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PREFACE

The aim of this book is to set forth, in & clear
and simple manner, those portions of Physical and
Geometrical Optics which I consider essential to
the medical student beginning his ophthalmic
studies. No one recognizes more fully than I do
that the proper province of the ophthalmic surgeon
is to treat diseases of the eye; but in order that he
may do so with success it is necessary that he should
. have a competent knowledge of the organ of vision
_ from a physical stand-point.

It is hoped that this small manual will form a
suitable and easy introduction to such knowledge.
The subject of Physiological Optics is not discussed,
since that branch of ophthalmic study is, as a rule,
sufficiently explained in text-books dealing with
diseases of the eye. My endeavour has been to
give in one volume all the information necessary
for the beginner, and therefore I have placed in
the introduction those parts of plane trigonometry
which he requires.

The works of Landolt, Tscherning, Glazebrook,
Preston, and others have been freely consulted, and

have been of much service.
v
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Acknowledgment of indebtedness is due to Dr.

W. Inglis Pollock, who did the work of amanuensis,
to Principal M‘Lean of the Paisley Technical Col-
lege, and to Professor Peter Bennett, for much
assistance in reading proofs. '

22 BLYTHSWOOD SQUARE,
Grasaow, March, 1903.
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ELEMENTARY
OPHTHALMIC OPTICS

INTRODUCTION

The pages which follow are an attempt to place
before the student of Ophthalmology a clear account
of those parts of physical and geometrical optics
which are of use to him in his studies. In a text-
book which is intended to contain only such ele-
ments of the subject as are required by the every-
day student, the information given can at best be
but rudimentary. c

As a preliminary, it
may be well to define
here those functions of an
angle which are met with
even in the most elemen-
tary investigations. A Pl B

Let ABC be a right-
angled triangle, of which the angle at B is the right
angle. The sine of the angle at A is defined to be
the ratio of the length of the right line B¢ to that
of the right line Ac. In like manner the cosine of
A is the ratio of AB to Ac, and the tangent of the

angle at A is the ratio of Bc to AB.
(282) 3 A
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These three ratios or functions are the only ones
which we require for our present work, although
other three functions of A are in common use, viz.,
the secant, the ratio of Ac to AB; the cosecant,
the ratio of Ac to Bc; and the cotangent, the ratlov
of ABtoBC.

The three functions which we must use are—

Sine A (usually written sin A) = ]:_2
Cosine A (usually written cos ) = _‘:.%
Tangent A (usually written tan A) = %

Measurement of Angles.—Angles are generally
expressed by the number of degrees which they
contain.

Let A B (fig. 2) represent a ruler pivoted at A and
free to rotate about A in the plane of the paper.

g" If it describe a complete

circle it is said to have

& described an angle of three

hundred and sixty degrees.

g If it move through a quar-
ter of a circle it has de-
scribed an angle of ninety
degrees. Thus, the angle
BAB” is ninety degrees.
Had it only moved through
the ninetieth part of a quadrant it would have
described an angle of one degree, which is the unit

Fig. 2
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angle employed in this system. Thus we see that
the quadrant contains ninety degrees (generally
written 90°). Further, each degree is subdivided
into sixty minutes (written 60°), and each minute
into sixty seconds (written 60”). This is what is
called the sexagesimal method of measuring angles,
and is in very frequent use. Another method of
estimating angles is by their circular measure; the
unit in this case is the angle whose arc is equal to
‘the radius of the circle. To this we shall again
refer when we come to speak of the enumeration
of prisms. »

Values of the Sine, Cosine, and Tangent.—
" These functions have definite values for any given
angle. They have been computed, and are to be
found in any good set of mathematical tables. The
method of finding the values in a few simple cases
will be seen from the following examples. If in
fig. 1 we actually. measure the line B ¢ in millimetres
and the line Ac¢ in millimetres, and divide the
number of millimetres contained in the former by
that contained in the latter, we obtain a fraction
which is the numerical value of the sine of the
angle at A. In a similar manner we can obtain the
numerical values for the cosine and the tangent of
the angle.

Let ABC be an equilateral triangle, bisect the
angle at B by the straight line BD then—

AD =DC
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Since the £ABD is half of the angle of an equi-

lateral triangle, it contains 30°, and the angle at A

contains 60°. Let us, for example, ascertain some

B of the functions of these

two angles. To do this

it is necessary to estab-

lish a relationship be-

A “ tween the values of the

sides AB, BD, AD. It has

been shown that AD is

equal to one-half of Ac.

A ! m)s C As the triangle is equi-

¢ lateral, AD is equal to

one-half of A B. Therefore A D and A B are to each

other as 1:2. Moreover, by Euclid I. 47, we know
that—

BD! = AB? — AD?
*BD = 4—-1ifAD =1
=3,

Thus from the figure it is seen that—
the tangent of 30° is

the sine of 60° is

-

Dk

and the cosine of 60°is-12--

The student can easily with the aid of the figure
supply the others,
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Limiting Values of the Sine, Cosine, and Tan-
gent.—In fig. 4 the sine of the small angle B'oB
is the length of the line B'N
divided by the length of the —E g
line Bo. If now we make the
line B0 rotate round the point
o in the plane of the paper so

as ultimately to coincide with ¥
0 B, the line B'N gradually dim- &L A8
inishes, till when coincidence

takes place its value is zero. Fig. ¢
Thus—

sine 0° is O = 0.
OB
Again, if we consider the angle B"0 B, we find that
its sine is—
BN
o’
If now 0B” be made to rotate in the plane of the
paper round the point o, the point B” gradually
approaches B”, and the point N’ gradually ap-
proaches 0. The nearer 0B” approaches 0B” the
more nearly is B”N’ equal to B”0, and ultimately
the difference between them becomes vanishingly
small. Hence the value of the sine 90° is 1.
Similarly, the cosine of an angle of 0° is 1, and
the cosine of an angle of 90° is 0. By analogous
reasoning it can be shown that—
- tangent 0° = zero,
tangent 90° = infinity.
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Certain Properties of a Triangle.—Let AcB
(fig. 5) be a triangle, and let the length of the
c side opposite the angle

at A be denoted by a,
that opposite the angle
at B by b, and that
) a opposite the angle at ¢
by ¢. From c draw
¢D perpendicular to
AB, then LcDA and

A D¢ B LcDB are both right
. 6

e angles,
and sinA = C—bD ;. bsinA = cD;
also sinB = % .. & 8sinB = CD;

. asinB = b sina,
and Si0A _ sinB
a b

-

By drawing a perpendicular from A to Bc, it can
be shown that—
sinB _ sinC

b ¢’
. sinA _ sinB _ sincC

a b ¢

Hitherto we have spoken of angles less than 90°.
It is necessary to say something about the functions
of angles greater than 90° but not exceeding 180°.
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Trigonometrical demonstrations are beyond the

purpose of this book, so we must be content by

stating the following facts. A
Let A Bc (fig. 6) be any acute

angle, then if ¢ B be produced

to D the angle ABD is called the

supplement of ABc, and— D B Cc
Fig. 6

SInABD = SINABC,
COSABD = — COSABC,
tanABD = — tan A BC.

Calling the angle ABC q, the angle ABD =
(180° — @), and from what has just been said we
have—

sin (180° — a) = sinq,
cos (180°— a) = — cos q,
tan (180°— a) = — tana.



CHAPTER 1
PROPERTIES OF LIGHT: REFLECTION

In this chapter an attempt will be made to dis-
cuss some of the more elementary properties of
light, particularly those which are of frequent
application in ophthalmology, and which ought
therefore to be well understood by students of this
branch of medicine. Briefly, it may be said that
light is one of the modes by which the subject
obtains knowledge of the objective world. It affects
or sets in action the sense of sight, in virtue of
which we may become cognizant of certain pro-
perties of bodies. Thus we ascertain the form and
colour of an object with which we are not brought
into actual contact.

The first thing to be noted. is that light takes
time to travel. This has been proved by several
distinet methods of investigation, and the rate at
which it travels has been measured with wonder-
ful accuracy. Reference need only be made to the
fact that Romer and Bradley each calculated the
velocity of light from astronomical observations,
and that it has also been determined by direct ex-
periments made by Foucault, Fizeau, and others.

The results of these various investigations are in
8
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closer agreement than might have been expected
from the diversity of the methods employed. None
of them differ much from 186,000 miles per second,
which is therefore accepted as representing, with
practical accuracy, the velocity of hght.

Mode in which Light Moves.—Physicists recog-
nize only two entities in the universe, viz. matter and
energy, and the scientific world has only compara-
tively recently decided the question whether light is
in its nature a transmission of matter or of energy.

If light consisted in the transmission of minute
particles of matter thrown off from & luminous
surface, the impact of these on the retina might be
supposed to give rise to the sensation of light. On
this assumption was based what is known as the
Corpuscular Theory of Light, a theory which was
held by Newton, and largely through his influence
by the majority of scientific men long after his
day. It is now, however, universally recognized
that light is a form of energy, and is transmitted
through space by means of wave motion. This
form of transmission may be thus illustrated:—

If a stone be dropped into a pool of still water,
waves are seen circling outward from the point of
its immersion. Yet the water itself does not move
bodily in the direction in which the waves are
travelling. The initial disturbance consists of an
up-and-down motion of particles of water. These
communicate a similar motion to contiguous par-
ticles, and so on. Time is required for the com-
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munication of the disturbance from particle to par-
ticle, and thus the vertical motions of the particles
produce a succession of waves moving horizontally.
The original motion or disturbance, therefore,
spreads in the form of waves from the centre out-
wards. That the water has no horizontal motion
may be proved by floating a cork at a little distance
from the common centre of the circular waves. It
will then be found that when a wave reaches the
cork, the latter simply bobs up and down, but is
not moved laterally along the surface of the water.

The energy of motion imparted to the water by
the stone is thus transmitted from the point of
immersion by means of waves of water. The water
is in consequence a medium by means of which the
energy is propagated. Other forms of energy also
require media of some kind for their propagation.
Thus sound can be transmitted through media, such
as wood, iron, water, air, but cannot be propagated
through a space void of matter, as is proved by the
well-known bell-and-receiver experiment. Light,
however, can pass through the receiver of an air-
pump however perfect the vacuum, and, in fact,
more readily than through air. Hence it is con-
cluded that light does not require a material medium,
in the common sense of the term, for its propaga-
tion, although it can pass through many material
substances, those namely which we term transparent.
Modern research has disproved the corpuscular
theory, and established the undulatory theory of
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light, 7.e. that light is a form of energy which
travels through space in undulations or waves.
The essential medium of conveyance we have seen
cannot be material in the usual signification of this
term, and therefore scientists, on very solid grounds,
hold it to be an imponderable elastic substance per-
vading all space, even the intermolecular spaces of
bodies. To this medium the name luminiferous (or
light-bearing) ether has been given—a term of too
narrow significance, as late researches in electrical
science have shown.! .

Light being propagated by wave motion, it may
be well to explain shortly the nature of waves and
some of their characteristics.

Wave motion implies the ideas of wave length,
of amplitude or wave height, and of wave speed or
rate of propagation. When a stone is dropped
into a pool, the eye can follow the course of the
waves as they move over its surface, and in this

1 The undulatory theory not only accounts in the completest manner for
all the known phenomena of light, but by its means results have been pre-
dicted which experiment afterwards confirmed.

The corpuscular theory, on the other hand, is in direct contradiction to fact.
Two objections to it may be mentioned. First, we can hardly conceive that
particles of matter, however small, moving with the great velocity of light,
could impinge on so delicate an organ as the eye without injury to it. Again,
the fundamental assumption of the corpuscular theory leads very simply to
the conclusion that the velocity of light is greater in denser than in rarer
media—greater, for instance, in glass than in water, greater in water than in
air—a conclusion which is found to be contrary to fact. Thus a particle of
light (assuming the corp lar theory) passing from a rarer to a denser
medium (as from air to water) is, on approaching indefinitely near the common
surface, attracted more strongly by the denser thaun by the rarer medium.
The resultant attraction is perpendiculm- to the interface, and increases the
velocity in that direction, the 1lel to the interface being un-
altered. The resultant velocity of  the partlcle is thus increased on entering
the denser medium,
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particular case it would not be very difficult to find
the space traversed by any one wave in unit time.
The waves of light, on the other hand, travel with
enormous rapidity, viz., at the rate of 186,000 miles
per second. The waves on the surface of the pool
have a length which is quite appreciable. Those
of light are ex-

tremely small, but

have been measured

o & by means which

A D we shall afterwards
indicate. The an-

nexed diagram may

Fig. 7 B be taken as roughly

» representing awave.

The distance between any two points in the same
phase! is defined as the wave length. Thus, in fig. 7,
A A/, or twice the horizontal distance between B and
B, represents the wave length. The distance of the
highest or of the lowest point of the wave from the
line A A’ is called the amplitude of the wave. In-
vestigations have shown that the colour of light
depends upon the length of the wave, while its in-
tensity depends on the amplitude. Thus, for one
special kind of red light (that of the B line of the
spectrum), the length in millimetres is 00006867,
while for another kind of red light, that correspond-
ing with the c line of the spectrum, it is 0°0006562.

1 Two particles are sald to be in the same phase when they are moving in
parallel directions with the same velocity at the same instant.
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Every wave motion is said to have a certain
Jrequency. By this is meant that a certain number
of waves pass a particular point in space per unit
of time. Let us suppose two points in space to be
separated from each other by a distance exactly
equal to that which is traversed by a single wave
pulse in unit of time. If now the disturbance start
from the first point, it will reach the second point
at the end of the first unit of time. If the exciting
cause has continued to act during this period there
will be a succession of waves of similar length
extending between these two points. Further, let
the number of waves between the two points be
denoted by =, it is obvious that n waves have
started from the first point in unit of time. This
number n is called the frequency of the wave
motion. If A denote the wave length, the dis-
turbance during the first unit of time has travelled
a distance equal to mA. Hence the velocity is
equal to the wave length multiplied by the fre-
quency, which is denoted by the equation—

v
vV =1\ or n = —.
A

As the velocity of light is known, and as the
wave lengths for various colours have been mea-
sured, the corresponding frequencies can be calcu-
lated from the above formula.

Movement of Fluid Particles.—It has already
been mentioned that the particles of water are not
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displaced laterally to any appreciable extent, but
simply undergo a movement of elevation and de-
pression, t.e. the individual particles of water move
at right angles to the direction of wave propagation.
The same is true of the waves of light; the ether
particles move at right angles to the direction in

‘which the light is travelling, and the v1bra.t10n

is said to be transverse.

The simplest form of wave motion is when the
particles of the medium move in straight lines with
what is called a Simple Harmonic Motion.

Simple Harmonic Motion.—Let a point R move
in the circumference of the circle ABc (fig. 8), in
the direction shown
by the arrow, and
with uniform velocity.
Let B be the position
of the point at any
instant, and draw RS
perpendicular to a
fixed diameter A B.
As R moves uniformly
in the circumference,
the foot of the per-
pendicular  describes
a simple harmonic motion in AB, The relative
distances passed over in equal times by M can be
graphically represented by dividing the circum-
ference into equal arcs AR, RR;,, R Ry, ..., and
drawing the perpendiculars RS, R, S, R,S;.
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Thus R moving uniformly describes the equal arcs
AR, RRy, R Ry, . .in equal intervals of time; while
M, by condition, simultaneously describes the un-
equal lengths AS, 88, 8,8, ... It will be clear
from the diagram that M starts from rest at A, in-
creases its velocity gradually until it arrives at o,
the centre of the circle, where its velocity is
momentarily equal to that of R. From o0 onwards
to B its velocity gradually decreases; and starting
now from B, the path BA is traced in like manner.
The point M is then said to execute a simple har-
monic motion.

An excellent illustration of what is meant by a
simple harmonic motion is obtained from the study
of a pendulum. When the bob of the pendulum
is drawn a little to one side and then released,
gravity at once attracts the bob towards the earth,
the rod of the pendulum prevents its falling, and
compels it on account of its constant length to
describe an arc of a circle, which if the motion be
very small is practically a straight line. The
velocity, however, is not uniform, but gradually
increases till the bob is at its lowest point, and
then gradually decreases till it becomes zero on
the other side.

Wave Front and Ray.—If an extremely small
plane surface be introduced at any part of a wave
perpendicularly to the direction in which the wave
is travelling, it will approximately occupy a wave
front. All the particles in & wave front are moving
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in the same direction and with the same velocity.
It should be observed, however, as can easily be
seen in the case of waves in a pool, that if a por-
tion of a wave be considered when it is very near
the centre of disturbance, even a small portion of
its front is curved and not plane. It is only when
the radius of curvature is very large that a small
portion of the wave front approximates to a plane.

By the term ray is meant the direction in which
a particular point of the wave front is travelling.
It is at right angles to the wave front.

Interference.—If two waves meet each other in
the same phase—for example, if two crests or two
hollows meet—then the disturbing effect is double
of what it would be if only one were present. If,
on the other hand, two waves meet, so that the
hollow of one corresponds with the crest of the
other, the two neutralize each other, and there is
no apparent disturbance. Waves producing such
effects as these are said to interfere. The recti-
lineal propagation of light depends on interference.
This property is also of importance in measuring
wave lengths, which is conveniently done either
by Fresnel’s bi-prism or by a diffraction grating.

When the ether waves which constitute light
‘impinge upon any surface then certain changes
take place. Let us suppose, in the first place, that
.they impinge upon an opague surface. The changes
which may then occur are that-the light is scat-
tered, absorbed, regularly reflected, or polarized. At
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every opaque surface all these changes take place,
but some more prominently than others. If, for
example, the surface be black, almost all the light
is absorbed, and consequently little of it is reflected.
On the other hand, if the surfa,ce'be red, almost all
the components of the light are absorbed except the
red elements, and these are reflected. On exam-
ining a red surface seen by white light with the
spectroscope it is found that some of the other
components of the white light are reflected to a
slight degree, but that the red components pre-
dominate. Those which are not reflected, or only
imperfectly so, are wholly or partially absorbed by
the substance, It is not our intention to deal with
polarization at all, beyond saying that polarized
light differs from ordinary light in having all its
vibrations in one plane, and that all reflected light
is more or less polarized. 'In the second place, if
the ether waves impinge upon a transparent sur-
face, they are in part reflected and in part trans-
mitted through the substance. Thus, if an observer
looks at a sheet of glass he can see his own image
reflected by the glass, while at the same time an-
other observer can view him through it. Under
certain circumstances transmitted light may also be
polarized.

Reflection of Light.—When light is reflected
from a surface it is turned back into the same
medium. There is no change in velocity, but there
is a change in direction.

(B82) B
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Let aB (fig. 9) be a reflecting surface, and let
co indicate a narrow beam (pencil) of light in-
cident at the point 0, and let N0 be perpendicular
to the surface AB. NoO is called the normal to the
surface at 0, c 0 is called the incident pencil or ray,

N and the angle coN is
D defined as the angle
of incidence. By ex-
periment it has been
proved that the light
is reflected in the direc-
tion oD, so that the
angle CON is equal to
the angle DoN. The angle Do N is called the angle
of reflection. The laws of reflection are as follows:
(1) The incident and reflected rays are in the same
plane as the normal at the point of incidence; (2)
the angle of incidence is equal to the angle of
reflection.

Mirrors, as usually employed, are made of silvered
glass or of speculum metal. Such mirrors have the
property of reflecting all the components of the
incident light; consequently, if the incident light
be white, the reflected light is also white.

The Plane Mirror.—A plane mirror is one whose
surface is flat.

Let Py (fig. 10) represent such a mirror in sec-
tion, and let 0 be a point of an object in front of
this mirror in the plane of section. Draw oP per-
" pendicular to M, and produce it to #. Let 0B be a

A o B
Fig. 9
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ray of light incident on the surface of the mirror at
the point B; then NBO is the angle of incidence, and
NBD is the angle of reflection, BN being the normal
or perpendicular at B. After reflection the light will
take the direction of BD. Produce BD backwards

o\

P Y4
Fig. 10

to meet oP in 0. The light after reflection will
appear as if it came from o', which is as far behind
the mirror as 0 is in front of it. To prove this,
consider the two triangles BP0 and BP0, The
angles BPO and BP0’ are right angles (by con-
struction),

.. LBPO = LBPO),
and /NBO = LBOP,
and /DBN = LBO'P;

but LNBO = LDBN,
being the angles of incidence and reflection
respectively,
J. LBOP = LBO'P,
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.. in the two triangles we have
LBOP = LBO'P,
and LBPO = LBPO),
and the side BP common,
S, OP = 0P

Hence o’ is at the same distance behind the
mirror that 0 is in front of it. Similarly, it can
be shown that all rays coming from o appear after
reflection to come from o', which, therefore, is vir-
tually the source of light, so far as the reflected rays
are concerned, and 0’ is called the image of o.

Images.—Images are of two kinds—-(1) real,
(2) virtual. Rays of light from a luminous point
may, by reflection, or refraction, have their direc-
tions altered so as—

(1) To intersect. The point of intersection is a
real image of the luminous point, and may obvi-
ously be received on a screen.

(2) Not to intersect, but to appear to proceed
from a different point. This apparent source is
a virtual image of the luminous point, and is the
intersection of the rays produced backwards. Such
an image cannot be received on a screen, although
under suitable circumstances it can be perceived
by the eye.

A point source in front of a plane mirror has, as
shown above, its image behind the mirror, and
inspection of the diagram proves that the image
is virtual,
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The figure formed by the images of all the points
of an object is the image of that object, and is real
or virtual according as the images of the points are
real or virtual.

Real images, whether produced by reflection or
refraction, are always inverted. Virtual images
are always erect. Thus, in the case of a plane
mirror, if a person look at himself in an ordinary
mirror he will see an erect, not an inverted, image.
At the same time, however, it is a laterally inverted
one, for if the observer moves his right hand the
image will appear to move its left.

The Concave Mirror.—As concave mirrors are
very often employed in the construction of ophthal-
moscopes and other instruments used in medicine,
some detailed account must be given of their optical
properties. They generally consist of segments of

{>

hollow glass spheres silvered on the outside, so that
the hollow side reflects. :

Let MAR (fig. 11) be a section of such a mirror,
o the centre of the sphere, called also the centre of
curvature of the mil/'ror; the line A 0 produced both

© Fig. 11
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ways is called the principal axis of the mirror.
Take any point g on the axis A0, and from ¢ as
a source let a very thin pencil of light be incident
on the surface of the mirror at the point R. Join
RO. If the pencil of light be so thin that the part
of the surface of the mirror on which it is incident
is very minute, that part may be regarded as a
small plane surface, and RO being a radius of the
sphere is normal to the surface at R. Hence the
law of reflection at a plane surface enables us to
trace the direction of a reflected ray. The angle
of incidence gR O is equal to the angle of reflection
QRO.
Since, therefore, LQRO = LgRO, we have

QO0:QqO::QR:QR.......... Euclid, VL 3,

Now, if the arc AR is small compared with AQ,
the distance gR is nearly equal to ¢A, and the
nearer R approaches to A the more exact is this
approximation. Therefore without sensible error
we may write the above proportion—

Q0:qO::QA:QA,
6. AO—AQ:Aq —AO::AQ:AQ.

Calling A ¢, u; AQ, v; and A0, », we have—

r—v:iu—r
Sur+4+or

v:u,
2vu.

On dividing this equation by u vr we obtain—
1,1_2

u v ”
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If now a small pencil of light be incident on the
mirror in the direction gR’, so that the arc AR’ is
also very small compared with AQ, it is obvious
that after reflection this ray will also pass through
the point Q.

With the same limitation it can be shown that
all rays coming from ¢, incident on the mirror, pass
approximately through the point Q. Therefore at
Q a real image of the point of the object at g is
formed. As the image is real, it is also inverted.

Pairs of points on the axis, such as @ and ¢, whose
distances from the mirror satisfy the relation

1,1 2

—_ - = -

u v r

are said to be foci conjugate to each other. If one
is the position of an object, the other is the position
of its image. Thus, if the object be situated at ¢
an inverted image of it, which could be received on
a suitably arranged screen, is formed at Q, while,
on the other hand, if the object be placed at Q, an
inverted image of it is formed at g.

If now the source of light at ¢ be taken to a
great distance the angular divergence of the light
may be disregarded, for the angle RgA is then
extremely small, and gR is practically parallel to
qA. When this is the case, Q, which takes up a
definite limiting position, is called the principal
focus, and AQ the principal focal length of the
mirror. It is also sometimes called the focal length
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of the mirror. Returning for a moment to our
last formula—
1,1_2
w o v
we may regard w as being infinite compared with
v. Indeed, if the rays gR and g A are absolutely
parallel to each other, then the distance of ¢ must
be infinite. Any finite quantity divided by an infi-
nite quantity is zero, hence the equation becomes—
1_2
v
This, as already seen, is a special case, and the focus
which is formed by a pencil of parallel light inci-
dent on a mirror in a direction parallel with the
axis is called the principal focus. The principal
focal distance, or focal length, is generally indicated
by F, and we have—

1_¢2
F )

r

which means that the focal length is half the radius
of curvature.

Practical Measurement. — To find the focal
length of a concave mirror select as an object
something distant, such as a lighted candle at least
twenty feet away, or, better still, the chimneys of
a house at a considerable distance. With the mirror
throw an image of the selected object on a suitable
screen, such as a sheet of writing-paper, and measure
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the distance between the screen and the mirror when
the image is quite sharp. The distance so measured
is approximately the focal length.

The same thing can be obtained directly by means
of the spherometer, an instrument with which we
are able to measure the radius of curvature of
spherical surfaces.

Figure and Description of a Spherometer.—
The spherometer consists of a disc of metal with
a graduated circumference, and supported on
three legs made of hard
steel rounded at the
points. The legs are of
equal length, and are
equidistant from each
other. The centre of
the dise is pierced by a
steel screw, the point of
which is also rounded.
This screw serves as a h o B G
fourth foot. When the g 15 (rrom lazebrook and Shaw)
instrument is set on a
plane glass plate resting on the three fixed legs,
no rocking takes place when slight movements are
imparted to the instrument with the hand. Should,
however, the fourth leg be made slightly longer
than the other three then rocking at once takes
place. A little practice soon enables an experi-
menter to determine with great exactness when
the fourth point is just touching the surface. The
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screw of a good spherometer has a thread with,
say, 100 turns to the inch. One complete turn
therefore means that the fourth leg has either
been raised or lowered by y}y of an inch. By
means of the scale on the disc of the instrument
any fractional part can be measured with great
accuracy. Thus, suppose that the circle is turned
through an angle of 60°, equal to } of the entire cir-
cumference, then the fourth leg is, according to the
direction of the move-
ment, raised or lowered
by &3v of an inch.
Thus very fine measure-
ments can be made.

™ The instrument is
. o used in the following

A |__—8 manner for measuring
o 18 radii of spherical sur-

faces:—

Let mp M’ (fig. 13) be a concave surface, and let
us suppose that after applying the spherometer to
a plane surface, and carefully adjusting it to that
plane surface, so as to get the zero reading, we
transfer the instrument to this concave one, so that
one foot rests on A and another on B. The middle
screw is now turned till it just touches the concave
surface at the point D. The length 0 D is measured
by the number of turns and fractions of a turn
which have been given to the screw in order to
bring its point from o to . Moreover, the distance

C
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0B is also known, for it is the distance between the
point of the screw when applied to a plane surface
and any one of its three feet. Let oD = A, and
OB = m, and ¢B and ¢cD each = 7.

Then in the triangle coB—

™ = m?+ (r—h)}
m2+h2
2

As both m and & are known, 7, the radius of cur-
vature, is thus found.

In measuring the radius of curvature of a convex
surface, the spherometer is, as in the previous ex-
ample, first applied to a plane surface. It is then
transferred to the convex surface. The point is
now gradually raised by means of the screw till
the three feet and the point just touch the surface.
The distance through which the screw has been
turned gives us, as before, the value of &, and m is
a constant for the instrument used.

The Geneva lens measurer is an instrument much
used by spectacle vendors, and sometimes even by
ophthalmic surgeons, to determine the focal length
of thin biconvex and concave lenses. It is based
on the principle of the spherometer, and consists
essentially of two legs of equal and constant length
parallel to each other. Exactly half-way between
them is a third leg, which, acted upon by a spring,
is capable of movement in a direction parallel to
the others; all three are in the same plane. The
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movable leg is connected with an indicator which
turns round a dial. To determine the radius of
any curved surface the three points are applied
firmly to the surface, when the middle leg is
pushed in to an extent depending upon the amount
of convexity or concavity. When this is done the
indicator on the dial will be found to have moved
to a new position.

It is taken for granted that a certain curvature
corresponds to a given focal length, and conse-
quently the dial is marked to indicate the refrac-
tive power of the lens which is being tested. This
assumption, however, is not even approximately
true.

Later it will be shown that if F be the focal
length of a thin convex lens, then—

1 _ (il
1_?_(”' 1)(R+R"

where u is the index of refraction of the glass of
which the lens is made, and R and R’ are the
numerical values of the radii of curvature of its
surfaces. The Geneva lens measurer gives very
accurately the values of R and R’, but does not
determine that of . It is & valuable instrument
for determining the curvatures of lens surfaces, but
is not to be relied upon for information as to their
focal lengths.

Images formed by Concave Mirrors. —In
fig. 14, PXR is a concave mirror; XX’, passing
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through the centre of curvature ¢ and the principal
focus F, is the principal axis, and AB a luminous
object in front of the mirror. To find the image
of the point B, the following simple construction
suffices. Since from the point B light is sent out in
all possible directions, one ray must pass through
the point ¢, and will be incident on the mirror at
the point R. As it is incident in the direction of
one of the radii of curvature, it strikes the surface

P/ B

x/\ p c/
\(N/

-

R
A

Fig. 14
normally, i.e. at right angles. It is therefore re-
flected back along the same line as it came. The
image of B is thus formed somewhere on the line BR.
To obtain its exact position it suffices to find the point
at which another ray coming from B intersects the
first one after reflection. Let the ray BP parallel to
the axis be taken. It has been shown at page 23 that
after reflection this ray passes through the principal
focus F, and will therefore intersect the first ray at
some point B’, which is consequently the image of B.

In the same manner it can be shown that A’ is
the image of A, and similarly that all points of the
object A B have corresponding images in A’B. Thus
A’B’ is a real and an inverted image of AB. It is
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apparent from the diagram that the image is smaller
than the object. Were the object placed at A'B a
magnified image of it would be formed at A B.

If a self-luminous object, such as a candle flame,
be placed at the focus of the mirror, the light is
reflected in parallel pencils (see page 23). Should
it, however, be nearer to the mirror than the prin-
cipal focus, then the rays of light after reflection
continue to diverge, and do not form a real image,
but appear as if they proceeded from a virtual
image behind the mirror.

In the diagram, fig. 15, let P M be a concave mirror
whose focal length is X F, and let the object A B be

A P/ i P’

Fig. 16

placed between the mirror and its principal focus.
A construction similar to the last enables us to get
the image of any point of this object. '
Consider the point A from which rays of light
proceed in all possible directions. One ray AP
must proceed as if it came from the principal
focus. After reflection it leaves the mirror in the
direction PP’ parallel to the axis. Another ray
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AR must leave the point A in the direction of the
radius CR. After reflection it is sent back in the
direction RC. These two rays therefore do not
meet, but after reflection from the mirror diverge
from each other. Were these reflected rays pro-
longed backwards through the mirror they would
meet at the point A’, which is therefore the virtual
image of A. To an observer placed in front of the
mirror the reflected image of the point A would
appear to be situated at the point A. In the same
way it can be shown that B, a point in A’B is the
virtual image of B, and A’B’ of AB. Thus, when an
object is placed in front of a concave mirror at a
less distance than its principal focal length, the re-
flected image is virtual, is erect, and is magnified.

Convex Mirror.—A convex spherical mirror is
one in which reflection takes place at the convex
surface.

Let pAM (fig. 16) represent a convex mirror in
section, the axis of which is 0Q. Let a ray of light
from Q be incident at the point P, and let o be the
centre of curvature of the mirror. The line OR,
being a radius, is at right angles to the surface of
the mirror at the point . The ray after reflection
travels in the direction Ps, making the angle of
reflection RPS equal to the angle of incidence QPR.
It is thus obvious that the reflected ray does not
again cut the axis of the mirror, but that if this
ray be prolonged backwards through the mirror it
will cut the axis at the point g, which is therefore
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the image of Q. It will be observed that the dis-
tance A Q is measured from the mirror in a direction

Fig. 16

opposite to those of Aq and A0. It is therefore
necessary to regard these two latter distances as
negative, if we consider A Q positive. Thus we get—
AQ=mu, A0 =—1, Aq-—v
And as before,
go : QO :: gP : QP;
1.6¢.A0 — Aq : AQ+ AO :: gP : QP.
Now, if the point P be brought very near the point
A, ¢P is very nearly equal to ¢A,and QP to QA; and as
v and » are both negative, we have, on substituting,
V—r:iu—1r: —v:u
S=nu = —v(u-—r1),
Svrdur = 2uv,

.. dividing along by uvr, + 1 2

3
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It will be observed that the formula for the con-
vex mirror is identical with that for the concave,
and it is only necessary in working with these
formulse to remember that in the case of the con-
vex mirror r and v are always negative quantities.

In speaking of concave and convex spherical
mirrors it has only been necessary to discuss a
particular case, namely, that in which the point of
incidence is so close to the point at which the axis
of the mirror intersects its surface that QA differs
in length from QP (fig. 16) by a quantity which can
be disregarded in practical work. The formula—

1 ,1_2

w v r

therefore, is only true for those rays which are
incident in the immediate vicinity of the point A.
Those which are incident at other portions of the
surface are not reflected to ¢, but cut the axis of
the mirror nearer to its surface. Strictly speaking,
if a pencil of light, all the rays of which are parallel
to the axis, is incident on the surface of a spherical
mirror, only those near the axis pass through the
principal focus; the others go to form a continuous
series of foci extending from the principal focus
towards the mirror. This departure from the simple
law, found for a limited portion of the surface in
the neighbourhood of 4, is due to the form of the
reflecting surface, and hence is called spherical aber-

ration. It is thus obvious that the amount of light
(B82) ¢
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at the focus is not so great as it would be were the
entire parallel pencil reflected through it. To gain
the maximum of illumination, parabolic mirrors are
sometimes used in ophthalmology, especially in
such operations as the inspection of the cornea.

Parabolic Mirror.—Let pM (fig. 17) be a part

of a parabola. If the curve be rotated round its

axis 2z, Po will trace

F/ _ out a surface which, if

polished on its inner

side, will form a para-

bolic reflector. It can

+  easily be shown that

O\ s all rays of light

parallel to the axis

xz«, and incident on

the surface of such a

M mirror, are reflected

accurately  through

the point s, which is termed the focus of the mirror.

Hitherto we have considered the reflection of

pencils which are called direct, 4.e. pencils whose

geometric axes coincide with the geometric axes of

the mirrors. The subject of oblique reflection, .e.

of pencils whose geometric axes do not correspond

with those of the mirrors, is not one of any great

importance to the student of ophthalmology. It is
therefore omitted from the present work.

Fig. 17




CHAPTER 1II
REFRACTION

Refraction of Light.—It is matter of common
observation that a straight stick, partially immersed
in water, in a direction oblique to the surface,
appears to be bent at the point at which it enters
the water; moreover, the part immersed seems to

A

Fig. 18

be bent towards the surface of the water. The
explanation of this phenomenon is at once apparent
from a study of fig. 18, in which AB represents
the stick, and s8s’ the surface of the water. Let
P be a point on the stick capable of reflecting rays
of light in all possible directions. PO is one of
these rays, and as it leaves the water it is bent
out of its original course, so that an eye placed at
8
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E sees this ray as if coming from . The point P
is nearer to the surface than P, and p appears to
the eye as if it lay in the direction EoP. This
abrupt change in the direction of a ray on cross-
ing the bounding surface of two different media is
termed refraction,

Another simple method of illustrating the same
thing is to place a sixpence or any small object

in a cup or other suitable vessel; the observer then
places his head so as just to lose sight of the six-
pence behind the edge of the cup. If water be now
poured into the vessel the sixpence again reappears
though the observer has not changed his posi-
tion. Reference to fig. 19 sufficiently explains
this phenomenon. AB is a ray of light coming
from the sixpence to the edge of the vessel, and
passing on, but at such an angle that it is not
received by the observer’s eye at E. After some
water has been poured in, another ray, Ao, is re-
fracted at the surface of the water, and passes the
edge of the dish in a direction which enables the
observer to see the coin,
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Let s (fig. 20) be the interface of two refracting
media such as air and glass, and let NP be the
normal at P to 8. A pencil of light incident at P in
the direction LP does not,
on entering the glass,
continue in the same
straight line, but is bent
towards the normal PN’
s in some such direction
as PL. The angle LPN
is called the angle of in-

N’ \ cidence, and the angle
Fig. 2

L

L L'PN is called the angle

of refraction. They are
in the same plane, and as we shall presently see,
the sine of the angle of incidence always bears a
constant relationship to the sine of the angle of
refraction for any two media.

Refraction depends on Change in Veloecity.
—When light passes from one transparent medium
into another of greater density, the velocity of propa-
gation is diminished. On this depends the bending
of the ray when the incidence is oblique. If, how-
ever, the incident pencil be at right angles to the
surface separating the two media, no bending takes
place, but the change of velocity is the same, being,
in fact, independent of the angle of incidence. Some
of the energy is reflected back into the first medium,
and another portion of it is transmitted into the
second. This is true for every angle of incidence.
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If the light propagated in one transparent medium
is incident on the surface of another of greater
density, some of the light is reflected back into the
first medium, making an angle of reflection equal
to the angle of incidence, and another portion passes
into the second transparent medium. If the angle
of incidence is greater than zero, the second portion
not only enters the second medium, but its direc-
tion is also changed.

Before proceeding to a proof of the fact that the
change in direction can be accounted for by a dif-
ference in the rates at which light travels in the
two media, it will be necessary to refer again to
the idea of a wave front. The simplest case is
that of a pencil of parallel rays of light. If a
plane be taken at any point at right angles to
the direction of propagation, that plane is a wave
front.!

Fig. 21 shows how the change in the direction
of the wave front depends upon the change in
velocity.

Here we have a pencil of parallel light incident
on the surface ss of the second medium, supposed
of greater density than the first. Of this pencil A B
is a wave front. Let us suppose that the velocity
with which light travels in the first medium is v,
and in the second ¢/, and let it also be assumed that
v:2v'::8:2 (which is very nearly true if the first

1At the wave front all the particles of the luminiferous ether are in the
same phase.
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medium be air and the second glass), then the fol-
lowing simple construction will suffice. Let A A’ be
the distance which the light incident at A would
have gone had there been no second medium during
the interval taken by the disturbance to travel from
Q B to B’; then AA" = BB

The portion of light inci-
P dent at A has, however,
gone a less distance than
N
S P
(o I

Fig. 21

A A, on account of the greater density of the second
medium. Sinee v:v’::8:2, the disturbance in the
second medium has only gone § of A A’, while that
in the first medium has been travelling from B to B’.
Now, when the light was first incident at 4, it set
up a disturbance in the second medium, which ex-
tended from A as centre in a spherical wave. Let
us take A7 = % A4, and with radius A+ and
centre A describe a sphere represented in section by
a circle. This marks the limit of the disturbance
in the second medium at the instant that the dis-
turbance in the first medium has arrived at 8. In
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like manner, if a radius a+” is taken = % of aa/,
another sphere represented in section by a circle
can be drawn marking the limit of the disturbance
caused by the portion of the original wave front
incident at @ at the same instant as before. This
portion, had there been no second medium, would
have reached a’. The common tangent plane of all
these spheres represented in section by A” B’, is the
new wave front, and the parallel lines A A”, B'0,
aa”, bb”, drawn at right angles to the wave front,
indicate the direction which the light takes after
refraction.

From B’ draw B'N at right angles to ss; the
LNBO is defined as the angle of refraction. It
is obviously equal to the L A”B'A. Again, draw
AQ at right angles to 88, then LPAQ is the angle
of incidence, and it is = L BAB.

From the figure therefore we see that the sine of
the angle of incidence (7) is—

BB

B'A

and the sine of the angle of refraction (r) is—
A” A
: A BI:

sini _ B

B

”°

gin 7 AA

Now BB’ is proportional to v, the distance
travelled in air in unit of time, and A A” is pro-
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portional to ¢/, the distance travelled in the second
medium in the same time,
sint _ v
5

. /'

m r v

therefore

Since the velocity of light in air may be regarded
as a constant, and also the velocity in any other
v
v
This relation, which is generally expressed by the
Greek letter u, is called the index of refraction,
relatively to air, of the substance composing the
medium. The subjoined table gives the indices of
refraction of a few transparent substances, that of
air being unity:—

medium, the ratio — is constant for these media.

Diamond ........covevviniiiniinnnnnns .243
Glass (two lead and one flint)......1'8
Flint Glass.......cccoeeveievennnn eene 157-16
Crown Glass......cccevvvevnnrenennnenn 1-52
Water.. ..o eveieriereeieeerenennn. 1-336
Aqueous Humour............cc..c.... 1-337
Vitreous Humour..................... 1-339
Crystalline Lens..............cccoe.en 1-337
Canada Balsam...............cceu.. ... 1-54
The law expressed in the formula—
sin 4
s =M (a constant),

frequently written, sin ¢ = u sin 7, is from its
discoverer termed Snell's Law, and holds for light
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passing from one medium into a second of different
density for every value of the angle of incidence.

The Critical Angle and Total Reflection.—
Let Bc (fig. 22) be the surface of a sheet of water

N

of index of refraction 1-33, and let the superim-
posed medium be air, of which the index of
refraction may, for our present purpose, be taken
as unity.

Let AP be a ray of light incident at the point P,
tha,king with the normal, PN, an angle of incidence,
APN, equal to, say, 60°. The corresponding angle
of refraction can be calculated by the above for-
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mula, and is found to be about 40° 37. The ulti-
mate direction of A P is thus PD.

Now, if the angle of incidence be very nearly a
right angle, which is the case when the light just
skims along the surface of the water, the corre-
sponding angle of refraction, as calculated by the
above formula, is 48° 45’, and the ultimate direction
of such a ray of light entering the water at the
point P is PF. Further, if light were leaving the
denser medium in the direction FP it would, on
emergence into the rarer medium, just skim along
the surface of the water. The angle FPN is
termed the critical angle for water.

Again, light may be propagated in the second
medium in such a direction as oP; in this case it
would not pass out of the water at all, but would
be totally reflected in the direction P0o’, and the
angle of incidence 0PN would be equal to the
angle of reflection N"po’. In fact, in the second
medium light incident on the surface of separation
at any angle greater than 48° 45" would be totally
reflected, and in every case the angle of incidence
and the angle of reflection would be equal. The
critical angle can easily be obtained for any trans-
parent substance from the formula—

8Int = usin 7,

To obtain the critical angle for any medium, the
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angle 1 is to be taken as equal to 90°, and the sine
of 90° is equal to 1;
1_ sin R,
"

where R indicates the critical angle. The critical
angle for glass of index of refraction 1'5 is 41° 49",

The phenomenon of total reflection is taken
advantage of in the rectangular prism, an instru-
ment of importance in the construction of several

A pieces of ophthalmic apparatus.
In fig. 23, ABC represents a
rectangular isosceles prism in
section. The angle at B is a
right angle, and the angles at
A and c are each 45°. DF
B ﬁ C represents a pencil of parallel
light incident at right angles to
the surface at A B. As the angle
of incidence is 0°, this pencil
is not bent at the surface A B, but passes into the
prism in the same straight line, and is incident on
the surface Ac at the point . Let PN be drawn
perpendicular to the surface A c, then the angle of
incidence at this surface DPN is equal to 45°. This
is greater than the critical angle for glass, and
therefore the light is totally reflected at the point p
in the direction PH, and thus leaves the prism at
right angles to its original direction.

Absolute and Relative Indices of Refraction.
—Were light, propagated in a vacuum, incident

A E
Fig. 23




REFRACTION 45

at an angle 7 on the surface of a transparent sub-
stance, on entering the substance it would be re-

fracted at an angle », such that %: would be

equal to u, which is in this case termed the absolute
index of refraction for the substance under con-
sideration. The index of refraction of vacuum is,
strictly speaking, unity but as it only differs from
that of air by -000294, there is no sensible error in
taking the index of refraction of air as 1.

If a ray of light impinge in an obhique direction
on the interface of any two transparent media,
having different indices of refraction, the ray will
be refracted in passing from one to the other. If
v, v; be the velocities of light in the first and
second media respectively, then the construction on
page 39 shows the abrupt change in the direction
of the ray on entering the second medium.

Let us suppose that the first substance is glass and
the second water, then the index of refraction of glass
relatively to water, or of water relatively to glass, is
easily obtained from the following considerations:—

Let the absolute index of refraction of glass be p, = ;
1
where » is the velocity in vacuum, and », the velocity in

glass. Similarly, p, = ; may represent the absolute
)

index of refraction of water, v, being the velocity in
water. Hence we have—

v v
,Ll—'Tland Mg "
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On dividing the first equation by the second, we have

:;J = 11, which expresses the relative index of refraction
1
for water to glass.
Let us suppose that we have three transparent
media, A, B, and ¢ (fig. 24), of different indices of
refraction, with parallel surfaces superimposed upon

\ C|

N B

<IN\
h (o

g
al
NIIII
Fig. 2

each other, and the index of refraction of ¢ greater
than that of B, and that of B greater than that of A.
The figure gives a diagrammatic representation of
the passage of a pencil of light through the plates.
At the first surface the angle of incidence abN has
the corresponding angle of refraction dbec. This
angle of refraction is equal to the angle b¢N’, for
bd is parallel to N’c.

The angle beN’ is the angle of incidence at the
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second surface, and the corresponding angle of
refraction is ecf, which in turn is equal to the
angle of incidence at the second surface, and so
on for any number of substances. The final angle
of refraction, i.e. the angle of emergence into the
coriginal medium, can be shown to be equal to the
angle of incidence at the first surface. Hence, a
pencil of light, after passing through several plates
with parallel surfaces, is, after the last refraction,
parallel to its original direction, that is, there is no
deviation. There is, however, displacement of the
transmitted ray, for in the diagram the ray ha’
appears as if coming from a point @” and not from a.
In the experiment originally quoted, of a rod
thrust into water (see page 35), we have seen that
the rod appears to be nearer to the surface than it
is in reality. The true depth divided by the
apparent depth measures the index of refraction.

Measurement of Index of Refraction.—There
are several methods of measuring indices of refrac-
tion, but three of them are of special importance.

A

Fig. 26

These are measurements («) by the microscope, (b) by
the angle of total reflection, (c) by means of prisms.

(a) By the Microscope.—In the annexed figure
(fig. 25), M is the object-glass of a microscope, s is a
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slide, and ¢ is a cover-glass which rests upon two
pieces of platinum wire, forming a kind of cell.
On the upper surface of the slide, and on the lower
surface of the cover-glass slight scratches are made
by means of a diamond. The observer then places
the cover-glass in situ, making the scratch on its
surface as nearly as possible vertically above the
scratch on the slide. To measure the distance
between the slide and the cover-glass, he first
accurately focuses the scratch on the slide. He
then carefully turns the fine adjustment till the
scratch on the under surface of the cover-glass is
in focus. By means of the scale which is engraved
on the fine adjustment of every good microscope
he can measure accurately the number of turns and
fractional parts of a turn which have been necessary
to raise the object-glass of the microscope through
the same distance as the depth of the cell. In this

way the exact depth of the cell is ascertained. The - .

next step is to remove the cover-glass, and to place
on its under surface a few drops of the fluid whose
index of refraction is to be measured. When this
is done the cover-glass is again placed in position
and the vertical distance between the two scratches
is again measured in the same manner. This will
now appear to be less than in the former experi-
ment, for the same reason that the part of a stick
immersed in a liquid appears to be nearer to the
surface than it is in reality. Thus we get the
measurement of the apparent depth. The true
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depth divided by the apparent depth is the index
of refraction for the liquid. It is convenient
always to use the same pieces of wire and the
same cover-glass and slide, for then the depth of
the cell 18 a constant quantity.

(b) By the Angle of Total Reflection.—This method
is also available when only a small quantity of the
fluid can be obtained. It, however, requires special
apparatus, and as it cannot be readily used without
considerable trouble, it is not thought necessary to
enter mto a detailed description of this method
here.

(¢) By means of Prisms.—Before describing in -
detail this method it is necessary that the student
should have some knowledge of the geometry of
the prism. As prisms are of great utility in
ophthalmology, both as aids to diagnosis and as
important therapeutic agents in certain cases, all
ophthalmic students should be acquainted with
their properties.

Let ABc (fig. 26) be a section of a prism, and let
PO be a small pencil of light incident at the point
o on the side AB. Here it is refracted in some
direction such as 00’, so that—

SinPON = x 8inX 00,

At the second surface on emergence it is again
refracted, so that—

u 8in00’X = gin PON’.
(B32) P
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The original direction of the light was P, and its
direction after leaving the prism is YP. It has

8 Fig. % -~ C

therefore been turned through the angle &, and the
angle & consequently measures the deviation.

Let LPON = ¢
LX00 = ¢
LNOP =
LOO'X = .

Then L6 = LY00' + LYOO
=¢—¢+¥y -y
=¢+v—(¢+V¥)

and ¢'+ Y = La

But since the angles of any quadrilateral figure are
together equal to four right angles, the angles con-
tained by the figure A0x 0’ are together equal to
four right angles. Now, since the angle X0 A and
the angle x0'A is each a right angle, the angle
040" and the angle 0X 0" are together equal to
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two right angles. Moreover, the angle 0 X0’ and
the angle a are together equal to two right angles,
Hence, the angle a is equal to the angle 040
Calling the angle 040" ¢, we have—

d=¢+V¥—e

This angle ¢ varies in value, and its magnitude de-
pends upon the size of the angle of incidence at
the first surface. Its smallest value is obtained
when the light traverses the prism in a direction
at right angles to a line bisecting the apex angle
of the prism. When this is the case ¢ = v, and
¢’ = Y/, and the deviation is then said to be mini-
mum, Calling this angle of minimum deviation A,
we have—

A=2¢—ec
. A
Le=5te

But sin (A—;'e) = u 8in ¢’

- nen3).

In this case ¢’ is equal to ¥ and ¢"+ Y/ has
already been shown equal to e. Consequently—

gin (A + e)

2
£
2

sin

To determine, therefore, the index of refraction
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of the glass of which the prism is made, it is only
necessary to measure its angle of minimum devi-
ation and its apex angle. Both these measurements
are readily made with the spectrometer. (See
Appendix.)

We have already seen that the deviation is equal
to ¢+ — (¢ + ) and that ¢’ + ' = ¢ the
apex angle of the prism. If the angles under con-
sideration are all very small, the angles themselves,
expressed in circular measure, may be written for
their sines. Hence, instead of writing—

sin ¢ = u sin ¢,
it is then legitimate to write—
¢ =pn¢ and y = uV,
and we have—
é = ,‘,¢'+;‘,\If'—e.l
SO =ue—ce
=@m=-1e
1This formula is sufficiently accurate for the student of ophthalmology,
and indeed is approximately true for all cases in which none of the angles
is greater than 10°, for in this case the angles, expressed in circular measure,
are very nearly equal to their sines.
The cl ss of the approximation {8 shown by a comparison of the

circular measure of one or two small angles with the natural sines of the
same angles,

Circular measure of 2° = 034897
Natural sine of 2° = 034908
*02 per cent of error.
Circujar measure of 5° = 08726

Natural sine of 5° = 08718
-12 per cent of error

Circular measure of 10° = 17452
Natural sine of 10° = 17364
*5 per cent of error,
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Enumeration of Prisms.—The earlier manu-
facturers of ophthalmic prisms generally marked
on each prism the number of degrees in its apex
angle, and in many trial cases even now only such
prisms are to be found. It is frequently stated in
books that the deviation caused by a prism is
equal to half the number of degrees in its apex
angle. Thus a prism marked by this method
number 10 would have a minimum deviation of 5°.
The reason of this assumption is at once obvious
on examination of the formula

d=(u—=1)e
for if we take the value of u for glass as 1'5, then
n—1=4

Now the index of refraction for glass is not 15,
but is generally considerably greater. Hence this
method is not at all accurate. Of recent years a
more rational system has prevailed, and prisms are
now numbered according to their angles of mini-
mum deviation. For any given prism the angle
of minimum deviation may be expressed in the
ordinary sexagesimal degrees, or in centradians,
or in prism-dioptres. Nothing further need be
said about the sexagesimal scale, but a few words
of explanation are required as to the centradian
and as to the prism-dioptre.

In an earlier part of this work (page 3) we have
referred to.the circular measurement of angles, and
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there it was stated that the unit of this measurement
is the angle subtended at the centre of a circle by an
arc equal in length to the radius of the circle. This
angle is approximately 57:295 degrees, and is called
the radian. The centradian is the hundredth part
of one radian, and is nearly equal to ‘6 of a degree.
Prisms can now be obtained marked in their angles
of minimum deviation expressed in centradians.

The annexed diagram explains what is meant by
a prism-dioptre.

Let AB (fig. 27) be a centimetre scale placed
horizontally in some convenient position, such as

|

-

© Fig. o

=S =% »

along the wall of a room. Let L be a
source of light with a slit in front of 4
it, so arranged that when no prism is +
interposed an image of the slit is formed B
on the zero of the scale. Let a prism

be inserted as in the diagram, at exactly 1 metre
from the scale, and in such a position that the
light passing through it undergoes minimum devia-
tion. If now the image of the slit is found at
1 centimetre from zero, the glass is called a prism
of minimum deviation of one prism-dioptre. If the
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image be formed at 2 centimetres from the zero it
is said to be of two prism-dioptres, and o on.

Uses of Prisms.—Amongst the various clinical
purposes to which prisms are applied the following
may be specified:—

(a) Where there is diplopia they form a handy
and excellent method of measuring the angle be-
tween the axes of vision of the two eyes, i.e. the
angle of squint.

(b) They are of service in measuring the range
of convergence and in testing muscular defects.

(¢) In many cases they must be used as thera-
peutic agents.

Measurement of the Angle of Squint by
Prisms.—This can easily be done provided there
is diplopia, although it must be confessed that the
method by prisms possesses no advantages over
that by means of tangent scales. It is further
to be remembered that in many cases of squint
there is under ordinary circumstances no diplopia.
It, however, can generally be elicited on careful and
repeated examination. Diagram 28 illustrates the
method of measuring convergent strabismus. In
the eye which does not appear to squint the image
of the fixation object A is formed on the macula,
while in the other eye it is formed not on the
macula but at some point on the inner side of the
retina and is projected by this eye to A" Hence,
as is well known, there is homonymous diplopia in
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convergent strabismus. If now a prism be placed
in front of the squinting eye, with its base out-
wards, it will cause the light coming to this eye

A

¢

Fig. 28

[

bk

to deviate outwards, and if
the prism be of the proper
strength to bring the image
to the macula, binocular single
vision for the fixation-object
is once more restored. In
making this experiment care
must be taken that the prism
is placed in front of the eye
in as nearly as possible its
position of minimum devia-
tion relatively to the incident
light. If the prism be marked,
as all prisms ought to be, ac-
cording to its angle of mini-
mum deviation, then it at once
measures the angle of the
squint.

One fallacy, however, may
occur in making measure-
ments which involve the ex-
ternal and internal recti, viz.

that for lateral movements, under ordinary circum-
stances, the eyes have a great tendency to united
Thus, generally speaking, in health no
diplopia occurs when a prism of ten or fifteen
degrees is placed in front of one of the eyes with

action.
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its base outwards, for under these circumstances
there is immediately an impulse to convergence. In
eyes which are not accustomed to binocular fixa-
tion, and in cases where the diplopia 1s elicited only
with great difficulty, the measurements taken by
the method indicated are substantially correct.

Where great accuracy is required, as in paresis
of one of the muscles employed in lateral move-
ments, the following method may be adopted. In
front of one eye, preferably that which has the
better vision, a prism of about two degrees mini-
mum deviation is placed with its edge upwards
and exactly horizontal. The effect of this is that
one of the images is projected upwards. If the
upper image is directly over the lower one there is
no diplopia, at any rate for that point of fixation.
If, on the other hand, the upper image is displaced
laterally there is either homonymous or crossed
diplopia according as the image is displaced
towards the same side as the eye which has the
prism in front of it, or to the opposite side.
Homonymous diplopia corresponds with convergent
strabismus and crossed diplopia with divergent.
The amount of the strabismus can easily be
measured by finding the prism which, with its base
directly outwards or inwards, brings the upper
image right above the lower, or which brings the
lower image directly beneath the upper.

Measurement of the Range of Convergence
with Prisms.—The range of convergence is usually
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stated to consist of two parts, viz. a positive and
a negative. The positive portion is easily under-
stood. Let us suppose that when the eyes of the
person who is being examined are at rest the axes
of vision are parallel to each other. If then a suit-
able test object, such as an illuminated slit, be
brought in the median line nearer and nearer to
the eyes, there comes a point at which binocular
vision is no longer possible, for the limit of the
positive convergence has been exceeded. This
point is called the proximate point of convergence.
When both eyes are fixed for this proximate point
the angle of convergence can very readily be
ascertained, and may be expressed in ordinary
sexagesimal measure or in metric angles of con-
vergence.!

It can be measured by prisms in the following
manner. Let the patient be placed at a consider-
able distance from the test object, which, in this
case, should be a lighted candle. Printed letters
are not suitable, because the effort of convergence
necessitates an effort of accommodation which may
render the letters so indistinct that the patient
ceases to be able to read them. The patient hav-

11In ordinary ophthalmic practice angles of convergence are measured by
the metric scale, which although not so accurate as the method just described,
yet gives results sufficiently reliable for clinical work. In this method the
intracorneal distance is entirely neglected, and whenever a man binocularly
fixes a point a metre away, he is said to exercise one metric angle of conver-
gence. If he fixes a point at half a metre, he is said to use two metric angles

of convergence If the point be %ol a metre from him, n metric angles of
convergence are required.
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ing thus been placed at 20 feet from a lighted
candle, a prism with its base directly outwards is
placed in front of one eye. For a moment there
may be diplopia, but, generally speaking, the in-
stinctive effort of convergence which the patient
makes soon re-establishes binocular fixation. If
stronger and stronger prisms be used, one is at last
obtained which the converging effort of the eyes
cannot overcome. The diplopia remains permanent.
The strongest prism, with its base outwards, which
admits of binocular fixation, measures the near
point of the positive convergence. In many cases
it is a prism of ten, or even more, degrees of mini-
mum deviation.

The negative part of the range of convergence
depends upon the latent power of divergence. It
is found by experiment that if in normal circum-
stances a weak prism be placed in front of one eye,
with its base inwards, there is still single vision.
Such a condition can only be brought about by the
eye undergoing a slight movement of divergence.
Generally speaking, a strong robust person still
has single vision for distance when a prism of
two or even three degrees of minimum deviation
is placed with its base inwards before one eye.



CHAPTER III
LENSES

In a previous section we have studied refraction
at a plane surface, and have seen that for a given
substance the sine of the angle of incidence bears a
constant ratio to the sine of the angle of refraction.
In the present section we propose briefly to discuss
the laws of refraction at spherical surfaces.

Every spherical surface may be regarded as com-
posed of a number of small plane surfaces. The
truth of this statement is illustrated by the fol-
lowing considerations. The surface of a small pond
of water appears to the eye of the observer to be
absolutely flat. Yet we know it 1s not so, but has
a curvature with a radius equal to the distance
between the surface of the pond and the centre of
the earth. Still, the pond is so small compared
with the total surface of the earth that it may
truly be considered to have a plane surface. Now,
if an extremely small portion of any curved surface
be taken, it may be regarded as being a plane area.

Fig. 29 represents a ray of light QN incident on
the spherical refracting surface A HB, and suppose
that QN is parallel to 0 0, the geometric axis of the
figure. We propose, in the first place, to trace the
direction of QN after refraction. Let us suppose

60

i
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that the medium in which QN is propagated is
atmospheric air, and that the substance bounded
by the spherical surface, of which A HB is a section,
is glass. At the point N a portion of the sphere
may be taken small enough to be regarded as a
, plane surface and coinciding with the tangent to
the surface at the point N. A line drawn from the

Fig. 29

point N to ¢, the centre of curvature, is the normal
to the surface at N. Produce N to P; QNP is the
angle of incidence. As the second medium is the
denser, QN, after refraction, is bent towards the
perpendicular Nc. QN, after refraction, will inter-
sect the axis at some such point as ¥. The angle
CNF is the angle of refraction, and we have sin QNP
= u sin ONF, where u is the index of refraction of
the glass. If the angles be all small—i.e. if they
are, say, not greater than ten degrees or any less
number—it is legitimate to write the angle ex-
pressed in circular measure for its sine. Hence,
with this limitation, we have ¢ = u n.-

Now the angle PNQ is equal to the angle Nco,
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and the angle Nco is equal to the angles cNF and
NFc. Calling Nco ¢, and CNF 7, the angle NFC
i8 i — 7 In the triangle cNF we have—
sinr _ CF

sin (¢—7) R’
where R is the radius of curvature. In the case
which we are considering, viz. when all the angles
are very small, we have—

CF_ r
B (@G-
__r
”r—1r
e
=7
. R
..CF—“_I.
LHF= D _ 4R
n—1
= MR
=y

Before refraction the ray Q N was parallel to the
axis OH; hence we are dealing with a pencil of
parallel light, and the distance HF is defined to be
the posterior principal focal distance of this surface.

In fig. 30 we have a ray of light Q N, which before
refraction is parallel to the axis 0’0, In this case,
after refraction, the light will be bent away from
the perpendicular ¢N in some direction such as
NF’, provided the second medium is optically less
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dense than the first. The angle QNc is the angle
of incidence = ¢, and PN F is the angle of refrac-
tion = » Produce QN to K, then the angle N ¢
is the angle of incidence, and is equal to the angle
NCH, and also to the angle PNK. Again, the angle

Fig. 80

HFN is equal to the angle ¥NK, e to the angle
F'NP minus the angle PNK. Thus in the triangle
FNC the angle NCF = 4, and the angle NFc
= r — 4, and NC = R (the radius of curvature),
hence ¥N = __SiB%
R sin (7 — %)
In the special case which we are considering,
viz. where all the angles are very small,—

FN _ 14
R r—1
1
_,u'l:—‘b
_ 1
=1
Hence N = — &
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Now if the angle H¥'N be very small N¥ is very
nearly equal H¥; and in the limit as N approaches
H the two are equal to each other. As the light
was parallel to the axis before refraction HF is
defined to be the anterior principal focal distance
of the surface, just as in the previous case HF was
called the posterior principal focal distance.

Calling the posterior principal focal distance F,
and the anterior principal focal distance F, we
have—

173

F, =
1 “_1
and F, = Rl'

-. Fl—Fg=”R—R
”—
R(p—-1)
" -

= R.
mR
H_w—1_
By R e
w—1

Practical Examples.—Let the index of refrac-
tion of the lens in diagram No. 29 be 15, and the
radius of curvature be 20 mm.; required the pos-
terior principal focal length.

We have—

16 x 20
15-1
= 60 mm,

F =
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With the same lens the anterior principal focal
distance is 2—: = 40 mm. It will be observed from
this that— FI—F,=60—40

20
R.

The student must have observed that in the preceding
paragraphs certain approximations have been made. The
results obtained may be taken as representing without
appreciable error the actual conditions present. It will
be useful, however, to trace a few individual rays to
their point of intersection with the axis, using for this
investigation the law of Snell. In the first place, let
parallel light be incident on the spherical surface at such
a distance from the principal axis that the radius of
curvature drawn to the point of incidence makes with
the principal axis an angle of, say, five degrees. Let this
radius of curvature be 20 mm. in length, and let the in-
dex of refraction be 1'5. We have already seen that for
parallel light the angle of incidence at any point is equal
to the angle which the radius drawn to that point makes
with the principal axis. The angle of refraction r is
easily obtained, for its sine is equal to 51%3 or i, since 4

.

is a small angle. The circular measure of 5° is, from
tables, ‘0873 radian.
-0873
15
0582 radian
3° 20',

and ¢ - r = 1° 40’

= 0-291 radian.

(B33) b

r=1
F
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In the triangle 0N F we have—
ﬂ=_—n 'ic,c_F_—AR
ginr sin(@-7r)  r (-7

rR_ _ ‘0582 x 20

G- 0291

= 40 mm.,

o.o CF =

by using the approximate formula. The more rigorous

formula gives cF = 39-98—practically 40 mm. But cH
= 20 mm. Hence the whole distance HF is equal to
5998 mm. If light parallel to the axis is incident at
a point on the surface of AB so that the angle NCH is
equal to ten degrees, by calculation the line c F is found
to be as nearly as may be also 40 mm. and, as before,
HF is equal to about 60 mm. If, however, the angle

B Fig. 81
NCH be taken equal to twenty degrees, CF is found to
be approximately 384 mm. and HF is equal to 58'4 mm.
Similarly, if the angle NCH be taken equal to thirty
degrees, CF is found to be 36-4 mm. and HF is equal to
564 mm.

In the annexed diagram, fig. 31, lines are drawn corre-
sponding to angles of ten degrees, twenty degrees, and
thirty degrees. It will be observed that the farther the
point of incidence is from the axis the nearer to the
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surface AH B does the refracted ray cut the axis. In fact
it is only the pencils of light which are very close to the
axis that can be said to form a focus at the point ¥. It
will be seen also that the various rays, after refraction,
cut each other at such points as « and #. The curve
drawn through all such points forms what is called a
caustic curve, and the whole of the phenomena are
generally classed under spherical aberration.

One or two facts are easily established from a
consideration of fig. 32, provided certain approxi-
mations are made. It has already been shown that

N
A p
H D.C \IB'
E
3 Y- N
Fig. 82

if parallel light travelling in the direction AP or BH
is incident on the spherical surface PHQ, then it is
approximately brought to a focus at the point F,; and
conversely, if parallel light is incident on the sur-
face PHQ in the direction of B'H, then it is brought
to a focus at some such point as F;. In both cases it
is assumed that the light travelling between B and H
is in & medium of lesser density than between HB'.
These facts give a well-known method of geo-
metrically finding the image of any object situated
as AB. Let us suppose that from every point of its
surface rays proceed in all possible directions. Then
one ray must be the direction AP, parallel to the
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axis BH. As this light is parallel to the axis before
incidence, after refraction it passes through the pos-
terior focus F,, and the direction of the ray is PA’.
Another ray must be in the direction A F;, which is
incident at the point Q. As this ray passes through
the anterior principal focus, after refraction it is
parallel to the axis. The point A’, where these two
rays intersect, is the image of A. By a similar
construction we can determine the image of every
point in A B, and thus it can be proved that A’B’ is
the image of A B.

The object and image are situated at foci con-
jugate to each other. If the object is at AB its
image is at A’B), and, conversely, if the object were
at A'B/, its image would be at AB. Further, in this
particular case the image is a real one—rays coming
from A actually meet at A’—and, like all real images,
it is inverted.

The following results are of great importance in
the theory of lenses and should be carefully studied.

In fig. 32, AB, the object, is equal to PD. Let each
of these be of length 0. Similarly, A’B’, the image,
is equal to QL, either of which may be written <.

Further, let

BH = f,,
B'H = f,
HF, = F,
HF, = F,
BFI = ll)

BF = [y




LENSES 69

Then, in the similar triangles, QLF, and ABF,, we
have—

Again, from the similar triangles, A’8'F; and PD F,,
we have—

AB _BFy % (@)
DP DF, o
Hence—
LF _ B'F, (3)
BB DRy

But BF, is equal to I, and, if we neglect the
small distance HL, LF, is equal to F,, Also, B'F,
is equal to I, and DF, if we neglect the distance
DH, is equal to F,, Making these substitutions, we
find that—

B_bL
L, F
Hence Ul = Fy Farrrvvrnrnenrnnnnnne 4)

Multiplying out and dividing by f;, f,, we find
that—
F
+ Bl
7 fa
In the above we have made the usual approxima-
tions, which, however, cause no appreciable error
for the case under consideration.



70 OPHTHALMIC OPTICS

As already pointed out, the image A’B’ is & real
image, for the rays of light do actually meet. More-
over, a real image is formed so long as the object is
at a greater distance in front of the refracting sur-
face than the anterior principal focus. It will be
observed from the diagram that the image is smaller
than the object. Had the object A B been placed at
twice the principal focal distance in front of the

surface, then BF, would have been equal to F, L and
the triangles would have been not merely similar
but equal in every respect. The image and object
would then have been equal to one another. Had
the object been at a less distance than twice the
prmmpa.l focal length, but at a grea,ter distance
than the principal focal length, the image would
have been greater than the object. If the object
is between the principal focus and the refracting
surface, then the rays of light after refraction con-
tinue to diverge. This is shown in diagram No. 33,
where the object is placed at fin front of the re-
fracting surface A H B, whose principal focal length
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is HF. Here, after refraction, the ray fp appears as
if coming along the dotted line from f’, which is
therefore the virtual conjugate focus of f.

Hitherto we have considered the conditions of
refraction at a single spherical surface; we must
now turn our attention to such lenses as are
bounded by two spherical surfaces. In these we
must consider the refraction at both surfaces. In
ophthalmic work the forms of lenses ordinarily

" employed are the biconvex, the plano-convex, and

the meniscus-convex. We have also the biconcave,
the plano-concave, and the meniscus-concave. Con-
vex glasses, of whatever kind, tend to make rays
of light converge, while, on the other hand, concave
lenses tend to make them diverge. Convex lenses
have this feature in common, that they are thicker
at the centre than at the periphery. Concave lenses,
on the other hand, are thinnest at the centre. In
fig. 35 we have in section an example of each.

We will, in the first place, consider biconvex
lenses. In such glasses frequently both surfaces
have equal radii of curvature. They are generally
divided into two classes. In the first group are
included those which are so thin that their thick-
ness does not require to be taken into account, as
it is very small compared with their focal lengths.
Ordinary spectacle glasses are for the most part
examples of this class. We shall speak of them
hereafter as thin lenses. In the second class are
lenses whose thickness cannot be neglected rela-
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tively to their focal lengths. These we shall call
thick lenses.

In fig. 34 AB is a thin lens, and light is incident
on the surface A H;B, which is generally spoken of
as the first surface. After refraction at that surface
it is incident on
AHy,B, which is
generally  called
the second surface.
P The centre of cur-
C. H Hg C,  vature of the first
surface is ¢;, and
its radius of cur-
vature is R, The
centre of curvature
of the second sur-
face is ¢, and its radius of curvature is R, The
right line joining the centres of curvature is defined
as the axis of the lens. The point P, at which rays
of light parallel to the axis before incidence are
brought to a focus, is called the principal focus,
and the distance between the principal focus and a
thin lens is called its focal length.

To find a Formula for the Focal Length of
a Thin Biconvex Lens.—Rays of light which
are incident on the first surface are, after refrac-
tion, directed towards a point F, the distance of
which from the surface of the lens can be obtained

Fig. 34

by the formula on page 62, and is equal to ”‘—R‘l_
w—
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As the lens is thin its thickness may be disregarded
without any appreciable error, and the rays of light
are incident on the second surface as if directed
towards this point F; and the distance of the object
from the second surface is equal to -"—Rll-. More-
=
over, as these rays of light are converging, the
sign of this quantity is negative. Now if we take
into consideration the second surface alone, rays-of

Meniscus- Biconcave
convex

Fig. 85

concave coacave

light parallel to the axis entering the lens from
the surrounding medium are bent towards a focus
F,, whose distance from the surface is —’ﬂ’;l-
1 g
Further, rays of light, which in the lens are
parallel to the axis, on emerging into the air are
bent to a point F;, whose distance from the lens is
By I Applying to the second surface the formula
e
we have already obtained,—

h kT
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we have by substitution for F,, F,, and f,:—

By pBy |
L+.Ll_1 !
f1 "I‘l
w—1
that is 1.&.-&:1
_1 B’l

Orfl.l= ;l.—l)(-R—l l—!;)

J; thus gives the position of the conjugate focus
obtained by refraction for the second surface. But
as the light originally was a pencil parallel to the
axis of the lens before it encountered the first sur-
face, the distance between the lens and f; is the
principal focal length of the lens itself. Hence, if
the focal length of any thin biconvex lens be F, we
have—

1_, (1,1

If each surface has the same radius of curvature,
we may write the formula—
1 2
Fo (n—1) R
Further, if in this last case the index of refrac-
tion u be equal to 1'5, as it very approximately is
for some kinds of glass, then the focal length is
equal to the radius of curvature of either surface.
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Hence for any thin glass lens of this kind, the
radius of curvature of each face is roughly equal to
the focal length.

Plano-Convex Lens.—Little difficulty is experi-
enced in deducing the formula for the plano-convex
lens, for in this case either R, or R; is equal to
infinity, and—
=0,

8=

so for the plano-convex lens—-
I (-1l
;==

Convex-Meniscus Lens.—Let light parallel to
the axis be incident on the convex surface. It is
refracted towards a point whose distance from that

surface is equal to MB_ This distance with a
# —

negative sign is represented by f; in the formula—
LI RN QU
L f

where F, and F, are respectively the first and second
principal focal lengths for refraction at the second
surface. _

Substituting in the above equation—

__.1.‘.21 MRy

= p—1

- + =1,
fl — R

=1
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= RB—R
- l)ﬁ B
. 1
= weD (z-=)
As the light was parallel before incidence at the
first surface, f; is in reality the principal focal
length of this convergent meniscus.
Biconeave Lens.—Similar demonstrations are
applicable to diverging lenses.
In fig. 36 a pencil of parallel light is incident
on one surface. Here it undergoes refraction, and

L

e

P

Fig. 36

after refraction the rays diverge as if coming from
the point P, which is consequently a virtual focus,
situated on the same side of the lens as the incident
light. This virtual focus is therefore the object for
the refraction at the second surface. Its distance
from the first surface is, as has been shown,—
mBy
u=1

where R, is the radius of curvature of the first
surface. At the second surface the focus for light
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parallel before incidence is obtammed by the for-
mula—

F, = — nle

and the focus for light which is parallel in the
substance of the lens incident on the second sur-
face is found by the formula—

112

Fl= -——

-1
Substituting these values in the formula—

BB oo

we have— Ao A
__ B _ pB
p—1+ w—1 =1,
fl + I"Rll

1
f -G 1)(31 Bs)

' Here the value of f, is negative, which means
that it is on the same side of the lens as that on
which the parallel light was originally incident.
It is, therefore, the principal focal length of the
entire lens, and thus we derive the standard formula
for the biconcave lens—

= me-D(es)

Plano-Concave Lens,—In the plano-concave lens
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the conditions are very simple, for one radius is
infinitely great. Hence its formula is—

1
where R is the radius of the curved surface.

Divergent Meniscus. —The formula for this

lens is—
1 1

1 ) — — —
p=—@-D (Bl R/
The Formation of an Image by a Thin Bi-
convex Lens.—a B (fig. 37) is a thin biconvex lens.
One of its principal foci is at F,, the other at Fy.

C A

y]

Fp E

D

B G
Fig. 87

Let ¢ D be an object placed in front of the lens at
a greater distance than the principal focal length.
To find the image of this object we see that from
the point ¢ rays of light diverge in all possible
directions. One ray c A is parallel to the axis Do;
after refraction it passes through the focal point F,
and proceeds towards the point 6. Another ray of
light from ¢ passes through the focal point F,, and
after refraction is parallel to the axis. The point G,
at which these two rays meet, is the image of c.

In the same manner an image can be obtained
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for every point in ¢D, and these would be found
collectively to form the complete image G E.

Let the distance F,0 = F,0 be called F, the
distance DF, = [, and F,E = l,, We have 0B =
EG and ¢D = A 0, therefore from the triangles cD F,
and BOF, we have—

object _ [,
image F

Again, in the triangles AOF, and GEF, we
have—

object _ F
image I
Hence [, I, = F2

Let the distance D0 be equal to f; and the dis-
tance OE equal to f,, Thenl, =f, —F and [; =
f3 — F.  Substituting in the above equation we

have—
(fl_F)(.f?_F) = Fz:
ShF+HAF=A/
Dividing by f; f; we have—

F , F
7 + 7 1.

When the object is in front of the lens, at exactly
twice the focal distance, then the image is of the
same size as the object. If the object be at a
greater distance than twice the focal length, then
the image is smaller than the object. Moreover,
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the farther away the object is situated the nearer
is the image to the second principal focus. When
the object is at an infinite distance, in other words,
when the rays of light are parallel, the image is
situated at the principal focus. Conversely, when
the object is at a greater distance than the principal
focus, but not at so great a distance as twice the
principal focus, the image is larger than the object.

Only one other case requires consideration, viz.
when the object is (in front of the lens) at a

Q:W
Ko G B
L

Fig. 88 8
shorter distance than the principal focal length.
Let AB (fig. 38) be the lens and EG the object,
a ray of light EH, parallel to the axis, after re-
fraction is directed towards the principal focus F,.
Another ray Eo passing through o where the thin
lens cuts the axis is not refracted at all, and hence
forms the straight line EoL It will be observed
from the diagram that these two rays of light after
passing through the lens are still divergent, and
therefore do not meet on the same side of the lens
as F,, If produced backwards, however, they meet
at the point 0; thus, if an eye is 8o placed on the same
gide of the lens as F, that it receives these two rays
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of light, it will see the image of E at the point c,
which is therefore the virtual image of E, and ¢D
is the virtual image of EG. By a similar construc-
tion and by simple experiment it can be shown that
the closer the lens is to the object the smaller is the
virtual image; thus, if a strong convex lens be placed
on a line of print the letters seem to be scarcely
magnified at all. If now the lens be gradually re-
moved from the line towards the observer, the letters
will appear to be more and more magnified. This
is the principle of the simple microscope. If the
observer continues to bring the lens nearer to him,
a point is reached at which no distinct image is
obtained. Here the object is approximately at the
principal focus of the lens. On drawing the lens
still nearer to him the observer will see, if the lens
be strong, an inverted image of the type. This
latter is a real image, and therefore an inverted one.
The former was a virtual image and erect.

Formation of an Image by a Thin Concave
Lens.—Let AB (fig. 39) be an object in front of
a concave lens of which F and F, are the principal
focal points. Rays of light are sent from AB in
all possible directions. One ray of light AH is
parallel to the axis BFF, of the lens. After re-
fraction it leaves the lens as if proceeding from the
principal focus F, and its ultimate direction is
therefore HK. Another ray A c forms a secondary
axis (see p. 83), and is therefore not refracted at all;

it continues in the direction ACL. Consequently the
(B382) F
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point at which the ray HK, when produced back-
wards, intersects A CL is the virtual image of the
point A. In this way DG can be shown to be the
virtual image of AB. From this and the preceding
paragraph it will be observed that the virtual image
formed by a convex lens is larger than the object,

Fig. 39

while in the case of a concave lens it is smaller.
The truth of this fact is at once apparent when
the student looks at any object through a concave
lens. The object looked at appears to be smaller
than it is in reality.

When a patient is being corrected for short-
sightedness he often states that with the glass in
front of his eye the object at which he is looking
appears to be diminished in size. When this occurs
it is generally due to the fact that the lens which
at the time is being used is too concave, and that a
weaker one must be employed.

Thick Lenses. —In studying refraction at a
single surface we came upon several points which
were found to be of great importance, and by means
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of which a geometrical construction for the image
of an object was easily obtained. These were: (@)
the anterior and posterior focal points, (b) the point
on the refracting surface at which the ray of light
enters the second medium, termed the principal point,
(c) the centre of curvature, termed the nodal point. *
The peculiarity of the nodal point is, that all
rays of light which, while external to the surface,
are directed towards this point, pass into the sur-
face normally, and consequently are not refracted.
Every line drawn from the nodal point is an axis.
The one which also passes through the geometric
centre of the refracting surface is termed the
principal awxis, the others are secondary axes.
The problem, however, becomes more difficult
where we have to take into consideration an optical
system composed of several surfaces separated from
each other by media which have different indices
of refraction. Theoretically it is possible to trace
the path of a pencil of light through such a com-
plicated system, for the image formed by the first
refracting surface is the object for the second, and
the image formed by the second is the object for
the third, and so on; but while theoretically pos-
sible, in practice it is extremely difficult to carry
out the construction with any degree of accuracy.
Thanks, however, to the work of Gauss, a simple
method has been found of solving the problem with
sufficient accuracy for all practical purposes. The
conditions to which it applies are that all the lenses
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composing the system are so centred that their
principal axes may be regarded as coinciding with
each other, and that only a small portion of each
refracting surface surrounding the principal axis is
considered. In such a system Gauss and his suc-
cessors have demonstrated that there are two focal
points, two principal points, and two nodal points.
These are called the six cardinal points.

The focal points present no difficulty. Light
which is parallel to the axis before entering the
system in one direction is brought to a focus at
one of the focal points. Also, light parallel to
the axis before entering the system on the other
side is focussed at the other principal focal point.
Hence it is common to speak of the anterior and
posterior principal foci. Thus, for example, in the
human eye we have several refracting surfaces,
viz, the anterior and posterior surfaces of the
cornea, the anterior and posterior surfaces of the
lens, while the different layers of the lens within
its capsule afford other refracting surfaces. More-
over we have several refracting media, such as the
corneal tissue, the aqueous humour, the lens sub-
stance, the vitreous humour. Now, if a pencil of
light parallel to the optic axis be incident on the
cornea, it will be brought to a focus at the pos-
terior focal point of the eye. If, on the other hand,
light parallel to the axis leave the retina proceed-
ing towards the cornea, it will be brought to a
focus at the anterior focal point,
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In addition to the six cardinal points which we
have just mentioned, we have four planes, namely,
two focal planes and two principal planes. A plane
through the anterior focal point, at right angles to
the optic axis, is the anterior focal plane, and a
similar plane through the posterior focal point is
the posterior focal plane. The principal planes,
generally called the first and second principal
planes, are planes respectively passing through the
anterior and posterior principal points at right
angles to the optic axis.

A few words of general explanation as to the
optical properties of these points and planes will be
of use to the student. The nodal points are, as de-
fined by Gauss, two points situated on the principal
axis of the system, and have this peculiarity, that if
a ray of light before the first refraction is directed
towards the first nodal point, it appears after the
last refraction to have come from the second nodal
point, and its path from the second is parallel to
its original direction. Thus the direction is not
changed; the effect of refraction is merely to cause
a certain lateral displacement. If the incident light
coincides with the geometric axis, this displacement
does not take place, for both points are in line
with the incident light. '

If, however, a ray of light is directed to the first
nodal point before refraction, so as to make an angle
with the principal axis, after the last refraction it
appears as if coming from the second nodal point
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parallel to its original direction and consequently
making an equal angle with the principal axis.
The one nodal point is the image of the other.

Principal Planes—These are two in number,
and are at right angles to the principal axis. They
have this peculiarity, that a ray of light which be-
fore the first refraction is directed towards a point
in the first principal plane, after the last refraction
appears as if coming from the corresponding point
in the second. The points at which the principal
planes are cut by such a ray are on the same side
of, and at the same distance from, the principal axis.
Hence the second principal plane is the image of the
first, and object and image are of the same size and
have the same direction.

Focal Planes—In such a system as we are de-
scribing, viz. one composed of different refracting
media and several surfaces all centred on the same
axis, we have seen (p. 84) that there are, for rays
near the axis, two principal focal points. Through
each a plane may be drawn at right angles to the
axis. These are the focal planes. If a ray of light
come from a point in a focal plane other than
that through which the principal axis passes, and
is directed to the first nodal point, after the last
refraction it appears to come from the second nodal
point and is parallel to its original direction.

In the annexed diagram (fig. 40), if the light
travels from left to right, F, is the anterior prin-
cipal focus of the system, F, is the posterior. F H,
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is the anterior focal length and F, H, is the posterior
focal length. H, H, are respectively the first and
second principal points, and K;K, the first and
second nodal points. F,H, is equal to K,F, and
FyH, is equal to F\K;,. Therefore F;H; — F, H, is
equal to F\ K, — F,K,; 4.e the distance H, H, is
equal to K,K, and either of these distances is
equal to the difference between the focal lengths.

Fig. 40

Lastly, the two principal focal distances are to each
other in the ratio of the indices of refraction of
the first and last media. Calling the first focal
distance F, and the second focal distance F/, and
the index of the first medium, which, generally
speaking, is atmospheric air, u; and that of the
last medium u,, we have—

F ;ﬂ.

M2

In most optical instruments, such as a thick lens,
although not in the eye, the first and last media are
the same, viz. the surrounding atmosphere. In this
case u, = u,, and consequently F = ¥, and thus the
nodal points and principal points coincide.
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In fig. 41 we have illustrated the six cardinal
points and the two principal planes, and by means
of these we can find the image of the object AB.
The image of the point A is obtained as follows:—

One ray of light from A must be directed towards
the point K, ; the ultimate direction of this is parallel
to AK,, and appears as if coming from K, An-
other ray must, before refraction, be parallel to

> RN [ Q

Gl [E p

Fig. 41

the axis. It is directed towards the first principal
plane at the point D. After refraction it appears
as if coming from the similar point N on the second
principal plane. Moreover, as it was parallel to
the axis before refraction, it passes through F,, the
posterior focal point. The two points N and F,
determine the direction of this ray, i.e. NF;p. The
point P, at which these two lines intersect, is the
image of A, and hence it can be shown that pQ is
the image of A B. '

The point P could also have been found in an-
other way. One of the rays from A must pass
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through the anterior principal focus F,, and is
directed towards the point G in the first principal
plane. After refraction it is parallel in direction
to the axis BQ, and appears to come from the
point E on the second principal plane, EH; being
equal to GH,.

From the similar triangles A BF, and G H,F,,

0:1=1.F,

and from the triangles NH; F,, and PQ F,,
0:1=F¥:l.

Hence as before (page 73)—

F, F
f+ f/
The Thick Biconvex Lens.—We have already
found certain formulee with which the conjugate
foci of a lens can readily be determined on the
assumption that the thickness of the lens may be
neglected. For the most part they are applicable
to all the lenses used in ophthalmic practice, their
thickness being inconsiderable as compared with
their focal lengths. In one or two of the higher
numbers, however, this assumption leads to error,
and we have thought it advisable to add a special
section on thick lenses.
Fig. 42 represents a thick lens of which one
surface is BS’ and the other ps. ¢’ is the centre
of curvature of the surface BS" and ¢ of Ds.

1.
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Draw any radius cD of the surface DS, and from
¢’ draw the radius ¢'B parallel to ¢p. Join BD,
Thus the angle cpo is equal to the angle ¢’Bo.
If now o be considered as a luminous point, send-
ing light in the directions 0D and 0B, the angle
of incidence o D C is equal to the angle of incidence
oBC,, and consequently the angle of refraction

Fig. 42

FDM is equal to the angle of refraction EBN.
Consequently FD is parallel to BE.  Therefore,
if light come from F to D, its ultimate direction
after refraction is BE. Thus the direction of the
emergent light is parallel to that of the incident.
Hence the point K, the point on the axis to which
the incident light is directed, and H’, the point on
the axis from which the refracted light appears to
come, are nodal points.

The point 0 is defined as the optical centre. From
the similarity of the triangles Bo¢’ and poc, and
of the triangles 0 B and S0 D, we have—

¢B:c’0::cD:CcO .. CB:S0::CD:8sO.
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Thus the optical centre divides the thickness of
the lens into two parts, which are proportional to
the radii of curvature of' the surfaces.

Calling ¢’B 7/, and cD ", we have—

so _
so 7

Let fig. 43 represent a thick biconvex lens whose
surfaces are s’ and 8”, distinguished respectively as
the first and second surface. We may call—

the thickness of the lens ... . e=a+b;

the radius of curvature of the first

surface ... e T

the radius of curvature of the second
surface ... 2

the first focal distance of the ﬁrst
surface, 8," f;’ A

the second focal distance of the first
surface, 8 f;” i

the first focal distance of the second
surface, 8” f’ A

the second focal distance of the
second surface, 8” f,” ... R

the index of refraction of the sur-
rounding medium... e

the index of refraction of the glass
of which the lens is made A
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If we consider the surfaces separately, we have, for
the first surface,—

v MT

f= K
" //rl
fl, = ;‘7’7‘_”1

and for the second surface—

i // ,',rr
f T W=
” __ _“/ "'”
fz - ”__ ’I"
Hence— :
fl ” — i
I ?"

that is, the second focal distance of the first surface

and the first focal distance of the second surface are _

to each other as the radii of curvature.

To find the Principal Planes of a Biconvex
Lens.—According to Gauss’s definition (see p. 86),
a ray which is directed to a point in the first prin-
cipal plane before refraction appears, after refrac-
tion, to come from the correspondmg pomt in the
second plane. The one is the virtual image of the
other, and both images are of the same size, and
situated on the same side of the principal axis.

The following is an easy geometric method of
finding the principal planes.

Let Q'p (fig. 43) be a ray of light parallel to
the axis and incident on the surface s’ at the point
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P. After refraction it will
be directed to the point f;".
Also let Q”P” be a ray of light
in the same straight line as
Q' P, i.e. parallel to the axis,
and at the same distance from
it as Q'P/, and let Q"P” be in-
cident on the surface s’, at
the point »”. After refraction
it is directed to the point f;'.
These two refracted rays in-
tersect at M; from M let fall

a perpendicular MM’ on the

axis. Let us now suppose

that MM’ is a luminous plane

seen in section. One ray of

light, MP, emitted by the

plane is, after refraction, par-
allel to the axis. Another,MN’,
is before refraction parallel

with the axis, and therefore -

after refraction it is directed
to f’. These two rays, if pro-
duced backwards, meet at the

point H', which is therefore

the virtual image of M, and
H'H is the virtual image of
MM Similarly it can be shown

that H”H” is a virtual image .

of MM, But these virtual

93
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images are of the same size, for Q'Q” is parallel to
z /, and they are on the same side of the axis; they
are therefore, according to definition, the principal
planes.

The position of MM’ is easily found. From the
triangles p’s’ fl" and MM'f,” we have, P’S’ being small,

s'flll _ fl”
YT —a

Again, from the triangles P”s”f, and MM'f; we
have—
P"S” s’l 2I _

But since P’s’ = H'H’, and P's” = H’H”, then P's’ =

P’s”, and—
_fl ” _ f’I
flll — a le -— b
In this case—
a _f[_"
b ff 7

Therefore, to find the point M’, the thickness of the
lens must be divided proportionately to the radii of
curvature. It is nearer the surface with the shorter
radius of curvature.

From the last formula we have—

a = —3 _—e_

// ‘7_1 .fl”+f’

. _efi” ef)

e = 55 and b = -3
[T+ f W+ 1
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We have now only to determine the position of
the points H and H” in the principal axis. Let
s'H'=h' and s"H"=h”. From the similar triangles
Ji B/ and f’s'N’ we have—

HE PS8 S _f+ K

NS N§  fs K

Also from the triangles »'s'f,” and MM f)" we

have—
PI SI _ ISI _ SI .fl ”n _ .fl ” )
MMI NISI Ml lll lll — a
’ ’ ”n =
AL+ E f ,sinceeach:l’—g

.o ,fl, = ,flﬂ —a str
substituting the value of a obtained above we
have—

W= _th
S+ f—e

— e ,‘I rl

,‘/I 7" + I‘,’ r’l — e (I‘/l — ,‘I)’
Similarly it can be shown that—

W= th
\H S —e

e ,‘I T”

”'// r/ + #// r// —_e ([l” — I‘/)'

The Principal Focus of a Thick Biconvex
Lens.—Parallel rays of light incident on the sur-
face of a biconvex lens are brought to a focus at a
point. This statement is only true for rays situ-
ated near the axis of the incident pencil. At
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present, however, we are dealing only with such
rays. Let Qa/, a ray parallel with the axis of
the lens L (fig. 44), be incident on its surface at
the point &”. The focus of this surface, considered
by itself, is the point Q. The incident light is
therefore refracted in the direction #'qQ’. At ¥’ it,
however, is refracted again, and our object is to

find the point at which the ray, after this second
refraction, intersects the principal axis. The point
at which it does so is the principal focus. Before
the first refraction the ray Q& was directed to P’
" in the first principal plane. After the last refrac-
tion it must appear as if coming from the cor-
responding point P”, in the second principal plane.
We have thus determined two points, P” and %', in
the course of the refracted ray produced back-
wards. Hence its ultimate direction is P”y F;
F is the principal focus and H”F is the principal
focal length.

From the similar triangles «'zQ .and ¥ yqQ’
we have—
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Again, from the triangles P”H”F and y'yF, we

have—
H” F P/I HII

yF  yy’
But when dealing with a small arc of the curved

surface, as in this case, P"H” = 2’2. Hence—

og _H'F
yo  y¥F
Calling 2 Q', f,”, and H”F, F”, we have—
,f‘l ” _ F:I— .
yQ yYF
But yF = ¥’ — 1" and yQ' = f;” — e. Therefore—
» F"

_—l— = —
flll — e FII — h/l
Substituting for A” its value obtained on page 95,
we have—
G S -
H+fa—e
Similarly it can be shown that—
R .
fr+f —e
But it has already been shown (page 94) that for

a biconvex lens—
"' _f 18 f”fz”—f'l’f2
I
Therefore ¥ = F”.
(B82) ¢
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The conjugate foci of a thick biconvex lens are
easily obtained. In fig. 45 let AB be an object in
front of the lens L. From the point A a ray AP/,
parallel to the axis, is incident on the lens.
After refraction it appears to come from the corre-
sponding point P” on the second principal plane,
and passes through the focal point ¥. The ray
AF, directed to the point B’ in the first principal
plane, appears, after refraction, to come from the
point H' below K”, and is parallel to the axis. The
point A’ at which these two rays meet is therefore
the image of A, and similarly it can be shown that
A’B’ is the image of A B.

Calling—

the distance of the object from the first

principal plane, BK', ... . Vi
the distance of the i image from the second

principal plane, B'K”, i
the distance of the obJect from the ﬁrst

focus, BF, X4
the distance of the image from the seeond
focus, B'F/, U
the prmclpal focal d18tance, FK = FK’, F;
also AB = P"K” ... cee 0
and K'H =B\ .. R
we have—
o_U_F
i F U
WUV =P

Butl/=f—Fandl"=f —F.
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On . substituting these values
in the above equation, we have—

7 =%f +%f
On dividing by Fff’,we have—

1 _1 1
A

It will be observed that the
distances f and f" are reckoned
from the first and second prin-
cipal planes respectively, and not
from the surfaces of the lens.

In fig. 45 AK’K”A’ is a secon-
dary axis. The angle AK’B is
equal to the angle A’K” B, and
the angle K’ A B is equal to the
angle K”A’B,, from which it
follows that the size of the object
is to that of the image as the
first conjugate focal distance (f)

is to the second (f"). If the .

object is in front of the image
at twice the focal length, then
the image is found at the same
distance behind the lens, and
object and image are of the same
size. As the object approaches
the lens, then the image recedes
from it and increases in size, and

99
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when the object is placed at the principal focus the
distance of the image from the lens is in the limit
infinite. In other words, the light leaving the lens
is in parallel pencils. When the object is at a greater
distance from the lens than twice its focal length,
then the image is smaller than the object. Lastly,
if the object be nearer the lens than the principal
focus, the rays of light after refraction do not con-
verge, but continue to diverge as if coming from
a virtual image on the same side of the lens. So
long as the image and object are on opposite sides
of the lens their distances are both positive.

The Biconcave Lens.—In this lens the optic
centre and nodal points are found by a construc-

Fig. 46

tion similar to that already employed for the con-
vex lens.

Let L (fig. 46) be a biconcave lens, of which z &’
is the principal axis. Let ¢’ be the centre of cur-
vature of the first surface and ¢” that of the second.
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Draw the parallel radii ¢’s’ and ¢”s”. Join §'s”,
cutting the principal axis at o: this is the optical
centre. If o be the source of light the rays os” and
8” take, after refraction, the directions 8"y’ and
s” y" respectively, and these are parallel to each
other. Moreover, 8’ ¥/, if prolonged backwards, in-
tersects the principal axis at & and s”y” at %"
These points are therefore the nodal points, and if
the medium on both surfaces is atmospherlc air
they are also the principal points.
By reasoning similar to that employed in the
case of the biconvex lens, we have—

”

ef;

a _ﬁ" +f2I

b= efe
A+ F

W=l
fl”+f2 —-¢

" e

h fl'/+f2 —€

In applying these formulse it is to be remembered
that £, £i”, f,, and f,” are all negative, since they
are situated on the same side of the surface as
that from which the light comes. Hence a, b, #/,
and h” are all positive, for in each case both
numerator and denominator are negative, which
means that the optical centre and the nodal and
principal points are all situated in the interior of
the lens.
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For the principal focal length we have—

Here, as f, f;”, and f; are all negative, we have
a positive numerator and a negative denominator,
which gives a negative value to F. This means
that the principal focal point is on the same side
of the lens as the incident parallel light.

Moreover, by analogy (see p. 99) we have—

1,1 1
S+ = -
f F
Thick plano-concave or convex glasses are not
used in ophthalmology, nor is the thick meniscus.
Therefore it is not considered necessary to treat of
them here,



APPENDIX

THE SPECTROMETER

This instrument (see fig. 47) consists of a circular hori-
zontal metallic table accurately graduated into degrees.

Fig.

S

7

To it is rigidly attached a tube c parallel to the plane
of the table, and directed towards its centre. At one

end of the tube is a narrow slit 8, and at the other a
108
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lens L, whose focal length is exactly the length of the
tube. This part of the apparatus is called the collimator.
Monochromatic light, such as the sodium flame, is
placed opposite to the slit, which thus acts as a lumi-
nous source, and the light, after refraction at the lens L,
emerges parallel to the axis of the collimator. The
prism P, whose angle is to be measured, is placed
near the centre of the table, with its apex pointing
towards the collimator. From the diagram it is
apparent that the light coming from the collimator
is incident on one side of the prism at the point o,
and is reflected at an angle equal to that of the
incident angle. A telescope T, which moves in a
circle having its centre exactly in a vertical line
through the centre of the table, receives the reflected
pencil, and the observer, by using the focussing screw,
can obtain an image of the slit 8. Inspection of the
diagram shows that a similar pencil is reflected from
the other side of the prism, and it is therefore possible,
by moving the telescope round to the other side, again
to obtain an image of the slit 8.

It can be shown geometrically that the angle through
which the telescope has been turned between the two
positions in which an image of the slit is obtained, is
equal to twice the apex angle of the prism. Let oP
and o'P' (fig. 48) represent a pencil of parallel light
incident on the apex of the prism DAE. A portion of
the light is reflected in the direction PR, and another
in the direction P R. If PR and P'R’ are produced
backwards they meet at the point o; it is required to
show that the angle RCR’' is twice the angle PAP.
Join A c and produce it to G. If Ac be not parallel to
OP or 0'F, draw A F parallel to these lines.
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From the law of reflection it follows that the angles
RPD, OPA, and APC are all equal to each other. Simi-

0 o

A

N N
R
P
B R
D E
Fig. 48

larly the angles R'P'E, 0'FP'A, and AP C are equal to
each other. Again—

LPAP = LPAF + [LPAF= LAPC+ LAPC,

and—
LPAC+ LPAC= LPAF + LPAF

Again—

LRCR = LRCG + LR CG,
and—

LRCG = LPAC+ LAPC,
and—

LRCcG= LPAC+ LAPC
Therefore—

LRCR = LPAC+ LPAC+ LAPC+ LAPC=2PAP

In determining the position of minimum deviation
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it is important that the prism be placed on the
table of the spectrometer, so that its faces are at
right angles to the plane of the table. In measuring
the angle of minimum deviation the observer, before
placing the prism on the instrument, first views the
slit through the telescope direct. The collimator and
telescope are then in line. The prism is now placed
on the stand, with the line bisecting its apex angle
as nearly as possible at right angles to the direction
of the telescope. Light coming from the collimator,
incident on the surface of the prism, in passing
through the prism is deviated towards its base. It
therefore no longer enters the telescope, which must
be turned round before the observer again sees the
image of the slit. Let us suppose that by moving it
to the left the image is clearly seen. The observer
brings the thread of the telescope to the centre of
the image. On rotating the table in one direction
the image will be seen to move to the right. If it
be followed, a position is obtained at which the move-
ment towards the right stops, and is succeeded by a
movement to the left. That point marks the position
of minimum deviation, for no matter in which direction
the prism is rotated the deviation is increased. The
angular distance, as read on the scale with a vernier,
between the initial position, that in which the slit is
viewed directly with the telescope and this latter point,
is the angle of minimum deviation.
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Angles, measurement of, 2, 54.
Angle of squint, measurement of
by prisms, 55.
Cardinal points, 84.
Centradian, 54.
Conjugate foci, 23, 68.
Critical angle, 42.°
Ether (luminiferous), 11.
Gauss, theory of, 83.
Geneva lens measurer, 27.
Images, real and virtual, 20.
Index of refraction, 41, 44.
Index of refraction, measure-
ment of, 47.
Interference, 16.
Lenses—
Biconcave, 76.
Biconvex, 72.
Convezx, 61.
Meniscus-convex, 75.
Plano-convex, 75.
Thick lenses, 89 et seq.
Varieties of, 73.
Mirror—
Concave, 21, 28.

Mirror—

Convex, 31.

Parabolic, 84.

Plane, 18.
Optical centre, 90.
Principal axis, 83.
Prism-dioptre, 54.
Prisms, 50.
Radian, 54.
Range of convergence, 57.
Rectangular prism, 44.
Reflection of light, 17.
Refraction, 35.
Secondary axis, 82.
Simple harmonic motion, 14.
Snell’s Law, 41.
Spectrometer, 103.
Spherical aberration, 33, 67.
Spherometer, 25.
Total reflection, 42.
Undulatory theory of light, 9.
Velocity of light, 8.
Wave frequency, 13.
‘Wave front, 15, 38.
Wave length, 11.
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