

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

ELEMENTARY

PROJECTIVE GEOMETRY

CAMBRIDGE UNIVERSITY PRESS

前moon：FETTER LANE，E．C．C．F．CLAY，Manager

CEDinburgh：100，PRINCES STREET
子erlin：A．ASHER AND CO．
lleipzig：F．A．BROCKHAUS
fem 顽ork：G．P．PUTNAM＇S SONS
Bombay and Calrutta：MACMILLAN AND CO．，LTd．

ELEMENTARY

PROJECTIVE GEOMETRY
by
A. G. PICKFORD, M.A., M.Sc. Sometime Scholar of St John's College, Cambridge, Headmaster of the Hulme Grammar School, Oldham.

Cambridge : at the University Press

Cambridge:

PRINTED BY JOHN CLAY, MA.
AT THE UNIVERSITY PRESS.

PREFACE

THE development of the methods of Projective Geometry forms an important part of Modern Geometry, and the valuable results obtained justify the increasing attention which is being paid to this subject. I propose, therefore, to arrange in orderly sequence the elementary propositions of plane projective geometry, assuming a knowledge of the first six books of Euclid, or their equivalent, and I trust that this book will be of use to the Upper Forms of Schools, and to Junior Students at the Universities.

The projective unit is the cross-ratio of four collinear points or of four concurrent lines in a plane: from this I proceed to the study of projective rows and pencils, and the involutions of six points or lines, which play an important part in the solution of problems. I then deduce the properties of the curve of the second degree, defined as the locus of the intersections of corresponding rays of two projective pencils, first proving an important harmonic property of the tangent.

The chief properties of polars follow; and of inscribed and circumscribed polygons, with the construction of conics to satisfy five given conditions, and solutions of other problems connected with the conic.

I conclude with the elements of polar reciprocation, and of plane homology, with brief notes on projection in space and the sections of a circular cone.

In some cases I have developed a point at greater length, as in the extension of Maclaurin's Theorem, and in the treatment of the harmonic conics of four-points and foursides. The student should draw many figures in addition to those given in the book; the examples given at the ends of the several chapters include many of the questions recently set in this subject, and also propositions suggested by the text, and others chosen from various writers of the last century.

In an elementary treatment of the subject I have avoided dependence on the use of points at infinity and imaginary points and lines; these will find place in a more advanced treatise, and also the properties of curves of degree higher than the second, and of surfaces and curves in space of three dimensions.

In conclusion I must thank the Syndics of the University Press for undertaking the publication of this book, and the Readers of the Press for their carefulness in the revision of the proofs.

A. G. P.

28 August, 1909.

CONTENTS

CHAPTER I

CROSS-RATIO

ART. PAGE
1-3 Central projection 1
4 Vanishing points 3
6,7 Sign and direction 3
$8,9 \quad$ Ratio of segments of a line 5
10-13 Harmonic rows and pencils 6
14-16 Cross-ratio of four points 10
17 Projection of a cross-ratio 14
18 Cross-ratio of a pencil 15
19, 20 Harmonic properties of quadrangles and quadri- laterals 16
21 The cross-ratio of four points on a line equals that of their harmonic conjugates. Poles and polars 20
Examples I 21
CHAPTER II
INVOLUTION
22 Involution of six points. Definition and properties 24
23 Projection of an involution. Involution of six lines 25
24 Involution of a four-point on any transversal 27
25 Row of points in involution. Double points 27
26 To find the centre and double points 28
27 The double points are imaginary if ${A A^{\prime}}^{\prime}, \mathrm{BB}^{\prime}$ overlap 30
28 To find the common pair of points of two rows 31
ART. PAGE
29 Involution of a quadrilateral 31
30-32 Perpendicular rays of a pencil in involution 32
Examples II 35
CHAPTER III
PROJECTIVE ROWS AND PENCILS
33 Projective rows on two lines 37
34 To find a row in perspective with two projective rows 38
35, 36 Rows in perspective. Projective axis of two rows 39
37, 38 Vanishing points. JP, I'P' constant 40
39, 40 Projective pencils. Pencils in perspective 43
41, 42 Pairs of perpendicular rays 45
43 Desargues' theorem, and the converse 47
44, 45 Homology of rectilinear figures 48
46 Projective rows on the same line 52
47, 48 Vanishing points and double points 53
49 To find a row in perspective with two rows 55
50 Projective pencils with a common vertex 55
Examples III 57
CHAPTER IV
THE CIRCLE
51 Cross-ratio of four points of a circle 59
52 Value in terms of lengths of chords. Ptolemy's theorem 60
53 Harmonic properties 61
54-57 Polars 62
58, 59 Involution obtained from three concurrent chords 66
60, 61 Tangent traces projective rows on two fixed tan- gents 68
62 Polar properties deduced 70
63, 64 Involution of six tangents 71
Examples IV 73

Contents

CHAPTER V

CONICS

ART. PAGE
65-67 Definition of conic. Construction 76
68 The same deduced from the focus definition 78
69 The conic passes through the vertices of the pencils 79
70 Any two of the five points may be taken as vertices 79
71 Mechanical construction 83
72 The conic is a curve of the second order 83
73 Pascal's theorem. Construction of points on a conic 84
74 Projective axis of two projective rows on a conic 84
75 Chords, Harmonic theorem 85
76 The middle points of parallel chords are collinear 86
77 The tangent. Harmonic properties of tangents 87
78 Cross-ratio of four tangents on other tangents 88
79-81 Infinity directions. Parabola, ellipse, hyperbola 89
82-85 Properties of the envelope of joins of projective rows 93
86 Joins of two projective rows envelope a conic 97
87 Envelope of a line cutting four given lines in constant cross-ratio 99
88-91 Maclaurin's theorem, and allied theorems 100
Examples V 104
CHAPTER VI
POLARS
92 Polar of a point with respect to a conic 107
93, 94 Conjugate points. Self-polar triangles 108
95, 96 Conics through four points 110
97 Four points on a conic and the four-side formed by their tangents 111
98 The pole theorem 113
99 Projective relation between points and their polars 113
100 Conjugate pairs of vertices of a four-side 114
ART. PAGE
101 Construction of conic, given a self-polar triangle, and also a point and its polar 116
102 Common self-polar triangle of two conics 117
103--106 Common conjugate points and lines for two conics 117
107 Conjugate conic of a line for two conics 120
108-110 Common chords and polars of two conics 121
111, 112 The nine-point conic of a line for four points 124
113 Theorems correlative to those of Arts. 103-112 126
Examples VI 127
CHAPTER VII
INSCRIBED AND CIRCUMSCRIBED POLYGONS.CONSTRUCTIONS
114 Summary of chief problems solved 129
115 Conic touching three sides of a triangle 130
116 Conic circumscribing a triangle 131
117 Complementary triangles 133
118 Pascal's theorem. Pascal lines 134
119 Construction of conic to touch five lines 136
120 Brianchon's theorem 137
121 Involution of conics through four points 138
122 - Involution of tangents to conics touching four lines 139
123 Construction of conic, given four tangents and one point 140
124-129 Pentagons 141
130, 131 Involution of conics touching three lines 146
132-134 Quadrilaterals 149
135 Involution of conics touching two lines at given points 151
136-144 Conics to satisfy given conditions. 152
145-148 Four points on a conic and their four tangents have the same diagonal triangle 161
149-151 Harmonic conics of four-sides and four-points 164
Examples VII 169
Contentsxi
CHAPTER VIII
CLASSES OF CONICS
ART. PAGE
152 The parabola is the envelope of joins of similar rows 172
153 The same deduced from the focus definition 173
154-157 Properties of tangents 175
158 Diameters 178
159, 160 Focus of parabola 180
161-163 Central conics. Centre. Diameters 182
164-168 Ellipse. Hyperbola. Asymptotes 185
169-171 Conjugate diameters. Principal axes 189
172, 173 CV.CT = CP2. Segments of diameters 191
174, 175 OQ.OQ': OX. OX' constant for all positions of O 195
176-180 Focus properties of central conics 198
Examples VIII 203
CHAPTER IX
RECIPROCATION
181, 182 The polar reciprocal of a conic 209
183 Common points and tangents 211
184, 185 Centre of reciprocal conic. Asymptotes 211
186 Reciprocation with respect to a point 213
187 The reciprocal with respect to a focus is a circle 214
188-190 Polar reciprocation in general. Duality 215
Examples IX 217
CHAPTER X
HOMOLOGY
191, 192 Homology of points and lines 220
193, 194 Homology of plane curves. Conic in homology 222
195 Vanishing lines 224
196-198 Application to conics. Constructions of homologous conics 226
art. PAGE
199-205 Properties of conics in homology. Centre. Eccen- tricity 228
206, 207 Homology of two conics touching one another 233
208, 209 Homology of two conics with a common chord 235
210, 211 Homology of conics having two common tangents 238
212 Two conics with an imaginary common chord 241
213 Homologous conic through three given points, ap- plication to solution of conic problems 242
214 Projection in space 244
215 Cross-ratios are projective; a conic projects into a conic 246
216 Connection between projection and homology 247
217, 218 Sections of a cone 248
219, 220 Every conic is a section of a circular cone 250
221 The two sets of circular sections of a cone 252
Examples X 253

ERRATA

Page 14, line 19.
" $41, \quad, 2$ from foot.

", 97, ", $2 . "$ "
", 99, ," 11 from foot.
", 149, last line.
", 177, line 2 from foot.

For AX, AY read AX:AY.
BJ ", JB.
, $a^{\prime} b \quad ", ~ \lambda . a^{\prime} b$.
" T ", D.
", PC ", DQ.
,, collinear ", concurrent.
", LM ", LB.
", points ", tangents.

CHAPTER I

CROSS-RATIO

1. Projection in a plane. If we take a point S and a line KL, and join S to any point A in the plane, the line SA will cut the base KL at some point A^{\prime} which we call the projection of A on KL from the centre S.

Two points which are collinear with the centre will have the same projection.

Fig. 1.
The only points in the plane which have no projections are points in a line through s parallel to the base; we may however give verbal completeness to our definition by supposing that two parallel straight lines meet at an infinitely distant point, and saying that if SA is parallel to the base KL, the projection of A is the point at infinity on KL.

The methods of parallel projection in which $A A^{\prime}$ is drawn not through a fixed point S but parallel to a fixed direction, and orthogonal projection in which A^{\prime} is the foot of the perpendicular from A to KL, may be regarded as special cases of projection.

The projection of any line joining AB, whether straight or curved, is $A^{\prime} B^{\prime}$, where A^{\prime} and B^{\prime} are the projections of A and B. If $A B$ is a straight line passing through S its projection has no magnitude, being the single point A^{\prime}. The same is true if $A B$ is an open polygon or a curved line with the two ends A, B collinear with s .
2. Projection in space. In the same way a point in space may be projected on a given plane from a given centre, by finding where the plane is cut by a straight line joining the centre to the given point. A perspective drawing is a projection of a landscape or collection of objects, the eye being the centre of projection.

Another example may be found in pinhole photography, the pinhole being the centre and the photographic plate the plane of projection.
3. Notation. Points are usually denoted by capital letters and straight lines by small letters.

Thus we speak of points A, B lying on a line k; that part of the infinite line k which begins at A and ends at B we call AB.

A row of points is a number of points A, B, C, \ldots lying on a straight line a.

A pencil of lines is a set of lines a, b, c, \ldots passing through one point A .

A quadrangle or four-point $A B C D$ is the figure formed by joining the four points A, B, C, D : it has six sides.

A quadrilateral $a b c d$ is the figure formed by the four lines a, b, c, d and their six intersections.
4. Vanishing points. If we project a row A, B, C, \ldots on a from centre S , into $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \ldots$ on a^{\prime}; then, with two exceptions, each point of a corresponds to one point of a^{\prime}, and vice versa.

The exceptions are I on a, such that $S I$ is parallel to a^{\prime}; and J^{\prime} on a^{\prime}, such that SJ^{\prime} is parallel to a.

I has no finite projection on a^{\prime}, and J^{\prime} is not the projection of any finite point of a. We may, however, give verbal completeness to our statement, without confusion, by saying that two parallel lines meet at infinity, and that the projection of I is a point at infinity on a^{\prime}, and that J^{\prime} is the projection of a point at infinity on a.

The points I, J^{\prime} at which lines

Fig. 2. through S parallel to a^{\prime} and a, meet a, a^{\prime} respectively are called the vanishing points of a, a^{\prime} for the centre S .
5. The length of $A B$ is not, in general, equal to its projection $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on a are projected from centre S into $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ on a line a^{\prime} parallel to $A B$, we have similar triangles $S A B, S A^{\prime} B^{\prime}$ and $S B C, S B^{\prime} C^{\prime}$, and hence we can prove that $A B: B C$ as $A^{\prime} B^{\prime}: B^{\prime} C^{\prime}$, i.e. the ratio of two segments of a line is not altered by projection on a parallel line. This is also true for parallel projection ; but it is not true in Central Projection, when a, a^{\prime} are not parallel : we shall find however relations between parts of lines which are not altered by projection, and the consideration of these relations will form the basis of much of our work in projective geometry.
6. Sign. If A^{\prime}, B^{\prime} and C^{\prime} are the projections of three points A, B and C which are not in a straight line, the projection of the
figure composed of $A B$ and $B C$ is $A^{\prime} C^{\prime}$, the projection of $A B$ is $A^{\prime} B^{\prime}$, and of BC is $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

In order that the projection of $A B C$ may equal the sum of the projections of $A B$ and $B C$ in all cases, we must have

$$
A^{\prime} C^{\prime}=A^{\prime} B^{\prime}+B^{\prime} C^{\prime},
$$

whether B^{\prime} does or does not lie between A^{\prime} and C^{\prime}.

Fig. 3.

The similarity between this operation and the algebraic addition of positive and negative quantities suggests the use of the signs + and - to express opposite directions in the same straight line; and we say that $B A=-A B$; and that $A B, C D$ are both positive or both negative if they are segments of the same line drawn in the same direction, but one is positive and the other negative if they are drawn in opposite directions in the same straight line; also $A C+C B=A B$, if C is collinear with A and B.
7. From the Rule of Signs it follows that the rectangle of two parts $A C, C B$ of a line $A B$ is positive when C lies between A and B, and negative when C is in $A B$ produced either way.

Thus Euclid in. 4 and 7 are two cases of

$$
A B^{2}=A C^{2}+B C^{2}+2 A C \cdot C B ;
$$

in the former C lies between A and B, in the latter C lies in $A B$ produced. Similarly II. 5 and 6 are two cases of

$$
A D \cdot D B=M A^{2}-M D^{2},
$$

where M is the middle point of $A B$.
Again the generalized form of Euclid iI. 1 is

$$
X Y \cdot A B=X Y \cdot A K+X Y \cdot K L+X Y \cdot L M+\ldots+X Y \cdot P B .
$$

Hence
$A B \cdot C D+B C \cdot A D+C A \cdot B D$

$$
\begin{aligned}
& =(A D \cdot C D-B D \cdot C D)+(B D \cdot A D-C D \cdot A D)+(C D \cdot B D-A D \cdot B D) \\
& =0
\end{aligned}
$$

an important result which will be required presently.
Exercise 1. If O lies in the same straight line as $\mathrm{A}, \mathrm{B}, \mathrm{C}$ prove that

$$
O A^{2} \cdot B C+O B^{2} \cdot C A+O C^{2} \cdot A B=-A B \cdot B C \cdot C A .
$$

2. Prove that this is also true when A, B, C lie in a straight line, but O lies outside that line.
3. Ratio of segments of a straight line. The ratio of $A C$ to $C B$ will be positive when C lies between A and B, negative when C is in $A B$ produced either way.

Thus the bisector of the vertical angle C of a triangle $A C B$ meets the base $A B$ at a point K, such that $A K: K B=A C: C B$; and the bisector of the exterior angle at C meets $A B$ at L, such that $A L: L B=-A C: C B$. Hence $A K: K B=-A L: L B$.

Again, a line parallel to the base of a triangle divides the sides in equal positive ratios if the line lies between the base and the vertex, in equal negative ratios if the line cuts the sides produced through the vertex or beyond the base.
9. If C is a variable point in a straight line $A B$, there are no two positions for which the ratio $A C: C B$ has the same value. As C moves from A to B, the value of the ratio increases from 0 to ∞ : as C moves from B along $A B$ produced the value increases from $-\infty$ towards the value -1 : as C moves from A
along BA produced the value of $A C$: $C B$ decreases from 0 towards - 1 .

Thus for each position of C there is a definite value of $A C: C B$, positive if C lies between A, B; otherwise negative; save that at B no meaning attaches to AC : CB for CB is zero, but however near C is to B there is a value of the ratio, positive on one side, negative on the other, numerically large in each case, thus giving the idea that $+\infty$ and $-\infty$ are the same.
[The sign ∞ stands for an infinite number, i.e one too great for our comprehension. Point at infinity (∞) stands for a point too far away for our comprehension.]

Again to every numerical quantity, positive or negative, corresponds one, and only one, position of C such that $A C: C B$ has that value, save the number -1 , and as $A C+C B$ is $A B$ and not zero, therefore $A C: C B$ is never -1 : but when C is very distant towards either end of $A B$ the value of $A C: C B$ is very nearly -1 , in fact we can find a position of C for any number which differs from -1 however slightly, in $A B$ produced if the number is less than -1 , in BA produced if slightly greater than -1 .

We obtain verbal completeness then by supposing a point 'at infinity' (towards either end indifferently), where AC:CB has the value -1 .

Otherwise we may say that as a line SC turns round S cutting $A B$ at C, for every position of the line there is one unique value of $A C: C B$, and for every value that can be given to $A C: C B$ there is one unique position of SC ; and that when SC is parallel to $A B$, the value of $A C: C B$ is -1 .

Harmonic Rows and Pencils.

10. If K is a point in the line $A B$, there exists another point L, such that $A L: L B=-A K: K B$; the two points K, L are said to be harmonically conjugate with respect to A, B; one of them
must lie between A and B, the other must lie outside the segment $A B$. If however K is the middle point of $A B$, there is no finite position of K, for in this case $A L: L B=-1$.
N.B. The lengths of $A K, A B, A L$ are in harmonical progression.

Fig. 4.
If K, L are harmonically conjugate with respect to A, B, then A, B are harmonically conjugate with respect to K, L.

For $\quad \frac{A K}{K B}=-\frac{A L}{L B}$, hence $\frac{K A}{A L}=-\frac{K B}{B L}$. \quad Q.E.D.
Two points A, B and their conjugates K, L form a harmonic range $\{A B K L\}$.
11. Theorem. If K, L are harmonic conjugates with respect to A, B and S a point outside $A B$, and if a line be drawn through K parallel to SL to cut SA, SB at D, E, then $D K=K E$.

For $A K: A L=D K: S L$, and $\quad K B: B L=K E: S L$.
But, by hypothesis,

$$
\begin{aligned}
A K: K B & =-A L: L B, \\
\therefore A K: A L & =K B: B L,
\end{aligned}
$$

and hence $D K=K E$.

Fig. 5.

Conversely: If K is the
middle point of a line $D E$, and S a point outside $D E$, then any line through K cuts a line through S parallel to $D E$ at the harmonic conjugate of K with respect to the points where the line cuts $S D$ and $S E$.

For $D K=K E$, hence $A K: A L=D K: S L=K E: S L=K B: B L$, and therefore $\{A B K L\}$ is harmonic.
12. Theorem. The projection of a harmonic range is a harmonic range. Let K, L be harmonically conjugate to A, B; project from centre S , giving $\mathrm{K}^{\prime}, \mathrm{L}^{\prime}$ and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$; through $\mathrm{K}, \mathrm{K}^{\prime}$ draw DE , $\mathrm{D}^{\prime} \mathrm{E}^{\prime}$ parallel to SL cutting SA, SB at D, E and D^{\prime}, E^{\prime}.
\{ABKL\} is harmonic,

$$
\therefore D K=K E .
$$

But $D^{\prime} E^{\prime}$ is parallel to $D E$,

$$
\therefore D K: K E=D^{\prime} K^{\prime}: K^{\prime} E^{\prime} ;
$$

hence

$$
D^{\prime} K^{\prime}=K^{\prime} E^{\prime}
$$

and $\therefore\left\{A^{\prime} B^{\prime} K^{\prime} L^{\prime}\right\}$ is harmonic.
If, however, the base of projection is parallel to SL, we get as the projections of A, B, K points $A^{\prime}, B^{\prime}, K^{\prime}$ such that $A^{\prime} K^{\prime}=K^{\prime} B^{\prime}$ and

Fig. 6. L has no finite projection. But if the base is not quite parallel we shall have $A^{\prime} K^{\prime}$: $K^{\prime} B^{\prime}$ nearly equal to unity, and L^{\prime} a very distant point so that $A^{\prime} L^{\prime}: L^{\prime} B^{\prime}$ is nearly equal to -1 . Hence we are led to imagine that the base is parallel to $S L$, it is cut by $S L$ at an infinitely distant point L^{\prime}, and then $A^{\prime} K^{\prime}: K^{\prime} B^{\prime}=1 ; A^{\prime} L^{\prime}: L^{\prime} B^{\prime}=-1$ and $\left\{A^{\prime} B^{\prime} \cdot K^{\prime} L^{\prime}\right\}$ is harmonic. With this qualification we may formally state that the projection of a harmonic range on any straight line is always a harmonic range.

Corollary. The lines joining any point S to two points (A, B) and their harmonic conjugates (K, L) are such that any other line cuts them in a harmonic range: these four lines form a harmonic pencil at S.

Corollary. If a, b, k, l are four lines through the point S such that a, b cut off a segment on any transversal parallel to l, which is bisected by k, then k, l are harmonically conjugate to a, b.

Corollary. The internal and external bisectors of the angles between a, b are harmonically conjugate to a, b.

Corollary. If a, b are perpendicular lines, and k, l harmonically conjugate to them, then a, b are also harmonically conjugate to k, l : hence a line parallel to a cuts b, k, l at $\mathrm{B}, \mathrm{K}, \mathrm{L}$ such that $\mathrm{KB}=\mathrm{BL}$, and hence k, l make equal angles with b.
13. Theorems. If $A K: K B=-A L: L B$,
I. $A K . B L=K B . A L$,
$\therefore A L . B L-K L . B L$

$$
=K L \cdot A L-B L \cdot A L \text {, }
$$

$\therefore 2 A L \cdot B L=K L . B L+K L . A L$,
$\therefore 2 A L . B K=-K L . A L+K L . B L$

$$
=\mathrm{LK} \cdot \mathrm{AB} ;
$$

hence $A B: B K=$ twice $A L: L K$.

$$
\text { II. } \quad \frac{K B}{A K}+\frac{L B}{A L}=0,
$$

Fig. 7.
or

$$
\frac{1}{A K}+\frac{1}{A L}=\frac{2}{A B} .
$$

III. If O is the middle point of $A B$,

$$
\because A K . B L=K B \cdot A L,
$$

$$
\therefore(O K-O A)(O L-O B)=(O B-O K)(O L-O A),
$$

i.e. $\quad(O K+O B)(O L-O B)+(O K-O B)(O L+O B)=0$,
since $O A=-O B$.

$$
\therefore 2 . \mathrm{OK} . \mathrm{OL}-2 . \mathrm{OB}^{2}=0, \quad \text { i.e. } \mathrm{OB}^{2}=\mathrm{OK} . \mathrm{OL} .
$$

IV. If $S K, S L$ are harmonically conjugate to $S A, S B$ then, drawing a transversal perpendicular to SA, we get from II. that $\cot \hat{A S K}+\cot \hat{A} \mathrm{~S}=2 \cot \hat{A} \hat{B}, \quad$ or $\cot \hat{a k}+\cot \hat{a l}=2 \cot \hat{a b}$.
V. Similarly from III. by drawing a transversal perpendicular to SO, the bisector of angle ASB, we get
$\tan \mathrm{O} \hat{S} K \cdot \tan \mathrm{O} \hat{S} L=\tan ^{2} \mathrm{OS} B$, i.e. $\tan \hat{o l k} \cdot \tan \hat{o l}=\tan ^{2} \hat{o b}$.

Cross-Ratio of Four Points.

14. Definition. If on the line $A B$ we take two points K, L the ratio of $\frac{A K}{K B}: \frac{A L}{L B}$ is called the cross-ratio of $A B K L$ and is denoted by $\{A B K L\}$.

If we fix A, B and K and vary the position of L, the crossratio $\{A B K L\}$ has various values.

Fig. 8.
Thus, taking K between A and B, we find the value of $\{A B K L\}$ when L is on the left of A is negative and between $-\frac{A K}{K B}$ and $-\infty$; from A to K its value diminishes from ∞ to +1 ; from K to B the value decreases from +1 to 0 ; and as L moves from B in the direction $A B$ its value decreases from 0 to $-\frac{A K}{K B}$.
[When L is at K^{\prime}, the harmonic conjugate of K with respect to $A, B,\{A B K L\}=-1$.

Thus $\{A B K L\}$ may have any value, except the value $-\frac{A K}{K B}$, for this would correspond to $\frac{A L}{L B}=-1$, which is not true for any finite position of L : if however we imagine an infinitely distant
point (∞) such that $\frac{A \infty}{\infty B}=-1$, we may say $\{A B K \infty\}=-\frac{A K}{K B}$: similarly $\{A B \propto L\}=-1 \div \frac{A L}{L B}$.

Exercise. Trace the changing value of $\{A B K L\}$ as L moves along the line, when K lies outside AB.
15. It is important to notice the order in which the letters A, B, K, L are written in the symbol $\{A B K L\}$: thus

$$
\{B K A L\}=\frac{B A}{A K}: \frac{B L}{L K},
$$

which is not the same as $\{A B K L\}$.
Four letters may be written in 24 different orders, i.e. there are 24 cross-ratios of four points in a line, dependent on the order in which the points are taken : these 24 values are however closely related. We call the first or the second pair associated points.

Theorems. I. If we exchange a pair of associated points, the value of the new cross-ratio is the reciprocal of the former value.

Let

$$
\{A B K L\} \text {, i.e. } \frac{A K}{K B}: \frac{A L}{L B}=c,
$$

then

$$
\{B A K L\}=\frac{B K}{K A}: \frac{B L}{L A}=\frac{K B}{A K}: \frac{L B}{A L}=\frac{1}{c},
$$

$$
\{A B L K\}=\frac{A L}{L B}: \frac{A K}{K B}=\frac{1}{c} .
$$

Corollary. $\quad\{B A L K\}=1 \div\{B A K L\}=\{A B K L\}$.
II. The exchange of the middle letters changes the value from c to $1-c$.

$$
\begin{gathered}
\text { For } \quad A B \cdot K L+B K \cdot A L+K A \cdot B L \\
=(A L \cdot K L-B L \cdot K L)+(B L \cdot A L-K L \cdot A L)+(K L \cdot B L-A L \cdot B L)=0,
\end{gathered}
$$

$\therefore A B \cdot K L=K B \cdot A L-A K \cdot L B$,

$$
\therefore \frac{A B \cdot L K}{B K \cdot A L}=1-\frac{A K \cdot L B}{A L \cdot K B}
$$

i.e.

$$
\{\mathrm{AKBL}\}=1-\{\mathrm{ABKL}\}=1-c
$$

Corollary. Since $\{A B K L\}=\{B A L K\}$,

$$
\therefore\{A K B L\}=\{B L A K\}=\{L B K A\} ;
$$

hence $\{$ LBKA $\}$ also has the value $1-c, \therefore\{$ LKBA $\}=c$, thus the exchange of the outer pair, and the inner pair, brings no change in value.

Applying I. and II. we get

$$
\begin{aligned}
c & =\{A B K L\}=\{B A L K\}=\{K L A B\}=\{L K B A\} \\
\frac{1}{c} & =\{A B L K\}=\{B A K L\}=\{K L B A\}=\{L K A B\} \\
1-c & =\{A K B L\}=\{B L A K\}=\{K A L B\}=\{L B K A\} .
\end{aligned}
$$

Applying I. to the ratios equal to $1-c$, we get

$$
\frac{1}{1-c}=\{A K L B\}=\{B L K A\}=\{K A B L\}=\{L B A K\} .
$$

Applying II. to the second set, we get

$$
1-\frac{1}{c}=\{A L B K\}=\{B K A L\}=\{K B L A\}=\{L A K B\},
$$

and from either of the two sets last obtained, we get

$$
1-\frac{1}{1-c} \equiv \frac{-c}{1-c}=\{\mathrm{ALKB}\}=\{\mathrm{BKLA}\}=\{\mathrm{KBAL}\}=\{\mathrm{LABK}\} .
$$

Thus the 24 ratios are arranged in sets of 4 with the values

$$
c, 1-c, \frac{1}{c}, \frac{1}{1-c}, \frac{c-1}{c}, \frac{c}{c-1} .
$$

Corollary. Since $\{L K B A\}=\{A B K L\}$ the cross-ratio of four points is unaltered if we reverse the line. This was not true of the single line, for its sign was changed, nor of the ratio AK: KB, for it was changed into its reciprocal.
16. Note 1. If $x^{2}-x=\mathrm{X}, c^{2}-c=\mathrm{C}$, the sextic
$(x-c)(x-\overline{1-c})\left(x-\frac{1}{c}\right)\left(x-\frac{1}{1-c}\right)\left(x-\frac{c-1}{c}\right)\left(x-\frac{c}{c-1}\right)=0$
reduces to

$$
\begin{gathered}
\quad(x-c)\left(x+\frac{c}{c^{3}}\right)\left(x-\frac{c^{3}}{c^{2}}\right)=0 \\
\therefore \quad(x-c)\left(x^{2}+x \frac{c^{3}-c^{6}}{c^{3} c^{2}}-\frac{1}{c}\right)=0 \\
\therefore \quad(x-c)\left(x^{2}-x \frac{3 c+1}{c^{2}}-\frac{1}{c}\right)=0, \\
\therefore c^{2}\left(x^{3}+3 x+1\right)=x^{2}\left(c^{3}+3 c+1\right), \\
c^{2}(x+1)^{3}=x^{2}(c+1)^{3} .
\end{gathered}
$$

and hence
Note 2. If $A B, K L$ are overlapping segments the semicircles on $A B$, LK will intersect at a point O. Let C, M be the centres, and let the angle COM be 2θ.

Fig. 9.
Let $\mathrm{AB}=2 x, \mathrm{KL}=2 y, \mathrm{CM}=2 z$.
Taking the triangle COM,

$$
\begin{aligned}
\therefore-\tan ^{2} \theta=-\frac{(-x+y+z)(x-y+z)}{(x+y+z)(x+y-z)}=\frac{\mathrm{LB} \cdot \mathrm{AK}}{\mathrm{AL} \cdot \mathrm{~KB}}=\{\mathrm{ABKL}\}, \\
\sin ^{2} \theta=\frac{(-x+y+z)(x-y+z)}{4 x y}=\frac{\mathrm{BL} \cdot \mathrm{AK}}{\mathrm{AB} \cdot \mathrm{KL}}=\{\mathrm{ALKB}\} .
\end{aligned}
$$

Similarly $\cos ^{2} \theta=\{A K L B\}$, and we can get similarly $\sec ^{2} \theta$, $\cot ^{2} \theta, \operatorname{cosec}^{2} \theta$ expressed as cross-ratios.

Corollary. If the circles are orthogonal $\{A B K L\}=-1$.

Theorem. If $\{A B, K L\}=\{A B L K\}$, then K, L either coincide or are harmonically conjugate to $A B$.

For in this case $c=\frac{1}{c}, \therefore c^{2}=1, \therefore c= \pm 1$.
17. Theorem. If A, B, K, L are four points in a straight line, and S any point outside the line, and a line through A parallel to SB cuts SK, SL at X, Y respectively, then

$$
\{A B, K L\}=A X: A Y
$$

From the similar triangles AKX, BKS

$$
A K: K B=A X: S B .
$$

Similarly AL: LB = AY: SB.
Moreover when K is between A and $B, A K: K B$ is positive, and $A X$ lies in the direction $S B$; but when K is outside $A B$, on either side, $A X$ is opposite in direction to SB : and similarly for AL : LB and $A Y$.

Fig. 10.

Hence $\frac{A K}{K B}: \frac{A L}{L B}=A X, A Y$ in magnitude and sign.
Problem. Given 3 points A, B, K, find L so that $\{A B K L\}=c$.
Theorem. The cross-ratio of four points is unaltered by projection.

For, if four points A, B, K, L be projected from centre S into points $A^{\prime}, B^{\prime}, K^{\prime}, L^{\prime}$ on $A^{\prime} B^{\prime}$, we may draw $A X Y$ parallel to $S B$ to cut SK, SL at X, Y, and similarly $A^{\prime} X^{\prime} Y^{\prime}$ from A^{\prime} (fig. 11).

Then

$$
\begin{aligned}
A X: A^{\prime} X^{\prime} & =S A: S A^{\prime}=A Y: A^{\prime} Y^{\prime} \\
\therefore A X: A Y & =A^{\prime} X^{\prime}: A^{\prime} Y^{\prime} \\
\therefore\{A B, K L\} & =\left\{A^{\prime} B^{\prime}, K^{\prime} L^{\prime}\right\} .
\end{aligned}
$$

Fig. 11.
18. Thus if we have a pencil of four rays a, b, k, l at a point s, any transversal cuts them in a row of four points whose crossratio is always the same: this value may be called the crossratio of the pencil, and denoted by $\{a b k l\}$. There are 24 crossratios of four concurrent lines, dependent upon the order in which they are taken, and these arrange themselves in sets of 4, having values $c, 1-c, \frac{1}{c}, 1-\frac{1}{c}, \frac{c}{c-1}$: this follows by taking any transversal.

Note. But if the transversal is parallel to l, cutting a, b, k at A, B and K , then $\{a b k l\}=-\frac{\mathrm{AK}}{\mathrm{KB}}$.

Note. If $\hat{a k}$ denotes the angle between a and k, due regard being paid to sign, so that $\hat{k a}=-\hat{a k}$: and if ABKL is a transversal of the pencil $a b k l$ at S such that $\mathrm{SA}=\mathrm{SB}$ (fig. 12),

$$
\begin{aligned}
\mathrm{AK}: \mathrm{SK} & =\sin \hat{a k}: \sin \mathrm{SAK}, \\
\mathrm{SK}: \mathrm{KB} & =\sin \mathrm{SBK}: \sin \hat{k} b, \\
\therefore \quad \mathrm{AK}: \mathrm{KB} & =\sin a \hat{k}: \sin \hat{k b} .
\end{aligned}
$$

Similarly $\mathrm{AL}: \mathrm{LB}=\sin a l: \sin \hat{l}$.

$$
\therefore\{a b k l\}=\{A B K L\}=\frac{\sin \hat{a k}}{\sin \hat{k b}}: \frac{\sin \hat{l l}}{\sin \hat{l b}},
$$

which shews the relation between the cross-ratio of four lines forming a pencil, and the angles between the lines.

Fig. 12.

Exercise. Deduce theorems IV. and V. of page 10, for the case of a harmonic pencil, i.e. when $\{a b k l\}=-1$.

Theorem. If $\{a b k l\}=\{a b l k\}$, then k, l either coincide, or are harmonically conjugate to a, b.

Corollary. If we have three lines a, b, k meeting at s we can find a line l through s , such that $\{a b l l\}=a$ given quantity c.

Harmonic Properties of Quadrilaterals and Quadrangles. Constructions.

19. Four straight lines, of which no three are concurrent, form a quadrilateral or four-side : the lines intersect in 6 points so that a four-side has three pairs of vertices [A, B ; C, D ; E, F]; the joins of these introduce three new lines, called diagonals $[A B, C D, E F]$, forming the diagonal triangle [KLM].

Theorem. If A, B are a pair of opposite intersections of a four-side, the points K, L where $A B$ is cut by the other two diagonals are harmonically conjugate with respect to A and B.

Fig. 13.
Let diagonal $C D$ cut $A B$ at K, and diagonal $E F$ cut $A B$ at L and CD at M.

Then, by projection from C,

$$
\{A B K L\}=\{E F M L\},
$$

but, projecting from D back to the line $A B$ we get

$$
\{E F M L\}=\{B A K L\}=\{A B L K\} ;
$$

hence $\{A B K L\}=\{A B L K\}$; and therefore, as K, L do not coincide, they must be harmonically conjugate to A, B.

Corollary 1. If $A B$ is parallel to $E F$ so that L is at infinity, $A K=K B$.

Corollary 2. The diagonals of a parallelogram bisect each other.

Problem. To construct the harmonic conjugate of K, with respect to A, B. Through K draw any line, and on it take any two points C, D. Let $A C, B D$ meet at $E ; A D, B C$ at F; and let $E F$ cut $A B$ at L.

Then L is the required point harmonically conjugate to K.
P. P. G.

Problem. Given a line AB and its middle point M , to draw a line through any point O parallel to $A B$.

Join OA, OB, OM ; take any point P on $O M$ and draw through P lines $C D, E F$ meeting $O A, O B$ at C, E and D, F respectively.

Then if CF, ED meet at K, OK is the line required.

For, if OP cuts ED at L, since OP,

Fig. 14. $C F, D E$ are the diagonals of a four-side formed by $O A, O B, C D, E F$, therefore $\{E D K L\}=-1$, hence the pencil $O A, O B, O M, O K$ is harmonic ; but the transversal $A B$ is bisected at M, and therefore OK is parallel to AB.

Problem. Through a point O lying between AB, AC draw a line, such that O is the middle point of the segment cut off by $A B, A C$.

Fig. 15.
Join $A O$ and draw any line to cut $A B, A C, A O$ at D, E, K; take any point L on $A K$ and let DL meet $A C$ at F, EL meet $A B$ at G.

Join FG, and let it cut DE at M.
Join AM and through O draw RS parallel to AM : this will be the line required.

Taking the four-side AG, AF, LG, LF the diagonal DE is cut by the diagonals $A L$, GF at K and M, hence $\{D E K M\}=-1$.

Therefore the pencil AB, AC, AO, AM is harmonic, and RS is drawn parallel to the ray AM. Hence RS is bisected at O.
20. Definition. Four points, no three of which are collinear, form a quadrangle or four-point. They can be joined by six lines, so that a four-point has three pairs of sides; the intersections of these six lines are the given four points, and three other points, called diagonal points, forming the diagonal triad.

Thus, if $\mathbf{P}, \mathbf{Q}, \mathrm{R}, \mathrm{S}$ are four points we get PR, QS or a, b; PS, QR or c, d; RS, PQ or e, f the three pairs of sides; and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ the intersections $a b$, $c d$, ef forming the diagonal triad. UV, UW, VW, are k, l, m.

Note 1. Just as the line joining two points A, B is represented by $A B$, so the intersection of two lines a, b is written $a b$.

Note 2. Compare this notation with that for a fourside, a corresponds to A, etc. etc.

Fig. 16.

Theorem. At a diagonal point of a four-point the lines which join it to the other two diagonal points are harmonically conjugate with respect to the two sides which intersect there.

Proof 1. Adopting the notation of figure 16 , let l or UW cut $R Q$ at H and PS at G. Then $\{a b k l\}=\{R Q V H\}$ on $R Q$, and also equals $\{P S V G\}$ on $P S$.

But, projecting from $\mathbf{W},\{$ RQVH $\}=\{e f m l\}=\{S P V G\} ;$
and

$$
\{\mathrm{SPVG}\}=\{\mathrm{PSGV}\}=\{a b l k\} ;
$$

hence $\{a b l l\}=\{a b l k\}$, and therefore each equals -1 .
Proof 2. If $P Q$ meets $U V$ at F, by the properties of a fourside, W and F are harmonically conjugate to P and Q, hence the lines UW and UF or UV are harmonically conjugate to UP and UQ.

Corollary 1. VW cuts PR, QR at the harmonic conjugates of U with respect to P, R and Q, S respectively.

Corollary 2. The diagonals and diameters of a parallelogram form a harmonic pencil.

Hence, also, by making the parallelogram a rectangle we find, as before, that two lines and the bisectors of the angles between them form a harmonic pencil.

Problem. To find the harmonic conjugate of sK with respect to SA and SB.

Through any point K on SK draw any line to cut SA, SB at P, Q respectively ; and another to cut them at R, S.

Then if $P S, Q R$ intersect at L, $S L$ is the line required.
21. Theorem. If $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ are the harmonic conjugates of K, L, M, N with respect to A, B, then $\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}=\{K L M N\}$.

For, if O is the middle point of $A B$, we have

$$
\mathrm{OA}^{2}=\mathrm{OK} \cdot \mathrm{OK}^{\prime}=\mathrm{OL} \cdot \mathrm{OL}^{\prime}=\mathrm{OM} \cdot \mathrm{OM}^{\prime}=\mathrm{ON} \cdot \mathrm{ON}^{\prime} ;
$$

hence $\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}=\frac{K^{\prime} M^{\prime}}{M^{\prime} L^{\prime}}: \frac{K^{\prime} N^{\prime}}{N^{\prime} L^{\prime}}=\frac{O M^{\prime}-O K^{\prime}}{O L^{\prime}-O M^{\prime}}: \frac{O N^{\prime}-O K^{\prime}}{O L^{\prime}-O N^{\prime}}$

$$
\begin{aligned}
= & \frac{\frac{O A^{2}}{O M}-\frac{O A^{2}}{O K}}{\frac{O A^{2}}{O L}-\frac{O A^{2}}{O M}}: \frac{\frac{O A^{2}}{O N}-\frac{A^{2}}{O K}}{\frac{O A^{2}}{O L}-\frac{O A^{2}}{O N}} \\
= & \frac{M K}{\frac{O M \cdot O K}{L M}}: \frac{N K}{O N \cdot O K} \\
& \frac{O N}{O L \cdot O M} \\
= & \frac{M K}{L M}: \frac{N K}{L N}
\end{aligned}=\frac{K M}{M L}: \frac{K N}{N L}=\{K L M N\} .
$$

Corollary. If $k^{\prime}, l^{\prime}, m^{\prime}, n^{\prime}$ are the harmonic conjugates of k, l, m, n with respect to a, b, then $\left\{k^{\prime} l^{\prime} m^{\prime} n^{\prime}\right\}=\{k l m n\}$.

Definitions. The polar of a point K with respect to two lines SA, SB is the harmonic conjugate SL of SK with respect to SA and SB.

It is the locus of the harmonic conjugate of K on any line through K with respect to the points in which that line cuts SA, SB.

The pole of a line with respect to two points is the harmonic conjugate with respect to those points of the intersection of their join by the line.

If we take any point on the line and join it to the two points, the harmonic conjugate of the line with respect to those joins always passes through the pole of the line.

From the theorem just proved it follows that the cross-ratio of any four lines forming a pencil is equal to the cross-ratio of their four poles, and conversely.

EXAMPLES. I.

1. If M is the mid-point of $A B$ and C any other point on the line, prove that rect. $A C . C B=M A^{2}-M C^{2}$, whether C is in $A B$ or $A B$ produced.
2. If $A B, C D$ are any two segments of the same straight line and M, N their mid-points, prove that $4 A C . B D=4 M N^{2}-(A B-C D)^{2}$, and $4 A D . B C$ $=4 \mathrm{MN}^{2}-(A B+C D)^{2}$. Also deduce that $A D \cdot B C+B D \cdot C A+C D \cdot A B=0$.
3. Verify these results by numerical calculation when
(a) $\mathrm{AB}=6, \mathrm{AC}=9, \mathrm{AD}=19$;
(b) $\mathrm{AB}=60, \mathrm{AC}=30, \mathrm{AD}=22$;
(c) $\mathrm{AB}=20, \mathrm{AC}=-14, \mathrm{AD}=6$.
4. In each of the three cases given in the previous question find the values of the ratios $A C: C B, A D: D C$ and $C B: B D$.
5. In each of the three cases find the position of the harmonic conjugate of D with respect to B and C.
6. The bisectors of the interior and exterior angles at the vertex C of a triangle $A B C$ meet the base $A B$ at K and L, and M is the mid-point of the base $A B$; prove that $M K . M L=M A^{2}$.
7. If K, L are two points in $A B$ harmonically conjugate with respect to $A B$, prove that A and B are harmonically conjugate with respect to K and L.
8. If A, B, K, L are four points in a straight line and $A B=4, A K=6$, find the values of $\{A B K L\}$ when $A L$ has successively the values $1,2,3,4,5$ and 6. Also find the values of $\{A B L K\}$ and $\{A K B L\}$ in each of the six cases.
9. Find the values of $\{A B K L\},\{A B L K\},\{A K B L\},\{A K L B\},\{A L B K\}$ and $\{A L K B\}$ by direct calculation when $A B=6, A K=5, A L=10$.

Shew that the equation whose roots are these six values can be written

$$
36\left(x^{2}-x+1\right)^{3}=343\left(x^{2}-x\right)^{2}
$$

10. Given three points A, B, K on a straight line such that $A B=6$, $A K=4$, find by a geometrical construction a point L on the line such that $\{A B K L\}=3$.
11. From the harmonic properties of a complete four-side deduce that the diagonals of a parallelogram bisect each other.
12. K, L are the mid-points of the sides $A C, A B$ of the triangle $A B C$, and BK, CL meet at G. Prove that AG bisects BC at M.

Also prove that KL bisects $A M$ and deduce that KL trisects $A G$, and G trisects AM.
13. Given two parallel straight lines $A B$ and $C D$, bisect $A B$ and $C D$ by the use of a ruler only.
14. A line $A B$ is divided harmonically by P and P^{\prime}, by Q and Q^{\prime}, and by R and R^{\prime}. Prove that $\left\{P P^{\prime} Q R\right\}=\left\{P^{\prime} P Q^{\prime} R^{\prime}\right\}$.
15. If $A P, B Q, C R$ are the tangents drawn to any circle from three collinear points A, B, C, prove that

$$
A P^{2} \cdot B C+B Q^{2} \cdot C A+C R^{2} \cdot A B=-B C \cdot C A \cdot A B .
$$

16. If $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear, prove that
(1) $\frac{1}{A B \cdot A C}+\frac{1}{B A \cdot B C}+\frac{1}{C A \cdot C B}=0$,
(2) $\frac{O A}{A B \cdot A C}+\frac{O B}{B A \cdot B C}+\frac{O C}{C A \cdot C B}=0$.
17. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear, prove that
(1)

$$
\frac{1}{A B \cdot A C \cdot A D}+\frac{1}{B A \cdot B C \cdot B D}+\frac{1}{C A \cdot C B \cdot C D}+\frac{1}{D A \cdot D B \cdot D C}=0,
$$

(2) $\frac{P A}{A B \cdot A C \cdot A D}+\frac{P B}{B A \cdot B C \cdot B D}+\frac{P C}{C A \cdot C B \cdot C D}+\frac{P D}{D A \cdot D B \cdot D C}=0$,
(3) $\frac{P A \cdot Q A}{A B \cdot A C \cdot A D}+\frac{P B \cdot Q B}{B A \cdot B C \cdot B D}+\frac{P C \cdot Q C}{C A \cdot C B \cdot C D}+\frac{P D \cdot Q D}{D A \cdot D B \cdot D C}=0$,
(4) $\frac{P A \cdot Q A \cdot R A}{A B \cdot A C \cdot A D}+\frac{P B \cdot Q B \cdot R B}{B A \cdot B C \cdot B D}+\frac{P C \cdot Q C \cdot R C}{C A \cdot C B \cdot C D}+\frac{P D \cdot Q D \cdot R D}{D A \cdot D B \cdot D C}=-1$.
18. Prove that $\Sigma \frac{P_{1} A_{1} \cdot P_{2} A_{1} \cdot P_{3} A_{1} \ldots \ldots . P_{n-k} A_{1}}{A_{1} A_{2} \cdot A_{1} A_{3} \ldots \ldots . . A_{1} A_{n}}$ has the value 0 , when k has any integral value from 2 to $n-1$, and the value $(-1)^{n}$ when k is 1 .

CHAPTER II

INVOLUTION

22. A pair of points A, A^{\prime} are in involution with two other pairs $\mathrm{B}, \mathrm{B}^{\prime}$ and $\mathrm{C}, \mathrm{C}^{\prime}$ if $\left\{\mathrm{AA}^{\prime} \mathrm{BC}\right\}=\left\{\mathrm{AA}^{\prime} \mathrm{C}^{\prime} \mathrm{B}^{\prime}\right\}$.

If this relation holds it follows that

$$
\begin{equation*}
\frac{A B}{B A^{\prime}}: \frac{A C^{\prime}}{C^{\prime} A^{\prime}}=\frac{A C}{C A^{\prime}}: \frac{A B^{\prime}}{B^{\prime} A^{\prime}} \text {, i.e. }\left\{A A^{\prime} B C^{\prime}\right\}=\left\{A A^{\prime} C B^{\prime}\right\} \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}} \tag{2}
\end{equation*}
$$

Again

$$
\begin{equation*}
\left\{A B A^{\prime} C^{\prime}\right\}=\left\{A^{\prime} B^{\prime} A C\right\} ; \tag{3}
\end{equation*}
$$

hence $\quad \frac{A A^{\prime}}{A^{\prime} B} \cdot \frac{C^{\prime} B}{A C^{\prime}} \cdot \frac{A B^{\prime}}{A^{\prime} A} \cdot \frac{A^{\prime} C}{C B^{\prime}}=1, \therefore \frac{A B^{\prime}}{B^{\prime} C} \cdot \frac{B C^{\prime}}{C^{\prime} A} \cdot \frac{C A^{\prime}}{A^{\prime} B}=-1$.
Hence

$$
\frac{\mathrm{BB}^{\prime}}{\mathrm{B}^{\prime} \mathrm{A}}: \frac{\mathrm{BC}^{\prime}}{\mathrm{C}^{\prime} A}=\frac{\mathrm{B}^{\prime} \mathrm{B}}{\mathrm{BA}^{\prime}}: \frac{\mathrm{B}^{\prime} \mathrm{C}}{\mathrm{CA}^{\prime}} \text {, i.e. }\left\{\mathrm{BAB}^{\prime} \mathrm{C}^{\prime}\right\}=\left\{\mathrm{B}^{\prime} A^{\prime} B C\right\} \text {, }
$$

and $\therefore\left\{B B^{\prime} A C^{\prime}\right\}=\left\{B B^{\prime} C A^{\prime}\right\}$, i.e. B, B^{\prime} are in involution with the two pairs $A, A^{\prime} ; C, C^{\prime}$. Similarly C, C^{\prime} are in involution with $A, A^{\prime} ; B, B^{\prime}$.

If we divide $A A^{\prime}$ at O, such that

$$
O A: O A^{\prime}=\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}}
$$

then

$$
\begin{equation*}
O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime} \tag{5}
\end{equation*}
$$

Involution

For $\left\{A A^{\prime} B O\right\}=\frac{A^{\prime} B^{\prime}}{A B^{\prime}}, \therefore\left\{A B A^{\prime} O\right\}=1-\frac{A^{\prime} B^{\prime}}{A B^{\prime}}=\frac{A A^{\prime}}{A B^{\prime}}$,
$\therefore A O: O B=A B^{\prime}: A^{\prime} B=A O-A B^{\prime}: O B-A^{\prime} B=B^{\prime} O: O A^{\prime}$,
$\therefore O A . O A^{\prime}=O B . O B^{\prime}$, et similiter.
Conversely. If $O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C . O C^{\prime}$, then A, A^{\prime}; $\mathrm{B}, \mathrm{B}^{\prime} ; \mathrm{C}, \mathrm{C}^{\prime}$ are in involution

For

$$
\begin{equation*}
O A: O B=O B^{\prime}: O A^{\prime}=A B^{\prime}: B A^{\prime}, \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& \therefore\left\{A B A^{\prime} O\right\}=\frac{A A^{\prime}}{A^{\prime} B}: \frac{A B^{\prime}}{A^{\prime} B}=\frac{A A^{\prime}}{A B^{\prime}}, \\
& \therefore\left\{A A^{\prime} B O\right\}=1-\frac{A A^{\prime}}{A B^{\prime}}=\frac{A^{\prime} B^{\prime}}{A B^{\prime}}, \\
& \therefore \frac{A O}{A^{\prime} O}=-\frac{A B}{B A^{\prime}} \cdot \frac{A B^{\prime}}{A^{\prime} B^{\prime}}=\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}} .
\end{aligned}
$$

Similarly

$$
\frac{A O}{A^{\prime} O}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}}
$$

Hence

$$
\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}},
$$

and therefore $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ are in involution.
23. Theorem. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ form an involution on a line, and S is any point outside the line, then a line through

Fig. 17.

A parallel to $S A^{\prime}$ will cut $S B, S B^{\prime}, S C, S^{\prime}$ at points $K, K^{\prime}, L, L^{\prime}$ respectively, so that $A K . A K^{\prime}$ equals $A L . A L^{\prime}$.

And, conversely :
For

$$
A K: A L=\left\{A A^{\prime} B C\right\},
$$

and
But

$$
\begin{aligned}
A K^{\prime}: A L^{\prime} & =\left\{A A^{\prime} B^{\prime} C^{\prime}\right\} . \\
\left\{A A^{\prime} B C\right\} & =\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}, \\
\therefore A K: A L & =A L^{\prime}: A K^{\prime}, \\
\therefore A K \cdot A K^{\prime} & =A L \cdot A L^{\prime} .
\end{aligned}
$$

And, conversely, if
then

$$
\begin{aligned}
A K \cdot A K^{\prime} & =A L \cdot A L^{\prime}, \\
A K: A L & =A L^{\prime}: A K^{\prime}, \\
\therefore\left\{A A^{\prime} B C\right\} & =\left\{A^{\prime} A B^{\prime} C^{\prime}\right\},
\end{aligned}
$$

and hence $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ are in involution.
Corollary. The projection of an involution is an involution.
(Cf. the proof in $\S 17$ that a cross-ratio is unaltered by projection.)

Definition. Three pairs of straight lines through a point form an involution if any transversal cuts them in an involution.

1. If $a, a^{\prime} ; b, b^{\prime} ; c, c^{\prime}$ form a pencil in involution,

$$
\left\{a a^{\prime} b c\right\}=\left\{a a^{\prime} c^{\prime} b^{\prime}\right\} \text { and }\left\{a a^{\prime} b c^{\prime}\right\}=\left\{a a^{\prime} c b^{\prime}\right\} .
$$

2. If $\{a b c d\}=\left\{a^{\prime} b^{\prime} c^{\prime} d^{\prime \prime}\right\}$ and $\left\{a b c d^{\prime}\right\}=\left\{a^{\prime} b^{\prime} c^{\prime} d\right\}$, then $a a^{\prime}, b b^{\prime}, c c^{\prime}$ form an involution.
3. The pairs of harmonic conjugates to two lines form an involution.
4. Theorem. The three pairs of joins of four points cut any transversal in an involution.

For if a transversal cuts PQ, RS at A, A^{\prime}; PR, QS at B, B^{\prime}; $P S, Q R$ at C, C^{\prime} respectively, and $P Q, R S$ intersect at T :
projecting from P we get

$$
\left\{A A^{\prime} B C\right\}=\left\{T A^{\prime} R S\right\} ;
$$

and projecting from Q we get
hence

$$
\left\{T A^{\prime} R S\right\}=\left\{A A^{\prime} C^{\prime} B^{\prime}\right\} ;
$$

i.e. $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ are in involution.

Fig. 18.
Problem. Given five points $A, A^{\prime}, B, B^{\prime}, C$ in a line, to find C^{\prime} such that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form an involution.
25. Theorem. If $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form an involution, and $D D^{\prime}$ are another pair of points such that $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, then DD' form an involution with any two of the other three pairs: and conversely.

For

$$
\frac{A C}{C B}: \frac{A D}{D B}=\frac{A^{\prime} C^{\prime}}{C^{\prime} B^{\prime}}: \frac{A^{\prime} D^{\prime}}{D^{\prime} B^{\prime}}
$$

but

$$
\left\{A B C A^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} A\right\},
$$

$$
\therefore \frac{A C}{C B}: \frac{A A^{\prime}}{A^{\prime} B}=\frac{A^{\prime} C^{\prime}}{C^{\prime} B^{\prime}}: \frac{A^{\prime} A}{A B^{\prime}},
$$

$$
\therefore \frac{A D}{D B}: \frac{A A^{\prime}}{A^{\prime} B}=\frac{A^{\prime} D^{\prime}}{D^{\prime} B^{\prime}}: \frac{A^{\prime} A}{A B^{\prime}},
$$

i.e. $\left\{A B D A^{\prime}\right\}=\left\{A^{\prime} B^{\prime} D^{\prime} A\right\}$,
i.e. $D D^{\prime}$ are in involution with $A A^{\prime}$ and $B B^{\prime}$.

Corollary. If O is the centre of the involution

$$
O D \cdot O D^{\prime}=O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime} .
$$

Corollary. If DD^{\prime} are in involution with AA^{\prime} and BB^{\prime}, they are also in involution with $A A^{\prime}$ and $C C^{\prime}$.

Rows in involution. In any straight line containing $A A^{\prime}$ and $B B^{\prime}$ we may take C, D, E, \ldots and find conjugate points $C^{\prime}, D^{\prime}, E^{\prime}, \ldots$ so that $C C^{\prime}, D D^{\prime}, E E^{\prime}$ are severally in involution with $A A^{\prime}$ and $B B^{\prime}$. [For if O is the centre of $A A^{\prime}, B B^{\prime}$ we have only to make $O C^{\prime} . O C=O A^{\prime}$. $O A$, etc.] Thus we get a continuous double row of points, of which (by the above theorem and its corollary) any three pairs of points are in involution.

If $O A . O A^{\prime}$ is positive, there will be two points X, Y such that $O X^{2}=O Y^{2}=O A . O A^{\prime}$; thus X is conjugate to itself, so also is Y.

These double points X, Y are called the foci of the involution.
Since $O X^{2}=O A . O A^{\prime}$, it follows that A, A^{\prime} are harmonic conjugates to X, Y.

Pencils in involution may similarly be obtained.
26. Problem. Given two pairs of points ($\left.\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}\right)$ on a line, to construct the centre of their involution; the double points (if any) ; and the conjugate of any point C^{\prime}.

Take any point G and construct the circles AGA', BGB'.
If these circles have a common tangent at G cutting the line at O, then $O G^{2}=O A \cdot O A^{\prime}=O B \cdot O B^{\prime}$; hence O is the centre of the involution ; the double points are X, Y where $O X=O Y=O G$; and a circle touching $O G$ at G and passing through C cuts the line at C^{\prime} such that $O C . O C^{\prime}=O G^{2}$.

But if not, the circles intersect again at some point H ; let GH cut the line at O .

Then $O G \cdot O H=O A \cdot O A^{\prime}=O B \cdot O B^{\prime}$: hence O is the centre of the involution; if O lies in GH produced, the power is positive

Fig. 19.
and the double points are X, Y where $\mathrm{OX}=\mathrm{OY}=$ the tangent from O to either circle; also the circle GHC cuts the line at C^{\prime} the conjugate of C , for $\mathrm{OC} \cdot \mathrm{OC}^{\prime}=\mathrm{OG} . \mathrm{OH}$.

Fig. 20.
27. Corollary. If the power is positive either B^{\prime} both lie on the other side of O from $A A^{\prime}$, or if on the same side and $O B>O A, O B^{\prime}<O A^{\prime}$.

Hence one of the segments $A A^{\prime}, B B^{\prime}$ lies entirely without or entirely within the other.

But if the power is negative let A, B be on the same side of O and $O B<O A$, then $O B^{\prime}>O A^{\prime}$ in absolute length, hence the segments ${A A^{\prime}}^{\prime}, \mathrm{BB}^{\prime}$ overlap.

Otherwise. If A and A^{\prime} are both outside the segment $B B^{\prime}$, in passing along the arc $A G A^{\prime}$ from A we enter the circle $B G B^{\prime}$ at G, and we must cross it again before reaching A^{\prime}, hence G, H lie on the same side of the line and the power is positive. But if $A A^{\prime}$ overlaps $B B^{\prime}$ we must cross the circle $B G B^{\prime}$ on each side of the line to get from A to $A^{\prime} ; G, H$ lie on opposite sides of the line, and the power is negative.

Exercise. The locus of the centre of the involution determined on any straight line cutting two circles by the pairs of points of section is the radical axis.

Fig. 21.
28. Problem. Given two independent rows in involution on the same line to find a common pair of conjugate points.

Let O, O^{\prime} be the centres, take any point G not on the line, and on $O G, O^{\prime} G$ find points H, H^{\prime} such that $O G . O H$ and $O^{\prime} G . O^{\prime} H^{\prime}$ are equal to the powers of the respective rows. The circle $G H H^{\prime}$ will cut $0 O^{\prime}$ at the required points P, Q.

For $O P \cdot O Q=O G . O H$ and $O^{\prime} P \cdot O^{\prime} Q=O^{\prime} G \cdot O^{\prime} H^{\prime}$.
If the power for O is negative, G, H lie on opposite sides of the line, and the circle $G H H^{\prime}$ must cut the line, whether the power for O^{\prime} is positive or negative.

If both powers are positive let D, E and D^{\prime}, E^{\prime} be the (real) double points of the two involutions: the required points are harmonically conjugate to $D E$ and to $D^{\prime} E^{\prime}$, hence they are the double points of the involution given by $D E, D^{\prime} E^{\prime}$.

They are real or imaginary according as segments $D E, D^{\prime} E^{\prime}$ do not or do overlap.
29. Problem. Given five rays $a, a^{\prime}, b, b^{\prime}, c$ through a centre s , to find a sixth ray c^{\prime} such that $a a^{\prime} b b^{\prime} c c^{\prime}$ may be in involution.

We wish to have $\quad\left\{a a^{\prime} b c\right\}=\left\{a^{\prime} a b^{\prime} c^{\prime}\right\}$ and

$$
\therefore\left\{a a^{\prime} b c\right\}=\left\{a a^{\prime} c^{\prime} b^{\prime}\right\} .
$$

Fig. 22.

We shall then find a pencil at another centre which is in perspective with both of these.

Draw any two lines through a point A^{\prime} on a^{\prime}, one cutting a, b, c at $\mathrm{G}, \mathrm{B}, \mathrm{C}$, the other cutting a, b^{\prime} at $\mathrm{F}, \mathrm{B}^{\prime}$.

Join CB^{\prime} to cut a at A ; join AB cutting $\mathrm{A}^{\prime} \mathrm{F}^{\prime}$ at C^{\prime}; then SC^{\prime} is the ray required.

For $\left\{a a^{\prime} b c\right\}$ is in perspective with $A\left\{\mathrm{GA}^{\prime} \mathrm{BC}\right\}$, i.e. $\mathrm{A}\left\{\mathrm{FA}^{\prime} \mathrm{C}^{\prime} \mathrm{B}^{\prime}\right\}$ which is in perspective with $\left\{a^{\prime} a^{\prime} c^{\prime} b^{\prime}\right\}$.

Or: $\quad\left\{a a^{\prime} b c\right\}=\left\{G A^{\prime} B C\right\}=\left\{F A^{\prime} C^{\prime} B^{\prime}\right\}$ (by projection from A),

$$
=\left\{a a^{\prime} c^{\prime} b^{\prime}\right\}=\left\{a^{\prime} a b^{\prime} c^{\prime}\right\} .
$$

Theorem. The lines joining any point to the three pairs of vertices of a (complete) four-side are in involution.

For, if the lines $A B, A B^{\prime}$ cut $A^{\prime} B, A^{\prime} B^{\prime}$ at $B, C, C^{\prime}, B^{\prime}$ so that $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ are opposite vertices, we have the pencil $\left\{S A, S A^{\prime}, S B, S C\right\}$ which we may write $S\left\{A^{\prime} B C\right\}$ equal on $B C$ to the row $\left\{G A^{\prime} B C\right\}$ where $S A$ cuts $B C$ at G; and, by projection from A, this row $=\left\{F A^{\prime} B^{\prime} C^{\prime}\right\}=$ pencil $S\left\{A A^{\prime} C^{\prime} B^{\prime}\right\}=S\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}$, hence SA, SA; $\mathrm{SB}, \mathrm{SB}^{\prime}$; $\mathrm{SC}, \mathrm{SC}^{\prime}$ are in involution.
30. Problem. Two pairs of lines $a, a^{\prime} ; b, b^{\prime}$ pass through

Fig. 23.
the point S , to draw two lines through S in involution with a, a^{\prime} and b, b^{\prime} and perpendicular to each other.

Draw a line parallel to a^{\prime}, to cut a, b, b^{\prime} at A, B, B' respectively, and construct the circle SBB', cutting a again at T .

Let the perpendicular bisector of $S T$ cut BB^{\prime} at M , and construct a circle with M as centre passing through S and T.

If this circle cuts BB^{\prime} at O and $\mathrm{O}^{\prime}, \mathrm{SO}$ and SO^{\prime} are the required lines.

For $A O \cdot A O^{\prime}=A S \cdot A T=A B \cdot A B^{\prime}$.
$\therefore \mathrm{SO}, \mathrm{SO}^{\prime}$ are in involution with $a, a^{\prime}, b, b^{\prime}$.
Also OSO', being the angle in a semicircle, is a right angle.
31. Theorem. If, in a pencil in involution, there are two pairs of conjugate rays each consisting of two lines at right angles to each other, then every ray is perpendicular to its conjugate.

Fig. 24.
Let a be perpendicular to its conjugate a^{\prime}, and b to its conjugate b^{\prime}.

Draw a line parallel to a^{\prime} to cut a, b, b^{\prime} at $\mathrm{A}, \mathrm{B}, \mathrm{B}^{\prime}$ respectively: and let this line cut any other conjugate rays c, c^{\prime} at C, C^{\prime}.
A lies between B, B^{\prime} and $B S B^{\prime}$ is a right angle,

$$
\therefore A B \cdot A B^{\prime}=-A S^{2} .
$$

But $A C \cdot A C^{\prime}=A B \cdot A B^{\prime}(\S 23), \therefore A C \cdot A C^{\prime}=-A S^{2}$, hence $C C^{\prime}$ is a right angle.
P. P. G.

Corollary. If a right angle be turned about its vertex its arms cut any transversal in an involution.

Theorem. The middle points of the diagonals of a four-side are collinear.

Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be the three pairs of opposite vertices. Construct circles on $A A^{\prime}, \mathrm{BB}^{\prime}$ as diameters intersecting at \mathbf{s}; then in the involution $\mathbf{S}\left\{\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{CC}^{\prime}\right\}$ two pairs of rays $\mathrm{SA}, \mathrm{SA}^{\prime}$; $\mathrm{SB}, \mathrm{SB}^{\prime}$ are perpendicular, hence $\mathrm{SC}, \mathrm{SC}^{\prime}$ are also perpendicular, and hence \boldsymbol{S} lies on the circle whose diameter is CC^{\prime}.

Similarly T the other intersection of the two former circles lies also on this circle. Hence the three circles are coaxal, and therefore their centres, i.e. the middle points of $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$, are colliuear.
32. There is no single ray corresponding to the centre of a linear involution, but the pair of perpendicular rays possess similar properties.

Fig. 25.

Thus, if o, o^{\prime} are lines at right angles in involution with $a a^{\prime}$ and $b b^{\prime}$, and we draw a line parallel to o^{\prime} to cut o, a, a^{\prime}, b, b^{\prime} at $O, A, A^{\prime}, B, B^{\prime}$ we have $O A . O A^{\prime}=O B \cdot O B^{\prime}$, but $S O$ is perpendicular to OA,

$$
\therefore \tan \hat{o a} \cdot \tan \hat{o a^{\prime}}=\tan \hat{o b} \cdot \tan o \hat{b}^{\prime}
$$

Conversely. If $\tan \hat{o a} \cdot \tan \hat{o a^{\prime}}=\tan \hat{o b} \cdot \tan \hat{o b^{\prime}}$, then a, a^{\prime} and b, b^{\prime} are in involution with o and a line perpendicular to o.

Double rays. There will be two double or focal rays x, y such that $\tan ^{2} \hat{o x}=\tan ^{2} \hat{o y}=\tan \hat{o a} \cdot \tan \hat{o a^{\prime}}$; and these will be real or imaginary according as $\tan \hat{o a} \cdot \tan \hat{o a^{\prime}}$ is positive or negative.

By a proof similar to that of $\S 27$, or by deduction from the result of § 27 , we may shew that the double rays are real or imaginary according as the angle between a, a^{\prime} does not or does overlap the angle between b and b^{\prime}.

EXAMPLES. II.

1. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ form an involution, and D, D^{\prime} are in involution with A, A^{\prime} and B, B^{\prime}, prove that they are also in involution with A, A^{\prime}, C, C^{\prime}, and with $B, B^{\prime}, C, C^{\prime}$.
2. If $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ and $\left\{A B C D^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\}$, then the three pairs of points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ form an involution. Also D, D^{\prime} are a pair of points in involution with any two of the other three pairs.
3. Three pairs of harmonic conjugates to two given points on a straight line form an involution.
4. Any straight line cuts three circles passing through the same two points in an involution.
5. A transversal cuts a system of coaxal circles in pairs of points in involution. Find, also, the centre and the double points of the involution.
6. If the circles of a coaxal system do not cut their radical axis the double points of the involution traced on the line of centres are the point circles of the system.
7. If the coaxal circles have a real common chord find the position of the double points of the involution on the line through the centres of the circles, and the value of the power.
8. The opposite pairs of sides of a parallelogram, and the two diagonals cut any transversal in the pairs of points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; prove, by similar triangles, that $\left\{A B C C^{\prime}\right\}=\left\{B^{\prime} A^{\prime} C C^{\prime}\right\}$, and deduce that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form an involution.
9. A, B, C, D, E, \ldots and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, \ldots$ are two sets of points in a straight line such that the cross-ratio of any four points of the first set equals the cross-ratio of the four corresponding points of the second set, e.g. $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, and this remains true when a pair of the points are exchanged, viz. $\left\{A B C D^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\}$, etc., prove that $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ; \ldots$ are pairs of points in involution.
10. Any transversal is cut by the sides $B C, C A, A B$ of a triangle at $\mathrm{L}, \mathrm{M}, \mathrm{N}$ respectively; and $\mathrm{L}^{\prime}, \mathrm{M}^{\prime}, \mathrm{N}^{\prime}$ are three other points on the transversal, such that $\mathrm{L}, \mathrm{L}^{\prime} ; \mathbf{M}, \mathbf{M}^{\prime} ; \mathbf{N}, \mathbf{N}^{\prime}$ form an involution. Prove that AL^{\prime}, $\mathrm{BM}^{\prime}, \mathrm{CN}^{\prime}$ are concurrent.
11. The cross-ratio of four points $A B C D$ on one line is equal to that of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ on another line; and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are projected on to the first line, using the intersection of $A B^{\prime}$ and $A^{\prime} B$ as centre of projection. Prove that an involution is obtained.

CHAPTER III

PROJECTIVE ROWS AND PENCILS

33. Two rows of points A, B, C, D, E, F, \ldots on a, and A^{\prime}, B^{\prime}, $C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, \ldots$ on a^{\prime} are in perspective if $A A^{\prime}, B B^{\prime}, C C^{\prime}$, etc. all pass through the same point S; and S is the centre of perspective.

It has been proved that $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, etc.
Problem. If $A B C$ on a are not in perspective with $A^{\prime} B^{\prime} C^{\prime}$ on a^{\prime}, to find a point D^{\prime} on a^{\prime} corresponding to D on a, such that $\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\{A B C D\}$.

Fig. 26.

Join ${B B^{\prime}}^{\prime}$ cutting $A A^{\prime}$ at S, and $C C^{\prime}$ cutting $A A^{\prime}$ at T.
Let $C B^{\prime}$ cut $A A^{\prime}$ at P and $S D$ at Q, then $T Q$ will cut $A^{\prime} B^{\prime}$ at the required point D^{\prime}.

For, by projection from $\mathrm{S},\{\mathrm{ABCD}\}=\left\{\mathrm{PB} \mathrm{B}^{\prime} \mathrm{CQ}\right\}$ and, by projection from $T,\left\{P B^{\prime} C Q\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$.

Exercise. Find another solution by converting the ratio $\{A B C D\}$ into the ratio $A K: A L$, as in the proof that a cross-ratio is projective (§ 17).

Theorem. If we take $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on a and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ on a^{\prime}, and find $\mathrm{K}^{\prime}, \mathrm{L}^{\prime}, \mathrm{M}^{\prime}, \mathrm{N}^{\prime}$ on a^{\prime} corresponding to $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ on a, so that $\{A B C K\}=\left\{A^{\prime} B^{\prime} C^{\prime} K^{\prime}\right\}$, etc., etc., etc., then shall

$$
\{K L M N\}=\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\} .
$$

For K, L, M, N are in perspective with four points on CB', and these points are in perspective again with $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ respectively.

Definition. Two rows of points such that the cross-ratio of any four points of one is equal to the cross-ratio of the four corresponding points of the other are called projective rows.

Definition. If $A C: C B=A^{\prime} C^{\prime}: C^{\prime} B^{\prime}$, then $A K: K B=A^{\prime} K^{\prime}: K^{\prime} B^{\prime}$, and $K L: L M=K^{\prime} L^{\prime}: L^{\prime} M^{\prime}$; in this case the rows are said to be similar.
34. Problem. To find a third row in perspective with each of two given projective rows.

Fig. 27.

Let KLMN correspond to $K^{\prime} L^{\prime} M^{\prime} N^{\prime}$, take any point E, and let $E L$, $E L^{\prime}$ meet $K K^{\prime}$ at S, S^{\prime}; let $S M, S^{\prime} M^{\prime}$ meet at F.

Then, if $E F$ meets $K K^{\prime}$ at D, and $S N$ at G, we have

$$
\{K L M N\}=\{D E F G\}=\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\},
$$

hence $S^{\prime} G$ cuts $K^{\prime} L^{\prime}$ at N^{\prime} : and therefore the row on $E F$ is in perspective with the rows on $K L$ and on $K^{\prime} L^{\prime}$.

There are an infinite number of positions of the line EF.
Note. This is a solution of the previous problem, the solution using CB^{\prime} being a special case of the general construction here given.

If the two lines a, a^{\prime} intersect at O , we shall find a point P^{\prime} on a^{\prime} such that $\{A B C O\}=\left\{A^{\prime} B^{\prime} C^{\prime} P^{\prime}\right\}$, so that O regarded as a point on the first row corresponds to some other point P^{\prime} on the second row, but when we take O to be a point of the second row we get some other point N on the first row.
35. Theorem. If two projective rows are such that the intersection corresponds to itself the rows are in perspective.

Let the intersection O correspond to itself, also A, B, K to $A^{\prime}, B^{\prime}, K^{\prime}$. Join $A A^{\prime}, B B^{\prime}$ intersecting at S.

Then pencil $S\{O A B K\}=\{O A B K\}=\left\{O A^{\prime} B^{\prime} K^{\prime}\right\}$, hence $s K$ passes through K^{\prime}; hence and similarly the join of any pair of corresponding points passes through S .

Therefore the rows are in perspective with S as centre.
Theorem. If the joins of three pairs of corresponding points of two projective rows are concurrent, the rows are in perspective.

For, if $A A^{\prime}, B B^{\prime}, C C^{\prime}$ meet at S; and K is any other point on $A B$. Then $S K$ meets $A^{\prime} B^{\prime}$ at $K^{\prime \prime}$, so that $\left\{A^{\prime} B^{\prime} C^{\prime} K^{\prime \prime}\right\}=\{A B C K\}$. Hence $K^{\prime \prime}$ coincides with the point K^{\prime} on $A^{\prime} B^{\prime}$, corresponding to K on $A B$; i.e. $K K^{\prime}$ passes through S.
36. Projective axis of two rows. If projective rows be taken on two straight lines which intersect at P, then P is a point of both rows. Let P on the first row correspond to B^{\prime} on the second, and let A on the first correspond to P on the second.

Take any two points K, L of the first row, and the corresponding points K^{\prime}, L^{\prime} of the second, so that $\{A P K L\}=\left\{P B^{\prime} K^{\prime} L^{\prime}\right\}$.

But $\left\{P B^{\prime} K^{\prime} L^{\prime}\right\}=\left\{B^{\prime} P L^{\prime} K^{\prime}\right\}$, hence $\{A P K L\}=\left\{B^{\prime} P L^{\prime} K^{\prime}\right\}$, and these are equal cross-ratios on two lines, with the intersection P corresponding to itself, hence they are in perspective,

$\therefore \mathrm{KL}^{\prime}, \mathrm{K}^{\prime} \mathrm{L}$ intersect on AB^{\prime}.

Hence, if K, L on one row correspond to K^{\prime}, L^{\prime} on a projective row, the locus of the intersection of $K L^{\prime}$ and $K^{\prime} L$ is a fixed straight line, which we may call the projective axis of the two rows.
37. Vanishing Points. If we have three points A, B, C on a, and corresponding points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ on a^{\prime}, we can find a point I^{\prime} on a^{\prime} such that $\left\{A^{\prime} B^{\prime} C^{\prime} 1^{\prime}\right\}=-A C: C B$.

Take any point \mathbf{E} (fig. 28) and let EB, $\mathbf{E B}^{\prime}$ meet AA^{\prime} at $\mathbf{S}, \mathbf{s}^{\prime}$; and let $\mathrm{sc}, \mathrm{s}^{\prime} \mathbf{c}^{\prime}$ meet at F . Draw Sk parallel to AB to meet $E F$ at K, let $S^{\prime} K$ cut $A^{\prime} B^{\prime}$ at I^{\prime}. Let $E F$ cut $A A^{\prime}$ at D.

Then $\left\{A^{\prime} B^{\prime} C^{\prime} I^{\prime}\right\}=\{D E F K\}$, which is the cross-ratio of the pencil formed at S by SA, SB, SC, SK.

But $\mathbf{S K}$ is parallel to the transversal $\mathbf{A B}$, hence the cross-ratio of $s\{A B C K\}=-A C / C B . \quad \therefore$ a point I^{\prime} is found such that

$$
\left\{A^{\prime} B^{\prime} C^{\prime} I^{\prime}\right\}=-A C / C B .
$$

There is no finite point I on $A B$, such that $\{A B C I\}=-A C / C B$, and we may say either that I ' is the one point of a^{\prime} to which there is no point of a to correspond, or that I^{\prime} corresponds to a point at infinity on a (such that $\mathrm{AI}: \mathrm{IB}=-1$). I^{\prime} is called the vanishing point.

Similarly we get a vanishing point J on a, corresponding to the point at infinity I^{\prime} on a^{\prime}.

Corollary. In the case of similar rows this construction fails. For $A^{\prime} C^{\prime}: C^{\prime} B^{\prime}=A C: C B$.
\therefore the cross-ratio of $\mathrm{S}^{\prime}\{\mathrm{DEFK}\}=-\mathrm{A}^{\prime} \mathrm{C}^{\prime}: \mathrm{C}^{\prime} \mathrm{B}^{\prime}$.
$\therefore A^{\prime} B^{\prime}$ is parallel to $S^{\prime} K$, and I^{\prime} is at infinity.
Hence the vanishing points of two similar rows are at infinity.
38. Theorem. The product of the distances of corresponding points from the vanishing points is constant.

Fig. 28.
If $S K$ parallel to $A B$ cuts $E F$ at $K, S^{\prime} L$ parallel to $A^{\prime} B^{\prime}$ cuts $E F$ at L; we have
and

$$
\begin{aligned}
& \{D E K L\}=-1: \frac{A J}{B J}, \\
& \{D E K L\}=-\frac{A^{\prime} I^{\prime}}{I^{\prime} B^{\prime}} .
\end{aligned}
$$

Hence

$$
\frac{J A}{\sqrt{B}} \cdot \frac{I^{\prime} A^{\prime}}{I^{\prime} B^{\prime}}=1
$$

or

$$
J B \cdot I^{\prime} B^{\prime}=J A \cdot I^{\prime} A^{\prime} ;
$$

similarly JC. $I^{\prime} C^{\prime}=J A \cdot I^{\prime} A^{\prime}$;
and generally if P corresponds to P^{\prime}, we have $J P . I^{\prime} P^{\prime}=J A . I^{\prime} A^{\prime}$.
Special case. When the rows are in perspective; SJ is parallel to $A^{\prime} B^{\prime}$ and $S I^{\prime}$ to $A B$. Hence, O being the intersection of the rows,

$$
\begin{aligned}
J A: J S & =I^{\prime} S: I^{\prime} A^{\prime}, \\
\therefore \quad J A \cdot I^{\prime} A^{\prime} & =I^{\prime} O \cdot J O,
\end{aligned}
$$

similarly

$$
\text { JO. } I^{\prime} O=J B \cdot I^{\prime} B^{\prime}=J P \cdot I^{\prime} P^{\prime} \text {. }
$$

Algebraically. Let O, A, B, C, X correspond to $O^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}, X^{\prime}$, let

Fig. 29.

$$
\mathrm{OA}=a, \mathrm{OB}=b, \mathrm{OC}=c, \mathrm{OX}=x ;
$$

$$
\begin{gathered}
\mathrm{O}^{\prime} \mathrm{A}^{\prime}=a^{\prime}, \mathrm{O}^{\prime} \mathrm{B}^{\prime}=b^{\prime}, \mathrm{O}^{\prime} \mathrm{C}^{\prime}=c^{\prime}, \mathrm{O}^{\prime} \mathrm{X}^{\prime}=x^{\prime}, \\
\therefore \frac{c-a}{b-c}: \frac{x-a}{b-x}=\frac{c^{\prime}-a^{\prime}}{b^{\prime}-c^{\prime}}: \frac{x^{\prime}-a^{\prime}}{b^{\prime}-x^{\prime}}, \\
\therefore \frac{x-a}{b-x}=\lambda \cdot \frac{x^{\prime}-a^{\prime}}{b^{\prime}-x^{\prime}}, \text { where } \lambda=\frac{c-a}{b-c}: \frac{c^{\prime}-a^{\prime}}{b^{\prime}-c^{\prime}} \\
\therefore x x^{\prime}(1-\lambda)-x\left(b^{\prime}-\lambda a^{\prime}\right)-x^{\prime}(a-\lambda b)+a b^{\prime}-a^{\prime} b=0, \\
x x^{\prime}+l^{\prime} x+l x^{\prime}+l l^{\prime}=k, \\
(x+l)\left(x^{\prime}+l^{\prime}\right)=k .
\end{gathered}
$$

If $\mathrm{OJ}=-l$ and $\mathrm{O}^{\prime} \mathrm{I}^{\prime}==-l^{\prime}$, then $\mathrm{JX} . \mathrm{I}^{\prime} \mathrm{X}^{\prime}=k$.
Also when X^{\prime} is at infinity $J X$ is o, hence J is the point which corresponds to the point at infinity of $A^{\prime} B^{\prime}$: similarly I^{\prime} corresponds to the point at infinity on $A B$.
39. Pencils. When two pencils are formed by joining the various points of a line to two vertices, i.e. when intersections of corresponding rays are collinear, the pencils are said to be in perspective, and the line of intersection is the axis of perspective.

The cross-ratio of four rays of one pencil equals the cross-ratio of the four rays corresponding in the other, being the cross-ratio of the four points in which they cut the axis.

Problem. Given three lines a, b, c through S , and three lines $a^{\prime}, b^{\prime}, c^{\prime}$ through \mathbf{s}^{\prime}, such that $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are not collinear points, to construct a line l^{\prime} through s^{\prime} corresponding to l through S , such that $\left\{a^{\prime} b^{\prime} c^{\prime} l^{\prime}\right\}=\{a b c l\}$.

Fig. 30.
Let $a a^{\prime}$ intersect at A , through A draw any line cutting b, c, l at $\mathrm{B}, \mathrm{C}, \mathrm{L}$; and any line cutting $b^{\prime}, \mathrm{c}^{\prime}$ at $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$. Let $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ meet
at O, join $O L$ to cut $A B^{\prime}$ at L^{\prime}. Then $S^{\prime} L^{\prime}$ is the required ray l^{\prime}. For $\{a b c l\}=\{A B C L\}$ and $\left.\left\{a^{\prime} b^{\prime} c^{\prime}\right\}^{\prime}\right\}=\left\{A B^{\prime} C^{\prime} L^{\prime}\right\}$, but, by projection from O, we have $\{A B C L\}=\left\{A B^{\prime} C^{\prime} L^{\prime}\right\}$.

Corollary. Take any four lines k, l, m, n through s , and the points K, L, M, N where they cut AB, from centre O project these on $A B^{\prime}$ giving $K^{\prime} L^{\prime} M^{\prime} N^{\prime}$; and thus, by joining $K^{\prime} L^{\prime} M^{\prime} N^{\prime}$ to s^{\prime}, get rays $k^{\prime} l^{\prime} m^{\prime} n^{\prime}$ through s^{\prime} corresponding to klmn. Then $\{k l m n\}=\{K L M N\}$ and $\left\{k^{\prime} l^{\prime} m^{\prime} n^{\prime}\right\}=\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}$; but, by projection from $O,\{K L M N\}=\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}$.

Hence the cross-ratio of any four rays through S equals the cross-ratio of the corresponding rays through s^{\prime}.

Definition. Two pencils, such that the cross-ratio of any four rays of the one is equal to that of the corresponding rays of the other, are called projective pencils.

Corollary. From the above construction it follows that, when two pencils are projective, we can, in an infinite number of ways, find a third pencil which is in perspective with each of them.
40. Theorem. If the line $\mathbf{S S}^{\prime}$ regarded as a ray of the pencil at \mathbf{S} corresponds to the same line in the pencil at S^{\prime}, the rows are in perspective.

Fig. 31.
Let SS^{\prime} be x through S , and x^{\prime} through S^{\prime}, and let a, b through \mathbf{S} meet a^{\prime}, b^{\prime} through \mathbf{S}^{\prime} at \mathbf{A}, B.

Join $A B$ cutting $S S^{\prime}$ at X, and let c through S cut $A B$ at C.
Then $\{a b c x\}=\{A B C X\}$.
But $S^{\prime} A$ is a^{\prime}; $S^{\prime} B$ is b^{\prime}; $S^{\prime} X$ is x^{\prime}; hence $s^{\prime} C$ is c^{\prime}; i.e. any two corresponding rays c, c^{\prime} intersect on $A B$.

Theorem. If the intersections of three pairs of corresponding rays are collinear the pencils are in perspective.

For if a, b, c meet $a^{\prime}, b^{\prime}, c^{\prime}$ on the line ABC cutting SS^{\prime} at X , we have $\{a b c x\}=\{\operatorname{ABCX}\}=\left\{a^{\prime} b^{\prime} c^{\prime} x^{\prime}\right\}$: so that $S S^{\prime}$ corresponds to $\mathrm{S}^{\prime} \mathrm{S}$.

Corresponding Pairs of Perpendicular Rays.
41. Problem. In two pencils in perspective to find a pair of perpendicular rays of the one, such that the corresponding rays of the other are also perpendicular.

Fig. 32.
Let $\mathrm{s}, \mathrm{s}^{\prime}$ be the vertices of the pencils and f the axis. Bisect SS^{\prime} at right angles by a line meeting f at O , and make a circle with O as centre and $O S$ as radius (which will pass through S^{\prime}), cutting f at I, J.

Then SI, SJ are perpendicular, and so also are the corresponding rays $\mathbf{s}^{\prime} \mathbf{I}, \mathbf{s}^{\prime} \mathbf{J}$. If $\mathbf{s s ^ { \prime }}$ is perpendicular to $f, \mathbf{s s}^{\prime}$ and $\mathbf{S I}, \mathbf{s}^{\prime} \mathbf{1}^{\prime}$ perpendicular to $S S^{\prime}$ give the solution. There is only one solution of the problem in any case.

Problem. In two projective pencils to find the pair of perpendicular rays of the one such that the corresponding rays of the other are also perpendicular.

Let S, S^{\prime} be the vertices, and let the ray at S^{\prime} corresponding to SS^{\prime} at S be $\mathrm{S}^{\prime} \mathrm{T}$; turn the S^{\prime} pencil round S^{\prime} as a centre until $S^{\prime} T$ is in a straight line with $\mathbf{S S}^{\prime}$. The two pencils will then be in perspective, and the solution may be found by using the previous problem.

Theorem. If $i j$ are perpendicular rays at S corresponding to perpendicular rays $i^{\prime} j^{\prime}$ at s^{\prime}, and x, x^{\prime} are any other pair of rays, and if we draw lines parallel respectively to i and j^{\prime} cutting j, x at J, X and i^{\prime}, x^{\prime} at I^{\prime}, X^{\prime}, the value of $J X . I^{\prime} X^{\prime}$ is constant.

Fig. 33.
Let any fixed corresponding rays a, a^{\prime} cut these lines at A, A^{\prime}. Then $\{a x j i\}=J A: J X$ and $\left\{a^{\prime} x^{\prime} j^{\prime} i^{\prime}\right\}=I^{\prime} X^{\prime}: I^{\prime} A^{\prime}$; hence

$$
J X \cdot I^{\prime} X^{\prime}=J A \cdot I^{\prime} A^{\prime}=\text { constant. }
$$

42. (Trigonometrical.) Let rays $a b c x$ at S make angles $\alpha, \beta, \gamma, \theta$ with a line through S , and the corresponding rays $a^{\prime} b^{\prime} c^{\prime} x^{\prime}$ at S^{\prime} make angles $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \theta^{\prime}$ with a line through S^{\prime}.

Then

$$
\begin{aligned}
& \frac{\sin \hat{a x}}{\sin \hat{x b}}: \frac{\sin \hat{a c}}{\sin \hat{c b}}=\frac{\sin \hat{a}^{\prime} x^{\prime}}{\sin \hat{x^{\prime} b^{\prime}}}: \frac{\sin \hat{a}^{\prime c^{\prime}}}{\sin \hat{c^{\prime} b^{\prime}}} \\
& \therefore \frac{\sin \overline{\theta-a}}{\sin \overline{\beta-\theta}}=k \cdot \frac{\sin \overline{\theta^{\prime}-a^{\prime}}}{\sin \overline{\beta^{\prime}-\theta^{\prime}}}
\end{aligned}
$$

i.e. $\quad \sin \overline{\theta-\alpha} \sin \overline{\theta^{\prime}-\beta^{\prime}}=k \cdot \sin \overline{\theta^{\prime}-\alpha^{\prime}} \cdot \sin \overline{\theta-\beta}$,
$\therefore(\tan \theta-\tan \alpha)\left(\tan \theta^{\prime}-\tan \beta^{\prime}\right)=k .\left(\tan \theta^{\prime}-\tan \alpha^{\prime}\right)(\tan \theta-\tan \beta)$, hence $\quad \tan \theta \cdot \tan \theta^{\prime}+l \tan \theta^{\prime}+l^{\prime} \tan \theta+m=0$.

Corollary. This may be written
$(\tan \theta+\tan \lambda)\left(\tan \theta^{\prime}+\tan \lambda^{\prime}\right)=c(1-\tan \theta \tan \lambda)\left(1-\tan \theta^{\prime} \tan \lambda^{\prime}\right)$, where $\frac{l-c \tan \lambda \tan \lambda^{\prime}}{1}=\frac{\tan \lambda^{\prime}+c \tan \lambda}{l^{\prime}}=\frac{\tan \lambda+c \tan \lambda^{\prime}}{l}$ $=\frac{\tan \lambda \cdot \tan \lambda^{\prime}-c}{m}$,
three equations which determine $\lambda, \lambda^{\prime}$ and c.
Hence

$$
\tan (\theta+\lambda) \cdot \tan \left(\theta^{\prime}+\lambda^{\prime}\right)=c
$$

If we measure the angles θ, θ^{\prime} from another pair of lines through $\mathrm{S}, \mathrm{s}^{\prime}$ at angles $\lambda, \lambda^{\prime}$ to those originally used, this becomes $\tan \phi \cdot \tan \phi^{\prime}=c$.

Further, when $\phi=\frac{\pi}{2}, \phi^{\prime}=0$; when $\phi=0, \phi^{\prime}=\frac{\pi}{2}$. So that if i, j^{\prime} are the lines through $\mathrm{s}, \mathrm{s}^{\prime}$ from which the angles ϕ, ϕ^{\prime} are measured; the line at S^{\prime} corresponding to i is a line i^{\prime} perpendicular to j^{\prime}; while j^{\prime} corresponds to a line j at s perpendicular to i.

Hence we have two rays $i j$ at S at right angles to each other, and their corresponding rays $i^{\prime} j^{\prime}$ at S^{\prime} are also perpendicular: and if x, x^{\prime} make angles ϕ, ϕ^{\prime} with i and j^{\prime} we have $\tan \phi \cdot \tan \phi^{\prime}=c$.
43. Desargues' Theorem. If two triangles have the lines joining corresponding vertices concurrent, then the intersections of corresponding sides are collinear.

Let $A B C, D E F$ be two triangles having $A D, B E, C F$ meeting at O : and let $B C, E F$ meet at K; CA, FD at L; AB, DE at M. Let KL cut $O A, O B, O C$ at R, S, T respectively.

Then, by projection from K , we have $\{\mathrm{BESO}\}=\{\mathrm{CFTO}\}$; and, by projection from L, we have $\{A D R O\}=\{$ CFTO $\}$; hence

$$
\{B E S O\}=\{A D R O\},
$$

and these projective rows have a common homologous point O , hence BA, ED, RS are concurrent; but BA, ED meet at M, hence m lies on RS, i.e. is collinear with K and L .

Fig. 34.
Conversely. If the points K, L, M of intersection of $B C, E F$; $C A, F D ; A B, D E$ are collinear the joins $A D, B E, C F$ are concurrent.

Let BE, CF meet at O .
Join OK, OL, OM.
Then the pencil MB, ME, MK, MO is in perspective with $K B$, KE, KM, KO ; which is in perspective with LC, LF, LM, LO.

Hence MA, MD, ML, MO is projective with LA, LD, LM, LO; two projective pencils in which the ray ML corresponds to ML, hence they are in perspective, i.e. A, D, O are collinear.
44. Two triangles whose corresponding sides meet in three points lying on a straight line s, and whose corresponding
vertices are joined by three straight lines which meet at a points , are said to be in homology or in plane perspective: s is the: centre, and s the axis of homology.

Two sets of points in a plane are homologous if the joins of corresponding points are concurrent; and then the line joining two points of the one set meets the line joining the corresponding points of the other set on a fixed axis of homology.

Fig. 35.
Conversely, two sets of points are in homology if the intersections of all possible joins of the one set, with corresponding joins of the other set, are collinear, by Desargues' Theorem.

Similarly, two sets of lines are homologous if the intersections of corresponding lines are collinear ; and then the join of the intersections of two lines of the first set to the intersection of the corresponding lines of the second set passes through a fixed P. P. G.
centre of homology. Conversely, if two sets of lines are such that every possible intersection of two lines of the first set, and the corresponding intersection of the second set, are collinear with a fixed point, then the two sets of lines are in homology, by Desargues' Theorem.

The extension of Desargues' Theorem to rectilinear figures requires care. Thus if we have two sets of points A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ such that $A B, A^{\prime} B^{\prime} ; B C, B^{\prime} C^{\prime} ; C D, C^{\prime} D^{\prime} ; D A, D^{\prime} A^{\prime}$ meet at four collinear points, the figures are not generally in homology.

Fig. 36.
In fact, if $A B, B C, C D, D A$ cut s at K, L, M, N we might turn $C^{\prime} D^{\prime}$ round M without altering the position of A^{\prime}, B^{\prime} and only in one position would $C C^{\prime}$ pass through the intersection of $A A^{\prime}$ and $B B^{\prime}$.
45. Theorem. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ are two sets of four-points such that the five intersections of corresponding sides $A B, A^{\prime} B^{\prime} ; A C, A^{\prime} C^{\prime} ; A D, A^{\prime} D^{\prime} ; B C, B^{\prime} C^{\prime} ; B D, B^{\prime} D^{\prime}$ lie on a straight line, then the sixth intersection, viz. of $C D, C^{\prime} D^{\prime}$, will lie on the same straight line.

For, by Desargues' Theorem, the triangles $\mathbf{A B C}, A^{\prime} \mathbf{B}^{\prime} \mathrm{C}^{\prime}$ are in homology ; and also ABD, $A^{\prime} B^{\prime} D^{\prime}$.

Hence A^{\prime}, BB^{\prime}, CC^{\prime}, DD^{\prime} are concurrent.

Hence triangles $A C D, A^{\prime} C^{\prime} D^{\prime}$ are in homology, and therefore the intersection of $C D, C^{\prime} D^{\prime}$ is collinear with the intersections of $A C, A^{\prime} C^{\prime}$ and $A D, A^{\prime} D^{\prime}$.

Fig. 37.

Problem. Given five points $K, K^{\prime}, L, L^{\prime}, M$ on a straight line to find the sixth point M^{\prime} such that, if a pair of opposite sides of a four-point pass through K, K^{\prime}, and a second pair through L, L^{\prime}, the third pair may pass through M, M^{\prime}.

Join any point A to K, L, M; on $A M$ take any point B and join to K^{\prime}, L^{\prime}. Let $B K^{\prime}$ cut $A L$ at C, and $B L^{\prime}$ cut $A K$ at D : then $C D$ will cut the line K^{\prime} at the required point M^{\prime}.

The preceding theorem shews that when $K, K^{\prime}, L, L^{\prime}, M$ are given the position of M^{\prime} is fixed, i.e. we should get the same point M^{\prime}, wherever we placed the point A.

Corollary. Using A, B successively as centres of projection, we have

$$
\left\{K L M M^{\prime}\right\}=\left\{D C G M^{\prime}\right\}=\left\{L^{\prime} K^{\prime} M M^{\prime}\right\} ;
$$

hence

$$
\left\{K L M M^{\prime}\right\}=\left\{K^{\prime} L^{\prime} M^{\prime} M\right\} .
$$

Exercise 1. Consider the special case in which K, K^{\prime} and also L, L^{\prime} coincide.

Exercise 2. State and prove the corresponding theorem and problem relating to two sets of four lines, and the six joins of the corresponding vertices.

Projective Rows on the same straight line.

46. We may take on the same straight line two sets of three points $A, B, C ; A^{\prime}, B^{\prime}, C^{\prime}$ and to any point K find a corresponding point K^{\prime} such that $\{A B C K\}=\left\{A^{\prime} B^{\prime} C^{\prime} K^{\prime}\right\}$.

Fig. 38.
To construct the point K^{\prime} we take any other line and from centre S project A, B, C on this line, giving P, Q, R.

Also project K giving U.
Now taking PQRU find K^{\prime} on the original line such that $\{P Q R U\}=\left\{A^{\prime} B^{\prime} C^{\prime} K^{\prime}\right\}$ by the construction of $\S 30$.

Then

$$
\{A B C K\}=\{P Q R U\}=\left\{A^{\prime} B^{\prime} C^{\prime} K^{\prime}\right\} .
$$

From the construction referred to (§30) we find that if U, V, W, X are four successive positions of U (projections of K, L, M, N), giving positions $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ for K^{\prime}, then $\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}=\{U V W X\}$.

But, by projection, $\quad\{U V W X\}=\{K L M N\} ;$
hence
$\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}=\{K L M N\}$.
47. There is one position Y of U which corresponds to no finite position on $A^{\prime} B^{\prime}$, and if the projection of this on $A B$ is J, we have $\{A B C J\}=-A^{\prime} C^{\prime}: C^{\prime} B^{\prime}$.

Similarly, if we draw ST parallel to the line to cut PQ at T, and $\{P Q R T\}=\left\{A^{\prime} B^{\prime} C^{\prime} I^{\prime}\right\}$, then I^{\prime} corresponds to no finite point of the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ row.

Also $\left\{A^{\prime} B^{\prime} C^{\prime} 11^{\prime}\right\}=\{P Q R T\}$ which is the cross-ratio of a pencil whose vertex is S formed by $S P, S Q, S R, S T$, and $A B$ is parallel to one ray of this pencil, and hence $\{P Q R T\}=-A C: C B$.

Hence

$$
\left\{A^{\prime} B^{\prime} C^{\prime} 1^{\prime}\right\}=-A C: C B .
$$

J and I^{\prime} are the vanishing points of the two rows.
Further $\quad\{A B C J\}=-\frac{A^{\prime} C^{\prime}}{C^{\prime} B^{\prime}}$; hence $\frac{J A}{J B}=\frac{A C}{C B} \div \frac{A^{\prime} C^{\prime}}{C^{\prime} B^{\prime}}$;
also

$$
\left\{A^{\prime} B^{\prime} C^{\prime} I^{\prime}\right\}=-\frac{A C}{C B} ; \text { hence } \frac{I^{\prime} B^{\prime}}{I^{\prime} A^{\prime}}=\frac{A C}{C B} \div \frac{A^{\prime} C^{\prime}}{C^{\prime} B^{\prime}} \text {; }
$$

and

$$
\therefore \frac{J A}{J B}=\frac{I^{\prime} B^{\prime}}{I^{\prime} A^{\prime}} \text {, or } J B \cdot I^{\prime} B^{\prime}=J A \cdot I^{\prime} A^{\prime} \text {. }
$$

Similarly, if $\mathrm{K}, \mathrm{K}^{\prime}$ are corresponding points of the two rows, JK. I'K' $=\mathrm{JA}$. $\mathrm{I}^{\prime} \mathrm{A}^{\prime}$, i.e. is a constant k.

This constant k is called the power of the rows.
Double points. If possible let \mathbf{E} be a double point, i.e. a point such that $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E\right\}$, so that the point of the second row corresponding to \mathbf{E} on the first row is the point \mathbf{E} itself. Let O be the middle point of I'J.

Then JE. $I^{\prime} E=J A . I^{\prime} A=k$. But JE. $I^{\prime} E=\mathrm{OE}^{2}-\mathrm{OJ}^{2}$ (Euc. iI. $5,6)$.

$$
\therefore \mathrm{OE}^{2}=k+\mathrm{OJ}^{2} .
$$

Hence, if $\left(k+\mathrm{OJ}^{2}\right)$ is positive, there are two real double points E, F equally distant from O;
if $k=-\mathrm{OJ}^{2}$, the two double points coincide at O ;
if $k<-O J^{2}$, the double points are imaginary.
48. Problem. From the vanishing points J, I^{\prime}, and a pair of corresponding points A, A^{\prime} to construct the point corresponding to any point K.

Fig. 39.
At J erect a perpendicular $J Q$ equal to $J A$, and at I^{\prime} a perpendicular $I^{\prime} Q^{\prime}$ equal to $I^{\prime} A^{\prime}$, placing them on opposite sides of the line if $J A, I^{\prime} A^{\prime}$ is positive, but on the same side if negative. On $Q Q^{\prime}$ as diameter make a circle. Join $Q K$ cutting the circle in U, then $U Q^{\prime}$ cuts the line at the required point K^{\prime}.

For the angle $Q U Q^{\prime}$ being the angle in a semicircle is a right angle : hence UKI' is the supplement of $U Q^{\prime} I^{\prime}$.

Hence $\hat{Q K J}=I^{\prime} Q^{\prime} K^{\prime}$, and so the triangles $Q J K, K^{\prime} I^{\prime} Q^{\prime}$ are similar, viz. JK:JQ = $I^{\prime} Q^{\prime}$: $I^{\prime} K^{\prime}$, and

$$
\therefore J K \cdot I^{\prime} K^{\prime}=J Q \cdot I^{\prime} Q^{\prime}=J A \cdot I^{\prime} A^{\prime} .
$$

Further, if $Q J, Q^{\prime} I^{\prime}$ cut the circle again at R, S respectively, in the first case,
(1) when $J K$ is negative, U lies in semicircle RQS, hence K^{\prime} lies to the left of I^{\prime}, and $I^{\prime} K^{\prime}$ is negative;
(2) when $J K$ is positive, U lies in semicircle $R Q^{\prime} S$, hence $I^{\prime} K^{\prime}$ is positive.

So that in all cases JK. I'K' is positive.
A similar investigation will shew that, in case (2), JK . $\mathrm{I}^{\prime} \mathrm{K}^{\prime}$ is always negative.

Corollary. The double points are the points at which the circle cuts the line.

Theorem. If two lines turn about a common point, so that they include a constant angle, i.e. so that the lines turn always through equal angles in the same direction, they trace out two equiangular pencils ; hence they trace two projective rows on any straight line.

Also, if the two straight lines turn in opposite directions always through equal angles, they trace out two projective rows on any straight line.
49. Problem. To find, if possible, a row which is in perspective with both the A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ rows.

If the new row is on a line cutting the line containing the rows at X , then X on the new row must correspond to itself regarded as a point of either the A, B, C or $A^{\prime}, B^{\prime}, C^{\prime}$ rows. [For the intersection of two rows in perspective corresponds to itself.]

Hence \mathbf{X} must be at one of the double points \mathbf{E}, F of the rows.
If, then, through \mathbf{E} or \mathbf{F} we draw any straight line, and project the A, B, C row on this line, so that A, B, C project into K, L, M, then $\quad\{A B C E\}=\{K L M E\}$, but $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E\right\}$:
hence $\left\{A^{\prime} B^{\prime} C^{\prime} E\right\}=\{K L M E\}$, and therefore $A^{\prime} K, B^{\prime} L, C^{\prime} M$ are collinear, and hence rows $K, L, M \ldots, A^{\prime}, B^{\prime}, C^{\prime} \ldots$ are in perspective.
50. Two projective pencils with a common vertex may be drawn by taking two corresponding sets of three lines a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$. There will be one pair of rays i, j at right
angles in the first set, whose corresponding rays i^{\prime}, j^{\prime} are also perpendicular ; and if on i^{\prime} and j we take unit distances SI^{\prime} and SJ and draw through I^{\prime} and J lines parallel to j^{\prime} and i respectively to cut k^{\prime} and k at K^{\prime} and K , then $\mathrm{JK} . \mathrm{I}^{\prime} \mathrm{K}^{\prime}$ is constant.

Fig. 40.
Trigonometrically. Tan JSK. $\tan \mathrm{I}^{\prime} \mathrm{SK}^{\prime}=$ constant k.
Let

$$
\begin{gathered}
\text { JSO }=\text { OSI' }^{\prime}=\alpha ; \quad \text { OSK }=\theta ; \quad \text { OSK }^{\prime}=\phi ; \\
\therefore \tan (\alpha+\theta) \cdot \tan (\phi-\alpha)=k .
\end{gathered}
$$

In order that $\mathrm{SK}, \mathrm{SK}^{\prime}$ may coincide, i.e. $\theta=\phi$, we must have

$$
\begin{gathered}
\tan (\theta+\alpha) \tan (\theta-\alpha)=k \\
\tan ^{2} \theta-\tan ^{2} \alpha=k\left(1-\tan ^{2} \theta \cdot \tan ^{2} \alpha\right) \\
\tan ^{2} \theta\left(1+k \tan ^{2} \alpha\right)=k+\tan ^{2} \alpha
\end{gathered}
$$

or

$$
\therefore \tan ^{2} \theta=\frac{1}{\tan ^{2} \alpha}\left(1-\frac{1-\tan ^{4} \alpha}{1+k \tan ^{2} \alpha}\right) ;
$$

this gives two real and different, coincident, or imaginary double rays, according as

$$
\begin{gathered}
1-\tan ^{4} a \lesssim 1+k \tan ^{2} \alpha, \\
k \gtreqless-\tan ^{2} \alpha .
\end{gathered}
$$

i.e. as

EXAMPLES. III.

1. A line $K L$ parallel to $A B$ cuts $T A, T B$ at K, L, and P is taken on TA. By means of a common perspective row find Q on $T B$, such that

$$
\{T B L Q\}=\{A T K P\} .
$$

2. If K, L are the mid-points of $T A, T B$ respectively, find a point Q on TB corresponding to any point P on $A T$, so that \{TBLQ\} may be equal to \{ATKP\}. Also prove that AP : PT as TQ:QB.
3. If K, K^{\prime} and L, L^{\prime} be corresponding pairs of points on two projective rows $K L, K^{\prime} L^{\prime}$, prove that the locus of the intersection of $K L^{\prime}$ and $K^{\prime} L$ is a straight line; and find where this line cuts the two rows.
4. If k, l in a pencil correspond to k^{\prime}, l^{\prime} respectively in another pencil projective with the former one, prove that the join of the intersections of k, l^{\prime} and k^{\prime}, l passes through a fixed point.

Find the joins of this projective centre to the vertices of the pencils.
5. On two lines intersecting at T two projective rows are taken in which T, A of one correspond respectively to B, T of the other, and K on TA to K^{\prime} on BT . Construct the point L^{\prime} on TB corresponding to any point L on AT.
6. In the figure of the previous question prove that if
then

$$
\begin{aligned}
& T K: K A=B K^{\prime}: K^{\prime} T, \\
& T L: L A=B L^{\prime}: L^{\prime} T .
\end{aligned}
$$

7. Through a given point draw a straight line which would, if produced, pass through the inaccessible intersection of two given lines.
8. Construct the vanishing points of two rows determined by three points A, B, C on $A B$ and the corresponding points $A^{\prime}, B^{\prime}, C^{\prime}$ on $A^{\prime} B^{\prime}$.
9. Two straight lines intersect at T, and T, A, K on one correspond to B, T, L on the other. Construct the vanishing points I, J of the two rows. Also prove that $I J$ is parallel to $A B$.
10. If the vertices of a triangle lie on three concurrent lines, and two sides pass through fixed points, the third side will always pass through another fixed point collinear with the two given points.
11. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively lie on four given lines which are collinear, and $A B, B C, C D$ respectively pass through three given points K, L, M, then the other joins $A D, A C, B D$ will respectively pass through three other fixed points N, O, P. Also the six points K, L, M, N, O, P are the vertices of a complete quadrilateral.
12. Find the relations between two quadrilaterals in order that they may be in homology.
13. How many conditions must be satisfied in order that two complete pentagons may be in homology?
14. If one of two triangles in homology be turned about the axis of homology into another plane, prove that the joins of corresponding vertices will meet at a point coplanar with pairs of corresponding sides.
15. State and prove the correlative proposition.
16. Three triangles have their bases on one straight line and their vertices on another. The intersection of one side of one triangle with one side of another is joined to the intersection of the other side of the first triangle with the other side of the second triangle. Prove that the six lines thus obtained form a complete quadrangle.
17. A, B, C, D are four points on a straight line, and P any other point on the line; construct the point Q such that $\{A B C P\}=\{A B D Q\}$.

Find also the vanishing points and the double points of the two rows.
18. Two lines fixed at right angles to each other turn about the vertex of the right angle; prove that they trace projective rows on any given straight line. Also find the vanishing points and double points of the rows.
19. $\{A B C D\}$ and $\{A C D E\}$ are two harmonic ranges on a straight line; construct their vanishing points and the other double point.
20. The join of A to any point on $B C$ is bisected at M, and points E, F are taken on it, such that ME equals MF. If BE, CM meet at X, and $B M, C F$ at Y, prove that A, X, Y are collinear.
21. Two lines $A C, B D$ meet at E, and a transversal cuts them at K, L respectively. $A D, B C$ meet at $X ; A L, B K$ at Y; and $C L, D K$ at Z. Prove that each of the pencils $X\{\operatorname{LDZC}\}$ and $X\{$ LDYC $\}$ equals $\{E A K C\}$; and hence that X, Y, Z are collinear.
22. Construct a quadrilateral with its vertices on four given straight lines, two sides parallel to given directions, and the other two sides passing through fixed points. Shew that there are two solutions.

CHAPTER IV

THE CIRCLE

51. Cross-ratios in the circle. If two pencils at the vertices S, S^{\prime} are such that corresponding rays intersect on a circle passing through S and S^{\prime}, the angles between corresponding rays at s, s^{\prime} are equal, so the pencils are exactly equal, and hence projective.

Fig. 41.
Conversely, if we take two points $\mathbf{s}, \mathbf{s}^{\prime}$ and three other points A, B, C concyclic with S and S^{\prime}, and construct at the vertices S, S^{\prime} pencils in which $S A, S B, S C$ correspond to $S^{\prime} A, S^{\prime} B, S^{\prime} C$, and
take any other line at S cutting the circle at D, then $S\{A B C D\}=S^{\prime}\{A B C D\}$; hence the ray at S^{\prime} corresponding to $S D$ is $S^{\prime} D$, or all corresponding rays intersect on the circle.

Again, if $S T$ is the tangent at S, angle AST=AS'S ; hence $S T$ is the ray at S corresponding to the ray $S^{\prime} S$ at S^{\prime}.

The cross-ratio of the pencil joining four points A, B, C, D on a circle to any vertex S lying on the circle may be called the cross-ratio of A, B, C, D and written $\{A B C D\}$.
52. Theorem. If A, B, C, D lie on a circle

$$
\{A B C D\}=\frac{A C}{C B}: \frac{A D}{D B},
$$

where $A C, A D$, etc. are chords.
For angles SAC, SBC are equal or supplementary, hence

$$
\triangle A S C: \triangle B S C=\frac{A C \cdot A S}{C B \cdot S B}
$$

but, if $S C$ cuts $A B$ at $K, \triangle A S C: \triangle B S C=A K: K B$;

$$
\therefore \frac{A K}{K B}=\frac{A C}{C B} \cdot \frac{A S}{S B} \text {, }
$$

similarly, if $S D$ cuts $A B$ at L,
hence

$$
\frac{A L}{L B}=\frac{A D}{D B} \cdot \frac{A S}{S B},
$$

i.e.

$$
\begin{aligned}
& \frac{A K}{K B}: \frac{A L}{L B}=\frac{A C}{C B}: \frac{A D}{D B} \\
& \{A B C D\}=\frac{A C}{C B}: \frac{A D}{D B}
\end{aligned}
$$

If $\{A B C D\}$ is positive, C, D both lie on the same arc $A B$, but if negative, C, D lie one in the smaller and one in the greater are $A B$: thus the sign will be consistent in the above equation if we consider AC : CB to be positive or negative as C does or does not lie in the arc which runs from A to B in the positive (counterclockwise) direction.

In ${ }^{-}$figure 41, $A C: C B$ is positive, $A D: D B$ is negative. Also
$A K$: $K B$ is positive, $A L$: $L B$ is negative, but if S were taken in the positive arc $A B$, then K would lie in $A B$ produced and L between A and B, but the double change would not alter the sign of $\{A B C D\}$.

Corollary. Since $\{A B C D\}=1-\{A C B D\}$ (§ 15, Theorem II, page 11),

$$
\therefore \frac{A C \cdot D B}{C B \cdot A D}=1-\frac{A B \cdot D C}{B C \cdot A D} ;
$$

hence

$$
A B \cdot C D+B C \cdot A D+C A \cdot B D=0
$$

$$
\therefore \quad A B \cdot C D=A C \cdot B D+C B \cdot A D .
$$

Hence the rectangle of the diagonals of a cyclic quadrilateral is equal to the sum of the rectangles of pairs of opposite sides. [Ptolemy's Theorem.]
53. Theorem. Any chord which passes through a point P cuts the circle at points which are harmonically conjugate with respect to the points of contact of tangents from P.

Let the tangents from P be PA and $P B$, and let the chord of contact $A B$ cut any secant $C D$, passing through P, at 0 .

Then the cross-ratio of the four points A, B, C, D on the circle equals the cross-ratio of the pencil

$$
A P, A B, A C, A D=\{P O C D\}
$$

and also equals the cross-ratio of the pencil

$$
B A, B P, B C, B D=\{O P C D\} \text {. }
$$

Hence $\{O P C D\}=\{O P D C\} ;$

$$
\therefore \text { each }=-1 \text {; }
$$

$$
\therefore\{A B C D\}=-1 .
$$

Corollary 1. Any chord through P is divided harmonically by P and the chord of contact of tangents from P.

Fig. 42.

Corollary 2. The tangents at C, D intersect on $A B$ since

$$
\{C D A B\}=-1 ;
$$

thus $A B$ is the locus of intersection of tangents at the extremities of any chord through P.

Corollary 3. The tangent at any point C of the circle cuts $A B$ at the harmonic conjugate of the point at which PC cuts AB.
54. Theorem. If through any point O on a chord $A B$ passes another chord $C D$, the line joining the intersections E, F of $A D, B C$ and $A C, B D$ passes through the intersection T of tangents at A, B and the harmenic conjugate P of O with respect to A, B.

Fig. 43.
For the cross-ratio of the points A, B, C, D on the circle is equal to that of the pencil $A T, A B, A C, A D$ and also of $B A, B T$, $B C$, BD.

Take transversals on BC, AC respectively, then

$$
\{U B C E\}=\{A \vee C F\},
$$

two projective rows with their intersection corresponding to itself, and hence in perspective, \therefore UA, VB, EF are collinear, i.e. EF passes through T.

Again, $A B, C D, E F$ are the diagonals of the four-side $A C, B D$, $B C, A D ; \therefore C D, E F$ divide $A B$ harmonically at O, P.

Fig. 44.
Corollary. On the same line lie the intersection of tangents at C, D and also the harmonic conjugate of O with respect to C, D.

Hence on one and the same straight line lie (1) the harmonic conjugate of O with respect to the extremities of any chord
through $\mathrm{O},(2)$ the intersection of tangents at the extremities of any chord through O and (3) the intersection of the joins of the extremities of any two chords through 0.

This line is called the polar of 0.

When O lies outside the circle the polar is the chord of contact of tangents from 0 . Cf. corollaries 1 and 2 of the previous proposition.
55. Theorem. If B is on the polar of A, then A is on the polar of B. Through B draw any chord $K L$, let $A K, A L$ cut the curve again at M, N respectively.

Then KL, MN intersect on the polar of A and $\therefore M N$ also passes through B ; hence MK, NL intersect on the polar of B, i.e. A lies on the polar of B.

If the polar of A is $B C$, and of B is $A C$, then the polar of C is $A B$, and $A B C$ forms a self-polar triangle. It may be shewn that in every case one vertex will lie within the circle

Fig. 45. and two outside.
56. Problem. If the triangle $A B C$ is self-polar to a circle of which K is a given point, construct the circle.

Join BK cutting AC at P, and find the harmonic conjugate L of K with respect to B and P; also join $C K$ cutting $A B$ in Q and find the harmonic conjugate N of K with respect to C and Q; then L, N also lie on the circle, and the three points K, L, N being known the circle can be constructed.

Exercise. Prove that BN and CL meet on the circle.

Fig. 46.
57. Theorem. The polar of any point P is 'a line perpendicular to the join OP of the point to the centre O, and cuts $O P$ at a point Q such that rectangle $O P . O Q$ equals the square on the radius.
I. Take P outside the circle: its polar is then the chord of contact AB.

Now $P A=P B$, hence a line $P Q$ perpendicular to $A B$ bisects $A B$: but a line which bisects $A B$ at right angles passes through the centre 0 .

Again, if $P Q$ cuts the circle at K, L, we have P, Q and K, L forming a harmonic range, hence

$$
O P . O Q=O K^{2} .
$$

Fig. 47.
II. If P is within the circle, its polar is without the circle.

Take any point R on the polar and draw its polar passing through P and cutting the polar of P at S, then $P R$ is also the polar of S. Also, by I., RO is perpendicular to PS, and SO to P. P. G.

PR, hence PO is perpendicular to RS, and O is the orthocentre of triangle PRS. The second part follows as before.

Fig. 48.
58. Theorem. Any three lines drawn through a point 0 cut a circle in six points in involution.

Let OAA', OBB', OCC' be the lines.
$C A^{\prime}, C^{\prime} A ; C A, C^{\prime} A^{\prime} ; C B^{\prime}, C^{\prime} B$ intersect at points K, L, M on the polar of O : let $C C^{\prime}$ cut that polar at N.

Then $C\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}=\{K L M N\}=C^{\prime}\left\{A A^{\prime} B C\right\}$.
Hence $\left\{A A^{\prime} B C\right\}=\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}$, i.e. $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form an involution on the circle.

Conversely, if $\left\{A A^{\prime} B C\right\}=\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}$, then $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are collinear.
For if $A A^{\prime}$ meets B^{\prime} at O, and $O C$ cuts the circle at $C^{\prime \prime}$, then

$$
\left\{A A^{\prime} B C\right\}=\left\{A^{\prime} A B^{\prime} C^{\prime \prime}\right\},
$$

hence $C^{\prime \prime}$ is identical with C^{\prime}.
The point O is called the pole of the involution $A A^{\prime}, B B^{\prime}, C C^{\prime}$ on the circle.

When O is outside the circle this proposition follows at once from the fact that A, A^{\prime} are harmonically conjugate on the circle to the points of contact D, E of tangents from O : and D, E are the double points of the involution.

Corollary. The common points of two involutions on a circle are the real or imaginary points at, which the line joining their poles O , o^{\prime} cuts the circle.
59. Problem. Given two pairs of points on a line and one other point, complete the involution.

Let A^{\prime}, B^{\prime} and C be the given points. Join them to any point P on a circle, let $P A, P A^{\prime}, P B, P B^{\prime}, P C$ cut the circle at K, K^{\prime}, L, L^{\prime}, M respectively. Join $K K^{\prime}, L L^{\prime}$ meeting at R, and let $R M$ cut the circle again at M^{\prime}. Then PM^{\prime} cuts the line at the required point C^{\prime}. To find the centre of the involution draw PX parallel to the line to cut the circle at X , and let RX cut the circle at X^{\prime}, then PX^{\prime} cuts the line at the centre of the involution.

The double points D, E are such that PD, PE cut the circle at the points of contact of tangents from R .

If the circle passes through A, A^{\prime}, then K, K^{\prime} coincide with A, A^{\prime} and R lies on the line.

If B^{\prime} ' touches the circle, then $L L^{\prime}$ coincides with SB .
Hence we obtain the following simpler solution.

Fig. 49.
Choose the pair of points B, B^{\prime} so that one, at least, lies out. side the segment $A A^{\prime}$, viz. B^{\prime}.

Describe a circle through $A A^{\prime}$, and draw a tangent $B^{\prime} S$ to the circle.

Let $S C$ cut the circle at M : join $B M$ to cut the circle at M^{\prime}.
Then $S M^{\prime}$ cuts the line at C^{\prime} the point conjugate to C.
To find the centre draw SI parallel to $A A^{\prime}$, let IB cut the circle again at J, then $S J$ cuts the line at the centre O of the involution.

To find the double points draw tangents $B P, B Q$ to the circle, then SP, SQ cut the line at the double points D, E.

If the segments $A A^{\prime}, B B^{\prime}$ overlap, B is within the circle and there are no real double points ; in any other case the double points are real.
60. Theorem. The cross-ratio of the four points in which four tangents cut any variable fifth tangent is equal to the crossratio of the points of contact on the circle.

Fig. 50.
Let the tangents at K, L, M, N cut the tangent at P in the four points A, B, C, D, then shall $\{A B C D\}=\{K L M N\}$.

Join P to the centre O and produce to cut the circle at S.
Join KS, LS, MS, NS and KO.
$\because A K, A P$ are two tangents to the circle,
$\therefore \hat{A O P}=\frac{1}{2} K \widehat{O} P=K \hat{S} P$ (angle at the circumference).
$\therefore A O$ is parallel to KS.

Similarly BO, CO, DO are respectively parallel to LS, MS, NS.
Hence pencil O $\{A B C D\}=$ pencil $S\{K L M N\}$.
$\therefore\{A B C D\}$ on $A D=\{K L M N\}$ on the circle.
Corollary. Any four tangents to a circle cut two other tangents in two sets of four points which are projective: in other words, a variable tangent describes projective rows on two fixed tangents.
N.B. But it is not always true that the joins of corresponding points on two projective rows are all tangents to one circle ; we shall investigate this envelope in the next chapter.
61. To find two projective rows such that the joins of corresponding points all touch one circle.

Take TI, TJ of equal length, and from C the middle point of is draw CA, CB perpendicular to TI, TJ respectively.

Construct two rows with vanishing points I, J, having A, T corresponding to T , B. Let P, Q be corresponding points, such that
$I P \cdot J Q=I A \cdot J T(=I T, J B)$.
Then IP.JQ = I^{2} and
$\therefore \quad \mathrm{P}: I C=\mathrm{JC}: \mathrm{JQ}$;

Fig. 51.
also

$$
\hat{C \mathrm{IP}}=\hat{Q} \hat{\mathrm{~J}} ;
$$

hence triangles PIC, CJQ are similar,

$$
\therefore \hat{P C}=J \hat{C} Q \text { and } \therefore \hat{P C Q}=\hat{P A C}
$$

(three angles equal to a straight angle); also from the similar triangles we have

$$
\mathrm{PC}: C Q=\mathrm{PI}: C J=\mathrm{PI}: \mathrm{CI} ;
$$

hence triangles PCQ, PIC are similar, and $\mid \widehat{P C}=\widehat{C P Q}$.
$\therefore P Q$ touches the circle whose centre is C , radius CA. Q.E.D.
N.B. There are two conditions to be satisfied,
(1) $\mathrm{TI}=\mathrm{TJ}$ or $\mathrm{TA}=\mathrm{TB}$.
(2) $I A \cdot I T=\frac{1}{4} \cdot I J^{2}$ or in other words $\frac{I A}{A T}=\tan ^{2}\left(\frac{1}{2} \hat{T}\right)$.
62. Propositions deduced from the tangent crossratio property of a circle.

The propositions here enunciated are correlative with those deduced from the projective relation between two pencils in the circle.

If any line p cuts a circle at A, B the tangents from any point on p are harmonically conjugate with the tangents at A and B ; i.e. the four tangents cut any other tangent in a harmonic range.

The chord of contact of tangents from any point on $A B$ passes through the intersection O of the tangents at A, B.

The point of contact of any tangent c to the circle is joined to O by a line which is the harmonic conjugate with respect to $O A, O B$ of the join of O to the intersection of c with $A B$.

If any line u be drawn through the intersection (0) of tangents a, b (at A, B), and c, d are the tangents from any point P on u (touching the circle at C, D), and e, f the joins of the intersections (K, L) of $a d, b c$ and (M, N) of $a c, b d$ respectively cut one another at U, then U lies on the chord of contact AB (since $\{O M A K\}=\{B L O N\}=\{O N B L\}$ and $\therefore \mathrm{MN}, \mathrm{KL}, \mathrm{AB}$ are collinear) : also U is on the line v which is harmonically conjugate to u with

Fig. 52. respect to a and b (by the theory of four-sides).

Corollary. Through the same point passes CD, and also the harmonic conjugate of u with respect to c, d.

Hence through U passes the harmonic conjugate of u with respect to tangents from any point on it ; the chord of contact of tangents from any point on u; and the join of the intersections of any two pairs of tangents from points on u. U is called the pole of u.

If u cuts the circle, then U is the intersection of tangents at the points where u cuts the circle.

In all cases u is the polar (as previously defined) of U.
If a passes through the pole of b, then b passes through the pole of a.

If the pole of a lying on b and of b lying on a be joined by c, then the pole of c is the intersection of a, b and a, b, c form a self-polar triangle.
63. The tangents from points lying on any line form an involution on any other tangent. For if $a, a^{\prime} ; b, b^{\prime} ; c, c^{\prime}$ are three pairs of tangents, let $\mathrm{K}, \mathrm{L}, \mathrm{M}$ be the points where $a, a^{\prime}, b^{\prime}$ cut c, and $\mathrm{K}^{\prime}, \mathrm{L}^{\prime}, \mathrm{M}^{\prime}$ where a^{\prime}, a, b cut c^{\prime}; then $\mathrm{KK}^{\prime}, \mathrm{LL}$ ', MM' pass through O the pole of the line. Join O to N the intersection of c, c^{\prime}.

Fig. 53.

Then by projection from O we get $\{K L M N\}=\left\{K^{\prime} L^{\prime} M^{\prime} N\right\}$.
\therefore the row traced on c by $a a^{\prime} b^{\prime} c^{\prime}=$ row traced on c^{\prime} by $a^{\prime} a b c$.
\therefore on any tangent, $\left\{a a^{\prime} b^{\prime} c^{\prime}\right\}=\left\{a^{\prime} a b c\right\}$, i.e. $a a^{\prime}, b b^{\prime}, c c^{\prime}$ form an involution.

When o cuts the conic at D, E this proposition is otherwise deducible from the fact that $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are pairs of harmonic conjugates to the tangents d, e at the points $\mathrm{D}, \mathrm{E}:$ also d, e are the double tangents of the involution.

Conversely. If an involution of tangents be drawn to a circle, pairs of conjugate tangents intersect in collinear points.
64. Problem. Given two pairs of conjugate rays at a point and a fifth ray, to complete the involution.

Given five rays $a, a^{\prime}, b, b^{\prime}, c$ at a vertex S , to find a sixth ray through S , such that $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are in involution.

Fig. 54.
Let $a, a^{\prime}, b, b^{\prime}, c$ cut any tangent to any circle at $\mathbf{A}, \mathbf{A}^{\prime} ; \mathbf{B}, \mathbf{B}^{\prime} ;$ C; draw the second tangents from A, A^{\prime} to the circle intersecting at K; and from B, B^{\prime} intersecting at L; let the second tangent from C cut $K L$ at M, then the other tangent from M will cut $A A^{\prime}$ at a point C^{\prime} whose join to the vertex of the pencil is the required sixth ray C^{\prime}.

The conjugate point to that at which the circle touches the line is the point where KL cuts the line. Hence the construction may be simplified by taking a circle to touch the line at C .

Also if the circle touches a, a^{\prime}, then K becomes the vertex s of the pencil.

Fig. 55.
Hence draw a circle to touch a, a^{\prime}, let c cut the circle at C and draw tangent at C cutting b, b^{\prime} at $\mathrm{B}, \mathrm{B}^{\prime}$.

Draw tangents BC^{\prime}, $\mathrm{B}^{\prime} \mathbf{C}^{\prime}$ from $\mathrm{B}, \mathrm{B}^{\prime}$ intersecting at C^{\prime}. Then SC $^{\prime}$ is the required sixth ray.

EXAMPLES. IV.

1. Shew that the length of a chord of circle of diameter d, which subtends an angle α at the circumference, is $d \sin \alpha$; and hence prove that the cross-ratio of the pencil formed by joining four points A, B, C, D on the circle to any other point on the circle is

$$
\frac{A C}{C B} / \frac{A D}{D B} .
$$

2. The sum of the rectangles of pairs of opposite sides of a cyclic quadrilateral is equal to the rectangle of the diagonals.
3. If the chord CD passes through the intersection of the tangents at A and B, the rectangles of pairs of opposite sides of the quadrilateral $A C B D$ are equal.
4. C is the centre of a circle and N the mid-point of a chord $P Q$; prove that the tangents at P, Q meet on $C N$ at a point T such that $C N$.CT equals the square of the radius $C A$. Prove also that the tangents at the ends of any other chord passing through N meet on a line drawn through T perpendicular to CT.
5. Find the condition that a circle can be drawn to pass through two given points and have a given pole and polar.
6. Prove that the orthocentre of a triangle self-polar to a circle is the centre of the circle : and that every self-polar triangle is obtuse angled.
7. The inscribed circle of a triangle touches the sides $B C, C A, A B$ at D, E, F respectively; and the tangent at any point P of the circle cuts them at K, L, M respectively. Prove that $\{K L M P\}$ on $P K$ equals $\{D E F P\}$ on the circle.
8. The incircle of a triangle $A B C$ tonches $B C, C A, A B$ at D, E, F and $E F$ cuts $B C$ at K; prove that D, K are harmonic conjugates with respect to A and B.
9. Four lines form a harmonic pencil; prove that their poles with respect to a given circle are collinear and form a harmonic range.
10. $P K$ is the perpendicular from P to the polar of Q, and $Q L$ is the perpendicular from Q to the polar of P for the same circle; prove that

$$
P K: Q L \text { as } O P: O Q .
$$

11. Any tangent is drawn to a circle whose centre is C and radius $C A$, P is its pole with respect to a circle whose centre is O, and $P M$ the perpendicular from P to the polar of C with respect to the same circle. Prove that OP : PM has the constant value OC:CA.
12. The incentre of a triangle $A B C$ is I, and any tangent meets lines through I perpendicular to IA, IB, IC at K, L, M respectively. Find the poles of $A K, B L, C M$, and prove that these lines are concurrent.
13. Find the centre and radius of the circle to which a triangle $A B C$ is self-polar.

Prove that the radical axis of this circle and the nine-point circle of ABC cuts $B C, C A, A B$ at the points where they are met respectively by the sides $E F, F D, D E$ of the pedal triangle.
14. Pairs of tangents are drawn to a circle from three collinear points; prove that their points of contact form an involution on the circle.
15. If $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathbf{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ lie on a circle, prove that the pencils $A\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}$ and $B\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}$ cut $C A^{\prime}, C B^{\prime}$ in rows in perspective. Hence shew that the three intersections of $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$ are collinear.
16. If A, B, C, D are four points on a circle and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ four others on the same circle such that $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, prove that the intersections of $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, A D^{\prime}$ and $A^{\prime} D$ are collinear.
17. Two pencils with a common vertex are projective, and a fixed circle passing through the vertex cuts two rays of one pencil at K, L and the corresponding rays of the other pencil at $\mathrm{K}^{\prime}, \mathrm{L}^{\prime}$. Prove that the locus of the intersection of K^{\prime} and $K^{\prime} L$ is a straight line.

Use this projective axis to find the common rays of the two pencils.
18. Given three points of a row on a straight line and the three corresponding points of a projective row on the same line, construct the common points of the rows.
19. Circles are drawn each bisecting the circumferences of two given circles. Prove that the polars with respect to them of any given point pass through another fixed point.
20. A quadrilateral KLMN is inscribed in one circle, and its sides touch another circle at P, Q, R, S. Prove that $P R$ and $Q S$ are perpendicular. Prove that KM, LN intersect at the same point as PR, QS.
21. Two circles are such that a quadrilateral can be inscribed in one and circumscribed to the other. If $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ are the points of contact of the four sides KL, LM, MN, NK, prove that the four intersections of $P Q, R S$; PS, QR ; KL, MN ; KN, LM lie on a fixed straight line.
22. From any point K on the circumcircle of a triangle tangents are drawn to the incircle and they meet the circumcircle again at L and M. Shew that $A\{B C K L\}$ and $M\{B C K L\}$ describe projective rows on $K L$ and $B C$ respectively, and deduce that LM touches the incircle.
23. A line is drawn to cut two non-intersecting circles; find two points on this line such that each is the intersection of the two polars of the other with respect to the two circles.

CHAPTER V

THE CONIC

65. Definition. A conic is the locus of intersections of corresponding rays of two projective pencils not in perspective.

If we take two vertices S, T and three other points A, B, C and draw SA, SB, SC from S and TA, TB, TC from T, these will determine two projective pencils at S and T, and we may construct successive positions of the point P, such that the crossratio of $S A, S B, S C, S P$ equals the cross-ratio of TA, TB, TC, TP.

If A, B, C lay on a straight line, the rows would be in perspective, and P would lie on that line or on ST ; if one of the points, say A, were collinear with S and T, the pencils would have a common ray, and would be in perspective with BC as base, and P would lie on BC, or on ST. Hence, if any three of the five points are collinear, the pencils are in perspective, and we get, not a conic, but two straight lines.

When the angles ASB, ASC respectively equal the angles ATB, ATC, the locus of P becomes a circle through S, T, A, B, C.
66. To construct a conic having given two vertices S, T and three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, no three of the five points being collinear.

Let $S B$ cut $A C$ at K, and $T C$ cut $A B$ at L. Through the intersection O of SB, TC draw any straight line to cut $A C, A B$ at X, Y respectively, and join $S X$, TY intersecting at P, then P is a point of the locus.

For the pencil

$$
S\{A B C P\}=\{A K C X\} \text { and pencil } T\{A B C P\}=\{A B L Y\} ;
$$

but, by projection from O, we have

$$
\{A K C X\}=\{A B L Y\} .
$$

Hence $S\{A B C P\}=T\{A B C P\}$. By varying the position of the - line XY passing through O, we can get the successive positions of P, the intersection of XS, TY.

Fig. 56.
67. We shall prove presently (§ 86) that the lines which join corresponding points of two projective rows not in perspective all touch a conic, and that every tangent to the conic cuts the two rows in corresponding points ; in other words the conic is the envelope of joins of corresponding points of two projective rows not in perspective. The converse proposition is also proved in this chapter so that the two classes of curves are identical, and either definition might have been taken.

In § 217 et seq. it is proved that the conic so defined is equivalent to the curve got by taking a plane section of a circular
cone and conversely. In the following proposition we now prove that this property might be deduced from the focus definition of a conic, and the converse is proved in $\S 177$.
68. Theorem. If a point P moves so that its distance from a fixed point S (called the focus) bears a constant ratio to its distance from a fixed line (called the directrix), the pencils formed by joining any two points A, B of the locus to the variable point P will be projective.

Fig. 57.
Let $A D, B E$ be the perpendiculars from A, B to the directrix, so that $\mathrm{SA}: \mathrm{AD}=\mathrm{SB}: \mathrm{BE}=e$, and PM the perpendicular from P , so that $\mathrm{SP}: \mathrm{PM}=e$.

Join AP, BP cutting the directrix at K, L respectively : join SK, SL.

Then

$$
S P: S A=P M: A D=P K: A K ;
$$

hence $S K$ bisects an angle between $S A, S P$.
Similarly SL bisects one of the angles at S between SB and SP. (In figure 57 the angles are exterior angles.)

Hence as SP turns round S through any angle, each of the lines SK, SL turns through half the angle at S.
\therefore SK, SL describe equiangular pencils at S, and hence the rows described by K, L on the directrix are projective.

But AP cuts the directrix at K, BP cuts the directrix at L.
\therefore pencil described by AP at A is projective with the pencil of $B P$ at B.
69. Theorem. The conic described with vertices S_{1}, S_{2} to pass through three points A, B, C also passes through the two vertices : and the tangent at a vertex S_{1} is the ray at S_{1} corresponding to the ray $\mathrm{S}_{2} \mathrm{~S}_{1}$ at S_{2}, and vice versa.

For if $\mathrm{S}_{1} \mathrm{~T}$ at S_{1} corresponds to $\mathrm{S}_{2} \mathrm{~S}_{1}$ at S_{2}, and $\mathrm{S}_{1} \mathrm{P}, \mathrm{S}_{2} \mathrm{P}$ are corresponding rays nearly coincident with $S_{1} T, S_{2} S_{1}$ respectively, the tangent at S_{1} is the ultimate position of the chord $S_{1} P$ when P is brought to coincide with S_{1}, but when P coincides with $S_{1}, S_{2} P$ coincides with $\mathrm{S}_{2} \mathrm{~S}_{1}$, and hence $\mathrm{S}_{1} P$ coincides with $\mathrm{S}_{1} \mathrm{~T}$.

Corollary. Three points and the tangents at two of them completely determine a conic. For the three rays $S_{1} T, S_{1} S_{2}, S_{1} A$ at S_{1} are given corresponding to the three rays $\mathrm{S}_{2} \mathrm{~S}_{1}$, $\mathrm{S}_{2} \mathrm{~T}, \mathrm{~S}_{2} \mathrm{~A}$ at S_{2}; hence to any other ray at S_{1} we can find the corresponding ray at S_{2}.
70. We shall now prove that we get the same conic from five given points if we take any pair of the points as vertices.

Theorem. The pencil formed at any point of a conic by its joins to the

Fig. 58. various points on the conic is projective with the pencils formed by joining those points to the original vertices.

First Proof. Let A, B be the vertices; AT the tangent at A; K, C two other points, and P a variable point on the conic.

To prove that pencil of CP at C is projective with the pencil of AP at A. Join KP cutting AT at E, AB at F, and AC at G.

Fig. 59.
Then

$$
A\{K P T C\}=B\{K P A C\} \text { (by definition) }
$$

$$
\therefore\{K P E G\}=\{K P F H\},
$$

viz.
viz.

$$
\frac{K E}{E P}: \frac{K G}{G P}=\frac{K F}{F P}: \frac{K H}{H P} ;
$$

$$
\therefore \frac{K E}{E P}: \frac{K F}{F P}=\frac{K G}{G P}: \frac{K H^{\prime}}{H P},
$$

$$
\{K P E F\}=\{K P G H\},
$$

i.e.
pencil $A\{K P T B\}=$ pencil $C\{K P A B\} ;$

$$
\therefore A\{T B K P\}=C\{A B K P\} ;
$$

thus $A P, C P$ are corresponding rays of projective pencils determined by $A T, A B, A K$ at A and $C A, C B, C K$ at C; and

$$
A\left\{P_{1} P_{2} P_{3} P_{4}\right\}=C\left\{P_{1} P_{2} P_{3} P_{4}\right\}(\S 39, \text { Cor. }) . \quad \text { Q.E.D. }
$$

Second Proof. Let the conic be defined by the points A, B, the tangents $A T$, BT and point C. Let P be a variable point of the conic.

Let $A P$ cut $B C$ at U; $B P$ cut $A C$ at V; $C P$ cut $A B$ at L. Pencil $A\{B T C P\}=B\{T A C P\}$ by definition,

$$
\therefore A\{B T C P\}=B\{A T P C\}
$$

two projective pencils with a common ray; hence T, U, V are collinear.

Fig. 60.
Let TUV cut $A B$ at K, then by the theory of the complete four-side, K and L are harmonic conjugates with respect to $A B$.

Hence as P describes the conic, K and L describe projective rows on AB.

But the row of K on $A B$ projected from the fixed point T on the fixed line $B C$ gives the row of U on $B C$, which is projective
p. P. \mathbf{G}.
with the pencil of AP at A: and the row of L on AP is projective with the pencil formed at C by $C P$.

Hence if P, Q, R, S are four points on the conic the cross-ratio of the pencil $C\{P Q R S\}=$ the cross-ratio of $A\{P Q R S\}$ and $B\{P Q R S\} ;$ and CA, CB and the tangent at C correspond to $\mathrm{AT}, \mathrm{AB}, \mathrm{AC}$ at A , and to $\mathrm{BA}, \mathrm{BT}, \mathrm{BC}$ at B .

Similarly, if we join to any other point of the conic D, we shall get

$$
D\{P Q R S\}=C\{P Q R S\} \text {, and } D\{A B P Q\}=C\{A B P Q\} \text {. }
$$

Corollary 1. If P is a point on a conic obtained from the vertices A, B and three points C, D, E, so that $A\{C D E P\}=B\{C D E P\}$, then $C\{D B E P\} \doteq A\{D B E P\}$, and $C\{A B E P\}=D\{A B E P\}$; hence P also lies on the conic with vertices A, C passing through $\mathrm{B}, \mathrm{D}, \mathrm{E}$ and on the conic with vertices C, D passing through $\mathrm{A}, \mathrm{B}, \mathrm{E}$.

Hence five given points determine the same conic, whichever pair are taken as vertices.

Corollary 2. The cross-ratio of the pencil formed by joining four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ on a conic to any other point on the conic has a constant cross-ratio. We may call this value the crossratio of $\{P Q R S\}$ on the conic.

Corollary 3. If we describe a conic through five points P , Q, R, S, A and K is a point such that $K\{P Q R S\}=A\{P Q R S\}$, then K must lie on the conic.

If not let KP cut the conic at K^{\prime}, join K^{\prime} to PQRS. Then $K^{\prime}\{P Q R S\}=A\{P Q R S\}$. Hence $K^{\prime}\{P Q R S\}=K\{P Q R S\}$ and we have two projective pencils at K, K^{\prime} with a common (self-corresponding) ray $K K^{\prime} P$, hence they are in perspective, and therefore Q, R, S are collinear, which is contrary to hypothesis : as no three of the five points which determine a conic may be collinear.

Hence if a point moves so that its joins to four given points, no three of which are collinear, form a pencil of constant crossratio, its locus is a conic.
71. Mechanical construction of a conic. Take four rods loosely jointed together at a point P , and another rod to which are attached rings at four points K, L, M, N through which the four rods can slide freely. To the surface on which the conic is to be drawn, fix four rings $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and slide the rods PK, PL, PM, PN through A, B, C, D.

Fig. 61.

The point P will be constrained to describe the conic which passes through A, B, C, D and in which the cross-ratio of $P\{A B C D\}$ is $\{K L M N\}$.
72. Theorem. A conic is a curve of the second order, i.e. any straight line cuts it in two points, real and different, or coincident or imaginary.

For any straight line cuts two projective pencils in two projective rows of points, and a double point of these rows is a point on the conic : but two projective rows on the same straight line have two real and different, or coincident, or imaginary double points.
73. Theorem. If the six points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ lie on a conic the three intersections of ${A B^{\prime}}^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$ will be collinear (Pascal).

Let these three intersections be K, L, M respectively: also let $A B^{\prime}$ cut $C A^{\prime}$ at X, and $B A^{\prime}$ cut $B^{\prime} C$ at Y.

The cross-ratios of $A\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}$ and B $\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}$ are equal, by the definition of the conic.

Hence, taking transversals $A^{\prime} C$ and $B^{\prime} C$ respectively we have

$$
\left\{A^{\prime} X L C\right\}=\left\{Y B^{\prime} M C\right\} .
$$

Fig. 62.

But these rows have a common point C , hence they are in perspective, i.e. $A^{\prime} Y, X B^{\prime}, L M$ are concurrent.

But $A^{\prime} Y, X_{B}^{\prime}$ meet at K, and therefore K lies on LM.
Construction. Given five points of a conic to construct other points on the conic.

Let $A, B, C, A^{\prime}, B^{\prime}$ be the five points, join $A B^{\prime}, A^{\prime} B$ intersecting at K; and through K draw any line to cut $C A^{\prime}, C B^{\prime}$ at L and M respectively.

The intersection of AL and BM will be a point of the conic.
74. Taking any points A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ on the conic, we may find other pairs of points, such as D, D^{\prime} such that $\{A B C D\}$ on the conic equals $\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ on the conic, thus forming two projective rows on the conic.

Then $A\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=A^{\prime}\{A B C D\}$, two pencils with a common ray;
$\therefore A B^{\prime}, A C^{\prime}, A D^{\prime}$ respectively meet $A^{\prime} B, A^{\prime} C, A^{\prime} D$ in three points on a straight line.

But by the Theorem of $\S 73$, the intersections of BC^{\prime} and $B^{\prime} C, B D^{\prime}$ and $B^{\prime} D, C D^{\prime}$ and $C^{\prime} D$ lie on the straight line.

The Conic

Hence, if K, L are any two points in the row A, B, C, \ldots and K^{\prime}, L^{\prime} the corresponding points in the row $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$ the intersection of K^{\prime}, $K^{\prime} L$ lies on a fixed straight line. It is called the projective axis of the two rows.

Corollary. If this straight line cuts the conic at two real points these are the double points of the two rows on the conic.

Chords.

75. Theorem. If AT, BT be the tangents at A, B to a conic (§69) and P, Q two other points on the conic, the intersections U of AP, BQ, and \vee of AQ, BP will be collinear with T . Also UV, PQ divide AB harmonically.

Fig. 63 (1).

Fig. 63 (2).

For in the projective pencils at A, B, we have $A B, A T$ at A corresponding to BT, BA at B ,

$$
\begin{aligned}
& \therefore A\{B T P Q\}=B\{T A P Q\}, \\
& \therefore A\{B T P Q\}=B\{A T Q P\} ;
\end{aligned}
$$

and these are two projective pencils with a common (self-corresponding) ray $A B$.
\therefore they are in perspective, and hence $\mathrm{T}, \mathrm{U}, \mathrm{V}$ are collinear.
Again, by $\S 19$, the diagonals UV, PQ of the four-side formed by $A P, A Q, B P, B Q$ divide the third diagonal $A B$ harmonically at K , L .

Corollary 1. TK also passes through the harmonic conjugate of L with respect to P, Q. Similarly, if any other chord be drawn through L, the harmonic conjugate of L with respect to the ends of the chord lies on TK.

Corollary 2. If a tangent passes through L, its point of contact lies on TK.

Corollary 3. If $P Q$, RS are two chords through L, and $P R$, QS meet at M and PS, QR at N, then MN passes through the harmonic conjugate of L, with respect to P, Q and with respect to R, $\mathrm{S}(\$ 20$, Cor. 1). Hence M, N lie on $T \mathrm{~K}$.

Corollary 4. When RS and PQ (Cor. 3) coincide, PR, QS become the tangents at \mathbf{P}, \mathbf{Q}. Hence the tangents at the ends of any chord through L intersect on TK.

Definition. TK (thus obtained) is called the polar of L .
76. Theorem. The middle points of parallel chords are collinear. In fig. $63, \S 75$, let $P Q$ become parallel to $A B$. Then UV bisects $A B$ and $P Q$. Hence the middle point of $P Q$ lies on a line through T and the middle point M of $A B$.

Similarly TM contains the mid-point of any other chord parallel to $A B$.

Definition. A line which bisects all chords parallel to a given direction is called a diameter.

Corollary 1. The joins of the ends of two chords parallel to AB intersect on $T M$.

Corollary 2. The tangents at the ends of any chord parallel to $A B$ intersect on $T M$.

Corollary 3. A tangent parallel to $A B$ has its point of contact on TM.

Corollary 4. When the infinity directions are real and coincident all diameters are parallel.

Tangents.
77. Theorem. If a conic touches two lines AT, BT at A, B respectively, the tangent at any other point P is the harmonic conjugate of PT with respect to PA, PB. We may prove as in $\S 75$, that UV passes through T, and $U V, P Q$ divide $A B$ har* monically.

Fig. 64.
If in fig. 63 (1), the chord $P Q$ be turned about P, until Q coincides with P, then $P Q$ will become the tangent at P, and $U V$ will become TP.

Hence the tangent PL (fig. 64), and the line PT cut AB harmonically at L, K.
(Also cf. Cor. 4 to the next Theorem.)
Theorem. Any chord PP' which passes through the intersection T of tangents at A, B is divided harmonically by T and AB.

Let PP' (fig. 64) cut AB at K .
Then $A\left\{P P^{\prime} B T\right\}=B\left\{P P^{\prime} T A\right\}, \quad \therefore\left\{P P^{\prime} K T\right\}=\left\{P P^{\prime} T K\right\}$,
$\therefore \mathrm{K}, \mathrm{T}$ are harmonic conjugates with respect to $\mathrm{P}, \mathrm{P}^{\prime}$.
Corollary 1. If $T P=P K, P^{\prime}$ is infinitely distant: and conversely.

Corollary 2. If $T P<P K, P^{\prime}$ is on the other side of T from P.
Corollary 3. Since A $\{$ TBPP' $\}$ is harmonic, the pencil joining any other point of the conic to $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{P}^{\prime}$ is harmonic, i.e. $\mathrm{P}, \mathrm{P}^{\prime}$ are harmonic conjugates on the conic to A, B.

Corollary 4. If the tangent at P meets $A B$ at L, then $P\left\{L P^{\prime} A B\right\}=A\left\{P P^{\prime} T B\right\}$ which is harmonic. Hence L is the harmonic conjugate of K with respect to A, B.

Corollary 5. Tangents at P, P^{\prime} intersect on AB.
Corollary 6. P and L are harmonic conjugates to the points at which PL cuts TA, TB.

Corollary 7. If the join of T to M, the mid-point of $A B$, cuts the conic at C , the tangent at C is parallel to AB (cf. § 76 , Cor. 3).
78. Theorem. Any four tangents cut a fixed tangent in four points whose cross-ratio is equal to the cross-ratio on the conic of their four points of contact. Also any variable tangent cuts two fixed tangents in projective rows.

Consider the conic which touches AT, BT at A, B and passes through P.

Let the tangent at P cut TA at Q, and let BP cut TA at Q^{\prime}.

Then PQ, PT are harmonic conjugates with respect to PA, PB (§ 77).

Fig. 65.
$\therefore\left\{\right.$ TQAQ $\left.^{\prime}\right\}=-1$,
$\therefore\left\{A^{\prime} Q^{\prime} Q\right\}=-2$,
hence

$$
\frac{A Q^{\prime}}{Q^{\prime} T}=2 \cdot \frac{A Q}{Q T} .
$$

If we take successive positions $P_{1}, P_{2}, \ldots ; Q_{1}, Q_{2}, \ldots ; Q_{1}{ }^{\prime}$, $\mathbf{Q}_{2}{ }^{\prime}, \ldots$ we have therefore
i.e.

$$
\frac{A Q_{1}}{Q_{1} T}: \frac{A Q_{2}}{Q_{2} T}=\frac{A Q_{1}^{\prime}}{Q_{1}^{\prime} T}: \frac{A Q_{2}^{\prime}}{Q_{2}^{\prime} T},
$$

hence

$$
\left\{Q_{1} Q_{2} Q_{3} Q_{4}\right\}=\left\{Q_{1}{ }^{\prime} Q_{2}{ }^{\prime} Q_{3}{ }^{\prime} Q_{4}{ }^{\prime}\right\} .
$$

\therefore the cross-ratio of the row described by Q equals the crossratio of the pencil described by $B P$, which is the cross-ratio of the pencil joining $P_{1}, P_{2}, P_{3}, P_{4}$ to any point of the conic.

Similarly the cross-ratio of the row described by the tangent on BT has the same value. Hence the variable tangent describes projective rows on the two fixed tangents TA, TB.

Corollary 1. If any point be joined to the two projective rows traced by a variable tangent on two fixed tangents, two projective pencils with a common vertex will be obtained. The double rays of these two pencils will be those tangents to the conic which pass through the point.

Corollary 2. Two pencils at a point have two real and different, coincident, or imaginary double rays. Hence two tangents can, in general, be drawn from any point to touch a conic. Thus a conic is a curve of the second class.
79. If pencils be formed by joining two points A, B on the conic to other points of the conic, and if in these two pencils any ray $A P$ is parallel to the corresponding ray $B Q$ at B, then any transversal parallel to AP will be cut by the two pencils in similar rows. Hence one double point will be at infinity, and the line will cut the conic in one and only one finite point.

Hence, also, if we take the pencil at any other point of the conic the ray at that point corresponding to AP at A will be parallel to AP.

If through T, the intersection of tangents at A, B, we draw lines parallel to the rays of the two pencils at A, B, we get two projective pencils at the one vertex T, and the infinity directions become the double rays of the two pencils.

Hence there are two real and different, or coincident, or imaginary infinity directions in a conic.
80. The two pencils at T cut $A B$ in two projective rows, of which A, B are the vanishing points.

1. If the power $\mathrm{AU} . \mathrm{BV}$ is positive there are two real and different double points (§47). In this case (fig. 66 (1)) lines through A, B parallel to TU, TV respectively intersect on the other side of TA from B, or on the other side of TB from A, and the curve consists of two branches outside the angle ATB.

Conversely, if any point of the curve lies in the supplementary angle at T to $A T B$, then $A U$. $B V$ is positive.
2. If $A U . B V$ is negative, but $A M^{2}+A U$. $B V$ is positive there are real and different infinity directions ($\$ 47$).

Take AU, BV of equal length in directions $B A, A B$ respectively (fig. 66 (2)).
Then $A U$ is less than MA, and $\mathrm{MA}: A U=M B: B V$.
\therefore lines from A, B parallel to TU , TV meet at a point C on

Fig. 66 (1). $T M$; and $T C<C M$.

In this case $T M$ cuts the curve again at C^{\prime} the harmonic conjugate of C with respect to TM, but TC $<C M, \therefore C^{\prime}$ is on the other side of T from M.

Hence the curve has two branches, one lying in the angle ATB, and the other in the vertically opposite angle at T.

In case 1 , a tangent which cuts AT internally cuts BT externally, and vice versa, hence the vanishing points I, J of the rows on TA, TB lie between T, A and T, B respectively.

In case 2, let the tangent at C cut $T A$ at P and $T B$ at P^{\prime}.
Then $\{A T P I\}=-T P^{\prime} / P^{\prime} B$; but $T P^{\prime}<P^{\prime} B$ and $A P>P T$;
$\therefore I A: I T$ is positive and greater than 1 , hence I is on the other side of T from A.

Fig. 66 (2).
3. If $\mathbf{A U} . \mathbf{B V}=-\mathbf{A M}^{2}$, the infinity directions are real and coincident, and are parallel to TM.

In this case $T C=C M$. Also the tangent at C bisects TA, TB, hence the rows traced on TA, TB by a variable tangent are similar.
4. If $A U . B V+A M^{2}$ is negative, the infinity directions are imaginary.

In this case TC $>C M$.
Also $T P^{\prime}>P^{\prime} B$ and $A P<P T, \therefore I A: I T$ is positive and less than $1, \therefore$ A lies between I, T.

Definitions. When a variable tangent traces similar rows on two tangents the conic is a parabola (case 3).

When the vanishing points of the rows traced on two tangents
$T A, T B$ by a variable tangent lie on the other side of $A B$ from T, the conic is an ellipse.

When the vanishing points lie on the same side of $A B$ as T, the conic is a hyperbola.

Corollary. In $\S 68$ it is shewn that, in the locus there described, SK bisects the exterior angle between AS, SP.

Hence when SA, SP coincide with a line SL parallel to the directrix, the tangent at L cuts the directrix at X, the foot of the perpendicular from S to the directrix. By symmetry LS meets the curve again at L^{\prime}, so that $\mathrm{LS}=\mathrm{SL}^{\prime}$ and the tangent at L^{\prime} passes through X.

The locus is therefore an ellipse, parabola or hyperbola as the constant ratio $\lesseqgtr 1$.
81. Theorem. Lines drawn through four points of a conic parallel to an infinity direction have the same cross-ratio on any transversal as the joins of any point on the conic to those four points.

Draw CK, DL parallel to the infinity direction to cut $A B$ at K, L. Let $C D$ cut $A B$ at E, and the tangent at C cut $A B$ at T.

Then CA, CB, CT, CK at C correspond to DA, DB, DC, DL at T; hence, taking transversals on $A B$, we have

$$
\begin{aligned}
\{A B T K\} & =\{A B E L\} \\
\therefore\{A B T E\} & =\{A B K L\} ;
\end{aligned}
$$

but $\{A B T E\}$ is the cross-ratio of $C\{A B T D\}$, and therefore equals the cross-ratio of the joins of A, B, C, D to any point of the conic; and $\{A B K L\}$ equals the cross-ratio of the lines through A, B, C, D parallel to the infinity direction on $A B$ or any other

Fig. 67. transversal, being unaltered by parallel projection.

Exercise. If we have a pencil at a point which is projective with a row on a line, the locus of intersection of rays of the pencil with lines drawn parallel to any given direction through the corresponding points on the row is a conic with real infinity directions.

Envelope of the Joins of Projective Rows.
82. Theorem. If projective rows, not in perspective, be taken on two given lines the envelope of the joins of corresponding points touches each of the given lines, and the point of contact with one line corresponds to the intersection of the two lines regarded as a point of the other line.

Let the intersection of the lines be T, and let T on TB correspond to A on TA. Let A^{\prime} be a point near A on TA, and T^{\prime} the corresponding point on TB.

Then as A^{\prime} approaches A, T^{\prime} approaches T, and ultimately the tangent $T^{\prime} A^{\prime}$ assumes the position TA; also A^{\prime} is the intersection of TA with a near tangent, and when those two tangents are made to coincide A^{\prime} assumes the position A.

Hence A is the point of contact

Fig. 68. of the tangent TA.

Theorem. From any point two real or coincident or imaginary tangents can be drawn.
83. Theorem. If we join corresponding points on two projective rows, the row traced on any one of these joins by the others will be projective with the rows they trace on the original lines.

Let TA, TB be the rows of which A corresponds to T, C to D, K to L, P to \mathbf{Q}.

Let $K L, P Q$ cut $C D$ at M and R respectively; and cut each other at 0 .

Then

$$
\{K P A C\}=\{L Q T D\},
$$

\therefore pencil $0\{K P A C\}=0\{L Q T D\}$,
hence
hence
$0\{K P A T\}=0\{L Q C D\}$,
$\{$ KPAT $\}=\{$ MRCD $\}$,
two rows on CA and CD; if now we keep other lines fixed but vary the position of PR, it follows that if we get successively the points $P_{1} P_{2} P_{3} P_{4}$ and $R_{1} R_{2} R_{3} R_{4}$, then $\left\{P_{1} P_{2} P_{3} P_{4}\right\}=\left\{R_{1} R_{2} R_{3} R_{4}\right\}$. Q.E.D.

Fig. 69.
Hence the joins of four pairs of corresponding points on two projective rows cut any other join in four points of constant cross-ratio.

Hence, also, five given lines give the same envelope whichever pair we take as the basis of projective rows.
84. Problem. To find where any join of corresponding points of two projective rows touches its envelope.

On two lines TP, TQ take projective rows, in which T, P correspond respectively to Q, T : and let A, B correspond to $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, so that

$$
\begin{aligned}
\{P T A B\} & =\left\{T Q A^{\prime} B^{\prime}\right\}, \\
\therefore \quad\{T P A B\} & =\left\{T Q B^{\prime} A^{\prime}\right\},
\end{aligned}
$$

two equal cross-ratios with a common point T, hence $P Q, A B^{\prime}, A^{\prime} B$ are collinear, i.e. $A B^{\prime}, A^{\prime} B$ intersect at a point L on $P Q$.

Fig. 70.
Let $A A^{\prime}, B B^{\prime}$ intersect at K, then from the harmonic property of a four-side KL is divided harmonically by $T P, T Q$.

If we now bring B into coincidence with A (and B^{\prime} with A^{\prime}), L will become the point at which $A A^{\prime}$ meets $P Q$, and K being the intersection of $A A^{\prime}$ with a consecutive tangent will become the point of contact of $A A^{\prime}$.

Hence the point of contact K of $A A^{\prime}$ with its envelope is the
harmonic conjugate of the point L at which it is cut by the line PQ.

Corollary. If $A A^{\prime}$ is parallel to $P Q$ it is bisected at its point of contact.

Fig. 71.

Another method of proof.
85. A variable join of two projective rows describes on any fixed join a row which is projective with either of the original rows.

Let $C D$ be a given join of rows on $T A, T B$ and $P Q$ a variable join such that

$$
\{T A C P\}=\{B T D Q\},
$$

and let $C D$ cut $P Q$ at R.
Let $C D$ cut $A B$ at F, and take on $C D$ a point E such that

$$
\{\operatorname{CDEF}\}=-1
$$

A transversal cuts the sides of triangle TCD at P, R, Q,

$$
\therefore \frac{T P}{P C} \cdot \frac{C R}{R D} \cdot \frac{D Q}{Q T}=-1, \quad \therefore \frac{C R}{R D}=\frac{-P C}{T P} \cdot \frac{Q T}{D Q} .
$$

Similarly $\frac{T A}{A C} \cdot \frac{C F}{F D} \cdot \frac{D B}{B T}=-1, \quad \therefore \frac{C E}{E D}=\frac{A C}{T A} \cdot \frac{B T}{D B}$,
$\therefore\{C D E R\}=\frac{A C}{T A} \cdot \frac{B T}{D B} / \frac{C P}{T P} \cdot \frac{Q T}{P C}$.
But

$$
\begin{aligned}
& \frac{T B}{B D} / \frac{T Q}{Q D}=\frac{A T}{T C} / \frac{A P}{P C}, \\
\therefore & \{C D E R\}=\frac{A C}{C T} / \frac{A P}{P T}=\{A T C P\} .
\end{aligned}
$$

Hence P, R describe projective rows on CA, EC, in which C, A correspond to E, C and T to D . Q. E. D.

Corollary. The point of contact of $C D$ is E, the harmonic conjugate with respect to C, D of the point F at which $C D$ cuts AB.

Fig. 72.
86. Theorem. The envelope of the joins of two projective rows, not in perspective, is a conic.

Let TA, TB be the bases of the rows, AB being their point of contact. Let PQ cut AB at K and touch the envelope at C; RS cut $A B$ at L and touch the envelope at D : also let $A C, A D$ cut $B T$ at U, V respectively.

Then

$$
\{\mathrm{PQCK}\}=-1,
$$

\therefore by projection from $A,\{$ TQUB $\}=-1$.
$\therefore \frac{T Q}{Q B}=2 \cdot \frac{T U}{U B}$, similarly $\frac{T S}{S B}=2 \cdot \frac{T V}{V B}$,
$\therefore\{T B Q S\}=\{T B U V\}=$ pencil $A\{T B C D\}$.
Similarly
$\{A T P R\}=$ pencil $B\{A T C D\}$,
but by hypothesis $\quad\{T B Q S\}=\{A T P R\}$,
hence pencil $A\{T B C D\}=B\{A T C D\}$;
hence C and D lie on the same conic with vertices A, B, tangents at vertices AT, BT ; hence and similarly all points of contact of the joins with their envelope lie on the same conic ; which is therefore identical with the envelope.

Fig. 73.
Corollary l. Five tangents uniquely determine a conic.
Corollary 2. Two conics cannot have more than four common tangents.

Corollary 3. From any point two real or coincident or imaginary tangents can be drawn to a conic: i.e. a conic is a curve of the second class or degree. For the joins of any point X to the two rows form two projective pencils at X : and these have two double rays. Also when the double rays coincide X lies on the conic.

Definition. A point may be said to be outside, on, or inside a conic, as the tangents from it are real and different, or coincident, or imaginary.

Corollary 4. Three tangents and the points of contact of two of them determine a conic uniquely.

Thus we have proved that a conic might equally be defined as the envelope of the joins of corresponding points of two projective rows, not in perspective. (If the rows were in perspective the joins would all pass through a point.)
87. Theorem. If we describe a conic to touch five given lines p, q, r, s, a, and k is another line such that the row described on k by the lines p, q, r, s is projective with the row described on a by p, q, r, s, then k touches the conic.

For, if not, another line k^{\prime} can be drawn through the intersection T of k and p, to touch the conic ; and hence p, q, r, s describe on k^{\prime} a row projective with the row they describe on a. Hence we have on k and k^{\prime} two projective rows having a common point T ; and therefore in perspective, so that q, r, s are collinear, which is contrary to hypothesis, for the projective rows on a, p must not be in perspective.

Thus the envelope of a line on which four given lines, no three of which are concurvent, form a row of constant cross-ratio is a conic.

We have already proved that the cross-ratio of the row described on any tangent to a conic by four given tangents p, q, r, s is constant: this may be called the cross-ratio of the four tangents with respect to that conic, and denoted by $\{p, q, r, s\}$. It will have a different value for each conic which touches the four lines.

We see also that from five given lines the same conic will be obtained, whichever pair we take as the bases of the projective rows.

Exercise 1. Construct a conic touching four given lines, and for which the four lines have a given cross-ratio.
2. Prove that the cross-ratio of four tangents is harmonic, if two of them intersect on the chord of contact of the other two.
3. Given three tangents p, q, r to a conic, construct a fourth tangent s, such that $\{p q r s\}=-1$, with respect to that conic.
88. Maclaurin's Theorem. If a variable triangle be such that its three sides pass through three given fixed points, and two of its vertices lie on two given lines, then the locus of the third vertex is a conic.

Fig. 74.
Let PQR be the triangle of which Q, R respectively lie on the two lines $D K, D L$, and $Q R, R P, P Q$ pass respectively through the fixed points A, B, C. Then shall the locus of P be a conic.

For, if $P_{1} Q_{1} R_{1}, P_{2} Q_{2} R_{2}, P_{3} Q_{3} R_{3}, P_{4} Q_{4} R_{4}$ be four successive positions of the triangle, the pencil $B\left\{P_{1} P_{2} P_{3} P_{4}\right\}=\left\{R_{1} R_{2} R_{3} R_{4}\right\}$ on the transversal DL: and C $\left\{P_{1} P_{2} P_{3} P_{4}\right\}=\left\{Q_{1} Q_{2} Q_{3} Q_{4}\right\}$ on DK.

But, by projection from A, we have $\left\{R_{1} R_{2} R_{3} R_{4}\right\}=\left\{Q_{1} Q_{2} Q_{3} Q_{4}\right\}$.

Hence $B\left\{P_{1} P_{2} P_{3} P_{4}\right\}=C\left\{P_{1} P_{2} P_{3} P_{4}\right\}$, and therefore the locus of P is a conic.

Corollary. This conic passes through B and C.
89. Theorem. If a triangle moves so that its three vertices lie on three fixed lines, and two sides pass through two given points, its third side will envelope a conic.

Fig. 75.
Let the triangle PQR move so that P always lies on $L M, Q$ on $M K, R$ on $K L$, and $P R, P Q$ pass through B, C respectively, then the envelope of $Q R$ is a conic.

For the pencils described by BP at B, and CP at C, are projective, being in perspective ; hence the rows described by Q on $K M$, and R on KL are projective. Hence QR envelopes a conic.

Corollary. The conic touches KL and KM.
These theorems may be extended as follows.
90. Theorem. If a triangle moves so that its three sides $Q R, R P, P Q$ pass always through three given points \dot{A}, B, C respectively, and Q lies on a conic through A, C and R lies on a conic through A, B; then the locus of P is a conic passing through B, C.

For since BP passes through R, \therefore pencil described by BP at B is equal to pencil described by AR at A : and pencil described by CP at C , i.e. pencil described at c by $C Q=$ pencil described at A by AQ. But AQ, AR are the same line,
\therefore pencil $\mathrm{B}\{\mathrm{P} \ldots\}=\mathrm{C}\{\mathrm{P} \ldots\}$, and \therefore the locus of P is a conic passing through B and C .

Thus, if frona an intersection of two conics we draw a line to

Fig. 76. cut the conics at R, Q respectively ; and join R, Q to two given points B, C on their respective conics, the locus of the intersection of $B R, C Q$ is a conic.

Corollary. The locus of P passes through any other intersection of the conics $A B \ldots, A C \ldots$, and hence if these conics intersect in four points it is completely determined for it passes through the three intersections other than A, and through the two points B, C.

Thus we get a system of three conics passing through three points X, Y, Z and intersecting in pairs at A, B, C, concerning which we have proved that if P on $B C X Y Z$, Q on CAXYZ, R on $A B X Y Z$, are such that PR passes through B, and PQ through C , then QR passes through A.

Thus we get a system of corelated triads P, Q, R on the three conics.

Fig. 77.
91. Theorem. If a triangle PQR moves so that its vertices P, Q, R lie respectively on LM, MK, KL, and PR touches a conic touching LM and LK, and PQ touches a conic touching ML and $M K$, then the envelope of $Q R$ is a conic touching KL and $K M$.

For the row described by Q on $M K=$ row described by P on $M L=$ row described by R on $K L$.

Hence $Q R$ is the join of projective rows on $K M$ and $K L$, and \therefore its envelope is a conic which touches KL and KM.

Corollary. The envelope of QR touches the other common tangents of the two given conics. Hence, if they have four common tangents, it is determined by KL, KM and three of these common

Fig. 78. tangents other than LM.

Thus we get a set of three conics each touching the three sides of the triangle $A B C$; and touching in pairs, the sides KL, LM, MK

Fig. 79.
of triangle KLM : and we have proved that if from any point P on LM we draw tangents $P Q$ to the conic touching MK, ML meeting MK at Q; and PR to the conic touching LK, LM meeting LK at R, then $Q R$ touches the third conic. Thus we get a set of co-related triangles PQR.

Corollary. Three special forms of the triangle PQR on the lines $B C, C A, A B$.

EXAMPLES. V.

1. Through A a line is drawn parallel to the side $B C$ of a quadrilateral $A B C D$, and the joins of two fixed points on this line to a variable point on $B C$ cut $A B$ at K, L; prove that the locus of the intersection of $C K, D L$ is a conic passing through $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.

Also find the cross-ratio of $\{A B C D\}$ on this conic.
2. A conic touches two lines $T A, T B$ at A and B, and passes through a point C. Find the lines through T which meet the curve at infinity.
3. Through corresponding points on two projective rows lines are drawn parallel to two given directions, prove that the locus of their intersection is a conic.
4. A parabola touches TA, TB at A, B, and M is the middle point of $A B$. Prove that the locus of the intersection of the perpendicular from T to a tangent touching the parabola at K and a line through K parallel to TM is a conic.
5. If the chord CD of a conic passes through the intersection of the tangents at A, B prove that C, D are harmonic conjugates to A, B on the conic.
6. Three straight lines through a point cut a conic in six points forming an involution on a conic.
7. If a chord $P Q$ of a conic cuts a chord $A B$ at K and the tangents $A T$, $B T$ at D, E, prove, from the definition, that

$$
\frac{K D}{D Q}: \frac{K E}{E P}=-\frac{K P}{K Q} .
$$

Deduce that when P coincides with Q then $\{K P D E\}$ is harmonic.
8. Construct a conic circumscribing $A B C D$, with respect to which $\{A B C D\}$ is harmonic.
9. Prove that the chord of contact of tangents to a conic from any point on a given straight line passes through a fixed point.
10. Construct a conic to touch four given straight lines, so that the cross-ratio of the four tangents shall have a given value.
11. A conic is constructed by joining corresponding points on two rows $T A, T B$ of which T and A correspond to B and T. Two of the joins $P Q$, $P^{\prime} Q^{\prime}$ cut $A B$ at R, R^{\prime} respectively and intersect at X, and $T X$ cuts $A B$ at Y. Prove that

$$
\frac{A Y}{Y B}: \frac{A R^{\prime}}{R B}=\frac{R Y}{Y R^{\prime}} .
$$

Deduce that, when $P^{\prime} Q^{\prime}$ coincides with $P Q, X$ becomes the point of contact of $P Q$, and $\{A B Y R\}$ is harmonic.
12. Two conics are drawn through four points A, B, C, D and any line through A cuts the conics at Q, R; find the locus of the intersection of $B Q$ and CR.
13. A conic touches $T A, T B$ at A and B, and the joins of A, B to any point P of the conic cut TB, TA respectively at K, L. Prove that KL envelopes a conic, which also touches TA, TB at A, B.
14. In the figure of the previous question prove that the point at which KL touches its envelope lies on TP. Also prove that KL, AB and the tangent at P are concurrent.
15. In the same figure prove that $T P$ is harmonically divided by $A B$ and KL. Also find the points at which the line joining T to the middle point of $A B$ cuts the envelope of KL,
16. A variable tangent to a conic cuts two fixed tangents $T A, T B$ at K, L respectively, prove that the locus of the intersection of $A L, B K$ is a conic having double contact with the given conic.
17. Any line through a given point K in the side $B C$ of a triangle $A B C$ cuts $C A$ at L, and $A B$ at M, and $B L, C M$ cut $A K$ at X and Y respectively ; prove that the locus of the intersection of CX and BY is a conic.
18. Any point P is taken in the side of a triangle $A B C$, and $B Q, C R$ parallel to $A P$ meet CA, BA respectively at Q, R; if $P Q$ cuts $A B$ at M and $P R$ cuts $A C$ at L, prove that $L M$ envelopes a conic.
19. Any point Q of a fixed straight line is joined to two given points S and \mathbf{S}^{\prime}, and $\mathbf{S P}, \mathbf{S}^{\prime} \mathbf{P}$ are drawn making given angles with $\mathbf{Q S}, \mathbf{Q S}^{\prime}$ respectively and meeting at P. Prove that the locus of P is a conic.
20. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ lie on a conic prove that the intersections of $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$ are collinear.
21. If two projective pencils have a common vertex lying on a conic which cuts any two rays of the first pencil at $K ; L$ and the corresponding rays of the second pencil at K^{\prime}, L^{\prime}, prove that the locus of the intersection of $K L^{\prime}$ and $K^{\prime} L$ is a straight line.
22. Construct the points at which a given straight line is cut by the conic passing through five given points.
23. A conic touches $T A$ at A and $T B$ at B, and a variable tangent to the conic cuts $T A$ at P and $T B$ at $Q ; P^{\prime}$ is the mid-point of $T P$, and Q^{\prime} of $T Q$. Prove that the locus of the intersection of $A Q^{\prime}, B P^{\prime}$ is a conic.
24. Tangents from three collinear points touch a conic at six points forming an involution on the conic.
25. A chord of a conic subtends an angle at a given point of the conic whose bisector is fixed; prove that the chord always passes through a given fixed point.
26. Two conics are such that a triangle is inscribed in one and circumscribed to the other, prove that an infinite number of such triangles exist.
27. The tangents at A, B to a conic meet on the normal at C; prove that $A C, B C$ are equally inclined to the normal at C.
28. If the tangents from P to a conic cut a given line $A B$ at K, L so that $A K$. AL bears a fixed ratio to BK. BL prove that the locus of P is a conic, which passes through the intersections of the tangents from A, B to the original conic, and divides $A B$ harmonically.
29. On a given tangent to a conic two other tangents, which meet at T, cut off a segment which subtends a constant angle at a given point on the conic. Prove that the locus of T is a conic, having double contact with the given conic.

Prove, also, that the chord of contact of the two conics is independent of the size of the constant angle.

Discuss the special case where the constant angle is a right angle.

CHAPTER VI

POLARS

92. Theorem. If any point K be taken within or without a conic, there exists a straight line which contains the intersection of tangents at the extremities of any chord through K , the harmonic conjugate of K with respect to the extremities of any chord through K, and the intersections of the joins of the extremities of any two chords through K. This line is called the polar of K.

Through K draw a chord $A B$, and let the tangents at A, B meet at T : find the harmonic conjugate L of K with respect to A and B : then TL is the polar of K.

Draw any other chord XY through K, let AX, BY meet at V and $A Y, B X$ at U. It has been proved that UV passes through T (§ 74).

But $X Y, U V, A B$ are the diagonals of a quadrilateral, hence UV, XY divide $A B$ harmonically, i.e. UV passes through L. Hence U and V lie on TL.

Similarly UV contains the harmonic conjugate P of K with respect to X, Y; and the intersection Q of tangents at X, Y. Hence P, Q lie on TL.

Hence if $X^{\prime} Y^{\prime}$ be any other chord, the intersections of $X X^{\prime}$, $Y Y^{\prime}$ and of $X Y^{\prime}, Y X^{\prime}$ lie on $P Q$, and therefore on $T L$.

Corollary. If K is outside the conic its polar is the chord of contact of tangents from K. For it has been proved ($\$ 75$, Cor.) that the points of contact of tangents from K lie on TL .

Construction. To draw tangents from K to a conic.
Draw through K two lines to cut the conic at A, B and X, Y respectively; let $A Y, B X$ meet at U and $A X, B Y$ at V; if $U V$ cuts the conic at $\mathrm{C}, \mathrm{C}^{\prime}$ then $\mathrm{KC}, \mathrm{KC}^{\prime}$ are the tangents from K .

If UV does not cut the conic, k lies within the conic.

Fig. 80.
Fig. 81.
93. Theorem. If B is on the polar of A, then A is on the polar of B.

1. If $A B$ cuts the conic at E, F, B is the harmonic conjugate of A with respect to E, F; and therefore A lies on the polar of B.
2. Through B draw any chord KL: join AK, AL to cut the conic in M, N.

Then KL, MN intersect on the polar of A, but KL cuts that polar at B, hence MN passes through B.

Thus KL, MN are two chords through B, and therefore the intersection A of KM, LN lies on the polar of B.

Corollary. The pole of $A B$ is the intersection C of $K N$ and LM.

Two points each lying on the polar of the other are called coujugate points.

A has a conjugate point on every line through it, their locus being the polar of A.

If A, B are conjugate points on a line whose pole is C, then A is the pole of $B C$, and B of $A C$.

A triangle of which each side is the polar of the opposite vertex is called a self-polar or self-conjugate triangle.

Corollary. The diagonal points of any inscribed four-point are the vertices of a self-polar triangle.

Corollary. One vertex of any self-polar triangle lies within the conic, and two vertices lie outside the conic.
94. Problem. Given a self-polar triangle to a conic and one point on the conic, to construct three other points of the conic.

Let $A B C$ be the self-polar triangle, and K the given point. Join $A K$ to cut $B C$ at P, and find the harmonic conjugate L of K with respect to A and P.

Since $B C$ is the polar of A, it follows that A and P are conjugate points on the line $A P$, therefore $A P$ cuts the conic in points which are harmonically conjugate with respect to A and P. But one point of section is K, therefore the other is L.

Similarly two other points \mathbf{M}, \mathbf{N} may be obtained by joining $B K$ to cut $A C$ at Q, and taking M the harmonic conjugate of K
with respect to B, Q; and joining $C K$ to cut $A B$ at R, and taking N the harmonic conjugate of K with respect to C , R.

Corollary. If two conics have a common self-polar triangle they intersect in four points or not at all.

For if they intersect at one point, the above construction gives three other points, each of which lie on both conics.

Fig. 82.
95. A system of conics passing through four points A, B, C, D have a common self-polar triangle, whose vertices are the diagonal triad U, V, W of the four-point ABCD.

Also V, W are conjugate points (on their join) with respect to any conic of the system ; hence the conics trace an involution on VW. To this involution belong also the points at which VW is cut by those common chords which pass through U, since these are harmonically conjugate to UV and UW.

Involutions are also traced on UV and UW. Any one conic of the system, however, cuts two and only two of the lines in real points (§ 93, Cor.).
96. Theorem. If two four-points have a common diagonal triad, their eight vertices either lie on a conic or on two straight lines through a diagonal point.

Let K, L, M, N and $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ have a common diagonal triad A, B, C (see fig. 82).

1. If K^{\prime} lies on $K L$, then L^{\prime} also lies on $K L$; since $K^{\prime} L^{\prime}, K L$ both pass through A.

Again $A M$ is the harmonic conjugate of $A K$ with respect to $A B$ and $A C$, and $A M^{\prime}$ of $A K^{\prime}$. But $A K^{\prime}$ lies along $A K$, therefore M^{\prime} lies on AM.

But $M N, M^{\prime} N^{\prime}$ both pass through A, therefore M^{\prime}, N^{\prime} both lie on MN.

Hence and similarly, if any one of the second set of four points lies on the join of two points of the first set, then another lies on that join, and the other two on the other join which passes through the same diagonal point.
2. If K^{\prime} is not collinear with any two of the four points K, L, M, N a conic can be described through these five points. Also $A B C$ will be a self-polar triangle to this conic, and hence L^{\prime}, M^{\prime}, N^{\prime} lie on the conic.
97. Theorem. The chords of contact of four tangents to a conic pass through the vertices of the diagonal triangle.

Let KL, MN, OP, the diagonals of the four-side formed by tangents at A, B, C, D, form the triangle UVW (fig. 83).

The tangents KA, KC touch the conic at A, C ; intersect at K; and are cut by two other tangents at M, O and P, N respectively.

$$
\begin{aligned}
& \therefore\{K A M O\}=\{C K P N\}, \\
& \therefore\{K A M O\}=\{K C N P\}
\end{aligned}
$$

two rows with a common corresponding point K, therefore $A C$, MN , OP are concurrent; i.e. AC passes through U.

Similarly BD passes through $U: A B$ and $C D$ through V : and $A D, B C$ through W.

Corollaries. 1. The diagonal triad of four points on a conic are the vertices of the diagonal triangle of the four lines which touch the conic at those four points.
2. The diagonals of a circumscribing quadrilateral form a self-polar triangle.
3. Given a self-polar triangle and one tangent three others can be constructed (cf. § 94).
4. Given a self-polar triangle and two tangents, the conic can be constructed, except in certain special cases.

Fig. 83.
5. If two four-sides have a common diagonal triangle, the eight lines either touch one conic, or pass through two points lying on one of the diagonals (cf. §96).
6. If two conics have a common self-polar triangle they have either four common tangents or none. For if they have one common tangent we can construct three others by Cor. 3.
7. Two or more conics touching four given lines have a common self-polar triangle. Also pairs of tangents from a vertex of this triangle form a pencil in involution (ef. § 95).

Pole Theorem.

98. If VW is any straight line there exists a point U through which pass the chord of contact of tangents from any point of VW ; the harmonic conjugate of VW with respect to tangents to the conic from any point of vw ; and the joins of intersections of the tangents from any two points of VW . This point U is called the pole of VW .

If VW cuts the conic, its pole is the intersection of tangents drawn at the points of section.

If U is the pole of VW , then VW is the polar of U as defined in § 92 .

If we join any point v on a line VW to u the pole of vw , then VW contains the pole of Vu . Two lines through a point each of which contains the pole of the other are called conjugate lines.

If U is the pole of $V W$, and W of $V u$, then V is the pole of $u w$: and UVW is a self-polar triangle.
99. Theorem. As a line turns round a point, its pole moves along the polar of the point describing a row projective with the pencil of the line.

Let AP be the line, turning round A, and cutting a, the polar of A, at P.

Take any fixed line through A cutting the conic at L and M.
Let PL, PM cut the conic again at X, Y respectively.
P is on the polar of A, therefore $X Y$ passes through A.
Therefore LY, MX meet at P^{\prime}, the pole of AP.
Hence as P moves along a, P^{\prime} also moves along a, and (L, M being fixed) the pencil described by AP at $A=$ the pencil of LP
P. P. G.
or $L X$ at $L=$ the pencil of $M X$ at M (by the definition of a conic) $=$ the row described by P^{\prime} on the transversal a.

Corollary. Conjugate points (P, P^{\prime}) describe projective rows on a straight line : again when P is at P^{\prime}, P^{\prime} is at P, since P is the pole of $A P^{\prime}$, hence $\left\{P P^{\prime} Q R\right\}=\left\{P^{\prime} P Q^{\prime} R^{\prime}\right\}$, i.e. the double row of conjugate points on a line are in involution.

When the line cuts the conic these results follow directly from the fact that P, P^{\prime} are harmonically conjugate to the points of intersection, which are the double points of the involution.

Conjugate lines at any point describe a pencil in involution. If the point is outside the conic the tangents from it are the double rays of the involution.

Fig. 84 (i).

Fig. 84 (ii).
100. Theorem. If P, Q and A, B be two pairs of conjugate points, then the intersections K, L of $P A, Q B$ and $P B, Q A$ respectively are also conjugate points.

Let R, C be the poles of $P Q$ and $A B$. Draw PR to cut $B C$ at G, and $A C$ at H; $Q R$ to cut $B C$ at E; and $P B$ to cut $A C$ at Y.

Then E lies on the polars of A and P, hence it is the pole of $A P$; similarly G is the pole of $A Q$, so B, C, E, G are the poles of $A C, A B, A P, A Q$,
and $\quad \therefore\{B C E G\}=$ pencil $A\{C B P Q\}=$ transversal $\{Y B P L\}$,
therefore $\{B C E G\}=\{B Y L P\}$ by a double exchange of terms : and these are two projective rows with a common point B, therefore CY, EL, GP are concurrent : viz. EL passes through H.

Fig. 85.
Now E is the pole of $A P$, and H is the pole of $B Q$ (being the intersection of the polars of B and Q) : therefore $E H$ is the polar of K .

Hence the polar of K passes through L. Q.E.d.
101. Given a self-conjugate triangle $A B C$ and a point P and its polar p, to find the conic.

Join PC to cut p at \mathbf{Z}, and $A B$ at F, then C, F and P, \mathbf{Z} are two pairs of conjugate points on PC, and hence we may find the double points K, L of the involution on PC. These will be the points at which PC cuts the conic, similarly we may find two points on PA, and two on PB.

Fig. 86.
Now one vertex of a self-conjugate triangle lies inside the conic, and two outside. Hence one at least of the lines PA, PB, PC must cut the conic, so that we have found at least one pair of real points.

Again let BC cut p at \mathbf{Q}, and PA at \mathbf{Q}^{\prime}.
Then Q lies on p and $B C$, hence its polar passes through P and A, therefore Q, Q^{\prime} are conjugate points on $B C$, and so also are B, C, hence the involution on $B C$ is determined, and its double points, \mathbf{M}, \mathbf{N}, are a pair of points on the conic. But two sides of a selfconjugate triangle cut the conic and the other does not. Hence we get two pairs of real points, and one imaginary pair.

Hence we have got at least six real points of the conic (viz. four on the sides of triangle $A B C$, and two on one of the lines PA, PB, PC), and the conic is completely determined.

Corollary. If P lies on a side $A B$ of the triangle $A B C$, its polar is a line $C Q$ through C, and the construction fails.

In this case let CQ cut AB at Q. Then PCQ is also a self-polar triangle. P, Q and A, B determine the involution on AB ; let G, H be the double points of this involution, then any conic which touches CG, CH at G, H satisfies the conditions.
102. Two conics cannot have more than one common self-conjugate triangle [unless they touch two given lines OG, OH at the same points G, H, in which case any triangle whose vertices are O and two harmonic conjugates P, Q with respect to G, H is a common self-conjugate triangle].

If U, V are two points which have common polars for the conics, and these polars intersect at W , then W has a common polar UV and UVW is the common self-polar triangle.

If there exists a point U which has the same polar QR for both conics, the conjugate points on QR for each conic trace an involution, these involutions have one pair of common points, which may or may not be real: if they are real, viz. V and W , then UVW is a self-polar triangle common to the conics.

Hence two conics have not more than one common pole and polar, except when they have a common self-polar triangle.

Common Conjugate Points and Lines for two Conics.

103. If the polars of P for two conics intersect at P^{\prime}, the polars of P^{\prime} intersect at P, and P^{\prime} is the conjugate of P for both conics : P has only one common conjugate point P^{\prime}, except when it has a common polar for the two conics, in which case it is the common conjugate of any point on that polar.

If P, P^{\prime} and Q, Q^{\prime} are two pairs of common conjugate points, the intersections of $P Q, P^{\prime} Q^{\prime}$ and $P Q^{\prime}, P^{\prime} Q$ are also common conjugate points (§ 100).

If P is an intersection of the conics it coincides with its common conjugate P^{\prime}.

If P lies on a common chord $A B$ its common conjugate also lies on $A B$ and is the harmonic conjugate of P for A and B; if P is the intersection of two common chords it has a common polar for the two conics.

On any line the conjugate points for either conic trace an involution, and two non-coincident involutions on a line have one and only one pair of common points, real or imaginary, hence on any line which is not a common chord there is one and only one pair of common conjugates (real or imaginary) : if on a line there are two pairs of common conjugates (the involutions coincide, and) the line is a common chord cutting both conics at the (real or imaginary) double points.

On a common tangent to two conics the common conjugate points are the points of contact.
104. Conjugate lines. If C, D are the poles of $A B$ for two conics, the poles of $C D$ lie on $A B$, and $A B, C D$ are common conjugate lines for the two conics: AB has one conjugate line $C D$, except when it is a line having the same pole for each, in which case it is conjugate for both conics to any line through the common pole.

If $A B$ is a common tangent it coincides with its common conjugate.

If $A B$ passes through the intersection O of two common tangents, its common conjugate also passes through O and is the harmonic conjugate of $A B$ with respect to the common tangents.

Through any point which is not an intersection of common tangents pass one, and only one, pair of common conjugate lines (real or imaginary). If more than one pair of common conjugates can be drawn through a point, that point is an intersection of common tangents, viz. the (real or imaginary) double rays of the involution.
105. Theorem. If U has a common polar for two conics, and $\mathrm{P}, \mathrm{P}^{\prime}$ are a pair of common conjugate points, the common conjugate of any point \mathbf{Q} on UP lies on UP'.

Proof. Let the poles of UP for the two conics be S, T (lying on the polar of U), the polars of P are $S P^{\prime}, T P^{\prime}$: also if UP cuts ST at F, the polars of F are $S U$, TU. Let the polars of Q be SQ', TQ'.

Then each of the two pencils formed at S and T by joining to $F, U, P^{\prime}, Q^{\prime}$ is projective with $\{U F P Q\}$, since the crossratio of four points on a line is equal to that of their four polars at the pole of the line (§ 99).

Thus at S, T we have two

Fig. 87. projective pencils with a common ray $\mathbf{S F}$ (the polar of U), hence they are in perspective, and therefore $\mathrm{U}, \mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$ are collinear.

Hence as \mathbf{P} moves along a line UP its common conjugate moves along another line through U.

If UP' cuts ST at F^{\prime}, then $\left\{F^{\prime} U P^{\prime} Q^{\prime}\right\}=\{U F P Q\}=\{F U Q P\}$, hence $\mathrm{P}^{\prime} \mathrm{Q}$ and PQ^{\prime} intersect on FF^{\prime}, i.e. on ST .
106. Conversely: if P, Q, R are three collinear points whose common conjugates for two conics $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{R}^{\prime}$ are also collinear, the intersection of $P Q$ and $P^{\prime} Q^{\prime}$ has a common polar for the two conics. Let S, T be the poles of PQ for the two conics, then $S P^{\prime}, \mathbf{S Q}^{\prime}, \mathbf{S R}^{\prime}$ and $T P^{\prime}, T Q^{\prime}, T R^{\prime}$ are the polars of P, Q, R : also if $P^{\prime} Q^{\prime}$ cuts $S T$ at F^{\prime}, the pole of $S F^{\prime}$ for the one conic is a point U on $P Q$ such that $\{P Q R U\}=\left\{P^{\prime} Q^{\prime} R^{\prime} F\right\}$, and the polar of $T F^{\prime}$ for the other conic is the same point U.

Hence ST has the same pole U (lying on PQ) for both conics, and hence by the theorem above the common conjugates $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{R}^{\prime}$ of P, Q, R lie on one line through U.

Corollary. The common conjugate of any other point of PQ lies on $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$.

Conjugate Conic of a Line with respect to two Conics.
107. Problem. To find the locus of the common conjugate points for two conics, of all points lying on a given line.

1. If the line has the same pole U for both conics, the common conjugate to any point on the line is at U (but if there is a self-polar triangle UVW the points V, W of the line are conjugate to any points on UW and VW respectively): also, if the conjugates of two points K, L of the line are the same point that point is the pole of KL for both conics.
2. If the line passes through a common pole the locus of the conjugate points is another line through that pole: and if the conjugate points $K^{\prime}, L^{\prime}, M^{\prime}$ of three points K, L, M are collinear, the intersection of $K L, K^{\prime} L^{\prime}$ is a common pole, and the common conjugate of any point of $K L$ lies on $K^{\prime} L^{\prime}$; the locus is a straight line.
3. If the above special conditions are not satisfied, let K^{\prime}, L^{\prime}, M^{\prime} be the conjugates of three points $\mathrm{K}, \mathrm{L}, \mathrm{M}$ of the line, and S , \mathbf{T} the poles of the line for the two conics, so that $\mathrm{SK}^{\prime}, \mathrm{TK}^{\prime}$ are the respective polars of K , etc., etc.

Take any other point \mathbf{P} of the line, and its polars $\mathbf{S P}^{\prime}, \mathrm{TP}^{\prime}$.
Because the cross-ratio of four points on a line equals the cross-ratio of their polars at the pole of the line (§99),

$$
\therefore \mathrm{S}\left\{\mathrm{~K}^{\prime} L^{\prime} M^{\prime} P^{\prime}\right\}=\{K L M P\}=T\left\{K^{\prime} L^{\prime} M^{\prime} P^{\prime}\right\},
$$

and $K^{\prime}, L^{\prime}, M^{\prime}$ are not collinear, therefore the locus of P^{\prime} is a conic given by the five points $S, T, K^{\prime}, L^{\prime}, M^{\prime}$. It is called the conjugate conic of the line.

Corollary 1. The conjugate conic cuts the line at the pair of common conjugate points which lie on the line.

Corollary 2. If U is a point which has a common polar QR for the two conics it lies on the conjugate conic of any line, for it is conjugate to the point where $Q R$ cuts the line: if the conics have a common self-polar triangle its vertices lie on the conjugate conic of any line.

Corollary 3. If A, B on the line have common conjugates A^{\prime}, B^{\prime} and $A^{\prime} B^{\prime}$ cuts $A B$ at C, the common conjugate of C is the intersection C^{\prime} of $A B^{\prime}$ and $B A^{\prime}(\S 100)$.

Corollary 4. If P is any other point on $A B$, and P^{\prime} the common conjugate of P, and K is any other point of the conjugate conic of $A B$, we have $K\left\{A^{\prime} B^{\prime} C^{\prime} P^{\prime}\right\}=S\left\{A^{\prime} B^{\prime} C^{\prime} P^{\prime}\right\}=\{A B C P\}$; but $A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$ are pairs of vertices of a four-side, therefore the joins to K are in involution, hence $K P$ and $K P^{\prime}$ describe pencils in involution at K.

If the common conjugate points are real points $\mathrm{X}, \mathrm{Y}(\S 103)$ this may be proved as follows.

The pencil $K\left\{P^{\prime} \ldots\right\}=S\left\{P^{\prime} \ldots\right\}=\{P \ldots\}$; hence $K P^{\prime}, K P$ describe two projective pencils at K. Also, in these pencils, KX corresponds to KY and KY to KX, hence the pencils are in involution.

Corollary 5. If U is a point which has the same polar for both conics, and a common chord through U cuts $A B$ at P, the common conjugate P^{\prime} also lies on UP. Hence the common chords through U are the real or imaginary double rays of the involution described by UP, UP' at U ; and UP, UP' are harmonically conjugate with respect to the two common chords.
108. Theorem. If two conics have a common self-polar triangle they have either one or three pairs of common chords.

Let UVW be the self-polar triangle, through each vertex pass two, real or imaginary, common chords. If two pairs are real, there are four real intersections of the conics, and the third pair of common chords are real.

Also, by $\S 94$, Cor., if the conics intersect at all, they intersect in four points, and therefore there are three pairs of common chords.

Suppose, however, that the common chords through V and w are imaginary, and take a point P within the triangle $U V W$. Let P^{\prime} be the common conjugate of P.

Since the double rays of the involution at V are imaginary, VP and $V P^{\prime}$ lie in supplementary angles at V (§ 32); and, in the same way, WP and $W P^{\prime}$ lie in supplementary angles at W.

Hence P^{\prime} lies either in the angle between VU produced and WU produced, or in the space bounded by UV produced, UW produced and VW. In either case UP' and UP lie in the same or opposite angles at U, and therefore the double rays of the involution at U are real (§ 32), forming a pair of real common chords.

Hence the conics either intersect in four points, and have three pairs of real, common chords, or they do not intersect at all, but still have one pair of real, common chords, i.e. a pair of lines which, although they do not cut either conic, still satisfy a certain test which applies to common chords.
109. Theorem. Any two conics have at least one common pole and polar.

Take two lines KL, KM and find their conjugate conies for the two conics: these intersect at K^{\prime}, the common conjugate of K , hence they intersect in at least one other point U.

Let Q be the point of $K L$ which corresponds to U, and R the point of $K M$; then $Q R$ is the polar of U for both conics.

Corollary. If two conics intersect at A, we can find a point U which has the same polar $Q R$ for both conics, and another common point of the conics will be the harmonic conjugate on $U A$ of A with respect to U and the point where $U A$ cuts $Q R$.
110. On the polar $Q R$ of U conjugate points with respect to either conic trace an involution whose double points are the points where QR cuts the conic. Now two involutions on a line
have one and only one pair of common points, but these are imaginary if, and only if, the double points are the ends of real and overlapping segments (§ 28).

Let V, W be the common pair of conjugate points on the polar of U, if they are real UVW is a self-polar triangle : and therefore the conics intersect in four points or not at all.

Conversely: if two conics do not intersect at all (and U, QR are the common pole and polar), one conic must lie entirely within the other or else each outside the other, in either case QR cuts the conics in segments which are one or both imaginary, or if both real not overlapping, and therefore V, W are real. [In this case there are two real common chords (§ 108).]

Hence it follows that if V , W are imaginary the conics must intersect in one and only one pair of points, and (conversely) if they intersect in one pair of points only, V, W are imaginary. In this case the line QR cuts both conics, and therefore its pole U is outside both conics.

If U is a common pole to a common polar $Q R$, and $A B$ is a common tangent meeting $Q R$ at A, then another common tangent is the harmonic conjugate of $A B$ with respect to $Q R$ and $A U$. Hence two conics have 4,2 , or 0 common tangents.

If $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are real the conics have four common tangents or none, and conversely, if they have either four or no common tangents then V, W are real.

Hence when U is real, but V and W are imaginary, there are two and only two common tangents: conversely also if there are two and only two common tangents, V, W are imaginary (and the conics intersect in two points).

Problem. To construct the common chords of two conics which do not intersect.

Take two points A, B and their common conjugates A^{\prime}, B^{\prime}; and construct the conjugate conics of the lines $A B, A^{\prime} B^{\prime}$. These will intersect at C, the intersection of $A B^{\prime}$ and $A^{\prime} B$, and also at three other real points $\mathrm{U}, \mathrm{V}, \mathrm{W}$ forming the self-polar triangle UVW.

We can now construct the involutions joining U, V, W to $A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$ and in one of these the double rays will be real, and these are the common chords.
111. Theorem. If any straight line be drawn to cut the six joins of a four-point, and the harmonic conjugate be taken on each join of the point where the line cuts it, these six conjugates lie on a conic, which also passes through the diagonal triad of the four-point.

Fig. 88.
Let $A B$ cut the line at K, and find K^{\prime} the harmonic conjugate of K on $A B$.

Similarly let CD, AC, BD, AD, BC cut the line at L, M, N, O, P and $L^{\prime}, M^{\prime}, N^{\prime}, O^{\prime}, P^{\prime}$ be the respective harmonic conjugates.

Let $A B, C D$ meet at U; $A C, B D$ at V; $A D, B C$ at W,

$$
\left\{A B K K^{\prime}\right\}=\left\{A C M M^{\prime}\right\},
$$

hence $B C, K M, K^{\prime} M^{\prime}$ are concurrent, i.e. $K^{\prime} M^{\prime}$ passes through P.

Similarly $K^{\prime} N^{\prime}, K^{\prime} O^{\prime}, K^{\prime} P^{\prime}$ pass through O, N, M respectively.
Hence $\quad K^{\prime}\left\{M^{\prime} N^{\prime} O^{\prime} P^{\prime}\right\}=\{P O N M\}=\{M N O P\}$.
Similarly $\quad L^{\prime}\left\{M^{\prime} N^{\prime} O^{\prime} P^{\prime}\right\}=\{M N O P\}$,
therefore K^{\prime}, L^{\prime} lie on the same conic through $M^{\prime}, N^{\prime}, O^{\prime}, P^{\prime}$.
Again $U^{\prime} \mathbf{M}^{\prime}, \mathrm{UN}^{\prime}, \mathrm{UO}^{\prime}, U P^{\prime}$ are the harmonic conjugates of $U M$, UN, UO, UP with respect to UA and UC.

$$
\therefore U\left\{M^{\prime} N^{\prime} O^{\prime} P^{\prime}\right\}=\{M N O P\}=K^{\prime}\left\{M^{\prime} N^{\prime} O^{\prime} P^{\prime}\right\}
$$

therefore U also lies on this conic, and similarly V and W.
Corollary. Since $K^{\prime} M^{\prime}, L^{\prime} N^{\prime}$ meet at P and $K^{\prime} N^{\prime}, L^{\prime} M^{\prime}$ at O, therefore O, P are two diagonal points of $K^{\prime} L^{\prime} M^{\prime} N^{\prime}$; hence $K^{\prime} L^{\prime}, M^{\prime} N^{\prime}$ intersect at X, the harmonic conjugate with respect to K^{\prime}, L^{\prime} of the point where $K^{\prime} L^{\prime}$ cuts the given line ; similarly $O^{\prime} P^{\prime}$ cuts $K^{\prime} L^{\prime}$ at the same point X.

Also X is the pole of the given line for the conic.
Again $\mathrm{K}^{\prime}, \mathrm{L}^{\prime}, \mathrm{M}^{\prime}, \mathrm{N}^{\prime}, \mathrm{O}^{\prime}, \mathrm{P}^{\prime}$ form an involution on the conic : which is otherwise proved since

$$
U\left\{K^{\prime} L^{\prime} M^{\prime} O^{\prime}\right\}=\{K L M O\}=\{L K N P\}=U\left\{L^{\prime} K^{\prime} N^{\prime} P^{\prime}\right\}
$$

because KL, MN, OP form an involution on the line.
This conic may be called the harmonic or nine-point conic of the line with respect to the four-point.
112. Theorem. The nine-point conic of a line with respect to four points is the locus of the poles of the line with respect to a system of conics through the four points.

Let S be the pole of the line with respect to any conic through $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Then (using the last figure) the polars of $\mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ are $S M^{\prime}, S N^{\prime}, S^{\prime}, S P^{\prime}$, therefore $S\left\{M^{\prime} N^{\prime} O^{\prime} P^{\prime}\right\}=\{M N O P\}$, therefore S lies on the conic UVWK'L'M ${ }^{\prime} N^{\prime} O^{\prime} P^{\prime}$.

Corollary. The nine-point conic of a line with respect to four points is the conjugate conic of the line with respect to any two conics through the four points.

For $\mathrm{K}, \mathrm{K}^{\prime}$ are conjugate points with respect to any two conics through $A B$, etc., etc., hence $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}, O^{\prime}, P^{\prime}$ are six points on the conjugate conic of the line, which therefore coincides with the nine-point conic.

Corollary. The polars of a point Y with respect to a system of conics passing through four points A, B, C, D are concurrent.

Through Y draw any straight line, and construct its ninepoint conic. Let S be the pole of the line for any conic of the system, and $S Y^{\prime}$ the polar of Y, cutting the nine-point conic at S and Y^{\prime}, then Y^{\prime} is conjugate to Y for all conics of the system.
113. Correlative theorems on the conjugate conic of lines through a point.

If the poles of $A B$ for two conics are C and D, the poles of $C D$ lie on $A B$, and $A B, C D$ are conjugate lines for both conics.

If a line turns round a point its common conjugate for two given conics envelopes a conic conjugate to the point.

If the conics have a common self-polar triangle its sides touch the conjugate conic of any point.

If any point be joined to the six intersections of a four-side, and the harmonic conjugate be taken at each vertex with respect to the two sides of the four-side which meet at that vertex, these six conjugates touch a conic which also touches the sides of the diagonal triangle of the four-side.

The intersections of the three pairs of these conjugate lines drawn through pairs of opposite vertices lie on a straight line ; which is the polar of the given point with respect to the conic.

This nine-tangent conic is the envelope of the polar of the point with respect to a system of conics touching the four lines which form the four-side.

It also coincides with the conjugate conic of the point for any pair of conics touching the four lines.

The poles of any line with respect to a system of conics touching four given lines are collinear.

EXAMPLES. VI.

1. Prove that any line through the pole of a chord $A B$ cuts the lines joining A and B to any other point C of the conic in conjugate points.
2. Through a given point two lines are drawn to cut a conic at four points which lie on a circle. Prove that the given point has the same polar for each circle thus obtained. Also prove that the circles are coaxal.
3. Prove that the diagonal points of a four-point inscribed in a conic are the vertices of a self-polar triangle.
4. A system of conics through four points trace an involution on each side of the diagonal triangle of the four points.
5. The three diagonals of a quadrilateral circumscribing a conic form a self-polar triangle.
6. If a line be drawn through a fixed point, and its pole with respect to a given conic be joined to another fixed point, prove that the locus of the intersection of the two lines is a conic, which passes through the two fixed points.
7. Through a given point conjugate lines are drawn with respect to a given conic ; prove that they form a pencil in involution.
8. If two pairs of sides of a four-point are conjugate lines with respect to a conic, the third pair of joins will also be conjugate.
9. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ are two self-polar triangles for a conic, and $A B, A C$ cut $B^{\prime} C^{\prime}$ at K, L respectively, and $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$ cut $B C$ at M, N respectively, prove that $\left\{B^{\prime} C^{\prime} K L\right\}=\{M N B C\}$.

Also prove (1) that $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ lie on a conic ; and
(2) that the six sides of the two triangles touch a conic.
10. A conic is inscribed in a triangle which is self-polar to another conic; $K L$ is any tangent to the inscribed conic, and M is the pole of $K L$ with respect to the other conic. Prove that the two tangents from M to the inscribed conic form with KL a triangle which is self-polar to the other conic.
11. If two conics be such that a triangle can be inscribed in one which is self-polar for the other, then an infinite number of such triangles can be. described.
12. If a system of conics touch four given lines, pairs of tangents drawn to them from an intersection of two diagonals of the four-side will form an involution.
13. Find the conjugate conic of a straight line with respect to the two conics which respectively touch the line at two given points, and pass through three other given points.
14. Prove that two conics intersect in an even number of points.
15. Find the common chords of two ellipses, one of which is entirely within the other.
16. The poles with respect to two given conics of a straight line which passes through a fixed point are P, Q. Prove that the join PQ envelopes a fixed conic inscribed in the common self-polar triangle.
17. The locus of the centres of conics inscribed in a four-side is a straight line.
18. The locus of the centres of conics which pass through four given points is a conic.
19. Tangents are drawn to a conic from any two points; prove that the four points of contact and the two given points lie on one conic.
20. Find the nine-point conic of a tangent to a circle with respect to the four ends of two diameters of the circle.
21. Find the nine-tangent conic of the focus of a parabola with respect to four lines which touch the parabola.
22. Prove that the polars of any point with respect to a system of conics passing through four given points are concurrent.

CHAPTER VII

POLYGONS. CONSTRUCTIONS

114. In this chapter we consider :
115. The properties of inscribed and circumscribed triangles, hexagons, pentagons and quadrilaterals.
116. Some properties of systems of conics satisfying four conditions (e.g. the system of conics which touch two lines at two given points), -in many of the cases there is an involution of points on a transversal or of tangents from an external point.
117. The construction of conics to satisfy given conditions, and other problems relating to conics.

Conics are constructed :
(a) to touch 5 lines (§ 119);
(b) to pass through 4 points and touch 1 line ((121);
(c) to touch 4 lines and pass through 1 point (§ 123);
(d) to touch 1 line at a given point, and pass through 3 other points (§ 124);
(e) to touch 1 line at a given point, 1 other line and pass through 2 points (§ 127);
(f) to touch 1 line at a given point, and 3 other lines (§ 128);
P. P. G.
(g) to touch 1 line at a given point, 2 other lines and pass through 1 point ($\$ 8130,138$);
(h) to touch 2 lines at given points, and pass through 1 point ($\$ 8$ 132, 143);
(i) to touch 2 lines at given points, and 1 other line (§8 135, 139);
(j) to touch 2 lines and pass through 3 points (§ 137);
(k) to touch 3 lines and pass through 2 points (§ 144).

For the sake of convenience we may add to this list the construction in $\S 94$ of a conic with a given self-polar triangle and passing through 2 points; and, in $\S 101$, of a conic when a self-polar triangle is given, and a point (not on the conic) and its polar.

Circumscribed and Inscribed Triangles.

115. Theorem. If a conic touches the three sides of a triangle then the lines joining the vertices to the points of contact of opposite sides are concurrent.

Fig. 89.
Let the conic touch $B C$ at $K, C A$ at $L, A B$ at M.
Let BL, CM intersect at O; and LM cut BC at X.

Then, by $\S 77$, Cor. $6, \mathrm{k}, \mathrm{x}$ are harmonic conjugates with respect to B, C.

But the diagonals $A O, L M$ of the four-side AMOL, divide the third diagonal BC harmonically, hence AO passes through K. Q.E.D.

Otherwise. It has been proved ($\$ 77$) that pencils

$$
M\{K L C A\}, L\{K M B C\}
$$

are harmonic, and they have a common ray LM, hence the intersections of MK, MC, MA with LK, LB, LC respectively, viz. $\mathrm{K}, \mathrm{O}, \mathrm{A}$, are collinear.

Corollary 1. $\quad \frac{A M}{M B} \cdot \frac{B K}{K C} \cdot \frac{C L}{L A}=-1$.
Corollary 2. If LM is parallel to BC, the conic touches BC at its middle point, and conversely.

Problem. Given three tangents to a conic, and the points of contact of two of them, find the point of contact of the third.
116. Theorem. If a triangle be inscribed in a conic the tangents at the vertices meet the opposite sides in three collinear points.

Let the tangents at A, B, C respectively be $L M, M K, K L$ and let them meet the sides $B C, C A, A B$ of the triangle $A B C$ in X, Y, Z respectively.

It has been proved that $\{\operatorname{LMAX}\}$ is harmonic; also that $\{L K C Z\}$. is harmonic.

Hence these rows, having a common point L, are in perspective,
i.e. $M K, C A, X Z$ are concurrent, and Y lies on $X Z$.
[Otherwise from the previous theorem, since ABC, KLM are in perspective.]

Problem. Given three points on a conic and the tangents at two of them, find the tangent at the third point.

Theorem. If the sides of a triangle KLM touch a conic at
A, B, C, and if $A K, B L, C M$ intersect at O and $B C, L M$; $C A, M K$; $A B, K L$ at X, Y, Z respectively, then the line $X Y Z$ is the polar of 0 .

For X lies on $B C$, the polar of K, hence the polar of X passes through K; it also passes through A, and so it is KA, which passes through 0 .

Fig. 90.
Similarly the polars of Y and Z are LB, MC respectively. Hence the polars of X, Y, Z all pass through O. Q.E.D. This is another proof that, if AK, BL, CM are concurrent, then $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are collinear.

We may call O and $X Y$ the pole and polar of the inscribed triangle $A B C$ or of the circumscribed triangle KLM with respect to the conic.
117. Complementary triangles. Let the sides LM, MK, KL of a triangle KLM touch a conic at A, B, C and let O and XYZ be the pole and polar of the triangle.

Fig. 91.
Let KA cut the conic again at A^{\prime}, then the tangent $L^{\prime} M^{\prime}$ at A^{\prime} passes through X; and if LB, MC cut the conic at B^{\prime}, C^{\prime} respectively, the tangents $M^{\prime} K^{\prime}, K^{\prime} L^{\prime}$ at B^{\prime}, C^{\prime} pass respectively through Y and z.

Hence we get a triangle $K^{\prime} L^{\prime} M^{\prime}$ formed by the tangents at A^{\prime}, $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ which is in homology with KLM, the axis of homology being the polar XYZ.

Further, considering the tangents from K and K^{\prime}, we find that the lines $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ joining points of contact of opposite tangents intersect on KK'. Hence KK^{\prime} passes through O . Similarly LL', Mm^{\prime} pass through O , and therefore O is the centre of homology of the triangles KLM, $K^{\prime} L^{\prime} M^{\prime}$.

If $A A^{\prime}$ cuts $B C$ at R, we have proved that $\{B C R X\}=-1$ and therefore, projecting from O, we find that $\left\{L^{\prime} M^{\prime} A^{\prime} X\right\}=-1$, hence $B^{\prime} C^{\prime}$ passes through X, similarly $C^{\prime} A^{\prime}$ passes through Y, and $A^{\prime} B^{\prime}$ through \mathbf{Z}.

Hence the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are also in homology with 0 as centre and XY as axis of homology.

Also O and $X Y$ are the pole and polar of the complementary triangles $A^{\prime} B^{\prime} C^{\prime}$ and $K^{\prime} L^{\prime} M^{\prime}$.

Inscribed and Circumscribed Hexagons.

118. Pascal's Theorem. The intersections of the three pairs of opposite sides of a hexagon inscribed in a conic are collinear.

Fig. 92 (1).

Let $A B C D E F$ be the hexagon, and let $A B, D E$ meet at K; $B C$, EF at L; CD, FA at M.

Also let $A B$ meet $C D$ at X, and $B C$ meet $D E$ at Y.
Then $A\{B C D F\}=E\{B C D F\}$ by definition; hence, taking transversals $C D$ and $B C$,

$$
\{X C D M\}=\{B C Y L\},
$$

two rows with a common point C, hence $B X, D Y, M L$ are concurrent; but BX , DY intersect at K , hence $\mathrm{K}, \mathrm{L}, \mathrm{M}$ are collinear. Q.E.D.

Fig. 92 (2).
Theorem. If the three pairs of opposite sides of a hexagon intersect in collinear points, the vertices of the hexagon lie on one conic.

Problem. Given five points on a conic, to find where any line through one of them cuts the conic again.

Pascal lines of a hexagon inscribed in a conic :-
Given six points on a conic we can form 60 different hexagons ($\left.\left.\frac{1}{2} \right\rvert\, \underline{\underline{\jmath}}\right)$ by joining them in various ways, and each of these gives a different line of intersection of pairs of opposite sides, hence 6 given points furnish 60 Pascal lines.

If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are six points forming a convex hexagon,
the 60 hexagons arrange themselves in 12 distinct types, as follows, (the number after each is the number of hexagons of that type) : ABCDEF (1), ABDCEF (6), ABDCFE (6), ABEDCF (3), $\operatorname{ABDFCE}(6), \operatorname{ABDECF}$ (12), $\operatorname{ABDFEC}(6)$, $\operatorname{ABECFD}(6)$, $\operatorname{ABEDFC}(6)$, ABEFCD (2), ABFDEC (3), ACFDBE (3).
119. Problem. Construct the conic which touches five given lines.

Fig. 93.
Let three of the tangents cut the other two at A, B; C, D; E, F respectively.

Let $A B$, $E F$ cut $C D$ at K, L respectively.
Take any point P on $B E$, and let $P K, P L$ cut $A C, B D$ at Q, R, then $Q R$ is a tangent to the conic. Let $C D$ cut $E B$ at M.

Then, projecting from K, we have $\{A C E Q\}=\{B M E P\}$ and, projecting from L, we have $\{B M E P\}=\{B D F R\}$,
hence $\{A C E Q\}=\{B D F R\}$,
and therefore $Q R$ is a tangent to the conic.
Thus, as P moves along EB, we get a series of positions of $Q R$ enveloping the conic.

Corollary. We might have taken P on AF, instead of on EB.
120. Brianchon's Theorem. If the six sides of a hexagon touch a conic, the lines joining the three pairs of opposite vertices are concurrent.

Let $A F$ cut $C D$ at $Y, A B$ cut $D E$ at X.
Let $E F$ cut $A B, C D$ at K, L.
Then $\{B A K X\}=\{C Y L D\}$, hence pencil $E\{B A K X\}=F\{C Y L D\}$, and these have a common ray EK or FL, hence the intersections of

EB, FC ; EA, FY ; EX, FD are collinear ; hence EB, FC, DA are concurrent.

Corollary. Six tangents to a conic form ($\left.\left.\frac{1}{2} \right\rvert\, \underline{5}=\right) 60$ Brianchon hexagons, and therefore furnish 60 "Brianchon points" of intersection of joins of opposite vertices.

Theorem. If the three joins of opposite vertices of a hexagon are concurrent, all the sides touch the same conic.

Problem. Given five tangents to a conic, and a point on one of them, draw the other tangent from that point.

Exercise 1. If two triangles are in homology, the six points of intersection of the sides of the one with the non-corresponding sides of the other lie on a conic; also the six joins of the vertices of one with the non-corresponding vertices of the other touch a conic.
2. If P, Q, R, S are four points on a conic and $P Q, R S$ intersect at K, and if A, B are two other points on the conic, then through K pass the joins of the intersections of $A P, B R$ and $A S, B Q ; A P, B S$ and $A R, B Q ; A Q, B R$ and $A S, B P ; A Q, B S$ and $A R, B P$; and similarly four joins pass through L, and four through M, the other two diagonal points of the four-point P, Q, R, S.
3. If the points K on $A B, L$ on $B C$ and M on $C D$ are collinear, then any line through L cuts KD and MA in two points lying on the same conic through A, B, C, D.
121. Theorem. Any straight line cuts a system of conics through four given points in an involution.

Let A, B, C, D be the points, and LPP' the line cutting BC at L and one of the conics at P, P^{\prime} : if $P D$ cuts $A B$ at Q and $P^{\prime} A$ cuts $C D$ at R, then Q, R are collinear with L.

Therefore Q, R describe projective rows on $A B$ and $C D$: hence projecting from D, A respectively we find that P, P^{\prime} describe projective rows on the given line.

If the point P moves to the point where $C D$ cuts the line, then P^{\prime} becomes the point where $A B$ cuts the line: hence and similarly if $A B, B C, C A$ cut the line at K, L, M and $C D, A D, B D$
cut it at $K^{\prime}, L^{\prime}, M^{\prime}$ then to K, L, M of the row described by P correspond $K^{\prime}, L^{\prime}, M^{\prime}$ of the row described by P^{\prime}, so that

$$
\{K L M P\}=\left\{K^{\prime} L^{\prime} M^{\prime} P^{\prime}\right\} .
$$

But $K, K^{\prime}, L, L^{\prime}, M, M^{\prime}$ form an involution [being the points at which the line is cut by the six joins of a four-point], hence P, P^{\prime} describe a double row in involution.

Corollary 1. An involution has two, real or imaginary, double points : hence two, real or imaginary, conics of the system touch the line.

Also, if a common tangent to two conics of the system cut any other conic at P, Q then P, Q are harmonic conjugates with respect to the two points of contact.

Corollary 2. On any line there is one and only one pair of points which are common conjugate points for any two conics of the system, viz. the double points of the involution.

Corollary 3. Two diagonal points of a four-point are harmonically conjugate to the points at which their join is cut, by any conic through the four points.

Problem. Describe a conic to pass through four points and touch a given line.

Let A, B, C, D be the four points. Their joins cut the line in three pairs of points in involution, find E, F the double points of this involution. Then A, B, C, D, E and A, B, C, D, F give the solutions : which are two real and different or coincident or imaginary conics.
122. Theorem. If a conic touches 4 lines $K A, A B, B C, C K$ and a line from A to a point D in $C K$, cuts a line from C to any point E on $A K$ at O, the tangents from D,

Fig. 95. E intersect on BO; i.e. the joins of E, D to any point on $B O$ touch the same conic touching the 4 lines.

Hence if we take any conic touching 4 lines $K A, A B, B C, C K$ and draw any line through B, and from any point P on the line we draw tangents $P D$ to cut $C K$ at $D, P E$ to cut $A K$ at E, then shall $A D$ and $C E$ intersect on the line $B P$.

Theorem. The tangents from a fixed point to a system of conics touching four given lines form a pencil in involution ; and the joins of the given point to the three pairs of intersection of opposite sides are pairs of corresponding rays of the involution.

Take the 4 lines KA, AB, BC, CK, and the fixed point P.
Let tangents from P cut $C K, A K$ at D, E respectively, and let $A D, C E$ intersect at O, which lies on $B P$.

Pencil described by $P D=$ row of D on $C K=$ row of O on $B P$ (by projection from A) = row of E on $A K$ (by projection from C) $=$ pencil described by PE, hence tangents PD, PE describe projective pencils.

Also if PE cuts CK at D^{\prime} and PD cuts $A K$ at E^{\prime}, we have $P D^{\prime}$ of the first pencil corresponding to PE' of the second pencil, i.e. PE of the first pencil corresponds to PD of the second, so that PE, PD are interchangeable.

Hence the double pencil at P forms an involution.
Further as O approaches very near to P, the line PD approaches the position PA, and PE the position PC, so that ultimately PA, PC are a pair of rays of the involution, which proves the latter part of the theorem.

Corollary. When PD, PE coincide then DE is a tangent touching the conic at P. Now an involution has two real different, or coincident, or imaginary double rays, hence there are two conics of the system which pass through P, and their respective tangents at P are the double rays of the pencil in involution.
123. Problem. Given 4 straight lines and a point construct a conic to touch the 4 lines and pass through the point.

Let P be the point, and let the sides intersect in pairs at A, B; C, D; E, F; find the double rays PK, PL of the involution
determined by PA, PB; PC, PD; PE, PF. Then the 4 given lines and either PK or PL determine a conic which satisfies the conditions.

There are two real and different, or coincident, or imaginary solutions.

Theorem. If through a given point P pass two conics which touch 4 given lines, and their tangents at P are $P K$ and PL , then the tangents from P to any other conic touching the 4 lines are harmonic conjugates with respect to PK and PL.

Theorem. From a diagonal point of the complete four-side formed by four lines the tangents drawn to any inscribed conic are harmonic conjugates with respect to the lines which join that diagonal point to the other two.

For UV, UW are the double rays of the involution formed by joining U to A, B, C, D, E, F.

Pentagon.

124. Problem. Construct a conic to touch a given line at a given point, and to pass through three other points.

Fig. 96.

Let AT be the line, which is to touch the conic at A, and B, C, D the other points.

Then we have rays $A T, A C, A D$ at A to correspond to $B A, B C$, $B D$ at B and the problem can be uniquely solved.

Construction. Let BC cut AT at K, draw any line through K to cut $A D$ at $R, C D$ at Q, and let $A Q, B R$ intersect at P.

Let $C D$ cut $A K$ at X, and $A D$ cut $B C$ at Y.
Then

$$
\begin{aligned}
A\{T C D P\} & =\{X C D Q\} \\
& =\{A Y D R\} \text { by projection from } K \\
& =B\{A C D P\}
\end{aligned}
$$

hence P lies on the conic, and as the line KR turns round K, the point P describes the conic.

Now APBCD is a pentagon inscribed in the conic, and so we get the following theorem.
125. Theorem. If a pentagon $A B C D E$ be inscribed in a conic, the tangent at A meets the opposite side $C D$ in a point collinear with the intersections of $A B$ with $D E$, and $A E$ with $C B$.

Fig. 97.
Let the tangent at A meet $C D$ at T, and let $A B, D E$ and $A E$, $B C$ intersect at L, M respectively.

Let $D E$ cut $A T$ at X, and $A E$ cut $C D$ at Y.
Then $A\{T D E B\}=C\{A D E B\}$ because the points lie on the conic, hence $\{X D E L\}=\{A Y E M\}$, which are two rows with a common point E, hence $X A, Y D$ and LM are collinear, viz. T is collinear with L, M.

Corollary. Given five points on a conic, we can draw the tangents at those points.

This theorem may also be deduced from Pascal's Theorem by making two of the vertices of the hexagon coincide, and supposing the vanishing side to become a tangent.

Problem. Given 4 points A, B, C, D and the tangent AT, to find where a line AP cuts the conic.

Pentagon lines. Five points give $\left(\frac{1}{2}\lfloor 4=12\right.$ different pentagons. These, if the pentagon is convex, give 4 distinct types ABCDE (1), ABDCE (5), ACBED (5), ACEBD (1) ; yielding respectively $1,3,3,1$ kinds of lines.

The tangent at A meets $C D$ in a point collinear with (1) the intersections of $A B, D E$ and $A E, C B$; and (2) the intersections of $A B, C E$ and $A E, D B$; the tangent at A meets similarly each of the 6 joins of the 4 points B, C, D, E, and through each intersection pass 2 pentagon lines, giving in all 12 pentagon lines corresponding to the tangent at A. Hence the pentagon furnishes 60 pentagon lines.

There are 15 intersections of pairs of opposite sides, and 8 lines pass through each.
126. Theorem. Let A, B, E be given and a line $A T$, on $A E$ take any point M and on $A B$ any point L, let LM cut $A T$ at K, then shall any line through K cut MB and LE at points lying on the same conic of the system of conics which touch AT at A, and pass through B and E.

Theorem. Let A, B, C be given and a line AT, let any line through C cut $A T$ at T, and a line through A cut $B C$ at M, and
let $A B$ cut $T M$ at L, then any line through L cuts $A M$ and $C T$ at points lying on the same conic of the system of conics which touch AT at A, and pass through B and C.

Theorem. Any straight line cuts a system of conics each of which touches a given line at a given point, and passes through two other given points in an involution.

For if AT is the given tangent at A, and B, C the other two points, and if the given line cuts $A B$ at K, and one of the conics at X, Y and $X C$ cuts $A T$ at Q, and $Y A$ cuts $B C$ at $R, Q R$ are collinear with K. Hence rows described by Q on $A T, R$ on $B C$ are projective, and hence rows described by X, Y on the given line are projective: also X, Y are interchangeable, hence the two rows form an involution.

Corollary 1. The points where AT, BC cut the line are a pair of points of the involution. So also are the points where $A B, A C$ cut the line.

Corollary 2. Two conics of the system (real and different, or coincident, or imaginary) touch any given straight line, their points of contact being the double points of the involution.

Corollary 3. If a common tangent to two conics of the system touches these two conics at P, Q it cuts any other conic of the system in points harmonically conjugate with respect to P, Q.
127. Problem. Given two points and two lines to construct a conic to pass through the two points, touch one line at a given point, and also touch the other line.

To construct a conic to touch TA at A, pass through B, C and touch TD.

Let $B C$ cut TD at U, and $A B, A C$ cut TD at K, L.
Take any point M on $T D$ and draw a conic through A, B, M, C touching AT at A (§ 124); let it cut the line again at N .

Find X, Y the double points of the involution determined by T, U; K, L; M, N.

Then either of the conics touching AT at A and passing through $\mathrm{B}, \mathrm{C}, \mathrm{X}$ or $\mathrm{B}, \mathrm{C}, \mathrm{Y}$ satisfies the required conditions.

Fig. 98.
128. Problem. Given four tangents to a conic, and the point of contact of one of them, to construct the conic.

Fig. 99.

To construct a conic to touch $T B$ at A, and to touch $B C$, CD, DT.

Join AD, on it take any point P, let $B P, C P$ cut TD, TA at E, P. P. G.

F respectively. Then as P moves along AD, the line EF will envelop the required conic.

Let $B C$ cut $A D$ at K and TD at L; and DC cut TA at M.
Then, by projection from $C,\{A B M F\}=\{A K D P\}$ and, by projection from $B,\{A K D P\}=\{T L D E\}$, therefore $\{A B M F\}=\{T L D E\}$, hence BL, MD, FE describe projective rows on TA, TD with A on TA corresponding to D on TD. Hence they all touch the same conic touching TA at A, and TD.
129. Theorem. If a conic touches five lines $B C, C D, D E$, $E F, F B$ and A is the point of contact with $F B$, then $A D, B E, C F$ are concurrent.

For $\{T E D L\}=\{A F M B\}$, where $F B$ cuts $D E$ at $T, D C$ at M, and $B C$ cuts $E D$ at L, therefore pencil $B\{T E D L\}=C\{A F M B\}$, but $B L$ is the same line as $C B$, hence these pencils are in perspective, viz. the intersections of $B T, C A ; B E, C F ; B D, C M$ are collinear, hence A, D are collinear with the intersection P of $B E, C F$.

Note. This theorem might be deduced from Brianchon's Theorem, by supposing two of the sides to coincide, but the direct proof is preferable.

Exercise. Find the number of pentagon points of five tangents to a conic.
130. Theorem. If a system of conics touch a given line at a given point and also touch two other lines, the tangents from a given point form an involution.

Let the conics touch $A B, A C, B C$, touching $B C$ at K, and P be the given point.

If tangents from P to one of the conics cut $A B, A C$ at M, L respectively ; then, by the previous theorem, BL, CM intersect at a point O on PK .

Then the pencil described by PL equals the pencil described by BL, and the pencil described by PM equals the pencil described
by CM, but the pencils of $B L$ at B and $C M$ at C each equal the row of O on PK, hence PL, PM describe projective pencils at P.

Also PM, PL are interchangeable; hence PL, PM form a pair of corresponding rays of an involution at P.

Fig. 100.
Corollary 1. If PK cuts $A C$ at R, then when O is very near R, L is very near R and M is very near A, so that $P K$, PA are two corresponding rays of the involution.

Corollary 2. By taking O at K we see that PB, PC are corresponding rays of the involution.

Corollary 3. Two conics of the system pass through any point, their tangents at that point being respectively the double rays of the involution formed there by tangents to the various conics of the system.

Corollary 4. If two conics of the system pass through a given point P, and touch $P X, P Y$ respectively; then tangents from P to any other conic of the system are harmonically conjugate with respect to PX and PY.

Problem. Construct a conic to touch a given line at a given point, to touch two other given lines and to pass through a given point.
131. Theorem. If a system of conics touch four lines, KF , $\mathrm{FB}, \mathrm{BC}, \mathrm{CK}$, the pencil described by the tangent from a fixed point E on $K F$ is projective with the row described on $F B$ by the point of contact of the conic.

Fig. 101.
Let EB, FC intersect at L.
Then if we take one of the conics which touches $F B$ at Q, and whose tangent from E cuts $C K$ at $P, P Q$ always passes through L.

Hence the pencil described by EP
$=$ the row described by P on CK
$=$ the row described by \mathbf{Q} on $\mathbf{B F}$. \mathbf{Q}.E.D.
Problem. Given five tangents to a conic, find their points of contact. Hence construct the conic as a point locus.

Quadrilaterals.

132. Problem. Given two tangents and their points of contact, also a third point, construct the conic.

Let TA, TB be tangents at A, B and let C be another point on the conic. Join BC, cutting AT at K ; AC, cutting BT at L ; and let any line through T cut $B C$ and $A C$ at Q, R respectively; then $A Q, B R$ will intersect at a point D on the conic.

For
$A\{T B C D\}=\{K B C Q\}=\{A L C R\}$
(by projection from T)

$$
=B\{A T C D\},
$$

hence D lies on the conic

Fig. 102. determined by $A T, A B, A C$ at A , and corresponding rays $\mathrm{BA}, \mathrm{BT}, \mathrm{BC}$ at B . Also, as QR turns round T, D describes the conic.

Theorem. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are points on a conic, the intersection of tangents at A, B is collinear with the intersections of $A C, B D$ and $A D, B C$.

Let $A C, B D$ intersect at $R ; A D, B C$ at Q and tangents from A, B at T; also let $B C$ cut $A T$ at K and $A C$ cut $B T$ at L.

Then $A\{T B C D\}=B\{A T C D\}$, hence $\{K B C Q\}=\{A L C R\}$, two rows with their intersection C corresponding to itself, and hence KA, LM, QR are collinear, viz. T lies on QR.
133. Theorem. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ lie on a conic, the intersections of the tangent at A with BC , and the tangent at B with AD are collinear with the intersection of $A B, C D$.

Let $\mathrm{K}, \mathrm{L}, \mathrm{M}$ be the respective intersections; also let AD meet BC at X , AT meet DC at Y .

Then $A\{T B C D\}=B\{A T C D\}$, hence $\{Y M C D\}=\{A L X D\}, \therefore Y A, M L$, XC are concurrent, i.e. K lies on LM.

Fig. 103.

Corollary. Through M also passes the join of the intersections of the C tangent with DA, and the D tangent with $C B$: also of the C tangent with $D B$ and the D tangent with $C A$: also of the A tangent with $B D$ and the B tangent with $A C$.

Corollary. This affords another solution of the problem above, to construct a conic to touch TA at A, TB at B and pass through C .

Let BC cut AT at K , through K draw any straight line to cut $B T$ at L and $A B$ at M; the intersection of $C M, A L$ determines a point D of the conic.

Note. These theorems might have been deduced from Pascal's theorem by making two pairs of vertices coincide.
134. Problem. Given four points A, B, C, D on a conic and the tangent $A T$ at one of them, to construct the tangent at another of the points.

First Construction. Let AC, BD meet at K, AD, BC at L. Join KL to cut AT at M. Then BM is the required tangent at B.

Second Construction. Let AB, CD intersect at K, AT, BC at L. Join $K L$ to cut $A D$ at M. Then $B M$ is the required tangent at B.
135. Theorem. A system of conics touching two lines at given points trace an involution on any straight line which cuts them.

Let the system of conics touch TA at A, TB at B; and let XY be the fixed line cutting $A B$ at M, and any one of the conics at C, D.

Let $B C$ meet $T A$ at $K, A D$ meet $T B$ at L .

Then K, L, M are collinear (§ 133), $\therefore \mathrm{K}$, L describe projective rows on TA, TB.

But if we project the K row from centre B on $X Y$ we get the row described by C; similarly L projects into D, from centre A.

Hence C, D describe projective rows on X, Y. Also they are interchangeable ; for when C is transferred to $D, B D$ cuts TA at a point K^{\prime}, and $K^{\prime} M$ cuts BT at L^{\prime}, and $A L^{\prime}$ cuts $X Y$ at C. Hence C, D are pairs of an involution on X, Y.

Corollary 1. When C is near X, K is near X, hence L is near Y, and therefore D is near Y, so that ultimately X, Y are a pair of the involution.

Corollary 2. When C is near M, K is near A, hence L is near B, and therefore D is near M : so that ultimately M is a double point of the involution.

Corollary 3. The other double point

Fig. 104. is the harmonic conjugate M^{\prime} of M with respect to X, Y.

Hence if a fixed line cuts $A B$ at M, and two other lines TA, $T B$ at X, Y, and M^{\prime} is the harmonic conjugate of M with respect
to X, Y; then any conic touching TA, TB at A and B cuts the line in points harmonically conjugate to M and M^{\prime}.

Problem. To describe a conic to touch two given lines (TA, $T B)$ at given points (A, B) and to touch another given line. Find the double points M, M^{\prime} as in the previous corollaries. No conic can pass through A, B, M because they are collinear; hence there is only one solution, viz. the conic touching TA, TB at A, B and passing through M^{\prime}.

Cf. $\S 77$ where it was proved that, if a conic touches two sides TX, TY of a triangle TXY at A, B, it touches the third side XY at a point M^{\prime} which is the harmonic conjugate of the point M, at which $A B$ cuts $X Y$.
136. Problem. To describe conics to touch two given lines and pass through two given points.

Fig. 105.

Let E, F be the given points and $T X, T Y$ the given lines cutting $E F$ at X, Y.

Find the centre O of the involution determined on EF by the pairs of points E, F and X, Y; and hence the double point M (such that $O M^{2}=O E . O F=O X . O Y$).

Through M draw any line to cut TX, TY at A, B. Then the conic which touches TX, TY at A, B and passes through E will also pass through F and will be a conic of the system.

An infinite system of conics can be obtained by turning the line MA round the fixed point M.

A second system may be got by taking instead of M the other double point of the involution.
137. Problem. To construct a conic to touch two given straight lines and pass through three given points. Shew that there are four such conics.

Fig. 106.
Let E, F, G be the three points and $T X, T Y$ the given lines cutting $E F$ at $X, Y ; F G$ at X^{\prime}, Y^{\prime}; and $E G$ at $X^{\prime \prime}, Y^{\prime \prime}$.

Find M a double point of the involution $E F, X Y$ and M^{\prime} a double point of $F G, X^{\prime} Y^{\prime}$.

Join MM' cutting TX, TY in A, B respectively.
Then because $A B$ passes through M, the conic which touches TA, TB at A, B and passes through F also passes through E. And because AB passes through M^{\prime} this conic passes through G.

If M, N are the two double points on EF and $\mathrm{M}^{\prime}, \mathrm{N}^{\prime}$ on FG , there will be four conics given by the lines $\mathrm{MM}^{\prime}, \mathrm{MN}^{\prime}, \mathrm{NM}^{\prime}, \mathrm{NN}^{\prime}$.

Hence there are four solutions to the problem.
N.B. Two belong to each of the two systems of conics which touch TA, TB and pass through E, F.

Since the $M M^{\prime}$ conic passes through E and G, the chord $A B$ must pass through $\mathrm{M}^{\prime \prime}$ one of the two double points of the involution, NN^{\prime} will also pass through $\mathrm{M}^{\prime \prime}$; and $\mathrm{MN}^{\prime}, \mathrm{M}^{\prime} \mathrm{N}$ will pass through the other double point $\mathrm{N}^{\prime \prime}$ on EG. Thus the three pairs of double points will be the vertices of a four-side (of which EFG is the diagonal triangle).

Corollary. If $M N, M^{\prime} N^{\prime}, M^{\prime \prime} N^{\prime \prime}$ are the three pairs of vertices of a four-side and any straight line cut $M N, M^{\prime} N^{\prime}, M^{\prime \prime} N^{\prime \prime}$ at X, X^{\prime}, $x^{\prime \prime}$, then the harmonic conjugates of x with respect to $M N$, of X^{\prime} to $M^{\prime} N^{\prime}$, and of $X^{\prime \prime}$ to $M^{\prime \prime} N^{\prime \prime}$ are on a straight line.

Also if these two straight lines cut any one of the four sides at A, B the conic through A, B and the vertices of the diagonal triangle EFG of the four-side touches those two straight lines at A and B.
138. Problem. Construct a conic to touch a line at a given point, pass through two other points and touch one other line. Shew that there are two solutions.
[Let TX, TY be the given lines, A the given point on TX, and E, F be the other two given points. Let E, F cut $T X, T Y$ at X, Y. Find a double point M on EF, XY and join MA cutting TY at B.]
139. Problem. Given three tangents to a conic and the points of contact of two of them, to construct the conic.

To construct a conic to touch TK at A, TL at B, and also touch KL.

Take any point R on $A B$, and join KR, LR cutting TL, TK at M, N respectively. Then $M N$ is a tangent, and as R moves along $A B, M N$ envelopes the required conic.

Fig. 107.

For, if $A B$ cuts $K L$ at $O,\{T A K N\}=\{B A O R\}$, by projection from $L,\{B T L M\}=\{B A O R\}$, by projection from K.
$\therefore\{T A K N\}=\{B T L M\}$,
$\therefore M N$ is a tangent to the conic which touches TA at A, etc.

Theorem. If a conic touches four lines KL, LM, MN, NK, the join of the points of contact of LM and KN is concurrent with KM, LN.

Let the points of contact be A, B.
Then $\{T A K N\}=\{B T L M\}=\{T B M L\}$ (by a double interchange), $\therefore A B, K M$ and $L N$ are concurrent.

Corollary 1. The join of the points of contact C, D of KL, MN also passes through the intersection of KM and LN.

Corollary 2. If KN, LM meet at T, and KL, MN at U, then $A C, B D$ both pass through the intersection Q of $L N, T U$; also $B C$, AD both pass through the intersection P of TU and KM.
140. Theorem. If a, b, c, d are four tangents to a conic of which a touches the conic at A, bat B, the joins of A to

Fig. 108.
intersection $b c$, and B to intersection $a d$, are concurrent with the join of intersections $a b$ and $c d$.

Let $K L, K N$ touch the conic at A, B respectively ; and let LM,

MN be the other two tangents, which cut KB, KA respectively at S, R.

Then $\{\operatorname{LKAR}\}=\{S B K N\}$, hence the pencil $M\{L K A R\}=L\{S B K N\} ;$ but ML coincides with LS, hence the intersections of MK, LB; MA, LK ; and MR, LN are collinear ; viz. MK, LB intersect on AN.
Q. E. D.

Corollary 1. This leads to another solution of the problem, given two tangents (KL, KS) and their points of contact (A, B), also a third tangent (LS), to construct the conic as an envelope.

Take any point M on LS, join KM to cut LB at O, and let AO cut KS at N, then $M N$ is a tangent to the conic ; and as M moves along LS, MN envelopes the conic.

Corollary 2. KM also passes through the intersection of $A S, B R$: also of CL, DN, and CS, DR, where C, D are the points of contact of NM and ML.

Note. These theorems on circumscribed quadrilaterals might have been deduced from Brianchon's Theorem, by making two pairs of tangents coincide.
141. Problem. Given four tangents to a conic and the point of contact of one of them, to find the points of contact of the other three.

Fig. 109.

Fig. 110.

Let KL, LM, MN, NK be the four tangents (and let KL, MN meet at R; KN, LM at S).

Given that KL touches the conic at A, to find where KN touches the conic.

First Construction. Let LN, RS meet at X, AX will cut KN at B, the required point of contact, fig. 109.

If KM cuts RS at Y, then $A Y$ will cut LM at D, the point of contact of LM ; and DX or BY will cut MN at C, the point of contact of MN.

Second Construction. Let AN cut KM at O, then LO will cut KN at its point of contact B , fig. 110 .

If $A M$ cuts $L N$ at P, then KP will cut LM at its point of contact D; also if $B M$ cuts $L N$ at Q, then $K Q$ will cut $M N$ at its point of contact C.
142. Theorem. A system of conics touches two given lines at given points, prove that the tangents drawn from any other given point form an involution.

Let TA, TB be tangents at A, B : and P a given point. Join PT. Let the tangents from P to any conic of the system cut TA, TB at K, L.

Then BK, AL intersect at a point O on PT.

Hence the row of K on TA $=$ the row of O on $T P=$ row of L on TB, and hence PK, PL describe projective pencils; also

Fig. 111. PK, PL are interchangeable (as shewn in the dotted lines of the figure), and hence the double pencil at P forms an involution.

Corollary 1. PA, PB are a pair of rays of the involution.
Corollary 2. PT is a double ray of the involution.
Corollary 3. Hence the other double ray is the harmonic conjugate of PT, with respect to PA, PB.

Corollary 4. If PT cuts $A B$ at X, and $\{A B X Y\}=-1$, then the tangents from P to any conic which touches TA, TB at A, B are harmonically conjugate with respect to PX and PY .

This result has been established previously.

Fig. 112.
143. Problem. To describe a conic to touch TA at A and $T B$ at B, and to pass through a point P.

Join $P T$ to cut $A B$ at X, find Y such that $\{A B X Y\}=-1$; then PX, PY being the double rays of the involution the conic must touch PX or PY: but it cannot touch three lines TA, TB, TP ; hence the only solution is the conic which touches PY.

We have now two tangents and their points of contact, and one other tangent, and hence the conic can be uniquely described.
144. Problem. To describe conics to touch two given lines PQ, PR and pass through two given points A, B.

Find m a double ray of the pencil in involution determined by PA, PB ; PQ, PR, and on it take any point T. Join TA, TB,
then the conic which touches $T A$ at $A, T B$ at B and touches $P Q$ also touches PR. By varying the position of T on m we get a system of such conics ; and we get a second system if, instead of m, we take n the other double ray of the involution.

Problem. To construct a conic to touch three given lines $P Q, Q R, R P$ and pass through two given points A, B. Shew that there are four solutions.

Find m a double ray of the involution determined by PA, PB and $P Q, P R$; and m^{\prime} a double ray of the involution $Q A, Q B$ and QP, QR, let them intersect at T. Then the conic which touches $T A, T B$ at A and B, and also touches $P Q$, is the conic required.

If the other double ray n^{\prime} of the second involution cuts m at U, then by taking U instead of T we get another solution, and two others may be obtained by taking V, W the points at which m^{\prime} and n^{\prime} cut n the other double ray of the first involution. These are the only four possible solutions.

Since the T conic touches $R P$ and $R Q$ and passes through A, B the line RT must be a double ray of the involution given by RA, $R B$ and $R P, R Q$. Similarly W lies on the same double ray at R : and U, V on the other double ray at R.

Thus the three pairs of double rays at P, Q, R will be the sides of a four-point $\mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ (of which PQR is the diagonal triangle).

Corollary. If $P,\{Q, R$ the diagonal points of a four-point $\mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ (P on TU, Q on TV and R on TW) be joined to any point A, then the harmonic conjugates of PA with respect to PT, PV ; QA to QT, QU and RA to RT, RV also meet at a point B .

Also the conic which touches TA, TB and the three sides of the diagonal triangle PQR passes through A and B; and similarly if for T we substitute U, V, or W.

Problem. Construct a conic to touch a given line at a given point, touch two other given lines and pass through one other given point. Shew that there are two solutions.

Fig. 113.

Let a be the given line and A its point of contact ; let e, f be the other two given tangents meeting at P; and let B be the other given point. Join PA, PB and take a double ray m of the involution of rays through P , of which PA, PB and e, f are two pairs. If m meets a at T, the conic which touches TA, TB at A, B and touches e, also touches f, and is one solution.
145. Theorem. The diagonal points of four points on a conic are the vertices of the diagonal triangle of the four tangents at those points.

Let tangents at A, B, C, D be KM, ML, KN, NL and let KN, LM meet at P and KM, NL at O.

Let OP, MN meet at U; KL, OP at V; MN, KL at W, so that UVW is the diagonal triangle of the four tangents.

Then it has been proved (§139) that AC, BD both pass through U; $A B, C D$ through V; $A D, B C$ through W, hence U, V, W are the diagonal triad of A, B, C, D.

Fig. 114.
146. Corollary. If the points of contact of one pair of tangents are collinear with the intersection of the other pair; then the points of contact of the second pair are collinear with the intersection of the first pair.

If $B D$ passes through K, then the tangents at B, D intersect on AC (§ 77, Cor. 5), ie. A, C are collinear with L. In this case A, C are harmonic to B, D.
147. Theorem. If $K M, K N$ touch a conic at A, D, and $L M$, $L N$ touch it at C, B respectively, then the points R, R^{\prime} at which $M B, N C$ and $N A, M D$ intersect on $K L$ are harmonic conjugates with respect to the points X, Y at which $K L$ is cut by $M N$, and the other diagonal OP of KLMN.

Let MN cut BD at E.
Then, by projection from $M,\left\{X Y R R^{\prime}\right\}=\{E Y B D\}$ and, by projection from $N,\{E Y B D\}=\{X Y L K\}$, but $\{X Y L K\}=-1$ by the theory of four-sides.

Hence $\left\{X Y R R^{\prime}\right\}=-1$. Q. E.D.
Does CD pass through the intersection of LA and MB? Since the positions of B, L, C, M, A are independent of the position of D and its tangent $K N, C D$ does not generally pass through the intersection of LA and MB.

Fig. 115.
148. Theorem. K, L, M, N, O, P, A, B, C, D being defined as in the previous theorem, if $C D$ passes through the intersection of LA and MB, it also passes through P; also the same line contains the intersections of NA and KB; also AB passes through O and contains the intersections of KC, MD and NC, LD.

For it has been proved (§ 115) that MB, LA intersect on PC, hence $P C, C D$ are collinear ; and $N A, K B$ by the same proposition intersect on PD.

Again it has been proved (§ 146) that, if CD passes through P, AB passes through O , and the intersection of MD, KC lies on OA, and of LD, NC on OB.
149. Theorem. If a system of conics touch four lines KMP, LNP, KNO, LMO, that conic of the system which touches KM at the harmonic conjugate A of P with respect to K, M, also touches $L N$ at the harmonic conjugate B of P with respect to L, N, also touches LM, NK at the harmonic conjugates C , D of O with respect to L, M and N, K; also $A B$ passes through O and $C D$ through P.

For if a conic touches the sides of a triangle OKM at A, C, D the line CD cuts KM at the harmonic conjugate of A with respect to K, M : hence $C D$ passes through P.

But if CD passes through P, then AB passes through O (§ 146), also $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are harmonic conjugates of P, O with respect to K, M ; L, N ; L, M ; K, N respectively.

Definition. The conic which touches KMP, LNP, KNO, LMO at points harmonically conjugate to P , O with respect to K, M; $\mathrm{L}, \mathrm{N} ; \mathrm{K}, \mathrm{N} ; \mathrm{L}, \mathrm{M}$ respectively may be called the harmonic conic of the four-side, with respect to the diagonal OP.

There are three harmonic conics of a four-side, viz. those which are harmonic with respect to the three diagonals OP, MN, KL.

Corollary 1. The points A, B, C, D are harmonically conjugate on the conic.

Corollary 2. If KMP, LNP, KNO, LMO are four given lines, XYZ the diagonal triangle, then XP, XO cut the sides in four points (A, A, A, A in the figure) where the first harmonic conic touches the four lines ; similarly YM, YN determine the points B, B, B, B where the second harmonic conic touches the figure; and ZK, ZL determine the points of contact $\mathrm{C}, \mathrm{C}, \mathrm{C}, \mathrm{C}$ of the third
harmonic conic. $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ form the diagonal triad of each of the three four-points AAAA, BBBB, CCCC. Through X pass two AA lines, two BB lines, two CC lines, and these six lines form an involution whose double rays are $X Y$ and $X Z$. Similarly at Y and z.

Fig. 116.
150. Theorem. If $A B, C D$ intersect at $X ; A D, B C$ at Y; $A C, B D$ at Z and K, L are the points where the C tangent and the B tangent cut AD : then XK, XL are harmonically conjugate with respect to XY, XZ.

Fig. 117.

Let $X Z$ cut AD, BC at G, H.
Then $\mathrm{X}\{\mathrm{YZKL}\}=\{\mathrm{YGKL}\}$, but we have proved that tangents at B, C intersect on $X Z$, at E say, hence by projection from E we get $\{\mathrm{YGKL}\}=\{\mathrm{YHCB}\}$; and, by the theory of four-points, $\{\mathrm{YHCB}\}=-1$.

Hence $\mathrm{X}\{\mathrm{YZKL}\}=-1$.
Note. XK also passes through the intersection of the D tangent with $C B$; and $X L$ through the intersection of the A tangent with BC .
151. Theorem. If a system of conics pass through four points A, B, C, D that conic of the system which touches at A the harmonic conjugate of $A B$ with respect to $A C, A D$, also touches at B the harmonic conjugate of $B A$ with respect to $B C$ and BD ; and also touches at C, D the harmonic conjugates of $C D$ for $C A, C B$ and $D A, D B$.

Fig. 118.

Let the tangent at A cut $C D$ at O, also let $A B, C D$ intersect at X.

Then, by hypothesis, AO, AX are harmonic conjugates with respect to $A C, A D:$ hence $\{C D X O\}=-1$. Hence, by the theory of inscribed triangles, XA passes through P the intersection of tangents at C, D, i.e. tangents at C, D intersect on AB. Therefore tangents at A, B intersect on $C D$.

Again, $\{C D X O\}=-1$, hence $B A, B O$ are harmonically conjugate to BC, BD.

Again, because tangents from O on $C D$ touch the conic at A, B it follows that $\{A B X P\}=-1$, so that $D P$ is the harmonic conjugate of $D C$ with respect to $D A, D B$, and $C P$ of $C D$ with respect to CA and CB.

Definition. If X is a diagonal point of A, B, C, D, that conic through A, B, C, D which touches, at each, the harmonic conjugate of the line joining it to X with respect to the other two sides through it, may be called the harmonic conic of the four points with respect to X.

There are three harmonic conics of a four-point.
Corollary 1. The points A, B, C, D (and the tangents at them) are harmonically conjugate with respect to the conic.

Corollary 2. Let $A B, C D$ intersect at $X ; A C, B D$ at Y; $A D, B C$ at Z.

Fig. 119.

If $Y Z$ be cut by $A B, C D$ at O, P then $O C, O D, P A, P B$ are tangents to the first harmonic conic.

If $X Z$ is cut by $A C, B D$ at Q, R then $Q B, Q D, R A, R C$ are tangents to the second harmonic conic.

If $X Y$ is cut by $A D, B C$ at S, T then $S B, S C, T A, T D$ are tangents to the third harmonic conic.

Corollary 3. Since $\{C A Y Q\}$ is harmonic, $B Q$ cuts $Y Z$ at the harmonic conjugate of Y with respect to O, Z; similarly AR cuts $Y Z$ at the same point, so that $B Q, R A$ intersect on $Y Z$. So also do $Q D, R C$. Similarly RA, $Q D$ and $R C, C B$ on $X Y$.

Hence $X Y Z$ is the diagonal triangle of the four tangents $Q B$, QD, RA, RC.

Similarly it is the diagonal triangle of each of the other two sets of four tangents.

Corollary 4. Each set of four tangents intersect in pairs on $Y Z$ at points which are harmonically conjugate with respect to Y, Z.

EXAMPLES. VII.

1. If a conic touches three lines and two of them at given points, find where it touches the third.
2. Construct a conic, having given (a) five points, (b) four points and a tangent, (c) three points and two tangents, (d) two points and three tangents, (e) one point and four tangents, (f) five tangents.

How many solutions are there in each case?
3. Construct a conic having given a tangent and its point of contact and three other points or tangents.
4. Construct a conic having given two tangents and their points of contact and either (a) one other point or (b) one other tangent.

How many solutions are there in each case?
5. Shew that if A, B, C, D, E lie on one branch of a hyperbola and F lies on the other branch, 32 types of hexagons can be formed by joining the six points.
6. The six intersections of non-corresponding sides of two triangles in homology lie on a conic.
7. A, A^{\prime} and B, B^{\prime} are corresponding points of two projective rows on a conic, and the projective axis of the rows cuts the conic at X, Y, so that $A B^{\prime}$, $A^{\prime} B$ intersect at P on $X Y$; also $A^{\prime} Y, B^{\prime} X$ meet at O. Prove that the intersection K of $A A^{\prime}$ with the tangent at X is collinear with O, P.

Also prove that the intersection L^{\prime} of $A^{\prime} B^{\prime}$ with the tangent at Y lies on OP.
8. A, A^{\prime} and B, B^{\prime} are corresponding points of two projective rows on a conic and the projective axis cuts the conic at X, Y. If the tangents at X, Y are met by $A A^{\prime}$ at K, K^{\prime} and by $B B^{\prime}$ at L, L^{\prime}, prove that $K L^{\prime}, K^{\prime} L$ intersect on $X Y$.
9. The joins of corresponding points of two projective rows on a conic envelope a conic, which has double contact with the given conic.
10. A conic touches $B C, C A, A B$ at P, Q, R and $Q R, R P, P Q$ meet $B C, C A, A B$ at K, L, M. Prove that K, L, M are collinear.
11. A conic touches $B C, C A, A B$ at points P, Q, R such that $A P, B Q$, $C R$ are parallel, and $Q R, R P, P Q$ meet $B C, C A, A B$ respectively at K, L, M. Prove that KLM passes through the centre of the conic. Also prove that for conics satisfying this condition KLM envelopes a conic inscribed in the triangle $A B C$, and find where this conic touches the sides of $A B C$.
12. The lines which touch a conic at A, B, C meet the chords $B C, C A$, $A B$ at K, L, M respectively; and the joins of A, B, C to any other point P of the conic cut $B C, C A, A B$ at X, Y, Z respectively. Prove that KLM is a tangent to a conic which touches $B C$ at $X, C A$ at Y and $A B$ at Z.
13. An ellipse whose centre is O is inscribed in a triangle $A B C$ and the diameters conjugate to $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ meet any tangent in $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively; prove that $A D, B E, C F$ are concurrent.
14. A circle touches the sides of an isosceles triangle, prove that the mid-points of the three pairs of tangents lie on a conic.
15. A parabola passes through A, B, C, D; AC meets the diameter through B at K, and $B D$ meets the diameter through A at L. Prove that KL is parallel to CD.
16. Conics circumscribe a triangle $A B C$ and touch a given line, prove that the polars of a given point P with respect to these conics envelope a conic. Also prove that, if AP cuts BC at K, this conic passes through the harmonic conjugate of P with respect to A, K.
17. Two conics through four given points touch a given line at K, L respectively; prove that the conic through the four points and the mid-point of KL has an asymptote parallel to KL.
18. Two conics through A, B, C and D have a common tangent touching them at K, L respectively; and $K L$ cuts $A C, B D$ at E, F. Prove that K, L are harmonic conjugates with respect to E, F.

Deduce a construction to find K, L for a given line.
Given four tangents to a parabola draw through any point on one of them the other tangent to the parabola from that point.
19. Four lines are given, find the points of contact of a parabola which touches them.
20. If $A B$ is an asymptote, and $B C, C D, D A$ tangents to a hyperbola, construct the other tangent through any point P on $A D$.
21. Prove that the pair of points at which a line cuts a conic through four points belong to the involution determined on the line by the six joins of the four points.
22. If the chords $A B, B C, C D$ of a given conic respectively pass through three given collinear points, then will DA always pass through a fixed point collinear with the other three.
23. Given five points on a conic, construct the tangent at any one of them.
24. Any straight line cuts a conic at P, Q, two tangents at K, L and their chord of contact at X, prove that X has the same harmonic conjugate for P, Q that it has for K, L.

Deduce that the middle point of a chord of a hyperbola is also the middle point of the line intercepted on it by the asymptotes.

CHAPTER VIII

THE PARABOLA. CENTRAL CONICS

152. Definition. A parabola is the envelope of the join of corresponding points of two similar rows not in perspective. [Cf. § 80, Cor.]

Fig. 120.

If on two lines we take segments $K L$ and $M N$, and divide them similarly at P, Q, so that $K P: P L=M Q: Q N$, then $P Q$ will move in such a way that it is always tangent to a curve, and the point at which it touches the curve will be the ultimate position on $P Q$ of its intersection by a near tangent $P^{\prime} Q^{\prime}$ when P^{\prime} is brought very near to P, and therefore Q^{\prime} to Q.

Let $K L, M N$ intersect at T. Then, if $K T: T L=M T: T N$, the rows are in perspective, and KM, LN, PQ are all parallel : but if . not there will be a point A in $K L$, such that $K A: A L=M T: T N$, and a point B in $M N$ such that $M B: B N=K T: T L$. Also, when Q is very near to T, P is very near to A, and if QP is made to coincide with TA, their intersection is ultimately at A. Hence the line TA touches the curve at A; similarly TB is the tangent at B.

The points T, A, B completely determine the curve, for

$$
A P: P T=T Q: Q B .
$$

153. Note. The property of a parabola thus taken as a definition can be deduced from the focal definition in the following manner, by those who prefer to commence with that definition, and as the converse is proved in $\S 158$, the two classes of curves are proved to be identical.

Theorem. If a point P moves so that its distance from a fixed point is equal to its distance from a fixed line then any tangent to the locus of P will describe similar rows on any two given tangents to the locus.
I. Let S be the fixed point and $A B$ the fixed line.

Take two points P, Q such that $S P=P M$, a perpendicular drawn to $A B$; and $S Q=Q N$, perpendicular to $A B$.

The circles with P as centre, $P S$ as radius, and centre Q, radius $Q S$, will touch the line $A B$ at M and N respectively.

Let the common chord $S H$ cut $A B$ at K and draw a line from K perpendicular to $A B$ to cut $P Q$ at V.

Then SH is a common chord, and is therefore perpendicular to $P Q$, also

$$
\begin{gathered}
K M^{2}=\text { rect. } K H . K S=K N^{2}, \\
\\
\therefore M K=K N .
\end{gathered}
$$

But $K V$ is parallel to $M P$ and $Q N$, hence $P V=V Q$.

Hence a line from S perpendicular to chord $P Q$ meets the directrix $A B$ at a point K, such that a line from K at right angles to the directrix bisects $P Q$.

If now we take any other chord parallel to $P Q$; the line perpendicular to it through S will still be SK .

Hence the middle points of any set of parallel chords lie on one straight line perpendicular to the directrix.

Fig. 121.
II. Let $P^{\prime} Q^{\prime}$ be another chord parallel to $P Q$, then $P P^{\prime}, Q^{\prime}$ will meet on the line which passes through their middle points [viz. at a point \mathbf{Z} such that $\left.Z V^{\prime}: \mathbf{Z V}=\mathrm{P}^{\prime} \mathrm{V}^{\prime}: P \mathrm{P}\right]$.

But if $P^{\prime} Q^{\prime}$ is moved into coincidence with $P Q$, then $P P^{\prime}, Q Q^{\prime}$ will simultaneously become the tangents at \mathbf{P} and \boldsymbol{Q}. Hence the tangents at \mathbf{P}, Q meet on the diameter which bisects $P Q$.
III. Now take the two tangents $T P, T Q$ and join T to V, the middle point of $P Q$. Let any other tangent touch the curve at R and cut $T P, T Q$ at A and B. Draw $A D, B E, R F$ parallel to $T V$ to meet $P Q$ at D, E, F.

Then AD, being parallel to TV, bisects PR, the chord of contact of tangents $A P, A R$, and is parallel to $R F$, therefore $P D=D F$. Similarly $Q E=E F$.

Hence $D E=\frac{1}{2} P Q$, and therefore $P D=V E$ and $D V=E Q$.

$$
\therefore P A: A T=P D: D V=V E: E Q=T B: B Q \text {, }
$$

i.e. A and B divide PT, TQ similarly. Q.E. D.

Fig. 122.
154. Theorem. A tangent to a parabola describes on any given tangent a row similar to the rows which it describes on the original pair of lines.

Let the parabola be determined by TA and TB, and take any line $P Q$, such that $A P: P T=T Q: Q B$.

Draw any other tangent $P^{\prime} Q^{\prime}$ to cut $T A, T B, P Q$ at $P^{\prime}, Q^{\prime}, X$, and to cut a line through P parallel to $T B$ at K (fig. 123).

Then $P X: X Q=P K: Q^{\prime} Q$.
Now $P K: T Q^{\prime}=P^{\prime} P: P^{\prime} T=Q^{\prime} Q: Q^{\prime} B$, since the rows on $A T, T B$ are similar.

$$
\therefore P X: X Q=T Q^{\prime}: Q^{\prime} B=A P^{\prime}: P^{\prime} T
$$

Hence X divides $P Q$ in the same ratio in which P^{\prime} divides $A T$ and Q^{\prime} divides TB. Q.E.D.

Corollary. The point R at which PQ touches the curve is given by $P R: R Q=A P: P T$.

Fig. 123.
155. Theorem. The intercept $P Q$ of any tangent by two given tangents TA, TB is divided harmonically by its point of contact R, and the point R^{\prime} at which it cuts $A B$.

Draw PL parallel to TB to meet AB.

$$
P L: T B=A P: A T=T Q: T B . \quad \therefore P L=T Q .
$$

Now $P R^{\prime}: R^{\prime} Q=-P L: Q B=-T Q: Q B=-P R: R Q(\S 154$, Cor.).
$\therefore\left\{P Q R R^{\prime}\right\}=-1$, and the range is harmonic.
156. Theorem. The joins of two points A, B on a parabola to a variable point P on the parabola describe projective pencils at A, B.

Let the tangent at P cut the tangents TA, TB at K, L.
Join AP to cut TB at M, and BP cutting AT at N.

Then, if $L K$ cuts $A B$ at P^{\prime}, the range $\left\{K L P P^{\prime}\right\}$ is harmonic; hence, projecting from A and B, we have two harmonic ranges \{TLMB\} and $\{K T N A\}$.

Hence $T M: M B=\frac{1}{2} \cdot T L: L B$ and $A N: N T=2 . A K: K T$.
$\therefore T M: M B=\frac{1}{4} \cdot A N: N T . \quad \therefore\{T B M M\}=\left\{A T N N^{\prime}\right\}$, hence M and N describe projective rows on $T B$ and $A T$, and therefore AP and $B P$ describe projective pencils at A, B.

Also in these pencils $A T, A B$ at A correspond to $B A, B T$ at B.

Fig. 124.

Corollary. When $T M: M B=-\frac{1}{2}, A N: N T=-2$, and $A M, B N$ are both parallel to the line joining T to the mid-point of $A B$: hence P is at infinity. Also K, L are now at infinity, and the tangent KL is wholly at infinity.
157. Theorem. The line through the intersection of two points bisecting their chord of contact is constant in direction.
P. P. G.

Let the tangent at P cut TA, TB at K, L, and draw KD, PC, LE parallel to the line TV which bisects $A B$ at V.

$$
\begin{aligned}
A K: K T & =T L: L B . \\
\therefore A D: D V & =V E: E B,
\end{aligned}
$$

but $A V=V B . \quad \therefore D E=\frac{1}{2} \cdot A B=A V$.
But $K P: P L=A K: K T$.

$$
\therefore D C: C E=A D: D V,
$$

hence $A D=D C$ and $C E=E B$.
\therefore KD parallel to TV bisects chord AP.

Similarly if Q is any other point on the curve the line through the intersection of tangents at P, Q and bisecting $P Q$ is parallel to $K D$, and

Fig. 125. therefore to TV.

Corollary. $A C: C B=A D: C E=A D: D V=A K: K T=\frac{1}{2} . A N: N T$, where BP cuts AT at N. Hence the pencil described by BP at B is projective with the row described by C on $A B$, it is therefore projective with the row described by a line through P parallel to the constant direction on any transversal.

These parallel lines may be regarded as the pencil of lines joining successive positions of P to the point of the curve which is at infinity in the direction TV.
158. Theorem. The join of the intersection of two tangents to the mid-point of their chord of contact cuts the parabola at the point of contact of a tangent parallel to the chord, and is bisected there.

For the line $K K^{\prime}$ joining the mid-points of $T P$ and $T P^{\prime}$ bisects TV at A; it is a tangent, since $P K: K T=T K^{\prime}: K^{\prime} P^{\prime}$; and its point of contact is A, since $K A: A K^{\prime}=P K: K T$.

Theorem. The middle points of any set of parallel chords lie on a line parallel to a constant direction.

For each lies on a line parallel to a constant direction through the point of contact A of the tangent which is parallel to the chords.

Definition. This line is called a diameter. The semichord (PV) is the ordinate, and AV is the abscissa of P with respect to the diameter through A .

The diameter which bisects that set of chords which are perpendicular to the direction of diameters is the axis.

Theorem. If PV, QW and AV, AW are the ordinates and abscissae of \mathbf{P} and Q with respect to the diameter through A , then

$$
\mathrm{PV}^{2}: \mathrm{QW}^{2}=\mathrm{AV}: \mathrm{AW} .
$$

Draw QE parallel to AV, and join $A Q$ to cut PV at D.

The row described on $P P^{\prime}$ by transversals through P, P', Q, A is $\left\{P P^{\prime} E V\right\}$, and the pencil formed by joining A to the same points is $A P, A P^{\prime}, A D, A K$.
$\therefore\left\{P P^{\prime} E V\right\}=-P D: D P^{\prime}$.
$\therefore P E: E P^{\prime}=-P D: D P^{\prime}$,
i.e. $\left\{P P^{\prime} \mathrm{DE}\right\}$ is harmonic.

$$
\therefore V D . V E=V P^{2} .
$$

Fig. 126.

Hence $\mathrm{QW}^{2}: \mathrm{PV}^{2}=\mathrm{QW}^{2}: E V . \mathrm{DV}=\mathrm{QW}: \mathrm{DV}(\because \mathrm{QW}=\mathrm{EV})$ = AW : AV (by similar triangles).

Corollary. If L is a point whose ordinate LR is double the abscissa AR, then $P^{2}=4 A R$. AV, and $Q^{2}=4 A R$. AW.

Also the tangents at L and L^{\prime} meet at Z on RA such that $R Z=2 . R A=R K=R K^{\prime}$, hence $L Z L^{\prime}$ is a right angle.
159. If S is a point on the axis such that AS is half the ordinate SL perpendicular to the axis, and PN, AN are the ordinate and abscissa of P for the axis, we have $P N^{2}=4 A S$. AN. This point S is called the focus, and the chord LSL' is the latus rectum.

The tangents at L, L^{\prime} meet at a point X on the axis produced such that $A X=A S$. The polar of S is a line through X parallel to the tangent at A, and hence perpendicular to the axis, this is the directrix.

Theorem. The distance of any point of the parabola from the focus equals its distance from the directrix.

For $\mathrm{SP}^{2}=\mathrm{PN}^{2}+\mathrm{SN}^{2}=4 \mathrm{AS} . \mathrm{AN}+\mathrm{SN}^{2}=\mathrm{XN}^{2}=\mathrm{PM}^{2}$.
Corollary 1. If the tangent at P meets the axis at T, we have $A T=A N$.
$\therefore \mathrm{ST}=\mathrm{XN}$, hence $\mathrm{SP}=\mathrm{ST}$.
Corollary 2. Since

$$
\mathrm{SP}=\mathrm{ST},
$$

the angle $S P T=S \hat{T} P=T \hat{P} M$, i.e. the tangent bisects S $\widehat{P M}$.

Corollary 3. If PT cuts the directrix at Z, the triangles $\mathrm{SPZ}, \mathrm{MPZ}$ are equal by $s . a . s$. Hence PSZ is a right angle,

Fig. 127. and $Z P$ bisects angle $S Z M$.

Again if P^{\prime} is the point where PS meets the curve again, $P^{\prime} s z$ is a right angle, and hence $P^{\prime} Z$ is the tangent at P^{\prime}, and it bisects SẐM'.

Hence the tangents at the ends of any chord passing through the focus meet on the directrix and are perpendicular to each other.

Corollary 4. Since \mathbf{Z} is the pole of SP, the lines SZ, SP are conjugate, and \mathbf{S} is a point at which all pairs of conjugate lines are perpendicular.

Corollary 5. If KK^{\prime} is a focal chord whose middle point is M , and tangents at $\mathrm{K}, \mathrm{K}^{\prime}$ meet at T (on the directrix and at right angles), $T M$ cuts the parabola at C, such that $T C=C M=\frac{1}{2} . K M$. Also TŜM is a right angle.

Hence $\mathbf{S C = C T}=\mathbf{C M}$; SC is called the parameter of the diameter СМ. \therefore the focal chord (KK^{\prime}) is four times the parameter of the diameter which bisects it.

Also, if PV, AV are the ordinate and abscissa to this diameter of any point P on the parabola, we have $\mathrm{PV}^{2}=4 \mathrm{CM} . \mathrm{CV}=4 \mathrm{SC} . \mathrm{CV}$.

Another Proof dependent on the Properties of Poles and Polars.

160. Let $K K^{\prime}$ be a chord such that tangents $K T, K^{\prime} T$ are perpendicular.

Draw TS at right angles to KK'. Also draw TM to the middle point M of $K K^{\prime}$ and $T R$ at right angles to $T M$.

Then TS, TR make equal angles with TK ; but TK, TK' are the perpendicular rays of the involution of conjugate lines through T, hence $T R$, $T S$ are conjugate lines.

Also $\left\{K K^{\prime} R S\right\}=-1$. Hence $T R$ is the polar of S.
Hence S is a point on the axis (since $T R$ is parallel to the tangent at the end of the axis).

Also ST, SR are a pair of perpendicular conjugate lines at S; and so, also, are the axis and a line perpendicular to it through S; hence all pairs of conjugate lines at S are perpendicular.

Therefore S is a fixed point on the axis, and it is therefore that point on the axis whose ordinate is twice the abscissa, viz. the focus.

Hence all pairs of perpendicular tangents meet on the directrix, and their chords of contact pass through the focus, and each subtends a right angle at the focus.
161. Central Conics. In the projective rows described by a variable tangent PQ to a conic on two fixed tangents TA, TB when the rows are not similar, there are two vanishing points I, J such that IP. JQ has a constant value k (the power) [[\$ 37, 38].

Also $\quad \mathrm{A} . \mathrm{JT}=\mathrm{IT} . \mathrm{JB}=k ; \quad\{\mathrm{TBQJ}\}=-\mathrm{AP}: \mathrm{PT}$,
and

$$
\{T A P I\}=-B Q: Q T .
$$

Fig. 128 (i).
Hence $I A: I T=J B: J T$, and therefore $A B$ is parallel to $I J$.
Also IU parallel to TJ and JU parallel to TI are two of the joins tangent to the curve.

If the variable tangent $P Q$, cutting $I T$ at P and $J T$ at Q, also cuts UI at R and UJ at S, by similar triangles IR:IP = JQ:JS, $\therefore I R . J S=I P . J Q$, hence I, J are the vanishing points of projective rows described by R on $U I$ and S on $U J$, and the power of the two rows, viz. IR.JS, has the same value k.

Fig. 128 (ii).
Again $I P: I A=J T: J Q, \therefore I P: A P=J T: Q T, \therefore I P . T Q=A P \cdot T J$, but, by similar triangles, $T P: I P=T Q: I R, \therefore T P \cdot I R=I P . T Q$.
$\therefore T P . I R=T J . A P=U I . P A$, to each add TP. UI.

$$
\therefore T P . U R=U I . T A .
$$

Hence T, U are the vanishing points of projective rows described by P and R on IT and IU. Similarly T, U are vanishing points of projective rows described by Q, S on JT, JU; also the power TQ. US = TP. UR.
162. Since the power of R, S on $U I, U J$ has the same value as the power of P, Q on $T I, T J$, it follows that if D, E are the points of contact of $U I, U J$ we have $U E=B T$ and $U D=A T$. Hence $D E$ is equal and parallel to $B A$; and $A D, B E$ bisect each other at the intersection of UT and IJ.

If we keep the pair of parallel tangents TA, UD fixed, and vary the other pair, the middle point of BE will always be at the middle point of AD. Hence

The middle point of the chord of contact of a pair of parallel tangents is a fixed point, and every chord through that point is bisected there.

This point is called the centre.
163. Another Proof. Let P, P^{\prime} be points of contact of parallel tangents PT, $\mathrm{P}^{\prime} \mathrm{T}^{\prime}$; and A any point on the conic. Complete the parallelogram $P A^{\prime} P^{\prime} A^{\prime}$.

Then the pencils $P\left\{T A P^{\prime} A^{\prime}\right\}, P^{\prime}\left\{T^{\prime} A^{\prime} P A\right\}$ have their corresponding rays parallel and are therefore equal.
$\therefore P\left\{T A P^{\prime} A^{\prime}\right\}=P^{\prime}\left\{P A T^{\prime} A^{\prime}\right\}$, hence A^{\prime} lies on the conic.
Hence any chord A^{\prime} which passes through the middle point of PP^{\prime} is bisected there.

Also if $A U, A^{\prime} U^{\prime}$ are the tangents at A, A^{\prime} we have

$$
\mathrm{A}^{\prime}\left\{\mathrm{P}^{\prime} \mathrm{AP}^{\prime}\right\}=\mathrm{A}\left\{\mathrm{P}^{\prime} U P A^{\prime}\right\}=\mathrm{A}\left\{\mathrm{PA}^{\prime} \mathrm{P}^{\prime} \mathrm{U}\right\} ;
$$

but $A^{\prime} P^{\prime}$ is parallel to $A P$, and $A^{\prime} P$ to $A P^{\prime}$, hence $A^{\prime} U^{\prime}$ is parallel to AU .

Definition. The envelope of the join of projective rows on TA, BT, whose vanishing points are I, J, is an ellipse if A lies between T and I , and a hyperbola if A does not lie between T and I (cf. §§ 79,80).
164. I. The Ellipse. Complete the parallelogram tiuJ, and let A, B, D, E be the points of contact of the sides.
[Then ABDE is a parallelogram whose sides are parallel to is and $T U$ and diagonals intersect at C, the intersection of $I J, T U$.

Fig. 129.
If a tangent KL cuts TA internally, then since $I T>I K>I A$, we have $J B<J L<J T$, hence L is also between T and B.

Hence LK cuts $A B$ at a point X on $A B$ produced.
Hence the polar of X, which passes through T, cuts $A B$ internally, and hence it cuts KL internally.

Therefore the point of contact P of KL lies within the triangle TAB.

Similarly it may be proved that when K is between I and A, the contact is within the triangle IAE: and that when K is in the produced parts of IT towards I and T respectively, the point of contact is within triangles UDE and BJD respectively.

Also when KL is parallel to $A B, P$ lies on TM. Now $\mathrm{IA}: I K=\mathrm{JL}: \mathrm{JT}$ (by definition) $=I K: I T$ (by parallel projection).

$$
\therefore A K: I K=K T: I T,
$$

and hence $T K>K A, \therefore T P>P M$, which shews that there are no infinity directions (cf. § 79).

Fig. 130.
165. II. The Hyperbola. Let $I A>I T$ (then $J B>J T$). As K moves from A to T, L moves from T to B, then $K L$ and $A B$ cut each other externally, hence the point of contact P is within the triangle ATB.

Fig. 131.
The parallel tangent to KL, by symmetry about the centre C , will envelope an arc in the triangle DUE, and will cut TI successively at all points from infinity to I.

As K moves from T to I, L moves from B to infinity : let $K L$ cut IU at N.

Then $A B$ cuts KL internally, hence P cuts KL externally.
Also $T K . U N=T I . U E$, and hence $U N>U E$.
\therefore DE cuts LN internally, and hence P cuts LN externally.

Hence P is in LN produced, either in the angle ATB or DUE.
Similarly when K is between A and infinity, L is between T and J, N between I and U, and M is in UD produced ; and P is again within angles BTA or EUD.
166. Asymptotes. On AI take points K, K^{\prime} such that $A K^{2}=A K^{\prime 2}=A T$. $A I$, and draw $K^{\prime} L$ parallel to $A B$ to cut $T B$ at L.

Fig. 132.
Then

$$
\begin{aligned}
I K \cdot I K^{\prime} & =I A^{2}-A K^{2} \\
& =I A^{2}+I A \cdot A T \\
& =I A \cdot I T .
\end{aligned}
$$

But

$$
\mathrm{IK}^{\prime}: \mathrm{JL}=\mathrm{IT}: \mathrm{JT} \text { (by parallels). }
$$

$\therefore \mathrm{IK} . \mathrm{JL}=\mathrm{IA} . \mathrm{JT}$,
and hence KL is a tangent.

But $K A=A K^{\prime}$, hence $A B$ bisects KL, and therefore the point of contact of KL is at infinity.

Similarly, if KL^{\prime} is drawn parallel to AB , we get another tangent $K^{\prime} L^{\prime}$ whose point of contact is at infinity.
167. Theorem. The asymptotes pass through the centre.

Since $\frac{T K}{K I}=\frac{K^{\prime} T}{K^{\prime} I}$ (because $K K^{\prime} T I$ is harmonic),

$$
\begin{aligned}
& \therefore \frac{T K}{K I}=\frac{L T}{L J}, \\
& \therefore \quad \frac{T K}{\frac{1}{2} T I}=\frac{L T}{\frac{1}{2}(L T+L J)},
\end{aligned}
$$

hence (by similar triangles) LK passes through the centre C.
Similarly L'K' also passes through the centre.
Thus there are two tangents at infinity, passing through the centre.

Corollary. If TX be drawn parallel to $K L$ to cut $A B$ at X, then $B X: X A=C K: C L=I K: I K^{\prime}=J L^{\prime}: J L$.

Similarly a line $T X^{\prime}$ parallel to $K^{\prime} L^{\prime}$ cuts $A B$ at X^{\prime}, where

$$
A X^{\prime}=B X
$$

Exercise. Prove that $\mathrm{X}, \mathrm{X}^{\prime}$ are the double points of the projective rows described on $A B$ by lines through T parallel to PA, PB.
168. Theorems. I. The intercept of the asymptotes on any tangent is bisected at its point of contact.

For $K K^{\prime}$ is bisected at A (fig. 132).
II. On any chord the intercepts between the asymptotes and the conic are equal.

Fig. 133.

Let $P P^{\prime}$ be a chord which cuts the asymptotes at Q, Q^{\prime}, and A the point whose tangent is parallel to $P P^{\prime}$, cutting the asymptotes at $\mathrm{K}, \mathrm{K}^{\prime}$.

Then CA is the diameter which bisects PP^{\prime} at N . But $K A=A K^{\prime}$, $\therefore Q N=N Q^{\prime}$.

Hence $Q P=P^{\prime} Q^{\prime}$. Q.E.D.
169. Conjugate Diameters. .If KLMN is a parallelogram whose sides touch a conic at A, B, D, E it has been proved that $A B$ and $D E$ are parallel to $L N$, and $A E, B D$ to $K M$. Also that KM, LN, AD, BE intersect at the centre C.

Fig. 134.

Further KM bisects $A B$, hence it contains that diameter which bisects all chords parallel to LN (§78) ; also LN bisects all chords parallel to KM.

Hence if we draw any diameter PCP' bisecting all chords parallel to $\mathbf{Q Q}^{\prime}$, the diameter $\mathbf{Q Q}^{\prime}$ bisects all chords parallel to PP^{\prime}.

Thus we get pairs of conjugate diameters.
The diagonals of a circumscribing parallelogram lie along conjugate diameters. The sides of an inscribed parallelogram are parallel to conjugate diameters.
170. Conjugate Diameters form an Involution. Let AD be any diameter through the centre C ; take any point B on the conic and join to A and D.

Then CP, CQ parallel to DB, AB are a pair of conjugate diameters.

Also pencil described at C by $C P \equiv$ pencil of $D B$ at $D=$ pencil of $A B$ at $A \equiv$ pencil of the parallel line $C Q$ at C, thus $C P$ and $C Q$ describe projective pencils at c .

Fig. 135.

Complete the parallelogram ABDE, then when B is at $E, C P$ assumes the position $C P^{\prime}$ in a straight line with $C Q$, and $C Q$ becomes at the same time $C Q^{\prime}$, which is in a line with CP.

Hence in the double pencil at C, the same ray $C Q$ corresponds to $C P$ whether we regard $C P$ as belonging to the first or second pencil, hence the two pencils are in involution.

Corollary. If CP is a diameter the conjugate diameter CQ is parallel to the tangent at P. Hence when the tangent at P passes through the centre, the diameter coincides with its conjugate ; and conversely.

Hence in an ellipse there are no real double rays of the involution formed by the pairs of conjugate diameters. [Hence the term "elliptic" involution.] Whereas in a hyperbola there are two double rays, viz. the asymptotes. ["Hyperbolic " involution.]

Otherwise: Let the tangent at any point, P of a hyperbola cut the asymptotes in T, T^{\prime}, then we have $T P=P T^{\prime}$. But the diameter $C Q$ conjugate to $C P$ is parallel to TT^{\prime}.

Hence $C P$ and $C Q$ are harmonically conjugate with respect to the asymptotes, and therefore form an involution, whose double rays are the asymptotes.

Hence also of any two conjugate diameters of a hyperbola, one and one only cuts the curve.
171. Conjugate Diameters at Right Angles. In an involution there is always one pair of perpendicular conjugate rays ; and if there is more than one, then every pair of conjugate rays are perpendicular.

To construct the perpendicular conjugate diameters of a conic. If the tangent at P is perpendicular to $C P$, then $C P$ and its conjugate are the required diameters.

If not describe a circle with radius $C P$ to cut the conic again at Q. Then PC and QC meet both circle and conic again at P^{\prime} and Q^{\prime} respectively, and $P Q P^{\prime} Q^{\prime}$ is a rectangle, which is inscribed in the conic.

Hence diameters parallel to $P Q$ and $P Q^{\prime}$

Fig. 136. are a pair of perpendicular conjugate diameters.

The perpendicular conjugate diameters are called principal diameters or axes.

The conic will be symmetrical with respect to each of its principal diameters. In the case of a hyperbola the principal diameters will bisect the angles between the asymptotes.
172. Segments of Diameters. Theorem. If tangents $T Q, T Q^{\prime}$ be drawn to a conic whose centre is C, and $C T$ cuts $Q Q^{\prime}$ at V, and the conic at P, then $C V . C T=C P$.

If $C V$ cuts the conic at P, P^{\prime}, then T, V are conjugate points on $P P^{\prime}$ and hence harmonically conjugate to P, P^{\prime}, and C is the middle point of $P P^{\prime}$, hence $C V . C T=C P^{2}$.

But in the case of a hyperbola CT may not cut the conic in real points, however T, V being conjugate points still describe an involution as T moves along a fixed line through C, and C is the
centre of the involution. Hence for all positions of \mathbf{T} on a given line through C , the value of CV . $C T$ is constant, but in this case the value is negative. We may find it convenient to speak of this quantity as the square of the semi-diameter along CT.
173. Theorem A. In an ellipse a chord $Q^{\prime} \mathbf{Q}^{\prime}$ moves parallel to itself, so that its middle point V describes the diameter PP^{\prime}, then $Q V^{2}: P V . V P^{\prime}$ has the constant value $C D^{2}: C P^{2}$, where $C D$ is a semi-diameter parallel to QV.

Let the tangent at Q cut $C P$ at T and $C D$ at U : draw $Q R$ parallel to $C P$ to meet $C D$ at W.

$$
\begin{aligned}
Q V^{2}: C D^{2}= & C W^{2}: C D^{2} \\
= & C W^{2}: C W \cdot C U \\
& \quad \text { (by previous theorem) } \\
= & V Q: C U \\
= & V T: C T=C V \cdot V T: C P^{2} . \\
\text { But } C V \cdot V T & =C V \cdot C T-C V^{2} \\
& =C P^{2}-C V^{2}=P V \cdot V P^{\prime} .
\end{aligned}
$$

$\therefore Q V^{2}: P V . V P^{\prime}=C D^{2}: C P^{2}$.
Theorem B. In a hyperbola,

Fig. 137.
if the diameter which bisects the chord $Q Q^{\prime}$ at V meets the curve in real points P, P^{\prime}, then $Q V^{2}: P V . V P^{\prime}$ is constant, as V moves along PP^{\prime}.

Let the tangent at Q cut $C P$ at T and the conjugate diameter at U, and draw $Q W$ parallel to $C P$ to cut $C U$ at W.

Then CU. CW has a constant value d.

$$
\begin{aligned}
\therefore \mathrm{QV}^{2}: d & =\mathrm{CW}^{2}: \mathrm{CW} \cdot \mathrm{CU} \\
& =\mathrm{CW}: \mathrm{CU} \\
& =\mathrm{VQ}: \mathrm{CU} \\
& =\mathrm{VT}: \mathrm{CT} \\
& =\mathrm{CV} \cdot \mathrm{VT}: \mathrm{CP}^{2} .
\end{aligned}
$$

But CV. VT $=C V . C T-C V^{2}=C P^{2}-C V^{2}=P V . V P^{\prime}$.
$\therefore \mathrm{QV}^{2}: \mathrm{PV}^{2} \mathrm{VP}^{\prime}=d: \mathrm{CP}^{2}$.
[Here PV. VP' and d are both negative.]

Fig. 138.
Corollary 1. If $V Q$ cuts the asymptote at R, then $R V: C V$ $=$ ultimate value of $Q V: C V$ when $C V$ is very large.

Now when $C V$ is very large $Q V^{2}: C V^{2}$ differs by a very small amount from $Q V^{2}: C V^{2}-C P^{2}$, which equals $-d: C P^{2}$,

$$
\therefore \mathrm{RV}^{2}: \mathrm{CV}^{2}=-d: \mathrm{CP}^{2} .
$$

Corollary 2. If PH the tangent at P meets the asymptote at H , then $\mathrm{PH}^{2}=-d$: and if HD be drawn parallel to CP to meet the conjugate diameter at $\mathrm{D}, C D^{2}=-d$.

> P. P. G.

Projective Geometry

Corollary 3. Since $\mathrm{RV}^{2}: \mathrm{CV}^{2}=-d: \mathrm{CP}^{2}=\mathrm{QV}^{2}: \mathrm{CV}^{2}-\mathrm{CP}^{2}$,

$$
\therefore \mathrm{RV}^{2}-\mathrm{QV}^{2}: \mathrm{CP}^{2}=-d: \mathrm{CP}^{2},
$$

hence $R V^{2}-Q V^{2}$, which equals $R Q . Q R^{\prime}$, is constant ($=P H^{2}$).
Hence as CV increases RQ continually decreases, or the curve continually approaches nearer to its asymptote.

Theorem C. If QQ' is a chord such that the diameter which bisects it at V does not meet the hyperbola, but $\mathrm{CV} . \mathrm{CT}=p$, then $\mathrm{QV}^{2}: p-\mathrm{CV}^{2}=\mathrm{CD}^{2}: p$, where CD is the semi-diameter parallel to QV.

Fig. 139.
Let the tangent at Q cut $C D$ at U and $C V$ at T; draw $Q W$ parallel to CV to meet CD at W .

$$
\text { Then } \begin{aligned}
Q \mathrm{~V}^{2}: \mathrm{CD}^{2} & =\mathrm{CW}{ }^{2}: \mathrm{CD}^{2} \\
& =\mathrm{CW}: \mathrm{CU}=\mathrm{VQ}: \mathrm{CU}=\mathrm{VT}: \mathrm{CT} \\
& =\mathrm{CV} \cdot \mathrm{VT}: \mathrm{CV} \cdot \mathrm{CT} \\
& =\mathrm{CV} \cdot \mathrm{VT}: p .
\end{aligned}
$$

But CV. $\mathrm{VT}=\mathrm{CV} . \mathrm{CT}-\mathrm{CV}^{2}=p-\mathrm{CV}^{2}$,

$$
\therefore \mathrm{QV}^{2}: p-\mathrm{CV}^{2}=\mathrm{CD}^{2}: p ;
$$

here $p-\mathrm{CV}^{2}$ and p are both negative.
174. Theorem. If from a point T on the diameter $P P^{\prime}$ of a conic, tangent TQ be drawn, and r, p are the squares of semi-diameters parallel to $T Q$ and $C T$, then

$$
\mathrm{T} Q^{2}: \mathrm{TP} \cdot \mathrm{TP}^{\prime}=r: p,
$$

if PP^{\prime} cuts the conic in real points, but if not $\mathrm{TQ}^{2}: \mathrm{CT}^{2}-p=r: p$.

Case I. If CT cuts the conic.

Fig. 140.

Draw an ordinate PW to the semidiameter $\mathbf{C Q}$.

$$
\mathrm{TQ}^{2}: \mathrm{PW}^{2}=\mathrm{CT}^{2}: \mathrm{CP}^{2}
$$

and

$$
\mathrm{PW}^{2}: r=\mathrm{CQ}^{2}-\mathrm{CW}^{2}: \mathrm{CQ}^{2}=\mathrm{CT}^{2}-\mathrm{CP}^{2}: \mathrm{CT}^{2},
$$

$$
\therefore \mathrm{TQ}^{2}: r=\mathrm{CT}^{2}-\mathrm{CP}^{2}: \mathrm{CP}^{2}
$$

or

$$
\mathrm{TQ}^{2}: \mathrm{TP} \cdot \mathrm{TP}^{\prime}=r: \mathrm{CP}^{2}=r: p
$$

Case II. Where CT does not cut the conic.
Let TQ cut the asymptotes at H, H^{\prime}; and draw a line R^{\prime} through Q and parallel to $C T$ to meet the asymptotes at R, R^{\prime}.

Fig. 141.

Then
and
But
$Q H^{2}=Q^{\prime 2}=-r$
$\mathrm{RQ} \cdot \mathbf{Q R}^{\prime}=-p$.
$C T: H T=R Q: H Q$,
$C T: H^{\prime} T=Q R^{\prime}: Q H^{\prime}$,
$\therefore C T^{2}: T Q^{2}-Q H^{2}=R Q \cdot Q R^{\prime}: H Q^{2}$,
$\therefore \mathrm{CT}^{2}: \mathrm{TQ}^{2}+r=p: r$
and
hence

Corollary. If $C Q, C R$ are conjugate diameters of an ellipse and tangents at Q, R meet at T, then $C T^{2}=2 C P^{2}$, where $C T$ cuts the conic at P. For $T Q=C R$.
175. Theorem. If O is any point on a chord $Q^{\prime \prime}$ and r the square of the parallel semi-diameter, then $\mathbf{O Q} . \mathbf{O Q}^{\prime}: r=\mathbf{C O}^{2}-p: p$, where p is the square of the semi-diameter along OC.

Fig. 142.
Case I. If p is positive, and $O C$ cuts the conic at $\mathrm{P}, \mathrm{P}^{\prime}$.
Draw a diameter to bisect QQ^{\prime}, and let its power be k.
Then

$$
\mathrm{OW}^{2}: \mathrm{PV}^{2}=\mathrm{CW}^{2}: \mathrm{CV}^{2}
$$

and

$$
\mathrm{QW}^{2}: \mathrm{PV}^{2}: r=k-\mathrm{CW}^{2}: k-\mathrm{CV}^{2}: k
$$

$$
\begin{aligned}
\therefore \mathrm{QW}^{2}-r: \mathrm{PV}^{2}-r & =\mathrm{CW}^{2}: \mathrm{CV}^{2}, \\
\therefore \mathrm{OW}^{2}-\mathrm{QW}^{2}+r: r & =\mathrm{CW}^{2}: \mathrm{CV}^{2}=\mathrm{CO}^{2}: \mathrm{CP}^{2}, \\
\therefore \mathrm{OW}^{2}-\mathrm{QW}^{2}: r & =\mathrm{CO}^{2}-\mathrm{CP}^{2}: \mathrm{CP}^{2}, \\
\mathrm{OQ} \cdot \mathrm{OQ}^{\prime}: r & =\mathrm{CO}^{2}-p: p .
\end{aligned}
$$

i.e.

Case II. If OC does not cut the curve.
Let $O Q$ cut the asymptotes at R, R^{\prime}; draw a line through Q parallel to OC to cut the asymptotes at $\mathrm{S}, \mathrm{S}^{\prime}$.

Fig. 143.
Then

$$
\begin{aligned}
\mathrm{OC}^{2}: \mathrm{OR}^{\prime} \mathrm{OR}^{\prime} & =\mathbf{S Q} \cdot \mathbf{Q S}^{\prime}: \mathbf{R Q} \cdot \mathbf{Q R}^{\prime} \\
& =p: r, \\
\therefore \mathrm{OC}^{2}: p & =\mathrm{OV}^{2}-\mathrm{RV}^{2}: r, \\
\therefore \mathrm{OC}^{2}-p: p & =\mathrm{OV}^{2}-\mathrm{RV}^{2}-r: r, \\
r=\mathrm{RQ} \cdot \mathrm{QR}^{\prime} & =\mathrm{RV}^{2}-\mathbf{Q V}^{2}, \\
\therefore \mathrm{OC}^{2}-p: p & =\mathrm{OV}^{2}-\mathbf{Q V}^{2}: r \\
& =\mathrm{OQ} \cdot \mathrm{OQ}^{\prime}: r .
\end{aligned}
$$

but

Corollary. If two chords Q^{\prime} ' and $X X^{\prime}$ pass through a point O , and r, y are the squares of the parallel semi-diameters, then

$$
\mathrm{OQ} \cdot \mathrm{OQ}^{\prime}: r=\mathrm{OX} . \mathrm{OX}^{\prime}: y .
$$

Hence if the directions of the chords are fixed, the ratio $O Q . O Q^{\prime}$: $O X . O X^{\prime}$ is the same for all positions of O.
176. Focus. At any point N on the principal axes one pair of conjugate perpendicular lines are the axis and a chord PNP^{\prime} perpendicular to the axis: the pole of PP^{\prime} being a point T on the axis. Also $C N . C T=\mathrm{CA}^{2}$; and the polar of N is a line through T perpendicular to the axis.

If more than one pair of conjugate pairs are perpendicular, then all pairs are.

Fig. 144.
I. In the Ellipse. Let CB be the other principal axis, and take a point S on $C A$ such that $C S^{2}=C A^{2}-C B^{2}$.

The tangent at B is parallel to CA , let it meet the polar XM of S at M. Join SM, SB.

Then

$$
\begin{gathered}
\text { Cs. } \mathrm{SX}=\mathrm{CS} . \mathrm{CX}-\mathrm{CS}^{2}=\mathrm{CB}^{2} . \\
\therefore \mathrm{CS}: \mathrm{CB}=\mathrm{XM}: \mathrm{sX},
\end{gathered}
$$

hence the angles XSM, CSB are complementary, and SB, SM are perpendicular.

But the point M is on the polar of S, and on the tangent at B, hence its polar is SB : i.e. SB, SM are a pair of (perpendicular) conjugate rays. Hence every pair of rays at \mathbf{S} are perpendicular.

The point \mathbf{s} is called a focus. There will be two foci on AA^{\prime}, equally distant from C , so that $\mathrm{CS}^{2}=\mathrm{CS}^{\prime 2}=\mathrm{CA}^{2}-\mathrm{CB}^{2}$.

The line $X M$, the polar of S , is called a directrix.
The line LL' through S perpendicular to S is the latus rectum.

Corollary. The intercept on any tangent between the point of contact and the directrix subtends a right angle at the focus.

Also the tangents at L, L^{\prime} pass through X.
177. If P is any point on an ellipse, focus S , and PM a line perpendicular to the directrix which is polar to S, then SP:PM is a constant ratio.

Fig. 145.
Draw PN perpendicular to the axis CS.
Then

$$
\mathrm{SP}^{2}=\mathrm{SN}^{2}+\mathrm{PN} \mathrm{~N}^{2} .
$$

Now

$$
\mathrm{PN}^{2}: \mathrm{CA}^{2}-\mathrm{CN}^{2}=\mathrm{CB}^{2}: \mathrm{CA}^{2} .
$$

But if $\mathrm{CS}=e . \mathrm{CA}, \mathrm{CB}^{2}=\mathrm{CA}^{2}-\mathrm{CS}^{2}=\left(1-e^{2}\right) \mathrm{CA}^{2}$,

$$
\therefore \mathrm{PN}^{2}=\left(1-e^{2}\right)\left(\mathrm{CA}^{2}-\mathrm{CN}^{2}\right) .
$$

Hence

$$
\begin{aligned}
\mathrm{SP}^{2} & =(\mathrm{CS}-\mathrm{CN})^{2}+\left(1-e^{2}\right)\left(\mathrm{CA}^{2}-\mathrm{CN}^{2}\right) \\
& =(e \cdot \mathrm{CA}-\mathrm{CN})^{2}+\left(1-e^{2}\right)\left(\mathrm{CA}^{2}-\mathrm{CN}^{2}\right) \\
& =\mathrm{CA}^{2}-2 e \cdot \mathrm{CA} \cdot \mathrm{CN}+e^{2} \cdot \mathrm{CN}^{2}, \\
\therefore \mathrm{SP} & =\mathrm{CA}-e \cdot \mathrm{CN} \\
& =e \cdot \mathrm{CX}-e \cdot \mathrm{CN}=e \cdot \mathrm{NX}=e \cdot \mathrm{PM},
\end{aligned}
$$

i.e. SP: PM has the constant value e.

Corollary. If $P M^{\prime}$ is the perpendicular on the directrix of the other focus $\mathrm{S}^{\prime}, \mathrm{S}^{\prime} \mathrm{P}=e$. PM^{\prime}. Hence

$$
\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}=e . \mathrm{MM}^{\prime}=e . \mathrm{XX}^{\prime}=\mathrm{AA}^{\prime} .
$$

Corollary. The tangents at L, L^{\prime} pass through X, hence the conic is an ellipse or hyperbola as XA \gtrless AS, i.e. as $e \lesseqgtr 1$.
178. II. In the Hyperbola. On the asymptote take CK equal to CA, draw KS perpendicular to CK to meet the axis at S, and draw KX perpendicular to the axis. Draw SI parallel to CK.

Fig. 146.
Then
CS. $C X=C K^{2}=C A^{2}$.
$\therefore \mathrm{KX}$ is the polar of S .
Since SI passes through S its pole is on $K X$, and since $S I$
passes through the point of contact of CK its pole lies on CK, $\therefore \mathrm{K}$ is the pole of SI , and SK, SI are a pair of conjugate lines at S , which are at right angles.

Hence all pairs of conjugate lines at S are perpendicular to each other.
S is the focus of the hyperbola. There will be two foci on the axis equally distant from $C . \quad \mathrm{XK}$ is the directrix corresponding to S .

If we draw AY perpendicular to the axis to meet $C K$ at Y, then by equality of the triangles $C K S, C A Y$ we have $C S=C Y$.
$C S^{2}=C A^{2}+A Y^{2}=C A^{2}-b$, where b is the (negative) square of the semi-diameter perpendicular to CA.
179. Theorem. $\mathrm{SP}=e . \mathrm{PM}$, where PM is a perpendicular from a point P of the conic to the directrix $X M$.

For $\quad \mathbf{S P}^{2}=\mathbf{S N}^{2}+\mathrm{PN}^{2}$, but $\mathrm{PN}^{2}: \mathrm{CA}^{2}-\mathrm{CN}^{2}=b: \mathrm{CA}^{2}$;
now if CS $=e . \mathrm{CA}, \quad b=\mathrm{CA}^{2}-\mathrm{CS}^{2}=\left(1-e^{2}\right) \mathrm{CA}^{2}$,

$$
\therefore \mathrm{PN}^{2}=\left(1-e^{2}\right)\left(\mathrm{CA}^{2}-\mathrm{CN}^{2}\right),
$$

$$
\therefore \mathrm{SP}^{2}=(e . \mathrm{CA}-\mathrm{CN})^{2}+\left(1-e^{2}\right)\left(\mathrm{CA}^{2}-\mathrm{CN}^{2}\right)
$$

$$
=\mathrm{CA}^{2}-2 e \cdot \mathrm{CA} \cdot \mathrm{CN}+e^{2} \cdot \mathrm{CN}^{2}
$$

$$
\therefore \mathrm{SP}=\mathrm{CA} \sim e . \mathrm{CN}=e(\mathrm{CX} \sim \mathrm{CN})=e . \mathrm{XN}=e . \mathrm{PM} .
$$

Corollary. If S^{\prime} is the other focus then $\mathrm{S}^{\prime} \mathrm{P}=e . \mathrm{PM}^{\prime}$, hence

$$
\mathrm{S}^{\prime} \mathrm{P}-\mathrm{SP}=e . \mathrm{MM}^{\prime}=e . \mathrm{XX}^{\prime}=\mathrm{AA}^{\prime} .
$$

180. Theorem. The tangent makes equal angles with the focal distances.
I. In the Ellipse.

$$
\begin{aligned}
S P: S^{\prime} P & =N X: X^{\prime} N \\
& =C X-C N: C X+C N \\
& =C X \cdot C T-C A^{2}: C X \cdot C T+C A^{2} \\
& =C T-e \cdot C A: C T+e \cdot C A \\
& =C T-C S: C T+C S=S T: S^{\prime} T .
\end{aligned}
$$

$\therefore P T$ bisects the exterior angle at P between $S P$ and $S^{\prime} P$.
II. In the Hyperbola.

$$
\begin{aligned}
S P: S^{\prime} P & =X N: X^{\prime} N \\
& =C N-C X: C N+C X \\
& =C A^{2}-C X \cdot C T: C A^{2}+C X \cdot C T \\
& =e \cdot C A-C T: e \cdot C A+C T \\
& =C S-C T: C S+C T=T S: S^{\prime} T .
\end{aligned}
$$

\therefore PT bisects the interior angle between $S P$ and $S^{\prime} P$.

Fig. 147.

Fig. 148.
Corollary 1. The normal, i.e. the line drawn through P perpendicular to the tangent at P, bisects the other angle between $S P, S P^{\prime}$, hence it meets the axis at G the harmonic conjugate of T with respect to $\mathrm{S}, \mathrm{S}^{\prime}$, and $\therefore \mathrm{CG} . \mathrm{CT}=\mathrm{CS}^{2}=e^{2}$. CA^{2}.

Corollary 2. If the perpendicular $S Y$ from S to the tangent meets $S^{\prime} P$ at $R, P R=P S$ and $R Y=Y S$. Hence $S^{\prime} R=$ the sum or difference of $S P, S^{\prime} P=A A^{\prime}$. Also $C Y=\frac{1}{2} S^{\prime} R=C A$.

Hence Y lies on a circle with $A A^{\prime}$ as diameter; this is called the auxiliary circle of the conic.

Corollary 3. If the tangents at P, P^{\prime} meet at T, and R, R^{\prime} are the images of $\mathrm{S}, \mathrm{s}^{\prime}$ in those tangents, then the triangles TRS^{\prime}, $T R^{\prime} \mathbf{S}$ are equal in every respect. But angle $T S P=T R S^{\prime}$, and $T S^{\prime} P^{\prime}=T R^{\prime} S$.

Hence two tangents to a conic subtend equal (or supplementary) angles $T S P$, $T S^{\prime} P^{\prime}$ at the foci.

EXAMPLES. VIII.

1. SA meets a given line in K and $T A$ meets a parallel line in L. Prove that if A moves along a straight line KL will envelope a parabola.
2. If $A B C D$ is a square find the parabola which touches $A B$ at B and $A C$ at C.

Find where it intersects a parabola touching BA at A and BD at D.
3. Three parabolas are drawn each touching two sides of a triangle at the ends of the third side, find their points of intersection.
4. Two parabolas have a common focus and a common axis, prove that they intersect at right angles.
5. A line touches a parabola at K, cuts two other tangents at L, M and the diameter bisecting their chord of contact at N. Prove that LK equals MN.
6. A tangent to a parabola at K cuts two tangents $T A, T B$ at L, M respectively, and the chord of contact $A B$ at N. Prove that $A N: B N$ as LK ${ }^{2}$: KM ${ }^{2}$.
7. The foot of the perpendicular from a point to its polar with respect to a parabola is at the same distance from the focus as the point itself is from the directrix.
8. The vertices A, A^{\prime} and foci S, S^{\prime} of two parabolas are collinear, and $A S, S A^{\prime}, A^{\prime} S^{\prime}$ are equal. If any focal chord $P S Q$ of the first parabola meets it at P and Q and the normals $P G, Q H$ meet the axis at G, H, prove that G and H are the feet of ordinates of a focal chord of the second parabola.
9. Triangles are described self-polar to a given parabola, and having one vertex at a given point ; prove that their nine-point circles form a coaxal system.
10. If a chord of a parabola passes through a fixed point O, the rectangle of the segments of the chord is equal to the rectangle of the parallel focal chord and the intercept, on the diameter through O, between O and the parabola.
11. The rectangles of the segments of two intersecting chords of a parabola are in the same ratio as the parallel focal chords.
12. In a parabola the rectangle of the abscissae with respect to a given diameter of the ends of a chord passing through a given point on the diameter is constant.
13. The mid-point of the chord of contact of tangents from P to a parabola lies on a fixed line, prove that the locus of P is a parabola. Also find its axis and focus.
14. Parabolas are described each passing through a given point and touching two given lines. Prove that the envelope of the diameter through one end of the chord of contact with the two lines is a hyperbola, and find its asymptotes.

Prove that the two hyperbolas thus obtained are of the same dimensions.
15. The two tangents drawn to a parabola from any point subtend equal angles at the focus.
16. Prove that the focus of a parabola lies on the circumcircle of the triangle formed by any three tangents; and find its pedal line with respect to the triangle.
17. A conic touches two lines $T A, T B$ at A, B and passes through the centroid of the triangle $T A B$; and the joins of A, B to any point of the conic cut TB, TA at K, L. Prove that the envelope of $K L$ is a parabola.
18. A conic touches $T A, T B$ at A, B and the joins of A, B to any point P of the conic cut TB, TA at K, L. Prove that the envelope of $K L$ is a conic, and find whether it is an ellipse, parabola or hyperbola. Also find its centre.
19. A variable tangent to a conic cuts at K, L two fixed tangents whose points of contact are A, B. Prove that the locus of the intersection of AL, BK is a conic. Find when this conic is a parabola, when an ellipse, and when a hyperbola. Find its centre.
20. A chord $C D$ of a circle is bisected at K by a diameter $A B$, and the tangents at C, D intersect at L. Prove that any conic having its centre on $A B$ and touching $A C, A D, B C, B D$ divides $K L$ harmonically.
21. Prove that two concentric conics have only one pair of common conjugate diameters, and that these are harmonically conjugate to the common chords of the two conics.
22. Prove that the common chords of a central conic and any circle are equally inclined to the principal diameters of the conic.
23. If $A B$ is a diameter of a central conic, and the join $B T$ of B to any point T on the tangent at A cuts the conic at P, shew that the tangent at P bisects AT.
24. Two parallel tangents to a central conic are cut by any other tangent at $\mathrm{T}, \mathrm{T}^{\prime}$; prove that $\mathrm{CT}, \mathrm{CT}^{\prime}$ lie along conjugate diameters.

Also prove that $T P . \mathrm{PT}^{\prime}=\mathrm{CD}^{2}$, where P is the point of contact of TT^{\prime}, and $C D$ is the semi-diameter conjugate to $C P$.
25. If $C P, C D$ are conjugate semi-diameters of an ellipse, whose principal semi-diameters are $C A, C B$ and foci S, S^{\prime}; prove that $S P . S^{\prime} P=C D^{2}$; and that $C P^{2}+C D^{2}=C A^{2}+C B^{2}$.
26. The portion of any tangent to an ellipse intercepted by a pair of conjugate diameters subtends supplementary angles at the foci.
27. A conic cuts the sides $B C, C A, A B$ of a triangle at A_{1} and A_{2}, B_{1} and B_{2}, C_{1} and C_{2} respectively, prove that the product of

$$
\frac{\mathrm{BA}_{1} \cdot \mathrm{BA}_{2}}{\mathrm{CA}_{1} \cdot \mathrm{CA}_{2}} \cdot \frac{\mathrm{CB}_{1} \cdot \mathrm{CB}_{2}}{A B_{1} \cdot A B_{2}} \cdot \frac{A C_{1} \cdot A C_{2}}{B C_{1} \cdot B C_{2}}
$$

is unity.
[Carnot's Theorem.]
28. If a conic cuts the sides $B C, C A, A B$ of a triangle at $K_{1}, K_{2} ; L_{1}$, $L_{2} ; M_{1}, M_{2}$ respectively, and $A K_{1}, B L_{1}, C M_{1}$ are concurrent, so also are $\mathrm{AK}_{2}, \mathrm{BL}_{2}, \mathrm{CM}_{2}$.
29. Prove that the lines which join the vertices of a triangle to any two given points cut the opposite sides in six points which lie on a conic.
30. A conic touches the sides of a triangle $A B C$ at the feet of the perpendiculars from the opposite vertices, and the join of A to the centre of the conic cuts $B C$ at K; prove that $B K: K C$ as $B^{2}: C^{2}$.
31. The centroid of the triangle formed by the two tangents from \mathbf{P} to a given conic and their chord of contact lies on the conic, find the locus of P.
32. A tangent to an ellipse whose foci are S, S^{\prime} is cut by a pair of parallel tangents at T, T^{\prime}, prove that $S T \cdot S T^{\prime}: S^{\prime} T \cdot S^{\prime} T^{\prime}=S P: S^{\prime} P$.
33. Tangents from any point T on an equiconjugate diameter of an ellipse touch the ellipse at A and B. Prove that the circle through T, A and B passes through the centre of the ellipse.
34. In an ellipse, centre $C, C P$ is conjugate to the normal at Q; prove that $C Q$ is conjugate to the normal at P.
35. Prove that the tangent to an ellipse at any point makes equal angles with the focal distances of the point.

If $S Y, S^{\prime} Y^{\prime}$ are the perpendiculars from the foci S, S^{\prime} to any tangent to an ellipse whose major axis is $A A^{\prime}$, prove that the pencil described by $A Y$ at A is projective with the row described by the tangent on the fixed tangent at A^{\prime}. Also prove that the locus of the intersection of $A Y, A^{\prime} Y^{\prime}$ is a conic having $A A^{\prime}$ as one of its principal axes.
36. The directrix corresponding to a focus S of an ellipse cuts the chord of contact $A B$ of two tangents $A T, B T$ at K, and $S T$ cuts $A B$ at L, prove that K, L are harmonic conjugates to A, B; also prove that $S T$ bisects the angle ASB.
37. An ellipse touches the sides of a triangle and has one focus at the orthocentre, find the position of the other focus.
38. Prove that the distance of a point P on a hyperbola from its focus is equal to a line drawn from P to the directrix parallel to an asymptote.

Also find the locus of the focus of a hyperbola which passes through two given points and has its asymptotes parallel to two given lines.
39. A line through a point P of a hyperbola parallel to the transverse axis cuts an asymptote at K, and the focal chord SP cuts the asymptote at L, prove that the sum of LP, LK is constant.
40. A tangent to a central conic meets the principal axes at T, T^{\prime} and the normal meets them at G, G^{\prime}, prove that $C G . C T=C S^{2}=C G^{\prime} . \mathrm{CT}^{\prime}$.
41. Conics are drawn touching a given line $K L$, and having given parallel lines KX, LY as directrices. Prove that the locus of the focus corresponding to KX is a circle passing through K and bisecting KL.
42. Tangents are drawn to a set of confocal conics from a point on the common axis; prove that their points of contact lie on a circle.
43. Any point P on an ellipse is joined to the foci S, S^{\prime}; prove that the loci of the centres of the escribed circles of the triangle SPS' are two straight lines and an ellipse.
44. The polar of T with respect to a hyperbola cuts the asymptotes at K and L, and tangents from K, L touch the hyperbola at P, Q respectively. Prove that TP, TQ are parallel to the asymptotes.
45. A line touches a hyperbola at P and cuts an asymptote at K, a line parallel to the other asymptote through any point L on this tangent cuts the first asymptote at Q and the curve at R. Prove that $K P^{2}$: PL^{2} as $\mathrm{QL}: \operatorname{LR}$.
46. A line through a point A on a hyperbola parallel to one asymptote meets a chord BC at K, and a line through B parallel to the other asymptote meets the chord $A C$ at L. Prove that KL is parallel to the tangent at C .
47. Two tangents from T to a hyperbola cut one asymptote at A, B, and the parallel tangents cut the other asymptote at $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ respectively. Prove that $A B^{\prime}, A^{\prime} B$ and $C T$ are parallel.
48. If the asymptotes of a hyperbola are at right angles conjugate diameters are equal. Prove also that the orthocentre of any triangle inscribed in a rectangular hyperbola lies on the conic.
49. A circle cuts two fixed circles orthogonally and a diameter is drawn parallel to a given direction. Prove that the locus of its extremities is a rectangular hyperbola.
50. A point moves so that the perpendicular from it to a given line. equals the distance of the foot of the perpendicular from a given point. Prove that the locus of the point is a rectangular hyperbola.
51. A tangent to a circle cuts two parallel sides of a circumscribing square at \mathbf{P}, \mathbf{Q}; and the parallel tangent cuts the other two sides of the square at R, S. Prove that P, Q, R, S and the centre of the circle lie on a rectangular hyperbola whose centre lies on the circle.
52. A circle cuts a rectangular hyperbola, centre C, at K, L, M, N, prove that $\mathrm{CK}^{2}+\mathrm{CL}^{2}+\mathrm{CM}^{2}+\mathrm{CN}^{2}$ equals the square of the diameter of the circle.

A rectangular hyperbola passes through four concyclic points A, B, C, D and P is the orthocentre of the triangle $A B C$, prove that $D P$ is a diameter.
53. The base of a triangle is given and the difference of the angles at the base, prove that the locus of the vertex is a rectangular hyperbola.
54. Given the asymptotes and one tangent to a hyperbola, construct the foci.
55. If parallel straight lines touch a series of confocal conics, their points of contact lie on a rectangular hyperbola.
56. Prove that the tangents from any point to a central conic make equal angles with the lines joining the point to the foci ; and deduce that if a focus of a conic lies on the circumcircle of a triangle formed by three tangents the conic must be a parabola.
57. A triangle PQR circumscribes a conic whose centre is C, and ordinates are drawn from Q, R to the diameters $C R, C Q$ respectively, prove that the join of the feet of these ordinates passes through the points of contact of $P Q$ and $P R$.
58. A point moves so that the perpendicular drawn from it to the chord of contact of tangents to a given parabola passes through a given point, prove that its locus is a rectangular hyperbola.
59. Given one diameter of an ellipse in position and magnitude, and the sum of the squares of conjugate semi-diameters, prove that the ellipse touches a fixed ellipse whose foci are the ends of the given diameter, and that the common tangent is perpendicular to the conjugate diameter.
60. Two rectangular hyperbolas are concentric with, and each touches, a given hyperbola, prove that they intersect on the bisectors of the angles between the lines joining the centre to the points of contact.

CHAPTER IX

RECIPROCATION

181. Theorem. If a system of lines envelope a conic, the locus of their poles with respect to a given fixed conic is also a conic.

Fig. 149.
P. P. G.

Let a, b be two tangents to a conic C_{1}, and A, B their poles with respect to a fixed conic R : let p_{1} be any other tangent to C_{1}, and P_{2} its pole with respect to R.

If p_{1} cuts a, b respectively at K, L, then as p_{1} envelopes the conic $\mathrm{C}_{1}, \mathrm{~K}$, L describe two projective rows on $a, b(\S 78)$.

Also $A P_{2}$ is the polar of K, hence $A P_{2}$ turns about A in a pencil projective with the row described by K on $a(\S 99)$; similarly BP_{2} describes a pencil with vertex B projective with the row of L on b.

Hence $\mathrm{AP}_{2}, \mathrm{BP}_{2}$ describe projective pencils; \therefore the locus of P_{2} is a conic passing through A and B.

Conversely. If a point P describes a conic, its polar p, with respect to a given fixed conic R, envelopes a conic.
182. The locus of the poles with respect to a conic R , of tangents to a conic C_{1}, is the same conic as the envelope of the polars with respect to R of points on C_{1}.

Let C_{2} be the conic described by the pole with respect to R of tangents to C_{1}.

Let p_{1}, q_{1} touch the conic C_{1} at $\mathrm{P}_{1}, \mathrm{Q}_{1}$; and let $\mathrm{P}_{2}, \mathrm{Q}_{2}$ be their poles with respect to R. Then $P_{2} Q_{2}$ is the polar of the intersection X of p_{1} and q_{1}.

But, if q_{1} is made to coincide with p_{1}, X becomes the point of contact P_{1}.

At the same time Q_{2} coincides with $P_{2}, \therefore P_{2} Q_{2}$ becomes the tangent p_{2} through C_{2} at P_{2}.

Hence the polar of P_{1} touches C_{2} : and as P_{1} describes the conic C_{1} its polar envelopes C_{2}.

Thus each conic is either the pole locus or polar envelope derived from the other, the two conics $\mathrm{C}_{1}, \mathrm{C}_{2}$ are called polar reciprocal conics with respect to the conic of reference R.

To each point P_{1} of one conic C_{1} corresponds one point P_{2} of the other conic C_{2}, such that P_{1} is the pole with respect to R of the line p_{2} which touches C_{2} at P_{2}, and P_{2} is also the pole of the line p_{1} which touches C_{1} at P_{1}.
183. Theorem. If a conic C_{1} lies entirely within the conic of reference R , its polar reciprocal C_{2} lies entirely outside R .

For every tangent to C_{1} cuts R in real points, hence its pole lies outside \mathbf{R}.

Conversely. If R is entirely within C_{1}, then C_{2} is entirely within R. [In this case, if R is a circle or ellipse, so also is C_{2}.]

But if C_{1} is entirely outside R, C_{2} is not necessarily entirely within R .

Common Points and Tangents. If C_{1} and R have a common tangent touching R at L, then C_{2} cuts R at L. Hence if $\mathrm{C}_{1}, \mathrm{R}$ have four common tangents, then $\mathrm{C}_{2}, \mathrm{R}$ have four real intersections ; and if C_{1}, R have four common points, then C_{2}, R have four common tangents.

If C_{1} touches R, then C_{2} touches R at the same point.
If C_{1} cuts C_{2} at P , the polar of P is a common tangent to C_{1}, C_{2}. Hence the number of real intersections of $\mathrm{C}_{1}, \mathrm{C}_{2}$ is the same as the number of real common tangents.

Exercise. Draw figures to illustrate these statements in various cases.
Parallel tangents to C_{1} reciprocate into points on C_{2} which are collinear with the centre O of the conic of reference R.

For, if the parallel tangent to R touches it at K, the polars of the two lines lie on OK.
184. To find the centre of the reciprocal conic.

Let O be the centre of the conic of reference R , and x_{1} its polar with respect to C_{1}, then the reciprocal of x_{1} (i.e. its pole with respect to R) is the centre of the reciprocal conic C_{2}.

Draw any diameter KL of R, cutting the conic C_{1} at A_{1}, B_{1} and the line x_{1} at X_{1}. The reciprocals of the points $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{X}_{1}$ on OK are three lines a_{2}, b_{2}, x_{2} parallel to the tangent to R at K ; let them cut $O K$ at D, E, Y respectively.

Then

$$
\mathrm{OA}_{1} \cdot O D=O B_{1}, O E=O X_{1} \cdot O Y=O K^{2} .
$$

But x_{1} is the polar of O for the conic C_{1}; hence

$$
\left\{\mathrm{OX}_{1} \mathrm{~A}_{1} \mathrm{~B}_{1}\right\}=-1 \text {. }
$$

$$
\therefore \frac{1}{\mathrm{OA}_{1}}+\frac{1}{\mathrm{OB}_{1}}=\frac{2}{\mathrm{OX}_{1}}, \quad \therefore \mathrm{OD}+\mathrm{OE}=2 . \mathrm{OY} .
$$

Hence x_{2} is equidistant from the lines a_{2}, b_{2} which are parallel tangents to the conic C_{2}, and therefore x_{2} passes through the centre of C_{2}.

Similarly the reciprocal of each point of x_{1} passes through the centre of C_{2}. Hence the centre of C_{2} is the reciprocal X_{2} of x_{1}.

Fig. 150.
Corollary 1. If O lies on C_{1}, x_{1} is the tangent to C_{1} at O and is a diameter of R. Hence the centre of C_{2} is an infinitely distant point on the diameter OK' of R conjugate to x_{1}. Hence C_{2} is a parabola, and its diameter is parallel to OK^{\prime}.

Corollary 2. If two real tangents can be drawn from O to the conic C_{1}, these lie along two diameters OK, OL of R and their reciprocals are infinitely distant points on the diameters OK^{\prime}, OL^{\prime} respectively conjugate to OK , OL .

Hence C_{2} is a hyperbola whose asymptotes are parallel to $\mathrm{OK}^{\prime}, \mathrm{OL}^{\prime}$.

If the tangents $O K, O L$ from O to C_{1} touch C_{1} at X_{1}, Y_{1}, the asymptotes are the reciprocals of X_{1}, Y_{1}. They pass through the centre (since $\mathrm{X}_{1} \mathrm{Y}_{1}$ is the line x whose reciprocal is the centre of C_{2}), and touch the hyperbola at infinity.
185. Theorem. Conjugate diameters reciprocate into conjugate points on a straight line.

For the centre of C_{1} reciprocates into the polar with respect to C_{2} of O , the centre of the conic of reciprocation R. Hence diameters of C_{1} reciprocate into points on this line.

Let p_{1} be any diameter of $\mathrm{C}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1}$ the conjugate diameter, and $\mathrm{A}_{1} \mathrm{~K}, \mathrm{~B}_{1} \mathrm{~L}$ the tangents (parallel to p_{1}) at $\mathrm{A}_{1}, \mathrm{~B}_{1}$: these three lines, being parallel, reciprocate into three points P_{2}, A_{2}, B_{2} collinear with O , the centre of R .

Let $A_{2} K_{2}, B_{2} K_{2}$ be the tangents to C_{2} at A_{2}, B_{2}; they are the reciprocals of A_{1}, B_{1}; hence K_{2} is the reciprocal of the diameter $A_{1} B_{1}$ of C_{1}.

But P_{2} lies on the chord of contact $A_{2} B_{2}$ of tangents from K_{2} to the conic C_{2}. Hence $\mathrm{P}_{2}, \mathrm{~K}_{2}$ are conjugate points with respect to C_{2}.

Corollary. Pairs of conjugate points on a straight line describe an involution (\$ 99, Cor.), hence pairs of conjugate diameters of any conic form an involution (cf. § 170).
186. Reciprocation with respect to a point. We may take a circle as the conic of reference R . The polar reciprocal of a figure with respect to a point O is the polar reciprocal with respect to a circle whose centre is at 0 .

If the reciprocals of points P_{1}, Q_{1} with respect to O are the lines p_{2}, q_{2}, they are respectively perpendicular to $O P_{1}, O^{\prime} Q_{1}$. Hence the angle between p_{2}, q_{2} equals the angle subtended at 0 by the join $P_{1} Q_{1}$.

Exercises. 1. Reciprocate a triangle with respect to its orthocentre.
2. If P, Q move along two fixed lines so that their join $P Q$ subtends a constant angle at a given point O, prove that the reciprocal of $P Q$ with respect to O describes a circle.
3. Prove that the reciprocal of a parabola with respect to a point on the directrix is a rectangular hyperbola. State the converse theorem.
4. Prove that the reciprocal of a central conic with respect to a point on the director circle is a rectangular hyperbola.
187. Theorem. The reciprocal of a conic with respect to a focus is a circle.

Fig. 151.

Let O be the focus, $X M$ the directrix, $O X$ the perpendicular to it from O, and $P M$ from a point P of the conic, so that $O P: P M=a$ constant e.

The reciprocal of P is a line $Q R$ perpendicular to $O P$ through a point Q such that $O P . O Q=r^{2}$; the reciprocal of the directrix is a point Y on $O X$ such that $O X . O Y=r^{2}$.

Draw YR, YD perpendicular to QR, OQ respectively, and PN perpendicular to OX.

$$
\begin{aligned}
& \text { Then } O P: O Y \\
&=O X: O Q, \\
& O P: O Y=O N: O D \text { (by similar triangles), } \\
& \therefore \quad O P: O Y=N X: D Q=P M: Y R, \\
& \therefore \quad O P: P M=O Y: Y R ;
\end{aligned}
$$

hence $Y R$ is a constant, and the reciprocal of P envelopes a circle, whose centre Y is the reciprocal of the directrix.

Exercisc. Find the reciprocals of the centre, the other focus and the other directrix.
188. Polar Reciprocation in general. If we take a"conic of reciprocation" R, and if we have any figure made up of straight lines and points we may, by taking the poles of the lines and polars of the points, obtain another figure with lines and points corresponding respectively to the points and lines of the first.

The intersection of two lines in the first figure has for its polar the join of the corresponding points of the second figure, and conversely.

If we consider the first figure as a system of points and take their polars to form the second figure, and thus obtain a system of points in which these polars intersect, and if we then take the polars of these intersections we shall get a system of lines whose intersections are the original points. Hence either system is got from the other by this process, the two figures are therefore called polar reciprocal figures with respect to R. But the figures must be complete, i.e. include all possible joins and intersections.

Concurrent straight lines reciprocate into collinear points; parallel straight lines into points collinear with the centre of the conic R of reciprocation. Conversely collinear points reciprocate either into concurrent lines or parallel lines according as they are not or are collinear with the centre of R .

A triangle reciprocates into a triangle.

A complete four-side reciprocates into a complete four-point, and the descriptive properties of a four-point follow from those of a four-side. E.g. from the proposition that "any point is joined to the six vertices of a four-side by six rays forming an involution" follows that "any straight line cuts the six sides of a four-point in an involution": and conversely.
189. Again a curve in the original figure may be regarded as the locus of a point, and if we take the polars of this continuous system of points we obtain a continuous system of lines enveloping a new curve. Or we may regard the original curve as enveloped by a system of lines and the locus of the poles of these lines will form a new curve.

The two curves so obtained are identical. For if we take two points A, B on the original curve whose polars are a, b, then the pole of the chord $A B$ is the intersection of $a, b:$ but if B is made to coincide with $A, A B$ becomes the tangent at A, and at the same time b will coincide with a, and their intersection will become the point of contact of a, so that the pole of the tangent at A becomes the point of contact of a : hence the poles of the successive tangents to the first curve are the successive points of the second.

Thus each of the curves may be obtained from the other either by taking the pole locus or the polar envelope; the curves are hence called polar reciprocal curves.

Notice that in this case we do not take the complete set of joins and intersections.

The points in which a straight line cuts a curve become the tangents from its pole to the reciprocal curve. Hence the degree or order of one equals the class of the other, and conversely.
190. Duality. Any descriptive theorem relating to lines and their intersections furnishes by reciprocation a theorem
relating to points and their joins, and conversely : any theorem about a curve, its tangents and their intersections becomes a theorem about the reciprocal curve, its points and the chords joining them.

Thus reciprocation doubles the number of descriptive theorems, and any theorem should be at once reciprocated,-the new theorem may or may not be already known.

Exercise. Reciprocate a four-side and its three harmonic inscribed conics (Chapter VI), with respect to one of those conics, and shew that the resulting conics are the conic of reciprocation and the other two harmonic conics circumscribed to the four-point formed by the points of contact of the original four lines.

EXAMPLES. IX.

1. Prove that the polar reciprocal of a conic with respect to (a circle whose centre is) the focus is a circle. Find the reciprocals of the other focus, the minor axis and the directrices.
2. Two conics have a common focus; prove that they cannot have more than two common tangents.
3. Two given conics have a common focus; if any other conic having the same focus touches them at $P_{1} Q_{1}$, prove that $P Q$ passes through a fixed point. Also prove that the corresponding directrix of the variable conic has an envelope consisting of two conics, and find when one of these two conics is imaginary.
4. If $P K$ touches a circle at K and subtends a right angle at a point S within the circle, prove that the locus of P is a polar reciprocal of an envelope of normals drawn to a conic section.
5. Prove that the locus of the pole of the tangent to a circle with respect to a concentric conic is a concentric conic; and that if these two conies cut orthogonally at their four points of intersection, then the tangents from any point on the circle to the given conic are perpendicular.
6. Reciprocate, with respect to the circumcentre, the theorem that if a conic touches the sides of a triangle and passes through the circumcentre its director circle touches the nine-point circle.
7. Prove that the reciprocal of a circle with respect to a circle whose centre lies on the circumference of the given circle is a parabola.

A system of parabolas has a common focus S and all touch a given line passing through a given point T; prove that the points of contact of the other tangents from T lie on a circle, which passes through S.

Reciprocate this theorem with respect to S.
8. Find the polar reciprocal of a system of confocal conics, with respect to a circle with centre at one of the common foci.
9. Prove by reciprocation that, if two confocal conics intersect, the tangents at their intersection are perpendicular.
10. Prove, and then reciprocate with respect to a focus:

If tangents be drawn to a system of confocal conics from a point on the common axis, their points of contact lie on a circle.
11. Reciprocate with respect to a focus, that if PT touches an ellipse at P, and TQ perpendicular to TP touches a confocal ellipse at Q, then CT bisects $P Q, C$ being the centre.
12. Reciprocate: "Angles in the same segment of a circle are equal."
13. Prove that the poles of a given line with respect to a system of confocal conics are collinear.
14. $\mathrm{S}, \mathrm{S}^{\prime}$ are two conics having a real and finite common self-conjugate triangle; S_{1}, S_{1}^{\prime} are the polar reciprocals of S, S^{\prime} each with respect to the other; $S_{2}, S_{2}{ }^{\prime}$ are similarly formed from S_{1} and $S_{1}{ }^{\prime}$; and so on.

Shew that either one or both of the conics $\mathrm{S}_{n}, \mathrm{~S}_{n}{ }^{\prime}$ when n is infinite will be a pair of straight lines.
15. The polar reciprocal of an ellipse with respect to the circle on the major axis as diameter is a similar ellipse.
16. A circle passes through the centre of a hyperbola; find its reciprocal with respect to the hyperbola.
17. A system of circles pass through two points A, B. Find their reciprocals with respect to a rectangular hyperbola of which A, B are respectively the centre and one focus.
18. Reciprocate a triangle and its circumcircle, incircle and nine-point circle with respect to a rectangular hyperbola passing through the three vertices and the orthocentre.
19. Two conics have four given intersections and four given common tangents ; find the conic with respect to which they are reciprocal.
20. Prove that two triangles which are reciprocal with respect to a given conic are in homology. Also shew that the six points in which the sides of one triangle intersect the non-corresponding sides of the other lie on a conic C_{1}, and the six lines joining the vertices of one to the non-corresponding vertices of the other touch a conic C_{2}, and prove that $\mathrm{C}_{1}, \mathrm{C}_{2}$ are reciprocals with respect to the given conic.
21. Prove that, if a rectangular hyperbola passes through the vertices of a triangle, it also pusses through the orthocentre.

Reciprocate this proposition with respect to the orthocentre.
22. A chord of a conic moves so as to subtend a constant angle at the focus; find its envelope.
23. A chord of a conic subtends a constant angle at a given point on the conic ; find its envelope.

CHAPTER X

HOMOLOGY

191. Iv connection with Desargues' Theorem (§§ 43-45) we have defined homology, axis of homology, and centre of homology.

We have seen that two quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are not necessarily in homology when the four pairs of lines $A B, A^{\prime} B^{\prime} ; B C$, $B^{\prime} C^{\prime} ; C D, C^{\prime} D^{\prime}$; DA, $D^{\prime} A^{\prime}$ meet in points lying on one straight line (axis) : but if a fifth pair of joins of the two four-points, say AC, $A^{\prime} C^{\prime}$, meet on this axis, then the joins of corresponding vertices $A A^{\prime}, B B^{\prime}, C C^{\prime}, D^{\prime}$ meet at one point (centre of homology), the sixth pair of joins of the four-points $B D, B^{\prime} D^{\prime}$ intersect on the axis and the two four-points are in homology.

If we take two four-sides a, b, c, d and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$, the two triangles $a b c, a^{\prime} b^{\prime} c^{\prime}$ are in homology if the joins of $a b, a^{\prime} b^{\prime} ; a c, a^{\prime} c^{\prime}$; $b c, b^{\prime} c^{\prime}$ pass through a centre \mathbf{S}, and then the intersections $a a^{\prime}, b b^{\prime}$, $c c^{\prime}$ lie on an axis s. If now the joins of $a d, a^{\prime} d^{\prime}$ and $b d, b^{\prime} d^{\prime}$ pass through S , then the triangles $a b d, a^{\prime} b^{\prime} d^{\prime}$ are in homology, and $d, d^{\prime \prime}$ intersect on s. Now we have the intersections $b b^{\prime}, c c^{\prime}, d d^{\prime}$ lying on s, hence the triangles are in homology, and the join of the vertices $c d, c^{\prime} d^{\prime}$ is concurrent with the joins of $b c, b^{\prime} c^{\prime}$ and $b d, b^{\prime} d^{\prime}$ and therefore passes through the centre s. Therefore two foursides are in homology if five intersections of one are joined to the corresponding five intersections of the other by lines meeting at one point S; the join of the sixth vertices passes through S, and the four sides of one meet the corresponding sides of the other at four points lying on one axis s.
192. Let $A_{1}, A_{2} \ldots A_{n} ; A_{1}{ }^{\prime}, A_{2}{ }^{\prime} \ldots A_{n}{ }^{\prime}$ be two sets of n-points in homology, so that the n-joins $\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{\prime}, \mathrm{A}_{2} \mathrm{~A}_{2}{ }^{\prime} \ldots \mathrm{A}_{n} \mathrm{~A}_{n}{ }^{\prime}$ all pass through a centre of homology S, and each join $A_{k} A_{e}$ of the first set meets the corresponding join $\mathrm{A}_{k}^{\prime} \mathrm{A}_{e}^{\prime}$ of the other at a point lying on a fixed axis of homology s.

Take another pair of corresponding points $\mathrm{B}, \mathrm{B}^{\prime}$ to satisfy the two conditions that $\mathrm{BA}_{1}, \mathrm{~B}^{\prime} \mathrm{A}_{1}^{\prime}$ meet on s, and $\mathrm{BA}_{2}, \mathrm{~B}^{\prime} \mathrm{A}_{2}^{\prime}$ meet on s.

Then the triangles $B A_{1} A_{2}, B^{\prime} A_{1}^{\prime} A_{2}^{\prime}$ are in homology (by the converse of Desargues' Theorem) ; hence B^{\prime} also passes through S.

Again, since $\mathrm{BB}^{\prime}, \mathrm{A}_{1} \mathrm{~A}_{1}^{\prime}, \mathrm{A}_{k} \mathrm{~A}_{k}^{\prime}$ pass through S , the triangles $\mathrm{BA}_{1} \mathrm{~A}_{k}, \mathrm{~B}^{\prime} \mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{k}^{\prime}$ are in homology; but $\mathrm{BA}_{1}, \mathrm{~B}^{\prime} \mathrm{A}_{1}^{\prime}$ meet on s, and also $\mathrm{A}_{1} \mathrm{~A}_{k}, \mathrm{~A}_{1}{ }^{\prime} \mathrm{A}_{k}{ }^{\prime}$; hence $\mathrm{BA}_{k}, \mathrm{~B}^{\prime} \mathrm{A}_{k}{ }^{\prime}$ meet on s.

The two systems of $(n+1)$ points are therefore in complete homology.

Hence two more conditions are to be satisfied when one point is added to each of the two sets in homology.

Two systems of n-points are in homology if $(2 n-3)$ joins of the one system, of which at least two pass through each of the n points, meet the $(2 n-3)$ corresponding joins of the other system in points lying on one straight line s. If these conditions are satisfied, the remaining $\frac{1}{2}(n-2)(n-3)$ joins of the first system meet the corresponding joins of the second system at points also lying on s, and the n lines joining the points of one system to the corresponding points of the other meet at one centre S.

A set of n lines is in homology with another set of n lines, if $(2 n-3)$ intersections of the first set of lines, of which each of the n lines contains at least two, are joined to the respectively corresponding intersections of the second set by lines passing through one centre S : in that case the n points in which corresponding lines of the two sets meet lie on one axis s, and all the joins of the $\frac{1}{2} n(n-1)$ intersections of the first n lines to the corresponding intersections of the second set pass through S.

Note that systems of lines are in homology if (a certain number of) their intersections are collinear with a centre s; systems of points are in homology if (a certain number of) their joins meet corresponding joins at points lying on an axis s.
193. Homology of Plane Curves. I. If to each point of one plane curve can be assigned a corresponding point of another plane curve, such that the line joining any two points of the one meets the corresponding join of the other always on a fixed line s, then the corresponding points of the two curves are collinear with a fixed point \mathbf{s}, and the two curves are in homology with s as axis and S as centre of homology.
II. If to each tangent to one curve can be assigned a tangent to another curve such that the intersection of any pair of tangents of the one curve is joined to the corresponding intersection of tangents to the other curve by a line passing through a fixed point S , then the corresponding tangents meet on a fixed line s.

Since a tangent is the limit of a chord joining two points of a curve, and also the point of contact of a tangent is the limiting position on the tangent of the point at which it is met by an adjacent tangent, it follows that if the points of two curves are in homology (as in I) then the systems of tangents to the curves are in homology (as in II) with the same centre and axis; and conversely.
III. If P, Q, R, \ldots are consecutive points of one figure and $P^{\prime}, Q^{\prime}, R^{\prime}, \ldots$ of the other, and A, A^{\prime} two points connected with the curves, so that AP, AQ, AR, \ldots meet corresponding lines $A^{\prime} P^{\prime}, A^{\prime} Q^{\prime}$, $A^{\prime} R^{\prime}, \ldots$ and also $P Q, Q R, \ldots$ meet $P^{\prime} Q^{\prime}, Q^{\prime} R^{\prime}, \ldots$ at points lying on one straight line s, the two curves are in homology.

Let $A A^{\prime}, P P^{\prime}$ meet at S. The triangles $A P Q, A^{\prime} P^{\prime} Q^{\prime}$ are in homology, therefore QQ^{\prime} passes through \mathbf{s}. Hence and similarly $\mathrm{RR}^{\prime}, \ldots$ pass through s .

Also $A A^{\prime}, \mathrm{PP}^{\prime}, \mathrm{zz}^{\prime}$ pass through S , therefore the triangles
$A P Z, A^{\prime} P^{\prime} Z^{\prime}$ are in homology. But $A P, A^{\prime} P^{\prime}$ and $A Z, A^{\prime} Z^{\prime}$ meet at points lying on s, hence corresponding chords $\mathrm{PZ}, \mathrm{P}^{\prime} Z^{\prime}$ meet on s.

Hence two curves are in homology, if the tangent at each point of one meets the corresponding tangent at a point lying on a fixed axis s, and also the join of each point of one curve to a certain point meets the join of the corresponding point of the second curve to a second fixed point on the same axis.
IV. If A, B are related to one curve $P Q \ldots$, and $A^{\prime} B^{\prime}$ to another curve $P^{\prime} Q^{\prime} \ldots$, and if to each point P of one curve we can assign a point P^{\prime} of the other, so that $A P, A^{\prime} P^{\prime}$ and also $B P$, $B^{\prime} P^{\prime}$ intersect always on a fixed line s which passes through the intersection of $A B, A^{\prime} B^{\prime}$; then the curves are in homology, with that line s as axis, and with the intersection S of $A A^{\prime}, B B^{\prime}$ as centre of homology.
[For $A P, A Q, B P, B Q, A P$ meet the corresponding five joins of the four-point $A^{\prime}, \mathrm{B}^{\prime}, \mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$ at points lying on s; hence $\mathrm{PQ}, \mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ intersect on s.]
194. Problem. To find a curve passing through two points A^{\prime}, B^{\prime}, and in homology with a given conic.

Fig. 152.

Take any chord $A B$ of the conic meeting $A^{\prime} B^{\prime}$ at C, draw any line CD through C.

Take any point P of the conic, and let $A P, B P$ cut $C D$ at K, L respectively. Join $A^{\prime} K, B^{\prime} L$ intersecting at P^{\prime}.

The locus of P^{\prime} is the curve required.
Also
the pencil $\mathrm{A}\{\mathrm{P} \ldots\}=\mathrm{B}\{\mathrm{P} \ldots\}$,
\therefore the row $\{K \ldots\}=\{L \ldots\}$,
\therefore the pencil $\mathrm{A}^{\prime}\left\{\mathrm{P}^{\prime} \ldots\right\}=\mathrm{B}^{\prime}\left\{\mathrm{P}^{\prime} \ldots\right\}$;
hence the locus of P^{\prime} is a conic passing through $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$.
195. The vanishing line. If O is the centre of homology, and $X Y$ the axis, and $P A, P^{\prime}$ corresponding lines (intersecting at a point P on $X Y$), the point A^{\prime} on the second line corresponding to A on the first is the point at which $O A$ meets the second line. Again, if Q is any other point of $X Y, Q A$ corresponds to $Q A^{\prime}$.

Fig. 153.
If now OV is drawn parallel to PA^{\prime} to meet PA at V , then V is the one point of PA which has no finite corresponding point on PA^{\prime}. Further the line corresponding to QV must be a line QB^{\prime} parallel to PA^{\prime}.

Thus to a system of lines meeting at V in the first figure corresponds a system of parallel lines in the second figure. V is called the vanishing point of lines parallel to PA^{\prime}.

The vanishing point W of lines parallel to any other direction $Q A^{\prime}$ is found by drawing $O W$ parallel to $Q A^{\prime}$ meeting $Q A$ at W.

Then, from the similar triangles OVA, $A^{\prime} A P$, we have

$$
V A: A P=O A: A A^{\prime}
$$

$$
\text { and, similarly } \quad W A: A Q=O A: A A^{\prime} \text {. }
$$

Hence $V A: W A=A P: A Q$, also $V A W=P A Q$, hence the triangles VAW, PAQ are similar.
$\therefore V W$ is parallel to $P Q$.
Hence, and similarly, the vanishing points of all directions in the homologous figure lie on a line through \vee parallel to the axis. This line is called the vanishing line of the second figure.

Since VW passes through V, the homologous line to VW does not meet $O V$; since $V W$ is parallel to the axis, the homologous line does not meet the axis; there is no finite line of the homologous figure to satisfy these conditions.

We may call the line homologous to VW, the line at infinity, each point of it is an intersection of parallel lines in the homologous figure.

Problems. 1. Given the centre O , axis XY , and a vanishing point V , to find the homologue of a point A .
[If VA cuts the axis at P, a line through P, parallel to $O V$, will cut $O A$ at the required point A^{\prime}.]
2. Given the centre O, axis $X Y$, and vanishing line $V W$, to find the homologue of a line a.
[If a cuts VW at V , and XY at P , the homologue is the line through P parallel to OV.]
3. Given the centre O, axis $X Y$, and two homologous points A, A^{\prime}, to construct the vanishing line.
P. P. G.
[Take any point P on $X Y$; a line $O V$, parallel to $P A^{\prime}$, will meet $P A$ at a point V on the vanishing line.

If the line VW (parallel to $X Y$) cuts $O A$ at W, and $O A$ cuts $X Y$ at K, then $\left.W A: A K=V A: A P=O A: A A^{\prime}.\right]$

If we draw $O V^{\prime}$ parallel to $P A$, meeting $P A^{\prime}$ at v^{\prime}, then all lines parallel to PA in the original figure become, in the homologous figure, lines passing through V^{\prime}; and V^{\prime} of the second figure is the vanishing point of all lines parallel to PA.

We thus get, in the homologous figure, a secondary vanishing line $\mathrm{V}^{\prime} \mathrm{w}^{\prime}$.

Since OVPV' is a parallelogram, the perpendicular from O to $V^{\prime} W^{\prime}$ equals the distance of $V W$ from the axis.
196. Homology of Conics. Homologous pencils are projective, for they cut the axis in the same row.

Homologous rows are projective, for they are transversals of one pencil, whose vertex is the centre of homology.

If A, B, K, L, M, N on a conic are homologous to $A^{\prime}, B^{\prime}, K^{\prime}, L^{\prime}$, M^{\prime}, N^{\prime}; the pencils $A\{K L M N\}, A^{\prime}\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}, B\{K L M N\}, B^{\prime}\left\{K^{\prime} L^{\prime} M^{\prime} N^{\prime}\right\}$ are all projective. Hence $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ lie on a conic through A^{\prime}, B^{\prime}.

Hence the homologous curve is a conic.
Also the cross-ratio of four points on a conic equals the crossratio of the homologous points on the homologous conic.
197. Problem. Given a conic, and a centre and axis of homology, to construct the homologous conic passing through a given point A^{\prime}.

Let $O A^{\prime}$ cut the given conic at A.
Join A to any point P of the conic, cutting the axis at K; join $A^{\prime} K$, cutting $O P$ at P^{\prime}.

As P moves round the conic, P^{\prime} will describe the homologous conic.

Since $O A^{\prime}$ cuts the conic in two real and different, or coincident, or imaginary points, there are two solutions of the problem.

If O lies inside the conic the two solutions are always real.
If o lies outside the conic the solutions are real and different if A^{\prime} and the conic lie in the same or opposite angles formed at o by tangents to the conic ; coincident if A^{\prime} lies on one of those tangents; imaginary if A^{\prime} and the conic lie in supplementary angles formed by the tangents from 0 .

Problem. Given a conic and a centre and axis of homology, to construct the homologous conic which touches a given line a^{\prime}. Shew that there are two solutions, and find when they are real.
198. Problem. Given the centre and axis of homology and the vanishing line, to construct the conic homologous with a given conic.

Fig. 154.
Take any point V on the vanishing line; and join a point P of the conic to V, and produce $P V$ to cut the axis at K.

Draw KP' parallel to OV, cutting PO at P^{\prime}.
As P moves round the conic, P^{\prime} will describe the homologous conic.

If we take any other point U on the vanishing line, and $P U$ cuts the axis at L,

$$
\mathrm{UV} \text { is parallel to } \mathrm{KL}, \therefore \mathrm{PU}: \mathrm{UL}=\mathrm{PV}: \mathrm{VK} \text {, }
$$

but Vo is parallel to $\mathrm{KP}^{\prime}, \therefore \mathrm{PV}: \mathrm{VK}=\mathrm{PO}: \mathrm{OP}^{\prime}$,
hence $\mathrm{PU}: \mathrm{UL}=\mathrm{PO}: \mathrm{OP}^{\prime}, \therefore \mathrm{LP}^{\prime}$ is parallel to UO .
Hence we get the same point P^{\prime}, if we take U in place of \vee; i.e. there is one solution only.

Exercise. Construct the homologous conic by drawing tangents to the given conic, and finding the homologous tangents (and points of contact).
199. Theorem. If through the centre of homology 0 we can draw a tangent $O G$ to the given conic, then $O G$ also touches the homologous conic.

Fig. 155.

Also if GH be the chord of contact of tangents from O to the given conic, then OG, OH touch the homologous conic at $\mathrm{G}^{\prime} \mathrm{H}^{\prime}$ such that $G H, G^{\prime} \mathrm{H}^{\prime}$ meet on the axis.

If A^{\prime} is a given point on the homologous conic, and we join AG to meet the axis at B , then $\mathrm{A}^{\prime} \mathrm{B}$ cuts $O G$ at G^{\prime} : and if GH meets the axis at M, then M^{\prime} cuts $O H$ at H^{\prime}. Hence the homologous conic is the conic which touches $O G, O H$ at $\mathrm{G}^{\prime}, \mathrm{H}^{\prime}$ and passes through A^{\prime}.

The polar of m with respect to the given conic passes through O and is the harmonic conjugate of OM with respect to OG, OH, hence it is also the polar of M with respect to the homologous conic.
200. Theorem. If the given conic cuts the axis at \mathbf{E}, \mathbf{F} then the homologous conic also passes through E, F; and the tangents at E, F to the two conics meet at points $\mathrm{T}, \mathrm{T}^{\prime}$ collinear with 0 .

We thus obtain another construction for the homologous conic which touches a given line a^{\prime}.

Let a^{\prime} cut the axis and from this point draw a tangent a to the given conic ; let a cut ET at B , join OB to cut a^{\prime} at B^{\prime}, then $B^{\prime} E$ is the tangent at E to the homologous conic. If $B^{\prime} E$ cuts OT at T^{\prime}, then $T^{\prime} F$ is the tangent at F. Hence the homologous conic is that conic which touches $T^{\prime} E, T^{\prime} F$ at E, F and also touches a^{\prime}.

The pole of TT'O with respect to either conic lies on the axis and is the harmonic conjugate with respect to EF of the point where TT^{\prime} cuts EF .
201. To find the centre of the homologous conic. If we take a tangent to the given conic parallel to the axis, the homologous tangent is also parallel to the axis. Hence if we draw tangents AU, BV to the given conic parallel to the axis, and A^{\prime}, B^{\prime} are the points homologous to A, B, then $A^{\prime} B^{\prime}$ is a
diameter of the homologous conic, and its middle point is the centre (cf. § 203, Cor. 1).
202. Theorem. If the vanishing line cuts the given conic in two real points the homologous conic is a hyperbola: if it touches, a parabola; if it does not cut it, an ellipse: and conversely.

Fig. 156.
I. Let the given conic cut the vanishing line at $\mathrm{V}, \mathrm{V}^{\prime}$. Draw a tangent VT to cut the axis at T and draw TC parallel to ov.

Then TC is the tangent homologous to TV, and its point of contact (the homologue of V) is at infinity.

Hence TC is an asymptote : the other asymptote CT' may be similarly obtained from the tangent at V^{\prime}.

Their intersection is the centre \mathbf{C}.
II. If the vanishing line $V U$ touches the conic at V. There is only one infinity direction of the homologous conic : and the homologous tangent to VU is entirely at infinity. Hence the homologous conic is a parabola whose axis is parallel to OV.
III. If the vanishing line does not cut the conic there are no infinity directions.

Corollary. If the given conic is a hyperbola the secondary vanishing line cuts the homologous conic.
203. Theorem. A point and its polar with respect to a conic project into a pole and polar with respect to the homologous conic. Also conjugate lines through a point project into conjugate lines in the homologous figure.

Corollary 1. The centre of the homologous conic is the point homologous to the pole of the vanishing line with respect to the given conic.

Corollary 2. If the centre of homology is a focus of the given conic, conjugate lines at that point are perpendicular, and these lines project into the same lines in the homologous figure, hence the centre of homology is also a focus of the homologous conic.

Corollary 3. If the vanishing line is a directrix of the given conic, the corresponding focus projects into the centre of the homologous conic.

Corollary 4. If a focus s be taken as centre of homology and its directrix as vanishing line, S is the centre of the homologous conic, and all conjugate diameters are perpendicular, hence the homologous conic is a circle.

Corollary 5. The homologue of a circle whose centre is the centre of homology is a conic whose fucus is at that centre, and the corresponding directrix is the secondary vanishing line. If the circle touches the primary vanishing line the homologous conic is a parabola.

Corollary 6. A system of concentric circles project into a system of conics with a common focus and directrix.
204. To find the eccentricity of the conic homologous to a circle whose centre O is the centre of homology.

Draw OA perpendicular to the axis, cutting the primary vanishing line at W , and the secondary vanishing line at X .

Take any point P on the circle, join PW, cutting the axis at K ; and draw KP^{\prime} parallel to OA , cutting PO at P^{\prime}, and the secondary vanishing line at $\mathrm{M} . \mathrm{P}^{\prime}$ is homologous to P .

$$
\text { Also } \quad \mathrm{OW}=\mathrm{XA}=\mathrm{MK} \text {, }
$$

and $\mathrm{PO}: \mathrm{OW}=\mathrm{PP}^{\prime}: \mathrm{P}^{\prime} \mathrm{K}$,
$\therefore \mathrm{PO}: O W=O P^{\prime}: \mathrm{P}^{\prime} \mathrm{M}$.
Hence $O P^{\prime}: \mathrm{P}^{\prime} \mathrm{M}$ has a constant value : and P^{\prime} describes a conic with O as focus and $X M$ as directrix.

Corollary. This is another proof that the distance of a point from its focus bears a constant ratio to its distance from the correspond-

Fig. 157. ing directrix ; and that the ratio is greater than, equal to, or less than unity according as the conic is a hyperbola, parabola or ellipse.
205. To find when the homologous conic is a circle. Let P be the pole of the vanishing line with respect to the given conic. Draw ON perpendicular to the vanishing line ; join PN, cutting the axis at K ; draw KC parallel to ON to meet PO at C .

C is the centre of the homologous conic.
Draw any pair of conjugate lines through P , cutting the vanishing line at A, B; and the axis at G, H.

Then CG, CH are conjugate diameters ; hence, if the homologous conic is a circle, these lines are perpendicular; therefore the parallel pair of lines $O A, O B$ are perpendicular, and $A N . N B=O N^{2}$.

Hence the homologous conic is a circle, if the involution traced on the vanishing line by pairs of points conjugate with respect to the given conic has its centre at N the foot of the perpendicular from O, and its power is $-O N^{2}$.

Fig. 158.
Homology of two given conics.
206. Theorem. If two conics touch the same line at the same point they are in homology with that point as centre.

Let OT be the common tangent at O.

Fig. 159.

Draw OAA' to cut the conics at A, A^{\prime} respectively.
Let any other lines through \mathbf{O} cut the conics at $\mathrm{P}, \mathrm{P}^{\prime} ; \mathrm{Q}, \mathrm{Q}^{\prime} ;$ R, R^{\prime}, respectively.

Hence, from the definition of the conic, the pencil

$$
A\{O P Q R\}=O\{T P Q R\} \text {, and } A^{\prime}\left\{O P^{\prime} Q^{\prime} R^{\prime}\right\}=O\left\{T P^{\prime} Q^{\prime} R^{\prime}\right\} .
$$

$\therefore A\{O P Q R\}=A^{\prime}\left\{O P^{\prime} Q^{\prime} R^{\prime}\right\}$, and these are two projective pencils with a common self-corresponding ray AA'O: \therefore the two pencils are in perspective, i.e. the intersections of AP with $A^{\prime} P^{\prime}$, $A Q$ with $A^{\prime} Q^{\prime}$, etc. lie on a straight line s.

Again the triangles $A P Q, A^{\prime} P^{\prime} Q^{\prime}$ are in homology with O as centre, and $A P, A^{\prime} P^{\prime}, A Q, A^{\prime} Q^{\prime}$ intersect on s, hence $P Q, P^{\prime} Q^{\prime}$ meet on s.

Hence and similarly the join of any two points on one conic meets the join of the corresponding points of the other conic on s.

Hence the conics are in homology with O as centre and s as axis.

Corollary. If the conics intersect in two other points X, Y, then $X Y$ is the axis s of homology.
207. Theorem. If two conics touch a line at the same point they are in homology with that line as axis.

From any point T on the common tangent TA draw tangents $T B, T B^{\prime}$ to the two conics.

From any points P, Q on TA draw tangents to the two conics to cut a at K, L and a^{\prime} at K^{\prime}, L^{\prime} respectively.

Then, since a variable tangent traces projective rows on two fixed tangents (§ 78)

$$
\{A T P Q\}=\{T B K L\}, \text { and }\{A T P Q\}=\left\{T B^{\prime} K^{\prime} L^{\prime}\right\} \text {. }
$$

$\therefore\{T B K L\}=\left\{T B^{\prime} K^{\prime} L^{\prime}\right\}$, and in these projective rows, the intersection T corresponds to itself, hence the rows are in perspective, $\therefore \mathrm{B}^{\prime} \mathrm{B}, \mathrm{L}^{\prime} \mathrm{L}, \mathrm{K}^{\prime} \mathrm{K}$ are concurrent.

Hence all the joins $K K^{\prime}$, $L L^{\prime}$, etc. cut $B B^{\prime}$ at the same point 0 .

Again, if PK, QL intersect at U, and PK^{\prime}, QL' at U^{\prime}, the triangles UKL, $U^{\prime} \mathbf{K}^{\prime} \mathrm{L}^{\prime}$ have corresponding sides intersecting on TA, \therefore UU' $^{\prime}$ passes through the intersection O of KK^{\prime}, LL^{\prime}.

Fig. 160.
Similarly the intersections of any pairs of corresponding tangents are collinear with O .

But when the points P, Q coincide U, U^{\prime} become the points on the conics, where the tangents from P touch them.

Hence the conics are in homology with O as centre and TA as axis.
208. Theorem. If two conics pass through two given points E, F they are in homology with EF as axis: unless the segment EF is within one conic, and without the other (the latter in that case being a hyperbola with E, F on different branches).

From any point T on EF draw tangents $\mathrm{TA}, \mathrm{TA}^{\prime}$ to the two conics.

Take any points K, L on $E F$, and let $A K, A L$ cut the A conic again at P, Q; and $A^{\prime} K, A^{\prime} L$ cut the A^{\prime} conic again at P^{\prime}, Q^{\prime} respectively.

Fig. 161.

$$
\begin{array}{rlrl}
& \text { Then } & P\{A E F Q\} & =A\{T E F Q\}=\{T E F L\}, \\
\text { and } & & P^{\prime}\left\{A^{\prime} E F Q^{\prime}\right\} & =A^{\prime}\left\{T E F Q^{\prime}\right\}=\{T E F L\}, \\
\therefore P\{A E F Q\} & =P^{\prime}\left\{A^{\prime} E F Q^{\prime}\right\} .
\end{array}
$$

But $P A, P^{\prime} A^{\prime}$ cut $E F$ at the same point $K, \therefore P Q, P^{\prime} Q^{\prime}$ intersect on EF.

Hence and similarly the joins of any pair of corresponding points intersect on EF.

Again the triangles $A P Q, A^{\prime} P^{\prime} Q^{\prime}$ being in homology (with EF as axis), the lines $A A^{\prime}, P P^{\prime}, Q Q^{\prime}$ are concurrent.
\therefore joins $P P^{\prime}, Q^{\prime}, \ldots$, cut $A A^{\prime}$ at a fixed point O.

Hence the conics are in homology with EF as axis and O as centre.

Corollary 1. If the tangents at P, P^{\prime} cut $E F$ at U, U^{\prime} we have

$$
\{E F K U\}=A\{E F T P\}=\{E F T K\},
$$

and similarly $\{E F K U '\}=\{E F T K\}$, hence U, U^{\prime} coincide, i.e. the tangents at P, P^{\prime} meet on $E F$.

Corollary 2. If TA, TB are the tangents from T to one conic, and $T A^{\prime}, T B^{\prime}$ to the other, then $T A, T A^{\prime}$ being chosen the solution proceeds without ambiguity, giving a centre O , as above [and TB will correspond to TB^{\prime} (Cor. 1)].

But $T B, T A^{\prime}$ will give a different solution, with another centre of homology O^{\prime} [and TA will correspond to TB^{\prime}].

Thus the two conics are in homology with respect to the axis EF , and each of two different centres of homology $\mathrm{O}, \mathrm{O}^{\prime}$: and these are two of the diagonal points of $A, A^{\prime}, B, B^{\prime}$, the third being the harmonic conjugate to T on EF .

Corollary 3. Any common tangent must pass through one, but not both, of the centres of homology.
209. If two conics intersect in four points they are in homology in either four or twelve different ways. Let A, B, C, D be the four points.

The segmient AB can only be external to the conic if A, B lie on different branches of a hyperbola. Let A, B lie on one branch and C, D on the other branch of a hyperbola; if the other conic is an ellipse or parabola then $A B, C D$ are possible axes, the other pairs $A C, B D ; A D, B C$ are not.

If the other conic is a hyperbola with $A B C D$ all on one branch the same holds.

If a hyperbola with $A C$ on one branch and $B D$ on another, then neither $A B, C D$ nor $A C, B D$ are possible, but $A D$ and $B C$ are possible being external to both conics.

Hence either one or three pairs of the joins of A, B, C, D may be used as axes of homology, and each join may be taken with either of two centres, giving either four or twelve different homologies.

The two centres corresponding to $A B$ are the same as those of the opposite join CD : so that there are two or six centres respectively. If there are four common tangents then the six centres are the vertices of the four-side which they form.

Since the self-polar triangle is real (being the diagonal triangle of the four points), if there is one common tangent there must be three others, and six centres of homology.

If one conic lies entirely within the other, we can construct two real common chords ($\$ 110$), and there are a double pair of centres giving homology in four different ways.
210. Theorem. If two conics have a pair of common tangents, their intersection is a centre of homology, provided the conics lie in the same or opposite angles formed by the two tangents.

Through O draw a line to cut the conics at $\mathrm{A}, \mathrm{A}^{\prime}$ and draw tangents at A, A^{\prime} cutting the common tangents at $B C$ and $B^{\prime} C^{\prime}$.

Draw any line through O to cut $B C, B^{\prime} C^{\prime}$ at T, T^{\prime} and draw the second tangent TP from T cutting $O B, O C$ at Q, R and from T^{\prime}, tangent $T^{\prime} P^{\prime}$ cutting $O B, O C$ at Q^{\prime}, R^{\prime}.

Because tangents describe projective rows on any two tangents

$$
\therefore\{P Q R T\}=\{T B C A\} \text {, and }\left\{P^{\prime} Q^{\prime} R^{\prime} T^{\prime}\right\}=\left\{T^{\prime} B^{\prime} C^{\prime} A^{\prime}\right\} ;
$$

but, by projection from $O,\{T B C A\}=\left\{T^{\prime} B^{\prime} C^{\prime} A^{\prime}\right\}$;
hence $\{P Q R T\}=\left\{P^{\prime} Q^{\prime} R^{\prime} T^{\prime}\right\}$, but $Q Q^{\prime}, R R^{\prime}, T T^{\prime}$ meet at O, hence P, P^{\prime} are collinear with O .

Hence the conics are in homology with O as centre, and the locus of intersection of tangents $P Q, P^{\prime} Q^{\prime}$ is a straight line, on which also intersect AP and $A^{\prime} P^{\prime}$, and all other corresponding pairs of chords.

Corollary 1. If $O A$ cuts the first conic at A and D, and the second at A^{\prime}, D^{\prime}, then A, A^{\prime} being taken to correspond (as above) the solution proceeds without further ambiguity, D corresponding to D^{\prime}. We shall get one, and only one other homology with centre O, by taking A to correspond to D (in which case D corresponds to A^{\prime}).

Fig. 162.

Thus the conics are in homology with respect to centre O and each of two axes: which are two of the diagonals of the four-side formed by the tangents at $A, A^{\prime}, D, D^{\prime}$. [The third diagonal passes through O, and is the harmonic conjugate of $O A$ with respect to OB, OC.]

Corollary 2. Any point common to the two conics must lie on one or other of the axes of homology.

Corollary 3. If two conics have four common tangents they are in homology in either four or twelve different ways.

Either one or three of the pairs of vertices of the four-side formed by the common tangents will be possible.

The two axes corresponding to any vertex will be the same as those corresponding to the opposite vertex, thus there are two or six axes of homology respectively. If the conics intersect in four points, the sides of the four-point are the six axes.
211. If the chords of contact of the tangents from O meet at M, then each axis passes through M. (See fig. 155.)

If the axis cuts the conics at E, F then \mathbf{M} is a double point of the involution determined by \mathbf{E}, \mathbf{F} and the points where the tangents cut the axis.

M has the same polar with respect to each conic, viz. the harmonic conjugate of $O M$ with respect to the two tangents $O G$, OH from O .

Let this polar cut the first conic at a point P, join $G P$ to cut M^{\prime} at L; let $O P$ cut the second conic at $P^{\prime} Q^{\prime}$ and $G^{\prime} P^{\prime}, G^{\prime} Q^{\prime}$ cut GP at X, Y. Then MX, MY are the two axes.

But at G^{\prime} the pencil $\mathrm{G}^{\prime}\left\{\mathrm{OMP}^{\prime} \mathrm{Q}^{\prime}\right\}$ is harmonic.
$\therefore\left\{G_{L X Y}\right\}$ is harmonic ; $\therefore \mathrm{M}\left\{\mathrm{GG}^{\prime} \mathrm{XY}\right\}$ is a harmonic pencil, i.e. the axes are harmonic conjugates with respect to the chords of contact.

If from any point on the axis we draw the two tangents $T P$, $T R$ to one conic and $T P^{\prime}, T R^{\prime}$ to the other, then $P P^{\prime}$ and $R R^{\prime}$ will pass through O , but PR^{\prime} and $\mathrm{P}^{\prime} \mathrm{R}$ will pass through a second centre of homology O^{\prime}, so that the conics are also in homology with respect to O^{\prime} and this axis. If there are two other common tangents then O^{\prime} is their intersection.

Exercises. 1. The second centre for MY will be the same point O^{\prime}.
2. The polars of O^{\prime} pass through M and are harmonic conjugates to MX, MY.
3. The intersection \mathbf{M} of the axes is the pole for either conic of the join 00^{\prime} of the vertices.
212. If the diameters $D E, D^{\prime} E^{\prime}$ of two conics meet at M, and the conjugate diameters $A B, A^{\prime} B^{\prime}$ are parallel to a line $M X$, and if also $M D . M E: M D^{\prime} . M E^{\prime}$ as $\frac{D E^{2}}{A B^{2}}: \frac{D^{\prime} E^{\prime \prime}}{A^{\prime} B^{\prime 2}}$, the two conics are in homology with MX as axis.

Fig. 163.
Take any point P on the first conic, and let DP, EP cut MX at K, L.

Join $K D^{\prime}$, LE' intersecting one another at P^{\prime}.
Draw PV parallel to MX to meet DE at V , and $\mathrm{P}^{\prime} \mathrm{V}^{\prime}$ parallel to $M X$ to meet $D^{\prime} E^{\prime}$ at V^{\prime}.

Then

$$
\mathrm{PV}^{2}: E V . \mathrm{VD}=\mathrm{AB}^{2}: \mathrm{DE}^{2} .
$$

But

$$
\begin{gathered}
P V: V D=K M: M D ; P V: E V=M L: M E, \\
\therefore P V^{2}: E V \cdot V D=K M \cdot M L: M D \cdot M E, \\
\therefore M D \cdot M E: K M \cdot M L=\frac{D E^{2}}{A B^{2}}, \\
\therefore M D^{\prime} \cdot M E^{\prime}: K M \cdot M L=\frac{D^{\prime} E^{\prime 2}}{A^{\prime} B^{\prime 2}}
\end{gathered}
$$

But

$$
\begin{aligned}
& P^{\prime} V^{\prime 2}: E V^{\prime} \cdot V^{\prime} D^{\prime}=K^{\prime} M \cdot M L: M^{\prime} D^{\prime} \cdot M^{\prime} E^{\prime}, \\
& \therefore P^{\prime} V^{\prime 2}: E V^{\prime} \cdot V^{\prime} D^{\prime}=A^{\prime} B^{\prime 2}: D^{\prime} E^{\prime 2},
\end{aligned}
$$

therefore P^{\prime} lies on the second conic.
Hence, and similarly, to each point P of the first conic corresponds a point P^{\prime} of the second so that $D P$, $\mathrm{D}^{\prime} \mathrm{P}^{\prime}$ meet on MX , and also $E P, E^{\prime} P^{\prime}$. Hence, by $\S 193$ (IV), the conics are in homology with MX as axis, and the intersection of $\mathrm{DD}^{\prime}, \mathrm{EE}^{\prime}$ as centre of homology.

Corollary. The line $M X$ is a common chord of the two conics, cutting them in the same two (imaginary) points.
213. Problem. Given a conic and an axis of homology, to construct the homologous conic passing through three given points.

Fig. 164.
Let A, B, C be the three given points; and let $B C, C A, A B$ meet the axis at K, L, M respectively.

Draw a line through K to cut the given conic at D, E and draw LD, ME, cutting the conic again at F, G. Join FG cutting the axis at N .

If a quadrilateral inscribed in a conic has three of its sides passing through three fixed points lying on one straight line, the
fourth side will pass through a fourth point on that line. Hence if we turn $F G$ round N until it becomes a line $N A^{\prime}$ touching the conic at A^{\prime}, and $A^{\prime} M, A^{\prime} L$ cut the conic at B^{\prime}, C^{\prime} respectively, $B^{\prime} C^{\prime}$ will pass through K.

We have now constructed a triangle $A^{\prime} B^{\prime} C^{\prime}$ in homology with $A B C$ with the given line as axis, hence $A A^{\prime}, B B^{\prime}, C C^{\prime}$ meet at a point S, which is the centre of the required homology; and the homologous conic can be completely determined (§ 197).

Corollary. The two tangents from \mathbf{N} to the given conic give two centres of homology ; but two conics are in homology with a given line as axis with two different centres.

Hence the two centres determine only one homologous conic.
Problem. Given a conic and a centre of homology s, to construct the homologous conic passing through three given points A, B, C.

Join SA, SB, SC cutting the given conic at $A^{\prime}, B^{\prime}, C^{\prime}$; the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ determine the axis of homology. Hence the homology is completely determined.

Since there are two positions, in general, of each of the points $A^{\prime}, B^{\prime}, C^{\prime}$ there are eight different positions of the axis, giving four different homologous conics.

Corollary. If S is outside the given conic, the problem is identical with the construction of a conic to pass through three points and touch two lines (the tangents from S).

Problem. Given five points on a conic to construct the centre.

Let A, B, C, D, E be the five points. Describe a circle passing through D, E and construct the centre of homology S for the circle, the axis DE, and the three points A, B, C. The conic $A B C D E$ is the conic homologous to the circle, with S as centre and $D E$ as axis of homology, hence its centre is given by the construction of § 201.

Problem. Find the pole of a given line with respect to the conic which passes through five given points.
[Pole and polar are homologous to pole and polar.]
Exercises. 1. Given a conic and an axis of homology, construct the homologous conic,
(a) passing through two given points and touching a given line ;
(b) passing through one given point and touching two given lines;
(c) touching three given lines.
2. Given a conic and a centre of homology, construct the homologous conic to satisfy the condition (a) (b) or (c) of exercise 1.
3. Construct the centre of the conic which passes through n points and touches $(5-n)$ lines, where n is $0,1,2,3$ or 4 .
4. Construct the asymptotes and axes of a conic which satisfies five given conditions.
214. Projection in Space. A point A may be projected from a centre \mathbf{S} on to a plane a, by joining SA by a line cutting a at A^{\prime}.

A line a is projected by drawing a plane through S and a to cut the plane a in a line a^{\prime}, which is the projection of a.

Figures in a plane a may be projected into figures in another plane a^{\prime}. The straight line in which the two planes intersect is called the axis of projection; any line and its projection meet on the axis, and lie in one plane passing through the centre of perspective.

Collinear points project into collinear points, and concurrent lines into concurrent lines.

We may regard the figure as made of a system of points, and project by means of a sheaf of lines all passing through the centre \mathbf{S}; or we may regard it as a set of lines, and project by means of a sheaf of planes all passing through the centre S .

A curve is projected either (a) by means of a sheaf of lines through S and the system of points which form the curve, or
(b) by means of a sheaf of planes through S and the system of tangents which envelope the curve, the sheaf cutting the plane α^{\prime} in a system of lines whose envelope is the projected curve. The curves obtained by the two methods are identical.

If we project from a plane on to a parallel plane, any line $A B$ will project into a parallel line $A^{\prime} B^{\prime}$, and the length $A B: A^{\prime} B^{\prime}$ as the perpendiculars from S to the two planes. Hence the projection will be similar and similarly situated to the original figure. E.g. the projection of a circle on a parallel plane is also a circle.

Straight lines intersecting at a point V in α project into straight lines meeting at the point V^{\prime} where $S V$ meets a^{\prime}. If V lies on the line v in which the plane a is cut by a plane through S parallel to a^{\prime}, the lines which meet at V project into parallel lines in the plane α^{\prime}.

Also parallel lines in a project into lines meeting at a point lying on the line v^{\prime} in which a^{\prime} is cut by a plane through s parallel to a.

These two lines $\left(v, v^{\prime}\right)$ are called the vanishing lines of the projection ; they are parallel to the axis s. Each point of the vanishing line v is the vanishing point of lines parallel to one direction in α^{\prime}. The vanishing point of lines in α^{\prime} perpendicular to the axis s is N the foot of the perpendicular from S to v; the vanishing point of lines making an angle A with that perpendicular direction is a point V such that angle NSV equals A; if A is 45° then $N V$ equals $N S$.

Exercises. 1. Given the axis 8 , and NV the vanishing line, of which N is the foot of the perpendicular from S, and $N V=N S$, construct the figure whose projection is a square with one side $A B$ lying in the axis s.
[Take BK along 8 equal to AB . Join KV cutting BN at C : draw $C D$ parallel to BA cutting AN at D.
$A B C D$ is the figure required. For the projection of $K C$ makes an angle of 45° with KB, hence CBK projects into an isosceles right-angled triangle, and the projection of BC equals BK .]
2. Find the figure whose projection is a square with one side parallel to 8.
3. Find the figure whose projection is
(a) a square with one side inclined to s at 30°;
(b) a hexagon with one side lying along s;
(c) a hexagon with one side perpendicular to s.

The construction of figures by the use of vanishing points and lines is called Perspective Drawing, and the student may refer to books on that subject for further illustrations of the applications of the theory to the solution of practical problems. We may note that if, in place of figures lying in one plane α^{\prime} we have figures in several planes, e.g. the faces of a solid body, the corresponding figures in α will have various vanishing lines, but figures in parallel planes will have one and the same vanishing line.
215. If A, B, C, D are four collinear points in the plane α, their projectors lie in one plane through S and $A B$, hence their projections $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ lie in a straight line lying in the same plane and in the plane a^{\prime}. Also $A^{\prime} B^{\prime}$ and $A B$ are two transversals of a plane pencil, hence $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$.

Hence a row of points on a straight line projects into a projective row.

If a, b, c, d are four concurrent lines in the plane a, meeting at T, their projecting planes form an axial pencil with ST as axis, and the projections are four lines $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ meeting at the point T^{\prime} which is the projection of T. Also the planes $\mathbf{S} a, \mathbf{S} b$, $\mathrm{S} c, \mathrm{~S} d$ will cut the axis s at four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ which also lie on the lines $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$; and ABCD is a transversal of both pencils, hence $\{a b c d\}=\left\{a^{\prime} b^{\prime} c^{\prime} d^{\prime}\right\}$.

Hence a plane pencil projects into a plane pencil projective with the original pencil.

The Projection of a Conic is a Conic. First Proof. The conic is the locus of the intersections of corresponding
rays of two projective pencils; but these pencils project into two pencils projective with the original pencils and therefore with each other. Hence the points forming the conic project into the intersections of corresponding rays of two projective pencils, and these form a conic. [See also § 217.]

Second Proof. The conic is the envelope of the joins of two linear projective rows in the plane α, and these project into two linear projective rows in the plane α^{\prime}, hence the projection is a conic.

Corollary 1: The cross-ratio $\{A B C D\}$ of four points on the conic equals the cross-ratio $\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ of the corresponding points on the projected conic.

Corollary 2. Parallel tangents do not, in general, project into parallel tangents; hence the centre does not, in general, project into the centre of the projected conic.
216. Connection between Projection in Space and Homology in a Plane. If a figure in a plane α is projected into a figure in a plane a^{\prime}, corresponding lines meet on the intersection s of the two planes. If now the plane α^{\prime} be turned about the axis s, and brought into coincidence with α; corresponding lines still meet on s, and the figures become figures in homology with s as axis; also S will become the centre of homology.

Conversely two plane figures in homology become two figures in projection if a plane containing one of the figures be turned about the axis of homology, corresponding lines continuing to meet on the axis, and the joins of corresponding points meeting now at one point S (lying outside both planes).

Locus of s. The vanishing lines of the homology become the vanishing lines of the projection, and a plane through S will cut the axis s and the two vanishing lines v, v^{\prime} at points $\mathrm{A}, \mathrm{W}, \mathrm{X}$ (cf. fig. 157), such that SWAX is a parallelogram. Hence s describes a circle with centre W, and radius equal to $A X$, lying in a plane perpendicular to the axis.
217. Plane Sections of a Cone whose Base is a Circle. Theorem. Any plane section of a cone on a circular base is a curve such that the joins of any two points on it to a variable point on it describe two projective pencils with those two points as vertices.

Fig. 165.

Let O be the vertex of a cone on a circular base ABP, and $A^{\prime} B^{\prime} P^{\prime}$ any plane section.

Join $O A^{\prime}, O B^{\prime}$ and produce to meet the circle at A, B.
Join any other point P^{\prime} on the section to O by a line cutting the circle at P.

Let the planes OAP, OBP cut at K, L respectively the line in which the plane of the section cuts the plane of the circular base.

Then AP, A'P' both pass through K, and BP, $B^{\prime} P^{\prime}$ both pass through L.

Now as P moves round the circle AP, BP turn through equal angles at A, B and therefore describe two projective pencils; hence K, L describe projective rows on $K L$.

Therefore, in the plane $A^{\prime} B^{\prime} P^{\prime}, A^{\prime} P^{\prime}$ and $B^{\prime} P^{\prime}$ describe projective pencils about the vertices A^{\prime}, B^{\prime}.

Corollary 1. If the tangents $T A, T B$ meet $K L$ at U, V respectively, the planes OTA, ОTB touch the sides of the cone, and therefore contain the tangents $T^{\prime} A^{\prime}, T^{\prime} B^{\prime}$ to the section, also passing through U, V. But in the circle $A B$ at A corresponds to BT at B.

Hence, in the section, $A^{\prime} \mathbf{B}^{\prime}$ at \mathbf{A}^{\prime} corresponds to $\mathbf{B}^{\prime} \mathbf{T}^{\prime}$ at \mathbf{B}^{\prime}, and similarly $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ to $\mathrm{A}^{\prime} \mathrm{T}^{\prime}$.

Therefore the tangents at A^{\prime}, B^{\prime} to the section are those rays of the pencils which correspond respectively to $B^{\prime} A^{\prime}$ and $A^{\prime} B^{\prime}$.

Corollary 2. The section is a hyperbola, parabola or ellipse according as a parallel plane through O cuts the sides of the cone in two real and different lines, or touches the cone or cuts it only at 0 .

Corollary 3. This proposition is equally true whether the cone is right or oblique.
218. Theorem. A tangent to any plane section of a circular cone describes projective rows on any two given tangents to that section.

Let $T^{\prime} A^{\prime}, T^{\prime} B^{\prime}$ be two given tangents to the plane section, and $A^{\prime} B^{\prime}$ any other tangent cutting these two at A^{\prime}, B^{\prime} respectively.

The planes $O T^{\prime} A^{\prime}, O T^{\prime} B^{\prime}, O A^{\prime} \mathbf{B}^{\prime}$ touch the sides of the cone; hence they cut the plane of the circular base in lines $T A, T B, A B$ which touch the circle.

Now a variable tangent $A B$ to a circle describes projective rows on two given tangents, therefore A, B describe projective rows on TA, TB.

But, in the plane OTA, we have two transversals TA, TA' of a pencil whose vertex is O, hence the row described by A^{\prime} is projective with the row described by A.

Similarly the row described by B^{\prime} is projective with the row described by \mathbf{B}.

Hence A^{\prime}, B^{\prime} describe projective rows on $T A^{\prime}, T B^{\prime}$.
Corollary. On the tangents to the circle T on TA corresponds to B on $T B$. Hence T on $T A^{\prime}$ corresponds to B^{\prime} on $T B^{\prime}$. Similarly T on $T B^{\prime}$ corresponds to A^{\prime} on $T A^{\prime}$.

Exercise. Find the point of TB^{\prime} corresponding to a point at infinity on $T A^{\prime}$, for different positions of the plane $T A^{\prime} B^{\prime}$.
219. Theorem. Every curve which is an envelope of the joins of two projective rows on two straight lines in a plane is a section of some cone which has a circular section.

Let TA, TB be the two fixed lines, touching the envelope at A, B. In any plane through TA describe a circle to touch TA at A, and draw the second tangent $T B^{\prime}$ to this circle. Let $P Q$ be any other tangent to the envelope cutting TA, TB at P, Q (corresponding points of the projective rows); and draw a second tangent $P Q^{\prime}$ to the circle, meeting $T B^{\prime}$ at Q^{\prime}; similarly take another tangent RS to the envelope, and RS^{\prime} to the circle.

Then $\{T B Q S\}=\{A T P R\} ;$ also in the plane of the circle we have $\left\{T B^{\prime} Q^{\prime} S^{\prime}\right\}=\{A T P R\}$.

Hence $\{T B Q S\}=\left\{T B^{\prime} Q^{\prime} S^{\prime}\right\}$, two projective rows with a common point T, therefore $\mathbf{S S}^{\prime}$ always passes through the point O where QQ' meets B^{\prime}.

If then we keep P, Q, Q^{\prime} fixed and vary R, S, S^{\prime}, the point O will be fixed and RS will lie in a plane ORS' which touches the cone whose vertex is O and whose base is the circle.

Hence the envelope of RS is a section of that cone.

Corollary. By suitable choice of A, the plane through TA and the circle in that plane, the cone may be made a right circular cone.
220. Theorem. Any locus of intersections of corresponding rays of two projective pencils is a section of some cone of which one section is a circle.

Take two points E, F on the locus (but not lying on different branches if the locus is a hyperbola) and in a plane through EF draw a circle passing through \mathbf{E} and \mathbf{F}.

From any point T on $E F$ produced draw tangents $T A, T A^{\prime}$ to the circle and the locus. Join A, A^{\prime} to any point K on $E F$, let $A K$ meet the circle again at $B, A^{\prime} K$ meet the locus again at B^{\prime}.

Then BB^{\prime} lies in the plane $A K A^{\prime}$, and therefore meets $A A^{\prime}$ at some point 0 .

Let P be any other point of $E F$, and let $A P, A^{\prime} P$ meet the circle and conic respectively again at Q, Q^{\prime}.

Then
and
$B\{A E F Q\}=A\{T E F Q\}=\{$ TEFP $\}$,
$B^{\prime}\left\{A^{\prime} E F Q^{\prime}\right\}=A^{\prime}\left\{T E F Q^{\prime}\right\}=\{T E F P\}$,
$\therefore B\{A E F Q\}=B^{\prime}\left\{A^{\prime} E F Q^{\prime}\right\}$,
but $B A, B^{\prime} A^{\prime}$ cut $E F$ at the same point K, hence $B Q, B^{\prime} Q^{\prime}$ also intersect on $E F$, and therefore lie in one plane.

Hence $\mathbf{Q Q}^{\prime}$ meets BB^{\prime}, but it also meets AA^{\prime}, hence it passes through 0 .

Hence, and similarly, each point of the locus lies on a line joining 0 to some point of the circle; and the locus is a section of the circular cone.

Corollary 1. The proof holds equally well if for the circle we substitute any conic passing through \mathbf{E}, F.

Corollary 2. If two conics cut the intersections of their planes at the same two points, two and only two cones can be drawn to pass through them ; one vertex will lie in each pair of opposite dihedral angles between the planes.
221. Problem. Given the vertex O and a circular section of a cone to find a second set of circular sections (not parallel to the given circle).

Make a plane through o perpendicular to the given circle and passing. through its centre C, let AB be the diameter of the circle lying in this plane.

Divide CO at N so that $\mathrm{CN}^{2}-\mathrm{ON}^{2}=\mathrm{CA}^{2}$, and draw NP perpendicular to $C O$ to meet $C A$ at P. In the plane of the circle draw a line $P X$ perpendicular to $C P$.

Then $P O^{2}=P C^{2}-C A^{2}=P A . P B=P C . P P^{\prime}$ (where P^{\prime} is the pole of $P X$).

Take any pair of conjugate points Q, R on $P X ; P^{\prime}$ is the orthocentre of the triangle CQR, therefore $Q P . P R=P C . P^{\prime}=P O^{2}$.

Hence $Q R$ always subtends a right angle at O.
If $P E, P F$ are the tangents from P to the circle, and K is any point on the circle, KE and KF describe projective pencils on $P X$, in which P is the vanishing point of both rows, hence KE, KF cut $P X$ at conjugate points Q, R.

Now take a section of the cone through EF parallel to the plane OPX, let OK cut the section at L .

Then EL, FL are parallel to QO, OR ; hence ELF is a right angle, and therefore the section is a circle of which EF is a diameter.

Hence the sections parallel to the plane OPX are circles.
Corollary. There are only two sets of circular sections of the cone, viz. those parallel to the given circular section and those parallel to the plane OPX.

EXAMPLES. X.

1. State and prove the condition that two sets of n points may be in homology.
2. Six lines a, b, c, d, e, f touch a conic, prove that another set of six lines $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}$ in homology with them also touch one conic.
3. If A, B be two fixed points and P any point lying on a conic; and if $P A$ cuts a fixed line at Q, the line through Q parallel to $A B$ cuts $P B$ at a point whose locus is a conic.
4. Given the centre, axis and vanishing line of homology, find the condition that the conic homologous to a given conic shall be a rectangular hyperbola.
5. If the vanishing line touches a given conic construct the focus of the homologous parabola.
6. A given parabola cuts the vanishing line of homology, find the centre of the homologous conic.
7. Draw the figure of $\S 208$ for the case of two hyperbolas in each of which E, F lie on different branches.
8. Construct the two centres of homology described in § 208, Cor. 2.
9. (a) Two conics have common tangents meeting at O, and a line through O cuts the conics at A, A^{\prime} respectively. If points P, P^{\prime} move from A, A^{\prime} round the conics so that O, P, P^{\prime} are always collinear, prove that the locus of the intersection of $A P, A^{\prime} P^{\prime}$ is a straight line.
(b) If, in the same figure, we replace A, A^{\prime} by P, P^{\prime} we get the same line.
(c) Tangents at P, P^{\prime} meet on the same line.
(d) GP, GP' intersect on this line, G, G' being the points where the conics touch one of the common tangents through O.
(e) The chords of contact of the two fixed tangents from O intersect on this same line.
(f) If OA cuts the second conic again at D^{\prime}, and we take $\mathrm{A}, \mathrm{D}^{\prime}$ in place of A, A^{\prime} we get another line with similar properties.
10. Two conics have common tangents G^{\prime}, H^{\prime} meeting at O, and any line through O cuts the conics at P, P^{\prime} respectively. If $G P, G^{\prime} P^{\prime}$ intersect at K, and $H P, H^{\prime} P^{\prime}$ at L, prove that K, L lie on an axis of homology of the conics, and that they describe projective rows on that axis.
11. Find the polar of a given straight line with respect to the conic which passes through five given points.
12. Find the nature of the conic which (a) touches five given lines, (b) touches two given lines and passes through three given points.

If the curve is a hyperbola construct its asymptotes.
13. Find the foci of the conic which passes through five given points.
14. Find the centre of homology of the two conics which pass through four given points and touch a given straight line.
15. Prove that a given conic can be projected into a circle and at the same time a given line to infinity.
16. Prove that a given conic can be projected into a circle and at the same time a given point into its centre.
17. Prove that a conic can be projected so that two given points become foci.
18. Prove that two conics can be projected into two confocal conics.
19. Generalize by projection that the angles between pairs of tangents from a given point to a system of confocal conics have a common bisector.
20. Generalize by projection that if a conic touches two given lines and has a given focus, the locus of the other focus is a straight line.
21. Prove that a system of conics touching four given lines can be projected into a system of confocal conics.
22. The join of $P Q$ is divided harmonically by two opposite edges of a tetrahedron, and the join PR is divided harmonically by another pair of opposite edges; prove that QR meets the two remaining edges and is divided harmonically by them.
23. A plane turns round a line $O A$, and another plane turns round $O B$ so that the two planes are always perpendicular to each other, prove that their intersection describes a cone of the second degree, which is cut by any plane perpendicular to $O A$ or $O B$ in a circular section. Also that any plane perpendicular to the plane $A O B$ cuts the cone in a section of which one principal axis lies in the plane $A O B$.
24. Two projective ranges $A, B, C, \ldots, A^{\prime}, B^{\prime}, C^{\prime}, \ldots$ lie on two nonintersecting lines in space; shew that $A A^{\prime}, B^{\prime}, \ldots$ all intersect an infinite number of other fixed lines.
25. A set of planes have a common line of intersection, and a straight line cuts them at A, B, C, \ldots, prove that the pencils formed by joining any two points on the common axis to A, B, C, \ldots are projective.
26. Two parallel straight lines cut an axial pencil in projective rows.
27. Any two non-intersecting lines are cut by a system of axial planes in two projective pencils.
28. If two triangles in perspective be taken in two planes, and one of the planes with its triangle be turned about the line of intersection of the planes, the centre of perspective will describe a circle.
29. The axis of an axial pencil of planes $(\alpha, \beta, \gamma, \delta)$ intersects the axis of a projective axial pencil $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}\right)$; prove that a plane through the two lines of intersection of α, β^{\prime} and α^{\prime}, β cuts the planes in a pencil in involution.
30. The latus rectum of a section of a right circular cone is proportional to the perpendicular from the vertex of the cone to the plane of the section.
31. Find the circular sections of a right elliptic cone.
32. The latus rectum of a parabolic section of a right circular cone is a third proportional to the distance of its vertex from the vertex of the cone and the diameter of the circular section through its vertex.
33. Determine whether a given line can be the directrix of any section of a given right circular cone. Also shew that, when the necessary condition is satisfied, there are two such sections, and that their latera recta are proportional to their eccentricities.
34. Given a parabola, construct a circle touching it at the vertex so that the circle can be turned about the axis of homology to make the cone of projection right circular.
35. Given a central conic, construct a circle touching it at the end of a major axis, and such that it can be turned about the common tangent to a position in which the cone of projection is a right circular cone.
36. If a point S be taken within a cone at a constant distance from the vertex, two sections containing S will have S as focus and the diameters of the corresponding focal spheres inscribed in the cone and touching those sections at S, will contain a constant rectangle.
37. (a) Prove that those chords common to a conic and a system of circles touching the conic at a given point S, which are conjugate to the common tangent, are parallel to each other.
(b) Hence, also, construct the circle of curvature, i.e. that circle which
has three of its intersections with the conic coinciding at the point \mathbf{S} of the conic, giving a contact of the second order.
(c) If S is at the end of a principal axis, prove that the contact is of the third order, and construct the circle of curvature in that case.
38. If corresponding vertices of two tetrahedra lie on four concurrent lines, prove that the six edges of one meet the corresponding edges of the other in six points lying three by three on four straight lines. Deduce that these six points lie on a plane, and that the four pairs of corresponding faces of the tetrahedra meet in four coplanar lines.
39. Three conics in different planes are such that each two have a common chord (along the intersection of their two planes), prove that these three common chords are concurrent; also prove that two cones pass through each pair of conics, and that the six vertices of the three pairs of conics lie three by three on four straight lines and are therefore coplanar.

[^0]14 DAY USE RETURN TO DESK FROM WHICH BORROWED LOAN DEPT.
This book is due on the last date stamped below, or on the date to which renewed. Renewed books are subject to immediate recall.

8 Jun'5:
APR 27'67-10 PM

LOAN DEPT.
FAR 1519681 . 9
MAY 2

LD 21-100 \qquad
\qquad

[^0]: CAMBRIDGE : PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS.

