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GENERAL PLAN OF THE SERIES.

THE subj of these Manuals are for the most part, though not exclusively,
the same as those of the Syllabus of the Science and Art Department, South
Kensington, and the treatment will be found to meet the requirements for the
Examinations held by that Department.

In their wider scope the Manuals are intended to serve two somewhat
different purposes :

1. They are designed, in the first place, for SELr-INSTRUCTION, and will
present, in a form suitable for private study, the main subjects entering into
an enlightened education ; so that young p in about self-cul
may be able to master them for themselves.

2 The other purpose of the ManmlsutomeuTmsooxsm ScuooLs.
The mode of t dopted in what is to be studied without a
teacher, sofarfrombemgadrzvbnckma.. ool 1, will, it is believed, be
a positive advantage. The subject is made, as far as possible, to unfold itself
gradually, as if the pupil were dis ing the principles himself, the chief
function of the book being, to bring the materials before him, and to guide him
by the shortest road to the discovery. This is now acknowledged to be the
only profitable method of acquiring knowledge, whether as regards self-
instruction or learning at school.




PREFACE

THE non-mathematical English works on Mechanics are
mainly of two kinds—one the old-fashioned text-book,
which every one now feels to be quite unsatisfactory; and
the other, the comprehensive and powerful productions of
Professors Thomson and Tait, Clerk Maxwell, and W. K.
Clifford ; which, though not confessedly mathematical, are
yet far too difficult for ordinary beginners.

The present book aims at giving a clear knowledge of
the principles of the subject, in as elementary and even
popular a manner as is consistent with careful accuracy,
and without assuming any mathematical knowledge beyond
the most rudimentary algebra. At the same time it is
hoped that students’ who use this manual will be able to
master the elements of the science in such a way that they
may rise from it to more advanced treatises, not only with-
out having anything to unlearn, but with a very sound know-
ledge of principles. Copious illustrations and explanations
have been all along inserted, and the general plan of the
Series, of which this forms a volume, has been kept steadily
in view.

‘The examples at the end of the chapters are typical ones,
and are intended not only to be worked without looking
at the answers, but also to be read almost as part of the
book, because they frequently direct attention to important
details. The solving of a few miscellaneous exercises such
as those at the end of the book, is good practice, but it has
not been thought well to fill up the book with a host of
numerical questions which are often mere exercises in
arithmetic ; the time spent in solving such would often
be more usefully employed in reading and thinking over
fundamental principles.

The statements made in a book should be carefully
aiticised and not taken for granted—and all kinds of
special cases should be thought of or tried, to see if an
exception cannot be found. 77 is by thinking onés-self on
a subject that it becomes really known to one's-self; it will
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never be really known if we only try fo understand and

remember what the book says. Any emendation or correc-

tion of statements in the following pages will be gratefully
received.

The author has as a matter of course to acknowledge
obligations to Thomson and Tait’s Natural Philosophy, and
to Professor Clerk Maxwell's little manual, Matler and
Motion. To Deschanel (Part I.—obtainable separately)
and Ganot (Books 1.—IV.) such frequent reference has
been made, that they need only be mentioned here in order
to recommend real students to read one or other of them
along with the present work, so as to fill up their know-
ledge in more detail. They may also be referred to Pro-
fessor Garnett's Elementary Dynamics for a rather more
mathematical treatment of certain subjects, and for numer-
ous problems and exercises.

The author has to thank Dr Henrici for his kindness in
revising the proofs of Chapters VII. and VIII, and for
several valuable suggestions. His obligations to Professor
Carey Foster are so great, that it is as impossible as’ it is
unnecessary to express them. It is while he has been
under Mr Foster’s influence that he has learned everything
of any accuracy that he knows on the subject, and more
than half the book may be traced to his teaching, direct

or indirect.
OLIVER ]. LODGE

SUGGESTIONS FOR READING.

Beginners are recommended to omit the following sections on a
first reading: 15-17, 37-40, 50-52, 56, 57, 82, 83, 95, 104, 111,
112, 141-143, 147-150, 179; and then to return and read the
omitted portions together, and finally to read the whole book
through carefully without omitting anything. Students preparing
only for London University matriculation, or for the elementary
stage of the Science and Art Department, may pretty safely
omit any of the above sections over which they experience much
difficulty, until the examination is over.
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inches.
centimetres.

CoMPARISON OF CENTIMETRES WITH ENGLISH INCHES.

12

METRIC SYSTEM OF UNITS.

The metric system of units, as now adopted
throughout Europe, is as follows :
The centimetre is the unit of length.
A second is the unit of time.
The cubic centimetre is the unit of volume.

The mass of one cubic centimetre of distilled
water at its temperature of maximum
density is called a gramme, and is the unit
of mass. ‘

(For the derived units dyne and 7y, sce sects. 43 and 77.)

1 foot = 30.4797 centimetres.

1 cubic inch = 16-387 cubic centims.
. 1 pound = 453-59 grammes.

1 gramme = 1§-43 grains.

The weight of & gramme = 981 dynes.

1 centimetre = .3937 inch.

1 litre = 1000 cubic centims.

A velocity of one mile per hour = 44-704
centimetres per second.

The weight of one grain = 63-57 dynes.

A pressure of one pound weight per square
foot = 479 dynes per square centimetre.

An acceleration of 32-18 feet-per-second per
second = 981 centimetres-per-second per
second.

33 centimetres = 13 inches very nearly
indeed.

For further details see Professor Everett’s book,
Lllustrations of the C. G. S. System of Units.




ELEMENTARY MECHANICS.

INTRODUCTION.
ON FORCE

1. MECHANICS is that branch of Natural Philosophy which
treats of the different effects of force on matter.

Other branches of Natural Philosophy, summed up under
the name PAysics, treat of the different ways in which force
may originate, and are concerned with different forms of
energy (the force generator), just as Chemistry is concerned
with different kinds of matfer; Mechanics accepts both
force and matter, and discusses only the effects of one on
the other.

2. By the term force we are to understand muscular
exertion, and whatever else is capable of producing the
same effects.

Muscular action impeded gives us our primitive idea of
force ; our sense of muscular exertion itself is a primary
one for which we have special nerves, and it is not resolved
into anything simpler. When any inanimate agent pro-
duces an effect on bodies exactly similar to that which
would be produced by muscular exertion on the part of an
animal, it also is said to exert force. Thus, a steam-engine
exerts force when propelling a carriage, or pumping water,
or turning a mill ; gunpowder exerts force on a cannon-ball
during the time the ball is passing from the breech to the
muzzle of the gun. But in order that an agent can exert
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force it must meet with some resistance ; in other words,
force is always the mutual action of fz0 bodies against one
another, and the amount of the force is precisely equal to
the amount of resistance. Thus, a flying cannon-ball is not
exerting force unless it meets with some resistance : if the
air rub against it gently and resist its motion, it will exert
a slight force against the air; but if it strike a target, it
meets a very great resistance, and therefore exerts a very
great force, possibly smashing the target. A running stream
exerts very little force unless it meets with an obstacle ; but
if you resist its motion with your hand, it will press against
your hand, or if you dip the vanes of a water-wheel in it,
may force the wheel round.

It is meaningless, then, to speak of the force of a fredy
falling weight, though it is not at all meaningless to speak of the
force exerted by a weight compelled to fall gradually, such as a
clock-weight, or a bucket when being lowered down a well ; because
in any such case the falling is resisted, and the force exerted by the
weight exactly equals the resistance offered, even if you apply so
much resistance as to stop it altogether, or actually to pull it up

again.

3. Force, then, is always a dual thing—an action taking
place between #wo bodies, and the action (or push) of the
one on the other is always precisely equal to the reaction of
the other on the one. In other words, action and reaction
are equal and opposite. If you want to tear a piece of
paper, or break a string, or stretch a piece of elastic, or
squeeze a bit of india-rubber, or crack a nut, it is no use
pulling or pushing at one side only; you must apply the
force to both ends or sides—that is, you must apply two
forces, one opposite the other. This pair of forces which
always go together it is convenient to have a name for, and
it is called a s#ress. It may be either a fension, if the forces
are acting away from each other, as in the first three of the
above examples; or a pressure, if the forces are acting
towards each other, as in the last two. (The effect which a
stress produces in an ordinary solid before rupture is called
a strain.)
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It is often convenient to isolate one of the components of a stress
between a pair of bodies, and consider only the force acting on one
body ; but we only do so by attending to this one and neglecting
the other component, which always necessarily exists and is acting
on the other body of the .pair. Moreover, which of the forces we
choose to call the direct action, and which the reaction, is merely a
matter of convenience; but it will be obviously convenient to
speak of that component which acts on the piece of matter we are
dealing with as 2k¢ force, or the action of the other piece of matter,
while that component which affects this other piece of matter will
of course be the rzaction of the first piece on it.

We have spoken of force as exerted &y matter. Strictly
speaking, this is hardly correct. Matter does not of #tself
exert force ; it must be set in motion, or have some other
form of energy conferred upon it, before it can exert force.®

Remembering this, however, we shall do no harm by
habitually using the convenient phrase, ‘the force exerted
by such and such a body,’ as indeed we have already fre-
quently done. It follows, moreover, from what we have
said, that a stone exerts precisely the same force on the
earth as the earth exerts on the stone.

4. A book lying on a table is at rest. Why? Not
because no force is acting on it, for the earth is pulling it ;
but because another and equal force is also acting on it in
the opposite direction—namely, the resistance of the table.
This is the condition of all bodies at rest near the surface
of the earth ; they have met with two or more forces which
neutralise each other as far as motion is concerned, though
they do not neutralise each other as regards strain.

Strictly speaking, motion appears to be the normal condition of
matter at present; all known bodies are moving through space

® There is a uni 1, but probabl y only app ion to this rule—
namely, the force ofgnmmon—two pieces of mntw- (hl:e the earth and a
stone) do appear to pull towards each other of themselves. Now, the ultimate
nature of gravitation is not at pr known, and it may tum out to be a pro-
perty really inh t in and an ption to every known case ; but it is
more probable that it is not a pulling property inherent in matter at all, but a
pushing property of some external energetic ar not at p under-
stood, due probably to a strain in the medium in which all matter is immersed ;
0 that a stone and the earth do not strictly draw each other together, but are
pushed together by something else which extends from one to the other, and
may be called the gravitation medium; its stress being called the gravitation
stress, or crudely, the weight of a body.
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with considerable speed, and no such thing as adsolufe rest is
known. But it is convenient, in mechanics proper, to consider the
earth as a body at rest ; and to leave the study of the motion of it,
and of the group of bodies to which it belongs, to Astronomy,
which is really a branch of mechanics in a wide sense.

5. The effects of force on matter are : ®

A. Change of motion, which is called acceleration.
B. Change of size or shape, which is called strais
or deformation.

If only one force acts on a body, it must produce the
effect A. If two or more forces act in different directions
on different parts of a body, they must produce B, and they
may produce A also.

6. The two kinds of effects, A and B, are distinct ; and
each would furnish a measure of force.

A force may be measured by the amount of motion it can
produce in a given piece of matter in a given time ; and
this is the measure we shall mostly use.

Or a force may be measured by the amount of strain it
can produce in a certain piece of matter : the amount it can
bend a certain spring, for instance, as in a dynamometer ;
or the amount it can twist a certain wire, as in a torsion
balance.

If we are not concerned with measuring forces absolutely,
but simply wish to compare two forces, we may of course
simply balance them one against the other, as is done in a
balance or steelyard.

Of the two classes of effects, A and B, A is much the
simpler, so we will proceed to consider it first. But before
proceeding to our actual subject, the motive effect of force
(called Dynamics, from dwaps, force), it is convenient to
study motion itself a little in the abstract, and without
reference to either force or matter., (The subject of abstract
motion is called K'énematics, from sonua, motion.) We may

* Whatever other effects of force there may appear to be, are studied under
Physics, and physicists are hoping to reduce all of them ulti ly to the above
two forms. Hence Physics is constantly tending to become more and more
mechanical.
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conceive a geometrical point or surface moving about in all
sorts of ways without troubling ourselves with the cause of
the motion, and the propositions which we so discover will
be useful when we come to the motion of an actual piece
of matter under the influence of a force.

CHAPTER L
ON MOTION (Kimemaltics)

1. MOTION OF A POINT (TRANSLATION).
() Retilinear Motion.

7. A body is said to move when it is in different positions
at different times. This is to be regarded as the essential
characteristic of motion—it involves a reference to both
space and time- Geometry deals with space alone. Kine-
matics deals with both time and space. Now motion has
two primary properties to be studied—Velocity and Direc-
tion. Let us take them in order.

When a body moves over equal spaces in equal times, its
motion is said to be wnsform, or its velocity is said to be
constant® For instance, the hand of a clock has such a
motion.

When a body moves over uzequal spaces in equal times,
its velocity is said to be variable. As an example of variadle
velocity, we may take the case of a falling stone, which
moves quicker and quicker as it descends; or of a stone
thrown upward, which has a decreasing velocity till it
reaches its highest point; or of the bob of a pendulum,
which has a velocity alternately increasing and decreasing.

® It is probable that our idea of motion (that is, of free muscular action)
precedes and suggests our idea of time ; and that our notion of egwal intervals
of time depends on our recognition of wxiform moti Every of
time is simply a uniformly moving body. The most uniformly moving body
we know is the earth, which rotates on its axis in a period of always the same
duration; this period is taken as our fundamental unit of time, and the
yuluath part of it is called a second, of ‘ mean solar time,’ and is used as the
practical unit.

B
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8. Velocity is defined as the rate of motion of a
body. It is measured by the distance travelled over
divided by the time taken in the journey.

Thus, if a train goes 8o miles in 4 hours, it is said to
travel at the rate of 20 miles an hour; its velocity is %—)

. . 8o X1760X 3 _ 88. .
in miles per hour, or—4 X 60 X 6o ?m feet per second ;

and we shall generally use feet per second. If a point move
over s feet in £ seconds, its velocity is —';—- feet per second, or

$
V=T.

Note that a velocity is Zength per time, and that it is not
correct to speak (except as a well-understood ellipsis) of a
velocity of so many feet. We speak of a length of so many
feet—or a #me of so many seconds—but a velocity of so
many feet per second.

The unst of velocity is of course . -
unit of time
one foot

one second (read one foot per second). When we speak of

a velocity 6 simply, we mean always 6 units of velocity as
just defined.

9. The above measure of velocity as the ratio of s to £ is
independent of the size of s and ¢, so that it remains perfectly
true when s and # are very small. Thus in the case of a
body moving uniformly 6 feet every second, its velocity may

be written either ? or % or ﬁ; and any of these fractions

unit of length ; that is,

represents its velocity egually well so long as it be uniform.
But if the velocity were variable, the body might still go 6
feet in a second, so that its average velocity would still be
6 ; but its actual velocsty at each instant might take all kinds
of values, some greater and some less. Thus a train which
had gone from London to York, 200 miles, in § hours,
would have had an average speed of 40 miles an hour ; but
its actual speed would have varied greatly; sometimes
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rising to 60 perhaps, sometimes falling to o, as at a station.
The whole distance travelled, divided by the whole time
taken, will always give us the average velocity for that dis-
tance ; and in the case of uniform motion, the average
velocity coincides with the acfwal/ velocity at each instant.
But to get information on the actual velocity, at any one
place, of a thing whose speed varies continually, it is neces-
sary to take a small distance at that place, and to divide
that by the time taken to traverse it. Thus the speed of the
train when passing any particular station might be stated
pretty accurately by noting the time taken by the train in
going 100 yards ; because the speed for so short a distance
would probably not vary greatly, and must therefore nearly
coincide with the average speed. But to get rid of all gos-
sibility of variation, it is better to take a still smaller space,
say a foot or an inch, and to divide this distance by the time
taken to traverse it ; and the smaller the distance the more
necessarily accurate we are. Hence the actual velocity of
any moving body at a given instant is the infinitely small
distance then being described divided by the infinitely small
time required for the purpose.

The facts are often expressed in a form which appears
more simple, but which involves less important ideas—
namely :

Uniform velocity is measured by the space described in
unit time.

Variable velocity, by the space which wow/d be described
in a unit of time if at the given moment the velocity were to
cease to vary.

So then, using little ¥ to stand for actual velocity at any
instant, v = ti is true when s and # are small ; but, using big

V to stand for average velocity throughout any time, V = %

is always true unconditionally,

10. Acceleration.—The rate of change of velocity is called
acceleration. Velocity may change in magnitude and in
direction. The rate of either change is called acceleration,
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but the consideration of change in direction will be deferred
till sect. 13.

Acceleration is measured by the velocity gained by
the body in a certain time, divided by the time taken to
gain it.

Thus, if a falling body acquire a velocity of g6 feet per
second in three seconds, its average acceleration is said
to be % or 32.

Hence acceleration bears the same relation to velocity as
velocity did to distance, and denoting it by a, we have

v

a= T
as the algebraic statement of the measure of acceleration ;
remembering that v stands for the welocity gained by the
body in the time ¢, and need not stand for any velocity actu-
ally possessed by the body. Thus the above falling body,
instead of simply falling from rest, might have been thrown
down from a. balloon with an initial velocity of 100 feet a
second ; but if at the end of three seconds, its velocity were
196, then its gasn of velocity would be precisely the same as
before, and its acceleration therefore still § or 32. Hence,
generally,  may be said to stand for the difference between
the final and the initial velocities, which are conveniently
denoted by 7, and 2, respectively, so that v = 7, — »,, and

a-Bzh

11. Acceleration may be constant or variable ; in other
words, velocity may change at a uniform or a variable rate,
When a body acquires equal increments of velocity in equal
intervals of time, its acceleration is said to be constant : for
instance, a falling stone has constant acceleration ; its velocity
uniformly increases. It gains in fact a velocity 32 every
second of its motion. The study of motion under variable
acceleration being rather complicated, we shall only con-
sider constant acceleration in the present stage. Hence,
in all that follows, the acceleration is supposed to be
constant, unless it is otherwise stated.
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Note that acceleration is welocity per time, and that it
is absurd to speak of an acceleration of so many fee, or
even of an acceleration of so many feef per second, for this
last is a velocity. An acceleration is properly so many
Jeet-per-second per second; and the unit of acceleration is

unit of length
unit of velocity unit of time unit of length
unit of tume unit of time °° (unit of time)? #
and an acceleration 32 stands for 32 units of acceleration as
here defined.”

12. If then the velocity of a body #ncreases, its acceleration
is the gain of velocity in each second of time; but if its
velocity decreases, then the acceleration is really a retarda-
tion, and it must be reckoncd negative, but as numerically
equal to the loss of velocity in each second. Thus, suppose
that in 3 seconds the velocity of a body changes from 196
to 100, its acceleration is — 32. If the velocity of a body
is constant, then of course the acceleration (or rate of change
of velocity) is zero.

The use of the negative sign.—1It is a well-known method to dis-
tinguish between opposite directions by opposite signs. Thus, if all
distances measured to the right of any point be reckoned positive,
any distance to the left will be negative, so that — 30 feet will
mean 30 feet to the left.

It is usual to reckon distances #p as positive, and hence distances
down as negative. The same may be extended to velocities, and a
velocity upward may be called a positive velocity, a velocity down-
ward a negative one. Thus, the velocity of a falling stone is
negative, and it is continually getting mumerically greater (though
algebraically less) : so the acceleration produced by gravity ought
properly to be called negative, because it is negative velocity which
isadded by it every second. In fact, an increasing negative quantity
corresponds in algebra to a decreasing positive one, and vice versd.

* The length of both these i ¢ feet d per d’ and
* units of acceleration,’ often uusenhcmtobeabbnvnwd into some mamng-
less form, such as feet (one might almost as well say gmarfs), even in books
intended for beginners. The use of some name for the unit of velocity, shorter
than ‘ one foot per d,’ would obviate this. Suppose, for instance, we agreed
to call the unit of velocity a :peed'thmanaecelualwnwouldbenatednm
many speeds per second. 1f a name were occasionally wanted for the unit of
acceleration, or one speed per second, it might perhaps be called a * burry.’

which equals
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(8) Curvilinear Motion of a Point.

13. Besides change in the magwitude of velocity or rate
of motion, there is another thing to be considered—namely,
change in its direction. Hitherto we have only considered
motion in a constant direction—that is, in a straight line;
but when the direction of a point’s motion is constantly
changing, the path described is a curved line, or the motion
is curvilinear. The rate of change of direction per unit
length of a curve is called its curvature,; and this again
may be constant or variable. Most curves (the parabola,
sect. 28, for instance) have variable curvature. A circle or
helix has constant curvature. A straight line possesses zero
curvature. The curvature of a circle is inversely propor-

. tional to its linear dimensions ; because the angle which the
direction of motion turns through in going once round any
circle is 27 (see sect. 16, small type), and the curvature will
be this angle divided by the distance travelled—that is, by
the circumference, 277; hence the curvature of a circle is
numerically equal to the reciprocal of the radius, for

2r 1 .
—— = — = curvature of a circle.
2r

And the curvature at any point of any other curve is

defined on the strength of this, as the reciprocal of the
radius of that circle which coincides most closely with the

curve at the point. ,

14. A point moving in a curve, besides any acceleration
it may have along the curve increasing its velocity, pos-
sesses an acceleration az right angles to the curve, or normal
to the direction of its motion; this acceleration being pro-
portional to the curvature of the curve, and affecting only
the direction and not the magnitude of the velocity. Its
magnitude is the rate at which velocity normal to the curve
is gained by the point. This normal acceleration is called
centripetal acceleration, and is further discussed in sects. 54—
57, where it will be found to be proportional to the square of
the velocity of the point as well as to the curvature of

the curve ; to be equal, in fact, to 22 X %
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Although the point is always gaining velocity normal to
the curve or along its radius at this rate, it does not follow
that it ever possesses any such velocity. It isin fact im-
possible for a point to possess any velocity except that
along the curve, or at right angles to the radius of curva-
ture ; for as fast as velocity along the radius is generated,
so fast does the direction of the radius change; in the
same sort of way that a promise for to-morrow need never
be fulfilled, because ¢ to-morrow never comes.’

2. MOTION OF AN EXTENDED BoDY (ROTATION).

15. A point can only move along, it cannot spin ; or rather
spinning makes no difference whatever to it or to its motion :
but an extended body, whether it be a line, surface, or solid,
may not only move bodily along or be translated; it may
also turn round or rotate. The most general motion of an
extended body is a combination of translation and rotation,
but it is simpler to consider them separately. All that we
have said about the motion of a point is equally true of the
motion of an extended body so far as its ¢rasslation is con-
cerned ; because, in simple translation, if we know the motion
of any single point, we know that of the whole. Its rota-
tion involves different ideas, which must now be considered
briefly.

16. When a body rotates, every point of it describes a
circle round some point or line which is the centre or axis
of rotation.

The velocity of a point far from the axis is greater than
that of a point nearer the axis, and in general every point
has its own velocity, which is proportional to its distance
from the axis, only points at the same distance having the
same velocity ; hence the ¢ velocity of a rotating body’ is a
meaningless expression. The number of times the body
turns round in a second, however, is perfectly characteristic,
and we must define some kind of rolational or angular
velocity proportional to this.

To express the speed with which a body totates, it is
sufficient to give the velocity of any one point together
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with its distance from the axis; and the velocity of the
particles at w37 distance from the axis is that which is uni-
versally used, the velocity of these points being called the
angular velocity of the rotating body. The velocity of
every particle of the body is known in terms of this, for,
being proportional to its distance from the axis, it is equal
to this distance multiplied by the ‘angular velocity ;' or,
denoting the velocity of a particle at unit distance from the
axis of rotation, that is, the angular velocity, by the letter
w, as is customary, the velocity of any other particle at a
distance r is
V=7rw;

and this might be called the moment of the angular velocity
with respect to the axis of rotation (see further on, sect. 37).

Angular velocity in rotations takes the place of ordinary
velocity in translations. The name ‘angular velocity’ is
given because it really represents the angle turned through
per second by the whole body, as well as the distance
travelled per second by particles at unit distance from the
axis.

An example may render this more clear. Let us assume, what
is well known, that the circumference of a circle is proportional to
its diameter, the ratio between them being a constant number equal
to about 34, and which it is usual to call . The circle described
by a particle at a distance » from the axis of a rotating body (say
a nail on the circumference of a fly-wheel of » feet radius) is 2r

feet in diameter, and hence 2x# feet in circumference. If the wheel

turn round in T seconds, the velocity of the nail is z%_r ; hence

the angular velocity of the wheel, or the velocity of any nail 1 foot
from the axis, is 3,}_', which is

If, then, the angular velocity may be defined as the angle turned
through per second, or, which is the same thing, the angle turned
through in T seconds divided by the time, it must be because the
angle corresponding to one complete rotation is equal to 2w, or
about 6§. And this is the case, though you may not see what
it means till you come to read Trigonometry, as for most practical
purposes the above angle is denoted by the number 360, and not
by the number 64.
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17. Of course angular velocity may be uniform or
variable ; and if the latter, its rate of change, or increase
per second, is called the angwlar acceleration of the body.

Denoting this by a, we have a = %’- (just as we had a = 4

¢
in sect. 10).
But w=Z,
r
2
Hence a= r . -t- =2 ;
rt r r

that is, the angular acceleration of a body, or the accelera-
tion of a particle at unit distance from the axis, is %th

of that of a particle at a distance ». That is, Angular
acceleration : acceleration : : angular velocity : velocity : :
angle : distance : : 1 : 7.

EXAMPLES IN RECTILINEAR MOTION.

(1.) With Constant Velocity or Zero Acceleration.

(1.) If a snail crawl at the rate of 1 inch a second, how far
will it go in an hour? Ans. 75 feet.

(2) How long would a train take to go 100 yards at the rate
of 20 miles an hour? Ans. 10.227 seconds.

(3) With what velocity must I walk in order to go half a
mile in five minutes? Ans. 8-8 feet per sec.
Hence, roughly, 4 miles an hour is 2 yards a second.

(I1) With Constant Acceleration.

(4.) A body starts from rest and acquires a velocity of 6oo
feet per second in half a minute ; what is its accele
ration? Ans. 20.

(5-) A body starts with a velocity 50, and in 6} seconds
has acquired the velocity 102 ; what is its accele-
ration ? Ans. 8

(6.) A body moves with acceleration 32, starting at velocity
20; what'is its velocity in 1, 2, 3, 6 seconds respec-
tively ? Ans. 52, 84, 116, 212
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(7.) A body starting with velocity 100 has only a velocity

52 in 4 seconds ; what is its acceleration? Ans. — 12.

(8) A body with acceleration — 32 starts with velocity

128 ; how soon is its velocity zero? and what is its
velocity after 1, 3, 5, 7 seconds respectively ?

Ans. 4 seconds; 96, 32, — 32, — 96 feet per second.

(9.) A body dropped from a stationary balloon falls with

acceleration 32, and hits the ground with a velocity

512 ; how long was it in falling?  Ans. 16 seconds.

All these are merely profit and loss questions. Velocity cor-
responds to capital, and acceleration to rate of gain. Thus Question
6 may be paraphrased thus: ‘A man starts in business with £20,
and gains £32 every year; how much has he got in 1, 2, 3, 6
years respectively ?’

And No. 8 thus: ‘A man starts with £128, and loses £32
annually ; how soon will he have lost all? and what will he bave in
1,3, 5, 7 years?’ Obviously he will have lost all in four years, and
in seven years he will be £96 in debt.

A less simple kind of question is one that involves déstanmce ; for
some examples, see end of next chapter.

EXAMPLES IN CURVILINEAR MOTION
(that is, motion with some acceleration perpendicular to the
direction of motion).
(10.) What is the curvature of a circle 144 yards in circum-

ference ?
It is numerically equal to the reciprocal of the radius in

feet—that is, :—: = -;—nea.rly.

(11.) A point moves in the above circle with a constant
velocity of 6 feet a second ; what is its acceleration in
magnitude and direction ?

Its acceleration is always along that radius of the circle
which passes through the moving point, and its magnitude
is 8.

(12.) A point moving in a circle 8 feet in diameter, has a
velocity increasing by 18 every 3 seconds; what is the
acceleration in magnitude and direction at different
times ?
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‘There is a constant tangential acceleration equal to 6.
The normal acceleration is zero at starting ; at the end of
the first second of motion it is 3% = 9 ; in two seconds
it is 36 ; in three seconds 81, and in ¢ seconds it is
(64)*=9¢%, The actual acceleration at any instant is the
square root of the sum of the squares of the tangential and
normal accelerations at that instant ; hence its direction,
which at first is tangential, gradually swings round, so
that in a few seconds it nearly coincides with the radius.

This explains what happens when we whirl a stone at
the end of a string : it is necessary to start it with some
purely tangential acceleration, obtained either by the help
of gravity, or by a tangential push or pull. When once
started, however, the speed may be increased to any extent
by simply pulling the string a little to one side of the centre
of the circle of motion, so that the tension in the string has
both a tangential and radial component; and since the
faster the stone is going, the smaller need the former be in
comparison with the latter, it follows, that at a high speed
the hand remains very nearly steady in the centre of the
circle; but it is really travelling round a small circle about
a quadrant in advance of the stone—thus supplying the
tangential force necessary to overcome the resistance of the
air, even if the motion is not being accelerated.

Verify all this experimentally—whirling a_ weight in a
horizontal circle on a flat table, in order to simplify matters
by eliminating gravity.

CHAPTER IL
COONTINUATION OF THE SUBJECT OF RECTILINEAR MOTION.

DISCUSSION OF THE STATEMENTS MADE IN CHAPTER I

18. We have now obtained two definite statements, each
of the nature of a definition, namely :

locity distance travelled
Average v =timetakenint.hejoumey or Va

s

¢

s velocity gained =2

and acceleration = , o ~.. Ora 5

.
’
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And we can proceed to reason on them, and trace their
logical consequences, which will all be certainly true.

First, however, it may be well to explain what is meant by
‘average’ velocity. An sverage, or mean, of a set of numbers,
is the number about which they all lie most symmetrically, and is
found by adding them all together, and dividing the total by the
number of them. Thus, to find the average of the five numbers, 12,
16, 25, 30, 32, add them all up, and you get 115 ; divide by the
number of them, that is, by 5, and you obtain 23, which is the aver-
age or mean of the five numbers. But now if the numbers, instead
of increasing irregularly, as in this set, had progressed by a common
difference as in the following, 7, 11, 15, 19 (which increase regularly

-by 4), then, though we may use the same process, and find the
mean to be 13, it is not necessary to do more than take the first
and last of the set, and find the mean of zkem ; that is, add them

together, and divide by two, %ﬂ = 13. This applies to all the

cases of velocity we shall have to deal with. The velocity is to
increase regularly (or the acceleration is to be constant), conse-
quently the average velocity is obtained at once by halving the sum

of the initial and final velocities, V = %+ %; using v, to stand for
2
initial, and 24 for final velocity (sect. 10).

Hence our first equation, which may be put into the form
s = V¢, may be written more fully thus :

;=.1’1%;_

Similarly the second equation may be written in the form
v = af, or more fully,

7 =17+at,

which signifies that the final velocity is equal to the initial
velocity, plus the gain.

Of course 7, or a/, the gain of velocity, is equal to the
difference between the final and initial velocities, v = v, — v
but in case the final velocity is less than the initial, the gain
becomes a loss, or 7 is negative, and therefore also a is
negative—that is, it is really a retardation, but it may still
be called an acceleration, only a negative one.
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19. Now let us study the two equations together, and see
what we can get from them by any algebraical operation ;
remembering that algebra, like all other reasoning, never
gives us anything really fresh ; it only brings out explicitly
what is already contained implicitly in the physical state-
ments which we subject to reasoning. The physical state-
ments must be the results of the observation of nature, which
is the only way of arriving at fundamentally new truths,
Mathematical reasoning will, however, serve to bring out
and make manifest what was really involved in the state-
ments themselves when put together, if only we had suffi-
cient insight to perceive it.

Our two statements or equations, written out fully, are"

s= ﬂy’t’, and a= ?J—‘_—ﬂ

First multiply the two left-hand members together and
double the product ; then do the same with the two right-
hand members, and write the two products equal to each
other (as of course they must be), and you get the new
equation,

2as = () + v) (n — %) = ' — v%

This is a relation between ¢, s, and v, without explicit refer-
ence to # and it will often be useful.

Now try again, and this time get a statement not involv-
ing 7, which we can do by substituting the value of v, from
the second equation, namely, 7; = 7, + a4/, in the first,

and we shall get s=o¢+Lat
Similarly we can get a relation excluding 7,, and it is
s=vyt—tall

20. But before proceeding to study the two equations
together, we might in this stage have first made a simplifi-
cation. An obvious simplification would occur if the initial
velocity were made zero (7, =o0); in other words, if we
agreed to consider only bodies starting from rest. In this
case the gain of velocity  is equal to the final, %,
and the average velocity V is equal to {,, which is now
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the same as § 7; and so the two fundamental equations
reduce to
" s=}of, and a=-3;-;

and the three derived from them simplify in like manner.
We thus obtain the following four equations between the
distance travelled by a body from rest, the time taken in
the journey, the acceleration, and the final velocity gained ;

v =al :

=} ol

s =}all

o3 = 2as.
Of these, two are independent statements, and the other
two are logical consequences of them. .The first of the four
reads thus : The velocity gained in 7 seconds equals # times
the velocity gained in each second. The second one thus:
The distance travelled over in # seconds equals ¢ times the
average distance travelled over in one second (for this last
is the meaning of average velocity). Both these statements
are perfectly obvious. The other two statements cannot be
put in quite so obvious a form. Observe that there are only
four quantities involved, s, v, 4, 4, and that one of them is
absent from each of the four equations.

21. The meaning of the second derived equation in sect. 19 is now
clear. The space described by a body with the constant velocity
v, is vy, and by one with the uniform acceleration a is }as*;
so the whole space described by the body possessing the initial
velocity 7, and also subject to the acceleration g, is

s =vy + tat’’®
This is really a case of the composition of motions in the same
direction. See sects, 23 and 69.

22, The results expressed by these equations may be
made to appeal to the eye more directly, and thus be
rendered easier to grasp, if illustrated by their analogy
with geometrical diagrams.

* If a and vy are of opposite sign, the subtraction is to be perfi d when
the letters are arithmetically interpreted. The sign + means algedraical
addition, which includes subtraction.
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If a horizontal line be considered as representing by its
length a definite lapse of time, say three seconds for every
inch ; and if a vertical line represent by its length a certain
velocity (so many feet a second for every inch); then the
product of velocity and time (that is, distance travelled) will
be represented by the area of the rectangle contained by
these two lines.

A
c
4
e
G I
o i 3 s —T

Fig. L.

Thus in fig. 1, OT is the line of time, with the seconds
marked off upon it. OA is a vertical line, and represents
a velocity, say of 12 feet a second.

Let a body start with this velocity and lose 2 of it every
second, then in one second its velocity will be represented
by the line c1, in 2 seconds by the length of the line 42, and
soon. Consequently, in 6 seconds the body will be at rest.
The diagram thus represents, in a conventional and utterly
non-pictorial fashion, a body starting with initial velocity 12,
and going with a uniform negative acceleration — 2, till it
stops. ‘The average velocity would of course be 6, and
would be represented by the length of the vertical line
drawn in the middle of the time—namely, ¢3.

The distance traversed would be this average velocity
multiplied by the time. That is, geometrically, ¢3 multiplied
by OP, which is the area of the triangle OAP ; for the area
of a triangle is equal to the product of base and average
height—in other words, to the product of half its height into
its base.

Areas then in this figure represent distances. Or, more
correctly, the number of units of area in one of these figures
equals the number of linear units in the distance travelled.
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The distance travelled in the first second is the area O1cA;
in the second second, c124; in the last second, g5P. The
distance travelled in the three seconds between the first and
fourth is represented by the area c14f, and so on—that is,
each of these distances is equal to the number of units of area
contained in the respective spaces.

The representation of a body starting from rest with a
positive acceleration, is given in fig. 2.

C

ve=at

i}‘v
'.b.

Fig. 2

-]

The line of time is divided to represent seven seconds.
The velocity gained in one second is represented by the line
marked a, which therefore represents the numerical value
of the acceleration. The velocity gained in the whole time is
marked »; it is obviously equal to 72 or a& The dotted
line in the middle of the time is the average velocity, and it
is evidently §v.

The area of the whole triangle represents the whole dis-
tance travelled, and it is half the height multiplied by the
base, or { 7. ¢, or, what is the same thing, § aZ. ¢, that is, § as*,

The little left-hand triangle is numerically equal to § @ in
area (its base being unity), and it is the distance travelled in
the first second.

The velocity possessed by the body at any second or
fraction of a second is found at once, simply by measuring
the vertical height of the triangle at the place defined by
the time. The whole problem is in fact geometrically
represented.

If the body started with an initial velocity, and then went
on with increasing velocity, its motion would be represented
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by fig. 3, which is supposed to represent what happens in
three seconds. The initial velo- c

city is marked 7,, and the final
7;; the latter being made up of
two parts, the gain of velocity a7,

at

and the original velocity ,. The " L'sf""‘ =t
rest is marked as before, and the ? [, : Vo
whole area represents the whole ¢ — P
distance, S, travelled in the three Fig. 3,

seconds.

The dotted line in the middle is of height v, 4 } a2,
or, what is the same thing, v, — } a¢; and therefore it is
{ (o + v,), or the average velocity. Either of these expres-
sions for the average velocity multiplied by the time will of
course give the distance travelled (cf. equations of sect. 19).
If the initial velocity be negative, the line representing it
must be drawn down from the line of time, instead of up.

These diagrams will be found exceedingly useful and con-
ducive to clear ideas, as soon as a little practice has made
you familiar with them. For some more illustrations of their
use, see sect. 65, which can be read now.

Composition of Motions in General

23. When a body has several motions given to it at the
same time, its actual motion is
a compromise between them,
and the motions are said to
be compounded, the actual
path taken being called the
resultant. Thus, suppose a
fly to crawl along a tea-tray
from A to B (fig. 4), while at the
same time some one pushes the
tray along a table a distance
PQ; the fly will then have two
motions, and its actual motion
with reference to the table is the
resultant of the two motions, Fig 4.

AB and PQ. To find where
o
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the fly is at the end of the two motions, we must observe
where the point B of the tray has gone to, for the fly has
crawled to B; but B has been moved to a point C, such
that BC = PQ. Hence the fly is at C, and its actual
motion must have been along some path AC, not necessarily
a straight line; and AC is therefore called the resultant of
the two motions, AB and BC. If, besides these two, the
table itself had been pushed in the direction ST, or what is
the same thing, CD, then we should have had three motions
to compound; and, as the fly would have got ultimately to
D, AD would have been the resultant of the three motions.
The order in which the steps are added evidently does not
matter, for the same point D is arrived at by taking the table
motion before that of the tray, as in 1, fig. 5; or the fly’s

s

Fig. &

proper motion after both the others, as in 2; or the fly’s
motion between the other two ; or in any of the six possible
orders in which three motions can be compounded.

And so we rcadily see the rule for compounding any
number of motions. Draw lines, or cut pieces of stick,t
representing each motion in magnitude, direction, and
sense,* and lay these lines or sticks in any order, with the
end of one coinciding with the beginning of the next (the
lines may be moved into any positions, provided each is
kept parallel to itself); then some line joining the first

* That is, make some difference between the two ends of the line, indicating
by an arrow-head or otherwise which ruay the motion takes place in the given
direction,

t See footnote to page 96.
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point of the first with the last point of the last, must be the
resultant of the whole set of motions.

Thus, some line AG is the re- ¢ F
sultant of the six motions, AB, BC,
CD, DE, EF, FG. This proposition , ]
is called the polygon of motions,

because the resultant is represented €
by the line required to complete a g A
POl]g Fig. 6.

As a matter of fact, however, the sides of
the polygon need not necessarily be straight lines. The end points
of the line are the only essential matter when one is dealing with
simple change of position without regard to time or speed.

24. The composition of #wo motions, AB, BC, into a
third, AC, requires only a three-sided polygon, so it is often
called the #7angle of motions.
Or if we choose to represent the
two component motions, AB, BC,
by lines, AB, AB’, drawn from the
same point, we get the parallelo- A c
gram of motions, which is merely Fig. 7.

a less simple, but sometimes con-

venient, way of regarding the triangle of motions. The
resultant motion is the diagonal of a parallelogram whose
two adjacent sides represent the component motions.

25. This law, by which two motions are compounded, is
of very frequent occurrence in all parts of mechanics, and is
referred to as Zhe paralielogram law. It may be stated
thus : If two causes act on a body at once, or if a body
experience two simultaneous effects in different directions,
then if these effects are represented in magnitude and
direction by two adjacent sides of a parallelogram, the
effect experienced by the body is called the resu/tant effect,
and is represented, on the same scale, by the concurrent
diagonal of the parallelogram—that which passes through
the point of intersection of the two sides ; or it is the same
effect as would be produced by a reswllant cause repre-
sented in magnitude and direction by the similarly situated

A B8’/



36 ELEMENTARY MECHANICS.

diagonal of a parallelogram whose two sides represent the
component causes ; provided always that the causes or the
effects can be shewn to be of such a nature that this law is
applicable to them.

Oomposition of Uniform Velocities.

26. So fat we have only studied the composition of
changes of position ; now let us study the composition of
velocities—first, when uniform. Remember that a velocity is
the space described in one second.

Let a body start from O (fig. 8) with two velocities, one
horizontal and of magnitude Oa, the other vertical and of
magnitude O4. Then Oa and O#& represent the distances
travelled in one second in the respective directions, and
consequently at the end of one second the body is at the
point ¢, the opposite corner of a parallelogram with sides
Oa and 05 ; hence the body must really have travelled the
distance Oc in one second therefore Oc is its resullant
velocsty in  magnitude and
direction. In two seconds it
c’ will have travelled horizontally
to &, and vertically to &, and
therefore it will really have
reached ¢. And it is easy to
o a a’ see, by drawing or otherwise,

Fig. 8. that the straight line Oc’ passes

through the point ¢, and that

O¢ equals twice Oc¢ (because Oa’ = twice Oa, and O¥ =

twice O4) ; or the distance travelled in two seconds is twice

the distance travelled in one; and so, generally, the result-

ant of two uniform velocities is another uniform velocity

along the diagonal of the parallelogram whose adjacent
sides represent the components.

Hence the resultant of two velocities is obtained by pre-
cisely the same parallelogram law as the resultant of two
simple motions. Similarly the ¢polygon’ law is applicable
for compounding any number of velocities greater than
two. .

S
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Composition of Uniform Aoccelerations.

27. Accelerations may evidently be compounded by the
same law as velocities, because acceleration is the velocity
gained per second. Thus let a body be subject to any two
accelerations, say a horizontal one Og, and a vertical one
06 ; then Oa and O& represent the velocities gained per
second in these two directions respectively, and therefore
the actual velocity gained in the second is Oc; in other
words, O, the diagonal of the parallelogram, measures the
resultant acceleration. Hence accelerations are compounded
by the same law as velocities.

28. Composition of a uniform Velocily with a Velocity
uniformly accelerated in a constant direction.—Let a body
start from O with a uniform velocity # in some direction OV
(fig. 9), and a uniform acceleration @ in some other direc-
tion, such as OL vertically downwards ; then in successive
seconds the distances traversed in the first direction will be

4, 24, 3%, 4%, &c;
so that, if this constant velocity % were the only one possessed
by the body, the body
would be at T after one
second, at U after two,
at V after three, and so on
(fig. 9» But the uniform
acceleration is acting at
the same time, and caus- O
ing the body to descend N
a height proportional to
the square of the time
(+ af%) ; hence in succes-
sive seconds the vertical M
distances traversed will be

':'! 4’%’ 9%’ 16%’ &c.,
bringing the body to the
level N in one second, M
in two, L in three, and so L
on, if it had acted alone. Fig. 9.
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The actual position of the body, therefore, at the
end of successive seconds will be found by completing the
parallelograms,

OTPN,

ouQM,

OVRL,
&e.;

the result being that the body reaches the point P in one
second, Q in two, R in three, and so on.

Now the simplest continuous curve which can be drawn
through these points, OPQR, &c., is a parabola, and this is
found to be the actual path of the body.

It will be shewn later (sect. 70) that “this is the path of a
projectile thrown #% wacsxo in the given direction with the
velocity %, and subject to gravity. And it is well seen in
the curve of a steady jet of water, for each drop of water
takes this path. It is also illustrated by Morin’s machine
(sect. 71).

This example illustrates the fact, noted at the end of sect. 23,
that the resultant motion (the diagonal of the parallelogram) need
not be represented by a straight line. It will be straight if the two
things compounded are of the same kind and both uniform ; other-
wise it will in general be curved.

(Here acceleration is understood to be uniform unless otherwise
stated.)

(1) In all the questions involving uniform acceleration at
the end of Chapter I., find the distance travelled by
the different things in the times given.

Ans. In Question 4 the initial velocity is o, the final is
600; .. the average is 300; .". in thirty seconds it will
have gone 9gooo feet. In Question § the average velocity is
5__°+2‘°“ =76, 80 in 6} seconds it will go 494 feet.
And so on.

Or we may do them by the formula s = §as*.
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(2.) A body starting from rest, and travelling 63 feet in a
straight line, gains a velocity of 81 feet per second;
what is its acceleration?

Ans. Since v* = za.t,a—-—= 52} speeds per sec.

(3) What is the acceleration of a body whose velocity
changes from 7 to 21 while it travels 100 feet?
— 2
Ans. @ = v_x’_”_vo_ = 1.6
N.B.—The arithmetic is often simplified by taking the
difference of two squares in the form of the product of sum
and difference.
(4) Find the accelerations of the following bodies :
A, whose velocity changes from 15to 5 in going soft.

B, " n IS5to—§ " 50 ft.
G, " " ~5t0 I§ " soft.
D, n I20t0 0 n OGgoft.

(Remember that the square of a negative number
is positive.)

Ans. Aand B, — 2; C, + 2; D, - 11-25.

The extreme distance from the starting-point attained
by B is 56} feet, but 6} feet of this is retraced. It there-
fore takes longer in the journey than A did, but its
acceleration happens to be the same.

Similarly with C, the first thing it does is to go 6} feet
backwards and come to rest for an instant ; then it retraces
its path and goes 50 feet forwards, where the question
leaves it ; but it is still going on with a speed increasing by
2 in every second.

(5.) Find the time of the motion in all these cases, and draw
a diagram for the several motions.

Begin by drawing the line of time ; then draw ver-
ticals for the initial and final velocities, paying attention
to sigh, and join the extremities of these lines; then study
every part of the diagram, and note its connection with
the equations.

Ans. The diagram for C will look like fig. 18 upside
down.

(6) A train with the brakes on, moving with acceleration
— 3, has a velocity 78 when passing a particular
station ; how much further will it go ?
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Ans. It will continue moving for 26 seconds, and
therefore will go 1014 feet.

(7.) A point moves 16 feet in one second and 20 feet in the
next ; how long has it been moving with uniform
acceleration since it started from rest, and what is
the rate of the acceleration? Also, how far would it
go in the next 12 seconds of its motion, and when
will its velocity be 128?

Amns. The acceleration must be 4, because the average
velocity during first second spoken of, and therefore the
velocity in the middle of that second, is 16, while in the
middle of the next second it is 20. The velocity at the
beginning of the former of these seconds must therefore
have been 14, and at the end of the latter second 22.
To gain the velocity 14 with acceleration 4 required 3}
seconds, which is therefore the time the point had been
moving at the beginning of the first second spoken of.
Starting with velocity 22, it would go 552 feet in the next
12 seconds ; and its velocity would be 128 in 32 seconds
from the original start, or 26} seconds from the time its
velocity was 22.

Bxamples in the Composition of Motions.

(8.) A point has two motions, one east with a uniform
velocity 30, the other north with a uniform velocity
40; what is its actual motion ?

Ans. It moves with a uniform velocity 50 in a straight
line nearly NE by N.

(9.) The banks of a river run north and south, and a
boat is rowed at right angles to the stream half as
fast again as the river flows : it reaches the opposite
bank 2 miles below the starting-point; find the
breadth of the river and the distance rowed.

Ans. 3 miles ; 4/ 13 miles.

(10.) A point describes a circle with a constant velocity »,
and at the same time the centre of the circle moves
forward in a straight line with the same velocity.
‘What is the motion of the point ?

N.B.—This is the case of a nail on the circumference
of a coach-wheel. The point describes a curve with
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cusps, called a cycloid ; its velocity when at the top of
the wheel is 27, and when on the ground is zero; its
velocity at the extreme right and left points of the wheel
is » /2; its velocity is  at two points whose distance
from the ground is half the radius.

CHAPTER IIL
ON QUANTITY OF MATTER AND QUANTITY OF MOTION.
A CHAPTER OF DEFINITIONS.
(L) MOTION OF A PARTICLE, OR TRANSLATION.

(Inertia and Momentum.)

29. We have so far studied motion in the abstract, with
reference to its direction and its rate, but without reference
to the body moving, or to the amount of motion possessed
by it. Let us now consider what is meant by this last
phrase ‘amount’ or ¢ quantity of motion.’

First, it is plain that in any actual case of motion there
must be some matter moving ; and it will be sensible and
consistent with the ordinary use of language to consider
the quantity of motion in a body as proportional, first, to
its speed, ‘and, secondly, to its quantity of matter ; and this
is the scientific custom.

30. Now we understand what is meant by speed, but what
do we mean by quantity of matter? First of all, of course,
a large solid ball contains more matter than a small one of
the same material ; but quantity of matter does not depend
on size alone, it depends also on the closeness or density of
the substance. A small iron ball may contain more matter
than a large cork one.

Now matter possesses a certain characteristic property
called ‘inertia,’ or power of reacting against a force applied
to change its state of motion. It is on account of this pro-
perty that force is required to move matter or to check its
motion—the passive resistance or reaction of the matter
itself being called its inertia-reaction or inertia. Thus a
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railway truck has great inertia, because it is hard work to
stop it or to set it going, quite independently of its weight
or of any friction there may happen to be.

This ¢ inertia’ or reluctance of matter to change its state,
whether of rest or motion, was expressed by Newton in
the following ‘law’ or axiomatic statement : ¢ Every dody
perseveves in ils state of rest or of moving uniformly
in a straight line, except in so far as it is made lo
change that state by external forces” This is often referred
to as Newton's First Law of Motion, or as the Law of
Inertia. ‘

31. Since inertia then is a characteristic property of all
matter, it will serve to measure the quantity of matter in any
given mass, and it is always used for this purpose in
Dynamics. Suppose you have a number of smooth cubes
or blocks, each made of a different material but of the same
size, resting on a perfectly smooth horizontal table, and you
give them each a little push of exactly the same strength ;
the push will have the least effect on those which con-
tain the greatest quantity of matter. Thus imagine four of
the cubes to be of cork, wood, iron, and gold respectively,
and that you give each a sudden knock. The cork block
would be considerably affected, and would slide off the
table ; the block of wood would be affected next in extent ;
while the iron and gold blocks would perhaps hardly be
stirred, but whatever movement there were would be greater
in the iron than in the gold. We should hence conclude
that the gold block contained most matter, the iron next,
and the cork least. This is a perfectly direct and scientific
method of comparing the masses of bodies, and more than
comparing, for it is capable of affording a definite measure
of the quantity of matter in a body. Thus either apply the
same force for the same time to each body, and measure the
velocity imparted (if the same velocity is imparted to a
number of bodies by the same shock or impulse, they have
all the same inertia, and therefore the same quantity of
matter) ; or graduate the forces applied to the different
bodies, so that each may move with the same acceleration,
the forces required will measure the inertia of the several
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bodies. The forces themselves must be measured by the
strain method (see Introduction, sect. 6), as the other method
would lead to reasoning in a circle.

Fig. 10 shews the experiment carried out as far as it is possible
to carry it out without a perfectly smooth table. The blocks are
mounted on rollers to diminish friction, and are attached each to a
strong spring balance (like those used for weighing letters, and
sometimes for weighing fish) which will yield in a very small but
yet a measurable degree. These balances are then all tied to a rod,
and are pulled quickly along, so that all the blocks have practically
the same acceleration imparted to them. The springs indicate by
their stretch the inertia-reaction of each body.

Fig. 10,

32. One often actually applies this method of comparing masses
in common life. Suppose you see a cask lying on level ground,
and wish to know whether it is full or empty ; you give it a kick or
a push with your foot, and if it yields and moves easily, you conclude
that it contains very little matter—that is, that it is empty ; whereas
if it almost refuses to move, it must contain much matter ; and if it
contains dense matter, such as iron or lead, it will be harder to move
than if it contained, say earthenware, and this again harder than if
it were full of straw. Hence we find that the guantity of matter in
a given body, as measured by its inertia, depends first on the density
of its material ; and secondly, on its size or zo/ume. And we might
define quantity of matter as the product of volume and density,
giving this product the name of mass. The ‘mass’ of a body here-
after, then, shall stand for the quantity of matter in it, and shall
equal its volume multiplied by its density. This last serves strictly
for a definition of desssity rather than of mass, as thus :
quantity of matter in body ;

Deasity = volume of body
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or more simply, density is the mass of unit volume. (The unit of
volume is the cube of the unit of length—say a cubic foot.)

We see, then, that mass is measured, and must be
held to be defined, by the property of inertness possessed
by matter—that is, by its requiring force to move it if at
rest, and to stop it if in motion. This idea of the muscular
effort needed to set a body moving or to stop it, must be
held to be the primitive idea of inertia. The greater the
effort required to produce a given motion, the greater the
inertia ; and as every particle of matter possesses this pro-
perty, the more particles there are the greater is the inertia,
and inertia is the only direct measure of mass in mechanics.

To recapitulate, then, mass means quantity of matter,
and #s measured by inertia,

33. Just as the unit of length is an arbitrary distance
(called a foot), so the unit of mass must be an arbitrary
quantity of matter, and in this country the unit is called a
pound. That is, the quantity of matter contained in a
standard powund avoirdupois is taken as the unit of mass.
Hence arises confusion. Because the pound happens to
pull downwards with a certain force (avoir, in fact, du pois),
people constantly think of this gul/, or force, or weight, as
the essential thing, whereas it is quite a secondary thing.
When we speak of this force, we shall call it the pound
weight, or the weight of a pound—it is not the pound itself
(see sect. 60).

Suppose you wish to leave some flowers to be pressed all night
in a book, and you put on the book for the purpose a few pound
or other weights ; what you are then concerned with is the weighs
of the pounds, or their pull downwards. But suppose you buy
six pounds of sugar or of soap; what you are #iem concerned
with is the quantity of matter or mass which you obtain, and the
force with which the matter tends downward is a secondary, and
sometimes a burdensome consideration. This confusion has arisen
from the fact that the shopman measures the mass out to you, not
by a direct method like that shewn in fig. 10, but by an indirect,
though practically simpler method, founded on the attraction of
gravitation, which Newton shewed was proportional to the mass
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of the attracting bodies within the limits of experimental error.
The confusion is perpetuated by the absence of any word signify-
ing the comparison of masses. * Weighing’ must mean the com-
parison of weights, but as there is no word ¢ massing,’ one has to
use weighing in the sense of comparing masses also. We must
try, however, to avoid this confusion, even at the risk of a little
pedantry, which may be necessary until we are quite clear on the
subject. A pound, an ounce, a grain, a gramme, &c., then, repre-
sent quantities of matter, or masses, and 7of weights. The term
a ‘hundredweight ’ bears marks of the confusion on its surface, and
is therefore better avoided for the present.

34. Now we have already seen (sect. 29) that it is reason-
able to define gmantily of motion as directly proportional
to the quantity of matter (or mass) moving, and to its rate
of motion (or velocity). Hence let us at once define quan-
tity of motion as equal to the product of the mass in motion
and its velocity. The name given to quantity of motion is
momentum ; so we have now the definition :

Momentum = mass X velocity, or p.= mv,

where m stands for mass, and p for momentum,

Momentum #means quantity of motion, and 7s measured
4y the quantity of moving matter multiplied by its velocity.

35. The unit of mass being a pound, the unit of momen-
tum must be that quantity of motion possessed by a pound
of matter when moving with a velocity of one foot per
second. The momentum of a }-Ib. cricket-ball moving at
the rate of 56 feet a second, is $ X 56 = 14—that is, four-
teen units of momentum, as just defined.

The momentum of a 50-Ib. cannon-ball moving with a velocity
of 1612 feet per second, is 80,600, i

That of a three-ton truck (the ton = 2240 lbs.), moving at the
rate of 12 feet per second (roughly about eight miles an hour, see
ex 3, Chapter 1.), would be 80,640, or nearly the same as that of the
cannon-ball.

Now we shall find in the next chapter that a force is propor-
tional to the quantity of motion it causes; hence we see that in
some sense or other the same motive power was required to set the
above cannon-ball going as was required to set the truck, for both
possess the same quantity of motion. Vet the force exerted by the
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powder in the cannon was undoubtedly greater while é¢ lasted than
the force exerted by the horse or engine, or whatever started the
truck ; but then the former acted for the fraction of a second only,
while the latter took perhaps a minute. What is called the impuise
of the force was the same in the two cases. If you put an obstacle
in the path of each body so as to stop both in the same time, they
would each deal the same blow.

36. Before passing on to the action of force on matter, it
will be well to explain that now we have come to deal with
the motion of actual pieces of matter, we shall, if we wish
to consider a piece so small that its parts may be neglected,
use the term particle instead of ‘point;’ meaning by
particle a point possessing inertia, or a material point.
A ¢particle’ may have any finite mass ; its size, indeed, is
to be small (or at anyrate negligible), but its dessify may
be anything—infinite if we like. A body whose parts are
taken into account may still be called an ¢ extended body,’
but if stress is wished to be laid on the fact that these parts
are immovable relatively to each other, it will be called a
rigid body. An extended body whose parts are capable of
relative motion is called an elastic or a plastic body.
(Chapter X.)

Also it will be well to point out that the parallelogram
and polygon laws apply to the composition of momenta
just as they do to the composition of velocities (sect. 26).
For the momentum of a given mass is simply proportional
to its velocity, and the resultant velocity of a particle when
multiplied by its mass must be its resultant momentum.

(IL) SPINNING MOTION OF AN EXTENDED BODY, OR ROTATION,
(Moment of Inertia and Moment of Momesntsum.)

37. We have already partly seen (sect. 16) that when we
come to consider the motion of a rotating body, the distance
of each particle from the axis of rotation is always coming
in as a factor, multiplying the term which previously had
been sufficiently expressive. As this product so often
occurs, it is convenient to have a name for it, and the
name employed is momens. The moment of any physical
quantity is the numerical measure of its importance. [This
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must not be confounded with momentnum, with which it
has nothing to do.]}

When any directed quantity is multiplied by a dis-
tance at right angles to itself, the product is called the
moment of that quantity.

Now, in the case of a rotating body, distances measured
from any point of it o Zke axis of rotation are necessarily at
right angles to the motion of the body, for the same reason
that the radius of a circle is at right angles to the tangent.
So the actual velocity of a particle of a rotating body might
be called the moment of the angular velocity, for it equals
wr, r being measured from the particle to the axis of
rotation. The actual acceleration, again, is the moment of
the angular acceleration—that is, it equals ar (see sect. 17).

It often happens that the distance from the axis comes in
as a factor fwisce, so that we have a moment of a moment,
which is called a second moment.

When any directed quantity is multiplied by the
square of a distance at right angles to itself, the pro-
duct is called the second moment of that quantity.

Thus for some purposes it is convenient to speak of the
moment of the velocity of a particle of a rotating body—that
is, r ; and this is the second moment of its angwular velocity,
being equal to w»2 The moment of momentum of such a
particle is of course mv7, or as it may also be written mws3.

38. These terms being understood, we will proceed to
consider bow we must define the quantity of motion of a
rotating body, or a system of circularly moving particles.
Simple momentum, or product of velocity and quantity
of matter, will not do, for the effect produced by a given
shock depends not only upon this, but also upon how far
distant from the axis the bulk of that matter is. For con-
sider a fly-wheel ; which you know is a large heavy wheel
fixed to the crank-shaft of stationary engines and driven
at a high speed, not for the purpose of communicating its
motion to a lathe-band or anything, but simply for the
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purpose of storing up a certain quantity of motion suffi-
cient to carry the engine over its ‘dead points,’ and also
over any accidental shocks or sudden impediments which
the machinery may experience: it is made massive so
as to have great inertia, it is also made to go fast so
that it may possess great momentum ; but besides this it
is made large, and nearly all the mass is placed in its
rim, so that the motion stored up in it may have a great
leverage.

For just as the power or moment of a force depends not
only on its magnitude but also on the place at which it is
applied—not only on its strength but on its leverage—being
equal to the product of the force into its distance from the
fulcrum (for example, the longer a crowbar is, the more
power it gives you ; the more unequal the length of the arms
of a steelyard, the bigger the weight which can be balanced
by a little one ; and so on, see sect. 137) ; so with the fly-
wheel, the effect or power of its stored-up motion depends
not only on the actual quantity of motion or momentum of
the rim, but also on the distance this rim is from the axle
—that is, on the radius of the wheel. It depends, in fact, on
the moment of its momentum, ur.

39. Now if the wheel were a simple infinitely thin rim, the
meaning of this would be simple enough ; » would stand for
the radius- of the rim, and u for the product of its mass
and velocity mwv (sect. 34) ; but any actual wheel must have
a rim of some thickness, as well as some spokes and a nave,
so the meaning of neither s nor » is quite clear without
further definition.

The moment of momentum of a rotating body is the
sum of the moments of momenta of its several particles.

Let a wheel turn with the uniform angular velocity .
A particle of mass m,, at a distance ~, from the axis, and
moving with velocity 7,0 or v, has a momentum m,7,,
and therefore a moment of momentum »1,7,7;, or what is the
same thing, m,7%. Similarly with a particle of mass
at a distance #7,; and with one of mass ; at distance 7y,
and so on ; hence the moment of momentum of the whole
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wheel is the sum of these terms for all the particles in
the body,
MU + MUy + MU + .eeeeene

or as it is often written = (mrv).

Since 7 = rw, and since w is the same for every particle
as for the whole body, we may write the above expression
for the moment of momentum in this equivalent form,

w (m® + myt + mpd + .l) = 0Z(mY)

or in words, the moment of momentum of the wheel is the
angular velocity multiplied by the sum of the second
moments of inertia of every particle in the wheel.

In this last form, m%w, the moment of momentum, is
often called the angwlar momentum ; because, instead of
being simply the product of inertia and velocity (as
momentum is), it is the product of a moment of inertia and
angular velocity.

40. In the last paragraph we have the occurrence of the
second moment of mass or inertia, m»3, and indeed this
occurs in Dynamics so much more frequently than the first
moment (mr), that it is usually called #k¢ moment of
inertia.

The moment of inertia of any rotating body about its axis
of rotation is the sum of the second moments of the masses
of all the particles in it about that axis ; and we will denote
it by M, so that M = 2 (mr).

The angular momentum, or moment of momentum, of
the above fly-wheel is thus simply #w.



CHAPTER IV.
ON PORCE AND MOTION (Dynamics).

It was stated in the Introduction that force produced two
kinds of effects on matter—¢ acceleration’ and ‘ strain’ In
the present chapter we will consider only the first or motive
effects of force—that is, the effects of force on rigid bodies
or particles (see sect. 36) ; and first on particles moving in
straight lines—

(I.) ON THE SPEED OF MOTION AS AFFECTED BY FOROB;
OR, FORCE AND RECTILINEAR MOTION.

(Dynamics of a Particle.)

41. When a single force F is applied to a certain quantity
of matter or mass, s, for a unit of time, a certain quantity
of motion or monientum is generated in the mass. If the
same force (for example, a piece of elastic stretched to the
same extent as before) is applied to a greater quantity of
matter for the same time, it will move with less velocity, but
the product of the quantity of matter and the velocity—
that is, the guantity of motion or the momentum—will be
found to be the same ; so the force may be measured by
the momentum generated by it per second, since this is
constant, and depends on nothing but the force. If the
same force be applied for # seconds instead of one, # times
the quantity of momentum will be generated ; hence the
Jorce, or the momentum generated per second, is obtained
by dividing the whole momentum generated, by the time
taken to do it ; or in symbols,

my
F= '—t H
and the uni¢ force will be that which can generate unit
momentum in unit time.
42. Force, then, by this definition comes to be rate of
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change of momentum, just as acceleration was defined to
be rate of change of velocity. ’

a=% (sect. 10).

Hence force bears the same relation to acceleration as
momentum does to velocity : each, in fact, equals the other
multiplied by m, or

F=ma
This last is a very convenient form of the definition, and
may be expressed thus :

A force is numerically equal to the acceleration it can
produce in unit mass; and in any case it is equal to the
product of the mass acted on, and the acceleration pro-
duced in it; or concisely,

FORCE = MASS ACCELERATION.

This is, indeed, the fundamental relation of Dynamics, for
it makes all that we have learned about motion in the
abstract (Kinematics) available for dynamical problems—
that is, for all problems involving force.

43 The unit of force may be expressed in these threc
different but equivalent ways :

The unit of force is that which causes unit acceleration
in one pound of matter (unit mass);

Also, unit force is that which generates unit momentum
in one second, as said above ;

Also, it is that which, acting on unit mass for unit time,
causes it to move with unit velocity. So, if the unit force
act on a pound for a second, the pound at the end of that
second will be moving at the rate of one foot per second.

It is often convenient to have a name for the unit of force
as defined in any of these equivalent ways. The name
poundal has been suggested in order to indicate a connection
between the British unit of mass and the force unit (not by
any means to signify that the force unit equals the weight
of a pound : it is nearer the weight of half an ounce). A
poundal is also called the British unit of force, to distin-
guish it from the unit founded on the metric system, which
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involves grammes and centimelyes instead of pounds and feet.
This metric unit of force is now very frequently called a
dyne. It is, of course, that force which, acting on a gramme
for a second, generates in it the velocity of one centimetre
per second. It is a very small force indeed, only about
the thousandth part of the weight of a gramme, which is
itself only about 15 grains.

One poundal equals 13825.38 dynes.
44. The fundamental connection between force and acce-
leration, F = ma (sect. 42), may be written, of course, in two
other forms ; and this one,

is an abbreviated statement of the fact that when a force F
acts on a mass m, the acceleration produced in it is the
ratio of the force to the mass.

Let us take an example to illustrate the application of this.
Find the distance travelled in 8 seconds by a mass of 2 lbs. which
starts from rest, and has a force of 6 poundals acting on it all the
time. :

The acceleration or velocity acquired per second is

F_6
a= ;=? = 3.

The whole velocity acquired in the 8 seconds is therefore 24, and
hence the average velocity is 12.

The distance travelled is the average velocity multiplied by the
time, or g6 feet, which is the answer.

Or we might, without troubling about the velocity, have applied
the formula s = § a#? as soon as we knew the value of the accelera-
tion @ = 3, and of course we should have arrived at the same
result. But all this latter part is simple Kinematics: the only
dynamical part was the finding of the acceleration from the given
force and mass ;

6= —,

Whether the body is in motion or not when the force
begins to act, matters nothing—the acceleration produced
is precisely the same. Of course the distance travelled in
a given time will be different, because of the initial velocity
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(72 will have to be added to the } az%) ; but all that was
considered in Kinematics, Chapter I1I.

45. The following is Newton’s statement of the above
connection between force and motion :

¢ Change of motion is proportional to impressed force, and
lakes place in the direction in whick the force acts;’

Or as it has been restated by Professor Clerk Maxwell, in
equivalent modern language :

¢ THE CHANGE OF MOMENTUM OF A BODY IS NUMERI-
CALLY EQUAL TO THE IMPULSE WHICH PRODUCES IT,
AND IS IN THE SAME DIRECTION.!

By impulse is meant the groduct of the force acting, and
the Zime it lasts ; for it is on both these that the power of a
force depends. Thus the blow of a hammer is a very great
force while it lasts; but as it is only momentary, its émpulse
(or motive effect) may not be so great as a much smaller
force applied continuously for some time® (cf. sect. 35). The
motive effect or impulse is proportional both to the strength
of the force, F, and to its duration, #; and hence it is defined
as the product Fz. So the first portion of the above state-
ment is, in symbols,

my =Ft;
where 7 represents the velocity gained by the mass m
owing to the action of the force F for a time #; it is, in fact,
simply the fundamental relation of sect. 42 in another form.

46. The above statement is often called the second law of
motion : it might with propriety be called #ke¢ law of motion,
or the law of force and motion. It is very general, and
involves a great deal.

First, it shews that where there is no force there is no
change of momentum—that is, that a body not acted upon
by any external force, if in motion, will continue with that
motion unaltered, and, if at rest, will remain at rest ; a fact
often stated separately as the law of inertia, or the first law
of motion (sect. 30).

# This is best observed by first striking sharply, and then pushing steadily, a
thing on wheels where the friction is small. The advantage of a blow is felt,

not when you want to wmove a thing, but when you have a great force of friction
to as in b ing a nail.
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It further declares implicitly that if a force act on a body
in motion, it produces just the same effect as if it had acted
on the same body at rest—that is to say, the szaze of the
body on which the force acts is immaterial, as nothing is
said about it in the statement.

In some old-fashioned books this part of the law is set forth as
the whole second law itself.

Moreover, it implies that if two or more forces act on a
body, each produces its own change of motion in its own
direction without regard to the others.

47. This last is an important aspect of the law, and tells
us that the operation of compounding together a lot of forces
is just the same as that of compounding together the motions
which each force separately tends to produce in the same
time.

Thus if AB represents the quantity of motion (that is, the
momentum) which would be produced by one force by itself
in a second, and BC the motion which would be produced
by another force by itself; then AB and BC may also be
taken to represent the two forces themselves. But we learn
from Chapter 11, and from sect. 36, that the resultant of the
two motions AB and BC is the single motion AC, hence
AC may be taken as representing the reswltant force—
that is, a force which, if acting by itself, would produce
precisely the same effect as the other two forces acting
together.

Hence all that we have said about the composition of
motions applies equally well to the composition of forces.
In other words, forces are compounded by the parallelogram
and polygon laws just as motions are compounded (see
Chapter VIL).

48. Moreover, we learn that in order to specify the trans-
lating power of a force, it is only necessary to specify the velo-
city it is able to produce in unit mass in a second, which is
readily done by drawing a straight line anywhere of definite
length in a definite direction. But we shall soon learn
(sect. 51) that, as force has rofating as well as translating
power, it is necessary, for the complete specification of a
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force, to assign also its position or line of action; it is not
necessary to assign it any definite place in that line.

Hence three things determine a force—Direction (with
sign), Position, and Magnitude. As these things are pos-
sessed by an arrow-headed line of given length, such a line
is often used to symbolise a force. This {, for instance,
would be one force, and this =+ a force of the same magni-
tude as the first, but in a different direction ; while this
other one, equal and parallel to the first, } would be equiva-
lent to the first in translating power, for it has the same
magnitude and direction, but different in rotating power,
having a different position, that is, line of action. The only
defect of this mode of representation is that it is a little too
expressive—that is, it expresses a little more than is wanted.
For -+ and -, though two distinct /ines, represent the same
Jorce in every respect, having the same direction, magnitude,
and line of action—the rotating and translating powers are
the same (see end of sect. 53). For further development of
this, see Chapter VIII.

49. There is one more thing about force which is very
important, but in the present stage its full meaning can
scarcely be appreciated, and that is the fact, mentioned
in the Introduction, that force is always due to the mutual
action of two bodies or systems of bodies; that ewvery
force, in fact, is one of a pair of equal opposite ones—one
component, that is, of a s#ress—either like the stress exerted
by a piece of stretched elastic, which gulis the two things
to which it is attached with equal force in opposite direc-
tions, and which is called a Zemsion ; or like the stress of a
pair of compressed railway buffers, or of a piece of squeezed
india-rubber, which exerts an equal pwusk each way, and is
called a pressure (see sect. 3). Newton’s law concerning
this is what is called his 24ird law of motion :

¢ Reaction is always equal and opposite to action—that ss
2o say, the actions of two bodies upon each other are always
equal and in opposite directions.

This may be called the law of stress, and it has been
shewn by Professor Tait to be susceptible of considerable
development (see Thomson and Tait’s Natwral Philosophy,
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art. 269, and see also Chapter VI. of the present text-book).
It is deducible from the first law of motion (see Maxwell,
Maitter and Motion, art. lviii), for if the forces exerted by
two parts of the same body on each . other were not
equal and opposite, they would not be in equilibrium ;
and consequently two parts of the same body might,
by their mutual action, cause it to move with increasing
velocity for ever, the possibility of which the first law
denies. .

We have already shewn (sect. 46) that the first law is a
special case of the second, and now we have deduced the
third from the first; hence all are really included in the
second, which is therefore excessively important.

(IL) ON ANGULAR VELOOITY AS APPEOTED BY FOROE;
OR, FOROB AND ROTATION.
(Dynamics of a Rigid Body.)

50. When force acts on an extended piece of matter, it
produces in general both motion and strain (sect. 5).. The
latter we do not want to consider at present ; so to exclude
it, we suppose the body to be rigid—all its parts rigidly
bound together and incapable of distortion or relative
displacement. The effects of force on such a body are
translation and rotation. If the former only, the body acts
like a particle (sect. 36), as if all its mass were concentrated
at a point (called its centre of imertia, or sometimes its
centre of gravity), and the second law of motion as stated
for particles applies to the rigid body ; so that if R is the
resultant of all the external forces acting on the body, and
if m is its mass, the acceleration of its centre of inertia is

—’%. When, however, rotation is allowed, the subject be-

comes much more complicated, especially if translation is
possible as well. We can, however, consider rotation by
itself, by supposing one line or point in the body to be
fixed in position, so as to constitute an axis or centre of
rotation.

s1. All we can say about the subject here is, that in
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estimating the rotating effect of a power, one must not only
consider its impulse—that is, its magnitude multiplied by its
duration (sect. 45)—but we must also consider its position ;
how far its line of action is from the fixed line or axis of
rotation : the further it is off, the more effect it has; its
moment (sect. 37) is greater.

Suppose a force acts on a body only capable of rotation,
at a distance R from its fixed axis : the moment of momen-
tum, or angulay momentum, generated [Z(muvr), or Z(mriv),
see sect. 39], equals the product of the moment of the force,
FR, into the duration, #; in other words, it equals the
moment of the impulse Ft. R.

This is expressed by the following equation, where the
moment of inertia of the body Z(mr?) is denoted by M (see

sect. 40) :
Mo = FRy,
or, moment of momentum = moment of impulse,
which is an extension of the simpler particle equation,
(sect. 45), momentum equals impulse,
my = Ft.
52. This equation may also be written (since v = a),
. FR moment of force
a.ngulm' acceleration = a = m = inomenm'
which is evidently analogous to the simple, and, for particles,
fundamental equation (sect. 44),

acceleration = ¢ = F . force
m  inertia’

and includes it as a special case.

For an application of this equation, see Chapter IX,,
sect. 142,

Read again, carefully, sections 37-40.

Moment of a Force.

53 The idea of the moment of a force is a very important
one, and will occur again and again in statics (Chap. VIIL).
It was from this particular case of it that the name moment
arose, signifying that on which the power of a force in pro-
ducing rotation depends. Thus, to close a door rotating
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on its hinge, by a push, it is much more effectual to apply
the push near the handle than near the hinge. In pull-
ing at a lever, the further you are from the fulcrum the
more power you have. Doubling the distance of the force
from the fulcrum, is as good as doubling the force itself—
doubling either,doubles the effect—doublihg both, quadruples
it : hence, distance and force enter equally into the effect—
that is, the moment of the force is proportional to the product
of force and distance FR, and may be defined as egnal to it.
" The distance called R here is always the skorfest distance
from the point or axis of rotation to the line of action of the
force—that is, it is the length of the perpendicular drawn
between these two lines, or let fall from the fixed point
upon the line of action. Now, the area of a triangle is half
the base multiplied by the perpendicular height ; hence, if
the force be taken as the base of a triangle, and the point of
rotation as the vertex, the area of the triangle so formed will
be half the moment of the force about that point. Or, in
symbols : the moment of the force AB about the point O is
0 ABXON, where ON is the
distance R, being the per-
pendicular let fall from O
upon the line AB, produced
i if necessary (fig. 11); but
AT F B ABXON also equals twice
Fig. 11. the area of the triangle
AOB ; hence, twice the area of AOB represents geometri-
cally the moment spoken of. The position of AB #n zke
line is evidently of no consequence, as all triangles of equal
heights and bases have the same area (cf. sect. 48).

But to express a moment completely, we must also notice the
direction of its rotative tendency. In the figure it happens to be
like the hands of a watch, a direction it is convenient to call, with
Professor Clifford, ¢ clockwise.” If AB were reversed, or if O had
been on the other side of it, the direction of rotation would be also
reversed, or ¢ counter-clockwise.” This last direction—namely, that
opposite to the hands of a clock, it is customary to call positive—
the clockwise rotation being therefore negative. So in the above
figure the moment is equal to — 2.0AB,
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Foroe Perpendioular to Path of Motion.

54. But there is another aspect of the subject. When a
body (say a wheel) rotates round an axis, every point of it is
describing a circle ; and so, even when its motion is uniform,
and not accelerated in the ordinary sense, still a force must
act on each of its particles to compel them to move in the
circle contrary to the first law of motion. This force is
supplied by the strength of its material, and is often
neglected ; it is, however, very important. It may happen
that the material of a wheel is not strong enough to exert
the force required when the rotation is very rapid, and in
that case the particles will cease to move in their circles,
but will begin to move in straight lines: in other words,
the wheel will fly to pieces. If a' body revolve about a
centre outside itself, this force must be supplied to it by a
link or cord, or by some other constraining mechanism (a
groove in the case of a solitaire marble running round its
board).

In this, as in every case, the acceleration is proportional
to the force, and a constant force produces a uniform
acceleration (sect. 42) ; but the acceleration is here perpen-
dicular to the direction of motion (see sect. 14). We will
now proceed to investigate it further,

(IIL) ON THE DIRECTION OP MOTION AS AFFROTED BY POR(CE;
OR, FORCB AND OURVILINEAR MOTION.

(Dynamics of a particle continued.) (Centrifugal force.)

55. The velocity of a particle of matter may be changed
both in magnitude and direction by the action of force.
Hitherto we have dealt only with change of magnitude ; let
us now proceed to change of direction ; and consider a case
where a force produces only curvature in the path of a
particle without otherwise affecting the velocity.

Imagine a particle of matter moving round and round a
circle with constant speed. Although there is no accelera-
tion in the direction of its motion, yet nevertheless, a force
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must necessarily act continually in order that the circwlar
motion may, continue. The velocity is uniform indeed, but
its direction is constantly changing. But, by the first law
of motion, a particle of matter will move always in the same
direction—that is, in a straight line—unless it is acted on by
force : hence, force is necessary to change the direction.

T If the particle were at the
point O (fig. 12), and the force
were to cease to act, it would

i
v ™ continue to move in the
A\ i straight line OT, touching the
b / circle at O. In order to go
kY| round the circle, it must then
¢’ fall from this line normally,
Fig. 12 that is toward the centre of

the circle; it thus arrives at the point P, and now it is

going along PT’; but it falls a little towards the centre
" again and so reaches the point Q, and so on. A force
then must constantly act drawing the particle towards the
centre of the circle; and this force is called therefore the
centyipétal force. It is constant in magnitude, but con-
tinually changing in direction, being always at right
angles to the direction of motion of the particle. And
because it s at right angles to this direction, it can pro-
duce no acceleration in it. Whirl a stone round by a
string : the tension in the string is this centripetal force,
and you will find it greater as the stone is larger, and also’
as you whirl it quicker. The tension in the string, however,
is really a stress (sects. 3 and 49), and has two aspects, one
the action of the hand or central body on the revolving
particle, which is the centripetal force proper ; the other the
reaction of the revolving particle on the central body, which
is the force felt by the hand, and goes by the name of the
centrifiigal force. Of course the two are equal. The
essential thing however is the stress, and which component
we speak of matters little : but, as we are at present con-
cerned more with the action on the particle than with the
reaction on the centre, it will be convenient to attend more
to the centripetal force than to the other.
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Value of Oentripetal Forcs and Oentripetal Acceleration.

56. Now, to find the magnitude of this force, we must
regard the motion of the particle as compounded of two—one
auniform velocity along the tangent to the circle ; the other
a uniform acceleration along the radius, produced by the
uniform centripetal force F, according to the law

2= "m

a being the centripetal acceleration.

We have then a case of composition of motions very like
that discussed in sect. 28, where a uniform rectilinear
motion was compounded with a uniform acceleration in a
constant direction—that is, always parallel to itself ; and
where the path of the resultant motion was found to be a
parabola. But, in the present case, we have to compound
a uniform motion with a uniform acceleration at right angles
to the path of motion at each instant, in fact along the
radius of the circle, and by no
means parallel to itself.

Drawing a figure similar in
principle to that of sect. 28
(fig. 9, which see), let OP be
the very minute portion of the
circular path described in an
infinitesimal portion of time ¢
with the constant velocity v,
so that

OP = o¢;
and complete the figure as g
shewn in fig. 13, letting fall PN Fig. 13.

perpendicularly to the diameter of the circle OD.
Then OP is the diagonal of an infinitely small parallelo-
gram® with sides OT and ON ; wherefore the motion along

® The quadrilateral ONPT is not really a parallelogram, but it is more
nearly one the smaller it is—that is, the nearer P is taken to O; and it is accu-
rately one in the limit when it is infinitely small—that is, when Pis the next
consecutive point to O, which is supposed to be the case ; for of course OPQ,
&c., are really comsecutive points of the circle, only they have to be spread
out in the diagram. In the Limit also OP and OT are equal, and hence OT is
also equal to o2,
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OP may be regarded as compounded of two motions—one
with the constant velacity v along OT, which the particle
would have if left to itself ; the other, due to a constant pull
of the centre C, and therefore uniformly accelerated, along
ON, which is the distance travelled in that direction in the
above small time #; wherefore

ON = } af%,

It only remains to determine, from the geometry of the
figure, the relation between ON and OP, in order to find the
value of the centripetal acceleration for a point moving with
given velocity in a circle of given size.

The angle OPD, being an angle in a semicircle, is a
right angle (Euc. III. 31), and so is the angle at N ; more-
over the angle at O is common to the two triangles ONP
and OPD ; wherefore these triangles are similar (that is,
one is like the other magnified), and their corresponding
sides are therefore proportional ; so

ON:OP::0OP: OD;
or in symbols, if 7is the radius, CP, of the circle,

tard:vt: vt 2r;
o,a:v=1uv:7r

whence 2% = ra, or v is a ‘mean proportional’ or ‘geo-
metric mean’ between 4 and 7.
The value of the centripetal acceleration is then

a=77ﬁ; or (writing v = wr) ¢ = ol = va.

The centripetal force is of course simply m times this, m
being the mass of the revolving particle of matter, or

= %’-’ = mo'r = moow ;
or it is proportional to the mass of the particle, the square
of its velocity, and the curvature (see sect. 13) of its path :
in other words, it is proportional not only to the momentum
of the particle, but also to the rate at which its direction of
motion revolves—that is, to its angular velocity.
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Read again sect. 14 carefully, and also the examples on circular
motion at the end of Chapter I., especially example 12.

57. As an example take a stone weighing 5 lbs., attach it
to a string 3 feet long, and then whirl it round twice a second.

The length of one circumference being 2 x * x 3 = 6w feet, its
velocity must be 12« feet per second ; and the tension in the
string, or the centripetal stress, must be

5% 144 X« p ot 2400 poundals

3
(taking »3 as equal to 10 instead of 9.98); equivalent to the
weight of143:_° =75 Ibs.

This stress might easily be sufficient to break the string, and one
would say then that the centrifugal force, exerted by the revolving
mass on the string, broke it. This may be understood as an
abbreviation for the following more expressive statement: The
force required to continually deflect the mass from its natural
rectilinear path, and cause it to move in the given circle at the
given rate, is so great that the string was incompetent to exert it,
but was torn asunder in the effort.

Take another example from astronomy, which, however,
will be better appreciated after reading Chap. V. The
moon revolves round the earth, in a path which is nearly
a circle with the earth as centre, in a time of nearly 28
days. Hence it too is continually being deflected from its
natural rectilinear path: the force which deflects it being
its weight—that is, the earth’s pull (or gravitative attrac-
tion). Call the mass of the moon » ; then its weight must
be mg’ (see sect. 60), where ¢’ is the intensity of terrestrial
gravity at the distance of the moon.

The intensity of gravity at the moon’s distance is much less than
32, its value near the surface of the earth, because it decreases in
the same proportion as the square of the distance from the centre
of the earth increases.

This force, mg”, then, is the centripetal force which makes
the moon describe its curved path, and hence it should

equal
me

r
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Now the radius (7) of the moon’s orbit is about 240,000
miles, or about sixty times the earth’s radius ; and it goes
once round in 2,360,000 seconds, or about 27 days 8 hours :
hence its velocity () is

2T X ,000 X 1760 X
L 24:,360,0007 1=3374feetpersecond.

v’ 1 . . X 2
So —, the centripetal acceleration, is %__E —.00898

This is the value of ¢/, and the centripetal force is

008981,

Now if this force be really due to gravity, and if gravity
really diminishes with the square of the distance, then, the
distance of the centre of the earth from the moon being
sixty times as great as its distance from the surface of the
earth (that is, the earth’s radius), it would follow that g’
at the distance of the moon should be the 3600th part of
the value of ¢ at the surface of the earth,

But the value of g is 32:2 (see next chapter), and the
3600th part of this is 00894 ; so the weight of the moon
should be .00894m ; and this is as near -00898m as our
rough data can be expected to give it.

This is the sort of calculation which Newton went through
when he proved that the force required to keep the moon in
her orbit was just the same as would be exerted by the
gravitative pull of the earth; supposing that the force which
pulls down stones and apples extended so far, and decreased
regularly all the way with the square of the distance from
the centre of the earth; and hence concluded that this
force does so extend, and is the actual force in operation.

EXAMPLES,

1. What is the acceleration when a force of 36 units acts on
a mass 4; and how far will the mass move in 10
seconds ? Ans. 9,and 450.

2. What is the least force necessary to cause 1§ lbs. to
move 30 feet from rest in § seconds? Ans. 36,




DYNAMICS. 65

3. If a mass of 7 lbs. is acted on by two opposite forces
of magnitudes 56 and 42 respectively, what is the
acceleration; and what will be the momentum
generated in § seconds? Ans. 2, and 70.

4. How long must a force of 8 units act on a mass 20 to
change its velocity from 2 to 26 feet per second ?

Ans. 1 minute.

5. In what distance will a force of 2 poundals be able to
stop a mass of 30 lbs., which at the time the force
begins to act is moving 5o feet every second ?

Ans. 6250 yards.

6. Half a pound is whirled at the end of a string 18 inches
long 3 times round per second : what is the tension
in the string ? Ans. 2772 poundals.

7. If a string can stand a force of 1000 units without
breaking, what is the greatest length of it which can
be used to whirl a 5-Ib. mass once round a second ?

Apns. (taking #? as equal to 10) § feet.

8 What is the smallest length of the same string which
can be used to whirl a 5-Ib. mass with a velocity of
10 feet a second ? Apns. 6 inches.

CHAPTER V.
ON FORCE AND MOTION—Continued.
THE FORCE OF GRAVITATION.

58. Before proceeding farther, it will help our ideas to
apply some of the general laws to a few special cases. The
most universal force known is the force of gravitation, and
it will be convenient to take illustrations from the action of
this force ; but we will, in the present stage, only consider it
as a mniform action exerted by the earth, tending to pull
every piece of matter down to the earth’s surface with a
force varying with the mass of the piece of matter, but with

E
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nothing else. This is practically true in all common cases, for
though the force really varies inversely with the square of
the distance from the centre of the earth, yet the variation
for ordinary heights is very small. For there is scarcely
any difference in the distance of the centre of the earth from
the sea-level and from the top of a mountain—one is say
4000, and the other perhaps 4001 miles.

59. This force is what is known as weight; it is measured
like every other force by the acceleration it can produce in
unit mass, or, in other words, by the momentum it can
generate in a second. To measure the force, and see how
it depends on the nature of the attracted body, we will first
take the same mass of different bodies, and compare the
accelerations which gravity is able to produce in them.
Thus take a pound (see sects. 31 and 33) of lead, of iron, of
stone, of wood, and of cork, and drop them all at the same
instant from a high tower; then if every disturbing cause
were absent—that is, if they were subject to no other force
but that of gravitation—they would all be found to reach the
ground at precisely the same instant, having all acquired
the same velocities.

If, however, the experiment took place in air, they would be
subject to disturbing causes, and nothing would be learned from it.
The wood and cork would be retarded by the air more than the
others, partly from the same cause as enables us to winnow chaff
from grain, and partly for a reason which may be rendered more
obvious by dropping the different things under water. The falling
of the wood and cork would be then not only retarded but reversed
into a rise, The air has a floating power, only it is less than that
of water. The air must therefore be removed, and the bodies
dropped in wacuo, an experiment often called the guinea and
feather experiment, for a description of which you may refer to
Ganot, Book IIL., chap. ii,, page 51, or Deschanel, vol. i., page 49.

The above experiment, if carried out accurately, would
prove that the pull of gravily has nothing to do with the
malerial or nature of the substances, for all equal masses are
equally accelerated whatever the material ; and, since the
masses are equal, this means that they are all pulled with
equal force (sect. 42).
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60. Next take unequal masses (either of the same material
or not), say a swan shot and a cannon ball, and drop them
from a height at the same instant. They will both reach
the ground at the same time—that is, they each receive the
same acceleration. This experiment was carried out by
Galileo from the Tower of Pisa. It shews that zhe carti’s
pull on a body is directly proportional o its mass. For
since force is equal to the product of mass and acceleration
(sect. 42), and since the acceleration is found experimentally
to be the same for all masses, it follows that the force is
necessarily proportional to the mass.

If we denote by g the acceleration produced by gravity
—that is, the velocity gained by a freely falling body in one
second—the force pulling it down is ¢ multiplied by its
mass, and this force is termed its weight,; so

W = mg;

or, the weight of a body is g times its mass. Hence g is
often called the infensity of gravity.

This is simply a special case of the general relation
F = ma,

weight being a particular case of force, and ¢ being a
particular case of acceleration.

The weight of one pound is therefore g units of force
(¢ poundals). (Read sect. 33 again.)

Falling Bodies.

61. To express all the laws of falling bodies, we have
simply, first of all to find the value of the uniform accelera-
tion g, and then to apply all the kinematics we know.

Thus a stone let drop is found to fall about 16 feet in one
second (more accurately 16.09), so that 16 is its average
velocity during that second ; but the average velocity is half
the final velocity ; hence the velocity acquired in one second,
or the acceleration, is 32 (more accurately 32-18), and this is
the value of g. (Since 16.09 feet equal 490.5 centimetres
nearly, the value of gis 981 in centimetres-per-second per
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second ; and this therefore is the weight of a gramme
in dynes.)

The velocity 32 is gained in every second of the fall, so
the velocity gained in t seconds is 32¢ (feet per second).

The distance travelled, being proportional to the square
of the time, is 163 feet (k = § g?9).

The velocity gained while falling from a height of h feet
Jrom rest is (by equation v = 2gs)

8WVA;

8 being the square root of 64 or 2g.
The time taken lo fall from rest at a height of k feet is

1WA,
whick _follows at once from the equation s = } gt

62, Modes of diluting the Intensity of Gravity.—The acce-
leration is equal to g for all bodies only on condition that
they fall /reely—that is, that the weight of each has only its

own mass to move and nothing else ; for then & = ;, but

as F = myg, a=g.

If, however, by any arrangement, we make a weight move
another mass as well as its own, the acceleration must be
less.

Q
Thus suppose we tie a

falling weight P (say 6 1bs.)

to a mass Q of 18 lbs. rest-

ing on a smooth flat table,

as in fig. 14 ; then the force

causing the motion is the

ﬂp weight of the 6 lbs.—that

is, 6g—but the total mass

_ moved is 18 4 6 = 24 Ibs. ;

Fig. 1. hence the acceleration is

6g
— == =8
2 =18

feet-per second per second. Hence in the first second the
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combination would move 4 feet, and in ¢ seconds 4¢* feet, while the
velocity acquired in # seconds would be 8¢

In a similar way, we can find the acce-
leration if two weights are connected by
a string passed over a frictionless pulley,
without inertia, as in fig. 15.

Let the masses Q and P be 7 and 9 lbs,
their weights will be 7¢ and Qg units of force
respectively, and the effective force will be the
difference, that is 2g. The mass moved is 16 ;
hence the acceleration is '

f%= tg=4

This arrangement of two unequal Fig. 15.
weights over a pulley is called ¢ Atwood’s
machine,’ for determining the acceleration produced by
gravity, and for experimenting on the laws of uniform
acceleration.

The advantage gained by experimenting with it instead of
with freely falling bodies is owing to the fact that the latter
fall too quickly to be conveniently observed. Any accele-
ration whatever less than g can be obtained by the use of this
simple machine. Gravity is as it were dé/uted (that is,
its intensity is multiplied by a proper fraction), but the laws
of falling remain the same.

63. Mode of measuring the Intemsity of Gravity.—To use
the machine for measuring g, we put on the string two
nearly equal weights, masses P and Q ; the effective force is
then the difference of their weights Pg — Qg; the mass
moved is P 4 Q ; hence the acceleration is

Pg - Qg P—Q
REANALH

If this acceleration (call it 4) is observed, g is easily cal-
culated. To obtain a, you may observe the distance s fallen
in ¢ seconds, and then apply the formula s = {as%

For instance, let P be 21 oz. and Q be 23 oz., then the accele-

PO 2 £.
ration 18 “-f{j or 22
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Let them move for six seconds, and observe that the heavier weight
has fallen (and the lighter weight risen) a distance of 26 feet ; then

say 26 = §a x 36, so the acceleration isigz.‘; but it is nlsof;,
hence g = 31§.

An actual experiment with Atwood’s machine would be
hardly likely to give g so nearly correct as this. There are
other methods of finding the value of g, which are much
better practically, though not so theoretically simple. The
most accurate method consists in observing the time of
oscillation of a pendulum of measured length (see sect. 73).

64. It is easy to understand how experiments may be made with

Atwood’s machine on the laws of uniform acceleration. Thus, to
take the case when the weights are 21 and 23, and the acceleration

therefore% we should find that the distances travelled in 1, 2, 3,
4, 5, 6 seconds respectively were

13 4x1I13 9x13 16x13 25x13 36x13

18 18’ 18’ 18 18’ 13
-—that is, always half the acceleration multiplied by the square of
the time (} a#3).

The distances travelled dusing each second would follow another
law. They are easily obtained from the preceding numbers, for if
we subtract the distance travelled in three seconds from the distance
travelled in four, we should obtain the distance travelled during tke
Jourth second, namely,

16x13 _ 9x13 _ 7x13,
18 18 18 '’

and similarly, we get for the distance travelled in the first, second,
third, fourth, and fifth seconds respectively,

13 3x13 §5x13 7x13 9XxI13,
® 18’ 18’ 18’ 18 °

a series ascending by the odd numbers; the distance travelled in
the sth second being half the acceleration multiplied by the sth

odd number (} a(2n - 1)).

65. All this may be readily remembered by observing
its analogy with a simple geometrical diagram, as in sect. 22.
Draw any right-angled triangle, OPC (upside down does
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best for falling bodies); divide its base, OP, into any
number of equal parts, and draw a vertical line at each
division. You will thus cut up your
triangle into trapeziums, of which
the left-hand one degenerates into a
triangle ; and it is plain that, whatever
be the area of this small triangle, the
trapezium next to it has three times
that area, the next five times, the next
seven times, and so on, as may be
seen from the four dotted lines drawn Fig. 16.

in fig. 16. Hence, if the first arca

represent the space travelled by a uniformly accelerated
body in the first second, the second area will represent
that described in the second second ; and the sum of the
two figures will be the space described in the two seconds
together, and so on.

Moreover, the whole area of the triangle will represent
the space travelled in the whole time of a number of seconds
equal to the number of segments of the base. Thus, in the
above figure, the whole area is the space described in four
seconds.

The vertical height of the figure being nothing at its left-
hand point, corresponds with the fact that the falling body
starts from rest—that is, is droggped. But if the body is
thrown either down or up with an initial velocity, this velo-
city must be represented by a line drawn at the left-hand
point, either down or up, and the figure becomes as in
fig. 17 or as in fig. 18, where OA represents a velocity
downwards, and OA’ a velocity upwards.

In the first case the velocity continually increases, until
in four seconds it becomes equal to PC. In the second case
it at first decreases, becoming zero at the point E two
seconds after starting, and then increases downwards, until
it becomes P’C'.

This second case exactly corresponds with what a ball
thrown up in a vacuum against gravity does. In both cases
the whole area of the figure represents the whole space
travelled. In the second case we see that the area OA'E
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is the space or height the ball rose through, and EP’C’ the
height it afterwards fell through. The ball was at its

Fig. 17. Fig. 18,

highest point two seconds after throwing up, having then
no velocity.

In both cases the ball must have been thrown from the
top of a tower or some other height, or it could not fall for
so much as four seconds without striking the ground. The
area OACP may represent the height of this tower, and OP
the time taken to fall, in the first case—that is, when the
ball was thrown downwards ; but in the second case, when
the ball was started upwards, the height of the tower is the
difference of the areas EP’C’and OA’E. OP’ is the whole
time taken by the ball, first to rise a height above the tower
equal to the area OA’E, and then to fall from this height to
the ground. The lines AC and A’C’ are necessarily parallel,
since the slope of each represents the rate of numerical gain
of velocity, 32 feet-per-second per second. (It might, how-
ever, be anything less than this if Atwood’s or some other
¢ diluting’ machine were used.)

Supposing it is 32, and that OE is two seconds, and EP’ six ;
then, of course, the initial velocity OA’ must be 64, and P'C’ must
be 192, feet per second. The area OA'E will be 64 units (its
height being 64, and its base 2), and therefore the height the ball
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rises is 64 feet. The area EP'C’ is §76, and so the height of the
tower is 512 feet. In the diagrams, the time represented by OP’
in the second diagram is greater than the time, OP, in the first,
by twice OE; and the initial velocity OA is numerically equal
to OA’; hence also the final velocity PC is equal to P'C/, and
the area OACP represents 512 linear feet.

In each of these figures (neglecting dashes), OP is the line of
time ; OABP represents the space described due to the initial
velocity ; and ABC the space described due to gravity. Also BC
represents the gain of velocity az; and PC the actual final velocity.

Refer to sect. 22 for some more statements concerning
these diagrams, and practise drawing diagrams for all
kinds of cases of rectilinear motion. Thus, draw diagrams
for the motion of a railway train, which gets up speed, goes
uniformly, slackens, stops, and goes on again, several times,
and then comes back; for the motion of an india-rubber
ball thrown down to the ground and then bouncing; for
the motion of the bob of a very long pendulum ; for the
motion of a tilt hammer, &c.; and remember in drawing
these diagrams that #me never retrogrades, and hence that
no part of a diagram can be vertically under or over another
part, but the drawing must progress continually forwards.

66. To actually experiment on the velocity acquired by
the falling weights in Atwood’s machine, we must remember
the definition of variable velocity at any instant (given in
Chapter 1., end of sect. 9), namely, the distance the body
would go in the next second if at that instant the accelera-
tion ceased. Now, the cause of the acceleration in this
machine is the force (P — Q)g. If this force were suddenly
removed—that is, if P and Q were suddenly made equal,
there would be no farther acceleration, and the masses
would continue to move uniformly forward with the velo-
cities they had already acquired, until they were checked
either by striking something or by friction.

This sudden removal of the inequality in the two weights is prac-
tically accomplished by making the extra weight by which P
exceeds Q (2 ounces in the experiment of sect. 63), a loose metal
bar too big to pass through a certain fixed ring placed in the path
of P. When P passes through this ring the bar is removed ; P
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and Q become equal, and move a distance in the next second which
is numerically equal to the velocity they had acquired at the instant
the bar was taken off. For a fuller description of Atwood’s machine,
and for many details of its actual construction, you may refer to
Deschanel, vol. i., p. 57, or Ganot, sect. 69.

67. Further {llustration of the Fundamental Equation.—This
example of the two weights, one pulling up the other,
illustrates the statement in sect. 50 that the second law of
motion applies to other cases than those where the motion
is perfectly free and unresisted ; in fact, that it is quite
general, if we always consider the force F as the resultant
of all the forces acting on a body, and not simply that force
which happens to be most obviously apparent to us.

Thus, go back to the mass of 18 lbs. resting on a table, and
pulled along by a weight of 6 lbs. hanging over the edge by a
string (fig. 14, sect. 62). The acceleration we saw ought to be 8,
but suppose it was observed to be only 3, we should at once know
that all the forces had not been taken into account. The table,
perhaps, is rough, and retards the motion of the 18 1bs. with a force
sufficient to reduce its acceleration to 3, and the force of friction
may from these data be calculated.

So again when a 56-1b. bucket is dragged up a well with a force
of 1920 units (the weight of 60 1bs.); if this were the only force
acting, the acceleration of the bucket upward would be

1920

56 = 34
units—that is, it would gain this velocity per second ; but if the
experiment be tried, the velocity actually gained per second will be
found to be nothing like so much as this—it will be only about 2}
units. The reason obviously is that there is another force left out
of account, opposing the pull of the rope, namely the pull of the
earth, which is §6 x 32 = 1792 units ; and the resultant force is
the difference of these two, or 128. Hence the actual acceleration is

128

56 °F 2%.

68. To take another very similar example, a cage of m lbs. is
lowered by a rope down a coal-pit ; what is the tension in the rope,
at a time when the cage is gaining downward velocity at the rate
of a feet a second every second? Well, the resultant force must
equal the mass-acceleration, but this resultant force is the difference
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between the weight of the cage, mg, and the pull of the rope, T,
hence

mg — T = ma,
or T = m(g — a),
which is the tension required.

If the tension in the rope were agual to mg, the weight of the
cage, the cage would riecessarily have a constant velocity ; it might
be moving either up or down, but there could be no acceleration
(cf. sect. 122).

69. That aspect of the second law of motion which says
that it makes no difference to the effect of a force on a body
whether that body was in motion or not (sect. 46) is well
illustrated by falling bodies (see sect. 21).

70. But the law is more strikingly illustrated when the
direction of the initial velocity of a falling body (now called
a projectile) is inclined at some angle to the force of gravity.
The path of a projectile is shewn in fig. 9, sect. 28; the
simplest case being where the initial velocity is at right
angles to the force of gravity, or horizontal.

Thus a rifle bullet, starting with an initial horizontal
velocity », retains this velocity unaltered, if we neglect.
friction against the air, and therefore in ¢ seconds it travels
a horizontal distance ##; but its vertical velocity, which at
first was zero, continually increases, and in # seconds is g7;
the vertical space fallen through being §¢7% or just the same
as if the gravity had acted upon the body at rest. The
whole circumstances of the motion of such a projectile have
therefore been already worked out in sect. 28 ; which see,
and read again.

If the rifle was fired horizontally from the top of a cliff of given
height, say 144 feet, it is easy to find how far the bullet will go
before striking level ground, its initial velocity being known. Let
the initial horizontal velocity be 1200 feet per second. We must
first find 4, the time the bullet takes to fall from the top of the cliff
to the ground, from the equation 144 = 16¢* (for it takes just the
same time as if it had no horizontal velocity. Law II., section 46) ;
this gives ## = 9, or # = 3. It goes therefore three seconds before
striking the ground, so evidently the horizontal distance it travels
is 3 X 1200 = 3600 feet.
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And generally if 2 be the height of the cliff, and » the
initial horizontal velocity of the bullet, its range, or
horizontal distance, is $% /4.

71. The composition of these two motions, 2 uniform
horizontal velocity with a uniform vertical acceleration, is
well illustrated by Morin's machine, for a description of
which see Deschanel, page 55, or Ganot, sect. 69 &

It consists of a long drum or cylinder, capable of rotating by
clock-work about a vertical axis. Down
one side a weight can fall between guides,
! and can, by means of a pencil, mark a
A\ line on the drum as it falls. If the drum
is stationary, the line drawn is of course
straight and vertical; but if the drum

\\ rotates, it is spread out into a curve. This
\ curve, when unwrapped from the drum,
is precisely the same as that which is de-

scribed by a projectile shot out horizon-
\ tally i vacuo with a velocity equal to that
. imparted to the surface of the drum by its
\
\

clock-work.

The drum is usually covered with
paper, ruled into squares or oblongs,
which can be detached and unrolled. The
line traced on it may then present the
\ appearance shewn in fig. 19. In succes-

Fig. 10, sive seconds the horizontal distances are

as I, 2, 3, 4, 5yeeeeer the vertical as 1, 4, 9,

16, 25, and so on. A curve with this property is called a parabola.
It is the path of a projectile in 2 vacuum (compare sect. 28).

Curvilinear Motion and Rotation,

72. We have already illustrated, though in an excessively
superficial manner, one case of the curvilincar motion of a
particle (sect. 55) produced by the force of gravity, namely
that of the moon, supposing it to be a particle and to move
in a circle (see sect. 57, and read it again). The whole
subject of the motion of the planets in their orbits comes
properly in here, but of course we cannot attempt it at the
present stage.
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73. We might also discuss the subject of the rofation of a
rigid body (sect. §0), as illustrated by gravity, by fixing a
point of a rigid body, and then letting gravity act on it. We
should thus get a very important set of physical laws known
as those of the gendulum, but in this stage they are a little
too elaborate for us to attempt to work out. Suffice it to
say that a ‘pendulum’ is simply a rigid body, with either
a point or a line in it fixed somehow relatively to the
earth, and then the body displaced from its position of
equilibrium, and left to swing under the action of gravity.
The motion is periodic, and the rate of oscillation depends
only on the length of the pendulum (whatever that may
mean) and the intensity of gravity. The time of a complete
swing to and fro is obtained by muitiplying twice the ratio
of the circumference of a circle to its diameter by the
square root of the ratio of the length of the pendulum to the
intensity of gravity—that is, in symbols,

t=21r,J}l—.

Assuming this (which will be practically proved in sect.
130), one sees that, by measuring £ and /, the value of ¢ can
be ascertained ; and this is the most accurate means of
determining g

The practical use of a pendulum as a timekeeper depends
on the time of an oscillation being almost invariable—that is,
on its motion being on #ke average very uniform ; and hence
it is very largely used as a timekeeper, all the rest of the
clock being, firstly, an apparatus to keep the pendulum
going, notwithstanding friction, and, secondly, an apparatus
to record (like a gas meter) how many times the pendulum
has oscillated. For more about pendulums, see Chapter IX.;
and also Deschanel, chapter viii.

1. What is the weight of 20 lbs. at a place where a falling
body travels 4 feet in the first second ?
Ans. 160 poundals.
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2. At what height above the earth’s surface could such a
place be found ?
Ans. At a height equal to the earth’s radius.
3. A curling weight is thrown on ice with a velocity 50;
supposing the force of friction to be yth of the
weight, how soon will it stop ? Ans. In 15§ secs.
4. In an Atwood’s machine a 4o-gramme weight on one
side is drawn up by a so-gramme weight on the
other, 2-18 metres in two seconds ; what is the value
of g in centimetres-per-second per second? A#s. g81.
5. In the preceding question find the tension in the rope in
grammes weight, and in dynes.
Ans. 44% grammes weight, or 43,600 dynes.
6. When a 3-1b. weight hanging over the edge of a smooth
table drags a 45-1b. mass along it, find the accelera-
tion and the tension in the string.  Ans. 2, and go.
7. Find also the acceleration if the coefficient of friction
between the table and the weight is -05. Ans. §.
8. A cannon ball is fired horizontally from a hill goo
feet high on the coast. Find the time which elapses
before it strikes the sea, neglecting the resistance of
the atmosphere. Ans. 7} seconds.
9. If the velocity of projection in the preceding question
were 1320, find the horizontal distance travelled.
Ans. 1-875 miles.
10. A string, 2 feet long, able to sustain a weight of 104 1bs.
without breaking, is attached to a stone weighing
4 lbs. and whirled in a vertical plane round a fixed
centre 6 feet above the ground till it breaks. What
happens to the stone?

Ans. The tension in the string being greatest at its
lowest point (because of gravity), the string is most likely
to break there. The centrifugal force being equivalent to
the weight of 100 lbs., the velocity of the stone when the
string breaks must be 40 feet per second. It will start
forward horizontally with this velocity and describe a
portion of a parabola—striking the ground after the lapse
of half a second 20 feet away.

11. What is the value of g at a place where a simple
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pendulum 2.4 inches long makes two complete
oscillations a second ?

12. A ‘seconds pendulum’ is one that makes § an oscil-
lation per second. Find the length of the seconds

pendulum in inches and in centimetres. Ans. f?

13. An engine winds a three-ton cage up a coal-pit shaft at
a uniform pace of 11 yards a second ; what is the
tension in the rope ? Ans. The weight of 3 tons.

14. Instead of a uniform wzelocity, the above cage is wound
up with a uniform acceleration 6 ; what is the tension
in the rope? Ans. The weight of 3% tons.

CHAPTER VL
WORK AND ENERGY.

74. The present chapter is to indicate a method of treating
the effects of force on matter in a perfectly general manner ;
all consideration of how the force acts, or what it acts
on, being regarded as accidental and of no consequence.
Whether the body acted on is a particle, or a rigid solid, or
an elastic solid, or a liquid, or a gas, matters nothing ; and
whether the effect produced is motion, or strain, or both, or
neither, also matters nothing. It is to treat of the effects of
force in general on any body whatever.

This part of the subject is sometimes called Energetics ;
it will be found to be a sort of combination of Kinematics
and Dynamics, the ideas of both motion and force being
necessarily involved.

75. Now, in order that an agent exerting a force may
produce any effect on the body to which it is applied, it is
necessary that the body shall yield somewhat—that is, that
the point of application of the force shall move in the
direction of the force ; and whenever this happens—when-
ever the point of application of the force does move along
its line of action—some effect is mecessarily produced. Thus
either the body is set rolling, or swinging, or moving in
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some way, or its motion is checked, or it is squeezed into
smaller compass, or bent out of shape, or it is lifted up
against gravity, or it is merely shifted along against friction,
or it is warmed or electrified ; no matter what the effect is,
some effect is always produced, and the force, or more pro-
perly the agent exerting the force, is said to have dose work.
Moreover, a body upon which work has been done is found
to have an increased power of doing work itself, that is,
of producing physical changes in other bodies; and it is
therefore said to possess more emergy than before. This
increase of energy is indeed the most essential part of the
effect produced in a body by an act of work.

76. Energy therefore is that part of the effect produced
when work is done upon matter, which is not an accidental
concomitant, but really owes its origin to the work, and
could not, so far as we know, have been produced without
it ; and which, moreover, confers upon the body possessing
it an increased power of doing work.

77. The work done in any case is proportional both to
the magnitude of the force and to the distance through
which it moves.. Unless the point of application moves, no
work is done and no energy is produced, however great the
force may be; for instance, a pillar supporting a portico is
doing no work, though it is manifestly exerting great force.

Work, then, is the act of producing an effect in
bodies by means of a force moving through a distance
in its own line of action, and it is measured by the
product of the force into the distance,* or

W = Fs.

The work is reckoned positive, and is called simply ¢ work,’ when
the body acted on is moved in the same sense as the force ; if, how-
ever, by any means, it be caused to move in opposition to the force

exerted by an agent, the work done by that agent must be reckoned
negative—that is, work is done upon it.
Thus if a force of five units acts through a distance of six
® The moment of a_force was also defined as a force multiplied by a distance,

bLut by a distance measured af right amgles to the force. It is therefore an
entirely different thing from work ; it may be called ‘ imaginary’ work.
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feet in its own direction, it does thirty units of work ; the
unit of work being that which is done when unit force acts
through unit distance. Hence, the British unit of work is
that done by a poundal (sect. 43) acting through a foot, and
may be called a foos-poundal.

If a dyne (sect. 43) be taken as the unit of force, then the
unit of work is that done by a dyne acting through a
centimetre, and is called in this country an ¢rg (from sgyer,
work). There are 421,393-8 ergs in one foot-poundal

78. The effects produced in material bodies when work
is done upon them are various, and constitute the different
Jorms of energy. The full discussion of the subject of
energy belongs to the science of physics, so we can here
only just roughly enumerate its principal forms.

(1.) Motion (whether translation or rotation). (2.) Strain

(whether extension, compression, or distortion).

(3.) Vibration, including the particular kinds called
Sound. (4.) Heat (sensible and latent).

(5.) Radiation (including the particular kinds which are
able to affect the eye, and which are therefore
called Light).

(6.) Electrification. (7.) Electricity in motion. (8.) Mag-
netisation.

(9.) Chemical separation. (10) Gravitative separation.

To these we ought perhaps to add vital energy, only that
it may be held to be included under head 9. It is quite
possible that many of these may reduce to simpler forms ;
in fact all but Nos. 9 and 10 are already pretty well known
to be special cases of Nos. 1 and 2 (cf. sect. 5).

It is usual to consider those forms of energy which are
more directly connected with large and visible masses of
matter as more particularly the province of mechanics ; and
we shall here discuss only these more mechanical forms of
energy, Nos. 1, 2, and 10,

The essential nature of No. 10 is at present unknown
(see Introduction, foot-note), but for most practical pur-
poses it comes under the class indicated by No. 2.

79. Now the question arises—When work is done and

energy produced, is it created out of nothing, or is it only
¥
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manufactured from previously existing materials? The
latter is the truth, for it has been found, as the result of in-
numerable experiments on the subject of ¢ perpetual motion’
and others, that it is as impossible to create energy as it is
to create maiter, and that whenever energy appears as the
result of work, it is always at the expense of some other
form of energy which was previously existing. This fact
is popularly expressed by saying that ¢perpetual motion
is impossible '—a statement which requires interpretation,
because if there is one thing more universal than another it
is perpetual motion (see sect. 4). The statement, however, is
understood to be an abbreviation for the following: It is
impossible for us to construct any machine which shall move
and do work (and therefore generate energy) of itself without
consuming at least an equal quantity of pre-existing energy.

8o. All this indeed, in a much more complete and accurate
form—more complete, because it involves the mon-destruc-
tion of energy as well as its non-creation—follows from
Newton’s third law of motion, sect. 49, provided we make
the assumptions (justified by experiment as above), 1st,
that just as something called energy is generated whenever
positive work is done, so whenever megulive work is done
something so like the first as properly to be called energy
too, is destroyed ; and 2d, that quantity of energy is
measured by the work (Fs) done or undone in producing or
destroying it. For the third law tells us, that whenever force
is exerted, and therefore (@ for#iori) whenever work is done,
the two things concerned—the body which acts, and the
body which is acted upon or re-acts—exert equal and
opposite forces ; hence whatever quantity of work one body
does, the other has done upon it; or sk positive and
negutive works are equal (see sect. 77, small print).

The ‘agent,’ or body which does the positive work, Joses
a certain quantity of energy. The body which has the work
done upon it gains the same amount. Hence, on the whole—
that is, taking both bodies into account—no energy is lost,
and, algebraically speaking, no work is done. The energy
is merely Zansferred, and the act of transfer involves two
equal opposite works.



WORK AND ENERGY. 83

The law that, on the whole, no energy is ever created
or destroyed by any forces which we know of and have
experimented upon, is called ke law of the * Conservation
of Energy’

81. Just in the same way then that a force is the partial
aspect of a stress, so work is the partial aspect of a some-
thing which consists of action and re-action, in the sense of
work and anti-work, but which neither has, nor as yet
perhaps needs, any name ; and whenever we speak of ¢ work
done, it will be by atfending to the action of one body on
another, and neglecting the reaction of that other on the
one. To summarise then :- Work creates energy, anti-work
destroys it, so both together simply transfer it. If it were
possible to have-a force without its anti-force, it would also
be possible to get work done without its anti-work, but as a
fact of experience it is 70f possible.

82. The fact that work is done whenever energy is trans-
ferred, taken in connection with the experience that energy
often manifests a tendency to transfer s#se/f from one body
to another, and thereby to do work, has caused energy to be
defined as the power of doing work. Now certainly a body
possessing energy thereby possesses the power of doing an
equivalent amount of work, grovided the energy is of such a
sort that it can be transferred to some other body; and in
this sense energy and power of doing work are equivalent,
though it is truer to say that the possession of energy confers
upon a body the power of doing work, than to say that
energy #s the power of doing work. It is quite possible,
however, for a body to possess energy and yet have no
power of doing work, for energy is not always avaslabdle.

Thus, a stone lying on the ground possesses an amount of energy
corresponding to its fall to the centre of the earth, but this energy
confers on it no power of doing work, for it would be impossible to
let it fall without first expending a great deal more energy in
digging a hole,

Agnin, energy is indestructible, and a given quantity may be
transferred from one body to another, from A to B, from B to C,
from C to D, and so on and back again, each time conferring upon
its possessor a power of doing work, which work is done at each
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transfer by the body losing it. Hence, if it were correct to speak
of work as being done by the erergy, instead of by the body
possessing the energy, the working power of a given quantity of
energy might be unlimited, and at anyrate would be wholly
incommensurate with the quantity of energy. The power of doing
work, in fact, does not depend on the absolute quantity of energy
in a body or system, but on its variations.

83. There are, however, practical difficulties in effecting such a
series of transfers of energy without loss of working power, for
though the quantity is unalterable, yet the gua/ity has a tendency
to deteriorate,

These practical difficulties are very similar to those which you
would experience if you attempted to transfer a given quantity of
water down a series of vessels. For you might spill some, some
would evaporate, some of the vessels might leak, and all would
remain wet. The quantity of water would be unchanged—it
would be all there—but some of it would-be unavailable. It
would be not lost—only useless. Just so with energy, whenever it
is transferred from one body to another—that is, whenever work is
done, some of it is pretty sure to pass into a less available and more
useless form. Its guantity is not altered, but its availability is
less.

This tendency of energy to become less available is called the
law of the Dissipation or Degradation of Energy. It may be
expressed thus: When energy is fransferred from one body to
another, it is also always #ramsformed from one of its forms to
another, and some portion of the new form is pretty sure to be
lower in the scale of energy than the original form ; because of
friction, imperfect elasticity, and so on. It is, in fact, impossible
by any known process to raise energy in the scale of availability
on the whole. Any given quantity, indeed, may be raised, but some
other greater quantity will in the operation be degraded. The
average is usually lower, and cannot be higher.

The energy of the earth in its orbit is not available to us. The
energy of a flying molecule is almost unavailable, because we have
as yet no means of dealing with molecules singly ; if we could see
and handle them, their motion would be as high a form of energy
to us as the motion of other visible masses. Hence the dis-
tinction between high and low forms of energy is a purely relative
one.

Energy falls in availability usually by becoming molecular, that
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is, by being transferred from visible masses to their ultimate mole-
cules. The transfer is effected by friction and viscosity.

84. Energy and work are not to be confounded together ;
and all such phrases as ‘accumulated work,’ ¢conserva-
tion of work,’ ‘work consumed,” &c., should be eschewed.
Energy is not work, but work can be got out of it if the
proper condition be supplied. Energy might therefore be
called gossible work. For consider the two fundamental
forms of energy :

(1) The free motion of masses of matter relatively to
one another; and (2) The separation of masses of matter
from one another against stress.

In the first case, the body possessing the energy is moving
through a distance, but is not exerting any force. Supply a
resistance, and work is immediately done. In the second
case, the body possessing the energy is exerting force or
pressure, but it is stationary. Allow it to move, and work
is immediately done.

The two fundamental forms of energy, therefore,
correspond to the two factors in the product called
work, namely, F and 5. The first form corresponds to
s ; there is motion through space, but no force. The
second corresponds to F; there is force, but no
motion,

The first is called Kimetic Energy, or the energy of
motion ; the second might be called Dynamic Energy, or
the energy of force (properly stress) ; or it might be called
Static Energy, to distinguish it from Kinetic. As a matter
of fact, however, it is generally called Polential Energy,
which is not a bad name so long as it is not misunder-
stood to mean possible energy—a phrase without sense.
Neither is Kinetic ever to be called Actva/ Energy. Al
energy is actual and real—potential just as much as
kinetic; and both represent possible worké—that is, work
that will become actual as soon as the other factor is
supplied.
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85. Whenever work is done, both factors must be present
—that is, both kinetic and potential energy—and the energy
is always passing from one of these forms into the other
while the work is being done. For if the motion is witk
the force, the speed must increase, and if it is agains? the
force, it must decrease ; while in the first case the distance
through which the force can act, or the range of the force,
is decreasing, in the second increasing. The energy of a
vibrating body is continually alternating from one form to
the other.

Enough has now been said to shew that the energy
method of treating forces and their effects is a very general
one, and extends to the whole of Physics. But the branch
of the subject concerning which we can here enter into any
detail will be a very small one, and will only extend to
giving some examples of the transformation of energy from
form 1, that of motion, to some other form, especially that
of gravitative separation, and back again.

Measure of Kinetic Energy.
86. First consider how to measure the energy of motion
in the case of simple translation of a particle ; remembering
that its energy is defined as equal to the work done by the

force which caused the motion.
Now when a force F is applied to a mass s, the accelera-

tion is
a=-L (Chapter IV)),
and the velocity generated when a body moves a distance s,
with the acceleration g, is given by
22 = 2as (Chapter IL.), that is, 28 = 2 ;f:— H
an equation readily written in the form
Fs =} mA

But Fs equals the work done by the force while it acts
through the distance s; and as energy is measured by the




WORK AND ENERGY. 87

work done in its production, it follows that the energy of a
body of mass » moving with velocity 7, is

1 mds,

because » is the velocity generated in the body during the
performance of the amount of work, Fs.

This expression, §77? is a most important one, and its
numerical value is called the Zinetic energy of a particle
due to its motion relatively to the body which is supposed
to be at rest—usually, of course, the earth. It equals the
number of units of work that have been done upon the body
in setting it in motion, and also the amount of work which
it must do in order to stop itself—that is, to transfer its
energy to some other body, either to the earth or to any-
thing else which happens to come in its way.

‘When one elastic ball impinges directly on an equal one at rest,
the first stops dead, and the other receives the whole motion ; the
energy has been here obviously transferred. The transference takes
place just as really, though not so obviously, in every case where a
body comes to rest or starts moving.

The unit of kinetic energy is twice that possessed by unit
mass moving with unit velocity ; it is of course equivalent
to the unit of work, and usually goes by the same name
(sect. 77). For instance, the British unit of energy would
be a foot-poundal, being the effect produced by the action
of unit force through unit distance.

87. If a body, instead of being at rest when the force acted on it,
had been moving with velocity 7,, it would have already possessed
the energy 4 mv,J, and so the gasn of kinetic energy, equivalent to
the work done, would have been

Fs = } mo? — } mo};

where 7, represents the final velocity possessed after the force has
acted for a distances. This immediately follows from the old equa-

tion 2,7 — 7, = 2as, if we write -g’- for @, and leave the term Fs on

one side the equation alone.
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ILLUSTRATIONS.

88. A truck of mass 2000 lbs. running along a level line at the

rate of twenty feet a second, has an amount of energy equal to

4 x 2000 x 20°% or 400,000 units.

If it were required to stop it in a distance of 500 feet, we should
have to apply a brake exerting 800 units of force; for the work
done by the truck against this force in the given distance would be
800 x 500, or 400,000 units, which is precisely the energy of the
truck required to be destroyed, or rather to be transferred to
something else,

One can always find the force necessary in any such case there-
fore by dividing the work required by the distance given, for, of
course, F = %’

Again, to propel a one-ounce rifle bullet (y4th 1b.) with a velocity
of 1200 feet per second, will require work to be done upon it
equal to the energy generated, namely,

3 x gy x (1200)% or 45,000 units,

(This energy, and a good deal more, was contaiped in the charge
of powder in the form of chemical separation, No. 8 (sect. 78); a
quantity is always wasted in the useless noise and flash attending
the explosion, Nos. 3, 4, and 5.) This work must have been done
by the powder while the bullet was travelling from the breech to
the muzzle of the gun, a length of say four feet ; hence the average
force exerted by the powder must have been 45,000 divided by 4,
or 11,250 units of force.

Suppose now in passing through the air it loses 400 of its velocity
by friction, so that it reaches the target with the velocity of only
800 feet per second, then the energy of the blow will be

3 x ¢ x (800)3, or 20,000 units ;
while that which has been ‘lost’ by friction (that is, transferred,

some to the air and some to the molecules of the bullet, but in any
case debased into the form of heat) is

45,000 — 20,000, Or 25,000 units of energy;
and this must be the number of units of work which have been
done by the flying bullet against the resistance of the air. Hence
if its range, or distance travelled, were 1500 feet, the average
resistance exerted by the air must have been 25,000 divided by
1500, or 164 units of force,
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Finally, let a target stop the bullet dead in the space of % inch
(Zsth of a foot), then, since the whole (negative) work it has to do
is numerically equal to the energy of the blow—namely, 20,000
units—it follows that the average force of the blow on the target is
20,000 divided by y, that is, 960,000 units of force, a much greater
force than even the powder exerted ; and this is apparent in the
results, for the bullet is flattened out by the target, while the force
of the powder had but a slight effect upon its shape.

Very likely an iron target would not yield so much as } inch;
if it only yielded half as much, the force of the blow would be
doubled. Whether the bullet bounces off or not, matters nothing ;
it must have been stopped before its motion can be reversed. The
reverse motion would not alter the force required to stop the ball,
but it would increase its impulse (sect. 45) by lengthening the time
during which the force was exerted against the target. Thus, if
the ball bounced off with its original speed, the time and therefore
the impulse would be double what they would have been if it
had stopped dead like dough.

89. Notice the distinction between the energy of a blow,
the smpulse of a blow, and the force of a blow.

The energy equals Fs, or 4 mv2

The impulse equals F¢, or mv.
Amvr  mv

iy (cf. sect. 42).

It will be a good exercise to find from this last equation, in all
the above cases, the time taken to do the work—that is, to transfer
the energy. For instance, find the time of flight of the bullet, and
also how long it took to travel the length of the gun, and so on.

The average force equals F, or

. mv
These two expressions for an average force 7 and

}.?': are worth comparing. The first we know is expressed

in words by saying that force is rate of change of momen-
tum; rafe here having a reference to time, and meaning the
increase per second of time elapsed. Similarly the second
may be expressed by saying that force is rate of change of
energy, only rafz here has a reference to distance, and
means the increase per linear foot of distance travelled.

The whole subject of the rates of variation of things with
respect to different variables, considered as a branch of
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pure mathematics, is called the differential calculus, a
science the foundation of which was laid by Newton for
the purpose of treating questions concerning velocity,
acceleration, and the like.

Measure of Potential or Dynamic Energy.

go. Now let us consider how to measure potential energy,
or the energy of stress, especially in the form of gravitative
stress exerted between the earth and a raised weight. This
is a very simple matter, for, suppose a stone is at a height
of 4 feet, we have a constant force mg exerted on the body,
and a distance 4 through which it can act, so the work it
can do while the stone falls is simply mgk; and therefore
mgh measures the energy due to the relative position of
the earth and stone, and the numerical value of this
expression is often called ‘the potential energy of the raised
weight.” It equals the number of units of work that have
been done upon the weight in raising it, and also the amount
of work it must do whenever it drops. The energy is often
called that of the weight, but it really belongs to whatever
agent is exerting the stress pressing the weight and earth
together (see Introduction); and as the nature of this
agent is unknown, it is better not to speak of the potential
energy of anything,

91. The energy of a pound of matter one foot high is
called a foot-pound, because it is the effect which has been
produced by a force of one pound-weight acting through a
foot ; it equals thirty-two units of energy or foot-poundals,
because the weight of a pound equals thirty-two units of force
or poundals, The unit of work or energy about corresponds
to the raising a half-ounce weight one foot high (cf. sect. 43),
(half an ounce being the ##d of a pound).

¢ Thirty-two’ of course stands for the value of g, whatever it may
happen to be: it is different in different latitudes, and not necessarily
exactly thirty-two anywhere. In French measure the numerical
value of ¢ is 981 (sect. 61) ; so the energy of a gramme of matter,
one centimetre high (called a gramme-centimetre), is 981 ergs,
because the weight of a gramme is 981 dynes.

92. To keep a raised weight still, it must be supported,

AN
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and it will exert pressure on its support, because it is being
pressed by something towards the earth. This something
is not, however, yet doing work. Remove the support, and
immediately the weight begins to move ; hence, now work
is done, and the potential energy of the agent which exerts
the pressure is transformed gradually into kinetic energy,
and transferred gradually to the moving mass—to the
weight itself, if falling freely—to whatever strings and wheel-
work it is connected with, if it is constrained to fall slowly
like a clock weight. When half-way down, the energy is
half kinetic and half potential ; when 2 down, it is { kinetic
and } potential, and so on.

For the original energy was mg# ; but when half-way down, the
potential energy is mg } A, or only half what it was, so the kinetic
must be equal to the other half. When § down, the potential
energy is only mg 1 A4, and the remainder is kinetic.

When within an ace of the ground there is no potential
energy, and therefore the body has kinetic } mv?, equal to
the original energy, mgh.

This equation,

§ mo* = mgh,
gives us the velocity acquired by a body freely falling a
height %, as v = /2¢%; a fact we knew perfectly well
before, only we formerly arrived at it in a different way
(see sects. 20 and 61).

The instant the falling body touches the ground it compresses it,
and so work is done again, though this time very rapidly ; and the
energy is again transformed, and transferred, some to the molecules
of the earth and ball as heat, some to the air in the form we call
sound ; while the rest, after having existed for an instant as strain
between the earth and ball, reappears as kinetic energy in the
bouncing ball. No ball, however, is perfectly elastic, so after a few
bounces it will come to rest, and will possess neither kinetic nor
potential energy relatively to the earth (it will be a little hotter
than it was—that is all). To raise it again, something else must do
work upon it.

93. As another illustration, consider a body sliding down
a rough inclined plane. Let a mass m slide from A to B
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(fig. 20), a length /, against a force of friction f, the vertical
descent being #. Then the work done against friction is
J¢; the work done upon the mass is } m23 if it reaches B
with the velocity »; and all this work has been done by
gravity. But the work done by gravity is the force mg
multiplied by the distance moved through s ifs own
(vertical) direction, namely, 4 ; so we have the equation,
S+ 3 m? = mgh,

from which 2 can be readily
found. The term f/ represents
the amount of energy which is
transformed (degraded) into heat,
or the ‘mechanical equivalent’
of the heat generated.

Fig. 20, If f = o, that is, if the plane be
smooth, the velocity v acquired in descending the vertical
height 2 down the plane is the same as that found for a
Jreely falling body in the last section, and it has no connec-
tion with the slope of the plane; shewing that the patk of
a falling body has no influence on the velocity acquired by
it, provided everything be smooth.

94. The simplicity of gravitation examples is due to the
fact that the force acting (the weight of the raised body) is
constant and does not alter as the weight descends, But in
every case, if s be the range—that is, the distance through
which the force can act—and if F be the average value of
this force, the potential energy is Fs.

Energy of Rotation.

95. So far we have only considered energy of motion in
the form of translation, or the motion of a particle ; but the
energy of a rotating body can now be easily expressed since
it is made up of particles, and the energy of the whole is the
sum of their separate energies.®

Any particle of mass m, at a distance » from the axis of a

® Notice that the parallelogram law (sect. 2s) does not apply to the com-
position of enerpies. Energy is not a directed quantity, and simple arithmetical
addition applies to it.




WORR AND ENERGY. 93

body rotating with angular velocity w, is revolving round
and round a circle with velocity v = rw, and its energy is
4 md4 or, as it may be also written, § m7%w?% Now the
energy of the whole body is the sum of the energies of
all the particles in it ; it is therefore
24 mv) = § Z(mrio?) = } IZ(mr?) ;

for, since the o is constant, it may be taken outside the sign
of summation ; but Z(m»%), the sum of the second moments
of inertia of all the particles in the body, is the quantity we
have called zke moment of snertia of the rotating body
(sect. 40), and denoted by M ; hence the simplest expression
for the energy of a rotating body, like a fly-wheel, is

$ Mo

EXAMPLES.

1. A body slides down a rough plane, travelling 20 feet
along the plane, but only descending 12 feet verti-
cally. If the force of friction were equal to {th of
the weight of the body, find the velocity gained
during the descent. Ans. 16 /2 feet per second.

2. What is the work that must be done in order to propel
a 3-lb. stone at the rate of 40 feet a second ?

Ans. 2400 foot-poundals, or about 75 foot-pounds.

3. A simple pendulum is pulled aside till its heavy bob is
raised 3 inches and then let go: find its velocity
when it passes its lowest point.

Ans. 4 feet per second.

4. What initial velocity is necessary to make a rifle bullet
strike a target placed 300 feet high vertically above
the gun, with the velocity 60o feet per second,
neglecting the resistance of the air?

Ans, (by equating the initial and final energies) 615-8.

5. What would be the answer to the last question if the
bullet weighed an ounce, and if the resistance of the
air were taken to be equivalent to a drag of 11-5416
poundals ? Apns. 700 feet per second.

6. If a projectile were started in any direction with the
velocity 8o, and arrived at another point on the same
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level with the velocity 30, after having travelled 150
feet, what must the average resistance of the air have
been equal to?
Apns. §ith of the weight of the projectile.
7. What force would be necessary in order to stop the pro-
jectile of Question No. 2 in the space of 6 feet, and
how long would it take?
Apns. 400 poundals and -3 second.
8. Find the mechanical equivalents of the heat generated
by friction in the motions considered in Questions
1, 5,6, and 7; assuming the mass to be 3 lbs. in
each case.

CHAPTER VIL

COMPOSITION AND RESOLUTION OF FORCES.
(Introduction to Statics.)

96. Hitherto we have only considered the effect of a single
force when it acts on a particle or rigid body, and we find
that it may either pull the body along (translation), or turn
it round (rotation), or do both at once. But in very few cases
in practice do we have only one force acting in this way ;
often there are a great number of different forces, so that it
becomes necessary to consider how the motive effect of a
number of forces may be deduced. The simplest way is to
reduce the forces in number.

When any number of forces act on a particle they may
always be reduced to one—that is, they may be replaced
by a single force which produces precisely the same effect
as them all. This single force is called the reswltant;
and the operation of reducing the number of forces is
called the comgposition of forces.

If a number of forces act on different points of a rigid
body—that is, an assemblage of particles connected rigidly
together—they cannot in general be reduced to one force,
but they may always be reduced to two (sect. 110). We
however will here only consider the cases where they may
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be reduced to one ; in other words, only the cases where the
forces either all pass through the same point (that is,
virtually act on a particle), or else all lie in the same plane
(cf. sect. 126).

A picture hanging by a cord over a nail furnishes us with an
example of a rigid body acted on by several forces, and the tension
in the two parts of the cord is equivalent to the weight of the
picture. A weight resting op a tripod-stand is another example,
and the three stresses in the legs are equivalent to the one weight.
Agnin, a table or chair is supported by as many forces as it has
legs, unless some are too short. A teetotum is spun by forces,
which may be reduced to two equal and parallel ones in opposite
directions, and we have here a case of pure rotation without transla-
tion. A kite in the air is acted upon by the wind pressing it, by a
tension in the string, and by the pull of gravity; and the kite
moves about according to the direction of the resultant of all these
forces.

97. Again, for some purposes, it is convenient to analyse
or split up a single force acting on a body into two or three
components, so as to study their effects separately. This
operation is called the resolution of forces. Thus, suppose
a weight resting on an inclined plane (see fig. 26, sect. 103),
one may resolve its weight into two forces, one perpendicular
to the plane, and therefore balanced by its resistance ; the
other acting along the plane and producing motion, except
in so far as it is balanced by friction. Again, in a wind-
mill, it is convenient to resolve the wind’s pressure on the
sails into two components—one the effective one in the
direction of motion ; the other a useless one in the direction
in which, by the construction of the machine, no motion is
allowed.* (This last component, therefore, only produces
strain.)

Composition of Porces acting on a Particle.

98 The method of compounding forces into a resultant,
or resolving them into components, is a very simple one,
being the same as that by which motions were compounded
and resolved.

® N.B.—A windmill always faces the wind.
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This has been proved in sect. 47. In fact, it is an immediate
consequence of the second law of motion, F = ma, that forces
must be compounded like accelerations (see sect. 27) ; and there-
fore an elaborate proof of the parallelogram of forces founded upon
axioms no more obvious than the thing to be proved, like
Duchayla’s, is unnecessary. The proof from the second law,
however, does not establish the position of the resultant, but in
the case of a particle this is obvious. The further proof necessary
for an extended body is given in sect. 108.

The rule, then, is—Draw a set of lines one after the
other, without taking the pen* off, parallel to, and in
the same sense as the successive forces acting on the body,
and proportional to them in magnitude; then the line
required to complete the polygon, taken in the reverse sense
(that is, drawn from the starting-point, not # it), will be the
resultant in magnitude and direction. The forces may be
taken in any order just as the motions might (sect. 23).

Since we are only dealing with a particle, this is the full
and complete solution ; for the resultant, of course, acts on
the particle, and therefore its position is known ; and the
three things, magnitude, direction, and position, completely
specify a force (see sect. 48).

The resultant of fwo forces is usually more conveniently
expressed as the diagonal of the parallelogram whose sides repre-
sent the forces, than as equal to the third side of a triangle.

99. Examples of the Composition of Two Forces.—A par-
ticle of mass  is pulled along by two strings—one always
pulling east, with a force P ; the other always north, with a
force Q. What is the acceleration and direction of motion?

Drawing the two forces P and Q (fig. 21), one finds the resultant
R at once as equal to A/(P?* + Q%) by Euclid, L. 47; and since
this is the resultant force, the scceleration is = units along the
diagonal of the parallelogram. If the two forces P and Q were
equal, then R? would be simply 2P*: that is, R = P /2, a result
worth remembering.

Suppose now that the two forces are at some acute angle,

# If the forces do not all lie in one plane, the polygon cannot be drawn on
paper, but it may be constructed in wood.
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say 60°% then to find R we may use Euclid, IL 12, which
says that AD? exceeds AB® 4 BD? by twice the rectangle
AB. BN (fig. 22).

c D
Q R Q
w P - A P >B
Fig. 2. Fig. 22

The angles CAB and DBN are always equal (L. 29), and if each
equals 60°, BN is easily seen to be half BD, because the triangle
BND is then half an equilateral triangle ; so putting in this value
for BN, and noting that BD = AC = Q, and therefore BN = } Q,
we can write the general relation AD? = AB?* + BD? + 2AB . BN
in the form R*=P*+ Q¥+ PQ for the case when the angle
between P and Q is 60°

If the angle CAB between the forces had been an obtuse angle,
such as 120°, we should have proceeded similarly, only using Euc,
IL 13, and we should have arrived at R? = P*+ Q*-PQ.

Similarly we might proceed for angles between P and
Q of 45° or 135° of 30° or 1350°; but for angles in general,
though the relation

AD? = AB?4 BD?+ 2AB - BN,

will always apply—regard being paid to sign in the last
term (see sect. 12)—yet it is not easy to determine the side
BN in terms of the side BD (or Q)—the subject of the
mensuration of triangles, or Trigonometry, not being sup-
posed known at this stage.

Our resource is then to find the resultant by construction ;
and this indeed is often a very good way, even when one
knows some trigonometry. You lay off on paper the two
given forces to any scale, and inclined at the proper angle ;
then you complete the parallelogram, and measure the
diagonal on the same scale—this gives you its magnitude ;

G
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and its direction referred to the given forces you get also
from the figure.

100. Notice that in the parallelogram of forces, you really
have two diagrams drawn together as one : a representa-
tion of the forces, and a geometrical construction; but
they should be understood to be essentially distinct. The
proposition of the triangle of forces is really the geometrical
part of the parallelogram by itself.

An example will render the meaning of this clearer. Let
two forces, 6 and 8, act on a particle with an angle of 60° between
them. Find resultant.

Fig. 23.

On the left of fig. 23 is a picture of the given forces. On the
right is the geometrical figure—namely, a triangle in which AB
represents the force 8, BD the force 6, and AD their resultant, in
magnitude and direction. (AD equals 12-17 nearly, as may be found
either by drawing and measuring, or by calculating it from sect. 99
as A/(8® + 6° + 8 x 6). Its position is known, for of course it acts
on the given particle ; so we return to the left-hand diagram, draw
through the point of intersection of the two given forces a line equal
and parallel to AD, and say this is the resultant. Obviously it is
the diagonal of the parallelogram of forces—the triangle ABD is
simply half the parallelogram ; compare fig. 22.

Observe that the geometrical construction is based
upon only magnitude and direction : it does not give you
position ; this must always be determined from the positions
of the given forces in the force diagram. It is not usual
to separate the two figures in simple cases, but as a matter
of principle it is best always to keep them distinct.

101. The diagrams for one instance of the polygon of
forces may be also given, just to make sure it is fully
understood.

Forces in a plane, of magnitudes 4, §, 3, 8, act on a particle, their
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directions making angles with each other of 75° 45°, and 120°
respectively. Find the resultant. In actual cases the angles
between the forces are not specified numerically, but are indicated
directly. In artificial questions, however, like the above, when the
angles are specified in degrees, a protractor may be used to lay off
the directions, though it is an objectionable instrument.

Fig. %4.*

It turns out to'be <504, so that the given forces are very nearly
in equilibrium, or their resultant is very small.

Observe the reciprocity of these diagrams. In one the lines
meet in a point, in the other they inclose an area.

Try drawing the sides of the polygon in some other order, and
see that you always get the same result. Especially try the order
4, 3, 8, 5; for the polygon then happens to be a crossed one.

The bits of forces represented by the lines surrounding the
inclosed space in a crossed polygon are in equilibrium (Chapter
VIIL), and may be removed from the particle without disturbance,

In the above case the inclosed bit is an equilateral triangle, and
the forces which may be removed are three threes—namely, three
parts from force 8, three from 4, and all of 3 ; the forces left being
1, 5,0, 5 Construct the polygon for this mutilated set, and see
that you still get the same resultant. Notice the reason why the
three removed forces were in equilibrium—namely, that they were
equal and lay symmetrically, making angles of 120° with each other.

’lnaﬂlhneﬁgnresd:ehnesm drawn garaliel to the forces; this is the
easiest, though not the essential plan. What s» euenual is, that the lines shall
represent the directions of the forces in some und Itis lly
said that they will do either parallel or perpendicular; but they would do
equally well if all were mchnedat4s,ornt any ochﬂ'angle,tothefom
which they respectively represent, provided this angle were the same for all
The interior angles of the polygon are supplementary to the angles between
the corresponding forces.
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You are strongly recommended at once to get out your
instruments and a sheet of drawing-paper, and verify all
this by careful drawing, as well as some of the examples at
the end of this chapter. The instruments needed are a
graduated scale of equal parts, a parallel ruler or T square,
and a pair of compasses.

Resolution of FPorces.

102. Every force may be split up into two definite com-
ponents acting at given angles with it; but, if the angles
are not given, a force may be resolved into two components
in an infinite number of
ways; in other words,
the same line may be
the diagonal of an in-
finite number of parallel-
ograms (fig. 25). One
chooses in each problem
the particular pair of
_ components which are

Fig. 25. most convenient, the

most convenient being

usually at right angles to each other. Often one is in the

direction of possible motion, and the other perpendicular to

it ; again, in cases where gravity is concerned, one is often
horizontal and the other vertical.

Verify, by drawing, the followmg A force of 8 units is equiva-

lent to two components of — each, acting one on each side

~ (2'*'\/ )
the given force at angles of 15° with it; also to two of 8 each, if

8 .
the angles be 60°; also to two of ——— . each, if the angles be
e : Ta—n73) S e w8
75°; also to a component 4, acting at an angle of 60°, and

another of 41/3 at an angle of 30°; and so on.
(V2 = 1-4142...... 5 A3 = 1732......)
103. To illustrate the use of this, take a mass m, or say

1 1b. for those who like numbers best, on a smooth inclined
plane inclined to the horizon at an angle say of 30°. We
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have, acting on the mass, the force w (= mg) due to gravity
acting downwards, and the pressure of the plane, say R,
acting normal to the plane. Now, resolve the downward
force into two—one along the plane, that is, in the direction
of motion, and call this component g ; the other normal to
the plane, as ¢ (fig. 26).

This you do by drawing a paral-
lelogram with sides in these direc-
tions, and of such size that w (in
the present example, }g or 8) is
the diagonal. The angle between
pand w is 60° that between = and
¢ is 30°% and we have just found
(nineteen lines above) that a force Fig. 26.
of eight units is equivalent to two
forces, 4 and 44/3, acting at 60° and 30° respectively; so then p = 4
and ¢ = 44/3.

The motion is in the direction of g, the acceleration being

;’i or & = 16 ; whereas there is no motion in the direction

of g, because it is balanced by R, hence R=g¢ =4 ./3.

104. Frictlon.—The reaction of surfaces will afford us
other examples. When anything exerts pressure on a plane
surface, the reaction of the surface is in general inclined
in some direction or other to the surface—usually in that
direction most likely to oppose relative motion; but it is
convenient to resolve this reaction into two—one normal to
the surface (normal merely means perpendicular), which is
called the normal pressure; the other along the surface,
which is called the friction. If either surface be perfectly
smootk, this last component is absent, and all the reaction
is normal. And even for rough surfaces this may be so too,
as in the case of a ball resting on a level floor ; but if any
forces are tending to cause motion over rough surfaces,
then there is some component along the surfaces, or friction,
which always opposes the motion.

The force of friction is precisely equal and opposite to the
forces tending to cause the motion, so long as the body does
not move; but if the latter gradually increase, they will, at a
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certain instant, become too much for the friction, which
reaches a maximum, and can increase no further; so then
motion ensues, the effective or accelerative force being the
motive force applied, minus the friction. For instance, in
the above example of the inclined plane, suppose the force
of friction to be called , it would act up the plane in exact
opposition to p. If the body were at rest, it would be so
because /= g ; if it were in motion, the acceleration would

be 2=4
”m

It is found experimentally that the maximum or critical
value of /is proportional to the normal pressure R between
the surfaces, the ratio between / and R depending on the
nature of the surfaces in contact, and being called the
Coefficient of Friction®

Say that this coefficient in the above case of the inclined plane
is §, so that /= § R, then the acceleration would be

-4-—?:£=l6—2~/§.

The actual pressure or reaction between the surfaces in contact, is
of course the resultant of the two forces R and £, the normal pres-
sure and the friction—that is, it is the square root of the sum of
their squares ; and the angle which its direction makes with the
normal when the two surfaces are on the point of sliding over one
another is called the limiting angle of friction, or (by a somewhat
lucus a non lucendo name) the angle of repose.

105. Itis often convenient to resolve motions and velocities.
Thus a projectile shot up at any angle has a certain initial
velocity imparted to it, which may be conveniently resolved
into two—one a horizontal one unaffected by gravity, which
therefore remains constant except for the resistance of the
air ; the other a vertical one, which is gradually diminished
by gravity (at the rate of 32 units a second) until it is

* The coefficient of friction when the surfaces are in actual relative motion is
usually less than when they are just going to move ; but we cannot enter into
details here, and, moreover, the value of the motion coeflicient is not constant,
but depends somewbat upon the speed.
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converted into a negative, that is, a downward, velocity
increasing at the same rate (32 ‘speeds’ per second) nll
the body strikes the ground.

Again, take a north-east wind. This may be considered
as made up of a north and an east wind, each %,-2 th of the
actual strength, and on any thin, flat, smooth surface facing
the north only the northerly component can exert any pres-
sure, the easterly component simply gliding over it.

Or suppose the surface faced N.N.W., and we wanted to find the
pressure on it ; the wind might be resolved into an N.N.W. com-
ponent, $4/2—4/2 times its strength, and an E.N.E. one, }4/2+4/2
times its strength, and the surface would experience the pressure
of the N.N.W. component only, the other being useless.

This is how one deals with kites and windmill- and boat-
sails. They are all surfaces exposed in a skew fashion to
the wind, so that the perpendicular pressure on the surface
is a component only of the whole available force of the
wind. The sails of a windmill are set so as to be inclined
both to the direction of the wind and to the direction of
possible motion ; so also usually are the sails of a boat.

106. In the case of a kite the normal pressure of the wind
is balanced by two other forces, the pull of gravity and the
pull of the string, otherwise the kite would be blown
about, scarcely experiencing any pressure at all, The
sails of a windmill are not blown in the direction of the
normal pressure on them, but in some other direction deter-
mined by the way they are set on the axle and on the sole
direction in which this can turn, usually at right angles to
the direction of the wind. So also with a boat ; the reason
why it is not blown in the direction of the normal pressure
on its sails is that it is more easily moved through the water
lengthways than breadthways because of its shape. Hence
the normal pressure of the wind requires again resolving into
two components, one along the direction of easy motion, the
other at right angles to it. The first component is the
active one in the case of both windmill and boat ; the other
component is entirely counteracted in the case of the wind-
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mill, but in the case of the boat it does cause a slow broad-
side motion, which is called leeway.

Thus if BR (fig. 27) represents the plan of a boat, MS its sail,
and W the relative direction and strength of the wind (represented
also by the arrow i), P is the normal pressure and Q the useless

s K AP
rd

\, i ii
& W > u B
NN

Fig. 21.

component or tail-wind. Producing P for convenience, and resolving
it along and across the boat, H is the effective component producing
headway, and L is the leeway component. The arrow ii shews
the direction in which the boat would probably tend to sail.* The
rudder R is represented as turned in the direction required to
counteract the leeway and make it sail along the line RB produced.

The rudder also affords an illustration of the present subject.
When turned, thére is a normal pressure on its front surface due to
its motion through the water, and this pressure is resolvable into
two forces—one in a direction opposite to the boat’s motion, which
simply acts as a drag (hence in racing, the cockswain uses the rudder
as little as possible), the other at right angles to the length of
the boat, which pushes the stern round.

It is obvious that no force can directly exert pressure at
right angles to itself, and yet it is easy for a ship to sail at
right angles to the wind. The reason is, that the sails act
as a mediary, being inclined to both wind and boat. The
force directly urging the boat is a component of the pressure
on the sails, this pressure again being due to a component
of the wind’s motion. Remember that the effective wind is
compounded of the true wind and the speed of the ship.
This explains why a ship can sail very close to the wind.

These examples will serve to illustrate the application of

* This assumes that the sail is set amidshi In ice there is alway a

d of sail ds the stern, ns ly an d ship
blown round, and ‘sails up into the wind's eye The rudder would therd‘on

more likely have to be turned the other way.




COMPOSITION OF FORCES. 105

the principle ; but other examples occur daily, and may be
worked out in the same way as the preceding, drawing and
measuring being often sufficient.

COMPOSITION OF FORCES ACTING ON A RIGID BODY.

107. For the case of a rigid body, in addition to the
magnitude and direction of the resultant as determined by
the polygon construction, sect. g8, it is necessary also to
determine its position—that is, a point on its line of
action. For observe. that, though as regards translation
a force in one place is as good as an equal parallel force
in another, yet as regards rotating power its position
is important. Thus, imagine a long trough of water lying
on the ground with a string tied to it by which you wish to
raise it. Any vertical force greater than the weight of
the trough must needs raise it, wherever the string is tied ;
but if the string is tied anywhere except above one definite
point, the trough will also turn round as it rises, and the
contents will be upset.

Again, if you raise it by two parallel strings, one near
each end, then when the pull of the two strings together is
a little greater than the weight of the trough, it is raised;
but if you want to raise it without rotation, the pull of each
string must be carefully proportioned, so that the resultant
of the two forces may pass through the point above spoken
of, which is called the centre of gravity.

Again, in the case of a pivoted body, it is obvious that a
force applied close to the pivot has much less effect than an
equal one far off ; and if applied a# the pivot, it can have
no motive effect whatever.

108. Now, the fundamental dynamical idea in rotation
is the moment of a force (read sect. 53 again); and the
following general statements are true, with their converses.

(1.) The moment of the resultant must equal the sum
of the moments of the components about any point in every
possible case, otherwise the resultant would not be truly
the resultant, because unable to replace the components
in rotating power.

That this condition is fulfilled by the diagonal of a paral-
lelogram may be proved among other ways as follows :
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T shew that the reslant given by the parvallelogram of forces is
equivalent 1o its components in rotating as well as in translating
power—tRat is, that its moment about any point in the plane is equal
to the sum of the moments of the two components. The moment
of the force AB about a point O (fig. 28) is twice the area of
the triangle OAB; the moment of AD is twice the triangle
OAD, and that of AC is twice OAC: hence what we have
to prove is the following equality between
the areas, OAB + OAC = OAD; the point
O being in the plane of the parallelogram.

Now OAC = OBD +4- ADB, because the
bases are equal, and the height of the
single triangle is equal to the sum of the
heights of the others (this is an easy ex-
tension of Euc. I. 38—analytically obvious,

Fig. 28, thus, § 5(h, + Ay) = § 04, + 4 bky) ;
and by inspection, OAD = OAB + OBD + ADB;
therefore OAD = OAB + OAC;
which was to be proved.

(2.) The algebraic sum of the moments of any number of
forces about a- point on their resultant equals ¢; in other
words, the sum of the positive moments equals the sum of
the negative. (The moments of #wo forces about a point on
their resultant are therefore numerically equal, but of oppo-
site sign.)

For their resultant can have no rotating power about
such a point, neither therefore can the components.

(3.) If the body on which the forces act has one point
fixed, it will not be rotated by them, provided their resultant
passes through the fixed point or pivot.

For instance, to keep the beam (fig. 31) steady, C is the
point to fix. The pressure of the pivot or fulcrum is then
equal and opposite to the resultant of all the forces.

Oomposition of Two Forces in General

109. If the two forces are in one plane, the parallelogram
is a complete solution, whether they act on a particle or a
rigid body, for the forces must intersect somewhere, and
the point of intersection fixes the position of the resultant.
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Thus fig. 29 is the physical part of fig. 23 repeated for a rigid
body, say a stone pulled
by two strings. The
geometrical part applies
just as well as before.
The direction of the re-
sultant must pass through
E, the point where the
given forces produced
backwards intersect, and
it may be applied to the
body at any point in a Fig. 0.
line EP parallel to AD (fig. 23).

It may happen, however, that the point of intersection of
the two forces is inconveniently distant, as off the paper for
instance, or even at infinity when the forces are parallel.
In such cases the general construction of sect. 112 is
resorted to.

110. If the two forces are not in one plane they cannot intersect,
and our construction for finding the resultant fails. The fact is 2key
have no resultant, and cannot be farther reduced ; they can only be
put into the more convenient form of a force and a ‘ couple’ (sect.
117) in a plane perpendicular to the force ; so they tend to carry
the body along and turn it round at the same time. This pair of
forces is called a wrench, because it tends to twist the body about a
certain screw ; but the subject now becomes too complicated for
us in this stage. This is what is meant in sect. 96 by the two
forces to which any forces whatever acting on a rigid body can
always be reduced, even when no more can be done. If, however,
all the forces lie in one plane, no ‘wrench’ is possible, and they
may then always be reduced to one simple resultant,

Composition of any number of Forces in & Plane,

111. The parallelogram construction may be applied
several times in succession, reducing the number of forces
by one each time. This is a complete but cumbrous
solution.

The polygon construction is a solution as regards magni-
tude and direction, but requires supplementing in order to
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determine position. The supplementary construction em-
ployed is such an important one, that it seems well to intro-
duce it here, although its full discussion would lead us beyond
our present mark. It will be best understood by an example,
and the case of only three forces will afford a sufficient illus-
tration of the method. It depends on the fact that a single
force may be resolved into a pair of components in an infinite
variety of ways (fig. 25) ; so that, if the given forces are not
convenient to find the resultant from, we can choose a more
convenient pair out of the set which have the same resultant,
and then draw the resultant of these. Expressed in another
way, it may be said to depend on the fact that forces in
equilibrium produce no disturbance, and hence may be
introduced or removed at pleasure,

Oonstruotion for completely finding the Resultant of any
number of Forces anywhere in a Plane.

(Zllustyated by the case of three forces.)

112. Let P, Q, S be the forces. Draw the sides of the
polygon ABCD parallel to, equal to, and in the same sense
as the three forces ; then the completion of the polygon, AD,
is the resultant R in magnitude and direction. Where is
it to be placed ?

Choose any point O, join OB, and draw in the other
diagram a line PQ parallel to it across the forces P and Q
(the line is to be drawn across P and Q, because B is the
meeting-point of the sides of the polygon which represent
P and Q).

Then join OC, and draw a line QS parallel to it (C being
the meeting-point of the sides representing Q and S).

Then join OD, and draw a line through S parallel to it,
say SE; also join OA, and draw a line through P parallel
to it.

The point E, where these last two lines intersect, shall
be a point on the resultant, and its position is therefore
determined. Q.E.F.

Proof (This may be omitted till after Chapter VIII. has been
read).—A force represented by AB is the resultant of two forces
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represented by AO and OB, because it forms a triangle with them ;
but P is a force represented by AB, hence P is equivalent to two
forces acting along the lines EP and PQ, equal to AO and
OB respectively, and may be replaced by them. Let it be so

ey

D

Fig. 80.
(Lines parallel to each other in the two diagrams are labelled similarly.)

replaced. Similarly the force S may be replaced by two forces
acting along SQ and ES, equal to CO and OD respectively.

But Q is in equilibrium with two of these forces—namely, those
along SQ and PQ, since their representative lines, BC, CO, OB
form the sides of a triangle taken in order (sect. 124) ; hence this
set of three forces may be removed ; and there now remain, as the
equivalents of the original forces, P, S, and Q, only forces along
EP and ES, represented by AO and OD respectively. Hence these
two forces have the same resultant as the three original forces had ;
but the resultant of these two forces passes through E, their point
of intersection (sect. 109); therefore the resultant of the three
original forces, P, Q, and S, passes through the point E.

Q.E.D.

It will be seen, therefore, that what we really do in the
construction, is to compound with P, Q, and S, two sets of
equilibrating forces—namely, two equal opposite forces in
the line PQ of magnitudes OB and BO, and two in the line
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QS of magnitudes OC and CO; and by their help to
replace the given forces by two intersecting ones, ES and
EP, the position of whose resultant is obvious.

This construction applies equally well to parallel forces,
only then of course the polygon ABCD shuts up, the
points B and C being on the straight line AD ; but every-
thing else remains without modification.

The use of the above construction may not be quite
apparent perhaps, but it is put here as an indication of
quite a large art—namely, graphical statics—which may
well occupy the student’s attention at a later stage.

Composition of Parallel Foroes.

113. Parallel forces can only act on an extended body :
forces which act on a particle of course cannot be parallel.
The direction of the resultant of parallel forces is the same
as the common direction of its components, while its magni-
tude is their algebraic sum—that is, their sum paying regard
to sign—adding all that act in one direction, subtracting
any that pull the other way. This is all that is required to
be known for translation (sect. 107); but to discuss the
rotation of a body under the influence of parallel forces,
we must learn the gosifion of the resultant, and this requires
eithér a geometrical construction or an arithmetical cal-
culation.

The general construction of sect. 112 applies to parallel
just as well as to other forces, so we have only to give
the method of calculating its position arithmetically.

114. The fact (No. 1, sect. 108) that the moment of the
resultant equals the algebraic sum of the moments of all
the components, though universally true, is most useful
in its application to parallel forces, and it affords a
ready method of finding the position of their resultant
arithmetically.

Thus imagine a beam acted on by any parallel forces, say
weights, 4, — 5, 6, — 2, &c., arranged anywhere on the beam (as
shewn in fig. 31), at distances 4, 8, 16, 22 inches from some fixed
point of reference O ; then the resultant R is equal to

4—-5+ 6—2= 3
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and is at a distance x from O, such that
3 =4%x4—5x84+6x16—-2x22=28;

wherefore = = 9} inches. Mark off OC equal to this ; then R acts
at the point C, as shewn ; and, to keep the bar in equilibrium,

Fig. 3L

another pulley and string must be arranged to exert a force 3
upwards at this point.

And, generally, if the forces be w,, w,; wy ...... at
respective perpendicular distances x, x5, 3 ...... from
any point O, then the distance of the resultant from the
same point is

r= "% + wery 4+ wer; 4 ......
w4+ wy + Wy + ... .

This is a constantly occurring form of fraction, and is a
more general sort of average. If w; = w,= wy= &c., then
it would be the ordinary expression for finding the average
of the distances x), x5, x5, &c.—that is, it would give the
average distance of all the weights from O, for it would add
all the distances together and divide by the number of
them (see sect. 18).

Composition of Two Parallel Forces.

115, When we have only two forces to deal with, the
general statements and constructions are of course equally
applicable, but they may be put into a more simple form.
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The following two simple constructions may be given for
finding the position of the resultant geometrically.

First Construction (fig. 32).—Take a point M half-way be-

tween the forces P and Q, and draw

B two lines through it; one paral-

lel to the forces, the other not, but

cutting them in A and B respectively.

Q Lay off from M two lengths in the

H former of these lines, in the same

sense as the respective forces, MC

Fig. 82. equal to P, and MD equal to Q, and

join AC and BD ; the resultant shall pass through E, the

intersection of AC and BD.

A M

Proof.—We may suppose that we have here compounded P
with a force AM, and Q with an equal, opposite, and therefore
equilibrating, force BM ; and AC, BD, are the diagonals of
parallelograms, and have the same resultant as P and Q have.

Beoond Construction (fig. 33).—Anywhere on the line of P
take a length equal to' Q,
and on the line of Q a
length equal to P. The
lines joining the extremi-
ties of these two lengths
will intersect in a point on
the resultant.

If the forces have the
same sense, they are to be
joined crosswise, and E is
the point.

If they have contrary
sense, they are to be joined
without crossing, and F is the point.

This is the best construction.

Fig. 33.

Proof.—Observe that the two triangles side by side with common
vertex E are similar (their bases being parallel), hence their heights
and bases are proportional. But their bases are Q and P; so,
calling their heights # and ¢,
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—’;=_—Q
¢ P’
or Py = Qg

This fact proves the proposition; for, by (2) sect. 108, the
moments Pp and Qg of the two forces about their resultant must be
equal and opposite ; but they are evidently gpposiZ, from the figure,
and this equation states their eguality, about the point E. Where-
fore the resultant does pass through E if the forces have the same
sense ; and similarly it may be shewn to pass through F if they
are contrary.

116, The following propositions concerning parallel
forces are now at once seen to be true, being little more
than repetitions in a compact form of what has gone
before.

(1.) The distances between each force and the resultant
are inversely as the forces—that is,p : ¢ = Q : P. Thisis
the formula to use when you want to find the resultant
arithmetically.

(2.) If two parallel forces have the same sense, their
resultant is equal to their sum, and lies between them,
nearer the bigger one. If, however, they are of contrary
sense, their resultant equals their difference, and lies
outside them on the side of the bigger one, agreeing with
the bigger one in direction.

(3.) If two forces are equal, the resultant must be equidis-
tant from both.

If they are of contrary sense, this means that the resultant
is at infinity ; but its magnitude is zero, being equal to the
difference of the components.

117. Hence, two equal contrary parallel forces have a
resultant zero at infinity ; or, as it is sometimes expressed,
they have no resultant at all. (In any of the constructions
the lines whose intersection gives the position of the
resultant will for this case be found to be parallel) Such
a pair of forces cannot be further simplified, hence they are
taken together and called a couple. The moment of the
couple about any point will be easily seen to be independent
of the position of that point, and to equal either force

H



114 ELEMENTARY MECHANICS.

multiplied by the perpendicular distance between the two
forces, this distance being called the ar» of the couple.

A couple is not properly to be regarded as #wo forces, but
as a particular case of sre—namely, an infinitely small force
at an infinitely great distance. It obviously possesses only
rotating power. (Read again sect. 96.)

The Composition of Parallel Forces as illustrated by Gravity.
(Centre of Gravity.)

118. The force of gravity illustrates the subject of paraliel
forces very well. A rigid body is made up of particles,
every one of which is pulled towards the centre of the earth
with a force proportional to its mass, and equal to its mass
multiplied by g (sect. 60). Now, since the centre of the
earth is such a long way off, these converging forces are for
bodies of ordinary size practically parallel. Hence the whole
pull of gravity on a table or a book is really the resultant
of an infinite number of parallel forces—the attractions on
the several particles.

To find the magmitude of this resultant, you hang up
the body on a spring balance—in ordinary language,
you weigh it

To find its position, the easiest way is to hang up the
body by a bit of string ; the line of the resultant is then a
continuation of the string, since it must pass through the
point of suspension. Or you may balance the body on your
finger; the line of the resultant is always the vertical
through the point of support whenever the body is in
equilibrium.

Its direction is a fixed one—namely, always pointing
to the centre of the earth, no matter how you turn the
body.

Now when a body exposed to the action of a number of
parallel forces is turned about, there is one point in the
body through which their resultant always passes in every
position of the body—and this point is called the centre
of the parallel forces,; or, if the parallel forces are due to
gravity, it is called the centre of gravity.
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Determination of the Centre of Gravity by Experiment.

119, If this point be directly supported, the body is in
equilibrium in every position necessarily ; and conversely, if
a body is in such equilibrium, it must be because its centre
of gravity is directly supported. A coach wheel, for instance,
should be pivoted at this point. Hence this gives one way
of finding it. Another way of experimentally determining
its position is to find out the line of the resultant in some
two positions of the body by hanging it up twice in different
ways (see fig. 34); then the centre of gravity must be the

point comman to the two lines—that is, it must be where
they cross. However the body be hung up by a single
point, the centre of gravity will always, when at rest, be
vertically under or over the point of suspension; that is,
the line of the resultant will always pass through the fixed
point.

The whole weight of a body, then, may be considered to
act at its centre of gravity ; in other words, it is as if the
whole mass of the body were concentrated at this point.

Determination of the Centre of Gravity by Calculation.

120. The centre of gravity is always the most symmetrical
point in 2 body. In a sphere it is the centre ; so it is also
in a cube or an ellipsoid, and in a square or circular plate.
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In a parallelogram or a parallelopiped (that is, solid paral-
lelogram), it is the intersection of diagonals. In a rod of
uniform thickness and material, it is the middle, and
so on.

But it is easy to calculate its position in less uniform
cases by any process which will determine the position of
the resultant of a number of parallel forces, for it is simply
the point through which the resultant always passes.

Thus let this rod with middle point M (fig. 35), be of weight two
pounds, and let a ring A, weighing half a pound, be placed on it four
inches to the left of M, and another ring B, weighing three pounds,
six inches to the right ; then evidently the centre of gravity of the
whole must lie somewhere in the length of the rod. To find
whereabouts, we need only calculate the position of the resultant
of the three weights (the two rings and the rod itself) in any posi-
tion except the vertical one, say when horizontal. The magnitude
of the resultant is plainly 4. Take moments about any point, say
about A ; let the resultant act at some unknown point C, such that

that AC =x. Then we have
A

c B Sixr=3 X 1042 X 4+¢x0
=?=-.‘—'—==v= = 38; wherefore = {4 =634;
v or the point C is 2}¢ inches to
i 3 the right of M, and it is the

Fig. 3. centre of gravity.

Try now taking moments about M, also about B, also about O
(anywhere), and see that you always get the same result (when
interpreted properly), remembering to allow for negative moments.

It often happens, as in this example, that the line of the resultant
in one position of the body (in this case when the rod is vertical) is
perfectly obvious.

s 1£3

»

The arithmetical determination of the position of the
centre of gravity of a body therefore, depends on precisely
the same principle as the experimental method, and consists
simply in finding the line of the resultant in any two posi-
tions of the body, and noting their point of intersection.
It therefore scarcely needs further exposition; but it is
probably necessary to shew how this same principle is
applicable to cases rather less obvious.

For instance, to find the centre of gravity of a body made
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of two parts, each part having a known centre of gravity ;
say two flat oblong plates, of
known weights, =, and w,, joined
end toend. G, and G, being the
centre of each separately, their
weights may be considered as
acting here, and so the resultant
passes through a point G, which
divides the line G,G, in the ratio
w, : w, (sect. 116)—that is, so that
G,G : GGy : : w, : w; ; hence G is the centre of gravity of
this combination.

Or we might take moments about any point O, and say

w, - OG, + w, - 0G; = (w, + wy) OG,

whence the distance OG, and therefore the position of G,
is determined.

The same method applies if a bit is taken away instead
of added on. Suppose, for instance, a square plate with a
round hole in it anywhere (fig. 37). The operation of find-
ing the centre of gravity in such a case may be regarded as
the same as that of finding the position of the resultant of
two contrary forces—the weight W of the whole square act-
ing downwards at G, and the weight w of the missing bit
acting #pwards at G,. The centre of gravity G must evi-
dently be somewhere in the line G,G;; so, taking moments
about any point O in this line, the equation W - OG; —
wOGy = (W — @) OG determines its
position.

Or again, the centre of gravity of a tra-
pezium (that is, a quadrilateral with two
parallel sides), which may be regarded
as a triangle with the top missing, can
be found in precisely the same way. The
last equation applies as it stands, in fact, Fig. 8T.
provided we know the positions of G,
and Gy, the centres of gravity of the whole and of the
missing triangles (see fig. 38).

The centre of gravity of a triangular plate is in the line

s

Fig. 38.

[
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joining a vertex to the bisection of the opposite base
(because this line bisects every line in the triangle parallel
to the base). Three
such lines can be
drawn, because there
are three vertices.
Therefore these three
lines, joining each
vertex to the middle
point of the opposite side, meet in a point, and that point
is the centre of gravity. It is easily seen to divide each
line in the ratio 1 : 2—that is, it is one-third of the way
up from the base to the vertex.

EXAMPLES.

1. Find the resultant of two equal forces each equal to 10
units for each of the following cases—namely, when
the angle between them is 120° g9o° 60°% 45°% 30°
respectively.

Ans, 10, 10\/2 Or 14:142, 10\/3 Or 17-32, 10\/(2+4/2),
10\/(2+4/3).

2. Resolve the force 12 into two forces, making angles of
45° with the given force on either side of it.

Ans. Both equal 6/2.

3 Resolve a force 20 into two parallel forces, one of them
3 times as far from the given force as the other.

Ans. § and 15, or 30 and — 10,

4. A weightless curtain rod has 4 equal rings on it, so that
the 2 end rings are 5 feet apart, and the 2 middle
rings are I foot apart, one of the end rings being 18
inches from the nearest middle one. Find the centre
of gravity. Ans. 3 inches from the middle.

5. Where would the centre of gravity in the last question
be, if the rod itself were 5 feet long, and weighed
twice as much as a ring?

Apns. 2 inches from the middle.

6. A uniform circular disk has a circular hole punched out
of it, extending from the circumference half way to
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the centre. Find the centre of gravity of the
remainder.

Ans. The diameter of the hole being }, its area is 4y of
that of the whole disk ; so the centre of gravity is flsth of
the radius of the disk away from its centre, on the side
opposite the hole.

CHAPTER VIIL
ON EQUILIBRIUM (S7afics).

121. Before leaving the subject of motion as affected by
force, there is one important part to be considered—namely,
the conditions under which forces may act on a body with-
out affecting its motion in any way whatever. One force
cannot satisfy these conditions, but a combination of any
number of forces greater than one may; and it is interest-
ing, and for many practical purposes important, to be able
to specify these conditions, and to decide in any given case
whether they are satisfied or not. This part of the subject
is called ¢ Statics,’ and it is a branch of the more general
science of Dynamics. Its treatment will depend upon
the ideas illustrated at length in the last chapter, which
may be regarded as an introduction to Statics; indeed,
they are usually considered as a part of it, and often are
made to follow, or are mixed up with, the subject of the
present chapter.

122. When all the forces applied to any mass of matter
are so balanced that they produce no acceleration in it of
any kind, the forces are (or the body is) said to be sin egus-
librium, and the conditions which they then necessarily
satisfy are called the conditions of equilibrium.

Observe that equilibrium does not mean res? or zero
welocity, it simply means zero acceleration—that is, constant
velocity. There is no occasion for the velocity to be nothing ;
all that is meant is that it keeps the same value, whatever
that may happen to be. Thus in the case of a bucket
lowered down a well, suppose that it is descending with a



120 ELEMENTARY MECHANICS.

constant velocity of 20 feet a second ; then, its acceleration
being o, the resultant force acting on it (being equal to mass-
acceleration, sect. 42) must also be 0. Now the actual forces
acting on it are the pull of the earth downwards, and the
pull of the rope upwards; and the resultant of these two
being zero, it follows that they are equal. Whether the
bucket is descending or ascending or standing still, matters
nothing, the tension in the rope is always equal to the
weight of the bucket so long as its velocity is not ckanging.
The conditions of equilibrium are therefore the conditions
under which acceleration is impossible ; or, as it is often
correctly expressed, they are the conditions under which
rest is possible. )

123. This being clear, we will proceed to state the con-
ditions of equilibrium for any number of forces, and first
of all

The Conditions of Equilibrium for Two Foroes.

The conditions which two forces have to satisfy in order
to balance each other and have no effect on the motion of
the body to which they are applied, are very simple and
obvious—namely : (1) The forces must both lie in the same
straight line ; (2) They must act in opposite directions ; and
(3) They must be equal.

This is all usually expressed by saying simply that the two forces
must be agsal and opposite, the acting in the same straight line being
understood. The phrase mon-comcurrent has been used to express
parallel opposition not in the same line, but we have preferred the
word contrary.®

If any number of forces are in equilibrium, the resultant
of any number of them must be equal and opposite to the
resultant of all the rest. For obviously all the rest are

* In many text-books yaraﬂel forces with the same sense are called com-
cwrvent, and with opposite sense ven?; but Joh gives as the
meaning of the word concarvent, ‘ meeting in a point,’ and this appears to be
its correct meaning, and it is used in this sense in the 1878 London University
Calendar, page go. Two trains are concurrent, in this sense, not when they
run alongside one another, but when they run smfo one another. Words are
wanting, therefore, to distinguish agreement from opposition of sense. Cou-
sensient or prosensient, and contrasensient are too long ; but the abbreviations
#79 and ¢con might be used.
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equivalent to their resultant, and that resultant is balanced
by a force equal and opposite to it.

124. Let us see how this gives us the equilibrium con-
ditions for ZAree forces, for instance. Any one force must
be equal and opposite to the resultant of the other two.
Now any two of them,as A and B, in order to have a
resultant, must lie in one plane, in other words, must meet
in a point, and through this point their resultant must pass,
being the diagonal of the parallelogram of forces ; the third
force, C, in order to maintain equilibrium, must, by the above
statement, be a prolongation of this diagonal, and hence it
too passes through the same point as the other two, and is
in the same plane—namely, the plane of the parallelogram ;
it must also be equal to the diagonal in magnitude ; in other
words, it must be equal to the
third side of a triangle, two
of whose sides represent the
other forces, such as OAR
(fig. 39). Its magnitude,
direction, and position are
thus completely determined. ©

Let us restate these : Fig. 8.

The Conditions of Equilibrium for Three Foroes.

(1.) The three forces must all be in the same plane.

(2.) Their lines of action must all pass through the same

int.
p‘)(3.) It must be possible to draw a triangle with sides
parallel (or perpendicular, see foot-note, sect. 101) to the
forces, and proportional to them in magnitude. The sides
of the triangle must all be drawn in the same semse as the
forces (thus in the figure, OA, AR, RO are the senses), and it
must be possible to draw the triangle without taking the
pen off. This is usually expressed by saying that the three
forces must be representable by the sides of a triangle Zaken
in order. The last two conditions together really include
the first.

Any number of forces greater than three need neither
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meet in a point, nor lie in the same plane, in order to be
in equilibrium.

Conditions of Equilibrium of a Particle.

125. Any number of forces acting on a particle will
evidently be in equilibrium if they are representable by
the sides of a closed polygon (plane or otherwise) drawn
parallel to the respective forces and taken in order.

This is the same as saying that the forces must have no
resultant ; for the line required to complete the polygon
represents the resultant (sect. 98), but no line is required
to complete a closed polygon, hence there is no resultant.

The converse is also true—namely, that if forces acting
on a particle are in equilibrium, they must be representable
by the sides of a polygon taken in order. This proposition
obviously includes the triangle of forces, for a triangle is
only a three-sided polygon.

Conditions of Equilibrium of a Rigid Body.

126. If the condition just stated for a particle is satisfied
by the forces acting on a rigid body, they can produce no
translation, only rotation ; hence a rigid body will evidently
be in equilibrium if the above condition for a particle be
satisfied, and also if the directions of all the forces pass
through a single point ; for a set of forces which intersect
in one point cannot possibly rotate anything. But this last
condition, though sufficient, is not mecessary—that is, the
converse is not true : if the forces acting on a rigid body
are in equilibrium, they must indeed be representable by
the sides of some closed polygon (plane or otherwise), but
they need not meet in a point. The more general con-
dition for no rotation is that the moments of all the forces
about every possible point or axis of rotation must add up
to zero.

If this and the particle condition are satisfied, equilibrium
is complete ; and conversely, wherever there is equilibrium,
these must be satisfied. So these are the necessary and
sufficient conditions, though not in a very simple form to
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apply practically. It will be sufficient for us, however,
to consider at length, and put into a more practical form,
only the case where all the forces act in one plane; and we
will proceed to this from a fresh point of view. (Compare
this limitation with that introduced in Chapter VII.,
sect. 96.)

General Oonditions of Equilibrium of a Rigid Body acted on
by Forces in a Plane,

127. The motions possible to a rigid body are translation
or rotation or both, hence the conditions for equilibrium
really involve the conditions for no translation and for no
rotation (strictly speaking, for no rectilinear and for no
angular acceleration ; but the words translation and rotation
are used instead of these more accurate terms for shortness ;
and the error is not great, for the conditions of equilibrium
render entire rest possible, though they do not in any way
enforce it).

Now, having assumed that the body can only move in a
plane (say a vertical plane), and that the forces only act in
this plane, it is obvious that all translations must be up or
down, or right or left, or else a motion compounded of the
two, which may be analysed into up or down and right or
left components. Hence, in order that there need be no
translation at all, the forces must have no resultant either
up or down or right or left : this being a practically con-
venient form of saying that they have no resultant at all at
a finite distance. Still, however, they might spin the body
(sect. 117); hence, in addition to the above, the con-
dition is necessary that the sum of their moments about -
every point in the plane must vanish ; and then the forces
will be unable to cause any motion at all.

So the general conditions of equilibrium for a body moving
in a plane are:
(1.) That the sum of the components of all the forces in

any two directions at right angles to each other shall
vanish.
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(2.) That the sum of the moments of all the forces about
any one * point in the plane shall vanish.

(1) is the condition for no translation (properly speaking,
for no rectilinear acceleration).

(2) is the condition for no rotation (properly speaking,
for no angular acceleration).

If (1) is satisfied without (2), there is rotation, but no
translation.

If (2) is satisfied without (1), there is translation, but no
rotation.

If neither is satisfied, there must be both translation and
rotation.

If both are satisfied, there must be complete equilibrium.

The converse of each of these statements is also true.

In case the body on which the forces act has one point fixed so
as to be incapable of translation, the necessary and sufficient con-
dition for equilibrium is simply that the resultant of all the forces
must pass through the fixed point or pivot (see sect. 108, state-
ment 3).

ILLUSTRATIONS.

128. Consider a ladder standing on rough ground, and
resting against a perfectly smooth wall. What forces are
acting upon it? There is the
weight of the ladder W acting
downwards at its centre of
gravity ; there is the pressure
of the ground R acting in some
unknown upward direction (fig.
40), and the pressure of the wall
P acting normal to the wall (sect.
104) or horizontally; and that is
all. But the ladder is in equili-
brium, hence these three forces
must pass through a point (sect.

= 0 1 = g ==

Fig. 40, 124).
Now W and P, whose direc-
* One point is sufficient b the of a couple about every point

is the same (sect. r17); hence, if it is zcro about any one point, it is zero
altogether.
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tions are known, intersect when produced in the point C;
hence R also passes through the point C (fig. 41).

This determines its direction.

Moreover, when three forces are in equilibrium, they must
be proportional to the sides of any triangle which are
drawn respectively parallel to the
forces. R

Such a triangle is ABC (fig. 41);

CB is parallel to W, and repre- P
sents it ; BA is parallel to P, and
represents it; and AC is parallel
to R, and represents it. If| then,
the position of the ladder were
given us, and also its weight, we
should simply have to draw the
above diagram, and measure the
sides of the triangle ABC, in order
to determine the pressures P and
R in terms of W ; the direction of

R being also given by measuring Fig. 41
either the angle BAC or BCA.

This would be solving the problem by construction.

129. But suppose we wished to do it by calculation, apply-
ing the general conditions of sect. 127: we should first
consider the inclined force R resolved into two, a normal
pressure N, and a friction F (the friction being always in
such direction as best hinders slipping, sect. 104), and then
say that, since there is equilibrium as regards translation,
there can be first no up or down resultant,or N and W
must be equal and opposite ; and then that there can be
no horizontal components, or F and P must be equal and
opposite.

But to determine either F or P, in terms of W, we must
make use of the second condition—the condition for no
rotation—namely, that the forces can have no rotating power,
or resultant moment, about any point. Take it numerically :

Let us suppose that we are told the weight of the ladder is 60
Ibs,, and that its centre of gravity is § of its length up, that the
foot of the ladder stands six feet from the wall, and the top of the
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ladder thirty feet from the ground ; then, as the condition for no
translation, we have already found

N =W = 6ag,
and F=P

But we don’t know either F or P yet ; we must find them by taking
moments about some point—any point we like, for we know that
gince there is no rotation the sum of the moments about every
point must add up to zero.

Suppose we take moments about the point A, then neither N nor
F has any moment ; so the moment of P, P x 30, must be equal and
opposite to the moment of W, W X ¢ x 6, or 2W ;

hence 15P = W = 6oy,
or P =4, the weight of 4 Ibs.

And we already know that F and P are equal ; so then N, F, and
P are all known, and now too we know R, because R?* = N+ F?*
—that is, R = 60-13g, or the weight of 60-13 Ibs.

See if this agrees with a determination by measurement,
and then repeat the whole process with the wall rough in-
stead of the ground, and then with both wall and ground
rough.

130. Next consider a weightless rod resting against a
smooth wall over a smooth rail, and
with a weight stuck somewhere on
it, as shewn in fig. 42. (The end
only of the rail supporting the rod
is shewn as a small circle.) To de-
. termine where the weight must be
for equilibrium. The forces acting
are: the weight, W; the normal
\ pressure of the wall, P; and the
\es normal pressure of the rail, R.
\ Now, here again are three forces,
Fig. 42 so to be in equilibrium they ought
to intersect in a point; but in fig.
42 they do not intersect in a point, produce them as much
as you like ; their direction incloses a triangle cg0,

[N
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instead. Hence there is no equilibrium,* and W must be
shifted until the three points ¢, ¢, ¢;, coincide in one point ¢.

To find where it ought to be shifted to, draw a fresh
figure, and from C, the intersection of P and R, draw a
vertical ; this will cut the rod at the
point where the weight ought to be
for equilibrium (fig. 43).

To measure the relation between the
magnitudes of the forces when the weight
is in this place, we can produce R till it
cuts the wall in B ; then the triangle ABC
has its sides parallel to the three forces,

BAto W,
ACto P,
CBtoR; Fig. 48

hence the length of these sides will give the forces, if one of them,
say W, is known.

ItlseasytoseethatR’ P4 w2

In the former figure the rod would be slipping up the wall and
falling over the peg; this is because the line of W falls to the
right of the point C, when P and R intersect. If the line of W fell
to the left of this point, the rod would slip down the wall, and drop
between it and the peg. There is just one position where it does
not slip either way.

131. Now consider a body on an inclined plane held still
by some force P acting in any given direction. There are
three forces, P, R, and W, in equilibrium (R being the
normal pressure of the plane), hence P must be in the
plane of the other two. To find its magnitude : take off a
length AB to represent the weight of the body, and from
B draw a line parallel to P, till it cuts R produced in the

B NEEEL

® Here is an inst: of forces rep. d in itude and direction by the
sides of a triangle (¢ c3 c3), and yet not mequnhbnum. the reason being that
they act on a rigid body instead of a particle, and so their positions are not
necessarily right. Such forces, however, can only produce rotation (sect. 126),
and hence can be reduced to a ‘couple’ (wherefore the resultant of R and P
is a force equal and contrary to W), the moment of the couple being twice
the area of the triangle  cacs. The moment of the couple in such cases is
always twice the area of the polygon, which represents the forces not only in
magnitude and direction but also in Jimes of action.
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point C. Then we have a triangle ABC (fig. 44); BC
represents P, and AC represents R; and it is easy to
measure these lengths on the
same scale as AB was drawn.

There are in general two
positions in which the same
force P can hold up the body.
For draw a circle with centre B
and radius BC, it will cut R in
two points, C and D ; hence the
same force P would be just as
effective if it acted in a direction
shewn dotted as P’ parallel to
BD; but the pressure on the
plane would then be greater than
AC, namely, AD.

There is one case when only
one direction will do, and that is when the radius of the
circle is so small that it only just fouckes R. This radius
then represents the minimum force possible, and shews that
it must act perpendicularly to R and therefore parallel to
the plane, and must have the same relation to the weight
that the height of the plane has to its length. If the plane

be rough, the friction is such a force.

If the force P is smaller than this—
that is, so small that the line representing
it is unable to reach across from B to the
line R, then there cannot be equilibrium ;
and even if P is greater than this, but
does not act in the best direction, there
need not be equilibrium, and the body will
slide down, as in fig. 45: the accelera-
tive force being the component of W
along the plane, namely AM, minus the
component of I’ along the plane, namely

Fig. 15. AN. The pressure on the plane is the

component of W at right angles to the

plane, minus the component of P at right angles to the plane;
that is, Am—Axn.
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132. We have only here considered the slipping of the
body; but if it were a ball it would roll, and if it were
a block it might topple over, before it began to slide. Let
us just see how soon a rectangular block on a rough
inclined plane will topple over.

Stability of Equilibrium.
We know that the resultant of all the forces which
gravity exerts on the particles of the body passes through
the centre of gravity—that is,
the body acts statically as
if its weight were all con-
centrated at the centre of
gravity. Hence if this point
be supported, the whole
body is supported. The
line of W is the vertical
through G ; and if this line
falls inside the base® it
cannot topple over; it can only slide down. To upset the
body, it must be tilted through the angle AGO (fig. 46);
and if it be momentarily tilted through less than this, it
will return to its old position. The equilibrium is therefore
said to be sfable; and the angle AGO is a measure of the
¢ stability :’ the larger this angle, the more stable is the
body. If the vertical through G fell outside the point
O, there could be no equilibrium at all, but the body would
topple over ; and this applies universally.
A waggon going along
with one wheel in the

gutter does not upset so

long as the vertical through e

its centre of gravity falls /—{l

inside the wheel-base ; but M

the act of going over a Fig. #1.

stone may tilt it sufficiently
to make this line pass beyond the base, and then it upsets.

* By ‘the base’ must be und d the area inclosed by a string stretched
round that part of the body which touches the plane : cousider, for example,
the case of a retort stand with a forked foot.

1
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The two bodies in fig. 47 resting on a flat plane are both
evidently in stable equilibrium, but the stability of the first
is much greater than that of the second ; and this for two
reasons, firstly, because its base is wider, secondly, because
its centre of gravity is lower.*

The centre of gravity of an omnibus full outside, but with no
inside passengers, must be very high up; and a moderate shock
might be sufficient to destroy its stability and upset it.

133. A body in equilibrium with infinitely small stability,
is said to possess wmsfable equilibrium ; the least shock
must upset it.

Thus, if you narrow the above block till its base is nothing, there
remains only a plane or line standing on its edge, and though, when
vertical, the centre of gravity of this does not fall without its base,
and therefore it is in equilibrium, yet the slightest breath will
upset it.

A pyramid or cone standing on its base has very stable equili-
brium ; but on its vertex, very unstable.

It is quite possible for a body to possess an equilibrium
which is neither stable nor unstable—that is, the body, when
disturbed, neither topples over nor returns to its original
position. All that is necessary is that the vertical through
G shall a/ways pass through the point of support, as in the
case of a sphere on a flat table; or that the centre of
gravity itself shall be supported, as in a fly-wheel. The
body will then remain steady, however you place it, and
its equilibrium is called sewtral

A cone or cylinder lying on its side has neutral equilibrium.

134. In the case of a body balanced on a point, if the
point is adove the centre of gravity, the equilibrium is per-
fectly stable ; if a# the centre of gravity, it is neutral ; and
if below, it is unstable.

ExampLES.—The nearer the centre of gravity of the beam of a

* The most useful measures ofsubxhtym 18t, the moment of stability ;
ly, the of the coupl ired to upset the body, or the weight of
the body multiplied by the distance OA; and ad, the dywamic stadility,
namely, the work that is required to upset it, or the weight of the body multi-
plied by the difference of the distances AG and OG (fig. 47)
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balance is to the point of support, the more sensitive is the balance ;
bat it is necessary to have the centre of gravity slightly lower than
the point of support, or the equilibrium would not be stable.

A compass needle is always made
with a little central cap, into which
the point supporting the needle passes
from below, so as to be above the centre Fig, 48.
of gravity of the needle. See fig. 48. b

Again, it is easy to balance a curved beam on a knife edge, while
a straight one will not remain steady for more than a few seconds,
unless loaded. Compare the diagrams in fig. 49. The weights in
the third must be attached to the beam by rigid wires, not by strings.

0 AN N T (N
Stable.

Stable. Unstable.
Fig. 49,

135. In the case of a body with a spherical base standing
on a level plane, its centre of gravity cannot help being
above the point of contact with the plane, and yet the
equilibrium may be stable or neutral ; as,
for instance, in a sphere the equilibrium
is neutral, and in a hemisphere it is stable ;
or again, it may be unstable, as in an
egg balanced on one end.

The centre of the sphere, of which the c
base forms a part, is in these cases to be G
regarded as the real point of support, and
then the former rules apply. Thus, if G
be the centre of gravity of the combina-
tion shewn in fig. 50, and if C be the centre
of the sphere of which the base forms Fig. 50.

a part, the whole will oscillate in stable
equilibrium.

When a body rolls along any surface, its centre of gravity in
general describes a curve with crests and hollows ; every hollow
corresponds to a position of stable equilibrium (the centre of
gravity is then in one of its lowest positions) ; every crest corre-
sponds to a position of unstable equilibrium, and a measure of the
nstability is the curvature (see sect. 13) of the path of the centre
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of gravity. For instance, in the case of a body balanced on a point,
the higher the centre of gravity above the point the less curved
will be its path, and the less unstable will be the equilibrium: for
example, it is easy to balance a stick loaded at one end on one’s
finger if the load be at the top of the stick, but if the stick be
inverted it is not easy.

BXAMPLES.

1. When a weight is supported on an inclined plane by a
force acting along the plane, shew that the ratio of
the force to the weight is the same as the ratio of the
height of the plane to its length.

2. And shew that the ratio of the supporting force to the
normal pressure on the plane is the same as the ratio
of the height of the plane to its base.

3. Hence shew that if a body is supported on a plane only
by friction, it will begin to slide down when the ratio
of the height of the plane to its base is equal to the
coefficient of friction (see sects. 131 and 104).

4. A picture-frame weighing 10 lbs. is hung by a cord
passing over a nail, the two parts of the cord making
an angle of 120° with each other. Find the tension
in the cord. Ans. 10 Ibs. weight.

5. If the two parts of the cord included an angle of go°, what
would then be the tension?  Ans. §54/2 lbs. weight.

6. If a rod rests inside a smooth spherical shell, its centre
of gravity must be vertically under the centre of the
sphere. Hence, if the rod be uniform, it can only
lie horizontally, unless it is equal in length to the
diameter of the sphere.

7. Itis wished to upset a tall column by means of a rope of
given length, pulled by men on the ground ; at what
height above the base of the column will it be best
to attach the rope ?

Ans. At a height Ulz‘ﬂ’ of the length of the rope,
because then the perpendicular distance of the rope from
the base of the column will be greatest, and therefore the
moment of any stress in the rope about it will be a
maximum,
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8. A uniform pendulum-rod is pulled aside from the ver-
tical by a horizontal force equal to % its weight
applied at its lower end ; at what angle will it be in
equilibrium ? Ans. 45"

CHAPTER IX

ON MACHINES AND OTHER CONTRIVANCES ILLUSTRATING
POREGOING PRINCIPLES.

136. A machine is an instrument for transferring energy
in such a manner that certain useful or desirable work is
done. The agent which loses the energy used often to be
called the ‘ power,” the body which receives it being called
the resistance or the ‘weight” The machine is simply a
mediary by which the energy is indirectly transferred from
one body to the other.

The quantity of energy gained by the one body is equal
to that lost by the other; in other words, no change in
quantity of energy is ever effected by any machine.

Numerous attempts have been made to construct a
machine able to effect this : such attempts are called the
search after perpetual motion, and always result in failure
(cf. sect. 79). All that one can do by means of any
machine is to vary the ratio of the two factors, F and s,
occurring in the product wor#k, the product itself remaining
unalterable. But just as the number 12 may be split up
into various pairs of factors, 12 and 1, 6 and 2, 3 and 4, or

more generally x /12 and —“{}3, where x may be any num-

ber, whole or fractional; so the factors of the constant
product work may be varied at will : and this is the use of
a machine. Given a force, and a distance through which it
can act, a machine can always be devised to overcome any
other force whatever through some definite distance, such
that the product of the first force and distance is equal to
the product of the second force and distance. The greater
the force required to be overcome, the smaller the distance
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is through which it can be overcome by a given force.
This is often expressed by saying that what is gained by
any machine in power is lost in time (or in distance). Or
again, by saying that the ‘mechanical advantage’ of a
machine—the ratio of the resistance overcome to the least
force required—is equal also to the ratio of the distance
travelled by the ‘power’ to the distance travelled by the
‘ weight.’

This condition may also be expressed by saying that if any
system in equilibrium under the action of any number of forces
receive a slight displacement, then the total work done by the
whole of the forces, or the total loss of potential energy, is zero. In
other words, the sum of the products of all the forces into the
respective distances they have simultaneously moved, or, what is
the same thing, into the respective velocities of their points of
application measured along their lines of action, is zero. This is
frequently a useful mode of finding the condition of equilibrium
of a system, and shall be applied in a very elementary form in the
present chapter.

It is often referred to as the principle of virtual work or virtual
velocities ; the meaning of the word ¢virtual’ being merely that the
displacement or shift supposed to take place is an imaginary one,
and need not really occur.

Simpls Machines.

137. A pulley is a simple machine by which a weight may
apparently be supported by means of a force only half as great as
- - itself ; the obvious reason being that
* (=7 =7, the other half of the force necessary
£ =<~ to support the weight is supplied by

the hook fixed in the ceiling, to which
[ one end of the cord is attached (fig. 51).
If the force P exceeds in the slightest
degree half the weight, it must raise it ;
but only half as fast as itself descends.
To raise it at the same rate would require

w doth parts of the loop of cord in which
W is slung to be lifted. If only one
Fig. 51. end is lifted, the wheel or pulley

rotates, and W only rises at half the rate.
The mechanical advantage of a simple pulley is thus 2.



-

MACHINES. 135

An inclined plane is another simple machine on which a weight
may be apparently supported by a force less than its own
weight ; the reason being that the rest of the necessary force is
supplied in a stationary manner by the pressure of the plane. If
the sustaining force or ‘ power,’ P, is applied as shewn in fig. 52,
it is evident that a descent
of P through a vertical
height /, equal to the whole
length of the plane, would
pull W all the way up the
plane indeed, but would ’
only raise it a vertical Fig. 52
height A; hence the me-

chanical advantage of this machine is 711 ; and if P exceeds w_f-

in the slightest degree, it must raise the weight; provided, of
course, that there is no friction.

A lever, 2 wheel and axle, and a capstan are simple machines in
which a weight applied at a great distance from an axis of rotation
may apparently support a greater weight nearer the axis; the
reason being that the rest, or the whole, of the sustaining force is
supplied by the support of the axis, or the fulcrum.

Fig. 53.

Thus, in two diagrams of fig. 53, P and W are both really
supported by the fulcrum F; the pressure on it being always
W + P, if the plus be understood algebraically. All that P
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does is to balance the rofation tendency of W ; and for this purpose

its moment, P x AF, must equal the moment of W, W x BF.

Hence the mechanical advantage of a lever, the ratio of W to P,
¢ power’s arm *

. AF
s always o of the s arm™

In the case of the steelyard (fig. 53), the weight of the ¢yard,’
Y, acting at its centre of gravity, helps the power, so that W . BF
=P.AF + Y.GF.

A lever cannot, however, be used to raise weights far; but an
easy modification, securing continuous action, is to make the
fulcrum F into a pivot, and to apply P and W at the circumference
of circles or wheels, with common centre F. Thus we get the
wheel and axle, or capstan (fig. 54), of which the mechanical

Fig. 54,

advantage is, as before, the ratio of the distance of P from the pivot
to the distance of W from the pivot—that is, the radius of the
wheel divided by the radius of the axle.

Combinations of S8imple Machines.

138. Any of these machines may be combined together, so that
the resistance of one machine constitutes the ‘ power’ of the next,
and the mechanical advantage of the combination will be the
product of their separate mechanical advantages.
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Thus three pulleys are shewn combined in fig. §5, and the
mechanical advantage of the combination is 2 x 2 x 2, or 8, if the
pulleys are weightless. If W is raised one foot, P must rise
eight feet. The whole pull on W is here the pull of the beam
above plus P; hence the pull on the beam is W—P. The
arrangement may evidently be turned upside down, so that the beam
becomes the weight, and the weight the beam (fig. 55). In this

Fig. 55. Fig. 66,

case the weight supported is less by P than it was in the former
case. Fig. 55 is often referred to as the first system of pulleys,
and fig. 56 as the third.

If the weight of the pulleys is not small enough to be neglected,
call them =, w, &c., and consider fig. 55. The lowest pulley is
attached to the weight, and rises at the same rate as it does; the
second pulley rises at twice, and the third at four times this speed.
Now, if any weight w be raised a height 4, the work done is w4 :
so if W is raised one foot,

W + w, + 2m, + 42,
represents the whole work done by P, in moving through a distance
of 8 feet, that is, by the expenditure of 8 P units of potential
energy ; hence, in general when there is equilibrium, the mechanical
advantage W : P must be determined from the equation,

2P=W +w, + 20y + 403+ .... + 2" "m,,
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if there are # pulleys. An equation which expresses the fact that
the algebraical total of the work done is nothing.

The only system of pulleys frequently employed for hoisting is
what is called the second system, where there are two blocks of
pulleys, one attached to the weight, and the other
to the beam ; and where the same rope passes round
all (fig. 57). The mechanical advantage in this
case is simply equal to the number of strings sup-
porting the weight : which in the figure happens to
be four.

139. A combination of levers is sometimes used,
but more often for the purpose of magnifying small
motions than for exerting great force ; that is, for
increasing the factor s in the product work at the
expense of the factor F. In fig. 58 the motion of
the screw is magnified, the pointer describing a
considerable arc for one turn of the screw. A lever
and an inclined plane may be combined together
into a screw-press, the inclined plane being coiled
up into a spiral or screw-thread (fig. 59). For every

Fig. 57.  complete revolution of the lever, the weight is raised
a distance equal to that between the spires of the
screw-threads ; hence the mechanical advantage of such a press is

Fig. 58.

the circumference of the circle traversed by the force applied at
right angles to the lever, divided by the distance between succes-
sive spires of the screw. Wheels and axles are usually combined
by means of cogs, as is well seen in the wheel-work of a clock.

A pulley is often used in conjunction with a capstan, the rope
passing round a pulley attached to the weight, and the mechanical
advantage of the capstan is thereby doubled. Moreover, the free
end of the rope, instead of being rigidly fixed, may be coiled

1at
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round another smaller axle with the same centre F, so that its
tension shall help the force P
(ig. 60). By this means the
mechanical advantage can be
increased to any desired extent,
for the weight is now wound up
only because the cord wraps itself
on to onme, the larger, axle faster
than it unwraps itself from the
other smaller axle; and the two
axles may be as nearly the same
size as one pleases. The mechani-
cal advantage is the radius of the
wheel (or the length of P’s arm)
divided by the difference of the Fig. 60.—Chinese Capstan.
radii of the two axles, the whole

being multiplied by two because of the pulley.

A wheel and axle may be combined with a screw, as shewn in
the contrivance of fig. 61. When the handle is turned, the screw-
thread on its axle sends the cog-wheel forward one tooth for every
revolution. Such a screw, which itself does not advance in a nut,
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but which merely rotates in ordinary bearings, is called an ‘endless’
screw. If/is the length of the handle arm, » the number of teeth
in the wheel, and » the radius of the axle on which the rope
winds itself, the mechanical advantage of the whole machine is
208l _wl
2er &7

140. To drive a machine an agent must expend energy
upon it, and its rate of expenditure of energy is called its
‘power.’* But when the agent is inanimate (like running
water or compressed steam), its utilised power is often
spoken of as the power of the machine driven by it. The
power of a machine, then, means its rate of doing work;
in other words, it equals the work done in any short
time divided by that time—so many foot-poundals per
second. A machine is said to have one ¢horse-power’
when it can do 17,600 units of work every second ; which is
equivalent to raising 33,000 Ibs. of matter one foot high

against gravity every minute,

Pendulums.

141, Comical Pendulum and Govermor Balls.—Let AB (fig. 62)
be a vertical axis of rotation, and P a massive ball at the end of an
arm AP, capable of rotation about this vertical axis and pivoted
at A ; then it is well known that AP will fly out from the vertical
more and more as it revolves faster and faster. Let it be revolving
with a constant angular velocity », and let it perform every revolu-
A tion in T seconds, so that 2« = &T.

The centripetal force which must be acting on
P in the direction PN to keep it moving in the
circle (sect. 56) is mw?r, where r is the radius
PN of the circle in which P moves ; and if the
rotation were to cease, this is the force which
must be applied in the opposite direction PF,
in order to keep the ball in its position without
letting it fall back to the axis AB.

Hence in the diagram (fig. 62), we may regard

Fig. 62 P as stationary and in equilibrium under the
action of three forces—the force F = ma?y, its
weight W = mg, and the tension in its supporting arm. The
* Or sometimes its activity. The word ‘power’ is frequently used to exp
the maximum activity of which an engine is capable. Its use to denote a force
applied to a lever, is simple misuse.
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triangle APN has its sides parallel to these forces, and hence
represents them ; so, calling the vertical distance AN, 4, we have

medr img 17 A

that is, the vertical distance of the governor ball below the pivot A,
is inversely proportional to the square of the angular velocity of
rotation.

The time of one revolution is '1‘==:E"I =z¢d$; and such an

arrangement is sometimes used as a measurer of time, when it is
called a ‘conical pendulum,’ because the arm AP traces out a
cone.

If the radius of the circle in which P moves is very small, the
height 4 is practically equal to the length of the pendulum, AP,
which we will call . Moreover, if you try swinging a weight at
the end of a string, you will find that the time of a complete smal/
motion is the same whether the pendulum simply oscillates in a
nearly straight line or whether it revolves in a horizontal circle;
that is, the time of an oscillation (to and fro) of a simple pendulum
equals the time of rotation of a conical one, provided the motion
of both is small ; and each period is very approximately

L
L

By a simple pendulum is meant one about whose length there can
be no ambiguity. It is a heavy parick, swinging at the end of a
perfectly light cord attached to a fixed point (cf. sect. 73).

142. Compound Pendulum.—The time of oscillation of a com-
pound pendulum, that is of a rigid body of any
size fixed at one point O, and swinging slightly
under gravity, may now be calculated.

Let G be the centre of gravity of the mass, and
call the distance OG, 4 ; the small angle of dis-
placement from the vertical NOG, call /; and
the distance NG, call x; the latter is practi-
cally equal to 4/, the arc of a circle with
centre O.

Then, if m be the mass of the whole body, Fig. 6&
the force restoring the body to its position of
equilibrium is mg acting at G, so that its moment about O is
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mgz ; and the angular acceleration produced by this is (see sect. §2)
mex _ mgal

il
where M is the moment of inertia of the body about the point O.
For the particular case of a simple pendulum when the whole mass
is concentrated into a patticle at G, and when ¢ =/ and M = m/®,
this equation becomes
mit ’
Now we can choose a simple pendulum of such length that its
angular acceleration at every instant, and therefore its whole
motion, is the same as for the compound pendulum. Let L be
the length of such an equivalent simple pendulum, then the

equation
meal g0
M L
is satisfied ; and the length of the equivalent simple pendulum
(sometimes called the ‘length’ of the compound pendulum itself,
see sect. 73) is

L = ———
ma
But the time of a small oscillation of this simple pendulum is

L
2w ?;

therefore the time of a small oscillation of the compound pendulum

. M

R
where M stands for its moment of inertia 2m»?® about the centre of
suspension O, and a is the distance between this point and its
centre of gravity.

The above equation M = maL gives a simple means of experi-
mentally determining the moment of inertia of any body about
any point. Hang it up by this point and measure g, the distance
from it to the centre of gravity ; then set it swinging slightly, and
observe the length of a simple pendulum which keeps time with
it : multiply the product of these two lengths by the mass of the
body (in Ibs. or grammes), and you have its moment of inertia
under those circumstances.
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A point O’ in the body at a distance L from the centre of sus-
pension O, is called the centre of oscillation, because the body
oscillates as if all its mass were concentrated there. It may be
easily shewn that the body will swing in just the same period if
suspended at this point as if it were suspended at O. For it can be
shewn, if M be its moment of inertia about a point O at a distance
a from G,and M’ its moment of inertia about a point O’ at a
distance &, such that @ + o' = L, that then M:a=M':a’; or
the length L is the same for both points.

The centre of oscillation O’ is also sometimes called the cemsre
of percussion, because this is the place where the body strikes things
best without any jar on its support. A cricket bat drives the ball
best if it strikes it at this point, and it does not then jar the hand.

143. Ballistic Pendwlum.—A heavy block of wood hung
up as a pendulum by two strings so that it can swing
without any rotation, is sometimes used to measure the
impulse (77) of a blow, such as that of a rifle bullet fired
into the wood. The block will be displaced and will rise a
vertical height, 4, which must be observed (either directly
or by calculation from the angle of swing); and, if the
mass of the block be »f, the velocity 7/ imparted to it is
measured as 4/(2¢%). The velocity # with which the rifle
bullet struck the wood can then be found if its mass = is
known, from the equations,

my = (m + mw)v
and v = J(2gh).

EXAMPLES,

1. Apply the principle of ¢virtual velocities,” to determine
the condition of equilibrium of a body resting on a
rough inclined plane.

The principle is that, if the body receive a slight dis-
placement, the total work done must be zero. The
limiting condition required is given in Ex. 3, Chap. VIIL

2. Shew that a body on a plane tilted to the ‘angle of
repose’ (see sect. 104) is on the point of sliding.

3. If a hundredweight be hung on to the hook W in fig. 55,
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what force P is required to support it, the pulleys
being weightless ?
Ans. 448 poundals, or a weight of 14 Ibs.

4. If each pulley weighed 4 lbs., what force would be
necessary ? Ans. 173 lbs. weight.

5. In fig. 56 shew that if the pulleys are weightless the
mechanical advantage is 7 ; but that if they each
weigh 4th as much as the weight, then the mechani-
cal advantage is 8}.

6. If in fig. 57 W = 20 lbs. and P = 6, find the velocity of
W when it has risen one foot, neglecting friction.

Ans. 1.486 nearly,

7. Find also the accelerations of W and of P, and the
time required for P to descend 16 feet.

Ans. Acceleration of W= g ¢; acceleration of P =4§¢;
time = 7} seconds.

8. If a weight be attached to a string 4 feet long, and is
then caused to describe a horizontal circle, so that
the string is inclined at 60° to the vertical, find its
angular velocity, its actual velocity, and the time of
one revolution.

Ans. w=4; v=84/3; = }r seconds.

9. A chair weighing 20 lbs. is hung by a point 2} feet from
its centre of gravity, and is found to oscillate in pre-

cisely the same way as a simple pendulum 3 feet

long. Find the moment of inertia of the chair about

the point of suspension. Ans. 150,
10. Find the time the chair would take to complete a small
oscillation. Ans. E./s seconds.

11. A one-ounce rifle bullet is fired into a suspended block
of wood weighing 30 lbs.; if the blow causes the
wood to rise a vertical height of 1} inches without
any rotation, find the velocity of the bullet just before
it struck the wood. Ans. 1280

12. Find the correct position of the weight W in fig. 56, so
that the rod on which it hangs may be horizontal
(The figure is not quite correct.)

"“
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CHAPTER X
ON PROPERTIES AND STATES OF MATTER.
(Rudiments of Elasticity, and Introduction to Fluid Mechanics.)

144. The particular kind of effect which a given force
will produce in a given piece of matter when it does work
on it, depends not on the nature of the force, for forces can
only differ in amount and not in kind, but on the nature of
the mafter. Matter exists in various states, and has very
different properties in each state ; and though the principal
effects of work, or forms of energy, may be summed up, as
stated in the introduction (sect. §), under the heads Motion
and Strain, yet the kind of motion and the kind of strain
produced in different sorts of matter may be very different ;
and we must now proceed to consider briefly some of the
peculiar properties possessed by matter in its different
states ; inertia and apparently gravitative attraction being
properties common to all.

145. Hitherto we have only considered matter in a rigid
form insusceptible of strain, but it is time now to say what
little can be said in so elementary a book on the production
of strains in non-rigid matter by the action of forces,

Strain means either change of size or change of shape,

Change-of-size strain is called Compression or Dilata-
tion, and the active resistance of matter to it is called
Elasticity of Volume, ox Incompressibility.

Change-of-shape strain is called Distortion, and the
active resistance to it is called Elasticity of Figure, or
Rigidity.

The adjective ‘rigid’ is applied to all bodies which
strongly resist any kind of strain ; but the term °rigidity’
is used to denote the measure of the resistance to change

J
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of shape, while the term ¢ incompressibility * represents the
measure of the resistance to change of szze.

146. Bodies with high rigidity are called Solids. The
incompressibility of solids is generally still greater than
their rigidity. Cork, however, is an exception to this
rule. By the term rigid body’ in previous chapters, we
have always meant a gerfectly rigid solid. Such a solid
it would be impossible to strain by any finite forces;
all its particles would maintain their relative positions
unchanged, unless the body were droken—for this would
be possible; perfectly rigid does not mean perfectly
strong.

Such a solid does not exist, though it is approximated to
by rocks and metals. All actual solids are capable of being
strained—that is, they all yield somewhat to the action of
external forces applied to them; and they are divided
into two extreme classes, according to the way in which
they yield.

They may yield actsvely,; the stress exerted by their
particles in opposition to the distorting force continuing
constant, no matter how long that force is applied, and
restoring the body to its old shape the instant the dis-
torting force is removed, without the least permanent strain
or sez,; in which casethey are called perfectly elastic. Glass
and steel are practically so.

Or they may yield gassively ; passing into any shape
without exerting any consinuous stress in opposition to the
distorting forces, and therefore not recovering their form at
all when these forces are removed. In this case they are
called perfectly plastic or inelastic ; putty, wet clay, and
dough are practically so.

Most solids (strictly speaking, a// existing ones) lie between these
two extremes ; they have a certain amount of elasticity combined
with a certain amount of plasticity, partly yielding permanently
and partly springing back ; as you see at once if you bend iron,
wood, paper, &c.

147. A great number of things are elastic when the
distorting forces are small, but experience a ‘set’ when



PROPERTIES OF MATTER. 147

they are too great. These are said to be elastic between
certain limits, called the Zimits of elasticity. If strained
above those limits, they are more or less plastic, and if still
more strained, they are torn asunder or broken. The
greatest longitudinal stress (sect. 151) which a material
can bear is called its Zenacity.

148. When a solid is strained, both its elasticity of volume and
its elasticity of figure are called out, for both size and shape usually
change. For instance, if you stretch a piece of india-rubber, it
alters greatly in shape, but it also expands a little. The strains
practically produced in solids may be conveniently considered
under the heads of—(1) longitudinal elongation or compression ;
and (2) skear.

The first is produced when a rod is either stretched or squeezed
lengthways by a simple stress, and the elasticity involved is called
longitudinal rigidity, or sometimes Young's modulus of elasticity.

Shear is produced by couples, as when you twist a rod or cut
anything with a pair of scissors. It involves the sliding over one
another of parallel planes in the body—thus a book is sheared
when its top cover is either pressed sideways or turned round,
while its lower cover is held still. The sliding of the parallel
planes (or leaves of the book) is then well seen, especially if you
use a thick book like a London Directory. There is in a pure
shear no change of size, only of shape. The elasticity involved in
a shear is called lorsional rigidity, or simply rigidity.

When a beam is bent, say by a weight resting on its middle, its
lower or convex surface is elongated, and its upper concave surface
is compressed, hence longitudinal rigidity only is called out ; unless
indeed its horizontal planes slide over one another to some extent,
in which case simple rigidity will also be brought into play. If
you bend a book, you will see that the leaves slide.

149. All resistances to strain are included under the
general name Elasticity (the term elastzic having a slightly
different meaning from elasticsty, just as rigid has from

rigidsty).

A body which exerts a great stress when subject to a
given strain, is said to have a high elasticity, but if a
small stress, a low elasticity ; in fact, elasticity is defined
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as the ratio of the stress called out to the strain which
calls it out ; or shortly,

.. stress
elasticity = ~trai H

or what is the same thing, cdasticity equals the styess
called out by unit strain. ‘Stress' is here short for
pressure or tension per unit area.

150. The £ind of elasticity depends on the nature of the -
strain ; if it is simple dilatation or compression, the ratio of
the stress to the strain is e/asticity of volume ; if it is an
elongation or contraction, the ratio is Young’s modulus ; if
it is a twist or shear, the ratio is simple rigidity ; and the
most general kind of strain that can possibly be given to a
body can be compounded of these three elements, or can be
resolved into them,

Moreover, a shear may be analysed into two longitudinal
strains, a stretch and a squeeze, at right angles to one
another ; similarly a shearing stress may be resolved into a
pressure and an equal tension perpendicular to it.

151, Strain is always measured as a ratio; the ratio
of a change to an original. The first sort of strain,
simple change of size, is best illustrated by gases. See
Chapter XIIIL, Part ii. This strain is measured as the ratio

53‘-’:“——3“11"—‘“2% The second kind, or longitudinal strain,
original volume

is measured by the ratio of the change of length of a rod to
the original length.

Styess is measured by the pressure or tension ger unit
area—for instance, the force applied to either end of a rod
divided by the area of the cross section of the rod.

152. Notice that elasticity is measured not by the ratio of
distorting force to strain, but by the ratio of snfernal stress
to strain ; for a body may be quite inelastic, and yet require
a considerable force to distort it. You would find it hard
work to flatten out or to punch a hole through a mass of wet
clay for instance; but no active internal stress would be
exerted capable of restoring the body to its old shape when
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the distorting force is removed—the resistance would have
been produced by friction between the different parts
which have slid over one another, and friction, we know,
is a passive force which can destroy motion, but not
generate it.

Such bodies as these then, though plastic, are wvis-
cous—that is, there is friction between their particles, so
that energy is converted into heat when they are distorted.
Elastic bodies also may be viscous—that is, there may be
some friction between their particles whenever siear or
sliding of parts occurs. Even steel is very slightly viscous,
and when bent becomes infinitesimally warmer, otherwise a
tuning-fork #n vacuo could go on vibrating for ever.

153. Matter, however, is known to exist in a perfectly
plastic state, which is not viscous at all, but Zimpid ; and in
this state it is termed fiuid. A perfect fluid is a body with
zero rigidity and zero viscosity—in other words, it has in-
finite plasticity and infinite limpidity. No force whatever is
required to alter its shape, but it takes the shape of what-
ever vessel contains it. Many acswa/ fluids come very near
to this, but they all have more or less trace of viscosity.
Ether has a little less than water, while oil has more, treacle
has more than oil, Canada balsam still more, and pitch or
sealing-wax a great deal—so much that it is practically a
solid except for very long-continued forces. The only
elasticity possessed by fluids is elasticity of volume, in other
words, no stress is called out in them by any strain except
simple expansion or contraction.

154. All fluids are perfectly elastic as regards vo/ume—that
is, they all regain their size perfectly when the compressing
stress is removed. Nevertheless the values of their elas-
ticities vary very much, for some are nearly incompressible,
while others are readily compressed ; and they are divided
into two great groups on this ground.

The group of fluids which have a very high volume-
elasticity, or are nearly incompressible, are termed Zguids
~—type, water. A perfect liguid might be defined as an
incompressible perfect fiuid.

The other or compressible group have an elasticity not
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depending on themselves at all, but simply on the pressure
to which at the time they are subject—the elasticity being
equal to the pressure; these are termed gases—type, air.
From this it follows that the volume occupied by a gas also
depends, not upon itself, but upon the pressure to which it
is subject. Gases in fact take not only the skage, as all
fluids do, but also the size of their containing vessel, no
matter how large this may be.
‘We may sum up shortly thus :

Solids have both size and shape.
Liquids have size, but not shape.
Gases have neither size nor shape.

Matter exists in all kinds of states, some approximating
closely to one of these three types, others lying between
them and passing almost insensibly from one type to
another.

155. The only forms of matter which can be treated in a
simple manner, besides perfectly rigid and perfectly elastic
solids, are pesfect liguids and perfect gases; and also
ordinary liquids and gases when at sest. It remains now
to see what special mechanics is necessary for matter in
these two fluid states.

The special mechanics for liquids is called Hydro-
dynamics ; the branch of it treating of liquids at rest being
Hydrostatics.

The branch of hydrodynamics relating to fluids in motion,
or Hydrokinetics, is not an easy subject, and has not as
yet made much progress.

The special mechanics for gases is called Pueumatics, or
sometimes Aérodynamics.

156. The essential difference between the mechanics of
solids and the mechanics of fluids is based upon the
different ways in which they transmit pressure. Thus, take
a rigid stick standing on the ground, and press downwards
upon the upper end of it; the pressure is transmitted
unchanged to the other end, which therefore presses the
ground with an equal force; but.not the slightest pressure
is exerted sideways, say against a tube surrounding and
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fitting the stick. But place some liquid in a closed tube,
and press one end of the liquid with a piston ; then, though
the pressure is still transmitted to the other end, it is also
transmitted sideways to every part of the tube just as
much ; and, moreover, the pressure on the closed end of
the tube is not now necessarily equal to the pressure of the
piston, unless the area of the closed end equals the area of
the piston ; if the area is greater, the pressure is greater,
and if less, less. Every portion of the surface of the tube
which exposes to the liquid a surface equal to the area of
the piston, experiences a pressure equal to that exerted by
the piston ; a fact which is briefly expressed thus:

Fluids transmit pressure equally in all directions.

This is entirely because of their plasticity, or the perfect
mobility of their particles. The structure of a liquid might
be imitated roughly by a number of exceedingly small well-
oiled shot. A bag full of such shot, if compressed in any
way, would experience the pressure in every part of it.

CHAPTER XI
ON THE PRESSURE OF GRAVITATING LIQUIDS AT REST.
(Hydrostatics.)

157. We conceive a perfect liquid as an incompressible
fluid, that is, a body all whose particles are capable of free
motion among themselves without the slightest friction,
whose shape therefore is wholly indefinite, but whose
volume it is impossible to change. Water is an imperfect
liquid, partly because it is slightly compressible, but prin-
cipally because it is slightly viscous—that is, because its
particles experience, when they slide over one another, a
certain amount of resistance analogous to friction, called
viscosity.
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Hence it is that a basin full of water which has been stirred round
and round and left to itself, will after a time come to rest. The
energy of motiomr will be wasted by *friction’ against the wet
sides of the vessel—that is, it will be expended in warming the
water. But because the friction is very small, a particle of water
can travel against it a long way before its energy is expended—that
is, before the work done, Fs, is equal to the energy to be got rid of,
$ mo

158. The friction due to viscosity differs from ordinary
friction in that it depends very greatly on the speed of the
relative motions ; it seems, in fact, to be about proportional
to the square of the velocity, and as the velocity vanishes,
so does the viscosity-friction. The properties of water, or
any other actual liquid é# motion, are therefore very dif-
ferent from those of the ideal perfect liquid ; but when
water is af rest, there is no friction among its particles,
their reactions are all normal, and its behaviour is then
identical with that of the perfect liquid. Hence it is that
the mechanics of liquids a# rest (even such liquids as
treacle) is so simple ; the simple laws of the perfect liquid
are applicable to them, for their viscosity may be neglected.

Pressure of Fluids in General at Rest.

159. The general law of pressure common to all fluids,
and following at once from the mobility of their particles, is
that they act like perfectly smooth bodies (cf. sect. 104) ; or,

The pressure of a fluid at rest is always perpendicular
to every surface on which it acts.

For if the reaction of the surface had any component
along it, it would be able to move the fluid, which would
therefore be o/ at rest.

A second general law may also be stated thus: If a
pressure is applied to any area of the surface of a fluid in
a full closed chamber, that same pressure is transmitted to
every portion of the walls of the chamber of equal area
(sect. 156).
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Thus imagine a closed cistern quite full of water, with tubes
or cylinders let into the sides anywhere, and plungers or pistons,

A, B, C, D, fitting these tubes quite
freely, but yet water-tight (fig. 64) ; and
let A have an area of I square inch; B,
2 square inches ; C, 3; and D, 4 square

inches. Now push A in with a force say

of 20 poundals; every square inch of
the interior surface of the cistem will

experience this pressure, and therefore B
will experience a force of 40, C of 6o,
and D of 80 poundals. Of the three
larger pistons, let D be the only one free
to move, and let a constant external
pressure of 80 poundals be applied to it ;
then if A is pressed in with a force the least

Fig. 84

exceeding 20, D will

move out and overcome the force 80. But it would only move {th

as fast as A. This is evident ; for suppose

A were pushed in 1

foot, it would throw 12 cubic inches of water into the cistern, and
therefore into the cylinder of the other movable piston, D ; but
as this cylinder is 4 square inches in area, the 12 cubic inches of

water would only cause D to move out 3

Fig. 65.—Hydraulic Press.

inches, the quarter of

a foot. In other words, the work (Fs) done by the piston A,
20 X 12, is equal to the work done upon the piston D, 80 x 3.
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So that we have here simply a machine subject to the universal
law of machines, that ‘ what is gained in power is lost in speed,’
or more accurately, that there is no guin of energy in a Aydraslic
machine any more than in any other.

The machine just described, put into a working form, is known
as the hydraulic or Bramah press (fig. 65). It consists fundamentally
of two cylinders of different sizes, with pistons or plungers fitting
them, and a pipe connecting them. Water fills both cylinders, and
the mechanical advantage of the machine is the ratio of the areas
of the two pistons A : g4, so that a §5o0-lb. pressure on the small

piston balances 50%“)3. on the large one. The liquid acts only as

an incompressible plastic medium for transmitting pressure. For
a fuller account of the machine, see Ganot, sect. 99, or Deschanel,
page 221,

160. So far we have supposed the pressure to be produced
only by pistons which endeavour to compress the liquid,
but it is important to consider also pressures due to the
weight of the liquid. Every particle of a liquid is attracted
to the centre of the earth, and will tend to get there by
percolation unless prevented by being inclosed in some
vessel with impervious sides ; in other words, water must
be kept in non-porous vessels. The vessel, however, need
not have a lid, for a Zigwid occupies an unchangeable
volume, and therefore may have its upper surface free ; it
keeps at the bottom of the vessel as the nearest accessible
position to the centre of the earth, But it will press on the
bottom and sides of the vessel with a certain force which
will always be normal to those surfaces, and whose magni-
tude we have now to consider.

Pressure of Liquids due to their Weight.

The first simple law is that the upper or free surface of
a liquid at rest is horizontal ; that is, is normal to the
vertical force of gravity on each particle. Such a surface
is said to be Jeve/, and it is practically flat or plane, because
the forces on the several particles are practically parallel.

Inasmuch, however, as these forces are not really parallel, but
intersect at the centre of the carth, the level surface of a liquid at
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rest is not really plane, but is curved round the centre of the earth ;
in other words, it forms part of a sphere with the radius of the
earth as its radius. The curvature is too small to be appreciable
in a bucketful of water, but it is apparent enough in the ocean.

Another law, that the pressure of a liquid varies directly
with the depth, is what we must now establish.

161. Consider a cylindrical bucket with a flat bottom,
filled with water ; the base of the vessel has to support the
whole of the water, as if it were a rigid mass slipped into
the bucket with its sides well oiled. For although certainly
the sides are pressed, and therefore exert reactionary
pressure on the water, yet they, being upright, press it
horizontally only, and so can have nothing to do with
sustaining its weight. The pressures of the sides simply
maintain the shape of the water in opposition to the force
of gravity, which tends to flatten it out.

The pressure on one side is equal and opposite to the pressure
on the other, and therefore there is equilibrium, unless part of one
side be removed by boring a hole through it. In that case the
water will flow out, and the uncompensated pressure on the side
opposite the hole will force the vessel bodily along in a direction
opposed to the stream of water. This is the principle of Barker’s
mill, turbines, Catherine wheels, rockets, &c. See Deschanel,
page 92; or Ganot, sect. 193.

In an upright cylindrical vessel, then—that is, any vessel
with vertical sides—the pressure on the base is equal to the
whole weight of water contained in the vessel. But the
cubic contents of a cylinder are obtained by multiplying its
height by the area of its base always, whether that base be
round or square, or any other shape; and the weight of
water a vessel can contain is, of course, its contents in cubic
feet multiplied by the weight of each cubic foot. Hence,
the pressure on the base of an upright-sided vessel, A square
feet in area, filled to a height of & feet with a liquid of
which a cubic foot weighs s 1bs,, is in Ibs. weight, P = sA4.

Thus, suppose an oblong-based plane-sided cylinder (also called
a grism) with base 10 inches by 5 inches, and height 15 inches;
the contents would be 10 x § x 15 = 750 cubic inches, and the
pressure on its base when full of water would be the weight
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of 750 cubic inches of water; which happens to be about
273 lbs. weight.

162. If we are speaking about water, this s is often written ),
meaning the weight of a cubic unit of water, just as it might be
written m if we were speaking of mercury. Whether w stand for the
weight of a cubic inch, a cubic foot, or a cubic centimetre, is wholly
immaterial, being only a matter of custom or convenience ; only we
must keep to one unit all through. Hence, we use the word, a
cubic unit, as expressing the cube of whatever arbitrary length
happens to be taken as the unit of length in other parts of the
book, or quesuon, or problem under consideration.

A cubic foot is found to contain 62.33 1bs. avoirdupois of water,
which is not far off 1000 ounces.

A cubic inch contains the yAygth part of this—namely, 252%
grains.

A cubic centimetre contains one gramme of water ; and this is
one reason why the French system of weights founded on the
gramme makes calculations simpler: the unit of mass, or unit
quantity of matter, is defined as that of unit volume of water.

Mercury is 13:6 times as heavy as water. Hence 1 cubic inch
contains about A%’ ounces of mercury; and & cubic centimetre
13-6 grammes. .

163. Suppose now that, instead of a cylindrical vessel, we
consider a conical one, set up like a
tumbler, with the wider end uppermost :
then the pressure on the sides, being
still perpendicular to them, is no longer
horizontal, but has more or less of a
vertical component as well as a hori-
zontal one; hence, we can no longer say
that the pressure on the base is the
whole weight of water in the vessel, for
the sides may and do support some.

How much the sides support, and how much the base, may be
readily seen by imagining an infinitely thin circular drum of the
same diameter as the base of the vessel to be let into the water, as
shewn by the dotted lines (fig. 66). Or you may suppose a thin
circular drum of the liquid to freeze or become rigid, as indicated
by the dotted lines.

The pressure across the walls of this imaginary drum is hori-

Fig. 66.
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zontal ; and inside the drum we have what is equivalent to a rigid
cylinder, with well-oiled sides, resting on and entirely supported by
the base (just as we had in the cylindrical vessel) ; while outside
we have a ring-shaped mass of water which is not supported by
the base at all, and therefore must be supported by the sides. It
is, in fact, supported by the vertical component of the pressure of
the sides, and therefore it has nothing to do with the pressure on
the base, which is wAZ% as before.

So also, if we turned the conical vessel the other way up, with
the wide end as base; the pressure on the base would then be
greater than the whole weight of water in the vessel, because of the
vertical component of the pressure of the sides, which now acts
downwards. And, as the pressure of the water on the sides would,
if the sides were removed, be able to sustain the ring-shaped mass
of water completing a drum set up on the base, it follows that
the whole pressure on the base is still the weight of a volume of
liquid filling a cylinder whose base is the actual base, and whose
height is the height to which the vessel is filled ; or again, wAA
as before.

Notice particularly that none of this reasoning is impaired
or affected if the sides of the vessel, instead of being plane,
are curved or zigzag, or indeed any shape whatever, as in
figs. 67 and 68. The pressure on the base is always simply
sAA, or the weight of a cylinder of the given liquid with the

Fig. 67, Fig. 68

given base as base, and the given height as height ;. for the
base supports this cylinder, the sides support the rest.

164. The vessel shewn in fig. 68 is supposed to be
flexible like an india-rubber tube, and its base can be turned
into different positions as in fig. 69; but, since liquids
transmit pressure equally in all directions, the pressure on
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it will not vary except in so far as the bending of the tube
alters the height of the liquid in
it. The only difficulty is the
knowing what point to measure
the depth to. The pressure on
the lower part of the base is
greater than that on the upper
) portion ; but since the pressure
is simply proportional to the
depth, the average or mean pres-
Fig. 9. sure will be simply the pressure
at the average or mean depth
(compare average velocity in sect. 22)—that is, the pressure
at the middle point of the base. Hence, the pressure on
any surface of area A, immersed under a liquid to the mean
depth k, is always sAA.
The surface plainly need not form the base of a vessel,
but may be immersed anyhow.

‘Thus, let a rectangular plate s inches long by 4 inches broad be immersed slant-
ingly under water, so that its upper edge is 8, and its lower edge 10 inches below
the surfi Then evidently its mean depth, or depth of its middle point, is 9
inches ; and the pressure on its surface, being equal to wAk, iswXxsXx 4 X9
=:low=xsox:;—§-:mcsweight.

If the liquid had been mercury, this pressure would have been 13-6 times as
great,

To find the mean depth of a bent or curved plate of
irregular shape requires calculation, and the calculation
required is just the same as that which would be used to
find the centre of gravity of the plate (indeed, the centre
of gravity is the most middle point in a body); hence the
mean depth of a surface is often spoken of as the depth of
its centre of gravity.

So we get the perfectly general result for liquids subject
only to gravity :

The pressure on any surface whatever, due to the
weight of a liquid under which it is immersed, is its
area, multiplied by the vertical depth of its centre of
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gravity below the free surface of the liquid, multiplied
by the weight of a cubic unit of the liquid;

or in symbols, P = sAA.

There is nothing more to explain. This simple formula
contains it all.

165. Since the pressure of a liquid does not depend upon
the quantity of the liquid, but only upon its depth, we may
make a small quantity of liquid exert any pressure we
please by putting it in a long narrow vertical tube, and
giving it a large area to press upon.

This is the principle of the ¢ Hydrostatic Bellows ;’ which con-
sists of a pair of circular boards joined
water-tight by corrugated leather like ordin-
ary blow-bellows, with a long tube opening
into the cavity between the boards, which
rises a good height, and finishes off with a
fannel. See fig. 70. A man may stand on
the upper board of the bellows, and raise
his own weight slowly by simply pouring
water down the tube.

For if A be the area of the upper board
of the bellows, and 4 its vertical depth
below the surface of the water in the tube,
all that is necessary to balance the man is
that A2 shall be equal to or greater than M
his weight, say 200 lbs. or 3200 ounces. S

Suppose A is a square foot, then to find the neces- Fig. 70.
sary height 4 to which the tube must be filled, we
have 1000 X 1 X A== 3200; or £==3-2 feet, a very moderate height indeed.

The man is, in fact, equal to a cylinder of water standing on A
as base, and of height 3.2 feet; for this quantity of water would
be balanced by the column of water in the tube (see sect. 167 and
fig. 71), and the board and man take its place. The man rises
80 soon as this imaginary cylinder of water is equal to himself in
weight ; and it will be equal to him in weight just about the same
time as it is equal to him in bulk, for 2 man is just about able to
float in water (see Chapter XIL).

Hence the average cross section of a man is equal to the area of the board

of a hydrostatic bellows, on which he would just be supported by a column of
liquid equal to himself in height; for instance, if his height were 6 feet, and
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his weight 15 stone (azo Ibs.), his average cross section would be :56 square
foot, or 80-64 square inches, because 1000 X 56 X 6 =1310 X 16.

166. The total pressure on a surface under a liquid
depends partly on itself—namely, on its area; but the
pressure per sguare inck of surface depends not at all on
itself, but on external conditions—namely, how deep it is
immersed, and what it is immersed in: hence it is con-
venient to distinguish these, and to call the pressure per
unit of surface the #nfensity of the pressure, and to denote

it by g, so that p = %; or of course, = sk

One often speaks simply of ¢the pressure of a liquid®
at such and such a depth, without specifying the sur-
face on which the pressure is exerted; for instance, the
pressure of the ocean at a depth of one hundred fathoms,
and so on. In such cases the infemsity of pressure is
always meant, or the pressure which would be experienced
by a surface of unit area if placed at that depth—that is,
simply s&.

The pressure of an incompressible fluid (or liquid)
therefore varies directly with the depth (for s is con-
stant) ; being nothing at the surface, and increasing
uniformly as you descend.

167. When any number of communicating vessels are

filled with the same liquid, the level of the liquid in all is
the same. See fig. 71.

Fig. 71,

For the intensity of the pressure at any point due to every
column of liquid must be the same, or there could not be equili-
brium ; and this pressure is proportional to the depth.

Further, when communicating vessels contain different
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liquids which do not mix, the heights of the columns of
liquid are inversely as their specific weights.

For take any two, one full of mercury say, the other of water.
Call the area of the surface of contact of the two
liquids (fig. 72) A, and let the vertical height of
the surface of the water B above A be called 4,
while the vertical height of C, the surface of the
mercury above A, is called 4’ ; then the pressure
on each side of the area A must be the same, as
_ soon as there is equilibrium and the columns have
ceased to oscillate ; but the pressure on its upper
side is wAA4, and on its lower, mA#, hence
wh=mh,or A: X ::m :w. Fig. 12

Centre of Pressure.

168. The whole pressure on a surface under a liquid may
be considered as composed of a number of parallel forces
—the pressures on each individual small area of the surface
—and all these parallel forces will have a resultant equal to
their sum, passing through a certain point of the surface
which is called the centre of the parallel forces (cf. sect.
118), or the ¢ centre of pressure.’

1. The small plunger or pump-piston of a Bramah press
is half an inch, and the large one is 8 inches, in dia-
meter ; the pump is worked by a handle 5 feet long,
the fulcrum being one inch from the point of attach-
ment of the plunger; what is the greatest weight
that a man of 15 stone can lift by this machine if he
sits on the end of the handle ?

Ans. The mechanical advantage of the lever is 60, and
of the press itself 256 ; hence the total mechanical advan-
tage is 15,360, and the greatest weight the man can raise
is 1440 tons,

2. Find the pressure on the bottom and sides of a cubical
vessel 10 centimetres in the side full of mercury.

Amns. 13,600 grammes weight on the bottom, and 6800
on each side.

K
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3. Find the pressure on one side of the above cubical vessel
if half full of water and half full of mercury.
Ans., 2075 grammes weight.
4. What is the pressure of water at a depth of 1020 feet ?
Ans. 30 ‘atmospheres’ or about 440 lbs. weight per
square inch.
5. A sphere one metre in radius is just immersed undex
water ; what is the pressure on its whole surface ?

Ans. 12,566-4 kilogrammes weight.

CHAPTER XIL
FLOATING BODIES (Hydrostatics continued).

169. We shall now proceed to consider what happens
when a solid is wholly or partially immersed in a liquid.
Most of what we shall state will be true of fluids in general,
but receives its most obvious illustration in the case of
liquids.

When you dip your hand in the water, you displace some
of the water ; in other words, a portion of space below the
surface which was formerly occupied by water is now
occupied by your hand. The volume or bulk of the water
displaced is, of course, equal to the volume or bulk of your
hand.

All solids, then, when immersed either wholly or partially
in a liquid, displace a volume of that liquid equal to the
bulk of that part of them which is immersed. This is
perfectly obvious.

170. Further, when your hand is immersed you can feel,
if you attend, a certain pressure urging it up out of the
water. This upward pressure is more apparent if you
immerse your whole body; indeed the upward pressure
is then so great as nearly to counteract the weight of
your body altogether, consequently, in a bath you weigh
apparently next to nothing.

This upward pressure is what we must now discuss.

Take an ordinary chemical test-tube of very thin glass,
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and plunge it in water with the closed end downward. You
will feel a very distinct upward pressure, and the tube will
be forced up if you let go. Keep, however, the tube
immersed, and slowly fill it with water. You will find that
it is forced up gradually less and less, until, when the level
of the liquid inside and out is the same, the tube will weigh
almost exactly the same as it did before it was immersed at
all. The displaced water has been restored.

If you perform this experiment accurately with a balance, you
will find the tube does not gusfe recover its original weight, even
when the level is the same inside and out. This is evidently
because some little water is still displaced by the walls of the tube,
which, however, are very thin, and in what follows will be assumed
to be infinitely thin.

Now imagine the glass tube annihilated ; the water it
contained will remain occupying the place the tube had
occupied, and experiencing the same pressures as the tube
did ; because the same quantity of water is displaced as
before, only now not by the glass tube but by the liquid water
which had been poured into it. Obviously, however, this
water will be in equilibrium, as all water in water at rest is;
hence the two forces under whose influence it is—namely,
its weight downwards, and the pressure of the surrounding
water upward—are equal and opposite. But the pressure
upward is the same as that the tube experienced before
its annihilation ; therefore the pressure on the tube was
equal to the weight of its own volume of water—that is, the
weight of the water it displaced—and acted in the same
straight line, namely, through the centre of gravity of the
water displaced.

This result is perfectly general, and is known as the
principle of Archimedes.

When any solid is immersed either wholly or partially
in a fluid, it is pressed up with a force equal to the
weight of the fluid displaced; and this force may be
considered to act at the centre of gravity of the
fluid displaced.
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The fluid displaced is equal in volume to the solid, hence
the upward force is the weight of an equal bulk of the fluid.

To shew this by means of our symbols, consider a special case, say a cubical
block of stone, a inches in the side, immersed in water, so that its upper surface
is at a depth & below the surface of the water, and therefore, of course, its

lower surface at a depth & + a (fig. 73). The area
of any of its faces is 43, The pressure on its upper
face (sect. 162) is wa2k, on its under face is
wad(k + a), and on each of its sides wadA + {a).
The pressures on its four sides are horizontal, and
are in equilibrium among themselves two and two.
The pressures on its upper and lower faces are

P’ opposite but are not equal, and therefore are not in
equilibrium : their resultant is

wad(k + a) — wa%k = wa3 units of force

acting upwards. But a8 is the volume of the block,
and wa? is the weight of this volume of water—that is, the water displaced by
the block ; so then the resultant of all the pressures on its entire surface is a
single force upwards equal to the weight of the water displaced.

If we did not care about simplicity, the same might be shewn by the symbols
for a solid of any irregular shape wh er, and a most important mathe-
matical theorem it would be. You may make its acquaintance hereafter in a
more general form under the name of * Green’s theorem.’

Fig. 73.

171. But now we know that if the cube in fig. 73 were
really a block of stone it would not stay where it is ; it would
sink. This is because it is only pressed #p by the weight
of an equal bulk of water, whereas it is pulled down by the
weight of its own bulk of sfose—which is greater. The
resultant force pulling it down, or its apparent weight under
water, is

sa® — wa?®, or more generally (s — w)v ;

if s stand for the specific weight of stone, and 7 for the
volume of the block, whatever shape it may happen to be.
It still weighs downward, therefore, but it has lost weight
equal to the weight of its own volume of water. If, on the
other hand, it were a block of wood, it would be pulled
down only by the weight of the wood, whose specific weight
d is less than that of water; consequently it is forced
upwards with a resultant force

wa® — da®, or (w— d)v.

And so generally, an immersed body is always urged up or
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down with a force proportional to the difference of the
specific gravities of itself and the liquid in which it is
immersed—up, if its specific gravity be the less ; down, if it
be the greater. Only when the specific gravities of the solid
and liquid are equal, does the solid remain floating wholly
immersed in any position—that is, in neutral equilibrium.
172. When a light body rises in a liquid, the resultant force
urging it up is constant so long as it is wholly immersed ;
but it decreases as soon as some of the body begins to
emerge, and it vanishes as soon as the weight of the water
displaced equals the weight of the body. Hence, a body
whose specific gravity is less than that of a liquid can float
in that liquid, and does-float in stable equilibrium when it
has displaced a quantity of liquid equal to itself in weight.
A piece of floating wood, for instance, whose whole bulk
is 9 cubic inches, and which is §ds as heavy as water, must
float with 6 cubic inches immersed ; for 6 cubic inches of
water will be as heavy as 9 cubic inches of wood. And so
generally,
immersed volume of a floating body  weight of unit vol. of solid
whole volume = weight of unit vol. of liquid
= relative specific gravity of solid.

Since ice, for instance, has a specific gravity of §, that is, since 9
cubic feet of ice weigh the same as 8 cubic feet of water, it follows
that an iceberg must have §ths of its whole bulk immersed;
hence, the visible berg is only §th of the whole mass, there being
eight times as much underneath the water. So also a floating cork
whose specific gravity is ¢ has  of its volume projecting above the
water.

Determination of Specifio Gravities.

173. The foregoing principles are all remarkably well
illustrated by their practical application to the determina-
tion of specific gravity.

First, let us define what we mean by speific gravity. Reler
to sect. 32, and you will find demsity defined as the mass of anit
volume, or the mass of any volume divided by that volume,

=
! v

.
H
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similarly we might define specific gravity as the weigh? of unit

volume, or the weight of any volume divided by that volume,
s=_3

which would make specific gravity be to density as weight is to

mass ; or, as weight is g times mass (sect. 60), the specific gravity

of a substance would be g times its density.

This, however, is not the definition of the term specific gravity
as ordinarily used ; it is the definition of what is called adsolute
specific gravity, which for distinction has been here called ¢ specific
weight,’ whereas the ordinary or relafsive specific gravity is the
weight of any volume of a substance compared with the weight of
an equal volume of some standard substance. The relative specific
gravity of mercury with reference to water, for instance, is 136;
of wood is, say -6, and so on.

When one speaks of Zke relative specific gravity of any
body, without stating the standard substance to which
reference is made, it is understood that that standard sub-
stance is water ; and so we may define #ke relative specific
gravity, or ke specific gravity of a substance, as the weight
of any volume of it divided by the weight of the same
volume of water.

Its relative density is precisely the same thing, both being simple
numbers of equal value, but one having a direct reference to

weight, the other to mass.
We have, mthepreocdmz chapwr medaumndmglorthe:bo!utetpeuﬁc
gravity or ‘specific weigh 1, m for that of mercury,

and tw for that of water; so t.hc relative spectﬂc gravities of the three things
m,ofooune,é—, —E—,md—:-;thenhﬁmspeciﬁcmﬁtyofnmwbdm

of course unity.

Fyench measure.~In the metric sy of weights and , the absol
and relative specific gravity of a thing are represented by the same number,
because the unit volume of water is defined to be the unit of mass (cf. sect. 162).
The absolute specific gravity of water, or the weight of x cubic centimetre, is
1 gramme ; and if a thing is three times as heavy as water, a cubic centimetre of
it weighs 3 grammes, and so on.

To compare the Specific Gravities of two Liguids
174 1st Method.—If they do not mix, place them one in each of
the two legs of a U tube, and measure the heights of their respec-

tive columns (sect. 167); then ‘L = A1,
L] A
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This method is not often used, as it is not very convenient, but it has been
employed to pare with great y the relative densities of mercury at
the boiling and freezing points of water. (DulongndPem method for abso-
lute coefficient of expansion of mercury; see Ganot, art. 273, or Deschanel,
Part I1., page 287.)

2d Method—Weigh a bottle full of the first liquid, and then
the same bottle full of the second ; deduct from each the weight of
the bottle, and you will have the weight of the same volume of the
two liquids to compare. In symbols, if 4 is the weight of the
empty bottle,

m-s

-" w,- )
‘This method is often used. M(‘npectﬁc-pnﬂty bottles’) are made for

previously ascertained. Fig. 74.

3d Method—Take any solid heavier than both liquids and
insoluble in either of them, weigh it first in air (or vacuum), then
immerse it wholly in one of the liquids (hanging it from the pan of
the balance by a fine wire or hair), and weigh it in that. It now
weighs less by the weight of the liqnid it displaces—note this loss
of weight. Now weigh it in the other liquid, and note its loss of
weight in that. The same volume of each liquid has been dis--
placed, and the first loss of weight was the weight of this volume
of the first liquid ; the second loss, the weight of the same volume
of the second liquid; so the specific gravity of the first liquid
referred to the second, is the ratio of the first loss to the second
loss. Or in symbols, if 2 is the weight of the solid in air, and
and w, its weight in the two liquids respectively,

S k.
Sy w— 1w,

This method has been used by Matthiessen to determine the coefficient of
expansion of water. (See Balfour Stewart’s Heat, page s1.)

The operation of weighing a solid under a liquid is conducted
by an ordinary balance with one of its pans replaced by a much
shorter one with a hook under it, to which the solid can be hung
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by a fine platinum wire (fig. 75). When so arranged, it is often
called a hydrostatic balance.

4th Mithod—Take an insol-
uble and non-porous solid lighter
than all the liquids you have to
compare, and float it in each of
them ; ascertaining in each case
the volume of it immersed. The
weight of this volume of the liquid
must in each case be equal to the
weight of the solid, which is
constant ; 50 we obtain a set
of different volumes all of the
same weight. Call these volumes
® v, vy &c, and let w be the

weight of the solid ; then

since W= o9 = g5y = vty = &G 3
the ratios of the specific gravities to one another are inversely as
the immersed volumes., Instruments for carrying this out are made
of glass or metal, and sold under the name of Aydrometers (see sect.
177)-

Stk Method.—Take a solid lighter than all the liquids, and float
it in each, loading it s0 as to immerse the same volume in all ; that
is, always make it sink to a fixed mark. The weight of this volume
of the liquid is the weight of the solid plus the load, so the specific
gravities of the liquids are as the numbers representing this total
weight in the different cases.

An instrument for carrying this out is called Fahrenheit’s hydrometer, but it
is seldom now used.

Another method is given in Ganot, art. 121.

To determine the absolute Specific Weight of a Liquid.

175. 1s¢ Method—Weigh a known volume of the liquid in a
gauged specific-gravity bottle (fig. 74), and divide the weight by the
volume.

2d Method—Weigh a solid of known volume before and after
immersion in the liquid, say a sphere of measured diameter. Its
loss of weight will be the weight of its own volume of the liquid,

. . . .. loss of weight of solid
so the weight of unit volume of the liquid is Vol ofsold —*
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To determine the absolute Specific Weight of a Solid.

Weigh a known volume of it, say a sphere or a cube or some-
thing easily gauged, and divide the weight by the volume.

To compare the Specific Gravities of a Solid and a Liquid.

176. 15t Method. —If the solid be heavier than the liquid. Weigh
it in air and in the liquid, and divide the weight in air by the
loss of weight in the liquid ; the quotient is the relative specific
gravity of the solid referred to the liquid; s = w_"'_.

—_w
szdﬁoa’—Appheablc only if the solid be lighter than the
liquid. Float it in the liquid, and take the ratio of the volume
immersed to the whole volume (sect. 172).
If the solidis a ,' der floating upright, volumes are proportional to lengths ;

length immersed
and the specific gravity is then ~whole length

3d Method.—If the solid be lighter than the liquid. Weigh it
first in air; then immerse it in the liquid by attaching a heavy
body to it to sink it, and weigh the two together. Also weigh the
sinker by itself in air and in the liquid. The loss of weight of the
two together gives the weight of liquid displaced by both ; the loss
of weight of the sinker alone gives the weight of liquid it dis-
places ; therefore the difference of the two losses gives the weight
of the liquid displaced by the body itself—that is, the weight of an
equal volume of the liquid. So the relative specific gravity of the
solid is its weight in air divided by the difference of the two losses.

A liquid must always be chosen in which the solid is not soluble. Thus, for
a piece of rock-salt, one must not use water, but cither some such liquid as
turpentine or benzol, or a saturated solution of salt; and the specific gravity of
the salt referred to this liquid must be multiplied by its specific gravity to give
the specific gravity of the solid with reference to water.

Another, though essentially similar method, is given under
Nicholson’s hydrometer, sect. 177, which see.

4¢h Method. —Useful when the solid is in the form of a powder.
The difficulty with a powder is that it is impossible to gauge the
volume of the solid particles directly, and also difficult to suspend
the powder in water so as to determine its loss of weight. A
specific-gravity bottle with a wider neck than that shewn in fig. 74
is used. Ascertain the weight of the bottle when empty, and also
the weight of water it will contain when full up to the mark. Put
& known weight of the powder into the bottle, and fill up with
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water ; the powder displaces some water, so it will not now hold
so much as before the powder was in ; but the weight of the whole,
minus the weight of the powder and bottle, gives the weight of the
water now in. The difference between this weight and the weight
of water the empty bottle originally contained, gives the weight of
water displaced by the solid powder ; so the specific gravity of the
solid is

weight of powder
weight of water required to _  weight of water required to fill up
fill empty bottle bottle after the powder is in.

If the powder be soluble in water, of course some other liquid
must be used : the result can be multiplied by the specific gravity
of this liquid, if the specific gravity of the powder referred to water
be required.

Hydrometers,

177. A hydrometer is a light body loaded so as to float in stable
equilibrium at the surface of a liquid, and of a shape which
renders it easy to observe accurately how much of its volume is
immersed ; and its use is to compare the specific gravities of
liquids, or of solids and liquids. See methods 4 and §, sect. 174,
and methods 2 and 3, sect. 176. They are of two classes.

1s¢, Hydrometers of variable immersion or common hydrometers
(Twaddell’s, Beaumé's, Sykes’, &c.).

24, Hydrometers of constant immersion (Nicholson’s and
Fahrenheit’s).

15t Class,—Common hydrometers are glass cylinders or ¢ stems,’

loaded and arranged so as to float upright. This
is done by making them terminate below in a
couple of bulbs, one full of air, the other full of
mercury or shot (fig. 76). They must be of such
weight as to float in a liquid with part of the
cylindrical stem projecting ; hence they are usu-
ally sold in sets, say a set of three, one for
heavy liquids, one for medium, and one for
light. The heavier the liquid the more of the
stem projects, but in a light liquid they sink
pretty deep—always sinking until they have
. displaced their own weight of the liquid. A
thin stem makes the instrument sensitive, a
wide stem diminishes its sensitiveness, but in-
Fig. 76. creases its range.
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The specific gravity of the liquid is (see sect. 172),

the whole volume of the instrument x the weight of the instrument
the volume immersed the weight of an equal volume of water

(the last fraction being the average specific gravity of the instru-
ment) ; that is, the specific gravity of the liquid varies inversely
with the volume immersed. The stem, however, is graduated so
that the specific gravity is read off directly from the numbers on it.

2d Class.—Hydrometers of constant immersion will serve not
only to compare the specific gravity of liquids, but also to deter-
mine the specific gravity of any solid, whether heavier or lighter
than water, and this is their principal use ; they will, moreover,
make a very good substitute for a common balance. They consist,
like the others, of a floating cylinder, which, however, is usually
made very thin, and instead of being graduated, has one fixed
mark on it, to which the cylinder is always sunk. The append-
ages to the cylinder are, a tray, A; a large light bulb, B; and
a heavy bulb, or tray and cage, C. Fahrenheit’s has only a
shotted bulb below, and is made of glass. Nicholson’s is made of
metal,sothatitmnnotbeusedinconosiveliquids. It is, in fact,
only used ﬂoatmg in water to determine the speaﬁc gravity of
solids: it is the one which has the tray and
cage C, and is shewn in fig. 77.

To sink it down to the fixed mark = on the
fine cylindrical stem, some extra weights must be
put on the tray A; let 20 grammes be the
weight required.

To use it as a common balance, you place on
the upper tray the body you wish to weigh,
and then add weights, say 6} grammes, till it
has sank to 72 ; one then knows that the body
weighs 20 — 6} = 13} grammes.

To use it as a hydrostatic balance, you place
the body in the lower tray ; and now it requires
say 3 more grammes to sink it to the mark, Fig. T7..
shewing that the solid has lost 3 grammes of g‘d”'”“'
weight by being immersed in water, hence this ~ Fydrometer
is the weight of the water it displaces; and its specific gravity is

'_gj == 4} (cf. Method 3, sect. 176).

(Its weight when under water is of course 10§ grammes.)
Suppose the solid had been lighter than water, and that when
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" it was in the upper tray 12 grammes had been required to sink the
instrument, whereas, when placed in the lower tray (where of
course it would tend to float upward, and have to be confined by the
cage), 30 grammes were required ; then the loss of weight in water
would be 18 grammes, and as its weight was 8, its specific gravity
would be $.

(Its weight when under water is — 10 grammes—that is, 10
grammes upwards.)

Equilibrium of Floating Bodies as regards Rotation.

178. We have now learned that a body necessarily floats
in a liquid whenever it displaces its own weight of that
liquid—that is, that under these circumstances the two
contrary forces, its own weight and the resultant of all
the fluid pressures on its surface, are equal, and are hence
in equilibrium as far as framslation is concerned. But in
order that there may be also equilibrium as regards rofa-
tion, these two equal contrary forces must act along the
same straight line ; in other words, since the weight of the
body passes through its centre of gravity, the resultant
of the fluid pressures must also pass through this point;
or, again in other words, the centre of pressure (sect. 168)
of the immersed surface must lie vertically under the
centre of gravity of the body.

When this condition is satisfied there is complete equili-
brium ; but there remains the question whether this equili-
brium is stable or not.

It is manifestly stable if the point of application of the
upward force is above the point of application of the down-
ward one.

Now, just as the downward force, the weight of the solid, may
be considered as acting at its centre of gravity, so the upward
force, the weight of the liquid displaced, may be considered as
acting at 2 centre of gravity; and this point, the centre of
gravity of the liquid displaced, is the real centre of buoyancy or
JSlotation ; the term ¢ centre of pressure’ being commonly applied only
to simple surfaces which displace no water. The centre of pres-
sure is always a point on the swr/ace—namely, that point where
the line of resultant pressure meets the surface. This line of
resultant pressure, which is vertical, and which always passes through
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both the centre of pressure and the centre of buoyancy, may be
called the /ine of suoyancy.

If, then, the centre of gravity of the water displaced be
above the centre of gravity of the solid, the equilibrium
is certainly stable.

This, however, cannot be the case with Aomogeneous solids ; it
can only be satisfied by loading the floating body. And it is
satisfied in all the above hydrometers; their centre of gravity
being down near the shotted bulb, while the centre of gravity
of the water displaced is up near the centre of the air-bulb;
consequently their equilibrium is very stable.

But unless the floating body is totally immersed, it is
quite possible to get stable equilibrium without satisfying
the above condition ; in other words, this condition is suffi-
cient, but not necessary, for bodies floating at the surface of
a liquid.

For instance, in a canoe, the joint centre of gravity of canoe and
occupant is much higher than that of the water displaced by it ;
and so it is in ships and boats generally, though ballast is used to
keep the centre of gravity of a vessel as low as possible.

The bigher the centre of gravity of a vessel is, the less is its
stability ; and by making it high enough, the equilibrium is sure to
become unstable, so that the least disturbance will cause the body
to rotate or turn over into some more stable position.

You will find an example of unstable equilibrium if you try to float an empty
bottle or a common pencil upright. A penholder, however, or & bottle half full,
will float upright one way, because loaded.

A long cylinder like a pencil or wine-cork floats in stable equilibrium on its
side; but a short cylinder like a flat plate or a collar-box will float with its
length vertical. A sphere rests in ] equilibrium in any position ; and so
does a totally immersed homogeneous body of any shape whatever.

179. To investigate fully the conditions of stability or
instability of equilibrium, it is no use taking the body just
in its position of equilibrium with the two equal forces
acting along the same vertical line ; but one must imagine
the body tilted a little, so that the equal forces act along
different though parallel lines—that is, form a couple—and
observe whether the effect of this couple is such as to
restore the body to its original position, or whether it tends
to increase the displacement more and more. In the former
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case the equilibrium in the original position was stable;
in the latter, it was unstable.

Let 1 (fig. 78) be a hemisphere floating in water in equilibrium,
and therefore with the two centres of gravity, G of the body, and
C of the displaced water, in the same vertical line—the line of
buoyancy or resultant pressure. And let 2 be the same body dis-
turbed from equilibrium into a new position, and therefore with a
new centre of buoyancy, C;. We have then the downward force =
acting at G, and the upward force equal to w acting at C,; the
two constituting a couple of moment w x ab, whose tendency is
to restore the body into its original position ; which was therefore
one of stable equilibrium. In 3, this fig. 2 is repeated, but the old
centre of buoyancy, C, of fig. 1 is indicated in the body as well as
the new one, C, ; and the old line of buoyancy, CG, is produced
till it cuts the new one through C, in the point M ; which, in the
case supposed, bappens to be the centre of the sphere.

This point M is called the metacentre.

The metacentre is defined as the intersection of the old line of
buoyancy, drawn in the body when in equilibrium, with the new
line of buoyancy when the body is slightly disturbed from its posi-
tion of equilibrium ; and the rule for stability is :

If the metacentre M is above the centre of gravity G, the equili-

brium is stable.

If it is below G, the equilibrium is unstable.

If M coincides with G, it is neutral.

And the height of M above G measures the séadility.

All this will be seen at once if one just considers the couple as in fig. 2 above.
For consider the upward force acting through the point M on the line GC fixed
to the body (fig. 3);: if M is above G, the upthrust will tend to restore the
body and to bring GC upright again, the moment of the couple being propor-
tional to the length MG; whereas, if M is below G, it tends to topple the body
over more, and to turn the line GC more and more from the vertical.

The position of M depends on that of the new centre of buoyancy,
and this depends on the shape of the floating body about the
water-line. The shape of a ship or boat is devised so as to
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make the metacentre as high as possible, see fig. 79. Outriggers
would raise it still more.

Strictly speaking, the disturbance from equi-
librium ought to be infinitely small in order to
give the correct position of M, and the correct
measure of the stability MG. If the disturb-
ance be great, the will in 1
be in a different position. lf.dnplurchu
too much, the metacentre comes down very
low, and may even pass below G; in which
case, unless all the men can rush to one side,
50 as to alter the position of G, or unless an opportune wave comes to right
the vessel, it must heel over, like the Captain.

Thus, in a floating body in equilibrium, there are four points
vertically over one another (see fig. 78, No. 1) :

M, the metacentre ;

G, the centre of gravity of the floating body ;

C, the centre of gravity of the fluid displaced ; and
P, the centre of pressure of the immersed surface.

Of these P is always the lowest ; and M is always above C (hence
if C happens to be above G, much more is M) ; and the stability or
instability of the equilibrium depends on whether M is above or
below G.

As & matter of fact, a ship, ke many floating hodwn,hs two metacentres ;
one, the one ordinarily spoken of as fke y mrollmg,tho
othu,veryhtxhopmdolno ical d in hil It

would be next to impossible to upset a ship by tilting it at the bows. In the
circulay Russian ironclads the two coincide. In an ordinary

on its side, one metacentre, the rolling one, coincides with the centre of
gravity of the cork ; the other, the pitching one, is a good height up.

In bodies of irregular shape the two lines of buoyancy, CG and
the vertical through C,, need not intersect at all, for they may lie in
different planes : such bodies have no metacentre at all.

The whole subject of the metacentre, however, is not one that
can be treated in an elementary book like the present; and it will
be sufficient to have indicated the sort of ideas connected with the
stability of equilibrium of floating bodies.

BEXAMPLES,
1. Find the force with which a sphere one metre in radius
is urged upward, if it is totally immersed in water (cf.
Ex. 5, Chap. X1.). Ans. 4188.8 kilogrammes weight.
N.B.—Observe that the depth to which it is immersed
is now immaterial,
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2. Find the apparent weight of a decimetre cube of stone
in water, if its specific gravity is 2-5.
Ans. 1500 grammes.
3. How much of this block of stone would project above
the surface of mercury in which it was floating ?
Ans. 816 cubic centimetres.
4. A solid which weighs 35 grammes in air, weighs when
immersed in water only 5§ grammes, while in another
liquid it weighs 14 grammes; find the specific
gravity of this liquid. Ans. 7.
5. The stem of a common hydrometer is graduated into
100 equal parts. The bulb and immersed portions, .
when it is sunk to the division o, are equal to 3
times the stem in bulk. If it sinks to 20 in water,
what will be the specific gravity of liquids in which it
sinks to 80 and to o respectively ?
Ans. 8421 and 1.06.
6. How deep would the hydrometer of the last question
' sink in a liquid of specific gravity -8?
_ Ans. To the division 100.
7. If a floating body projects }th of its bulk above water,
what will be the specific gravity of a liquid from
which 4d of its bulk projects ? Ans. 1-2.

8. If a centimetre cube of metal weighs 8-5 grammes under
water, what is its true weight? A4#ns. 9-5 grammes.

9. A Nicholson hydrometer which will sink to the fixed
mark if 20 grammes be placed on the upper tray,
requires § grammes more if the weights are placed
on the lower tray beneath the surface of the water
instead of on the upper one. What is the specific
gravity of the metal of which the weights are
made? Ans. 5.

10. A body A weighing 3 grammes is attached to another
body B weighing 6 grammes, and the whole immersed
under water, when they are found to weigh 2 grammes.
The body B under water alone weighs 4 grammes,
_so what is the specific gravity of A and of B?

Ans. Of B the specific gravity is 3, of A itis -6,
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11. A specific-gravity bottle, when empty, weighs 1§
grammes ; when full of mercury, it weighs 151
grammes ; and when full of another liquid, it weighs
33 grammes ; what is the specific gravity of this
liquid ? Ans. 1-8,

12. The above bottle, when 8 grammes of a certain sand
have been introduced, and the rest filled up with
water, weighs altogether 30-5 grammes ; what is the
specific gravity of the sand ? Ans. 32

CHAPTER XIIL

ON THE PRESSURE OF THE ATMOSPHERE, AND ON THE
PROPERTIES OF GASES.
(Preumatics.)

180. Most of what we have said in the last two chapters
about liquids is equally true of all fluids. Gases have the
same mobility of particles, and therefore transmit pressure
equally in all directions. Gases are subject to gravity, and
therefore press upon all surfaces in them with a pressure
depending on their depth and density ; and they exert a
sustaining force on bulky bodies equal to the weight of the
gas displaced by them, thus causing them to lose weight,
and if very light to float upwards. Hence, the only part
of the two preceding chapters which does not apply to
gases is that which relates directly or indirectly to the free
surface of a liquid—a free surface being precisely the
thing which a perfect gas never has. It is infinitely
expansible.

This and all other peculiarities of gases as distinguished
from liquids are due to the fact that their elasticity of
volume is not constant or dependent on the gas itself, but
is simply equal to the pressure to which at the time the
gas happens to be subject; but all the special properties
of gases, gua gases, we will reserve for consideration in
sect. 189 ef seg.; at present we will only deal with those
properties which they possess in common with all fluids,

L
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PART L—THE PRESSURE OF THE ATMOSPHERE.

181. Now we live immersed in an ocean of air of
unknown and indefinite depth, and hence we and all
terrestrial surfaces experience its weight just as if it were
an ocean of liquid ; and many phenomena of common life
depend upon this pressure. Its intensity may be expressed
in pounds-weight per square inch, or grammes-weight per
square centimetre, or units of force per unit area; it is not
quite constant at any one place, varying with many
apparently accidental and local circumstances, but its
average value is 1033 grammes weight (or 981 times this
number of dynes), per square centimetre, or 14-6 lbs. weight
per square inch, or roughly, a ton weight per square foot.

Hence, a man’s body experiences a total pressure of about 18
tons weight, for we found his average cross section (sect. 165) to
be 80 square inches, which is that of a rectangle 8" x 10", whose
periphery is 3 feet ; so, if the man be 6 feet high, his surface, with-
out allowing much for irregularities, is 18 square feet.

The pressure is exerted with perfect uniformity on all
sides, and not only on the outside but on the inside too, so
that it is not felt. The only way to make it appreciated is
to destroy its uniformity by partial removal. If the pressure
be removed from one side of any surface, then the other side
experiences the whole uncompensated pressure of 14 lbs.
per square inch. If the air be withdrawn from any closed
vessel, the outside experiences a crushing pressure, and if
not very strong it will collapse.

Again, if the air be removed from a vessel whose mouth
is beneath the surface of a liquid, that liquid is forced up
into the vessel by the atmospheric pressure on the rest of
the surface, the weight of the air sustaining the weight of the
liquid, and completely filling it if the vessel is not too high.
The product s4 which expresses the intensity of pressure of
the liquid (sect. 166) at the mouth of the vessel, must there-
fore be about 1033 grammes weight per square centimetre,
if the liquid is supported by the average pressure of the
air. Now, if the liquid be water, s equals 1 gramme, conse-
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quently A cannot be much greater than 1033 centimetres (or
about 34 feet) ; if the vessel were taller than this, it would
not be full. Of mercury, which is 13.6 times as heavy as
water, the atmosphere can only support a column 76 centi-
metres (about 30 inches) high. (34 X 12 = 30 X 13.6)

Modes of Removing the Air from Vessels,

182. One way of exhausting a vessel is to drive out the
air by steam, and then condense the steam.
Ezxperiment 1.—Boil water in an air-tight tin canister
and cork it up : remove the lamp and pour cold water
over it : the uncompensated pressure outside will crush it.
Experiment 2—Take a long tube closed at the top
and bent as shewn in fig. 80; fill it with steam, and
dip its open end under mercury. As the steam con-
denses, the mercury is forced up to a height of nearly
30 inches, and the tube may then be removed from
the basin of mercury and carried about. The weight
of liquid in one limb of the tube is balanced by the
weight of the atmosphere in the other, which may
be supposed to be extended to the top of the atmo- Fig. 80.
sphere (compare fig. 72, Chap. XL.).

A still simpler way of removing air from a tube is to
fill it with a liquid. This is the way ih which Torricelli
originally performed the experiment and measured the
pressure of the atmosphere. He filled a long tube with
mercury without air-bubbles, and then inverted it with its
mouth under mercury in a basin (fig. 81). On removing his
finger, he saw the mercury descend till its surface was 29
or 30 inches above that of the liquid in the basin, and
there come to rest after a few oscillations.

Above the mercury was a nearly perfect vacuum, now called a
Torricellian vacuum. If any gas or vapour be introduced into this,
it will depress the column more or less against the force of the
atmosphere. For instance, the water vapour left in the cold tube
after the experiment of fig. 80 will depress the column half an inch
or so.

Pumps.—Another mode of removing air or any fluid from
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a vessel is by means of an arrangement of valves which
only open and permit egress one way, combined with some
method of squeezing
the fluid so as to
make it move in one
direction or other.
Such a combination
is called a pump, and
three kinds are shewn
in fig. 82. The valves
in each are self-
closing flaps (shewn
open in the figures
for clearness), which
will open upwards by
pressurefrombeneath,
but which only close
more tightly if any
pressure be exerted
on them from above.
i (Such valves exist in
e i the veins, and cause
Fig. 81.—Torricelli's Experiment. whatever flow there is
to take place in one
direction.) The compressing apparatus to cause motion in
the fluid is in (1) an elastic bag to be alternately squeezed
and relaxed by the hand—such an apparatus is the lung of
an animal; in (2) and (3) it is a piston fitting a cylinder
which is to be pushed to and fro, or up and down; the
peculiarity in (3) being that one valve is in the piston itself.
All three arrangements evidently tend to transfer any fluid
they may contain from A to B, producing an exhaustion in
any vessel screwed on to the end A, and a condensation in
any vessel screwed on to B.

No. 1 is a pump used in surgery for producing injections
or for delivering a strong jet of liquid. The heart of an
animal acts on the same principle ; so does a pair of blow-
bellows imperfectly, for though it has only one valve, the
narrowness of the jet acts partially as a second one.
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No. 2 is a mere modification of No. I, and is used in
garden and fire engines. Both these are called foxce-

umps.

8 B
B

A A
No. L No & No. 8.

Fig. 82.—Pumps.

No. 3 is called a lift-pump, because it gets the fluid
above the piston and then lifts it up when the piston is
raiscd. It used also to be called a ¢ suction’ pump.

Modes of Measuring the Atmospherio Pressure.

183. Barometers.—The pressure may be measured and
its variations indicated by exhausting a strong metal box
with a thin and flexible (corrugated) top, supported by a
spring against the weight of the
atmosphere, as shewn in fig.

83. If the pressure increases,

the spring is compressed a

little more ; if the pressure

decreases, the spring recovers

itself a little ; and so the box lid

indicates variations of pressure

by moving in or out, and its

motions may be magnified by

a rack and pinion and long

index as shewn. Such an Fig. 63
instrument is called a ‘baro-

meter’ (weight-measurer), and being made without mercury
this form of it is called ‘ aneroid.’

HEAVY

LIGAT
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Mercury Baromelers.—The mercury column (fig. 81) is a
convenient measure of the pressure of the air, and is the
original form of barometer. If the pressure increases, the
column is forced higher up; if it decreases, the column
descends.

It is found to oscillate on different days between 31 and 28
inches, being usually high when the weather is
fine, and low when the air contains much moisture
(aqueous vapour being lighter than air) : more-
over, since any sudden local rarefaction of the air
which lets the column down may also enable air
from surrounding localities to flow rapidly in, a
barometer often falls before a gale.

These facts cause a barometer to be used as
a weather-glass ; and a convenient form is that
of fig. 80, arranged as in fig. 84, where the
motion of the mercury in the short open tube
is used as the indicator instead of that in the
long tube, and its motion is magnified by a
float counterpoised over a pulley with an index;

- or else by a rack and pinion as in fig. 83. The
advantage of this form is that the friction pre-
vents very prompt motion, so that the accumulated
changes of the last hour or two are indicated by
the needle whenever you go and tap the instru-
ment. As an accurate measurer of pressure, how-
ever, it is worthless.

The cistern form (fig. 81) is always used for
accuracy, and some arrangement is added
Fig. 84 by which the level of the mercury in the
Weather-gluss.  cistern can either be kept constant or can be
read off ; for, of course, when the mercury
falls in the tube it rises in the cistern, and it is the difference
of levels which really measures the pressure. If a barometer
be carried up a mountain, the mercury column must descend,
because some of the column of air which formerly balanced
it is left below. By this decrease of atmospheric pressure,
the height of the mountain may be calculated. For more
about barometers, see Deschanel, chap. xvii.,, or Ganot,
sects. 146-160.
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184. Manometers—Columns of liquid may be used to
measure pressures other than those of the
atmosphere—such pressure gauges are
called manometers. Fig. 85 shews a gauge
for measuring the pressure of the steam in
a boiler over_and above that of the atmo-
sphere by the height of a column of
mercury ; and the pressure may be stated
as equal to so many inches or centimetres
of mercury, or if very large, it may be
stated as so many ¢ atmospheres’—every 30
inches of mercury being called one atmo-
sphere.®* Metal manometers are, however,
always preferred in practice. See Deschanel,
fig. 128.

By ‘a pressure of 76 centimetres’ on any area,
then, is meant the pressure which would be pro-
duced by a column of mercury 76 centimetres high
with that area as base. The intensity of pressure Fig. 85.
in grammes per square centimetre of a column
of water, is equal to its vertical height in centimetres (because
1 cubic centimetre of water weighs 1
gramme) ; or in absolute measure (dynes) its
pressure is 981 times its height. The pressure
of any other liquid of specific gravity s is s
times as great ; so ‘76 centimetres of mercury’
means a pressure of 76 x 136 x 981 dynes
per square centimetre.®

The height of the column of course
means the wvertfical height (cf. fig. 71);
hence if a manometer or barometer tube
be inclined, the mercury will flow further
up the tube, but so that the vertical
height of its surface is the same as before
(fig. 86).

* In the nctnc system of measures, a million dynes (or & megadyne) per

is y called an atmosphete.' It is very nearly

equal to7s i of y. R ployed as his
standard pressure.
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Modes of Ralsing Water.

185. The most obvious mode of raising water is to get
something underneath it, and lift it up. This is the old
method of a bucket and wind-
lass. Since, however, the atmo-
sphere can support a column of
water about 34 feet high, it may
be used to force water up from
wells not much more than 30 feet
deep. For this purpose, a tube
is let down into a well, and then
exhausted of air, either by filling
it with steam and condensing it
(which is nearly the oldest form
of steam-engine or steam-pump,
and was set up by Captain Savery
at the water-works, York Build-
ings, Charing Cross, and used
from 1698 to 1706), or by screw-
ing the end A of one of the
pumps of fig. 82 on to the tube,
and working the pump. Fig. 87

Fig. 87.—House-pump. shews pump No. 3 so applied,

and is a common house-pump.

First the air, and then the water, is transferred from A to
B, and the water finds egress at the spout.

It is often required to raise water from mines several
hundred yards deep. Atmospheric pressure is of course
quite incompetent to effect this : the only plan is to get
something under the water and lift it. Pump No. 3 is still
used, only it is arranged at the bottomn of the mine, within
20 or 30 feet of the water, and its spout is transferred
higher up, so that it delivers the water at the top of the
shaft. Water may be thus raised any height whatever.
Such pumps are called lift-pumps, and are usually worked
by engines at the top of the shaft ; long rods connecting
the piston of the pump with the beam of the engine.
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A house-pump can also be used to lift water up to a
cistern on the top of the house. The piston-rod of such a
lift-pump works through a water-tight stuffing-box, as in
fig. 87, but the spout has a tap by which it can be closed
when desired ; and a pipe leads from the upper portion,
B, of the pump-barrel to the cistern.

Force-pumps Nos. 1 and 2 (fig. 82) are not used to raise
water from any depth, but to deliver a strong jet ; and fig. 88
shews the arrange-
ment in a garden-
engine. The stream
of water is rendered
continuous instead of
intermittent, either by
an elastic bag, or by
an air-chamber. C
is the air-chamber
which contains air
compressed by the
over-supply of water,
so that, if the pump
stops working, the
jet continues for a
few seconds, only gradually diminishing in strength as the
compressed air expands.

Fig. 65 shews a force-pump applied in the hydraulic
press, with plungers instead of pistons. Plungers are indeed
generally used in force-pumps; they act precisely like
pistons of equal area, the only difference is that they fit
the stuffing-box instead of the cylinder.

186. In any kind of lift-pump, the piston has, during its
up-stroke, virtually to support a column of water reaching
from the surface of the water in the well to the highest
surface of water in the pipe. Calling this height 4, and
the area of the piston A, the pressure on it is wAA To
work the pump, a force somewhat greater than this must
therefore be applied to the piston. In force-pumps, the
pressure during the up-stroke corresponds to a column of
water from piston to well ; and during the down-stroke to

Fig. %—Gndeﬁér&e-pnmp.
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a column from the piston to the highest point reached
by the water, whether it be a free jet or confined in a
tube (neglecting the friction of the moving water in all
cases).

Mode of Lowering Water.

187. The force of gravity renders the lowering of water
a very easy matter. If we have a liquid in a vessel, and wish
to transfer it to another at a lower level, all that is needed
is two holes in the vessel—one to let the liquid out, which
must be below the surface, and the other to let the air in,
which is best above the surface of the liquid ; if it is
beneath the surface, it may act, but it will do so irregu-
larly, letting the air in by bubbles. One hole half beneath
and half above the surface will act as two holes, and this
is the way one empties a jug or bottle, rotating it till its
one hole occupies this position. If the hole be large, it
will act as two even if wholly beneath the surface, but the
flow will be very irregular. The beer in a
~ cask with the tap open, but without a vent-
hole, is kept in by the atmospheric pressure,
unless it is fermenting and forcing itself out
by means of its own gas, or unless you blow
up the tap. A pipette (fig. 89)is a vessel
with two holes, and the flow of liquid from
it can be stopped by closing either of them
with the finger.
Siphon.—In an open glass vessel, how-
ever, it is not convenient to bore a hole
through the glass beneath the surface of the
liquid, neither is it always 'convenient to
Fig. 89.— Pipette. rotate the vessel till part of its mouth is

i below the surface. In such cases the neces-
sary second hole may be introduced beneath the surface
as one end A of a bent tube, whose other end, B, is at a
lower level—say is immersed in another vessel at a lower
level (fig. go). If this tube be once exhausted of air, either
by sucking liquid into it with the mouth, or by filling it at
a tap before inverting it, the atmospheric pressure will after-
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wards keep it full of water; and the column of water in
one leg, being longer than that
in the other, will overbalance
it, and a steady flow from
A to B will be kept up till
either the water sinks below
the opening A, or till the level
in both vessels is the same.
Such a tube is called a
¢siphon.’ 1Its shape is wholly
immaterial, provided that no part of it is at a height above
the surface in either vessel greater than the column of
liquid which the atmosphere can support, otherwise the
action will cease. So also it would cease if it were put
under the receiver of an air-pump and the air exhausted.®

While the air was being exhausted, the flow would go on witk
undiminished speed until the air pressure became too weak to sus-
tain the longer of the two columns ; the liquid would soon then
snap at the highest point, and the longer column would fall till it
was the same length as the other. As the air pressure still further
diminished, the two columns would slowly
sink, like barometers, until, when there was
no pressure left, the level of the liquid
inside and outside the tube would be the
same. On readmitting the air, the action
would commence again, unless either end
A or B was not fully submerged. Fig. 91.

The shape of the siphon tube being immaterial, it might
pass straight through the wall of the vessel from A to B
(fig. 91), and such a pipe would empty the vessel to just
the same extent, and at the same rate, as the tube of
fig. go; only it does not obviate the necessity of a hole
through the side of the vessel as the tube bent over the

® It is probable that, in a perf , a siphon of miod height
would work perfectly well, b the cohesion of water free from air is pretty
strong, and might maintain the inuity of the col of liquid in spite of

gravity. Under these circumstances, the cause of the flow would be exactly
like that of a chain over a pulley with one end longer than the other; and
the analogy will be complete if the chain be supposed to uncoil itself from a
table, and to coil itself up on the floor.



188 ELEMENTARY MECHANICS.

edge does ; neither, of course, would it cease to act in a
vacuum.

Floating of Bodies in Alr,

188. All things which displace any air (that is, which have
any bulk) are pressed or buoyed up with a force equal to the
weight of the air whose place they occupy (sect. 171), and so
everything weighs less in air than it would in a vacuum.
The true weight of a thing is its weight i vacwo, and this
equals its apparent weight plus the weight of an equal bulk
of air. The bulkier a thing is, the more does its apparent
weight differ from its true ; and if a very light body be also
very large it may have no apparent weight at all, but may
float about in equilibrium, or even be forced upwards, like a
balloon.

What is called a pound of cork is therefore really more than a
true pound, for it has been weighed against metal weights which
are not so bulky as itself and displace much less air. A little
balance is sometimes made to hold a ball of cork and another of
lead of the same apparent weight, so that they equilibrate each
other in air; but if the buoyant power of the air be withdrawn
by putting the whole under an air-pump, the cork will descend,
shewing that it is really the heavier of the two.

A thin copper or glass sphere with a tap may be used to
measure this buoyant power. When the tap is open, very
little air is displaced by the sphere; if you weigh it then,
you get its true weight very nearly. But exhaust it and
shut the tap. It now displaces a quantity of air, and accord-
ingly is buoyed upwards, and will be found to be apparently
lighter than before. The difference between its true and
apparent weights gives the weight of an equal volume
of air.

In this way I cubic centimetre of ordinary air, when the
barometer stands 76 centimetres high and the thermometer
stands at zero centigrade, is found to weigh -oo1293
gramme. (This number -001293 is therefore the sp. gr. of
air referred to water.) Or 112 litres weigh about 14-4
grammes. Or 1 cubic inch weighs .31 grain; or a cubic
foot weighs about an ounce and a quarter.
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A sphere of brass a yard in diameter displaces, if exhausted,
rather more than half a cubic yard of air, say 14 cubic feet, which
weighs 17} ounces about. If then its own weight were only a
pound or so it would ascend slowly like a balloon. Bt if so light
as this, its walls could not be strong or regular enough to resist the
pressure, and it would collapse. Such balloons are therefore im-
practicable. To sustain very thin walls against the air pressure, it
is necessary to fill the balloon with some gas ; and hydrogen, being
the lightest gas known, is always used. Hydrogen enough to fill the
above sphere would weigh only 1} ounce, so it would not add very
greatly to the weight, and its presence enables the walls to be of
thin oil-silk instead of metal. The first balloons were filled with
hot air, which occupies more room and therefore displaces more
than its own weight of cold air (see Deschanel, chap. xxi., or Ganot,
art. 169).

PART IL—ON PROPERTIES PEOULIAR TO GASES.

189. A perfect fluid whose elasticity of volume (see Chap.
X., sects. 145, 149) is equal to the pressure upon it, provided
the temperature is constant, is called a perfect gas. We
have now to consider what properties a gas possesses in
consequence of this peculiarity.

First of all, gases must be very compressible : any addi-
tional pressure produces a corresponding change of volume. _
The increase of pressure (sect. 166) is the stress ; the ratio of
the change of volume to the original volume is the strain (sect.
151). Let the original pressure be P, and the new pressure
P’; then the stress is P’—P. Let the original volume of the

4

gas be V, the new volume V', then the strain i3 V;V.

Its elasticity, when in the compressed state, by definition
PP—-P,

(sect. 149), is = ; and for gases this is now stated to

A\’
equal the pressure on it when in that state, namely, P’.*®

* If the strain takes place very suddenly, the elasticityis g than P, being
1.4 times P. This is because the temperature does mo¢ then remain constant—
heat is g ted by the i whchhunmmmtomp& We will
suppose, however, that all our p and ions take place slowly
enongh to allow the temperature of thepnomammthout change.
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P-P_P
vV-v'

orP:P::V':V;

Hence or PV =PV,

or, in words, the volume of a given quantity of a perfect gas
varies inversely with the pressure, other things
being equal. If the pressure be doubled, the
volume is halved ; if the pressure be halved, the
volume is doubled. This is called Boyle’s law,
and may be verified by the bent tube of fig. 92.
Its short leg is closed, its long leg open. Mercury
poured down the long leg confines some air in the
short one and compresses it, the whole pressure
on the airin the tube being that of the atmosphere
plus that of the column of mercury in the tube.

If the mercury stands 30 inches higher in the long leg
than in the short, the original volume of the air will be
found to be halved: for the original pressure it sus-
tained was one atmosphere, and now it is two. Another
30 inches of mercury will make it shrink into one-third
its original bulk, and so on. Under ordinary atmo-
spheric pressure, 14-4 grammes of air occupy 11.2 litres
(see sect. 188); but under a pressure of two atmo-
spheres they shrink to 5-6 litres.

The shortest statement of Boyle’s law is that,
celeris paribus,

PV = constant ;

but remember that cefera must be paria; the
Fig. 2. temperature must not change, meither must the
Bovles  guantity (that is, mass) of gas.

One gramme of hydrogen under a pressure of 76 centimetres of
mercury, and at 0° centigrade, occupies 11.2 litres, or 11,200 cubic
centimetres. Hence the value of the above constant PV for
1 gramme of hydrogen is in absolute measure (centimetre, gramme,
seconds), (see sects. 181 and 184):

76 x 13-6 x 981 x 11,200.
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Call this K. It is the same constant for 16 grammes of oxygen,
14 of nitrogen, 22 of carbonic anhydride, and so on. For §
grammes of hydrogen or 80 grammes oxygen, the constant is 5K ;
it is, in fact, proportional to the mass of a gas, but varies for
different gases with their molecular weights. A better state-

P
ment of Boyle’s law is that the ratiq of pressure to density, Y

is constant ; for this is independent of everything but the nature of
the gas and the temperature. If the pressure of any gas be stated
in gravitation units, say grammes weight per square centimetre,
this constant is called the Aeight of the homogeneous atmosphere of
that grs (see example 8).

190. The density of a gas, therefore (the mass of unit
volume, see sect. 32), is directly proportional to the pressure.
One consequence of this is, that as one ascends in the
atmosphere, the pressure does not decrease uniformly as
in the case of a liquid, but it decreases at first at a more
rapid rate, and afterwards more slowly. At a height of only
three miles, for instance, the intensity of pressure is half
what it is at the sea-level. For the pressure decreases not
only by reason of the elevation, but also by reason of the
diminution of densityaccompanying the decrease of pressure.
Both causes combine, and the pressure diminishes upwards
in what is called geometrical instead of in arithmetical
progression.

191. But just as no actual liquids were perfect, so no
actual gas is a perfect gas. They all deviate slightly from
Boyle’s law ; they are probably not infinitely expansible,
and certainly not infinitely compressible, for many of them,
if squeezed very much, condense into liquids ; and as they
approach their condensing point, they deviate from Boyle’s
law a good deal, becoming more and more compressible.
Air and hydrogen are the most perfect gases, but in 1878
these too were liquefied by M. Pictet of Geneva, and
by M. Cailletet. Still they are, at ordinary pressures and
temperatures, a very long way off their condensing point,
and they obey Boyle’s law with considerable accuracy.
They cannot, indeed, be condensed by any amount of simple
squeezing ; they have to be cooled enormously as well.
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Alr-pumps.

192. Air-pumps differ in no respect from other pumps
except in details of arrangement. Their peculiarity is
that the vessels they are used to exhaust or to fill contain
always the same volume of fluid ; its density and pressure,
however, are diminished or increased to any extent.

Pump No. 3 (fig. 82) is generally used for exhaustion, but pump
No. 2 can also be used, and it will at the same time produce con-
densation in any vessel screwed on to its end B. It is then called
a condensing syringe. If it obtains its air from the atmosphere,
the same mass of air will be injected at every stroke, and conse-
quently the pressure in a vessel screwed on to B will increase by
a fixed amount at each stroke, that is, it will increase in arithmetical

progression.

Fig. 93.—Air-pump.

Fig. 93 shews a double-barrelled air-pump with two of
the No. 3 pumps arranged to exhaust a glass vessel known
(for no very apparent reason) as the ‘receiver.” At every
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stroke the air in the receiver expands to fill both receiver
and pump-barrel, and the portion filling the latter is at
the reverse stroke expelled into the atmosphere.

Call the volume of the receiver V, and that of a pump-
barrel v ; the same volume of air, v, is extracted at every
stroke, but not the same mass, because its density keeps
on diminishing. If the pressure of the air in the receiver
to start with, is Py, and after the first stroke, P, ; the pro-
duct of pressure and volume being constant, we have

PV =P, (V+ )

During the second stroke the volume V again expands to
fill the volume V +4 #, without the quantity of the air
changing ; so, if P, is the pressure after the second stroke,

PV ="P;(V+2)
" Similarly Py, the pressure after the third stroke, is given by

PV=P;(V+2);
and so on.
The pressure after three strokes may therefore be written

P’=(V1w P’=(V-‘if-v ’P‘=(V‘4,-'u SP";

similarly, the pressure after # strokes is

v ”
Py = (m P,

The pressures P, P, P, P; ...... Py decrease, therefore, in

a geometrical progression with the common ratio \7%/

Hence perfect exhaustion (or pressure equal zero) cannot
be obtained, even with a perfect pump, without an infinite
number of strokes.

193. To indicate the degree of exhaustion, a mercury
gauge is commonly used, which may be simply a long tube
reaching from the receiver into a cistern of mercury, like

a barometer; or it may be of the form shewn separately in
M
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fig. 94, and attached to the pump at G in fig. 93. The
closed limb of the U tube is completely full of mercury,

Fig. o4,

and remains so till the air pressure in the
little bell jar which is exhausted with the
receiver gets unable to support it; it then
gradually descends as the exhaustion pro-
ceeds, and the pressure of the residual air
in the receiver is measured by the difference
of level between the mercury in the two limbs.

194. Compressed-asr Manometeys. — The
diminution of the volume of a gas under
pressure will measure that pressure in a more
compact way than the mercury gauges of
sect. 184 (compare the length of the two
branches of the tube, fig. 92), and a mano-
meter on this principle is shewn in fig. 9s.
Faraday used to measure high pressures in
his glass vessels by inserting little conical
glass tubes, with one end sealed, containing

air and a globule of mercury (fig. g6). As the pressure of the
gas in which they were, increased, the globule moved up

P ree—

Fig. 95. Fig. 96.

and compressed the air in the tube more and more ; and the
diminution of volume measured the increase of pressure,

v
P = P"77.

Sir William Thomson has applied the same principle
to ocean sounding, for, since every 34 feet of water adds
another atmosphere to the pressure, if the pressure of the
water be known, its depth can be calculated. A tube closed
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at one end is lowered into the sea, like a diving-bell mouth
downwards ; and a registering arrangement records how
far the water has entered the tube, and therefore how far
the air in it has been compressed.

EXAMPLRES,

1. What is the height of the mercury barometer when the
intensity of the atmospheric pressure is a megadyne
per square centimetre? (A million dynes is called a

megadyne.) Ans. 75 centimetres.
2. If a mercury barometer falls one inch, what will be the
fall of a water barometer ? Ans. 13-6 inches.

3. Shew that the oscillation of the column in a ‘siphon’
barometer, with its long and short limbs of equal
cross section, is only half that of the column of a
cistern barometer with an infinitely large cistern.

4- Shew that the motion of the top of the mercury in a
barometer may be doubled by inclining the upper
part of the tube at an angle of 30° to the horizon.

5. What is the total pressure inside a steam boiler when
the mercury gauge (fig. 85) stands at 150 centimetres
and the barometer at 752

Ans. 3 megadynes per square centimetre.

6. A barometer in a diving-bell indicates a pressure of 45
inches of mercury, the height of the barometer at
the surface of the earth being 30 inches. What is
the depth of the diving-bell ? Ans. 17 feet.

7. The piston of a lift-pump is 7 inches in diameter, and
the depth of the water in the mine below the spout
where the water is discharged is 533 yards. Find
the least force which can raise the piston.

Auns. About 12 tons weight.

8. Find the height of the homogeneous atmosphere at zero
centigrade. (This means the height an atmosphere
must have, if it were made of incompressible
fluid, of the same density as the real atmosphere
at any point, and if it exerted the same ,pressure
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as the real atmosphere does at that point. See
sect. 189.)
Ans. 76 x 13-6 - 001293 centimetres, about 8000
metres (or roughly about § miles).
N.B.—Notice that this does not vary with the baro-
metric height.

9. If a rectangular mass of cork, dimensions 10 x 8 x §
centimetres, is counterpoised in air by 8o grammes
of platinum, find the mass of the cork (neglecting the
floating power of the air on the platinum).

Ans. 80-517 grammes.

10. A mass of wood (sp. gr. .6) is counterpoised by 105
correct grammes of iron (sp. gr. 7-5) ; find the mass of
the wood (or its true weight s# vacuo).

Ans. The volume of the iron is 14 ¢ c., so its apparent
weight is 105 — (14 x :001293) ; and this is equal to the
apparent weight of the wood, which is x — (§x x -001293),
where x is the number of grammes of the wood ; hence
X = 105-294.

11. A piece of metal weighs 2.4 grammes in mercury and 9
grammes in water ; what would be its weight »
vacuof Ans. 9-523 grammes.

12. A siphon barometer which has a little air in its
‘vacuum’ only indicates a pressure of 72 centi-
metres ; and on pouring more mercury into the open
limb until the vacuum is diminished to half its former
bulk, the difference of levels becomes 70 centimetres ;
what is the true height of a proper barometer?

Ans. 74 centimetres.

13. The cylinder of an air-pump barrel has a capacity #th
of that of the receiver it is used to exhaust. Find the
pressure in the receiver after 1 and after 2 strokes of
the pump, if the original pressure was 77 centimetres.

Awns. After one stroke 70 centimetres ; after two, 63-63 ;
after three strokes 579420, and so on ; each time dividing
by 11 and multiplying by 10
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14. If a quantity of air is squeezed up in a closed tube into
risth of its original volume which it occupied when
the barometer was at 3o inches, what pressure does
it indicate ; and at what depth under water would
this pressure be experienced ?

Ans. 1652 ton weight per square inch. At a depth of
3366 feet.

15. A diving-bell, 6 feet high and weighing half-a-ton,
weighs apparently 4d of a ton at a depth of 86 feet

under water. What would be its apparent weight
when just immersed ?

Ans. (Neglecting the thickness of its wall), 0.

[For Miscellancous Exercises, see pages 198 fo 202.]



MISCELLANEOUS EXERCISES

SET L

1. A bulletis ﬁredmﬂynwnrdsmthanlouqof:&oﬁ.puueond
find how high it will rise, and how soon it will hi

2. If you throw 3 balls upm(havelou ofxgafeetperseennd one

a seconds after the other, when and where will 'chy

3. The intensity of ntyon]up:mnsz-(ﬁnmanmuchuontheanh
How long would a body take to fall on Jupnet from a height of 167 feet?

LAmnmaMnmryhaﬂoon:hms u;;wuhaveloatyong where
is the ball in ro seconds, and what vdoatyhult

6. A maaonachﬂ';oo(eethlththromastm down to the ground in
3 seconds ; with what velocity did he throw it?

6. A balloon is goin, atthenteofaofeetperueond and when at a
height of 1000 feet a f&eﬂn dropped over its edge; what does the half-
pennydof ‘When and wit| wlntvelocntydoenthlnlngro ?

is fired hori. llyat a height of 10 feet above a lake ; how soon
doesthehllhuthemed

8. From a cliff 400 feet high one_ stone is drc from the tag, and at the
same moment one thrown up from the bottom wi veloutym cient to carry
it to the top of the cliff ; whcnmdwhmdotheymeet

9. A weight of 6lbs. is attached to one end of a stnng:nd 10 lbe. to the
other, and the string is hun? over a freely movable pulley; find the teasion in
the string ; mdhowlongti eetofthestnnguketopasovenhepuﬂey

10, A knife is dropped from the nuddlzofthecenlm of a railway-cdrriage
gmngsolmlesanhonr how does it fall ? & Y

11, A train is 50 miles an hour; a man throws a ball up vertically at 32
feet a second. Leoomeaoht, howlongwxllmakebefou it comes back
to his hand ?

12 An iron cage descends a The tensi ualsthewetf!n
amlbs whenatrmnwuszslbs Fmdthe umeo ;?:endmgtooeet

m rest.

18, Find the tension on a rope which draws a carriage of 8 tons weight upa
smooth incline of 1 in 5, and causes an increase ofveloamfgfm pg‘weo:d
the velocity of 48-3,

If on the same inc net‘mtopebruh\vhen
how far will it continue to move up the incline ?

SET IL

1. Six forces uct on a point malun%anglu of Go' with each othet Their
&:ltudes are 4, 6, s, 1, 10, 7. g
resultant.
2. Three forces, o0, 10, 36, act on a point at angles of 120° ; find resultant.
8. A hundredweight is hung to 2 hooks in the ceiling by 2 oords, one 3 times
as long as the other; ﬁndbyomu n the tension in each.

4. A weight of 43 Ibs. is balanced at a height of 6 feet above the ground un 2
mclmed s meeting in a point under the weight. One rod supports 36 lbs., the
other, 20 lbe. : find the length of each rod by a construction.

5. Two boys smmg at the ends of a plank 11 feet long sce-saw over a log: the
log sustains 2 cwt., and one boy is 4 feet off it. What are the boys’ weuhu?
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6. Forces — 2, 6, are arranged along a rod at equal distances
(2 inches) ; ﬁndsr'emla"' ’

7. A uniform rod weighing 4 Ibs. has ra Ibs. at one end and 18 at the other.
‘The centre of gravltyo the whole is g inches from the middle; what is the
length of the rod

&Twomenearryablockofuon ighing 176 lbs. ded from a pole 14
l'eetlong.eachmnurfootemchufromhuendofchepole. thnmuudlc
hl&:l:'hng that one man may bear § of the weight borne by the
of

SET IIL

l State the characteristic difference between solids and fluids in relation to
of p lain clearly what is meant by the equal

mnsmumon of pressure by dmds in all directions.
2. Shew what the pressure exerted by a llquld on lny part of tbe surface of the
vessel d ds upon, of

this p when the y data are glven.
8. Describe and explain an experiment pro that the pressure on the base

of a vessel may be grxgner or less than the weiv:l‘ls of hquld n the vessel

4. Prove that the d body acts vertically
&ands,lmduequalto theweughtofaqmmyofﬂmdeqml in bulkto lhe

8. Describe experiments Frovmz that the air has wenght, and shew how the
we:ght of a given volume ol pp

6. Explain the construction and action of the ba.rometer, and shew how to
ascertain v.he pressure per unit of surface cxerted by the air.

7. Ina k ter which ins a little air in the space above the mercury,
this space amounts to 20 ¢, c. when the mercury in the tube is 70 centimetres
above the mercury in the cistern; on lowenng e tube, so that the mercury in
the tube is only 67 above that , the space above the mercury
measures 12:5 ¢. ¢.  Find true barometric height.

SET IV.
1L Define the terms 'fome,' ‘ work,’ ‘ power,’ ‘energy,’ ‘ momentum.’
2 What experi or o ions can you adduce to prove that the weight

of a body is proportioned to iu inertia ?

8. A light frictionless pulley with a string over it has 17 ounces hanging on
one end of the string and 15 on the other. Ea.lcuhte the tension in the string,
and the eration of either mass.

4. Discuss the direct impact of two small spheres on one another in the light
of Newton’s law of moxxon, shewmz what happens to their separate momenta
and g (@) WI L ; (8) When elastic.

6. Calculate the posmon of the centre of gravity of a light square frame, six
mclm in the side, with weights at its four corners, proportioned to s, 2, 7, 4.

ain the common air-pump, and show how to calculate the pressure of
the resl ual air after a specified number of strokes.

7 A pressure | is oﬁen speclﬁed as equal to centimetres of mercury.
Express this in p d’;nm, per square centimetre.

8. How can the specific gnvuy of sand be practically determined? Illus-
trate by an example.

9. A ladder, weighing half a hundredweight and 30 feet long, rests
smooth wall, with its foot 15 feet from ‘the botfom of the wall. d tbe
pressure on the wall and ground, taking the centre of gravity of the ladder as
one-third of its length up.

10. A stone is thrown up with a velocity of 192 feet a_second. Find how
high it ascends, and how long it takes before returning to the hand. Find also
its position three seconds after throwing,
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11. A body, moving with uniform acceleration, describes 180 feet in the fifth
second of its motion. Find its acceleration the distance travelled in the
five seconds.

12 A tricycle, weigh'ng 80 lbs., moving along a level road at the rate of 12
miles an hour, is stopped by the friction in the space of 6o yards. What must

ag to its motion have been?

18. Of three blocks of wood one is pivoted on a point, another rests on an
inclined g::ne, and the third floats in water. Discuss the conditions necessary
for equilibrium and for stable equilibrium in each.

14. How would you determine the coefficient of friction between two given
flat surfaces?

SET V.

L. Define Acceleration, Inertia, Force, and Work, shewing how each is
measured, and giving the most important standards or units of each in present
use. What is meant by the statcment that g=¢81?

2. It is found experimentally that i vacse all bodies fall through a given
distance in the same time ; what consequences can be deduced from this fact?
If the distance were doubled, how much more time would the fall require?

8. A falling body is observed to describe 100 feet in the last second of its
motion ; find how far it must have fallen, and also the time taken. nsider
£ = 32, and neglect the resistance of the air.

4. What is meant by centripelal acceleration? Find the force necessary to
cause 2 planet of mass m to revolve in a circle of radius # in a time T.

6. How have the masses (a) of the Earth and () of the Sun been ascertained ?

6. Define moment of inertia. Find the time a solid cylinder will take to roll
down an inclined plane 20 feet long, inclined at 30° to the horizon ; the moment
of inertia of the cylinder being § m»8.

7. E:Elain clearly what is meant by the centre of oscillation of a swinging
rigid ; and determine its_position in the case of a uniform rod swinging
about one end, its moment of inertia being § mrr2.

How has the intensity of gravity been accurately measured ?

8. Three weightless rods ar= jointed together, the two free ends are pivoted
to firm supports, and the middle rod is loaded at any point ; sketch the position
of equilibrium which the system will take up, and show how to detenmine Ly
construction the stress in each of the unloaded rods.

9. A weight rests on an inclined plane of given roughness; find by construc-
tion the least force which will suffice to Jml the weight up the plane, showing
the angle at which it must act. Also find how much the p! must be tilted in
order the weight may slide down.

10. A rectangular block weighing 20 1bs. with a square base 8 inches in the
side, is set up on a level table ; and it is found that a force of s lbs. weight, if
applied below a certain point, is just able to make it slide, while if it is applied
above that point the block topples over. Find the position of this critical point,
and also the coefficient of fricion between the block and the ta

11. Define density and specific gravity. )

A piece of iron weighing 84 megs put into a beaker, which is then filled
with water up to a certain mark above the level of the iron, and the whole is
found to weigh 128 grammes. The iron is then turned out, and water poured
in till the be&er is again full up to the same mark ; it now weighs 56 grammes.
Find the specific gravity of the piece of iron, and its weight when under water.

12. Describe an form of b ; and give some of the contriv-
ances which have been employed to make barometers more sensitive to slight
changes of pressure.

18. A balance is arranged under water, and a mass of iron-ore in one of its
pans is counterpoised by 3 kilogrammes of lead in the other. What is the mass
of the iron-ore, its specific gravity being 7, while that of lead is 11 ?

14. A ladder standing on rough horizontal ground rests against a rough
vertical wall. Find i&ngo.im when just not nln‘;;ing down.
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15. A solid regular triangular pyramid is drawn along a rough table by a
horizontal force. g“What is the %reatw height at which the force can be appliylad
without upsetting the pyramid

16. A weight is swung round and round in a vertical circle by a rope of given
length ; determine the conditions that the rope may keep tense.

SET VI

1. Describe fully a method of comparing the specific gravities, (a) of a solid

and liquid, (8) of two liquids. g ¢
2. Explam clearly why a dlvmg-bell which is not supplied with additional air
PP to get h asitd ds in water; and shew how its depth might
ascertained, either by reading a ba.rome(er inside the bell, or by noticing

the height to which the sea-water had risen into its interior.

3. A gun is fired horizontally, at a height of 169 feet above a lake, with an
initial velocity of 1000 fedt a second. Find how soon, and how far away, the
ball will first strike the lake, neglecting the res\smnce of the aig and taking the

acceleration produced by gravity as 3a feet-pe d per

4. What is the principal of wrfual work (or virtual velocities)? Illusu'ate
it by applying it lo ﬁnd the ge of any sy of pulleys
when tgp weights of the pulleys are not ncglected.

5. A mass of 3 lbs.,, hanging vertically, drags a mass of 17 lbs. along a
perfecuy :mo:tnl; :i:el table by means oﬁa slnng over the Jg Find the
ve

6. A projectile is shot up in vacuo,
(a) with a given initial velocity,
() in a given direction.
Find in the first case the necessary direction, and in the second case the
necessary velocity, that the projectile may hit an object at a iven horizontal

distance from the gun, and at a given elevation. Show specially in each case
what are the conditions that the body may be beyond the range.
7. Find the tension in a flexible rope which is d round a single movable

lley supporting 2o lbs., while to the free end of the rope 12 Ibs. is hung ; and

gunﬁ the agce;erhanon u;)waxda of the 20-1b. weight (neglecting the mmgof the
ey and of the r

I’“Slw\v that this may be done either by direct application of Newton'’s Second

Law, or by a work-and-energy method.

8. State Newton's Third Law. If two heres of given masses and coefficients
of restitution |umge dnrectly on each other with known velocities, show how
to find the after

Consider specially the case when the masses are equal.

0. A ball let fall on to a stone slab from a height of 16 feet, bounces the first
time to a height of g feet. What is the coefficient of restitution, neglecting the
resistance of the air ? and how high will the ball bounce next time ?

Find also the total distance it will travel before coming to rest.

10, Given the moment of inertia of a body about an axis through its ceatre of
gravity, detcrmine it about any other pamllc axis,

11. A uniform rod of given length is swung as a pendulum about a given
pointin it. Find the length of the simple pend and find for
what point of suspension the time of smng will bea e
of inertia of the rod about its centre is Jy #/2.]

12. A conical pendulum or governor ball qconsudeted as a particle) is spinning
round a vemml axis 20 nmes a d. Find its in inches or centi-

below a hori I plane th h its hmge.

138. How has the value of g been deterrmned accurately? Explain its varia-
tion with latitude.

14. Define the unit of force. How has the force of attraction between two

masses one foot apart been determined ?
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Shew how a know! of this would enable us to express the mass of the
earth in terms of its , and also would tell us the mass of the sun in terms of
its distance.

15. What is the law of acceleration to which a dismb;ecnfuudmpped
into a deep hole in the earth? How long would it to reach the centre, if
tbedmtyoftheunhus7 Shew that this time is independent of the size

lo.Abodyshdadmaplanem:lmed a given a; to the horizon ;
nmtakentoshd wn,suypoungthe

eoeﬁc»ent of friction consmn.

Determine also the least force necessary to support the body, and the diree-
tion in which it must act.

17. Annltomnanwbemug:oted at one end at a_given height above &

and the other end rests in Determine its position of equili-

um, the specific gﬂnty of the wood bemg known.

Discuss its change of position if the level of the pond is gradually rising
towards, and ultimately above, the pivot.

SPECIMENS OF EXAMINATION PAPERS

Soure KENsINGTON ExaMINATION, 1878
Pirst 8tage. ZKxaminer—Rxv. J. F. ‘I\nsnnv, M.A.

The value hed to each ion is shewn in brackets after the i
But a full and correct answer to an easy quemon will in all cases secure a
larger number of marks than an to a more diffi-

eult one. Thmkomanallmcdforwﬂ[n
ually heavy ts are placed at the angular ts of a triangle ;
lhewhow e%ndthepounl:::mohhureenntofgnn poia ) '
2. A cube is placed on a horizontal mwhatponmmuummble,
mdmvlut positions in unstable equi ibrium @)
lffotmofs,7,ndxoumumonapom,shev by a diagram lwvdwy

mmbeadjustedsouwbnm
State the principle in statics aled the triangle of forces. (z0.)
4. Thelen base, and height of an inclined plane are 13 feet, 12 feet, and
sfeumpecmy. a‘wu‘hmg 100 lbs. is n%onl what force
acting along the plane v:ll mppon it—the plane smootb—ond what will
be the pressure on the plane? (12.)
8. What is in g 1 the relation b two forces, P and Q, which are ia

uilibrium on a  straight lever?

t is meant by the moment of a force with reference to a point?  (1a)

[N l"'mg the rela;;o: betr:e: the yoweli‘ ancslhthe b‘;elgln in a nn‘h movable

ey, t rts of the co paralle ew by a diagram how the pulley
zu:lupponer and find what fome is exerted on the beam or fixed pomt (8.)

7. What is meant by a unit of work, and by a horse-power? How many
foot-pounds of work are required to raise of water from a dcpth of a
furlong ; and how many horse-powers to 3:' it in five minutes? (8.)

8. What is meant by the inertia of matter?

State the first law of motion ; and give illustrations of it. 8.)
9 A body movln; from rest under the action of a constant force acquires in
each y of 12 feet per second ; find (1) the distance
it passes over in the first ﬁve :econd.l of its motion ; (a) the velocity it has after
passing over g6 fcet from its starting-point. (12.)

10. It is found that a body (eonndmd as a point) has its velocity increased
by 7 feet a d in any of its ,)t\’knownlhatﬂnbody

lf‘“ 23 1bs. ; wh:z ufthe ltl'mgmtucllg o‘t; th?_ force prod g this !

OwW man
Pl 'hgm}} pou;; :'o matter would this force support against gnmt{ in a
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11. State the rule which enables us to determine the amount of the pressure
exerted by a fluid against a plane area.

A reservoir has one of its walls vertical : a circle a yard in radius is described
on that wall ; when the water just covers the circle, what is the amount of the
pressure exerted by the water on the portion of the wall within the circle? (A
cubic foot of water may be taken to weigh zoco ounces.) (z00)

12. Mention a way in which could determine the specific gravity of a
.Tblays:h‘bau o;.: 'mdhas specific i h‘r:Iillybe’

g wel, grains, an a gravity 3; what its
apparent weight w 31:;exud in a liquid whose specific gxaeity is 0-92? (10.)

13. Describe briefl olythe action of the common force-pump. If the P‘“ﬁi
has a cross section of 8 square inches, and warks 5o feet below the cistern, w
pressure is required to force it down? (w.

14. Describe briefly the ial b in its simplest form.

When a barometer is taken up a lofty hill, why should it fall?

‘What would it do if taken down a deep mine, and why?

(8.)

Second Stage, or Advanced Examination.
INsTRUCTIONS.

Read the General Instructions at the head of the Elementary paper.
You are not permitted. to a?femps more than Zesm questions. You may select
these from any part of the paper.

21, State and prove the rule by which, when the position of the centre of
vity of a plane area is known, the volume can be found of the solid formed
f:;me revolution of the area round an axis in its plane (Guldinus’ rule).
Apply the rule to find the volume of a right cone on a circular base.  (20.)
22 When nsumber of lel forces act in one e on a rigid bod
i i thm, i wm:emto’ i ‘gan 'P“oft.beyi;

o3 € &q

resultant, the line along which it acts, and its direction along the line.

How can you ascertain from these equations when the forces reduce to a
couple, and when they are in equilibrium? (5.)

23. AB is a lever without weight acted on at A and B by two equal forces, P
and Q, whose directions contain an angle of 60°; P acts at right angles to AB.
Find where the fulcrum must be situated that P and Q may be in equilibrium,
and the pressure they exert on the fulcrum. (15.)

24. What is the angle of friction or limiﬁnﬁg angle of resistance ?

When a body urged against arou?h xed plane certain forces is at
k;lmt, to' what extent is the direction of the reaction of the plane aga(imt) it

own 15.

25. If a machine is in a state of uniform motion, what relation must exist
between the ‘ power’ and the ¢ weight’—passive r being put out of the
question? . . X

What is the ing of the , thatin a hine what is g d in
power is lost in velocity ? Illustrate the statement briefly by reference to any
simple machine such as a wheel and axle. (20v)

26. A fly-wheel weighing 7 tons turns on a horizontal axle 1 foot in diameter ;
if the coefficient of friction between the axle and its bearing is o-o7s, what
number of foot-found‘ of work must be done against friction while the wheel
makes 10 turns (1s.)

27. State and illustrate briefly the relation which holds good between
tbe.mu)mal actions of two bodies on each other. (Newton's third l(aw )of

15

28. In uniformly accelerated motion shew that s=} /2.2. A body moving
from rest under the action of a constant force descri feet in the first
5 seconds of its motion ; what distance does it describe in the first 7 seconds of its
motion, and with what velocity is it moving at the end of the 7 seconds? (20.)
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Soutr KENSINGTON ExXAMINATION, 1876,
Pirst 8tage. Kraminer—Rev. J. F. Twispen, M.A.

1. What is meant by the density of a body? How are the densities of bodies
compared? If § cubic inches of mercury weigh 2-45 Ibs., and 2 cubic inches
of cast-iron weigh o-52 lbs. ; what ratio does the density of mercury bear to
that of cast-iron ? (8)

2. Define the centre of gravity of a body. State how to find the centre of
gravity of two points of known masses. A weight of 4 oz. is placed at each of
three of the corners of a square ; where must a fourth weight of 8 oz. be placed
that the centre of gnvit; of the four weights may be at intersection of the
diameters of the square (x2.)

8 A cube is placed on a plane with an edge parallel to a horizontal line
round which the plane is capable of turning. At what inclination of the plane
:l':c‘il t?e cube topple over? (The cube is supposed to be so rough as n&t)to

C. o,

4. A, B, C is a thread suspended from the end A; a weight of 5 oz. is
fastened to the other end C; and a weight of 10 oz. to an intermediate point B.
What are the magnitudes of the ions to which the parts AB and of the
thread are exposed, and of the ion of the supporting pointat A?  (10.)

6. Two parallel forces of 3 and 4 units act on a body in opposite directions ;
specify the force required to balance them, and shew by :pm‘m how the

forces act. &)

6. What is meant by the resolution of a force into rectangular components ?
A force of 18 units acts along a line making an angle of 30° with a given line;
find, by construction or otherwise, its components along and at right angles to
that line. (8.)

7. Describe briefly the wheel and axle, and find the relation which holds
good in it between the power and the weight.

If a power of 15 lbs. will support a weight of so Ibs. on this machine, what
ratio must the radius of the wheel bear to the radius of the axle? Would
your answer be affected by any circumstances of which you have taken no
account ? (r0.)

8. A weight of soo lbs., by falling t! 36 ft., lifts, by means of amachine,
a weight of 60 Ibs. to a heib{t of 200 ft. How many units of work have
expended on friction, and what proportion does the expenditure bear to the
whole amount of work done ? (ro0.)

9. It is found that a body moving in a straight line has its velocity increased
by equal amounts in eqt;:sﬁmcs ; what inference can be drawn as to the force
or forces acting on the body during its motion ?

A body moves from rest and its_velocity uniformly accelerated ; if it
describes 30 ft. in the first second and a half of its motion, what distance does
it describe in the next second? (12.)

10. When a body moves in a circle, what is meant by its centrifugal force ?
On what does it exert its centrifugai force ?

A body weighing 4 Ibs. tied to one end of a string is whirled round, so times
a minute, in a circle 3 ft. in radius ; what is the amount of the centrifugal force
of the body ? (z2.)

1L At a depth of one mile below the surface of the sea, what is the pressure
of the water in pounds per square inch? (A cubic foot of sea water weighs
1025 02.) &

12. State the relation b the p! e and vol of a gas at a given
temperature, called Boyle's or Mariotte’s law. Is this law exactly or only
nppmximateiy true? Give briefly a reason for your answer, (z0.)

18, Describe the mercurial gauge by which the degree of exhaustion in the

Q)

receiver of an air-pump is measured.
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Unrversiry CoLLeGE, LoNDoN.—June 1879.
Junior Class.

1. Distinguish between the mass of a body and its weigh#, and give examples
of phenomena which depend upon one or the other respectively.

2. A stone dropped from the ceiling of an hotel lift, which is ascending with
a constant velocily of 2 feet a second, takes § second to strike the ﬂoor of the
lift. How long would it have taken to drop 1f the lift h:;d been descending

with a uniform acceleration of x foot-per d per
8. When is a force said to do rwrk' and how is work measured? Writedown
an the relation between the work done upon a body or

dystem of bodles, and the geneml results (such as change of velocity, &c.) pro-
uced, and arply it to determine the motion in the case of a single fixed and
single "movab nlleg~ when the power is 12 Ib., and the weight (including the

movable pulley the inertia of the pulleys being neglected.

4. What is mean‘t”dy the moment of aforce about a point? Prove that, if the
forces acting on a ly are in equilibrium, the sum of their moments about any
point is equal to nothing.

5. State the relation between wel}ht volume, and spemﬁc gravuy. Describe
and explain in detail a meth exper the of a cubic
inch of water.

6. Describe * Nicholson's Hyd: ‘' and explain the method of deter-
mining the weight or specific gravity of a solid body by its means.

7. Describe the construction and explain the action of the common air-pump.

Shew what essential limit there is to the degree of exhaustion producible I;y it,
and also what further limitations arise in practice from the construction ol
instrument.

8. Explain how to determine the absolute i ity of pheric pi
at any time and place, and point out any i or practical p i
required for accuracy.

OaMBRIDGER, ST JorN'S CoLLEGE—April 1881,
HYDROSTATICS AND DYNAMIOS —First Year.

l Calculate, in ds, the of p d by water on a circular
ea 3’ in diameter, its centre being at a depth of 20 feet below the highest
pomt of the liquid.

2 A tnangular area with its vertex in the surface and base horizontal is
pressed by water : divide it into two portions by a line parallel to the base, on
which the pressures are equal

3 Dmde it into s portions by horizontal lines, on which the pressures are
equal.

4. State and prove the general me of the principle of Archimedes.

Describe anypro o? Stlp.

5. A heavy hetzmgeneous bod rests, wholly immersed in water, on two

props ; p on each prop. o
6. Prove, from the laws of Boyle and Dalton, the fundamental equation, T
= Const., forapvenmmofgas

7. Assuming
;{hat is the acceleration value of the Earth's ti
oon?
8. If a particle falls from a point A to another B ve that the change in
the square of its velocity is the same, wh beth’epm h) curve or e
on which the motion takes place.
9. A spring balance in a balloon marks 0 when the balloon is at rest; what
will be m mdlmmm when the balloon is nnng with constant velocnty! Shew
how to find the of the balloon's y when the b marks s,

10. Prove graphically the equations of umformly accelerated motion.

Earth's radius = 4000 miles, Moon's dm.nce— 240,000 miles,
t the p of the
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UNIVERSITY @ LONDON MATRICULATION EXAMINATION.
June 1883.

1. Define Acceleration, Force, Energy. A train which is uniformly acceler-
ated starts from rest, and at the end of 3 seconds has a velocity with which it
would travel through 1 mile in the next 5 minutes; ﬁndthzaecenram

2. Describe Attwood’s Machine.

Two scale- each weighing 2 or., are by a weightless string
over a smooth pulley. Amusofxooz.'isp in one and 4 oz in the other.
Find the tension of the string, and the pressure on each scale-pan.

8. Distinguish between mass and weight.

A certain force acting on a mass of 10 Ib. for 5 seconds, produces in it a
velocity of 100 feet per second. Compare the force with the weight of 1 Ib.,
and find the acceleration it would produce if it acted on a ton.

4. The horizontal and vertical components of a certain force are equal to the
weights of 5 and 12 lbs. respectively ; what is the magnitude of the force?

Supposing this force to act for 1o seconds on a mass of 8 lbs., which is also
exposed to the action of gravity and is initially at rest, what velocity will be
communicated to the mass, the vertical component of the force acting upwards?

6. The arms of a _bent lever are at right angles to one another, and their
lcn‘ftlu are in the ratio of § to 1. The longer arm is inclined 45° to the horizon,
and carries at its extremity a weiﬂn of 10 lbs. The end of the shorter arm
P inst a h h 1 plane. Draw a figure shewing the forces in
action, and find the p b the sh arm and the plane.

6. What is the centre of gravity of a body ?

A uniform plate of metal 10 inches square has a hole 3 inches square cut out
of it, the centre of the hole being 2} inches distant from the centre of the plate.
Find the position of the centre of gravity of the plate.

7. A body is the equilibrium under the action of three forces whose directions
are not parallel.  State fully the conditions which must be fulfilled.

A heavy uniform ladder rests with its upper end a h

wall: shew by a figure how to determine the direction of the resultant
force acting upon the foot of the ladder.

8, What is meant by the Specific Gravity of a substance ?

A body floats with one tenth of its volume above the surface of pure water.
What fraction of its vol would project above the surface if it were floating in
liquid of specific gravity 1-251

9. Explain the principle of action of the common How may it be con-
ven.cdxi‘x)lto a lif(p::mxg! A lift pump is employ:lzlu :p‘mn vmmythmugh a
vertical height of 200 feet. If the area of the piston be 100 square inches, and a
cubic foot of water contain 624 lbs., what force (in addition to its own weight)
will be required to lift the piston ?

10. Describe the common Air-pump.

In the p of exhausting a i iver, after 10 strokes of the pump
the mercury in the gauge stands at 2o inches, the barometer standing at 30
hd‘ke:;‘l At what height will the mercury in the gauge stand after 20 more
strol

11. A beaker of water with a wooden sphere floating on it is placed under the

iver of an air-pump: explain how the sphere will be affected on exhausting
the air from the receiver.

If the density of water be 800 ti;nu:dnt of air at ordinary pressure, state

precisely what will hap pposing ph igi to have bees
nmme.rse’dtot.hedcpzhoffucune. N originally ve been
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UKXIVERSITY OF LONDON MATRIOULATION EXAMINATION.
' June 1884.

1. Define velocity, acceleration, force, and momentum. What is meant by
uniformly accelerated motion?
heavy body slides down a smooth plane inclined 30° to the horizon ; th h
how many feet will it fall in the fc oungn second of its motion (taking ‘g’ to
32 foot-second units) ?
2 Two hawgh ies are connected by a flexible string which overa
ﬁxed pulley. ow how to find the acceleration with which the heavier body

lftbemassesohhetwobodmmmpecnvelyqo:.andxso:.,ﬁndthe
tension of the string.

8. What is meant by the hanical advantage of a sy of pulleys or
O e velation between the power () and the weight (W) ‘

ind the tion between power and the weight ina
five movable llcrl.m w u;heach pulley hangs by a ngsyrn:lmt:e
weight of pulley is equal to P.

4. Whatummtbytheoenmofgnm of a body? Shew how to find the
centre of gravity of a system of heavypamce‘lymgmone plane.
Weights of 1 Ib., 2 lbs. ,3lbs.x are placed at the angular points
A, B, Drespecnvel of a square, ABCD; ﬁndthedmanoeofgemtmof
gravuy of the system from the centre of thesqnue.

6. Distinguish between mass and w"f

A cannon ball whose mass is 6o lbs. lsthmughavemul ight of 400 feet ;
wtmum ? With what velocity must such a cannon be projected
romaennno ve initially an equal energy ?

ngunhbetmnauhdudaﬂuld. ‘What is the special characteristic
ofakrtctﬂmﬁ
of one foot edge is suspended in water with its upper face horizontal,

nnd atadepdxofz} feet below the surface ; find the pressure on each face of
the cube, auunﬁnglhuthemsofacubwfootofwamux,ooooz.

7. Deﬁne speclﬁc gravity, and exphm the principle of d‘::‘ cl:)ommon hydro-

ot ific f hile th loweneornspondm.
tlon coalpeﬂ gnvxtyoxooo,wwte
What nds to the point which is exactly midwa;
Betmmeen themm tos Grviion ] TP i
8. What conditions limit the height to which water can be raised by means
of a common pump? How must the np be modified when it is required to
raise water to a height greater than the limit thus uugnedt Explain thecon-
trivance in the lift pump for enabling the piston rod to work water-tight through
the cylinder cover.

0. Howwould youdetamme thc q)eaﬁc gnwty:!apldmedalbym

ah
E hmhowuchwﬂghmgndtheﬁnalm t will be affected by the pres-
cne:gﬂhem,lfnoconecuonnmadefonheauduphmd.

10. Describe some exp | method by which the weight of a cubic foot
of air may be determined. How does the density of the air vary with &he
pmsmtowhu:h:tuexpooed how may this rel be
determined ?

UxiversiTy o¥ LONDON MAmoun'non EXAMINATION.

1. Explain a i hod of geometnml.ly the velocity of

a body moving according to a known law, and the passed over by it.
Employ the method to find the distance traversed in ten minutes by a train

which has a velocity of 20 nnlu an hour, and which has its speed diminished at

a uniform rate of § miles an
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WhDeﬁne for:_:;, and explau;nl how it is }:nusured. p cific '

at units of force are employed in this country for scientific purposes
How would you determine J.'ed of British lute units of force in
the weight of a pmmdt

8. A parhcle is Mil any number of forces in one plane, How
would yo Lot e y for its equnhbnumf

If the syucm of l'ovrces be reduced to three, what simple geometrical relation
mus( exxst between their magmmde and their directions ?

rticle, whose mass is M pounds, moves from rest under the action of a
fon:e of P units, which is and d How far will
the Famcle move in » seconds, and what space will it describe in the » seconds ?

force be the weizht of the body, and the pamcle traversed 176-99 feet
dunnx the sixth second of its motion, find the value of ‘2.’
is capable of turmng freely about us centre of gmvu vhu:h is
ze bod p?s laced in any to this o4 d be
then lef( to itself, how wﬂl it behave?

A uniform rod, AB, is ¢4 feet long, and we:ghs? Ibs. One pound is then
attached to the end A 2 lbs. at a point distant 1 foot from Adns 1bs. at 2 feet
from A, 4 Ibs. at 3 feet from A, and 51lbs. atend B. Find the distance from A
of the centre of gravity of the system.

6. A quanmy of heavy lu}md is at rest under the action of gravity, its surface

area. State what you know respecting .
1) 'fhe form of the free surface ;
2) The relation between the pressures in different directions at any point ;

3) The de of the pr at different depths below the surface.
How might the valne of £’ in different latitudes be determined by means of
data depth, say 2o feet, beneath

the surface of snll muer?
7. A cubic foot of water weighs 1000 ounces. A cylindrical test tube is beld

in a vertical and d mouth d ds in water. When the
middle of the tube is at a depth of 32-75 feet, it is found that the water has risen
half-way ug the tube. Find p in pounds weight per
sgxare inc

8. Define Specific Gravity.

Suppose that a cubic foot of air we:ghs 12 oz., and a cubic foot of water
1000 0z. A balloon so thin that the of its sub may be
contains 1-5 cubic feet of coal-gas, and the envelope, together mth the car and
appendages, weighs 1 0z. The balloon just floats in the middle of the room,
without ascending or desoendmg ; find the specific gravity of coal-gas, (x) com-
pared with air, (2 compared with water.

9. Explain the principles on which the use of Bramah's press depends ; and
show how to find the rpelnnon between the power and the pressure, when the
areas of the pistons are given.

If a pressure of 1 ton is produced by a powerof 5 p .
of the pistons are in the ratioof 8 to 1, ﬁnd the ratio of the lengtlu of the arms
of the lever employed to work the piston.

s

THE END.

Edinburgh :
Printed by W. & R. Chambers.















