
iCT)

loo

jOO
iCX)

CO

CD

CO

-J )

.<^ i<



Digitized by the Internet Archive

in 2007 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/elementarymechanOOIodguoft







ELEMENTARY MECHANICS



WORKS BY SIR OLIVER LODGE.
ELEMENTARY MECHANICS. (Chambers.) 4s. 6d.

A text-book for Schools and Matriculation Candidates.

MODERN VIEWS OF ELECTRICITY. (MacmiUan.) 6s.

A well-known exposition of fundamental electrical principles.

PIONEERS OF SCIENCE. (Macmillan.) 6s.

A course of popular lectures on Astronomical Biography, being
sketches of the lives of the famous Astronomers and their work,
with numerous Illustrations.

EASY MATHEMATICS ; Chiefly Arithmetic.
Being a collection of Hints to Teachers, Parents, Self-taught
Students, and Adults, containing a summary or indication of
most things in Elementary Mathematics useful to be known.

(Macmillan.) 4s. 6d.

WIRELESS TELEGRAPHY. (Electrician Co.) 5s. net.

First published in 1894 under the title "The Work of Hertz and
his Successors."

ELECTRONS, or the Nature and Properties of Negative Electricity.

(George Bell & Sons.) 6s. net.

MODERN VIEWS OF MATTER. (Clarendon Press.) is. net.

Being the Romanes Lecture to the University of Oxford, delivered
in 1903, on the new discoveries in electricity in connection wiih
Radium and other such phenomena. A pamphlet.

LIFE AND MATTER. (Williams & Norgate.) 2s.6d.net.
A discussion of the scientific foundations of Religion ; an answer
to Haeckel, and a speculation concerning the Meaning of Life.

SCHOOL TEACHING AND SCHOOL REFORM.
(Williams & Norgate.) 3s.

LIGHTNING CONDUCTORS AND LIGHTNING GUARDS.
A technical treatise on Electric Waves and Discharges generally,

for Architects, Electrical Engineers, and Physicists.

(Whittaker.) iss.

THE SUBSTANCE OF FAITH ALLIED WITH SCIENCE.
A Catechism for Parents and Teachers. (Methuen.) 2s. net.

THE ETHER OF SPACE. (Harper & Brothers.) 2s. 6d. net.

MAN AND THE UNIVERSE. (Methuen.) 5s. net. and is. net.

THE SURVIVAL OF MAN. (Methuen.) 5s. net.

REASON AND BELIEF. (Methuen.) 3s. 6d. net.

PARENT AND CHILD. 2s. net.

COMPETITION VERSUS CO-OPERATION. id.

MACEDONIA AND THE PROBLEM OF THE NEAR
EAST. 6d.

PUBLIC SERVICE VERSUS PRIVATE EXPENDITURE, id.

SCIENCE AND RELIGION. 3d.

SOME SOCIAL REFORMS. 3d.

WORK AND LIFE. id.

THE FLESH AND THE SPIRIT. id.



ELEMENTARY MECHANICS

INCLUDING

HYDROSTATICS AND PNEUMATICS

Sir OLIVER jfLODGE, D.Sc, LL.D., F.RS.
PBIMCIPAL OF THE UNIVERSITY OF BIRMINGHAM, LATE PROFESSOR OF

PHYSICS IN UNIVERSITY COLLEGE, LIVERPOOL, AND EX-PRESIDENT

OF THE PHYSICAL SOCIETY OF LONDON

^etD (Mixtion

COMPLETELY REVISED BY THE AUTHOR AND BY

ALFRED LODGE, M.A.

PROFESSOR OF PURE MATHEMATICS

T THS BOTAL INDIAN ENGINEERING COLLEGE, COOPRBS HILIi

ANSWERS REVISED BY
\ ^ ^ Si ^

CHARLES S. LODGE, B.A

\ X- 5 '^L^

LONDON : 38 Soho Square, W.
W. & R CHAMBERS, Limited

EDINBURGH : 339 High Street



W. & K. CHAMBERS'S TEXT-BOOKS IN SCIENCE.

INORGANIC CHEMISTRY. By F. Stanley Kipping, Ph.D., Sc.D., F.R.S., and
W. H. Pkukin, Pli.D., Sc.D., LL.D., F.R.S. With Diagrams. Parti., 3/6.

Part II., 4/-. Ill one voluiiie, 7/6.

PHYSICS : an Elementary Text-Book for University Classes. Third Edition,
with an entirely new chapter on The Electron Theory and Radio-Activity.
By C. G. Knott. D.Sc. (Edin.), F.R.S.E., Lecturer on Applied Mathematics
and Physics in the University of Edinburgh. 7/(5.

ELECTRICITY AND MAGNETISM, Elementary Course. By C. G. Knott,
D.Sc. (Edin.), F.R.S.E., Lecturer on Applied Mathematics, University of
Edinburgh. 2/6.

ELEMENTARY MECHANICS, including Hydrostatics and Pneumatics. By
Sir Oliver J. Lodge, D.Sc, LL.D., F.R.S., Principal of the University of
Birmingham. New Edition. 308 pages. 4/6.

PHYSIOGRAPHY, I'^lementary. New Edition. By David Forsyth, M.A.,
D.Sc. Witli Diagrams, Questions, and Examination Papers. 2/0.

ORGANIC CHEMISTRY. Entirely New Edition. By W. H. Perkin, Ph.D.,
Sc.D., LL.D., F.R.S., and F. Stanley Kipping, Ph.D., D.Sc. (Lond.), F.R.S.
With Diagrams. Part I., 4/-. Part II., 4/-. In one volume, 7/6.

AGRICULTURE, Elementary Course. By R. Hedger Wallace, late Lecturer
and Examiner in Agriculture to the Education Department of Victoria.

Ailapted to the New Syllabus. Profusely Illustrated. Cloth, 3/-.

ELEMENTARY HUMAN PHYSIOLOGY. By J. G. M'Kendrick, M.D., F.R.S.,
Professor of Physiology in the University of Glasgow. Illustrated with 164
woodcuts. Cloth, 2/6.

HYGIENE, Elementary Course. By T. London, Science Teacher, Leeds. With
Illustrations. 176 pages. 1/6.

W. & R. Chambers, Limited, London and Edinburgh.

191U.



PREFACE TO THE 1896 EDITION.

The present book aims at giving a clear knowledge of the

principles of the subject, in as elementary and even popular a

manner as is consistent with careful accuracy, and without

assuming any mathematical knowledge beyond the most rudi-

mentary algebra. At the same time it is hoped that students

who use this manual will be able to uiaster the elements of the

science in such a way that they may rise from it to more

advanced treatises, not only without having anything to un-

learn, but with a very sound knowledge of principles. Copious

illustrations and explanations have been inserted, and the needs

of students who are without the aid of a teacher have been kept

steadily in view.

The subject is treated as an introduction to Physics, and its

laws are deduced from the first principles of familiar experi-

ence rather than from special experiment. Experiments in

Mechanics have a subordinate though most useful part in

illustrating and emphasising the facts, but the author has no

faith in making the establishment of principles depend on

special experiments. So also in Geometry : drawing, measuring,

and weighing may well be used for purposes of instruction and

illustration, but propositions should be otherwise proved.

The early examples at the ends of the chapters are typical

ones, and are intended not only to be worked without looking
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at the answers, but also to be read almost as part of the book,

because they frequently direct attention to important details.

A large number of examples for practice have now been

added to these, and the text has been thoroughly revised. In

this work, as stated on the title-page, the author has had the

collaboration of his brother.

The statements made in a book should be carefully criticised,

and not taken for granted ; and all kinds of special cases should

be thought of or tried, to see if an exception cannot be found.

It is by thinking one's self on a subject that it becomes really known

to on^s self; it will never be really known if we only try to under-

stand and remember what the book says.

The author thinks that students will derive benefit from

referring to Part I. of Deschanel's Natural Philosophy, trans-

lated by Dr Everett, as a supplementary well-illustrated work

introductory to general Physics, and reference is accordingly

made to it or to the corresponding portion of Ganot's Physics

for details which would unduly swell the size of the present

book. From the more engineering side. Professor Perrjr^s

Practical Mechanics is also to be recommended.

The book, as now revised, is intended to be not only an

easy introduction to the subject, but, as far as it goes, a philo-

sophical work. If at any place it is unable to stand the test

of hostile criticism, the failure is a defect which the author

will gladly utilise the aid of the critic to remove. From

friendly critics he has already received several welcome minor

corrections.

OLIVER J. LODGE.



SUGGESTIONS FOR HEADING.

Beginners are recominended to omit the following section?

on a first reading : 17, 18, 31, 40-43, 53, 55, 56, 76, 80-82, 104, 105,

123; and then to return and read the omitted portions together,

and finally to read the whole book carefully through without

omitting anything. Students preparing only for London Uni-

versity matriculation, or for the elementary stage of the Science

and Art Department, may with safety omit any of the above

sections over which they experience much difficulty until the

examination is over. The introduction being harder than many

other parts of the book, its complete reading may be deferred.

It is inadvisable to begin the study of either Mechanics or

Physics without a knowledge of the Greek alphabet.
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ELEMENTARY MECHANICS.

INTRODUCTION.

ON FORCE.

1. Physics is the comprehensive science which deals

with the general relation and properties of the three funda-

mental facts or phenomena—Space, Time, and Matter.

Mechanics is the foundation of Physics, and deals with

the simplest and most direct relations among these same

phenomena.

(There are other branches of Natural Philosophy, such as

Chemistry, which discusses particularly the properties

whereby forms of matter differ from each other, and

Astronomy, which deals with the motions and constitutions

of large and distant masses of matter.)

Metaphysics, on the other hand, attempts to solve

problems as to the ultimate nature of the above phenomena,

seeking to express them in terms of mind and consciousness,

or vice versd. ; and it also considers how far the things called

space, time, and matter really exist. Physics silently accepts

their existence, and seeks to express all their properties and

relations in the simplest terms. The science of Mechanics

or Dynamics embraces that part of Physics in which this

attempt has been so far successful. This is the scientific

use of the term Mechanics ; it used to mean chiefly the

science of Machines, and this is still a part of the subject

;

usually now this part is specially distinguished as Applied

Mechanics^ and the more general aspect of the science itself is

A
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called Dynamics, which signifies a treatment of the action

of the fact or conception which links together the three

fundamental phenomena already specified—namely, the very

important fact or conception of * Force.'

2. By the term Force we are to understand muscular

exertion, and whatever else is capable of producing the

same effects.

Muscular action impeded gives us our primitive idea of

force ; our sense of muscular exertion itself is a primary

one for which we have special nerves, and it is not resolved

into anything simpler. When any inanimate agent pro-

duces an effect on bodies exactly similar to that which

would be produced by muscular exertion on the part of an

animal, it also is said to exert force. Thus, a steam-engine

exerts force when propelling a carriage, or pumping water,

or turning a mill
;
gunpowder exerts force on a cannon-ball

during the time the ball is passing from the breech to the

muzzle of the gun. But in order that an agent may exert

force it must meet with some resistance ; in other words,

force is always the mutual action of two bodies against one

another, and the amount of the force is precisely equal to

the amount of resistance. Thus, a flying meteor or a

cannon-ball is not exerting force (except, indeed, on the

earth, by reason of the fact of gravitation) unless it meets

with some resistance : but if the air rub against it and resist

its motion, it will exert a force against the air ; and when it

strikes a target, it meets a very great resistance, and therefore

exerts a very great force, possibly smashing the target. A
running stream exerts very little force unless it meets with

an obstacle ; but if you resist its motion with your hand, it

will press against your hand ; or if you dip in the vanes of

a water-wheel, it may force the wheel round.

3. Stress.—Forces, then, always occur in pairs, con-

stituting a mutual action, a pulling or pushing between hoo

bodies, and the action (pull or push) of the one on the other
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is always precisely equal to the reaction (pull or push back)

of the other on the one. In other words, action and

reaction are equal and opposite. This pair of forces which

always go together it is convenient to have a name for, and it

is called a sti'ess. It is a tension if the forces are acting

away from each other, and a pressure if they are acting to-

wards each other. If the stress be directly between two dif-

ferent bodies, it is always a pressure ; if between different

parts of the same body, as at any section of a rod, it may be

either a pressure or a tension, and is in either case called an

internal stress. (The effect which a stress produces in an

ordinary solid before rupture is called a strain ; see sect. 5.)

There are indirect actions between bodies, such as Gravi-

tation, Cohesion, Magnetic and Electric Forces, &c.,

which are not yet thoroughly understood, but which prob-

ably arise from internal stresses in some energetic connecting

medium which thus exerts equal pressures on both bodies,

forcing them towards or away from each other, as the case

may be. So far as the bodies are concerned, therefore,

these forces may be classed under the head of Pressures,

not between the two bodies, but between the medium and

each body. When the earth is one body and a stone the

other, the gravitational pressure which is driving them

together is commonly called the * weight ' of the stone. The
peculiarity of gravitational pressure is that it acts on every

atom of both bodies throughout their entire mass. Wliere

two contiguous particles of the same body are being con-

sidered, the pressure which holds them together is called

cohesion: and it is the existence of this remarkable

molecular stress which permits the possibility of Tension of

any kind in material bodies.

It is often convenient to isolate one of the components of a
stress between a pair of bodies, and to consider only the force

acting on one body ; but we only do so by attending to this one

and neglecting the other component, which always necessarily
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exists and is acting on the other body of the pair. Moreover,
which of the forces we choose to call the direct action, and which
the reaction, is merely a matter of convenience ; but it will be
obviously convenient to speak of that component which acts on
the piece of matter we are dealing with as the force, or the action

of the other piece of matter, while that component which affects

this other piece of matter will of course be the reaction of the first

piece on it. An absurd puzzle is sometimes made out of the

fact that a cart always pulls back the horse with precisely the

same force as the horse pulls forward the cart. It is asked, ' How,
if that be so, can they ever start ?

' The puzzle can only be felt

by those who forget that each force acts on a dift'erent body. In

the simplest case, there is no equilibrium or balance of forces

acting on the cart ; there is only one force acting on the cart

—

namely, the pull of the horse, and this force is quite unbalanced
;

the reaction or pull back of the cart does not act on the cart, but

on another body altogether—namely, the horse. It needs there-

fore no knowledge of mechanics to see clearly the way out of

this puzzle ; it needs only a little thought and some common-sense.

To explain why a horse or a steam-engine is able to exert force

at all—that is, to explain how the system of horse-and -cart is

able to progress—is more complicated.

We have spoken of force as exerted by matter. Of inert

matter this is hardly correct. Matter does not of itself

exert force ; it must be set in motion, or have some other

form of Energy conferred upon it, before it can exert force.

Remembering this, however, we shall do no harm by

liabitually using the convenient phrase, ' the force exerted

by such and such a body.' Even in the case of the indirect

actions between two bodies, such as gravitation, &c., above

mentioned, it is customary to talk of the force as if it were

exerted by one body on the other, although, strictly

speaking, the forces are between each body and the con-

necting medium. Thus we say that the weight of a stone

is due to the pull of the earth upon it ; but, since the

action is really a stress in the surrounding medium, it

follows that a stone exerts precisely the same force on the

earth as the earth exerts on the stone. 1
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4. Equilibrium.—A book lying on a table is at rest.

Wliy ? Not because no force is acting on it, for the earth

is pulling it ; but because another and equal force is also

acting on it in the opposite direction—namely, the resistance

of the table. This is the condition of all bodies at rest near

the surface of the earth ; they are subject to two or more

forces which neutralise each other as far as motion is

concerned, though they do not neutralise each other as

regards strain. Indeed, when we wish to produce strain and

not motion, we must subject the body to the action of two

equal opposite forces ; for example, if you want to tear a piece

of paper, or break a string, or stretch a piece of elastic, or

crack a nut, it is no use pulling or pushing at one side only

;

you must apply a force to both ends or sides—that is, you

must apply a tension or a pressure
;
you must subject the

body to an internal stress.

Strictly speaking, motion appeai-s to be the normal condition of

matter at present ; all known bodies are moving through space

with considerable speed, and no such thing as absolute rest is

known. We can, therefore, only consider the motion of bodies

relative to some body regarded for the time being as fixed. It is

generally convenient, in mechanics proper, to consider the earth

as a body at rest, and to leave the study of the motion of it, and
of the group of bodies to which it belongs, to Astronomy, which is

really a branch of mechanics in a wide sense. It may sometimes

be convenient to consider the earth to be moving through space

in any direction desired. It is also often advantageous to consider

tlie motions of two bodies, or parts of a body, as if one of the two
were fixed, although both or either may be moving relatively to

the earth. For example, on board ship, one generally considei-s

the motions of the various people and n)ovables with regard to

the ship, and not with regard to the water or dry land ; and in

applied mechanics the study of the relative motions of the

various parts of a machine is veiy important.

5. The effects of force on matter are :*

* Whatever other effects of force there may appear to be, are studied under

Physics, and physicists are liopiiig to reduce all of them ultimately to the above

two forms. Hence Physics is constantly tending to become more and more
mechanical.
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A. Change of motion, which is called Acceleration.

B. Change of size or shape, which is called Strain

or deformation.

If only one force acts on a body, it must produce the

effect A, and it may produce B also. If two or more forces

act in different directions on different parts of a body which

is not absolutely stiff and rigid, they must produce B, and

they may produce A also.

6. The two kinds of effect, A and B, are distinct; and

each would furnish a measure of force.

A force may be measured by the amount of motion it can

produce in a given piece of matter in a given time; and

this is the measure we shall mostly use.

Or a force may be measured by the amount of strain it

can produce in a certain piece of matter : the amount it can

bend a certain spring, for instance, as in a dynamometer;

or the amount it can twist a certain wire, as in a torsion

or spiral spring balance. If we are not concerned with

measur'ing forces absolutely, but merely wish to compare

two forces, we may of course simply balance them one

against the other, as is done in a balance or steelyard.

Of the two classes of effect, A and B, A is much the

simpler, and constitutes the branch of mechanics of which a

portion is studied in an elementary course ; it is the only

branch suited to elementary exposition such as the present.

But before proceeding to our actual subject, the motive

effect of force (called Dynamics^ from bdvaixL^^ force), it is

convenient to study motion itself a little in the abstract, and

without reference to either force or matter. (The subject of

abstract motion is called Kinematics, from Kiv/j/xa, motion.)

We may conceive a geometrical point or surface moving

about in all sorts of ways without troubling ourselves with

the cause of the motion, and the propositions which we so

discover will be useful when we come to the motion of an

actual piece of matter under the influence of a force.
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CHAPTER I.

ON MOTION (Kinematics).

I. 3I0TI0N OF A POINT (TRANSLATION).

(a) Rectiliiiear Motion.

7. A body is said to rn,ove when it is in different positions

at different times. This is to be regarded as the essential

characteristic of motion—it involves a reference to both

space and time. Geometry deals with space alone. Kine-

matics deals with both time and space.

Now motion has two primary properties to be studied

—

Speed and Direction ; both of which are sometimes held to

be included under the one name, Velocity. Let us take

them in order.

When a body moves over equal spaces in equal times, its

motion is said to be uniform, or its speed is said to be con-

stant* For instance, the tip of the hand of a clock has

such a motion as regards speed, in spite of the fact that its

direction of motion is constantly changing. The apparent

motion of a fixed star across the field of a telescope is

another instance of uniform motion.

When a body moves over wr^equal spaces in equal times,

its velocity is said to be variable. As an example of

variahle velocity, we may take the case of a falling stone,

which moves quicker and quicker as it descends ; or of a

stone thrown upward, which has a decreasing velocity till it

* It is probable that our idea of motion (that is, of free muscular action) pre-

cedes and suggests our idea of time ; and that our notion of equal intervals of time

depends on our recognition of uniform motion. Every measurer of time is simply

a uniformly moving body. The most uniformly moving body we know is the

earth, which rotates on its axis in a period of always the same duration ; this

period is taken as our fundamental unit of time, and the TBinth part of it is called

a second, of ' mean solar time,' and is used as the practical unit.
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reaches its highest point; or of the bob of a pendulum,

which has a velocity alternately increasing and decreasing,

as well as changing in direction. To begin with, we shall

consider motion in a straight line only—that is, with con-

stant direction.

8. Velocity is defined as the rate of motion of a body.

When uniform, it is measured by the distance travelled,

divided by the time taken in the journey ; when variable,

its average value is measured in the same way. Thus, if a

point move over a distance s in a time t, its velocity is sjt ;

or V = -.

For example, if a train goes 80 miles in 4 hours, its

average speed is 20 miles an hour. This expression may be

put in the form of a fraction, and may be written

80 miles _ 20 miles _ „ „ 1 mile
^

4 hours 1 hour 1 hour

'

the last fraction denoting a velocity of 1 mile per hour.

Similarly, -, or, shortly,—'-. denotes a speed of 1 foot
1 second sec.

per second, which we may consider as a sort of standard

British unit of speed, suited to the majority of problems

with which we shall have to deal. The speed of the above

train may if we please be reduced to feet per second, as

follows

:

80 miles ^80x1760x3 feet ^ ^^^^ ^^^„^
4 hours 4 X 60 X 60 seconds 3

The mode of dealing with units indicated at full length

in this extremely simple example will be found of con-

siderable service in more complex cases.

Note that a velocity is length per time, and that it is not

correct to speak of a velocity of so many feet. We speak of

a length of so many feet—or a time of so many seconds—but

a velocity of so many feet per secpnd.
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The unit of velocity is of course ^^.—^^,^ - : that is,

unit of time

1 foot 1 centimetre / * ^ £ . i i^- i.

or —
:j J— (read 1 foot, or 1 centimetre, per

1 second 1 second

second). Strictly speaking, it is incorrect to speak of a

velocity 6 simply, but it is sometimes done when the par-

ticular unit of velocity is specified by the context.

9. The above measure of velocity as the ratio of s to t is

independent of the size of s and t, so that it remains per-

fectly true when s and t are very small. Thus in the case

of a body moving uniformly 6 feet every second, its velocity

may be -written either v or - or IM2 j and any of these
^ T 6000

fractions represents its velocity equally well so long as it be

uniform. But if the velocity were variable, the body might

still go 6 feet in a second, so that its ojjerage velocity would

still be 6 ; but its actual velocity at each instant might take

all kinds of values, some greater and some less. Thus a

train which had gone from London to York, 200 miles, in

5 hours, would have had an average speed of 40 miles an

hour; but its actual speed would have varied greatly; some-

times rising to 60 perhaps, sometimes falling to 0, as at a

station. The whole distance travelled, divided by the whole

time taken, will always give us the average velocity for that

distance ; and in the case of uniform motion, the average

velocity coincides with the actual velocity at each instant.

But to get information on the actual velocity, at any one

place, of a thing whose speed varies continually, it is neces-

sary to suppose a small distance taken at that place, and

divided by the time taken to tmverse it. The smaller the

distance taken, the less possibility is there of variation, and

the more exact will the specification be ; hence the actual

velocity of any moving body at a given instant is the

infinitely small distance then being described divided by the

infinitely small time required for the purpose.
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(The facts are often expressed in a form which appears

more simple, but which involves less important ideas

—

namely : Uniform velocity is measured by the space de-

scribed in unit time. Variable velocity, by the space which

would be described in a unit of time if at the given moment
the velocity were to cease to vary.)

So then, using little v to stand for actual velocity at any

instant, v = ~i^ true when s and t are small ; but, using big

V to stand for average velocity throughout any time, V = -
z

is always true unconditionally.

EXAMPLES—I.

(1) A train is travelling at the rate of 25 miles an hour. How
long will it take to travel between two telegraph poles 100

yards apart ?

There are usually about 24 telegraph poles to the mile, hence the

speed of a train may be roughly estimated by a traveller. It may be

shown in fact that in that case the speed of the train, in miles per hour,

is 150 divided by the number of seconds taken to travel between two
poles. Because if

X m. _ 1 tel. pole

1 hour" s seconds*

it follows that

_ Ihour 1 tel. pole_3600_150
~s seconds 1 mile "~24s s

Another way of putting the result is to say that the speed, in miles an

hour, is 2J times the number of telegraph poles passed per minute.

(2) A man walking from A to B at 3^ miles an hour anives at B
in 1 hour 35 minutes. A cyclist starting from A an horn-

later arrives at B at the same time ; at what rate per hour

was he travelling ?

(3) If 100 inches= 254 centimetres, how many centimetres per

second is equivalent to 3 miles an hour ?

(4) A man walks at the rate of 2 yards a second. What is his

speed in miles per hour ?

The result is a convenient fact to remember : 2 yards a second is 4

miles an hour, roughly.

(5) How many feet does the tip of the minute hand of a clock

travel in 24 houi-s if it is 4 feet long ? How mucli does it
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move for each complete swing of its pendulum if it ticks 40

to the minute ?

(6) If a snail crawl at the rate of I inch a second, how far will it

go in an hour ?

(7) How long would a train take to go 100 yards at the rate of

20 miles an hour ?

(8) With what velocity must I walk in order to go half a mile in

five minutes ?

ANSWERS TO I.

(Worked in full to show the mode of dealiiig with units.)

3x30
,,v . « 10QYa#d^x^Qx^Q seconds 90 j oi j
( 1

)

f=-= ^^^-^ ^Zl l^ = TT seconds

=

Sy\ seconds.
^ ' V ^5 X \X^(^ ^ta#dS^ 11

11

,„. 3A miles _- . .

(2) s=-:-, X 95 minutes
^ '

1 hour

^^,^^^ 3^ miles x 95 mij^^t^s^g^^j^
1 hour '^

19

= \)- miles per hour

7

=9j^ miles per hour.

(3) 3 miles _3x 1760 x 36 inches

6280 1 hour ~ ~60'x~60 seconds

^^ _ 3xl760x^^ 254 centimetres

!j^
~

(^(^ X ^q ^ 100 seconds

1120
^^

105
26
2

134 134 centimetres per second.

2>d< _a; xl760><iC
^^' 188(5. ooxeo^i^e.

90

.
2x^6|x^^_45_

22

10. Acceleration.—The rate of change of velocity is

called acceleration. Velocity may change in magnitude and
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in direction, and the rate of either change is called accelera-

tion.

When uniform, the acceleration in any direction is

measured by the velocity gained in that direction in a

certain time, divided by the time taken to gain it. When
variable, its average value is measured in the same way.

Thus, if a falling body acquire a velocity of 96 feet per

second in three seconds, its average acceleration is said to

be ^- or 32 units of velocity per second.

Hence acceleration bears the same relation to velocity as

velocity did to distance ; and denoting it by a, we have

V
a = -

as the algebraic statement of the measure of acceleration

;

remembering that v stands for the velocity gained by the

body in the time tj and need not stand for any velocity actu-

ally possessed by the body. Thus the above falling body,

instead of simply falling from rest, might have been thrown

down from a balloon with an initial velocity of 100 feet a

second ; but if at the end of three seconds its velocity were

196, then its gain of velocity would be precisely the same as

before, and its acceleration therefore still -\- or 32. Hence,

generally, v may be said to stand for the difference between

the final and the initial velocities, which are conveniently

denoted by v-^ and Vq respectively, so that v = v-^^ — Vq, and

V. -Vn
a = -i 9.

11. When a body moving in a straight line acquires

equal increments of velocity in equal intervals of time, its

acceleration is said to be constant : for instance, a falling

stone has constant acceleration ; its velocity uniformly in-

creases. It gains in fact a velocity 32 feet per second

during every second of its motion. In all that foUows, the

acceleration is supposed to be constant, unless it is otherwise

stated.
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Note that acceleration is velocity per time^ and that it is

absurd to speak of an acceleration of so many feet, or even

of an acceleration of so many feet per second, for this last is

a velocity. An acceleration may properly be specified as so

many feet-per-second per second. The expression for acceler-

ation can be put in a fractional form ; thus the acceleration

96-^
96 feet per sec. ^ sec. ^ g^ fi/gec.

. ^^.^^ j^^^ .^ ^^^
3 sec. 3 sec. sec.

monly treated like an ordinary fraction, and briefly written

ft
-—Vo ) though it must be admitted that the notion of a
(sec.)^

squared second is absurd. There is, however, no principle

involved in this mode of writing ; it is merely an abbrevi-

ation, and it must always be interpreted as above.

The unit of acceleration appropriate to the C.G.S. system of

1 centim./sec. cm.
units (see page 308) is ^ or -.—^-rg ; and the

J. sec. (sec.

)

acceleration already expressed above in British units trans-

lates itself easily into C.G.S. units, by the knowledge that a

foot equals 30*48 centimetres, thus :

ft. __ 30-48 centim. ___ centim.
32 7 v> = 32x -, ^, = 975-

(sec.)^ (sec.)^ (sec.)^

Similarly, 981 centim. -second units equal 32-2 foot-second

units very nearly.

12. If then the velocity of a body increases, its accelera-

tion is the gain of velocity in each second of time ; but if

its velocity decreases, then the acceleration is really a

retardation, and it must be reckoned negative, but as

numerically equal to the loss of velocity in each second.

Thus, suppose that in 3 seconds the velocity of a body

changes from 196 to 100, its acceleration is -32. If the

velocity of a body is constant, then of course its acceleration

(or rate of change of velocity) is zero.

The Use of the Negative Sign.—It is a well-known method to
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distinguish between opposite directions by opposite signs. Thus,
if all distances measured to the right of any point be reckoned
positive, any distance to the left will be negative, so that -30 feet

will mean 30 feet to the left.

It is usual to reckon distances up as positive, and hence
distances doivn as negative. The same may be extended to

velocities, and a velocity upward may be called a positive velocity,

a velocity downward a negative one. Thus, the velocity of a
falling stone may be called negative, and it is continually getting

numerically greater (though algebraically less) : so the accelera-

tion produced by gravity ought on the same convention to be
called negative, because it is negative velocity which is added by
it every second. In fact, an increasing negative quantity corre-

sponds in algebra to a decreasing positive one, and vice versd.

EXAMPLES—II.*

(1) A body starts from rest and acquires a velocity of 600 feet

per second in half a minute. What is its acceleration ?

(2) A body starts with a velocity 50 feet per second, and in 6^
seconds has acquired the velocity 102 feet per second.

What is its acceleration ?

(3) A body moves with acceleration 32 ft./(sec.)2, starting with a
velocity of 20 feet per second. What is its velocity in 1,2,

3, 6 seconds respectively ?

(4) A train acquires a velocity of 20 miles per hour 5 minutes
after leaving the station. What was its average accelera-

tion during this time ?

(5) How many miles an hour per hour is 32 feet a second per

second ?

(6) A train going 40 miles an hour is brought up in 40 seconds

by the brakes. What is the rate of retardation in feet-per-

second per second ?

* All these are merely profit and loss questions. Velocity corresponds to

capital, and acceleration to rate of gain. Thus Question 3 may be paraphrased
thus :

' A man starts in business with £20, and gains £32 every year. How much
has he got in 1, 2, 3, 6 years respectively?'

And No. 8 thus :
' A man starts with £128, and loses £32 annually. How soon

will he have lost all? and what will he have in 1, 3, 5, 7 years?' Obviously he
will have lost all in four years, and in seven years he will be £96 in debt.

A less simple kind of question is one that involves distance; for some examples,
see Ex. IV. p. 29.
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(7) A body starting with velocity 100 feet per second has only a
velocity 52 in 4 seconds. What is its acceleration ?

(8) A body with acceleration - 32 foot-second units starts with

velocity 128. How soon is its velocity zero ? and what is

its velocity after 1, 3, 5, 7 seconds respectively?

(9) A body dropped from a stationary balloon falls with ac-

celeration 32, and hits the ground with a velocity 512, the

units being feet and seconds. How long was it in falling ?

(10) The acceleration of a moving point expressed in terms of

centimetres and seconds is 200. Explain exactly what
this means. Find what number expresses the same accel-

eration in terms of metres and half-seconds.

(11) The acceleration of a falling body is 981 when referred to

centimetres and seconds. If 1 foot were used as unit of

length, and 1 minute as unit of time, how would this

acceleration be represented ?

1 foot=30'48 centimetres.

(12) A train starts from rest, and 24 seconds later is moving at

240 yards per minute. Find its average acceleration.

(13) What acceleration is needed in order to get up a speed of 60

miles an hour in 2 minutes ?

(14) What rate of retardation will destroy this motion in 5

seconds ?

(b) Curvilinear Motion ofa Point.

13. Besides change in the magnitude of velocity or rate

of motion, there is another thing to be considered—namely,

change in its dii'ection. Hitherto we have only considered

motion in a constant direction—that is, in a straight line

;

but when the direction of a point's motion is constantly

changing, the path described is a curved Hne, or the motion

is curvilinear. The rate of change of direction per unit

length of a curve is called its curvature ; and this again

may be constant or variable. Most curves (the parabola,

sect. 29, for instance) have variable curvature. A circle or

helix has constant curvature. A straight line possesses zero

curvature. The curvature of a circle is inversely propor-

tional to its linear dimensions ; because the angle which the
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direction of motion turns through in going once round any

circle is four right angles^ which in circular measure is 27r

(see sect. 14), and the curvature will be this angle divided

by the distance travelled—that is, by the circumference,

27rr; hence the curvature of a circle is numerically equal

to the reciprocal of the radius, for

-— = — = curvature of a circle.
ZTrr r

And the curvature at any point of any other curve is defined

on the strength of this, as the reciprocal of the radius of

that circle which coincides most closely with the curve at

the point.

14. The circular measure of an angle at the centre of a

circle is obtained by measuring or estimating the arc

subtended by the angle and dividing this arc by the radius.

The value of this ratio, arc -^ radius, is independent of the

size of the circle, and depends only on the angle to be

measured. The angle subtended by an arc which equals

the radius would, on this system of measurement, be denoted

by 1, and is called a radian. It is about 57° 17' 45",

being equal to 360°-f-27r. The circular measure of any

other angle is equal to the number of radians it contains.

Four right angles, expressed in circular measure,

_ circumference _ 27rr _ „

radius r

where tt denotes the ratio of the circumference of the

circle to its diameter, and is approximately equal to 3^, or,

more nearly, 3*1416. Hence, 4 right angles = 27r radians.

We can now more fully state what is meant by curvature.

For, as we have seen, the curvature of a circle equals

angle turned through in going round the circle 4 right angles

distance travelled circumference

27r radians _ 1 radian
~

27ir r
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That is, the angle turned through by the direction of motion

is 1 radian for each portion of the circumference travelled

whose length equals the radius of the circle. For example,

if the radius is 4 feet, a radian is turned through for each

4 feet of arc travelled, or J radian for each foot, so that the

curvature of this particular circle is J radian per foot of arc

travelled. The numerical value of the curvature is -, when

the angles are measured in radians, but this expression must

be considered as an abbreviation for 1 radian per arc-equal-

to-radius, which finally in any given case becomes such and

such a fraction of a radian per foot, or per inch, or per

whatever unit of length is used.

15. A point moving in a curve, besides any acceleration

it may have along the curve increasing its velocity, pos-

sesses an acceleration at rigJit angles to the curve, or normal

to the direction of its motion ; this acceleration being pro-

portional to the curvature of the curve, and affecting only

the direction and not the magnitude of the velocity. Its

magnitude is the rate at which velocity normal to the curve

is gained by the point. This normal acceleration is called

centripetal acceleration, and is further discussed in sects. 58-

61, where it \d\\ be found to be proportional to the square of

the velocity of the point as well as to the curvature of

the curve ; to be equal, in fact, to v^ x —

.

r

Although the point is always gaming velocity normal to

the curve or along its radius at this rate, it does not follow

that it ever possesses any such velocity. It is in fact im-

possible for a point to possess any velocity except that along

the curve, or at right angles to the radius of curvature ; for

as fast as velocity along the radius is generated, so fast does

the direction of the radius change ; in the same sort of way
that a promise for to-morrow need never be fulfilled, because

' to-morrow never comes.'

B
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II. MOTION OF AN EXTENDED BODY (rOTATION).

16. A point can only move along, it cannot spin; or

rather, spinning makes no difference whatever to it or to its

motion : but an extended body, whether it be a line, surface,

or solid, may not only move bodily along or be translated

;

it may also turn round or rotate. The most general motion

of an extended body is a combination of translation and

rotation, but it is simpler to consider them separately. All

that we have said about the motion of a point is equally

true of the motion of an extended body so far as its trans-

lation is concerned ; because, in simple translation, if vf

e

know the motion of any single point, we know that of the

whole. Its rotation involves diff'erent ideas, which must

now be considered briefly.

17. When a body rotates, every point of it describes a

circle round some point or line whicli is the centre or axis

of rotation.

The velocity of a point far from the axis is greater than

that of a point nearer the axis ; and in general every point

has its own velocity, which is proportional to its distance

from the axis, only points at the same distance having the

same velocity ; hence the ' velocity of a rotating body ' is a

meaningless expression. The number of times the body

turns round in a second, however, is perfectly characteristic,

and we must define some kind of rotational or angular

velocity proportional to this.

To express the speed with which a body rotates, it is

sufficient to specify the velocity of any one point together

with its distance from the axis; for the velocity of the

point, divided by its distance from the axis, is a constant quan-

tity—that is, is the same for all points of the body at each

instant, and is called the angular velocity of the rotating

body. The velocity of every particle of the body is known
in terms of this, for, being proportional to its distance from
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the axis, it is equal to the ' angular velocity * multiplied by

this distance ; or, denoting the angular velocity by the letter

0), as is customary, the velocity of any particle at a distance

r is

Angular velocity in rotations takes the place of ordinary

velocity in translations. The name 'angular velocity' is

given because it really represents the angle (expressed in

circular measure, or radians) turned through per second by

the whole body.

An example may render this more clear. The circle described

by a particle at a distance r from the axis of a rotating body (say

a nail on the circumference of a fly-wheel of r feet radius) is 2r

feet in diameter, and hence 27rr feet in circumference. If the wheel
27rr

turn round in T seconds, the velocity of the nail is -™- feet per

second ; hence the angular velocity of the wheel is -^ radians

per second, which is w.

The most generally useful specification of angular velocity

is in radians per second, as above, but it is usually first

measured in revolutions per minute; and so a rapid mode of

conversion from one measure to the other is often needed.
o_

Now, 1 revolution per minute equals -— radians per second,
60

and a good approximation to this number is xV + tJtt^

which may be further improved by deducting
-J

per cent,

from the result.

Thus, to convert 1264 revolutions a minute into radians per

second, the work is as follows :

126-4+ 6-32 = 132-72,

or, deducting \ per cent, of this, 182-39 radians per second. (A
more exact vahie is 132-37.) To perform the inveree operation,

multiply by 10, and subtract 4^ per cent, of the result.

18. Of course angular velocity may be uniform or vari-



20 ELEMENTARY MECHANICS. [sECT. 18.

able ; and if the latter, its rate of change, or increase per

second, is called the angular acceleration of the body.

Denoting this by a, we have a = - (just as we had a = - in

sect. 10). But w = -. Hence a = — = -J— = ~- that is, the
r rt r r

angular acceleration of a body is the acceleration of any

particle divided by its distance from the axis. In other

words, angular acceleration : acceleration : : angular velo-

city : velocity : : angle turned : distance travelled : : 1 : ?\

EXAMPLES—III.

(1) What is the curvature of a circle 14f yards in circumference ?

It is numerically equal to the reciprocal of the radius in feet—that is,

2* 1- —— of a radian per foot nearly ; or your compass-bearings change
44 7

about 8° for every foot you travel round such a circle.

(2) A point moves in the above circle with a constant velocity of

6 feet a second. What is its acceleration in magnitude and

direction ?

Its acceleration is always along that radius of the circle which passes

through the moving point, and its magnitude is -y.

(3) A point moving in a circle 8 feet in diameter has a velocity

increasing by 18 every 3 seconds. What is the acceleration

in magnitude and direction at different times ?

There is a constant tangential acceleration equal to 6. The normal

acceleration is zero at starting ; at the end of the first second of motion

it is 'Y = 9 ; in two seconds it is 36 ; in three seconds, 81 ; and in t

seconds it is k{^tY = 9t". The actual acceleration at any instant is the

square root of the sum of the squares of the tangential and normal ac-

celerations at that instant ; hence its direction, which at first is tan-

gential, gradually swings round, so that in a few seconds it nearly coin-

cides with the radius.

This explains what happens when we whirl a stone at the end
of a string : it is necessary to start it with some purely tangential ac-

celeration, obtained either by the help of gravity, or by a tangential

push or pull. When once started, however, the speed may be increased

to any extent by simply pulling the string a little to one side of the

centre of the circle of motion, so that the tension in the string has

both a tangential and radial component ; and since the faster the

stone is going, the smaller need the former be in comparison with the

latter, it follows, that at a high speed the hand remains very nearly
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steady i» the centre of the circle ; but it is really travelling round a

small circle about a quadrant in advance of the stone—thus supplying

the tangential force necessary to overcome the resistance of the air,

even if the motion is not being accelerated.

Verify all this experimentally—whirling a weight in a horizontal

circle on a flat table, in order to simplify matters by eliminating

gravity.

(4) If the latitude—that is, the elevation of the N celestial

pole—changes by 3 degrees while travelling a distance of

208 miles due north from Greenwich, what is the circum-

ference of the earth ?

(5) What is the angular acceleration of the moving point in

No. 3?

(6) If a point describe a circle 5 feet in radius with an angular

acceleration of 2 radians-per-second per second, Avhat is its

[linear] velocityat the end of 5 minutes from rest, and how
many revolutions will it continue to make per minute if

the accelera,tion then ceases ?

(7) A wheel makes 20 revolutions per minute. What is its

angular velocity in radians per second ?

(8) A wlieel possesses an angular velocity of 2 radians per second.

How many revolutions per minute does it make ?

(9) A point in the rim of a revolving wheel whose radius is 5 feet

moves with a velocity of 6 feet per second. Find the

angular velocity of the wheel, (1) in radians per second,

(2) in revolutions per minute.

(10) A dogcart is travelling 16 miles an hour, and its wheels are

5 feet high. Find tlieir angular velocity. Find also the

speed with which the tire of the wheel is passing the

elboAV of the driver.

(11) A humming top, 6 inches in diameter, is started by a string

of which 1 yard is wrapped round a spindle ^-incli thick,

and pulled off by a steady pull in 3 seconds. Find the

initial angular velocity of the top, and the speed of its

humming aperture.

(12) The wheel above the shaft of a coal-pit is 8 feet in diameter,

and makes 90 revolutions per minute while letting down
the cage. What is the speed of descent of the cage? Find

also the angular speed of the drum in the engine-house, off

which the rope is being unwound, if its diameter is 18

inches.
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CHAPTER 11.

CONTINUATION OF THE SUBJECT OF
RECTILINEAR MOTION.

DISCUSSION OF THE STATEMENTS MADE IN CHAPTER I.

19. We have now obtained two definite statements, each

of the nature of a definition—namely :

. 1 -i. distance travelled* tr s i

Average velocity = ~. —-, .——.—-. or V= r ; ^^^
tmie taken m the journey t

, ^. velocity gained v
average acceleration =r^ in —^^ .—^x-— oia=-." time taken m the acquisition t

And we can proceed to reason on them, and trace their

logical consequences, which will all be certainly consistent.

The treatment is very simple in the case of uniform accelera-

tion. We desire to find the distance travelled during any interval

of time when the initial velocity and the acceleration are given

—

that is, when the velocity at each moment is knoAvn. To
calculate this distance s, we have to find the average velocity

V, and then the first formula above gives us s=yt. In the case

of uniform acceleration, the average velocity is the arithmetic

mean of the initial and final velocities. This can, perhaps,

best be shown by an example. Thus, if the initial velocity

had been 7 feet per second, and the final velocity, in t seconds,

had been 19 feet per second, the average velocity according to

the rule just stated would be |(7 + 19) = 13 feet per second, and

the distance travelled would be 13^ feet. Now suppose the t

seconds to be divided up into three equal intervals, the velocities

at the beginning and end of each interval would be 7 and 11,

11 and 15, 15 and 19 respectively, since the velocity increases

uniformly, and therefore, applying the rule, the average velocities

duringthe intervals are ^(7 + 11 ), i(ll + 15), 4(15 + 19)—that is, 9, 13,

and 17 feet per second respectively, and the duiation of each

interval is, by supposition, ^t seconds ; . •. the distance travelled is

lt{9 + lS + n)= ltx39= l3tfeet as before. Hence the rule gives
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US the same value of s at the end of the f seconds however we
choose to divide it up. Tliis would not have been true if the

acceleration had not heen uniform ; as may be seen by repeating

the process with different intermediate values, say for the set

7, 9, 13, 19. However, in all cases we shall have to deal

with for the present, the velocity Avill increase regularly

(i.e. the acceleration will be constant), consequently the average

velocity is obtained at once by halving the sum of the initial and

final velocities, "V= ^ ^ ''
> using Vq to stand for initial, and v^ for

final velocity (sect. 10).

Hence our first equation, which may be put into the form

s= Yty may be written more fully thus :

2

which signifies that in cases of uniform acceleration the

distance travelled is equal to the half sum of initial and

final velocities multiplied by the duration of the motion.

Similarly the second equation may be written in the form

V= aty or more fully,

v-^-Vq = at,

which signifies that the excess of the final velocity over the

initial velocity is equal to the gain per second multiplied by
the duration of the constant rate of gain.

In case the final velocity is less than the initial, the gain

becomes a loss, or Vj — Vq is negative, and therefore also a is

negative—that is, it is really a retardation, but it may still

be called an acceleration, only a negative one.

20. Now let us study the two equations together, and see

what we can get from them by any algebraical operation

;

remembering that algebra, like all other reasoning, never

gives us anything absolutely and essentially fresh ; it only

brings out explicitly what is already contained impHcitly in

the physical statements which we subject to reasoning. The
physical statements must be the results of the observation

of nature, which is the only way of arriving at fundament-
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ally new truths. Mathematical reasoning will, however,

serve to bring out and make manifest what is really in-

volved in the statements themselves when put together, if

only we had sufficient insight to perceive it.

Our two statements or equations, written out fully, are

s= ^ % and a=-i—-*^.

jj t

First multiply the two left-hand members together and

double the product, then do the same with the two right-

hand members, then write the two products equal to each

other (as of course they must be), and you get the new
equation,

2as = (v^ + Vq) (v^ - Vq) = Vi^ _ v 0̂-

This is a relation between a, s, and v, without explicit refer-

ence to twiej and it will often be useful.

Now try again, and this time get a statement not involv-

ing Vj, which we can do by substituting in the first equation

the value of v^ obtained from the second equation—namely,

Vi = Vq + atf

and we get s = VQt + ^af.

Similarly we can get a relation excluding Vq, and it is

21. But before proceeding to study the two equations

together, we might have first made a simplification. An
obvious simplification would occur if the initial velocity

were made zero (vq = 0) ; in other words, if we agreed to

consider only bodies starting from rest. In this case the

gain of velocity v is equal to the final, v^, and the average

velocity V is equal to Jvj, which is now the same as ^v

;

and so the two fundamental equations reduce to

V
s = 1/;/, and a = 7 ;

and the three derived from them simplify in like manner.
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"We thus obtain the following four equations betAveen the

distance travelled by a hodj from rest, the time taken in the

journey, the acceleration, and the final velocity gained

;

V =at.

s =^vt.

s =\at\

Of these, any two are independent statements, and the other

two are logical consequences of them. The first of the four

reads thus : The velocity gained in t seconds equals t times

the velocity gained in each second. The second one thus

:

The distance travelled over in t seconds equals t times the

average distance travelled over in one second (for this last

is the meaning of average velocity). Both these statements

are i^erfectly obvious. The other two statements cannot be

put in quite so obvious a form. Observe that there are only

four quantities involved, s, v, a, ^, and that one of them is

absent from each of the four equations.

22. The meaning of the second derived equation in sect. 20 is

now clear. Tlie space described by a body with the constant

velocity Vq is V(f, and by one with the unifonii acceleration a is

\at^ ; so the whole space described by the body possessing the

initial velocity v^,, and also subject to the acceleration «, is

This may be regarded as a case of the composition of motions in

the same direction. See sects. 24 and 73.

23. The results expressed by these equations may be

made to appeal to the eye more directly, and thus be

rendered easier to grasp, if illustrated by their analogy

with geometrical diagi-ams.

If a horizontal line be considered as representing by its

length a definite lapse of time—that is, if it be divided into

a number of equal parts, each part representing say one

* If a and vo are of opposite sign, the subtraction is to be performed when the

letters are arithmetically interpreted. The sign + means algebraical addition,

which includes subtraction.
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second; and if a vertical line represent by its length a

certain velocity, by being divided into a number of equal

parts, each part representing 1 foot-per-second ; then if a

body move with that velocity for that time, the distance

travelled will be represented by the area of the rectangle

contained by these two lines : that is to say, the number of

feet travelled will be equal to the number of unit rectangles

in the area, the height of each of which represents a foot-

per-secondj and the breadth of each a second. In a similar

way a diagram can be made giving the velocity at each

instant, and the distance travelled by a point moving in an

accelerated or retarded manner.

A

Thus in fig. 1, OT is the line of time, with the seconds

marked off upon it. OA is a vertical line, and represents a

velocity, say of 12 feet a second. If a body moved with

this constant speed for 8 seconds, the distance travelled

could be represented by the area of a rectangle constructed

with base OT and height OA, because this area would be

12 X 8 = 96 appropriate units of area, and the distance

travelled would be 96 feet.

Let a body start with this velocity 12, and lose 2 of it

every second, then in 1 second its velocity will be repre-

sented by the line cl, in 2 seconds by the length of the line

d2, and so on. Consequently, in 6 seconds the body will

be at rest. The diagram thus represents, in a conventional

and utterly non-pictorial fashion, a body starting with initial
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velocity 12, and going Avitli a uniform negative acceleration

— 2, till it stops. The average velocity would be 6, and

would be represented by the length of the vertical line

drawn in the middle of the time—namely, eS.

The distance traversed .would be this average velocity

multiplied by the time. That is, geometrically, eS multi-

plied by OP, which is the area of the triangle OAP ; for

the area of a triangle is equal to the product of base and

average height—^in other words, to the product of half its

height into its base.

Areas then in this figure represent distances. Or, more

correctly, the number of vnits of area in one of these figures

equals the numbei' of linear units in the distance travelled.

On this scale the area OAcl represents the distance travelled

in the first second ; lcd2j that travelled in the second

second; 5^P, that travelled in the last second. The distance

travelled in the three seconds between the first and fourth

is represented by the area lc/4, and so on—that is, each of

these distances is equal to the number of units of area con-

tained in the respective spaces. (Observe that the vertical

scale and the horizontal scale in these, as in so many other

diagrams, are quite independent of each other. The appro-

priate unit of area is therefore not necessarily a unit square,

but a rectangle with unit sides.)

C

v=at

Fig. 2.

The representation of a body starting from rest ^nth

positive acceleration is given in fig. 2.
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The line of time is divided to represent seven seconds.

The velocity gained in one second is represented on some

convenient scale by the line marked a, which therefore

represents the numerical value of the acceleration. The

velocity gained in the whole time is marked v; it is obvi-

ously equal to 7a or at. The dotted line in the

middle of the time is the average velocity, and it is evi-

dently ^v.

The area of the whole triangle represents the whole dis-

tance travelled, and it is half the height multiplied by the

base, or ^ V . fj or, what is the same thing, ^ at . f, that is,

i a{\

The little left-hand triangle is numerically equal to
-J
a in

area (its base being unity), and it represents the distance

travelled in the first second.

The velocity possessed by the body at any second or

fraction of a second is found at once, simply by measuring,

and interpreting on the proper scale, the vertical height of

the triangle at the place defined by the time. The whole

proljlem is in fact geometrically represented.

If the body started with an initial velocity, and then

went on with increasing velocity, its motion would be

represented by fig. 3, which is supposed to represent what

happens in three seconds. The
initial velocity is marked Vq, and

the final i\ ; the latter being made

up of two parts, the gain of velocity

at, and the original velocity Vq.

The rest is marked as before, the

base represents t, and the whole
'^" ^*

area represents the whole distance,

&', travelled in the three seconds—namely, v^t, the rectangle,

plus i at^y the triangle on the top of it.

The dotted line in the middle is of height Vq + ^ at,

or, what is the same thing, t'j -\at; and therefore it 13
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K^o + Vi), or the average velocity. Any one of these

three expressions for average velocity when mnltiplied

by the time will give the distance travelled (cf. equations

of sect. 20). If the initial velocity be negative, the line

representing it must be drawn doion from the line of time,

instead of up.

These diagrams will be found exceedingly useful and conducive

to clear ideas, as soon as a little practice has made you familiar

with them. For some more illustrations of their use, see sect. 69,

which can be read now ; for the commonest example of uniform

acceleration is that caused by the earth's attraction, which causes

all freely falling bodies to acquire a speed of 32 feet a second in

every second of their fall— in other words, which causes a uniform

acceleration of 32 feet a second per second.

EXAMPLES—IV.

(1) In Examples II., 1-9, find the distance travelled by the

different things in the times given.

(2) A body starting from rest, and travelling 63 feet in a
straight line, gains a velocity of 81 feet per second. What
is its acceleration ? {The most direct ivay to get the Answer
is to use thefornmla v^=2as.)

(3) What is the acceleration of a body whose velocity changes
from 7 to 21 while it travels 100 feet? (Use the foi^nda
v^-v^=^1as.)

2V.B.—The arithmetic is often simplified by taking the difference of

two squares in the form of the product of sum and difl"erence.

Questions (2) and (3) may also be solved by dividing the velocity

gained by the time taken in gaining it; the time being found by
dividing the distance travelled by the average velocity.

(4) Find the accelerations of the following bodies :

A, whose velocity changes from 15 to 5 in going 50 ft.

B, u M 15 to -5 M 50 ft.

C, .. .. -5 to 15 „ 50 ft.

D, .. „ 120 to „ 640 ft.

{Remember that the square of a negative number is

positive.

)

The extreme distance from the starting-point attained by B is 5CJ feet,

but 6i feet of this is retmced. It therefore takes longer in the journey

than A did, but its acceleration happens to be the same.
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Similarly with C, the first thing it does is to go 6i feet backwards

and come to rest for an instant ; then it retraces 'ts path and goes 50

feet forwards, where the question leaves it; but it is still going on with

a speed increasing by 2 in every second.

(5) Find the time of the motion in all these cases, and draw a
diagram for the several motions.

Begin by drawing the line of time ; then draw verticals for the initial

and linal velocities, paying attention to sign, and join the extremities

of these lines; then study every part of the diagram, and note its

connection with the equations.

(6) A train with the brakes on, moving with acceleration - 3,

has a velocity 78 when passing a particular station. How
much farther will it go?

(7) A point moves 16 feet in 1 second and 20 feet in the next.

How long has it been moving with uniform acceleration

since it started from rest, and what is the rate of the

acceleration ? Also, how far would it go in the next 12

seconds of its motion, and when will its velocity be 128 ?

(8) A body slackens speed from 50 to 30 feet a second in going

20 yards. Find how soon it will stop if the same rate of

retardation continues.

(9) The velocity of a train, moving Avith uniform acceleration,

is, at three points A, B, and C, 40, 50, and 60 miles an

hour respectively. The distance AB is 27 miles. Find the

distance BC.

(10) A train going 40 miles an hour is brought up in 200 yards by

the brakes to avoid a collision. What is the acceleration

in miles-per-hour per second, and also in feet-per-second

per second ?

(11) What acceleration is needed to get up a speed of 60 miles an
hour in a half-mile run ? What is the brake retardation

that could destroy this motion in a train-length,- say 100

yards? What retardation would a stoppage in 5 yards

represent ?

The following examples are cases of uniform acceleration under
gravity. The acceleration may he taken as ^2 feet-per-second

per second. The resistance of the air is neglected.

(12) A body falls from rest. Find the distance travelled in

5 seconds, and how far it will go in the next second.

(13) A falling body describes 100 feet in the last second of its

motion. Find how far it must have fallen, and also the

time taken.
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(14) A bullet is dropped at a place where the intensity of gravity

is only 20. How many feet will it have fallen in 4 seconds;

and how far will it go in the next second ?

(15) Express by means of a diagram, connecting velocity and
time, the motion of a body which is thrown up into the

air, rises 256 feet, and falls to the earth again.

(16) A stone is thrown vertically upward with a velocity of 40

feet a second. How high will it rise ? and how long will it

be before it returns to your hand ? If you let another

stone drop down a well, at the instant the first is within

20 feet of your hand on its return journey, at what distance

below your hand will the two bodies meet ?

(17) A bullet is dropped from the top of a tower 100 feet high,

and at the same instant another bullet is thrown vertically

from the bottom of the tower with velocity just sufficient

to carry it to the top. Show where and when the bullets

will pass each other.

(18) If you throw up a cricket ball and catch it after 5 seconds,

how high will it go, and with what velocity will it return

to you ?

Composition of Motions in General.

24. When a body has several motions given to it at the

same time, its actual motion is

a compromise between them, and

the motions are said to be com-

pounded, the actual path taken

being called the resultant. Thus,

suppose a fly to crawl along a

tea-tray from A to B (fig. 4),

while at the same time some one

l)ushes the tray along a table a

distance PQ ; the fly will then

have two motions, and its actual

motion with reference to the

table is the resultant of the two

motions, AB and PQ. To find where the fly is at

the end of the two motions, we must observe where
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the point B of the tray has gone to, for the fly has

crawled to B; but B has been moved to a point C,

such that BC = PQ. Hence the fly is at C, and its

actual motion must have been along some path AG

Fig. 5.

(not necessarily a straight line) ; and AC is therefore

called the resultant of the two motions, AB and BC.

If, besides these two, the table itself had been pushed in

the direction ST, or what is the same thing, CD, then

w^e should have had three motions to compound; and, as

the fly would have got ultimately to D, AD would have

been the resultant of the three motions. The order in

which the steps are added evidently does not matter, for

the same point D is arrived at by taking the table motion

before that of the tray, as in 1, fig. 5

;

or the fly's proper motion after both

the others, as in 2 ; or the fly's motion

between the other two; or in any other

of the six possible orders in which three

motions can be compounded.

And so we readily see the rule for

compounding any number of motions.

Draw lines, or cut pieces of stick,* representing each

motion in magnitude, direction, and sense,! and lay these

* See footnote to page 135.

t That is, make some difference between the two ends of the line, indicating by
an arrow-head or otherwise which way the motion takes place in the given

direction.

Fig. 6.
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lines or sticks in any order, with the end of one coinciding

with the beginning of the next (the lines may be moved

into any positions, provided each is kept parallel to itself)

;

then some line joining the first point of the first with the

last point of the last, must be the resultant of the whole

set of motions.

Thus, some line AG is the resultant of the six motions,

AB, BC, CD, DE, EF, FG. This proposition is caUed the

polygon of motions, because the resultant is represented by

the line required to complete a polygon.

As a matter of fact, however, the sides of the polygon need not

necessarily be straight lines. The end points of the line are the

only essential matter when one is dealing with simple change of

position without regaixl to time or speed.

25. The composition of two motions, AB, BC, into a

third, AC, requires only a three-sided polygon, so it is often

called the triangle of motions.

Or if we choose to represent the
^

two component motions, AB, BC,

by lines, AB, AB', drawn from the

same point, we get the parallelo-

gram of motions, which is merely
'^'

a less simple, but sometimes convenient, way of regarding

the triangle of motions. The resultant motion is the

diagonal of a parallelogram whose two adjacent sides

represent the component motions.

26. This law, by which two motions are compounded, is

of very frequent occurrence in all parts of meclianics, and is

referred to as the parallelogram law. It may be stated

thus : If two causes act on a body at once, or if a body

experience two simultaneous effects in different directions,

then if these effects are represented in magnitude and

direction by two adjacent sides of a parallelogram, the effect

experienced by the body is called the resultant effect, and is

represented, on the same scale, by the concurrent diagonal
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of the parallelogram—that is, the diagonal which passes

through the point of intersection of the two sides ; or, it is

the same effect as would be produced by a resultant cause

represented in magnitude and direction by the similarly

situated diagonal of a parallelogram whose two sides repre-

sent the component causes
;
provided always that the causes

or the effects can be shown to be of such a nature that this

law is applicable to them.

Composition of Uniform Velocities.

27. So far we have only studied the composition of

changes of position ; now let us study the composition of

velocities—first, when uniform. Remember that a velocity

is numerically equal to the space described in 1 second.

Let a body start from (fig. 8) with two velocities, one

horizontal and of magnitude 0«, the other vertical and of

magnitude Oh. Then Oa and Oh represent the distances

travelled in 1 second in the respective directions, and con-

sequently at the end of 1 second the body is at the point c,

the opposite corner of a parallelogram with sides Oa and

06 ; hence the body must really have travelled the distance

Oc in 1 second, therefore Oc is its resultant velocity in

magnitude and direction. In

2 seconds it will have travelled

horizontally to a\ and vertically

to h', and therefore it will really

have reached c'. And it is easy

to see, by drawing or otherwise,

Fig 8.
that the straight line Oc' passes

through the point c, and that Oc'

equals twice Oc (because Oa' = twice Oa, and Oh' = twice Oh);

or the distance travelled in 2 seconds is twice the distance

travelled in 1 ; and so, generally, the resultant of two uniform

velocities is another uniform velocity along the diagonal of the

parallelogram whose adjacent sides represent the components,

^



CHAP. II.] COMPOSITION OF VELOCITIES. 35

Hence the resultant of two velocities is obtained by pre-

cisely the same parallelogram law as the resultant of two

simple motions. Similarly the ' polygon ' law is applicable

for compounding any number of velocities greater than two.

Composition of Uniform Accelerations.

28. Accelerations may evidently be compounded by the

same law as velocities, because acceleration is the velocity

gained per second. Thus let a body be subject to any two

accelerations, say a horizontal one Oa, and a vertical one

Ob (fig. 8) ; tlien Oa and 0^ represent the velocities gained

per second in these two directions respectively, and there-

fore the actual velocity

gained in the time is Oe;
in other words, Oc, the

diagonal of the parallelo-

gram, measures the result-

ant acceleration. Hence
accelerations are com-
pounded by the same law

as velocities.

29. Combination of

uniform Velocity with

Velocity miiformly ac-

celerated in a constant

direction.—Let a body start

from with a uniform

velocity ti in some direction

OV (fig. 9), and a uniform

acceleration a in some other

direction, such as OL vertically downwards ; then in succes-

sive seconds the distances traversed in the first direction

will be numerically equal to

w, 2w, 3m, iu, &c.;
so that, if this constant velocity ti were the only on^

Pig. 9.
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possessed by the body, the body would be at T after

1 second, at U after 2, at Y after 3, and so on (fig. 9.)

But the uniform acceleration is acting at the same time,

and causing the body to descend a height proportional

to the square of the time (J at^) ; hence in successive

seconds the vertical distances traversed will be

- 4- 9- 16- &c
2' *2' 2' ^2'

'

bringing the body to the level N in 1 second, M in 2,

L in 3, and so on, if it had acted alone.

The actual position of the body, therefore, at the end

of successive seconds will be found by completing the

parallelograms,

. OTPN,
OUQM,
OYKL, &c.;

the result being that the body reaches the point P in

1 second, Q in 2, R in 3, and so on.

Now the simplest continuous curve which can be drawn

through these points, OPQR, &c., is a parabola, and this

is the actual path of the body.

It will be shown later (sect, 74) that this is the path of a

projectile thrown in vacuo in the given direction with the

velocity u, and subject to gravity, which causes a uniform

downward acceleration. It is well seen in the curve of

a steady jet of water, for each drop of water takes this path.

It is also illustrated by Morin's machine (sect. 75).

This example ilhistrates the fact, noted at the end of sect. 23,

that the resultant motion (the diagonal of the parallelogram) need
not be represented by a straight line. It will be straight if the

two things compounded are both uniform ; otherwise it will in

general be curved.

EXAMPLES—V.
(1) A point has two motions, one east with a uniform velocity

30, the other north with a uniform velocity 40. What is its

actual motion ?
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(2) A boat is rowed at right angles to the banks of a straight

river, at a pace half as fast again as the stream flows : it

reaches the opposite bank 2 miles below the starting-point.

Find the breadth of the river and the distance rowed.

(3) A point describes a circle with a constant velocity v, and at

the same time the centre of the circle moves forward in a

straight line with the same velocity. What is the motion

of the point ?

N.B.—This is the case of a nail on the circumference of a coach-

wheel. The i)oint describes a curve with cusps, called a cycloid ; its

velocity when at the top of the wheel is 2v, and when on the ground is

zero ; its velocity at the extreme right and left points of the wheel is

V \/2; its velocity is v at two points whose distance from the ground

is half the radius.

Besolution of Motions.

30. The inverse process to that of 'compounding' is

called resolving, and is an operation which, in practice,

is found extremely useful. We have seen that a j^air of

motions (or velocities or accelerations), one in a vertical

and the other in a horizontal direction, compound into

a single motion in a slant direction, wherefore it follows

that, when we choose, we may analyse or resolve a slant

motion (or velocity or acceleration) into a pair of com-

ponents, one of which may be horizontal while the other is

vertical, or both of which may have any definite directions

we please provided we affix to each its appropriate magni-

tude. All that is essential is that the two components

shall be represented by the sides of a parallelogi'am, of

which the diagonal represents the thing whose resolution

is sought. We shall study this process in greater generality

hereafter (see sect. 112 and fig. 25) ; for the pi-esent, it will

be best to illusti-ate the use of resolution by an example.

Suppose a body thrown in a direction slanting upwards

at an angle of 45° with a velocity of, say, 141*42 feet a

second. This velocity may be considered as the diagonal of

a square whose sides each represent 100 feet per second,

and the whole motion may be considered as analysed into
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two parts—a horizontal part, which continues uniform but

for friction ; and a vertical part, which is constantly subject

to the downward accelerating force of gravity, Avhich destroys

its upward velocity, and generates downward velocity at

the rate of 32 feet a second every second. Hence such

a projectile will ascend in a curved path for yy* or about

3 seconds, attaining a height of about 150 feet and tra-

velling horizontally about 300 feet in the same time;

then its curve will begin to slant down, and ultimately

it will arrive at its original level, about 600 feet from

its starting-point, after the lapse of about 6 seconds. If

the ball were shot in any other direction, its motion could

be treated and its velocity resolved in like manner, but

its initial vertical and horizontal components Avould no

longer be equal. We may return to this subject in

sect. 76.

Relative Motions.

31. So far the pair of motions compounded or combined

have really belonged to the body under consideration, but

there are cases where a practical problem is simplified by the

device of attributing to a body motion which it does not

really possess. The most frequent example of this device

is the assumption that the earth is at rest; for this is

attributing to it a motion which it does not really possess

(for rest is of course a particular case of motion), and prob-

lems are certainly simplified thereby. For instance, when
we say, as above, that the path of a projectile is a parabola,

we are ignoring the motion of the earth ; we are not think-

ing of what is called the absolute motion of the projectile—
that is, its velocity through space or through the ether;

we are thinking of its velocity relative to the earth. Our

ignorance of absolute velocities makes this notion of

relative velocity not only convenient but essential; and
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being thus compelled to employ the notion, we may pro-

ceed to make further use of it.

Now, in treating of the simultaneous motion of two bodies,

say of two ships at sea or of two impinging balls, it may
be sometimes convenient to ignore their motions with

respect to water or ground, and attend only to their motion

relative to each other. This relative motion can be brought

out and displayed most clearly by the artificial device of

imagining both bodies to be affected with a fictitious velo-

' city which is to be compounded with their real velocities; for

a fictitious velocity may be chosen so as to be equal and oppo-

site to the real velocity of one of the bodies, and in that case

the resultant velocity of that one becomes zero, while the re-

sultant velocity of the other body becomes its relative velocity

with respect to the one thus imagined to be stationary.

There is no important principle underlying all this; it

is a mere practical device for simplifying problems in

relative motion which otherwise would be more com-

plicated for clear mental grasp.

As an illustration, consider two ships sailing, one (B)

due north with velocity v, and the other (A) due east

with velocity u; let us observe them in some definite

position, say at distances b and a respectively from the

point at which their paths will hereafter cross (fig. 10),

and let us ask when and where they are in most danger of

collision—that is, when and where and what is their shortest

distance. If the velocities are in simple proportion to the

distances from the crossing-point—that is, if ii:v = a: b,

they will certainly collide, unless one of them alters her

course; but if the speeds are in some other proportion,

they will pass within a certain minimum hailing distance.

To find this distance, the neatest way is to suppose a

fictitious velocity, - v, impressed upon the whole system

;

by this means B is brought to imaginary rest, and A is

sent moving (imaginarily) with velocity J{u* + v^) in another
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track indicated in the figure

/ B'

A«— '' ^ a/
•"•*. •

1

V \
\

i

Xl/

— •..

V

B

Fig. 10.

by the line AP; and a

perpendicular on to this

line from B—namely, BP

—

represents the nearest ap-

proach of A to B. This is

the shortest distance re-

quired, but it is not in

the true locality. The real

condition of the problem

limits B to the north course

and A to the east course,

hence their real positions

when hailing are B' and

line drawn equal andA' respectively, where A'B' is a

parallel to PB.

Thus the problem is solved in all essential features, even

for those who do not care to take the trouble to work out

the arithmetical details. By drawing the above figure

to scale, the solution can be simply constructed; whereas,

if both bodies were contemplated as moving in their true

paths, a direct geometrical construction for the result would

be hardly possible, and arithmetic would be necessary.

Applying kinematical considerations to the above figure,

and denoting AA', BB' by x^ y respectively, we see that if

a time t elapses between the initial positions A, B, and the

desired positions A', B',

x= ut, (1)

^

y = vt; (2)

and the distances of A' and B' from 0, the crossing-point

of the tracks, are, in the figure, a-x and y-h respectively.

(If A' had been beyond 0, and B' not up to 0, the distances

would have been x - a, and h-y respectively.)

We may further see that the triangle A'OB' is similar to

the triangle PA'A, because the corresponding sides are

perpendicular ; therefore (a-x) :{y -h) = y:x. (3)
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These three equations express all the essential kinematic

and geometrical facts ; and simple algebra will now extract

the information required—namely, the place, time, and dis-

tance corresponding to the positions A' and B'. The

solutions are

:

shortest distance A'B' = —jt-^^ ^jr- = s, say :

y-b = s = -s 5 {civ - ou) :

._au+hv

EXAMPLES-^VI.

(1) The courses of two steamers are at right angles to each other,

and their speeds are 12 and 16 miles an hour respectively.

If they are at first, both of them, 1 mile distant from the

point where their tracks will cross, find how near they

will approach each other and how soon.

(2) A lady wishes to cross a muddy road, 30 yards wide, by the

shortest path, at 3 miles an hour, in front of a vehicle

which is coming along the middle of the road downhill at

9 miles an hour, but which has still a distance of 50 yards

to go before reaching her level. By how much Avill she

escape the vehicle ? Also, what is the least speed at which

she need walk if she ignores the mud and takes a slanting

direction ?

(3) Two trains are moving, with velocities of 25 and 40 miles an

hour, along two lines inclined at an angle of 60°, and are

respectively 300 yards and 200 yards from the crossing-

point. Represent completely the motion of either train as

it appears to the passengers in the other.

(4) Find by a graphical construction drawn to scale, and also by
calculation, the resultant of the following velocities which

are communicated to a point—namely, 10 feet per second

in an easterly, 20 feet per second in a north-easterly, and
30 feet per second in a northerly direction respectively.
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(5) If a point has a velocity of 1 foot per second to the east, and
also a velocity of V3 feet per second to the north, deter-

mine the velocity wliicli must be compounded with these

to bring it to rest.

(6) A steamer, travelling at 20 miles an hour, has to travel

north-east through a current flowing south at 5 miles

an hour : show, in a diagram, the direction in which it

should be steered to allow for the current, and measure, or

calculate, how far it will have travelled from its starting-

point in 3 hours.

(7) If the steamer, through ignorance of the current, is steered

north-east, find how far it will be carried out of its course

in 3 hours, and how far it will be from its starting-point.
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CHAPTER III.

ON QUANTITY OF MATTER AND QUANTITY
OF MOTION.

A CHAPTER OP DEFINITIONS.

a.) MOTION OF A PARTICLE, OR TRANSLATION.

{Inertia and Mo7nentum.

)

32. We have so far studied motion in the abstract, with

reference to its direction and its mte, but without reference

to the body moving, or to the amount of motion possessed

by it. Let us now consider what is meant by this last

phrase * amount ' or * quantity of motion.'

Fii-st, it is plain that in any actual case of motion there

must be some matter moving ; and it will be sensible and

consistent with the ordinaiy use of language to consider

the quantity of motion in a body as proportional, fii-st, to

its speed, and, secondly, to its quantity of matter ; and this

is the scientific custom.

33. Now we understand what is meant by speed, but what

do we mean by quantity of matter 1 First of all, of course,

a large soHd ball contains more matter than a small one of

the same material ; but quantity of matter does not depend

on size alone, it depends also on the closeness or density of

the substance. A small iron ball may contain more matter

than a large cork one.

Now matter possesses a certain characteristic property

called 'inertia,' or power of reacting against a force applied

to change its state of motion. It is on account of this pro-

perty that force is required to move matter or to check its

motion—the passive resistance or reaction of the matter
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itself against whatever is forcing it to move being called

its inertia-reaction or inertia-force. Thus a railway

truck has great inertia, because considerable exertion is

required to stop it or to set it going, even on a level line,

with friction reduced to an insignificant item.

This fact of ' inertia' was expressed by Newton in the

following ' law ' or axiomatic statement :
* Every body

jicrseveres in its state of rest or of mooing uniformly in a

straight line, except in so far as it is made to change that

state by external forces.' This is often referred to as

:^^ewton's FIRST LAW OF MOTION, or as the Law of

Inertia ; and it is equivalent to defining force as that which

causes change of motion in matter. Its essence can be

briefly expressed by saying that without force there can be

no change of motion ; or tJie motion of a body is constant both

in magnitude and direction except loheii a force is acting on

it ; or, again, that when resultant force is zero, acceleration

is also zero. That a body should thus persist in its state of

motion (of which rest is only a particular case) unless some

cause acts to change its state, is in accordance with the

fundamental or common-sense axiom that no effect happens

without a cause. It is not likely that a jDiece of matter

should itself be able to change its oion state, whether of rest

or motion : some external cause or influence from other

bodies is necessary. The above law asserts that the sole

cause of change of motion in matter is force. It may be

taken as a definition of force in terms of matter, or a

definition of matter in terms of force. Since we have a

direct sense of force (the muscular sense), as stated in t\\Q

Introduction, the latter is the most useful definition : hence

matter is defined as that which requires muscular action or

its equivalent to change its motion ; in other words, matter

is that which possesses inertia. Tliis is the sole Newtonian

test of matter ; any reference to gravitation, attraction, or

weight is beside the mark. If it be asked whether elec-
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tricity or ether is matter, we must inquire whether either

of these entities requires force to change its state of motion.

The answer may or may not be an easy one to obtain by

experiment, but there is no haze about the question. If

the ether possesses inertia it is a form of matter, if it does

not possess inertia it is something else. Heat possesses no

inertia ; it is propelled by difference of temperature, not by

mechanical force, hence heat is not a form of matter ; and

so on.

34. Since inertia then is a characteristic property of all

matter, it will serve to measure the quantity of matter in

any given mass, and it is always used for this purpose in

Dynamics. Suppose you have a number of smooth cubes

or blocks, each made of a different material but of the same

size, resting on a perfectly smooth horizontal table, and you

give them each a little push of exactly the same strength
;

the push will have the least effect on those which contain

the greatest quantity of matter. Thus imagine four of the

cubes to be of cork, wood, iron, and gold respectively, and

that you give each a sudden knock. The cork block would

be considerably affected, and would slide off the table ; the

block of wood would be affected next in extent ; while the

iron and gold blocks would perhaps hardly be stirred, but

whatever movement there were would be greater in the

iron than in the gold. "We should hence conclude that the

gold block contained most matter, the iron next, and tlie

cork least. This is a perfectly direct and scientific method

of comparing the masses of bodies, and more than companng,

for it is capable of affording a definite measure of the quantity

of matter in a body. Thus either apply the same force for

the same time to each body, and measure the velocity

imparted (if the same velocity is imparted to a number of

bodies by the same shock or impulse, they have all the

same inertia, and therefore the same quantity of matter)

;

or graduate the forces applied to the different bodies, so that
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each may move with the same acceleration, the forces

• required will measure the inertia of the several bodies. The

forces themselves must be measured by the strain method

(see Introduction, sect. 6), as the other method would lead

to reasoning in a circle.

Fig. 11 shows the experiment carried out as far as it is possible

to carry it out without a perfectly smooth table. The blocks are

mounted on rollers to diminish friction, and are attached each to

a stiff spring balance, such as some of those made in dial form by
Salter, which will yield in a very small but yet a measurable

degree, since the yield is magnified by the index. The simple

form shown in the figure yields too much to be suitable. These

balances are then all tied to a rod, and are pulled quickly along,

so that all the blocks have practically the same acceleration

imparted to tliem. The springs indicate by their stretch the

inertia-reaction of each bodv.

Pig. 11.

35. One often actually applies this method of comparing masses

in common life. Suppose you see a cask lying on level ground,

and wish to know whether it is full or empty
; you give it a kick

or a push with your foot, and if it yields and moves easily, you
conclude that it contains very little matter—that is, that it is

emptj'^ ; whereas if it almost refuses to move, it must contain

much matter ; and if it contains dense matter, such as iron or

lead, it will be harder to move than if it contained, say, earthen-

ware, and this again harder than if it were full of straw. Hence
we find that the quantity of matter in a given body, as measured

by its inertia, depends first on the density of its material ; and
secondly, on its size or volume. And we might define quantity of

matter as the product of volume and density, giving this product

the name of mass. The * mass ' of a body hereafter, then, shall

stanci for the (quantity of matter in it, and shall ec^ual its volume
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multiplied by its density. This last serves strictly for a definition

of density rather than of mass, as thus :

^ .^ quantity of matter in body
Density='* v^imT^fra^^ '

or, more shortly, density =mass per unit volume. The simplest

unit of volume is the cube of the unit of length—say a cubic foot

or a cubic centimetre ; and density will be expressed as so many

pounds per cubic foot, ^?"" J , or so many grammes per cubic

centimetre. The numerical value of the density of water on

the first system of units is about 62 ; on the second system it is

about 1.

We see, then, that mass is measured, and. must be held

to be defined, by the property of inertness possessed by

matter—that is, by its requiring force to move it if at rest,

and to stop it if in motion. This idea of the muscular effort

needed to set a body moving or to stop it, must be held to

be the primitive idea of inertia. The greater the effort

required to produce a given motion, the greater the inertia

;

and as every particle of matter possesses this property, the

more particles there are the greater is the inertia, and inertia

is the only direct measure of mass in mechanics.

To recapitulate, then, mass means quantity of matter,

and is measured by inertia.

36. Just as the standard of length is an arbitrary distance,

called in this country a standard yard, and defined as the

distance between two marks on a certain bar of metal at

62° F., so the standard of mass must be an arbitrary

quantity of matter. In this country the standard mass is

one of several equal masses of platinum kept in the Houses

of Parliament, the Mint, and other places, from which

copies are taken for general use, and it is called a pownd
avoirdupois.

The metric standard of mass is a similar mass of platinum

kept at Paris, and called a kilogramme, A kilogramme is
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about 2 '2 pounds. The thousandth part of this (a gramme)

is commonly used as the practical unit of mass for scientific

work all over the world, and the system of units based on

the centimetre, the gramme, and the second is called the

C.G.S. system. Similarly, the common British system of

units, based on the foot, the pound, and the second, may be

called the F.P.S. system, and units in that system may be

called F.P.S. units.

The student must avoid confusing the mass of a body with its

heaviness or weight. A pound is the British unit of mass, but

because the pound happens to pull downwards with a certain

force {avoir, in fact, du pois), people often think of this p2dli

force, or weight as the essential thing, whereas it is quite a

secondary thing. When we speak of this force, we shall call it

the pound-weight, or the weight of a pound : it is not the pound
itself (see sect. 64). Suppose you wish to leave some flowers to

be pressed all night in a book, and you put on the book for the

purpose a few pound or other weights ; what you are then con-

cerned with is the weight of the pounds, or their pull downwards.

But suppose you buy six pounds of sugar or of soap ; what you are

then concerned with is the quantity of matter or mass which you
obtain, and the force with which the matter tends doAvnward is a
secondary, and sometimes a burdensome consideration. This

confusion has arisen from the fact that the shopman measures the

mass out to you, not by a direct method like that shown in fig.

11, but by an indirect, though practically simpler method, founded

on the attraction of gravitation, which is proportional to the

masses of the attracted bodies within the limits of experimental

error. So that the shopman compares not the ma^s but the weight

of your purchase with his standards. We must try, however, to

avoid confusing mass with weight, even at the risk of a little

pedantry, which may be necessary until we are quite clear on the

sul)ject.

37. Now we have already seen (sect. 32) that it is

reasonable to define quantity of motion as directly propor-

tional to the quantity of matter (or mass) moving, and to its

rate of motion (or velocity). Hence let us at once define

quantity of motion as equal to the product of the mass

in motion and its velocity. The name given to quan-
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tity of motion is momentum; so we have now the de-

finition ;

Momentum = mass x velocity^ or M= mv^

where m stands for mass, and M for momentum.
Momentum means quantity of motion, and is measured hy

the quantity of moving matter multiplied by its velocity.

38. The unit of mass being a pound, the unit of momen-
tum must be that quantity of motion possessed by a pound

of matter when moving with a velocity of one foot per

second. The momentum of a \-\h. cricket-ball moving at

the rate of 56 feet a second, is\x 56 = 14—that is, four-

teen British units of momentum, as just defined. The

C.G.S. unit of momentum is that of 1 gramme moving at

the rate of 1 centimetre per second.

Thus, the jet of a fire-engine which is delivering a cubic metre
of Avater (1000 kilogrammes) every minute, at a speed of 6 metres

per second, possesses momentum to the amount of ten million

C.G.S. units in each six-metres length of it, and transfers this

amount of momentum per second to any fixed obstacle against

which it impinges. The result, we shall hereafter learn (sect. 48),

is a steady pressure of ten megadynes, a little more than

ten kilogrammes weight.

The momentum of a 50-lb. cannon-ball moving with a velocity

of 1612 feet per second, is 80,600 foot-pound-second (F. P. S.) units.

That of a three-ton truck (1 ton = 2240 lb. ), moving at the rate of

12 feet per second (roughly about eight miles an hour, see Ex. I.

4), would be 80,640 F.P.S. units, or nearly the same as that of

the above cannon-ball.

Now we shall find in the next chapter that an impulse or

propulsion is proportional to the quantity of motion it causes ;

hence we see that in some sense or other the same motive power
was required to set the above cannon-ball going as was required

to set the truck, for both possess the same quantity of motion.

Yet the force exerted by the powder in the cannon was undoubtedly

greater while it lasted than the force exerted by the horse or

engine, or whatever started the truck ; but then the former acted

for the fraction of a second only, while the latter took perhaps a

minute. What is called the imptdse or propulsion of the force
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was the same in the two cases. If you pnt an obstacle in tlie

path of eacli body so as to stop both in the same time^ they M'ould

each deal the same blow. Suppose, for instance, that the

cannon-ball and the truck were to meet each other end-on, and

the ball were to remain imbedded in the material of the truck,

both would be stopped dead by the impact.

39. Before passing on to the action of force on matter, it

will be well to explain that now we have come to deal with

the motion of actual pieces of matter, we shall, if we wish

to consider a piece so small that its parts may be neglected,

use the term ^9a?'fi'c/e instead of * point;' meaning by

particle a point possessing inertia, or a material point.

A * particle ' may have any finite mass ; its size, indeed, is

to he small (or at any rate negligible), but its density may
be anything—infinite if we like. A body whose parts are

taken into account may be called an ' extended hody,' but

if stress is wished to be laid on the fact that these parts

are immovable relatively to each other, it will be called a

rigid hody. An extended body whose parts are capable of

relative motion is either an elastic or else a plastic body.

(Chapter X.)

Also it will be well to point out that the parallelogram

and polygon laws apply to the composition of momenta

just as they do to the composition of velocities (sect. 27).

For the momentum of a given mass is simply proportional

to its velocity, and the resultant velocity of a particle when
multiplied by its mass must be its resultant momentum.

(II.) SPINNING MOTION OF AN EXTENDED BODY, OR
ROTATION.

{Moment of Inertia and Moment of Momentum.)

40. "We have already partly seen (sect. 17) that when we
come to consider the motion of a rotating body, the distance

of each particle from the axis of rotation is always coming

in as a factor, multiplying the term which previously had
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been sufficiently expressive. As this product so often occurs,

it is convenient to have a name for it, and the name
employed is moment. The moment of any physical quantity

is the numerical measure of its importance. [This must not

be confounded with momentum, with which it has nothing

to do.]

So the actual velocity of a particle of a rotating body might

be called the moment of the angular velocity, for it equals

wr, r being measured from the particle to the axis of rota-

tion. The actual acceleration, again, is the moment of the

angular acceleration—that is, it equals ar (see sect. 18).

It often happens that the distance from the axis comes in

as a factor tioice, so that we have a moment of a moment,

which is called a second moment.

Thus for some purposes it is convenient to speak of the

moment of the velocity of a particle of a rotating body

—

that is, vr ; and this is the second moment of its angular

velocity, being equal to (o?*^. The moment of momentum of

such a particle is, of course, mvr, or, as it may also be

written, mr^io.

41. These terms being understood, we will proceed to

consider how we must define the quantity of motion of a

rotating body, or a system of circularly moving particles.

Simple momentum, or product of velocity and quantity

of matter, will not do, for the effect produced by a given

shock depends not only upon this, but also upon how far

distant from the axis the bulk of that matter is. For con-

sider a flywheel ; which you know is a large heavy wheel

fixed to the crank-shaft of stationary engines and driven

at a high speed, not for the purpose of communicating its

motion to a lathe-band or anything, but simply for the

purpose of storing up a certain quantity of motion sufficient

to carry the engine over its *dead points,' and also over

any accidental shocks or sudden impediments which the

machinery may experience : it is made massive so as to have
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great inertia, it is also made to go fast so that its parts may

possess great momentum ; but besides this it is made large,

and nearly all the mass is placed in its rim, which not only

increases the momentum but causes that momentum to have

a great leverage; so that altogether the motion stored up in

the wheel has a great moment of momentum.

For just as the power or moment of a force depends not

only on its magnitude but also on the place at which it is

applied—not only on its strength but on its leverage—being

equal to the product of the force into its distance from the

fulcrum (for example, the longer a crowbar is, the more

power it gives you j the more unequal the length of the

arms of a steelyard, the bigger the weight which can be

balanced by a little one ; and so on, see sect. 148) ; so with

the flywheel, the effect or power of its stored-up motion

depends not only on the actual quantity of motion or

momentum of the rim, but also on the distance this rim is

from the axle—that is, on the radius of the wheel. It

depends, in fact, on the moment of its momentum, M?\

42. Now if the wheel were a simple infinitely thin rim,

the meaning of this would be simple enough ; r would

stand for the radius of the rim, and M for the product of its

mass and velocity, mv (sect. 37); but any actual wheel must

have a rim of some thickness, as well as some spokes and a

nave, so the meaning of neither M nor r is quite clear

\vithout further definition.

The moment of momentum of a rotating body is the sum
of the moments of momenta of its several particles.

Let a wheel turn with the uniform angular velocity w.

A particle of mass m-^, at a distance i\ from the axis, and

moving with velocity r^m or z?j, has a momentum m-^v^, and

therefore a moment of momentum m^v-^r-^, or what is the

same thing, m-^r^a). Similarly with a particle of mass ???2

at a distance r^ ', and with one of mass m^ at distance ?*.,,

and so on ; hence the moment of momentum of the whole
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wheel is the sum of these terms for all the particles in the

body,

or, as it is often written, 2 (mvr).

Since v = ?*w, and since w is the same for every particle as

for the whole body, we may write the above expression for

the moment of momentum in this equivalent form,

io(m^i\- + m^'} + Wg^g* + ) = iii^ijnr^^
\

or in words, the moment of momentum of the wheel is the

angular velocity multiplied by the sum of the second

moments of inertia of every particle in the wheel.

In this last form, wr^w, the moment of momentum is

often called the angular momentum j because, instead of

being simply the product of inertia and velocity (as

momentum is), it is the product of a moment of inertia and

angular velocity.

43. In the last paragraph we have the occurrence of the

second moment of mass or inertia, w?'^, and indeed this

occui-s in Dynamics so much more frequently than the first

moment (m?'), that it is usually called the moment of inertia.

The moment of inertia of any rotating body about its

axis of rotation is the sum of the second moments of the

masses of all the particles in it about that axis ; and we will

denote it by I, so that I = '2{m7'^).

The angular momentum, or moment of momentum, of the

above flywheel is thus simj)ly Iw.

The value of the moments of inertia of bodies of regular

shape is obtained by actual calculation of the above sum,

m^r^+m<f^+ , for any required axis. The process is easy

to those who have learned how to integrate : to othei"s the

following list of results may be useful

:

LIST OF MOMENTS OF INERTIA.

A. About an Axis of Symmetry.

(1) For a thin ring or hollow drum (of mass m and
radius r) mr*.
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(2) For a thick ring or drum of internal radius r^

and external r^ j^iir^^ + r^^

(3) For a solid disc or cylinder of any length Imr^.

(4) For a solid sphere ^nr'^.

(5) For a thin hollow sphere %mr^.

(6) For a rectangular plate or bar of length Z,

breadth b, and any thickness in direction of

axis ^T^niP+b"^).

(7) For a thin rod about middle x\m^.

B. About other Axes.

(8) About any axis parallel to an axis through

the centre of gravity, but at a distance a
from it, the moment of inertia= the central

value + 7)10^. For instance (see No. 7)

:

(9) For a thin rod about one end....^^mP+ 7n{^l)^=^mP.

(10) The moment of inertia of an isosceles triangular

area about its median line, (base= 6) i^^ib^.

(11) The moment of inertia of a triangular area of

height h, about its base as axis ^Ii^.

(12) The moment of inertia of any plane lamina or

plate about two axes through its centre of

gravity, at right angles to each other and to

the axis of symmetry, add up to that about

the symmetrical axis. Thus : for a circular

plate spinning about a diameter, the moment
of inertia is (see No. 3) Jwr^.

(13) The moment of inertia of a rhombus about a
normal axis through its middle (its longest

diagonal being I and its shortest b) ^fmiP+b^

EXAMPLES—VII.

(1) Find, in foot and pound units, the moment of inertia of a rod

of iron 5 feet long and 1 square inch in cross-section, about
an end, given that the mass of a cubic foot of iron is 480 lb.

(2) Find the moment of inertia of the rim of an iron flywheel of

11 feet mean diameter, the cross-section of the rim being

12 square inches.

(3) Find the moment of momentum of the above rim when the

wheel is making 200 revolutions a minute.
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(4) Find the moment of inertia of a thin rectangular plate

measuring 4 feet by 3 feet and weighing 5 lb.

:

(a) About an axis through its centre normal to its plane.

(6) About a parallel axis through one corner.

(c) About a long edge.

{d) About a short edge.

(e) About a median line drawn lengthways.

if) About a median line drawn breadthways.

(5) Find the moment of inertia of a hollow sphere 50 centimetres

in diameter, weighing half a kilogramme, and spinning

like a teetotum.

(6) Compare the moments of inertia of a hollow sphere and a

hollow cylinder of the same diameter and w;eight, also of

a solid cylinder and a solid sphere of the same diameter

and weight.

(7) Find the moment of inertia, about its point of suspension,

of a solid sphere 1 foot in diameter and weighing 50 lb.,

swinging at the end of a string 6 inches long.

(8) Find the moment of inertia of a triangular iron plate, J-inch

thick, about its base ; the base being 5 inches long, and the

height 6 inches.

(9) Find the moment of inertia of the same plate about an axis

passing through its centre of gravity and parallel to the

In the above list of Moments of Inertia^

(10) Show that No. 13 can be deduced from Nos. 11 and 12.

(11) Deduce No. 10 from No. 11.

(12) Deduce (2) from (3), and (1) from (2).

(13) Deduce (5) from (4) ; the volume of a sphere being ^tj-^, and
its surface being 47r;'-.
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CHAPTER IV.

ON FORCE AND MOTION {Dijnamics).

It was stated in the Introduction that force produced

two kinds of effects on matter— * acceleration ' and ' strain.'

In the present chapter we will consider only the first or

motive effects of force—that is, the effects of force on rigid

bodies or particles (see sect. 39) ; and first on particles

moving in the direction of the force

—

(I.) ON THE SPEED OF MOTION AS AFFECTED BY FORCE
;

OR, FORCE AND RECTILINEAR MOTION.

{Dynamics of a Particle.

)

44. "When a single force F is applied to a certain quantity

of matter or mass, m, for a given time, a certain quantity of

motion or momentum is generated in the mass. If the

same force (for example, a piece of elastic stretched to the

same extent as before) is applied to a greater quantity of

matter for the same time, it will move with less velocity, but

the product of the quantity of matter and the velocity

—

that is, the quantity of motion or the momentum—will be

found to be the same ; so the force may be measured by

the momentum generated by it per second, since this is

constant, and depends on nothing but the force. If the

same force be applied for a greater time, a proportionally

greater quantity of momentum will be generated ; hence the

measure of the/o?*ce is the momentum generated per second,

and is obtained by dividing the whole momentum gener-

ated by the time taken to do it ; or in symbols,
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and the unit force will be that which can generate unit

momentum in unit time.

45. Force, then, by this definition comes to be rate of

change of momentum^ just as acceleration was defined to be

rate of change of velocity :

a = - (sect. 10).
T

Hence force bears the same relation to acceleration as

momentum does to velocity : each, in fact, equals the other

multiplied by 7?z, or

F = ma.

This last is a very convenient form of the definition, and

may be expressed thus :

A force is numerically equal to the acceleration it can

produce in unit mass; and in general a resultant or un-

balanced force is measured by the product of the mass moved

into the acceleration produced^ being proportional to the two

conjointly ; or concisely^

Force = Mass Acceleration.

This is, indeed, the fundamental relation of Dynamics, for

it makes all that we have learned about motion in the

abstract (Kinematics) available for dynamical problems

—

that is, for all problems involving force. It is called

Newton's SECOND LAW OF MOTION.
46. The unit of force may be expressed in these three

different but equivalent ways :

The unit of force is that which causes unit acceleration

in unit mass (one pound or one gramme of matter)

;

Also, unit force is tliat Avhich generates unit momentum
in unit time, as said above

;

Also, it is that which, acting on unit mass for unit time,

causes it to move with unit velocity. So, if the British

unit of force act on a pound for a second, the pound at the

end of that second will be moving at the rate of one foot
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per second. If the C.G.S. unit of force acts on a gramme,

the gramme will be moving at the rate of n centimetres

per second after the lapse of n seconds.

It is often convenient to have a name for the unit of force

as defined in any of these equivalent ways. The name

poundal has been suggested for the British unit of force in

order to indicate a connection between it and the British

unit of mass (not by any means to signify that the force

unit equals the tveight of a pound : it is nearer the weight

of half an ounce). A poundal is also called the British

absolute unit of force, to distinguish it from the unit

founded on the metric system, which involves grammes and

centimetres instead of pounds and feet. This C.G.S. unit

of force is now very frequently called a dyne. It is, of

course, that force which, acting on a gramme for a second,

generates in it the velocity of one centimetre per second.

It is a very small force indeed, only about the thousandth

part of the weight of a gramme, which is itself only about

15 grains. One poundal equals 13825-38 dynes. A
poundal equals a pound foot per second per second, or

briefly —'-—^— • A pound weight is about 32 poundals
sec.^

(see next chapter) ; a gramme weight is about 981 dynes.

These standard weights are frequently used as practical

units of force, and in statical problems are very convenient.

The load of a ton, a hundredweight, or a kilogramme, is

an easily imagined quantity, and forces so expressed are

said to be stated in gravitational measure, since weight

depends on the earth's gravitative attraction. There is

no difficulty in translating these gravitational units into

absolute* units whenever the problem ceases to be statical

and we need to enter on dynamical considerations.

* The word * absolute' is not very appropriate in this connection, but it is

constantly so employed. The meaning to be expressed is that the unit is a coj»-

pletely specified one, not depending on the properties of any concrete piece of

matter. For instance, the pull of a spring, stretched by a certain amount, might
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The dyne being a very small unit, a megadyne (or million

dynes) is often employed. A kilogramme weight is nearly

equal to it, being equal to 981,000 dynes; or 2 per cent,

short of the full megadyne. A pound weight is 11 per

cent, less than half a megadyne (being about 445,000

dynes).

The Gravitation Constant.

But though the force of gravitation thus appears to be so

great, this is only because the earth is so massive. Newton
found that the same force exists between all material

bodies, that it is proportional to the masses, and that,

if the masses are spherical, it is inversely proportional

to the square of the distance between their centres. These

facts may be expressed by the equation F = 7—^, where

7 is a constant, called the gravitation constant, whose

value must be determined by direct observation or

experiment. The result of such experiments is that, very

approximately,

_666 (cm.)3 ^_1_ (ft.)3

^ 10^» gm.(sec.)' 10^ *

lb. (sec.)^'

which may serve as a memorandum till it is intelligible.

The gravitation force between ordinary pieces of matter

is so small that if a couple of lead globes, each weighing

a pound, were placed with their centres one foot apart,

their mutual attraction would be only a thousand-millionth

part of a poundal ; so that, if they were perfectly free to

move in an undisturbed way, they would each have moved

three-quarters of an inch in 3 hours—that is, they would be

an inch and a half nearer to each other, after the lapse of 3

hours, under the influence of their mutual attraction.

be used as a unit or standard of force, but it would be by no means an abaolute

one. So also, the weight of a pound is not an absolute unit, for it depends on
the neighbourhood of the earth.
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47. The fundamental connection between force and ac-

celeration, F = ma (sect. 45), may be written, of course, in

two other forms ; and this one,

F

is an abbreviated statement of the fact that when a force F
acts on a mass m, the acceleration produced in it is the

ratio of the force to the mass.

Let us take an example to illustrate the application of this.

Find the distance travelled in 8 seconds by a mass of 2 lb. which

starts from rest, and has a force of 6 poundals acting on it all the

time.

The acceleration, or velocity acquired per second, is

^^F^g^poundals^g p p g ^^^^^^
7n 2 pounds

The whole velocity acquired in the 8 seconds is therefore 24,

and hence the average velocity is 12 feet per second. The distance

travelled is the average velocity multiplied by the time, that is,

96 feet ; which is the answer.

Or we might, without troubling about the velocity, have applied

the formula s=lat'^ as soon as we knew the value of the ac-

celeration, a = '3, and of course we should have arrived at the same
result. But all this latter part is simple Kinematics : the only

dynamical part was the finding of the acceleration from the given

force and mass—namely, « = F -^ m.

Whether the body is in motion or not when the force

begins to act, matters nothing—the acceleration produced

is precisely the same. Of course the distance travelled in

a given time will be different, because of the initial velocity,

(Vq^ will have to be added to the ^af) ; but all tliat was

considered in Kinematics, Chapter 11.

48. The following is Newton's statement of the above

connection between force and motion :

' Gliange of motion is proportional to impressed force, aiul

takes place in the direction in which the force acts ;^
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Or as it lias been restated by Professor Clerk Maxwell,

in equivalent modern language :

' The change of momentum of a body is equal to the
impulse which produces it, and is in the same direction.'

By im])ulse is meant the product of the force acting, and

the time it lasts ; for it is on both these that the motive

power of a force depends. Thus the blow of a hammer
is a very great force while it lasts ; but as it is only mo-

mentary, its impulse (or motive effect) may not be so great

as a much smaller force applied continuously for some time *

(cf. sect. 38). The motive effect or impulse is proportional

both to the strength of the force, F, and to its duration, t

;

and hence it is defined as the product F^. So the first

portion of the above statement is, in symbols,

771V = Ft;

where v represents the velocity gained by the mass m
owing to the action of the force F for a time t ; it is, in

fact, simply the fundamental relation of sect. 44 in another

form.

It is convenient at this stage to refer to the numerical examples

given in sect. 38, and to realise that to start the cricket-ball with

momentum 14 F.P.S. units would require a force of 14 poundals

lasting for a second, as when thrown ; or a force of 14,000

poundals (say 2 tons) lasting the thousandth part of a second, as

when struck with a bat. Also, that to start the cannon-ball in

the thousandth part of a second would require a force of 80 million

poundals, which is about equal to the weight of a thousand tons
;

a force which, applied to the sectional area of such a cannon-ball

(say 33 sq. inches), would need an average pressure in the gun of

30 tons to the square inch. All this on the assumption that the

tliousandth part of a second represents fairly the time between

the ignition of the powder and the ejection of the ball.

The railway truck if pushed by three men each exerting a

force of one hundredweight, would get up its given speed in

* This is best observed by first striking sharply, and then pushing steadily, a

thing on wheels where the friction is small. The advantage of a blow is felt, not

when you want to move a massive body, but when you have a ^reat force of

friction to overcome, as in hammering a nail,
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80640-f- (336x32)—that is, in about 7^ seconds; supposing there

Avas no friction and that the line was perfectly level.

As for the jet of water, it represents a momentum of ten

million C.G.S. units per second, and hence corresponds to a steady

force of ten million dynes. This force must be operating, to

propel the jet, over the sectional area of the nozzle ; and if this

area is a circle half a centimetre in diameter, the pressure to

which the water is pumped must be about 50 megadynes per

square centimetre—that is, about 50 atmospheres, or 700 lb.

to the square inch.

49. The above statement, in italic or black type (sect.

48 and sect. 45) is often called, as has been already stated,

the second law of motion: it might with propriety be

called the law of motion, or the law of force and motion.

It is very general, and involves a great deal. It is the

fundamental law of meelianies.

First, it shows that where there is no force there is no

change of momentum—that is, that a body not acted upon

by any external force, if in motion, will continue Avith that

motion unaltered, and, if at rest, will remain at rest ; a fact

often stated separately as the law of inertia, or the first law

of motion (sect. 33).

It further declares implicitly that if a force act on a body

in motion, it produces just the same effect as if it had acted

on the same body at rest—that is to say, the state of the

body on which the force acts is immaterial, as nothing is

said about it in the statement.

Moreover, the second law impHes that if two or more

separate and independent forces act on a body, each pro-

duces its own change of motion in its own direction without

regard to the others.

50. This last is an important aspect of the law, and tells

us that the operation of compounding together a lot of

independent forces is just the same as that of compounding
together the motions which each force separately tends to

produce in the same time.
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Thus if AB represents the quantity of motion (that is, the

momentum) which would be produced by one force by itself

in a second, and BC the motion which would be produced

by another force by itself ; then AB and BC may also be

taken to represent the two forces themselves. But we learn

from Chapter II., and from sect. 39, that the resultant of

the two motions AB and BC is the single motion AC, hence

AC may be taken as representing the resultant force—that

is, a force which, if acting by itself, would produce precisely

the same effect as the other two forces acting together

;

provided they are independent of each other.

Hence all that we have said about the composition of

motions applies equally well to the composition of independ-

ent forces. In other words, forces are compounded by the

parallelogram and polygon laws just as motions are com-

pounded (see sect. 24 and Chapter VII.).

51. Moreover, we learn that in order to specify the

translating power of a force, it is only necessary to specify

the velocity it is able to produce in unit mass in a second

;

which is readily done by drawing a straight line anywhere

of definite length in a definite direction. But we shall soon

learn (sect. 55) that, as force has rotating as well as trans-

lating power, it is necessary, for the complete specification

of a force, to assign also its position or line of action ; it is

not necessary to assign it any definite place in that line.

Hence three things determine a force—Direction ("with

sign), Position, and Magnitude. As these things are pos-

sessed by an arrow-headed line of given length, such a line

is often used to symbolise a force. This j, for instance,

would be one force, and this -»- a force of the same magni-

tude as the first, but in a different direction ; while this

other one, equal and parallel to the first, | would be equiva-

lent to the first in translating power, for it has the same

magnitude and direction, but difierent in rotating power,

having a different position, that is, line of action. The only
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defect of this mode of representation is that it is a little too

expressive—that is, it expresses a little more than is wanted.

For -I- and -i-, though two distinct lines, represent the same

force in every respect, having the same direction, magnitude,

and line of action—the rotating and translating powers are

the same (see end of sect. 57). For further development of

this, see Chapter VIII.

52. There is one more thing about force which is very-

important, but in the present stage its full meaning can

scarcely be appreciated, and that is the fact, mentioned in

the Introduction, that force is always due to the mutual

action of two bodies or systems of bodies ; that every force,

in fact, is one of a pair of equal opposite ones—one com-

ponent, that is, of a stress—either like the stress exerted by

a piece of stretched elastic, which pulls the two things to

which it is attached with equal force in opposite directions,

and which is called a tension ; or like the stress of a pair of

compressed railway buffers, or of a piece of squeezed india-

rubber, which exerts an equal push each way, and is called

a pressure (see sect. 3). Newton's law concerning this is

what is called his THIRD LAW OF MOTION

:

* Reaction is always equal and opposite to action—that is

to say, the actions of two bodies upon each other are always

equal and in opposite directionsJ

This may be called the law of stress, and it has been

shown by Professor Tait to be susceptible of considerable

development (see Thomson and Tait's Natural Philosophy,

art. 269, and see also Chapter VI. of the present text-book).

It is deducible from the first law of motion (see ]\Iaxwell,

Matter and Motion, art. Iviii.), for if the forces exerted by

two parts of the same l)ody on each other were not equal

and opposite, they would not be in equilibrium ; and con-

sequently two parts of the same body might, by their

mutual action, cause it to move with increasing velocity for

ever, the possibility of which the first law denies. The
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same proof holds without modification for the mutual forces

between any two or more bodies; for those bodies may be

regarded as a single system or complex body, within which

all internal forces must balance, else would there be the

impossible result of an internal force capable of accelerating

the system.

We have already shown (sect. 49) that the first law is a

special case of the second, and now we have deduced the

third from the first ; hence all are really included in the

second, which is therefore excessively important.

EXAMPLES—VIII.

(1) What is the acceleration when a force of 36 units acts on a

mass 4 ; and how far will the mass move in 10 seconds ?

(2) What is the least force necessary to cause 15 lb. to move 30

feet from rest in 5 seconds ?

(3) If a mass of 7 lb. is acted on by two opposite forces of

magnitudes 56 and 42 respectively, what is the accelera-

tion ; and what will be the momentum generated in 5

seconds ?

(4) How long must a force of 8 poundals act on a 20 lb. mass to

change its velocity from 2 to 26 feet per second ?

(5) In what distance will a force of 2 poundals be able to stop a

mass of 30 lb., which at the time the force begins to act is

moving 50 feet every second ?

(6) A mass of 20 lb., which has been going 40 feet per second, is

now retarded by a constant force equal to the weight of 4

pounds. How soon will its velocity be 24 feet per second

in the reverse direction ?

(7) Find the force which, acting on a mass of 2 kilogrammes,

gives it a velocity of 98*1 cm. per second in 5 seconds.

Compare this force with the weight of the body.

(8) If a mass of 6 lb. is propelled so as to gain a velocity of 10

feet a second every second, what is the magnitude of the

force urging it ?

(9) If a mass of 6 lb. be pushed by a force of 2 poundals without

friction for 5 minutes, how much will the momentum of the

mass be altered ?

(10) If a certain force acting on a mass of 6 lb. for 4 seconds
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gives it a velocity of 40 feet per second, through what
distance would the same force move a mass of 10 lb. in 5

seconds ?

(11) What weight is equal to a force of 1200 absolute foot-pound-

second units ?

(12) What weight is equal to a force of a million dynes? How
many dynes will support an ounce against gravity ? How
many dynes can support a gramme ? How many corre-

spond to the weight of a ton ?

(13) A force equal to the weight of a cwt. acts on a ton for 2

minutes. What velocity will it produce ? If a force

equivalent to the weight of a ton operated on a quiesi'

cent hundredweight for 2 minutes, how far would it

push it ?

(14) If a force equal to the weight of a gramme pull a mass of 1

kilogramme along a smooth level surface, find the velocity

when the mass has moved 1 metre.

(15) A mass of 100 grammes acquires a velocity of 30 cm. per

second in 10 seconds. Find tlie force acting on it.

(16) A load of 50 lb. is being lowered by a cord from a height.

Find the tension in the cord :

(a) When the speed is increasing at the rate of 8 feet-per-

second per second ;

(5) When it is decreasing at the same rate

;

(c) When the speed is uniform.

(17) What steady force must act on a mass of 10 lb. initially at

rest in order to move it 144 feet in 3 seconds ? How does

this force compare with that of the earth's attraction for

the mass ?

Impact.

53. When two or more bodies in free motion impinge on

one another, their action and reaction are equal and opposite,

or, in other words, there is no outstanding or resultant force

tending to move the system of bodies as a whole in any

direction. Whatever was their average motion before im-

pact, that same will continue to be their average motion

after impact. The momentum of the whole can only be

changed by a force exerted by something outside the system

;

internal forces can rearrange the distribution of moment^,
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but are incompetent to affect total momentum. Hence, m^

Wg being the masses, if u^, u^ are their initial velocities,

and Vj, V.2 their final velocities, the above deduction from

Newton's third law may be written :

The resultant of m^w^ and 7712^2 = the resultant of m^Vj

and m^v^ ; that is, the initial momentum and the final

momentum are equal in both magnitude and direction.

The impact of particles or homogeneous spheres may be

either direct or oblique. The impact is direct when they

approach each other along the same line and when their

surfaces at the point of contact are perpendicular to this line,

so that the bodies also recede along the same line after

impact. In this case the equation of momenta is

The line through the point of contact perpendicular to their

surfaces at that point may be called the line of the blow, or

the line of impact. If the velocities of the approaching

bodies are inclined to this line, they may be usefully resolved

into components—one along this line, and the other at right

angles to it—the first being the component in the direction

of impact, and the other the transverse component of the

velocity of each body. The direct components of momentum
obey the above law. The transverse momenta not only obey

the same equation of total equality, but are individually

absolutely unchanged by the impact.

Another mode of stating the law of constancy of total

momentum is to say that the motion of the centre of gravity

of the two bodies continues unchanged by the impacts, or

by any other exertion of internal forces. For, as will be

shown in sect. 131, the centre of gravity of the two bodies

is a point between them such that its distance, ic, from any

line in the same plane with them is given by

(mj + 7^2)3: = m^x^ + m<fc<2.i

whence it follows that its velocity, w, perpendicular to that

same line, is given by (mj + m^ti = m^u^ + W2W2 ^®fo^"© ini"
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pact, and that its velocity, v, after impact, is given by

()u^ + m^v = m^v-^ + m^Vc^. Hence, taking the line of reference

perpendicular to the line of impact, that is, attending to the

component velocities in this line, and remembering that

m^Wj + WgZig ~ ^1^1 + ^2^2» ^® ^®® ^^^^ v = Uj so that this

component of the velocity of the centre of gravity is

unchanged by the impact ; and, a fortiori, the transverse

component is unchanged, therefore the motion of the centre

of gravity is entirely unaffected by the blow.

And this is general : for instance, when a shell explodes

in mid-air, the centre of gravity of the whole of its materials

continues its parabolic orbit unaltered until some of the

pieces strike external objects. Or, again, when a shot is

fired from a gun, the total momentum after explosion is the

same as it was before—namely, ; that is, the gun recoils

with a momentum which is equal and opposite to that of the

shot and the powder gases forward. This fact is utilised

in a rocket in an emphatic manner.

All this represents the first fundamental law of impact or

of internal forces in general, and it is called the law of

' conservation of momentum.' It is to be entirely dis-

tinguished from the conservation of energy ; indeed, energy

is by no means obviously conserved in cases of impact.

Heat and sound, as well as rotation, have to be taken into

consideration before the conservation of energy can be

asserted (see Chapter VI.), but the conservation of mo-

mentum is a simple variant or extension of Newton's first

law of motion.

The next fact that has to be stated is of a more empirical

character—namely, that, in the case of direct impact, the

relative velocity of recoil always bears a fixed ratio to the

relative velocity of approach for a given pair of bodies,

provided that, in general, the shock is not so great as to

permanently deform or break them.

Consider two spheres moving in the same line and one
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overtaking the other. Before impact their relative velocity

is Wj - ^2 '} after impact their relative velocity is «^2 ~ ^i ^ ^^^

these two velocities are proportional, so that the ratio

-^ = a constant. This constant, which is usually denoted
Mj — 2^2

by e, is called the * coefficient of restitution,' which we may
shorten into the recoil-ratio of the two bodies.

In a few simple cases, such as perfectly elastic spheres or

equal rods impinging * end-on,' this coefficient is practically

unity ; but in general it is less than 1 by reason of the

setting up of rotations, and also by reason of some energy

taking the form of vibrations, whether of sound or heat

;

and in the extreme case of perfectly inelastic bodies, like

putty, or dough, or wet clay, the value of the coefficient is

zero. In these latter cases the bodies move on together

after impact without any recoil. The following four state-

ments are now easy to verify for cases of direct impact

;

though, like the rest of this section, they will not be found

easy till more has been read :

(1) Two equal bodies with e = \ interchange their original

velocities after impact. (For example, if one had been

stationary at first, the other wiU be left stationary at last.)

(2) When e= 1, the initial and final energies are equal.

(3) When e = 0, the loss of visible energy at impact is

v 1 1 1where ^r^ =— + — ;M rwj m^

the loss being equal to the energy of an imaginary particle

moving with the relative velocity of approach of the two

impinging bodies, and of mass equal to half their harmonic

mean.

(4) In all cases of direct impact the loss of energy is 1 - e^

times the above amount.
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Oblique Impact.—If the impact is oblique, the component

velocities in the direction of impact are changed in accord-

ance with the above equations—namely :

m-^U-^ + ??i2?*2 = ^1^1 + ^^2^2 ( 1

)

and v2-v-j^=^ e{u-^ - u^)

;

(2)

while their components perpendicular to this direction are,

as previously stated, wholly unaffected.

If one of the masses (m^) is infinite, equation (1), though

still true, is useless, but equation (2) is then sufficient.

Moreover, since the velocity u.2 of the infinite mass is prac-

tically unaltered by the collision, and will most naturally be

taken as zero, the equation reduces to

that is, the component velocity of m^ in the direction of im-

pact is reversed and diminished in the ratio of e : 1. The

transverse component is, of course, unaltered by the collision.

It is interesting to note that, since the path of the centre

of gravity of two colliding masses is absolutely unaltered by

the collision, the circumstances of impact are the same as if

the two masses each collided with an infinite mass moving

with the velocity of their centre of gravity. If we consider

their motion relative to their centre of gravity (obtained by

compounding with the actual velocity of each mass a velocity

equal and opposite to the velocity of their centre of gravity),

the component velocity of each in the direction of impact is

reversed and diminished in the ratio of e : 1, in accordance

with what always happens when a finite mass collides with

an infinite mass ; and their transverse relative velocities

continue unchanged. These ideas will assist us to represent

in a diagram the change of velocities caused by a collision

under given conditions.

The following general construction can be given, and its proof

left as an exercise. If AO represents in magnitude and direction
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rthe velocity of some particle A, and BO the velocity of any other

particle B, and if G is the centre of gravity of the two particles A
and B, then GO is the velocity

K of their centre of gravity ; and

AG, BG are the velocities of the

» particles relative to their centre

of gravity. After impact has

taken place, in some line to

which MN is drawn normal, the

velocity of the centre of gravity

continues unaltered, but the velo-

cities of the particles become A'O
and B'O respectively, such that,

if e= l, the line MN is equally

inclined to AB and to A'B', while

A'G=AGandB'G= BG.
(If 6 is not unity, then the tan-

gent of the angle between A'B' and MN is e times the tangent of

the angle between AB and MN.)
It should be noticed that AM, BN are the direct components,

and MG, NG the transverse components, of the velocities AG, BG

;

consequently in all cases MG, NG remain unchanged, while the

direct components are reversed and diminished in the ratio e : 1,

so that A'M= - e
•AM, and B'N=-e' BN. (In the figure, e=\.)

Fig. 12.

EXAMPLES—IX.

(1) Two balls of masses 4 lb. and 8 lb. are moving towards

each other with velocities 25 and 3 feet per second respec-

tively. After impact they move on together. Find the

common velocity.

(2) Two perfectly inelastic bodies of masses 120 and 150 lb.

respectively, moving with equal opposite velocities of 18

feet a second, impinge directly on each other. Find the

subsequent velocity.

(3) A lump of clay when thrown horizontally against a mass 20

times as great, resting on perfectly smooth ice, makes it

move 3 feet in 2 seconds. What speed had the clay at the

moment of impact ?

(4) Two masses of 6 and 10 lb., moving in opposite directions

with velocities of 10 and 8 feet per second respectively,

collide. If the velocity of the smaller mass be exactly
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reversed by the impact, find the coefficient of restitution

for the two bodies.

(5) Find the velocities of two bodies after collision, their masses

being 18 lb. and 32 lb., their velocities (in the same straight

line and in the same direction) 12 and 7 feet per second,

and their coefficient of restitution ^.

(6) A 1-oz. bullet fired from a 20-lb. rifle pressed against a mass

of 180 lb., kicks the latter back with an initial velocity of

6 inches per second. Find the bullet's initial velocity.

(7) A bullet of mass ^^ lb. is fired with velocity 300 feet per

second into the middle of a wooden block weighing 30 lb.

hung by a very long cord. What is the common velocity

of pendulum and bullet just after the collision ?

(8) Two masses of 10 and 20 lb. , moving in the same direction

with velocities of 25 and 15 feet per second respectively,

collide. Find their velocities after impact, assuming them
to be perfectly elastic.

(9) Masses of 4 and 6 lb. collide when moving in opposite direc-

tions with velocities of 8 and 12 feet per second respectively.

If their coefficient of restitution be ^, find their velocities

after impact.

(10) Two bodies, for which the coefficient of restitution is ^,

approach each other with equal velocities of 20 feet per

second. After collision one body, the mass of which is

5 lb., returns with velocity 15 feet per second. Find the

mass of the other body, and its velocity after collision.

(11) Two masses of 5 and 3 lb. collide when moving in opposite

directions with velocities of 4 and 10 feet per second

respectively. If the smaller is just brought to rest by the

impact, find tiie coefficient of restitution for each body.

(12) A bullet, weighing 50 grammes, is fired into a target with a
velocity of 500 metres a second. The target is supposed to

weigh a kilogramme, and to be free to move. Find, in

kilogrammetres, the loss of energy in the impact.

N.B.—Remember that ^nv^ gives a result in absolute, not in gravita-

tional, units.

(13) A ball let fall on a stone slab from a height of 16 feet

bounces the first time to a height of 9 feet. What is the

coefficient of restitution, and how high will the ball bounce
next time ? Find also the total distance it will travel

before coming to rest.

(14) Two smooth spheres whose masses are proportional to 10
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and 8, moving in directions perpendicular to each other,

with velocities of 20 and 30 feet per second respectively,

collide so that the line of centres makes angles of 30° and
60° respectively with the directions of the motions. Cal-

culate their velocities after impact ; taking the recoil ratio

as unity. Also find them by means of a diagram.

(15) A cannon on an armoured train fires a 10-lb. projectile

rearwards with a velocity of 2000 feet a second. If the

truck with the cannon weighs 2 tons, what initial velocity

is imparted to it ?

(16) A Maxim gun delivers 300 one-ounce bullets per minute with

a speed of 1600 feet a second. What force is necessary to

hold the gun still ?

(17) A jet of water from a fire-engine delivering 30 gallons of

water per minute through a quarter square inch opening

impinges directly on a brick wall. What force does it

exert ?

(18) Why does a foul gun kick worse than a clean one, notwith-

standing that it ejects the shot with less velocity ?

(U.) ON ANGULAR VELOCITY AS AFFECTED BY FORCE;
OR, FORCE AND ROTATION.

{Dynamics of a Rigid Body.)

54. WTien force acts on an extended piece of matter, it

produces in general both motion and strain (sect. 5). The
latter we do not want to consider at present ; so to exclude

it, we suppose the body to be rigid—all its parts rigidly

bound together and incapable of distortion or relative dis-

placement. The effects of force on such a body are translation

and rotation. If the effect is translation only, the body acts

like a particle (sect. 39), as if aU its mass were concentrated

at a point (called its centre of inertia, or sometimes its

centre of gravity), and the second law of motion as stated

for particles applies to the rigid body ; so that if R is the

resultant of all the external forces acting on the body, and

if m is its mass, the acceleration of its centre of inertia is

— . This is true anyhow, whether there is rotation or not

;
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but when rotation is allowed the subject becomes much
more complicated, especially if translation is possible as

well. We can, however, consider rotation by itself, by

supposing one line or point in the body to be fixed in

position, so as to constitute an axis or centre of rotation.

55. All we can say about the subject here is, that in

estimating the rotating effect of a force, one must not only

consider its impulse—that is, its magnitude multiplied by its

duration (sect. 48)—but we must also consider its position
;

how far its line of action is from the fixed line or axis of

rotation : the farther it is off, the more efi'ect it has ; its

moynent (sect. 40) is greater.

Suppose a force acts on a body only capable of rotation,

at a distance K from its fixed axis : the moment of momentum^

or angular momentum^ generated [2(wv;'), or 2(??2r2a>), see

sect. 42], equals the product of the moment of the force,

FR, into the duration, t j in other words, it equals the

moment of tlie impulse Yt . R.

This is expressed by the following equation, where the

moment of inertia of the body 1{mr^) is denoted by I (see

sect. 43)

:

I(u = rR^,

or, moment of momentum = moment of impulse,

which is an extension of the simpler particle equation,

(sect. 48), momentu7n equals impulse, m.v = Yt.

56. This equation may also be written (since w = a^),

1 -i
,' FR moment of force

angular acceleration = a = -—
-
= —

.

;-

,

I moment of inertia

which is evidently analogous to the simple, and, for particles,

fundamental equation (sect. 47),

1 ,. F force
acceleration = a =— =

,m inertia

and includes it as a special case.

For an application of this equation, see sect. 142. Read

again, carefully, sections 40-43.
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Moment of a Force.

57. The idea of the moment of a force is a very im-

portant one, and will occur again and again in Statics (Chap.

VIII. ). It was from this particular case of it that the

name moment arose, signifying that on which the power of

a force in producing rotation depends. Thus, to close a

door rotating on its hinge, by a push, it is much more

effectual to apply the push near the handle than near the

hinge. In pulling at a lever, the farther you are from the

fulcrum the more power you have. Doubling the distance

of the force from the fulcrum is as good as doubling the

force itself—doubling either doubles the effect—doubling

both quadruples it : hence distance and force enter equally

into the effect—that is, the moment of the force is propor-

tional to the product of force and distance, FR, and may be

defined as equal to it.

The distance called R here is always the shortest distance

from the point or axis of rotation to the line of action of the

force—that is, it is the length of the perpendicular drawn

between these two lines, or let fall from the fixed point

upon the line of action. Now, the area of a triangle is half

the base multiplied by the perpendicular height ; hence, if

the force be taken as the base of a triangle, and the point of

rotation as the vertex, the area of the triangle so formed

will be half the moment of the force about that point. Or,

in symbols : the moment of the force AB about the point

is AB X ON, where ON is

the distance R, being the

perpendicular let fall from

upon the line AB, produced

if necessary (fig. 13) ; but

AB X ON also equals twice

the area of the triangle OAB ; hence, twice the area of OAB
represents geometrically the moment spoken of. The posi-
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tion of AB in the line is evidently of no consequence, as all

triangles of equal heights and bases have the same area (cf.

sect. 51).

But to express a moment completely, we must also notice the

direction of its rotative tendency. In the figure it happens to be

like the hands of a watch, a direction it is convenient to call,

with Professor Clifford, 'clockwise.' If AB Avere reversed, or if

O had been on the other side of it, the direction of rotation would
be also reversed, or 'counter-clockwise.' This last direction

—

namely, that opposite to the hands of a clock, it is customary to

call positive,—the clockwise rotation being therefore negative.

So in the above figure the moment is equal to2.0BA; the order

of quoting the angles being attended to.

Force Perpendicular to Path of Motion.

58. But there is another aspect of the subject. When a

body (say a wheel) rotates round an axis, every point of it

is describing a circle; and so, even when its motion is

uniform, and not accelerated in the ordinary sense, still a

force must act on each of its particles to compel them to

move in the circle contrary to the first law of motion.

This force is supplied by the strength of its material, and is

often neglected; it is, however, very important. It may
happen that the material of a wheel is not strong enough to

exert the force required when the rotation is very rapid,

and in that case the particles will cease to move in their

circles, but will begin to move in straight lines : in other

words, the wheel will fly to pieces. If a body revolve

about a centre outside itself, the needful force must be

supplied to it by a link or cord, or by some other con-

straining mechanism (a groove in the case of a solitaire

marble running round its board).

In this, as in every case, the acceleration is proportional

to the force, and a constant force produces a uniform accel-

eration (sect. 45) ; but the acceleration, or at least a com-

ponent of it, is here perpendicular to the direction of motion
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(see sect. 15), and this is a most important case. "We will

now proceed to investigate it further.

an.) ON THE DIRECTION OP MOTION AS AFFECTED BY
FORCE; OR, FORCE AND CU. VILINEAR MOTION.

{Dynamics ofa particle continued. ) ( Centrifugalforce. )

59. The velocity of a particle of matter may be changed

both in magnitude and direction by the action of force.

Hitherto we have dealt only with change of magnitude ; let

us now proceed to change of direction j and consider a case

where a force produces only curvature in the path of a

particle without otherwise affecting the velocity.

Imagine a particle of matter moving round and round a

circle with constant speed. Although there is no accelera-

tion in the direction of its motion, yet, nevertheless, a force

must necessarily act continually in order that the circular

motion may continue. The velocity is uniform indeed in

speed, but its direction is constantly changing. But, by

the first law of motion, a particle of matter will move
always in the same direction—that is, in a straight line

—

unless it is acted on by force : hence, force is necessary to

change the direction.

If the particle were at the point (fig. 14), and the

force were to cease to act, it

would continue to move in the ^^^t
straight line OT, touching the y"^^ f ^"?&n^J'
circle at 0. In order to go /^ \

round the circle, it must then '
\

faU from this line normally,

that is, toward the centre of

the circle ; it thus arrives at

the point P, and now it is
Fig. 14.

going along PT'; but it falls a little towards the centre

again and so reaches the point Q, and so on. A force then

must constantly act drawing the particle towards the centre
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of the circle ; and this force is called therefore the centri-

petal force. It is constant in magnitude, but continually

changing in direction, being always at right angles to the

direction of motion of the particle. And because it is at

right angles to this direction, it can produce no acceleration

in it. Whirl a stone round by a string : the tension in the

string is this centripetal force, and you will find it greater

as the stone is larger, and also as you whirl it quicker.

The tension in the string, however, is really a stress (sects.

3 and 52), and has two aspects, one the action of the hand

or central body on the revolving particle, which is the

centripetal force proper; the other the reaction of the

revolving particle on the central body, which is the force

felt by the hand, and goes by the name of centrifugal force.

Of course the two are equal. The essential thing, however,

is the stress, and which component we speak of matters

little : but, as we are at present concerned more with the

action on the particle than with the reaction on the centre,

it will be convenient to attend more to the centripetal force

than to the other.

Value of Centripetal Force and Centripetal Acceleration.

60. Now, to find the magnitude of this force, we must

regard the motion of the particle as compounded of two

—

one a uniform velocity along the tangent to the circle ; the

other a uniform acceleration along the radius, produced by

the uniform centripetal force F, according to the law

F
« = -,

a being the centripetal acceleration.

"We have then a case of composition of motions very like

that discussed in sect. 29, where a uniform rectilinear motion

was compounded with a uniform acceleration in a constant
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direction—that is, always parallel to itself ; and where the

path of the resultant motion was found to be a parabola.

But, in the present case, we
have to compound a uniform

motion with a uniform accelera-

tion at right angles to the path

of motion at each instant, in

fact along the radius of the

circle, and by no means parallel

to itself.

Drawing a figure similar in

principle to that of sect. 29 (fig.

9, which see), let OP be the

very minute portion of the

circular path described in an infinitesimal portion of

time t with the constant velocity v, so that

OV = vt',

and complete the figure as shown in fig. 15, letting fall PN"

perpendicularly to the diameter of the circle OD.
Then OP is the diagonal of an infinitely small parallelo-

gram* with sides OT and OlS'; wherefore the motion along

OP may be regarded as compounded of two motions—one

with the constant velocity v along OT, which the particle

would have if left to itself; the other, due to a constant

pull of the centre C, and therefore uniformly accelerated,

along ON, which is the distance travelled in that direction

in the above small time t ; wherefore

0^ = 1 at\

It only remains to determine, from the geometry of the

figure, the relation between ON and OP, in order to find

* The quadrilateral ONPT is not really a parallelogram, but it is more nearly

one the smaller it is—that is, the nearer P is taken to O ; and it is accurately one

in the limit when it is infinitely small—that is, when P is the next consecutive

point to O, which is supposed to be the case ; for of course OPQ, &c. are really

consecutive points of the circle, only they have to be spread out in the diagram.

In the limit also OP and OT are equal, and hence OT is also equal to vt.
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the value of the centripetal acceleration for a point moving

with given velocity in a circle of given size.

The angle OPD, being an angle in a semicircle, is a right

angle (Euc. III. 31), and so is the angle at N ; moreover,

the angle at is common to the two triangles ONP and

OPD ; wherefore these triangles are similar (that is, one is

like the other magnified), and their corresponding sides are

therefore proportional ; so

ON:OP::OP:OD;
or in symbols, if r is the radius, CP, of the circle,

^af^ ivt : : vt : 2r

;

or, a : v= v : r,

whence v^ = 7'a, or v is a *mean proportional' or 'geometric

mean ' between a and r.

The value of the centripetal acceleration is then

a =— ; or (writing v = wr) a = loh = vod.

The centripetal force is of course simply m times this, m
being the mass of the revolving particle of matter, or

F = — = mwh' = mvo) :

r

or it is proportional to the mass of the particle, the square

of its velocity, and the curvature (see sect. 1 3) of its path :

in other words, it is proportional not only to the momentum
of the particle, but also to the rate at which its direction of

motion revolves—that is, to its angular velocity.

Read again sect. 15 carefully, and also the examples on circular

motion in Examples III., especially No. (3).

61. As an example take a stone weighing 5 lb., attach it

to a string 3 feet long, and then whirl it round twice a

second.

The length of one circuraference being 2x7rx3=67r feet, itn
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velocity must be I2ir feet per second ; and the tension in the

string, or the centripetal stress, must be

5 = about 2400 poundals
o

(taking ir^ as equal to 10 instead of 9 87) ; equivalent to the

.
, ^ -. 2400 „. „weight of -00"= 7o lb.

This stress might easily be sufficient to break the string, and
one would then correctly say that the centrifugal force, exerted

by the revolving mass on the string, broke it. This may be

understood as an abbreviation for the following more expansive

statement : The force required to continually deflect the mass
from its natural rectilinear path, and cause it to move in the

given circle at the given rate, was so great that the string was
incompetent to exert it, but was torn asunder in the effort.

Take another example from astronomy, which, however,

will be better appreciated after reading Chapter V. The
moon revolves round the earth, in a path which is nearly a

circle with the earth as centre, in a time of nearly 28 days.

Hence it too is continually being deflected from its natural

rectilinear path : the force which deflects it being its iceigJit

—that is, the earth's pull (or gravitative attraction). Call

the mass of the moon m ; then its weight must be mg' (see

sect. 64), where (f is the intensity of terrestrial gravity at

the distance of the moon.

The intensity of gravity at the moon's distance is much less

than 32, its value near the surface of the earth, because it

decreases in the same proportion as the square of the distance

from the centre of the earth increases.

This force, mg\ then, is the centripetal force which makes

the moon describe its curved path, and hence it should

equal

r

Now the radius (r) of the moon's orbit is about 240,000

miles, or about sixty times the earth's radius ; and it goes

F
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once round in 2,360,000 seconds, or about 27 days 8 hours

:

hence its velocity {v) is

27r X 240,000 X 1760x3 oo^a ^ .. a

2^360,000 = ^^^^ ^'^* P^' '^^^^^-

So — , the centripetal acceleration, is = '00898.
r'

^
' 2,360,000

This is the value of the acceleration above denoted by g\

and the centripetal force is

•00898m.

Now if this force be really due to gravity, and if gravity

really diminishes with the square of the distance, then, the

distance of the centre of the earth from the moon being

sixty times as great as its distance from the surface of the

earth (that is, the earth's radius), it would follow that g' at

the distance of the moon should be the 3600th part of the

value of g at the surface of the earth.

But the value of g is 32*2 (see next chapter), and the

3600th part of this is -00894 ; so the weight of the moon
should be •00894m; and this is as nearly equal to the

necessary centripetal force, '00898m, as our rough data can

be expected to give it

This is the sort of calculation which Newton went through

when he proved that the force required to keep the moon
in her orbit was just the same as would be exerted by the

gravitative pull of the earth; supposing that the force which

pulls down stones and apples extended so far, and decreased

regularly all the way with the square of the distance from

the centre of the earth. Whence he concluded that this force

does so extend, and is the actual force in operation.

EXAMPLES-X.

(1) Half a pound is whirled at the end of a string 18 inches long

3 times round per second. What is the tension in the

string ?
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(2) If a string can stand a force of 1000 units witlioiit breaking,

what is the greatest length of it which can be used to

whirl a 5-lb. mass once round a second ?

(3) What is the smallest length of the same string which can be

used to whirl a 5-lb. mass with a velocity of 10 feet a

second ?

(4) A string just able to carry 40 lb. is used to whirl a ^-Ib.

weight in a horizontal circle 5 feet in diameter. At what
speed will the string break ?

(5) Find the tension in each spoke of a six-spoked flywheel, 8 feet

in diameter and weighing 12 cwt., when making 200

revolutions per minute, assuming all its mass collected at

its rim, and that by reason of cracks in the rim, the spokes

have to bear the whole of the strain.

As a matter of fact the rim of a flywheel ought to stand its own
strain, and the spokes need add but little to the strength.

(6) A stone weighing 6 oz. is attached to the end of a cord 3 feet

long, the other end being fixed. If the cord breaks when
the stone is whirled round at the rate of 10 turns per second,

find the greatest weight it could have been able to

support.
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CHAPTER V.

ON FORCE AND MOTION-Contmued.

THE FORCE OP GRAVITATION.

62. Before proceeding further, it will help our ideas to

apply some of the general laws to a few special cases. The

most universal force known is the force of gravitation, and

it will be convenient to take illustrations from the action of

this force ; but we will, in the present stage, only consider it

as a uniform action exerted by the earth, tending to pull

every piece of matter down to the earth's surface with a

force varying with the mass of the piece of matter, but with

nothing else. This is practically true in all common cases,

for though the force really varies inversely with the square

of the distance from the centre of the earth, yet the variation

for ordinary heights is very small. For there is scarcely

any difference in the distance of the centre of the earth from

the sea-level and from the top of a mountain—one is say

4000, and the other perhaps 4001 miles.

63. This force is what is known as iveight ; it is measured

like every other force by the acceleration it can produce in

unit mass, or, in other words, by the momentum it can

generate in a second. To measure the force, and see how
it depends on the nature of the attracted body, we will first

take the same mass of different bodies, and compare the

accelerations which gravity is able to produce in them.

Thus take a pound (see sects. 34 and 36) of lead, of iron, of

stone, of wood, and of cork, and drop them all at the same

instant from a high tower ; then if every disturbing cause

were absent—that is, if they were subject to no other force
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but that of gravitation—they would all be found to reach

the ground at precisely the same instant, having all acquired

the same velocities.

If, however, the experiment took place in air, tbey would be

subject to disturbing causes, and the falling together would be

only approximate. The wood and cork would be retarded by
the air more than the others, partly from the same cause that

enables us to winnow chaff from grain, and partly for a reason

which may be rendered more obvious by dropping the different

things under water. The falling of the wood and cork would be

then not only retarded but reversed into a rise. The air has a
floating power, only it is less than that of water. The air must
therefore be removed, and the bodies dropped in vacuo, if the

observation is to be precise and extended to all sorts of bodies

such as cotton-wool or feathers ; the experiment is then often

called the guinea and feather experiment, and for a description

of it you may refer to Ganot or Deschanel.

The above experiment, if carried out accurately, would

prove that the pull of gravity has nothing to do loith the

material oi' nature of the substances, for all equal masses are

equally accelerated whatever the material; and, since the

masses are equal, this means that they are all pulled with

equal force (sect. 45).

64. Next take unequal masses (either of the same material

or not), say a swan-shot and a cannon-ball, and drop them

from a height at the same instant. They will both reach

the ground at the same time—that is, they each receive the

same acceleration. This experiment was carried out by

Galileo from the Tower of Pisa. It shows that the earth's

pull on a body is directly proportional to its mass. For

since force is equal to the product of mass and acceleration

(sect. 45), and since the acceleration is found experimentally

to be the same for all masses, it follows that the force is

necessarily proportional to the mass.

If we denote by g the acceleration produced by gravity

—that is, the velocity gained per second by a freely
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falling body—the force pulling it down is measured by

its mass multiplied by g^ and this force is termed its

weight; so

'W = mg;

or, the weight of a body is g times its mass; in other

words, g = weight 4- mass, that is, weight per unit mass.

Hence g is often called the intensity of gravity.

This is simply a special case of the general relation

F = maj

weight being a particular case of force, and g being a par-

ticular case of acceleration. The acceleration due to gravity

is the same for all material bodies, and if one thing is ever

observed to fall more slowly than another, it is because of

the disturbing effect of the air. In a vacuum all things

fall* at the same rate if they start fair; 'and this experi-

mental fact, combined with the second law of motion, proves

that weight is proportional to mass.

The ratio of weight to mass is often called the intensity

of gravity, and denoted by g ; and a knowledge of its value

at any place enables us to translate gravitational units of

force there into invariable absolute units. In this country,

g is foimd by exjperiment (see next section) to be about

32-2 F.P.S. units, or about 981 C.G.S. units; so that the

weight of a pound is about 32-2 poundals, and the weight

of a gramme about 981 dynes. If the earth were a stationary

sphere, g would be constant aU over its surface, and it would

only vary on ascending above or descending below the sur-

face ; as the inverse square of the distance from the centre

as you ascend, as the direct simple distance from the centre

as you descend (supposing the density uniform). But inas-

much as the earth is a rotating spheroid, the intensity of

gravity is different at different parts of the surface, as shown

in the following table, whose figures are calculated from the
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known shape of the earth, which, again, was calculated by

Newton from its period of rotation.

INTENSITY OP GRAVITY AT DIFFERENT LATITUDES.

Latitude. gf in C.G.S. units. gr in F.P.S, units.

Equator 0°

45°
48° -50'

51-29
52-30
53-29

55-57
90°

978-10
980-61
980-94
981-17
981-25
981-34
981-64
983-11

32 090
.32-173

32184
32191
32-194
32-197
32-207
32-255

Paris
Greenwich
Berlin
Liverpool
Edinburgh
North Pole

Thus, whereas a stone falls 16*045 feet in the first second

at the equator, it falls 16*099 feet at Liverpool, and 16*128

feet at either pole.

The weight of one pound is therefore about 32*2 absolute

F.P.S. units of force or poundals. (Read sect. 36 again.)

Falling Bodies.

65. To express all the laws of falling bodies, we have

simply to apply all the kinematics we know about bodies

moving with constant acceleration.

Thus a stone let drop is found to fall about 16 feet in one

second (more accurately 16*09), so that 16 is its average

velocity during that second ; but the average velocity is half

the final velocity; hence the velocity acquired in one

second, or the acceleration, is 32 (more accurately 32*18),

and this is the value of g. (Since 16*09 feet equal 490*5

centimetres nearly, the value of ^ is 981 in centimetres-per-

second per second; and this therefore is the weight of a

gramme in dynes.) A more accurate method of determining
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g is to let a body fall again and again, and take the time of

a long succession of falls. This can be practically carried

out with a pendulum (see sect. 78) ; but for many
purposes an approximate value of g in round numbers is

sufficient, and the number 32 happens to be very con-

venient, because both its half and its double have an easy

square root. Hence the following handy rules :

The velocity 32 is gained in every second of the

fall, so the velocity gained in t seconds is 32^ (feet per

second).

The distance travelled, being pro2)ortional to the square

of the time, is 16t^ feet {h = ^gt^).

The velocity gained ivhile falling from a height of hfeet

from rest is (by equation v'^ = 2gs), in feet per second,

Sjh;

8 being the square root o/ 64 or 2g.

The time taken to fall from rest at a height of hfeet is, in

seconds,

which follows at once from the equation s = ^gt^.

These expressions, 32i, I6t^, 8\/h, and l\/h, only apply when
everything is expressed in feet and seconds, and M'hen the falhng

hody starts from rest ; but given these conditions, they are very

useful for rapid mental estimates, especially the last two. For

instance, the time taken to drop 144 feet is ^\/144, or 3 seconds,

and the velocity acquired is 8\/144, or 96 feet a second. To
drop 400 feet, 5 seconds are needed, and the speed attained

is 160.

66. Modes of diluting the Intensity of Gravity.—

The acceleration is equal to g for all bodies only on con-

dition that they fall freely—that is, that the weight of each

has only its own mass to move and nothing else ; for then

a — l^jm, but r = mg, so a = g.

If, however, by any arrangement, we make a weight move
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another mass as well as its own, the acceleration must be

Thus suppose we tie a
falling weight P (say 6 lb.)

to a mass Q of 18 lb. resting

on a smooth flat table, as in

fig. 16; then the force causing

the motion is the weight of

the 6 lb.—that is, 6<7—but
the total mass moved is

18 + 6=24 lb. ; hence the ac-

celeration is

24 '^
:8

Pig. 18.

feet-per-secoud per second. Hence in the first second the com-
bination would move 4 feet, and in t seconds W^ feet, while the
velocity acquired in t seconds would be 8^ feet per second.

In a similar way, we can find the ac-

celeration if two weights are connected

by a string passed over a frictionless

pulley, without inertia, as in fig. 17.

Let the masses Q and P be 7 and 9 lb.,

their weights will be Ig and Qg respectively,

and the effective force will be the difference,

that is, Ig. The mass moved is 16 ; hence the

acceleration is

16
= iflr=4F.P.S. units.

Fig. 17.
This arrangement of two unequal

weights over a pulley is called *Atwood's machine,' for

determining the acceleration produced by gravity, and for

experimenting on the laws of uniform acceleration.

The advantage gained by experimenting with it instead of

with freely falling bodies is owing to the fact that the latter

fall too quickly to be conveniently observed. Any acceler-

ation whatever less than g can be obtained by the use of

this simple machine. Gravity is as it were diluted (that isi
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its intensity has to be multiplied by a proper fraction

to give its accelerative effect), but the laws of falling

remain the same. Another mode of diluting gravity,

employed by Galileo, is to roll round bodies down an

inclined plane.

67. Mode of measuring the Intensity of Gravity.—
To use the machine for measuring ^, we put on the string

two nearly equal weights, masses P and Q; the effective

force is then the difference of their weights, P^ - Q^ ; the

mass moved is P + Q ; hence the acceleration is (by direct

application of Newton's second law, in the form a = r/m,

the ratio of the moving force to the mass moved)

P + Q ' V + (f-

If this acceleration (call it a) is observed, g is easily cal-

culated. To obtain a experimentally, you may observe the

distance s fallen in time t^ and then apply the formula

s = latK

For instance, let P be 21 oz. and Q be 23 oz., then the acceler-

ation is, as calculated dynamically,

2 q—a, or -^.
44^' 22

Let the weights move for six seconds, repeating the experiment

several times to get it fairly accurate, and observe that the

heavier weight has fallen (and the lighter weight risen) a
distance of 26 feet; then say 26 feet=i« x (6 sec.)^, whence

13 feet 13
^—cTi ^> or the acceleration observed is -7- F.RS. units ; but it

9(sec.)2' 9
'

has just been calculated as also ^, hence ^=31|.

An actual experiment with Atwood's machine would be

hardly likely to give g so nearly correct as this. There are

other methods of finding the value of g which are much
better practically, though not so theoretically simple. The
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most accurate method consists in observing the time of

oscillation of a pendulum of measured length, which may-

be considered as a heavy body constrained to fall along a

circular path, and having its fall repeated automatically

again and again, so that the time of fall may be accurately-

measured—namely, one quarter of the period of a complete

swing to and fro (see sect. 78).

68. It is easy to understand how experiments may be made
with Atwood's machine on the laws of uniform acceleration.

Thus, to take the case when the weights are in the ratio of 21 to

13
23, and the acceleration therefore -^, we should find that the

a

distances travelled in 1, 2, 3, 4, 5, 6 seconds respectively were,

in fact,

13 4x13 9x13 16x13 25x13 36x13
18' 18 ' 18 ' 18 ' 18 ' 18

—that is, always half the acceleration multiplied by the square

of the time {^at^).

The distances travelled during each second would follow

another law. They are easily obtained from the preceding

numbers, for if we subtract the distance travelled in three

seconds from the distance travelled in four, we obtain the

distance travelled during thefourth second—namely,

16x13 9x137x13
18 18 ~ 18 '

and similarly, we get for the distance travelled in the first,

second, third, fourth, and fifth seconds respectively,

13 3x13 5x13 7x13 9x13
18' 18 ' 18 * 18 '. 18 *

a series ascending by the odd numbers ; the distance travelled in

the nth second being that travelled in the first second multiplied

by the nth odd number, ia(2/i- 1).

69. All this may be readily remembered by observing

its analogy with a simple geometrical diagram, as in

sect 23.

Draw any right-angled triangle, OPC (upside down does

best for falling bodies); divide its base, OP, into any
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number of equal parts, and draw a vertical line at each

division. You will thus cut up your

triangle into trapeziums, of which the

left-hand one degenerates into a triangle

;

and it is plain to simple inspection that,

whatever be the area of this small triangle,

the trapezium next to it has three times

that area, the next five times, the next

seven times, and so on, as may be seen

from the dotted lines drawn in fig. 18.

Hence, if the first area represent the distance travelled

by a uniformly accelerated body in the first second, the

second area will represent that described in the second

second ; and the sum of the two figures will be the space

described in the two seconds together, and so on.

Moreover, the whole area of the triangle will represent

the space travelled in the whole time, as measured by a

number of seconds equal to the number of segments of the

base. Thus, in the above figure, the whole area is the

space described in four seconds. (Read sect. 23 again.)

The vertical height of the figure being nothing at its left-

hand point, corresponds with the fact that the falling body

starts from rest—that is, is dropjped. But if the body is

thrown either down or up with an initial velocity, this velo-

city must be represented by a line drawn at the left-hand

point, either down or up, and the figure becomes as in

fig. 19 or as in fig. 20, where OA represents a velocity

downwards, and OA' a velocity upwards.

In the first case the velocity continually increases, until

in four seconds it becomes equal to PC. In the second case

it at first decreases, becoming zero at the point E two

seconds after starting, and then increases downwards until

it becomes P'C.

This second case exactly corresponds with that of a ball

thrown up in a vacuum against gravity. In both cases the
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whole area of the figure represents the whole space travelled.

In the second case we see that the area OA'E is the space

or height the ball rose through, and EPV the height

it afterwards fell through. The ball was at its highest

Fig. 19. Fig. 20.

point two seconds after being thrown up, having then no

velocity.

In both cases the ball must have been thrown from the

top of a tower or some other height, or it could not fall for

so much as four seconds without striking the ground. The

area OACP may represent the height of this tower, and OP
the time taken to fall, in the first case—that is, when the

ball was thrown downwards ; but in the second case, when

the ball was started upwards, the height of the tower is the

diff'erence of the areas EP'C and OA'E. OP' is the whole

time taken by the ball, first to rise a height above the tower

equal to the area OA'E, and then to fall from this height to

the ground. The Hues AC and A'C are necessarily parallel,

since the slope of each represents the rate of numerical gain

of velocity, 32 feet-per-second per second. (It might, how-

ever, be anything less than this if Atwood's or some other

* diluting ' machine were used.)
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Supposing it is 32, and that OE is two seconds, and EP' six

;

then, of course, the initial velocity OA' must be 64, and P'C must
be 192, feet per second. The area OA'E will be 64 units (its

lieight being 64, and its base 2), and therefore the height the ball

rises is 64 feet. The area EP'C is 576, and so the lieight of the

tower is 512 feet. In the diagrams, the time represented b}^ OP'
in the second diagram is greater than the time, OP, in the first,

bj'^ twice OE ; and the initial velocity OA is numerically equal

to OA' ; hence also the final velocity PC is equal to P'C, and
the area OACP represents 512 linear feet.

In each of these figures (neglecting dashes), OP is the line of

time; OABP represents the space described due to the initial

velocity alone ; and ABC the space described due to gravity.

Also BC represents the gain of velocity at ; and PC the actual

final velocity.

Refer to sect. 23 for some more statements concerning

these diagrams and practise drawing diagrams for all kinds

of cases of rectilinear motion. Thus, draw diagrams for

the motion of a railway train, which gets np speed, goes

uniformly, slackens, stops, and goes on again, several times,

and then comes back; for the motion of an india-rubber

ball thrown down to the ground and then bouncing; for

the motion of the bob of a very long pendulum ; for the

motion of a tilt hammer, &c. ; and remember in drawing

these diagrams that time never retrogrades, and hence

that no part of a diagram can be vertically under or over

another part, but the drawing must progress continually

forwards. Journej^s back are represented by areas below

the line of time instead of above. The curve for a bouncing

ball is practically a discontinuous set of parallel straight

lines, because at the moment of bounce the velocity is

suddenly reversed.

70. To actually experiment on the velocity acquired by

the falling weights in Atwood's machine, we must remember

the definition of variable velocity at any instant (given in

Chapter I., end of sect. 9)—namely, the distance the body

would go in the next second if at that instant the accelera-
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tion ceased. Now, the cause of the acceleration in this

machine is the force (P - Q)<7. If this force were suddenly-

removed—that is, if P and Q were suddenly made equal,

there would be no further acceleration, and the masses

would continue to move uniformly forward with the velo-

cities they had already acquired, until they were checked

either by striking something or by friction.

This sudden removal of the inequality in the two weights is

practically accomplished by making the extra Aveiglit by which

P exceeds Q (2 ounces in the experiment of sect. 67), a loose metal

bar too big to pass through a certain fixed ring placed in the path

of P. When P passes through this ring the bar is removed ; P
and Q become equal, and move a distance in the next second

which is numerically equal to the velocity they had acquired at

the instant the bar was taken off. For a fuller description of

Atwood's machine, and for many details of its actual construc-

tion, you may refer to Deschanel or Ganot.

71. Further Illustration of the Fundamental Equa-

tion.—This example of the two weights, one pulling

up the other, illustrates the statement in sect. 54 that the

second law of motion applies to other cases than those where

the motion is perfectly free and unresisted ; in fact, that it

is quite general, if we always consider the force F as the re-

sultant of all the forces acting on a body, and not simply

that force which happens to be most obviously apparent to us.

Thus, go back to the mass of 18 lb. resting on a table, and
pulled along by a weight of 6 lb. hanging over the edge by a

string (fig. 16, sect. 66). The acceleration we saw ou<;ht to be 8,

but suppose it was observed to be only 3, we should at once know
that all the forces had not been taken into account. The table,

perhaps, is rough, and retards the motion of the 18 lb. with a
force sufficient to reduce its acceleration to 3, and the force of

friction may from these data be calculated.

So again when a 56-lb. bucket is dragged up a well with a force

of 1920 poundals (the Aveight of 60,1b.); if this were the only

force acting, the acceleration of the bucket upward would be
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F.P.S. units—that is, it would gain this velocity per second ; but
if the experiment be tried, the velocity actually gained per

second will be found to be nothing like so much as this—it Avill

be only about 2f units. The reason obviously is that there is

another force left out of account, opposing the pull of the rope

—

namely, the pull of the earth, which is 56x32=1792 poundals;

and the resultant force is the difference of these two, or 128.

Hence the actual acceleration is

72. To take another very similar example, a cage of mass m, or

say 1000 lb., is lowered by a rope down a coal-pit; what is the

tension in tlie rope, at a time when the cage is gaining downward
velocity at the rate a, or say 24, feet a second every second ?

Well, the resultant force must equal the mass acceleration, but

this resultant force is the difference between the weight of the

cage, Tugy and the pull of the rope, T, hence

or T=m{g-a),

which is the tension required. Numerically, in the present

8000
illustration, the tension is 1000x8 poundals= -x^ lb. weight=J

of the normal weight of the cage. The tension in tlie rope is

always times the weight of the cage if a represents its

downward acceleration. If the cage is being accelerated upwards,

the tension in its rope is -— times its weight.

If the tension in the rope were equal to the weight of the cage,

the cage would necessarily have a constant velocity ; it might be

moving either up or down, but there could be no acceleration

(cf. sect. 133). Such a body is obeying the first law of motion ; it

is subject to no resultant or unbalanced force. A locomotive

dragging a train at constant speed on a straight line, even uphill,

is in the same case ; the forces on it are balanced ; and until the

rails curve, or the steam is shut oflF, or the brakes are put on, the

motion is perfectly uniform, the effective force is zero.

EXAMPLES—XI.

(1) What is the weight of 20 lb. at a place where a falling

body travels 4 feet in the first second ?
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(2) At what height above the earth's surface could such a

place be found ?

(3) A curling weight is thrown on ice with a velocity 50 ft. per

second. Supposing the force of friction to be ^th of the

weight, how soon will it stop ?

(4) In an Atwood's machine a 40-gramme Aveight on one side

is drawn up by a 50-graninie weight on the other, 2-18

metres in two seconds. What is the value of g in

centimetres-per-second per second ?

(5) In the preceding question find the tension in the cord in

grammes weight, and in dynes.

(6) When a 3-11). weight hanging over the edge of a smooth

table drags a 45-lb. mass along it, find the acceleration

and the tension in the string.

(7) Find also the acceleration if the coefficient of friction

between the table and the weight is "05.

(8) From a balloon which is ascending with a velocity of 80 feet

a second a stone is dropped, and seen to strike the ground

in 7 seconds. Find the height of the balloon at the moment
of letting go the stone.

(9) A cage is hauled up from the bottom of a mine with

an acceleration of 12 feet-per-second per second. After

rising 96 feet a stone is dropped from it. How soon will

the stone reach the bottom of the mine ?

(10) If a body fell at a certain place 50 feet in the 3d second of

its fall from rest, what would be the intensity of gravity

at that place ?

(11) A body weighing 30 lb. placed on a smooth horizontal table

has a string attached which runs parallel to the table,

passes over a smooth peg at the edge of the table, and has

a weight of 2 lb. hanging at its end. Find the tension in

the string, and the acceleration of the system.

(12) Two bodies of 17 and 15 lb. respectively are connected by a

string which passes over a smooth pulley. Find the

acceleration with which they will move, and the tension of

the string.

(13) Determine the acceleration of an Atwood's machine if the

masses at the ends of the thread are 40 and 50 grammes,
and the pulley is equivalent to an additional mass of 10

grammes.

(14) In an Atwood's machine the weights on either side are 5 and
4 lb. respectively, and the wheel is equivalent to an extra

O
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inertia of 3 lb. Find the distance descended by the heavier

weight in 3 seconds, and the velocity acquired. Find also

the tension in each portion of the light cord.

(15) If the weights are respectively 3^ and 4^ lb., and if the

motion is 12 feet in 3 seconds from rest without friction,

what inertia must the wheel be equivalent to ?

(16) A mass of 20 lb. is being dragged off a table by a 4-lb.

weight attached by a string which passes over a smooth
pulley at the edge of the table. The friction between the

weight and the table is ^V of that weight. Determine how
far the whole moves in 3 seconds from rest, and find the

tension in the string.

(17) If a stone is dropped out of an ascending or descending

balloon, how long a time will elapse before it is 16 feet

below the balloon ? If a stone and a light fleck of cotton-

wool are released simultaneously and are in one second

30 feet apart, how rapid is the vertical motion of the bal-

loon ? If the stone and the wool are observed to meet and
pass each other 3 seconds after their simultaneous release,

what is the balloon doing ?

Assume in each case that the wool remains practically stationary,

suspended in air, and that the balloon's motion, whatever it is, is

steady.

(18) An engine winds a three-ton cage up a coal-pit shaft at a
uniform pace of 11 yards a second. What is the tension in

the rope ?

(19) Instead of a uniform velocity, the above cage is wound up
with a uniform acceleration 6 feet-per-second per second.

What is the tension in the rope?

(20) A monkey clings to a light flexible rope passed over a large

fixed pulley without inertia or friction, and is balanced by
a precisely equal weight at the other end of the rope.

What happens if it now begins to climb the rope ?

73. That aspect of the second law of motion which says

that it makes no difference to the effect of a force on a body

whether that body was in motion or not (sect. 49) is well

illustrated by falling bodies (see sect. 22).

74. But the law is more strikingly illustrated when the

direction of the initial velocity of a falling body (now called

a projectile) is inclined at some angle to the force of gravity.
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The path of a projectile is shown in fig. 9, sect. 29 ; the

simplest case heing where the initial velocity is at right

angles to the force of gravity, or horizontal.

Thus a rifle-bullet, starting with an initial horizontal

velocity w, retains this velocity unaltered, if we neglect

friction against the air, and therefore in t seconds it travels

a horizontal distance ut ; but its vertical velocity, which at

first was zero, continually increases, and in t seconds is gt

;

the vertical space fallen through being ^gt\ or just the

same as if the gravity had acted upon the body at rest.

The whole circumstances of the motion of such a projectile

have therefore been already worked out in sect. 29 ; which

see, and read again.

If the rifle is fired horizontally from the top of a cHff of given

height, say 144 feet, it is easy to find how far the bullet will go
before striking level ground, its initial velocity being known.
Let the initial horizontal velocity be 1200 feet per second. We
must firet find t, the time the bullet takes to fall from the top of

the cliff to the ground, from the equation 144= 16^^ (for it

takes just the same time as if it had no horizontal velocity.

Law IL, sect. 49); this gives ^^=9, or ^=3. It goes therefore

three seconds before striking the ground, so evidently the

horizontal distance it travels is 3 x 1200=3600 feet.

And generally if 7i be the height of the clifi", and w the

initial horizontal velocity of the bullet, its range, or

horizontal distance, is ^u Jh.
75. The composition of these two motions, a uniform

horizontal velocity with a uniform vertical acceleration, is

w^ell illustrated by Morin's machine, for a description of

which see Deschanel or Ganot.

It consists of a long drum or cylinder, capable of rotating by
clockwork about a vertical axis. Down one side a weight can

fall between guides, and can, by means of a pencil, maik a
line on the drum as it falls. If the drum is stationary, the line

drawn is, of course, straight and vertical ; but if the dnim
rotates, it is spread out into a curve. This curve, wh^n un-



100 ELEMENTARY MECHANICS. [sect. 75.

wrapped from the drum, is precisely the same as that which is

described by a projectile shot out horizontally in vacuo with a

velocity equal to that imparted to the sur-

face of the drum by its clockwork.

The drum is usually covered with paper,

ruled into squares or oblongs, which can

be detached and unrolled. The line traced

on it may then present the appearance

shown in fig. 21. In successive seconds

the horizontal distances are as 1, 2, 3, 4,

5, the vertical as 1, 4, 9, 16, 25, and so

on. A curve with this property is called

a parabola. It is the path of a projectile

in a vacuum (compare sect. 29).

76. The simplest method of dealing

with projectiles is to resolve their initial

velocity of projection into a horizontal

and a vertical component, and to treat

them separately. The horizontal motion

is not subjected to any force except the

resistance of the air ; the vertical motion
Fig. 21.

jg subject to gravity as well. It is a

complicated matter to take the resistance of the air into account

;

especially since, if the projectile is spinning, the air resistance

directly alters its path as well as its speed. Suffice it to say that

the simple parabola could only be really attained in a vacuum,

and that the path of a simply thrown cricket-ball is an unsym-
metrical curve with its descending portion shorter and steeper

than its ascending portion. In the case of a golf-ball, the spinning

motion so complicates matters that it may travel straight for

some distance, and then actually rise upon the air resistance and
drop fairly dead. Or, if cut sideways, like a racquet-ball, it may
describe a curved path not by any means in one plane. We
shall limit ourselves to the case of a body shot from level ground
in a vacuum, with a certain initial velocity inclined at a certain

angle to the horizon. Given these data, it is easy, by constructing

a parallelogram, or otherwise, to determine its horizontal com-

ponent, which we will call w, and its vertical component, v.

Then the following statements should be proved, and examples

on them should be worked :

The time, T, taken for a projectile to reach its

highest point is given by .,v=gT,
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Its whole time of flight is 2T.

Its range, or horizontal distance reached, is 2mT=—

.

Its maximum elevation is 't=^r-.

Its vertical coniponent of velocity, at any instant

^ is v-gt.

Its horizontal component of velocity is always.... zt.

Its actual velocity at any instant, t, is \J{v? + {v-gt)%
Its actual velocitj'^ at any elevation, y, is \J{u^+ v'^-'2^y).

Its position at any instant is given by the two
components, horizontal x=ut, vertical y=
vt - ^gt^; from which, eliminating t, we get

its trajectory or path—namely, the curve

uhj= uvx-^gx'^, which is a parabola with

its axis vertical.

EXAMPLES—XII.
Projectiles in Vacuo.

(1) A cannon-ball is fired horizontally from a hill 900 feet high

on the coast. Find the time which elapses before it strikes

the sea, neglecting the resistance of the atmosphere.

(2) If the velocity of projection in the preceding question were

1320 feet per second, find the horizontal distance travelled.

(.3) A string, 2 feet long, able to sustain a weight of 104 lb.

without breaking, is attached to a stone weighing 4 lb.

and whirled in a vertical plane round a fixed centre 6 feet

above the ground till it breaks. What happens to the

stone ?

(4) A stone is dropped from the car of a balloon sailing along

horizontally at the rate of 40 feet a second, 100 feet above

the ground ; find when, where, and with what velocity the

stone will strike the ground.

(5) A bullet is fired with a velocity of Avhich the horizontal and

vertical components are 80 and 120 feet per second respec-

tively. Find its range and greatest height.

(6) Two bullets are shot horizontally over a lake from the top of

a tower 144 feet above the water ; one of them with a

velocity 300 feet per second, the other with 600. At
what distances from the tower, and how long after leaving

it, do the bullets strike the water ?
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(7) A stone is thrown obliquely with a velocity whose initial

vertical and horizontal components are 160 and 96 feet per

second respectively. Find its time of flight, and the

greatest height it attains.

(8) A cricket-ball is driven so that it reaches a height of 75 feet

and strikes the ground, supposed level, 300 feet away from

the starting-point. Determine the magnitude and direc-

tion of its initial velocity.

(9) A ball is thrown with a velocity the horizontal and vertical

components of which are 80 and 40 feet per second

respectively. Find its range, the greatest height reached

by it, and the time which elapses before it strikes the

ground again.

(10) The horizontal component velocity of a cannon-ball is 800

feet per second. What was its vertical component at the

moment of projection if it travelled 2000 yards range

before returning to the level of the muzzle.

(11) A cannon-ball is projected at an angle of 30° to the horizon

with a velocity of 2000 feet per second. Calculate its

range, and the greatest height to which it will attain.

(12) What velocity must be given to a golf-ball to enable it to

just clear the top of an obstacle 12 feet high and
100 yards distant, if the ball is struck upwards at an

angle of 45° ?

(13) Six bullets are simultaneously projected from the top of a 100-

feet tower over level ground ; one being sent horizontally,

another at 30°, another at 45° elevation, another at 60°

elevation, another at 30° depression, while the last is

dropped. Find when and where they each strike the

ground, and their maximum elevation ; the initial velocity

of each being the same—namely, 1200 feet per second.

Curvilinear Motion and Rotation.

77. "We have already illustrated one other case of the

curvilinear motion of a particle (sect. 59) produced by the

force of gravity, namely that of the moon, supposing it to

be a particle and to move in a circle (see sect. 61, and read

it again). The whole subject of the motion of the planets

in their orbits comes properly in here, but it is hardly

profitable to attempt it at the present stage*
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78. The subject of the rotation of a rigid body (sect. 54)

under the action of gravity may be illustrated by fixing a

point of a rigid body, and then letting gravity act on it.

We thus get a very important set of physical laws known
as those of the pendulum ; for a * pendulum ' is simply a

rigid body, with either a point or a line in it fixed some-

how relatively to the earth, and then the body displaced

from its position of equilibrium, and left to swing under the

action of gravity. The motion is periodic, and the rate of

oscillation depends only on the length of the pendulum (or

its virtual length, as will be explained directly) and the

intensity of gravity. The time of a complete swing to and

fro is obtained by multiplying twice the ratio of the cir-

cumference of a circle to its diameter by the square root

of the ratio of the length of the pendulum to the intensity

of gravity—that is, in symbols,

.=2.4

Assuming this (which will be practically proved in the next

section), one sees that, by measuring t and Z, the value of g
can be ascertained (<; = ^tTrH/t^) ; and this is the most

accurate means of determining g. A pendulum whose

length is obvious is called a simple pendulum ; in other

cases some pains must be bestowed on understanding and

measuring the virtual or equivalent 'length,' a matter

which is explained in sect. 80.

The practical use of a pendulum as a timekeeper depends

on the time of an oscillation being almost invariable—that

is, on its motion being on the average very uniform ; hence

it is very largely used as a timekeeper, all the rest of the

clock being, firstly, an apparatus to keep the pendulum

going notwithstanding friction, and, secondly, an apparatus

to record (like a gas-meter) how many times the pendulum

has oscillated.
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Pendulums.

79. Conical Pendulum and Governor Balls.—Let AB (fig. 22)

be a vertical axis of rotation, and P a massive ball at the end of

an arm AP, capable of rotation about this vertical axis and

pivoted at A ; then it is well known that AP will fly out from

the vertical more and more as it revolves faster and faster. Let

it be revolving with a constant angular velocity w, and let it

perform every revolution in T seconds, so that

27r= wT.

The centripetal force which nmst be acting on

P in the direction PN to keep it moving in the

y circle (sect. 60) is wiwV, where r is the radius

\ PN of the circle in which P moves ; and if the

\ rotation were to cease, this is the force which
-••"•••>F must be applied in the opposite direction PF,

J in order to keep the ball in its position without

mq letting it fall back to the axis AB.
Hence in the diagram (fig, 22), we may regard

'^' P as stationary and in equilibrium under the

action of three forces—the force F= ?nwV, its weight W=m^, and

the tension in its supporting arm. The triangle APN has its

sides parallel to these forces, and hence represents themj so,

calling the vertical distance AN, h, we have

wiwV : mg : : r : A ;

that is, the vertical distance of the governor ball below the pivot

A is inversely proportional to the square of the angular velocity

of rotation.

The time of one revolution is T=— =27r . /- ; and such an
0, yg

arrangement is sometimes used as a measurer of time, when it is

called a * conical pendulum,' because the ann AP traces out a

cone.

If the radius of the circle in which P moves is very small, the

height h is practically equal to the length of the pendulum, AP,
Avhich we will call I. Moreover, if you try swinging a weight at

the end of a string, you will find that the time of a complete

small motion is the same whether the pendulum simply oscillates

in a nearly straight line or whether it revolves in a horizontal

circle or in any other elliptical curve ; that is, the time of an



CHAP, v.] PENDULUMS. 105

oscillation (to and fro) of a simple pendulum equals the time of

rotation of a conical one, provided the motion of both is small

;

and each period is very approximately

^S
By a simple pendulum is meant one about whose length there

can be no ambiguity. It is a heavy particle, swinging at the end
of a perfectly light cord attached to a fixed point.

EXAMPLES—XIII.

(1) Find the time of beat (half an oscillation is called a beat) of a
simple pendulum 39 inches long at the equator, where
<7=32 09.

(2) Where the length of a pendulum which beats seconds (called

the seconds pendulum) is 39 inches, find the value of g.

(3) If gravity is -^^j^ greater at the north pole than at the equator,

how many seconds a day will a seconds pendulum at the

north pole lose when taken to the equator ?

(4) How many seconds a day will a clock lose whose pendulum
(intended to beat seconds) is a metre long, at a place where
the intensity of gravity is 981 dynes per gramme ? Find

the length of the seconds pendulum at the same place.

(5) If a simple pendulum 39 inches long beats seconds, what
should be the length of one which shall beat 40 times in

oile minute ?

(6) Calculate the number of beats per day made by a simple

pendulum 40 inchas long at a place where the length of

the seconds pendulum is 39 inches.

(7) If a pendulum 39 inches long is gaining a minute a day, how
much should it be lengthened to keep correct time?

(8) What is the length of the seconds pendulum at the latitude of

Greenwich ? (See sect. 64.

)

(9) What is the value of 5^ at a place where a simple pendulum

2/^ inches long makes two complete oscillations a second ?

(10) Show that the time of beat (in seconds) of a simple pendu-

lum is, approximately, 0"16\/(lG"gt/h in inches). Find the

value of g for which this formula is accurate.

(11) Show that, if ^= 981 dynes per gramme, the time of a beat

(in seconds) = r00303\/(^ength in metres). Find the

number of beats per minute of pendulums whose lengths

are respectively 9 cm., 25 cm., and 16 metres.
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(12) Find the number of beats per minute of a pendulum 3 feet

long, using the formula of Ex. (10).

(13) If a weight be attached to a string 4 feet long, and is then

caused to describe a horizontal circle, so that the string is

inclined at 60" to the vertical, find its angular velocity, its

actual velocity, and the time of one revolution.

80. Compound Pendulum.—The time of oscillation of a com-
pound pendulum, that is, of a rigid body of any
size pivoted on an axis through O, and swinging

slightly under gravity, may now be calculated.

Let G be the centre of gravity of the mass,

and call the distance OG, a ; the small angle of

displacement from the vertical, NOG, call 6 ;

and the distance NG, call x ; the latter is prac-

tically equal to ad^ the arc of a circle with

centre O.

Then, if m be the mass of the whole body,

Fig. 23. the force restoring the body to its position of

equilibrium is tng acting at G, so that its moment
about O is mgx ; and the angular acceleration produced by this

is (see sect. 56)

_mgx_ 'nigad
,a Y~~T~

where I is the moment of inertia of the body about the point O.

For the particular case of a simple pendulum, when the whole

mass is concentrated into a particle at G, and when a= l and

\=mP, this equation becomes

"*" mp~ r
Now we can choose a simple pendulum of such length that its

angular acceleration at every instant, and therefore its whole

motion, is the same as for the compound pendulum. Let L be the

length of such an equivalent simple pendulum, then the equation

go

I

is satisfied ; and the length of the equivalent simple pendulum

(sometimes called the ' length ' of the compound pendulum itself)

is
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But the time of'a small oscillation of this simple pendulum is

'•V?9
'

therefore the time of a small oscillation of tlie compound pen-

dulum is

mga

where I stands, as already stated, for its moment of inertia Zmr^
about the centre of suspension O, and a is the distance between
this point and its centre of gravity.

The above equation l=mdL gives a simple means of experi-

mentally determining the moment of inertia of any body about
any axis. Hang it up by this axis and measure a, the distance

from it to the centre of gravity; then set it swinging slightly, and
observe the length of a simple pendulum which keeps time with

it : multiply the product of these two lengths by the mass of the

body (in lbs. or grammes), and you have its moment of inertia

under those circumstances.

81. Centre of Oscillation or Percussion.—A point 0' in a

swinging body, situated in OG produced, at a distance L (the

length of the equivalent simple pendulum under the circum-

stances) from the centre of suspension O, is called the centre

of oscillation, because the body oscillates as if a portion of its

mass were concentrated there, the rest of it being at 0, in such

a way that G remains the centre of gravity ; this may be verified

as regards mere time of swing by the experiment of swinging the

body and a simple pendulum or plumb-bob together, and observ-

ing that, when of the proper length, the motions of the simple

and of the compound pendulums are identical. It may be shown
that the body will swing in just the same period if suspended at

this point 0' as if it were suspended at O. This depends upon
the fact that if I be its moment of inertia about a point 0, at a

distance a from G, and I' its moment of inertia about a point O',

at a distance a', such that « + «' = L, then I :«=!':«'; or the

length L is the same for both points.

A line through O', perpendicular to OG, and to the axis of

suspension, is sometimes called the ' line of percussion ' or the

centre of percussion, because this is the place where the body
strikes things best without any jar on its support. A cricket-bat

drives the ball best if the ball strikes it at a point on this line,

and it does not then jar the hand.
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Fig. 23a.

[sect. 81.

To find all the points about which a rigid body (say for in-

stance a flat plate or board pierced by a pin which supports it,

fig. 23a) will swing in the same time as about any point O,

determine experimentally the length

of the equivalent simple pendulum,

say by adjusting a plumb-bob to swing
in the same time as the plate, and
measuring its length ; then mark this

length upon the plate, as 00', and
draw a couple of circles with centre 6,
through and through O' respectively;

the plate will swing in the same time

if pivoted at any idoint on either of
these circles. If pivoted at an axis

between the circles, it will swing more
quickly; if pivoted inside the smaller

circle or outside the bigger circle, it will swing more slowly.

The experiment should be tried ; and if some care is bestowed

upon it, and a series of pairs of such circles recorded, the lesult

will be instructive to a student. The product of the radii

of every such pair of circles will turn out the same ; and,

when nmltiplied by the mass of the body, it will represent the

principal moment of inertia of the body—namely, that about the

centre G.

The circumstances of a swinging body pivoted on a line or

axis at any point A may be stated

in terms of figure 24, M'here G is the

centre of gravity and AKB is a right

angle (or semicircle).

The moment of inertia of the body,

about an axis parallel to the pivot

but drawn through G, is the mass

multiplied by GK^. The moment of

inertia about the pivot A is the mass

multiplied by AK^^ ^nd that about B
is the mass multiplied by BK^.

A is the centre of suspension, B is the

corresponding centre of oscillation, and

a line through B perpendicular to AB
is the line in M'hich a blow must act to

spin the body automatically about A without any force from

the pivot.

Fig. 24.
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The length of the equivalent simple pendulum is AB, and the

axes A and B are interchangeable.

Expressing these facts algebraically :

K is called the swing-radius of the body about the axis A,

and is such that I^ =niB? while I^ =mk\

The whole dynamic and static behaviour of the body is

like that of two heavy particles rigidly connected, the one

at A and the other at B ; the mass of the one at A being

m. and the mass of the one at B beincf -m, so that
a + h ^ a + b '

their centre of gravity is the same as that of the body.

82. Ballistic Pendulum.—A heavy block of wood hung

up as a pendulum by two strings, so that it can swing

without any rotation, is sometimes used to measure the

impulse (mv) of a blow, such as that of a rifle-bullet fired

into the wood. The block will be displaced and will rise a

vertical height, h, which must be observed (either directly

or by calculation from the angle of swing) ; and the velocity

V imparted to it is calculated as J(2gh). The velocity v

with which the rifle-bullet struck the wood can then be

found, if the mass m' of the block is known, from the

equations,

and ?/= Ji^gh).

EXAMPLES—XIV.

(1) A uniform rod 3 feet long is swung as a pendulum about one

end. Find the length of the equivalent simple pendulum.

(2) Find the point about which the above rod should swing so

that the time of oscillation may be a minimum, and find

that minimum time.

In this case the centres of suspension and oscillation must be

equidistant firom the centre of the rod—see end of sect. 81.
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(3) A uniformly thick rigid door on smooth hinges is shot at

with a bullet. Find where and how the bullet must strike

the door so as to cause no jar on the hinge.

(4) A one-ounce bullet fired horizontally into a 20-lb. block of

Avood suspended by two strings displaces it so as to rise 3

inches. Find the speed of the bullet.

(5) A 1-foot sphere hanging by a 6-inch string oscillates like a
pendulum. Find its time of swing and the length of the

equivalent simple pendulum.

(6) Find the period of a rectangular thin plate 4 feet x 3 feet

swinging in its own plane about one corner.

(7) Find where else it may be suspended to swing equally fast,

and find how it must be hung to swing fastest.

(8) A triangular plate of height h and mass w sAvings about its

base. Find the length and mass of the equivalent simple

pendulum.

(9) The same plate swings about an axis parallel to its base,

bisecting the sides. Find the length and mass of the

equivalent simple pendulum.

(10) ShoAv that a triangular plate has the same moment of inertia

about any axis as a system of 3 equal particles (each = ^
of the mass of the plate), situate at the middle points of

its sides, and find the time of swing of a triangular plate,

with sides each 4 feet long, swinging in its own plane

about a vertex.

(11) Find the mass of the equivalent simple pendulum in Ex. (1),

if the mass of the rod is 4 lb.

(12) A chair weighing 20 lb. is hung by a point 2^ feet from its

centre of gravity, and is found to oscillate in precisely the

same way as a simple pendulum 3 feet long. Find the

moment of inertia of the chair about the point of suspen-

sion.

(13) Find the time the chair would take to complete a small

oscillation.

(14) A one-ounce rifle bullet is fired into a suspended block of

wood weighing 30 lb. If the blow causes the wood to rise

a vertical height of \\ inches without any rotation, find

the velocity of the bullet just before it struck the wood.
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CHAPTER YI.

WORK AND ENERGY.

83. The present chapter is to indicate a method of

treating the effects of force on matter in a perfectly general

manner; all consideration of how the force acts, or what

it acts on, being regarded as accidental and secondary.

Whether the body acted on is a particle, or a rigid solid,

or an elastic solid, or a liquid, or a gas, matters nothing;

and whether the effect produced is motion, or strain, or

both, or neither, also matters nothing. It is to treat of

the effects of force in general on any body whatever.

84. Now, in order that an agent exerting a force may
produce any effect on the body to which it is applied, it is

necessary that the body shall yield somewhat—that is, that

the point of application of the force shall move in the

direction of the force ; and whenever this happens—when-

ever the point of application of the force does move along

its line of action

—

some effect is necessarily produced. Thus

either the body is set rolling, or swinging, or moving in

some way, or its motion is checked, or it is squeezed into

smaller compass, or bent out of shape, or it is lifted up

against gravity, or it is merely shifted along against friction,

or it is warmed or electrified ; no matter what the effect is,

some effect is always produced, and the force, or more pro-

perly the agent exerting the force, is said to have done loorh.

Moreover, a body upon which work has been done is found

to have an increased power of doing work itself—that is,

of producing physical changes in other bodies; and it is

therefore said to possess more energy than before. This
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increase of energy is indeed the most essential part of the

effect produced in a body by an act of work.

85. Energy therefore is that part of the effect produced

when work is done upon matter which confers upon the

body possessing it an increased power of doing work.

86. The work done in any case is proportional both to

the magnitude of the force and to the distance through

which its point of application moves in the direction of the

force. Unless the point of application moves, no work is

done and no energy is produced, however gi'eat the force

may be ; for instance, a pillar supporting a portico is doing

no work, though it is manifestly exerting great force.

Wo7% then, is the act of j^^'odiicing an effect in bodies

hy mean^ of a force lohose 2^oint of ajDplication moves

through a distance in its oion line of action, and it is

measured hy the product of the force into the distance* or

Such a force is conveniently called an * effort ' if the motion is

in its own direction, and a ' resistance ' if the motion is against

it. (If the force and motion are inclined to each other, only one

component of the force is the effective effort.

)

The work is reckoned positive, and is called simply 'work,'

when the body acted on is moved in the same sense as the

force ; if, however, by any means, it be caused to move in

opposition to the force exerted by an agent, the work done by

that agent must be reckoned negative—that is, work is done

upon it.

Thus if a force of five poundals acts through a distance of

six feet in its own direction, it does thirty times the work

which would be done by one poundal acting through one

foot. This latter work may be called a foot-poundal, and

represents the F.P.S. absolute unit of work.

British engineers use as their practical unit the work

* The moment ofa force was also defined as a force multiplied by a distance, but

by a distance measured at right angles to the force. It is therefore an entirely

different thing from work.
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done by an effort equal to the weight of a pound acting

vertically through a foot, and they call this a foot-pound.

It is of course equal to 32 foot-poundals apjDroximately.

French engineers use the kilogrammetre as their practical

unit of work, being equivalent to the weight of a kilogramme

raised a metre. It is equal to 98,100,000 absolute C.G.S.

units.

The C.G.S. unit of work is called an erg (from ^pyov,

work), and is the work done by a dyne effort acting through

a centimetre. There are 421,390 ergs in one foot-poundal.

Since the erg is so small a unit, it has recently become

customary to employ ten million ergs as a more convenient

unit of energy for some purposes, and to call it a Joide.

It is approximately |- of a foot-lb. The multiplicity of

units is admittedly troublesome to present-day students,

but it is one of the penalties they pay for living in an age

of transition and activity.

The algebraic expression or * dimensions ' of an absolute

.. - , . pound (foot)2 gramme {cm.)^ , • x- numtofworkis ^
^^^^^^^/

or ^_^_y_L; bemg essentially

a momentum multiplied by a velocity, or, what is the same
thing, a mass nmltiplied by an acceleration and a length.

The gravitational unit, or foot-pound, is a iveight multiplied

by a vertical height, and is frequently convenient ; though it

is liable to be hastily misinterpreted as an incomplete specifica-

tion, the 'dimensions' of acceleration necessarily involved in it

2 ) being ignored, instead of being only taken as stippressed
sec. /

or 'understood.'

87. The effects produced in material bodies when work

is done upon them are various, and constitute the different

forms of energy. The full discussion of the subject of

energy belongs to the science of physics, so we can here

only just roughly enumerate its principal forms.

(1) Motion (whether translation or rotation).
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(2) Strain (whether extension, compression, or dis-

tortion).

(3) Vibration (including the particular kinds called

Sound). (4) Heat (sensible and latent).

(5) Kadiation (including the particular kinds which are

able to affect the eye, and which are therefore

called Light).

(6) Electrification. (7) Electricity in motion. (8)

Magnetisation.

(9) Chemical separation. (10) Gravitative separation.

To these we ought perhaps to add vital energy, only

that it may be held to be included under head 9. It is

quite possible that many of these may reduce to simpler

forms; in fact, aU but Nos. 9 and 10 are already pretty

well known to be special cases of Nos. 1 and 2 (cf. sect. 5).

It is usual to consider those forms of energy which are

more directly connected with large and visible masses of

matter as more particularly the province of mechanics ; and

we shall here discuss only these more mechanical forms of

energy, IsTos. 1, 2, and 10.

The essential nature of No. 10 is at present unknown
(see Introduction, sect. 3), but for most practical pur-

poses it comes under the class indicated by No. 2.

88. Now the question arise«^—When work is done and

energy produced, is it created out of nothing, or is it only

manufactured from previously existing materials? The
latter is the truth, for it has been found, as the result of

innumerable experiments on the subject of 'perpetual

motion' and others, that it is as impossible to create

energy as it is to create matter, and that whenever energy

appears as the result of work, it is always at the expense

of some other form of energy which was previously existing.

This fact is popularly expressed by saying that ' perpetual

motion is impossible '—a statement which requires inter-

pretation, because if there is one thing more universal than
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another it is perpetual motion (see sect. 4). The statement,

however, is understood to be an abbreviation for the follow-

ing : It is impossible for us to construct any machine which

shall move and do work (and therefore generate energy)

of itself without consuming at least an equal quantity of

pre-existing energy.

89. All this indeed, in a much more complete and accurate

form—^more complete, because it involves the non-destruc-

tion of energy as well as its non-creation—follows from

Newton's third law of motion, sect. 52, provided we assume

that energy is to be measured by work done—that is to say,

that when a body does work, it loses a precisely corre-

sponding quantity of energy, and that when a body- has

work done upon it, it gains an amount of energy equal

to that work. For the third law tells us, that whenever

force is exerted, and therefore {a fortiori) whenever work

is done, two bodies are always concerned—there is the body

which acts, and the body which is acted upon or re-acts

—

and these two bodies exert equal and opposite forces ; hence

whatever quantity of work one body does, the other has

done upon it ; ov the positive and negative works are equal

(see sect. 86, small print).

The * agent,' or body which does the positive work, loses

a certain quantity of energy. The body which has the work

done upon it gains the same amount. Hence, on the whole

—that is, taking both bodies into account—no energy is

lost, and, algebraically speaking, no work is done. The

energy is merely transferred^ and the act of transfer involves

two equal opposite works.

The law that, on the whole, no energy is ever created

or destroyed by any forces which we know of and have

experimented upon, is called the law of the * Conservation

of Energy.*

90. Just in the same way then that a force is the partial

aspect of a stress, so work is the partial aspect of a some-
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thing which consists of action and re-action, in the sense of

work and anti-work, but which neither has, nor as yet

perhaps needs, any name ; and whenever we speak of ' work

done,' it will be by attending to the action of one body on

another, and neglecting the reaction of that other on the

one. To summarise then : Work creates energy, anti-work

destroys it, so both together simply transfer it. If it were

possible to have a force without its anti-force, it would also

be possible to get work done without its anti-work, but as a

fact of experience it is not possible.

91. The fact that work is done whenever energy is trans-

ferred, taken in connection with the experience that energy

often manifests a tendency to transfer itself from one body

to another, and thereby to do work, has caused energy to be

defined as the poiver of doing ivorh. Now certainly a body

possessing energy thereby possesses the power of doing an

equivalent amount of work, provided the energy is of such

a sort that it can be transferred to some other body ; and

in this sense energy and poiver of doing ivork are equivalent,

though it is more precise to say that the possession of energy

confers upon a body the power of doing work, than to say

that energy is the power of doing work. It is quite pos-

sible, however, for a body to possess energy and yet have

practically no power of doing work, for energy is not always

available.

Thus, a stone lying on the ground may be said to possess an
amount of energy corresponding to its fall to the centre of the

earth, but this energy confers on it no power of doing work, for

it would be impossible to let it fall without first expending a

great deal more energy in digging a hole.

Again, energy is indestructihle, and a given quantity may be

transferred from one body to another, from A to B, from B to C,

from C to D, and so on and back again, each time conferring upon

its possessor a power of doing work, which work is done at eacli

transfer by the body losing it. Hence, if it were correct to speak

of work as being done by the energy, instead of by the body
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possessing the energy, the working power of a given quantity of

energy might be unlimited, and at any rate Avould he wholly in-

commensurate with the quantity of energy. The power of doing

work, in fact, does not depend solely on the absolute quantity of

energy in a body or system, but on its capability of being trans-

ferred to other bodies or systems. We seldom have to deal with

the total or absolute energy in a body, but only with its

variations.

92. There are, however, practical difficulties in effecting such a

series of transfers of energy without loss of working power, for

though the quantity is unalterable, yet the qnality has a tendency

to deteriorate.

These practical difficulties are very similar to those which yon

would experience if you attempted to transfer a given quantity of

water down a series of vessels. For you might spill some, some
would evaporate, some of the vessels might leak, and all would
remain wet. The quantity of water would be unchanged—it

would be all there—but some of it would be unavailable. It

would be—not destroyed—only useless. Just so with energy,

whenever it is transferred from one body to another—that is,

whenever work is done, some of it is pretty sure to pass into a
less available and more useless form. Its quantity is not altered,

but its availability is less.

This tendency of energy to become less available is called the

law of the Dissipation or Degradation of Energy. It may be

expressed thus : When energy is transferred from one body to

another, it is also always transformed from one of its forms to

another, and some portion of the new form is pretty sure to be

lower in the scale of energy than the original form ; because of

friction, imperfect elasticity, and so on. It is, in fact, impossible

by any known process to raise energy in the scale of availability

on the whole. Any given quantity, indeed, may be raised, but

some other greater quantity will in the operation be degraded.

The average is usually lower, and cannot be higher.

The energy of the earth in its orbit is not available to us. The
energy of a flying molecule is almost unavailable, because we
have as yet no means of dealing with molecules singly ; if we
could see and handle them, their motion would be as high a form
of energy to us as the motion of other visible masses. Hence the

distinction betw^een high and low forms of energy is a purely

relative one.

Energy falls in availability usually by becoming molecular—
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that is, by being transferred from visible masses to their ultimate

molecules. This transfer is effected by friction and viscosity j

hence friction and viscosity are the chief practical causes of the

dissipation of energy which is perpetually going on. No known
means exist whereby energy is automatically raised in the scale

of availability, but it has been surmised that perhaps this power

appertains to certain forms of life.

93. Energy and work are not to be confounded together
;

and all such phrases as * accumulated work/ '.conservation

of work,' * work consumed,' &c., should be eschewed, or else

regarded as permissible colloquial inaccuracies. Energy is

not work, but work can be got out of it if the proper condition

be supplied. Energy might therefore be called possible

work. For consider the two fundamental forms of energy :

(1) The free motion of masses of matter relatively to

one another; and (2) The separation of masses of matter

from one another against stress.

In the first case, the body possessing the energy is moving

through a distance, but is not exerting any force. Supply a

resistance, and work is immediately done. In the second

case, the body possessing the energy is exerting force or

pressure, but it is stationary. Allow it to move, and work

is immediately done.

The tioo fundamental forms of energyy therefore^ corre-

spond to the two factors in the prodiict called work—namely

^

F and s. The first foi^m coiTesponds to s ; there is motion

through space, but no force. The second corresponds to F

;

there is force, hut no motion.

The first is called Kinetic Energy, or the energy of

motion ; the second might be called Dsmamic Energy, or

the energy of force (properly stress) ; or it might be called

Static Energy, to distinguish it from Kinetic. As a matter

of fact, however, it is generally called Potential Energy,

which is not a bad name so long as it is not misunderstood
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to mean possible energy—a phrase without sense. Neither

is Kinetic ever to be called Actual Energy. All energy is

actual and real—potential just as much as kinetic ; and both

represent possible work—that is, work that will become

actual as soon as the other factor is supplied. * Possible

work* merely means possible transfer of energy; just

as money and goods, which might be called forms of

mercantile energy, represent a possible transfer or ex-

change.

94. Whenever work is done, both factors, and therefore

both kinetic and potential energy, must be present ; and the

energy is always passing from one of these forms into the

other while the work is being done. For if the motion is

ivith the force, the speed must increase, and if it is against

the force, it must decrease ; while in the first case the

distance through which the force can act, or the range of

the force, is decreasing, in the second increasing. The

energy of a vibrating body is continually alternating from

one form to the other.

Enough has now been said to show that the energy

method of treating forces and their effects is a very general

one, and extends to the whole of Physics. But the branch

of the subject concerning which we can here enter into any

detail will be a very small one, and will only extend to

giving some examples of the transformation of energy from

form 1, that of motion, to some other form, especially that

of gravitative separation, and back again.

Measure of Kinetic Energy.

95. First consider how to measure the energy of motion

in the case of simple translation of a particle ; remembering

that its energy (more strictly its gain of energy, over and

above any other forms of energy, such as heat, &c., whicli

it may retain constant all the time) is defined as equal to

the work done by the force which caused the motion.
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]N'ow when a force F is applied to a mass m, the accelera-

tion is

a = ~ (Chapter lY.),

and the velocity generated when a body moves, from rest, a

distance s, with the acceleration a, is given by

n^ = 2as (Chapter II.), that is, v'^ = 2~s

;

an equation readily written in the form

But Fs equals the work done by the agency of the force

while it acts through the distance s ; and as energy is

measured by the work done in its production, it follows that

the energy of a body of mass m moving with velocity v, is

because v is the velocity generated in the body during the

performance of the amount of work, Ys.

This expression, ^mv'^, is a most important one, and it is

called the kinetic energy of a particle due to its motion

relatively to the body which is supposed to be at rest

—

usually, of course, the earth. It equals the work that has

been done upon the body in setting it in motion, and also

the amount of work which it must do in order to stop

itself—that is, to transfer its energy to some other body,

eitlier to the earth or to anything else which happens to

come in its way.

When one suspended elastic ball impinges directly on an equal

one at rest, the first stops dead, and the other receives the whole

motion ; the energy has been here obviously transferred. The
transference takes place just as really, though not so obviously,

in every case where a body comes to rest or starts moving.

The unit of energy is the equivalent of the unit of work,

and usually goes by the same name (sect. 86). For instance,

the British unit of energy would be a foot-poundal, being

the energy produced, or, rather, transferred, by the action of
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unit force through unit distance ; the C.G.S. unit of energy

would be a dyne-centimetre, or one erg.

96. If a body, instead of being at rest when the force

acted on it, had been moving with velocity Vq, it would have

already possessed the energy ^mv^ ; and so the gain of

kinetic energy, equivalent to the work done, would have

been

Ys = hni\^ - ^viVq^
;

where v^ represents the final velocity possessed after the

force has acted for a distance s. This immediately follows

from the old equation v^ - Vq^ = 2as, if we write Y/m for a,

and leave the term Fs by itself on one side of the equation.

ILLUSTRATIONS.

97. A truck of mass 2000 lb. running along a level line at the

rate of 20 feet a second, has an amount of energj^ equal to

/OO ft, \2

i X 2000 lb. X (t^LJ± \ =400,000 foot-poundals,

or 12,500 foot-pounds. If it were required to stop it in a distance

of 500 feet, we should have to apply a brake exerting 800 poundals,

equivalent to a retarding load of 25 pounds-weight ; for the work
done by the truck against this force in the given distance would

be 25 pounds-weight X 500 feet, or 12,500 foot-pounds, which is

precisely the energy of the truck required to be destroyed, or

rather to be transferred to something else.

One can always find the force necessary in any such case by
dividing the work required by the distance given ; for, of course,

s
'

Again, to propel a one-ounce rifle-bullet (Atli lb.) with a

velocity of 1200 feet per second, will require work to be done
upon it equal to the energy generated—namely,

, 1 pound /1200ft.\2 ^^,^^, ^ ,,
i X ^ — X ( 1 = 45,000 foot-poundals,

or about 1400 foot-lb., or f of a foot-ton. (This energy, and a
good deal more, was contained in the charge of powder in the form
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of chemical separation, No. 8 (sect. 87) ; a quantity is always wasted
in the useless noise and flash attending the explosion, Nos. 3, 4,

and 5.) This work must have been done by the powder while

the bullet was travelling from the breech to the muzzle of the

gun, a length of say four feet ; hence the average force exerted

by the powder must have been 45,000 foot-poundals divided by
4 feet, or 11,250 poundals, equivalent to about 3 cwt.

Suppose now in passing through the air it loses 400 of its

velocity by friction, so that it reaches the target with the velocity

of only 800 feet per second, then the energy of the blow will be

i X ^3j X (800)2, or 20,000 units ;

while that which has been * lost ' by friction (that is, transferred,

some to the air and some to the molecules of the bullet, but in

any case debased into the form of heat) is

45,000-20,000, or 25,000 F.P.S. units of energy

;

and this must be the number of units of woik which have been

done by the flying bullet against the resistance of the air. Hence
if its range, or distance travelled, were 1500 feet, the average

resistance exerted by the air must have been 25,000 divided by
1500, or 16| units of foyce, equivalent to the weight of about

half a pound.

Finally, let a target stop the bullet dead in the space of | inch

(^\th of a foot), then, since the whole (negative) work it has to do

is numerically equal to the energy of the blow—namely, 20,000

units—it follows that the average force of tlie blow on the target

is 20,000 divided by -^-^^ that is, 960,000 units of force, or about

13^ tons weight, a much greater force than even the powder
exerted ; and this is apparent in the results, for the bullet is

flattened out by the target, Avhile the force of the powder had but

a slight eff*ect upon its shape.

Very likely an iron target would not yield so much as \ inch ;

if it only yielded half as much, the force of the blow aaouUI be

doubled. Whether the bullet bounces off* or not, matters nothing

;

it must have been stopped before its motion can be revei-sed. The
reverse motion would not alter the force required to stop the

bullet, but it would increase its impulse (sect. 48) by lengthening

the time during which the force was exerted against the target.

Thus, if the bullet bounced off with its original speed, the time

and therefore the impulse would be double what they would
have been if it had stopped dead like dough.
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98. Notice the distinction between the energy of a blow,

the impulse of a blow, and the force of a blow.

The energy equals 'Fs, or ^mv^.

The impulse equals F^, or mv.

The average force equals F, or •^—;— , or — (cf. sect. 45).

It will be a good exercise to find from this last equation, in all

the above cases, the time taken to do the work—that is, to

transfer the energy. For instance, find the time of flight of the

bullet, and also how long it took to travel the length of the gun,

and so on. It is worth noticing that work

= force X distance moved
=impulse x average velocity

=momentum generated x average velocity

= (rnvj - mvo) X ^{v^

+

Vq)

These two expressions for an average force, ~j- and

, are worth comparing. The first we know is expressed
s

in words by saying that force is rate of change of momen-

tum ; rate here having a reference to time, and meaning the

increase per second of time elapsed. Similarly the second

may be expressed by saying that force is rate of change of

energy, only rate here has a reference to distance, and

means the increase per linear foot of distance travelled.

The whole subject of the rates of variation of things with

respect to dijBferent variables, considered as a branch of

pure mathematics, is called the differential calculus, a science

the foundation of which was laid by Newton and developed

by Leibnitz for the purpose of treating questions concerning

velocity, acceleration, and the like.

Measure of Potential or Dsmamic Energy.

99. Now let us consider how to measure potential energy,

or the energy of stress, especially in the form of gravitative
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Stress exerted between the earth and a raised weiglit. This

is a very simple matter, for, supposing a stone is at a

height hj we have a constant force mg exerted on the body,

and a distance h through which it can act, so the work it

can do while the stone falls is simply mgh ; wherefore

mgh measures the energy due to the relative position of

the earth and stone, and the numerical value of this

expression is often called ' the potential energy of the

raised weight.' It equals the number of units of work that

have been done upon the weight in raising it, and also the

amount of work it must do whenever it drops. The energy

is often called that of the weight, but it really belongs to

whatever agent is exerting the stress j^ressing the weight

and earth together (see Introduction) ; and as the nature of

this agent is unknown, it is better not to speak of the

potential energy of anything.

100. The gravitative energy of a pound of matter one foot

high is called a foot-pound, because it is the effect Avhich has

been produced by a force of one pound-weight acting through

a foot ; it equals thirty-two F.P.S. units of energy or foot-

poundals, because the weight of a pound equals thirty-two

F.P.S. units of force or poundals. The unit of work or

energy about corresponds to the raising a half-ounce weight

one foot high (cf. sect. 46), (half an ounce being the -^-^^ of

a pound).

* Thirty-two,' of course, stands for the value of g, whatever it

may happen to be : it is different in different latitudes, and not

necessarily' exactly thirty-two anywhere. In Fiench measure the

numerical value of g is 981 (sect. 65) ; so the gravitative energy

of a gramme of matter one centimetre high (called a gramme-
centimetre) is 981 ergs, because the weight of a gramme is 981

dynes.

101. To keep a raised weight still, it must be supported,

and it will exert pressure on its support, because it is being

pressed by something towards the earth. This something
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is not, however, yet doing work. Remove the support, and

immediately the weight begins to move ; hence now work

is done, and the potential energy of the agent which exerts

the pressure is transformed gradually into kinetic energy,

and transferred gradually to the moving mass—to the weight

itself, if falling freely—to whatever strings and wheelwork

it is connected with, if it is constrained to fall slowly like a

clock weight. When half-way down, the energy is half

kinetic and half potential ; when f down, it is | kinetic and

J-
potential, and so on.

For the original energy was mgh ; but when half-way down,
the potential energy is 7iig^h, or only half what it was, so the

kinetic must be equal to the other half. When | down, the

potential energy is only mg^h, and the remainder is kinetic.

When within an ace of the ground there is no potential

energy, and therefore the body has kinetic energy ^7nv\

equal to the original energy, 7ngh.

This equation,

^mv^ = jugh,

gives us the velocity acquired by a body freely falling a

height //, as V = J{^gh) ; a fact we Imew perfectly well

before, only we formerly arrived at it in a difierent way

(see sects. 21 and 65).

The instant the falling body touches the ground compression

occurs, and so work is done again, though this time very rapidly

;

and the energj'^ is again transformed, and transferred, some to the

molecules of the earth and ball as heat, some to the air in the

form we call sound ; while the rest, after having existed for an

instant as strain or stress energy between the earth and ball, re-

appears as kinetic energy in the bouncing ball. No ball, however,

is perfectly elastic, so after a few bounces it will come to rest,

and will possess neither kinetic nor potential energy relatively to

the earth (it will be a little hotter than it was—that is all). To
raise it again, something else must do work upon it.

102. As another illustration, consider a body sliding down
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a rough inclined plane. Let a mass m slide from A to B
(fig. 25), a length Z, against a force of friction/, the vertical

descent being h. Then the work done against friction is

// ; the work done upon the mass is ^mv^ if it reaches B
with the velocity v ; and all this work has been done by
gravity. But the work done by gravity is the force mg
multiplied by the distance moved through in its own
{vertical) direction—namely, h ; so we have the equation,

fl + Jmv^ = mgky

from which v can be readily

found. The term fl represents

the amount of energy which is

transformed (degraded) into heat

—

that is, it is the 'mechanical equiv-

Pjg 25.
alent' of the heat generated.

If /= 0, that is, if the plane be

smooth, the velocity v acquired in descending the vertical

height h down the plane is the same as that found for a

freely falling body in the last section, and it has no connec-

tion with the slope of the plane ; showing that the path of

a falling body has no influence on the velocity acquired by

it, provided everything be smooth. (The time of descent is

greatly influenced by the path.)

103. The simplicity of gravitation examples is due to the

fact that the force acting (the weight of the raised body) is

constant and does not alter as the weight descends. But in

every case, if s be the range—that is, the distance through

which the force can a;3t—and if F be the average value of

this force, the potential energy is F^. (See Appendix, p. 307.)

Energy of Rotation.

104. So far we have only considered energy of motion in

the form of translation, or the motion of a particle ; but the

energy of a rotating body can now be easily expressed, since
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it is made up of particles, and the energy of the whole is

the sum of their separate energies.*

Any particle of mass m, at a distance r from the axis of a

body rotating with angular velocity w, is revolving round

and round a circle with velocity v = rw, and its energy is

^7Wi;2, or, as it may be also written, im?'2a>2. Now the

energy of the whole body is the sum of the energies of all

the particles in it ; it is therefore

^{\mv^) = p(mr2o)2) = Ja>22(mr2)

;

for, since the a> is constant, it may be taken outside the sign

of summation ; but 2(w?-2), the sum of the second moments

of inertia of all the particles in the body, is the quantity we
have called the moment of inertia of the rotating body

Fig. 26.

(sect. 43), and denoted by I ; hence the simplest expression

for the energy of a rotating body, like a flywheel, is

A flywheel mounted on a vertical axle can be started

spinning by a descending weight, as shown in fig. 26.

* Notice that the parallelogram law (sect. 26) does not apply to the composition

of energies. Energy is not a directed quantity, and simple arithmetical addition

applies to it.
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By the time a weight of 14 lb. over and above what is

needed for friction has thus descended 6 feet, it will have

done 84 foot-pounds of work and generated this amount of

kinetic energy, of which a portion will belong to the wheel,

and a portion to the weight. If it has taken 10 seconds to

descend, its acceleration has been '1 2, and its kinetic energy

is 14 X '12 X 6 = 10*08 foot-second-units, or, what is the same

thing, J X 14 X (1*2)2. ^his is less than one-third of a

foot-lb., and all the rest of the energy belongs to the wheel.

If the winding pulley were '6 foot in circumference, it

would now be making two revolutions a second, therefore

its angular velocity would be 47r, and so its moment of

inertia would be determined by the energy equation

JI(47r)2=: 84x32 -10-08.

105. A roUing sphere or cylinder has a motion compounded

of a translation forward and a rotation round the centre of its

rim, and consequently its energy is similarly compounded.

Its translational energy is Jmz;^, where v is the speed of

its centre forward ; and its rotational energy is -llw^, where

I is the moment of inertia of the body about its centre ; but

a simple relation holds between v and w, since the speed of

rolling advance is the same as the speed the rim would have

if the centre were stationary ; wherefore the above two terms

may be added together, making ^(1 4- 7nr^)o)'^. This suggests

that the body is really rotating at each instant about the

point where its rim touches the ground, and that its mo-

ment of inertia about any point on its rim is greater than

that about its centre by m?''^ ; at any rate these statements

are true ones, as may be seen by referring to the list of

Moments of Inertia, sect. 43.

EXAMPLES—XV.

(1) A body slides down a rougli plane, travelling 20 feet

along the plane, but only descending 12 feet vertically.

If the force of friction is equal to ^th of the weiglit
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of the body, find the velocity gained during the

descent.

(2) What is the work that must be done in order to propel a

3-1 b. stone at the rate of 40 feet a second ?

(3) A simple pendulum is pulled aside till its heavy bob is raised

3 inches, and is then let go. Find its velocity when it

passes its lowest point.

(4) What initial velocity is necessary to make a ritle bullet

strike a target placed 300 feet high vertically above the

gun with a velocity of 600 feet per second, neglecting the

resistance of the air ?

(6) What would be the answer to the last question if the bullet

weighed an ounce, and if the resistance of the air were

taken to be equivalent to a drag-back equal to the weight

of 5 ounces ?

(6) If a projectile were started in any direction with the velocity

80, and arrived at another point on the same level with the

velocity 30, after having travelled 150 feet, what must the

average resistance of the air have been equal to ?

(7) What force would be necessary in order to stop the projectile

of Question No. 2 in the space of 6 feet, and how long

Avould it take ?

(8) Find the mechanical equivalents of the heat generated by
friction in the motions considered in Questions 1, 5, 6, and

7 ; assuming the mass to be 3 lb. in each case.

(9) What is the energy of a hollow globe 2 feet in diameter which

is swinging round in a horizontal circle at the rate of 90

revolutions per minute, the mass of the ball being 5 lb.,

and the radius of the circle described by its centre 3

feet?

Clonsider the string so nearly horizontal that practically the ball

rotates once during each revolution.

(10) What is the energy of a uniform steel disc a yard in diameter

and an eighth of an inch thick rotating about a vertical

axis 3000 times a minute, if a cubic inch of iron

weighs 4 lb.?

(11) What is the kinetic energy of a 5-cwt. projectile moving witii

a velocity of 2000 feet per second ?

(12) A body whose mass is 12 lb. moves from rest -with a uniform

acceleration of 100 inches-per-second per second. Calculate

its kinetic energy after it has moved a distance of 20 feet.

(13) Find what work is being done per minute—that is, find the

I
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activity or the power of an engine which is raising 2000

gallons of water an hour from a mine 300 feet deep.

A gallon of water weighs 10 lb.

(14) A train of 150 tons is running at 60 miles an hour. What
force is required to stop it in a quarter of a mile ?

(16) A small heavy body weighing 20 lb. slides down a rough

circular arc 10 feet in radius whose plane is vertical. It

begins to move from one end of a horizontal diameter, and
is found to reach the lowest point with a velocity of 12 feet

a second. How many foot-pounds of work have been done

against friction during the motion? And if the same
proportionate loss of energy occurred in the next portion

of the same circle, how high would it ascend ?

(16) A massive slow-moving flywheel, mounted on a horizontal

axis 1 foot in diameter, possesses 1500 foot-pounds of

kinetic energy, which is used to raise a weight of 25 lb.

by means of a rope coiled round the axis. Assuming that

a weight of 5 lb. is able to overcome the friction, how
many times will the wheel revolve before it comes to rest ?

How many revolutions in the opposite direction must
be made before the original energy is restored to the

Avheel ?

(17) A railway carriage of 4 tons moving at the rate of 5 miles an
hour strikes a pair of buffers which yield to the extent of

6 inches. Find the average force exerted upon them.

(18) A three-ton truck sliding down a plane rising 1 in 20

acquires a speed of 30 feet a second after travelling 500

feet down the plane. Find the average force of friction

acting on it. What velocity would it have acquired if

there had been no friction ?

(19) A train of 50 tons moves up a rough incline of 1 in 10, the

resistance caused by friction being 16 lb. weight per ton.

What horse-power must the engine exert in order to main-

tain a uniform speed of 3 miles an hour ?

A horse-power was defined by James Watt to mean 33,000 foot-pounds

of work per minute.

(20) If a horse walking once round a circle 10 yards across raises

a ton weight 18 inches, what force does he exert over and
above that necessary to overcome friction ?

(21) Calculate the work done in turning a wheel ten times round

against a load of 15 lb. applied by means of a string
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wrapped round its axle, which is 8 inches in diameter. If

the wheel starting from rest makes 20 revolutions in the

first quarter minute after being let go, what is its moment
of inertia, supposing no friction ?

(22) A mass of 224 lb. falls from a height of 10 feet upon a pile.

Express its energy and its momentum when it reaches the

pile.

(23) A man cycles up a hill, whose slope is 1 in 20, at the rate

of 4 miles an hour. The weight of man and machine is

187i lb. What work per minute is he doing ?

(24) At the top of the hill the cyclist is met by a strong head-

wind, and he finds he has to work twice as hard to keep
the same rate of 4 miles an hour on the level. What force

is the wind exerting against him ?

(25) If a train moving at 80 feet per second, up an incline of 1 in

64, slips a carriage, how far will the carriage move before

begiiming to run back, ignoring axle-friction ?

(26) Find the horse-power of a locomotive which draws a train

at 10 miles per hour up an incline of 1 in 40, the weight
of train and engine being 400 tons.

(27) Find the horse-power of an engine which draws a train of

100 tons up an incline of 1 in 60 at a speed of 30 miles an
hour, the friction being equal to a drag of 20 lb. weight

per ton.

(28) A sledge left to itself slackens speed from 30 to 20 feet a
second while going 15 yards. Assuming the coefficient of

friction constant, find its value ; also find how soon and in

what distance the sledge will stop.

(29) A train weighing 60 tons, and running at the rate of 40 miles

an hour, is stopped by an obstacle in 10 yards. What is

the average force applied by the obstacle ?

(30) How much work has a man, weighing 16 stone, done in

walking twenty miles up a slope rising 1 in 40 ? What
force could drag a dead load of the same weight up the

same hill—(a) if the friction be negligible, (b) if the friction

be J of the weight ?

(31) How much energy is expended in winding up the hour-

striking part of a turret clock each day, if its weight of

2 cwt. descends 1 inch for each stroke of the bell, and if

the friction is equivalent to J of the weight? On the

same hypothesis as to friction, how much of the energy is

available for the production of sound T
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(32) A sliding and a rolling body start down similar slopes to-

gether ; which travels fastest, if one plane is smooth, and
tlie other only just rough enough to ensure rolling ?

(33) What must be the coefficient of friction of the plane pre-

viously smooth in order that the roller and the slider may
travel at the same pace and arrive together? Take the

case of a plane whose height is ^th the base, and the rolling

body a solid cylinder.

(34) Show that all solid and homogeneous spheres in rolling

down an incline will travel together if they start together,

whatever their size or material.

(35) Show the same for cylinders, and find by how much the

spheres will beat the cylinders on a given slope.

(36) What is the energy of a pendulum bob weighing half a ton

and swinging past its equilibrium position at the rate of

1 foot a second ?

(37) What energy is stored in a cross-bow whose cord has been

pulled 15 inches with a maxinmm force of 2 cwt.
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CHAPTER VIL

COMPOSITION AND RESOLUTION OF FORCES.

{Introduction to Statics.

)

106. Hitherto we have only considered the effect of a

single force when it acts on a particle or on a rigid body,

and we find that it may either pull the body along (trans-

lation), or turn it round (rotation), or do both at once.

But in very few cases in practice do we have only one force

acting in this way; often there are a great number of

different forces, so that it becomes necessary to consider how
the motive effect of a number of forces may be deduced.

The simplest way is to reduce the forces in number;

and the following statements may be recorded here as

memoranda

:

When any number of forces act on a particle they may
always be reduced to one—that is, they may be replaced

by a single force which produces precisely the same effect

as them all. This single force is called the resultant
;

and the operation of reducing the number of forces is

called the composition of forces.

If a number of forces act on different points of a rigid

tody—that is, an assemblage of particles connected rigidly

together—they cannot in general be reduced to one force,

but they may always be reduced to two forces in different

planes (sect. 121). They can, however, always be reduced

to a single force (of which what is called ' a couple ' is a

special case) if they either all pass through the same point

(that is, virtually act on a particle), or else aU lie in the

same plane (cf. sect. 137).
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A picture hanging by a cord over a nail furnishes us with an

example of a rigid body acted on by several forces, and the tension

in the two parts of the cord is equivalent to the weight of the

picture. A weight resting on a tripod-stand is another example,

and the three stresses in the legs are equivalent to the one

weight. Again, a table or chair is supported by as many forces

as it has legs, unless some are too short (which they often are). A
teetotum is spun by forces which may be reduced to two equal and
parallel ones in opposite directions, and we have here a case

of pure rotation without translation. A kite in the air is acted

upon by the wind pressing it, by a tension in the string, and by
the pull of gravity ; and the kite moves about according to the

direction of the resultant of all these forces.

107. Again, for some purposes, it is convenient to analyse

or split up a single force acting on a body into two or three

components so as to study their effects separately. This

operation is called the resolution of forces ; and it is carried

out in the same way, and for the same sort of object, as the

resolution of motions and velocities (see sect. 30). Thus,

suppose a body resting on an inclined plane, we may
resolve its weight into two forces, one perpendicular to the

plane, and therefore balanced by its resistance; the other

acting along the plane and producing motion, except in so

far as it is balanced by friction. Again, in a windmill, it is

convenient to resolve the wind's pressure on the sails into

two components—one the effective one in the direction of

motion ; the other a useless one in the direction in which,

by the construction of the machine, no motion is allowed.*

This last component, therefore, only produces strain.

Composition of Forces acting on a Particle.

108. The method of compounding forces into a resultant,

or resolving them into components, is a very simple one,

being the same as that by which motions were compounded

and resolved. For if several forces act on a particle, each

tends to accelerate its motion in its own direction, and the

resultant acceleration is the resultant of these several com-
* N.B.—^A windmill always faces the wind.
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ponent accelerations. The single force which would cause

this resultant acceleration is equivalent to the several forces

combined, and is called the resultant force; while the

separate forces are called its components.

Hence forces are compounded in the same way as

accelerations or motions (sect. 28), being represented by lines

in their respective directions proportional to the accelera-

tions they could produce in unit mass. And they can be

resolved also in the same way. No further proof of the

triangle or the polygon of forces is necessary.

The above deduction from Newton's second law, F=?wa, does

not, however, establish the 2iositio7i of the resultant, but in the

case of a particle this is obvious. The further condition neces-

sary for an extended body is given in sect. 119.

The rule, then, is—Draw a set of lines one after the

other, without taking the pen"*" off, parallel to, and in the

same sense as the successive forces acting on the body, and

proportional to them in magnitude ; then the line required

to complete the polygon, taken in the reverse sense (that is,

drawn from the starting-point, not to it), will be the re-

sultant in magnitude and direction. The forces may be

taken in any order just as the motions might (sect. 24).

Since we are only dealing with a particle, this is the full

and complete solution ; for the resultant, of course, acts on

the particle, and therefore its position is known ; and the

three things, magnitude, direction, and position, completely

specify a force (see sect. 51).

The resultant of two forces is often more conveniently ex-

pressed as the diagonal of the parallelogram whose sides

represent the forces, than as equal to the third side of a triangle.

109. Examples of the Composition of Two Forces.—

A

particle of mass m is pulled along by two strings—one

* If the forces do not all lie in one plane, the polygon cannot be drawn on

paper, but it may be constructed in wood.
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always pulling east, with a force P ; the other always north,

with a force Q. What is the acceleration and direction of

motion ?

Drawing the two forces P and Q (fig 27), one finds the resultant

R at once as equal to \/(P^+ Q^) hy Euclid, I. 47 ; and since this

Fig. 28.

•p

is the resultant force, the acceleration is — along the dia-m
gonal of the parallelogram. If the two forces P and Q were

equal, then R^ would be simply 2P^ ; that is, R= P v2. a result

worth remembering.

Suppose now that the two forces act at some acute angle,

say 60°, then to find R we may use Euclid, II. 12, which

says that AD^ exceeds AB^ + BD^ by twice the rectangle

AB-BN (fig. 28).

The angles CAB and DBN are always equal (I. 29), and if

each equals 60°, BN is easily seen to be half BD, because the

triangle BND is then half an equilateral triangle ; so putting in

this value for BN, and noting that BD =AC = Q, and therefore

BN = iQ, we can write the general relation AD2=AB2+ BD2
+2ABBN in the form R2=p2+ Q2+pQ for the case when the

angle between P and Q is 60°.

If the angle CAB between the forces had been an obtuse angle,

such as 120°, we should have proceeded similarly, only using Euc.

II. 13, and we should have amved at R2=P2 + Q2-PQ.

Similarly we might proceed for angles between P and Q
of 45° or 135°, of 30° or 150°; but for angles in general,

though the relation

AD2 = AB2 + BD2 + 2AB • BN,
will always apply—regard being paid to sign in the last

term (see sect. 12)—yet it is not so easy to express the side
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BN in terms of the side BD (or Q)—the subject of the

mensuration of triangles, or Trigonometry, not being sup-

posed known at this stage.

Our resource is then to find the resultant by construction

;

and this indeed is often a very good way, even when one

knows some trigonometry. You lay off on paper the two

given forces to any scale, and inclined at the proper angle

;

then you complete the parallelogram, and measure the

diagonal on the same scale—this gives you its, magnitude;

and its direction referred to the given forces you get also

from the figure.

110. Notice that in the parallelogram of forces, you really

have two diagrams drawn together as one : a representation

of the forces, and a geometrical construction; but they

should be understood to be essentially distinct. The propo-

sition of the triangle of forces is really the geometrical part

of the parallelogram by itself.

An example will render the meaning of this clearer. Let two

forces, 6 and 8, act on a particle with an angle of 60° between

them. Find their resultant.

Pig. 29.

On the left of fig. 29 is a picture of the given forces. On the
right is the geometrical figure—namely, a triangle in which AB
represents the force 8, BD the force 6, and AD their resultant, in

magnitude and direction. (AD equals 12-17 nearly, as may be
found either by drawing and measuring, or by calculating it from
sect. 99 as \/{S'^ + &^ + Sx 6.) Its position is known, for of course
it acts on the given particle ; so we return to the left-hand
diagram, draw through the point of intersection of the two given
forces a line equal and parallel to AD, and this mil be the result-

ant. Obviously it is the diagonal of the parallelogram of forces

—

the triangleABD is simply half the parallelogram ; compare fig. 28.
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Observe that the geometrical construction is based upon

only magnitude and direction : it does not give you position
;

this must always be determined from the positions of the

given forces in the force diagram. It is not usual to separate

the two figures in simple cases, but as a matter of principle

it is best always to keep them distinct.

111. The diagrams for one instance of the polygon of

forces may be also given, just to make sure it is fully

understood.

Forces in a plane, of magnitudes 4, 5, 3, 8, act on a particle,

their directions making angles with each other of 75°, 45°, and
120° respectively. Find the resultant. In actual cases the

Pig. 30.

angles between the forces are not specified numerically, but are

indicated directly. In artificial questions, however, like the above,

when the angles are specified in degrees, a protractor may be

used to lay off the directions.*

It turns out to be '504, so that the given forces are very nearly

in equilibrium, or their resultant is very small.

Observe the reciprocity of these diagrams. In one the lines

meet in a point; in the other they enclose an area.

Try drawing the sides of a polygon in some other order, and

* In aU these figures the lines are drawn parallel to the forces ; this is the easiest,

though not the essential plan. What is essential is, that the lines shall represent

the direction of the forces in some understood manner. It is usually said that

they will do either parallel or perpendicular ; but they would do equally well if

all were inclined at 45*, or at any other angle, to the forces which they respec-

tively represent, provided this angle were the saine for all. The interior angles

of the polygon are supplementary to the angles between the corresponding

forces.
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see that you always get the same result. Especially try the order

4, 3, 8, 5 ; for the polygon then happens to be a crossed one.

The bits of forces represented by the lines surrounding the

enclosed space in a crossed polygon are in equilibrium (Chapter

VIII. ), and may be removed from the particle without disturbance.

In the above case the enclosed bit will be found to be an equi-

lateral triangle, and the forces which may be removed are three

threes—namely, three parts from force 8, three from 4, and all of

3 ; the forces left being 1, 5, 0, 5. Construct the polygon for this

mutilated set, and see that you still get the same resultant.

Notice the reason why the three removed forces were in equilibrium

—namely, that they were equal and lay symmetrically, making
angles of 120° with each other.

You are strongly recommended at once to get out your

instruments and a sheet of drawing-paper, and verify all

this by careful drawing, as well as some of the examples in

Ex. XVI. The instruments needed are a graduated scale

of equal parts, a couple of set squares to act as a parallel

ruler, perhaps also a T square, and a pair of compasses. A
protractor for measuring angles is also convenient.

Besolution of Forces.

112. Every force may be split up into two deiinite com-

ponents acting at given angles with it ; but, if the angles

are not given, a force may be resolved into two components

in an infinite number of

ways; in other words,

the same line may be

the diagonal of an in-

finite number of parallel-

ograms (fig. 31). One
chooses in each problem

the particular pair of

components which are Pig. si.

most convenient, the

most convenient being usually at right angles to each

other. Often one is in the direction of possible motion,
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and the other perpendicular to it; again, in cases where

gravity is concerned, one is often horizontal and the other

verticaL

Verify, by drawing, the following : A force of 8 units is equiva-

lenc to two components of —— — each, acting one on each

side the given force at angles of 15° with it; also to two of 8 each,

Q
if the angles he 60° ; also to two of—^— — each, if the angles

V (2 - v3)
he 75° ; also to a component 4, acting at an angle of 60°, and
another of 4\/3 at an angle of 30° ; and so on.

(\/2= l-4142 ; V3=l-732 )

113. Constrained Motion.—When a body is constrained,

as by a line of rails, to move in some fixed direction,

and when the propelling force acts partly athwart the con-

straint, its treatment is simplified by resolving it into two

components, such that one acts along the line of possible

motion, and the other across it. The first is the effective

or working force, and it either accelerates or retards the

motion, while the other is the lateral force exerted against

the rails and balanced by their constraining pressure.

114. To illustrate the use of this, take a mass m, or say

J-
lb. for those who like numbers

^ ^ best, on a smooth inclined plane

\ ^^^\ inclined to the horizon at an

: angle say of 30°. Such a body

is constrained by the plane not

\^ to fall vertically, and the forces

acting on it are the force w
Fig. 32. ( = m.g) due to gravity acting

downwards, and the pressure of

the plane, say K, acting normal to the plane. Now, resolve

the downward force into two—one along the plane, that is,

in the direction of motion, and call this effective component

^ ; the other normal to the plane, as q (fig. 32).
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This you do by drawing a parallelogram with sides in these

directions, and of such size that w (in the present example, ^g
or 8) is the diagonal. The angle between p and w is 60°, that

between w and q is 30°, and we have just found (end of sect

112) that a force of eight units is equivalent to two forces,

4 and 4\/3, acting at 60° and 30° respectively ; so then p=4
and 2=4V3.

The motion is in the direction of /?, the acceleration being

-^or ^ = 16, or half its unconstrained value : whereas therem J
is no motion in the direction of q, because it is balanced by

the constraining force R, hence R = g = 4 ^3.

115. Friction.—The reaction of rough surfaces wUl

afford us other examples. When anything exerts pressure

on a plane surface, the reaction of the surface is in general

inclined in some direction or other to the surface—usually

in that direction most likely to oppose relative motion ; but

it is convenient to resolve this reaction into two—one

normal to the surface (normal merely means perpendicular),

which is called the nonnal pressure ; the other along the

surface, which is called the friction. If either surface be

perfectly smoothy this last component is absent, and all the

reaction is normal. And even for rough surfaces this may
be so too, as in the case of a ball resting on a level floor ;

but if any forces are tending to cause motion over rough

surfaces, then there is some component along the surfaces,

or friction, which always opposes the motion.

The force of friction is precisely equal and opposite to the

resultant force tending to cause the motion, so long as the

body does not move; but if the applied force gradually

increases, it will, at a certain instant, become too much for

the friction, which reaches a maximum, and can increase no

further ; so then motion ensues, the effective or accelerative

force being the applied effort, minus the friction. For

instance, in the above example of the inclined plane,

suppose the force of friction to be called /, it would act up
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the plane in exact opposition to p. If the body were at

rest, it would be so because /=jp; if it were in motion, the

acceleration would be -^^l/.
in

It is found experimentally that the maximum or critical

value of/ is proportional to the normal pressure R between

the surfaces, the ratio between / and R depending on the

nature of the surfaces in contact, and being called the

Coefficient of Friction.*

Say that this coefficient in the above case of the inclined plane

is ^, so that/=|^R, then the acceleration would be

%

The actual pressure or reaction between the surfaces in con-

tact is, of course, the resultant of the two forces R and /, the

normal pressure and the friction—that is, it is the square root of

the sum of their squares ; and the angle which its direction

makes with the normal when the two surfaces are on the point of

sliding over one another is called the limiting angle offriction.

When a body is resting on- an inclined plane, supported

only by friction, the resultant reaction of the plane must be

vertical, in order to balance the weight ; the greatest tilt that

can be given to the plane without causing slip is therefore

equal to the limiting angle of friction—that is, the maximum
angle between vertical and normal; and so this angle is

called the angle of repose. On any plane with less tilt than

this there will be a margin, since the reaction is not as

* The coefficient of friction when the surfaces are in actual relative motion is

.usually less than when they are just going to move ; hence there are two coeffi-

cients of different value, one when the bodies are on the point of slipping, called

the static friction, or ' stiction ; ' the other when the surfaces are actually

sliding over each other, called the kinetic friction. The latter is the

smaller of the two, and frequently depends somewhat upon the speed of the

relative motion. Lubrication not only lessens friction but tends to abolish the

difference between static and kinetic friction. Resin, on the other hand,

exaggerates this difference. Vibrations, with accompanying noise, are liable to

be set up whenever there is a marked difference between static and kinetic

friction, because the slipping is apt to become intermittent, being alternated with

moments of adltesioQ.
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much inclined to the normal as it can possibly be (see, for

further information, sect. 142).

116. It is often convenient to resolve motions and

velocities. Thus, as we saw (sect. 76), a projectile shot up

at any angle has a certain initial velocity imparted to it,

which may be conveniently resolved into two—one a hori-

zontal one unajffected by gravity, which therefore remains

constant except for the resistance of the air ; the other a

vertical one, which is gradually diminished by gravity at a

definite rate, until it is converted into a negative, that is, a

downward, velocity which increases at the same rate till the

body strikes the ground.

Again, take a north-east wind. This may be considered

as made up of a north and an east wind, each -T^th of the

actual strength, and on any thin, flat, smooth surface facing

the north only the northerly component can exert any

pressure, the easterly component simply gliding over it.

Or suppose the surface faced NNW., and we wanted to find

the pressure on it ; the wind might be resolved into an NNW.
component, \\J2-\J2 times its strengtli, and an ENE. one

i\/2 + \/2 times its strength, and the surface would experience

the pressure of the NNW. component only, the other being

useless.

This is how one deals with kites and windmill- and boat-

sails. They are all surfaces exposed in a skew fashion to

the wind, so that the pressure on the surface is a component

only of the whole available force of the wind. The sails of

a windmill are set so as to be inclined both to the direction

of the wind and to the direction of possible motion ; so also

usually are the sails of a boat. It is convenient to remark

and remember that, disregarding viscosity or fluid friction,

the pressure of a fluid is always normal to surfaces immersed

in it.
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117. In the case of a kite the normal pressure of the

wind is balanced by two other forces, the pull of gravity

and the pull of the string, otherwise the kite would be

blown about, scarcely experiencing any pressure at all. The

sails of a windmill are not blown in the direction of the

normal pressure on them, but in some other direction deter-

mined by the way they are set on the axle and by the sole

direction in which this can turn; the axle is always pur-

posely set so as to face the wind, and so the sails can only

move in a plane perpendicular to the wind. So also with a

boat ; the reason why it is not blown in the direction of the

normal pressure on its sails is that it is more easily moved

through the water lengthways than breadthways because of

its shape. Hence the normal pressure of the wind requires

again resolving into two components, one along the direction

of easy motion, the other at right angles to it. The first

component is the active one in the case of both windmill

and boat ; the other component is entirely counteracted in

the case of the windmill, but in the case of the boat it does

cause a slow broadside motion, which is called leeway.

Thus if BR (fig. 33) represents the plan of a boat, MS its sail,

andW the relative direction and strength of the wind (represented

also by the arrow i), P is the normal pressure and Q the useless

\
Pig. 33.

component or tail-wind. Producing P for convenience, and re-

solving it along and across the boat, H is the effective component
producing headway, and L is the leeway component. The arrow
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ii shows the direction in which the boat might tend to sail.* The
rudder R is represented as turned in the direction required to

counteract the leeway and make it sail along the line RB pro-

duced.

The rudder also affords an illustration of the present subject.

When turned, there is a normal pressure on its front surface due

to its motion through the water, and this pressure is resolvable

into two forces—one in a direction opposite to the boat's motion,

which simply acts as a drag (hence in racing, the coxswain uses

the rudder as little as possible), the other at right angles to the

length of the boat, which pushes the stern round.

It is obvious that no force can directly exert pressure at

right angles to itself, and yet it is easy for a ship to sail at

right angles to the wind. The reason is, that the sails act

as a mediary, being inclined to both wind and boat. The

force directly urging the boat is a component of the pressure

on the sails, this pressure again being due to a component

of the wind's motion. Remember that the efifective wind

—

the wind felt by the ship—is the relative wind, which is

compounded of the true wind and the speed of the ship

(cf. sect. 31). This explains why a ship can sail very close

to the wind.

These examples will serve to illustrate the application of

the principle ; but other examples occur daily, and may be

worked out in the same way as the preceding cases, drawing

and measuring being often sufficient.

EXAMPLES—XVI.

(1) Find the resultant of two equal forces each equal to 10 units

for each of tiie following cases—namely, when the angle

between them is 120°, 90", 60°, 45°, 30°, respectively.

* This assumes tliat the sail is set amidships. In practice there is always a

preponderance of sail towards the stern, consequently an unsteered ship gets

blown round, and 'sails up into the wind's eye.' The rudder would therefore

more likely have to be turned the other way, so as to counteract the action of the
wind in causitig rotation. Tlie eflfect of the wind on the body of the boat has also

to be taken into account in practice, and this may be different according as the

bow or the stern is most out of the water—a thing which depends on the distri-

bution of the load.
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(2) Resolve the force 12 into two forces, making angles of 45°

with the given force on either side of it.

(3) A picture weighing 12 lb. is hung by a cord over a nail so

that each half of the cord makes 45° with the vertical.

Wliat is the tension in the cord ?

(4) Find the tension in a picture cord when the two halves of

the cord make an angle of 30°, 60°, 90°, 120°, 150° with each

other. What is the way to hang a heavy picture so as to

get the least tension in the cord ?

(5) A weight of 10 lb. is placed on a smooth plane inclined 30°

to the horizon. What force acting horizontally is required

to support it? What force acting along the plane will

suffice ? and what is the normal pressure on the plane in

each case ?

(6) A carriage weighing 2 tons is to be drawn up a smooth road

by a rope parallel to the road. The road rises 4 feet in a
slope of 32 feet. What must the pull of the rope exceed in

order that it may move the carriage ?

(7) What weight can be drawn up a smooth plane rising 1 in 5

by a force equal to the weight of 200 lb. {a) when the force

acts up the plane ? {b) when it is horizontal ?

(8) A heavy ball hangs from a point by a string. A second

string is attached to it, and by this the ball is drawn aside

so that the first string is no longer vertical. Draw a figure

showing a triangle with its sides proportional to the three

forces acting on the ball, and observe how they change with

the inclination when the pulling string is kept horizontal.

(9) Draw a diagram to scale showing the resultant of two forces

equal to the weights of 7 and 11 lb. acting on a particle,

with an angle of 60° between them ; and by measuring the

resultant find its magnitude. Indicate two equal forces, at

right angles to each other, which would be equivalent to

the above two forces.

(10) Calculate the magnitude of the resultant of two forces, of 35

and 40 units respectively, acting at the same point and
making with each other an angle of 120°.

(11) Six forces, 3, 4, 7, 10, 9, 5, act from the centre of a regular

hexagon towards the angular points. Find the magnitude

and position of their resultant.

(12) Find, to two decimal places, the resultant of two forces, 20

and 12, both acting from the corner of a square, the former

along the diagonal, the latter along a side.
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(13) A cross wind strong enough to exert a pressure of 10 lb. per

square foot on an object placed normally to its direction

acts against a sail of 500 square feet area inclined at 45° to

it and to the boat. Find the effective component of the

wind-pressure on the boat, neglecting leeway ; («) when the

boat is stationary
; (6) when the boat is travelling at 10

miles an hour.

The latter case is to be solved by measurement from a diagram.

(14) Draw a square ABCD, and take E the middle point of BC.
Forces of 10, 15, 20, and 25 units act at A, from A to B,

D to A, C to A, and A to E respectively. Find their

resultant by measurement from a diagram.

(1,5) A piece of wire 26 inches long, and strong enough to support

directly a weight of 100 lb., is attached to two points 24

inches apart in the same horizontal line. Find the maxi-

mum load that can be slung on the middle of the piece of

wire without breaking it.

(16) The sides AB, AD of a rectangle ABCD are 5 and 12 inches

long respectively. Forces of 8 and 20 lb. weight act at A
in the direction AB and AC respectively. Find their

resultant, either by construction or calculation.

(17) In what time will a body slide down 4 feet of a rough incline

of 30° for which the coefficient of friction is yV ?

(18) What coefficient of friction will enable a weight just to rest

on an inclined plane of 30° without extra support ?

(19) Find the least force that will pull a hundredweight up such

a plane as that in No. 18, or that in No. 17, and show that

the best angle of traction is in general equal to the angle

of repose.

COMPOSITIOIJ OF FORCES ACTING ON A RIGID
BODY.

118. For the case of a rigid body, in addition to the

magnitude and direction of the resultant as determined by

the polygon construction, sect. 108, it is necessary also to

determine its position—that is, its line of action. For

observe that, though as regards translation a force in one

place is as good as an equal parallel force in another, yet as
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regards rotating power its position is important. Thus,

imagine a long trough of water lying on the ground with

a string tied to it by which you wish to raise it. Any
vertical force greater than the weight of the trough must

needs raise it, wherever the string is tied ; but if the string

is tied anywhere except above one definite point, the trough

will also turn round as it rises, and the contents will be

upset.

Again, if you raise it by two parallel strings, one

near each end, then when the pull of the two strings

together is a little greater than the weight of the trough,

it is raised ; but if you want to raise it without rotation,

the pull of each string must be carefully proportioned,

so that the resultant of the two forces may pass through

the point above spoken of, which is called the centre of

gravity.

Again, in the case of a pivoted body, it is obvious that a

force applied close to the pivot has much less effect than an

equal one far off; and if applied at the pivot, it can have

no motive effect whatever.

119. Now, the fundamental dynamical idea in rotation

is the moment of a force (read sect. 57 again) ; and

the following general statements are true, with their

converses.

(1) The moment of the resultant must equal the sum
of the moments of the components about any point in every

possible case, otherwise the resultant would not be truly

the resultant, because unable to replace the components in

rotating power.

That this condition is fulfilled by the diagonal of a paral-

lelogram whose sides represent the component forces may be

proved among other ways as follows :

To show that the resultant given by the parallelogram offorces
is equivalent to its compone7its in rotating as xoell as in translating

power—that is, that its moment about any point in the plane is
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eqiial to the sum of the moments of the tioo components. The
moment of the force AB about a point O ((i^'. 34) is (see sect. 53)

geometrically representable by twice the

area of the triangle OAB ; the moment of °*\-.,.

AD is similarly proportional to twice the \\ '->,,

triangle OAD, and that of AC is twice

OAC : hence what we have to prove is

the following equality between the areas,

OAB + OAC =OAD; the point O being in

the plane of the parallelogram.

Now OAC =OBD + ADB,because the bases pig, 34.

are equal, and the height of the single tri-

angle is equal to the sum of the heights of the others (this is

an easy extension of Euc. I. 38—analytically obvious, thus

}^h{h^-\-h^) = \bh^ + lbh^)\

and by inspection, OAD=OAB + OBD +ADB ;

therefore OAD =OAB +OAC

;

which was to be proved.

(2) The algebraic sum of the moments of any number of

forces about a point on their resultant is zero; in other

words, the sum of the positive moments equals the sum of

the negative. (The moments of two forces about a point

on their resultant are therefore numerically equal, but of

opposite sign.)

For their resultant can have no rotating power about such

a point, neither therefore can the components.

(3) If the body on which the forces act has one point

fixed, and if their resultant passes through the fixed point

or pivot, it will not be rotated by them.

For instance, to keep the beam (fig. 37) steady, C is the

point to fix. The pressure of the pivot or fulcrum is then

equal and opposite to the resultant of all the forces.

(4) The resultant of two forces acting on a rigid body

passes necessarily through their point of intersection. If

they do not intersect even when produced (whicli can only

be by reason of their lying in different planes), then they

have no resultant ; and they cannot be further reduced.

The effect of such an irreducible pair of forces is to carry a
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body along and twist it round at the same time. They are

not to be confused with a simple 'couple,' which results

from the intersection of given forces at infinity : quite a

different thing geometrically from not intersecting at all.

Composition of Two Forces in General.

120. If the two forces are in one plane, the parallelogram

is a complete solution, whether they act on a particle or a

rigid body, for the forces must intersect somewhere, and the

point of intersection fixes the position of the resultant.

Thus tig. 35 is the physical part of fig. 29 repeated for a rigid

body, say a stone pulled by two strings. The geometrical part

applies just as well as before. The direction of the resultant

must pass through E, the point where the given forces produced

backwards intersect, and it may be applied to the body at any
point in a line EP paf^llel to AD (fig. 29).

It may happen, however, that the point of intersection

of the two forces is in-

yW conveniently distant, as

/ ©6 'X^j off the paper for instance,

^-ih-^ ..-'" :\ or even at infinitv when
^/^ / ...••^^ O'^'"' *^® forces are parallel.

mjL E.;>:ll A -^ I^ such cases the general

%^A ?''fc -^-U^ ^ construction of sect. 123

^^^-._~^i!>'-^ ft 8 is resorted to.

Fig. 36. 121. If the two forces are

not in one plane they cannot

intersect, and our construction for finding the resultant fails. The
fact is they have 7io resultant, and cannot be further reduced

;

they can only be put into the more convenient form of a force

and a * couple ' (sect. 128) in a plane perpendicular to the force ;

so they tend to carry the body along and turn it round at the

same time. This pair of forces is called a wrench, because it

tends to twist tlie body about a certain screw ; but the subject

now becomes too complicated for us in this stage. (This is what
was meant in sect. 106 by the two forces to which any forces



CHAP. VII.] COMPOSITION OF FORCES. 151

whatever acting on a rigid body can always be reduced, even

when no more can be done. ) If, however, all the forces lie in one

plane, no ' wrench ' is possible, and they may then always be

reduced to one simple resultant ; though it may be a resultant

zero at infinity as one special case, in which case it is most easily

treated as ' a couple.'

Composition of any number of Forces in a Plane.

122. The parallelogram construction may be applied

several times in succession, reducing the number of forces

by one each time. This is a complete but cumbrous

solution.

The polygon construction is a solution as regards magni-

tude and direction, but requires supplementing in order to

determine position. The supplementary construction em-

ployed is such an important one, that it seems well to intro-

duce it here, although its full discussion would lead us

beyond our present mark. It will be best understood by

an example, and the case of only three forces will afford

a sufficient illustration of the method. It depends on the

fact that a single force may be resolved into a pair of com-

ponents in an iufinite variety of ways (fig. 31) ; so that, if

the given forces are not convenient to find the resultant

from, we can choose a more convenient pair out of the set

which have the same resultant, and then draw the resultant

of these. Expressed in another way, it may be said to

depend on the fact that forces in equilibrium produce no

disturbance, and hence may be introduced or removed at

pleasure.

Construction for finding the line of action of the Resultant
of any number of Forces whose directions all lie in one
Plane.

{Illustrated by the case of three forces.)

123. Let P, Q, S (fig. 36) be the forces. Draw the

sides of the polygon ABCD parallel to, equal to, and in the
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same sense as the three forces ; then tlie comj^letion of the

polygon, AD, is the resultant R in magnitude and direction.

Where is it to be placed 1

Choose any point 0, join OB, and draw in the other

diagram a line PQ parallel to it across the forces P and Q
(the line is to be drawn across P and Q, because B is the

Fig. 86.

fTj^nes parallel to each other in the two diagrams are labelled similarly ; but the

simplest way in practice of indicating the correspondence of lines is to mark
the areas in one figure and the points in the other. Thus, for instance, the

letters P, Q, R, S, in the right-hand figure, may be supposed to denote the

areas containing these letters, and the letter E may be afiixed to all the

external space. In the left-hand figure these same letters belong to points,

especially if R be understood to apply to all the arrow-heads ; and all lines

in either figure are denoted by two letters, in the one by points, in the other

by areas which they separate. Thus the line QS is the line joining (or separ-

ating) the points Q and S in one figure, and is the line separating the space Q
from the space S in the other.]

meeting-point of the sides of the polygon which represent

P and Q).

Then join OC, and draw a line QS parallel to it (C being

the meeting-point of the sides representing Q and S).

Then join OD, and draw a line through S parallel to it,
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say SE ; also join OA, and draw a line through P parallel

to it.

The point E, where these last two lines intersect, will

be a point on the resultant, and its position is therefore

determined. Q.E. F.

Proof (This may be omitted till after Chapter VIII. has been
read).—A force represented by AB is the resultant of two forces

represented by AO and OB, because it forms a triangle with

them ; but P is a force represented by AB, hence P is equivalent

to two forces acting along the lines EP and PQ, equal to AO
and OB respectively, and may be replaced by them. Let it be

so replaced. Similarly the force S may be replaced by two forces

acting along SQ and ES, equal to CO and OD respectively.

But Q is in equilibrium with two of these forces—namely,

those along SQ and PQ, since their representative lines, BC, CO,
OB form the sides of a triangle taken in order (sect. 135) ; hence

this set of three forces may be removed ;. and there now remain,

as the equivalents of the original forces, P, S, and Q, only forces

along EP and ES, represented by AO and OD respectively.

Hence these two forces have the same resultant as the three

original forces had ; but the resultant of these two forces passes

through E, their point of intersection (sect. 120) ; therefore the

resultant of the three original forces, P, Q, and S, passes through

the point E. Q.E.D.

It will be seen, therefore, that what we really do in

the construction, is to compound with P, Q, and S, two

sets of equilibrating forces—namely, two equal opposite

forces in the line PQ of magnitudes OB and BO, and

two in the line QS of magnitudes OC and CO ; and by

their help to replace the given forces by two intersecting

ones, ES and EP, the position of whose resultant is

obvious.

This construction applies equally well to parallel forces,

only then, of course, the polygon ABCD shuts up, the points

B and C being on the straight line AD ; but everything

else remains without modification.

The use of the above construction may not be quite



154 ELEMENTARY MECHANICS. [sECT. 123.

apparent perhaps, but it is put here as an indication of

quite a large art—namely, graphical statics—which may
well occupy the student's attention at a later stage. The

quadrilateral ABCD on the right of fig. 36 is called ' the

force-polygon,' and determines the magnitude and direction of

the resultant; the quadrilateral i, ii, iii, iv on the left of

fig. 36 is called ' the funicular polygon,' and determines its

position. It is called the funicular polygon or sometimes

the link polygon, because it represents the equilibrium

directions of a weightless string or linkage of rods subject

to the given forces. An arch or framework composed of

jointed bits of wood, two of them placed like i and ii and

two of them like iii and iv produced, would be in equilibrium

under the given forces PQS if its terminal ends were fixed.

Or if the forces were reversed in direction, it would repre-

sent the shape taken by a string with fixed ends subject to

the given forces. Another but less obvious statement

which can be made is that the polygon i ii iii iv in the left-

hand figure rejDresents the distribution of bending-moment

in a beam subjected to the force R, and to the forces PQR
reversed ; it should have a thickness graduated according to

this manner if it is to be as stifi" as possible without waste

of material.

Composition of Parallel Forces.

124. Parallel forces can only act on an extended body:

forces which act on a particle, of course, cannot be parallel.

The direction of the resultant of parallel forces is the same

as the common direction of its components, while its magni-

tude is their algebraic sum—that is, their sum paying regard

to sign—adding all that act in one direction, subtracting

any that pull the other way. This is aU that is required to

be known for translation (sect. 118); but to discuss the

rotation of a body under the influence of parallel forces,

we must learn the position of the resultant, and this requires
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either a geometrical construction or an arithmetical cal-

culation.

The general construction of sect. 123 applies to parallel

just as well as to other forces, so we have only to give

the method of calculating its position arithmetically.

125. The fact (No. 1, sect. 119) that the moment of the

resultant equals the algebraic sum of the moments of all

the components, though universally true, is most useful

in its application to parallel forces, and it affords a

ready method of finding the position of their resultant

arithmetically.

Thus imagine a weightless beam acted on by any parallel

forces, say weights, 4, -5, 6, -2, &c., arranged anywhere on the

Fig. 37.

beam (as shown in fig. 37), at distances 4, 8, 16, 22 inches from

some fixed point of reference O ; then the resultant R is, in

magnitude,

4-5 + 6-2 = 3,

and is at a distance x from 0, such that

3«=4 X 4 - 6 X 8 + 6 X 16 - 2 X 22=28

;

wherefore .^^=9^ inches. Mark off OC equal to this ; then II acts

at the point C, as shown ; and, to keep the bar in equilibrium,

another pulley and string must be arranged to exert a force 3

upwards at this point.
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And, generally, if the forces be u\, ii\, lo^, at

respective perpendicular distances x^^ x^, x^, from

any point 0, then the distance of the resultant from the

;same point is

iv^x^ 4- 10^x^ + 10^x^ +
x =

W. + 'W<, + 10.

This is a constantly occurring form of fraction, and is a

more general sort of average. If lo^ = w^^ = ic^ = &c., then

it would be the ordinary expression for finding the average

of the distances x^, x^^ x^^ &c.—that is, it would give the

average distance of all the weights from ; for it would

add all the distances together and divide by the number of

them.

To take another example, let weights of 8, 6, 4, 2 pounds

respectively be hung at the following inch divisions of a

one-foot rule: 0, 3, 9, 12. Find the position of the

resultant. Let it be at the division x, and take moments

about one end. The moments of the weights are respectively

0, 18, 36, and 24; the moment of their resultant is 20ic;

wherefore, equating this to the sum of the separate

moments, we get x- 3*9.

Once more, let there be only two weights, say 4 lb. at

one end of a rod a foot long, and 8 lb. at the other. Then

calling the distance of the resultant from the smaller weight

Xj its distance from the bigger weight is \2-x, and taking

moments about the resultant, we have Ax = ^{\2-x),

whence x = S inches. That is, it divides the rod in

inverse ratio to the two weights, and this is a general

result.

Composition of Two Parallel Forces.

126. When we have only two forces to deal with, the

general statements and constructions are of course equally

applicable, but they may be put into a more simple form.

The resultant is equal to the sum of the forces if they act
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Fig. 38.

in the same direction, and is equal to the difference of the

forces if they act in opposite directions; it is of course

parallel to either force, and it only remains to find its

position. The following three simple

constructions may be given for find-

ing the position of the resultant

geometrically.

First Construction (fig. 38).—Take

a point M half-way between the forces

P and Q, and draw two lines through

it; one parallel to the forces, the

other not, but cutting them in A and B respectively. Lay
off from M two lengths in the former of these lines, in

the same sense as the respective forces, MC equal to P,

and ^ID equal to Q, and join AC and BD ; the resultanl^

shall pass through E, the intersection of AC and BD.

Proof.—We may suppose that we have here compounded P
with a force AM, and Q with an equal, opposite, and therefore

equilibrating, force BM ; and AC, BD are the diagonals of

parallelograms, and have the same resultant as P and Q have.

Second Construction (fig. 39).—Anywhere on the line of

P take a length equal to Q,

and on the line of Q a

length equal to P. Then

draw straight lines joining

the extremities of these two

lengths ; they will intersect

in a point on the resultant,

and so determine its line of

action.

If the forces have the

same sense, they are to be

joined crosswise, and E is

the point. If they have contrary sense, they are to be

joined without crossing, and F is the point.

Fig. 89.
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Proof.—Observe that the two triangles with common vertex

E (or F) are similar (their bases being parallel), hence their

heights and bases are proportional. But their bases are Q and

P ; so, calling their heights jr> and g,

7-p'
or - Pp= Qg'.

This fact proves the proposition ; for, by (2) sect. 119, the

moments Vp and Q^- of the two forces about their resultant must
be equal and opposite ; but they are evidently opposite, from

the figure, and this equation states their equality, about the

point E, and similarly about the point F. Wherefore the

resultant passes through E if the forces have the same sense

;

and through F if they have contrary sense.

It is worth noticing that the moment of E. about any point O is

equal to the sum of the moments of its components ; for, taking

the circumstances as depicted in fig. 39, we can easily show
that R(j9 + r) = Pr+ Q(p + 2' + r), by remembering that R=P + Q,
and that Vp = ^q.

Third Construction (fig. 40).—A more general construc-

tion, applicable whether the forces are parallel or not,

Fig. 40.

and practically useful when the forces are nearly parallel so

that their point of intersection is inconveniently far off, is

based upon the method of the funici^ar polygon (sect.

123).

Draw a line AB representing the force P, and a line

BC representing Q. Choose any point 0, and join OA,

OB, OC. Then draw across the given forces a line parallel
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to OB, and at its points of intersection with P and Q
respectively draw other lines parallel to OA and OC. The
point E where these last two lines meet is a point on the

resultant, and determines its line of action ; its magnitude

and direction are given by AC.

Proof.—The force P has been virtually replaced by forces AO,
OB acting along the lines ao, oh ; the force Q has been virtually

replaced by forces BO, OC acting along the lines ho, oc. Hence
the resultant force is replaceable by AO, OC in the lines ao, oc,

and therefore passes through their point of intersection.

127. The following propositions concerning two parallel

forces are now at once seen to be true, being little more

than repetitions in a compact form of what has gone

before.

(1) The distances between each force and the resultant

are inversely as the forces—that is, p : g' = Q : P. This

formula, or some other moment formula, must be used when
you want to find the resultant arithmetically.

(2) If two parallel forces have the same sense, their

resultant is equal to their sum, and lies between them,

nearer the bigger one. In fig. 39 it passes through E.

If, however, they are of contrary sense, their resultant

equals their difference, and lies outside them on the side

of the bigger one, agreeing with the bigger one in direction.

In fig. 39, if one of the given forces is reversed in direction,

the resultant passes through F.

(3) If two forces are equal, the resultant must be equi-

distant from both.

If they are of contrary sense, this means that the result-

ant is at infinity ; but its magnitude is zero, being equal to

the difference of the components.

128. Hence, two equal contrary* parallel forces have a

*The phrase 'non-concurrent' has been tised to express parallel opposition

not in the same line, but the word contrary is to be preferred, since the proper

meaning of the word 'concurrent' is muting in aTpoimU
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resultant zero at infinity ; or, as it is sometimes expressed,

they have no resultant at all. (In any of the constructions

the lines whose intersection gives the position of the

resultant will for this case be found to be parallel.) Such

a pair of forces cannot be further simplified, hence they are

taken together and called a couple. The moment of the

couple about any point will be easily seen to be independent

of the position of that point, and to equal either force

multiplied by the perpendicular distance between the two

forces, this distance being called the (irm of the couple.

A couple is not properly to be regarded as two forces,

but as a particular case of one—namely, an infinitely small

force at an infinitely great distance. It obviously possesses

only rotating power. The fact that its moment about every

point in its plane is the same causes its position to be un-

important. Its moment and its plane have to be specified,

but nothing else. (Read again sect. 106.)

The Composition of Parallel Forces as illustrated

by Gravity.

(Centre of Gravity.)

129. The force of gravity illustrates the subject of

parallel forces very well. A rigid body is made up of

particles, every one of which is pulled towards the centre

of the earth with a force proportional to its mass, and

equal to its mass multiplied by g (sect. 64). Now, since

the centre of the earth is such a long way off, these con-

verging forces are for bodies of ordinary size practically

parallel. Hence the whole pull of gravity on a table or a

book is really the resultant of an infinite number of parallel

forces—the attractions on the several particles.

To find the magnitude of this resultant, you hang up the

body on a spring balance—in ordinary language, you weigh it.

To find its position, the easiest way is to hang up the
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body by a bit of string ; the line of the resultant is then a

continuation of the string, since it must pass through the

point of suspension. Or you may balance the body on

your finger ; the line of the resultant is always the vertical

through the point of support whenever the body is in

equilibrium.

Its direction is a fixed one—namely, always pointing to

the centre of the earth, no matter how you turn the body.

Now when a rigid body exposed to the action of a

number of parallel forces acting at definite points in the

body is turned about, there is one point in the body through

which their resultant always passes in every position

—

and this point is called the centre of the parallel forces

;

or, if the parallel forces are due to gravity, it is called the

centre of grai'i.ty.

The criterion as to whether there really is such a point

in general is rather troublesome ; and if the forces are not

accurately parallel, there is, strictly speaking, no such

point for bodies of irregular shape. Nevertheless, the

forces due to gravity acting on the parts of any body of

reasonable size are so nearly parallel that practically every-

thing likely to be experimented on has a centre of gravity.

Determination of the Centre of Gravity by Experiment.

130. If this point be directly supported, the body is in

equilibrium in every position necessarily ; and conversely, if

a body is in such equilibrium, it must be because its centre

of gravity is directly supported. (A coach-wheel, for

instance, should be pivoted at this point.) Hence this

gives one way of finding it. Another way of experiment-

ally determining its position is to find out the line of

the resultant in some two positions of the body by hanging

it up twice in diff"erent ways (see fig. 41) ; then the centre

of gravity must be the point common to the two lines

—

K
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that is, it must be where they cross. However the body-

be hung up by a single point, the centre of gravity will

always, when at rest, be vertically under or over the point

Fig. 41.

of suspension ; that is, the line of the resultant will always

pass through the fixed point.

The whole weight of a body, then, may be considered to

act at its centre of gravity; in other words, it behaves

for •purely statical purposes as if the whole mass of the

body were concentrated at this point.

Determination of the Centre of Gravity by Calculation.

131. The centre of gravity is always the most symmet-

rical point in a body. In a sphere it is the centre ; so it is

also in a cube or an ellipsoid, and in a square or circular

plate. In a parallelogram or a parallelopiped (that is,

solid parallelogram), it is the intersection of diagonals.

In a rod of uniform thickness and material, it is the

middle ; and so on.

But it is easy to calculate its position in less uniform

cases by any process which will determine the position of

the resultant of a number of parallel forces, for it is simply

the point through which the resultant ahvays passes.

In fact, if Wj, ?W2, are the masses, at the distance?



CHAP. VII.] CENTRE OF GRAVITY. 163

iCj, x^x.^^ from any line in the plane (restricting our-

selves to masses distribut(?d in a plane), the distance x of

their centre of gravity from the same line is given by

^^ m^x^ + m^^^
(see sect. 125).

And if the distances of the centre of gravity from two such

Lines (not parallel) are found, its position is completely

determined. In some cases, one line on which the centre

of gravity must lie is obvious, and then all that is further

necessary is to determine its distance from any given point

on that line, as in the following example.

Thus let this rod with middle point M (fig. 42) be of weight

two pounds, and let a ring A, weighing half a pound, be placed

on it four inches to the left of M, and another ring B, weighing

three pounds, six inches to the right ; then, if the rings fit

tightly, the centre of gravity of the whole must lie somewhere
in the length of the rod. To find -whereabouts, we need only

calculate the position of the resultant of the three weights (the

two rings and the rod itself) in any position except the vertical

one, say when horizontal. The magnitude of the resultant is

plainly 5i. Take moments about any point, say about A ; let

the resultant act at some unknown point C, such that KQ,=x.

Then we have 5iar=(3xl0)+ ^ g
(2x4) + (ix0) = 38; wherefore a; ^^^a^g j,j^^j^

C is . y t2ff inches to the right of M, 1 ^

and it is the centre of gravity.
Fi 40

^

If the bar is to be supportetl in

horizontal equilibrium, it must be pivoted or suspended by this

point, or, better, by a point just above it (see sect. 145).

Try now taking moments about M, also about B, also about O
(anywhere), and see that you always get the same result (when
interpreted properly), remembering to allow for negative

moments.

In this example it has happened, as stated above would often

happen, that the line of the resultant in one position of the body
(in this case when the rod is vertical) is perfectly obvious.

The arithmetical determination of the position of the
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Fig. 43.
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centre of gravity of a body, therefore, depends on precisely

the same principle as the experimental method, and con-

sists simply in finding the line of the resultant in any

two positions of the body, and noting

their point of intersection. It there-

fore scarcely needs further exposition

;

but it is probably necessary to show

how this same principle is applicable

to cases rather less obvious.

For instance, to find the centre of

gravity of a body made of two parts,

each part having a known centre of gravity ; say two flat

oblong plates, of known weights, 2o-^ and lo^, joined end to end.

Gj and Gg being the centre of each separately, their weights

may be considered as acting here, and so the resultant passes

through a point G, which divides the line G^Gg in the ratio

w^ : to^ (sect. 127)—that is, so that G^G : GGg : : w^ : w^

;

hence G is the centre of gravity of this combination.

Or we might take moments about any point 0, and say

to^ . OGi + w^ . OG2 = {^o^^ + 10^)00,

whence the distance OG, and therefore the position of G,

is determined.

The same method applies if a bit is taken away instead

of added on. Suppose, for instance, a square plate with a

round hole in it anywhere (fig. 44). The operation of find-

^ ing the centre of gravity in such a case

may be regarded as the same as that of

finding the position of the resultant of

two contrary forces—the weight W of

the whole square acting downwards at Gj

and the weight w of the missing bit acting

upioards at Gg. The centre of gravity

G must evidently be somewhere in the line G^Gg ; so, taking

moments about any point in this line, the equation

W- GGj - 10 ' OG2 = (W - w)OG determines its position.

Pig. 44.



CHAP. VII.] CBNTRB OP GRAVITY. 165

Fig. 45.

Or more simply thus : let x be the distance of G from

the centre of the square Gj, and let a be the distance of

the centre of the hole Gg from the same point G^ then

write Wi« = w{a + x) and solve for x.

Or again, the centre of gravity of a trapezium (that

is, a quadrilateral with

two parallel sides), which

may be regarded as a

triangle with the top

missing, can be found in

precisely the same way.

The last equation applies

as it stands, in fact, provided we know the positions of G^

and Gg, the centres of gravity of the whole and of the

missing triangles (see fig. 45).

The centre of gravity of a triangular plate is in the line

joining a vertex to the bisection of the opposite base

(because this line bisects every line in

the triangle parallel to the base). Three

such lines can be drawn, because there

are three vertices. Therefore these

three lines, joining each vertex to the

middle point of the opposite side,

meet in a point, and that point is

the centre of gravity. It is easily
'^"

seen to divide each line in the ratio 1 : 2—that is, it is

one-third of the way up from the base to the vertex.

The centre of gravity of any quadrilateral can be found

by dividing it into a pair of triangles in two different

ways, and taking the crossing-point of the lines joining the

triangles' centres of gravity.

The following statements may for the present be assumed

for the sake of examples.

The centre of gravity of any pyramid or cone is in the

line joining the vertex to the centre of gravity of the base
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and one quarter of the way up. The centre of gravity of a

solid hemisphere is fths of its radius from its fiat boundary

—that is, from its geometrical centre ; of a hollow hemi-

sphere is half-way between centre and circumference; of

a semicircular area is — , or approximately f of its radius

from the centre ; of a semicircular arc (like a wire) is — , or
TT

approximately j^y of its radius from the centre.

EXAMPLES—XVII.
(1) Resolve a force 20 into two parallel forces, one of them 3

times as far from the given force as the other.

(2) A weightless curtain rod has 4 equal rings on it, so that

the 2 end rings are 5 feet apart, and the 2 middle rings are

1 foot apart, one of the end rings being 18 inches from the

nearest middle one. Find the centre of gravity.

(3) Where would the centre of gravity in the last question be,

if the rod itself were 5 feet long, and weighed twice as

much as a ring ?

(4) A uniform circular disc has a circular hole punclied out of

it, extending from the circumference half-way to the

centre. Find the centre of gravity of the remainder.

(5) Forces of 1, 2, 3, and 4 lb. weight act along the sides of

a square whose diagonal measures 4 inches. Find the

magnitude and position of their resultant.

(6) Prove that the moment of a given ' couple ' is the same
ahout every point in its plane—that is, tliat a ' couple

'

has magnitude and direction but no position. What is

the moment of a couple consisting of two equal contrary

parallel forces, of 5 lb. weight each, separated by a per-

pendicular distance of 12 inches from each other?

(7) A uniform beam 10 feet long, weighing 80 lb., is suspended

from two points in a horizontal ceiling, 16 feet apart, by
strings each 5 feet long attached to its ends. Find the

tension in each string.

(8) An iron sphere weighing 50 lb. is resting against a smooth
vertical wall and a smooth inclined plane which is inclined

at 60° to the horizon. Find the pressures on the wall and

plane.
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(9) Find the resultant of parallel forces 1, -2, 4, -3, acting at

equal distances, of one foot each, along a weightless beam,
the negative sign indicating that the force acts upward.

(10) Three forces represented in magnitude, direcf-ion, and posi-

tion by OA, OB, and OC, are in equilibrium. Show that

Fig. 47.

O is the centre of area (the so-called centre of gravity) of

the triangle ABC.

Solution.—OA is equivalent to OB and BA.
and OC .. OB and BC.

BO M 20B and BA and BC.
3B0 M BA and BC.

But BA and BC .. 2BD if D bisects AC.
3B0 equals 2BD in magnitude and direction.

Q.E.D.

(11) A weight of 100 lb. is fixed to the top of a weightless rod or

strut 5 feet long, whose lower end rests in a corner

between .a floor and a vertical wall, while its upper end

is attached to the wall by a horizontal wire 4 feet long.

Calculate the tension in the wire, and the thrust in the

rod.

(12) A uniform rod 8 feet long, weighing 18 lb., is fastened at

one end to a vertical wall. by a smooth hinge, and is free

to move in a vertical plane perpendicular to the wall. It

is kept horizontal by a string 10 feet long, attached to its

free end and to a point in the wall. Find the tension in

the string, and the pressure on the hinge.

(13) A uniform ladder 20 feet long, weighing 60 lb., is supported

horizontally by two men at distances of 4 and 5 feet

respectively from its ends. Find the weight borne by each
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(14) A ladder 20 feet long, whose centre of gravity is 8 feet

from one end, is carried horizontally by two men, who
each carry the same weight. If one of them is at the

heavier, end, how far must the other be from the light

end?

(15) A uniform beam, 24 feet long and weighing 200 lb., is

supported on two props, one 6 feet from one end, the otlier

9 feet from the other end of the beam. Calculate the

pressure on each prop when a man weighing 180 lb.

stands on the beam 8 feet from the first prop.

(16) From one corner of a square plate, whose side is 10 inches,

a small square, whose side is 3 inches, is cut away. Find

the centre of gravity of the remainder.

(17) A circular hole 2 inches in diameter is cut in a uniform

circular plate six inches in diameter, the centres being

one inch apart. Find the centre of gravity of the per-

forated disc.

(18) Find the centre of gravity of weights of 7, 6, 9, and 2 lb.,

arranged at the coiners of a square of 1 foot side.

(19) Weights of 1, 3, 5, and 7 lb. are placed at the corners of a

uniform square plate of 10 inches side, -weighing 4 lb.

Find the centre of gravity of the system.

(20) Find the centre of gravity of weights 2, 3, 4, 5, 6, and 7 lb.

placed at the corners of a regular hexagon whose diagonally

opposite corners are 18 inches apart.

(21) Show that the centre of gravity of a uniform triangular

plate coincides with that of three equal masses placed (a)

at its angular points ; (&) at the middle points of its

sides.

(22) A triangular plate weighing 5 lb. is in shape an isosceles

triangle with its two equal sides each 5 feet long, and its

base 8 feet long. A weight of 10 lb. is hung at its

vertex. Find the centre of gravity of the whole.

(23) The mass of a plate in the form of an equilateral triangle

1 foot high is 4 lb. Masses of 1, 1, and 2 lb. respectively

are placed at its angular points. Find the centre of mass
of the system.

(24) From a square plate, whose diagonal is 21 inches, a corner is

cut olF by a line joining the middle points of two adjacent

sides. How far from the centre of the square is the centre

of gravity of the remainder ?

(25) If, in the previous question, the coiner, instead of being cut
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off, is folded over flat on to the plate, find the centre of

gravity of the whole.

(26) Weights each equal to 1 lb. are placed at the ends of one

side of a uniform plate 12 inches square weighing 2 lb.

Determine the centre of gravity of the system.

(27) Two similar uniform bars, 4 and 6 feet long, are joined end

to end at right angles so as to fonn an L. Find the centre

of gravity of the system.

(28) A uniform iron window-frame, 2 feet high, is in shape three

sides of a square, surmounted by a semicircular arc. Find

its centre of gi-avity.

(29) A uniform iron plate, 2 feet high, is in shape a square

surmounted by a semicircle whose base coincides with a

side of the square. Find its centre of gravity.

(30) A circular portion 5 inches in radius is removed from a

circular lamina 8 inches in radius, the distance between

the centres of the two circles being 2 inches. Find the

centre of gravity of the remainder.

(31) If the original plate was wood, and if the hole is filled up
with lead of the same thickness, but 12 times as heavy
bulk for bulk, Avhere is the centre of gravity ?

(32) Find the centre of gravity of a uniform plate 8 inches

square containing a circular hole of 2 inches diameter, the

centre of the hole being 2 inches from the centre of the

plate.

(33) The middle points of opposite sides of a lectangular plate

being joined, one of tiie four parts of the rectangle is

removed. By what fraction of the diagonal is the centre

of gravity of the remainder distant from the centre of the

rectangle ?

(34) Find the centre of gravity of a uniform quadrilateral plate

whose sides are 6, 4, 3, 4 inches long respectively, and
whose two equal sides are equally inclined to the others.

(35) Find the centre of gravity of a frame made of uniform bars

arranged as above.

(36) Where is the centre of gravity of a slate-frame, 9 inches by
12, of which one of the short bars has been removed ?

(37) Where is the centre of gravity of a triangular frame of sides

6, 4, 3 ? Where is that of a triangular plate of same size ?
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CHAPTER YIIL

ON EQUILIBRIUM {Statics).

132. Before leaving the subject of motion as affected by

force, there is one important part to be considered—namely,

the conditions under which forces may act on a body without

affecting its motion in any way whatever. One force cannot

satisfy these conditions, but a combination of any number

of forces greater than one may ; and it is interesting, and

for many practical purposes important, to be able to specify

these conditions, and to decide in any given case whether

they are satisfied or not. This part of the subject is called

' Statics,' and it is a branch of the more general science of

Dynamics. Its treatment will depend upon the ideas illus-

trated at length in the last chapter, which may be regarded

as an introduction to Statics; indeed, they are usually

considered as a part of it, and often are made to follow, or

are mixed up with, the subject of the present chapter.

133. When all the forces applied to any mass of matter

are so balanced that they produce no acceleration in it of

any kind, the forces are (or the body is) said to be in

equilibrium, and the conditions which they then necessarily

satisfy are called the conditions of equilibrium.

Observe that equilibrium does not mean rest or zero

velocity, it simply means zero acceleration—that is, constant

velocity. There is no occasion for the velocity to be

nothing ; all that is meant is that it keeps the same value,

whatever that may happen to be. Thus in the case of a

bucket lowered down a well, suppose that it is descending

with a constant velocity of 20 feet a second; then, its

acceleration being zero, the resultant force acting on it
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(being equal to mass-acceleration, sect. 45) must also be

zero. Now the actual forces acting on it are the pull of the

earth downwards, and the pull of the rope upwards j and

the resultant of these two being zero, it follows that they

are equal. The bucket is in fact simply obeying the first

law of motion. Whether it is descending or ascending or

standing still, matters nothing, the tension in the rope is

always equal to the weight of the bucket so long as its

velocity is not changing. The conditions of equilibrium

are therefore the conditions under which acceleration is

impossible ; or, as it is often correctly expressed, they are

the conditions under which rest is possible. It must be

observed that forces in equilibrium have no influence in

causiTig rest. They have no efifect on the motion at all,

and the body exposed to such forces simply obeys the first

law of motion. Eest is zero velocity. Equilibrium is zero

acceleration.

134. This being clear, we will proceed to state the con-

ditions of equilibrium for any number of forces, and first

of all

The Conditions of Equilibrium for Two Forces.

The conditions which two forces have to satisfy in order

to balance each other and have no efiect on the motion of

the body to which they are applied, are very simple and

obvious—namely : (1) The forces must both lie in the same

straight line
; (2) They must act in opposite directions ; and

(3) They must be equal.

This is all usually expressed by saying simply that the two
forces must be equal and opposite, the acting in the same straight

line being undei-stood.

If any number of forces are in equilibrium, the resultant

of any number of them must be equal and opposite to the

resultant of aU the rest. For obviously all the rest are

equivalent to their resultant, and that resultant is balanced



Fig. 48.

172 ELEMENTARY MECHANICS. [sBCT. 134.

by a force equal and opposite to it. The statement just

made is not to be quoted as a condition of equilibrium, it is

merely a manifest fact which may help us to ascertain the

conditions of equilibrium.

135. Let us see how it gives us the equilibrium conditions

for three forces, for instance. Any one force must be equal

and opposite to the resultant of the other two. Now any

two of them, as A and B, in order to have a resultant, must

,R lie in one plane, in other

words, must (if produced)

meet in a point, and through

this point their resultant mu^
pass, being the diagonal of

the parallelogram of forces;

the third force, C, in order

to maintain equilibrium, must, by the above statement,

be a prolongation of this diagonal, and hence it too passes

through the same point as the other two, and is in the

same plane—namely, the plane of the parallelogram; it

must also be equal to the diagonal in magnitude ; in other

words, it must be equal to' the third side of a triangle, two

of whose sides represent the other forces, such as OAR
(fig. 48). Its magnitude, direction, and position are thus

completely determined.

Let us restate these

:

The Conditions of Equilibrium for Three Forces.

(1) The three forces must all be in the same plane.

(2) Their lines of action must all pass through the same

point.

(3) It must be possible to draw a triangle with sides

parallel (or perpendicular; see foot-note, sect. Ill) to the

forces, and proportional to them in magnitude. The sides

of the triangle must all be drawn in the same sense as the

forces (thus in the figure, OA, AE, RO are the senses), and
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it must be possible to draw the triangle without taking the

pen off. This is usually expressed by saying that the three

forces must be representable by the sides of a triangle talcen

in m'der. The last two conditions together really include

the first.

Any number of forces greater than three need neither

meet in a point, nor lie in the same plane, in order to be in

equilibrium.

Conditions of Equilibrium of a Particle.

136. Any number of forces acting on a particle will

evidently be in equilibrium if they are representable by

the sides of a closed polygon (plane or otherwise) drawn

parallel to the respective forces and taken in order.

This is the same as saying that the forces must have no

resultant; for the line required to complete the polygon

represents the resultant (sect. 108), but no line is

required to complete a dosed polygon, hence there is no

resultant.

The converse is also true—namely, that if forces acting

on a particle are in equilibrium, they must be representable

by the sides of a polygon taken in order. This proposition

obviously includes the triangle of forces, for a triangle is

only a three-sided polygon.

Conditions of Equilibrium of a Bigid Body.

137. If the condition just stated for a particle is satisfied

by the forces acting on a rigid body, they can produce no

translation, only rotation ; hence a rigid body will evidently

be in equilibrium if the above condition for a particle be

satisfied, and if also the directions of all the forces pass

through a single point ; for a set of forces which intersect in

one point, and have zero resultant, cannot possibly rotate

anything. But this last condition, though sufficient^ is not

necessary—that is, the converse is not true : if the forces
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acting on a rigid body are in equilibrium, they must inr

deed be representable by the sides of some closed polygon

(plane or otherwise), but they need not meet in a point,

unless there are only three of them. The more general con-

dition for no rotation is that the moments of aU the forces

about every possible point or axis of rotation must add up

to zero.

If this and the particle condition are satisfied, equilibrium

is complete ; and conversely, wherever there is equilibrium,

these must be satisfied. So these are the necessary and

sufficient conditions, though not in a very simple form to

apply practically. It wiU be sufficient for us, however, to

consider at length, and put into a more practical form, only

the case where all the forces act in one plane ; and we will

proceed to this from a fresh point of view in the next

section ; but we may first notice a mode of expressing the

conditions of equilibrium in terms of the construction of

sect. 123.

If the force polygon is closed there is no resultant force,

but there may be a resultant couple, causing rotation. In

that case the funicular polygon cannot be closed by pro-

ducing its first and last sides, for they will be parallel.

Whenever the funicular polygon is closed there is no result-

ant moment, and the funicular polygon cannot be closed

unless the force polygon is closed ; so in cases of complete

equilibrium, the force polygon and the completed funicular

polygon are both closed.

General Conditions of Equilibrium of a Rigid Body acted

on by Forces in a Plane.

138. The motions possible to a rigid body are translation

or rotation or both, hence the conditions for equihbrium

really involve the conditions for no translation and for no

rotation (strictly speaking, for no rectilinear and for no

angular acceleration ; but the words translation and rotation
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are used instead of these more accurate terms for shortness

;

and the error is not great, for the conditions of equilibrium

render entire rest possible, though they do not in any way
enforce it).

Now, having assumed that the body can only move in a

plane (say a vertical plane), and that the forces only act in

this plane, it is obvious that all translations must be up or

down, or right or left, or else a motion compounded of the

two, which may be analysed into up or down and right or

left components. Hence, in order that there may be no

translation at all, the forces must have no resultant either

up or down or right or left : this being a practically con-

venient form of saying that they have no resultant at all at

a finite distance. Still, however, they might spin the body

(sect. 128) ; hence, in addition to the above, the condition

is necessary that the sum of their moments about any

point in the plane must vanish : and then the forces will be

unable to cause any motion at all. Or the complete condi-

tion for equilibrium might be stated by saying that the sum
of the force-moments about eren/ point in the plane must

be zero ; since this necessitates the non-existence of either a

resultant force or a resultant couple. This condition is,

however, not so practically applicable, in general, as the two

separate conditions just laid down, which we now repeat

with emphasis

:

T7)e general conditions of equilibrium for a body only

able to move in a plane are :

(1) That the sum of the components of all the forces in

any two directions in the plane at right angles to

each other shall vanish.

(2) That the sum of the moments of all the forces about

any one* point in the plane shall vanish.

* Ont point is sufficient if condition 1 is satisfied, because the moment of a

couple about every point is the same (sect. 128) ; hence, if it is zero about any

one point, it is zero altogether.
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(1) is the condition for no translation (properly speaking,

for no rectilinear acceleration).

(2) is the condition for no rotation (properly speaking,

for no angular acceleration).

If (1) is satisfied without (2), there is rotation, but no

translation.

If (2) is satisfied without (1), there would be translation,

but no rotation about the particular point considered. If

(2) is satisfied for every point, then (1) is also necessarily

satisfied, because the moment of an unbalanced force must

differ for different points.

If neither is satisfied, there must be both translation and

rotation.

If both are satisfied, there must be complete equilibrium.

The converse of each of these statements is also true.

In case the body on wliicli the forces act has one point fixed so

as to be incapable of translation, the necessary and sufficient

condition for equilibrium is simply that the resultant of all the

forces must pass through the fixed point or pivot (see sect. 119,

statement 3). And in general, instead of applying both con-

ditions (1) and (2), it would be sufficient to apply condition (2)

to three different points not in the same straight line, but it

would be more troublesome in practice.

ILLUSTRATIONS.

139. Consider a ladder standing on rough ground, and

resting against a perfectly smooth wall. What forces are

acting upon if? There is the weight of the ladder W
acting downwards at its centre of gravity G (fig. 49) ; there

is the pressure of the ground R acting in some unknown
upward direction at some angle with the vertical not

greater than the 'angle of repose' (sect. 115), and the

pressure of the wall P acting normal to the waU or

horizontally; and that is all. But the ladder is in equi-
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librium, hence these three forces must pass through a point

(sect. 135).

Now W and P, whose directions are known, intersect

when produced in the point C

;

hence R also passes through the

point C (fig. 50).

This determines its direction.

Moreover, when three forces

are in equilibrium, they must be

proportional to the sides of any

triangle which are drawn respec-

tively parallel to the forces.

Such a triangle is ABC (fig.

50) ; CB is parallel to W, and

represents it ; BA is parallel to P,

and represents it; and AC is

parallel to R, and represents it. If, then, the position of

the ladder were given us, and also its weight, we should

simply have to draw the above diagram, and measure the

sides of the triangle ABC, in

order to determine the pressurec

P and R in terms of W; the

direction of R being also given by

measuring either the angle BAC or

BCA.
This would be solving the pro-

blem by construction.

140. But suppose we wished to

do it by calculation, applying the

general conditions of sect. 138: we
should first consider the inclined

force R resolved into two (see fig.

49), a normal pressure IN", and a friction F (the friction

being always in such direction as best hinders slipping,

sect. 115), and then say that, since there is equilibrium
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as regards translation, there can be first no up or down

resultant, or N and W must be equal and opposite; and

then that there can be no horizontal components, or F and

P must be equal and opposite.

But to determine either F or P, in terms of W, we must

make use of the second condition—the condition for no

rotation—namely, that the forces can have no rotating

power, or resultant moment, about any point. Take it

numerically :

Let lis suppose that we are told the weight of the ladder is 60

lb., and that its centre of gravity is I of its length up, that the

foot of the ladder stands six feet from the wall, and the top of the

ladder thirty feet from the ground ; then, as the condition for

no translation, we have already found

and F=P.

But we don't know either F or P yet ; we must find them by
taking moments about some point—any point we like, for we
know that since there is no rotation the sum of the moments
about every point must be zero.

Suppose we take njoments about the point A, then neither N
nor F has any moment ; so the moment of P, P x 30 feet, must be
equal and opposite to the moment of W, W x ^ of 6 feet.

hence 15P=W=60 lb. weight,

or P= the weight of 4 lb.

And we already know that F and P are equal ; so then N, F,

and P are all known, and now too we know R, because

R2=:N2 + F2 ; that is, R= 60-13 lb weight.

See if this agrees with a determination by measurement,

and then repeat the whole process witli the wall rough

instead of the ground, and then with both wall and ground

rough.

If the inclination of the required R to the vertical in

fig. 49 be greater than the limiting angle of friction,

e(][uilibrium is impossible, unless a wedge be placed under
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t"ig. 51.

the foot of the ladder, which may be considered as equiv-

alent to tilting the ground up. If the ground is like a

sheet of ice, the required force F can be supplied by a

rope tying the ladder to the waD.

If the ground is level and smooth,

and if no extra force is applied to

the foot of the ladder, equilibrium

cannot be attained by any roughness

of wall short of actual attachment,

as by a hook, because N and W will -

not intersect except at infinity.

141. Next consider a weightless ~

rod resting against a smooth wall

over a smooth rail, and with a weight

stuck somewhere on it, as shown in fig. 51. (A section

only of the rail supporting the rod is shown, as a small

circle.) To determine where the weight must be for

equilibrium, the forces acting are : the weight, W ; the

normal pressure of the wall, P; and the normal pressure

of the rail, R.

Now, here again are three forces, so to be in equilibrium

they ought to intersect in a point; but in fig. 51 they do

not intersect in a point, produce them as much as you

like j their direction encloses a triangle

CjCgCg instead. Hence there is no equi-

librium, and cannot be until the three

points Ci,C2,^3 coincide in one point C.

Observe that no alteration of magni-

tude in any of the forces can assist

equilibrium ; a shift of either the direc-

tion or the position of some force is

essential. The easiest thing to shift is

the load ; so to find where it ought to

be shifted to, draw a fresh figure, and from C, the inter-

section of P and R, draw a vertical ; this will cut the rod

Fig. 52.
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at the point where the weight ought to be placed for

equilibrium (fig. 52).

To measure the relation between the magnitudes of the forces

when the weight is in this place, we can produce E till it cuts

the wall in B ; then the triangle ABC has its sides parallel to the

three forces,

BA to W,
AC to P,

CB to R

;

hence the lengths of these sides will give the forces, if one of them,

say W, is known.

It is easy to see that W=T^+W^.
In fig. 51 the rod would be slipping up the wall and falling

over the rail ; this is because the line of W falls to the right of

the point q, where P and R intersect. If the line of W fell to

the left of this point, the rod would slip down the wall, and
drop between it and the rail. There is just one position where

it does not slip either way ; but it is unstably balanced, because

motion either way would allow the weight to get lower. Of
course if there was any friction, there would be a margin of

stability.

142. Now consider a body on an inclined plane held

still by some force P acting in

any given direction, as depicted

in fig. 64, with a diagram, fig. 53.

There are three forces, P, R, and

W, in equilibrium (R being the

normal pressure of the plane),

hence P must be in the plane

of the other two. To find its

magnitude : take off a length AB
to represent the weight of the

body, and from B draw a line

parallel to P, till it cuts R pro-

duced in the point C. Then we

have a triangle ABC (fig. 53) ; BC represents P, and AC
represents R; and it is easy to measure these lengths on

the same scale as AB was drawn.

Fig. 53.
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There are in general two positions in which the same

force P can hold up the body. For draw a circle with

centre B and radius BC, it will cut R in two points, C
and D ; hence the same force P would be just as effective

if it acted in a direction shown dotted as P' parallel to

BD ; but the pressure on the plane would then be greater

than AC, namely, AD.
There is one case when only one direction will do, and

that is when the radius of the circle is so small that it

only just touches R. This radius then represents the

minimum force possible, and shows that it must act per-

pendicularly to R and therefore parallel to tlie plane, and

must have the same relation to the weight that the height

of the plane has to its length. K the plane be rough,

friction is such a force.

If the applied force P is smaller than this—that is, so small

that the line representing it is unable to reach across from

B to the line K, then there cannot be

equilibrium ; and even if P is greater

than this, but does not act in the best

direction, there need not be equilibrium,

and the body will slide down, as in fig.

64 : the accelerative or resultant eftect-

ive force being the component of W
along the plane—namely, AM, minus the

component of P along tlie plane—namely,

AN. The pressure on the plane is the

component of W at right angles to the

plane, minus the component of P at

right angles to the plane ; that is,

Am—Aw.

When the plane is rough its reaction R need not be noi-mal,

but may be inclined at any angle up to the limiting angle of

friction on either side of the normal. There will thus be two
critical cases—one when the body is on the point of sliding

down, the other when it is on the verge of being hauled up.

The same construction as above (fig. 53) suffices to determine

the needful applied force corresponding to one or other of these

Fig. 54.
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two conditions—namely, produce either limiting R backward

and bridge the gap between it and B with a line in the desired

direction (fig. 55). If no force at all is

needed to hold the body up, the reaction

R is vertical ; and if the body is on the

verge of slipping down, the tilt of the

plane is the angle of repose. The least

force necessary in any given case is the

perpendicular from B on to the line of

R ; hence the least force is inclined to

the plane just as much as R is inclined

to the normal, or the best angle of trac-

tion is the angle of repose. If the pro-

duced line of R ever lies to the left of

B, it means that some force is necessary

to drag the body down ; the inclination of the plane being in

that case less than the angle of repose.

143. We have here considered only the slipping of the

body ; but if it were a ball it would roll, and if it were

a block it might topple over, before it began to slide. Let

us just see how soon a rectangular block on a rough inclined

plane will topple over.

We know that the resultant of aU the forces which

gravity exerts on the particles of the body passes through

the centre of gravity—that is,

the body acts statically as

if its weight were all concen-

trated at the centre of gravity.

Hence if this point be sup-

ported, the whole body is

supported. The line of W
is the vertical through G;
and if this line falls inside

the base,* the body cannot topple over ; it can only slide

* By 'the base' must be understood the area enclosed by a string stretched

round tliat part of the body which touches the plane : consider, for example, the

case of a retort stand with a forked foot.

Fig. 66.
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down. To upset the body, it must be tilted through the angle

AGO (fig. 56) ; and if it bo momentarily tilted through

less than this, it will return to its old position. The
angle AGO is a measure

of the ' steadiness :
' the

larger this angle, the more

steady is the body. If the

vertical through G fell -

through 0, the body would

be balanced in unstable

equilibrium, and directly the vertical passed outside the

point 0, the body would topple over; and this applies

universally.

A wagon going along with one wheel in the gutter does not

upset so long as the vertical through its centre of gravity falls

inside the wheel-base ; but the act of going over a stone may
tilt it sufficiently to make this line pass beyond the base, and

then it upsets.

The two bodies in fig. 57 resting on a flat plane are

both evidently steady, but the steadiness of the first is

much greater than that of the second; and this for two

reasons, firstly, because its base is wider, secondly, because

its centre of gmvity is lower.
"'*

The centre of gravity of an omnibus full outside, but with no

inside passengers, must be very high up ; and a moderate shock

might be sufficient to destroy its stability and upset it.

A block resting on a level surface can be upset by a

horizontal force applied high enough. The criterion is

obtained by considering moments about the forward edge

of its base; if the moment of the force is equal to the

moment of the weight about this edge, the body is on

* The most useful measures of steadiness are 1st, tJie moment of stability—
uamely, the monient of the couple required to upset the body, or the weight of

the body multiplied by the distance OA ; and 2d, the dyiiamic stability—na,me\y,

the work that is required to upset it, or the weight of the body multiplied by the
difference of the distances AG aiul OG (fig. 57).
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the point of tilting over. If the force applied is sufficient

to call out the maximum friction, the body is on the point

of sliding ; and at one particular altitude both conditions

can be satisfied simultaneously. It is easy to show that

this critical altitude for a symmetrical block is half the

base divided by the coefficient of friction.

Stability and Instability of Equilibrium.

144. A body in equilibrium, with infinitely small

stability, is said to possess unstable equilibrium ; the least

shock must upset it.

Thus, if you narrow the above block till its base is nothing,

there remains only a plane or line standing on its edge, and
though, when vertical, the centre of gravity of this does not fall

without its base, and therefore it is in equilibrium, yet the

slightest breath will upset it.

This is not the case with all bodies balanced on a

point. A body with a rounded base resting on a plane

may be staUe enough though it cannot be called steady.

Bodies supported by a point, whether slung like a pendu-

lum or pivoted like a compass-needle or rolling like the

half of a split billiard-ball, are said to be in equilibrium

;

and these examples are in stable equilibrium, because,

if you rock them, they will return to their original position

after a few oscillations (see sect. 146).

Any segment of a sphere less than the whole sphere will so

rock. And a leaden hemisphere would rock in stable equilibrium

even if loaded above with a bulky pith figure.

It is quite possible for a body to possess an equilibrium

which is neither stable nor unstable—that is, the body,

when disturbed, neither topples over nor returns to its

original position. All that is necessary is that the vertical



CHAP. VIII.] STABILITY OF EQUILIBRIUM. 185

through G shall always pass througli the point of support,

as in the case of a sphere on a flat table; or that the

centre of gravity itself shall be supported, as in a flywheel.

The body is then indiff'erent how you place it, and its

equilibrium is called neutral.

An egg lying on its side has neutral equilibrium for rolling, and

stable equilibrium for * pitching ;
' it is unstable all ways when

balanced on its end.

145. In the case of a body pivoted at a point, if the

point is above the centre of gravity,

the equilibrium is perfectly stable

;

if at the centre of gravity, it is

neutral; and if beloiVj it is un-

stable.

Examples.—The nearer the centre

of gravity of the beam of a balance

is to the point of support, the more
sensitive is the balance ; but it is

necessary to have the centre of

gravity slightly lower than the point

of support, or the equilibrium would not be stable.

If the balance is to be equally sensitive for all loads, its three

knife-edges, the one supporting the beam and the other two
supporting the pans, must be in one straight line ; the restoring

force is then simply the moment of the displaced centre of

gravity of the tilted beam. If the weight of the beam W is

displaced a minute horizontal distance x, by slightly unequal

loads P and Q in the pans, each supported at a distance a
from the fulcrum, the equation of equilibrium is (P-Q)a = Wa;;
and of course the pressure on the fulcrum is P + Q +W.
A compass-needle is always made

with a little central cap, into which
the point supporting the needle passes

from below, so as to be above the

centre of gravity of the needle. See Pig 59

fig. 59.

Again, it is easy to balance a curved beam on a knife-edge,

while a straight one will not remain balanced for more than a
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few seconds, unless loaded. Compare the diagrams in Hg. 60.

The weights in the third must be rigidly attached to the beam by-

rods, not by strings.

^::k~^ ^:j^
stable. Unstable.

Fig. 60.

Stable.

Pig. 61.

146. In the case of a body with a spherical base standing

on a level plane, its centre of gravity cannot help being

©above the point of contact with the plane,

and yet the equilibrium may be stable or

neutral; as, for instance, in a sphere the

equilibrium is neutral, and in a hemisphere

it is stable ; or again, it may be unstable,

as in an egg balanced on one end.

The centre of the sphere, of which the

base forms a j^art, is in these cases to be

regarded as the real point of support, and

then the former rules apply. Thus, if G
be the centre of gravity of the combina-

tion shown in fig. 61, and if C be the centre of the

sphere of which the base forms a part, the whole will

oscillate in stable equilibrium.

When a body rolls along any surface, its centre of gravity in

general desciibes a curve with crests and hollows ; every hollow

corresponds to a position of stable equilibrium (the centre of

gravity is then in one of its lowest positions) ; every crest corre-

sponds to a position of unstable equilibrium, and a measure of

the instability is the curvature (see sect. 13) of the path of the

centre of gravity. For instance, in the case of a body balanced

on a point, the higher the centre of gravity above the point the

less curved will be its path, and the less unstable will be the

equilibrium : for example, it is easy to balance a stick loaded

at one end on one's finger if the load be at the top of the stick,

but if the stick be inverted it is not easy.

The criterion for equilibrium, as well for its stability
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or instability, obtained by considering the path of the

centre of gravity, is a useful and very general one. When
weights are in equilibrium, as on an inclined plane or on

a system of pulleys, it is because the path of their common
centre of gravity is horizontal if it move at all. If the

path is a horizontal straight line, the equilibrium is neutral

and a slight shift makes no difference. It is an instructive

exercise to prove that in the case of weights in equilibrium

on an inclined plane the path of their centre of gravity is a

horizontal line.

If the path of a centre of gravity is curved, the equi-

librium is stable or unstable according as it curves upwards

or downwards.

Au instructive example is afforded by a wooden disc loaded

witli lead near its circumference. Such a cylinder placed on a

slightly inclined plane may easily roll uphill into a position of

equilibrium \vith its centre of gravity vertically over the point of

support.

Metacentre.—In cases where a small disturbance changes

the point of support, like the case of a portion of a sphere

on a level table, there is usually a point in the body

through which a vertical through the point of support

(what may be called the line of support) will continue to

pass, at least if the disturbance be only small. This

point is the intersection of the new line of support with

the old line of support, if the latter be considered as

marked in the body and rotating with it, and it is called

the metacentre. In the case of a sphere, the centre of the

sphere is its metacentre. The conditions of equilibrium for

small disturbances are the same as if this point were a pivot,

and its height above or below the centre of gravity measures

the stability or the instability of the equilibrium. For

bodies of irregular shape it does not follow that the suc-

cessive lines of support intersect at all, and then there is no
metacentre. Often there are two, one for a rolling or broad*
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side motion, the other for a pitching or lengthways motion.

For further information on this subject, see sect. 179.

147. Criterion of eqLuilibrium by zero work done.—
A powerful method for determining condition of equili-

Fig. 62.—Letter-balance.

brium is sometimes called the method of * virtual velocities,'

and consists in observing that if a body subject to any

forces is in equilibrium, it must be true that when slightly

shifted in any way no work is done; that is to say, if

every force is multii:>lied by the velocity of its point of

application when a displacement is made, or by the virtual

velocity of this point when displacement is only imagined,

the products will all add up to zero.

It is interesting and easy to show that in cases of levers,

inclined planes, pulleys, &c., worked by gravity, only

the centre of gravity of everything remains unchanged in

vertical height whenever there is smooth equilibrium.

Again, in the case of any parallel motion, such as is

employed to support the platform of railway weighing-

machines and in the ordinary scale letter-balances, the

position of the thing to be weighed is unimportant ; and it

is unimportant because wherever the load is, on any parallel-

moving scale-pan, there will be the same vertical descent,

and therefore the same virtual velocity, and the same work

done.-
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EXAMPLES—XVIII.

(1) When a weight is supported on an inclined plane by a force

acting along the plane, show that the ratio of the force to

the weight is the same as the ratio of the height of the

plane to its length.

(2) And show that the ratio of the supporting force to the

normal pressure on the plane is the same as the ratio of

the height of the plane to its base.

(3) Hence show that if a body is supported on a plane only by
friction, it will begin to slide down when the ratio of the

height of the plane to its base is equal to the coefficient of

friction (see sects. 142 and 115).

(4) A picture-frame weighing 10 lb. is hung by a cord passing

over a nail, the two parts of the cord making an angle of

120° with each other. Find tlie tension in the cord.

(5) If the two parts of the cord included an angle of 90°, what
would then be the tension ?

(6) If a rod rests inside a smooth spherical shell, its centre of

gravity must be vertically under the centre of the sphere.

Hence, if the rod be uniform, it can only lie horizontally,

unless it is equal in length to the diameter of the sphere.

Verify these statements.

(7) It is wished to upset a tall column by means of a rope of

given length, pulled by men on the ground. At what
height above the base of the column will it be best to

attach the rope ?

(8) A uniform rod hanging from one end is pulled aside from the

vertical by a horizontal force equal to half its weight

applied at its lower end. At what angle will it be in

equilibrium ?

(9) A simple pendulum is pulled aside from the vertical by a

horizontal force equal to half its weight. At what angle

will it be in equilibrium ?

(10) A bar of uniform thickness inclined at an angle of 30° with

the horizontal, with one end against a wall, rests across a

rail at a point 2 feet away from that end. Find the

length of the bar if the rail and wall are both smooth.

(11) If the bar is 8 feet long and weighs 10 lb., and the rail is

smooth but the wall rough, show by help of a diagram the

direction and magnitude of the pressure of the bar against

the wall.
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(12) Construct a diagram for the case of a bar in a given position,

but with an adjustable load, supported by a rough wall

and rail ; (a) when the bar is on the point of falling over

the rail ; (&) when it is on the point of slipping down
between rail and wall.

(13) Given distance of rail from wall and length of bar, as a and

b respectively, find its position of equilibrium if perfectly

smooth.

(14) A ladder 30 feet long, whose centre of gravity is 12 feet

from the loM^er end, rests on rough ground against a smooth
wall, which is 10 feet distant from the foot of the ladder.

Draw a figure to scale showing the directions of the

reaction of the wall and of the ground ; and find by
measurement the magnitudes of these reactions if the

ladder weighs 80 lb.

(15) Check the above by calculating the result by the method of

moments, and determine the coefficient of friction.

(16) Show that a light ladder ascended by a heavy weight is not

safe if inclined at an angle greater than the angle of repose.

(17) A beam 10 feet long weighing 80 lb., with its centre of

gravity 4 feet from one end, is suspended horizontally by
two stiings attached to its ends, and fastened to two pegs

in a horizontal line 16 feet apart ; the shorter one of the

strings is 5 feet long. Find the length of the other string,

and the tensions in the two strings.

(18) A rectangular block of oak 8 inches long, 3 inches broad, and

3 inches thick, rests with one of its square faces on a

horizontal oak surface. If the surface be gradually tilted,

how will the block begin to move ? [Take the coefficient

of friction as 0*4.]

(19) If it stand on a level surface with coefficient of friction J,

and if it weigh 28 lb., what force would make it uncertain

whether to topple over or slide along ?

(20) A solid consists of a hemisphere with a cylinder standing

centrally on the base of the hemisphere ; the radii of the

hemisphere and cylinder are respectively 6 and 3 inches,

and the height of the cylinder is 6 inches. Find the

position of the centre of gravity of the solid.

(21) If the above solid is placed on its hemispherical end on a

horizontal table, will the equilibrium be stable or unstable ?

(22) If the same solid stands on its cylindrical end, through what
angle must it be turned to upset it ?
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(23) A wooden cylinder, 1 foot in diameter, with some symmet-
rical holes of two inches diameter already l)ored through it

lengthways at a margin of one inch from the circumference,

is found to weigh 3 Ih., and one of the holes is then

filled up Avith 3 lb. of lead. Find the position of the

centre of gravity, the restoring moment when the cylinder

is rolled through 90° on a flat surface, and also its position

of equilibrium when on an inclined surface.

(24) On what slant would this cylinder be on the verge of rolling

down? Construct its position of equilibrium on a plane

rising 1 in 6.
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CHAPTER IX.

ON MACHINES AND OTHER CONTRIVANCES
ILLUSTRATING THE FOREGOING PRINCIPLES.

ELEMENTS OP APPLIED MECHANICS.

148. A machine is an instrument for transferring energy

in such a manner that certain useful or desirable work is

done. The effective force exerted by the agent which loses

the energy used often to be called the ' power,' the force

exerted by the body which receives it being called the

'weight;' but the terms 'effort' and 'resistance,' intro-

duced by Rankine, are better. The machine is simply

a mediary by which the energy is indirectly transferred

from one body to the other.

The quantity of energy gained by the one body is equal

to that lost by the other, except for what may become dis-

sipated as heat or other non-mechanical form of energy ; in

other words, no increase in quantity of energy is ever

effected by any machine.

Numerous attempts have been made to construct a

machine able to effect this : such attempts are called the

search after perpetual motion, and always result in failure

(cf. sect. 88). All that one can do by means of any

machine is to vary the ratio of the two factors, F and 5,

occurring in the product work, the product itself remaining

unalterable. But just as the number 12 may be split up

into various pairs of factors, 12 and 1, 6 and 2, 3 and 4, so

the factors of the constant product work may be varied

at will : and this is the use of a machine. Given a force.
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and a distance through which it can act, a machine can

always be devised to overcome any other force whatever

through some definite distance, such that the product

of the second force and distance is nearly equal to the

product of the first force and distance. The greater the

force required to be overcome, tlie smaller is the distance

through which it can be overcome by a given expenditure

of energy. In otlier words, a feeble agent moving quickly

may be able, by means of a machine, to overcome a great re-

sistance, that is, may move slowly an obstacle of considerable

strength ; and the slowness will be proportional to the force

to be overcome. This is often expressed by saying that

what is gained by any machine in power is lost in time (or

in distance). Or again, by saying that the 'mechanical

advantage ' of a machine—the ratio of the resistance over-

come to the least force required—is the inverse of the ratio

of the distance travelled by the ' resistance ' to the distance

travelled by the 'effort;' supposing the machine to be

perfectly efficient, having no friction. A brief way of

stating the same thing is to say that the ' force-ratio,' which

is another name for 'mechanical advantage,' varies inversely

with the 'speed-ratio.'

This condition may also be expressed by saying that if any
system in equilibrium under the action of any number of forces

receive a slight displacement, then the total work done by the

whole of the forces, or the total loss of potential energy, is zero.

In other words, the sum of the products of all the forces into the

respective distances they have simultaneously moved, or, what is

the same thing, into the respective velocities of their points of

application measured along their lines of action, is zero. This is

frequently a useful mode of finding the condition of equilibrium

of a system, and it has already been so applied in sect. 147.

It is often referred to as the principle of virtual work or virtual

velocities ; the meaning of the word ' virtual ' being merely that

the displacement or shift supposed to take place is an imaginary

one, and need not really occur.

Efficiency.—If a machine could be arranged so that the

M
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work done by the one body were equal to the energy gained

by the other, the machine would be called perfectly efficient

—that is, its efficiency would be unity. But in practice

there is always some loss of energy by friction, &c., and so

the efficiency is a proper fraction; and the ratio of the

energy recovered to the energy put in is a measure of the

'efficiency' of the machine. It wiU be seen from this

definition of efficiency that it is equal to the product of the

force-ratio and the speed-ratio.

Simple Machines.

149. A pulley is a simple machine by which a weight may
apparently be supported by means of a force only half as great as

itself; the obvious reason being that the other half of the

force necessary to support the weight is supplied by the hook
-

; gi^ fixed in the ceiling, to which one

^ _a^ end of the cord is attached (fig. 63). If

the force P exceeds in the slightest

degree half the weight, it must raise it

;

but only half as fast as itself ascends.

To raise it at the same rate would
require both parts of the loop of cord in

which W is slung to be lifted. If only

one end is lifted, the wheel or pulley

rotates, and W only rises at half the

rate.

The mechanical advantage or * force-

ratio ' of a simple pulley is thus 2, and its ' speed-ratio ' is ^.

An inclined plane is another simple machine on which a weight

may be apparently supported

by a force less than its own
weight ; the reason being that

the rest of the necessary

force is supplied in a station-

ary manner by the pressure

of the plane. If the sustain-

ing force or 'eft'ort,' P, is

applied as shown in fig. 64, it is evident that a descent of P
through a vertical height /, ecjual to the whole length of the

Fig. 63.

Fig. 64.
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plane, would pull W all the way up the plane indeed, but

would only raise it a vertical height h ; hence the mecJianical

advantage of this machine is -^ ; and if P exceeds W^ in the

slightest degree, it must raise the weight ; provided, of course,

that there is no friction.

A lever, a wheel and axle, and a capstan are simple machines

in which a weight applied at a great distance from au axis of

rotation may apparently support a greater weight nearer the

axis ; the reason being that the rest, or the whole, of the sus-

taining force is supplied by the support of the axis, or the

fulcrum.

Thus, in the left-hand diagram of fig. 65, P and W are both

really supported by the fulcrum F ; the pressure on it being

always W-f-P; in the right-hand diagram the weight is sustained

by F and P jointly, and the pressure on the fulcrum is W - P.

All that P does is to balance the rotation tendency of W ; and
for this purpose its moment, P x AF, must equal the moment of

Fig. 65.

W, W X BF. Hence the mechanical advantage of a lever, the

AF
ratio ofW to P, is always ^q^, or the ratio of the ' arms ' of the

lever.

In the case of the steelyard (fig. 65), the weight of the *yard,*

Y, acting at its centre of gravity, helps the smaller weight P, so

that W . BF=P. AF-^y . GF.
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A lever cannot, however, be used to raise weights far; but an
easy modification, securing contin-

uous action, is to make the ful-

crum F into a pivot, and to apply

P and W at the circumferences of

circles or wheels, with common centre

F. Thus we get the wheel and axle,

or capstan (fig. 66), of which the

mechanical advantage is, as before,

the ratio of the distance of P from
the pivot to the distance of W from

the pivot—that is, the radius of the wheel divided by the radius

of the axle.

Fig. 66.

Combinations of Simple Machines.

150. Any of these machines may be combined together, so

that the resistance of one machine constitutes the ' effort ' of the

next, and the mechanical advantage of the combination will be

the product of their separate mechanical advantages.

Thus three pulleys are shown combined in fig, 67, and the

Fig. 68. Fig. 69.

mechanical advantage of the combination is 2 x 2 x 2, or 8, if the

pulleys are weightless. If W is raised one foot, P must rise

eight feet. The whole pull on W is here the pull of the beam
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above plus P ; hence the pull on the beam isW - P. The arrange-

ment may evidently be turned upside down, so that the beam
becomes the weight, and the weight the beam (fig. 68). In this

case the weight supported is less by P than it was in the former

case. Fig. 67 used often to be referred to as the first system of

pulleys, and fig. 68 as the third.

If the weight of the pulleys is not small enough to be neglected,

call them u\, il\, &c., and consider fig. 67. The lowest pulley is

attached to the weight, and rises at the same rate as it does ; the

second pulley rises at twice, and the third at four times this

speed. Now, if any weight w be raised a height h, the work
done \s,wh: so ifW is raised one foot,

represents the whole work done by P, in moving through a
distance of 8 feet, that is, by the expenditure of 8 P units of

potential energy ; hence, in general when there is equilibrium,

the mechanical advantage W : P must be determined from the

equation,

2"P=W + l<7i + 22^2+ 4i^3+ . • . .
+2'»-i?6'„,

if there are n pulleys. This equation expresses the fact

that the algebraical total of the work done is nothing ; or, if we
choose to put it so, that the common centre of gravity remains

fixed in position, or at any rate does not rise or fall.

The only one of the old-fashioned systems of pulleys frequently

employed for hoisting is what was called the second system,

Avhere there are two blocks of pulleys, one attached to the weight,

and the other to the beam ; and where the same rope passes

round all (fig. 69). The mechanical advantage in this case is

simply equal to the number of strings supporting the weight:

which in the figure happens to be four.

151. A combination of levei-s is sometimes used, but more often

for the purpose of magnifying small motions than for exerting

great force ; that is, for increasing tlie factor s in the product

work at the expense of the factor F. In fig. 70 the motion of

the screw is magnified, the pointer describing a considerable arc

for one turn of the screw ; such an arrangement is sometimes

employed for measuring expansion of a rod by heat, as in the

so-called Ferguson's pyrometer : the screw-support being there

moved far back, and the rod inserted horizontally between the

screw and the lever. A screw alone may be regarded as a
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combination of a lever and an inclined plane, the inclined plane

being coiled up into a spiral or screw-thread (fig. 71). For

every complete revolution of the lever, the resistance is over-

come through a distance equal to that between the spires

of the screw-threads; hence the mechanical advantage of a

liiiiiiiiiiiiiiiiiiiiiiiiiiiH

Fig. 70. Fig. 71.

screw-press is the circumference of the circle traversed by
the force applied at right angles to the lever, divided by the
* pitch ' of the screw—that is, the distance between its successive

spires. Wheels and axles are usually combined by means of

cogs, as is well seen in the wheel-work of a clock.

A pulley is often used in conjunction with a capstan, the rope

passing round a pulley attached to the Aveight, and the mechanical

advantage of the capstan being thereby douljled. Moreover, the

free end of the rope, instead of being rigidly fixed, may be coiled

_ round another smaller axle with the

jii^ same centre F, so that its tension

BSS '

(

' shall help the force P (fig. 72). By
^ii^ |p this means the mechanical advan-

tage can be increased to any desired

extent, for the weight is now wound
up only because the cord wraps
itself on to one, the larger, axle

!

faster than it unwraps itself from
I the other smaller axle ; and the two

axles may be as nearly the same

yy
size as one pleases. The mechanical
advantage is the radius of tlie wheel

Fig. 72.—Chinese Capstan. (or the length of P's arm) divided

by the difference of the radii of the
two axles, the whole being multiplied by two because of the
pulley.
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One of the most useful forms of pulley block, the * Weston ' or

differential pulley, depends on this principle. It is shown in

diagram and in actuality in fig. 73. An endless chain is em-

ployed, and the wheels have teeth or ridges giip-

ping links to prevent slipping. The two wheels are

of unequal size, and w^hen the chain is pulled, one of

its loops increases in size and the other decreases,

so the weight can be hauled up. Its mechanical

advantage is twice the radius of the big wheel

divided by the difference of radii ; or, what is the

same thing, twice the number of teeth in the big

wheel divided by the number of its teeth in excess

of the smaller one. But as the teeth differ in

number usually by one only, the mechanical

advantage is usually simply twice the number of

teeth in the bigger wheel. It is a convenient

feature of all machines with a great mechanical

advantage that the friction is able to sustain the

load without any applied force.

A wheel and axle may be combined with a screw,

as shown in the contrivance of fig. 74. When
the handle is turned, the screw-thread on its axle

sends the cog-wheel forward one tooth for every

revolution. Such a screw, w^hich itself does not

advance in a nut, but which merely rotates in •

pi„ 73

ordinary bearings, is called an 'endless' screw.

If / is the length of the handle arm, n the number of teeth in the

wheel, and r the radius of the axle on which the rope winds itself,

the mechanical advantage of the whole machine is -^— or—

.

2vr r

152. To drive a machine an agent must expend energy

upon it, and its rate of expenditure of energy is called its

* power.'* But when the agent is inanimate (like running

water or compressed steam), its utilised, power is often

spoken of as the power of the machine driven by it. The

* Or sometimes its activity. The word ' power ' is frequently used to express

the maximum activity of which an engine is capable ; the actual power at any
instant is best called its 'activity,' for an engine of 20 horse-power may be idle

sometimes. The use of the term 'power' to denote a force applied to a lever

is simple misuse, and can only be tolerated as an old-fashioned usage.
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poioer of a machine, then, means its rate of doing work ; in

other words, it equals the work done in any short time

divided by that time—so many foot-poundals per second.

Fig. 74.

A machine is said to have one ' horse-power ' when it can

do 17,600 units of work every second; which is equivalent

to raising 33,000 lb. of matter one foot high against gravity

every minute.

EXAMPLES-XIX.

(1) Apply the principle of * virtual velocities' to determine the

condition of equilibrium of a body resting on a rough

inclined plane.

The principle is that, if the body receives a slight displacement, the

total work done must be zero. The limiting condition required is given

in Ex. XVIII. (3), Chap. VIII.

(2) Show that a body on a plane tilted to the ' angle of repose

'

(see sect. 115) is on the point of sliding.

(3) If a hundredweight be hung on to the hook W in fig. 67,
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what force P is required to support it, the i)ulleys being

weightless ?

(4) K each pulley weighed 4 lb., what force would be necessary?

(6) In fig. 68 show that if the pulleys are weightless the

mechanical advantage is 7 ; but that if they each weigh

^th as much as the weight, then the mechanical advantage

is 8J.

(6) If, in fig. 69, W=20 lb. and P = 6, find the velocity ofW when
it has risen one foot, neglecting friction.

(7) Find also the accelerations of W and of P, and the time

required for P to descend 16 feet.

(8) Find the con-ect position of the weight W in fig. 68, so that

the rod on which it hangs may be horizontal. (The figure

is not quite correct : the load has to be nearer the string

with the greatest tension.

)

(9) If four men, each pushing with a force equal to 1 cwt., act

at the ends of capstan bars 5 feet long, and wind a rope

about an axle 8 inches in diameter, what weight anchor

can they raise ?

(10) Find the tension in a light flexible rope which is passed

round a single movable pulley supporting altogether

20 lb., the free end of the rope passing over a fixed pulley

and bearing a load of 12 lb. ; and find the acceleration

upwards of the 20-lb. weight.

(11) What is the greatest weight a man of 12 stone can raise by
means of a Weston pulley block (fig. 73) if the wheels

have 12 and 13 teeth respectively? If the friction is

equivalent to ^V^h of the load, what weight hanging on

the chain will raise a hundredweight load suspended

on the movable pulley of the above system, and what
weight hanging on another part of the chain will

lower it ?

(12) In the first system of pulleys, with 3 equal movable pulleys,

a small weight of 7 lb. is found able to balance a large one

of 49 lb. Find the weight of each pulley and the tension in

each string.

(13) In the first system of pulleys, with three equal movable
pulleys, an effort of 20 lb. just supports 146 lb. Find the

weight of each pulley, the tension of each string, and the

pull on the ceiling.

(14) In the first system of pulleys, with four equal movable
pulleys, a force equal to the weight of 20 lb. suffices to
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support 245 lb. Calculate the weight of each pulley and

the tension in each string.

(16) If a weight of 5 lb. drags up a weight of 8 lb. by mean* of p,

single movable pulley, calculate the tension in the cord.

(16) A weight is to be lifted by means of a system of pulleys of

the second order : a block of two pulleys is fixed to the

weight, and a rope is carried from an upper fixed block

of two pulleys round one of the lower pulleys, up round
one of the fixed pulleys, then through the second lower

pulley and the second upper pulley, and, finally, to the

horizontal axle of a windlass fixed to the ground. The
diameter of the axle of the windlass is 3 inches, and the

length of the handle 18 inches. Find the ratio of the

weight (including the lower block) to the effort necessary

to lift the weight ; and find also the number of turns of

the windlass requisite to raise the weight 22 feet.
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CHAPTER X.

ON PROPERTIES AND STATES OF MATTER.

(Rudiments of Elasticityy and Introduction to Fluid Mechanics.

153. The particular kind of effect which a given force

will produce in a given piece of matter when it does work

on it, depends not on the nature of the force^ for forces can

only differ in amount and not in kind, but on the nature of

the matter. Matter exists in various states, and has very-

different properties in each state ; and though the principal

effects of work, or forms of energy, may be summed up,

as stated in the Introduction (sect. 5), under the heads

Motion and Strain, yet the kind of motion and the kind

of strain produced in different sorts of matter may be very

different; and we must now proceed to consider briefly

some of the peculiar properties possessed by matter in its

different states ; inertia and apparently gravitative attraction

being properties common to all.

154. Hitherto we have only considered matter in a rigid

foim insusceptible of strain, but it is time now to summarise

the most fundamental facts connected with the production

of strains in non-rigid matter by the action of forces.

Strain means either change of size or change of shape.

Change-of-size strain is called Compression or Dilatation,

and the active resistance of matter to it is called Elasticity

of Volume, or Incompressibility.

Change-of-shape strain is called Distortion, and the active

resistance to it is called Elasticity of Figure, or Rigidity.

The adjective * rigid' is applied to all bodies which
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strongly resist any kind of strain ; but tlie term ' rigidity

'

is used to denote the measure of the resistance to change

of sliajoe, while tlie term ' incompressibihty ' represents the

measure of the resistance to change of size.

155, Bodies with high rigidity are called Solids. The

incompressibihty of solids such as india-rubber is much
greater than their rigidity, and the same is true in a

moderate degree of most solids ; but with a substance like

cork the reverse is true. By the term 'rigid body' in

previous chapters, we have always meant a 'perfectly rigid

solid. Such a solid it would be impossible to strain by any

finite forces ; aU its particles would maintain their relative

positions unchanged, unless the body were hrohen—for this

would be possible
;
perfectly rigid does not mean perfectly

strong.

Such a solid does not exist, though it is approximated to

by rocks and metals. All actual solids are capable of being

strained—that is, they all yield somewhat to the action of

external forces applied to them ; and they are divided into

two extreme classes, according to the ivay in which they

yield.

They may yield actively ; the stress exerted by their

particles in opjjosition to the distorting force continuing

constant, no matter how long that force is applied, and

restoring the body to its old shape the instant the distort-

ing force is removed, without the least permanent strain or

set; in which case they are called perfectly elastic. Glass

and steel are practically so.

Or they may yield passively ; passing into any shape

without exerting any continuous stress in opposition to the

distorting forces, and therefore not recovering their form at

all when these forces are removed. In this case they are

called perfectly plastic or inelastic
; putty, wet clay, and

dough are practically so.

Most solids (strictly speaking, all existing ones) lie between
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these two extremes ; they have a certain amount of elasticity

combined with a certain amount of plasticity, partly yielding

permanently and partly springing back ; as you see at once if

you bend iron, wood, paper, &c.

156. A great number of things are elastic when the

distorting forces are small, but experience a 'set' when

they are too great. These are said to be elastic between

certain limits, called the limits of elasticity. If strained

above those limits, they are more or less plastic, and if still

more strained, they are torn asunder or broken. The

greatest longitudinal stress (sect. 160) which a material

can bear is called its tenacity.

157. When a solid is strained, both its elasticity of volume and

its elasticity of figure are generally called out, for both size and

shape usually change. For instance, if you stretch a piece of

india-rubber, it altei-s greatly in shape, but it also expands a

little. The strains practically produced in solids may be con-

veniently considered under the heads of—(1) longitudinal elonga-

tion or compression ; and (2) shear.

The first is produced when a rod is either stretched or squeezed

lengthways by a simple traction, and the elasticity involved is

called lo7igitudinal rigidity, or frequently Voting's modulus of
elasticity.

Shear is produced by couples, as when you twist a rod or cut

anything with a pair of scissors. It involves the sliding over one

another of parallel planes in the body—thus a book is sheared

when its top cover is either pressed sideways or turned round,

while its lower cover is held still. The sliding of the parallel

planes (or leaves of the book) is then well seen, especially if you
use a thick book like a London Directory. There is in a pure

shear no change of size, only of shape. The elasticity involved

in a shear is called torsional rigidity, or simply rigidity.

When a beam is bent, say by a weight resting on its middle,

its lower or convex surface is elongated, and its upper concave

surface is compressed, hence longitudinal rigidity only is called

out ; unless indeed its horizontal planes slide over one another to

some extent, in which case simple rigidity will also be brought

into play. If you bend a book, you will see that the leaves

slide.
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158. All resistances to strain are included under the

general name Elasticity (the term elastic having a slightly

different meaning from elasticity^ just as rigid has from

rigidity).

A body which exerts a great stress when subject to a

given strain, is said to have a high elasticity, but if a small

stress, a low elasticity ; in fact, elasticity is defined as the

ratio of the stress called out to the strain which calls it out

;

or shortly,

- ^. . stress
elasticity = -r

—

~
;

•^ strain '

or what is the same thing, the elasticity of a body is meas-

ured by the stress called out in it by unit strain. ' Stress

'

is here short for pressure or tension per unit area. The

fact that the above ratio is constant is called Hooke's Law.

159. The hind of elasticity depends on the nature of the

strain ; if it is simple dilatation or compression, the ratio of

the stress to the strain is elasticity of volume; if it is a

linear elongation or contraction, the ratio is Young's 7nodu-

lus ; if it is a twist or shear, the ratio is simple rigidity

;

and the most general kind of strain that can possibly be

given to a body can be compounded of these three elements,

or can be resolved into them.

Moreover, a shear may be analysed into two longitudinal

strains, a stretch and a squeeze, at right angles to one

another ; similarly a shearing stress may be resolved into a

pressure and an equal tension perpendicular to it.

160. Strain is always measured as a ratio; the ratio of

a change to an original. The first sort of strain, simple

change of size, is best illustrated by gases. See Chapter

XIII., Part ii. This strain is measured as the ratio

change of volume _. , , . , , ., t i . •

. . , ', . The second kind, or lonojitudmal strain,
original volume °

is measured by the ratio of the change of length of a rod to

the original length. The third kind, or shearing strain, is
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measured by the angular contortion of the body in a direc-

tion lying at 45° to the shearing stress.

Stress is measured by the pressure or tension per unit

area—for instance, the force applied to either end of a rod

divided by the area of the cross section of the rod.

161. Notice that elasticity is measured not by the ratio

of distorting force to strain, but by the ratio of inteiiial

dress to sti*ain ; for a body may be quite inelastic, and yet

require a considerable force to distort it. You would find

it hard work to flatten out or to punch a hole through a

mass of wet clay, for instance ; but no active internal stress

would be exerted capable of restoring the body to its old

shape when the distorting force was removed—the resistance

would have been produced by friction between the different

parts which have slid over one another, and friction, we
know, is a passive force which can destroy motion, but can

not generate it.

Such bodies as these then, though plastic, are viscous—
that is, there is friction between their particles, so that

energy is converted into heat when they are distorted.

Elastic bodies also may be viscous—that is, there may be

some friction between their particles whenever shear or

sliding of parts occurs. Even steel is very slightly viscous,

and when bent becomes infinitesimally warmer, otherwise a

tuning-fork in vacuo could go on vibrating for ever.

162. Matter, however, is known to exist in a perfectly

plastic state, which is not viscous at all, but linqnd; and in

this state it is termed flidd. A perfect fluid is a body with

zero rigidity and zero viscosity—in other words, it has in-

finite plasticity and infinite limpidity. No force whatever

is required to alter its shape, but it takes the shape of

whatever vessel contains it. Many actual fluids come very

near to this, but they all have more or less trace of viscosity.

Ether has a little less than water, while oil has more, treacle

has more than oil, Canada balsam still more, and pitcn gr
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sealing-wax a great deal—so much that it is practically a

solid except for very long-continued forces. The only

elasticity possessed by fluids is elasticity of volume; in

other words, no permanent stress is called out in them by

any strain except simple expansion or contraction.

163. All fluids are perfectly elastic as regards volume—
that is, they all regain their size perfectly when the com-

pressing stress is removed. Nevertheless the values of their

elasticities vary very much, for some are nearly incom-

pressible, while others are readily compressed; and they

are divided into two great groups on this ground.

The group of fluids which have a very high volume-

elasticity, or are nearly incompressible, are termed liquids

—type, water. A perfect liquid might be defined as an

incompressible perfect fluid.

The other or compressible group have an elasticity not

depending on themselves at all, but simply on the pressure

to which at the time they are subject—the elasticity being

proportional to the pressure ; these are termed gases—type,

air. From this it follows that the volume occupied by a

gas also depends, not upon itself, but upon the pressure to

which it is subject. Gases in fact take not only the shape

j

as all fluids do, but also the size of their containing vessel,

no matter how large this may be.

We may sunilup shortly thus

:

Solids have both size and shape.

Liquids have size, but not shape.

Gases have neither size nor shape.

Matter exists in all kinds of states, some approximating

closely to one of these three types, others lying between

them and passing almost insensibly from one type to

another.

164. The only forms of matter which can be treated in a

simple manner, besides perfectly rigid and perfectly elastic
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solids, are perfect liquids and pm-fect gases ; and also

ordinary liquids and gases when at rest. It remains now
to see what special mechanics is necessary for matter in

these two fluid states.

The special mechanics for liquids is called Hydro-

dynamics ; the branch of it treating of liquids at rest being

Hydrostatics.

The branch of hydrodynamics relating to liquids in motion,

or Hydrokinetics, is not an easy subject, though it is a

profoundly instructive one. The practical application of

liquids in machinery is called Hydraulics.

The special mechanics for gases is called Pneumatics, or

sometimes Aerodynamics.

165. The essential difference between the mechanics of

solids and the mechanics of fluids is based upon the

diff'erent ways in which they transmit pressure. Thus, take

a rigid stick standing on the ground, and press downwards

upon the upper end of it; the pressure is transmitted

unchanged to the other end, which therefore presses the

ground with an equal force ; but not the slightest pressure

is exerted sideways, say against a tube surrounding and

fitting the stick. But place some liquid in a closed tube,

and press one end of the liquid with a piston ; then, though

the pressure is still transmitted to the other end, it is also

transmitted sideways to every part of the tube just as

much ; and, moreover, the force exj)erienced by the closed

end of tlie tube is not now necessarily equal to the force

applied to the piston, unless the area of the closed end

equals the area of the piston ; if the area is greater, the

force transmitted is greater, and if less, less. Every portion

of the surface of the tube which exposes to the liquid a

surface equal to the area of the piston, experiences a pres-

sure equal to that exerted by the piston ; a fact which is

briefly expressed thus

:

Fluids transmit pressure equally in all directions.
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This is entirely because of their plasticity, or the perfect

mobility of their particles. The structure of a liquid might

be imitated roughly by a number of exceedingly small well-

oiled shot. A bag full of such shot, if compressed in any

way, would experience the pressure in every part of it.

EXAMPLES—XX.

(1) A wire of sectional area 1 square millimetre and 1 metre long

is stretched 3 millimetres by a load of 6 kilogi-ammes.

What is the Young's modulus of its material ?

(2) What stress would lengthen the above wire 1 millimetre ?

(3) What stress would lengthen a wire 1 per cent., if its

Young's modulus is E ?

(4) What stress would shorten a bar three parts in twelve

thousand, if its Young's modulus is E ?

(5) What load on a vertical iron rod 1 inch square would shorten

it by one-thousandth of its length if the Young's modulus
of iron is 1 million atmospheres ?

(6) If a linear thrust of 60 tons per square foot diminishes the

length of a bar by a tenth per cent. , and its volume by a

twentieth per cent,, how much must the rod have tem-

porarily increased in diameter during the thrust ?

(7) With the above data, how much diminution of volume would
you expect if the bar were subjected to a uniform hydraulic

pressure of 60 tons to the square foot all over its surface ?

(8) What then is the cubic compressibility of the bar ?

(9) What is the incompressibility or volume elasticity of the

material of the above bar ; also what is its Young's modulus ?

(10) The volume elasticity of sea-water is about 20,000 atmo-
spheres. How much compressed is it at a depth of 150

times 34 feet, or say a mile ?

(11) How much would an ocean, two miles deep, rise in level

if its water became incompressible and resumed its

surface density ?

(12) If atmospheric air is squeezed one per cent, by the hundredth
of an atmosphere applied for some time, what is its slow
elasticity ?

(13) If the same air is squeezed quickly by the same pressure, it

only shrinks at the first instant five-sevenths of one per

cent. : what is its quick elasticity ?
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CHAPTER XL

ON THE PRESSURE OF GRAVITATING LIQUIDS
AT REST.

{Hydrostatics.

)

166. We conceive a perfect liquid as an incompressible

fluid, that is, a body all whose particles are capable of free

motion among themselves without the slightest friction,

whose shape therefore is wholly indefinite, but whose

volume it is impossible to change. Water is an imperfect

liquid, partly because it is slightly compressible, but prin-

cipally because it is slightly viscous—that is, because its

particles experience when they slide over one another a

certain amount of resistance analogous to friction, called

viscosity.

Hence it is that a basin full of water which has been stirred

round and round and left to itself, will after a time come to rest.

The energy of motion will be wasted by ' friction ' against the

wet sides of the vessel—that is, it will be expended in warming
the water. But because the friction is very small, a particle of

water can travel against it a long way before its energy is ex-

pended—tliat is, before the work done, F^, is equal to the energy

to be got rid of, ^ mv\

167. The friction due to viscosity differs from ordinary

friction in that it depends very greatly on the speed of the

relative motions ; it seems, in fact, to be about proportional

to the square of the velocity, and as the velocity vanishes,

80 does the viscosity-friction. The properties of water, or

any other actual liquid in motion^ are therefore ver^ dif-
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ferent from those of the ideal perfect liquid; but when
water is at rest, there is no friction among its particles,

their reactions are all normal, and its behaviour is then

identical with that of the perfect liquid. Hence it is that

the mechanics of liquids at rest (even such liquids as

treacle) is so simple ; the simple laws of the perfect liquid

are applicable to them, for their viscosity does not come into

action.

Pressure of Fluids in General at Rest.

168. The general law of pressure common to all fluids,

and following at once from the mobility of their particles, is

that they act like perfectly smooth bodies (cf. sect. 115) ; or,

The pressure of a fluid at rest is always perpendicular to

every surface on which it acts.

For if the reaction of the surface had any component

along it, it would be able to move the fluid, which would

therefore be not at rest.

A second general law may also be stated thus : If a

pressure is applied to any area of the surface of a fluid in

a full closed chamber, that same pressure is transmitted to

Dji II

A

every portion of the walls of the

chamber of equal area (sect. 165).

Thus imagine a closed cistern quite full

of water, with tubes or cylinders let into

the sides anywhere, and plungers or

pistons, A, B, C, D, fitting these tubes

quite freely, but yet water-tight (fig. 75)

;

^ and let A liave an area of 1 square inch ;

B, 2 square inches ; C, 3 ; and D, 4 square
^'

' inches. Now push A in with a force say

of 20 pounds-weight ; every square inch of the interior surface of

the cistern will experience this pressure, and therefore B will

experience a force of 40, C of 60, and D of 80 pounds-weight. Of
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the three larger pistons, let D be the only one free to move, and
let a constant external load of 80 pounds be applied to it ; then

if A is pressed in with a load the least exceeding 20, D will move
out and raise the 80 pounds. But it would only move Jth as fast

as A. This is evident ; for suppose A were pushed in 1 foot, it

would throw 12 cubic inches of water into the cistern, and this

water would go into the cylinder of the piston D, if that were

the only part of the walls free to move ; but as this cylinder is 4

square inches in area, the 12 cubic inches of Avater would only

cause D to move out 3 inches, the quaiter of a foot. In other

words, the work {Fs) done by the piston A, 20x 12, is equal to

the work done upon the piston D, 80 x 3.

So that we have here simply a machine subject to the universal

law of machines, that * what is gained in force is lost in speed
;

'

and there is no gain of energy in a hydraulic machine any more
than in any other.

The machine just described, put into, a working form, is knoAvn

as the hydraulic or Bramah press (fig. 76). It consists funda-

mentally of two cylinders of different sizes, with pistons or

plungers fitting them, and a pipe connecting them. Water fills

Fig. 76.—Hydraulic Press.

both cylinders, and the mechanical advantage of the machine is

the ratio of the areas of the two pistons A : a, so that a 50-lb.

pressure on the small piston balances 50— lb. on the large one.
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The liquid acts only as an incompressible plastic medium for

transmitting pressure. For a fuller account of the machine, see

Ganot or Deschanel.

169. So far we have supposed the pressure to be produced

only by pistons which endeavour to compress the liquid,

but it is important to consider also pressures due to the

weight of the liquid. Every particle of a liquid is attracted

to the centre of the earth, and will tend to get there by

percolation unless prevented by being enclosed in some

vessel with impervious sides; in other words, water must

be kept in non-porous vessels. The vessel, however, need

not have a lid, for a liquid occupies an unchangeable

volume, and therefore may have its upper surface free ; it

keeps at the bottom of the vessel as the nearest accessible

position to the centre of the earth. But it will press on

the bottom and sides of the vessel with a certain force

which will alAvays be normal to those surfaces, and whose

magnitude we have now to consider.

Pressure of Liciuids due to their Weight.

The first simple law is that the upper or free surface of

a liquid at rest is horizontal; that is, is normal to the

vertical force of gravity on each particle. Such a surface

is said to be level, and it is practically flat or plane, because

the forces on the several particles are practically parallel.

Inasmuch, however, as these forces are not leally parallel, but

intersect at the centre of the earth, the level surface of a liquid

at rest is not really plane, but is curved round the centre of the

earth ; in other words, it forms part of a sphere %vith the radius

of the earth as its radius. The curvature is too small to be

appreciable in a bucketful of water, but it is apparent enough in

the ocean.

Another law, that the pressure of a liquid varies directly

with the depth, is what we must now establish,
'

170. Consider a cylindrical bucket with a flat bottom,
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filled with water ; the base of the vessel has to support the

"

whole of the water, as if it were a rigid mass slipped into

the bucket with its sides well oiled. For although certainly

the sides are pressed, and therefore exert reactionary

pressure on the water, yet they, being upright, press it

horizontally only, and so can have nothing to do with

sustaining its weight. The pressures of the sides simply

maintain the shape of the water in opposition to the force

of gravity, which tends to flatten it out.

The pressure on one side is equal and opposite to the pressure

on the other, and therefore there is equilibrium, unless part of

one side be removed by boring a hole through it. In that case

the water will flow out, and the uncompensated pressure on the

side opposite the hole will force the vessel bodily along in a

direction opposed to the stream of water. This is the principle

of Barker's mill, turbines, Catherine wheels, rockets, &c. See
Deschanel, page 92 ; or Ganot, sect. 193.

In an upright cylindrical vessel, then—that is, any vessel

with vertical sides—the pressure on the base is equal to the

whole weight of water contained in the vessel. But the

cubic contents of a cylinder are obtained by multiplying its

height by the area of its base always, whether that base be

round or square, or any other shape; and the weight of

water a vessel can contain is, of course, its contents in cubic

feet multiplied by the weight of each cubic foot. Hence,

the pressure on the base of an upright-sided vessel A square

feet in area, filled to a height of h feet with a liquid of

which a cubic foot weighs s lb., is in lb. weight, P = sAA.

Thus, suppose an oblong-based plane-sided cylinder (also called

B, prism) with base 10 inches by 5 inches, and height 15 inches ;

the contents would be 10x5x15= 750 cubic inches, and the

pressure on its base when full of water would be the weight

of 750 cubic inches of Avater ; which happens to be about 27i lb.

weight.

171. If we are speaking about water, this s is often written w^

meaning the weight of a cubic unit of water, just as it might be

written m if we were speaking of mercury. Wiiether w stand
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for the ueiglit of a cu1)ic inch, a cubic foot, or a cubic centi-

metre, is wholly immaterial, being only a matter of custom or

convenience ; only we must keep to one unit all through. Hence,

we use the word, a cubic unit, as expressing the cube of whatever

arbitrary length happens to be taken as the unit of length in

other parts of the book, or question, or problem under con-

sideration.

A cubic foot is found to contain 62*33 lb. avoirdupois of water,

which is not far off 1000 ounces.

A cubic inch contains the lyV^tli part of this—namely, 252^

grains.

A cubic centimetre contains one gramme of water ; and this is

one reason why the French system of weights founded on the

gramme makes calculations simpler : the unit of mass, or unit

quantity of matter, is defined as that of unit volume of water.

Mercury is 13'6 times as heavy as water. Hence 1 cubic inch

contains about xSW ounces of mercury ; and a cubic centimetre

13*6 grammes.

172. Suppose now that, instead of a cylindrical vessel, we

\^ "^x consider a conical one, set up like a

V>^^^^^^?g</ tumbler, with the wider end uppermost:

^^^^^^^^ then the pressure on the sides, being still

^S^^^^K perpendicular to them, is no longer hori-

*"
yi '^^ zontal, but has more or less of a vertical

^^^^ component as well as a horizontal one

;

Pig. 77. hence, we can no longer say that the pres-

sure on the base is the whole weight of water in the vessel,

for the sides may and do support some.

How much the sides support, and how much the base, may be

readily seen by imagining an infinitely thin circular drum of the

same diameter as the base of the vessel to be let into the water,

as shown by the dotted lines (fig. 77). Or you may suppose a
thin circular drum of the liquid to freeze or become rigid, as

indicated by the dotted lines.

The pressure across the walls of this imaginary drum is hori-

zontal ; and inside the drum we have what is equivalent to a rigid

cylinder, with well-oiled sides, resting on and entirely supported

by the base (just as we had in the cylindrical vessel) ; while
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outside we have a ring-shaped mass of water which is not sup-

ported by the base at all, and therefore must be supported by the

sides. It is, in fact, supported by the vertical component of the

pressure of the sides, and therefoie it has nothing to do with the

pressure on the base, which is wAh as before.

So also, if we turned the conical vessel the other way up, with

the wide end as base ; the pressure on the base would then be

greater than the whole weight of water in the vessel, because of

the vertical component of the pressure of the sides, which now
acts downwards. And, as the pressure of the water on the sides

would, if the sides were removed, be able to sustain the ring-

shaped mass of water completing a drum set up on the base, it

follows that the whole pressure on the base is still the weight of

a volume of liquid filling a cylinder whose base is the actual base,

and whose height is the height to which the vessel is filled ; or

again, tvAh as before.

Notice particularly that none of this reasoning is impaired

or affected if the sides of the vessel, instead of being plane,

are curved or zigzag, or indeed any shape whatever, as in

figs. 78 and 79. The pressure on the base is always simply

sAh^ or the weight of a cylinder of the given Hqiiid with

Fig. 78. Fig. 79.

the given base as base, and the given height as height ; for

the base supports this cylinder, the sides support the rest.

173. The vessel shown in fig. 79 is supposed to be

flexible like an india-rubber tube, and its base can be

turned into different positions as in fig. 80; but, since

liquids transmit pressure equally in all directions, the pres-

sure on it will not vary except in so far as the bending of
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[^

the tube alters the height of the liquid in it. The only-

difficulty is the knowing what point to measure the depth to.

The pressure on the lower part of the base is greater than

that on the upper portion; but

since the pressure is simply propor-

tional to the depth, the average or

mean pressure will be simply the

pressure at the average or mean

depth (compare average velocity in

sect. 23)—that is, the pressure

at the middle point of the base.

Hence, the pressure on any surface

of area A, immersed under a liquid to the 77iecm depth h, is

always sAh.

The surface plainly need not form the base of a vessel,

but may be immersed anyhow.

Thus, let a rectangular plate 6 inches long by 4 inches broad be immersed

slantingly under water, so that its upper edge is 8, and its lower edge 10 inches

below the surface. Then evidently its mean depth, or depth of its middle point,

is 9 inches; and the pressure on its surface, being equal to wAft, wx 5x4x9
1000

=180w>=180xj^ ounces weight

If the liquid had been mercury, this pressure would have been 13-6 times as

great.

Fig.

To find the mean depth of a bent or curved plate of

irregular shape requires calculation, and tlie calculation

required is just the same as that which would be used to

find the centre of gi'avity of the plate (indeed, the centre

of gi'avity is tlie most middle point in a body); hence the

mean depth of a surface is often spoken of as the depth of

its centre of gravity.

So we get the perfectly general result for liquids subject

only to gravity

:

The total pressure on any plane surface whatever, due to

the weight of a liquid under which it is immersed, is its

area, multiplied by the vertical depth of its centre of gravity
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below the free surface of the liquid, multiplied by the

weight of a cubic unit of the liquid

;

or in symbols, P = sAh.

There is nothing more to explain. This simple formula

contains it all.

174. Since the pressure of a liquid does not depend upon

the quantity of the liquid, but only upon its depth, we may
make a sm.all quantity of liquid exert any pressure we please

by putting it in a long narrow vertical tube, and giving it a

large area to press upon.

This is the principle of the * Hydrostatic Bellows
;

' which con-

sists of a pair of circular boards joined

water-tight by corrugated leather like

ordinary blow-l)ello\vs, with a long tube

opening into the cavity between the

boards, the tube rising a good height, and
finishing oft" with a funnel. See fig. 81.

A man may stand on the upper board

of the bellows, and raise his OAvn weight

slowly by simply pouriug water down the

tube.

For if A be the area of the upper board

of the bellows, and h its vertical depth

below the surface of tlie water in the tube,

all that is necessary to balance the man is

that wAh shall be equal to or greater than

his weight, say 200 lb. or 3200 ounces.

Suppose A is a square foot, then to find the necessary height h to which the

tube must be filled, we have 1000x1 xA = 3200 ; or h=3-2 feet, a very moderate
heiglit indeed.

The man is, in fact, equal to a cylinder of water standing on A
as base, and of height 3*2 feet ; for this quantity of water would
be balanced by tlie column of water in the tube (see sect. 176 and
fig. 82), and the board and man take its place. The man rises

so soon as this imaginaiy cylinder of water is equal to himself in

weight ; and it will be equal to him in weight just about the

same time as it is equal to him in bulk, for a man is just about
able to float in water (see Chapter XII.).

Hence the average cross section of a man is equal to the area of the board of a
hydrostatic bellows, on which he would just be supported by a column of liquid

Fig. 81.
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equal to himself in height; for instance, if his height were G feet, and his weight

15 stone (210 lb.), his average cross section would be -66 square foot, or 80"64

square inches, because 1000 x -56x6= 210x16.

175. The total pressure on a surface under a liquid

depends partly on itself—namely, on its area; but the

pressure i^er square inch of surface depends not at all on

itself, but on external conditions—namely, how deep it is

immersed, and what it is immersed in : hence it is con-

venient to distinguish these, and to call the pressure per

unit of surface the intensify of the pressure, and to denote

P
it by jj, so that P='~r', or of course, p = sh.

One often speaks simply of ' the pressure of a liquid ' at

such and such a depth, without specifying the surface on

which the j^ressure is exerted ; for instance, the pressure of

the ocean at a depth of one hundred fathoms, and so on.

In such cases the intensity of pressure is always meant, or

the pressure which would be exjDerienced by a surface of

unit area if placed at that depth—that is, simply sh.

The pressure of an incompressible fluid (or liquid) there-

fore varies directly with the depth (for s is constant) ; being

nothing at the surface, and increasing uniformly as you

descend.

In so far as actual liquids are slightly compressible, this

simple proportion between depth and pressure does not hold

Fig. 82.

down to great depths ; the liquid there becomes denser, or

heavier bulk for bulk, and accordingly ocean pressure in-

creases rather faster than the depth.



CHAP, xl] liquid pressurk 221

176. When any number of communicating vessels are

filled with the same liquid, the level of the liquid in all is

the same. See fig. 82.

For the intensity of the pressure at any point due to every

column of liquid must be the same, or there could not be equili-

brium ; and this pressure is proportional to the depth.

Further, when communicating vessels contain different

liquids which do not mix, the heights of the columns of

liquid are inversely as their specific weights.

For take any two communicating vessels, say the two legs of a

U tube, one full of mercury say, the other of

water. Call the area of the surface of contact

of the two liquids (fig. 83) A, and let the vertical

height of the surface of the water B above A be

called h, while the vertical height of C, the

surface of the mercury above A, is called h' ;

then the pressure on each side of the area A "|H| ^'; II

must be the same, as soon as there is equilibrium l|k Iw
and the columns have ceased to oscillate ; but ^^^F^
the pressure on its upper side is wAJi, and on its Fig. 83.

lower, mAh', hence wh = mh', ov h: h' ::m:w.
This method of balancing columns is employed to find how

much denser a liquid is when cold than when hot, the two
columns being purposely kept at different temperatures and their

heights measured ; and thus the expansibility of a liquid can be

measured without having any regard to the size, shape, or ex-

pansibility of the vessel containing it.

Centre of Pressure.

177. The whole pressure or resultant force on any flat

surface under a liquid may be considered as composed of a

number of parallel forces—namely, the pressures on each

individual small area of the surface ; and all these parallel

forces will have a resultant equal to their sum, passing

through a certain point of the surface which is called the

centre of the parallel forces (cf. sect. 129), or the 'centre of
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pressure/ For a rectangular area like a dock-gate this

point is f of the way down from the surface of the water,

because the pressure increases uniformly with the depth.

The position of the centre of pressure of an immersed

surface corresponds closely with that of the centre of

oscillation of a swinging body (sect. 81). If A is the area

of a plane surface immersed vertically in a liquid, and is

its centre of oscillation when swinging about the line where

the plane, or the plane produced, cuts the surface of the liquid,

is the centre of pressure due to the liquid. In the case

of a rectangular plate immersed, with just one edge in the

surface, is two-thirds down the plate.

EXAMPLES-XXI.

(1) The small plunger or pump-piston of a Bramah press is half

an inch, and the large one is 8 inches, in diameter ; the

pump is worked by a handle 5 feet long, the fulcrum being

one inch from the point of attachment of the plunger.

What is the greatest weight that a man of 15 stone can

lift by this machine if he sits on the end of the handle ?

(2) Find the pressure on the bottom and sides of a cubical vessel

10 centimetres in the side full of mercury.

(3) Find the pressure on one side of the above cubical vessel if

half full of water and half full of mercury.

(4) What is the pressure of water at a depth of 1020 feet ?

(5) A couple of hemispheres 1 metre in radius are joined water-

tight and placed in water with their join vertical and just

submerged. What is the resultant force holding the two
halves together ?

(6) Find the total pressure on the bottom of a tank 10 feet

square, 5 feet deep, and full of water. Find the pressure

on a side of the same tank.

(7) A block, in the form of an isosceles wedge, 1 foot high and
having a base 1 foot square, is immersed in water with its

base horizontal and uppermost at 4 feet below the surface.

Determine the pressure, and the vertical component of the

pressure on each face. Hence show what must be the

weight of the wedge so that it may just float.

(8) A dock-gate 30 feet square has 21 feet and 12 feet depths of
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water on its two sides respectively. Find the resultant of

the pressures exerted upon it by the water.

(9) A triangular plate is immersed vertically in water with the

vertex in the surface and the base horizontal. The height

and base of the triangle are each 8 inches. Find the

pressure on a face of the plate. Find also the depth of the

centre of pressure.

(10) The above plate is immersed vertically with its hose in the

surface. Find the pressure and the centre of pressure on
its face.

(11) A cubical tank of 1 foot side is one-third full of mercury and
two-thirds full of water. Find the pressure on one of its

(12) What is the pressure against one side of a cubical cistern,

when full of water, which will hold 200 gallons ?

(13) What is the pressure, in tons-weight per square inch, at the

bottom of the sea where the water is two miles deep ?

[A cubic foot of sea-water a mile deep weighs about 65 lb.]

(14) In a hydraulic press the pump-plunger is a cylinder 1 centi-

metre in diameter, and makes a stroke 7 centimetres

long. The plunger of the press is 20 centimetres in

diameter. Taking the collar friction as a quarter the

load in each case, calculate («) the pressure in the press

when a load of 1 cwt. is applied to the pump-plunger;

(h) the available force of the press-plunger; (c) the

number of strokes which the pump must make in order

to raise the press-plunger 10 centimetres.

(15) Find the work done per minute [a) by the operator, (b) by
the machine, if the above press is worked at the rate of a

stroke a second : the load on the press-plunger being as

already calculated.
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CHAPTER XII.

FLOATING BODIES {Hydrostatics contimied).

178. We shall now proceed to consider what happens

when a solid is wholly or partially immersed in a liquid.

Most of what we shall state will be true of fluids in general,

but receives its most obvious illustration in the case of

liquids.

When you dip your hand in the water, you displace some

of the water ; in other words, a portion of space below the

surface which was formerly occupied by water is now
occupied by your hand. The volume or bulk of the water

displaced is, of course, equal to the volume or bulk of your

hand.

All solids, then, when immersed either wholly or partially

in a liquid, displace a volume of that liquid equal to the

bulk of that part of them which is immersed. This is

perfectly obvious.

179. Further, when your hand is immersed you can feel,

if you attend, a certain pressure urging it up out of the

water. This upward jiressure is more apparent if you

immerse your whole body; indeed the upward pressure

is then so great as nearly to counteract the weight of

your body altogether, consequently, in a bath you weigh

apparently next to nothing.

This upward pressure is what we must now discuss.

Take an ordinary chemical test-tube of very thin glass,

and plunge it in water with the closed end downward. You
will feel a very distinct upward pressure, and the tube will
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be forced up if you let go. Keep, however, the tube

immersed, and slowly fill it with water. You will find that

it is forced up gradually less and less, until, when the level

of the liquid inside and out is the same, the tube will cease

to press up, and will weigh pretty nearly the same as it did

before it was immersed at all. The displaced water has

been restored.

If you perform this experiment accurately with a balance, you

will find the tube does not quite recover its original weight, even

when the level is the same inside and out. It will weigh 60 per

cent, of its original weight. This is evidently because some
little water is still displaced by the walls of the tube, which,

however, are very thin, and in what follows will be assumed to

be infinitely thin.

Now .imagine the glass tube annihilated; the water it

contained will remain occupying the place the tube had

occupied, and experiencing the same pressures as the tube

did; because the same quantity of water is displaced as

before, only now not by the glass tube but by the liquid water

which had been poured into it. Obviously, however, this

water will be in equilibrium, as all water in water at rest is

;

hence the two forces under whose influence it is—namely,

its weight downwards, and the pressure of the surrounding

water upwards—are equal and opposite. But the pressure

upwards is the same as the tube experienced before

its annihilation; therefore the pressure on the tube was

equal to the weight of its own volume of water—th^t is, the

weight of the water it displaced—and acted in the same

straight line, namely, through the centre of gravity of the

water displaced.

This result is perfectly general, and is known as the

principle of Archimedes, because it was the method that he

invented when asked to ascertain the chemical composition

of an irregular ornamental mass made of two unequally

dense metals, without chemical analysis or damage. He
o
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perceived that if its weight and its volume were known its

average density could he ascertained, and thus the proportion

of its known component metals calculated. He determined

its volume hy immersing it in water and weighing it there.

When any solid is immersed either wholly or j^artially in

a fluid, it is pressed up with a force equal to the weight of

the fluid displaced ; and this force may be considered to act

at the centre of gravity of the fluid displaced.

The fluid displaced is equal in volume to the solid, hence

the upward force is the weight of an equal bulk of the fluid.

To show this by means of our symbols, consider a special case, say a cubical

block of stone, a inches in the side, immersed in water, so that its upper surface

is at a depth h below the surface of the water, and therefore, of course, its

lower surface at a depth Ti+a (fig. 84). The area

of any of its faces is a^. The pressure on its upper
face (sect. 171) is wa'^h, and on its under face is

iva^Qi+a), and on each of its sides wa?ih-\-\a).

The pressures on its four sides are horizontal, and are

in .equilibrium among themselves two and two. The
pressures on its upper and lower faces are opposite but

are not equal, and therefore are not in equilibrium :

their resultant is

"j,j, y^
vxjmji+a)—M>«?A

=

wa^ units of force

acting upwards. But cfi is the volume of the block,

and wofi is the weight of this volume of water—that is, the water displaced by the

block ; so then the resultant of all the pressures on* its entire surface is a single

force upwards equal to the weight of the water displaced.

If we did not care about simplicity, the same might be shown by the symbol,

for a solid of any irregular shape whatsoever, and a most important mathe-

matical theorem it would be. You may make its acquaintance hereafter in a

more general form under the name of ' Green's theorem.'

180. But now we know that if the cube in fig. 84 were

really a block of stone it would not stay where it is ; it would

sink. This is because it is only pressed wj9 by the weight

of an equal bulk of water^ whereas it is pulled dovm by the

weight of its own bulk of stone—which is greater. The

resultant force pulling it down, or its apparent weight under

water, is

sa^ — wa?^ or more generally {s — w)v

;

if 8 st«md for the specific weight of stone, and v for the
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volume of the block, whatever shape it may happen to be.

It Btill weighs downward, therefore, but it has lost weight

equal to the weight of its own volume of water. If, on the

other hand, it were a block of wood, it would be pulled

down only by the weight of the wood, whose specific weight

d is less than that of water; consequently it is forced

upwards with a resultant force

wa?-da^, or ('w-d)v.

And so generally, an immersed body is always urged up or

down with a force proportional to the difference of the

specific gravities of itself and the liquid in which it is

immersed—up, if its specific gravity be the less ; down, if it

be the greater. Only when the specific gravities of the solid

and liquid are equal, does the solid remain floating wholly

immersed in any position—that is, in neutral equilibrium.

181. When a light body rises in a liquid, the resultant

force urging it up is constant so long as it is wholly im-

mersed; but it decreases as soon as some of the body

begins to emerge, and it vanishes as soon as the weight of

the water displaced equals the weight of the body. Hence,

a body whose specific gi*avity is less than that of a liquid

can float in that liquid, and does float in stable equilibrium

when it has displaced a quantity of liquid equal to itself in

weight.

A piece of floating wood, for instance, whose whole bulk

is 9 cubic inches, and which is | as heavy as water, must

float with 6 cubic inches immersed; for 6 cubic inches of

water will be as heavy as 9 cubic inches of wood. And so

generally,

immersed volume of a floating body weight of unit vol. of solid

whole volume ~ weight of unit vol. of liquid

= relative specific gravity of solid.

Since ice, for instance, has a specific gravity of |i, that is, since

12 cubic feet of ice weigh the same as 11 cubic feet of water, it

follows that an iceberg must have ^ of its whole bulk im-
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mersed ; hence the visible berg is only ^V of the whole mass,

there being eleven times as much underneath the water. So also

a floating cork whose specific gravity is ^ has ^ of its volume pro-

jecting above the water.

Determination of Densities.

182. The foregoing principles are all remarkably well

illustrated by their practical application to the determina-

tion of density or specific gravity.

The density of a body is defined as its mass per unit volume,

or the mass of any volume divided by that volume,

similarly we might define specific gravity as the weight per unit

volume, or the weight of any volume divided by that volume,

w

which would make specific gravity be to density as weight is to

mass ; or, as weight is g times mass (sect. 64), the specific gravity

of a substance would be g times its density.

This, however, is not the definition of the term specific gravity

as ordinarily used ; it is the definition of what is called absolute

specific gravity, which for distinction has been here called 'specific

weight,' whereas the ordinary or relative specific gravity is the

weight of any volume of a substance compared with the weight of

an equal volume of some standard substance. The relative specific

gravity of mercury with reference to water, for instance, is 13 '6 ;

of wood is, say '6, and so on.

When one speaks of the relative specific gravity of any

body, without stating the standard substance to which

reference is made, it is understood that that standard sub-

stance is water ; and so we may define the relative specific

gravity, or the specific gravity of a substance, as the Aveight

of any volume of it divided by the weight of the same

volume of water.

Its relative detisity is precisely the same thing, both being simple

numbers of equal value, but one having a direct reference to

weight, the other to mass. In all comparative methods of
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measurement we need make no distinction between density and
specific gravity.

We have, in the preceding chapter, used s as standing for the absolute specific

gravity or 'specific weight' of substances in general, m for that of mercury,

and w for that of water ; so the relative specific gravities of the three things

8 TO w
are, of course, "• ~' and^; the relative specific gravity of water itself being,

of course, unity.

In the C.G.S. system of weights and measures, the absolute and relative specific

gravity of a thing are represented by the same number, because the unit

volume of water is defined to be the unit of mass (cf. sect. 171). The absolute

specific gravity of water, or the weight of 1 cubic centimetre, is 1 gramme ; and

if a thing is three times as heavy as water, a cubic centimetre of it weighs 3

grammes, and so on.

To compare the Specific Gravities of two Liquids.

18.3. 1st Method.—If they do not mix, place them one in each

of the two legs of a U tube, and measure the heights of their re-

s h
spective columns (sect. 176); then 'r=jr'

This method is used sometimes to compare with great accuracy the relative

densities of a liquid at different temperatures. (Dulong and Petit's method for

absolute coefficient of expansion of mercury ; see Ganot, art. 273, or Deschanel,

Part II., page 287.) A convenient modification is to dip the open ends of an in-

verted U tube into the two liquids, each in its own beaker, and to suck air out

of the bend of the tube by means of a T piece, until the liquids rise and stand as

measurable columns.

2nd Method.—Weigh a bottle full of the first liquid, and then

the same bottle full of the second ; deduct from each the weight

of the bottle, and you will have the weight of the s.ame volume of

the two liquids to compare. In symbols, if b is the weight of the

empty bottle,

Si_2Vi-b

This method is often used. Flasks (' specific-gravity bottles *) are made for the

purpose (fig. 85). They are very light, and are arranged so

that they can be accurately filled always to the same extent.

For this purpose their neck has a constriction with a ring

drawn round it with a diamond, and they are always filled

up to this ring. This is done by filling them at first too full

and then extracting the surplus with a scrap of blotting-

paper or a capillary tube. The stopper is then inserted to

prevent evaporation, and the whole is weighed in a delicate

balance. The weight of the empty bottle, 5, nuist have been
previously ascertained. Fig. 85.

Zrd Method.—Take any non-porous solid heavier than both
liquids and insoluble in either of them, such as glass, weigh it
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first in air (or vacuum), then immerse it wholly in one of the

liquids (hanging it from the pan of the balance by a fine wire or

hair), and weigh it in that. It now weighs less by the weight of

the liquid it displaces—note this

loss of weight. Now weigh it in

the other liquid, and note its loss

of weight in that. The same
volume of each liquid has been

displaced, and the first loss of

Aveight was the weight of this

volume of the first liquid ; the

second loss, the weight of the

same volume of the second liquid ;

so the specific gravity of the first

liquid referred to the second, is

the ratio of the first loss to the

second loss. Or in symbols, if w
is the weight of the solid in air, and w-^ and w^ its weight in the

two liquids respectively,

Fig. 86.—Hydrostatic Balance.

^2 tc — O/g

This method has been used by Matthiessen to determine the expansibility of

water by heat, and it is called the areometric method. (See Balfour Stewart's

Heat, page 51.)

The operation of weighing a solid under a liquid is conducted

by an ordinary balance with one of its pans replaced by a much
shorter one with a hook under it, to which the solid can be hung
by a fine platinum wire (fig. 86). When so arranged, it is often

called a hydrostatic balance.

Uh Method.—Take an insoluble and non-porous solid lighter

than all the liquids you have to compare, and float it in each

of them ; ascertaining in each case the volume of it immersed.

The weight of this volume of the liquid must in each case be
equal to the weight of the solid, which is constant ; so we obtain

a set of different volumes all of the same weight. Call these

volumes Vj, v^, v^ &c. , and let w be the weight of the solid ; then,

since w=ViSi=v^^=v^^=&,(i.,

the ratios of the specific gravities to one another are inversely as

the immersed volumes. Instruments for carrying this out are

made of glass or metal, and sold under the name of hydrometers

(see sect. 186).

5th Method.—Take a solid lighter than all the liquids, and
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float it in each, loading it so as to immerse the same volume in

all ; that is, always make it sink to a fixed mark. The weight

of this volume of the liquid is the weight of the solid plus the

load, so the specific gravities of the liquids are as the numbers
representing this total weight in the different cases.

All instrument for carrying this out is called Fahrenheit's hydrometer, but it is

seldom now used.

Another method is given in Ganot, art. 121.

To determine the absolute Density of a Liquid.

184. 1st Method.—Weigh a known volume of the liquid in a
gauged specific-gravity bottle (fig. 85), and divide the mass by
the volume.

27id Method.—Weigh a solid of known volume before and after

immersion in the liquid, say a sphere of measured diameter. Its

loss of weight will be the weight of its own volume of the liquid,

., • U4. f -4. 1 Ti-u T -J- loss of weight of solid
so the weight of unit volume of the liquid is -. ^—rr-^° ^ volume of solid

To determine the absolute Density of a Solid.

Weigh a known volume of it, say a sphere or a cube or some-

thing easily gauged, and divide the weight by the volume.

To compare the Densities of a Solid and a Liauid.

185. 1st Method.—If the solid be heavier than the liquid.

Weigh it in air and in the liquid, and divide the weight in air by
the loss of weight in the liquid ; the quotient is the relative specific

w
gravity of the solid referred to the liquid ; s=—2—r

2nd Method.—Applicable only if the solid be lighter than the

liquid. Float it in the liquid, and take the ratio of the volume
immersed to the whole volume (sect. 181).

If the solid is a cylinder floating upright, volumes are proportional to lengths

;

, ., .„ _,^ , ^^ length immersed
and the specific gravity is then ^hole length

*

Srd Method.—If the solid be lighter than the liquid. Weigh it

first in air ; then immei-se it in the liquid by attaching a heavy
body to it to sink it, and weigh the two together. Also weigh
the sinker by itself in air and in the liquid. The loss of weight
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of the two together gives the weight of liquid displaced by both ;

the loss of weight of the sinker alone gives the weight of liquid

it displaces ; therefore the difference of the two losses gives the

weight of the liquid displaced by the body itself—that is, the

weight of an equal volume of the liquid. So the relative specific

gravity of the solid is its weight in air divided by the difference

of the two losses.

If the body is porous like coke or pumice, it is necessary to

distinguish between its average density, including pores, and the

actual density of its material. In the former csise it may be

varnished over; in the latter case it is best to pound it in a

mortar, and treat it by the method immediately to be described.

A liquid must always be chosen in which the solid is not soluble. Thus, for

a piece of rock-salt, one must not use water, but either some such liquid as

turpentine or benzol, or a saturated solution of salt ; and the specific gravity of

the salt referred to this liquid must be multiplied by the specific gravity of the

liquid to give the specific gravity of the solid with reference to water.

Another, though essentially similar, method is given under

Nicholson's hydrometer, sect. 186, which see.

4:th Method.—Useful when the solid is porous or in the form

of a powder. The difficulty with a powder is that it is impossible

to gauge the volume of the solid particles directly, and also

difficult to suspend the powder in water so as to determine its

loss of weight. A specific-gravity bottle with a wider neck than

that shown in fig. 85 is used. Ascei-tain the weight of the bottle

when empty, and also the weight of water it will contain when
full up to the mark. Put a known weight of the powder into the

bottle, and fill up with water ; the powder displaces some water,

so it will not now hold so mjiich as before the powder was in ; but
the weight of the whole, minus the weight of the powder and
bottle, gives the weight of the water now in. The difference

between this weight and the weight of water the empty bottle

originally contained, gives the weight of water displaced by the
solid powder ; so the specific gravity of the solid is

weight of powder
weight of water required to weight of water required to fill up

fill empty bottle
""

, bottle after the powder is in.

If the powder be soluble in water, of course some other liquid

must be used : the result can be multiplied by the specific gravity

of this liquid, if the specific gravity of the powder referred to

water be required.

5th Method.—^A more elaborate method, also serviceable when
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the solid is soluble or porous, is to use it to displace only air, in

an arrangement something like Boyle's tube (tig. 103), which is

called a volumenometer.

Hydrometers.

186. A hydrometer is a light body loaded so as to float in stable

equilibrium at the surface of a liquid, and of a shape which

renders it easy to observe accurately how much of its volume is

immersed ; and its use is to compare the specific gravities of

liquids, or of solids and liquids. See methods 4 and 5, sect. 183,

and methods 2 and 3, sect. 185. They are of two classes.

\st. Hydrometers of variable immersion or common hydrometers

(Twaddell's, Beaume's, Sykes', «&c.).

2)id, Hydrometei-s of constant immersion (Nicholson's and

Fahrenheit's).

\st Class.—Common hydrometei-s are glass cylinders or * stems,'

loaded and arranged so as to float upright. This

is done by making them terminate below in a

couple of bulbs, one full of air, the other full of

mercury or shot (fig. 87). They must be of such

weight as to float in a liquid with part of the

cylindrical stem projecting ; hence they are usu-

ally sold in sets, say a set of three, one for

heavy liquids, one for medium, and one for

light. The heavier the liquid the more of the

stem projects, but in a light liquid they sink

pretty deep— always sinking until they have

displaced their own weight of the liquid. A
thin stem makes the instrument sensitive, a

wide stem diminishes its sensitiveness, but in-

creases its range.

The specific gravity of the liquid is (see sect. 181),

the whole volume of the instrument the weight of the instrument

the volume immersed the weight of an equal volume of water

(the last fraction being the average specific gravity of the instru-

ment) ; that is, the specific gravity of the liquid varies inversely

with the volume immersed. The stem, however, is graduated

so that the specific gravity is read off" directly from the numbers
on it.

2,nd Class.—Hydrometers of constant immersion will serve not
only to compare the specific gravity of liquids, but also to deter-

Fig. 87.
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mine the specific gravity of any solid, whether heavier or lighter

than water, and this is their principal use ; they will, moreover,

make a very good substitute for a common balance. They con-

sist, like the others, of a floating cylinder or rod, which, however,

is usually made very thin (often only a wire), and instead of being
graduated, has one fixed mark on it, to which it is always sunk.

Its appendages are, a tray, A ; a large light bulb, B ; and a heavy
bulb, or tray and cage, C. Fahrenheit's has only a shotted bulb
below, and is made of glass. Nicholson's is made of metal, so that

it cannot be used in corrosive liquids. It is, in fact, only used
floating in water to determine the specific gravity of solids : it is

the one Avhich has the tray and cage C, and is

shown in fig. 88.

It will not sink down to the fixed mark m on
the fine cylindrical stem, unless some extra

weights are put on the tray A ; let 20 grammes
be the weight required to sink the instrument by
itself. This constitutes a constant of the instru-

ment which must be known or determined before

use.

Now to use it as a common balance, you place

on the upper tray the body you wish to weigh,

and then add weights, say 6^ grammes, till it

has sunk to m ; one then knows that the body
weighs 20-6^=13^ grammes.
To use it as a hydrostatic balance, you place

the body in the lower tray; and now it requires

say 3 more grammes to sink it to the mark, showing that the

solid has lost 3 grammes of weight by being immersed in water,

hence this is the weight of the water it displaces j and its specific"

13i
gravity is therefore -^-=4^ (cf. method 3, sect. 185).

(Its weight when under water is, of coui-se, 10^ grammes.)

Suppose the solid had been lighter than water, and that when
it was in the upper tray 12 grammes had been required to sink the

instrument, whereas, when placed in the lower tray (where, of

course, it would tend to" float upward, and have to be confined by
the cage), 30 grammes were required ; then the loss of weight in

water would be 18 grammes, and as its weight was 8, its specific

gravity would be |*

(Its weight when under water is - 10 grammes ; that is, 10

grammes upwards.

)

Pig. 88.

Nicholson's

Hydrometer.
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Equilibrium of Floating Bodies as regards Eotation.

187. We have now learned that a body necessarily floats

in a liquid whenever it displaces its own weight of that

liquid—that is, that under these circumstances the two

contrary forces, its own weight and the resultant of all

the fluid pressures on its surface, are equal, and are hence

in equilibrium as far as translation is concerned. But in

order that there may be also equilibrium as regards rota-

tion, these two equal contrary forces must act along the

same straight line ; in other words, since the weight of the

body passes through its centre of gravity, the resultant

of the fluid pressures must also pass through this point;

or, again, in other words, the centre of pressure (sect. 177)

of the immersed surface must lie vertically under the

centre of gravity of the body.

When this condition is satisfied there is complete equili-

brium ; but there remains the question whether this equili-

brium is stable or not.

It is manifestly stable if the point of application of the

upward force is above the point of application of the down-

ward one.

Now, just as the downward force, the weight of the solid, may
be considered as acting at its centre of gravity, so the upward
force, the weight of the liquid displaced, may be considered as

acting at its centre of gravity ; and this point, the centre of

gravity of the liquid displaced, is the real centre of buoyancy or

flotation; the term 'centre of pressure' being commonly applied

only to simple surfaces which displace no water. The centre of

pressure is always a point on the surface—namely, that point

where the line of resultant pressure meets the surface. This line

of resultant pressure, which is vertical, and which always passes

through both the centre of pressure and the centre of buoyancy,

may be called the line of buoyancy.

If, then, the centre of gravity of the water displaced be

above the centre of gravity of the solid, the equilibrium

is certainly stable.
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This, however, cannot be the case with homogeneous solids ; it

can only be satisfied by loading the floating body. And it is

satisfied in all the above hydrometers ; their centre of gravity

being down near the shotted bulb, while the centre of gravity

of the water displaced is up near the centre of the air-bulb
;

consequently their equilibrium is very stable.

But unless the floating body is totally immersed, it is

quite possible to get stable equilibrium without satisfying

the above condition ; in other words, this condition is suffi-

cientj but not necessary, for bodies floating at the surface of

a liquid.

For instance, in a canoe, the joint centre of gi-avity of canoe

and occupant is much higher than that of the water displaced by

it ; and so it is in ships and boats generally, though ballast is

used to keep the centre of gravity of a vessel reasonably low.

The higher the centre of gravity of a vessel is, the less is its

stability ; and by making it high enough, the equilibrium is sure

to become unstable, so that the least disturbance will cause the

body to rotate or turn over into some more stable position.

You will find an example of unstable equilibrium if you try to float an empty
bottle or a common pencil upright. A penholder, however, or a bottle half full,

will float upright one way, because loaded,

A long cylinder like a pencil or wine-cork floats in stable equilibrium on its

side ; but a short cylinder like a flat plate or a collar-box will float with its

length vertical. A sphere rests in neutral equilibrium in any position ; and so

does a totally immersed homogeneous body of the proper weight, whatever may
be its shape.

188. To investigate fully the conditions of stability or

instability of equilibrium, it is no use taking the body just

in its position of equilibrium with the two equal forces

acting along the same vertical line, any more than it was

when a round-based body was standing on a flat table (in

sect. 144) ; but one must imagine the body tilted a little, so

that the equal forces act along different though parallel

lines—that is, form a couple—and observe whether the

effect of this couple is such as to restore the body to its

original position, or whether it tends to increase the dis-

placement more and more. In the former case the equili-
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brium in the original position was stable ; in the latter, it

was unstable.

Let 1 (fig. 89) be a hemisphere floating in water in equiUhrium,

and therefore with the two centres of gi-avity, G of the body, and
C of the displaced water, in the same vertical line—the line of

buoyancy or resultant pressure. And let 2 be the same body dis-

turbed from equilibrium into a new position, and therefore with a
new centre of buoyancy, Ci. We have then the downward force

w acting at G, and the upward force equal to w acting at C^ ; the

two constituting a couple of moment w x ah, whose tendency is

to restore the body into its original position ; which was therefore

one of stable equiUhrium. In 3, this fig. 2 is repeated, but the old

centre of buoyancy, C, of fig. 1 is indicated in the body as well as

the new one, C^ ; and the old line of buoyancy, CG, is produced

till it cuts the new one through Cj in the point M ; which, in the

case supposed, happens to be the centre of the sphere.

This point M is the metacentre; as already explained in connec-

tion with rolling ])odies in sect. 146.

Fig. 89.

The metacentre is defined as the intersection of the old line of

buoyancy, drawn in the body when in equilibrium, with the new
line of buoyancy when the body is slightly disturbed from its

position of equilibrium ; and the rule for stability is :

If the metacentre M is above the centre of gravity G, the equili-

brium is stable.

If it is below G, the equilibrium is unstable.

If M coincides with G, it is neutral.

And the height of M above G measures the stability.

All this will be seen at once if one just considers the couple as in fig. 2 above.

For consider the upward force acting through the point M on the line GC fixed

to the body (fig. 3) ; if M is above G, the upthrust will tend to restore the body
and to bring GC upright again, the moment of the couple being proportional to

the length MG ; whereas, if M is below G, it tends to topple the body over more
and to turn the line GC more and more from the vertical.

The position of M depends on that of the new centre of buoy-
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ancy, and this depends on the shape of the floating body about
the water-line. The shape of a ship or boat is devised so as to

make the metacentre as high as possible, see fig. 90.

Strictly speaking, the disturbance from equi-

librium ought to be infinitely small in order to give

the correct position of M, and the correct measure

of the stability MG. If the disturbance be great,

the metacentre will in general be in a different

position. If a ship lurches too much, the meta-

centre comes down very low, and may even pass

below G ; in which case, unless all the men can
Fig. 90. rush to one side, so as to alter the position of G,

or unless an opportune wave comes to right the

vessel, it must heel over, like the Captain.

Thus, in a floating body in equilibrium, there are four points

vertically over one another (see fig. 89, No. 1)

:

M, the metacentre

;

G, the centre of gravity of the floating body

;

C, the centre of gravity of the fluid displaced ; and
P, the centre of pressure of the immersed surface.

Of these P is always the lowest ; and M is always above C (hence

if C happens to be above G, much more is M) ; and the stability

or instability of the equilibrium depends on whether M is above
or below G.

As a matter of fact, a ship, like many floating bodies, has two metacentres ; one,

the one ordinarily spoken of as the metacentre, concerned in rolling ; the other,

very high up and of no practical account, concerned in pitching. It would be

next to impossible to upset a ship by tilting it at the bows. In the cirailar Russian

ironclads the two coincide. In an ordinary wine-cork floating on its side, one
metacentre, the rolling one, coincides with the centre of gravity of the cork ; the

other, the pitching one, is a good height up.

In bodies of irregular shape the two lines of buoyancy, CG and
the vertical through Cj, need not intersect at all, for they may lie

in different planes : such bodies have no metacentre at all.

The whole subject of the metacentre, however, is not one that

can be treated in an elementary book like the present ; and it

will be [sufficient to have indicated the sort of ideas connected

with the stability of equilibrium of floating bodies.

EXAMPLES—XXII.
(1) Find the force with which a sphere one metre in radius is

urged upward, if it is totally immersed in water.

N.B.—Observe that the depth to whidi it is immersed

is now immaterial.
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(2) Find the apparent weight of a decimetre cube of stone in

water, if its specific gravity is 2*5.

(3) How much of this block of stone would project above the

surface of mercury in which it was floating ?

(4) A solid which weighs 35 grammes m vacuo weighs when
immersed in water only 5 grammes, while in another

liquid it weighs 14 grammes ; find the specific gravity of

this liquid.

(5) The stem of a common hydrometer is graduated into 100

equal parts. The bulb and immersed portions, when it is

sunk to the division 0, are equal to 3 times the stem in

bulk. If it sinks to 20 in water, what will be the specific

gravity of liquids in which it sinks to 80 and to

respectively ?

(6) How deep would the hydrometer of the last question sink

in a liquid of specific giavity -8 ?

(7) If a floating body projects \ of its bulk above water, what
will be the specific gravity of a liquid from which \ of its

bulk pjojects

?

(8) If a centimetre cube of metal weighs 8*5 grammes under
water, what is its true weight ?

(9) A Nicholson hydrometer which will sink to the fixed mark
if 20 grammes be placed on the upper tray, requires 5

grammes more if the weights are placed on the lower tray

beneath the surface of the water instead of on the upper

one. What is the specific gravity of the metal of which
the weights are made ?

(10) A body A weighing 3 grammes is attached to another body
B weighing 6 grammes, and the whole immersed under
water, when they are found to weigh 2 grammes. The
body B alone weighs 4 grammes under water. What are

the specific gravities of A and B ?

(11) A specific-gravity bottle, when empty, weighs 15 grammes;
when full of mercury, it weighs 151 grammes ; and when
full of another liquid, it weighs 33 grammes ; what is the

specific gravity of this liquid ?

(12) The above bottle, when 8 grammes of a certain sand have
been introduced, and the rest filled up with water, weighs

altogether 30*5 grammes ; what is the specific gravity of

the sand ?

(13) A piece of cork weighs 10 grammes. A piece of iron is

attached to it, and the two together weigh in water 20
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grammes. The iron alone in water weighs 70 grammes.
Find the specific gravity of tlie cork.

(14) A body weighs 10 lb. in air and 8 lb. in water. Find its

volume and specific gravity.

(15) Find the density of a piece of wood from these data : weight
of wood =230 grammes, weight of a piece of iron in water
= 580 grammes, weight of the wood and iron together in

water =465 grammes.

(16) A specific-gravity bottle, completely full of water, weighs
38 "4 grammes, and when 22*3 grammes of an insoluble

solid powder have been introduced it weighs 49*8 grammes.
Calculate the density of the solid.

(17) Find the specific gravity of sugar from the following data :

a flask, which can just be filled with 50 grammes of

alcohol, whose specific gravity is 0*8, has 20 grammes of

sugar put into it, and is then filled up with alcohol, the

contents then weighing 60 grammes.

(18) A cubical block of wood measures 8 inches in the side. It

floats in water with four edges vertical, and with one inch

above the water. Find the specific gravity of the wood.

(19) The specific gravity of a certain solution of sugar in Avater

is 1 "2. Find the weights of sugar and water in 100 parts

of it, being given that the specific gravity of sugar is 1'5,

and supposing that no change of volume occurs on making
the solution.

(20) Find the length and specific gravity of a cylinder which
floats in water with 2 inches of its vertical axis out of the

water, and also in a liquid of specific gravity 1 '5 with 6

inches out of it.

(21) Compare the apparent weights of equal masses of lead and

cork, (1) in water ; (2) in air of specific gravity ^^j^. [The

specific gravities of lead and cork are 11 and ^ respectively.]

(22) 3 oz. of sugar of specific gravity 1 '5, are dissolved in 8 oz. of

water. Find the specific gravity of the mixture (1)

assuming that its volume is the sum of the volumes of its

constituents, (2) assuming that the volume of the water

is unchanged, (3) assuming that the volume of the

solution is increased by half the bulk of the sugar.

(23) Find the specific gravity of naphtha if a piece of potassium

of specific gravity 0'84 and weight 20 grammes in air

weighs 3J grammes in naphtha.

(24) If equal weights of sugar and water result in a solution of
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density 1*4, how much condensation of volume has

occurred ?

(25) A glass stopper weighs 2^ oz. in vacuo, 1^ oz. in water, and

If oz. in spirit. Find the specific gravities of glass and
spirit respectively.

(26) Determine the thickness of a metal wire, a piece of which,

3 metres long, weighs '24 grammes in .air and '21 grammes
in water. Find also the weight of a cubic centimetre of

the metal.

(27) A flask, which when filled with water weighs altogether 410

grammes, has 80 grammes of a solid introduced, and being

then filled up with water weighs 470 grammes. What is

the volume of a kilogranmie of the solid ?

(28) A solid weighs 117 grammes in air, 98 in water, and 101 in

another liquid. Calculate the specific gravities of the

solid and the liquid.

(29) A piece of opaque paraffin wax (sp. gr. '9) contains imbedded

in it a sphere of glass (sp. gr. 2 '5). The whole weighs 50

grammes in air and 20 grammes in water. How big is the

sphere ?

(30) How much silver is contained in a * gold ' crown if it weighs

985 grammes in air and 918 in cold water, taking gold as

being 19 times and silver 8 times as heavy as water?
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CHAPTER XIII.

ON THE PRESSURE OF THE ATMOSPHERE, AND
ON THE PROPERTIES OF GASES.

(Pneumatics.)

189. Most of what we have said in the last two chapters

about liquids is equally true of all fluids. Gases have the

same mobility of particles, and therefore transmit pressure

equally in all directions. Gases are subject to gravity, and

therefore press upon all surfaces exposed to them with a

pressure depending on their depth and density ; and they

exert a sustaining force on bulky bodies equal to the weight

of the gas displaced by those bodies, thus causing them to

lose weight, and if very light to float upwards ; thus acting

just like liquids. Hence, the only part of the two preceding

chapters which does not apply to gases is that which relates

directly or indirectly either to the constancy of density or

to the free surface of a liquid—a free surface being precisely

the thing which a perfect gas never has. It is infinitely

expansible.

This and all other peculiarities of gases as distinguished

from liquids are due to the fact that their elasticity of

volume is not constant or dependent on the gas itself, but

depends on the pressure to which at the time the gas

happens to be subject; but all the special properties of

gases, qua gases, we will reserve for consideration in sect.

198 et seq.; at present we will only deal with those proper-

ties which they possess in common with all fluids,
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PART I.-THE PRESSURE OF THE ATMOSPHERE.
190. Now we live immersed in an ocean of air of

unknown and indefinite depth, and hence we and all

terrestrial surfaces experience its weight just as if it were

an ocean of liquid ; and many phenomena of common life

depend upon this pressure. Its intensity may be expressed

in pounds-weight per square inch, or grammes-weight per

square centimetre, or units of force per unit area ; it is not

quite constant at any one place, varying with many
apparently accidental and local circumstances, but its

average value is 1033 grammes weight (or 981 times this

number of dynes), per square centimetre, or 14*6 lb. weight

per square inch, or roughly, a ton weight per square foot.

Hence, a man's body experiences a total pressure of about 18

tons weight, for we found his average cross section (sect. 174) to

be 80 square inches, which is that of a rectangle 8" x 10", whose

periphery is 3 feet ; so, if the man be 6 feet high, his surface,

without allowing much for irregularities, is 18 square feet.

The pressure is exerted with perfect uniformity on all

sides, and not only on the outside but on the inside too, so

that it is not felt. The only way to make it appreciated is

to destroy its uniformity by partial removal. If the pressure

be removed from one side of any surface, then the other

side experiences the whole uncompensated pressure of 14J
lb. per square inch. If the air be withdrawn from any

closed vessel, the outside experiences a crushing pressure,

and if not very strong it will collapse.

Again, if the air be removed from a vessel whose mouth

is beneath the surface of a liquid, that liquid is forced up

into the vessel by the atmospheric pressure on the rest of

the surface, the weight of the air sustaining the weight of

the liquid, and completely filling it if the vessel is not too

high. The product sh, which expresses the intensity of

pressure of the liquid (sect. 175) at the mouth of the vessel,

must therefore be about 1033 grammes weight per square
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centimetre, if the liquid is supported by the average pressure

of the air. Now, if the liquid be water, s equals 1 gramme

per cubic centimetre, consequently h cannot be much greater

than 1033 centimetres (or about 34 feet) ; if the vessel were

taller than this, it would not be full. The atmosphere can

therefore support a column of water 34 feet high, but of

mercury, which is 13*6 times as heavy as water, it can only

support a column 76 centimetres (about 30 inches) high.

(For note that 34 x 12 = 30 x 13*6, as it hai^pens, exactly.)

Modes of Removing the Air from Vessels.

191. One way of exhausting a vessel is to drive out the

air by steam, and then condense the steam.

B
Experiment 1.—Boil water in an air-tight tin canister

and cork it up : remove the lamp and pour cold water

over it : the uncompensated pressure outside will

crush it.

Experiment 2.—Take a long tube closed at the top

and bent as shown in fig. 91 ; fill it completely with

steam, and dip its open end under mercury. As the

steam condenses, the mercury is forced up to a height

Uof nearly 30 inches, and the tube may then be removed

from the basin of mercury and carried about. The
weight of liquid in one limb of the tube is balanced by
the weight of the atmosphere in the other, which may

'^' ' be supposed to be extended to the top of the atmosphere

(compare fig. 83, Chap. XI.).

A still simpler way of removing air from a tube is to fill

it with a liquid. This is the way in which Torricelli

originally performed the experiment and measured the

pressure of the atmosphere. He filled a long tube with

mercury without air-bubbles, and then inverted it with its

mouth under mercury in a basin (fig. 92). On removing

his finger, he saw the mercury descend till its surface was

29 or 30 inches above that of the liquid in the basin, and

there come to rest after a few oscillations.
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Above the mercury was a nearly perfect vacuum, now called a

Torricellian vacuum. If any gas or vapour be introduced into

this it will depress the column more or less against the force of

the atmosphere. For instance, the water vapour left in the cold

tube after the experiment of fig. 91 will depress the column half

an inch or so.

Pumps.—Another mode of removing air or any fluid

from a vessel is by means of an arrangement of valves

which open and pennit egress one way only, combined

with some method of squeez-

ing the fluid so as to

make it move in one direc-

tion or other. Such a

combination is called a

pump, and three kinds

are shown in fig. 93.

The valves in each are

self-closing flaps (shown

open in the figures for

clearness), which will open

upwards by pressure from

beneath, but which only

close more tightly if any

pressui-e be exerted on

them from above. (Such

valves exist in the veins,

and cause whatever flow

there is to take place in

one direction.) The compressing ajDparatus to cause motion

in the fluid is in (1) an elastic bag to be alternately

squeezed and relaxed by the hand—such an apparatus,

without valves and open only at one end, is the lung

of an animal; in (2) and (3) it is a piston fitting a

cylinder Avhich is to be pushed to and fro, or up and down

;

the peculiarity in (3) being that one valve is in the piston

itself.

Fig. 62.—Torricelli's Experiment.



246 ELEMENTARY MECHANICS. [sect. 191.

No, 1 is a pump used in surgery for producing injections

or for delivering a strong jet of liquid. The heart of an

animal acts on the same principle; so does a pair of

blow-bellows imperfectly, for though it has only one valve,

the narrowness of the nozzle acts partially as a second

one.

No. 2 is a mere modification of No. 1, and is used in

garden and fire engines. Both these are called force-

pumps.

No. 1. No. 2. Na 8.

Fig. 93.

Pumps : with the valves displayed as if kept open by a wind from A to B.

No. 3 is called a lift-pump, because it gets the fluid

above the piston and then lifts it up when the piston is

raised. It used also to be called a * suction ' pump.

All three arrangements evidently tend to transfer any

fluid they may contain from A to B, producing an ^exhaus-

tion in any vessel screwed on to the end A, and a con-

densation in any vessel screwed on to B.

Modes of Measuring the Atmospheric Pressure.

192. Aneroid Barometers. — The pressure may be

measured and its variations indicated by exhausting a
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strong metal box Avith a thin and flexible (corrugated)

top, supported by a spring against the weight of the at-

mosphere, as shown in fig. 94. ^s^*^
If the atmospheric pressure ^^
increases, the spring is com- ^>^U
pressed a little more; if the fi^^^^
pressure decreases, the spring *^
recovers itself a little; and so

the box lid indicates variations

of pressure by moving in or

out, and its motions may be

magnified by a rack and pinion ^'^"
^^'

, , . , , o 1 Skeleton diagram of the prin-
and long mdex as shown. bUCll ciple of an aneroid barometer,

an instrument is called a * baro- but in practice the spring is out-

,,/.,, X J side the box.
meter (weight-measurer), and

being made without mercury this form of it is called

* aneroid.' The box must be empty, or its contents would

vary in size with temperature, and so give spurious results.

In so far as temperature affects the strength of tlie spring,

the instrument has an error to be corrected or compensated.

Mercury Barometers.—The mercury column (fig. 92) is a

convenient measure of the pressure of the air, and is the

original form of barometer. If the pressure increases, the

column is forced higher up; if it decreases, the column

descends.

It is found to oscillate on different days between 31 and 28

inches, at places near the sea-level ; being usually high when
the atmosphere over a country is quiet and dry, and the weather

therefore fine and bright or frosty; Avhereas, when a portion of

the atmosphere is in a state of whirling motion called a cyclone,

the centrifugal force of the whirl causes a depression or region

of low pressure near the middle of it, and the barometric column
in such places is accordingly low. These large whirls of air

travel along and convey with them much steamy warmth and
clouds and rain, thereby destroying the continuance of fine bright

weather and breaking up spells of frost. The approach of such



248 KLEMENTARY MECHANICS. [sect. 192*

a cyclone, which, when violent, constitutes a gale or storm, is

iierakled by an incipient, and sometimes a rapid, fall of the

barometer.
Cyclonic or low barometer weather is charac-

terised in Great Britain by warm, damp, nmggy
weather, with clouds and often rain and strong

westerly winds. Anti-cyclonic or high barometer

weather is characterised by calms or gentle dry
winds, hot sun in summer, hard frost in winter,

east winds in spring, and fogs in autumn.
These facts cause a barometer to be used as a

weather-glass; and a convenient form, for popular

purposes, is that of lig. 91, arranged as in fig. 95,

where the motion of the mercury in the short

open tube is used as the indicator instead of that

in the long tube, and its motion is magnified by a

float counterpoised over a pulley Avith an index ;

or else by a rack and pinion as in Hg. 94. The
advantage of this form is that the friction pre-

vents very prompt motion, so tliat the accumulated

changes of the last hour or two are indicated by
the needle whenever you go and tap the instrument.

As an accurate measurer of pressure, however, it is

not of much use.

The cistern form (fig. 92) is always used

for accuracy, and some mechanical arrangement

is added by which the level of the mercury

in the cistern can either be kept constant or can be

read off; for, of course, when the mercury falls in the

tube it rises in the cistern, and it is the difference of

levels which really measures the pressure. Sometimes

the scale on which the height of the column is read is

adjustable, so that, before reading, its zero can be made

to coincide with the level of the mercury in the

cistern; by which device the required difference of level

can be read ofi' at once. If a barometer be carried up a

mountain, the mercury column must descend, because some

of the column of air which formerly balanced it is left

below. By this decrease of atmospheric pressure, the

Fig. 95.

Weather-glass.
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For moreheight of the moimtaiu may be calculated,

about barometers, see Deschanel or Ganot.

193. Manometers.—Columns of liquid may be used to

measure pressures other than those of the

atmosphere—such pressure gauges are called

manometers. Fig. 96 shows a gauge for

measuring the pressure of the steam in a

boiler over and above that of the atmosphere

by the height of a column of mercury ; and

the pressure may be stated as equal to so

many inches or centimetres of mercury, or if

very large, it may be stated as so many
* atmospheres '—every 30 inches of mercury

being called one atmosiDhere.* Metal mano-

meters are, however, preferred in practice.

By • a pressure of 76 centimetres ' on any area,

then, is meant the pressure which would be pro-

duced by a column of mercury 76 centimetres

higli with that area as hn&e. The intensity of

pressure in grammes per square centimetre of a column of water

is equal to its vertical lieight in centimetres

(because 1 cubic centimetre of water weighs

1 giamme); or in absolute measure (dynes)

its pressure is 981 times its height. That the

pressure of a water colunm is numerically

equal to its height, when expressed in gravi-

tational C.G.S, units, is a convenient fact to

remember. The pressure of any other liquid

of specific gravity s is s times as great ; so
• 76 centimetres of mercury ' means a pres-

sure of 76 X 13*6 X 981 dynes per square

centimetre.*

The height of the column, of course,

means the vertical height (cf. fig. 82);

Fig. 96.

Fig. 97.

* In the C.G.S. system of measures, a million dynes (or a megadyne) per square

centimetre is conveniently called an 'atmosphere.' It is very nearly equal to

75 centimetres of mercury. Regnault unfortunately employed 76 centimetres as
his standard pressure.
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hence if a manometer or barometer tube be inclined, the

mercury will flow further up the tube, but so that the

vertical height of its surface is the same as before (fig. 97).

Modes of Raising Water.

194. The most obvious mode of raising water is to get

something underneath it, and lift it up. This is the old

method of a bucket and windlass.

Since, however, the atmosphere

can support a column of water

about 34 feet high, it may be used

to force water up from wells not

much more than 30 feet deep.

For this purpose, a tube is let

down into a well, and then ex-

hausted of air, either by filling it

with steam and condensing it

(which is nearly the oldest form

of steam-engine or steam-pump,

and was set up by Captain Savery

at the water-works, York Build-

ings, Charing Cross, and used

from 1698 to 1706, and in principle

is still used in the modern * puls-

ometer'), or by screwing the end

A of one of the pumps of fig. 93

on to the tube, and working the pump. Fig. 98 shows

pump No. 3 so applied, and is a common house-pump.

First the air, and then the water, is transferred from A to

B, and the water finds egress at the sjDout.

It is often required to raise water from mines several

hundred yards deep. Atmospheric pressure is of course

quite incompetent to eff'ect this: the only plan is to get

something imder the water and lift it. Pump No. 3 is still

used, only it is arranged at the bottom of the mine, within

Fig. 98.—House-pump.
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20 or 30 feet of the water, and its spout is transferred

higher up, so that it delivers the water at the top of the

shaft. Water may be thus raised any height whatever.

Such pumps are called lift-pumps, and are usually worked

by engines at the top of the shaft; long rods connecting

the piston of the pump with the beam of the engine.

A house-pump can also be used to lift water up to a

cistern on the top of the house. The piston-rod of such a

lift-pump works through a water-tight stuffing-box, as in

fig. 98, but the spout has a tap by which it can be closed

when desii'ed; and a pipe leads from the upper portion,

B, of the pump-ban-el to the cistern.

Force-pumps Nos. 1 and 2 (fig. 93) are not used to raise

water from any depth, but to deliver a strong jet; and fig.

99 shows the armnge-

ment in a garden-

engine. The stream of

water is rendered con-

tinuous instead of inter-

mittent, either by an

elastic bag, or by an air-

chamber. C is the air-

chamber which con-

tains air compressed

by the over-supply of

water, so tliat, if the

pump stops working,

the jet continues for a ^«- ^-G«^«« Force-pun3p.

few seconds, only gradually diminishing in strength as the

compressed air expands.

Fig. 76 showed a force-pump applied in the hydraulic

press, with plungere instead of pistons. Plungers are indeed

generally used in force-pumps; they act precisely like

pistons of equal area, the only difference is that they fit

the stuffing-box instead of the cylinder.
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195. In any kind of lift-pump, the piston lias, during its

up-stroke, virtually to support a colunni of water reaching

from the surface of the water in the well to the highest

surface of water in the pipe. Calling this height 7i, and

the area of the piston A, the pressure on it is loAJi. To
work the pump, a force somewhat greater than this must

therefore be applied to the piston. In force-pumps, the

pressure during the up-stroke corresponds to a colunui of

water from piston to well ; and during the down-stroke to

a column from the piston to the highest point reached hy

the water, whether it be a free jet or confined in a tube

(neglecting the friction of the moving water in all cases).

Mode of Lowering Water.

196. The force of gravity renders the lowering of water a

very easy matter. If we have a liquid in a vessel, and wish

to transfer it to another at a lower level, all that is needed

is two holes in the vessel—one to let the

liquid out, which must be below the surface,

and the other to let the air in, which is best

above the surface of the liquid ; if it is

beneath the surface, it may act, but it will

do so irregularly, letting the air in by bubbles.

One hole half beneath and half above the

surface wiU act as two holes, and this is the

way one empties a jug or bottle, rotating it

till its one hole occupies this position. If

the hole be large, it will act as two even

if wholly beneath the surface, but the

flow will be very irregular. The beer in a

cask with the tap open, but without a venthole, is kept in

by the atmospheric pressure, unless it is fermenthig and

forcing itself out by means of its own gas, or unless you

blow up the tap. A pipette (fig. 100) is a vessel with two

Fig. 100.—Pipette.
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holes, and the flow of liquid from it can be stopped by

closing eitlier of them with the finger.

Siphon.—In an open glass vessel, however, it is not

convenient to bore a hole through the glass beneath the

surface of the liquid, neither is it always convenient to

rotate the vessel till part of its mouth is below the

surface. In such cases the necessary second hole may
be introduced beneath the surface as one end A of a

bent tube, whose other end, B, is at a lower level

—

say is immersed in another vessel at a lower level (fig.

101). If this tube be once exhausted of air, either by

sucking liquid into it with the mouth, or by filling it at

a tap before inverting it, the atmospheric pressure will after-

wards keep it full of water ; and the column of water in -

one leg, being longer than that

in the other, will overbalance

it, and a steady flow from A to

B will be kept up till either the

water sinks below the opening A,

or till the level in both vessels is

the same. Such a tube is called
( • 1 > T^ 1

• in Fig. lOl.-Siphon.
a 'siphon. Its shape is wholly

immaterial, provided that no part of it is at a height above

the surface in either vessel greater than the column of

liquid which the atmosphere can support, otherwise the

action will cease. So also it would cease if it were put

under the receiver of an air-pump and the air exhausted.*

While the air was being exhausted, the flow would go on vnth
undiminished speed until the air pressure became too weak to sus-

tain the longer of the two colunms ; the liquid would soon then

* It is probable that, in a perfect vacuum, a siphon of moderate height would
work perfectly well, because the cohesion of water free from air is pretty strong,

and might maintain the continuity of the column of liquid in spite of gravity.

Under these circumstances, the cause of the flow would be exactly like that of a
chain over a pulley with one end longer than the other ; ami the analogy will be
complete if the chain be supposed to uncoil itself from a table, and to coil itself

up on the floor.
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snap at the highest point, and the longer column would fall till it

was the same length as the other. As tlie air pressure still further

diminished, the two columns would slowly

sink, like barometers, until, when there was
no pressure left, the level of the liquid

inside and outside the tube would be the

same. On readmitting the air, the action
Fig. 102. would commence again, unless either end A

or B was not fully submerged.

The shape of the siphon tube being immaterial, it might

pass straight through the wall of the vessel from A to B
(fig. 102), and such a pipe would empty the vessel to just

the same extent, and at the same rate, as the tube of

fig. 101 ; only it does not obviate the necessity of a hole

through the side of the vessel as the tube bent over the

edge does ; neither, of course, would it cease to act in a

vacuum.

Floating of Bodies in Air.

197. All things which displace any air (that is, which

have any bulk) are pressed or buoyed up with a force equal

to the weight of the air whose place they occupy (sect. 179),

and so everything weighs less in air than it would in a

vacuum. The true weight of a thing is its weight in vacuOj

and this equals its apparent weight plus the weight of an

equal bulk of air. The bulkier a thing is, the more does

its apparent weight difier from its true ; and if a very light

body be also very large, it may have no apparent weight at

all, but may float about in equilibrium, or even be forced

upwards, like a balloon.

What is called a pound of cork is therefore really more than a
true pound, for it has been weighed against metal weights which
are not so bulky as itself and displace much less air. A little

demonstration-balance is sometimes made to hold a ball of cork

and another of lead of the same apparent weight, so that they

equilibrate each other in air ; but if the buoyant power of the air

be withdrawn by putting the whole under an air-pump, the cork

will descend, showing that it is really the heavier of the two.
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A thin copper or glass sphere with a tap may be used to

measure this buoyant power. When the tap is open, very

little air is displaced by the sphere ; if you weigh it then,

you 'get its true weight very nearly. But exhaust it and

shut the tap. It now displaces a quantity of air, and

accordingly is buoyed upwards, and will be found to be

apparently lighter than before. The difference between its

true and apparent weights gives the weight of an equal

volume of air.

In this way 1 cubic centimetre of ordinary air, when the

barometer stands 76 centimetres high and the thermometer

stands at zero centigrade, is found to weigh *001293 gramme.

(This number '001293 is therefore the sp. gr. of air referred

to water ; it is approximately equal to -g^jj.) Another mode
of quoting the same result is to say that 11 '2 litres weigh

about 14*4 grammes; or 1 cubic inch weighs '31 grain; or

that a cubic foot weighs about an ounce and a quarter.

Hence, since 1 gallon of water weighs 10 pounds, 1 pound

of common air occupies about 80 gallons.

A sphere of brass a yard in diameter displaces, if exhausted,

rather more than half a cubic yard of air, say 14 cubic feet,

which weighs 17i ounces about. If then its own weight were

only a pound or so, it would ascend slowly like a balloon. But if

so light as this, its walls could not be strong or regular enough
to resist the pressure, and it would collapse. Such balloons are

therefore impracticable. To sustain very thin walls against the

air pressure, it is necessary to fill the balloon with some gas

;

and hydrogen, being the lightest gas known, is always used.

Hydrogen enough to fill the above sphere would weigh only

1^ ounce, so it would not add very greatly to the weight, and its

presence enables the walls to be of thin oil-silk instead of metal.

The first balloons were filled with hot air, which occupies more
room and therefore displaces more than its own weight of cold

air (see Deschanel, chap, xxi., or Ganot, art. 169).

EXAMPLES—XXIII.
(1) What is the height of the mercury barometer when the

uitensity of the atmospheric pressure is a megadyn©
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per square centimetre? (A million dynes is called a
megadyne.)

(2) If a mercury barometer falls one inch, what will be the fall

of a water barometer ?

(3) Show that the oscillation of the column in a 'siphon' bar-

ometer, with its long and short limbs of equal cross section,

is only half that of the column of a cistern barometer with

an infinitely large cistern.

(4) Show that the motion of the top of the mercury in a bar-

ometer may be doubled by inclining the upper part of the

tube at an angle of 30° to the horizon.

(5) What is the total pressure inside a steam boiler when the

mercury gauge (fig. 96) stands at 150 centimetres and the

barometer at 75 ?

(6) The piston of a lift-pump is 7 inches in diameter, and the

depth of the water in tlie mine below the spout where the

water is discharged is 533 yards. Find the least force

which can raise the piston ?

(7) If a rectangular mass of cork, dimensions 10 x 8 x 5 centi-

metres, is counterpoised in air by 80 grammes of platinum,

find the mass of the cork (neglecting the floating power of

the air on the platinum).

(8) A mass of wood (sp. gr. '6) is counterpoised by 105 correct

grammes of iron (sp. gr. 7 "5); find the mass of the wood
(or its true weight in vacuo).

Ans. The volume of the iron is 14 c. c, so its apparent

weight is 105 - (14 x -001293); and this is equal to the

apparent weight of the wood, which is x-{-^x x -001293),

where x is the number of grammes of the wood ; hence

a; =105-208.

(9) A piece of metal weighs 2*4 grammes in mercury and 9

grammes in water ; what would be its weight in vacuo ?

(10) A lift-pump is used to lift Avater from a well whose water

surface is initially 10 feet below the level of the pump to a
cistern 18 feet above the pump-level. The diameter of the

well is 3 feet, and the internal dimensions of the cistei-n

are 4 feet long by 3 feet broad by 2 feet high. Find the

work needed to fill the cistern.

The water in the well will be lowered x feet, where

|7r(3)2-a;=3x4x2

*''^~
ir 3 66~ 66 3 33
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.
•
. height of final lift= 28 + V + u"^ + 2

and height of average lift= 28 + f + Vs + 1 = 30 + f f ,^
.-. work = 3x4x2xi(;(30 + |+uV)

= 24 X 62 -3 (30 + 1 + s\) foot lb.

62-3

24

1246

249-2

1495-2 (30+1 +^V)

SO 44856

I 498-4

$ 498-4

h 45-3

45898

Ans. 45900 foot pounds or about 20 foot tons.

(11) Determine the pressure of the atmosphere in lb, weight per

square inch, correct to one decimal place, when the bar-

ometer stands at 29 inches.

(12) Find the greatest height to which oil whose density is 0*9

grammes per cubic centimetre can be raised by a common
* suction ' pnmp, when the atmospheric pressure is a million

dynes per square centimetre.

(13) On a day when the barometer stands at 76 cm., find the

pressure in grammes per square cm. at a point 3 metres

below the surface of a pond covered with a thin film of ice.

(14) A mercury barometer stands at 30 inches ; find what it

ought to read if it were sunk 50 feet below the surface of

water.

(15) Find the value in grammes weight, and in dynes, per square

centimetre, of a pressure able to sustain a 75 cm. column
of mercury, at 0° centigrade, when its specific gravity is

13-596.

(16) The density of mercury decreases 180 parts in a million for

every degree rise of temperature, lience find the pressure

corresponding to a metre column of mercury at 20° C.

PART II.-ON PROPERTIES PECULIAR TO GASES.

198. A perfect fluid whose elasticity of volume (see

Chap. X., sects. 154, 158) is equal to the pressure upon

Q
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it, provided the temperature is constant, is called a perfect

gas. Many actual gases—namely, those called permanent

gases, very nearly satisfy this definition j and we have now
to consider what properties a gas possesses in consequence

of this peculiarity.

First of all, gases must be very compressible : any addi-

tional pressure produces a corresponding change of volume.

The increase of pressure (sect. 175) is the stress; the ratio

of the change of volume to the original volume is the strain

(sect. 160). Let the original pressure be P, and the new
pressure P'; then the stress is P' - P. Let the original vol-

ume of the gas be V, the new volume V, then the strain is

V-V—^— . Its elasticity, wlien in the compressed state, by

P' - P
definition (sect. 158), is y -Y' ' ^^^ ^^^ gases this is now

stated to equal the pressure on it when in that state

—

namely, P'.*

P' - P P'
Hence yTy'^v' ""^ PV = PV,

or P:F::V':V;

or, in words, the volume of a given quantity of a perfect

gas varies inversely with the pressure, other things being

equal. If the pressure be doubled, the volume is halved

;

if the pressure be halved, the volume is doubled. This

is called Boyle's law, and may be verified by the bent tube

of fig. 103. Its short leg is closed, its long leg open.

Mercury poured down the long leg confines some air in the

short one and compresses it, the whole pressure on the air

* If the strain takes place very suddenly, the elasticity is greater than P,

being 1'4 times P. This is because the temperature does not then remain

constant—heat is generated by the compression which has not time to escape.

We will sTippose, however, that all our compressions and expansions take place

slowly enough to allow the temperature of the gas to remain without change.
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in the tube being that of the atmosphere plus that of the

column of mercury in the tube.

If the mercury stands 30 inches higher in the long

leg than in the short, the original volume of the air

will be found to be halved : for the original pressure it

sustained was one atmosphere, and now it is two.

Anotlier 30 inches of mercury will make it shrink into

one-tliird its original bulk, and so on. Under ordinary

atmospheric pressure, 14'4 grammes of air occupy 11*2

litres (see sect. 197) ; but under a pressure of two atmo-
spheres they shrink to 5*6 litres.

The shortest statement of Boyle's law is that,

ceteris parihis,

PV = constant

;

but remember that cetera must be paria; the tem-

perature must not change, neither must the quantity

(that is, mass) of gas.

One gramme of hydrogen under a pressure of 76 centi-

metres of mercury, and at 0° centigrade, occupies 11-2

litres, or 11,200 cubic centimetres. Hence the value of

the above constant PV for 1 gramme of hydrogen is in

absolute C.G.S. units (see sects. 190 and 193):

76 X 13-6 X 981 x 11,200= 1135 million ergs.

Call this K. It is the same constant for 16 grammes ^'S- ^^,^-

of oxygen, 14 of nitrogen, 22 of carbonic anhydride, Tube.^

and so on. It varies only with the absolute tempera-

ture For 5 grammes of hydrogen or 80 grammes oxygen, the
constant is 5K ; it is, in fact, proportional to the mass of a gas,

but varies for different gases with their molecular weights. A
better statement of Boyle's law is that the ratio of pressure to

p
density^ -—, is constant ; for this is independent of everything

but the nature of the gas and the temperature. If the pressure
of any gas is divided by its specific weight, s or gp, the
resulting constant is called the height of the hortiogenemis

atinospJiere of that gas at the given temperature (see example
xxiv. 2).

i
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199. The density of a gas, tlierefore (the mass per unit

volume, see sect. 35), is directly jn'oportional to the pressure.

One consequence of this is, that as one ascends in the

atmosphere, the pressure does not decrease uniformly as

in the case of a liquid, but it decreases, at fii-st at a more

rapid rate, and afterwards more slowly. At a height of

only three miles, for instance, the intensity of pressure is

half what it is at the sea-level. For the pressure decreases

not only by reason of the elevation, but also by reason of

the diminution of density accompanying the decrease of

pressure. Both causes combine, and the i)ressure diminishes

upwards in what is called geometrical instead of in arith-

metical progression.

200. But just as no actual liquids are perfect, so no

actual gas is a perfect gas. They all deviate slightly from

Boyle's law; they are probably not infinitely expansible,

and are certainly not infinitely compressible, for many of

them, if squeezed very much, condense into liquids ; and as

they approach their condensing point, they deviate from

Boyle's law a good deal, becoming more and more com-

pressible. Oxygen, nitrogen, and argon have now all been

liquefied in bulk, and the two latter have been frozen.

Hydrogen has been momentarily liquefied as a mist, and

the only gas that has so far resisted even momentary lique-

faction is helium. Still, all these gases are, at ordinary

pressures and temperatures, a very long way off their con-

densing points, and they obey Boyle's law with considerable

accuracy. They cannot, indeed, be condensed by any amount

of simple squeezing; they have to be cooled enormously

as well.

Air-pumps.

201. Air-pumps difier in no respect from other pumps
except in details of arrangement. Their peculiarity is that

the vessels they are used to exhaust or to fill contain always
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the same volume of fluid ; its density and pressure, however,

are diminished or increased to any extent.

Pump No. 3 (fig. 93) is generally used for exhaustion, but
pump No. 2 can also be used, and it will at the same time

produce condensation in any vessel screwed on to its end B. It

is then called a condensing syringe. If it obtains its air from

the atmosphere, the same mass of air will be injected at every

stroke, and consequently the pressure in a vessel screwed on

to B will increase by a fixed amount at each stroke, that is, it

will increase in arithmetical progression.

Fig. 104.—Air-pump.

Fig. 104 shows a double-barrelled air-pump with two of

the No. 3 pumps arranged to exhaust a glass vessel known

as the 'receiver.' At every stroke the air in the receiver

expands to fill both receiver and pump-barrel, and the

portion filling the latter is at the reverse stroke expelled into

the atmosphere.

Call the volume of the receiver V, and that of a pump-
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barrel v; the same volu7ne of air, v, is extracted at every

stroke, but not the same mass, because its density keeps on

diminishing. If the pressure of the air in the receiver to

start with, is Pq, and after the first stroke, Pj ; the product

of pressure and volume being constant, we have

The contents of the pump-barrel are now expelled, and the

second stroke begins. During the second stroke the volume

V again expands to fill the volume V + v, without the

quantity of the air changing ; so, if Pg is the pressure after

the second stroke,

PiV = P2(V + r).

Similarly, Pg, the pressure after the third stroke, is given by

and so on

The pressure after three strokes may therefore be written

similarly, the pressure after n strokes is

p -(^-Xv

The pressures PgP^PgPg P,j decrease, therefore, in a

V
geometrical progression with the common ratio ^y^ •

Hence perfect exhaustion (or pressure equal zero) cannot

be obtained, even with a perfect pump, without an infinite

number of strokes.

202. To indicate the degree of exhaustion, a mercury

gauge is commonly used, which may be simply a long tube

reaching from the receiver into a cistern of mercury, some-

tliing like a barometer ; or it may be of the form shown
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separately in fig. 105, and attached to the pump at G in

tig. 104. The closed limb of the U tube is completely full

of mercury, and remains so till the air pressure

in the little bell jar which is exhausted with

the receiver gets unable to support it ; it then

gradually descends as the exhaustion proceeds,

and the pressure of the residual air in the

receiver is measured by the difference of level

between the mercury in the two limbs.

203. Compressed-air Manometers.— The
diminution of the volume of a gas under

pressure will measure that pressure in a more

compact way than the mercury gauges of

sect. 193 (compare the length of the two

branches of the tube, fig. 103), and a mano-

meter on this principle is shown in fig. 106.

Faraday used to measure high pressures in Air-pump

his glass vessels by inserting little conical
^''"^^^"""^ Gauge,

glass tubes, with one end sealed, containing air and a

globule of mercury (fig. 107). As the pressure of the gas

Fig. 106. Fig. 107.

Simple compressed-air Manometers.

in which they were, increased, the globule moved up and

compressed the air in the tube more and more; and the

diminution of volume measured the increase of pressure,

V

Lord Kelvin has applied the same principle to ocean
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sounding, for, .since every 34 feet of water adds another

atmosphere to the pressure, if the pressure of the water

be known, its depth can be calculated. A tube closed at

one end is lowered into the sea, like a diving-bell, mouth

downwards ; and a registering arrangement records how far

the water has entered the tube, and therefore how far the

air in it has been compressed.

Diving-bells.—Open vessels containing air, then lowered

into water mouth downward, need to be heavy in order to

sink. It is usual to pump more air into a diving-bell as it

sinks, so as to keep the water out notwithstanding its

pressure ; but if no such pumping be done, the original air

will be compressed into smaller compass, the water Avill

partly enter, and, since the displaced fluid is less, the

buoyancy diminishes or the apparent weight increases as it

gets more deeply immersed. On this principle little hollow

glass figures, called 'Cartesian divers,' rise and sink in a

liquid according as the pressure on them is diminished or

increased.

EXAMPLES-XXIV.

(1) A barometer in a diving-bell indicates a pressure of 45 inches

of mercury, the height of tlie barometer at the surface of

the earth being 30 inches. What is the depth of the

diving-bell?

(2) Find the lieight of the homogeneous atmosphere at zero

centigrade. (This means tlie height an atmosphere must
have, if it were made of incompressible fluid, of the same
density as the real atmosphere at any point, and if it

exerted the same pressure as the real atmosphere does at

that point. See sect. 198.)

Ans. 76 X 13 -6 -r -001293, in centimetres, about 8000

metres (or rouglily about 5 miles).

N.B.—Notice that this does not vary with the baro-

metric height.

(3) A siphon barometer which has a little air in its 'vacuum*
indicates a pressure of onlj' 72 centimetres ; and on pouring
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more nierciiiy into the open limb until the vacuum is

diminished to half its former bulk, the difference of levels

becomes 70 centimetres. What is the true height of a

proper barometer ?

(4) The cylinder of an air-pump barrel has a capacity t^jth of

that of the receiver it is used to exhaust. Find the

pressure in the receiver after 1 and after 2 strokes of the

pump, if the original pressure was 77 centimetres.

(5) If a quantity of air is squeezed in a closed tube into yfirtli

of its original volume which it occupied when the bar-

ometer was at 30 inches, what pressure does it indicate

;

and at what depth under water would this pressure be

experienced ?

(6) An inverted vessel like a diving-bell, 6 feet high and
weighing half-a-ton, weighs apparently ^ of a ton when
lowered so that the water inside it is 86 feet below the

surface. What would be its apparent weight when raised

so as to be only just immersed, supposing that the same
quantity of air now quite fills it ?

(7) A Y tube is inverted, and each leg is dipped into a different

liquid. Air is then sucked from its stem, and the liquids

rise a vertical height of 17 and 15 cm. respectively. Com-
pare the specific gravities of the tAvo.

(8) If, in last question, the heavier of the two liquids is water,

find the pressure of the air in the stem when the height of

the barometer is 75 cm.

(9) A room has a volume of 150 cubic yards. The barometer rises

from 28 to 30 inches. Find how many cubic yards of air

in the room at the higher pressure have entered during the

rise.

(10) In a common air-pump, the volume of the receiver is 450

cubic inches, and that of the barrel is 50 cubic inches.

Find in what ratio the density is reduced by one stroke

and by two strokes.

(11) The barrel of an air-pump is ^ a cubic foot in volume. Find

the pressure in a receiver 3 cubic feet in volume, after 5

strokes of the pump, in terms of its initial pressure.

(12) A barometer which has a little air in it reads 29 6 inches,

the top of the tube being 6 inches above the top of the

mercury, when a standard barometer reads 30. What is

the true reading when the faulty one marks 29 ?

(13) Show that the apparent weight of a diving-bell increases as
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it is sunk to greater depth in water, provided no fresh air

is pumped into it. At what depth approximately will the

sustaining force or buoyancy of the water on it he half

what it is when just submerged, assuming its walls thin

and about 3 feet high ?

(14) A diving-bell 10 feet high is sunk in water so that its top is

287 feet below the surface. Find the height to which the

water will rise inside the bell, assuming the pressure of

the atmosphere equal to that of a column of water 32 feet

high.

(15) A diving-bell having a capacity of 125 cubic feet is sunk in

salt water to a depth of 100 feet. If the specific gravity of

salt water be 1 "02, and the height of the water barometer

be 34 feet, find the total quantity of air at atmospheric

pressure required to fill the bell,

(16) A mass of gas kept at constant temperature has a volume of

10 cubic feet at a pressure of 20 inches of mercury. Find

the pressure which will reduce the volume to 3 cubic feet.

(17) A pump cylinder 1 square inch in section and 6 inches long is

used to condense atmospheric air into a reservoir of 1 cubic

foot capacity, which is kept cool. What is the pressure

after 100 strokes ?

(18) A barometer tube contains air above the mercury column.

On a certain day the mercury stands at 25 inches when the

space above it is 6 inches long, and at 24 inches when the

space is made only 5 inches long by letting the tube lower

down into its cistern. Find the true atmospheric pressure.

(19) A cylindrical vessel, closed at one end only, is 20 centimetres

tall, and its open end is immersed in mercury until the

interior level is 5 centimetres below that of the general

level of the liquid outside. The barometric height being

"~75 centimetres, calculate how far the mercury has risen

into the vessel, or how deejj the lip of the vessel has been

submerged.



MISCELLANEOUS EXERCISES.

SET I.

1. A bullet is fired vertically upwards with a velocity of 1600

feet per second. Find how high it will rise, and how soon it will

hit the ground.

2. If you throw 2 balls up with a velocity of 192 feet per

second, one two seconds after the other, when and where will

they meet ?

3. The intensity of gravity on Jupiter is 2-6 times as much as

on the earth. How long would a body take to fall on Jupiter

from a height of 167 feet ?

4. A man in a stationary balloon throws a ball up with a

velocity of 96 feet per second. Where is the ball in 10 seconds,

and what velocity has it ?

5. A man on a cliff 300 feet high throws a stone down to the

ground in 3 seconds. With what velocity did he throw it ?

6. A balloon is going up at the rate of 80 feet per second, and
when at a height of 800 feet a halfpenny is dropped over its edge.

What does the halfpenny do ? When and with what velocity does

it hit the ground ?

7. A cannon is fired horizontally at a height of 10 feet above a

lake. How soon does the ball hit the water ?

8. One stone is dropped fiom tlie top of a cliif 400 feet high,

and at the same moment another is thrown up from the bottom

with a velocity sufficient to carry it to the top of the cliff. When
and where do they meet ?

9. A weight of 6 lb. is attached to one end of a string and 10

lb. to the other, and the string is hung over a freely movable

pulley. Find the tension in the string ; and how long 9 feet of

the string take to pass over the pulley.

10. A knife is dropped from the middle of the ceiling of a
railway-carriage going 50 miles an hour. How does it fall ?

11. A train is going 50 miles an hour; a man, leaning out of

window, throws a ball up vertically at 32 feet a second. What
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becomes of it, and how long will it take before it comes back to

his hand ?

12. An iron cage descends a mine. The tension in the rope

equals the weight of 200 lb. ; when at rest it was 225 lb. Find
the time of descending 100 feet from rest.

13. Find the tension in a rope which draws a carriage of 8 tons

up a smooth incline of 1 in 5, and causes an increase of velocity

of 3 feet per second per second. If on the same incline the rope

breaks when the carriage has a velocity of 48 feet a second, how
far will it continue to move up the incline ?

SET II.

1. Six foi'ces act on a point making angles of 60° with each

other. Their magnitudes are 4, 6, 5, 1, 10, 7. Find, by drawing,

the magnitude and direction of the resultant.

2. Three forces, 10, 10, 36, act on a point at angles of 120°

Find resultant.

3. A hundredweight is hung to 2 hooks in the ceiling by 2

cords, one 3 times as long as the other, and tlie same length as

the distance between the hooks. Find by construction the

tension in each.

4. A weight of 42 lb. is balanced at a height of 6 feet above the

ground on 2 inclined rods meeting in a point under the weight.

One rod supports 36 lb., the other 20 lb. Find the length of each

rod by a construction.

5. Two boys sitting at the ends of a plank 10 feet long see-saw

over a log. The plank weighs 70 lb. The log sustains 2 cwt.,

and one boy is 4 feet off it. What are the boys' weights ?

6. Forces of 5, - 3, 4, - 2, 6, are arranged along a rod at equal

distances (2 inches). Find resultant.

7. A uniform rod weighing 4 lb. has 12 lb, at one end and 18

at the other. The centre of gravity of the whole is 9 inches from

the middle. What is the length of the rod ?

8. Two men carry a block of iron weighing 176 lb. suspended

from a pole 14 feet long. Each man is 1 foot 6 inches from his

end of the pole. Where must the block hang in order that one

man may bear f of the weight borne by the other ?

SET III.

1. State the characteristic difference between solids and fluids

in relation to the transmission of pressure, and explain clearly
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what is meant by the equal transmission of pressure by fluids in

all directions.

2. Show what the pressure exerted by a liquid on any part of

the surface of the containing vessel depends upon, and explain

how to calculate the amount of this pressure when the necessary

data are given.

3. Describe and explain an experiment proving that the pres-

sure on the base of a vessel may be greater or less than the

weight of liquid in the vessel.

4. Prove that the resultant pressure on a submerged body acts

vertically upwards, and is equal to the weight of a quantity of

fluid equal in bulk to the body.

5. Describe experiments proving that the air has weight, and
show how the weight of a given volume of air can be approxi-

mately ascertained.

6. Explain the construction and action of the barometer, and
show how to ascertain the pressure per unit of surface exerted by
the air.

7. In a barometer which contains a little air in the space above

the mercury, this space amounts to 20 c. c. when the mercury in

the tube is 70 centimetres above the mercury in the cistern ; on

lowering the tube, so that the mercury in the tube is only 67

centimetres above that outside, the space above the mercury

measures 12 5 c. c. Find true barometric height.

SET IV.

1. Define the terms 'force,' 'work,' 'power,' 'energy,' 'mo-

mentum.'
2. What experiments or observations can you adduce to prove

that the weight of a body is proportional to its inertia ?

3. A light frictionless pulley with a string over it has 17 ounces

hanging on one end of the string and 15 on the other. Calculate

the tension in the string, and the acceleration of either mass.

4. Discuss the direct impact of two small spheres on one
another in the light of Newton's law of motion, showing what
happens to their separate momenta and energies

—

(a) when
inelastic ; (6) when elastic.

5. Calculate the position of the centre of gravity of a light

square frame, six inches in the side, with weights at its four

cornei-s, proportioned to 5, 2, 7, 4.

6. Explain the common air-pump, and show how to calculate
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the pressure of the residual air after a specified number of

strokes.

7. A pressure is often specified as equal to 70 centimetres of

mercury. Express this in absolute measure; for example, in

dynes per square centimetre.

8. How can the specific gravity of sand be practically deter-

mined ? Illustrate by an example.

9. A ladder, weighing half a hundredweight and 30 feet long,

rests against a smooth wall, with its foot 15 feet from the bottom

of the wall. Find the pressure on the wall and ground, taking

the centre of gravity of the ladder as one-third of its length up.

10. A stone is thrown up with a velocity of 192 feet a second.

Find how high it ascends, and how long it takes before returning

to the hand. Find also its position three seconds after throwing.

11. A body, moving with uniform acceleration, describes 180

feet in the fifth second of its motion. Find its acceleration and
the distance travelled in the five seconds.

12. A tricycle, weighing 80 lb., moving along a level road at

the rate of 12 miles an hour, is stopped by the friction in the

space of 60 yards. "What must the average resistance to its

motion have been ?

13. Of three blocks of wood one is pivoted on a point, another

rests on an inclined plane, and the third floats in water. Discuss

the conditions necessary for equilibrium and for stable equili-

brium in each.

14. How would you determine the coefficient of friction between
two given flat surfaces ?

SET V.

1. Define Acceleration, Inertia, Force, and Work, showing
how each is measured, and giving the most important standards

or units of each in present use. What is meant by the statement

that 5r= 981?

2. It is found experimentally that in vacuo all bodies fall

through a given distance in the same time. What consequences

can be deduced from this fact ? If the distance were doubled,

how much more time would the fall require ?

3. A falling body is observed to describe 100 feet in the last

second of its motion. Find how far it must have fallen, and also

the time taken. Consider 5^=32, and neglect the resistance of

the air.
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4. What is meant by centripetal acceleration ? Find the force

necessary to cause a planet of mass m> to revolve in a circle of

radius r in a time T.

5. How have the masses (a) of the Earth and (6) of the Sun
been ascertained ?

6. Define moment of inertia. Find the time a solid cylinder

will take to roll down an inclined plane 20 feet long, inclined at

30° to the horizon ; the moment of inertia of the cylinder being

7. Explain clearly what is meant by the centre of oscillation

of a swinging rigid body ; and determine its position in the case

of a uniform rod swinging about one end, its moment of inertia

being ^mr\
How has the intensity of gravity been accurately measured ?

8. Three weightless rods are jointed together, the two free ends

are pivoted to firm supports, and the middle rod is loaded at any

point. Sketch the position of equilibrium which the system will

take up, and show how to determine by construction the stress in

each of the unloaded rods.

9. A weight rests on an inclined plane of given roughness.

Find by construction the least force which will suffice to pull the

weight up the plane, showing the angle at which it must act.

Also find how much the plane must be tilted in order that the

weight may slide down.

10. A rectangular block weighing 20 lb. with a square base 8

inches in the side, is set up on a level table ; and it is found that

a horizontal force of 5 lb. weight, if applied below a certain

point, is just able to make it slide, while if it is applied above

that point the block topples over. Find the position of this

critical point, and also the coefficient of friction between the

block and the table.

11. Define density and specific gravity.

A piece of iron weighing 84 giammes is put into a beaker,

which is then filled with water up to a certain mark above the

level of the iron, and the whole is found to weigh 128 grammes.
The iron is then turned out, and Avater poured in till the beaker

is again full up to the same mark ; it now weighs 56 grammes.
Find the specific gravity of the piece of iron, and its weight when
under water.

12. Describe an accurate form of barometer ; and give some
of the contrivances which have been employed to make bar-

ometers morQ sensitive to slight changes of pressure.
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13. A balance is arranged under water, and a mass of iron ore

in one of its pans is counterpoised by 3 kilogrammes of lead in

the other. What is the mass of the iron ore, its specific gravity

being 7, while that of lead is 11 ?

14. A ladder standing on rough horizontal ground rests against

a rough vertical wall. Find its position when just not slipping

down.

15. A solid regular triangular pyramid is drawn along a rough
table by a horizontal force. What is the greatest height at

which tlie force can be applied without upsetting the pyramid ?

16. A weight is swung round and round in a vertical circle by
a rope of given length. Determine the conditions that the rope

may keep tense.

SET VI.

1. Describe fully a method of comparing the specific gravities,

(a) of a solid and liquid, (b) of two liquids.

2. Explain clearly why a diving-bell which is not supplied

with additional air appears to get heavier as it descends in

water ; and show how its depth might be ascertained, either by
reading a barometer inside the bell, or by noticing the height to

which the sea-water had risen into its interior.

3. A gun is fired horizontally, at a height of 169 feet above a
lake, with an initial velocity of 1000 feet a second. Find how
soon, and how far away, the ball will first strike the lake,

neglecting the resistance of the air, and taking the acceleration

produced by gravity as 32 feet-per-second per second.

4. What is the principle of virtual work (or virtual velocities) ?

Illustrate it by applying it to find the mechanical advantage of

any system of pulleys when the weights of the pulleys are not

neglected.

5. A mass of 3 lb., hanging vertically, drags a mass of 17 lb.

along a perfectly smooth level table by means of a string over

the edge. Find the acceleration, and the distance travelled in

five seconds.

6. Find the tension in a flexible rope which is passed round a

single movable pulley supporting 20 lb., while to the free end of

the rope 12 lb. is hung ; and find the acceleration upAvards of the

20-lb. weight (neglecting the mass of the pulley and of the rope).

Show that this may be done either by direct application of

Newton's Second Law, or by a work-and-energy method.
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7. State Newton's Third Law. If two spheres of given masses

and coefficients of restitution impinge directly on each other with

known velocities, show how to find the velocities after the impact.

Consider specially the case when the masses are equal.

8. A ball let fall on to a stone slab from a height of 16 feet,

bounces the fii-st time to a height of 9 feet. AVhat is the coeffi-

cient of restitution, neglecting the resistance of the air ? and how
high will the ball bounce next time ?

Find also the total distance it will travel before coming to rest.

9. Given the moment of inertia of a body about an axis through

its centre of gravity, determine it about any other parallel axis.

10. A uniform rod of given length is swung as a pendulum
about a given point in it. Find the length of the equivalent

simple pendulum, and find for what point of suspension the time

of swing will be a minimum. [The moment of inertia of a rod

about its centre is ^i^mP.I

11. A conical pendulum or governor ball (considered as a

particle) is spinning round a vertical axis 20 times a second.

Find its distance in inches or centimetres below a horizontal

plane through its hinge.

12. How has the value of g been determined accurately? Ex-
plain its variation with latitude.

13. Define the unit of force. How has the force of attraction

between two pound masses one f^ot apart been determined ?

Show how a knowledge of this would enable us to express the

mass of the earth in terms of its bulk, and also would tell us the

mass of the sun in terms of its distance.

14. What is the law of acceleration to which a body is subject

if it is dropped into a deep hole in the earth ? How long would
it take to reach the centre, if the density of the earth is 57.

Show that this time is independent of the size of the earth.

15. A body slides down a plane inclined at a given angle to the

horizon. Determine its acceleration, and the time taken to slide

down, supposing the coefficient of friction constant.

Determine also the least force necessary to support the body,

and the direction in which it must act.

16. A uniform narrow beam is pivoted at one end at a given

height above a pond, and the other end rests in the water.

Determine its position of equilibrium, the specific gravity of the

wood being known.
Discuss its cliange of position if the level of the pond is gradu-

ally rising towards, and ultimately above, the pivoti.
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SET VIL

1. A ball thrown up is caught again in 7 seconds. How high

did it go, and with what speed was it thrown ?

2. A cannon-ball is fired horizontally with a velocity of 1000

feet a second across a lake from a tower 100 feet high. When
and where does it strike the water ?

3. A 3-cwt. cage is being lowered down a coal-pit with a down'

ward acceleration of 5 foot-second units. Find the tension in its

rope.

4. Equal weights of 21 lb. each are slung by a string over a
perfectly smooth bar, and 3 lb. is added to one side. Find the

distance moved and the velocity acquired in one second from

rest, and find also the tension in the string.

5. A gun weighing 12 lb. fires a bullet of an ounce and a half.

If the initial recoil velocity is 13 feet a second, what is the speed

of the bullet?

6. The above bullet at the end of a string 6 feet long is whirled

round and round till the string breaks. If the string had been

able to support half a hundredweight, what was the rate of

whirling of the bullet ?

7. A number of particles slide down diff'erent chords of a
vertical circle, all of them meeting at the lowest point of the

circle. Compare their speeds and times of descent.

8. Show that if the planets described circles round the sun,

under the action of gravitation, the distances cubed would be
proportional to their periods squared. How can the mass of the

sun be thus calculated, in terms of the mass of the earth ?

9. What is the value of g where a simple pendulum 7 feet

long makes a complete swing in 3 seconds ?

10. Find the range, the time of flight, and the greatest eleva-

tion of a projectile fired at 45° with a speed of 1000 feet a second.

11. What is the necessary difference of tensions in a driving-

belt 30 inches wide, which is running 4200 feet a minute and
tiansmitting 300 horse-power ?



SPECIMEN EXAMINATION PAPERS.

South Kensington Examination.—Solids.

1. One of two forces, which act at a point, is represented

numerically by 7 ; the resultant is 14 and makes an angle of 30°

"vvith the force of 7 ; find grapliically the magnitude and line of

action of the second force. Also calculate the magnitude to two
places of decimals, and measure the angle between the two forces

as accurately as you can.

2. Define the moment of a force with respect to a point.

The moments of two forces are taken with respect to a
point ; explain under what circumstances the moments will

be of different signs.

Draw a square ABCD, and let a force of 12 units act from C to

D, and another force of 2.3 units from C to B ; find the moment
of their resultant with respect to the point A.

3. Explain what is meant by the tension of a thread.

Two men pull at opposite ends of a rope, and each pulls with a
force of 50 lb. weight ; what is the tension of the rope ?

A body weighing 10 lb. hangs at one end of a thread, the other

end of which is fastened to a hook in the ceiling; what is the

tension of the thread, and what are the forces that produce it ?

4. A circular lamina of radius b centimetres weighs W lb.

;

find the common centre of gravity of the lamina and of a weight

of W lb. distant a cm. from the perimeter and external to it.

When is the centre of gravity (a) inside the perimeter, (b) on

the perimeter, (c) outside the perimeter ?

5. Let a horizontal line AC represent a rod 12 ft. long, resting

on two fixed points A and B, 10 ft. apart. Each foot of the

length of the rod weighs 12 oz. ; a weight of 16 lb. is hung from

C. Show that the rod will stay at rest, and find the pressure at

each of the points of support.

6. Explain the principle of the lever.

Describe the common balance, and show that the weights in

the scale-pans will not be equal unless the beam is horizontal.

7. A piece of wire is hung up by one end, and at the other

carries a weight. State the law which regulates the amount by
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which the wire is stretched, and what limit there is to the extent

of the elongation.

The wire is 12 ft. long, and its cross-section is l-120th of a
square inch ; it is found to be stretched one-fifth of an inch by

a weight of 300 lb. ; find the modulus of elasticity.

8. When the acceleration of the velocity of a body moving in a

straight line is constant, how is the acceleration measured ?

In what units is acceleration commonly measured ?

A body moves in a straight line, and at a certain instant its

velocity is 10 ft. a second ; at the end of If seconds its velocity is

31 ft. a second ; at the end of 3^ seconds its velocity is 52 ft. a
second. Show that this is consistent with a constant accelera-

tion, and find what that acceleration is in feet and seconds.

9. A train has a speed of 30 miles an hour at a certain station,

and moves with a constant acceleration of | foot per second per

second till it passes a station a mile distant ; what time does it

take between the stations, and what is its average velocity ?

10. Define a poundal and a foot-poundal.

The mass of a body is 15 lb. and its velocity is 20 ft. a second

;

find its kinetic energy in foot-poundals. Find also the number of

poundals in the force that would bring it to rest in 1-lOth of a
second. What would the force be in pounds-weight ?

11. Describe Atwood's machine.

Weights of P and Q lb. are connected by a string passing over

a smooth fixed pulley, whose plane is vertical ; determine the

ratio of P to Q, so that the acceleration of the system may be

one-tenth of that due to gravity.

12. A small but heavy body is suspended by means of a long,

inextensible thread, and is able to swing to and fro in short arcs.

How are the times of successive swings connected ?

Find the length of the thread when a complete oscillation takes

half a second, g being 32 -2. (tt^= 9 -87.

)

South Kensington Examination.—Fluids.

1. A body moves in a straight line ; explain how its velocity

is measured at any instant

—

[a) when the velocity is constant,

(6) when it is variable.

A body falls freely at a place where ^=32*2; find its velocity

at the end of 5 seconds ; also find its velocity when it has fallen

through 144-9 ft.
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2. Enumerate fonns of energy produced in material bodies

when work is done upon them.

If a one-ounce rifle-bullet be propelled with a velocity of 1500 ft.

per second, what is its kinetic energy ?

What work must be done upon it to produce this energy ?

3. State broadly the differences between solids, liquids, and
gases. How do they behave in general when attempts are made
to compress them ?

Make remarks on the statement :
* The pressure of a liquid

at rest is always perpendicular to every surface on which

it acts.'

4. There is a cylindrical vessel 2 ft. high, closed at both ends

and standing upright. Suppose that a pipe is let into the side of

the vessel and extends upward to a vertical height of 12 ft. above

the top of the vessel. Now suppose that water is poured down the

pipe until the vessel is full, and that the water stands in the pipe

at a height of 10 ft. above the top of the vessel. If you were

considering the pressure of the water on the inside of the vessel,

where would you take the surface of the water to be ? Bearing

your answer in mind, find the pressure on each square foot of the

top and of the bottom of the vessel.

Assuming that the height of 10 ft. is not changed, explain

whether the results would or Avould not be different if the

diameter of the tube were doubled, and if it came into the

vessel above or below the point at which it actually enters.

5. A vertical side of a rectangular cistern is 4 ft. broad by 5 ft.

deep ; the cistern is fths full ; what is the magnitude of the

resultant pressure of the water on the side, and where and how
does it act ?

6. State the conditions of equilibrium of a floating body.

A solid body floating in water has ^th of its volume above the

surface. What fraction of its volume will project if it float in a

liquid of specific gravity 1*2 ?

7. A cylinder, whose specific gravity is 0*6, is fastened to the

bottom of a vessel by a thread attached to a point in the circum-

ference of its base ; its radius is 2 in. and height 6 in. If water

is poured into the vessel, and the body comes to rest entirely

under water, show, in a carefully drawn diagram, the position in

which it comes to rest, and find the tension of the thread.

8. Explain how to find the specific gravity of a substance lighter

than water, by means of the balance.

Apiece of wood weighs 15 oz. and its specific gravity is 08;
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when it is attached to a sinker, the componnd body weighs 16 oz.

in water ; find the weight of the sinker in water.

9. Give a rule for converting the reading of a Fahrenheit

thermometer into that of a Centigrade.

What reading Centigrade corresponds to 98 '4 F. ?

10. Given that, at the standard pressure and temperature, the

weight of a cubic inch of dry air is 0'309 grains, and that a cubic

foot of water weighs 62*4 lb., show that the density of water is

very nearly 818 times that of the dry air.

A substance of small specific gravity is weighed by brass

weights ; explain whether the true weight of the substance is

greater or less than the apparent weight.

11. Explain what is meant by the water barometer.

Describe a siphon, explain its action, and state what are the

limits within which it will act.

A siphon is working, when a small hole is made at the top of

the bend ; explain what follows.

12. If 248 lb. of air are contained in a room whose dimensions

are 18, 15, and 12 ft., the temperature being 60° F. and the

pressure that due to 30 in. of mercury, find the weight of one

cubic foot of air at 37° F. under the pressure due to 297 in. of

mercury.

South Kensington Examination.—Solids.

1. Two forces act at a point along given straight lines ; explain

how to find the force that will balance them.

Let AB and AC be the lines, and let the angle BAG be 51°

;

let a force of 27 units act from A to B, and one of 41 units from

A to C ; find by construction the force that will balance them,

and, if it act from D to A, find (in degrees) the angle BAD.
2. Two men carry a block of metal suspended from a pole

7 feet long, each man being 6 inches from his end of the pole

;

find the point of suspension when one man bears fths of the

weight borne by the other.

3. What is the 'moment' of a force about a point? An
hexagonal lamina ABCDEF is fixed at the centre and capable of

rotation about an axis perpendicular to its plane. A force of 1 lb.

weight is applied at A perpendicular to AB and in the plane of

the lamina ; find the magnitude of the force along CD which will

prevent rotation, and show the directions of the two forces by

arrowheads in a diaintinj.
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4. A body is hung up by a piece of string. What do we know
about the position of its centre of gravity ?

A triangular board, ABC, is hung up by a thread fastened to

A ; show, in a carefully drawn diagram, the position in which it

will come to rest.

If the board weighs 1 lb. and a weight of 1 lb. is fastened to B,

show, in a second diagram, the position in which it will now
come to rest.

5. A, B, C are fixed smooth points, such that ABC is an equi-

lateral triangle, with BC horizontal and above A. A fine thread

is fastened to A, passes over B and C, and carries a weight of

10 lb. ; find the pressures on B and C, produced by the weight.

6. Define a foot-pound of work. State what is meant by the

power of an agent.

There are two agents A and B ; A can lift 25 lb. through 6 feet

in a tenth of a second ; B can lift 10 tons through 15 feet in 70

seconds ; find the ratio of A's power to B's.

7. How are two velocities compounded ?

A boat is rowed at right angles to the stream of a straight

river one-third as fast again as the river flows. If the distance

rowed from bank to bank be five miles, find the breadth of the

river and the distance made in the direction of the stream.

8. A body moves from rest in a straight line, and its velocity

is uniformly accelerated ; show how to represent graphically its

velocity at end of a given time, and the total distance described.

A body is moving at the rate of 80 feet a second; find the

height to which that velocity is due.

9. In the motion of a body in a straight line, define constant

velocity and constant acceleration, and show that the former is a
particular case of the latter.

In the same system of units the constant velocity of one body
and the constant acceleration of another body are denoted by the

same number ; if the second body start from rest, show that in

two seconds both bodies will have passed over the same distance.

10. Distinguish between potential energy and kinetic energy.

How many units of work are necessary to raise 4*7 ounces 5*3

feet high ?

11. Explain how it is that a body moving with uniform

velocity in a smooth horizontal circular groove can have at

every instant an acceleration, constant in magnitude, directed

towards the centre of the circle.

How is this acceleration protluced? What is the magnitude
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of the force which produces the acceleration ? If the body weigh
2 oz., the diameter of the circle be a yard, and the uniform

velocity be 5 feet per second, express the force in poundals and
in pounds-weight.

12. State what is meant when it is said that, at a certain place,

the acceleration due to gravity is 32*2.

Find the number of beats made at that place in one minute by
a pendulum 20 125 feet long.

South Kensington Examination.—Fluids.

1. Define the British absolute units of force, and show how
force is measured in any particular case of a body's motion.

A body weighing 2 lb. at rest is acted upon by a force of 7

poundals for 3 seconds ; what velocity does it acquire ?

2. A body whose mass is 264 lb. moves at the rate of 1000 ft.

per second ; find its kinetic energy {a) in foot-poundals, (6) in

foot-pounds. (^= 32.)

If that energy were imparted to a machine, and were able to

make it work uniformly for 5 minutes, with what horsepower
would the machine be working during those five minutes ?

3. Define the centre of gravity of a body. State where the

centre of gravity is situated in the case of any two bodies.

A rope unwinds from a drum, and the hanging end descends

vertically at the rate of 10 ft. a second ; witli what velocity does

the centre of gravity of the hanging part of the rope descend?

4. Explain how the pressure of a fluid is measured.

If you had a cylinder standing upright and containing water

2 ft. deep, explain how you would estimate its pressure at any
point of the base. How would your statement be modified if

you considered a point on the side of the vessel 1 ft. below the

surface of the water? (7 cub. in. of water weigh 4 oz.)

5. What is the resultant pressure on a body wholly immersed
in water ?

State, with reasons, if this depends (i.) upon the weight of

the body; (ii.) the size or shape of the body; (iii.) the depth

to which it is immersed.

Find the force with which a sphere 1 foot in diameter is urged

upward if it be totally immersed in water.

6. A «'ube whose edge is 6 inches is placed in water with a face

horizontal and its centre of mass at a depth of 3 feet. Find the

pressure in lb. oii each tace of the cube.
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7. There are two liquids, which do not contract when mixed,

and their specific gravities are 0*6 and OTo. If equal volumes of

them are mixed, what is the sp. gr. of the mixture? If equal

weights of them are mixed, what is the sp. gr. of the mixture ?

8. Describe a 'specific gravity bottle.'

Such a bottle when empty weighs 20 grammes ; when full of

mercury it weighs 141 gr., and when full of another liquid it

weighs 73 gr. ; compare the specific gravities of the two liquids.

9. State Boyle's law, and describe the experimental verification

in tlie case of air, when the pressure is increased.

The barometer stands at 30*1 in. ; there is no change of tem-

perature, but the barometer falls to 29025 in. What will now
be the volume of the quantity of air which at fii-st had a volume
of one cubic yard ?

10. A cylindrical tube closed at one end is held in a vertical

position and immersed mouth downwards in water ; what is the

depth of the middle of the tube when the water has risen half-

way up the tube, the atmospheric pressure being 15'1 lb. weight

per square inch ?

11. Draw a diagram of a compressed-air manometer, and

explain the principle involved in the construction.

12. Describe the hydrometer of variable immei-sion.

The hydrometer when floating in a liquid (A) has more of the

stem above the surface than it has when floating in another

liquid (B). Explain which of the two liquids is the denser.

One inch of the stem of a hydrometer is one-fiftieth part of its

whole volume. When it is placed in the liquid A, two inches of

the stem are above the surface ; when it is placed in B, one inch

and a half are above the surface ; compare the specific gravities

of A and B.

Royal University of Ireland Matriculation
Examination.

1. Explain the terms 'poundal,' 'dyne,' 'erg.'

2. State the laws of friction, and describe any method of

determining by experiment tiie coefficient of friction.

3. Masses of 3, 4, and 5 lb. respectively are equally spaced

along a straight line ; find their centre of gravity.

4. A body is dropped vertically ; what distance does it pass

over during the third second ?

5. Define * momentum.' Compare the momentum of a mass of
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7 lb. having a velocity of 1000 feet per second with that of a
mass of one ton moving at the rate of 2 miles per hour.

6. Define the pressure at a point in a fiuid.

7. A body floats with a cubic foot of its volume under water.

What volume would be immersed in a liquid of sp. gr. 1-2?

8. A balloon is not completely filled with coal-gas, so that the

skin is slack. Why, as it rises, does it till ?

9. Describe some method of finding the sp. gr. of a liquid.

10. Describe the hydraulic press, and calculate its mechanical

advantage.

Royal University of Ireland Matriculation
Examination (Honours).

1. How would you examine experimentally the sensitiveness

of a balance? On what points in its construction does the

sensitiveness depend ? Give proofs of your statements.

2. A uniform triangular plate is divided by a line drawn
parallel to its base. Find the position of this line if the distance

between the centres of gravity of the tAvo parts is equal to half

the median.

3. Two moving bodies, A and B, are brought to rest by the

application of the same retarding force to each. If A moves p
times as long, and q times as far, as B before coming to rest, find

the ratios of the masses, and of the speeds of the bodies.

4. State the laws which govern the direct impact of moving
bodies, and explain how they could be tested experimentallj''.

5. In the arrangement of one movable and one fixed pulley, in

which the theoretical advantage is two, find the accelerations of

the parts, when a one-pound weight is hung on the free end

of the string, and the movable pulley and its attached weight

have a mass of three pounds.

6. Two particles are projected vertically at the same instant

and from the same point, their velocities being any whatever.

Show that their relative velocity remains unchanged until one of

them strikes the ground.

7. Prove that the free surface of a liquid at rest under gravity

is horizontal.

8. Calculate the thrust on a triangular lamina which is held

in a liquid with its plane vertical and base horizontal, three-

fourths of the area being immersed.

9. A piece of iron weighs 500 grammes. It is made into a
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hollow spherical shell. Wliat is the outside radius of the shell if

(a) it just floats, (6) it floats half immersed?
10. A body of specific gravity s floats in water with a certain

water-line
; prove that if the body were inverted, and of specific

gravity 1 - s, it would float with the same water-line.

11. Describe some foiin of double-cylinder force-pump.

12. A cylindrical tube three feet long and one square inch in

sectional area is used as a barometer, the mercury standing at

30 inches. Find the effect of introducing into the Torricellian

vacuum a volume of air which, at atmospheric pressure, measures

five cubic inches.

University of London Matriculation Examination.

1. A body falls freely from rest and reaches the ground with a

velocity of 40 feet per second. Find the velocity with which it

would reach the ground if, for 9 feet after passing the mid-point

of its descent, the body were subject to no acceleration.

Would it be possible to reproduce approximately, in an experi-

ment, conditions similar to those described above ?

2. Explain what is meant by relative velocity.

Two small marbles A and B are moving in clockwise direction

in concentric circular grooves of 2 and 3 inches radius respec-

tively. The velocity of A in its groove is 2 inches per second,

and that of B is 9 inches per second. At a given instant the

marbles are 1 inch apart; what time will elapse before the

distance between them is 5 inches ?

3. A shot weighing 10 lb. is discharged from a gun weighing

10 tons. The shot escapes from the gun, with a velocity of

2000 feet per second, fths of a second after the powder is fired.

Calculate the velocity of the gun at the instant the shot leaves

it, assuming that its motion is unimpeded.

What average force would it be necessary to exert upon the

gun to keep it from changing its position during discharge?

4. A train is moving at a uniform speed of 40 miles per hour

along a level track, and the pull exerted upon it by the engine is

equal to the weight of two tons. How much work, in foot-lb.,

is expended by the engine per minute against frictional resist-

ance to the motion of the train ?

What further knowledge would be required in order to calcu-

late the frictional resistance at any instant if the speed of the

train were not uniform ?
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5. Explain the meaning of the terms stable, unstable, and

neutral equilibrium.

A uniform triangular plate weighing 1 lb. has an extra weight of

1 lb. attached to it at one of its angular points. It is free to rotate

abont a horizontal axis at right angles to its surface and passing

through the point of intersection of its median lines. Show in

which positions the plate will be in stable and unstable equi-

librium respectively. Has it any position of neutral equilibrium ?

6. What is meant by the mechanical advantage of a machine ?

Show how to calculate the mechanical advantage of a differen-

tial Avheel and axle.

What practical advantage has such a wheel and axle over a
simple wheel and axle of the same mechanical advantage ?

7. Mercury is poured into a U tube which has a section of one

square inch, and which is standing with its limbs vertical, so as

to more than occupy the bend ; 20 cubic inches of water are then

poured into one limb. Through what height will the mercury

rise in the other ? (Specific gravity of mercury = 13 6.

)

Explain how such an arrangement might be used to determine

the specific gravity of a liquid. Is it necessary for this purpose

that the two limbs should have the same sectional area?

8. Describe and explain the action of an air-pump in which
exhaustion is effected by a piston.

Why should the valves of such an air-pump be made of a very

light material ?

Why is an air-pump with two barrels easier to work than one

with a single barrel ?

University of London Matriculation Examination.

1. A heavy weight falls fi'eely, being guided in its descent by
a smooth vertical rod down which it slides. A pencil attached

to the weight leaves a trace upon a sheet of paper rolled round a
vertical cylinder which is made to rotate upon its axis with
uniform speed. Show upon a diagram the trace of the pencil

point, supposing the paper to be unrolled after the experiment,

and show how from the trace you could prove that the weight
had fallen with constant acceleration.

2. The diameter of a bicycle wheel is 30 inches, and it is sup-

posed to be so geared that the wheel revolves twice for every

revolution of the treadle. Determine the actual velocity of the

treadle in magnitude and direction at each quarter of a revolu-
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tion, starting from the lowest point, sui)posing the crank to be

7^ inches long, and the bicycle to be moving forward on a

horizontal track with a speed of 10 yards per second.

3. A stone is whirled round in a vertical circle at the end of a
string 21 inches long with a speed that may be regarded as

uniform, and makes a revolution every second. The centre of

the circle is 4 feet above the ground. Determine the subsequent

history of the stone if the string were to break (i. ) at the instant

that the stone was at the lowest point of its circular path, (ii.) a

quarter of a revolution later.

4. A train of mass 200 tons travels with constant speed of

60 miles an hour in a northerly direction. It suddenly comes to

a curve, on running over which for 10 seconds its motion has

become deflected towards the east so that it makes an angle of

30° with north. What eastward velocity has the train acquired

by running round the curve, and what easterly momentum ?

"What force must have been applied to it to give it this

momentum, and how has the force been applied?

5. An equilateral triangular lamina is suspended by threads

fastened to two of its angular points. The directions of the

threads produced pass through the centre of mass of the lamina,

and one of them is horizontal and has a tension of 1 lb. Find the

tension of the other thread, and the weight of the lamina.

6. A table consists of a uniform circular board weighing 9 lb.,

supported by three vertical legs fixed at equal distances round

the circumference. A weight of 12 lb. placed on the edge of the

table, midway between two legs, is just sufficient to cause the

table to overturn. Find the weight of each leg.

7. Show that the resultant thrust on a solid immersed in a
liquid acts vertically upwards through the centre of gravity of

the displaced liquid.

A long, thin stick of uniform cross-section and density has a
bullet, of weight equal to its own, attached to one end and floats,

half immersed, in a vessel of water. Show that it is in neutral

equilibrium.

8. Describe a siphon and explain its action.

How does the rate at which a vessel is emptied by a siphon
depend upon (1) the lengths of the limbs, (2) their cross-section,

(3) the density of the contained liquid, and (4) the pressure of the
atmosphere ?
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Examples I. Pages 10, 11.

1

(1) 8/t^ seconds.

(2) 9i miles per hour.
. . . ^^ ,,

io\\oA r Answers given in full on page 11.

(4) 4tV
(5) 603-2; i inch. (7) 10^ seconds.

(6) 75 feet. (8) 8 '8 feet per second.

Examples II. Pages 14, 15.

(1) 20 ft./(sec.)2; i.e. 20 feet-per-second per second.

(2) 8ft./(sec.)2.

(3) 52, 84, 116, 212 ft. /sec.

(4) 4 miles an hour per minute, or 240 miles an hour per honr.

(5) 78,545rV

(6) 1^.

(7) -12ft./(sec.)«.

(8) In 4 seconds ; 96, 32, - 32, - 96 ft./sec

(9) 16 seconds.

(10) h
(11) 115,866.

(12) 6 inches/(sec.)''; i.e. its velocity increases by 6 inches per

second every second.

(13) ^ mile/(min.)2=^ ft./(sec.)'».

(14) 17fft./(sec.)2.

Examples III. Pages 20, 21.

(4) 24,960 miles.

(5) 1^ radians-per-second per second.
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(6) 3000 ft. /sec. ; 5730 (nearly).

(7) 2-095.

(8) ig^^r.

(9) 1-2; 11-46.

(10) 94 radians/sec. ; 16 miles/hour, or 23J ft./sec.

(11) 192 radians/sec. ; 48 feet/sec.

(12) 37*7 ft./sec. ; 50J radians/sec, or 480 revs, per minute.

Examples IV. Pages 29-31.

(1) In Question 1 the initial velocity is 0, the final is 600; there-

fore the average is 300 ; therefore in 30 seconds it will have

gone 9000 feet. In Question 2 the average velocity is

f(50 + 102) = 76, so in 6^ seconds it will go 494 feet ; and so

on. Or we may use the formula s=vj-i-lat^. (3) 36, 104,

204, 696 feet respectively. (4) | of a mile. (6) | mile

=391^ yards. (7) 304 feet (8) The respective distances

from the starting-point are 51=57= 112 feet; 53=55=240

feet ; 54= 256 feet. (9) 4096 feet.

(2) 52,^1 ft./(sec.)2.

(3) 1-96 ft. /(sec. )2.

(4) AandB,-2; C,-f2; D,-lI-25.

(5) A, 5 seconds; B and C, 10 seconds; D, 10§ seconds. The
diagi-am for C will look like fig. 18 upside down.

(6) It will continue moving for 26 seconds with an average

velocity of 39 feet per second, and therefore will go 1014

feet.

(7) The acceleration must be 4, because the average velocity

during the first second spoken of, and therefore the velocity

in the middle of that second, is 16, while in the middle of

the next second it is 20. The velocity at the beginning of

the former of these seconds must therefore have been 14,

and at the end of the latter second 22. To gain the

velocity 14 with acceleration 4 required 3i seconds, which
is therefore the time the point had been moving at the

beginning of the first second spoken of. Starting with
velocity 22, it would go 552 feet in the next 12 seconds

;

and its velocity would be 128 in 32 seconds from the

original start, or 26^ seconds from the time its velocity

was 22.

(8) In another llj yards, which will take 2^ seconds.

(9) 33 miles ; done in 36 minutes.
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(10) Nearly 2 miles/liour per second, or 2*87 ft./sec. per second.

(11) 1 mile an hour p(3r second ; 8f miles an hour per second ; 176

miles an hour per second, =258 ft./(sec.)^.

(12) 400 feet ; 176 feet.

(13) 21Oi feet; 3| seconds.

(14) 160 feet; 90 feet.

(15) See Ex. 11. 8, and Ex. IV. 1.

(16) 25 feet ; 2i seconds ; 20 feet.

(17) 25 feet from the top, in 1\ second.

(18) 100 feet; 80 feet per second.

Examples V. Pages 36, 37.

(1) It moves with a uniform velocity 50 in a straight line nearly

NE. by N.

(2) 3 miles ; Vl3 miles.

Examples VI. Pages 41, 42.

(1) Shortest distance, 352 yards; time, 4 min. 12 sec. One of

the ships will have still '16 miles to go before reaching

the crossing-point, the other will have passed it by "12

miles.

(2) In the first case, she will cross the middle of the road 5 yards

in front of the vehicle, though it will afterwards pass

within 1'6 yards of her (that is, ^VlO yards). In the

second case, by choosing a direction perpendicular to the

line joining their initial position, she can just get across

at 2 '6 miles an hour without being run over.

(3) Relative velocity, 35 miles an hour ; minimum distance, .ibout

173 yards.

(4) 50 '3 feet per second, its easterly component being 10(1 + V2)»
and its northerly component 10(3 + \J2,).

(5) 2 feet per second in a direction 30° west of south.

(6) 48^ miles from its starting-point.

(7) 106 miles away from its correct line;

starting-point.

Examples VII. Pages 54, 55.

(1) 139 lb. (ft.)\

(2) 41830 lb. (ft.)3.
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(3) About 876,300 F.P.S. units.

(4) In lb. (ft.)2 units : (a) lO^^; (6) 41§; (c) 15; (rf) 26§; («) 3i;

C/)6§.

(5) i\ kgm. (metre)'.

(6) The moment of inertia of the hollow sphere is | that of the

hollow cylinder ; the moment of inertia of the solid sphere

is I that of the solid cylinder.

(7) 55 lb. (ft.)3.

(8) 6i lb. (inch)'.

(9) 2^ lb. (inch)2

(13) Moment of inertia of a hollow sphere whose external radius

is r, and internal /, is |/)(|7n^ - jTrr'^), p being its density.

Its mass =p(^7rr' - ^irr'%

2 r^-r'^
.*. its moment of inertia may be written = -mx -^

—

,^

=r7/i 5
—

-,—;5 » which, when ? =r (as is the

2 5}"* 2
in the limit), reduces to r mx ;—s~ ^r mt^.

o or' 6

Examples VIII. Pages 65, 66.

(1) 9 units of acceleration ; 450 units of length.

(2) 36 poundals, about equal to the weight of 1 lb. 2 oz.

(3) 2ft./(sec.)2; 70 units.

(4) 1 minute.

(5) 6250 yds., i.e. about 3J miles.

(6) 10 seconds.

(7) 39,240 dynes = 39^ kilodynes = ^ oi the weight.

(8) 60 poundals, which is about the weight of 1 lb. 14 oz.

(9) 600 units.

(10) 75 feet.

(11) 37i lb. weight.

(12) About 1019J grammes weight, or nearly 2 per cent, more
than the weight of a kilogramme; 27,810 dynes will support

an ounce, and 996| million dynes will support a ton.

(13) 192 ft./sec. ; between 870 and 880 miles.

(14) 14 centimetres per sec.

(15) 300 dynes.

(16) («) 37i lb. weight ; (6) 62^ lb. weight; (c) 50 lb. weight.

(17) Its own weight.

S
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Examples IX. Pages 71-73.

(1) 6J feet per second.

(2) 2 feet per second.

(3) 31i ft./sec. (a.ssuming the clay to stick to the body).

(4) I'

(5) 7*2 and 9-7 ft. /sec.

{6) 1600ft./sec.

(7) 1 ft./sec. nearly.

(8) ll§and 21§ ft./sec.

(9) Tlie velocity of the larger body will be reduced to 2 ft./sec,

while the smaller body will have a reversed velocity of

7 ft. /sec.

<10) 7 lb. ; reversed velocity of 5 ft./sec.

(H) 4-

(12) 607 kilogramnieties, being over 95 per cent, of the initial

energy.

(13) f; 5T-Vft. ; 57| ft.

(14) Two cases may he drawn. In one, the direct component

of the velocity of the heavier sphere, A, is changed from

+ 17 32 to -11*4 ft./sec, while its transverse velocity

remains 10 ft./sec, giving a resultant 15'17 ft. /sec; and
the direct component of B's velocity is changed from - 15

to +20"9, its unchanged component being 15\/3> and the

resultant 33 34 ft./sec In the other case, the direct com-

ponent of A's velocity changes from + 10 to - 22, its trans-

verse component being 10\/3, and the resultant 28 ; while

the direct component of B's velocity changes from - 15\/3

to +14, its transverse component being 15, and the

resultant 20*5.

(15) A\ ft./sec. (nearly).

(16) 500 poundals, i.e. about 15^ lb. weight.

(17) 230 poundals, i.e. about 7 lb. weight.

(18\ The kick felt is the jerk of maximum force at the relaxation

of the accumulated pressure. The speed of the bullet may
have to be mainly acquired in the last inch of the barrel

instead of being gradually impai-ted over the whole 4 feet.

Examples X. Pages 82, 83.

(1) 27ir2 poundals, equivalent to the weight of about 8 4 lb.
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(2) (Taking v^ as equal to 10) 5 feefc.

(3) 6 inches.

(4) 80 ft/sec

(5) 6^ tons weight.

(6) 140 lb. (approx.).

Examples XL Pages 96-9a

(1) 160 poundals, or ^ of tlieir usual weight.

(2) At a height equal to the earth's radius.

(3) In 15| seconds.

(4) 981.

(5) 44^- grammes weight, or 43,600 dynes.

(6) 2 ft./(sec.)'^ ; 90 poundals, or 45 oz. weighlj.

(7) 6 inches-per-second per second.

(8) 224 feet.

(9) 4 "4 seconds.

(10) 20 poundals per lb.

(11) 60 poundals; 2 ft./(sec.)8.

(12) 2ft./(sec.)2; 510 poundals.

(13) tV ; *•«• 3-2 ft./(sec.)^ or 98 centimetres/(sec. )2.

(14) 12 feet ; 8 ft./sec. ; 146§ and 138§ poundals.

(15) 4 lb.

(16) 12 feet; 117^ poundals.

(17) 1 second. 46 ft./sec. iip^ or 14 ft./sec. dovm. Rising with a
velocity of 48 ft./sec.

(18) The weight of 3 tons.

(19) The weight of 3t'^ tons.

(20) The weight ascends at the same rate ; and whatever the

monkey does the weight does the same.

Examples XIT. Pages 101, 102.

(1) 7^ seconds.

(2) 1-875 mile.

(3) The tension in the string being greatest at its lowest point

(because of gravity), the string is most likely to break

there. The centrifugal force being equal to the weight
of 100 lb., the velocity of the stone when the string breaks

must be 40 feet per second. It will start forward hori*

s
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zontally with this velocity and describe a portion of a
parabola—striking the ground after the lapse of half a
second 20 feet away.

(4) In 2^ seconds ; 100 feet from where it would have dropped if

the balloon had been stationary ; with 80 ft./sec. vertical,

and 40 ft./sec. horizontal velocity.

(5) 600 feet, 225 feet.

(6) 900 ft., 1800 ft. ; 3 seconds.

(7) 10 seconds ; 400 feet.

(8) 40V6 ft./sec. ; 45°.

(9) 40V5 ft./sec. ; 25 ft.; 2J seconds.

(10) 40 ft./sec.

(11) 20i miles ; 15,625 feet, or nearly 3 miles.

(12) 100 ft./sec.

(13)

Angle. Seconds.
Distance
in feet.

Maximum
elevation
in feet.

30°

45°

60°

-30°

24

37i
53
65

3000
39000
45000
39000

173

100
5625
11250
16875

100

Dropped 2i 100

Examples XIII. Pages 105, 106.

(1) 0-999785 of a second.

(2) 32 0763.

(3) 216.

(4) 261; 99-396 centimetres.

(5) 87f inches.

(6) 8531.

(7) -^s of an inch.

(8) -^; that is to say 39*14 inches, or 994 centimetres.

(9) 32 0763 poundals per lb.

(10) 32-128.
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(11) 0-3009, 0-5015, and 4012 sec. respectively.

(12) 62^.

(13) &;= 4 radians per sec.; v=8\/3 ft./sec.; t=l7r seconds.

Examples XIV. Pages 109, 110.

(1) 24 inches.

(2) 6V3 inches {i.e. about 10 4 inches) from the middle; 1-46

seconds.

(3) At a distance from the hinge = § of the breadth of the door.

(4) 1284ft./sec.

(5) 1 J seconds ; 13i inches.

(6) 2^V seconds.

(7) At any point 10 inches from its centre. It will swing
quickest about an axis distant 17-32 inches from the

, centre.

(8) Length of simple pendulum — ^i ; Mciss = ^i.

(9) Length same as in No. (8) ; Mass = Jm.

(10) Time of complete swing = 1 88 sec.

(11) 3 lb.

(12) 150.

(13) 2\/6 seconds,

(14) 1280ft./sec.

Examples XV. Pages 128-132L

(1) 16\/2^feet per second.

(2) 2400 foot-poundals, or about 75 foot-pounds.

(3) 4 ft. /sec.

(4) (By equating the initial and final energies) 615 8 ft./sec,

(5) 689 feot per seconcl.

(6) l^th of the weight of tlie projectile.

(7) 400 poundals ; y^ second.

(8) 93| lbs. weight.

(9) 217^ TT^ foot-poundals, or about 68 foot-pounds.

(10) 28J million foot-poundals, or about 880 thousand foot-

pounds, i.e. nearly 400 foot-tons.

(11) About 15,600 foot-tons.

(12) 2000 foot-poundals, or about 62 foot-pounds.
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(13) 100,000 foot-pounds per minute, or about 3 horse-power

(see No. 19).

(14) 13| tons weight (nearly).

(15) 155 foot-pounds ; energy at lowest point, 45 foot-pounds,

. •. 45 - l|^=.20a; . •. x=^{, i.e. it rises ^ feet.

(16) 17H ; 236.

(17) 6-7 tons weight.

(18) shs of the weight of the truck = the weight of l^V cwt.

;

40 ft. /sec.

(19) 98tV
(20) SS^^r lb. weight.

(21) 314-16 foot-pounds; 141^ British units.

(22) Energy = 1 foot-ton ; moinentuin = 5666*8 British units.

(23) tV of a horse-power.

(24) 37i lb.

(25) 6400 feet.

(26) 600 (nearly).

(27) 460 (nearly).

(28) 0-17 ; 3-6 seconds ; 36 ft.

(29) 322§ tons weight.

(30) 264 foot-tons
;

(a) 5*6 lb. weight ; (6) 7 lb. weight.

(31) 3640 foot-pounds ; 2180 foot-pounds.

(32) The sliding body.

(33) Energy of roller =ingh=^mv'^ + \luy^=lmv^+ lmr^03\ [See

Energy of slider =\'mv'^

=mgh-(mg-Jfxs

=mgh-mgbfji,.

. *. mgbfi^mgh - \mv^

. „-i .
height, 1

'"^ ' base 15*

(The general solution is n -^ ^^^ • ^^')
(34) Energy = mgh^^mv^+ ^lu}^

and is therefore the same for all the spheres.
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(35) In the case of cylinders, v2=§ of 2gh= -—-• The average

velocity will be half this final velocity, hence the time

occupied in descending a slope s, whose height is A, is

s/gh'

The time taken by a sphere would be s mJk^ »

.
•

. the ratio of the times = ^tk'

(36) 560 foot-poundals, or about 17^ foot-pounds.

(37) 140 foot-pounds.

Examples XVI. Pages 145-147.

(1) 10, 10\/2or 14-142, 10V3or 17*32, 10\/(2 + V2), 10V(2 + V3).

(2) Each equals 6\/2.

(3) 8i lb. weight (nearly).

(4) The fractions of the weight in each case are

\/3-l 1 J[_ V3-H
V2 W3 ' 'V2 ' '

^ V2
The best way with a single cord is to use two nails as far

apart as the eyes on the picture.

(5) (1) —TqO^ 10 Ih. weight, =5 '77 lb. weight; normal pressure

= 11 5 5 lb. weight. (2) 5 lb. weight j normal pressure =
8-66 lb. weight.

(6) \ ton weight.

(7) (a)200V26lb.; {h) 10001b.

(9) V247 = 15-7. If OC be the resultant, in the diagram, of the

given forces acting on the particle at O, and if a circle be
drawn on OC as diameter, any pair of chords drawn through

O at right angles to each other will be a pair of components
equivalent to OC, and therefore to the given forces.

Their magnitudes are given by the equation £c2 + y^=247.

(10) 5v57 = 37f units.

(11) The forces can be reduced to 10^ units acting along the line of

action of the greatest of the given forces, and -~ perpen-

dicular to it, the resultant being VI 17. (Or, they may be
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reduced to 9 units and 3 units acting respectively along

the lines of action of the given forces 10 and 9.)

(12) 29-72.

(13) {a) 2500 lb. weight ; (6) Depends upon a new set of the sail,

and the wind speed, and too niany assumptions to permit a

satisfactory brief answer.

(14) Resultant =25 58 units, 18-22 along AB, and 17-96 along DA.
(15) 77 lb. (nearly).

(16) Resultant = 24-2 lb. weight, its components along AB, AD
being 15y% and 18A respectively.

(17) I second.

(18) iV3= 0-577.

(19) In No. 18, 56V3( = 97) lb. weight; in No. 17, 61-94 lb.

weight.

Examples XVII. Pages 166-169.

(1) 5 and 15, or 30 and - 10.

(2) 3 inches from, the middle.

(3) 2 inches from the middle.

(4) The diameter of the hole being |, its area is ^^ of that of

the whole disc ; so the centre of gravity is ^th of the

radius of the disc away from its centre, on the side oppo-

site the hole.

(5) Magnitude of resultant, 2V2 lb. weight. Its line of action

lies outside the square 3 inches from the point where the

two larger forces act, and is perpendicular to the diagonal

through that point.

(6) 5 foot-pounds.

(7) 50 lb. weight.

(8) 86-6 and 100 lb. weight.

(9) A couple whose moment is 3 foot-pounds.

(11) 133^ lb. weight ; 166§ lb. weight.

(12) Each equals 15 lb. weight.

(13) 27A and 32^^ lb.

(14) 4 feet.

(15) 86t and 293J.

(16) 6 -58 inches from the opposite corner, t.e. nearly | inch from
the middle.

(17) i inch from centre of disc.

(18) 5^ inches from the 1st side of the square, and 4]^ inches from
the 2nd side.



ANSWERS TO EXAMPLES. 297

(19) 7 inches from the 1st side of the square, and 5 inches from

the 2nd side.

(20) On the diagonal joining the 3 and 6 lb. weights, 7 inches

from the latter.

(22) 8 inches from the vertex.

(23) 7 inches from the heavier weight

(24) 1 inch.

(25) iV inch from the middle.

(26) 3 inches from the loaded side.

(27) 21-6 inches from the shorter bar, and 9*6 inches from the

longer.

(28) 134: inches from the top, and lOf from the bottom.

(29) 12-8 inches from the top, and 11*2 from the bottom.

(30) 1 *282 inch from the centre, away from the hole.

(31) About 1^ inch from the centre of the plate.

(32) xV iJich from centre of plate.

(33) rV
(34) ^ of lieight from the shortest side = 2*06 inches from that side.

(35) 2-18 inches, i.e. |? of the height, from the shortest side.

(36) 4yt inches from the remaining short bar.

(37) 1^ inch from the shortest side, and 1 inch fiom the

medium side, in each case.

Examples XVIII. Pages 189-191.

(4) 10 lb. weight.

(5) 5V2 lb. weight.

(7) At a height /oth of t^^e length of the rope, because then

the perpendicular distance of the rope from the base of the

column will be greatest, and therefore the moment of any
stress in the rope about it will be a maximum.

(8) 45°.

(9) 30°.

(10) 5 feet 4 inches.

(11) 10 lb. weight, at an angle of 30° below the horizontal.

(13) If 21 is the length of the bar, and a is the distance of the

rail from the wall, the point of the rod which rests on the

rail is at a distance x from its wall-end given by a:^=aH.

(14) 11-3 and 80-8 lb. weight.

(17) 5 ft. 8 in. ; 54*7 and 41 4 lb. weight
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(18) It will fall over when the slope is 3 vertical to 8 horizontal.

(19) A horizontal force of (about) 7 lb. weight applied 6 inches

up.

(20) h^T: inches above the ground, i.e. ^^ of an inch below the

centre of the sphere (which is the metacentre).

(21) Stable.

(22) 24^° (by protractor, approx.).

(23) 2 inches from the centre ; 1 foot-pound. Considering the

circular cross-section of the cylinder which contains G (the

centie of gravity), G will lie somewhere on a concentric

circle of 2 inches radius. The vertical line through the

point of support will cut this circle in two points ; G must
be at one of these points—the upper will give unstable,

and the loAver, stable equilibrium.

(24) 1 vertical to 3 slant. In this case the vertical line through

the point of support will just graze the above described

gravity circle.

Examples XIX. Pages 200-202.

(3) 448 poundals, or a weight of 14 lb.

(4) 17i lb. weight.

(6) 1 '486 feet a second (nearly).

(7) Accelei-ation of V^=i^g; acceleration of P=^V^; time-

^V29 seconds.

(8) f of distance between hooks from middle hook.

(9) 3 tons.

(10) lOH lb. weight ; a = ^^g, or nearly 2 ft./(sec.)2.

(11) 39 cwt.; 9-908 lb. ; 1*293 lb.

(12) P^dleys; 1 lb. each. Tensions; 7, 13, 25 lb. weight.

(13) Pulleys; 2 lb. each. Tensions; 20, 38, 74 lb. weight. Pvll
on ceiling ; 1321b. weight.

(14) Pulleys; 5 lb. each. Tensions; 20, 35, 65, 125 lb. weight.

(15) 4? lb. weight.

(16) Weight = 48 times the required effort. During each turn of

the windlass theendof the handle (where the effort isapplied)

3 X 22
moves through Ztr feet = —=— feet ; and the weight is

22 22
raised ,\ of this—viz.

ig~~7
= TT2 ^^ ^ ^^^t. Therefore

112 turns are required to raise the weight 22 feet.
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Examples XX. Page 210.

(1) The strain is 3 parts in a thousand ; the stress is 600,000

grammes weight per square centimetre, hence the ratio

of stress to strain, or Young's modulus, is 200 million

grammes per square centim., or about 200,000 atmospheres

linear traction per unit strain.

Note.—By an 'atmosphere' is meant a pressure of about 14*6 lb. to the square

inch, or 1 ton to the square foot, or a kilogramme per square centimetre,

or 30 inches of mercury, or 34 feet of water ; or, when precise, 75 cm. of

mercury at a certain temperature.

(2) 200 atmospheres, or a load of two kilogrammes.

(3) ^-a E traction.

(4) i-,\^ E thrust.

(6) 1000 times 14 '6 lb., or say 6^ tons.

(6) One-fortieth per cent.

(7) Three-twentieths per cent.

(8) Three parts in two thousand foi* about 60 atmospheres, or

•000025 per atmosphere.

(9) The volume elasticity is nearly the reciprocal of the last

answer—namely, 40,000 atmospheres; the Young's modu-
lus is 60,000 atmospheres.

[To complete this it may be as well to state, without proof, that the reciprocal of

the rigidity of the above material would be two-tenths plus two-fortieths

per cent, for the 60 atmospheres, or that the rigidity itself would be 24,000

atmospheres.]

(10) 150 parts in 20,000, or about three-quartere of one per cent.

(11) The average compression would be that at the depth of 1

mile, found above. Hence the rise of level would be three

parts out of each 400 in the two miles—namely, about 120

feet [John Canton, 1747.]

(12) 1 atmosphere.

(13) 1*4 atmosphere.

Examples XXI. Pages 222, 223.

(1) The mechanical advantage of the lever is 60, and of the

press itself 256 ; hence, the total mechanical advantage is

15,360, and the greatest weight the man can raise is 1440

tons.

(2) 13,600 grammes weight on the bottom, and 6800 on each

side.
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(3) 2075 grammes weight, made up as follows : (1) 125 grammes
weight on the upper half of the side, due to the water,

acting at a point § down that half, i.e. 3J cm. from the top ;

(2) a transmitted pressure of 250 grammes weight on the

lower half, due to the water, and acting at the centre of

that half, i.e. 7^ cm. from the top ; (3) 13-6 x 125 grammes
= 1700 grammes weight on the lower half, due to the

mercury, acting § down that side, i.e. 8J cm, from the

top. These make a total pressure of 2075 grammes weight

acting at 2-07 cm. from the bottom.

(4) 30 ' atmospheres ' or about 440 lb. weight per square inch.

(5) TT tonnes, or 3141 "6 kilogrammes weight.
[The atmospheric pressure would hold them together about ten times as strongly

if the interior were exhausted.]

(6) 14 tons (nearly) ; 3^ tons (nearly).

(7) Downward pressure on base = 250 lb. weight.

Pressure on each side = 140\/5 lb. weight, of which
140 lb. weight is the vertical component. Weight of wedge
in order to float = 280-250 = 30 lb.

(8) 124 tons weight, acting horizontally 8^ feet from bottom of

gate.

(9) 6*154 lb. weight ; 6 inches down.

(10) 3-077 lb. weight ; 4 inches down.

(11) 74| lb. weight.

(12) 1000 lb. weight.

(13) 2i

(14) (a)'-— or about 107 lb. weight per sq. centimetre; (6) 11^

tons weight ;
J/ (20)2=571^-

(15) (a) 15434 foot-pounds; (6) ^^ of (a) = 868 foot-pounds.

Examples XXII. Padres 238-241,

(1) ^7r tonnes, or 4188*8 kilogrammes weight.

(2) 1500 grammes.

(3) 816 cubic centimetres.

(4) 0-7.

(5) 0*8421 and l-0§ ; i.e. \% and Jf-

(6) To the division 100.

(7) 1*2.

(8) 9*5 grammes.

(9)6.
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(10) OG and 3 respectively.

(11) 1-8.

(12) 3-2.

(13) h
(14) 55^ cubic inches (nearly) ; sp. gr. = S.

(15) §.

(16) 2 05 approx.

(17) 1-6.

(18) h
(19) 50 parts of each.

(20) 14 inches
; f

(21) (1) 10: -44; (2) 168:167.

(22) M; (2)lg; (3) If-

(23) 0-7.

(24) 7 : 6.

(25) 2^ and f

.

(26) 0-113 millimetre ; 8 grammes.

(27) 250 cubic centimetres.

(28) 6A and }-g.

(29) Volume = 14| cubic centim.; diameter = 3'02 centim.

(30) 209iV grammes.

Examples XXIII. Pages 255-257.

(1) 75 centimetres.

(2) 13-6 inches.

(6) 3 megadynes per square centimetre.

(6) About 12 tons weight.

(7) 80 517 grammes.

(9) 9-523 giammes.

(11) 14-2.

(12) 11-3 metres.

(13) 1334.

(14) 74fV inches.

(15) 1019-7 grammes weight, = 1,000,325 dynes.

(16) 1354*7 grammes weight per square centimetre.

Examples XXIV. Fages 264-266.

(1) 17 feet

(3) 74 centimetres.
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(4) After one stroke, 70 centimetres ; after two, 63-63 ; after

three strokes, 57 '9420, and so on ; each time dividing by 1

1

and multiplying by 10.

(5) '652 ton weight per square inch. At a depth of 3366 feet.

(6) (Neglecting the thickness of its wall, and taking the baro

metric height as equal to 34 feet of the water), 0.

(7) 15 to 17.

(8) 1005 grammes weight.

(9) 10.

(10) It is reduced to i^ by 1 stroke, and to^ in 2 strokes.

(11) 0'463 of its initial pressure.

(12) 29A-
(13) 38 ft., or 40 ft., according as barometer is taken as 34 or

32 ft.

(14) 9 feet, leaving only 1 foot depth of air space.

(15) 500 cubic feet.

(16) 66| inches of mercury.

(17) Ifi atmosphere.

(18) 30 inches.

(19) Mercury has risen 1^ cm. ; i.e. lip is submerged 6J cm.
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Set I. Pages 267, 268.

[27.5.—Air-resistance neglected throughout.)

(1) 40,000 feet ; 100 seconds.

(?) 5 seconds after the last ball is thrown, at a height of 560

feet.

(3) 2 seconds.

(4) 640 feet below the balloon ; velocityy '23A ft. /sec. downwards.

(5) 52 ft. /sec.

(6) In 10 seconds ; 240 ft./sec.

(7) In iVlO or about 0*8 second.

(8) In 2^ seconds, 100 feet from the top.

(9) 240 poundals, or 7^ lb. weight ; 1^ second.

(10) Vertically as seen by the passengers ; in a portion of a para-

bola whose vertical and horizontal dimensions are about

9 feet and 57 feet respectively, relatively to the earth.

(11) It goes up 16 feet, describing a parabola so as to be always

vertically over the man's hand, to which it returns in 2

seconds, having really travelled a horizontal distance of

about 150 feet.

(12) 7i seconds.

(13) 47cwt.; 180 feet.

Set n. Page 268.

(1) Magnitude = V31=5-57. Equivalent to 0, 0, 0, 0, 1, 5 in

the given direction.

(2) 26 along line of greatest force.

(3) 19 lb. weight in the long cord ; 107 "3 in the short cord.

(4) 7 -3 feet and 11 '6 feet.

(5) 99-4 and 54 6 lb.



304 ELEMENTARY HfECHANICS.

(6) 10 units, at 4 6 inches from first force.

(7) 8i feet.

(8) 7^ inches from the middle of the pole.

Set III. Pages 268, 269.

(7) 75 centimetres.

Set IV. Pages 260, 270.

(3) 15*94 oz. weight ; 2 ft./sec. per second.

(5) 3§ inches from the side containing the fii-sttwo weights, and
equidistant from these weights.

(7) 933,912 dynes per square cm.—*.e., •9.34 atmosphere.

(9) Honzontal pressure, 10^ ; vertical, 56 ; ground resvltanty

pressu7'e, about 57.

(10) 576 feet ; 12 seconds ; 432 feet up.

(11) 40 ft. /sec. per second ; 500 feet.

(12) 2-15 lb. weight.

Set V. Pages 270-272.

(2) \/2 times as long.

(3) 210| feet ; 31 seconds.

(4) 4!r2mr-rT2.

(6) \\/l5 {i.e. nearly 2) seconds.

(7) § of the length of the rod from the axis.

(8) The vertical through the weight must pass through the

intersection of the lines along which the unloaded rods lie.

(9) It must make an angle with the nlane equal to the angle of

repose.

(10) 16 inches
; |.

(11) 7 ; 72 grammes.

(13) 3-i§ kilogrammes.

(14) If IX is the coefficient of friction with the gi'ound, and /x' with

the wall, and if the centre of gravity is - of its length

from the ground, then, if h is the elevation of the top of

the ladder, and h is the distance of its foot from the wall,

b niJL ^ 0-D-
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(15) a-Tfi\/Sy where a is the length of an edge of the pyramid,

BJid fi is the coefficient of friction. (The drawing cord must
be fastened to an edge^ to give this best chance of not up-

setting.)

(16) V must be greater than \/{gr).

Set VI. Pages 272, 27S.

(3) In 3J seconds ; 3250 feet.

(5) 4| ft./sec. per second ; 60 feet.

(6) Tension = 10^^ lb. weight ; acceleration = ^.
(8) The recoil velocity is f of the approach velocity. See also

answer to IX. (13).

(9) The required moment 'exceeds the central moment by
the product of the mass into the square of the distance

between the axes.

(10) If a is the distance of the centre of rod from the axis of sus-

pension, and X the length of the equivalent simple pen-

dulum, a{x-a) = i^^P ; a; is a maximum, and the time of

swing is therefore a minimum, when a^=^P.
(11) One five-hundredth of an inch.

(12) ii. g varies apparently on account of centrifugal force, and
really on account of the shape of the earth. The two
eflfects add together.

(13) iii. By equating the weight of a satellite or planet to its

centrifugal force.

(14) Directly as distance from centre. About 21 minutes. The
motion is simply harmonic and independent of amplitude.

The maximum velocity at centre is \/{gB,), and g varies

directly with R if density is given. Hence linear size -f

velocity is constant.

1 12
(16) The rod has -th immereed, such that n+ -=-; or if water

is above pivot, such that n^s=l; otherwise the rod is

vertical.

Set Vn. Page 274.

(1) 196 feet ; 112 feet per second.

(2) 2^ sees. ; 2500 feet from base of tower.

T
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(3) II of 3 cwt. ; or 283^ lb. weight.

(4) l-06joot, 2-13 feet per see. 22*4 lb. weight.

(5) 1664 feet per sec.

(6) 24 '7 revolutions per sec.

(7) Speeds proportional to the chords. Times all the same.

(9) 30-73 foot-second units.

(10) 31,260 feet ; 44-2 seconds ; 7812-5 feet.

(11) About 80 lb. per inch of width.
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APPENDIX.

1. Omissionfrom Sect. 103 (page 126).

Thus, in the case of a Lent bow, the force with which the arrow

has been pulled has varied from zero to a maximum, of perhaps

56 lb. weight. In that case, since the force is proportional to the

strain (see sect. 158, Hooke's Law), the average force was 28 lb.

weight, and so if the range of pull is 1 foot, the amount of energy

stored up in the elastic strained wood of the bow is the equivalent

of 28 foot-pounds.

This energy is imparted to the arrow when the string is relea.sed,

and accordingly it flies off with 28 x 32 F.P.S. units of energy. If

its mass is 4 ounces, this means an initial velocity of 84:-6 feet

per second. A very high initial velocity can be obtained by the

use of a light straw needle-pointed arrow and a tapered bow of

light stiff wood, like deal. Such an arrangement is used by Mr
Boys for the purpose of draAving out molten quartz with extreme

rapidity into excessively fine fibres.
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C.G.S. SYSTEM OF UNITS.

vX'̂

The C.G.S. system of units, as now adopted

throughout Europe, is as follows :

The centimetre is the unit of length. A second

is the unit of tinio. The cubic centi-

metre is the unit of volume.

The mass of one cubic centimetre of distilled

water at its temperature of maximum
density is called a gramme^ and is the

unit of mass.

(For the derived units dyne and erg, see sects. ^Q and 86.)

The weight of a pound = 445,000 dynes (approx.).

An atmosphere pressure = 10^ dynes per sq. centini.

= 75 centims. of mercury.

1 foot = 30*48 centimetres.

1 cubic inch = 16"387 cubic centims.

1 pound = 453 -59 grammes.

1 gramme = 15*43 grains.

The weight of a gramme = 981 dynes (approx. in

these latitudes).

1 centimetre = '3937 inch.

1 metre = 3*281 feet.

1 litre = 1000 cubic centims.

A velocity of one mile per hour = 44*704

centimetres per second.

The weiglit of one grain = 63*57 dynes.

A pressure of one pound-weight per square

foot=479 dynes per square centimetre.

An acceleration of 32*18 feet-per-second per

second = 981 centimetres-per-second per

second.

33 centimetres = 13 inches very nearly indeed.

For further details, see Professor Everett's book.

Units and Physical Constants.

Edinburgh : Printed by W. & R. Chambers, Limited.
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