, pc=}, and
FH=A, and are to find Fe=2.

Since the weights are in the same proportion as the areas of the tri-
angles A BE and ¢ D E, we have

Fia. 78.

FG XABE=FGXABCD+FG,XCDE

Now, Fo,=}FeandFG,=h+iaE=Ah+}(FE—A)=3A +}FB
therefore ZxABCD=JFEXABE— (344 }FE)xCDE

But by similar triangles (Euc. 19—VI.)
ABE:CDE:ia*:b?

therefore ABCD ! CDE: a?—b%: b
therefore z(a*—b%)=}r Ex a?—(2h +iFE)D?
=3FEx (a?—b?)—3Ab
Again, by similar triangles, .
FR:HB.!AE:DE:!a:b
therefore FR:FE—HE:!a:a—-b
and FE=_—
therefore z (a*—b%) =tha (a + b)— 3402
=2 @+ ab-200)
3
=§(a+26) (a=b)
= h,a+2b
therefore =303

Exz. 301,—Show that the centre of gravity of the frustum of a pyramid
is situated in the line joining the centres of gravity of the ends and at a

k a?+2ab+ 3b?

distance from the lower end, given by the formula e R ¥R
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where @ and b are any pair of homologous sides of the ends, and 4 is the
‘1ength of the line joining the centres of gravity of the ends.

P16, 79. Ez. 302.—If a segment of a sphere is described by the
revolution of A B cround Bo, show that the centre of gravity
of the surface of the segment is in the middle point of B c.

[It can be easily proved that if B c is divided into any
number of equal parts, and planes are drawn perpendicularly
through the points of section, they will divide the surface of
the segment into equal zones—the weight of each can be

0 collectedin Bc; and as these equal weights will be uniformly
distributed along Bc, the required centre of gravity will be in its middle
point.]

Ez. 303.—Show that the centre of gravity of the spherical sector formed
by the revolution of the sector A B o (fig. 79) round B o is at a distance

fromo=§o0oB—3BCcorg(oB+oC).

[It must be remembered that the spherical sector may be conceived to be
made up of an indefinitely great number of equal pyramids having a common
vertex o, whose bases form the spherical surface; the weights of each of
these can be collected at its centre of gravity, distanced § o B from o, and
the question is reduced to a case of the last example.]

Ez. 304.—Determine the position of the centre of gravity of the volume
of the spherical segment formed by the revolution of A 8¢ round Bo. And
when A Bc is a quadrant, show that the centre of gravity of the hemisphere
generated by its revolution is at a distance of 3ths of the radius from the
centre of the sphere.

69. Applications of the formule of Prop.16.—When
a body consists of parts, and we know the weights of the
several parts, and the co-ordinates of their centres of
gravity ; the co-ordinates of the centre of gravity of the
body will be found by means of the formule of Prop. 16.

Ez. 305.—a, B, ¢, » are the angular points taken in order of a square (one
of whose sides is @) and = the inters. ction of its diagonals; weights of 3,
8, 7,6, and 10 lbs. are placed at these points respectively. Find their
centre of gravity.
Ans. If A B and A D are the axes of = and g, 34z = 20a, 3437= 18a.
Ez. 306.—Weights of 1, 2, 3, 4, 5, and 6 1bs. are placed respectively at
the angular points of a regular hexagon (one of whose sides is a) taken in
order. Find their centre of gravity.
Ans. If the lines joining the points at which 1 and 2 and 1 and 5
are placed be the axes of x and y, 14z =5a, 14y =9a +/3.
Zr. 307.—a B c is an isosceles triangle right-angled at ¢ ; parallel forces

B

A c
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“of 4, 6, and 8 lbs. act at A, B, and c respectively. Find their centre when
the two former act in the same direction and the latter in the opposite
direction. Likewise when the third force is 10 Ibs.
4ns. (1) If c A and c Bare the axes of = and y, z =24, y = 3a.
(2) Centre at an infinite distance, forces reducing to a
couple.

Ez. 308.—a, B, ¢, D are the angular points taken in order of a square, one
of whose sides is a; parallel forces of 5,9, 7, and 3 lbs. act at the angular
points respectively. Find their centre— (1) supposing 56 and 9 to act in
the same direction. and 7 and 3 in the opposite direction ; (2) supposing 5
and 7 to act in the same direction, and 9 and 3 to act in the opposite
direction. _

Ans. (1) If a8 and AD are the axes of = and y, then 2z=a,
2y= —b6a. (2) Centre at an infinite distance, forces re-
ducing to a couple.

Ex. 309.—Parallel forces of 5 lbs. apiece act in the same direction
through the angulur points of a square, and a parallel force of 20 Ibs. acts
through the intersection of the diagonals in the opposite direction. Find
the centre.

Ans. Centre indeterminate, forces being in equilibrium.

Ez. 310.—Find the co-ordinates of the centre of gravity of the trapezoid
ABCD, having given o B=7ft., 0c=19 ft.,AB=121t,,
D c=18 ft.; the angles at Band ¢ being right angles.

[If A x is drawn parallel to B ¢ dividing the figure
into a triangle and a square, the co-ordinates of the
centre of gravity of each can be easily found, and if
x and y are the required co-ordinates, it will appear
that they are determined by the equations

180z=13 x 144 + 16 x 36
180 y= 6x144+14x 36]
Ans. z=133, y=T3.

Ex. 311.—Let A Bc D represent the section of
a ditch: the breadth A p is 20 ft. and the depth p A

8 ft.; the slopeof ABis1in1 and of DCis 2 in
1; determine the horizontal distance from A of
the centre of gravity of the section.
. B

Ans. 10% ft. ¢
Ex. 312.—If in the last example the breadth A p is a feet, the depth of
the ditch 4 feet, and if A Bhas a slope of 7 in 1 and p ¢ oi % in 1, show that
if = be the horizontal distance of the centre of gravity of the section from
A ; then z will be found by the formula

Fia. 80,
D

0 B ¢

- 1 1 1 1 1
F{2a- (;‘_,_;) R (;,;i";;z) M
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Ez. 313.—If ABCD represents the section of a wall of which Bcis vertical
and equal to 4, A B=a and pc=5; then if w is the weight of a cubic foot of
the material, the moment of 1 foot of the length of the wall round A and B
respectively are given by the formulae

_ wh(2a® + 2ab — 5%)
6
_ wh(a® + ab + b%)
6

Ez. 314.—The engine-room of a steam-vessel is 30 ft. long, 20 ft. wide,
and 15 ft. high; at 10 ft. from one side, 6 ft. from one end, and 5 ft. from
the floor, is situated the centre of gravity of the boiler, the weight of which
is 2 tons ; at 4 ft. from the same side, 11 ft. from the same end, and 7 ft.
from the floor, is the centre of gravity of the beam of the engine, which
weighs 4 a ton; at 9 ft. from the side, 7 ft. from the end, and 3 ft. from
the floor, is the centre of gravity of the furnace, which weighs 14 ton; at
5 ft. from the side, 11 ft. from the end, and 10 ft. from the floor, is the
centre of gravity of the cylinder, which weighs 1 ton; where is the centre
‘of gravity of the whole ?

Ans. 81 ft. from the side, 7'8 ft. from the end, 56 ft. from the floor.

M

and b'e

70. On stable and unstable equilibrium.—Bearing in
mind that when forces are in equilibrium any one of them
is equal and opposite to the resultant of all the rest, it is
plain that when a heavy body is supported by any forces
their resultant must act vertically upward through the
centre of gravity. Suppose, then, that a body is supported
at one point, the reaction of the fixed point and the
weight of the body are in equilibrium, therefore the direc-
tion of the reaction must pass vertically through the centre
of gravity, consequently the conditions of equilibrium are
fulfilled when the line joining the centre of gravity and
the fixed point is vertical, or, which comes to the same
thing, when the centre of gravity is vertically under or
vertically over the fixed point.

Practically speaking, there is the greatest possible dif-
ference between these two cases, for a body could scarcely
be made to rest in the latter position, and could be dis-
placed from it by the smallest possible force and caused to
take up the former position. In fact, the former case-—
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centre of gravity under the point of support—is said to be
a position of stable equilibrium, while the latter—centre
of gravity above the point of support—is said to be one of
unstable equilibrium. The distinction between stable and
unstable equilibrium is thus stated : Suppose a body to be
in equilibrium under the action of given forces, and suppose
it to be slightly displaced, if the forces tend to bring the
body back again to the original position, that position was
one of stable equilibrium, but if they tend to make it move
Jarther from its original position, that position was one of
unstable equilibrium. If the student will draw a figure
of a body suspended from a point he will see at once that
the two positions of equilibrium are stable and unstable
according to the terms of the definition.

It is obvious that there may be an intermediate case in
which, after the body has been displaced, the forces have
no tendency to move it either backward or forward. In
this case the body is said to have been in a position of
meutral equilibrium. If, in the example already given,
the point supported had been the centre of gravity the
equilibrium would have been neutral. A sphere of uniform
density on a horizontal plane is in a position of neutral
equilibrium ; if it be loaded at the top of a vertical dia-
meter its position becomes one of unstable equilibrium,
if loaded at the lower end of a vertical diameter it is in a
position of stable equilibrium.

Ez, 315.—A hemisphere (whose radius is ») and a cone (the radius of
whose bar is 7 and height %) of equal and uniform density are fastened
together so that their bases coincide. They are placed on a horizontal

plane, and are in equilibrium resting on the lowest point of the hemisphere ;
show that the equilibrium is stahle, neutral, or unstable, according as

r4/3> =or <h.
Our limits will not allow us to develop this subject

fully, but one other point must not be passed over. A
body may be in stable equilibrium in two or more positions,
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but the degree of stability in the two cases may bz very
different :— .

Thus, referring to fig. 19 and supposing the force P not
to act, if the body were placed on one of its edges upon a
horizontal plane and with either diagonal (joining A and ¢
or B and D) vertical, it would be in a position of unstable
equilibrium ; but if it is placed with the face containing
'AB or AD on a horizontal plane the equilibrium is stable ;
but manifestly far more stable in the latter case than in the

“former ; indeed, if AD were many times (e.g. a hundred
times) greater than A B the degree of stability in the
former case would be so small that practically the body
‘would not retain its position without support.

71. Qeometrical applications of the properties of the
centre of gravity.—The most important of these are
proved in Prop. 17, 18, 19 ; but before considering them
one class of applications may be noticed. Suppose it can

. be proved by any means that the centre of gravity of a
figure or collection of points lies in two or more lines, then,
as there can be only one centre of gravity, it will follow
that those lines must pass through a common point, e.g.
in any triangle the lines joining each angle with the middle
-point of the opposite side must pass through one point.
This admits of independent geometrical proof; it also
follows at once from the fact that the centre of gravity of
the triangle is in each of the lines.

Ez. 316.—Draw any quadrilateral, show that the lines joining the points
of bisection of opposite sides mutually bisect each other.

[Suppose equal weights to be placed at each angle of the quadrilateral,
-and find their centre of gravity.]

Ez. 317.—In any triangular pyramid the three lines, joining the middle
points of each pair of edges which do not meet, pass through a common point.

Er. 318.—If ABC is any triangle, and points X, ¥, z are taken on the
sides B c, CA, A B respectively, in such a manner that

BX .CY.AZ=XC.YA.ZB,
the lines Ax, BY, and cz will pass through a common point.
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Proposition 17.

If a surface be described by the revolution of a plane
curve round an axis fized im its plane,its area is found
by multiplying the length of the curve into the length of
the path described by its centre of gravity.

Let A B be the curve, ¢ D the axis of revolution ; G the
centre of gravity of the curve; draw GM at right angles
to ¢ D; we have to show that the Fro. 82.
area of the surface described by
the revolution of ABround cD is
found by multiplying the length
of AB into the length of the path
described by G, i.e. into 27 G M.

In AB place any number of T
equal chords, viz. AP, PP, P, P, f/@. !

&c. Take Q,Q;,Qy, . - . their mid-
dle points, and draw Q N, Q, N, Q,N, | _
. . . at right angles to c¢D; also o
find ¢’ the centre of gravity of the
chords, and draw ¢’ M" at right angles to ¢ D; now when
the curve revolves round ¢ b, the chords will describe frus-
tums of cones, the surfaces of which, by a well-known rule
of mensuration, will be respectively 27 x AP X QN, 27 X P P,
X Q,N;, 27 X PP, X Q,N,, &c., and therefore the sum of the
surface of these frustums will equal
2w (APXQN+PP XQN, +PP;XQNy+. . .)

But by a property of the centre of gravity (Prop. 16) we
have

M (AP+PP +PPy+....)=APXQN+PP XQN,

+P Py X QN +. . .

Therefore the sum of the surfaces of the conic frustums
will equal

27 ¢’M’ x the sum of the chords AP, PP, PP, . . . .
Now this being true, however great the number of chords,
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will be true in the limit ; but the surface of the solid of
revolution is the limit of the sum of the surfaces of the
conic frustums ; the length of the curve is the limit of the
sum of the chords ; and since G" must ultimately coincide
with G, the limit of ¢'M" is G M. Therefore, area of surface
described =27G M x length of curve A B. Q. E. D.

Cor.—1t is manifest that the above proof includes the
cagse of the figure described by the revolution of an area
bounded by straight lines. It is also obvious that the same
rule applies to any portion of the area contained between
two given positions of the revolving curve.

Proposition 18.

If a plane curve revolve about an axis fixed in its
plane, the volume of the solid described is found by
multiplying the area of the curve by the length of the
path of its centre of gravity.

Let ABcD be the plane curve ; the lines Ac acd BD are
perpendicular to cp, the axisabout which the curve revolves;
find G its centre of gravity, and draw
A GM at right angles to cD: we have
to show that the volume of the
solid described by the revolution

Fia. 83.

by Nt
of ABCD equals the length of G’
- v. path multiplied by the area of '
ABCD.
Py - e Divide ¢ p into any number of
i - equal parts in N, N,, N;, . . . and

from these points draw ordinates

to meet the curve in P, Py, Py o« . «

P ¥ and complete the rectangles AN,

PNy, P,N,, . . . .; when the figure

revolves round ¢ D, these rectangles

will describe cylinders, and the united volumes will equal
7 (AC?XCON; + PN ? X NNy + PN 2 X NNy 4. o . )

B o
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Let ¢’ be the centre of gravity of these rectangles, draw
G'M’ at right angles to ¢ D ; now, the centre of gravity of
AN, is at a distance from ¢D equal to 4 Ac, that of p\N,
is at a distance from ¢ D equal to 4 PN, and similarly of
the others. Hence by Prop. 16 ¢'M’ x sum of rectangular
areas equals

$AC X AC X CN, + 4PN, X P|N; X N\N, + 4P,N; X P,N, X N;N, + ...
and therefore 27 G'M’ x sum of rectangular areas equals
A C* X CN, + 7P\N;? X NN, + 7PN ? X N;N,+. .

that is, equals the sum of the above-mentioned cylinders,
.and this, being true whatever be the number of parts into
which ¢ D is divided, will be true in the limit; now, the
volume of the solid of revolution is the limit of the sum of
the cylinders ; the curvilinear area is the limit of the sum
of the rectangles; and since 6" must ultimately coincide
with G, the limit of G'M’ is G M. Hence the volume of the
solid of revolution is found by multiplying the area of the
curve by the length of the path described by its centre of
gravity.

Cor.—The remarks contained in the corollary to the
last are applicable, mutatis mutandis, to the present
Proposition.

Proposition 19.

If a right prism or cylinder be cut by any plane, the
volume of the frustum is found by multiplying the area
of the base into the length of a line drawn perpendicularly
to the base through its centre of gravity, and terminated
by the cutting plane.

Let ABCD be the frustum of the right prism or eylinder,
standing on the base ABE, whose centre of gravity is G;
through G draw G Q at right angles to the plane of the base
ABE and terminated by the cutting plane D G F ; we haxveXo
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show that the volume of the frustum is found by multi-

Fro. 84, Plying the area of AEB into

v the length of GQ. Suppose

the plane of the paper to

be perpendicular to the

planes of the ends, and to

cut them in ABB'CcD; if

the planes of the two ends

are produced, they will in-

G tersect in a line K X’ per-

A pendicular to the plane

of the paper; hence A 8'D

is the angle of inclination

of the cutting plane to

the base ; we will denote this angle by 6. Draw ¢ M at
right angles to kK k¥’ and join QM.

Suppose the base A E B to be divided into alarge number
of small rectangular areas (such as N SR T), then ultimately
the sum of these rectangles will equal the area of the base.
On the rectangles describe rectangular parallelopipeds such
as P @ NR, then ultimately the sum of their volumes will
equal the volume of the frustum. Let NSRT be denoted
by p, and N H by y,, then the volume of Pa N R is

Pi% tan 6
since PN plainly equals NH x tan 6. Adopting a similar
notation for the other parallelopipeds, the sum of their
volumes will equal :
(Pi% +PoYs +PYs+. - . ) tan 6
and this by Prop. 16 equals
(Pr+Py+pst. . - ) ytan d
Now in the limit
P +Py+Ps+. - - =AEB
and y tan =G M tan =G Q

&fox’e the volume of the frustum equals AEB X QG.

D

E
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Cor.—1t is evident that if the prism or cylinder is cut
by another plane inclined at any angle to the base, the
volume contained between the cutting planes equals the
area of the perpendicular section multiplied into the part
contained between the planes of a line drawn through the
centre of gravity of the perpendicular section at right
angles to its plane.

Ex. 319.—Show that Prop. 17 and 18 are true in the case when the
curve is a closed curve and revolves round an axis wholly without it.

Ex. 320.—In Prop. 19 show that Q is the centre of gravity of DCF.

Ex. 321.—An equilateral triangle revolves round its base, whose length.
is a; find the area of the surface and volume of the figure described.

Ans. (1) %a?v/3. (2) 1}'

Ez, 322.—An equilateral triangle revolves round an axis parallel to the
base, the vertex of the triangle being between the axis and the base; the
base is 6 in. long and the distance from the vertex to the axis is 9 in.;
determine the volume of the ring described. Ans. 1220°7 cub. in.

Ex. 823.—Determine the volume of a ring formed like that in the last
example, having given that each side of the triangle is 6 in. and the ex-
ternal diameter of the ring 3 ft. Ans. 1593°4 cub. in.

Ex. 324.—The section of a ring isa trapezoid, its height is 3 in. and its
parallel sides are respectively 7 in. and 3 in. long, they are parallel to the
axis, the shorter being the nearer to the axis and at a distance of 11 in.;
find the volume of the ring. Ans. 1196°9 cub, in.

Ez. 325.—In the last example, if the longer side of the trapezoid had
been the nearer to the axis, the external diameter of the ring being the
same in both cases, what would have been the volume ?

Ans. 11592 cub. in,

Ez. 326,—Determine the volume and surface of a ring with a circular
section whose internal diameter is 12 in. and thickness 3 in.

Ans. (1) 3331 cub. in. (2) 4441 sq. in,

Ez, 327.—Determine the volume and surface of a ring whose section is
a regular hexagon, whose circumscribing circle has a radius a, and whose
centre is at a distance b from the axis of revolution.

Ans. (1) 3xba®~/3. (2) 12wabd,

Exr, 328.—Find the centre of gravity of the arc of a semicircle,

Ans, Distance from centre m 31A10-

K
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Ez, 329.—Find the centre of gravity of the area of a semicircle.
Ans. Distance from centre =3 . dl:m'

Ez. 830.—A cylindrical shaft is cut off obliquely at an angle of 45° to
the axis, its radius is 6 in. and its extreme height is 2 ft. 6 in.; find its
golid contents. Ans. 1:5708 cub. ft.

Ex. 331.—A cylindrical shaft is cut obliquely at an angle of 60° to the
axis, the radius of the base is 10 in., the extreme height of the shaft 3 ft. ;
find its volume. Ans. 9497 cub, in,

Ez. 332.—A right prism stands on a triangular base, the angles of which
are A, B, C, the angles of the other end being D, B, F; the sides A B, AC are
each 15 ft. long, Bc is 18 ft. long ; the edges AD, BE, CF are each 30 ft. long;
through the edge Bc passes a plane making an angle of 60° with the base ;
determine the volumes of the parts into which the prism is divided. Also
if the prism were cut by a plane parallel to the former and cutting AD at &
distance of 24 ft. above 4, find the volumes of the two parts.

Ans. (1) 748'3 and 24917 cub. ft. (2) 10956 and 21444 cub ft.

Ez. 333.—Show that if any triangular prism be cut by a plane so that
the edges perpendicular to the base are respectively a, b, ¢, and the area of
the base A, then the volume of the frustum will be A (a+b +¢).

Fie. 85. Ez. 334.—Leta bc d represent the plan and ABcD the
section of a portion of a ditch; Ap=20 ft.; depth of ditch
8 ft.; slope of ABis 2in 1, and that of pcis 1in 1; ad
and cd are respectively 20 and 40 ft. long. Find the
volume ; and determine the error that would be committed

s if we had found the volume by multiplying the area of the
section by half the sum of a4 and d c.
Ans. (1) 3264 cub, ft. (2) Error 96 cub. ft.
[Compare Ez. 311.]
¢ Ex. 335.—Let ABcD be the plan of a square redoubt,
A each side of which is 150 ft., the corners of the ditch are
quadrants of circles whose centres are respectively A, B,
¢, . Sothat the ditch has a uniform;width which is 24 ft.,
. its depth is 9 ft., the inside slope is 3 in 1 and the outside
1in 1. Find the volume of the ditch. Ans. 108,057 cub, ft.

Ez. 336.—If the ditch in the last example were surrounded with a glacis
3 ft. high whose outside slope is 1 in 10 and inside slope 1 in 1 ; find its
volume. Ans. 40,897 cub. ft.

4 a

c
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CHAPTER VI.

FRICTION OF PLANE SURFACES—
INCLINED PLANE, WEDGE SCREW.
SectioN 1.

72. Reaction of surfaces.—It nearly always happens
that amongst the forces which keep a body at rest is the

reaction of one or more sur- Fro. 86.

faces; to explain the nature M

of this reaction let us con-

sider a particular case; sup-

pose a mass M to rest on a z > )
table, A B, and suppose it to * B

weigh 1000 lbs.; that weight must be supported by the
table, which must therefore exert upwards a force of
1000 1bs. in a direction opposite to the direction of the
weight. If we consider the case particularly we shall see
that this reaction is an instance of a distributed force,
for the under surface of ¢ p will be in contact with the table
at many points, and at each point there will be a reaction ;
what are the magnitudes of the reactions respectively at
the points we do not commonly know ; they must, how-
ever, be such that their resultant shall act vertically
upward through the centre of gravity of M and shall equal
1000 1bs. And, in general, if a body is at rest when pressed
against a surface, the various points of that surface must
supply reactions whose resultant is equal and opposite to

the resultant of the forces by which the body is wrged
K 2
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against the surface ; this resultant reaction is called the
reaction of the surface.

73. The limiting angle of resistance.—The question
now arises—Under what circumstances is the plane capable
of supplying the reaction necessary to produce equilibrium ?
There will be equilibrium if the plane do not break, if the
body do not turn over, and if the reaction keep the body
from sliding; it is with the last condition we are here

Fia. 87, concerned. Let us revert to
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is in a state bordering on motion, the direction of the
reaction will make an angle equal to 10° 45" with the
normal.

Now it appears from experiment that if the surface A B
were of cast iron, and the mass M of wrought iron, a force
of 190 lbs. would be required just not to produce .motion
in the case above discussed; and it also appears from
experiment that within very considerable limits, the same
proportions are preserved, irrespectively of the extent of
the surface pressed and the amount of the force; so that
we may state as a fact of experience, that when wrought
iron rests on cast iron the former will exert a reaction in
any direction required to produce equilibrium that does
not mske with the normal an angle greater than 10° 45 ;
and when motion is about to ensue, the direction of the re-
action will make an angle with the normal equal to 10° 45';
this angle is therefore called the limiting angle of resist-
ance, or the angle of friction in the case of cast iron upon
wrought. It further appears from experiment, that in the
case of any two surfaces whatever, there is a limiting angle
of resistance proper tothose surfaces,and depending on their
physical character ; for instance, in the case of wrought iron
on oak, the angle is 31° 50’, and similarly in other cases.
Values of this angle in several cases are given in Table XI.

Hence if a body i8 urged against a fized surface by
any force or forces, the direction of the reaction of that
surface can never make with the normal an angle greater
than a certain angle. That angle is called the limiting
angle of resistance or the angle of friction ; its magnitude
18 fied by the physical nature of the surfaces in contact.

If the resultant of the forces which urge the bodyagainst
the fixed plane be found, the body will continue at rest,
provided the direction of the resultant makes with the
normal an angle less than the limiting angle of resist-
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ance ; for under these circumstances the reaction can act

in a direction opposite to the resultant and balance it. If

the resultant make with the normal an angle equal to

the limiting angle of resistance the body will still be in

equilibrium, but will now be in the state bordering on

motion, for if the angle between the resultant and normal

be increased by ever so small an amount, the reaction can

no longer act in a direction opposite to the resultant, and

therefore can no longer balance it. Under all circum-

stances the reaction will oppose the motion of the body.

In the following pages ¢ will be used to denote the limit-
ing angle of resistance.

Ez. 337.—If a mass whose weight is w rests ona horizontal plane A B,

Fia. 88. and is pulled by a force » whose direction (c »)

makes an angle a with the horizon, determine

, r ® when it is on the point of making the body

c slide.
D Find 6 the centre of gravity, and draw ¢ w a
G vertical line ; produce Pc to cut ¢ win n: then

since the body is held at rest by ®, w, and the
A F l B reaction of the plane (&), the direction of R must
W

pass through o, also since the body is on the

point of sliding from B to 4, the direction of »

must make with D w an angle 8> W equal to ¢. Then we have w p R =180°

—¢, RDP=90—a+¢, and PDW=90+a, therefore (Prop. 7) p:w:r
2:8in ¢ : cos (a—¢) : cos a.

Ez. 338.—In the last example determine P and R if the mass M, weighing

750 1bs., is of wrought iron, on oak, and the direction of p inclined to the

horizon at an angle of 156°. Ans. p=4133 lbs. R= 7569 lbs.
EBz. 339.—What would be the required force P in the last case if its
direction were horizontal ? Ans. =465 lbs.

Ex. 340.—Show that when a body rests on a horizontal plane the smallest
force that will bring it into the state bordering on motion will act in &
direction inclined upwards from the horizon at an angle equal to the limiting
angle of resistance.

74. Conditions under which a body acted on by cer-
taim forces will meither be overthrown mor slide—Let
& mass A B rest on a horizontal plane ¢ b, and let the forces
concerned be its weight acting vertically along the line Ew
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and a force P acting along the line EP: find R the result-
ant of these forces ; in order that the body may be at rest
it is necessary that R be balanced Fie. 8.,

by a reaction equal and opposite
to it; this cannot happen if the
direction of R cuts ¢ D outside
the base; hence the condition
that the body be not over-
thrown is that the direction of
the resultant fall within the
base; if this condition be ful-
filled, the body will slide or
-not, according as the direction of R makes with the
normal to the point where it cuts the surface, an angle
greater or less than the limiting angle of resistance. The
question may be asked, if AB be pulled along the line
EP by a continually increasing force, will it slide before
it topples, or wvice versd ? This is readily answered by
joining A £; then if AE W be less than the limiting angle
of resistance, the body will topple before it slides, since
R’s direction will fall without the base before its direction
makes with the perpendicular an angle greater than the
limiting angle of resistance ; if, however, AEW be greater
than the limiting angle of resistance, the body will slide
before it topples. In the intermediate case, when AEW
equals the limiting angle of resistance, the body will be on
the point of toppling and sliding for the same value of .
It obviously follows from the above reasoning that when
a body stands on a horizontal plane a vertical line drawn
through its centre of gravity must cut the plane within its
base. If a body rest upon points its base is the polygon
formed by joining the points in succession. It is to be
observed, however, that if any points would fall inside
the polygon formed by joining the rest, they are not to be
reckoned. ’
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Ez. 341.—A rectangular mass of oak the base of which is 2 ft. square
and height 7 ft. rests endwise on a floor of oak, a rope is fastened to it at a
certain height above the floor and is pulled by a force in a direction
inclined upward at an angle of 20° to the horizon; it is found to be on the
point both of toppling and sliding; find the height of the point of attach-
ment from the floor, and the magnitude of the force.

Ans. (1) 268 ft. (2) 6487 1bs.

[It is manifest, referring to fig. 89, that  will be found by making the
angle EA w equal to the complement of the limiting angle of resistance
when the circumstances are those mentioned in the question.]

Ez. 342.—A cylinder of copper the radius of whose base is 2 in. and
height 3} in. rests on a horizontal oak table, it is pulled by a horizontal
force whose direction coincides with a radius of the upper end; find the
force that will just make the body move, and determine whether the
motion will be one of sliding or toppling.

. Ans. (1) 8 1bs. (2) The body will topple.

Ex. 343.—Work the last example supposing the cylinder to be of oak,
the fibres being parallel to the axis of the cylinder.

Ans. (1) 102 oz. (2) The body will slide.

Ex. 344.—A round table stands on four legs, one at each angle of the
inscribed square. It weighs 120 lbs.; find the least weight which hung
from its edge would overthrow it. Ans, 290 lbs. -

Eg. 345.—A rectangular box is overthrown by turning round a horizontal
edge ; given the lengths of the edges; determine the height through which
its centre of gravity must be raised.

75. Priction and the laws of friction.—Let AB be a
table ; M a mass which, in consequence of the action of
: Fie. 90. certain forces, is on

°y e the point of sliding in

n X the direction BA ; then
the reaction R’ will be
] equa} to their resultant,
" and its direction will be
\ inclined to the perpen-
dicularto ABat an angle

A ¢ K " ¢ equal to the limiting
angle of resistance; let CR’ be the direction of this re-
action ; draw C D at right angles to A B, then the angle DcR’
is equal to ¢ ; take CE to represent R’, and complete the
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rectangle HK ; we may replace R’ by two components R and
F, of which R acts along ¢ D and F along A B; these compo-
nents are represented by ¢ H and CK respectively ; now it

is evident that tan ¢=z_§ ie. tan p="

therefore F=R tan ¢

The tangential reaction F is commonly called the Fric-
tion, and tan ¢ (which is generally denoted by the letter
) is called the coqﬂicient of friction ; so that when a body
resting on a plane is in the state bordering on motion, the
friction equals the normal reaction multiplied by the co-
efficient of friction ; it will be remarked that unless the
body is in the state bordering on motion the whole of the
friction is not called into play, but only so much of it as
is sufficient to produce equilibrium.

If in any particular case we are required to determine
the relation between the forces which keep a body in the

" state bordering on motion, and amongst these forces is
the reaction of a rough surface, we may treat this reaction
in either of two ways:—First, we may consider the re-
action (R") to be a single force making an angle ¢ with
the normal; or, secondly, we may replace that reaction
by two forces, viz. a reaction R acting along the normal,
and a friction xR acting along the tangent ; the former
way of looking at the question is generally more con-
venient when the body is acted upon by only three forces,
the latter when it is acted on by more than three forces,
and when, consequently, it is necessary to have recourse
to the general equations of equilibrium.

In order to complete our remarks on this subject, it is
to be observed that when the body actually slides, its
motion is opposed by a constant friction which is properly
represented by u times the normal reaction; it appears,
however, that the numerical value of u for the same sub-
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stances is different in the cases of motion and of rest.
The difference is most conspicuous in the case of soft
substances (e.g. various kinds of wood) that have been
some time in contact ; wherever a difference exists the
value of u for substances at rest is larger than the value
for the same substances in motion.

The chief general results that have been elicited by
experiments on the friction of surfaces, are called the
laws of friction, and may be thus stated :—

(1) Friction is proportional to the normal pressure.

(2) It is independent of the extent of the surfaces in
contact. '

(3) In the case of motion it is independent of the
velocity.

(4) If unguents are interposed so as to form a con-
tinuous stratum between the surfaces of contact,
the friction depends mainly on the nature and
quality of the unguent.

It must be added that these laws depend entirely on
experimental evidence, and that the first of them ceases
to be true when the pressure per square inch becomes
very great. The accurate determination of the values of
u, the coefficient of friction for different sabetances, is
due to General Morin, on whose authority the results rest
“thet are registered in the following table.*

* The establishment of the laws of friction appears to be due to
Coulomb, whose Memoir on Friction was published in A.p. 1785; & very
full abstract of the paper is given in Dr. Young's Natural Philosophy,
vol. ii. p. 170 (1st ed.) General Morin’s Tables are very extensive: they
have been several times printed. A sufficient account of the experiments
on which they are based, together with the Tables themselves, will be found
in his work, Notions Fondamentales de Mécanique. To enable the reader
to form some conception of the limits within which the laws of friction hold
good, the following (somewhat favourable) instance may be adduced. The
coeflicient of friction is given in the tables as 0'564 in the case of oak resting
in the state bordering on motion on oak with the fibres perpendicular to
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Taste XL
COEFFICIENTS OF FRICTION

AND LIMITING ANGLES OF RESISTANCE OF SUBSTANCES BETWEEN wmcx,‘
NO UNGUENTS ARB INTERPOSED. '

State bordering on
Motion State of Motion

Subsanco  Dleponton of |
¢ T e ¢
Oak on oak. . Parallel 31°50/ 0563 25°40
” " . . Perpendicular 28°2¢/ 0-47 18°45
. Endwise 23°200 0'40: 10°45'

Oak on elm . . Parallel 20°60/
Elm on oak. . Porallel 34°40 23°20
w s « .« Perpendicular 29°40 24°15'

‘Wrought iron on

oak . . . Parallel 31°50 31°50
Cast iron on oak . Parallel 33°0/
Copper on oak Parallel 81°50 31°50'
‘Wrought iron on

cast . . — 10°45' 1010/
Cast iron on cast — 9°5’ 8°30/
Osk on calcareous

oolite* . . Endwise 32°10' 20°50'
‘Wronght iron do. — 26°10/ 34°40/
Brick do. . . — 33°50'
Calcareous oolite

ondo. . . _ 36°30’ 32°40/

each other. The experimental results from which this value was dedwosd
are as follows : —

Surface of Contact | Normal Pressure mg‘;‘g‘;’l’;}] Coef. Friction u

121 lbs. 67 lbs. 0:66

283 ,, 151 ,, 063

0947 ft. 4956 ,, 262 ,, 051
1996 ,, 17t 068

25256 ,, 1287 ,, 0-61

389 ,, 204 ,, 0562

0-043 ft. 403 ,, 218 ,, 0563
1461 ,, 866 ,, 062

* The stone emplcyed in M. Morin’s experiments seems to have been a
soft oolitic stone from the quarries at Jaumont near Metz.
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It is to be observed that in the above Table the numerical values of
p were ascertained by experiment ; the values of ¢ and sin ¢ have been
obtained by calculation. General Morin's Tables give the values of u cor-
responding to various unguents ; of these, the following comprehensive re-
sults will be sufficient for our purposes : any two of the following substances,
oak, elm, cast iron, wrought iron, bronze, pressed against each other, tallow
being employed as an unguent, have for the coefficient of friction u#=0-10,
and therefore ¢ = 5° 40/ and sin ¢ =0'10. The same substances when in
motion, and the unguent is either tallow, hog's lard, or any similar sub-
stance, have the coefficient of friction equal to 007, and therefore ¢ =4°
and sin ¢ =0-07.

76. The inclined plane.—The principles which regu-
late the equilibrium of a body resting on a plane inclined
to the horizon are the same as those which regulate the
equilibrium of a body resting on a horizontal plane—a
case which has been already considered ;—the applica-
tions of the former case are, however, very numerous and
very important, it will therefore be discussed at some
length. It is scarcely necessary to observe that the in-
clined plane is commonly reckoned amongst the ¢ Mecha-
nical Powers.’

Ez. 346.—A mass whose weight is w rests on a plane a » (fig. /), inclined
t6 un angle a to the horizon A c; it is acted on by a force ® in a direction
(~ P) making an angle 8 with A B: determine the relation between the forces
P and w when P is on the point of making the body slide up the plane.

Take @ the centre of gravity of the body, and through it draw the vertical
line @ w, cutting PN in p, both lines being produced if necessary. Now, the
only forces acting on the body are its weight w along » w, the force e along
D P, and the reaction () of the plane o B; r's direction must pass through
D, and must be inclined to a perpendicular to A B at an angle equal to ¢,
the limiting angle of resistance; draw » M at right angles to A », and make
M D E equal to ¢ ; then r will act along the line Ep. (The line® pisdrawn as
in the figure, since the reaction r tends to oppose the sliding of the body.)
Hence we have

P:W::sin WDR:sinRDP:: sin wWDE:SinEDP
But WDE=a+¢,and EDP=90+8—¢
Therefore P:W:: sin (a+9): cos (B—¢)
In the same manner it can be shown that

_ W R:: cos (B—¢): cos (a+B)

If the guestion is solved by the general equations of equilibrium (Prop. 15)
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we may call B’ the normal reaction, acting at a point whose distance from
M is z; the friction will be u R/, acting from B to A ; also we may represent
DM by.p. Then, if we resolve the forces along and at right angles to A B,
and measure moments round D, we shall obtain

wsina+u R ~Pcos B=0 1)
~wcos a+ R +Psin B=0 2)
2R —uprR'=0 - €))

Equations (1) and (2), when solved, give relations between P and w, and
between w and ®/, equivalent to those already obtained ; equation (3) shows
that ®’ will act through the point .

With pumerical data, & solution can be obtained by construction, as
indicated in the diagram, by the parallelogram u K, in which, if D x repre-
gents the given weight, o x will represent the required force, and L » the
reaction,

Ez, 347.—If a be greater than ¢, show that when the body is on the
point of sliding down the plane

P w:: sin (a—¢) : cos (B+¢)
. wWiR::icos (B+¢): cos (a+B)

Ez, 348.—Show that if a<¢ the body will remain at rest without
support.

Ex. 349.—A mass of wrought iron weighing 500 lbs. rests on a plane of
oak inclined at an angle of 20° to the horizon, a force P acts upon it so as
Jjust not to pull it up the plane in a direction inclined to the plane at an
angle of 12°; find ».’ Ans. 4179 lbs.

[In fig. f the construction is shown by which this example was solved,
the scale being 1 in. to 200 lbs. ; the result obtained by the construction
was 415 lbs., the correct answer being 4179 1bs.]

Ex. 350.—In the last example suppose P to act along P D as a pushing
force ; find its magnitude that it may just not push the body down the
plane. ' Ans. 142°1 lbs,

Ez. 351.—Referring to Ex. 349 and 350: first, if P had been a force
of 200 1bs. acting up the plane; next, if » had been a force of 100 Ibs.
acting down the plane; and, lastly, if there were no force p; find the
magnitude and direction of the reaction of the plane.

Ans. (1) 4287 1bs. D R=81° 18'. (2) 5694 1bs. D R=130° 42",
(8) 600 lbs, acting vertically upward.

Ez. 352.—Show that the direction of the smallest force which will make
a body slide either up or down an inclined plane makes an angle ¢ with the
plane.

Ex. 353.—What is the least force that will draw a cubic foot of cast iron
down a plane of oak inclined to the horizon at an angle of 14°?

Ans. 1467 lbs.
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Ex, 364.—In the last example what would have been the least force
necessary to support the mass had the plane been of cast iron ?

Ans. 386 1bs,
Exz. 356.—What would be the horizontal force that would just push the
body up the inclined plane in the last case ? Ans. 192 1bs.

Ez. 356.—1If the body represented in fig. fis a cylinder the radius of
whose base is » and height 24, and if P acts at a point N so chosen that fcr
the same value of P the body is on the point of turning round x when it is
also on the point of sliding up the plane, show that

xx= (rcos a+ A sin a) cos (B—¢)
cos B sin (a+ ¢)

and transform the expression into one adapted for logarithmic calculation.

Ez. 357.—A rectangular mass of cast iron rests on an inclined plane of
oak; it is on the point both of sliding down and of overturning ; its base is
2 ft. square, what is its height ? Ans. 308 ft.

Ez. 3568.—In the last example what force acting parallel to the inclined
plane would be just sufficient to draw the mass of iron up it? Could this
force be applied at any point of the body so far above the plane.as to over-
turn the body before making it slide up the plane ?

Ans. (1).6100 1bs. (2) It will overturn the body if applied at a
" point more than 1:54 ft. above the plane.

Ez. 359.—If 2 A is the vertical angle of a cone standing on a plane whose
- inclination to the horizon is ¢ (the limiting angle of resistance), show that
4 tan A=tan ¢, if the cone is such as to be on the point both of toppling
and sliding.

Ez. 360.—The earliest experiments on friction were made in the follow-
ing manner: The substances were formed into rectangular blocks—shaped
like bricks—and were placed on planes of various substances; the planes
were then gradually raised, and the angles noted at which sliding com-
menced ; it was found that for the same substances this angle was the same
whatever the weight of the block, and whether it rested on a broad or
narrow face ; what conclusions could be inferred from these facts as to the
nature of friction ?

Ex. 361.—Given an incline of 1 in n (i.e. 1 ft. vertical to' » ft. hori-
zontal), and that a body weighing w lbs. rests upon it ; given also that the
friction is 1 1b. in m: show that the force which, acting parallel to the
plane, will be on the point of making the body move up the plane very

nearly equals w(,l; + ;1”-)

Ex. 362.—Let ca and ¢ B be two equally rough planes inclined downward
from c on opposite sides of the vertical through c, and let A B be horizontal ;
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let a weight w, be placed on c A, and a weight W, on ¢ B, and let them be
connected by a fine smooth cord passing over c: if w, is on’ the point of
sliding down c A, and thereby dragging w, up c B, show that

W, sin (A—¢)=W, sin (¢ +B)

77. Many questions arise out of cases in which a body
rests on two planes inclined at a certain angle to each
other ; in most of them it is convenient to have recourse
to the general equations of equilibrium (Prop. 15); a few
such examples are here added.

Ez. 363.—A B represents a ladder, one end of Fre. 91.
which rests on the ground at A, and the other V44
against a vertical wall at B; its length is a, the
distance from its foot to its centre of gravity (a @)
is b, its weight is w: determine the angle B A c, or
6, at which it will just slide.

The point A must just be sliding outward, and e
downward ; hence the forces act on the ladder as
shown in the figure, and, taking the horizontal and
vertical components, and measuring moments round
A, we have the following equations :—

B+ uWR —W =0

pR—R' =0

ar' sin 0+ au'r’ cos 0—hw cos 0=0
Hence (A +pw) R=wW, (1 +pp) R =puw
and pa tan 0=b—(a—>b) up'

The ladder will stand in every possible position if

b (1 + ) <ap’
It may be remarked that, though any point may be chosen from which to
measure moments, it is generally advantageous to choose  point through
which the directions of one or more of the unknown forces pass—e.g. in
the above question A or B should be chosen.

Ez. 364.—In the last example, if the ladder is placed in a known posi-
tion, determine at what distance (z) from A a weight w, must be placed
that the ladder may be on the point of sliding (k= u’=tan ¢).

Ans. x=a (1 +1) Sin ¢ sin (A + ¢) ‘P)—I.’l'.

" Wy cos A W,

" Er. 365.—In Exz. 363, suppose c to be an obtuse angle (=180°—+), and
suppose u=y'; find 6, and find the condition of the ladder resting in all
positions.

4ns. (1) p tan 0=1 —(@=5) (A +p?)siny
a (sin y—p cos 7)

(2) bsiny<a (s’\n y—snly— Q\msq\
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78. The wedge.—In the above examples the inclined
plane, though reckoned as one of the mechanical powers,
can hardly be regarded as a machine; in many cases, how-
ever, the inclined plane is itself movable, and is employed
to separate bodies that are urged together by great
forces ; in this case it is correctly spoken of as a machine.
The simplest instance of this use of the inclined plane is
the wedge, which is, in fact, nothing but a movable in-
clined plane. '

Ez. 366.—To determine the relation between the resistance and the force
which is on the point of urging forward an isosceles wedge.

Fre. 92. Let A B'c be the wedge, W the force acting
along the axis ¢ c,E and ¥ the points .of
contact of the sides of the wedge with the
obstacle; draw ¢ and f'F at right angles to
A c and BC respectively ; make the angles
enr and /¥R each equal to ¢ (the limiting
angle of resistance between the sides of the
wedge and the obstacle): then, since the
wedge is on the point of moving forward,
the mutual action between the surfaces of
contact at & and F will act along these lines,
and the wedge is kept at rest by w and re-
actions R’ and R', equal and opposite to = and
r ; the directions of these three forces must
pass through a common point 6; therefore

R :W::SinCGR:GNRGR
Now, if A ce equals a, we have ce R equal to 90—(¢ +a), and R 6 & equal
to 180—2 (¢ +«); therefore '
w=2r'sin (a+¢) m
Now, suppose that T, the tendency of the obstacles to collapse, acts along
T, and let T B¢ equal ¢; then the resolved part of r along &T must equal
T, the remaining part of B being transmitted to the ground. Hence
Bcos (t+¢)=T 2)
Therefore, remembering that r and B’ are equal,
w cos (t+ ¢)=2T sin (a+¢)
The angle ¢ is commonly unknown and very small ; it is therefore generally
neglected. :
Ex. 367.—If w is the force required to keep the wedge from starting,
show that

w cos (1—¢) =2r sin (a—¢)
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Ez. 368.—Show that if w is the force that has driven a wedge into a

given position and w, the force required to extract it, then (1= 0)
o sin (p—a)
=V em (p+a)

Ez. 369.—An iron wedge whose vertical angle is 13° is driven into a
mass of oak by a force of 1 cwt. :—what force will be necessary to extract
it? Ans. 77-27 lbs.

Exz: 370.—Show that the wedge will start if the force be withdrawn,
provided the angle of the wedge be greater than 2¢.

Ez. 371.—An iron wedge whose angle is 7° is driven into a mass of
oak ; find what fraction of the driving force is consumed by friction.

Ans, If W is the force on the smooth edge which exercises the
same normal pressure on the block as that produced by
w on the rough edge, then w'=009 w.

. Er. 372.—In Er. 366, if A BC is not isosceles, and if the limiting angles
of resistance at & and F are ¢ and ¢,, and if R is the pressure caused by w
at E, show that

R sin (C+¢+¢,)=W sin (B—¢,)

Ez. 373.—In the annexed figure, pcis a horizontal table, Hx a fixed
obstacle,ABCD, A BEF two Fig. 93
movable inclined planes, ,
having a surface of contact /x
A B, inclined at an angle LS
to the horizon ; the former L N VA
is urged forward by a force M
P, the latter downward by a A Ri j
force w; ¢, ¢,, ¢,, are the ! Yw
limiting anglesof resistance R2 {
at AB, HEK, and Dcrespec- o 0" B
tively : show that when the

horizontal force p is about
. v qQ c
to overcome the vertical n/ \ .
L}

K

force w
P 08 ¢, co8 (a+ ¢ +¢,) =W cos ¢, sin (a+¢+e,)

[The diagram shows how the various reactions act. The student must
bear in mind that the upper plane is in Fie. 04.
equilibrium under the action of w, ®,, and i X
®'; the lower plane under the action of
P, B, and R,, and of these ® equals »’. He
will find it a useful exercise to determine __P
independently the relation between P and ]
w, when K K and » ¢ are smooth.

Er. 374.—In the annexed %gure let %c D—%F
ABEH be fixed, ¢ p a horizontal plate cap- &

Qo

able of moving up and down between the
L
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guides g and r: if the inclination of ABto cD is a, and all the surfaces
are smooth except A B, show that when the horizontal force » is about to
overcome the vertical force @
P=q tan (a+¢)
Ez. 375.—In the last example, if all the surfaces are rough, show that
P cos (a+¢) cos (¢, +¢;)=Q cos ¢, sin (a+¢ +¢,)
Exz. 376.—In the last example, if Q, is the force that will just drive »
out, show that
asin(a+@+o cos (a—¢) cos (¢,—¢;)=4, sin (a—p—9¢,) cos (a+¢)
cos (¢, + ¢5)
What is the smallest slope of A B at which it will be possible for this to
happen ?
79. The form of the helizc or the thread of the screw.
Fia. 95. —ULet ABC be a right-

angled triangle, and DEFG

B
a cylinder, the circum-
ference of whose base is
A |c equal to the base (a C) of
F E
h
6N € D

the triangle ; if we sup-

pose this triangle to be

wrapped round the cylin-

der so that A and ¢ come

together, as indicated by

the small letters acb,

the hypothenuse A B will

take the form of a curve

called the helix, i.e. the curve to which the thread of a
screw would be reduced if it became merely a line.

Ex. 877.—If the distance measured parallel to the axis between two

turns of a thread of a screw (or its pitch) is A and the radius of the cylinder
is 7, show that the length of n turns of the thread is n.,/4%%r2 + A2,

Ex. 378.—Show that if 4 is the pitch and r the radius of the cylinder,
then if 0 is the angle of inclination of the thread of the screw we shall have

h
tano_z_ﬂ_,

Ex. 379.—The length of a screw is 1} ft., in which space the screw makes
36 turns, the radius of the cylinder is 1} in.; determine the angle of incli-
nation of the thread and its length. Adms. (1) 3°2"12”.  (2) 3397 in.

80. The form of screw with o square thread.—In
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the last Article we considered the form of the geometrical
curve called the helix. If we suppose that instead of the
triangle A ¢ B we have a solid, such that, when Fio. 9.
it surrounds the cylinder, its upper face Q
projects at right angles to the cylinder at
every point, as shown in the annexed figure ;
this upper surface will have the form of
the upper surface of the square-threaded
screw ; if now the lower part of this pro-
jection be cut away, so as to leave a project-
ing piece of uniform thickness, we shall
obtain a screw with a square thread, as shown in fig. 97,*
a section of which made by a plane passing through the
"axis of the cylinder is shown in fig. 98. The student will
remark that the thread of a screw, though a very common
object, has a very remarkable form ; for instance, the curve

a,.: "

aa’ (fig. 97), which when prolonged passes through the
points a, a,, a, (fig. 98), is a helix, as also is the curve
bb' (fig. 97), which when prolonged will pass through the
points b, b,, b, (fig. 98). Now imagine a cylinder to be
described whose axis coincides with that of the screw, and

* When there is a considerable distance between two consecutive turns
of the thread, as is the case with the screw represented in the figure, it is
usual to have a second intermediate thread running round the cyliader.
This is done for the purpose of distributing the pressure exerted buiweecn
the thread and its companion over a larger area, and thereby decreasingtos
risk of breaking the thread.

L2
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whose surface cuts the thread between a and b (fig. 97),
the curve of section will be a helix, as indicated by the
dotted line ; the triangles whose hypothenuses form these
helices will all have the same height, viz. a a, or b b, (fig.
98), but their bases will be the circumferences of the
bases of their respective cylinders.

Ez, 380.—If  is the height. between two turns of the thread of a screw
(er its pitch), » and r, the rqdii of the external and internal cylinders,
and 0 and 6, the angles of inclination of the external and internal helices,
show that
2xh (r—n,)
axirr, + h?
and show that the formula gives a correct result when 7, =0.

Ez. 381.—If the thread of the screw in Ex. 379 were cut half an inch deep,
determine the difference between the lengths of the interior and exterior
helices, and the inclination of the mean helix. 4ns. (1) 112-8 in. (2) 3° 38,

Ex. 382.—The external and internal radii of the thread of a square-
threaded screw are » and r, ; its thickness (measured parallel to the axis)
is a; show that the volume of one turn of the thread is » (r*—n%) a. ~

Ex. 383.—A wrought-iron screw is 1 ft. long, and 13 in. in radius, the
thread makes 3 turns in 2 in., its thickness is § in., its depth } in. ; find its
weight, and the weight of the part cut away when the screw was made.

Ans. (1) 276°1 0z. (2) 106°2 oz.

tan (0, -— 0) =

Fie. 9. 81. The screw-
B press.—The most
familiar application

of the screw occurs
in the screw-press,
and as it is very
desirable that the
student should get
[ 1 a clear conception
of the mode of
D o oo B| action of the forces
in the case of the

M screw, he will do

well to examine a
. / / l , SCrew -press ; its
most usual form is

Oe
J
13
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represented in the annexed figure, and can be sufficiently
described as follows: FFFF is a strong frame; at A in
the middle of the cross piece it a hollow nut, on whose
interior surface is cut a groove, called the companion
screw, which the thread of the screw BC exactly fits ; the
end ¢ of the screw is fixed to the piece DE in such a
manner that the screw is free to turn, while the piece b E
can only move in a vertical direction in consequence of the
guides FF and FF; it moves downward when the screw
is turned by the handle G H in one direction, and upward
when the screw is turned in the opposite direction ; in the
former case a pressure isexerted on the mass M which it is
the purpose of the machine to compress. The action of
the forces in this case will be understood by considering
the annexed figure, in which ' Fro. 100,

AAAA representsa section of
the nut, BC of the screw, F ¥ \

the guides, D E the movable
piece, YY the thread of the
screw, X X the groove of the
companion ; the force P is
equivalent to the pressure P |
at the end of the arm which "W

tends to turn the screw ; Qis N

the reaction against DEwhich
balances p; the frictions ¢

called into play in this case l\
are the following: (1) be-

tween the thread and the |- -\
groove, (2) between the end
of the screw and the piece
DE, (3) between the guides 91
F Fand the sides of the piece

DE, (4) between the cylindrical surfaces of B and A. It
is not easy to obtain the relation between P and Q in the

B
X Y

>

N
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state bordering on motion when all the frictions are taken
into account ; * the frictions marked (3) and (4) are, how-
ever, small, and in the following pages will be neglected.

Ex. 384.—Show that in the case of the screw-press the relation between
p and q is given by the formula

Pa=qrtan (a+¢)

where a is the length of the arm on which p acts,  the radius of the screw,
a the angle of inclination of the thread, and ¢ the limiting angle of resist-
ance between the thread and groove ; all other frictions being neglected.

If (referring to fig. 94) cp is a horizontal table, movable in a vertical
direction between guides EF; and if ABHK is a fixed inclined plane, and
ABCD a movable inclined plane, then if a is the inclination of a B, and if
all the surfaces are smooth except A B,

P=q tan (a+¢)

If ABC D i8 wrapped round a cylinder, and A B H K round a hollow cylinder,
we obtain the same arrangement of pieces that exists in a screw working
against a fixed nut; but @ acts along the axis of the cylinder, and » acts,
not tangentially to the cylinder, but at the end of an arm a.

Suppose the force @ to cause pressures ¢,, ¢ ¢p» - . . . at different points
of the thread of the screw, and suppose p,, 2, 25 . . . . to be the forces
which acting borizontally in directions touching the surface of the cylinder
at those points woyld be on the point of overcoming ¢,, ¢;, ¢sy + . . . Te-
spectively, then the relation between p, and ¢, must be the same as that
between P and Q given above. Hence

. n=g tan(a+¢)
similarly Py=g¢,tan (a+ )

p,-rg,tan (a+9)
and therefore p, + P, + Ps+ ..=(q1+ @ +¢s+ . . . ) tan (a+ o).

Now p,, pgy s, + - - have the same tendency as P to turn the screw round
its axis, and therefore the principle of moments gives us

PA=Dr+P L+ P oo o

* If 25 equals D B, p the radius of the end of the screw, u, u’, u” the co-
efficients of friction between screw and nut, screw and p &, and guides and
p & respectively, and the remaining notation the same as that employed in
Fz. 384, the following, it is believed, will be found to be the correct formula
for the relation between p and @ :—

— __mrcos(2a+9) _ _ba o .
- ( JTT W oostacos(at ) sy (710 @+ 9+ 1ir )

evidently differs but little from the formula of Ez. 398,
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also since the pressures ¢,, ¢ ¢s, . - . are all parallel ta Q’s direction, we
have
Q=@+ %+ g+ . o . .
therefore Pa=Qr tan (a+ ¢)
Ezx. 385.—Show, by a method similar to that employed in the last
example, that when all the frictions are neglected

Pa:=xQr tan a

and that »: q::the pitch of the screw : the circumference of the circle
described by the point at which p acts.

Ex. 386.—There is a screw with a square thread the radius of which is
1 in., the pitch is } in., the nut is of cast iron and the screw of wrought iron,
their surfaces are well greased ; determine the pressure that would be pro-
dueed on the substance in the press if we neglect all the frictions but that
between the thread and the groove, when the screw is turned by a force of -
150 1bs. acting at a distance of 3 ft. from the axis of the screw.
Ans. 35,275 lbs.

Ez, 387.—In the last example determine Q if the screw is not greased.
Ans. 22,007 lbs.

Ex. 388.—Find the number of turns per foot which the thread of a per-
fectly smooth screw will make whose power is the same as that of the screw
described in Exr. 386. Ans. 124 nearly.

Ex. 389.—1If in any screw reckoned perfectly smooth a force » were re-
quired to compress a substance with a force @, and if ¥ were the additional
force required in consequence of the friction between the thread and the
groove, show that

’ - 2ur
4 s ze o nearly,
where a is the angle of inclination of the thread of the screw, and u the
coefficient of friction—neither being large.

Ex. 390.—If the screw described in Ex. 386 has to exert a pressure g,

find both from first principles and from the formula in the last example the

" value of r’;’. Ans. (1) 1885. (2) 1-880.
Ex. 391.—The diameter of the screw of a vice is 1 in. and the thread

makes 4 turns to the inch, the whole is of cast iron and the screw is well

greased ; the handle by which it is turned is 6 in. long and is urged by a

force of 100 1bs. ; the jaws of the vice hold an ungreased piece of wrought
iron by friction only ; find the force requisite to extractit. 4ns. 2530 lbs.

82. Friction on the end of the screw.—Let ABC be a
cylinder or pivot, the end of which is urged against a rough
plane by a force Q acting along its axis 0C 3 the cylindex
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is supposed to be on the point of turning round the axis,
and is opposed by the friction ;
it is required to determine the
moment of the frictions with
respect to the axis o c.

It may be assumed that the
. inequalities of the surfaces
will wear away, and that the
pressure will be equally dis-
tributed; consequently if p is
the radius of thé pivot (say

Fia. 101

in inches), % will be the pressure per square inch,
Gy

and consequently ’% will be the friction per square inch ;
|
hence if we consider a small ring enclosed between two
circles, whose radii oP and 0op are respectively r and
4 8r, its area will ultimately equal 27r8r, and the fric-
tion on it will equal g’?r&r. Now the friction at every
point of this ring acts in a direction perpendicular to the
radius at that point, and hence the sum of the moments
of the frictions on this ring with respect to the axis will

ultimately equal 2%31"87‘; the same will be true of any

other ring, and therefore we shall obtain the required
moment if we divide the area into a great number of
rings, and ascertain the limit of the sum of the moments
of the frictions on each ring; this can be done as follows:

Take DE=p and at right angles to it draw EF=p,

perpendicularly to both draw E 1a[=_2;:'_Q , complete the
rectangle EF G H, and complete the pyramid D EF G H; take

DP=r and Pp=24r, and through p and p draw planes
parallel to the base enclosing the lamina PRS; then it is



FRICTION ON END OF SCREW. 153

plain by similar triangles that ps=7»and p R=?i,? T, con-

sequently the volume of the lamina is ultimately equal to

Fi6. 102

D ;) P E‘
2uQ ==r%r, ie. the moment of the friction on the ring
P

is correctly represented by the volume of the lamina,
and the same being true of any other lamina, we shall
have the moment of the whole correctly represented
by the volume of the pyramid,* i.e. the moment equals
ipxpx ilpa or moment of friction=§pQu.

Ez, 392.—If the screw rests on a hollow pivot whose internal and ex-
ternal radii are respectively p, and p, show that the moment of the friction
round the axis of the screw is given by the formula

2 rf=p’ SO
, Tp—p?
and show from this formula that when p, is very nearly equal to p the
friction is very nearly equal to pqu.
Ez. 393.—In the screw when the friction on the end as well as the fric-
tion on the thread is taken into account we have

P= %Q tan (a+ ¢)+§.Eq;4
where p is the radius of the end on which the screw rests.

* The student who understands the Integral Calculus will perceive that
the above construction is equivalent to integrating the expression 2’) ~ridr

between the limits of =0 and r=p.
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ferring to Ez. 384 the equation deduced from the principle of
morhents will become

Pamrp + 1P+ TPy . o o o +3pau]

Ex, 394.—It is required to compress a substance with a force of
10,000 1bs. ; the screw with which this is done has a diameter of 3 in., and
its thread makes 1 turn to the inch ; the arm of the lever is 2 ft. long;
determine the force P that would be required—(1) if all frictions were
neglected ; (2) if the friction between the thread and groove were taken into
account; (3) if the friction on the end of the screw, which is 1 in. in radius,,
were also taken into account; the surfaces being iron on iron well greased.

Ans. (1) 66:3 1bs. (2) 129'6 1bs. (3) 1675 lbs.

Ez. 395.—An ironscrew 4 in. in diameter communicates motionto a nut ;
the force is applied at the extremity of a lever 1 ft. long ; the inclination of
the thrend of the screw is 6°; determine the relation between the force
applied and the weight raised by the nut, taking into account the frictions
between the thread and groove, and the end of the serew whose diameter is
8 in.—the surfaces are cast iron—(1) when well greased, (2) when ungreased.

Ans. (1) p=00427a. (2) P=0-0583a.

Ez. 396.—If the angle of the screw were 12°, the diameter of the screw
and of its end 4 in., and the lever by which it is turned 2 ft. long, the sur-
faces being of cast iron and ungreased, what weight will a force of 1 cwt.
overcome ? Ans. 2730 1bs.

Ex. 397.—Determine the force required in Ex. 394 if the surfaces are
of ungreased oak. Ans. 488 lbs.

[The fibres may be reckoned to rest endwise between the thread and the
groove as well as between the end and the movable piece.]

Ex. 398.—Given @ the pressure to be produced by the screw,  the radius
of the mean thread, = the length of the arm, A the pitch, u the coefficient
of friction between the thread and the groove, if the friction between the
thread and the groove is the only one taken into account, show that the
force to be applied at the end of the arm is given by the formula *

r h+ 2wpr

R 2wr—hu
83. The endless screw.—It is not very unusual to make
a screw work with a toothed wheel; the arrangement of
the pieces when this is done will be sufficiently understood
by an inspection of the annexed diagram ; the screw A B may

* This is the formula given in General Morin’s Aide-llfémoin, p. 809,
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be mounted in a frame, and turned by a winch; the
teeth of the wheel (C) work with the worm of the screw,
on turning which the wheel is Pro, 198,

caused to revolve ; as the screw has
no forward motion, it will never
go out of action with the wheel,
and is, on that account, termed
an endless screw. The reader will R
find in Mr. Willis’s ¢ Principles of
Mechanism’* a discussion of the form that must be given
to the teeth in order to secure equable working. When
the machine is employed, it commonly happens that the
screw drives the wheel ; sometimes, however, the screw is
driven by the wheel, as in the case of the fly of a musical -
box. In the former case, if P is the force at the end of
the .arm which turns the screw, and Q the force exerted
by the screw on the wheel in a direction parallel to the
axis, it is easily shown that the relation between P and
Q is the same as that determined in Ez. 384.

Ezx. 399.—If a force P acting on the thread of a screw in a direction
parallel to its axis is on the point of driving a force Q acting along a tangent
to its base, show that

Q=~P tan (a—¢)
where a is the inclination of the thread of the screw at the working point,
and ¢ the limiting angle of resistance between the driving and driven
surfaces.

Ez. 400.—If the action of an endless screw is reciprocel, i.e. if it will act ’
whether wheel or worm is driver, show that the inclination of the thread of
the screw must be greater than ¢ and less than its complement.

Ez. 401.—An endless screw consists of a cylinder of cast iron the radius
of whose base is 3 in. ; the thread makes one turn in 4 in.; what is the
greatest extent to which the thread can project if the tooth by which it is
driven is of cast iron and is ungreased ? Ans, 098 in.

Ezx. 402,—In the last example, if the depth of the thread be 1 in. what is
the least pitch with which the machine can work if the surfaces are greased ?

Ans, 2°513 in.

* P. 160,
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84. Friction of guides.—One or two instances of the

Fio. 104 friction of guides have been given

x already (Ez. 373-6); the following

w Al B case will still further illustrate the

l subject :—EF is a beam constrained

k£ to move in a vertical direction by the

" four guides A, B, ¢, D ; a projection G H

\ ¢ n at right angles to EF works with a

o tooth or cam, K, revolving on a wheel :

") by the action of the cam the beam

is lifted and then allowed to fall by

its own weight, thereby serving as a

' » hammer. In the fundamental case

va the forces act as in the figure: and

we treat the beam as a straight line,

F the guides as points, and represent
w AC by a, GE by b, HC by =.*

Ez. 403.—In the above case show that
P { a—2bp—( a—2x)u } =aw

Ez. 404.—In the above case if w'z> b show that the forces will not act
exactly as shown in the figure, and that

P(l—pu)=w.

* For a fuller discussion of this case, see Traité de Mécanique appliq. auz
Machines, par J. V. Poncelet, vol. i. pp. 234-238.
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CHAPTER VII.

OF THE EQUILIBRIUM OF BODIES RESTING ON AN AXLE, AND
OF THE RIGIDITY OF ROPES; WHEEL AND AXLE, PULLEY.

SecTION I.

85. Fundamental condition of equilibrium in the
state bordering on motion, of a body capable of revolving
round an axle—All the forces acting on the body can
be reduced to a single resultant, to which, Fie. 105,
when the body is at rest, the reaction of
the bearing must be equal and opposite ;
let the annexed figure represent the axle
resting on its bearing ; let R be the re-
sultant of the forces acting on the body,
and let its direction cut the circumference
of the bearing at the point P; take o the
centre of the bearing and join oPp; this -
line is the normal at the point of contact ; g
the body will therefore be in the state bordering on motion
when the angle 0 PR equals the limiting angle of resist-
ance, the motion being about to ensue in the direction
indicated by the arrow-head. This consideration enables
us to give a very simple construction, which will apply to
all cases in which the forces act on the body along parallel
lipes. Take O the centre of the bearing (fig. 106), draw
a line A o parallel to the directions of the forces; if the
body is about to move in the direction indicated by the
arrow-head, make the angle A0? equal to The Wiy



158 PRACTICAL MECHANICS.

angle of resistance; then the resultant force must act
along the line RP parallel to 04, since this is the only
o, 106, line drawn parallel to 0 A which will cut

the circumference in a point P such that
the angle 0 PR equals the limiting angle
of resistance ; hence if we measure mo-
ments round P, we shall obtain the re-
quired relation between the forces, the
sum of those moments being equal to
/ zero by Art. 58. Of course if the motion
is about to ensue in a contrary direction,
the angle A 0P must fall on the other
. side of 0A. It will be remarked that
the radii of the axle and its bearing are

sensibly equal, so that though in the diagram they are repre-
sented asdifferent, that difference never enters the question.
86. Friction of axles.—When the body is in the state
bordering on motion, the values of the coefficient of fric-
tion are the same as those given in the last chapter; the
same is also true in cases of motion where no unguent is
interposed ; in nearly all cases of motion, however, an axle
is kept well greased, both to prevent wear and to diminish
the resistance ; the unguent may be supplied at intervals,
as in the case of a common cart-wheel, or continuously, as
in the case of the wheel of a railway carriage ; as might be
expected, a continuous supply of unguent is found to be
the most effective meansof diminishing the resistance. The
following table gives the values of the coefficients of fric-
tion, and the limiting angle of resistance for the axles and
bearings most commonly used ; the coefficients of friction
are taken from the experimental determinations of General
Morin,* from which the limiting angle of resistance has

* Notions Fondamentales, p.309. To avoid ambiguity, the means of some
of Gen. Morin’s results have been taken; thus, instead of 0:07 to 0:08, tho
following table gives 0-075.
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been calculated—those cases have been selected in which
the unguent is most effective in diminishing friction.

TasLe XII,
FRICTION OF AXLES MOVING ON THEIR BEARINGS.

Axie Renewed at intervals wn"&‘;‘;‘;&y
Be:'ggs Unguent,
tan g orsing | ® é:’.?ﬂﬁ 4
Cast iron on | Oil of olives, tallow, | 0075 (mean) | 4° 20’ | 0054 [3° ¢’
cast iron or hog's lard
'Wrought iron Do. 0°075 (mean) | 4° 20’ [ 0:054 | 3° 6’
on cast .
'Wrought iron Do. 0°075 (mean) | 4° 20’ | 0054 |3° 6"
on brass
'Wrought iron | Oil, or hog’s lard {011 6° 20/
ou lignum-
" vite
Brass on brass Do. 0-095 (raean) | 5° 30
Brass on cast | Oil or tallow .« . e . .« |0°0485[2° 47
iron (mean)

Ex. 405.—Let A B (fig. g) be a beam movable about a wrought-iron axle
which rests on a cast-iron bearing, and whose axis passes at right angles
through the axis of the beam ;¥ the centre c of the axle is 12 in. from a, and
30 in. from the centre of gravity of the beam and axle, the radius of
the axle being 3 in. ; the weight of the whole (i.e. of the beam and axle) is
400 1bs.: find the weight which, when hung at A, will just cause the end A
to descend. ’ .

Draw the figure toscale ; draw through c the vertical line ¢ b, and make
the angle D cq equal to the limiting angle of resistance (10° 45); draw the

* Of course thereare in reality two bearings situated symmetrically with
reference to the length of the beam, each of which supports half the united

Fia. 107.

;1 e ’]n

[

C

pressures Pand w; the ptanof the machine being shown in the accompanying,
figure. '
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vertical line @ B cutting A Bin % ; then this being the direction of the reaction
the principle of moments gives us
PXAN=W X G

but since nc is very small, it is desirable to constract the axle on a larger
scale; this is done in fig. 4, from which we obtain cn equal to 057 in.;
hence we find P equal to 10698 1bs. ; a result precisely the same as that
obtained by calculation,

If A cis represented by p, ca by g, cq by p, and if ¢ is the limiting
angle of resistance between the axle and its bearing, we shall have
cn=p sin ¢, and therefore an=p—p sin ¢ and na=g+p sin ¢, whence
generally

? (p—psin p)=w(q+p sin ¢)
In future p will be used to denote the radius of any axle that may be under
consideration.

Ez. 406.—In the last example determine the value of P which will just
prevent the beam from'falling when no unguent is used. 4ns. 9365 lbs.

Ez. 407.—Determine the magnitude and position of the resultant pressure
in Ez. 405 if we suppose P=1020 lbe.; and determine the magnitude of
the angle its direction makes with the normal to the point of its application.

Ans. (1) 1420 1bs. (2) en=32in. (3) can=3° 13’ 47",

Ex. 408.—There is a beam of oak A B whose length is 30 ft., depth 2 ft.,
and thickness 1 ft. ; at right angles to its face passes an axle of wrought iron
the part of which within the beam is 8 in. square, the projecting part on each
side is 6 in, in diameter and 6 in. long (so that its total length is 2 ft.), its
axis is situated 10 ft. from the end A, at which end is exerted a force of
5000 1bs. ; find the force at B which will just keep the beam from turning
and the amount to which that force must be increased if it is on the point
of overcoming the force at A ; the axle rests on an oaken bearing ungreased.

Ans, (1) 1550 Ibs. (2) 1700 1bs.

Ezx, 409.—If a string were wrapped round the grindstone described in
Ez. 16, determine the greatest weight that could be tied to the end of
the string without causing motion, supposing the bearing to be of cast iron
well greased. Ans. 48 lbs.

Ez, 410.—If » and q are two parallel forces acting in contrary directions
and keeping a body in equilibrium, and if P, the one more remote from the
axle, is on the point of causing motion, show that

P(p+psin ¢p)=q (¢+p sin ¢)

[If we gradually increase p while @ continues constant, it is plain that
their resultant will be made to act at a continually increasing distance
from @. Consequently, in the case supposed in the question, the resultant
acts along a line as remote from q as is consistent with equilibrium.]

87. Wheel and axle, pulleys.—The wheel and axle and
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the pulley are familiar examples of bodies capable of mov-
ing round a fixed axle ; they may be sufficiently described
as follows :—

(1) The wheel and axle.—Let A B represent a cylinder
of wood or some other material called the axle, to the
end of which is firmly fixed a
cylinder of a large diameter Ec
called the wheel ; they rest on a
pair of bearings by means of a
small cylindrical axis, one end of
which is p, the geometrical axes |
of all these cylinders being coin-
cident ; ropes are wrapped in op-
posite directions round the wheel
and axle respectively, to the ends |
of which weights P and Q are at- [}
tached ; if p is so large as to descend, it will do so by turn-
ing the machine ; this will wind up Q’s rope, and thereby.
cause that welght to ascend. It is usual to describe the
wheel and axle in the above form, in order to give definite-
ness to the calculation ; in practice, however, a winch com-
monly supplies the place of the wheel. :

(2) The pulley is simply a FiG. 109.
thin cylinder with a groove cut
in its circumference, on which
a rope can rest: the cylinder ' O
is capable of turning round an
axis, which is supported by a
piece called a block ; this well-
known machine is represented
in the accompanying diagram. 3
When several pulleys are combined into a single machine,
they constitute what is called a system of pulleys; the
system most commonly used is called the block and
tackle; it consists of two blocks containing pulleys

M
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(under these circumstances called sheaves) which are
either equal in number, or else the upper block contains
one more sheave than the lower ; the upper block is fixed,
Fe. 10, while the lower car- Fia.
ries the weight; one
end of the rope by
which the weight is
raised is fastened to a
one of the blocks, and
passes in succession
round each of the
sheaves,as represented
in fig. 110; but it
must be added that
the sheaves in each
block are commonly
made equal, and ar-
ranged one behind
the other on a com-
mon axis. Another
system of pulleys,
called the Barton, is
-sometimes employed ; it consists
of one fixed and any number of movable pulleys; to the
block containing each movable pulley is fastened a rope,
which after passing under the next pulley (thereby sup-
porting it) is fastened to a fixed beam. The last of these
pulleys carries the weight to be raised; the rope which
carries the first movable pulley passes over the fixed
pulley ; on shortening this rope the pulleys, and with
them the weight, are raised ; the arrangement is shown
in fig. 111 ; it rarely happens that more than one movable
pulley is employed.
It is to be observed that the rigidity of the cords, i.e.
their want of perfect flexibility, plays an important part

Q
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in calculations concerning the mechanical power of the wheel
and axle, and of the pulley ; we will therefore proceed to
explain the method of taking that resistance into account.

88. Rigidity of ropes.—Let A BC represent a drum or
pulley, movable about an axis ¢, and let a rope A B D pass
over it, to whose ends are Fia. 112,
applied forces P and Q re- p
spectively, the friction of the
rope being sufficient to pre- B
vent sliding ; if one of the
forces P overcome the other
Q, it must do so by causing
the drum to revolve, thereby
winding on the rope ABD.”%
Now the portion A B being
circular, and B D being straight, the rope must be bent -at
the point B, and the rope not being perfectly flexible will
offer a resistance to being thus bent, and a certain portion
of the force P will be expended in overcoming the re-
sistance. It is found that this ¢rigidity ’ of the rope can
be taken account of by supposing Q to act along the axig
of the rope, i.e. at a distance from C equal to } of the sum
of the diameters of the rope and drum, and then increas-
ing Q by a certain force ; it is found by experiment that
this additional force consists of a part depending only on
the rope, and another part proportional to Q; it is also
found that, when other circumstances are the same, this
additional force is greater as the curvature of the axis
of the rope is greater, and therefore it can be correct]y
represented by the formula

A+BQ
R
where A and B are constants to be determined by experi-
ment, and R is the effective radius of the drum, i.e. half
the sum of the diameters of rope and drum.
¥ 2

Q
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The principal experiments on the rigidity of ropes are
due to M. Coulomb,* whose results have been discussed by
various writers. M. Morin considers that M. Coulomb’s
experiments are sufficient for the construction of empirical
formul only in the cases of new dry ropes and of tarred
ropes : from a discussion of the experimentst he obtains
values of A and B which, after reduction, give the follow-
ing values of the above formula : —

(1) For new dry ropes, the resistance due to ngxdlty
in 1bs. equals

= { 0-062994 + 0-253868¢*+ 0:034910Q }

* (2) For tarred ropes, the resistance due to rigidity in
1bs. equals

c { 0-222380 + 0-185525¢?+ 0+ 0289170}

where Q is estimated in lbs., ¢ is the circumference of the
rope in inches, and R the eﬁ'ectlve radius of the drum or
pulley in inches. From these formule the following
table has been calculated :—

Tasre XIII.

RIGIDITY OF ROPES.

. | Radius of | Circumt. New Dry Ropes Tarred Ropes

- Rope of Rope A B N B
016in. [ 1 in. 0-32 0034910 041 0-028917
0-24 15 143 0°078543 144 0-065068
032 2 4-31 0°139640 3:86 0°115668
040 2:5 1031 0218183 8:64 0-180731
048 3 21113 0-314190 1703 0-260253
056 35 3887 0427643 80-56 0-354233
064 4 66:00 0-558560 51:05 0-462672
072 45 10538 0-706723 8008 0-685569
0'80 5 16023 0-872750 121-50 0-722925

* An abstract of Coulomb’s Memoirs is given in Young's Nat. Phil.
vol. ii. p. 171.
+ ANotions Fondamentales, pp. 316-382.
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Rule.—Multiply B by Q in lbs., add the product to a,
divide this sum by the effective radius of the drum or
pulley in inches, the quotient is the resistance in lbs.

If the resistance added to Q give ', the relation between
p and Q will be the same as that which obtains between
P and Q', acting by means of a perfectly flexible thread on
a drum or pulley whose radius equals the effective radius.

It is to be remarked, that the resistance due to rigidity
is only called into play when the rope is wound on to a
drum ; there is no resistance when the rope is wound off.

For example: If the diameter of a pulleyis 11 in. and
a new dry rope 3 in. in circumference is used to lift a
weight of 500 lbs., we have the effective radius of pulley
598 or 6 in., and hence

A+BQ_ 2113 +0-31419 x 500
R 6
go that we may consider that a weight of 530 lbs. has to
be raised by means of a perfectly flexible string ovEr a
pulley 6 in. in radius.

=30 lbs.

Ex. 411.—To determine the relation between » and q in the case of the
wheel and axle.

In the annexed figure, let c A, Fra. 118,
the radius of the wheel, be repre-
sented by p; B, the radius of the R

axle, by ¢; cD, the radius of the

axis, by p; the power P and the

weight @ act vertically at A and

B, and the weight of the machine

w acts vertically throughc. If » 4

is on the point of preponderating

over @, make w ¢ D equal to ¢ (the

limiting angle of resistance be-

tween the axis and the bearing),

then the reaction of the bearing

willact verticallyupward through e w Q
p; and if its direction cuts the

line A B in 5, we have from the principle of moments

P.2A =Q. 7B + W.NC-
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but nc =g sin ¢, therefore #A =p—p sin ¢, and 2B=g +p sin ¢; also if we
take into account the rigidity of the rope, the effective value of q is

A+BQ
q
Hence the required r¢lation between » and q is

?(p—psin ¢p)= (0+ A;m) (g+p sin ¢) + wp sin ¢

Qe+

If no account be taken of the rigidity of the rope, the relation between p
and g will be
P(p—p sin ¢)=q (g +p 8in ¢)+Wp sin ¢

Ex. 412.—A wheel and axle vtveigh 1 cwt., the radius of the wheel is
2 ft., of the axle 6 in., the radius of the axis is 1 in., it is of wrought iron,
and rests in a bearing of cast iron well greased ; if q equals 1000 lbs. find
the magmtude of p (1) when it will just support, (2) when it is on the pomt
of raising @—the rope being considered perfectly flexible.

Ans. (1) 244:3 1bs. (2) 2557 1bs,

Ex. 413.—In the last example, if g is supported by a new dry rope 3 in.
in circumference, determine the value of P when on the point of raising q.

Ans. 290 1bs,

[The increase of the radius of the axle due to the thickness of the rope
must not be overlooked.]

Ex. 414.—If p and @ are two parallel forces, and p is on the point of
drawing up Q over a pulley whose effective radius is », and weight w, show
that

i P(r—p sin ¢p)=Q (r+p sin ) +wp sin ¢

where the positive sign is used if P and q act downward, and the negative
sign if theyact upward ; and that when the rigidity of the rope is taken into
account the formula becomes

P (r—p sin ¢)=q (1 + ;) (r+psin ¢) + ;(r+psin ¢)+wpsing

[The proof of the above formulse exactly resembles that given in Er,
411, except that ca and c B are equal.]

89. Remark.—It appears from the formula of Ex. 414
that the part of P expended on the friction caused by the
weight of the pulley is small, since it is represented by
W p sin ¢, in which w is commonly small compared with
P and Q, and p sin ¢ is always small compared with r;

now if we omit the last term the formula will be the same
3
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whether P and Q act vertically upward or vertically down-
ward, and can be written :
P=aQ+b
where @ and b are written instead of the complicated
expressions .
a=(1 +1—3) Jrtpsing gp-A TtHpsing
r/ r—psing T r—psing
In the following questions @ and b will have these
values, and it will be understood in every question re-
lating to combinations of pulleys that the effect of the
weight of the pulley on the friction of the axle is neg-
lected ; it must also be remembered that this is not the
same thing as neglecting the weight entirely.

Ex. 415.—A pulley 6 in. in radius has an axle of 1 in, in radius of wrougk.t
iron, turning on an ungreased bearing of cast iron; a weight of ¢ Ibs. attached
to a rope 8 in. in circumference is on the point of being raised over the pulley
by a weight of p 1bs. attached to the other end of the rope: show that

P=11117Q+ 3'4
Ex. 416.—If pis on the point of lifting @ by means of a Barton consist-

ing of one fixed and one movable pulley, asshown Fia. 114.
in the annexed figure, determine the relation be- i 3
tween P and Q. —

[Let T, and T, represent the tensions of the
portions of the rope against which they are
written; then since the rope is the same and
the pulleys like one another, we shall have :—
since P is on the point of overcoming T,, and T,
on the point of overcoming T,, and both T, and

T, together lift g,
P =an+bd
T,= aT,+b
el= T :-'r 5 1 ®
1 2

Therefore (1+a) p=a’q+ (1+2a)b.]

Ez. 417.—If the pulleysand ropes are of the
kind specified in Exz. 415, and if the whole weight
lifted is 1000 1bs., determine P; also determine
P supposing that all passive resistances are neg-
lected. Ans. (1) 590 1bs. (2) 500 lbs.

[The weight of 1000 1bs. of course includes
the weight of the lower block.] Q
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Ex. 418.—If q is raised by means of a block and tackle each containing
a single sheave, show that the same relation exists between P and q as that
given in Ez. 416.

Ez. 419.—If »is on the point of raising @ by means of a block and tackle
containing in all 5 equal sheaves—the parts of the rope being all parallel—
find the relation between P and Q.

[See fig. 110. If ¢, 2, %, . . . ¢y 8re the tensions of the successive
portions of the rope, we shall have

P =af, +b
t,=at,+b
to=aty+b
thy=at®+b
and i+l 4+ttt ta=a
whenese, eliminating ¢,, ¢, Zy, . . . £y, We obtain
a® (a— 1) nba® _ ]
. -1 a—1 a—1
° Ez. 420.—Show from the formula in the last example, and also from
first principles, that when the passive resistances are neglected np=q.

Ez. 421.—There is a block and tackle consisting of six sheaves each 3
in. in radius, whose axles are } in. in radius, and are of ungreased wrought
iron turning on cast iron ; the rope used is untarred and is 4 in. in circum-
forence, the total weight raised (i.e. the mass and lower block) is 1000 1bs. ;
find the force required (1) taking into account the passive resistances, (2)

P=Q

neglecting them, Ans. (1) 390 1bs. (2) 166§ lbs.
Fie. 116, Ez. 422.—When the pulleys are
as in the annexed diagram  Fra.1l6.
(fig. 116) show that the relation be- A

tween P and q is given by the follow-
ing formula :
P(l+a+aa)=d%a,a+b(1+a
+2aa,))+ab, (1 +a)
P where a, b refer to the smaller pul- ¢
leys and a,, &, to the large pulley.

Ez. 423.—If a pair of similar
pulleys is arranged as shown in the
annexed diagram (fig. 116), where A P
and B represent immovable beams,
show that

P a_'q_ +b— aw u.
a+1 a+1
where w is the weight of the movable pulley,
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Exz. 424.—In the last example suppose each pulley to be similar to that
described in Er. 421, and the movable pulley with its block to weigh
60 1bs. ; the rope being dry and 4 in.in circumference, find the force re-
quired to raise a weight @ of 1000 lbs. and determine the corresponding
value of p when the passive resistances are neglected.

. Ans. (1) 658 1bs. (2) 475 1bs.

Ez. 425.—1If two equal pulleys are employed to raise a _ Fre. 117.
weight @ in the manner indicated in fig. 117, show that

(2a+1)p=aQ+b(2a+1)—aw
and determine P when @ weighs 1000 lbs., the pulleys and
ropes being the same as in Ex. 424 ; and when passive re-
sistances are neglected.  A4ns. (1) 432 1bs. (2) 317 lbs.

Ex. 426.—In the case of a tackle with three equal sheaves
show that the force » which will just support a weight Q is
given by the formula .

_ (a=Da 3b b
. a(a' 1) a(@=1) l) a—1
and show that when the passive resistances are neglected
‘the equation reduces to 3p=aq.

Q

90. The capstan.—This machine in one of its common-
est forms consists of a cylindrical mass of wood, ¢ D, along
the axis of which is Fo. 118,
cut a cylindrical aper-
ture, which receives
an axis A B(commonly
of metal) on the top
of which it rests; in=
the upper part of the
capstan holes are cut,
into which are in-
serted arms, such as EF, by means of which the capstan
is turned, thereby winding up the rope G H which carries
the weight.

Ex. 427.—A capstan is turned by two equal parallel forces » acting in
opposite directions at equal distances @ from the geometrical axis of the
figure, which are on the point of overcoming a force Q ; let b be the radius
of the cylinder round which the rope is wrapped, » the radius of the metal
axle, p, the coefficient of friction between the top of the axle and the ey~

2

B
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stan, and x or tan ¢ that between the side of the axle and the capstan;
show that when the friction on the top of the axle is neglected

2pa=(b+rsin ¢) (q+ “;”)

and when the friction on the top of the axle is taken into account

2pa=(b+7sin ¢)(q+ A+:°) +3ruw

where w is the weight of the capstan.
[For friction on top of axle, see Art. 82.]

91. Equilibrium of two forces acting im given direc-
tions on a body capable of turning round an axle—Let
P and Q be the forces whose directions intersect in A, and

Fra. 119, let P be on the point of pre-
ponderance ; let o be the
centre and p the radius of
the axle, and ¢ the limiting
angle of resistance between
the axle and the bearing;
with centre 0, and radius

sin ¢ describe a circle ; and
¢ within the angle 0oAP draw
the line A M touching that
circle (Eucl. 17-3), join Mo,
hen the angle o M 0 equals ¢, and if P and Qare such that
their resultant acts along A M, P will be on the point of
preponderating over Q, i.e. P will be on the point making
the body turn round its axle.

Draw o0 H, 0K at right angles to A Pand A Q respectively,
join HK,denote 0 Hby p,0K by ¢, HKbyL,PAOby a,QA O
by 8, and M A0 by 6.

Ez, 428.—In the above case show that
P (p cos 6--p sin ¢ cos a)=Q (g cos 8+ p sin ¢ cos B)
Ez. 429.—Show that the following formula gives a close approximation
to the relation between » and @ when p is very much greater than p sin ¢
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[Observing that A HoO K is a quadrilateral, about which a circle can be
described, it is plain that oEEK =48 and 0 X H=a, consequently L=p eos B
+¢cosa]

Ez. 430.—A weight g hangs from one end of a rope, which after passing
over a pulley (whose weight is neglected) takes a horizontal direction ; it is
now supported by » equal pulleys, placed at equal distances apart ; show
that the force P applied to the other end of the rope, which is on the point
of lifting q, is given approximately by the formula
A+BQ\ 7V/2+psin¢ p’ sin ¢"

r ) r4/2—psin ¢ v+

where 7, p, ¢ belong to the first pulley, #, g, ¢’ to the remaining » pulleys,
w is the weight of one of the » pulleys, and w the weight of the rope which
rests upon them,

92. The two~wheeled carriage—In this case we may
consider that the weight of the carriage is equally dis-
tributed upon each wheel. Fra.120,

Now it will be observed that =

at each instant the wheel is \
lifted over a small obstacle
A; then if 0 is the centre
of the axle, and B the point
_ of contact with the road, the
angle A 0 B must have a cer-
tain magnitude, which we
will denote by the letter .
We will also denote the in-
clination of the road by a,
and the angle between the direction of the traction and
the road by 8. Then the forces concerned are, the trac-
tion T, the weight w, and the reaction R, of the point A,
which, when T is on the point of moving w, must cut the
circumference of the axle in a point D, such that ODR=¢p;
then if we denote the angle 0 A R by 6, the relation between
T and W will be easily obtained by the triangle of forces.

Ez. 431,—When the wheel, as above explained, is on the point of moving,
show that

+(nw+w)

P=(q+

_wtin(@+v+6)
TV s (B=v—10)
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Exz, 432,—If A is the length of the arc A B, r and p the radii of the wheel
and axle respectively, and if the road and the direction of traction are hori-
zontal, show that

rT=W (A+ p¢) very nearly.

Remark.—1It appears from the experiments of General Morin that the
traction is sensibly proportional to the weight directly and the radius of the
wheel inversely, when the roads are paved or hard macadamised, and both
the road and direction of traction are horizontal ;* consequently it appears
that for such roads, under the circumstances assigned in Ez. 432, the trac-

tion, as found by experiment, equals ?, where % is a constant quantity ;

but from the example it appears that £=A+p¢, and hence the length of
the arc A must be very nearly the same for the same road whatever be the
radius of the wheel. :

* Morin, Notions Fondamentales, p. 353. The account of the carriage
wheel given in the text is taken from Mr. Moseley’s Meckanical Principles
of Engineering, pp. 896, 6, 7. The general results of M. Morin's experi-
ments will be found in the Appendix to Mr. Moseley’s work. The reader
will find a great deal of condensed information on the subject of carriage
wheels in Dr, Young’s Natural Philosophy, Lecture 18,
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CHAPTER VIIIL

THE STABILITY OF WALLS.

THE general principles which regulate the relations that
exist between the dimensions of a wall and the pressure
it can sustain on its summit have been ‘already discussed
(Arts. 42, 43); in the present chapter we shall extend
the application of the same principles to a few other cases.
Several questions intimately connected with the subject of
the present chapter are not discussed, as being too difficult
for a purely elementary work-—such are the conditions of
the equilibrium of arches, vaults, domes, the more compli~
cated forms of roofs, &c.

93. The line of resistance.—Let A BL M represent any
structure divided into horizontal courses by the lines ¢ D,

EF,GH....and let it be subjected Fro. 121, .
to the action of any pressure p A
along the line Pa; produce pa to /
meet CD in o’ ; if the mass ABcD 4 2 B

were without weight the pressure

on ¢ D would act on the pointa’;

but the total pressure on ¢p is °[& D °
the resultant (®,) of » and the //
weight of ABC D ; the direction of =[—Z

this resultant mustcut cpatsome ',/'
determinate point betweena’and | //d

D, say at b, and let the direction
of R, be bd’; now the total pres- .
sure on EF will be the resultant @e ~
(R;) of R, and the weight of ¢ p FE, which will cut EF at
a determinate point ¢, between b’ and ¥3 in the wwme
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manner, the pressure on the joint ¢ B will act through a
determinate point d, and on LM through a point e. Now
if we join the points a,b,¢,d . . . we shall obtain a poly-
gonal line which cuts each joint in the point through
which the direction of the resultant pressure on that joint
passes ; and if, further, we suppose the number of joints to
be indefinitely great,the polygonal line will become a curved
line, which is then called the line of resistance. It will
be remarked that the directions of the resultants do not
coincide with the sides of the polygon ab, be, . . . . .
and therefore the line of resistance determines only the
point at which the pressure on each joint acts, not the
direction of the pressure at that point. ,_

The line of resistance can be determined without much
difficulty in a large number of cases : when this has been
done, the condition of equilibrium—so far as the tendency
of the structure to turn round any of its joints is concerned
—is that this line cut each joint at a point within the
structure ; and, of course, the stability of a structure about
any joint will be greater or less according as the intersec-
tion of the line of resistance with the joint is at a greater
or less distance within the surface to which it is nearest.

It is plain that since the resultant of the pressures that
act on a wall passes through the point of intersection of the
line of resistance within its base, the algebraical sum of the
moments of the pressures acting on the wall taken with
respect to that point must equal zero. It may also be re-
marked that, in the case of most walls of ordinary shapes,
the line of resistance continually approaches the extrados
or outward surface ; and hence, if the wall possess a cer=
tain degree of stability with reference to its lowest joint,
it will possess a greater degree of stahility with reference
to any higher joint. Most of the following questions can,
accordingly, be solved without the actual determination
of the line of resistance.
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Ec. 433.—A wall of Portland stone 30 ft. high and 2 ft. thick has to

sustain on each foot of its length a pressure Fia. 122,

equal to the weight of 3 cubie ft. of the stone /
acting in a direction inclined to the vertical A X

at an angle of 45°. Find the point of a

bracket to which this force must be applied /

that the line of resistance may cut the base
6 in. within the extrados.

[Let the annexed figure represent a sec-
tion of the wall; Jet the force act along the
line x N, and let A x equal x; take B Qequal
to 6 in.; then the condition of equilibrium is
that the moments of the force and of the
weight of the wall round @ be equal. Draw
Q ~ perpendicular to x N; it can be easily Bbhlc
shown that Q

QN=ACCOSAXN—QCSIDAXN—AXSBiDAXN
286 —

€. QN=

‘Whence we obtain

2862, 360}
72

o 2=14-36 ft.

It may be remarked tha* the determination of a perpendicular resembling
Q X occurs in many of the following questions. It may also be added that
it is sometimes convenient to resolve the pressure into its horizontal and
vertical components at x and obtain the moment of each.] ‘

Ez. 434.—Determine the point of application of the pressure in the last
article if the line of resistance cut the base 3 in. within the extrados.
Ans. 704 fY,
Ex. 435.—A roof, whose average weight is 20 lbs. per square foot, is
40 fv. in span and has a pitch of 30°, i.e. the rafters make an angle of 30°
with the horizon ; the walls of the building are of brickwork, and are 50 ft.
high and 2 ft. thick ; they are supported by triangular buttresses reaching
to the top of the wall ; the buttresses are 2 ft. wide, and 20 ft. apart from
centre to centre. Determine their thickness at the bottom that the line of |
resistance may fall 6 in. within their extrados : determine also the answer
_that results from neglecting the weight of the buttress.
Ans. (1) 111675 ft. (2) 11754 fr.
Er. 436.—A roof weighing 20 1bs. per square foot has a pitch of 60°;
the distance between the walls that support it is 30 ft.; they are of Portland
stone and are 2} ft. thick ; the pressure of the roof being reccived on the
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inner edge of the summit, what is the extreme height to which the walls
can be built ? Ans. The walls can be carried to any height whatever.

Exz. 4387.—If the weight of each square foot of a roof is 15 1bs., its pitch
224°, and the length of the rafters 30 ft., determine—(1) the thrust along
the rafters, supposing them to be 4 ft. apart; (2) the temsion of the tie-
beum if one is introduced ; (3) the magnitude and direction of the pressure
on each foot of the length of the wall-plate,* if there is no tie-beam; (4)
the thickness of the wall, which is of brickwork and 20 ft. high, when the
line of resistance cuts the base 2 in. within the extrados, the pressure of the
roof being received on the inner edge of the summit ; (5) the distance from
the axis of the wall at which the pressure of the roof must act if the line
of resistance cuts the base of the wall 3 in. within the extrados.

Ans, (1) 2352 lbs. (2) 2173 lbs. (3) 705 1bs. at an angle of
60° 21’ 40” to the vertical. (4) 3 ft. (6) 2-7 ft.

Ex, 438.—If w is the weight supported by each rafter of an isosceles
roof whose pitch is a, show that the thrust on each rafter isz.;'T‘ and the

W.

2 tan @

94. The pressure produced against a wall by water.
—The following construction can be easily proved from
Fio. 123, the principles of hydrosta-

tics, Let AB represent a
section of the wall made
by a vertical plane, ¢ D
the surface of the water ;
draw the vertical line BE;
draw BF, at right angles
to AB and equal to BE;
join cF; then the pres-
sure on any length of the
wall will equal the weight.
of a prism of water whose base is CBF and height the
length of the wall ; or, in other words, the pressure on each
foot cf the length of the wall will be the weight of as many
cubic feet of water as the triangle BCF contains square

tension of the tie

* The wall-plate is the beam on which the feet of tlre rafters rest: its

“istribnte the pressure along the wall,
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feet ; this pressure will act perpendicularly to the face of
the wall through a point P, where BP=%BC.

- Bz, 439.—There is a wall supporting the pressure of water against its
wertical face ; determine the pressure produced by the water on each foot of

its length when 20 ft. of its height are covered, Ans, 12,500 1bs,
Exz, 440.—In the last case determine the pressure on the lower 10 ft, of
the wall. Ans. 9375 1bs.

Ez, 441.—An embankment of brickwork has a section whose form is a
right-angled triangle A B c; the base Bc is 6 ft.long; the height A B is
14 ft.; will the embankment be overthrown when the water reaches to the
top, if A B is the face which receives the pressure ?

Ans. Yes; the excess of the moment of pressure of water is 9767,

Ex, 442.—In the last case will the embankment be overthrown if A c is
the face which receives the pressure ?

Ans. Yes; excess of moment of pressure of water 8675.

Ez. 443.—In Ex. 441 what horizontal pressure applied at A would keep
the embankment steady ? Ans. 698 1bs,

Ex, 444.—If the section of a river wall of brickwork have the form
shown in the accompanying diagram, in which A B
=5 ft., pc=15 ft, and Bc equals 50 ft.; B¢ being
vertical, and the angles 3B and ¢ right angles, find 48
the height to which the water must rise against B c
to overturn it, Ans, 37°2 ft.

Ez. 445.—If in the last example the dimensions
were B C equal to 30 ft., A B equal to 3 ft., and » cequal
to 10 ft., would the wall be overthrown if the water
rose to the summit ? Ans, Yes.

Ez. 446.—There is the cofferdam sustaining the
pressureof 26 ft.of water, supported by props 20 ft. long,
20 ft. apart, one end of each is placed 3rds below the
surface of the water and the other end on the ground; determine the thrust
on each prop. Ans, 468,800 1bs,

. Ex. 447 —If the section of an embankment of brickwork were of the
form shown in fig. 124, and the dimensions were A B equal to 4 ft., D ¢ equal
to 12 fi.,,and B c equal to 24 ft., would it support the water when it rises to
the top and presses on the face A ?

i Ans, Yes ; excess of moment of weight of wall 5184.

Ex, 448.—1If the coefficient of friction between the courses of brickwork
in the last example be 075, will the wall slide on its lowest section ?

Ans, No ; defect of horizontal pressure 2628 1bs,

Ex, 449.—In Ex, 446 what vertical pressure must by some means be
supplied that equilibrium may be possible ? Ans, 203,100 1bs.

N

Fia. 124.

D £4
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Ez. 450.—There is a river wall of Aberdeen granite 16 ft. high and
having a rectangular section; the water comes to the distance of one foot
from the top of the wall ; find its thickness when the line of resistance cuts
the base 6 in. within the extrados. Ans. 534 ft.

Ez. 461.—In the last exampleif the wall had a section of the form shown
in fig. 124, where A B is 1 ft. long, the vertical face of the wall being towards-
the water ; determine the width at the bottom when the line of resistance
cuts the base 6 in. within the extrados. If the walls in this example and
the last are 200 ft. long, determine the solid contents of each.

dns, (1) 586 ft. (2) 10,290 and 16,020 cub. ft.

Ez, 452.—In each of the last examples determine the distance from the
extrados of the point at which the line of resistance cuts a horizontal joint
8 ft. below the surface of the water. Ans, (1) 1498 ft. (2) 175 ft.

[The point will, of course, be that round which the moment of the weight
of the incumbent portion of the wall equals the moment of the pressure of
the water on the eight feet.]

Ezx. 453.—A river wall whose section is a right-angled triangle just
supports the pressure of water when its surface is on & level with the top of
the wall ; show that the thickness of the base

=height x /w .
. 1

if the hypothenuse of the triangle is turned towards the water; but when
the perpendicular is turned towards the water the thickness of the base

=heightx /_%_
2w,
where w is the weight of a cubic foot of water, and w, that of a cubic foo$
of the material of the wall. And show from hence that in the former case
the thickness of the base is greater or less than in the latter according as
the specific gravity of the wall is greater or less than 2,

" Ex. 454.—A wall of brickwork is to be built round a reservoir 20 ﬁ.
deep; its slope is inward ; it is 1 ft. thick at top ; what must be its thick-
ness at the bottom, that when the reservoir is full, the line of resistance
may cut the base 6 in. within the extrados? Ans. 1074 ft.

Exz. 455.—The wall of a reservoir full to the brim is of brickwork and
is 20 ft. high and 2 ft. thick ; it is supported by props at intervals of 6 ft.;
the length of each is 20 ft., and its inclination to the horizon 30°: determine
the thrust on each prop, its weight being neglected. - 4ns. 54,632 lbs,

Ez. 456.—In the last example determine the thickness of the wall that
would just support the pressure of the water if the props were removed: If
the wall stand on its lowest section without the aid of cement, what must
be the coefficient of friction between the surfaces? .

dns. (1) 86 ft. (2) 0°65.
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Ez, 457.—A reservoir is divided by a brickwork wall 12 ft. highand 2 ft.
thick ; the water on one side of the wall is 10 ft. deep; what must be the
depth on the other side if the wall is just overthrown ? Ans. 10°4 ft.

Ex. 458.—A cofferdam sustains the pressure of 26 ft. of water, and is

supported at intervals of 10 ft. by props
. Fra. 125.

DE and cP; given that Bc and BD are
respectively 4 ft. and 18 ft.and that D & A
and c F are respectively 30 ft. and 18 ft.;
find the thrust oneach prop. And what D
must be the weight of the struts, and
of 10 ft. of the length of the cofferdam,
that the whole be not overthrown?
The thickness of ‘the cofferdam and the
adhesion at B are to be neglected.

Ans. (1) Thrust on o £= 88,020 1bs. ; /
on EC=144,400 lbs, (2) 84,900 1bs.

B ¥ B

95. The pressure of earth.—Let A B represent a section
of a wall supporting earth, whose surface is A ¢, it is re-
quired todetermine the pressure produced F1a, 126.
on AB by the earth. Now, it must be
remembered that two extreme cases may -
come under consideration : the first arises : ; :
when the earth is thoroughly penetrated /
with water, in which case the pressure is /
the same as would result from hydrostatic /
pressure ; the second arises when the co- L /
hesion of the earth is so considerable that -5
it would stand with its face vertical even if the wall were
removed. Dismissing these two extreme casés, let us sup-
pose the wall A B removed, the following result will then
ensue : the earth being friable will weather and break
away until its surface has taken a slope B ¢, inclined to the
horizon at an angle equal to the limiting angle of resist-~
ance; when reduced to this state it will have no further
tendency to break away, and, unless washed down by rain
or removed by some other extrinsic cause, will remain

permanently at rest at that slope, which is therefore called
X2
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its natural slope. Hence,in the case we are considering,
the wall is required to give a certain degree of support to
the wedge of earth AB ¢ ; this wedge is generally supported
in some degree by the cohesion of its parts with each
other and with the earth below B¢, so that the wall will be
sufficiently strong if it will support the earth, on the sup~
position that the cohesion is quite destroyed, unless (which
is not contemplated) the earth should be saturated with
water. The angle of the natural slope of fine dry sand is
about 35°; of dry loose shingle about 40°; of common
earth, pulverised and dry, about 45°*

Proposition 20.

If w is the weight of a cubic foot of earth, and ¢ its
natural slope, the pressure produced on the vertical face
of a retaining wall by earth which does not rise above its
summit, and whick has a horizontal surface, is the same
as that produced by a fluid the weight of & cubic foot of

seh 4 2 (7_¢ .
which is w tan (Z §)

Let A B be the section of the wall, BAc of the earth;
take any portion Ax equal to z of the wall, and suppose its

Fia. 127. length to be 1 foot; draw x Y, making

= v an angle 6 with the horizon greater
than ¢; then the weight w of the

R wedge AXY equals jwa? cotan 6,
"and acts vertically through a point

N % P, where XxP=4XxY; it is supported
by the reaction R, of x Y and by the
reaction R of the wall; the latter
B reaction is equal and opposite to
the pressure produced by the earth on the wall, and its
direction is perpendicular to AX: also, since the surface XY

* Seo Mr. Moseley's Mechanical Principles of Engineering, p. 441.
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will not exert a greater pressure than is just necessary to
support A X Y, the direction of R, must be inclined to the
normal to XY at an angle equal to ¢ ; also, the directions
of R and R, must pass through the point P, in which w’s
direction cuts X Y, so that Nx will equal 4 of Ax ; moreover,

R : W:sinRPW : sin R,PR::sin (0 —¢) : cos (0—¢)

.~ .R=W tan (6 —¢)=4ww? cotan 6 tan (6 —¢)
Now, according as 6-has different values R will have differ-
ent values, and if we determine the value of  for which
R is greatest, the wall cannot be called on to supply a
greater reaction, and this must therefore equal the pres-
sure which A X actually sustains. But
_gy_cos @ sin (—¢)_sin (20—¢)—sin ¢
cot 0 tan (9 )= 0 cos (0—¢)—sin (20—¢)+sin ¢
2 sin ¢

~ sin (20—¢)+sin ¢

which is manifestly greatest when the fractional part of the

expression is least, i.e. when 20—¢ equals = 50 80 that the

required value of 6 i isT T g, and, therefore, the required

value of the presaure is
fwa? cotan( ¢) tan (———) $wa? tan? (" ¢)

acting through a point N which is below A by a distance
equal to 2z; but this is the same as the pressure that
would be produced by a fluid each cubic foot of which

weighs w tan? ("— Therefore, &c. Q. E. D.

Ez, 459.—A mass of earth the specific gravity of which is 1-7, whose
surface is horizontal, presses against a revétement wall whose top is on the
level of the ground and height 20 ft., the natural slope of the earth being
46°; determine the pressure of the earth on each foot of the length of the
wall. Ans, 3646 1bs.

Ez. 460.—If the wall in the last example is of brickwork and hes & reck~
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-angular section, determine its thickness to enable it to sustain the pressure
of the earth. Ans. 465 ft.
Ex. 461.—The vertical face of a revtement wall of brickwork sustains
the pressure of 20 ft. of earth, the surface of which is horizontal and 2 ft.
below the summit of the wall; the thickness of the wall at top is 1 ft.:
‘what must be its thickness at bottom if it just sustains the earth, the spe-
“cific gravity of the earth being 2 and its natural slope 45°? Also deter-
mine the thicknessthat would enable the wall to sustain the pressure if the
earth were thoroughly permeated with water.*
Ans. (1) 65247 ft. (2) 96 ft.
Ex, 462.—1If & pressure P is applied against a wall supported on the op-
posite side by earth with its surface horizontal ; show that when P is on the
point of causing the earth to yield, the resistance of the earth is the same
as that of a fluid the weight of a cubic foot of which equals (weight of cubic

foot of earth) x tan? G + %)

[The reasoning in this case is step by step the same as that given in
Prop. 20, except that now the wedge of earth is on the point of being forced
up, so that the direction of B, Will be on the other side of the perpendicular
toxvy] "

Exr, 463.—A reservoir wall of brickwork is 4 ft. thick and 15 ft. above
the surface of the ground; the foundations are 15 ft. deep; the natural
slope of the earth is 45° and it weighs 100 Ibs. per cubic foot; when the
reservoir is full (so that the water presses against the whole 30 ft. of wall)
will the wall stand, supposing the adhesion of the cement perfect ?

Ans. Yes; excess of the moment of the greatest pressure that
could support the wall over that of the pressure of the
water 73,480,

*Ez, 464,.—If A BC is a section of a rectangular wall, p the pressure ap-

Fie. 128. * It is common for revétement walls to

? sustain a surcharge of earth, as shown in
the accompanying diagram; an investiga-
tion of the pressure in this case will be
found in Mr. Moseley’s Mechanical Prin-
ciples of Engineering, p. 453. The follow-
ing practical formula (Morin, Aide-Mé-
moire, p. 417) gives the thickness (z) of a
] P Q rectangular wall for a given height (m) of

the revétement (Q u) and a surcharge (e Q)
whose height is A, via.

J 2=0866 (n+h),\/t§'m E_g’:)
| “ 5)

w being the weight of a cubic foot of earth
and w, that of a cubie ook of masonry,
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plied to every foot of its length at a, the inner edge of its summit ; deter-
mine the equation to the line of resistance,

[Take any horizontal section of the wall MN; let AN=z, BC=a, then
the weight w of ANM=axw, where w is the Pia. 129,
weight of a cubic foot of the wall ; now, if the
direction of the resultant cuts M N in R, this will A
be a point in the line of resistance, and if RN
=y we are to determine & relation between x
and y. The relation in question can easily be
shown to be

awz(y—g)=r (z sin a—y cos a)

d

where a is the inclination of P's direction to the ¥ X
vertical.]
*Ez. 465.—In the last example show that " B

the curve is a hyperbola and determine its \

asymptotes; and show that if the thickness of the wall equals /\/ 2rsina
w

it may be carried to any height whatever with safety.

*Er. 466.—If the wall in Ez. 464 has to support the pressure of earth
or water reaching to the top of the wall, show that the line of resistance is
8 parabola with its axis horizontal, and show that in the latter case its
focus is in the summit of the wall at a distance from the intrados equal to

g(l + g), where w is the weight of a cubic foot of masonry and w, of
1

water.

%Er, 467.—ABCD is the section of & reservoir wall the vertical face
of which (B c) is towards the water ; the width of the top of the wall (a B)
is a ; the inclination of A D to the vertical is-6, and s is the specific gravity
of the wall; show that when the water reaches to the top of the wall the
equation to the line of resistance is—z and y being measured as in Exr.
464—

z’(,l+tan’0)—3.’cy tan 0+ Sax tan 0—6ay + 3a*=0

*Ez. 468.—Show that if the wall in the last example stand, whatever

be the depth of the water whose pressure it sustains, then tan .6 must
1
be> ok _

*Ezr, 469.—Determine the equation to the line of resistance in a river
wall of Aberdeen granite, the thickness of which is 4 ft., and which sus-
tains the pressure of water whose surface is on the level of the top of
the wall. Ans. 22=63 (y—2.)

*Ezx. 470.—Determine from the equation in the last example the height
of the wall when the line of resistance intersects the base at a distanws &
4in. within the extrados, Ana AW B
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CHAPTER IX.

ON THE DEFLECTION AND RUPTURE OF BEAMS BY
FORCES APPLIED TRANSVERSELY.*

96. Neutral surface and mneutral line of a beam.—
If we consider a long beam of wood AD supported at its
two ends, the effect

F1a. 130,
A * of its weight will
A N\.z be to bend it into

‘H‘ o fuchashapeas that
C ‘ B

‘ shown in the figure;
p it is evident that
the under surface
¢p will suffer extension, and the upper surface AB com-
pression: so that there will be a section PQ interme-
diate to the compressed and extended parts, which will
undergo neither compression nor extension ; this surface
is called the neutral surface. Forces may act on the beam
in such a manner that the whole of it is either compressed
or extended ; in such a case the neutral surface will not
have a real existence, but there will exist without the
body an imaginary surface bearing the same relation to
the compressions or extensions as that borne hy the
actual neutral surface in other cases.
In what follows we shall assume that the forces act in
a plane containing the geometrical axis of the beam con-
sidered as a prism and at right angles to the axis in its
undeflected state ; that the cross section of the beam is

* This chapter cannot be read with advantage by any student who has
ot some acquaintance with the Integral Calculus,
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‘symmetrical with respect to the plane containing the
forces ; and that the deflection is so small as not to change
sensibly the moments of the forces. The plane in which
the forces act will cut the neutral surface along a line
called the meutral lime. It will appear in sequel that
under these circumstances the neutral line coincides with
the axis of the beam.
Before going further the student should make himself
“acquainted with the simpler cases of moments of inertia.
They are given in Part II., Chap. V.
97. The bending moment.—Let AB be a uniform rod
held at rest by three forces p, Q, R acting at right angles

to its length ; suppose the rod P, 181,

to be so strong as to sustain

the action of these forces with- {3 D s
out being much bent, so that o

the distances Ac, BC are not ‘}1’ Q}

sensibly altered. We have to

do with two sets of forces—(a) the external forces P,Q, R}
(b) the internal forces due to the elasticity of the rod,
which are called into play by its extension or compres-
sion, The first question to be considered is:—What is
the tendency of the forces to break the rod at any
assigned point p? Now (Art. 60) P may be replaced by

an equal force acting in the same Fre. 152,
direction at D, and a negative couple .

AD.P; the like is true of the other B‘PL s
forces. Consequently, if we suppose an § $
imaginary plane drawn across the rod 5 3
at p, as shown in fig. 132, where for {Q

convenience the thickness is magni-

fied, we have on the left of DE a force R—P, and a couple
whose moment is —AD.P+CD.R; on the rightof DE we
have the force @ and a couple whose moment is BD . Q.
It thus becomes plain:—First, that the forces teod n
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cause AED and BED to slide in opposite directions along
D E, i.e. they produce a shearing stress measured by either
of the equal forces R—P or Q. Secondly, the forces tend
to make the parts AED and BED turn in opposite direc-
tions, the measure of this tendency being the moment
BD.Q Or —AD.P+CD.R, which, however, have contrary
signs. Either of these moments is called the bending
moment at the point D.

In the cases to be considered in the present chapter
the shearing stress can be put out of the question; the
bending moment alone comes under consideration. We
may say, therefore, that the tendency of the forces to
break the rod at any point (D) is measured by the sum of
the moments taken with respect to D of all the forces on
one side of that point, whatever be the number of forees
acting on the beam.

Ez, 471.—In ftg. 181 suppose the rod to rest on two points under A gnd
B, and let the force B be produced by a wight-whung at ¢; then if ABis
denoted by @, and Ac by b,and BD by 2, the bending moment at » is

b_}v. z, if the weight of the rod is neglected. If, however, D is between

A and ¢, the bending moment is (i%)v-v (a—=z), and at c it ismam"

Ez. 472.—If the weight of the rod only is considered the bending
moment is §war—jwz®, where w denotes the weight of a unit of the
length of the rod.

Ez. 473.—1In Ez. 471 if the weight of the rod is taken into account the
bending moment is

ba_w+;wa)z-§wz’
or ( (‘f';i';' +iwa ) (a=z)~jw(a—=z)

according as D is between B and c or c and A.
Ex. 474.—In the last example either formula gives for the bending
moment at ¢ the value
(ﬂ%b_)b {w+4wa}

Ez, 475.—In Ez. 472 the value of the bending moment is greatest at
.the middle point, and there equals jwa®
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Ez. 476.—In Ex. 473 if 9— >b+ b—%. the bending moment will be

greatest at a point between c and the middle of the rod, and the greatest
value will be ¥ ( 24 b ¥Y'; but otherwise its greétest value is at ¢, and

is that given in E‘t 47 4

Ez. 477.—A rod issupported on many points all on the same horizontal
Tme, so that the only forces acting are weights and the vertical reactions of
the fixed points ; let A and B be any two consecutive fixed points, B to the
right of A ; let the distance A B be denoted by /, the load on A B (including
the weight of the rod) per unit of length by w; and let p be any point in
A B at a distance x from A, Show that the bendmg moment at P is

uM+Q (l—2)+{w (I—x)*
where M is the bending moment at B, and Q the sam of the forces acting at
and to the right of B.

[Let there be any number of parallel forces, viz. B acting at B, and
B, Ry By . . . . to the right of B at distances ), 75, 7y, . . . . the sumof
their moments with respect to B will be

M=7 R + 7R+ g Byt o o o
‘With respect to a point at a distance b to the left of B the sum of their
moments will be
bR+ (B+7) R+ (0 +7y) By + (D +7g) By +
=b(R+ B, +By+By+. o o o)+ M]

98. To obtain a clear view of the reactions by which
the rod resists the tendency of the forces to break it, let

us suppose it to be divided along Fre. 138,

D E, and the connection to be N b . B
re-established as shown in the R T
figure by means of two small - Jx
pieces of an elastic material DF )

and EG whose unstretched lengths ER' £ L

are equal. The couple acting on
A D tends to turn it (as we have already seen) in the same
direction as that of the motion of the hands of a watch,

and that acting on BF in the opposite direction, so that
DF will be compressed and EG stretched. Consequently
D F will react with equal forces (R and R,) against D and ¥
respectively, as shown in the figure ; while EG reanta st
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equal forces (R’ and R',) against E and G respectively.
The two forces R and R’ form a couple with a positive
moment, which balances the couple that tends to turn ADE.
In like manner the forces R, and R’, form a couple which
balances the couple that tends to turn BF 6. Consequently,
whether we consider the forces acting on ADE or those
acting on BF G, we obtain the relations

R=R’ and R x D E=the bending moment.

Of course D F would be compressed and EG stretched to
just the extent needed for calling into play the forces R
and R'.

If now we suppose DEGF to be a portion of the beam
included between two planes at right angles to its axis in
its undeflected state, the only difference will be that the
part DH K F above a certain line HK will be compressed,
while the other part HE G K will be stretched. The com-
pression will increase gradually from HK to DF and the
extension from HK to EG. Thus there will be a distri-
buted force which gradually increases from H to p and
acts in R’s direction, and in like manner from H to E a dis-
tributed force acting in the direction of R'. It is plain
that the forces on D E must reduce to a couple with a
positive moment, and as it balances the external forces on
ADE we must have the moment of this couple equal to
the bending moment. The same conclusion would follow
if we reasoned on the forces distributed along FG which
must balance the couple acting on BF.

Proposition 21.

If a cylindrical or prismatic beam has a cross section
symmetrical with respect to a plane containing the axis,
and 18 acted on by forces im that plane at right angles
to the axis in its undeflected state, the meutral line will
coincide with the axis of the beam (i.e. will pass through
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the centre of gravity. of each cross section), and the re-
ciprocal of its radius of curvature at any point will
equal (the bending moment)+E A X3, where E denotes the
modulus of elasticity and A K, the moment of inertia of
the cross section taken with reference to an axis passing
through the centre of gravity at right angles to the plane
of symmetry in which the forces act.

Fig. 134 corresponds exactly to fig. 133, p. 187 ;and fig,
135 represents the cross section through DHE at right
angles to the plane of sym- . Fio. 134,
metry, which is the plane of
the paper. LetEDp and GF -
be produced to meet in o.
Then as HK is unstretched
it is part of the neutral line,
and if HK becomes in the ,
limit indefinitely small, Ho 3
becomes the radius of curva-
ture (p) of the neutral line E G
at the point H. Let HL be denoted by 2, and let us con-
sider a lamina LL’ of the beam the area of whose cross
section [0’ is denoted by a—the lamina is, of course,
supposed to be between two planes very near together,
parallel to BHK and at right angles to the plane of sym-
metry. Now, as the uncompressed length of L1’ equals
HE, it follows from Art. 6 that the reaction of LL' due
to its compression equals

’
Eqx 1X—LL
But p:p—2: HK:LL
or p:Z:HK:HK—LL

therefore the reaction is Z%%, This force is distributed
)
uniformly over {7, and therefore may be supposed Lo 28%
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at L. If a point is taken below H the lamina correspond-
ing to it is stretched, and therefore the reaction at that-
point is in the opposite direction to that exerted at L ;
this, however, is provided for by z being negative in that
case, so that the formula just given applies to all points
of pE. Hence if a, @, . . . . be the areas of any other
portions of D 2 E A’ taken in the same way as a at distances
%,y % « » » « from B, the resultant of all these reactions
will be
:—f(a,z-i-alz,+a,z,+. o)

Now (Prop. 16) this equals %x DhEM x7, where z is the

distance of the centre of gravity of the cross section
from H. As the resultant is a couple, this expression must
be zero; but neither E nor the area DA ER’ is zero, nor
can p be infinite (except at particular points), for then
there would be no flexure. Consequently # must be zero,
i.e. His the centre of gravity of the cross section. Therefore
the neutral axis passes through the centre of gravity of
every cross section, i.e. it coincides with the axis of the
beam.

The sum of the moments of the reactions taken with
respect to h ' is

Ex(az’+a,z,2+azz,’+. eed)

and this must equal the bending moment. Now the
quantity within the brackets is the moment of inertia
(aE?) of the cross section taken with reference to hA'.

Hence
. 2
bending moment="2%.
1 _bending moment
P EAK?
ﬁ.tbe ordinary case of a rectangular beam it appears from

or
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Part II., Chap. V., that A k? equals 4; b%, i.e. a twelfth
part of the width multiplied by the cube of the depth.

Ez, 478.—Let the beam be held firmly at one end, and a force »
applied at the otherat right angles to its length ; it is required to determine.
the equation to the neutral line, neglecting the weight of the beam.

" [Let Lx, be the meutral line, L& the position of the
beam’s axis when unbent, ¥ any point in the neutral line, Fra. 136.
p the radius of curvature at ¥, z and y the co-ordinates
of F, viz. LR and & F ; then, since the bending moment at ¥ L
is P (a—x), we have
12p (a—2)
rb%

Now, since the curvature is sﬁm.ll, % is small, and there-

1
P

fore %’ mbeomitted;.eonsequent.ly

1 ___d’y

P dzd
therefore 2 Y= (a-2)

_ 12p az?_at .
whence Y= e (_ )]
Ez, 479.—8how that the deflection of t.he beam in the last exmnple
nals '3:

eq e 5

Er, 480.—If in the last example a force is applied to the end of the
beam and gradually increased up to P, show that the number of units of
work expended in producing deflection equals

2 ot

Bbc * b2
[Compare Ex. 149.]
Ez. 481.—The end of a beam of oak is firmly embedded in masonry;
the length of the projecting part is 15 ft., its breadth is 3 in., and its depth
6 in.; a force of 2 cwt. is applied perpendicularly at its end; determine

the deflection, and the work expended in producing that deflection—the
weight of the beam being neglected.

Ans. (1) 6°6 in.  (2) 51 ft.-pds. of work.
Ez. 482.—If a beam is held firmly by one end in a horizontal position
and is bent simply by its own weight, show that %-%ﬂ’, where



192 PRACTICAL MECHANICS.

w is the weight of & unit length of the beam; and that the deflection is
s wa at
!0 m . b—: .

[These results are trune when the beam is loaded uniformly at the rate
of w per unit of length.]

Ex, 483.—If the beam in Er. 482 were of elm, were 6 ft. long, 1 ft,
broad, and 1 ft. deep, and had to support the pressure of brickwork 14 in.
thick and 10 ft. high, determine the depression. Ans. 0°15 in,

Ex. 484.—If a horizontal beam A B is supported at its ends and is loaded
by a weight w at its middle point, and if p is the radius of curvature at a
point in the neutral line whose distance from the middle point of the beam
is z; show that
1_3w(a—22)
P Ecl?

and that the deflection at the middle of the beam is m b’

[If the centre of the beam is taken as the origin of co-ordinates, = being
measured horizontally and y vertically, the bending moment is 3w (3a—z),
and the value of y at either end equals the required deflection.]

Ez, 485.—If the beam in the last example were bent by its own weight,

which is w per unit of length, show tlmt 1 :ﬁ';%‘;._“-’), and that the

wa a'
* gbe B

Ex, 486.—A fir batten 3 in. deep, 1} in. broad, is placed honwnt.a.lly
between two props 5 ft. apart and loaded with a weight of 135 lbs. in the
middle; its own weight being neglected, determine the depression ; determine
also the depression if it were fixed at one end and loaded with the same

. 288
weight at the other end, A4ns, (1) ﬁ?& in. (2) = 33 1

Ex. 487.—A sparof oak 3-2 in. square is placed horizontally between two
props 12-8 ft. apart and loaded with 268 1bs. in the middle ; determine the
deflection, neglecting the weight of the beam., Ans, 1°597 in,

Er, 488.—A piece of elm 2 in. square is placed horizontally between two

supports 7 ft. apart, it is loaded in the middle with a weight of 125 lbs. ;
determine the deflection when its own weight is neglected. 4ns. 1°65 in.

Ez, 489.—There is a beam of larch 6 in. deep, 4 in, wide, and 12 ft. long,
it is supported on a fulerum whose distance from one end is 4 ft. ; the shorter
end carries a weight of 2 cwt. ; determine the deflection of each arm of the
beam, its own weight being neglected. 4ns. (1) 0°109 in. (2) 0-437 in,

Ex, 490.—A rod, whose weight can be neglected, has a weight tied to
aach end, and is then placed on a fulcrum so that the weights balance each

depression at the middle point 1s 5
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other; show that the droops at the ends of the rod are inversely propor-
tional to the squares of the weights.

Exr, 491.—Find the force which being applied vertically to the end of
the beam in Ez. 482 exactly neutralises the droop. Why should not this
force equal half the weight of the beam ? Ans. 3 wa 8.

Er. 492.—The ends of a beam rest on horizontal supports, it is deflected
by its own weight and a vertical force w acting through its middle point ;
determine the total deflection, and show that it equals the sum of the
separate deflections produced by its own weight and by w, if w act vertically
downward, and their difference if w act vertically upward.

Ezx. 493.—If A B, A  are the principal rafters of a roof the feet of which
are fastened together by a tie-beam B c, the middle point of which is o ; if
A and D are joined by a ¢ king-post’ which exactly neutralises the bending

“1n the middle of thetie-beam caused by its weight, show that the tension of
the king-post equals § of the weight of the tie-beam. '

Ez. 494.—In Ex. 487 determine the deflection when the weight of the
spar is taken into account. Ans. 18 in.

Ez.495.—A beam of larch supported at each end measures 20 ft. between
the points of support, it is 6 in. wide and 10 in. deep, it sustains a wall of
brickwork 30 ft. high and 1 ft. thick throughout its whole length ; find the
deflection. Ans. 23'13 in,

Ez, 496.—If the beam in the last example is supported by a column
which exactly neutralises the deflection of the middle point, find the pres-
sure on the column, Ans. 42,170 lbs.

Ez. 497.—If in the last example the under surface of the beam in its un-
deflected state is 12 ft. from the ground, the middle point is supported by a
column of cast iron 3 inches in diameter, which in its uncompressed state is
exactly 12 ft. long ; determine the deflection of the beam at its middle point
and the pressure on the column. Ans, (1) 0°05 in. (2) 42,077 lbs.

" [The column being compressible will allow the middle of the beam to
deacend, whereby the thrust on the column will be diminished : the question
to be answered is—At what degree of compression will the tendency of the
column to recover its form upward exactly balance the tendency of the
beam to deflect downward ?]

Ez, 498.—In the last example suppose the measurements to be made at
50° Fahrenheit, at what temperature would there be no deflection at the
middle point of the beam ? Ans. 107° F.,

" E=. 499.—If a hollow cylinder (whose weight is neglected) the radii of
whose ‘section are r, and r be supported horizontally at two points whose
distance is @; show that, when it sustains a weight w at its middle point,
the radius of curvature of the neutral line at a point distant  from the
middle is given by the formula

1_w(a—22)
P ®B(rt-rY

(o}
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-and the deflection at the middle point by the formula
— wal
12xB(rt—r!)
[The moment of inertia of the space between two concentric circles
with respect to a diameter is.} x (r,*—74); see Ez. 760.]
Ez. 500.—If in the last example the cylinder sustains throughout its
‘length a uniform load of w lbs. per unit of length, then

1_ w(a®—42%)
p 2%k (rt—1)
5wat

8=—

and 967 E (r—r)
Ez. 501.—If an iron girder * has a section of the form shown in the
annexed diagram, of the following dimensions, AB=c,, AB=b,, cF=¢,
cp=b, the lower end ¢ H being of the same dimensions as

AFIG. 1. p theupper, show that when this girder sustains a uniform
pressure throughout the whole of its length the deflection
B oofr at the middle point is given by the formula
: 5wat :
D = T92{6 (5+5,)7 5, ¢, + 25 ¢, +b%}m
G

Ex. 502.—If there are two beams containing the same
amount of materials, of the same length and the same depth, and sustain-
-ing the same weight, the one has a rectangular section, the other a section
of the form shown in the last example; given that =4 in., ¢=1in, %,

=1 in.,, ¢; =4 iun., show that the deflection of the rectangular beam will be
1* of the deflection of the other beam.

99. Equation of three moments.—A very interesting
application of Prop. 21 is to the determination of the
pressures exerted by a beam or a rod on its points of
support when there are more than two of them.

For this purpose it is convenient to investigate a
relation between the bending moments at any three

* In practice the lower flange is commonly made much larger than the
upper, since cast iron offers more resistance to pressure than to tension, and
of course the greatest economy of materials in effected when the load that
would tear the lower flange would also crush the upper. To discuss this
question would lead us beyond our present limits.—See Mr. Moseley's
Mechanical Principles, p. 556 ; Mr. Rankine’s dpplied Mechanics, p. 319 ;
see also Mr. Fairbairn's Useful Information, Append. I.
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consecutive points of support, which may be done as
follows :—

Let A be any one of the points, A, and A, the points
next to it on either side, and
let the bending moments at
them respectively be M, M, M, ; *
let A, A be denoted by Z,, A A, by
l,, the corresponding weights per unit of length by w,
and w,, and the sum of the forces to the right of A, (in-
cluding the reaction of A,) by Q,. Then it follows from
Ex. 477 that

Fia. 138,

N A A,
Pl n i N

M=M, +Ql, +{wl? (1)

If we reckon the moments of the weights positive and if
AP be denoted by z, the bending moment about p (Ez.
477) gives the equation

d .
EAK’(i_x’ =M|+Ql (ll—z)'l'%’ujl (l]—ml)’ L (a')

In integrating this equation we must remember that the
neutral axis at A peed not be horizontal ; all that we know
is that the curve has some determinate but unknown in-
clination at that point, which we will denote by a ; hence,
9Y_ tan a; also when 2=,
dz

we have y=0. On integrating twice, therefore, we obtain

when 2=0 we have y=0 and

EAK*Y=EAK}z tan a+iM2*+q, (32?—12%)
+ o, G132+ o)
and therefore
0=24EAR’tan a+12M7 +8Ql2+3 w3 (2)
'If now Q, is the sum of the forces to the left of A, we have
from Ex. 477
M=M, +Qyl, +} w,l,’ 3
02
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and if we denote A P, by 2, we shall obtain as before, by
considering the bending moment about p,—

EAK? %=M2+Q2 l=2)+ 3w, ({,—=)

On integrating this twice we shall obtain, as before—
0=24EAK? tan B8+ 12 M, + 8 Q.l,2+ 3 w,l? (4)

Now, as there is no sudden change of direction of the
curve at A, we have a+8=180° and consequently tan a
+tan 8=0. Therefore, by adding (2) and (4), we obtain

12 (M, +M0,) +8 (@1 +Qly") +3 (wl P+ w,l,?)=0
From (1) and (3) we obtain
M +)=ml +Ml+Ql + el +{ (w !+ wl?)
and therefore
8™ (I, +1y) +4 (Ml +Ml)=w,l>+w,l?2

an equation which gives the required relation and is called
the equation of three moments. It should be observed
that the reasoning goes upon the assumptions that the
points of support are accurately in a horizontal line, and
that the moment of inertia of the cross section of the beam
is the same at all points of its length, but the load need
not be at the same rate per unit of length on the parts
of the beam between different points of support.

By means of this equation the reaction at each point
of support can be determined without ambiguity. Suppose
there are » points of support 1,2, 3,4, . . . . we can ex-
press the bending moment at each point in terms of the
weights and the reactions, and we can apply the equation
of three moments first to 1, 2, 3, then to 2, 3, 4, then to
3, 4, 5, and so on, thereby obtaining n—2 relations be-
tween the reactions and known quantities. The two
equations of equilibrium between the parallel forces acting
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on the beam (Prop. 12) give two more equations, and
thus we have n equations between the n unknown reac-
tions, which are thereby completely determined. In most
particular cases the process can be abridged.

When the reactions have been determined, the circum-
stances of the flexure of any portion of the neutral line
can be determined by means of the equation (a).

Ez. 503.—A beam is supported on five equidistant props (a, B, c, D, B),
one being under each end; find the pressures (®, g, B, 8, T) on the points
of support.

Here we need five equations, and they could be easily formed as above
explained, but we may assume as evident that P is equal to T, andQtos;

80 that 2P+ 2Q +R=4aw

where 4a is the length of the beam and w its weight per unit of length.
Now if M, m,, m,, ,, M, are the bending moments at a, B, ¢, and » we shall
have M=0=wm, M, = }a%w—a P =M, and M, = 2¢*w —aq—2aP. The equation
of three moments must now be applied to M, u,, and »,, and then to x;,
My, and x,. In doing this the student must observe the unavoidable change
of notation ; in Art, 99 u is the moment at the intermediate point, and x,
and M, at the extreme points, so that, as /, = I, =a, the first application gives

16 mya + 4 (M + M,) a = 2wa®
or 8m, + 2M, =wa?
the second application gives

16 M2 + 4 (¥, +M,) @ =2wa®

or 8M, + 4m, =wa?

Hence 12P + 2Q = Taw

and 20P + 8Q=17aw
Therefore 28p = 11law, 7Q=8aw, 14R=13aw,

Ez. 504.—A beam is supported on three points, one under each end and
one in the middle ; find the pressure on each point of support.
[If the pressures are p, , P, and the moments are denoted as in Art.

99, we have
2p +Q=2aw

M, =M, =0 and M=}a*w—ap; and then, on applying the equation of three
moments, we obtain 8p= 3aw, and 4qQ = 5aw.]

Ez. 505.—In the last example required the equation to the neutral
line, the point at which the deflection is greatest, and the amount of the
same, :
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[If the middle point is taken as the origin of co-ordinates, it can be
easily shown that the bending moment at a point distant = from the origin
is Jw (a®—bax + 42%), whence the equation to the neutral line is easily

determined, observing that when x=0 we have y=0 andj—'z =0, and that

at the point of greatest deflection we shall also have g% =0; whence we

shall obtain 16z =(15— 4/33) a for the position of the required point, and
for the amount of greatest deflection (p) we have (nearly) 18554 x?»
=wat]

Ex. 506.—A beam rests on four points, one under each end and the
other two equidistant from the middle point; find the pressures on the
points of support.

[If the distances between the props are b, 2a, and b, and the pressures
on them », Q, Q, P, it is evident that

P+e=(a+d)w
and it follows from the equation of three moments that
8b0(3a+b)P=w(3 b+ 12ab?*-8a%).]
Ez. 507.—In the last example explain the result arrived at by m&kmg
3b=2a.

100. Strength of beams.—On this subject we may
ask either of two questions—(a) What is the greatest
load applied in a given way that the beam will support
with safety ? (b) What is the load applied in a given way
that will break the beam? In either case we must ascer-
tain the point of the beam at which the bending moment
is greatest, for it is evident that if the beam is strong
enough at this point it is strong enough at all points;
and if the load is gradually increased it will break at this
point. With regard to the first question, suppose it to
be ascertained that the material can be safely stretched

1 —mnth part of its natural length. Suppose that fig. 134
shows the section at which the bending moment is greabest,
EG is the fibre that is most stretched, and if the load is
such that EG is longer than B X by 1 —nth part of H K the
load is the greatest consistent with safety.

Now EG:HK:EO:O0H
therefore EG—HK : HK::EH :O0OH
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or denoting E H by b, and o B by p, we have
p=nb,
and therefore (by Prop. 21)
n b, (greatest bending moment)=E A K%

Now if p is the greatest tension per unit of area of crosé
section that can be applied to the material with safety we
have (Art. 6) nP=E;

therefore b, (greatest bending moment)=p A x?

We may reason in the same manner on the greatest pres-
sure (Q) per unit of area of cross section that the material
can sustain safely, and we shall obtain .

b, (greatest bending moment)=q A K?

where b, denotes ED. Whichever of these equations
gives the smallest value of the bending moment will give
the greatest value of the load that can be borne safely.

If we suppose the cross section of the beam to be
rectangular, and that the greatest pressure per unit of
area equals the greatest tension per unit of area that the
material can support safely, we shall have, denoting either.
by @ :

v greatest bending moment=1Qab

With regard to the second question, let there be two
beams of the same material acted on by any transverse
forces, and at the sections where the bending moment is
greatest suppose the fibres which are most elongated to
be equally stretched, i.e. suppose 7 to have the same va.lue
in both cases. Then if p’ and &', denote in the case of the
second beam the quantities correspondmg to p and b, in’
the first we must have
bl

=21
7

1
nop

° | &



200 PRACTICAL MECHANICS.

and therefore by Prop. 21

b, (bending moment) __ ', (bending moment)
AK? - - A'R?

If either of these beams is on the point of breaking,
the other will be on the point of breaking also, for at the
weakest part of the beam both are equally stretched.
Suppose the second beam to be a foot long, and to have
for a cross section a square of oneinch ; let it be supported
at two points, one under each end, and let the force (P)
that will just break it when applied to its middle point
be found by actual experiment; then, taking all the
measurements in inches, the right-hand side of the above
equation reduces to 18 p. If we denote this by s we
have what is called the modulus of rupture for the
material, and we see that when the beam is about to
yield at any point by cross breaking

the bending moment=s A x Il—;{_’
1
It will be observed that the reasoning by which this
formula is arrived at assumes that the immediate cause of
the rupture is the yielding of the under side of the beam
to tension. If the beam gave way by the yielding of the
upper side to pressure, precisely similar reasoning could
" be applied, but b, would denote the depth of the meutral
axis below the upper surface.

Tasrr XIV.*
MODULUS OF RUPTURE.

Substanoce Lbs. per Square Inch Substance Lbs, per 8quare Inch|

Osk (English) 10,032 Fir (Riga) 7,110
Larch 4,992 Elm e 6,078

* From Mr. Moseley's Mechanical Principles of Engineering, p. 622,
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Ez. 508.—A rectangular beam 6 in. deep and 3 in. wide rests horizon-
tally on two points 10 ft. apart; it can be safely subjected to either
pressure or tension at the rate of 1,000 lbs. per square inch, What is the
greatest weight that can be safely hung from its middle point, its own
weight being neglected ?

Let P denote the required weight ; the greatest bending moment, being at
the middle point, will be 30p, the units being pounds and inches; hence

8 x30P=1000 x 18 x {; x 62
therefore »=600 lbs,
It will be found that the depression caused by » at the middle point is 3ths
of an inch, if the modulus of elasticity is 1,000,000 lbs. per square inch.

Ez. 509.—In the case of a rectangular beam, whose weight is neglected,

show that the breaking load is as follows: (a)’bc. 4 when it is held

firmly at one end and loaded at the other; (5) ’L'”f. ’L., when supported

under the two ends and the load is applied at the mddle.

Ez. 510.—In the last example, if the loading is distributed uniformly
over its length, show that the breaking load is (a) g_b_c. b—, (9 )416—0 . %:’

Ez. 511.—Given a cylindrical log of wood, show that the strongest
rectangular beam that can be cut out of it is one whose sides are in the
ratio of 1 : &2,

Exz. 512.—A beam of oak is supported in a horizontal position on points
20 ft. apart, it is 8 in. deep and 4 in. wide; determine the weight that can
be suspended at a distance of 63 ft. from one point of support without
breaking it. What would be the magnitude of the weight if the depth
were 4 in, and breadth 3 in.? Ans. (1) 11286 1bs.  (2) 15048 lbs,

Er. 513.—What must be the depth of a beam of Riga fir 4 in. wide and
30 ft. long, that will just sustain a weight of § a ton at its middle, taking
into account its own weight? 4ns. 4°6 in;



202. PRACTICAL MECHANICS.

CHAPTER X.

VIRTUAL VELOCITIES—MACHINES IN A STATE OF UNIFORM
MOTION—TOOTHED WHEELS.

101. The principle of virtual velocities.—Let P be a

Fia. 139, force acting at the point A along

. . the line AP, and let it be repre=
pd sented by A ¢ (Art. 25). Suppose
P ¢ ¢ Ps point of application to be

) shifted through an indefinitely
small distance to B, draw Bn at right anglesto Acorca
produced, and let A n be denoted by p, which is commonly
reckoned positive when m falls between A and ¢, and.
negative when it falls on cA produced, then p is called
the virtual velocity of p, and Pp its virtual moment or
virtual work.

The principle of virtual velocities is as follows :—If a
system of forces in equilibrium act on any machine which
receives any small displacement— consistent with the
connection-of the parts of the machine—the algebraical
sum of the virtual works of the forces will equal zero.

Ifp,P,P...... are the separate forces, and p,, P,
Pge oo their virtual velocities, the principle is expressed
algebraically by the following equation, which is commonly
called the equation of virtual velocities :

PP+ PPy + PP+, . . .=0

It must be remarked that in the above definition the
line A B is considered a small quantity of the first order

S
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(App. Art. 3), and consequently the virtual works
P, P1s Py Pyy P; Py - . . are in general of the first order;
if, however, the virtual velocity of the point of applica-
tion of any one of the forces be of the second order, the
virtual work of that force will vanish in comparison
with the virtual works of the other forces and will dis-
appear from the above equation; this will happen in the
following cases:—(a) When A B is ultimately at right
angles to Ac—e.g. when A C is the normal to a curve of
which AB is a chord—hence the virtual work of the
reaction of a smooth surface equals zero when the body
slides along the surface; (b) when the points A and B
coincide, e.g. when A C is a portion of a rigid body in the
act of turning round the point 4, i.e. the virtual work
of the reaction of a fixed axis is zero provided the axis
can be treated as a line ; hence also when an incompres-
* sible body rolls without sliding on any surface, rough or
smooth, the virtual work of the reaction equals zero.
The principle now enunciated will be seen from the
following pages to be one of very great importance in the
theory of machines; as the general proofis not by any means
eagy it will be useful for the student to prove from first
principles that it holds good in a few elementary cases.

Er. 514.—If x and ¥ are the rectangular components of a force p, show
that the virtual work of p equals the sum of the virtual works of x and ¥..
Let a be the point of application of p, and let Fia. 140.
A be transferred to B; complete the rectanglemn, IS
and draw Bp and 7 g at right angles to A »; then 1 7
Ap, Am, An, are the virtual velocities of p, X, and
Y, and we have to prove that | 8

P.Ap=X.AMm+Y.An
Let xAP be denoted by 6, then it is evident
that Ap=AQg+gp=Am.cos O+Ansin 6
therefore P.Ap=Am.Pcos 0+An.Psin 0
or P.AP=X.AM+Y.AN (1)
If  had acted in the contrary direction, x, v, and  would have been in
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equilibrium ; the virtual work of » would be negative ; and (1) would be-
come the equation of virtual velocities,

Ez, 516.—In the last example suppose that p balances x and v, and
suppose its point of application to be transferred in a direction at right
angles to A P, verify the equation of virtual velocities.

[It must be remembered that in this case »'s virtual work equals zero.]

Ex, 516.—Show that the principle of virtual velocities is true in the
case of a body in the state bordering on motion up an inclined plane, when
a small motion is given to it either up or
down the plane, ’

[Draw the figure as in Ez. 346, then, if
the motion take place up the plane, p wilt
be transferred to & point », along a line
D p, parallel to A B; let fall from b, perpen-
diculars on the directions of the forces, viz.
D, w, D, p, D, 7, then Dw, Dp, Dr, are the
virtual velocities of the forces, and of them
D p is positive and the others negative; the
equation of virtual velocities therefore be-
comes

Fia. 141.

P.Dp=W.DW+R.DP
and this the student is required to prove.]

Ez. 517.—Verify the principle of virtual velocities in the last case, as-
suming that the plane (and with it the body) is so moved that » describes
& straight line at right angles to p&.

Ez. 518.—Verify the principle of virtual velocities in the case of two
forces in equilibrium on a straight bar capable of turning round a fixed
point,

[Let » and Q be the forces which balance on the rod A B round the fixed
point ¢; suppose the rod to turn through a small angle and to come into

the position A’ B’; draw

Fia. 142.°7 I 4 A'm at right angles to

2/ — AP and B'n at right angles

ch “\ to BQ, then A7 is the

/ g S virtual velocity of » and
P B of q, the latter being -

negative; also the virtual
work of the reaction of c is zero (Art. 101) ; the equation to be proved is
therefore
P.AM=Q.B#

The student must remember that A A’ 7 and B} # are ultimately right-
angled triangles.]
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Ex. 519.—Verify the principle in the case of two parallel furces p and @
which keep a beam st rest round a rough axle of finite dimensions (as in Ez.
405), the motion being given to the beam round the axle.

[Using the notation of Exz. 405 and calling 6 the small angle through
which the beam is turned, the virtual works are severally pp 6, w ¢, and
B pOsin ¢.]

Ez. 520.—In the last example how would it be possible to move the
system so that the reaction & should disappear from the equation of virtual
wvelocities? [Round the point q, fig. g.]

Ex. 521.—In Ex. 519 show that when the axle is smooth the reaction
will disappear from the equation of virtnal velocities.

102. Proof of the principle of virtual velocities.—The
following proof applies to the case of any system of forces
acting on a single rigid body and in one plane, in which
the displacement is supposed to be made: it can be easily
extended so as to include every case of forces that act on
any machine.

LemMa.—Let A and x be any two points in a given

line, let the line be transferred Fia. 143.

to any consecutive position 0Y, L4
80 that A comes toB and X to Y3 /'f/"\
then if BY equals AX,and if Bn © .4 -

and Ym are drawn at right angles to A X, the line An
will ultimately equal x m.

For n'm equals B Y cos 0, i.e. it ultimately differs from
BY, and therefore from Ax, by a small quantity of the
second order ; take away the common part A m, then A%
and xm ultimately differ by a small quantity of the second
order, but they are themselves of the first order, and
therefore are ultimately equal. (See App. I., Art. 3.)

N.B.—If A x be transferred to BY in such a manner
that either An or X m is of an order higher than the first,
then will the other also be of an order higher than the first;
e.g. if A 0 is & small quantity of the first order, and BA0
a finite angle, AB and A n are both of the second order;
likewise A X Y is ultimately a right angle, and consequently
X m is also of the second order.
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Cor.—Hence if a force act along a certain line, and if
two points in the line be rigidly connected, its virtual
velocity will be the same at whichever point we suppose
it to act; also if there be two equal and opposite forces,
their virtual works will be equal and have contrary
signs, whether we suppose them to act at the same point
or each at one of two rigidly connected points, e.g.
Suppose P to act along Ax (fig. 143); if it act at A its
virtual work is P. Am, if it act at x its virtual work is
P . Xm; consequently in either case its virtual work is
the same. If Am is of the second or some higher order,
X m is not of the first order, and in either case the virtual
work is zero. )

We can now proceed with the general demonstration
required, and this is given in the three following steps :—

‘(@) If a system of parallel forces acting in a given
plane have a resultant, and if the points on which the
forces and their resultant
are supposed to act be
rigidly connected, then the
sum of the virtual works
.of the forces will equal
‘the virtual work of the
resultant. :

Let X, X, . « . . . . be the forces, X their resultant,
‘draw a line (0y) at right angles to their directions, and
cutting them in N, N,, . . . N, and suppose these points
to be rigidly connected with those at which the forces
are supposed to be applied, then the virtual works of
‘the forces in the required case are severally equal to their
virtual works if supposed to act at N;,N, .. . . N. Now,
‘suppose these points to receive any small displacement
‘consistent with their rigid connection, and suppose them
to be transferred to M;, M, . . . M, these points will be
in a straight line (0y’) and their mutual distances will be

Fi6. 144.
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‘the same as before ; the.two lines will (generally) inter-
‘sect in some point 0. DrawM, m;, M;m,, . . . . MM, at
right angles to the directions of the forces, then their
‘virtual velocities are respectively N,m,, Nymy, . . . Nm.
-Let the angle y 0y be denoted by 6, andoN, 0N, . . ..
ON, by ¥y5 ¥ *» "+ » ¥, then it is plain that ultimately *

‘N,m, =¥, 0, Nym,=y,6,.....Nm=yb
But by Prop. 12 we have

b ETAE D ST =Xy
and ‘therefore
9 0+X,9,0+ ..... =xy6

i.e. the sum of the virtual works of the forces equals
the virtual work of their resultant in the case specified.

(b) Next, let us consider the case of any system of
forces P,, P,, P, . . . . acting in one plane on points rigidly
"connected. :

Resolve the forces in directions respectively parallel
to two rectangular axes, then p, will be equivalent to its
two components X, Y,, and similarly P, to X,, ¥,, P, to X,,
Y,, &ec., and the original system is divided into two systems
of parallel forces, viz. X,y X,y X; . . . and ¥}, Y, ¥, . . .3
let x be the resultant of the former system and Y of the
latter, and let their directions intersect at a certain point
A, then the direction of their resultant (r) will pass through
A,and R will be the resultant of p,, P, P, . . . . . Suppose
A to be rigidly connected with the other points, and sup-
pose X, Y, and R to act at A. Now, if the points of applica-
tions of the forces receive any displacement whatsoever, -
the virtual work of R equals the sum of the virtual
works of x and v (Ex. 514), i.e. (by @) equals the sum of

* For let oy cut Nx in X, we shall have Nm=y tan 6—mm tan 6, but
M m and tan 0 are small quantities of the first order, so that their product
is of the second order, and can therefore be neglected, i.e. ¥ 7 ultimately
equals .y tan 6 or y 0.
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the virtual works of x;, X,,X, . . . and of ¥, ¥,, ¥, . . .3
but (Ez. 514) the virtual work of P, equals the sum of
"the virtual works of X, and Y, and similarly of », p,,
« « «3 hence the virtnal work of R equals the sum of
the virtual works of P, P,y P, . . . OF
RT=P, P, +Py Py+P;Pyste o o o«

(¢) If p,P), P, Py, . . . . are forces in equilibrium acting
in one plane at points of a rigid body, and if that body
receive any small displacement, the sum of the virtual
works of the forces will equal zero.

For let R be the resultant of P, P, P,y . . . . and let it
act on the body at any one point in its direction, then

(by b)
PP+ PP+ Pyt o . =R¥

But R is equal and opposite to P, since the given forces
are in equilibrium, and hence, since R and P act on
rigidly connected points, we have by the corollary to the
lemma

- PPp+Rr=0
and therefore, by addition,
PP+ P +P Pyt Py Pyt. . . =0
Q. E. D.

103. The work done by a force.—If the student turn
to Art. 11 he will see that the definition therein given
might be stated more generally as follows :—a wnit of
work is the work done by a force of one unit when its
point of application moves through a unit of distance in
the direction of the force ; it follows that, when the point
of application of a force of P units moves through s units
of distance in the direction of the force, Ps units of
work are done. When the units are pounds and feet
it is convenient to call the unit of work a foot-pound.
We have now to consider the extension of the defi-
nition which must be made to meet the case of a force
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whose point of application moves in any manner what-
soever. The required extension will be readily made by
observing that if the point of application of a force
receives any small displacement, the virtual work of the
Jforce is the work done by the force during the displace-
ment. The justice of this statement can be illustrated (or
proved) by the consideration of the following simple case:—

Let w be a weight attached to the end E of a perfectly
flexible and inextensible string without weight, passing
over a smooth point C; let w be ba- Fia. 145.
lanced by a force P acting at A along
C A, then will  equal W ; now, suppose
A to be transferred through a small
distance to B, draw B » at right angles
to € A, produced, then will w be raised
from E to D, and An is ultimately
equalto DE. Now, the work expended
in raising W is W x D E, i.e. it ultimately equals P x A n, the
virtual work of p.

Next, let us suppose that the point of application of
p is transferred successively to points a, o’, A", Al .. the

successive directions of that force Fle. 146,
being A P, A’P’, A”'P", . . .; let fall on e
them the perpendiculars a’N, AN, A
A'N",...andlet AN, A'N, AN ... o

4
x/ | -, P

[

be denoted by p, p’, p”, .. .. then
the work done by P when its point of &5 P
application is transferred from A to
A’ ig its virtual work P p, and the work done during the
successive transfers will be ¢'p’, »"p”, P’p’”, . . . . and
the whole work done will be Pp+¥» ' +P/p"+. .. ..
whether the successive values of P be the same or not.
As, however, this is somewhat general, it will be well to
particularise two important cases.

(a) Let the force continue constant, then if the lines

P
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along which it successively acts are parallel, and if the
point of application of the force moves in any line
straight or curved, the work done will equal the product
of the force and the projection of the line on the direc-
tion of the force ; e.g. take the case of a crank whose
arm is a, the extremity of which describes a circle whose
diameter is 2a, let P be the driving force acting along
the connecting rod, which we may suppose to be so long
as to be virtually parallel throughout its motion, then the
work done by P in one revolution is 4ra.

(b) Let the force continue constant, then if the direc-
tion of the force always touches the curve described by
its point of application, the work done will equal the
product of the force and the length of the curve, e.g.
Suppose a winch whose arm is @ to be turned by a force
P acting at right angles to the arm, then the work done
by P in one turn of the winch will be 27ap.

It must be remarked that the virtual work of a force
may be either positive or negative, and hence the work
done by a force may be either positive or negative ; in
the latter case, however, it is perhaps better to speak of
the work as being expended on or done against the force.

It is scarcely necessary to remark that a force will
do no work, in the cases in which its successive virtual
works are zero (Art. 101). Another case may also be
specified :—A rigid body may be conceived as consisting of
a number-of points connected by their mutual attractions
which act along the lines joining them, and which are so
great that the points undergo no relative displacement
from the action of the external forces; under these cir-
cumstances the sum of the virtual works of each pair
of mutual attractions will equal zero (Art. 102 Cor.), and
therefore the work done by the whole system of internal
forces must equal zero. If, however, the body is either
compressed or extended, the work done by or expended on
the internal forces can be no longer neglected (Ex. 149).
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104. Machines in a state of wniform motion.—Sup-
pose any machine to be acted on by forces P, P, P,, P,,
. in equilibrium, and suppose the machine to be

slightly moved, then if p, p,, Py Pgs ¢ ¢ ¢ + + + are the virtual
velocities of the forces respectively, we shall have
PP+Pp,+PyPy+ PPyt .« . =0 (1)

In the new position of the machine, suppose the forces,
without undergoing any change of magmtude to be in
equilibrium, and suppose the machine to receive a second

displacement, then if p’, p,/, P, Py - . . . are the virtual
velocities of the forces we shall have .

PP AR +BP +Bp . .. =0 (2)
Suppose that in this second position the forces are in
equilibrium and that the machine receives a third dis-

p'acement, then if p”, p,”, p,”, p,” . . . . are their virtual
velocities we shall have

PP +P D+, + P . . . =0 (3)
and so on for any number of displacements. Hence by
addition
Pp+p'+p"+. .. )+B(D+ P/ +0)" .. )+ R (D, + D,

+2,)" . D H(Ps+py +p +. - )+ .. =0(A)
Now, if we suppose p, s p”, &e., to be positive, P (p+p
" +p”+...) is the work done by p; if p, p’, p"5 . .
are negative, P(p+p’'+p .) is the work expended
on P; in the former case p would be called a power, in the
latter a resistance, hence the equation (A) contains the
followicg fundamental theorem, viz. If a machine be in
motion and if at each imstant of the motion the powers
and resistances form a system of forces in equilibrium,
the sum of the units of work done by the powers will
equal the sum of the wnits of work expended on the
resistances.

Now, it will be remarked that if the machine be in

r2
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motion all change of its motion must be due to an excess
of the powers over the resistances or of the resistances over
the powers ; hence, in the case supposed, there can be no
change in the motion of the machine at any instant ; such
a machine moves uniformly,* and hence the theorem
above proved justifies the assertion made in Art. 14, viz.
that the number of units of work done by the agent equals
the number expended on prejudicial resistances, together
with the number expended usefully.

105. The modulus of a machine.—Let us assume that
the machine enables a certain force or power P to over-
come a second force or weight Q, then the relation between
P and Q can generally be expressed by means of an equa-
tion of the form

P=AQ+B €Y}
where A and B are numbers depending on the form of the
machine, and on the passive resistances (compare Art. 89).
Now, by considerations depending on the form of the
machine, there will be some fixed relation between the
distance (s,) described by P’s point of application and (s,)
the distance described by Q’s point of application, let then

8,=n8,t (2)
By multiplying (1) and (2) together we obtain
PS,=NAQS,+BS, (3)

But ps, is the work (U,) done by P, and Qs, is the
work (U,) expended on Q, hence

U,=mAU,+BS, (4)

* If the machine has a motion of translation, like a railway train, its
motion is said to be uniform when its velocity undergoes no chsnge if the
machine moves round & fixed axis like a fly-wheel, its motion is uniform if
its angular velocity undergoes no change ; if it has both motions combined,
liko the wheels of a carriage, it moves uniformly if neither velocity under-
goes any change.

t It can be easlly shown in regard to any machine the parts of which

move without passive resistances that n p=q.
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If the machine moves with a uniform motion, the equa-
tion (4) gives the number of units of work (U,) actually
done by the power while (U,) is expended on the weight.
If p and Q are not in equilibrium during the motion, v, is
still the number that must be expended on the weight and
resistances ; if P does a greater number of units than U,
the surplus will be accumulated in the machine, the motion
of which will be accelerated ; if P does a less number than
U, the difference must be withdrawn from the work pre-
viously accumulated, and the motion of the machine will
be retarded. The subject of accumulated work will be
treated further on.

Exr. 522.—1If a body be dragged along an inclined plane show that the

units of work expended will equal the number that would be expended in
dragging it along the base, supposed equally rough, and in lifting it up the

perpendicular height,
Let AB c be the inclined plane, M the body whose weight is q, » the
force, which acting along the plane would Fia. 147.

be on the point of dragging M up the
place, if M were at rest, then

P cos ¢=q sin (a+¢)
or P=q (sin a+ u cos a)
where a denotes theangle Ba c, and u or
tan ¢ the coefficient of friction between ]
u and AB. Now, if ¥ is in motion along 4 l e
A B, under the action of » and q it will b
move uniformly, and the work done by p will equal the work expended on
Q; but the work done by P is Px A B, therefore the work expended on q
equals

Qx AB (sin a+u cos a)

or Qx(BC+uxAC) .
But x @ x A c is the work required to drag M along Ac, if u is the coefficient
of friction between M and A c, and @ x B¢ is the work that must be expended
in lifting @ from c to B, therefore the number of units of work is as stated,
By an exactly similar process it may be shown that the number of units of
work required to drag a body down a rough inclined plane equals the
number required to drag it along the base supposed equally rough déminisked
by the number required to lift the body through the height of the plane,

Ez. 523.—If a train weighs 80 tons and the friction is 7 lbs. per ton,
determine the number of foot-pounds of work that must be expended im
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drawing it for 4 miles up an incline of 1 in 200 ; and determine the horse-
power of the engine that will do this in 10 minutes with a uniform velocity.
Ans. (1) 30,750,720 fr.-pds. (2) 9334 H.-P.

Ez, 524.—In the last example over what distance on a horizontal plane
would the same engine have drawn the train in the same time ?

Ans. 103 miles.

Ex. 525.— How long would it take the engine in Er. 523 to draw the
same train with a uniform velocity over a space of 4 miles up an incline of
1in 100? Ans. 163 min.

Exz. 526.—A train is drawn with a uniform velocity up an incline 3
miles long of 1 in 250, on which the resistances are 7 lbs. per ton ; deter-
mine the distance on a horizontal plane over which the same train could be
drawn with a uniform velocity by the same expenditure of work.

Ans. 62 miles.

Ez. 527.—In Ex. 346 if the body is in the state of uniform motion up the
plane, show that the relation between v, the work done by P, and v, the
work expended on W, is given by the equation

U, sin a cos (B—¢) =1, cos B sin (a+¢)
[The relation between the forces » and w is
P cos (B—¢)=Ww sin (a+¢)

Now, if s, is the distance through which ¥'s point of application moves
measured in the direction of that force

s,=lcos B
and if s, is the distance through which w's peint of application moves when
similarly measured

8,=lsina
where / is the length of the plane, hence

8, 8in a=8s, cos B

whence the relation between v, and v, is at once found.]

Ex. 528.—If a pivot sustaining a pressure @ is made to revolve once,
show that the number of units of work expended on the friction of the end
equals $r npqQ. [See Art. 82.]

Ez. 529.—In the case of a single fixed pulley the number of units of
work expended in raising a weight Q through a height ¢ is given by the
formula

v=aqq+bgqg
where a and b have the values assigned in Art. 89.
" Er. 530.—In the case of a tackle of » sheaves show that the number of
units of work expended in raising a weight @ through a height ¢ is given
by the formula

v=qg.

na®(a—1) (nba> b
a*~1 + a*~1 a-l)"g

[See Ex. 419.]



MODULUS OF A MACHINE. 25

Exz. 531.—In Er. 421 determine the number of foot-pounds of work ex-
pended on the passive and on the useful resistances when the weight of 1000
1bs, is raised through ‘50 ft. 4ns. (1) 67,000. (2) 50,000.

Exz. 532.—*It is said that in a pair of blocks with five pulleys in each
two-thirds of the force are lost by the friction and rigidity of the ropes.’ *
Determine the degree of truth in this statement when each sheave is 4 in.
in radius, and turns on an axle £ of an inch in radius, the axle beug of |
wrought iron and the bearing of cast iron, and the rope 4 in. in circum-
ference ; the weight to be raised being 1000 1bs.

Work expended on passive resistances _ 19
* Ans Work done 29 nearly.

Ez. 533.—In the capstan Ez. 427 show that the wrrk that must be done
by the forces in order to move the weight @ through a height ¢ is given by
the formula

(1+”m¢) l+-) aq+9A (1+”m¢)+2"' .2

)

Exz. 534.—A rope passes over a single fixed pulley in such a manner that
its two parts are at right angles to each other ; the one end carries a weight
Q; the radius of the puliey is » and of the axle p, the angle 8 such that

sin 8= P:iTn; ; then, the weight of the pulley being neglected, show that

if P is the force that will just raise q, we have
r=(o+-‘_“_’2 tan (45° + B)

Exr. 535.—In the last example show that the relation between » and g
may be very nearly represented by the formula

P=Q (l + E_,_P_V_Z sin ¢)+f(l + P2 sin ¢)
ror r r

Ex. 536.—A weight of 500 lbs. has to be raised from a depth of 50
fathoms ; it is fastened to a rope which pasges over a fixed pulley in such a
manner that the parts of the rope are at right angles to each other ; the rope
is wound up by means of a capstan which is turned by two equal parallel
forces acting at the end of equal arms; the rope is 3 in. in circumference,
the pulley 6 in. in effective radius, its axle half an inch in radius, and of
wrought iron turning upon cast ; the capstan weighs 4 cwt., its axle is 4 in.
in radius, oak moving on wrought iron, the effective radius of the capstan
15 in.; determine the number of foot-pounds of work that must be done in
order to raise the weight (not weight aud rope), and the number expended
on passive resistances. Ans. (1) 204,356, (2) 54,356.

Exz. 537.—There is a fixed pulley 20 inches in radius (») moving on an
axle 1 in. (p) in radius (sin $=015); a weight of 500 lbs. is raised from a
depth of 300 feet (Z) by means of a rope 3 in. in circumference which passes

* Dr. Young's Lcctures, vol. i. p. 206.
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over it ; the end of the rope falls as the weight rises ; determine the error
that results from neglecting the weight of the rope in calculating the foot~
pounds of work required to raise the weight—the united length of the two
banging parts of the rope being reckoned at 300 ft. .
Ans. Error= M =27*.
[Compare Ez. 141 and 158.]
Ex, 538.—In the last example determine the error that would result from
neglecting the weight of the rope if the end were nof allowed to fall.
Ans. Error 19,000.
Ex. 539.—If a weight q is raised through a height g by means of a screw,
show that if the same notation is employed as in Ez. 393 the number o
units of work expended is given by the formula

v=ag {tan (a+¢)+3 .%#} cotan a
where all frictions are neglected except those between thread and groove
and on the end of the screw.

Er. 540.—An iron screw 4 in. in diameter communicates motion to an
iron nut, the screw thread is inclined to its base at an angle of 18°, the )
diameter of the end of the screw is 2 in. ; all the surfaces are of cast iron;
determine the number of foot-pounds of work that must be expended in
raising a weight of 3 tons through a height of 2 ft. by means of this screw.

Ans. 23,358.

Ez. 541.—Determine through what height a man working with this screw
could raise a weight of 1 ton in a day; and what would be the best length
of the arm of the screw on which he works—pushing horizontally ; deter-
mine also the part of his work which is expended in overcoming friction.

Ans. (1) 384 £t (2)73ft. (8) 3%

106. The end to be attaimed by cutting teeth on
wheels.—The problem to be solved is this:—Given an
axle A, moving with a uniform angular motion round its
geometrical axis, it is required to connect it in such a
manner with a parallel axis B, as to communicate to it a
uniform angular motion which shall have a given ratio
to the former. Suppose the axle A to revolve m times in
one minute, and it is required to make the axle B revolve
n times in one minute; join the centres A and B, divide
AB into m+mn equal parts, and take A ¢ equal to n of
these parts, and therefore B ¢ will contain m of them, so
that

AC:CBiin:m
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with centres A and B, the radii AcC, BC respectively,
describe circles touching at c; if these circles are fixed
each to its own axle, and revolve with them, and if their
circumferences are rough, so that they roll on each other,
the problem is solved; for take on the circumferences

Fia. 148.

respectively points ¢’ and ¢’ which were in contact at ¢,
then must the arc ¢ ¢’ equal the arc ¢¢”, since the several
points of the arcs have been successively in contact each
with each, and this is true whatever be the lengths of
those arcs. Now, in one minute the point ¢’ describes an
arc whose length is 27rA C.m, and therefore ¢’ describes
an arc whose length is 27 A C.m, i.e. an arc whose length is
27 BC.n, since AC.m=BC.n; but 27 BC.n is n times
the circumference of the circle whose radius is BC, and
therefore the axle B makes n turns while A makes m turns,
i.e. B moves in the required manner.

It is evident that the angular motions will have the
same ratio whatever be the time, and therefore when
the time is very short; hence if the angular motion of
the axle A varies from instant to instant, that of the axle
B will also vary, but the ratio of the angular motions will
remain constant.
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It is also plain that the directions of the angular
motions will be contrary, as indicated by the arrow heads.

It may be remarked that the wheel AcC is called the
driver, and B ¢ the follower.

Ex. 542.—1If in the last article a single wheel moving on a parallel axle
with its centre in the line A B were interposed between A ¢ and B¢, it would
cause the follower to revolve in the same direction as the driver, and would

not produce any change in the ratio of their angular motions, the radii A ¢ )
and B ¢ being unchanged.

107. Practical objection to the above solution.—It is

evident that the above solution fails if the surfaces of the
wheels rub smooth, so that the motion becomes partly one
of sliding and partly one of rolling contact ; and also that
it will fail if the centres A and B are slightly displaced,
since then the contact ceases: one method, in common
use, of obviating this objection is to pass a strong band
of leather tightly over the wheels; this method is com-
monly used when the centres A and B are so considerable
& distance apart that the wheels would be inconveniently
large if in immediate contact ; the most effectual means,
and the only one with which we are here concerned, is to
cut teeth on the circumferences of the wheels ; when this
is properly done the uniform revolution of the wheel a
can be made to communicate a uniform revolution to
the wheel B. The problem we have to solve is therefore
twofold :—
(1) To determine the form that must be given to the -
teeth of wheels, in order that any uniform motion of the
driver round its axis shall communicate to the follower a
wuniform motion round its axis.

(2) As this cannot be done without causing the teeth
of the one wheel to slide over those of the other, it is
required to determine what amount of work is lost by the
friction of the teeth when work is transmltted from one
axle to the other.

The limits of the present work will not allow us to do
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more than give one solution of the former question, and
an approximate solution of-the second. - Readers who
desire further information on this very important subject
will be able to obtain it by reference to Mr. Willis’s
Principles of Mechanism, and to Mr. Moseley’s Me-
chanical Principles of Engimeering:* the former work
treats only of the question of form; the latter also con-
tains a very full discussion of the question of force.

108. Definition and properties of the epicycloid.—
If a circle carrying on its circumference a pencil-point be
made to roll on the Fro. 149,
outside of the circum- »
ference of a fixed
circle, the point will
trace out a curve
called an epicycloid :
the fixed circle is
called the base; the
moving circle is called
the generating circle.
Thus if Q is a point
on the generating circle A D @, and A P C is the base or fixed
circle, then if Q were in contact with AP c at P, the point
Q will trace out the epicycloid P Q.

(@) It is evident that the length of the arc AQ equals
that of the arc aP.

(b) It is evident that the point Q is at the instant
moving in a circle of which the centre is A, and radius A Q,
so that the line A Q is the normal to the epicycloid at the
point Q, and if D Q be joined that line is a tangent to the
curve at Q. :

(¢) It is evident that the form and dimensions of the
curve are independent of the particular point Q occupies

* A very clear elementary discussion of the forms of the teeth of wheels
will be found in Mr. Goodeve's Elements of Mechanism.
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on the generating circle, so that if we take a succession of
pointsQ,Q,,Q, . . . on the generating circle, and describe
with them a succession of epicycloids Q P, Q, P, Q3 P, . .
they will all be exactly like one another, and if P’ Q' be
any epicycloid described on the same base with the same
generating circle as the others, it too will be exactly like
the rest: if we now suppose all the former to remain
fixed, and the circle P’ A C to revolve round its centre,
carryicg ¥ Q' with it, then when P’ comes to P,, the curve
P’ Q' will exactly cover P, Q,, and in like manner it will
successively cover P, Q, and PQ.

Proposition 22.

An epicycloidal tooth can be made to work correctly
with a straight tooth.

Let PQ be the tooth described on the base AP, the centre

Fia. 150, of which is o, by a

o : circlewhose diameter

is A 0; suppose the

base to revolve round

0, and let the tooth

assume successively

the positions p, q,,

P19 P35 « + - - cut~

ting the circle Apoin -

points ¢y, ¢, ¢, then

since the straight

lines0q,,044,0q;5 .« « ¢ «

e touch the epicycloid

in the points ¢,, 5, ¢

/ «+.. it is plain that

/ - astraight line whose

' length is 04a, and

which is movable

round o, will, if driven by the tooth, come successively

0,
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into the positions 0 @,, 0a@,, 0a,, . . . passing through the
points ¢, 95, ¢; . . . . respectively. Now, if we suppose
the angles A 0, p,, 0, 0,p, - . . . to be equal, the arcs A p,,
Py P2 Pe Ps - - - are equal, and therefore (Art. 108 (a)) the
arcs Aq,, 9,9, 9,9; - - - are equal, and the angles they sub-
tend at the centre ¢ will be equal, and their halves will be
also equal, i.e. the angles A0a,, a, 0 a,, a, 0 a,,are equal ;
so that if the circle P A 0, move with a uniform angular
motion, it will communicate a uniform angular motion to
a straight line A 0 movable about the point o, i.e. the
straight line works truly with the epicycloidal tooth.

Ez. 543.—If with centre o and radius o A a circle be described, show that
if this circle work with A p by friction, any one of its radii will have the
same angular velocity as if it had been driven by the tooth ra.

109. Practical rule for the form of teeth.*—Let o, 0,
be the centres of the two toothed wheels ; draw the line of
centres 00,; when the point Fra. 151,
of contact of any two teeth is v
on the line of centres let it be T
at A; with centres 0 and o,
and radii 0A and o, A respec-
tively describe circles, a A a’,
babd’; these are called the pitch
circles of the respective wheels, ,
ie. the two circles which
rolling by friction would move
with the same angular motions
as the wheels. Now, if there
are to be m teeth in the wheel
0, there must be m, in the
wheel 0,, where m, is given by the proportion 04 : 0,4
mim,

Divide the circumference of @ A &' into m equal parts,

7 ¢/

s

-

* This rule, though not the dest, is—or, at all events, used to be—very
generally employed in practice. (See Willis, p, 106). .
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of which parts let AA, be one; the chord of this arc is
called the pitch of the wheel ; divide it into two (nearly)

Fia. 152.

equal parts, of these A E (the smaller) is the breadth of
a tooth, and E A, the space between two teeth; then the
flanks B A, DE of a tooth (i.e. the parts of its outline within
the pitch -circle) are straight lines converging to the
centre 0; and the faces of the tooth A ¢, EF (i.e. the parts
of its outline on the outside of the pitched circle) are por-
tions of epicycloids described on the pitch circle as a base
by a generating circle whose diameter equals the radius of
the pitch circle of the wheel with which it is to work, viz.
0,A. The teeth of the wheel 0, are cut upon the same
principle; the circumference of the pitch circle ba b’ is
divided into m, equal parts, and each is divided into a
tooth and a space ; the flanks of the teeth converge to o),
the faces are epicycloids described on the pitch circle as
a base by a generating circle whose diameter equals the
radius 0A. That the two wheels thus constructed will
work truly, follows immediately from Prop. 22 ; thus, if
the wheel o0 revolve uniformly, the tooth B A ¢ driving the
tooth B’ A ¢, the epicycloid A ¢ will cause the straight line
A B, and therefore the wheel 0,, to revolve uniformly : on
the other hand, if the wheel 0, moving with a uniform
motion drive 0, the epicycloid a ¢’ will cause the straight

Y
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line A B, and therefore the wheel 0, to revolve uniformly.
This is of course true whether the wheels move in the direc-
tions indicated by the arrow heads in fig. 151, or in direc-
tions opposite to them. In order to prevent the locking
of the teeth, it is usual to make AE less than A E by ;-
of the pitch A A, ; and to cut the space A B’ deeper than the
perpendicular length of the tooth A ¢ in such a manner that
the distance from C to the centre is less than the distance
from B’ to the same centre by % of the pitch a4, ; if,
however, the workmanship is very good, the differences
can in both cases be made smaller.

The rule for determining the length of the teeth com-
monly adopted by millwrights is to make the length of
the tooth beyond the pitch circle (i.e. A ¢ or AC") equal to
15 of the pitch.* This rule is, however, a very bad one;
the following, though not perhaps the best, is very much
better :—Suppose 0 to be the driver, and suppose a pair of
teeth to be in contact on the line of centres, the face of the
next tooth should be so long that its extreme point c,
should just be on the circumference of the generating
circle Ax,, as shown in the figure; the length of the
tooth of the follower is determined by a similar rule; the
extreme point of the following tooth ¢, should (under the
same circumstances) be on the circumference of the gene-
rating circle A X 0. The reason of this rule is as follows :—
It may be considered that when the wheels are in motion
the pair will bear the whole or mnearly the whole stress
which at any instant will be the next to go out of contact ;
go that, the above construction being employed, the one
pair of teeth is just going out of contact when the next
pair comes to the line of centres, and consequently the
working stress is not thrown upon any pair of teeth until

* Willig's Principles of Mechanism, p. 98. The rule which follows is
given both by Mr. Moseley, Mechamical Principles, p. 267, and by Gen.
Morin, dide-Mémoire, p. 280.
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it comes to the line of centres; but it appears that prac-
tically the friction between a pair of teeth is very much
more destructive when they are in contact before the line
of centres than when in contact behind the line of centres;
by following, therefore, the rule above given, the fric-
tion between any pair of teeth is diminished. (Compare

Ex. 566.)
In practice the teeth of a wheel are all cut from a

pattern ; in constructing a pattern the epicycloidal curve
may be drawn from the actual rolling of a circle of the
proper size; or an approximation may be obtained by
means of circular arcs. Rules proper for this purpose will
be found in Mr. Willig’s Treatise above referred to.

Ex. 544.—To determine the radius of the pitch circle of a wheel which
shall contain » teeth of given pitch a. Ans. rem a
2 sin 1_8'_'(2’
Ez. 545.—1If a wheel of m teeth drive another of # teeth; then if the

driver make p revolutions per minute, the follower will make 7_:_}) revolutions

per minute.

Ezx. 546.—There are three parallel axes, A, B, c; A makes p revolutions
per minute, it carries a wheel of m, teeth which works with a wheel of n,
teeth on B; B also carries another wheel of m, teeth which works with a
wheel of n, teeth on c; show that ¢ makes %‘ . 7:—’ . p revolutions per

(I
minute,*

Ex. 547.—A winding engine is worked in the following manner :—A steam
engine causes a crank to make 30 revolutions per minute ; the axle of the
crank has on it a wheel containing 36 teeth, which works with a wheel
containing 108 teeth ; the latter wheel is on the same axle as the drum,
which is 5 ft. in radius ; determine the number of feet per minute described
by the load. Ans. 314 ft,

* The above arrangement is to be found in most cranes; if the student
is not acquainted with the arrangement of a train of wheels he will do well
to examine a good crane, such as is to be seen at most railway stations:
the train of wheels in a clock is also a good example, but cannot commonly
e studied without taking the clock to pieces.
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110. The hunting cog.—If wheels have to do heavy
work, and the precise ratio between the velocities is
not of great importance, an additional tooth—called a
hunting cog—is introduced into one of the wheels, so that
the same pair of teeth may seldom work together; by
this means they are kept from wearing unequally. For
instance, if in the last example we denote the teeth of
the driver by the successive numbers 1,2, 3, . . . 36,and
the teeth of the follower by the successive numbers 1, 2,
3, . . . 108; then in every revolution 1 will work with
1,37,and 73; 2 will work with 2, 38, and 74; and 36
will work with 36, 72, and 108. If now we introduce a
hunting cog into the driving-wheel, so that it contains 37
teeth, then on the first revolution 1 will work with 1, 38,
and 75; in the next revolution with 4, 41, and 78; in
the third with 7, 44, and 81, and not until the 38th re-
volution will it work with 1 again.

Er. 548.—If in the last example a ‘hunting cog’ were introduced into
the driver so that it contains 37 teeth, determine the number of feet per
minute the load will now travel. Ans. 323 ft.

Ez. 549.—If in Ex. 546 there are £+ 1 axles and the drivers contain m
teeth, and the followers contain 7 teeth a-piece, show that the mumber of

revolutions made by the last axle will be p (%”) k

Ez. 550.—If in the last example it is required to multiply the number
of revolutions 200 times, how many axles must we use—(1) if we take
m=2n; (2) if we take m=4n; (3)if we take m=6n, and determine the
number of teeth employed, in each case using the nearest whole numbers ?

. Ans. Axes (1) 8. (2) 4. (3) 3.
Teeth (1) 24n. (2) 207, (3) 21a.
Exz. 551.—If each driver has m teeth, and each follower » teeth, and if

M is the total number of teeth in the train, and if the last axle makes ¢
revolutions while the first axle makes one revolution, show that
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% Fz. 552.—In the last example show that for given values of x and
n we shall obtain the greatest value of ¢ by making m = 369 .n nearly.*

[It is easily shown that log (_:i) =1+ .:;:-, whence the result stated.]

Ex. 553.—In the case of a pair of wheels with epicycloidal teeth show
that the distance through which the surfaces of each pair of teeth slide one
upon the other while in contact and after passing the line of centres is ap-
proximately represented by the formula = 2er (— or 2:" (,'T + }

1 1
where r and r, are the radii of the driver and follower respectively, and »
and », the number of teeth in those wheels respectively.

[The motion of one tooth on the other is partly a sliding and partly a
rolling motion. Now, if we refer to fig. 152, it is evident that the pair of
teeth just going out of contact touch at c,; it is also evident that the two
points A, and A’; were in contact at A, 8o that the space through which the
surfaces have slidden over each other is A, A’,, which is very nearly equal

to the sum of the versed sines of the arcs A A;and a4, ie. to r vers = 2=
n

+r, vers 2—, whence the value assigned in the question.]

Ez. 564 —A weight P balances a weight g under the following circum-
stances: P is tied to a rope which is wrapped round an axle whose radius
is p; qQis tied to a rope which is wrapped round an axle whose radius
is ¢; to the furmer is attached a concentric rough wheel, whose radius is
r, to the latter in like manner a concentric rough wheel, whose radius is

Fra. 153. 7, ; these two wheels
are in contact on the
line of centres so that
T+ equals 00,;
show that if we neg-
lect the magnitude
of the axes and the
rigidity of the cords,
we shall have

[The arrangement
described in  the
above example is
Yo represented in the

annexed diagram ; it

* It would appear from this that the best proportion between the number
of teeth in driver and follower for multiplying velocity is 1 :4. This
result is due to Dr. Young, Lectures, vol.ii. p. 66. Mr, Willis remarks that
the rule is not of much practical value (Principles, p. 218).
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is evident that the rough wheels act on each other by means of a mutaal
action through the point A.]

Ez. 555.—In the last example if we suppose the separate wheel and
axles to turn round axes whose radii are p and p, respectively and the limit-
ing angles of resistance between them and their bearings to be ¢ and ¢,,
show that when pis on the point of overcoming @ we have the following
relation (neglecting the rigidity of cords, and the weights of the wheel and
axles): —

P (p—p sin ¢) (7, +p, 6in ¢,)=Q (¢ +p, sin ¢,) (r+p sin ¢)

Exz. 556.—If in the last example, besides the frictions on the axes, we
take into account the weights w and w, of the wheel and axles, determine
the relation between p and Q.

Ex. 557.—If in the last example we neglect powers and products of
P ’;’ LA s:;: L 81; L s;n 1, show that the number of foot-pounds
of work that must be done in order to raise a weight of g lbs, through s ft. is
given by the formula

U=qs {1 + (P )p sin ¢+(———) py sin ¢.}

+ TS psin 4w, P sin ¢.}
g r r s

Ex. 558.—In the last example if we suppose the rough wheeéls to be re-

placed by a pair of toothed wheels whose pitch circles have the same radii

as the wheels; then if the wheel o contains # teeth, and the wheel o, con-

tains n, teeth, show that when @ is raised through a distance s the werk

lust by the friction of the teeth is approximately represented by the formula

Qs (5 +% ), where u is the coefficient of friction between the teeth.
s

[If the wheel 0,a revolves through an a.ngle-z: the distance through

which the surfaces of the driving and driven teeth slide is 2"' ( )
6 n,

and therefore, supposing B, the mutual pressure, to contmue constant
during the contact of the teeth, the number of units of work expended
el ( ; +% . Now, approximately,
1 1
rr,=qg, and therefore the work expended on one pair of teeth equals
e (= +E) ; but 279 is the distance through which q is raised during
n, \n mn n .

on friction equals ur

* If p instead of being a weight were a force acting vertically upward
it is easily shown that the third term of this equation is

(i) e
Q2
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the action of one pair of teeth, and the same being true of every pair of teeth,
we obtain the result stated in the question. Of course, the addition of the
expression contained in the present question to that obtained in the last is
the correct approximate formula for the work expended in raising a weight
through the intervention of & pair of toothed wheels.]

Ez, 559.—A force P acting at the end of an arm 04, two feet long,
causes the toothed wheel 0B to make 10 turns per minute; this wheel
working with the wheel o, B turns the drum o, ¢ and raises the weight q;
given that P does at the point A 330,000 foot-pounds of work per minute,
determine approximately the weight Q that will be raised by the drum,
having given the radius of o B to be 1 ft., o, B to be 3 ft., the number of
teeth in 0B to be 40, and the radius of the drum 5 ft.; the teeth, axles, and
bearing are all of cast iron without unguents; the radii of the axles are 8
in., the weight of the axles and appendages of o is 3600 lbs., and that of o,
is 5400 lba, Ans. 2762 1bs.

[See Note to Ex. 557.]

Ez, 560.—Show that in a train of p pairs of wheels and pinions* the
work lost by friction betweep the teeth is given by the formula

1 1
pasy ”l+”2+ ".+ oo 4 =
where #,, 7, %, . . .7, are the number of teeth in the successive wheels
and pinions,

Ez. 561.—There is a train of p equal pairs of wheels and pinions ; the
numbers of teeth are such that the last axle revolves m times faster than
the first ; show that if v is the number of units of useful work yielded, the
work lost by the friction between the tecth is represented by the formmla

s

£ (1+m”)

where # is the number of ueth in each wheel,

*Ex. 562.—It is required to make the last axle move m times faster
than the first, show that the loss of work is least when p, the number of
pairs of wheels and pinions, is given by the formula

1 1
m P +log. m Pil=0

*Ez. 563.—If in the last example it is required to multiply the velocity
100 times, show that the proper number of pairs nf wheels and pinions is 3
or 4, i.e. show that the equation in the last example gives a value of p
between 8 and 4 ; and determine the number of teeth employed in each case
if the first pinion have 20 teeth, using the nearest whole numbers.

Ans. (1) 339, (2) 338.

* When a small wheel drives a large one the former is frequently called
& pinion and the latter a wheel.
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Ez, 564.—If in the pair of wheels already described (Art. 109) all but
a single pair of teeth be cut away, so that the remaining teeth act on each

other while the wheel o moves through an angle “;_' before coming to the

line of centres, and also while it moves through an equal angle after having
passed the line of centres, and if we suppose » and Q to act on the pitch
circles of their respective wheels, show that when the point of contact is in
such a position that the wheel o has to revolve through an angle 6 before
the point of contact comes to the line of centres we have

p{r—(r+n) tan Otan ¢ } =qr,

and that when the point of contact is so situated that the driver has re-
volved through an angle 0 from the line of centres we have

rraq{r+(r+r,)tanr:—tan ¢}
1

[If in the accompanying figure x is the point o1 contact of the teeth be-
fore they come to the line of centres, that point x will be on the circum-

F1a. 154.

ference of a circle whose diameter 1s 0 A; if then we draw a line RR’ such
that the angle B x A equals ¢, this will be the line of the mutual action of
the teeth; remembering that the angle A 0 x equals 0 it is easily shown that
the perpendiculars on R’ from o and o, are respectively equal to
7 cos @ cos ¢

and (r+7,) cos (6 +¢)—r cos 0 cos ¢

whence the first equation is obtained ; the second is obtained in a similar
manner, by determining the relation between p and @ when the follower has
revolved through an angle 6" which will be found to be

pr=Q{r+(r+r)tan @ tang}

whence we obtain the answer.]
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Ex, 565.—If Ao B be any diameter of a circle A p B; if ¢ be any point taken
in the prolongation of A B (so that B is between A and c), and if o ®, BP, cP
be joined, show that

BCc=ACtan PABtan BPC
" and hence explain the action of the forces which produces the result that
follows from the first equation in Er. 564, viz. that when r,=(» +7,) tan
tan ¢ the force P must be infinitely large to bring q into the state bordering
on motion.

Ez. 566.—If the driver be not greater than the follower, show from the
equations of Er. 564, that for a given value of q the value of P is greater
when the driving tooth is in a given position before it comes to the line of

centres than when it is in a corresponding position after having passed the
line of centres,

[If m be written for the ratio of »tor, (so that m cannot be greater
than unity) the equations in Ex. 564 can be written thus :—

P{1—(1+m)putand} =q
and p’=q{l+(l+l_)ptanm0}
m
consequently
P—P=q {(l+m)utan 0—(1+7-n1)p. tan m@ + positive terms }
and this, on expanding in powers of 6, is found to equal
pe[(1+m)o{ $(1—m?) B+ & (1—m*) 6 +. . .} +positive terms]
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PART II

DYNAMICS.

——

CHAPTER 1.

INTRODUCTORY.*

111. Velocity.—Before considering force as the cause
of change of welocity, it will be necessary to define
accurately the means of estimating velocities numeri-
cally.

Def.—A body moves uniformly or with a uniform velo-
city when it passes over equal distances in equal times.

The units of distance and time commonly employed are
feet and seconds:t and whenever a body is said to be
moving with any particular velocity, e.g. 5 or 6, this will
always mean with a velocity of 5 or 6 ft. per second.

Def.—When a body moves with a variable velocity,
that velocity is measured at any instant by the number of
units of distance it would pass over in a unit of time if ¢
continued to move uniformly from that instant.

It will be seen from the definition that variable velocity
is measured in a manner that exactly falls in with the

* The student is particularly recommended to make himself thoroughly,
master of this chapter before proceceding further.

t To prevent mistake, it may be stated that the time referred to is mean
solar time,



232 PRACTICAL MECHANICS,

ordinary way of speaking: thus, when we say that a train
is moving at the rate of 40 miles an hour, we mean that
if it were to keep on moving uniformly for an hour, it would
pass over 40 miles. Again, if we were to drop a small heavy
body, we should find that at the end of a second it is
moving at the rate of about 32 feet per second, or, as it
is commonly stated, it ucquires in a second a velocity 32,
meaning that if it were to move uniformly from the end
of that second it would pass over 32 feet in each successive
second.

112. Relation between umiform wvelocity, time, and
distance.—In the case of a body moving with a uniform
velocity, it is evident that the number of feet (8) passed
over in ¢ seconds must be ¢ times the number of feet
passed over in one second (v),

c.8=vt.

The distance & can, of course, be represented geometri-
cally by the area of a rectangle whose sides severally re-
present on the same scale the velocity and the time.

Ez. 567.—A body moves uniformly over 2} miles in half an hour;

determine its velocity. Ans. 7%,
Er. 568.—A body moves at the rate of 12 miles an hour; determine
its velocity. Ans. 173.

Ez, 569.—The equatorial diameter of the earth 18 41,847,000 ft., and
the earth makes one revolution in 86,164 seconds; determine the velocity
of & point on the earth’s equator. Ans. 1626.

Ex. 570.—A body moves with a velocity of 12; how many miles will
it pass over in one hour? What would be its velocity if we used yards and
minutes as units instead of feet and seconds?  Ams. (1) 8%. (2) 240.

113. The welocity acquired by falling bodies.—It
appears as the result of the most careful experiments that
at any given point on the earth’s surface, a body falling
freely in vacuo acquires at the end of every second a
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certain constant additional velocity:* this velocity is
slightly different at different places, but is always the same
at the same place, and never differs greatly from 32; so
that if at any instant the falling body has a velocity v, it
will have at the end of the next second a velocity v+ 32.
This additional velocity is the accelerative effect, or, as it
is sometimes called, the accelerating force, or simply the
acceleration, of gravity, and is denoted by the letter g ;—
in all the following examples it will be assumed that g
equals 32, unless the contrary is specified.

From what has been said it is plain that if a body is
let fall, it acquires a velocity g at the end of the first
second, 2¢ at the end of the second second, 3g at the end
of the third second, and so on: consequently, if v is the
velocity acquired at the end of ¢ seconds, we shall have

v=gt.

By the same reasoning it appears that if the body is
thrown downward with a velocity v, and if v is its velo-
city after falling ¢ seconds, then

v=V+gt

Moreover, when a body is thrown upward so as to move
in a direction opposite to. that in which gravity acts, it
appears that it loses in every second a velocity g ; conse-
quently in that case

v=V—gi

Ez. 571.—A body falls for 7 seconds ; with what velocity is it moving
at the end of that time? Ans. 224,

Exz, 672.—1If a body is let fall, how long will it take to acquire a velocity
of 200 ft. per second ? Ans. 6} sec.

Ez. §73.—A body is projected downward with a velocity of 80 ft. per
second ; determine the velocity it will have at the end of 5 seconds, and the
number of seconds that must elapse before its velocity equals twice its
initial velocity. Ans. (1) 240. (2) 2} sec.

* It may be remarked, that the difference between the velocities with
which a featherand a bullet descend is entirely due to the resistance of the
air,
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Ex. 574.—A body is thrown downward with a velocity of 160 ft. per
second ; determine its velocity at the end of 4 seconds, and the number of
seconds in which a body that is merely dropped would acquire that
velocity, ) Ans. (1) 288. (2) 9 sec.

Ezx. 576.—A body A is projected downward with a velocity of 160 ft.
per second ; at the same instant another body B is projected upward with
an equal velocity ; determine how much faster Ao will be moving than B at
the end of 4 seconds. Ans, 9 times,

Ex. 576.—A body is thrown upwards with a velocity of 96 ft. per
second ; with what velocity will it be moving at the end of 4 seconds?

[The formula gives — 82, i.e. it will be moving downward with a velocity
of 32 ft. per second.]

Ez. 577.—1In the last case how long will it take the body to reach the
highest point?

[Tt will be at the highest point when v=0, i.e, after 3 seconds.]

Ex. 578.—A body is at any instant moving upward with a given velocity

v ; show that it will be moving downwards with an equal velocity after ?Tv

seconds ; and that it will reach its highest point after Y seconds.

Ez. 579.—A body is thrown up with a velocity mg ; after how long
will it be descending with a velocity n g ? Ans, m+n sec.

114. The distance described in a given time by a fall-
ng body.—It admits of proof that if a body is allowed to
fall freely from rest for ¢ seconds the number of feet (8)
which it will pass over is given by the formula

s=3gt?
If, however, it is thrown downward with a velocity v,
we shall have
s=Vvi+igt?

and if uwpward with a velocity v, it will, at the end of ¢
seconds, be s feet above the point of projection, where
s=vi—}gt?
Ez. 580.—How many feet will be described in 4 seconds by a body that

moves freely from rest under the action of gravity ? Ans. 256 ft.

Ez, 581.—Through how many miles would a body falling freely from
rest descend in one minute? Ans. 1019 mi.

Ex. 582.—A body is projected downward with a velocity of 20 ft. per
second ; how fur will it fall in 1§ second ? 4ns. 66 ft. '
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Ez. 583.—A };ody is projected upward with a velocity of 100 ft. per

second ; how high will it have ascended in 3 seconds? Ans. 156 ft.
Ex. 584.—Show that the greatest value of v¢=}g¢? is found by making
i= %- [Compare this result with Ex. 578.]

Ex. 585.—1If a body be projected upward with a velocity of 96 ft. per
second, where will it be at the end of 7 seconds, and what will be the whole
distance it will have described ? : :

Ans. (1) 112 ft. below the point of pr.jection. (2) 400 ft.

Ex. 586.—A body is projected upward with a velocity of 100 ft. per
second ; determine where the body will be, with what velocity, and in what
direction, the body will be moving at the end of 4 seconds.

Ans. (1) 144 ft. above the point of projection. (2) 28 ft. per sec.
downward.

Ez. 587.—A body is projected upward with a velocity v; show that it
will return to the point of projection after 0 gecs.

[Compare this result with Ez. 578.]

Ez. 588.—A body falls for a time #, and has a velocity v at the begin-
ning, and v at the end of that time: show that it describes the same dis-
tance as another body describes in the same time with a uniform velocity
i (v+o)

115. Relation between velocity acquired and distance
passed over by a falling body.—The above relations
between the velocity (v) which the body has at the end of
a time (t) and between the distance (8) which it describes
in the same time () enable us to determine the relation
between v and 8 ; thus, if the body is simply let fall we have

v=g1t
and s=3g1?
whence »=2¢gs

an equation which gives the velocity acquired in falling
from rest through s feet. In like manner if we take the
equations

v=v+gt
and . 8=vVvi+igt?
we see that 2g8=2vgt+g?t?
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and Vi4+2g8=V2+2vgt+ g2ttt
=(v+gt)
therefore =v24+2g8

This equation gives the velocity (v) which the body
has after falling through s feet from the point at which it
was moving downward with a velocity v. Similarly we
can show that

V=v—-2¢g3s
in which v is the velocity which it has when it is s feet
above the point at which it was moving upwards with a
velocity v; whether the direction of the velocity v is
upward or downward does not appear from the equation,
and must be determined by other considerations. When
a body is moving with a given velocity (v), a certain
height (g) can always be found such that if a body fell
down it freely from rest it would acquire the given velo<
city ; under these circumstances v is said to be the velo-
city due to the height 5. These quantities are, of course,
connected by the equation
Vi=2gH.

Ez, 589.—If a body is thrown upward with a velocity v, show that it

will ascend throughzl; feet.

Ex, 590.—If a body is thrown upward with a velocity of 200 ft. per

second, find its greatest height, Ans. 625 ft.
Ez. 591.—If a body falls freely through 150 ft.,, find the velocity it
acquires, Ans. 98.

Ez. 592.—A body is projected vertically upward with a velocity of 200
ft. per second; how long will it take to reach the top of a tower 200 ft.
high, and with what velocity will it reach that point ?

Ans. (1) 111 sec. (2) 1649,

Ez. 593.—Let A be the highest point of a vertical line A B: at the
same instant ome body is dropped from A and another thrown up from s,
they meet at the middle point of A B; find the initial velocity of the second
b(ody Ans. /g xAB.

Er. 5694.—A stone (a) is let fall from a certain point; one second after
another stone () is let fall from a point 100 ft. lower down ; -in how many
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seconds from the beginning of its motion will A overtake B, and what
distance will it have described ? Ans, (1) 3§ sec. (2) 2104 ft.
Ez. 595.—A stone () is let fall from the top of a tower 350 ft. high ;
at the same instant a second stone (B) is let fall from a window 50 ft. below
the top; how long before A will B strike the ground ? Ans, 0°35 sec.
Ez. 596.—A stone (A) is projected vertically upwards with a velocity of
96 ft. per second; after 4 seconds another stone (B) is let full from the same
point ; howlong will B move before it isovertaken by A, and at what point will
this happen? A4ns. (1) 4 sec. (2) 256 ft. below the point of projection.
Ezx. 597.—In the last example if only 3 seconds had elapsed when B
was let fall, would A ever have overtaken it ? Ans. No,
Ez. 598.—The point A is 128 ft. above B; a body is thrown upward
from A with a velocity of 64 ft. per second, and at the same instant another
is thrown upward from B with a velocity of 96 ft. per second ; show that
after 4 seconds they will both be at A ; moving downward with velocities
64 and 32 respectively.
Ez. 599.—Determine the heights to which velocities of 20, 59, and

760 ft. per second are respectively due.
Ans. (1) 6} ft.  (2) 5425 ft. (3) 9025 ft.

116. Other cases of uniformly accelerated motion.—
The velocity of a body is said to be uniformly accelerated
when it is increased by equal amounts in equal intervals
of time. Thus, taking feet and seconds as the units of
distance and time, if the velocity of a body is, during any
second of its motion, changed from v ft. a second at the
beginning of the second to v+ 20 ft. a second at the end
of the second, the acceleration is said to be 20 in feet and
seconds. In like manner if the acceleration is f in feet
and seconds, this means that if at any instant the body is
moving at the rate of v feet a second, its velocity will be-
come at the end of a second v+f feet a second. The
velocity is said to be uniformly retarded when it is
diminished by equal amounts in equal intervals of time;
thus, if at any instant the velocity is v feet a second, and
at the end of a second it becomes v—f feet a second, the
velocity is said to undergo a uniform retardation f. It is
usual to reckon retardation as a negative acceleration, Tf
we write f for g in the formule of the preceding articles
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they will apply to the rectilineal motion of bodies whose
velocities undergo any uniform acceleration or retardation.
Thus, if v is the initial velocity, f the acceleration, ¢ the
time at the end of which the body has a velocity v, and is
at a distance 8 from the starting point, we shall have
=V + f t
s=vi+ife?
' v!=v24+2fg
Ez. 600.—At the distance of the moon the accelerative effect of gravity
is reduced to about ylz; if a body fell freely from this distance for one
hour, with what velocity per minute would it then be falling? and in how
many seconds would a body falling in the neighbourhood of the earth’s
surface acquire the same velocity ?
Ans. (1) 19284. (2) 1 sec. very nearly.
Ezx. 601.—If a body were to begin to fall to the earth from the distance
of the moon, how many yards would it fall through in half an hour ?
Ans. 4821 yards.
Ex. 602.—In the last example if a body were thrown upward with a
velocity of 4 miles an hour, how long would it take to return to the point
of projection? Ans. 1314 sec.

117. The acceleration of the motion of a given body
produced by a given force.—In most cases the moving
body is acted on by several forces, which to a certain extent
neutralise each other, and its motion is caused by their
resultant. Suppose that a body is placed on a smooth
horizontal plane and moved by a force () acting horizon-
tally ; the forces acting are the weight of the body, the re-
action of- the plane, and the force P; of these the two
former neutralise each other, and the latter produces the
motion. So long as the force producing motion remains
unchanged, it will uniformly accelerate (or retard) the
motion. The amount of the acceleration is determined by
the fundamental principle *—If any given body is acted on

* The evidence for this principle, as for all the other fundamental
principles of dynamics, is experiment, though it is very difficult to devise
experiments which shall exhibit them in a state of isolation: Galileo, who
discovered most of them, possessed a rare sagacity in detecting the parts of
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successively by two forces, the accelerations due to the
action of the forces are in the same ratio as the forces.
Now, if the weight of a body be w lbs., we know that the
sensible attraction the earth exerts on it at London is a
force of wlbs.—the term pound being used to denote the
unit of force, as in Art. 23. Also, if this body fall freely
in vacuo in London it has been ascertained (see Table
XYV., p. 250) that its velocity is increased in each second
by a velocity of 32:1912 ft. per second ; this is, therefore,
the acceleration of that body’s velocity when acted on
by a force of w lbs. Suppose the same body to be acted
on by a force of P Ibs. and the corresponding acceleration
to be f ;—suppose, as in the above instance, that the body
is placed on a smooth horizontal plane, and urged along a
straight line on the plane by the force p;—then in each
successive second of its motion its velocity will be increased
by a velocity of f feet per second, where f is given by the
proportion
wiPp:: 321912 : f

In the following examples 32 will be used as an approxi-
mate value of 32:1912. .

It follows from the remark already made (Art. 116)
that the formulee previously given for falling bodies will
be true in the present case when f has been substituted
for g. Thus we shall have

v=f1 s=3ft? *=2fs &e.

Er. 603.—A body weighing 30 lbs. slides along a smooth horizontal
plane under a constant force of 15 lbs.; determine—(1) the additional
velocity it acquires in every second ; (2) the velocity it will have at the
end of 5 seconds ; (3) the distance it will pass over in 5 seconds.

Ans. (1) 16, (2) 80. (8) 200 ft.

a phenomenon which were due to disturbing causes, and thus was enabled to
get at the fundamental principles. The experimental verification of these
principles is nearly always indirect, and consists in comparing actual cases
of motion (e.g. that of planets, of pendulums, &c.) with the secondary
principles which have been derived from them.
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Ez. 604.—A mass weighing w 1bs. is urged along a rough horizontal
plane by a force of P 1bs. acting in a direction parallel to the plane : the
coefficient of friction is u ; if the body's velocity is increased in every second
by f, show that

P—uw
f= - 9
where g denotes 32:1912 or (approximately) 32.

Ez. 605.—A weight of 100 lbs. is moved along a horizontal plane by a
constant force of 20 1bs. ; the coefficient of friction is 017 ; determine—(1)
the distance it will describe in 10 seconds ; (2) the time in which it will
describe 200 ft. Ans. (1) 48 ft. (2) 204 sec.

Ez. 606.—A train weighing 50 tons is impelled alocg a horizontal road
by a constant force of 550 lbs. ; the friction is 8 lbs. per ton; what velocity
will it have after moving from rest for ten minutes, and what distance
will it describe in that time? *

Ans. (1) 174 miles per hour. (2) 7714 ft.

Ex. 607.—If in the last example the steam were cut off at the end of
the 10 minutes, how many seconds will elupse before the train stops, and
how far will it go ? Ans. (1) 225 sec. (2) 2893 ft.

FEz, 608,—A train is observed to moveat the rate of 30 miles per hour,
the steam is cut off, and it then runs on a horizontal plane for 10,000 ft. ;
find how many lbs. per ton the resistances amount to supposing them inde-
pendent of the velocity.

[It is easily shown that f=00968 ; then the resistance () in lbs. per
ton (w) is found to equal 6:776 1bs.] :

Ez. 609.—A sphere lies on the deck of a steamer and is observed to
roll back 20 inches; if the resistance to rolling is the J;th part of its
weight, determine the change in the velocity of the steamer.

Ans. 2:309 ft. per sec.

118. The motion of connected bodies.—The meaning
of the term reaction has been already explained in Art. 28,
where the law is stated that when a body (a) acts on
another body (B) the action is mutual ; whatever force a
exerts on B, B exerts an equal opposite force on A. It

* If the resistances which oppose the motion of the train were constant,
it would be possible to attain any velocity, however great ; in reality the
resistance of the air always imposes a limit to the velocity that can be
attained by a train moved by a force that exceeds the frictions by any
given amount; thus Mr. Scott Russell's formula for the resistance con-
tains a term involving the square of the velocity of the train (Rankine,
p. 620).
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must be understood that this law is perfectly general, and
is true whether the bodies are at rest or in motion. Sup-
pose that two bodies, whose weights are P and q, are
connected by a very fine weightless thread, supported by
a smooth point on which it hangs. If P is the heavier of
the two, it will descend, and in doing so it.will draw Q
up. If the question is to determine the velocity acquired
and the distance described by the bodies in a given time,
we may proceed thus :—The system whose weight is P+Q
is moved by the excess of the weight of P over that of Q;
hence if f is the accelerative effect of that force we have
P+Q:P—Qug:f

and as this proportion gives f the question can be an-
swered easily. But if the question is to find the force
which causes P’s motion or Q’s motion, we must proceed
as follows :—If P acts on Q with a force T, Q will react on
P with an equal opposite force, and, as both these forces
are transmitted along the thread, T is the tension of the
thread. Now the velocities of the bodies are always equal,
therefore the acceleration of P’s velocity must equal that
of Q’s velocity. But P moves downward under a force
of p—T pounds, and Q upward under a force of T —Q pounds.
Therefore if f is the required acceleration we have

f_ = l__’:_’_l‘ and Z = T;_Q
g P g Q
whence we obtain

P—Q 2PQ

=——.¢9 and T=_—
P+Q P+Q ,
The value of f is the same as that previously deter-
mined, and T is the value in lbs. of the force with which
P acts on Q, and of that with which Q reacts on P.

Ez. 610.—If in the case explained in the last article » and Q weigh
124 lbs. and 11} Ibs, respectively ; find (1) the acceleration of ¥'s and q's
R



242 PRACTICAL MECHANICS.

velocity, (2) the distance they would describe in 6 sec. from a state of rest,
(3) the tension of the thread.  4ns, (1) 13. (2) 163 ft. (3) 114] lbe.

Ez. 611,—A weight g is tied to a string, and rests on a rough horizontal
table; to the other end of the string is tied a weight P which hangs ver-
tically over the edge of the table; if the weight of the string and its fric-
tion against the edge of the table are neglected, show that when » falls it
accelerates ¢’s velocity in every second by f, where

P—pq
/= P+Q -9

[The student will remark that in this case a weight P+ Q is moved by a

'force P—pQ.]

Ez, 612.—A mass of cast iron weighing 100 lbs. is drawn along & hori-
zontal plane of cast iron by means of a cord which is parallel to the plane,
and to the end of which a weight of 20 1bs. is attached (as in Ez. 611);
determine—(1) the acceleration ; (2) how far it will move in 4 seconds,

dne, (1)1} (2) 103 fr.

Ez. 613.—If in the last example the mass had described 5 ft.in 1}
seconds, what must have been the coefficient of friction ? Ans, 4.

Ex. 614.—If in Ez. 611 Q weighs 1 1b. and P weighs 1 oz. ; if moreover
the length of the string is 12 ft. and p is placed at the edge of the table
which is 3 ft. above the ground, find—(1) how long p will take to reach the
ground ; (2) how long it will take Q to arrive at the edge of the table, the
friction between q and the table being neglected.

Ans. (1) 1178 sec.  (2) 4°46 sec.

Ez, 615.—In the last example suppose P and q each to weigh one
pound ; determine the coefficient of friction between @ and the table if that

body just reaches the edge, . Ans. §.
Erz, 616,—In Ez. 611 show that the tension of the stringequals (—IE_:_‘)TPQ

Ez, 617.—In Ex. 812 find the tension of the cord. Ans, 19} 1bs.

E. 618.—A plane is observed to be descending with a uniform accele-
ration of 8; a body weighing w lbs. rests on the plane : show that the
mutual pressure between w and the plane is fw,

Ez, 619.—Three bodies », g, ®, weighing 100 1bs. apiece, are connected
by threads and placed one after another on a smooth horizontal plane;
they are set in motion by a weight of 20 lbs. which is connected by a thread
to p and hangs over the edge of the plane ; find the tensions of the threads,

Ans. 64 1bs., 12} 1bs., 183 1bs.

Ez. 620.—A chain hangs over a point ; if we suppose the chain per-
fectly flexible, the point perfectly smooth, and the hanging parts of unequal
length, it will not stay at rest, but will run off the point ; show that during
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the motion the tension of the chain at its middle point equals the weight of
the shorter of the two hanging parts,

- 119. The work accumulated in a moving body, or its
kinetic energy.—A moving body has, in virtue of its velo~
city, the power of doing work against a resistance. For
instance, if a train is in motion, and the steam is cut off,
it will run for a considerable distance before coming to
rest; and all the while it is moving it is doing work
against the friction and other resistances. This power
which a moving body has of doing work may be called the
work accumulated in the body, but it is more commonly
called its vis viva, or kinetic energy. Let the body
weigh w 1bs. and have a velocity of v feet a second ; sup-
pose its