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PREFACE

THE development of the methods of Projective Geometry

forms an important part of Modem Geometry, and the

valuable results obtained justify the increasing attention

which is being paid to this subject. I propose, therefore, to

arrange in orderly sequence the elementary propositions of

plane projective geometry, assuming a knowledge of the j&rst

six books of Euclid, or their equivalent, and I trust that this

book will be of use to the Upper Forms of Schools, and to

Junior Students at the Universities.

The projective unit is the cross-ratio of four collinear

points or of four concurrent lines in a plane : from this I

proceed to the study of projective rows and pencils, and the

involutions of six points or lines, which play an important

part in the solution of problems. I then deduce the

properties of the curve of the second degree, defined as the

locus of the intersections of corresponding rays of two

projective pencils, first proving an important harmonic

property of the tangent.

The chief properties of polars follow ; and of inscribed

and circumscribed polygons, with the construction of conies

to satisfy five given conditions, and solutions of other

problems connected with the conic.

738290



vi Preface

I conclude with the elements of polar reciprocation, and

of plane homology, with brief notes on projection in space

and the sections of a circular cone.

In some cases I have developed a point at greater length,

as in the extension of Maclaurin's Theorem, and in the

treatment of the harmonic conies of four-points and four-

sides. The student should draw many figures in addition to

those given in the book ; the examples given at the ends of

the several chapters include many of the questions recently

set in this subject, and also propositions suggested by the

text, and others chosen from various writers of the last

century.

In an elementary treatment of the subject I have

avoided dependence on the use of points at infinity and

imaginary points and lines ; these will find place in a more

advanced treatise, and also the properties of curves of degree

higher than the second, and of surfaces and curves in space

of three dimensions.

In conclusion I must thank the Syndics of the University

Press for undertaking the publication of this book, and the

Readers of the Press for their carefulness in the revision of

the proofs.

A. G. P.

28 August, 1909.
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CHAPTEE I

CROSS-RATIO

1. Projection in a plane. If we take a point S and a

line KL, and join S to any point A in the plane, the line SA will

cut the base KL at some point A' which we call the projection of

A on KL from the centre S.

Two points which are collinear with the centre will have the

same projection.

S

Fig. 1.

The only points in the plane which have no projections are

points in a line through S parallel to the base; we may however

give verbal completeness to our definition by supposing that two

parallel straight lines meet at an infinitely distant point, and

saying that if SA is parallel to the base KL, the projection of A is

the point at infinity on KL

p. p. G. 1



2 Projective Geometry

'. The methods of parallel projection in which AA' is drawn not

through a fixed point S but parallel to a fixed direction, and

orthogonal projection in which A' is the foot of the perpendicular

from A to KL, may be regarded as special cases of projection.

The projection of any line joining AB, whether straight or

curved, is A'B', where A' and B' are the projections of A and B.

If AB is a straight line passing through S its projection has no

magnitude, being the single point A'. The same is true if AB is

an open polygon or a curved line with the two ends A, B collinear

with S.

2. Projection in space. In the same way a point in space

may be projected on a given plane from a given centre, by finding

where the plane is cut by a straight line joining the centre to

the given point. A perspective drawing is a projection of a

landscape or collection of objects, the eye being the centre of

projection.

Another example may be found in pinhole photography, tlie

pinhole being the centre and the photographic plate the plane

of projection.

3. Notation. Points are usually denoted by capital letters

and straight lines by small letters.

Thus we speak of points A, B lying on a line k ; that part

of the infinite line k which begins at A and ends at B we

call AB.

A row of points is a number of points A, B, C, . . . lying on

a straight line a.

A pencil of lines is a set of lines a, b, c, ... passing through

one point A.

A quadrangle or four-point ABCD is the figure formed by

joining the four points A, B, C, D : it has six sides.

A quadrilateral abed is the figure formed by the four lines

a, b, c, d and their six intersections.
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4. Vanishing points. If we project a row A, B, C, ... on

a from centre S, into A', B', C', ... on

a ; then, with two exceptions, each

point of a corresponds to one point

of a\ and vice versa.

The exceptions are I on a, such

that SI is parallel to a ; and J' on

a, such that SJ' is parallel to a.

I has no finite projection on a,

and J' is not the projection of any

finite point of a. We may, how-

ever, give verbal completeness to

our statement, without confusion,

by saying that two parallel lines

meet at infinity, and that the pro-

jection of I is a point at infinity on

a\ and that J' is the projection of

a point at infinity on a.

The points I, J' at which lines

through S parallel to a' and «,

meet a, a' respectively are called the vanishing points of a,

a for the centre S.

5. The length of AB is not, in general, equal to its projection

A'B'. If A, B, C on a are projected from centre S into A', B', C'

on a line a parallel to AB, we have similar triangles SAB, SA'B'

and SBC, SB'C', and hence we can prove that AB : BC as A'B' : B'C',

i.e. the ratio of two segments of a line is not altered by projection

on a parallel line. This is also true for parallel projection ; but

it is not true in Central Projection, when a, a are not parallel

:

we shall find however relations between parts of lines which are

not altered by projection, and the consideration of these relations

will form the basis of much of our work in projective geometry.

6. Sign. If A', B' and C' are the. projections of three points

A, B and C which are not in a straight line, the projection of the

1—2

Fig. 2.



4 Projective Geometry

figure composed of AB and BC is A'C', the projection of AB is A'B',

and of BC is B'C'.

In order that the projection of ABC may equal the sum of

the projections of AB and BC in all cases, we must have

A'C' = A'B' + B'C',

whether B' does or does not lie between A' and C'.

The similarity between this operation and the algebraic

addition of positive and negative quantities suggests the use

of the signs + and — to express opposite directions in the

same straight line; and we say that BA-- — AB ; and that AB, CD
are both positive or both negative if they are segments of the

same line drawn in the same direction, but one is positive and

the other negative if they are drawn in opposite directions in

the same straight line; also AC + CB = AB, if C is collinear with

A and B.

7. From the Rule of Signs it follows that the rectangle of

two parts AC, CB of a line AB is positive when C lies between

A and B, and negative when C is in AB produced either way.

Thus Euclid ii. 4 and 7 are two cases of

AB2 = AC^ + BC2 + 2AC . CB
;
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in the former C lies between A and B, in the latter C lies in AB
produced. Similarly ii. 5 and 6 are two cases of

AD. DB=MA2-MD2,

where M is the middle point of AB.

Again the generalized form of Euclid ii. 1 is

XY . AB = XY . AK + XY . KL + XY . LM + ... + XY . PB.

Hence

AB. CD + BC. AD + CA. BD

= (AD . CD - BD . CD) + (BD . AD - CD . AD) + (CD . BD - AD . BD)

an important result which will be required presently.

Exercise 1. If O lies in the same straight Hue as A, B, C prove that

OA2.BC + OB^ CA + 0C2.AB= - AB . BC . CA.

2. Prove that this is also true when A, B, C He in a straight line, but

O lies outside that line.

8. Ratio of segments of a straight line. The ratio of

AC to CB will be positive when C lies between A and B, negative

when C is in AB produced either way.

Thus the bisector of the vertical angle C of a triangle ACB
meets the base AB at a point K, such that AK : KB = AC : CB ; and

the bisector of the exterior angle at C meets AB at L, such that

AL: LB--AC:CB. Hence AK : KB ^^ - AL : LB.

Again, a line parallel to the base of a triangle divides the

sides in equal positive ratios if the line lies between the base and

the vertex, in equal negative ratios if the line cuts the sides pro-

duced tlirough the vertex or beyond the base.

9. If C is a variable point in a straight line AB, there are

no two positions for which the ratio AC : CB has the same value.

As C moves from A to B, the value of the ratio increases from

to 00 : as C moves from B along AB produced the value in-

creases from — GO towards the value — 1 : as C moves from A
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along BA produced the value of AC : CB decreases from towards

-1.

Thus for each position of C there is a definite value of AC : CB,

positive if C lies between A, B ; otherwise negative ; save that

at B no meaning attaches to AC : CB for CB is zero, but however

near C is to B there is a value of the ratio, positive on one side,

negative on the other, numerically large in each case, thus giving

the idea that + oo and — co are the same.

[The sign cc stands for an infinite number, i.e. one too great

for our comprehension. Point at infinity (go ) stands for a point

too far away for our comprehension.]

Again to every numerical quantity, positive or negative,

corresponds one, and only one, position of C such that AC : CB
has that value, save the number — 1, and as AC + CB is AB and

not zero, therefore AC:CB is never —1 : but when C is very

distant towards either end of AB the value of AC : CB is very

nearly — 1, in fact we can find a position of C for any number

which differs from — 1 however slightly, in AB produced if the

number is less than — 1, in BA produced if slightly greater

than— 1.

We obtain verbal completeness then by supposing a point 'at

infinity' (towards either end indifferently), where AC : CB has the

value — 1.

Otherwise we may say that as a line SC turns round S

cutting AB at C, for every position of the line there is one unique

value of AC : CB, and for every value that can be given to AC : CB
there is one unique position of SC ; and that when SC is parallel

to AB, the value of AC : CB is — 1.

Harmonic Rows and Pencils.

10. If K is a point in the line AB, there exists another point

L, such that AL : LB = — AK : KB ; the two points K, L are said to

be harmonically conjugate with respect to A, B ; one of them



I

Cross-Ratio 7

must lie between A and B, the other must lie outside the segment

AB. If however K is the middle point of AB, there is no finite

position of K^ for in this case AL : LB = - 1.

N.B. The lengths of AK, AB, AL are in harmonical pro-

gression.

1 —I 1 1_ —

'

A K B L L KtS

Fig. 4.

If K, L are harmonically conjugate with respect to A, B, then

A, B are harmonically conjugate with respect to K, L.

AK AL - KA KB
For — =

, hence t— = — t;^KB LB' AL BL
Q.E.D.

Two points A, B and their conjugates K, L form a harmonic

range {ABKL}.

11. Theorem. If K, L are harmonic conjugates with re-

spect to A, B and S a point outside

AB, and if a line be drawn through

K parallel to SL to cut SA, SB at

D, E, then DK - KE.

For AK:AL-DK:SL,

and KB:BL=KE:SL.

But, by hj'pothesis,

AK: KB = -AL: LB, x

.*. AK:AL=KB:BL,

and hence DK= KE.

Conversely : If K is the

middle point of a line DE, and S a point outside DE, then any

line through K cuts a line through S parallel to DE at the

harmonic conjugate of K with respect to the points where the

line cuts SD and SE.
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For DK = KE, hence AK : AL

and therefore {ABKL} is harmonic.

DK:SL=KE:SL= KB : BL,

12. Theorem. The p7'ojection of a harmonic range is a

harmonic range. Let K, L be

harmonically conjugate to A, B

;

project from centre S, giving K', L'

and A', B'; through K, K' draw DE,

D'E' parallel to SL cutting SA, SB

at D, E and D', E'.

{ABKL} is harmonic,

.-. DK=KE. (§ 11)

But D'E' is parallel to DE,

.-. DK: KE=D'K': K'E';

hence D'K'-K'E',

and .'. {A'B'K'L'} is harmonic.

If, however, the base of pro-

jection is parallel to SL, we get

as the projections of A, B, K points

A', B', K' such that A'K'=K'B' and

L has no finite projection. But if

the base is not quite parallel we shall have A'K' : K'b' nearly equal

to unity, and L' a very distant point so that A'L' : L'B' is nearly

equal to — 1. Hence we are led to imagine that the base is

parallel to SL, it is cut by SL at an infinitely distant point L',

and then A'K' : K'B' = 1 ; A'L' : L'B' = - 1 and {A'B'K'L'} is harmonic.

With this qualification we T[ia.y formally state that the projection

of a harmonic range on any straight line is always a harmonic

range.

Corollary. The lines joining any point S to two points

(A, B) and their harmonic conjugates (K, L) are such that any

other line cuts them in a harmonic range : these four lines

form a harmonic pencil at S.

Fig. 6.



Cross-Ratio 9

Corollary. If a, b, k, I are four lines through the point

S such that a, b cut off a segment on any transversal parallel to

I, which is bisected by k, then k, I are harmonically conjugate to

a, h.

Corollary. The internal and external bisectors of the angles

between a, b are harmonically conjugate to a, b.

Corollary. If a, b are perpendicular lines, and k, I har-

monically conjugate to them, then a, b are also harmonically

conjugate to A:, / : hence a line parallel to a cuts b, k, I at B, K, L

such that KB = BL, and hence k, I make equal angles with b.

13. Theorems. If ak : kb = -AL: lb,

I. AK.BL = KB.AL,

.'. AL. BL-KL.BL
-KL. AL-BL. AL,

.'. 2AL. BL= KL. BL + KL. AL,

T-. 2AL. BK = -KL. AL+KL. BL

-LK. AB;

hence AB : BK = twice AL : LK.

II.
KB LB .

^^aT^^'

AK AL '

or
ak"^al

2

AB

III. If O is the middle point of AB,

•.• AK.BL=KB.AL,

.-. (OK - OA) (OL - OB) = (OB - OK) (OL - OA),

i.e. (OK + OB) (OL - OB) + (OK - OB) (OL + OB) = 0,

since 0A = — OB.

.-. 2.OK.OL-2.OB- = 0, ^.e. OB2 = OK. OL.
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IV. If SK, SL are harmonically conjugate to SA, SB then,

drawing a transversal perpendicular to SA, we get from II. that
A A A AAA

cotASK + cot ASL = 2cot ASB, or cotak + cot al= 2 cot ah.

V. Similarly from III. by drawing a transversal perpen-

dicular to SO, the bisector of angle ASB, we get

A A A AAA
tan OSK . tan OSL = tan^ OSB, i.e. tan ok . tan ol = tan^ ob.

Cross-Ratio of Four Points.

14. Definition. If on the line AB we take two points K, L

AK AL
the ratio of — :— is called the croSs-ratio of ABKL and is de-

KB LB

noted by {ABKL}.

If we fix A, B and K and vary the position of L, the cross-

ratio {ABKLI has various values.

A K B L K^

Fig. 8.

Thus, taking K between A and B, we find the value of {ABKL}

AK
when L is on the left of A is negative and between and

KB
— oo ; from A to K its value diminishes from go to + 1 ; from

K to B the value decreases from +1 to 0; and as L moves from

AK
B in the direction AB its value decreases from to .

KB

[When L is at K', the harmonic conjugate of K with respect

to A, B, {ABKL}--!.]

AK
Thus {ABKL} may have any value, except the value - r^ , for

KB

AL
this would correspond to — = -1, which is not true for any

finite position of L : if however we imagine an infinitely distant
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point (qo ) such that = — 1, we may say {ABKoo } = — --:

AL
similarly {ABoo L} = - 1 -i .

Exercise. Trace the changing value of {ABKL} as L moves along the

line, when K lies outside AB.

15. It is important to notice the order in which the letters

A, B, K, L are written in the S3'^mbol {ABKL} : thus

1 BA BL
* * AK LK'

which is not the same as {ABKL}.

Four letters may be written in 24 different orders, i.e. there are

24 cross-ratios of four points in a line, dependent on the order in

which the points are taken : these 24 values are however closely

related. We call the first or the second pair associated points.

Theorems. I. If we exchange a pair of associated points,

the value of the new cross-ratio is the reciprocal of the former

value.

Let {ABKL}, I.e. — :— = c,
^ ^' KB LB '

^u („«.,. )
BK BL KB LB 1

then {BAKL}=— :
— = — : — = -,

^ * KA LA AK AL c
'

also {ABLK} =—:— =-.
^ ^ LB KB c

Corollary. {BALK} - 1 -- {bakl} = {abkl}.

II. The exchange of the middle letters changes the value

from c to 1 - c.

For AB. KL-f- BK. AL+ KA. BL

= (AL . KL - BL . KL) -f (BL . AL - KL . AL) + (KL . BL - AL . BL) = 0,
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AB.LK AK.LB
BK.AL~ ^AL. KB'

i.e. {AKBL}==1 -{ABKL}=l-c.

Corollary. Since {abkl} = {balk},

.•. {AKBL} = {BLAK}r={LBKA};

hence {LBKA} also has the value 1-c, .*. {LKBA} = c, thus the

exchange of the outer pair, and the inner pair, brings no change

in value.

Applying I. and II. we get

c = {ABKL} - {BALK} = {KLAB} = {LKBA},

- = {ABLK} = {BAKL} -: {KLBA} = {LKAB},

\-G= {AKBL} = {BLAK} = {KALB} - {LBKA}.

Applying I. to the ratios equal to 1 - c, we get

[aklb1 = Iblka| =:|kabl1 = -(lbak1.
1-c

Applying II. to the second set, we get

1 - - --= {ALBK} = {BKAL} = {KBLA} = {LAKB},

and from either of the two sets last obtained, we get

1 — c
1 - .j

= = {ALKB} = {BKLA} = {KBAL} = {LABK}.

Thus the 24 ratios are arranged in sets of 4 with the values

1 1 c-1 c
c, 1 - c, -

,

c-1

Corollary. Since {LKBA} = {ABKL} the cross-ratio of four

points is unaltered if we reverse the line. This was not true of

the single line, for its sign was changed, nor of the ratio AK : KB,

for it was changed into its reciprocal.
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16. Note 1. If ir^- a; =X,c2-c = C, the sextic

(x-c)(x-l-o)(x-l) (x-^J (,_»^)(._^4_) =

reduces to (X - C) ('x + -Vx - ^^ = 0.

C3 - c« 1(x-c)(x^.x^^-i) = 0.

/. C2(X3 + 3X+1) = X2(C='+3C+1),

and hence C^ (X + 1)=^ = X^ (C + 1)^.

Note 2. If AB, KL are overlapping segments the semicircles

on AB, LK will intei'sect at a point O. Let C, M be the centres,

and let the angle COM be 2^.

C K B M
Fig. 9.

Let AB = 2x, KL = 2y, CM = 2z.

Taking the triangle COM,

{x + i/ + z){x + y-z) AL . KB '
'

. ^. (— X + y + z)(x — y + z) BL.AK , ,

sin^ e = ^ ^—r-^ ~ = = {ALKBJ.
4icy AB.KL ^

^

Similarly cos- = {AKLB}, and we can get similarly sec^ ^,

cot'-^ 0, cosec^ 6 expressed as cross-ratios.

Corollary. If the circles are orthogonal {ABKL} = - 1.
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Theorem. If {AB, KL} - {ABLK}, then K, L either coincide

or are harmonically conjugate to AB.

1
For in this case c^^l, + 1.

17. Theorem. If A, B, K, L are four points in a straight

line, and S any point outside the line, and a line through A
parallel to SB cuts SK, SL at X, Y respectively, then

{AB, KL} = AX: AY.

From the similar triangles

AKX, BKS

AK: KB = AX : SB.

Similarly AL : LB ^^ AY : SB.

Moreover when K is between

A and B, AK : KB is positive, and

AX lies in the direction SB; but

when K is outside AB, on either

side, AX is opposite in direction

to SB : and similarly for AL : LB

and AY. Fig 10

Hence — :— — AX, AY in magnitude and sign.
KB LB

Problem. Given 3 points A, B, K, find L so that {ABKL} = c.

Theorem. The cross-ratio of four points is unaltered by

projection.

For, if four points A, B, K, L be projected from centre S into

points A', B', K', L' on A'B', we may draw AXY parallel to SB to cut

SK, SL at X, Y, and similarly A'X'Y' from A' (fig. 11).

Then AX : A'X' = SA : SA' = AY : A'Y',

.*. AX : AY = A'X' : AV,

/. {AB, KL} ={A'B', K'L'}.
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18. Thus if we have a pencil of four rays a, b, kj I at a point

S, any transvereal cuts them in a row of four points whose cross-

ratio is always the same : this value may be called the cross-

ratio of the pencil, and denoted by {abkl}. There are 24 cross-

ratios of four concurrent lines, dependent upon the order in which

they are taken, and these arrange themselves in sets of 4, having

r- : this follows by taking anyvalues c, 1 — c, - , 1 -
c

transversal.

Note. But if the transversal is parallel to I, cutting a, 6, k at

AK
A, B and K, then {abkl\ = .

KB

Note. If ak denotes the angle between a and k, due regard

being paid to sign, so that ka —— ak: and if ABKL is a transversal

of the pencil abkl at S such that SA = SB (fig. 12),
A

AK : SK =: sin aA; : sin SAK,

SK : KB = sin SBK : sin kb,

/V A
.'. AK : KB = sin aA;: sinA;6.
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Similarly

Projective Geometry

A
AL : LB =: sin al : sin lb.

A . A
sin ak sin al

.'. {a6A;Z} = {ABKL}
sin kh sin ^6

which shews the relation between the cross-ratio of four lines

forming a pencil, and the angles between the lines.

Fig. 12.

Exercise. Deduce theorems IV. and V. of page 10, for the case of a

harmonic pencil, i.e. when {ab'kl]= - 1.

Theorem. If {ahkl] ^ {ahlk]^ then k, I either coincide, or

are harmonically conjugate to a, h.

Corollary. If we have three lines a, b, k meeting at S we

can find a line I through S, such that {abkl} = a given quantity c.

Harmonic Properties of Quadrilaterals and Quadrangles.

Constructions.

19. Four straight lines, of which no three are concurrent,

form a quadrilateral or four-side : the lines intersect in 6 points

so that a four-side has three pairs of vertices [A, B ; C, D ; E, F] ;

the joins of these introduce three new lines, called diagonals

[AB, CD, EF], forming the diagonal triangle [klm].
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Theorem. If A, B are a pair of opposite intersections of a

four-side, the points K, L where AB is cut by the other two

diagonals are harmonically conjugate with respect to A and B.

Fig. 13.

Let diagonal CD cut AB at K, and diagonal EF cut AB at L and

CD at M.

Then, by projection from C,

{ABKL} = {EFML},

but, projecting from D back to the line AB we get

{EFML} = {BAKL} = {ABLK}
;

hence {ABKL} = {ABLK} ; and therefore, as K, L do not coincide,

they must be harmonically conjugate to A, B.

Corollary 1. If AB is parallel to EF so that L is at infinity,

AK = KB.

Corollary 2. The diagonals of a parallelogram bisect each

other.

Problem. To construct the harmonic conjugate of K, with

respect to A, B. Through K draw any line, and on it take any

two points C, D. Let AC, BD meet at E ; AD, BC at F ; and let

EF cut AB at L.

Then L is the required' point harmonically conjugate to K.

p. p. G. 2
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Problem. Given a line AB and

its middle point M, to draw a line

through any point O parallel to AB.

Join OA, OB, OM ; take any point

P on OM and draw through P lines

CD, EF meeting OA, OB at 0, E and

D, F respectively.

Then if OF, ED meet at K, OK is

the line required.

For, if OP cuts ED at L, since OP,

OF, DE are the diagonals of a four-side formed by OA, OB, CD, EF,

therefore {EDKL}=:— 1, hence the pencil OA, OB, OM, OK is

harmonic ; but the transversal AB is bisected at M, and therefore

OK is parallel to AB.

Problem. Through a point O lying between AB, AC draw a

line, such that O is the middle point of the segment cut off by

AB, AC.

A

Fig. 15.

Join AO and draw any line to cut AB, AC, AO at D, E, K;

take any point L on AK and let DL meet AC at F, EL meet AB

at G.
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Join FG, and let it cut DE at M.

Join AM and through O draw RS parallel to AM : this will be

the line required.

Taking the four-side AG, AF, LG, LF the diagonal DE is cut by

the diagonals AL, GF at K and M, hence {DEKM} = - 1.

Therefore the pencil AB, AC, AO, AM is harmonic, and RS is

drawn parallel to the ray AM. Hence RS is bisected at O.

20. Definition. Four points, no three of which are

coUinear, form a quadrangle or four-point. They can be joined

by six lines, so that a four-point has three pairs of sides; the inter-

sections of these six lines are the given four points, and three other

points, called diagonal points, forming the diagonal triad.

Thus, if P, Q, R, S are four points we get PR, QS ov a, b
;

PS, QR or c, d ; RS, PQ or e, /
the three pairs of sides ; and

U, V, W the intersections ab,

cd, ef forming the diagonal

triad. UV, UW, VW, are h, I, m.

Note 1. Just as the line

joining two points A, B is

represented by AB, so the in-

tersection of two lines a, b is

written ab.

Note 2. Compare this

notation with that for a four-

side, a corresponds to A, etc.

etc.

Theorem. At a diagonal point of a four-point the lines which

join it to the other two diagonal points are harmonically conjugate

with respect to the two sides which intersect there.

Proof 1. Adopting the notation of figure 16, let I or UW cut

RQ at H and PS at G. Then {a6^/} = {RQVH} on RQ, and also

equals {PSVG} on PS.

2—2
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But, projecting from W, {RQVH}= {e/mZ} ={SPVG}

;

and {SPVG} = {PSGV} = {a6^A;};

hence {ahkl] = {ablk}, and therefore each equals — 1.

Proof 2. If PQ meets UV at F, by the properties of a four-

side, W and F are harmonically conjugate to P and Q, hence the

lines UW and UF or UV are harmonically conjugate to UP and UQ.

Corollary 1. VW cuts PR, QR at the harmonic conjugates

of U with respect to P, R and Q, S respectively.

Corollary 2. The diagonals and diameters of a parallelogram

form a harmonic pencil.

Hence, also, by making the parallelogram a rectangle we
find, as before, that two lines and the bisectors of the angles

between them form a harmonic pencil.

Problem. To find the harmonic conjugate of SK with

respect to SA and SB.

Through any point K on SK draw any line to cut SA, SB at

P, Q respectively ; and another to cut them at R, S.

Then if PS, QR intersect at L, SL is the line required.

21. Theorem. If K', L', M', N' are the harmonic conjugates

of K, L, M, N with respect to A, B, then {K'L'M'N'} = {KLMN}.

For, if O is the middle point of AB, we have

0A2=0K.0K' = 0L.0L' = 0M . OM'=rON.ON';

u fu'^'KA^Ki'X
^'^' ^'^' OM'-OK' ON' -OK'

hence {K L M N } = —7-,
M'L' ' N'L'

~ OL' -OM' ' OL'-ON'
0A2 OA^ OA^ 0A2

OM OK ON OK
OA^ OA^ OA^ 0A2

OL OM OL ON
MK NK

KOM. OK ON.O
LM LN

NOL. OM OL.OI
MK
LM

NK
' LN

~
KM
"ML

*

KN^
NL ^

KLMN}.
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Corollary. If k', l\ m\ n' are the harmonic conjugates of

k, I, m, n with respect to a, i, then {k'l'm'n'} = {klmn}.

Definitions. The polar of a point K with respect to two
lines SA, SB is the harmonic conjugate SL of SK with respect to

SA and SB.

It is the locus of the harmonic conjugate of K on any line

through K with respect to the points in which that line cuts

SA, SB.

The pole of a line with respect to two points is the harmonic

conjugate with respect to those points of the intersection of their

join by the line.

If we take any point on the line and join it to the two

points, the harmonic conjugate of the line with respect to those

joins always passes through the pole of the line.

From the theorem just proved it follows that the cross-ratio

of any four lines forming a pencil is equal to the cross-ratio of

their four poles, and conversely.

EXAMPLES. I.

1. If M is the mid-point of AB and C any other point on the line, prove

that rect. AC . CB = MA'-J - MC2, whether C is in AB or AB produced.

2. If AB, CD are any two segments of the same straight line and M,
N their mid-points, prove that 4AC . BD=4MN2 - (AB - CD)2, and 4AD . BC
=4MN2-(AB + CD)2. Alsodeducethat AD.BC+BD.CA + CD.AB = 0.

a. Verify these results by numerical calculation when

(a) AB = 6, AC= 9, AD = 19; (h) AB= 60, AC= 30, AD= 22;

(c) AB = 20, AC =-14, AD= 6.

4. In each of the three cases given in the previous question find the

values of the ratios AC : CB, AD : DC and CB : BD.

6. In each of the three cases find the position of the harmonic conjugate

of D with respect to B and C.
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6. The bisectors of the interior and exterior angles at the vertex C of a

triangle ABC meet the base AB at K and L, and M is the mid-point of the

base AB ;
prove that MK . ML=MA2.

7. If K, L are two points in AB harmonically conjugate with respect to

AB, prove that A and B are harmonically conjugate with respect to K and L.

8. If A, B, K, L are four points in a straight line and AB = 4, AK = 6, find

the values of {ABKL} when AL has successively the values 1, 2, 3, 4, 5 and

6. Also find the values of {ABLK} and {AKBL} in each of the six cases.

9. Find the values of {ABKL}, {ABLK}, {AKBL}, {AKLB}, {ALBK}
and {ALKB} by direct calculation when AB = 6, AK = 5, AL= 10.

Shew that the equation whose roots are these six values can be written

36 (a;2 - a; + 1)3 = 343 {x^ - xf.

10. Given three points A, B, K on a straight line such that AB=:6,

AK= 4, find by a geometrical construction a point L on the line such that

{ABKL} =3.

11. From the harmonic properties of a complete four-side deduce that

the diagonals of a parallelogram bisect each other.

12. K, L are the mid-points of the sides AC, AB of the triangle ABC,
and BK, CL meet at G. Prove that AG bisects BC at M.

Also prove that KL bisects AM and deduce that KL trisects AG, and G
trisects AM.

13. Given two parallel straight lines AB and CD, bisect AB and CD by

the use of a ruler only.

14. A line AB is divided harmonically by P and P', by Q and Gl', and

by R and R'. Prove that {PP'QR} = {P'PQ'R'}.

15. If AP, BQ, CR are the tangents drawn to any circle from three

collinear points A, B, C, prove that

AP2 . BC-f BQa . CA + CR2. AB= - BC . CA . AB.

16. If O, A, B, C are collinear, prove that

1 1 1

(1) AB.AC BA.BC CA . CB '

m QA OB PC
^' AB.AC"*" BA.BC "^CA.CB""*
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17. If A, B, C, D, P, Q, R are collinear, prove that

m 1 11
'

/ An Ar>. An +

(2)

(3)

AB. ACAD ' BA.BC.BD ' CA. CB . CD ^ DA . DB . DC

PA PB PC PD
AB . AC . AD "*

BA . BC . BD ^ CA . CB . CD "^ DA . DB . DC

PA.QA PB.QB PC.QC PD . QD
AB . AC . AD "^ BA . BC . BD ^ CA . CB . CD "^ DA . DB . DC

PA . QA . RA PB.QB. RB PC . QC . RC PD. QD.RD _
^' ABTACTAD * BA . BC . BD "^ CA . CB . CD "^ da . DB . DC ~ "

18. Prove that S Pi^i > P2A1 .
P3A1

. ....^.Pn-tAi
^^^ ^^^ ^^^^^ ^^^^^

A1A2.A1A3 AiA„
li has any integral value from 2 to n - 1, and the value ( - 1)" when k is 1.



CHAPTEE II

INVOLUTION

22. A pair of points A, A' are in involution with two other

pairs B, B' and C, C i/{AA'BC} = {AA'C'B'}.

If this relation holds it follows that

AB AC' AC AB' . f,.,„^,i (*»/^„m /i\

Ako 4il4«;=4£l^,
(2).

A'B.A'B' A'C.A'C ^ '

Again {ABA'C} = {A'B'AC}
;

, AA' C'B AB' A'C , AB' BC' CA' , ._,
^"^^" ^-AC'-A^AC^'^^' •• ^-^^A-^^-^ •(^)-

Hence

BB' BC' ^ B;b b;C
{bAB'C'} = {B'A'BC},

B'A C'A BA' CA" ^ ^ ^
^'

and /. {BB'AC'} = {BB'CA'}, i.e. B, B' are in involution with the

two pairs A, A' ; C, C'. Similarly C, C' are in involution with

A, A'; B, B' ....(4).

If we divide AA' at O, such that

, AB . AB' AC . AC'
OA : OA = —, J-, = ; r—,

,

A'B. AB' A'C. A'C"

then OA.OA' = OB. OB' = OC. OC (5).
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For {AA'BO}=-—

7

{ABA'O} = 1
A'B' AA'

AB' ' * ' AB' ~AB''

.-. AO : OB = AB' : A'B = AO - AB' : OB - A'B = B'O : OA',

.'. OA . OA' = OB . OB', e< similiter.

Conversely. If OA . OA' = OB . OB' = OC. OC', then A, A'

;

B, B' ; C, C' are in involution (6).

For OA : OB = OB' : OA' = AB' : BA',

~ A'B * A'B AB'

'

{AA'BOJ = 1-
AA'

'ab'
~

A'B'

AB'

AO AB AB' AB. AB'

A'O BA'
*

A'B'
~
A'B. A'B'

AO AC AC'

A'O ~ A'C A'C
•

AB. AB' AC. AC

Similarly

Hence .. -/«/ — -/^ «/rN'>A B . A B AC .AC

and therefore A, A' ; B, B' ; C, C' are in involution.

23. Theorem. If A, A'; B, B'; C, C' form an involution on

a line, and S is any point outside the line, then a line through

S

Fig. 17.
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A parallel to SA' will cut SB, SB', SC, SC' at points K, K', L, L'

respectively, so that AK . AK' equals AL . AL'.

And, conversely

:

For AK : AL = {AA'BC},

and AK' : AL' = {AA'B'C'}.

But {AA'BC} =- {A'AB'C'},

.'. AK : AL = AL' : AK',

.•. AK. AK' = AL. AL'.

And, conversely, if

AK. AK' = AL. AL',

then AK : AL =: AL' : AK',

.*. {AA'BC} = {A'AB'C},

and hence A, A' ; B, B' ; C, C' are in involution.

Corollary. The projection of an involution is an involution.

(Cf. the proof in § 17 that a cross-ratio is unaltered by

projection.)

Definition. Three pairs of straight lines through a point

form an involution if any transversal cuts them in an involution.

1. li a, a' ; b, h' ; c, c' form a pencil in involution,

{aa'bc} = {aa'c'b'} and {aa'bc'} = {aa'cb'}.

2. If {abcd} = {a'b'cd'} and {abed'} = {ab'c'd],

then aa, bb\ cc' form an involution.

3. The pairs of harmonic conjugates to two lines form an

involution.
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24. Theorem. The three pairs of joins offour points cut

any transversal in an involution.

For if a transversal cuts PQ, RS at A, A' ; PR, QS at B, B'

;

PS, QR at C, C' respectively, and PQ, RS intersect at T :

projecting from P we get

{AA'BC} - {TA'RS}
;

and projecting from Q we get

{TA'RS} = {AA'C'B'}

;

hence {AA'BC} = {AA'C'B'},

i.e. AA', BB', CC' are in involution.

A^

Problem. Given five points A, A', B, B', C in a line, to find

C' such that AA', BB', CC' form an involution.

25. Theorem. If AA', BB', CC' form an involution, and

DD' are another pair of points such that {ABCD} = {a'B'C'D'}, then

DD' form an involution with any two of the other three pairs:

and conversely.

AC AD A^' A^'
^^ CB " DB ~C^' ' D^"

but {ABCA'} - {A'B'C'A},

AC AA' _ A^' A^
• * CB * a7b ~ c^' ab"

'
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AD AA' _ A'D' A'A
* * DB * A^ ~ D^' ' AB^

'

i.e. {ABDA'} = {A'B'D'A},

i.e. DD' are in involution with AA' and BB'.

Corollary. If O is the centre of the involution

OD . OD' = OA . OA' = OB . OB' = 00 . OC'.

Corollary. If DD' are in involution with AA' and BB', they

are also in involution with AA' and 00'.

Rows in involution. In any straight line containing AA'

and BB' we may take O, D, E,... and find conjugate points

O', D', E',..- so that 00', DD', EE' are severally in involution with

AA' and BB'. [For if O is the centre of AA', BB' we have only to

make OO' . OO = OA' . OA, etc.] Thus we get a continuous double

row of points, of which (by the above theorem and its corollary)

any three pairs of points are in involution.

If OA . OA' is positive, there will be two points X, Y such that

OX^ = OY^ = OA . OA'; thus X is conjugate to itself, so also is Y.

These double points X, Y are called the foci of the involution.

Since OX^ = OA . OA', it follows that A, A' are harmonic

conjugates to X, Y.

Pencils in involution may similarly be obtained.

26. Problem. Given two pairs of points (AA', BB') on a

line, to construct the centre of their involution ; the double points

{if any) ; and the conjugate of any point O'.

Take any point G and construct the circles AG A', BGB'.

If these circles have a common tangent at G cutting the line

at O, then OG^ = OA . OA' = OB . OB' ; hence O is the centre of the

involution ; the double points are X, Y where OX = OY = OG ; and

a circle touching OG at G and passing through O cuts the line at

O' such that 00 . 00' = OGl
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But if not, the circles intersect again at some point H ; let

GH cut the line at O.

Then OG . OH = OA . OA' = OB . OB' : hence O is the centre of

the involution ; if O lies in GH produced, the power is positive

Fig. 19.

and the double points are X, Y where OX = OY = the tangent from

O to either circle; also the circle GHC cuts the line at C' the

conjugate of C, for 00 . OC' =: OG . OH.

Fig. 20.
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27. Corollary. If the power is positive either BB' both

lie on the other side of O from AA', or if on the same side and

OB>OA, OB'<OA'.

Hence one of the segments AA', BB' lies entirely without or

entirely within the other.

But if the power is negative let A, B be on the same side

of O and OB<OA, then OB'>OA' in absolute length, hence the

segments AA', bb' overlap.

Otherwise. If A and A' are both outside the segment BB',

in passing along the arc AG A' from A we enter the circle BGB' at G,

and we must cross it again before reaching A', hence G, H lie on the

same side of the line and the power is positive. But if AA' over-

laps BB' we must cross the circle BGB' on each side of the line to

get from A to A' ; G, H lie on opposite sides of the line, and the

power is negative.

Exercise. The locus of the centre of the involution determined on any

straight line cutting two circles by the pairs of points of section is the

radical axis.

Fig. 21.
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28. Problem. Given two independent rows in involution

on the same line to find a common pair of conjugate points.

Let O, O' be the centres, take any point G not on the line, and

on OG, O'G find points H, H' such that OG . OH and O'G . O'H' are

equal to the powers of the respective rows. The circle GHH' will

cut 00' at the required points P, Q.

For OP . OQ = OG . OH and OP . O'Q ^ OG . O'H'.

If the power for O is negative, G, H lie on opposite sides of the

line, and the circle GHH' must cut the line, whether the power

for O' is positive or negative.

If both powers are positive let D, E and D', E' be the (real)

double points of the two involutions : the required points are

harmonically conjugate to DE and to D'E', hence they are the

double points of the involution given by DE, D'E'.

They are real or imaginary according as segments DE, D'E' do

not or do overlap.

29. Problem. Given five rays a, a', 6, 6', c through a centre

S, to find a sixth ray c such that aa'hh'cc' may be in involution.

We wish to have [aa'hc] = {a'ah'c']

and .'. {aa'bc] = {aac'b'].

Fin. 22.
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We shall then find a pencil at another centre which is in

perspective with both of these.

Draw any two lines through a point A' on a\ one cutting

a, 6, c at G, B, C, the other cutting a, h' at F, B'.

Join CB' to cut a at A
;
join AB cutting A'F at C'; then SC' is

the ray required.

For {aa'hc\ is in perspective with A {GA'BC}, i.e. A{FA'C'B'}

which is in perspective with \aAji!c'h'\.

Or : {(w!hc\ = {GA'BC} = {FA'C'B'} (by projection from A),

= {aa:c'h'\ = {a:ah'c'\.

Theorem. The lines joining any 'point to the three 'pairs

of vertices of a {complete) four-side are in involution.

For, if the lines AB, AB' cut A'B, A'B' at B, C, C', B' so that

A, a' ; B, B' j C, C are opposite vertices, we have the pencil

{SA, SA', SB, SC} which we may write S {AA'BC} equal on BC to

the row {GA'BC} where SA cuts BC at G ; and, by projection from

A, this row = {FA'B'C'} = pencil S {AA'C'B'} - S {A'AB'C}, hence

SA, SA' ; SB, SB' ; SC, SC' are in involution.

30. Problem. Two pairs of lines a, a! \ b, 5' pass through

Fig. 23.
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the point S, to draw two lines through S in involution with ct, a'

and 6, V and perpendicular to each other.

Draw a line parallel to a', to cut a, 6, h' at A, B, B' respec-

tively, and construct the circle SBB', cutting a again at T.

Let the perpendicular bisector of ST cut BB' at M, and construct

a circle with M as centre passing through S and T.

If this circle cuts BB' at O and O', SO and SO' are the required

lines.

For AO. AO' = AS. AT = AB. AB'.

.'. SO, SO' are in involution with a, a', 6, h'

.

Also OSO', being the angle in a semicircle, is a right angle.

31. Theorem. If, in a pencil in involution, there are two

pairs of conjugate rays each consisting of two lines at right

angles to each other, then every ray is perpendicular to its

conjugate.

<

b/

> a'

c/ A \\^-.B'

^
n

a \^
>

Fig. 24. .

Let a be perpendicular to its conjugate a\ and h to its con-

jugate 6'.

Draw a line parallel to a' to cut a, 6, h' at A, B, B' respectively

:

and let this line cut any other conjugate rays c, c' at 0, C'.

A lies between B, B' and BSB' is a right angle,

.'. AB.AB' = -ASl

But AC . AC' = AB . AB' (§ 23),

is a right angle,

p. p. G.

AC . AC' =- ASl hence CSC'
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Corollary. If a right angle be turned about its vertex its

arms cut any transversal in an involution.

Theorem. The middle points of the diagonals of a four-side

are collinear.

Let AA', BB', CC' be the three pairs of opposite vertices.

Construct circles on AA', BB' as diameters intersecting at S
;

then in the involution S {AA'BB'CC'} two pairs of rays SA, SA'

;

SB, SB' are perpendicular, hence SC, SC' are also perpendicular,

and hence S lies on the circle whose diameter is CC'.

Similarly T the other intersection of the two former circles

lies also on this circle. Hence the three circles are coaxal, and

therefore their centres, i.e. the middle points of AA', BB', CC', are

collinear,

32. There is no single ray corresponding to the centre of

a linear involution, but the pair of perpendicular rays possess

similar properties.

s

^
o'

a\ ^"^^^^^^^
A B

Fig. 25.

B' fil

Thus, if 0, o' are lines at right angles in involution with

aa' and bh\ and we draw a line parallel to o to cut o, a, a',

b, h' at O, A, A', B, B' we have OA . OA' = OB . OB', but SO is

perpendicular to OA,

A A A A^

tan oa . tan oa = tan ob . tan ob .

Conversely. If tan oa . tan oa = tan ob . tan ob , then a, a

and 6, b' are in involution with o and a line perpendicular to o.
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Double rays. There will be two double or focal rays a?, y
^ A A A

such that tan'^ ox = tan^ oy = tan oa . tan oa' ; and these will be
1 • • 1- A A

real or imaginary according as tan oa . tan oa is positive or

negative.

By a proof similar to that of § 27, or by deduction from the

result of § 27, we may shew that the double rays are real or

imaginary according as the angle between a, a' does not or does

overlap the angle between b and b'.

EXAMPLES. 11.

1. If A, A'; B, B'; C, C form an involution, and D, D' are in involu-

tion with A, A' and B, B', prove that they are also in involution with A, A',

C, C, and with B, B', C, C.

2. If {ABCD} = {A'B'C'D'} and {ABCD'} = {A'B'C'D}, then the three

pairs of points A, A'; B, B'; C, C form an involution. Also D, D' are

a pair of points in involution with any two of the other three pairs.

3. Three pairs of harmonic conjugates to two given points on a straight

line form an involution.

4. Any straight line cuts three circles passing through the same two

points in an involution.

5. A transversal cuts a system of coaxal circles in pairs of points in

involution. Find, also, the centre and the double points of the involution.

6. If the circles of a coaxal system do not cut their radical axis the

double points of the involution traced on the Une of centres are the point

circles of the system.

7. If the coaxal circles have a real common chord find the position of

the double points of the involution on the line through the centres of the

circles, and the value of the power.

8. The opposite pairs of sides of a parallelogram, and the two diagonals

cut any transversal in the pairs of points A, A'; B, B'; C, C; prove, by

. similar triangles, that {ABCC'} = {B'A'CC}, and deduce that AA', BB', CC
form an involution,

3—2
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9. A, B, C, D, E, ... and A', B', C, D', E', ... are two sets of points in a

straight line such that the cross-ratio of any four points of the first set

equals the cross-ratio of the four corresponding points of the second set, e.g.

{ABCD} = {A'B'C'D'}, and this remains true when a pair of the points are

exchanged, viz. {ABCD'} = {A'B'C'D},etc.,provethat A, A'; B, B'; C, C';...

are pairs of points in involution.

10. Any transversal is cut by the sides BC, CA, AB of a triangle at

L, M, N respectively; and L', M', N' are three other points on the trans-

versal, such that L, L'; M, M'; N, N' form an involution. Prove that AL',

BM', CN' are concurrent.

11. The cross-ratio of four points ABCD on one line is equal to that

of A'B'C'D' on another line; and A'B'C'D' are projected on to the first line,

using the intersection of AB' and A'B as centre of projection. Prove that

an involution is obtained.



CHAPTER III

PROJECTIVE ROWS AND PENCILS

33. Two rows of points A, B, C, D, E, F, ... on a, and A', B',

C, D', E', F', ... on a are in perspective if AA', BB', CC', etc.

all pass through the same point S ; and S is the centre of

perspective.

It has been proved that {ABCD} = {A'b'C'd'}, etc.

Problem. If ABC on a are not in perspective with A'B'C' on
a', to find a point D' on a corresponding to D on a, such that

{A'B'C'D'} = {ABCD}.

q;^

Fig. 26.
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Join BB' cutting AA' at S, and CC' cutting AA' at T.

Let CB' cut AA' at P and SD at Q, then TQ will cut A'B' at

the required point D'.

For, by projection from S, {ABCD} = {PB'CQ} and, by

projection from T, {PB'CQ} = {A'B'C'D'}.

Exercise. Find another solution by converting the ratio {ABCD} into

the ratio AK : AL, as in the proof that a cross-ratio is projective (§ 17).

Theorem. If we take A, B, C on a and A', B', C' on a, and

find K', L', M', N' on a' corresponding to K, L, M, N on a, so that

{ABCK} = {A'B'C'K'}, etc., etc., etc., then shall

{KLMN}^{K'L'M'N'}.

For K, L, M, N are in perspective with four points on CB', and

these points are in perspective again with K', L', M', N' respectively.

Definition. Two rows of points such that the cross-ratio of

any four points of one is equal to the cross-ratio of the four

corresponding points of the other are called projective rows.

Definition. If AC : CB = A'C' : C'B', then AK : KB = A'K' : K'B',

and KL : LM = K'L' : L'M' ; in this case the rows are said to be

similar.

34. Problem. To find a third row in perspective with each

of two given projective rows.

Fig. 27.
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Let KLMN correspond to K'L'M'N', take aw?/ point E, and let

EL, EL' meet KK' at S, S' ; let SM, S'M' meet at F.

Then, if EF meets KK' at D, and SN at G, we have

{KLMN} = {DEFG} = {K'L'M'N'},

hence S'O cuts K'L' at N' : and therefore the row on EF is in

perspective with the rows on KL and on K'L'.

There are an infinite number of positions of the line EF.

Note. This is a solution of the previous problem, the solution

using CB' being a special case of the general construction here

given.

If the two lines a, a' intersect at O, we shall find a point P' on

a' such that {ABCO} = {A'B'C'P'}, so that O regarded as a point on

the first row corresponds to some other point P' on the second

row, but when we take O to be a point of the second row we get

some other point N on the first row.

35. Theorem. If two projective rows are such that the

intersection corresponds to itself the rows are in perspective.

Let the intersection O correspond to itself, also A, B, K to

A', B', K'. Join AA', BB' intersecting at S.

Then pencil S {OABK} = {OABK}= {OA'B'K'}, hence SK passes

through K' ; hence and similarly the join of any pair of corre-

sponding points passes through S.

Therefore the rows are in perspective with S as centre.

Theorem. If the joins of three pairs of corresponding

points of two projective rows are concurrent, the rows are in

perspective.

For, if AA', BB', CC' meet at S ; and K is any other point on

AB. Then SK meets A'B' at K", so that {A'B'C'K"} = {ABCK}.

Hence K" coincides with the point K' on A'B', corresponding to

K on AB ; i.e. KK' passes through S.
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36. Projective axis of two rows. If projective rows be

taken on two straight lines which intersect at P, then P is a point

of both rows. Let P on the first row correspond to B' on the

second, and let A on the first correspond to P on the second.

Take any two points K, L of the first row, and the corre-

sponding points K', L' of the second, so that {APKL} = {PB'K'L'}.

But {PB'K'L'} = {B'PL'K'}, hence {APKL}= {B'PL'K'}, and these

are equal cross-ratios on two lines, with the intersection P corre-

sponding to itself, hence they are in perspective,

.'. KL', K'L intersect on AB'.

Hence, if K, L on one row correspond to K', L' on a projective

row, the locus of the intersection of KL' and K'L is a fixed

straight line, which we may call the projective axis of the two

rows.

37. Vanishing Points. If we have three points A, B, C

on a, and corresponding points A', B', C' on a, we can find a point

r on a such that {A'B'C'I'} =- AC : CB.

Take any point E (fig. 28) and let EB, EB' meet AA' at

S, S' ; and let SC, S'C' meet at F. Draw SK parallel to AB

to meet EF at K, let S'K cut A'B' at I'. Let EF cut AA' at D.

Then {A'B'C'I'} = {DEFK}, which is the cross-ratio of the pencil

formed at S by SA, SB, SC, SK.

But SK is parallel to the transversal AB, hence the cross-ratio

of S {ABCK} = — AC/CB. .*. a point l' is found such that

{A'B'C'I'} -:-AC/CB.

There is no finite point I on AB, such that {ABCI} = — AC/CB,

and /We may say either that I' is the one point of a' to which there

is lio point of a to correspond, or that I' corresponds to a point

at infinity on a (such that AI:IB = -1). l' is called the

vanishing point.

Similarly we get a vanishing point J on a, corresponding

to the point at infinity T on a.



Pi'ojective Rows and Pencils 41

Corollary. In the case of similar rows this construction

fails. For A'C' : C'B' = AC : CB.

.*. the cross-ratio of S' {DEFK} = — A'C' : C'B'.

.*. A'B' is parallel to S'K, and I' is at infinity.

Hence the vanishing points of two similar rows are at

infinity.

38. Theorem. The product of the distances of corre-

sponding points from the vanishing points is constant.

Fig. 28.

If SK parallel to AB cuts EF at K, S'L parallel to A'B' cuts EF

at L ; we have
AJ

[dekU=-1
BJ'

and
A'l'

[DEKL} = -p^.
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Hence
JA I'A'

= 1,
JB IB'

or JB. I'B'^^JA. I'A';

similarly JC . I'C' = JA . I'A'

;

and generally if P corresponds to P', we have JP . I'P' = JA . I'A'

Special case. When the rows

are in perspective ; SJ is parallel to

A'B' and SI' to AB. Hence, O being

the intersection of the rows,

JA : JS = I'S : I'A',

.'. JA. l'A' = ro.JO,

similarly

JO . ro = JB. rB' = JP. I'P'.

Algebraically. Let o, A, B, c, X

correspond to O', A', B', C', X', let

OA = a, OB = 6, OC = c, OX=x;

0'A' = a', 0'B' = 6', 0'C'=c', O'X'

x — a

b — c ' b — X

c —a

x — a
, where A.

X -a

a c' — a'

b-x~'"b'-x" '^ " b-c ' b'-c"

XX (l -X)-x (b' — Xo!) — x' {a — \b) + ab' - a'b = 0,

ocx' + I'x + Ix! + W = ^,

{x + l){x^ vV) = k,

If OJ - - ? and O'l'.= - 1\ then JX . I'X' = h.

Also when X' is at infinity JX is o, hence J is the point which

corresponds to the point at infinity of A'B': similarly I' corresponds

to the point at infinity on AB.

or

or
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39. Pencils. When two pencils are formed by joining the

various points of a line to two vertices, i.e. when intersections

of corresponding rays are collinear, the pencils are said to be

in perspective, and the line of intersection is the axis of

perspective.

The cross-ratio of four rays of one pencil equals the cross-ratio

of the four rays corresponding in the other, being the cross-ratio

of the four points in which they cut the axis.

Problem. Given three lines a, 6, c through S, and three

lines a', h\ c through S', such that aa\ hh\ cc are not collinear

points, to construct a line V through S' corresponding to I

through S, such that {ab'c'l'} = {abcl}.

Fig. 30.

Let aa! intersect at A, through A draw any line cutting 6, c, I

at B, C, L ; and any line cutting h\ c' at B', C'. Let BB', CC' meet
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at O, join OL to cut AB' at L'. Then S'L' is the required ray V.

For [ahcl] = {ABCL} and {a'b'c'l'} = {AB'C'L'}, but, by projection

from O, we have {ABCL} = {AB'C'L'}.

Corollary. Take any four lines k, I, m, n through S, and

the points K, L, M, N where they cut AB, from centre O project

these on AB' giving K'L'M'N' ; and thus, by joining K'L'M'N' to

S', get rays k'l'mn' through S' corresponding to klmn. Then

{klmn} = {KLMt^} and {^7'mV} = {k'L'M'N'} ; but, by projection

from O, {KLMN} = {K'L'M'N'}.

Hence the cross-ratio of any four rays through S equals the

cross-ratio of the corresponding rays through S'.

Definition. Two pencils, such that the cross-ratio of any

four rays of the one is equal to that of the corresponding rays of

the other, are called projective pencils.

Corollary. From the above construction it follows that,

when two pencils are projective, we can, in an infinite number of

ways, find a third pencil which is in perspective with each of

them.

40. Theorem. If the line SS' regarded as a ray of the

pencil at S corresponds to the same line in the pencil at S', the

rows are in perspective.

Let SS' be x through S, and x' through S', and let a,

b through S meet a', b' through S' at A, B.
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Join AB cutting SS' at X, and let c through S cut AB at C.

Then {a&ca;}-{ABCX}.

But S'A is a' ; S'B is h' ; S'X is x' ; hence S'C is c ] i.e. any

two corresponding rays c, c' intersect on AB.

Theorem. If the intersections of three pairs of corre-

sponding rays are collinear the pencils are in perspective.

For if «, 6, c meet a, b', c on the line ABC cutting SS' at X,

we have {abcx\ = {ABCX} = {a'b'cx\ : so that SS' corresponds

to S'S.

Corresponding Pairs of Perpendicular Rays.

41. Problem. In two pencils in perspective to find a pair

of perpendicular rays of the one, such that the corresponding rays

of the other are also perpendicular.

Let S, S' be the vertices of the pencils and /the axis. Bisect

SS' at right angles by a line meeting / at O, and make a circle

with O as centre and OS as radius (which will pass through S'),

cutting/ at I, J.

Then SI, SJ are perpendicular, and so also are the correspond-

ing rays S'l, S'J. If SS' is perpendicular to / SS' and SI, S'l'

perpendicular to SS' give the solution. There is only one

solution of the problem in any case.

Problem. In two projective pencils to find the pair of per-

pendicular rays of the one such that the corresponding rays of

the other are also perpendicular.



46 Projective Geometry

Let S, S' be the vertices, and let the ray at S' corresponding

to SS' at S be S'T ; turn the S' pencil round S' as a centre until

S'T is in a straight line with SS'. The two pencils will then be

in perspective, and the solution may be found by using the

previous problem.

Theorem. If ij are perpendicular rays at S corresponding

to perpendicular rays i'j' at S', and x, x are any other pair of rays,

and if we draw lines parallel respectively to i and j' cutting j, x

at J, X and ^' x' at r, X', the value of JX . I'X' is constant.

Fig. 33.

Let any fixed corresponding rays tt, a cut these lines at A, A'.

Then {axji] = JA : JX and {ax'j'i'} = I'X' : I'A'; hence

JX . I'X' == JA . I'A' = constant.

42. (Trigonometrical.) Let rays abcx at S make angles

a, j8, y, 6 with a line through S, and tlie corresponding rays

a'b'c'x at S' make angles a', ^', y', 6' with a line through S'.

Then

A , A
sin ax sin ac

A • ^ A — A • ^ ^
f*

sin xb sin cb sin x'b' sin c'b

sin 6 —

a

sin 6'

sin 13 -6 sin^'-^'
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i.e. sin ^ — a sin 6' -^' = k, sin 6' - a . sin 6- ^,

:. (tan 6- tan a) (tan ^'- tan p') = k. (tan 6'- tan a') (tan 6- tan yS),

hence tan B . tan ^' + I tan ^' + ^' tan ^ + m = 0.

Corollary. This may be written

(tan 6 + tan X) (tan 6' + tan V) = c (1 - tan 6 tan A.) (1 - tan ^'tan X'),

1 — c tan X tan A.' tan X' + c tan X tan X + c tan X'

where
\

~
V I

tan X . tan X' — c

three equations which determine X, X' and c.

Hence tan (^ + X) . tan {$' + X') = c.

If we measure the angles ^, 6' from another pair of lines

through S, S' at angles X, X' to those originally used, this becomes

tan </> . tan <j> — c.

Further, when <^ = | ,
<^' = ; when <^ = 0, <^' = ^ • ^^^ *^^* i^

i, / are the lines through S, S' from which the angles <^, <f>
are

measured ; the line at S' corresponding to i is a line i' perpen-

dicular to/ ; while/ corresponds to a line j at S perpendicular to i.

Hence we have two rays ij at S at right angles to each other,

and their corresponding rays i'j' at S' are also perpendicular : and

if a;, x' make angles <^, <^' with i and J' we have tan <^ . tan
<f>
= c.

43. Desargues' Theorem. If two triangles have the lines

joining corresponding vertices concurrent, then the intersections

of corresponding sides are collinear.

Let ABC, DEF be two triangles having AD, BE, CF meeting at O

:

and let BC, EF meet at K; CA, FD at L; AB, DE at M. Let KL

cut OA, OB, OC at R, S, T respectively.



48 Projective Geometry

Then, by projection from K, we have {BESO}= {CFTO} ; and,

by projection from L, we have {ADRO} = {CFTO} ; hence

{BESO} = {ADRO},

and these projective rows have a common homologous point O,

hence BA, ED, RS are concurrent ; but BA, ED meet at M, hence

M lies on RS, i.e. is collinear with K and L.

Fig. 34.

Conversely. If the points K, L, M of intersection of BC, EF

;

CA, FD ; AB, DE are collinear the joins AD, BE, CF are concurrent.

Let BE, CF meet at O.

Join OK, OL, OM.

Then the pencil MB, ME, MK, MO is in perspective with KB,

KE, KM, KO ] which is in perspective with LC, LF, LM, LO.

Hence MA, MD, ML, MO is projective with LA, LD, LM, LO;

two projective pencils in which the ray ML corresponds to ML,

hence they are in perspective, i.e. A, D, O are collinear.

44. Two triangles whose corresponding sides meet in three

points lying on a straight line s, and whose corresponding
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vertices are joined by three straight lines which meet at a poinfr

S, are said to be in homology or in plane perspective : s is thfr

centre, and s the axis of homology.

Two sets of points in a plane are homologous if the joins of

corresponding points are concurrent ; and then the line joining

two points of the one set meets the line joining the corresponding

points of the other set on a fixed axis of homology.

Fig. 35.

Conversely, two sets of points are in homology if the inter-

sections of all possible joins of the one set, with corresponding

joins of the other set, are collinear, by Desargues' Theorem.

Similarly, two sets of lines are homologous if the intersections

of corresponding lines are collinear; and then the join of the

intersections of two lines of the first set to the intersection of

the corresponding lines of the second set passes through a fixed

p. p. Q. 4
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centre of homology. Conversely, if two sets of lines are such that

every possible intersection of two lines of the first set, and the

corresponding intersection of the second set, are collinear with

a fixed point, then the two sets of lines are in homology, by

Desargues' Theorem.

The extension of Desargues' Theorem to rectilinear figures

requires care. Thus if we have two sets of points A, B, C, D and

A', B', C', D' such that AB, A'B' j BC, B'C'; CD, C'D'j DA, D'A' meefc

at four collinear points, the figures are not generally in homology.

In fact, if AB, BC, CD, DA cut s at K, L, M, N we might turn C'D'

round M without altering the position of A', B' and only in one

position would CC' pass through the intersection of AA' and BB'.

45. Theorem. If A, B, C, D and A', B', C', D' are two sets

of four-points such that the five intersections of corresponding

sides AB, A'B' ; AC, A'C' ; AD, A'D' ; BC, B'C' ; BD, B'D' lie on a

straight line, then the sixth intersection, viz. of CD, C'D', will lie

on the same straight line.

For, by Desargues' Theorem, the triangles ABC, A'B'C' are in

homology ; and also ABD, A'B'D'.

Hence AA', BB', CC', DD' are concurrent.
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Hence triangles ACD, A'C'D' are in homology, and therefore

the intersection of CD, C'd' is collinear with the intersections of

AC, ^'C' and AD, A'D'.

Problem. Given five points K, K', L, L', M on a straight line

to find the sixth point M' such that, if a pair of opposite sides of

a four-point pass through K, K', and a second pair through L, L',

the third pair may pass through M, M'.

Join any point A to K, L, M ; on AM take any point B and join

to K', L'. Let BK' cut AL at C, and BL' cut AK at D : then CD
will cut the line KK' at the required point M'.

The preceding theorem shews that when K, K', L, L', M are

given the position of M' is fixed, i.e. we should get the same

point M', wherever we placed the point A.

Corollary. Using A, B successively as centres of projection,

we have

{KLMM'} = {DCGM'} = {L'K'MM'}
;

hence {KLMM'} = {K'l'M'M}.

Exercise 1. Consider the special case in which K, K' and also L, L'

coincide.

4—2
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Exercise 2. State and prove the corresponding theorem and problem

relating to two sets of four lines, and the six joins of the corresponding

vertices.

Projective Rows on the same straight line.

46. We may take on the same straight line two sets of

three points A, B, C ; A', B', C' and to any point K find a corre-

sponding point K' such that {ABCK} = {A'B'C'K'}.

To construct the point K' we take any other line and from

centre S project A, B, C on this line, giving P, Q, R.

Also project K giving U.

Now taking PQRU find K' on the original line such that

{PQRU} = {A'B'C'K'} by the construction of § 30.

Then {ABCK} = {PQRU} = {A'B'C'K'}.

From the construction referred to (§ 30) we find that if U, V,

W, X are four successive positions of U (projections of K, L, M, N),

giving positions K', L', M', N' for K', then {K'L'M'N'} = {UVWX}.
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But, by projection, {UVWX} = {KLMN}

;

hence {K'L'M'N'} = {KLMN}.

47. There is one position Y of U which corresponds to no

finite position on A'B', and if the projection of this on AB is J, we
have {ABCJ} = - A'C' : C'B'.

Similarly, if we draw ST parallel to the line to cut PQ at T,

and {PQRT} = {A'B'C'r}, then T corresponds to no finite point of

the A, B, C row.

Also {A'B'C'I'} = {PQRT} which is the cross-ratio of a pencil

whose vertex is S formed by SP, SQ, SR, ST, and AB is parallel

to one ray of this pencil, and hence {PQRT} = — AC : CB.

Hence {A'b'C'i'} = - AC : CB.

J and r are the vanishing points of the two rows.

T. , . .
A'C , JA AC A'C'

Further {ABCJ| = - -7-7 : hence 77: = ;r^ -^
;;77v >* ^ CB^ JB CB CB '

, , , , n AC , I'B' AC A'C'
also {A B C I } ^ - -— : hence Tr:-, = tt^^ ^^i^, ;

I ' CB I A CB CB

and .-. —=',-,, or JB. I'B'- JA.I'A'.
JB I A

Similarly, if K, K' are corresponding points of the two rows,

JK . I'K' = JA . I'A', i.e. is a constant k.

This constant k is called the power of the rows.

Double points. If possible let E be a double point, i.e.

a point such that {ABCE} = {A'B'C'E}, so that the point of the

second row corresponding to E on the first row is the point E

itself. Let O be the middle point of TJ.

Then JE . I'E = JA . l'A = A;. But JE . I'E = OE^- OJ^ (Euc. II.

5, 6).

.'. OE^ = k + OJ\
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Hence, if (k + OJ^) is positive, there are two real double points

E, F equally distant flom O

;

if A; = — OJ2, the two double points coincide at O
;

if A;<— OJ^, the double points are imaginary.

48. Problem. From the vanishing points J, I', and a pair of

corresponding points A, A' to construct the point corresponding to

any point K.

Fig. 39.

At J erect a perpendicular JQ equal to JA, and at T a perpen-

dicular I'Q' equal to I'A', placing them on opposite sides of the line

if JA, I'A' is positive, but on the same side if negative. On QlQl

as diameter make a circle. Join QK cutting the circle in U, then

UQ' cuts the line at the required point K'.

For the angle QUQ' being the angle in a semicircle is a right

angle: hence UKl' is the supplement of UQ'I'.

Hence QKJ = I'Q'k', and so the triangles QJK, K'l'Q' are similar,

viz. JK:JQ= I'Q': I'K',

and .'. JK.I'K'-JQ. I'Q' = JA. I'A'.

Further, if QJ, Q'l' cut the circle again at R, S respectively,

in the first case,

(1) when JK is negative, U lies in semicircle RQS, hence K'

lies to the left of I', and I'k' is negative

;
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(2) when JK is positive, U lies in semicircle RQ'S, hence I'K'

is positive.

So that in all cases JK . I'K' is positive.

A similar investigation will shew that, in case (2), JK. I'K' is

always negative.

Corollary. The double points are the points at which the

circle cuts the line.

Theorem. If two lines turn about a common point, so that

they include a constant angle, i.e. so that the lines turn always

through equal angles in the same direction, they trace out two

equiangular pencils ; hence they trace two projective rows on any

straight line.

Also, if the two straight lines turn in opposite directions

always through equal angles, they trace out two projective rows

on any straight line.

49. Problem. To find, if possible, a row which is in per-

spective with both the A, B, C and A', B', C' rows.

If the new row is on a line cutting the line containing the

rows at X, then X on tlie new row must correspond to itself

regarded as a point of either the A, B, C or A', B', C' rows. [For

the intersection of two rows in perspective corresponds to itself.]

Hence X must be at one of the double points E, F of the rows.

If, then, through E or F we draw any straight line, and project

the A, B, C row on this line, so that A, B, C project into K, L, M,

then {ABCE} = {KLME}, but {ABCE} = {A'B'C'E} :

hence {A'B'C'E} = {KLME}, and therefore A'K, B'L, C'M are collinear,

and hence rows K, L, M ..., A', B', C'... are in perspective.

50. Two projective pencils with a common vertex

may be drawn by taking two corresponding sets of three lines

a, 6, c and a', b', c'. There will be one pair of rays ^, j at right
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angles in the first set, whose corresponding rays ^', / are also per-

pendicular; and if on ^' and j we take unit distances ST and SJ

and draw through I' and J lines parallel to / and i respectively

to cut k' and Jc at K' and K, then JK . I'k' is constant.

Fig. 40.

Trigonometrically. Tan JSK . tan I'SK' = constant k.

Let JSO = OSl' = a; OSK = ^; OSK' = <^

;

.*. tan (a + ^) . tan ((^ — a) = k.

In order that SK, SK' may coincide, i.e. = <fi, we must have

tan {6 + a) tan (^ — a) = k,

tan^ — tan^ a = k {\ — tan^ 6 . tan^ a),

or tan^^ (1 +^tan-a) = A; + tan^a;

• tan^ e =
^

(\ - J_IL^^!^^ .

tan^ a \ 1 + k tan^ a)
'

this gives two real and different, coincident, or imaginary double

rays, according as

1 — tan^ a=\+k tan^ a,

%.e. as k^— tan^ a.
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EXAMPLES. III.

1. A line KL parallel to AB cuts TA, TB at K, L, and P is taken on
TA. By means of a common perspective row find Q on TB, such that

{TBLQ} = {ATKP}.

2. If K, L are the mid-points of TA, TB respectively, find a point Q on

TB corresponding to any point P on AT, so that {TBLQ} may be equal to

{ATKP}. Also prove that AP : PT as TQ : QB.

3. If K, K' and L, L' be corresponding pairs of points on two projective

rows KL, K'L', prove that the locus of the intersection of KL' and K'L is a

straight line ; and find where this line cuts the two rows.

4. If A;, Hn a pencil correspond to h\ V respectively in another pencil

projective with the former one, prove that the join of the intersections of fe, V

and k', I passes through a fixed point.

Find the joins of this projective centre to the vertices of the pencils.

6. On two lines intersecting at T two projective rows are taken in which

T, A of one correspond respectively to B, T of the other, and K on TA
to K' on BT. Construct the point L' on TB corresponding to any point L

on AT.

6. In the figure of the previous question prove that if

TK : KA = BK' : KT,

then TL: LA = BL' : L'T.

7. Through a given point draw a straight line which would, if produced,

pass through the inaccessible intersection of two given lines.

8. Construct the vanishing points of two rows determined by three

points A, B, C on AB and the corresponding points A', B', C on A'B'.

9. Two straight lines intersect at T, and T, A, K on one correspond to

B, T, L on the other. Construct the vanishing points I, J of the two rows.

Also prove that IJ is parallel to AB.

10. If the vertices of a triangle lie on three concurrent lines, and two

sides pass through fixed points, the third side will always pass through

another fixed point collinear with the two given points.

11. If A, B, C, D respectively lie on four given lines which are collinear,

and AB, BC, CD respectively pass through three given points K, L, M, then

the other joins AD, AC, BD will respectively pass through three other fixed

points N, O, P. Also the six points K, L, M, N, O, P are the vertices of a

complete quadrilateral.
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12. Find the relations between two quadrilaterals in order that they

may be in homology.

13. How many conditions must be satisfied in order that two complete

pentagons may be in homology ?

14. If one of two triangles in homology be turned about the axis of

homology into another plane, prove that the joins of corresponding vertices

will meet at a point coplanar with pairs of corresponding sides.

15. State and prove the correlative proposition.

16. Three triangles have their bases on one straight line and their

vertices on another. The intersection of one side of one triangle with one

side of another is joined to the intersection of the other side of the first

triangle with the other side of the second triangle. Prove that the six lines

thus obtained form a complete quadrangle.

17. A, B, C, D are four points on a straight line, and P any other

point on the line ; construct the point Q such that {ABCP}=: {ABDGl}.

Find also the vanishing points and the double points of the two rows.

18. Two lines fixed at right angles to each other turn about the

vertex of the right angle
;
prove that they trace projective rows on any

given straight line. Also find the vanishing points and double points of the

rows,

19. {ABCD} and {ACDE} are two harmonic ranges on a straight line

;

construct their vanishing points and the other double point.

20. The join of A to any point on BC is bisected at M, and points E,

F are taken on it, such that ME equals MF. If BE, CM meet at X, and

BM, CF at Y, prove that A, X, Y are collinear.

21. Two lines AC, BD meet at E, and a transversal cuts them at K, L

respectively. AD, BC meet at X ; AL, BK at Y ; and CL, DK at Z. Prove

that each of the pencils X{LDZC} and X {LDYC} equals {EAKC} ; and

hence that X, Y, Z are collinear.

22. Construct a quadrilateral with its vertices on four given straigbt

lines, two sides parallel to given directions, and the other two sides passing

through fixed points. Shew that there are two solutions.



CHAPTER IV

THE CIRCLE

51. Cross-ratios in the circle. If two pencils at the

vertices S, S' are such that corresponding rays intersect on a

circle passing through S and S', the angles between corresponding

rays at S, S' are equal, so tlie pencils are exactly equal, and

hence projective.

Conversely, if we take two points S, S' and three other points

A, B, C coneyclic with S and S', and construct at the vertices S, S'

pencils in which SA, SB, SC correspond to S'A, S'B, S'C, and
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take any other line at S cutting the circle at D, then

S {ABCD} = S'{ABCD}; hence the ray at S' corresponding to SD
is S'D^ or all corresponding rays intersect on the circle.

Again, if ST is the tangent at S, angle AST=AS'S ; hence ST is

the ray at S corresponding to the ray S'S at S'.

The cross-ratio of the pencil joining four points A, B, C, D on

a circle to any vertex S lying on the circle may be called the

cross-ratio of A, B, C, D and written {ABCD}.

52. Theorem. If A, B, C, D lie on a circle

{ABCD}=^:^°,
^ ^ CB DB'

where AC, AD, etc. are chords.

For angles SAC, SBC are equal or supplementary, hence

AC. AS
AASC:ABSC= :

CB.SB'

but, if SC cuts AB at K, A ASC : A BSC = AK : KB
;

AK_ AC AS
" KB~ CB'SB '

similarly, if SD cuts AB at L,

ALAD AS
LB~ DB'SB'

AK AL AC AD

, AC AD
%.e, {ABCD} = — :

— .

* ^ CB DB

If {ABCD} is positive, C, D both lie on the same arc AB, but if

negative, C, D lie one in the smaller and one in the greater arc

AB : thus the sign will be consistent in the above equation if we
consider AC : CB to be positive or negative as C does or does not

lie in the arc which runs from A to B in the positive (counter-

clockwise) direction.

In figure 41, AC : CB is positive, AD : DB is negative. Also
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AK : KB is positive, AL : LB is negative, but if S were taken in

the positive arc AB, then K would lie in AB produced and

L between A and B, but the double change would not alter

the sign of |ABCD|.

Corollary,

page 11),

hence

Since {ABCD} = 1 -{ACBD} (§ 15, Theorem II,

AC. DB 1- AB. DC
CB.AD BC.AD'

AB . CD + BC . AD + CA . BD = 0,

;. AB. CD = AC. BD + CB. AD.

Hence the rectangle of the diagonals of a cyclic quadrilateral

is equal to the sum of the rectangles of pairs of opposite sides.

[Ptolemy's Theorem.]

53. Theorem. Any chord which passes through a point P

cuts the circle at points which are harmonically conjugate with

respect to the points of contact of tangents from P.

Let the tangents from P be PA and PB, and let the chord of

contact AB cut any secant CD, passing

through P, at O.

Then the cross-ratio of the four

points A, B, C, D on the circle equals

the cross-ratio of the pencil

AP, AB, AC, AD = {POCD},

and also equals the cross-ratio of the

pencil

BA, BP, BC, BD = {OPCD}.

Hence {OPCD} = {OPDC}

;

.". each = - 1
;

.-. {ABCD}=:-1.

Corollary 1. Any chord through

P is divided harmonically by P and

the chord of contact of tangents

from P.
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Corollary 2. The tangents at C, D intersect on AB since

{CDAB}=-1
;

thus AB is the locus of intersection of tangents at the ex-

tremities of any chord through P.

Corollary 3. The tangent at any point C of the circle cuts

AB at the harmonic conjugate of the point at which PC cuts AB.

54. Theorem. If through any point O on a chord AB
passes another chord CD, the line joining the intersections E, F of

AD, BC and AC, BD passes through the intersection T of tangents

at A, B and the harmonic conjugate P of O with respect to A, B.

T

Fig. 43.

For the cross-ratio of the points A, B, C, D on the circle is

«qual to that of the pencil AT, AB, AC, AD and also of BA, BT,

BC, BD.
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Take transversals on BC, AC respectively, then

{UBCE} = {AVCF},

two projective rows with their intersection corresponding to

itself, and hence in perspective, .*. UA, VB, EF are coUinear, i.e.

EF passes through T.

Again, AB, CD, EF are the diagonals of the four-side AC, BD,

BC, AD ; .'. CD, EF divide AB harmonically at O, P.

Fig. 44.

Corollary. On the same line lie the intersection of tangents

at C, D and also the harmonic conjugate of O with respect

to C, D.

Hence on one and the same straight line lie (1) the harmonic

conjugate of O with respect to the extremities of any chord
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through O, (2) the intersection of tangents at the extremities of

any chord through O and (3) the intersection of the joins of the

extremities of any two chords through O.

This line is called the polar of o.

When O lies outside the circle the polar is the chord of

contact of tangents from O. Cf. corollaries 1 and 2 of the

previous proposition.

55. Theorem. If B is on the polar of A, then A is on the

polar of B. Through B draw

any chord KL, let AK, AL cut the

curve again at M, N respectively.

Then KL, MN intersect on

the polar of A and .*. MN also

passes through B ; hence M K, N L

intersect on the polar of B, i.e.

A lies on the polar of B.

If the polar of A is BC, and

of B is AC, then the polar of

C is AB, and ABC forms a

self-polar triangle. It may be

shewn that in every case one

vertex will lie within the circle

and two outside.

Fig. 46.

56. Problem. If the triangle ABC is self-polar to a circle

of which K is a given point, construct the circle.

Join BK cutting AC at P, and find the harmonic conjugate L of

K with respect to B and P ; also join CK cutting AB in Q and find

the harmonic conjugate N of K with respect to C and Q ; then L,

N also lie on the circle, and the three points K, L, N being known
the circle can be constructed.

Exercise. Prove that BN and CL meet on the circle.
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Fig. 46.

57. Theorem. The polar of any point P is Ja line

perpendicular to the join OP of

the point to the centre O, and cuts L

OP at a point Q such that rectangle

OP . OQ equals the square on the

radius.

I. Take P outside the circle :

its polar is then the chord of con-

tact AB.

Now PA = PB, hence a line PQ
perpendicular to AB bisects AB : but

a line which bisects AB at right

angles passes through the centre O.

Again, if PQ cuts the circle at

K, L, we have P, Q and K, L forming

a harmonic range, hence

OP. OQl = OK\

II. If P is within the circle, its polar is without the circle.

Take any point R on the polar and draw its polar passing

through P and cutting the polar of P at S, then PR is also the

polar of S. Also, by I., RO is perpendicular to PS, and SO to

p. p. G. 5



66 Projective Geometry

PR, hence PO is perpendicular to RS, and O is the orthocentre of

triangle PRS. The second part follows as before.

Fig. 48.

58. Theorem. Any three lines drawn through a point O
cut a circle in six points in involution.

Let OAA', OBB', OCC' be the lines.

CA', C'A ; CA, C'A' ; CB', C'B intersect at points K, L, M on the

polar of O : let CC' cut that polar at N.

Then C {A'AB'C'} = {KLMN} - C' {AA'BC}.

Hence {AA'BC} = {A'AB'C'}, i.e. AA', BB', CC' form an involution

on the circle.

Conversely, if {AA'BC} = { A'AB'C'}, then AA', BB', CC are collinear.

For if AA' meets BB' at O, and OC cuts the circle at C", then

{AA'BC} = {A'AB'C"},

hence C" is identical with C.

The point O is called the pole of the involution AA', BB', CC'

on the circle.

When O is outside the circle this proposition follows at once

from the fact that A, A' are harmonically conjugate on the circle to

the points of contact D, E of tangents from O : and D, E are the

double points of the involution.
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Corollary. The common points of two involutions on a

circle are the real or imaginary points at, which the line joining

their poles O, O' cuts the circle.

59. Problem. Given two pairs of points on a line and

one other point, complete the involution.

Let AA', BB' and C be the given points. Join them to any

point P on a circle, let PA, PA', PB, PB', PC cut the circle at K, K',

L, L', M respectively. Join KK', LL' meeting at R, and let RM cut

the circle again at M'. Then PM' cuts the line at the required

point C'. To find the centre of the involution draw PX parallel

to the line to cut the circle at X, and let RX cut the circle at X',

then PX' cuts the line at the centre of the involution.

The double points D, E are such that PD, PE cut the circle at

the points of contact of tangents from R.

If the circle passes through A, A', then K, K' coincide with

A, A' and R lies on the line.

If B'S touches the circle, then LL' coincides with SB.

Hence we obtain the following simpler solution.

Choose the pair of points B, B' so that one, at least, lies out*

side the segment AA', viz. B'.

Describe a circle through AA', and draw a tangent B'S to the

circle.

5—2
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Let SC cut the circle at M : join BM to cut the circle at M'.

Then SM' cuts the line at C' the point conjugate to C.

To find the centre draw SI parallel to AA', let IB cut the circle

again at J, then SJ cuts the line at the centre O of the in-

volution.

To find the double points draw tangents BP, BQ to the circle,

then SP, SQ cut the line at the double points D, E.

If the segments AA', BB' overlap, B is within the circle and

there are no real double points ; in any other case the double

points are real.

60. Theorem. The cross-ratio of the four points in which

four tangents cut any variable fifth tangent is equal to the cross-

ratio of the points of contact on the circle.

Fig. 50.

Let the tangents at K, L, M, N cut the tangent at P in the

four points A, B, C, D, then shall {ABCD} = {KLMN}.

Join P to the centre O and produce to cut the circle at S.

Join KS, LS, MS, NS and KO.

•/ AK, AP are two tangents to the circle,

.*. AOP = Jkop = KSP (angle at the circumference).

/. AO is parallel to KS.
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Similarly BO, CO, DO are respectively parallel to LS, MS, NS.

Hence pencil O {ABCD} ==: pencil S {KLMN}.

.'. {ABCD} on AD = {KLMN} on the circle.

Corollary. Any four tangents to a circle cut two other

tangents in two sets of four points which are projective : in

other words, a variable tangent describes projective rows on two

fixed tangents.

N.B. But it is not always true that the joins of correspond-

ing points on two projective rows are all tangents to one circle

;

we shall investigate this envelope in the next chapter.

61. To find two projective rows such that the joins of

corresponding points all touch one circle.

Take Tl, TJ of equal length, and from C the middle point of

IJ draw CA, CB perpendicular

to Tl, TJ respectively.

Construct two rows with

vanishing points I, J, having A,

T corresponding to T, B. Let

P, Q be corresponding points,

such that

IP.JQ=:|A.JT(-:|T. JB).

Then IP. JQ=IC2 and

.'. IP:IC = JC:JQ: Fig. 51.

also CIP=QJC;

hence triangles PIC, CJQ are similar,

.*. IPC = JCQ and .*. PCQ=PIC

(three angles equal to a straight angle) ; also from the similar

triangles we have

PC:CQ=PI :CJ = PI :CI
;

A A
hence triangles PCQ, PIC are similar, and IPC = CPQ.

.'. PQ touches the circle whose centre is C, radius CA. q.e.d.
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N.B. There are two conditions to be satisfied,

(1) TI-TJ or TA = TB.

(2) lA . IT = i . IJ2 or in other words— = tan^ (JT).

62. Propositions deduced from the tangent cross-

ratio property of a circle.

The propositions here enunciated are correlative with those

deduced from the projective relation between two pencils in the

circle.

If any line p cuts a circle at A, B the tangents from any

point on p are harmonically conjugate with the tangents at A

and B ; i.e. the four tangents cut any other tangent in a

harmonic range.

The chord of contact of tangents from any point on AB

passes through the intersection O of the tangents at A, B.

The point of contact of any tangent c to the circle is joined

to O by a line which is the harmonic conjugate with respect to

OA, OB of the join of O to the intersection of c with AB.

If any line u be drawn through the intersection (O) of

tangents a, h (at A, B), and c, d

are the tangents from any point

P on u (touching the circle at

C, D), and e, f the joins of the

intersections (K, L) of ad, he and

(M, N) of ac, bd respectively cut

one another at U, then U lies on

the chord of contact AB (since

{OMAK}=:{BLON}=:{ONBL} and
.'. MN, KL, AB are coUinear)

:

also U is on the line v which is -p. ^^

harmonically conjugate to u with

respect to a and b (by the theory of four-sides).
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Corollary. Through the same point passes CD, and also

the harmonic conjugate of u with respect to c, d.

Hence through U passes the harmonic conjugate of u with

respect to tangents from any point on it ; the chord of contact

of tangents from any point on u ; and the join of the inter-

sections of any two pairs of tangents from points on u. U is

called the pole of u.

If u cuts the circle, then U is the intersection of tangents at

the points where u cuts the circle.

In all cases u is the polar (as previously defined) of U.

If a passes through the pole of h, then h passes through the

pole of a.

If the pole of a lying on h and of h lying on a be joined by

c, then the pole of c is the intersection of a, h and a, b, c form a

self-polar triangle.

63. The tangents from points lying on any line form an

involution on any other tangent. For if a, a ; 6, b' ; c, c' are

three pairs of tangents, let K, L, M be the points where a, a', b' cut

c, and K', L', M' where a , a, b cut c'; then KK', LL', MM' pass through

O the pole of the line. Join O to N the intersection of c, c'.

Fig. 53.
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Then by projection from O we get {KLMN} = {kVm'N}.

.*. the row traced on c by aa'h'c = row traced on c by a'abc.

.'. on any tangent, {aa'b'c'} = {a'abc}, i.e. aa', bb', cc' form an

involution.

When o cuts the conic at D, E this proposition is otherwise

deducible from the fact that aa\ bb\ cc are pairs of harmonic

conjugates to the tangents d, e at the points D, E : also d, e are

the double tangents of the involution.

Conversely. If an involution of tangents be drawn to

a circle, pairs of conjugate tangents intersect in collinear points.

64. Problem. Given two pairs of conjugate rays at a

point and a fifth ray, to complete the involution.

Given five rays a, a, b, b', c at a vertex S, to find a sixth ray

through S, such that aa', bb', cc' are in involution.

Fig. 54.

Let a, a, b, b', c cut any tangent to any circle at A, A' ; B, B';

C ; draw the second tangents from A, A' to the circle intersecting at

K ; and from B, B' intersecting at L ; let the second tangent from

C cut KL at M, then the other tangent from M will cut AA' at a

point C' whose join to the vertex of the pencil is the required

sixth ray C'.
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The conjugate point to that at which the circle touches the

line is the point where KL cuts the line. Hence the construction

may be simplified by taking a circle to touch the line at C.

Also if the circle touches a, a\ then K becomes the vertex S

of the pencil.

S

Fig. 55.

Hence draw a circle to touch a, a', let c cut the circle at C

and draw tangent at C cutting 6, h' at B, B'.

Draw tangents BC', B'C' from B, B' intersecting at C'.

Then SC' is the required sixth ray.

EXAMPLES. IV.

1. Shew that the length of a chord of circle of diameter d, which sub-

tends an angle a at the circumference, is d sin a ; and hence prove that the

cross-ratio of the pencil formed by joining four points A, B, C, D on the

circle to any other point on the circle is

AC /AD
cb/ db

•

2. The sum of the rectangles of pairs of opposite sides of a cyclic quad-

rilateral is equal to the rectangle of the diagonals.

3. If the chord CD passes through the intersection of the tangents at A
and B, the rectangles of pairs of opposite sides of the quadrilateral ACBD
are equal.
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4. C is the centre of a circle and N the mid-point of a chord PQ; prove

that the tangents at P, Q meet on CN at a point T such that CN . CT
equals the square of the radius CA. Prove also that the tangents at the

ends of any other chord passing through N meet on a line drawn through T
perpendicular to CT.

5. Find the condition that a circle can be drawn to pass through two

given points and have a given pole and polar.

6. Prove that the orthocentre of a triangle self-polar to a circle is

the centre of the circle : and that every self-polar triangle is obtuse

angled.

7. The inscribed circle of a triangle touches the sides BC, CA, AB at

D, E, F respectively ; and the tangent at any point P of the circle cuts them
at K, L, M respectively. Prove that {KLMP} on PK equals {DEFP} on the

circle.

8. The incircle of a triangle ABC touches BC, CA, AB at D, E, F and

EF cuts BC at K
;
prove that D, K are harmonic conjugates with respect to

A and B.

9. Four lines form a harmonic pencil
;
prove that their poles with re-

spect to a given circle are collinear and form a harmonic range,

10. PK is the perpendicular from P to the polar of Q, and QL is the

perpendicular from Q to the polar of P for the same circle
;
prove that

PK : QL as OP : OQ.

11. Any tangent is drawn to a circle whose centre is C and radius CA,
P is its pole with respect to a circle whose centre is O, and PM the perpendi-

cular from P to the polar of C with respect to the same circle. Prove that

OP : PM has the constant value OC : CA.

12. The incentre of a triangle ABC is I, and any tangent meets lines

through I perpendicular to I A, IB, IC at K, L, M respectively. Find the

poles of AK, BL, CM, and prove that these lines are concurrent.

13. Find the centre and radius of the circle to which a triangle ABC is

self-polar.

Prove that the radical axis of this circle and the nine-point circle of ABC
cuts BC, CA, AB at the points where they are met respectively by the sides

EF, FD, DE of the pedal triangle.

14. Pairs of tangents are drawn to a circle from three collinear

points; prove that their points of contact form an involution on the

circle.



The Circle 75

15. If A, B, C, A', B', C lie on a circle, prove that the pencils

A {A'B'C'C} and B {A'B'C'C} cut CA', CB' in rows in perspective. Hence
shew that the three intersections of AB' and A'B, AC'and A'C, BC'and B'C
are collinear.

16. If A, B, C, D are four points on a circle and A', B', C, D' four others

on the same circle such that {ABCD} = {A'B'C'D'}, prove that the intersec-

tions of AB' and A'B, AC and A'C, AD' and A'D are collinear.

17. Two pencils with a common vertex are projective, and a fixed circle

passing through the vertex cuts two rays of one pencil at K, L and the

corresponding rays of the other pencil at K', L'. Prove that the locus of the

intersection of KL' and K'L is a straight line.

Use this projective axis to find the common rays of the two pencils.

18. Given three points of a row on a straight line and the three corre-

sponding points of a projective row on the same line, construct the common
points of the rows.

19. Circles are drawn each bisecting the circumferences of two given

circles. Prove that the polars with respect to them of any given point pass

through another fixed point.

20. A quadrilateral KLMN is inscribed in one circle, and its sides touch

another circle at P, Q, R, S. Prove that PR and QS are perpendicular.

Prove that KM, LN intersect at the same point as PR, QS.

21. Two circles are such that a quadrilateral can be inscribed in one and
circumscribed to the other. If P, Q, R, S are the points of contact of the

four sides KL, LM, MN, NK, prove that the four intersections of PQ, RS
;

PS, QR ; KL, MN ; KN, LM lie on a fixed straight line.

22. From any point K on the circumcircle of a triangle tangents are

drawn to the incircle and they meet the circumcircle again at L and M.
Shew that A {BCKL} and M {BCKL} describe projective rows on KL and

BC respectively, and deduce that LM touches the incircle.

23. A line is drawn to cut two non-intersecting circles; find two points

on this line such that each is the intersection of the two polars of the other

with respect to. the two circles.
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THE CONIC

65. Definition. A conic is the locus of intersections of

corresponding rays of two projective pencils not in perspective.

If we take two vertices S, T and three other points A, B, C
and draw SA, SB, SC from S and TA, TB, TC from T, these will

determine two projective pencils at S and T, and we may
construct successive positions of the point P, such that the cross-

ratio of SA, SB, SC, SP equals the cross-ratio of TA, TB, TC, TP.

If A, B, C lay on a straight line, the rows would be in per-

spective, and P would lie on that line or on ST ; if one of the

points, say A, were collinear with S and T, the pencils would

have a common ray, and would be in perspective with BC as base,

and P would lie on BC, or on ST. Hence, if any three of the five

points are collinear, the pencils are in perspective, and we get,

not a conic, but two straight lines.

When the angles ASB, ASC respectively equal the angles ATB,

ATC, the locus of P becomes a circle through S, T, A, B, C.

66. To construct a conic having given two vertices

S, T and three points A, B, c, no three of the five points

being collinear.

Let SB cut AC at K, and TC cut AB at L. Through the inter-

section O of SB, TC draw any straight line to cut AC, AB at X, Y

respectively, and join SX, TY intersecting at P, then P is a point

of the locus.
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For the pencil

S {ABCP} = {AKCX} and pencil T {ABCP} = {ABLY}
;

but, by projection from O, we have

{AKCX} = {ABLY}.

Hence S {ABCP} = T {ABCP}. By varying the position of the

line XY passing through O, we can get the successive positions of

P, the intersection of XS, TY.

Fig. 56.

67. We shall prove presently (§ 86) that the lines which

join corresponding points of two projective rows not in perspective

all touch a conic, and that every tangent to the conic cuts the

two rows in corresponding points ; in other words the conic is the

envelope of joins of corresponding points of two projective rows

not in perspective. The converse proposition is also proved in

this chapter so that the two classes of curves are identical, and

either definition might have been taken.

In § 217 et seq. it is proved that the conic so defined is

equivalent to the curve got by taking a plane section of a circular
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cone and conversely. In the following proposition we now prove

that this property might be deduced from the focus definition of

a conic, and the converse is proved in § 177.

68. Theorem. If a point P moves so that its distance

from a fixed point S (called the focus) bears a constant ratio

to its distance from a fixed line (called the directrix), the pencils

formed by joining any two points A, B of the locus to the variable

point P will be projective.

Fig. 57.

Let AD, BE be the perpendiculars from A, B to the directrix,

so that SA:AD = SB:BE = e, and PM the perpendicular from P,

so that SP : PM =e.

Join AP, BP cutting the directrix at K, L respectively : join

SK, SL.

Then SP : SA = PM : AD -^ PK : AK
;

hence SK bisects an angle between SA, SP.

Similarly SL bisects one of the angles at S between SB and

SP. (In figure 57 the angles are exterior angles.)

Hence as SP turns round S through any angle, each of the

lines SK, SL turns through half the angle at S.
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.'. SK, SL describe equiangular pencils at S, and hence the

rows described by K, L on the directrix are projective.

But AP cuts the directrix at K, BP cuts the directrix at L.

.*. pencil described by AP at A is projective with the pencil of

BP at B.

69. Theorem. The conic described with vertices Sj, Sg to

pass through three points A, B, C also passes through the two

vertices : and the tangent at a vertex Si is the ray at Sj corre-

sponding to the ray S2S1 at 83, and vice versa.

For if SiT at Sj corresponds to S2S1 at Sg, and SjP, SgP are corre-

sponding rays nearly coincident with SjT, SgSi respectively, the

tangent at Sj is the ultimate position of the chord SjP when P is

brought to coincide with Sj, but when P coincides with Sj, SgP

coincides with S2S1, and hence SjP coincides with SjT.

Corollary. Three points and the tangents at two of them

completely determine a conic. For the

three rays SiT, SjSa, S^A at Sj are given

corresponding to the three rays SgSi,

SgT, S2A at 83 ; hence to any other ray

at 81 we can find the corresponding ray

at 83.

70. We shall now prove that we

get the same conic from five given

points if we take any pair of the points

as vertices.

Theorem. The pencil formed at

any point of a conic by its joins to the p- gg

various points on the conic is projective

with the pencils formed by joining those points to the original

vertices.

First Proof. Let A, B be the vertices ; AT the tangent at A

;

K, C two other points, and P a variable point on the conic.
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To prove that pencil of CP at C is projective with the pencil

of AP at A. Join KP cutting AT at E, AB at F, and AC at G.

Then

VIZ.

VIZ.

i.e.

Fig. 59.

A {KPTO} = B {KPAC} (by definition)

;

. {KPEG} = {KPFH},

KE
EP

KG _
GP

~
KF

FP

KH

HP ^

KE KF KG KH'

EP FP" GP HP'

{KPEF}-{KPGH},

pencil A {KPTB} = pencil C {KPAB}
j

.•. A{TBKP}=C {ABKP};

thus AP, CP are corresponding rays of projective pencils deter-

mined by AT, AB, AK at A and CA, CB, CK at C ; and

A {P1P2P3P4} = C {P1P2P3P4} (§ 39, Cor.). Q. E. D.

Second Proof. Let the conic be defined by the points

A, B, the tangents AT, BT and point C. Let P be a variable point

of the conic.
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Let AP cut BC at U ; BP cut AC at V ; CP cut AB at L.

Pencil A {BTCP} - B {TACP} by definition,

.'. A {BTCP} = B {ATPC}

two projective pencils with a common ray ; hence T, U, V are

collinear.

Fig. 60.

Let TUV cut AB at K, then by the theory of the complete

four-side, K and L are harmonic conjugates with respect to AB.

Hence as P describes the conic, K and L describe projective

rows on AB.

But the row of K on AB projected from the fixed point T on

the fixed line BC gives the row of U on BC, which is projective

p. p. G. 6
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with the pencil of AP at A : and the row of L on AP is projective

with the pencil formed at C by CP.

Hence if P, Q, R, S are four points on the conic the cross-ratio

of the pencil C {PQRS} = the cross-ratio of A {PQRS} and B {PQRS};

and CA, CB and the tangent at C correspond to AT, AB, AC at A,

and to BA, BT, BC at B.

Similarly, if we join to any other point of the conic D, we
shall get

D {PQRS} = C {PQRS}, and D {ABPQ} = C {ABPQ}.

Corollary 1. If P is a point on a conic obtained from the

vertices A, B and three points C, D, E, so that A{CDEP}= B{CDEP},

then C {DBEP} = A {DBEP}, and C {ABEP} = D {ABEP} ; hence P also

lies on the conic with vertices A, C passing through B, D, E and

on the conic with vertices C, D passing through A, B, E.

Hence five given points determine the same conic, whichever

pair are taken as vertices.

Corollary 2. The cross-ratio of the pencil formed by joining

four points P, Q, R, S on a conic to any other point on the conic

has a constant cross-ratio. We may call this value the cross-

ratio of {PQRS} on the conic.

Corollary 3. If we describe a conic through five points P,

Q, R, S, A and K is a point such that K{PQRS} =A {PQRS}, then

K must lie on the conic.

If not let KP cut the conic at K', join K' to PQRS. Then

K' {PQRS} = A {PQRS}. Hence K' {PQRS} = K {PQRS} and we have

two projective pencils at K, K' with a common (self-corresponding)

ray KK'P, hence they are in perspective, and therefore Q, R, S are

collinear, which is contrary to hypothesis : as no three of the five

points which determine a conic may be collinear.

Hence if a point moves so that its joins to four given points,

no three of which are collinear, form a pencil of constant cross-

ratio, its locus is a conic.
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71. Mechanical construction of a conic. Take four

rods loosely jointed together at a point P, and another rod to

which are attached rings at four points K, L, M, N through which

the four rods can slide freely. To the surface on which the conic

is to be drawn, fix four rings A, B, C, D and slide the rods PK, PL,

PM, PN through A, B, C, D.

Fig. 61.

The point P will be constrained to describe the conic which

passes through A, B, C, D and in which the cross-ratio of

P{ABCD} is {KLMN}.

72. Theorem. A conic is a curve of the second order,

i.e. any straight line cuts it in two points, real and dififerent, or

coincident or imaginary.

For any straight line cuts two projective pencils in two pro-

jective rows of points, and a double point of these rows is a point

on the conic : but two projective rows on the same straight line

have two real and different, or coincident, or imaginary double

points.

6—2
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73. Theorem. If the six points A, B, C, A', B', C' lie on

conic the three intersections of AB' and

A'B, AC' and A'C, BC' and B'C will be col-

linear (Pascal).

Let these three intersections be K, L,

M respectively: also let AB' cut CA' at X,

and BA' cut B'C at Y.

The cross-ratios of A {A'B'C'C} and

B {A'B'C'C} are equal, by the definition of

the conic.

Hence, taking transversals A'C and

B'C respectively we have

{A'XLC} = {YB'MC}.

But these rows have a common point C, hence they are in

perspective, i.e. A'V, XB', LM are concurrent.

But A'Y, XB' meet at K, and therefore K lies on LM.

Construction. Given five points of a conic to construct

other points on the conic.

Let A, B, C, A', B' be the five points, join AB', A'B intersecting

at K ; and through K draw any line to cut CA', CB' at L and M
respectively.

The intersection of AL and BM will be a point of the conic.

74. Taking any points A, B, C and A', B', C' on the conic,

we may find other pairs of points, such as D, D' such that {ABCD}

on the conic equals {A'B'C'D'} on the conic, thus forming two

projective rows on the conic.

Then A {A'B'C'd'} = A' {ABCD}, two pencils with a common ray;

/. AB', AC', AD' respectively meet A'B, A'C, A'D in three points

on a straight line.

But by the Theorem of § 73, the intersections of BC' and

B'C, BD' and B'D, CD' and C'D lie on the straight line.
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Hence, if K, L are any two points in the row A, B, C, ... and

K', L' the corresponding points in the row A', B', C', ... the inter-

section of KL', K'L lies on a fixed straight line. It is called the

projective axis of the two rows.

Corollary. If this straight line cuts the conic at two real

points these are the double points of the two rows on the conic.

Chords.

75. Theorem, //"at, BT he the tangents at A, B to a conic

(§ 69) and P, Q two other points on the conic, the intersections U

of AP, BQ, and V of AQ, BP mill be collinear with T. Also UV,

PQ divide AB harmonically.

V

Fig. 63 (1). Fig. 63 (2).

For in the projective pencils at A, B, we have AB, AT at A

corresponding to BT, BA at B,

.-. A{BTPQ}=B{TAPQ},

.'. A{BTPQ}= B{ATQP};

and these are two projective pencils with a common (self-corre-

sponding) ray AB.
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.*. they are in perspective, and hence T, U, V are collinear.

Again, by § 19, the diagonals UV, PQ of the four-side

formed by AP, AQ, BP, BQ divide the third diagonal AB harmonic-

ally at K, L.

Corollary 1. TK also passes through the harmonic conjugate

of L with respect to P, Q. Similarly, if any other chord be drawn

through L, the harmonic conjugate of L with respect to the ends

of the chord lies on TK.

Corollary 2. If a tangent passes through L, its point of

contact lies on TK.

Corollary 3. If PQ, RS are two chords through L, and PR,

QS meet at M and PS, QR at N, then MN passes through the

harmonic conjugate of L, with respect to P, Q and with respect to

R, S (§ 20, Cor. 1). Hence M, N lie on TK.

Corollary 4. When RS and PQ (Cor. 3) coincide, PR, QS
become the tangents at P, Q. Hence the tangents at the ends of

any chord through L intersect on TK.

Definition. TK (thus obtained) is called the polar of L.

76. Theorem. The middle points of parallel chords
are collinear. In fig. 63, § 75, let PQ become parallel to AB.

Then UV bisects AB and PQ. Hence the middle point of PQ lies

on a line through T and the middle point M of AB.

Similarly TM contains the mid-point of any other chord

parallel to AB.

Definition. A line which bisects all chords parallel to a
given direction is called a diameter.

Corollary 1. The joins of the ends of two chords parallel to

AB intersect on TM.

Corollary 2. The tangents at the ends of any chord parallel

to AB intersect on TM.
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Corollary 3. A tangent parallel to AB has its point of

contact on TM.

Corollary 4. When the infinity directions are real and

coincident all diameters are parallel.

Tangents.

77. Theorem. If a conic touches two lines AT, BT at A,

B respectively, the tangent at any other point P is the harmonic

conjugate of PT with respect to PA, PB. We may prove as in

§ 75, that UV passes through T, and UV, PQ divide AB har-

monically.

If in fig. 63 (1), the chord PQ be turned about P, until Q
coincides with P, then PQ will become the tangent at P, and UV

will become TP.

Hence the tangent PL (fig. 64), and the line PT cut AB har-

monically at L, K.

(Also cf. Cor. 4 to the next Theorem.)

Theorem. Any chord PP' which passes through the inter-

section T of tangents at A, B is divided harmonically by T and

AB.
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Let PP' (fig. 64) cut AB at K.

Then A {PP'BT} = B {PP'TA}, .*. {PP'KT} - {PP'TK},

.'. K, T are harmonic conjugates with respect to P, P'.

Corollary 1. If TP = PK, P' is infinitely distant : and
conversely.

Corollary 2. If TP < PK, P' is on the other side of T from P.

Corollary 3. Since A {TBPP'} is harmonic, the pencil joining

any other point of the conic to A, B, P, P' is harmonic, i.e. P, P'

are harmonic conjugates on the conic to A, B.

Corollary 4. If the tangent at P meets AB at L, then

P {LP'AB} = A {PP'TBJ which is harmonic. Hence L is the harmonic

conjugate of K with respect to A, B.

Corollary 5. Tangents at P, P' intersect on AB.

Corollary 6. P and L are harmonic conjugates to the points

at which PL cuts TA, TB.

Corollary 7. If the join of T to M, the mid-point of AB,

cuts the conic at C, the tangent at C is parallel to AB (cf. § 76,

Cor. 3).

78. Theorem. Any four

tangents cut a fixed tangent in

four points whose cross-ratio is

equal to the cross-ratio on the

conic of their four points of con-

tact. Also any variable tangent

cuts two fixed tangents in pro-

jective rows.

Consider the conic which

touches AT, BT at A, B and

passes through P.

Let the tangent at P cut TA
at Q, and let BP cut TA at Q'.

Then PQ, PT are harmonic

conjugates with respect to PA,

PB (§ 77). Fig. 65.
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/. {TQAQ'} = ~1,

.-. {ATQ'Q}=:-2,

, AQ' „ AQ
hence - - = 2 . — .QT QT

If we take successive positions P^, Pg, ...; Qj, GU, ...; Q/,

Qg', ... we have therefore

AQi AQ2 _ AQ/ AQ2'

i.e. {ATQiQaJ = {ATQ/Q.;},

hence {Q1GUQ3Q4} - {Q/a/Q/Q;}-

.*. the cross-ratio of the row described by Q equals the cross-

ratio of the pencil described by BP, which is the cross-ratio of the

pencil joining Pj, Pg, Pj, P4 to any point of the conic.

Similarly the cross-ratio of the row described by the tangent

on BT has the same value. Hence the variable tangent describes

projective rows on the two fixed tangents TA, TB.

Corollary 1. If any point be joined to the two projective

rows traced by a variable tangent on two fixed tangents, two

projective pencils with a common vertex will be obtained. The
double rays of these two pencils will be those tangents to the

conic which pass through the point.

Corollary 2. Two pencils at a point have two real and

different, coincident, or imaginary double rays. Hence two

tangents can, in general, be drawn from any point to touch a

conic. Thus a conic is a curve of the second class.

79. If pencils be formed by joining two points A, B on the

conic to other points of the conic, and if in these two pencils any

ray AP is parallel to the corresponding ray BQ at B, then any

transversal parallel to AP will be cut by the two pencils in similar

rows. Hence one double point will be at infinity, and the line

will cut the conic in one and only one finite point.
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Hence, also, if we take the pencil at any other point of the

conic the ray at that point corresponding to AP at A will be

parallel to A P.

If through T, the intersection of tangents at A, B, we draw

lines parallel to the rays of the two pencils at A, B, we get two

projective pencils at the one vertex T, and the infinity direc-

tions become the double rays of the two pencils.

Hence there are two real and different, or coincident, or

imaginary infinity directions in a conic.

80. The two pencils at T cut AB in two projective rows, of

which A, B are the vanishing points.

1. If the power AU . BV is positive there are two real and

different double points (§ 47). In this case (fig. 66 (1)) lines

through A, B parallel to TU, TV respectively intersect on the other

side of TA from B, or on the other side of TB from A, and the

curve consists of two branches outside the angle ATB.

Conversely, if any point of the curve lies in the supplementary

angle at T to ATB, then AU . BV is positive.

2. If AU . BV is negative, but AM^ + AU . BV is positive there

are real and different infinity

directions (§ 47).

Take AU, BV of equal length

in directions BA, AB respectively

(fig. 66 (2)).

Then AU is less than MA, and

MA:AU = MB : BV.

.*. lines from A, B parallel

to TU, TV meet at a point C on

TM; and TC<CM.

In this case TM cuts the curve again at C' the harmonic con-

jugate of C with respect to TM, but TC < CM, .*. C' is on the

other side of T from M.
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Hence the curve has two branches, one lying in the angle ATB,

and the other in the vertically opposite angle at T.

In case 1, a tangent which cuts AT internally cuts BT ex-

ternally, and vice versa, hence the vanishing points I, J of the

rows on TA, TB lie between T, A and T, B respectively.

In case 2, let the tangent at C cut TA at P and TB at P'.

Then {ATPl} = - TP'/P'B ; but TP' < P'B and AP > PT
;

. . lA : IT is positive and greater than 1, hence I is on the

other side of T from A.

3. If AU . BV = -AM-, the infinity directions are real and

coincident, and are parallel to TM.

In this case TC = CM. Also the tangent at C bisects TA, TB,

hence the rows traced on TA, TB by a variable tangent are

similar.

4. If AU . BV + AM- is negative, the infinity directions are

imaginary.

In this case TC > CM.

Also TP' > P'B and AP < PT, .'. lA : IT is positive and less

than 1, .'.A lies between I, T.

Definitions. When a variable tangent traces similar rows

on two tangents the conic is a parabola (case 3).

When the vanishing points of the rows traced on two tangents
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TA, TB by a variable tangent lie on the other side of AB from T,

the conic is an ellipse.

When the vanishing points lie on the same side of AB as T,

the conic is a hyperbola.

Corollary. In § 68 it is shewn that, in the locus there described, SK
bisects the exterior angle between AS, SP.

Hence when SA, SP coincide with a line SL parallel to the directrix, the

tangent at L cuts the directrix at X, the foot of the perpendicular from S to

the directrix. By symmetry LS meets the curve again at L', so that LS = SL'

and the tangent at L' passes through X.

The locus is therefore an ellipse, parabola or hyperbola as the constant

ratio = 1.

81. Theorem. Lines drawn through four points of a conic

parallel to an infinity direction have the

same cross-ratio on any transversal as the

joins of any point on the conic to those

four points.

Draw CK, DL parallel to the infinity

direction to cut AB at K, L. Let CD cut

AB at E, and the tangent at C cut AB at T.

Then CA, CB, CT, CK at C correspond

to DA, DB, DC, DL at T; hence, taking

transversals on AB, we have

{ABTK}={ABEL},

.*. {ABTE} =^ {ABKL}
;

but {ABTE} is the cross-ratio of C {ABTD},

and therefore equals the cross-ratio of the

joins of A, B, C, D to any point of the

conic; and {ABKL} equals the cross- ratio

of the lines through A, B, C, D parallel to

the infinity direction on AB or any other

transversal, being unaltered by parallel projection.

Fig. 67.
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Exercise. If we have a pencil at a point which is projective with a row
on a line, the locus of intersection of rays of the pencil with lines drawn
parallel to any given direction through the corresponding points on the row
is a conic with real infinity directions.

Envelope of the Joins of Projective Rows.

82. Theorem. If projective rows, not in perspective, be

taken on two given lines the envelope of the joins of correspond-

ing points touches each of the given lines, and the point of

contact with one line corresponds to the intersection of the two

lines regarded as a point of the other line.

Let the intersection of the lines be T, and let T on TB correspond

to A on TA. Let A' be a point near

A on TA, and T' the corresponding

point on TB.

Then as A' approaches A, T' ap-

proaches T, and ultimately the tan-

gent T'A' assumes the position TA

;

also A' is the intersection of TA with

a near tangent, and when those two

tangents are made to coincide A'

assumes the position A.

Hence A is the point of contact

of the tangent TA.

Theorem. From any point two real or coincident or

imaginary tangents can be drawn.

Fig. 68.

83. Theorem. If we join corresponding points on two
projective rows, the row traced on any one of these joins by the

others will be projective with the rows they trace on the original

lines.

Let TA, TB be the rows of which A correspond^ to T, C to D,

K to L, P to Q.
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Let KL, PQ cut CD at M and R respectively; and cut each

other at O.

Then {KPAC} = {LQTD},

.'. pencil O {KPAC} =0 {LQTD},

hence O {KPAT} = O {LQCD},

hence {KPAT} = {MRCD},

two rows on CA and CD ; if now we keep other lines fixed but

vary the position of PR, it follows that if we get successively the

points P1P2P3P4 and RiR2R3R4, then {PjPgPsP^ = {RiR2R3R4}- Q.e.d.

Fig. 69.

Hence the joins of four pairs of corresponding points on two

projective rows cut any other join in four points of constant

cross-ratio.

Hence, also, five given lines give the same envelope which-

ever pair we take as the basis of projective rows.
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84. Problem. To find where any join of corresponding

points of two projective rows touches its envelope.

On two lines TP. TQ take projective rows, in which T, P corre-

spond respectively to Q, T : and let A, B correspond to A', B', so

that

{PTAB} = {TQA'B'},

.-. {TPAB} = {TQB'A'},

two equal cross-ratios with a common point T, hence PQ, AB', A'B

are collinear, i.e. AB', A'B intersect at a point L on PGL

Fig. 70.

Let AA', BB' intersect at K, then from the harmonic property

of a four-side KL is divided harmonically by TP, TQ.

If we now bring B into coincidence with A (and B' with A'),

L will become the point at which AA' meets PQ, and K being the

intersection of AA' with a consecutive tangent will become the

point of contact of AA'.

Hence the point of contact K of AA' with its envelope is the
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harmonic conjugate of the point L at which it is cut by the line

PQ.

Corollary. If AA' is parallel to PQ it is bisected at its point

of contact.

T

Fig. 71.

Another method of proof.

85. A variable join of two projective rows describes on any
fixed join a row which is projective with either of the original

rows.

Let CD be a given join of rows on TA, TB and PQ a variable

join such that

{TACP} = {BTDQ},

and let CD cut PQ at R.

Let CD cut AB at F, and take on CD a point E such that

{CDEF} = -1.

A transversal cuts the sides of triangle TCD at P, R, Q,

TP CR DQ
pc'rd'qt

CR -PC QT
RD TP DQ
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,,. ., ,
TA CF DB , CE AC BT

Similarly _._._ = -l, .. ^ = ^.^,

.-. {CDER} = ^.BI/5?.?I.
^ ^ TA DB/ TP PC

But I?/I? = !^^/^,
BD/ QD TC/ PC '

, AC /AP ,

.-. {CDER} =—/— = {ATCP}.

Hence P, R describe projective rows on CA, EC, in which C, A
correspond to E, C and T to D. q. e. d.

Corollary. The point of contact of CD is E, the harmonic

conjugate with respect to C, D of the point F at which CD cuts

AB.

Fig. 72.

86. Theorem. The envelope of tJie joins of two projective

rowSj not in perspective, is a conic.

Let TA, TB be the bases of the rows, AB being their point of

contact. Let PQ cut AB at K and touch the envelope at C ; RS
cut AB at L and touch the envelope at D : also let AC, AD cut BT
at U, V respectively.

p. p. G. 7
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Then {PQCK} = -1,

/. by projection from A, {TQUB} =-1.

2.
TU

similarly
TS TV

VB'
• I?
** QB UB' •' SB

.*. {TBQS} = {TBUV} = pencil A {TBCD}.

Similarly {ATPR} = pencil B {ATCD},

but by hypothesis {TBQS} = {ATPR},

hence pencil A {TBCD} = B {ATCD}

;

hence C and D lie on the same conic with vertices A, B, tangents

at vertices AT, BT ; hence and similarly all points of contact of

the joins with their envelope lie on the same conic ; which is

therefore identical with the envelope.

Fig. 73.

Corollary 1. Five tangents uniquely determine a conic.

Corollary 2. Two conies cannot have more than four com-

mon tangents.
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Corollary 3. From any point two real or coincident or

imaginary tangents can be drawn to a conic : i.e. a conic is a

curve of the second class or degree. For the joins of any point

X to the two rows form two projective pencils at X : and these

have two double rays. Also when the double rays coincide X lies

on the conic.

Definition. A point may be said to be outside, on, or inside

a conic, as the tangents from it are real and diflferent, or coinci-

dent, or imaginary.

Corollary 4. Three tangents and the points of contact of

two of them determine a conic uniquely.

Thus we have proved that a conic might equally be defined as

the envelope of the joins of corresponding points of two projective

rows, not in perspective. (If the rows were in perspective the

joins would all pass through a point.)

87. Theorem. If we describe a conic to touch five given

lines p, q, r, s, a, and k is another line such that the row described

on k by the lines p, q, r, s is projective with the row described on

a by p, q, r, s, then k touches the conic.

For, if not, another line k' can be drawn through the inter-

section T oi k and 2h to touch the conic ; and hence p, q, r, s

describe on k' a row projective with tlie row they describe on a.

Hence we have on k and k' two projective rows having a common
point T ; and therefore in perspective, so that q, r, s are collinear,

which is contrary to hypothesis, for the projective rows on a, p
must not be in perspective.

l%us the envelope of a line on which four given lines, no three

of which are concurrent, form a row of constant cross-ratio is a

conic.

We have already proved that the cross-ratio of the row described

on any tangent to a conic by four given tangents p, q, r, s is

constant : this may be called the cross-ratio of the four tangents

with respect to that conic, and denoted by {p, q, r, s]. It will

have a different value for each conic which touches the four lines.

7—2



100 Projective Geometry

We see also that from five given lines the same conic will be

obtained, whichever pair we take as the bases of the projective

rows.

Exercise 1. Construct a conic touching four given lines, and for which

the four lines have a given cross-ratio.

2. Prove that the cross-ratio of four tangents is harmonic, if two of

them intersect on the chord of contact of the other two.

3. Given three tangents j>, q, r to a conic, construct a fourth tangent s,

such that {pqrs} = - 1, with respect to that conic.

88. Maclaurin's Theorem. If a variable triangle be such

that its three sides pass through three given fixed points, and two

of its vertices lie on two given lines, then the locus of the third

vertex is a conic.

Fig. 74.

Let PQR be the triangle of which Q, R respectively lie on the

two lines DK, DL, and QR, RP, PQ pass respectively through the

fixed points A, B, C. Then shall the locus of P be a conic.

For, if PiQiRi, P2Q2R25 Ps^s^sj P4Q4R4 be four successive posi-

tions of the triangle, the pencil B {P1P2P3P4} = {R1R2R3R4} on the

transversal DL : and C {P1P2P3P4} = {Q1Q2Q3Q4} on DK.

But, by projection from A, we have {R1R2R3R4} = {QiQ2Q3Q4}.
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Hence B {P1P2P3P4} = C {PiP2P3P4}, and therefore the locus of P

is a conic.

Corollary. This conic passes through B and C.

89. Theorem. If a triangle moves so that its three vertices

lie on three fixed lines, and two sides pass through two given

points, its third side will envelope a conic.

Fig. 75.

Let the triangle PQR move so that P always lies on LM, Q on

MK, R on KL, and PR, PQ pass through B, C respectively, then the

envelope of QR is a conic.

For the pencils described by BP at B, and CP at C, are projec-

tive, being in perspective ; hence the rows described by Q on KM,

and R on KL are projective. Hence QR envelopes a conic.

Corollary. The conic touches KL and KM.

Tliese theorems may be extended as follows.

90. Theorem. If a triangle moves so that its three sides

QR, RP, PQpass always through three given points A, B, C respec-

tively, and Q lies on a conic through A, C and R lies on a conic

through A, B ; then the locus of P is a conic passing through B, C.
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Fig. 76.

For since BP passes through R, .'. pencil described by BP at

B is equal to pencil described by

AR at A : and pencil described by

CP at C, i.e. pencil described at

C by CQ = pencil described at A

by AQ. But AQ, AR are the

same line,

.-. pencil B{P...} = C{P ...},

and .'. the- Idcus of P is a conic

passing throitgh B and C.

Thus, -if from aii intersection

of two" conies we draw a line to

cut the conies at R, Q respectively ; and join R, Q to two given

points B, C on their respective conies, the locus of the intersec-

tion of BR, CQ is a conic.

Corollary. The locus of P passes through any other

intersection of the conies AB . .
.

, AC . .
.

, and hence if these conies

intersect in four points it is completely determined for it passes

through the three intersections other than A, and through the

two points B, C.

Thus we get a system of three conies passing through three

points X, Y, Z and intersecting in

pairs at A, B, C, concerning which

we have proved that if P on BCXYZ,

Q on CAXYZ, R on ABXYZ, are such

that PR passes through B, and PQ
through C, then QR passes through

A.

Thus we get a system of co-

related triads P, Q, R on the three

conies.

91. Theorem. If a triangle PQR moves so that its vertices

P, Q, R lie respectively on LM, MK, KL, and PR touches a conic

touching LM and LK, and PQ touches a conic touching ML and

MK, then the envelope of QR is a conic touching KL and KM.

Fior. 77.
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For the row described by Q on M K = row described by P on

ML = row described by R on KL.

Hence QR is the join of pro-

jective rows on KM and KL, and
.". its envelope is a conic which

touches KL and KM.

Corollary. The envelope of

QR touches the other common
tangents of the two given conies.

Hence, if they have four common
tangents, it is determined by KL,

KM and three of these common
tangents other than LM.

Thus we get a set of three conies each touching the three sides

of the triangle ABC ; and touching in pairs, the sides KL, LM, MK

Fig. 78.

Fig. 79.
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of triangle KLM : and we have proved that if from any point P on

LM we draw tangents PQ to the conic touching MK, ML meeting

MK at Q ; and PR to the conic touching LK, LM meeting LK at R,

then QR touches the third conic. Thus we get a set of co-related

triangles PQR.

Corollary. Three special forms of the triangle PQR on the

lines BC, CA, AB. ,

EXAMPLES. V.

1. Through A a line is drawn parallel to the side BC of a quadrilateral

ABCD, and the joins of two fixed points on this line to a variable poiut on

BC cut AB at K, L; prove that the locus of the intersection of CK, DL is a

conic passing through A, B, C, D.

Also find the cross-ratio of {ABCD} on this conic,

2. A conic touches two lines TA, TB at A and B, and passes through a

point C. Find the lines through T which meet the curve at infinity.

3. Through corresponding points on two projective rows lines are drawn

parallel to two given directions, prove that the locus of their intersection is a

conic.

4. A parabola touches TA,. TB at A, B, and M is the middle point of

AB. Prove that the locus of the intersection of the perpendicular from T to

a tangent touching the parabola at K and a line through K parallel to TM is

a conic.

5. If the chord CD of a conic passes through the intersection of the

tangents at A, B prove that C, D are harmonic conjugates to A, B on the

conic.

6. Three straight lines through a point cut a conic in six points forming

an involution on a conic.

7. If a chord PQ of a conic cuts a chord AB at K and the tangents AT,

BT at D, E, prove, from the definition, that

KD KE_ KP
DQ'EP" KQ*

Deduce that when P coincides with Q then {KPDE} is harmonic.

8. Construct a conic circumscribing ABCD, with respect to which

{ABCD} is harmonic.
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9. Prove that the chord of contact of tangents to a conic from any point

on a given straight Kne passes through a fixed point.

10. Construct a conic to touch four given straight lines, so that the

cross-ratio of the four tangents shall have a given value.

11. A conic is constructed by joining corresponding points on two rows

TA, TB of which T and A correspond to B and T. Two of the joins PQ,

P'Q' cut AB at R, R' respectively and intersect at X, and TX cuts AB at Y.

Prove that

AY AR^RY
YB' RB~YR"

Deduce that, when P'Q' coincides with PQ, X becomes the point of contact

of PQ, and {ABYR} is harmonic.

12. Two conies are drawn through four points A, B, C, D and any line

through A cuts the conies at Q, R ; find the locus of the intersection of BQ
and CR.

13. A conic touches TA, TB at A and B, and the joins of A, B to any

point P of the conic cut TB, TA respectively at K, L. Prove that KL
envelopes a conic, which also touches TA, TB at A, B.

14. In the figure of the previous question prove that the point at which

KL touches its envelope lies on TP. Also prove that KL, AB and the tangent

at P are concurrent.

15. In the same figure prove that TP is harmonically divided by AB
and KL. Also find the points at which the line joining T to the middle

point of AB cuts the envelope of KL,

16. A variable tangent to a conic cuts two fixed tangents TA, TB at

K, L respectively, prove that the locus of the intersection of AL, BK is a conic

having double contact with the given conic.

17. Any line through a given point K in the side BC of a triangle ABC
cuts CA at L, and AB at M, and BL, CM cut AK at X and Y respectively

;

prove that the locus of the intersection of CX and BY is a conic.

18. Any point P is taken in the side of a triangle ABC, and BQ, CR
parallel to AP meet CA, BA respectively at Q, R ; if PQ cuts AB at M and

PR cuts AC at L, prove that LM envelopes a conic.

19. Any point Q of a fixed straight line is joined to two given points S
and S', and SP, S'P are drawn making given angles with QS, QS' respec-

tively and meeting at P. Prove that the locus of P is a conic.

ao. If ABC, A'B'C lie on a conic prove that the intersections of AB'

and A'B, AC and A'C, BC and B'C are collinear.
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21. If two projective pencils have a common vertex lying on a conic

which cuts any two rays of the first pencil at K, L and the corresponding

rays of the second pencil at K', L', prove that the locus of the intersection of

KL' and K'L is a straight line.

22. Construct the points at which a given straight line is cut by the

conic passing through five given points.

23. A conic touches TA at A and TB at B, and a variable tangent to

the conic cuts TA at P and TB at Q ; P' is the mid-point of TP, and Q' of

TQ. Prove that the locus of the intersection of AQ', BP' is a conic.

24. Tangents from three collinear points touch a conic at six points

forming an involution on the conic.

25. A chord of a conic subtends an angle at a given point of the conic

whose bisector is fixed
;
prove that the chord always passes through a given

fixed point.

26. Two conies are such that a triangle is inscribed in one and circum-

scribed to the other, prove that an infinite number of such triangles exist.

27. The tangents at A, B to a conic meet on the normal at C
;
prove

that AC, BC are equally inclined to the normal at C.

28. If the tangents from P to a conic cut a given line AB at K, L so

that AK . AL bears a fixed ratio to BK . BL prove that the locus of P is a

conic, which passes through the intersections of the tangents from A, B to

the original conic, and divides AB harmonically.

29. On a given tangent to a conic two other tangents, which meet at T,

cut off a segment which subtends a constant angle at a given point on the

conic. Prove that the locus of T is a conic, having double contact with the

given conic.

Prove, also, that the chord of contact of the two conies is independent of

the size of the constant angle.

Discuss the special case where the constant angle is a right angle.
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POLARS

92. Theorem. If any point K be taken within or without

a conic, there exists a straight line which contains the intersec-

tion of tangents at the extremities of any chord through K, the

harmonic conjugate of K with respect to the extremities of any

chord through K, and the intersections of the joins of the ex-

tremities of any two chords through K. This line is called the

polar of K.

Through K draw a chord AB, and let the tangents at A, B

meet at T : find the harmonic conjugate L of K with respect to A

and B : then TL is the polar of K.

Draw any other chord XY through K, let AX, BY meet at V

and AY, BX at U. It has been proved that UV passes through T

(§ 74).

But XY, UV, AB are the diagonals of a quadrilateral, hence

UV, XY divide AB harmonically, i.e. UV passes through L. Hence

U and V lie on TL.

Similarly UV contains the harmonic conjugate P of K with

respect to X, Y; and the intersection Q of tangents at X, Y.

Hence P, Q lie on TL.

Hence if X'Y' be any other chord, the intersections of XX',

YY' and of XY', YX' lie on PQ, and therefore on TL.
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Corollary. If K is outside the conic its polar is the chord of

contact of tangents from K. For it has been proved (§ 75, Cor.)

that the points of contact of tangents from K lie on TL.

Construction. To draw tangentsfrom K to a conic.

Draw through K two lines to cut the conic at A, B and X, Y

respectively; let AY, BX meet at U and AX, BY at V; if UV cuts the

conic at C, C' then KC, KC' are the tangents from K.

If UV does not cut the conic, K lies within the conic.

u yy

Fior. 80. Fig. 81.

93. Theorem. If B is on the polar of A, then A is on the

polar of B.

1. If AB cuts the conic at E, F, B is the harmonic conjugate

of A with respect to E, F ; and therefore A lies on the polar of B.



Polar

s

109

Through B draw any chord KL : join AK, AL to cut the

1 M, N.

Then KL, MN intersect on the polar of A, but KL cuts that

polar at B, hence MN passes through B.

Thus KL, MN are two chords through B, and therefore the

intersection A of KM, LN lies on the polar of B.

Corollary. The pole of AB is the intersection C of KN and

LM.

Two points each lying on the polar of the other are called

conjugate points.

A has a conjugate point on every line through it, their locus

being the polar of A.

If A, B are conjugate points on a line whose pole is C, then A
is the pole of BC, and B of AC.

A triangle of which each side is the polar of the opposite

vertex is called a self-polar or self-conjugate triangle.

Corollary. The diagonal points of any inscribed four-point

are the vertices of a self-polar triangle.

Corollary. One vertex of any self-polar triangle lies within

the conic, and two vertices lie outside the conic.

94. Problem. Given a self-polar triangle to a conic and

one point on the conic, to construct three other points of the

conic.

Let ABC be the self-polar triangle, and K the given point.

Join AK to cut BC at P, and find the harmonic conjugate L of K

with respect to A and P.

Since BC is the polar of A, it follows that A and P are conju-

gate points on the line AP, therefore AP cuts the conic in points

which are harmonically conjugate with respect to A and P. But

one point of section is K, therefore the other is L.

Similarly two other points M, N may be obtained by joining

BK to cut AC at Q, and taking M the harmonic conjugate of K
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with respect to B, Q ; and joining CK to cut AB at R, and taking

N the harmonic conjugate of K with respect to C, R.

Corollary. If two conies have a common self-polar triangle

they intersect in four points or not at all.

For if they intersect at one point, the above construction

gives three other points, each of which lie on both conies.

B PC
Fig. 82.

95. A system of conies passing throughfour points A, B, C, D
have a common self-polar triangle, whose vertices are the diagonal

triad U, V, W of thefour-point ABCD.

Also V, W are conjugate points (on their join) with respect to

any conic of the system ; hence the conies trace an involution on

VW. To this involution belong also the points at which VW is

cut by those common chords which pass through U, since these

are harmonically conjugate to UV and UW.

Involutions are also traced on UV and UW. Any one conic of

the system, however, cuts two and only two of the lines in real

points (§ 93, Cor.).

96. Theorem. If two four-points have a common diagonal

triad, their eight vertices either lie on a conic or on two straight

lines through a diagonal point.
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Let K, L, M, N and K', L', M', N' have a common diagonal triad

A, B, C (see fig. 82).

1. If K' lies on KL, then L' also lies on KL; since K'L', KL

both pass through A.

Again AM is the harmonic conjugate of AK with respect to AB
and AC, and AM' of A K'. But AK' lies along AK, therefore M' lies

on AM.

But MN, M'n' both pass through A, therefore M', N' both lie

on MN.

Hence and similarly, if any one of the second set of four

points lies on the join of two points of the first set, then another

lies on that join, and the other two on the other join which passes

through the same diagonal point.

2. If K' is not coUinear with any two of the four points K, L,

1VI, N a conic can be described through these five points. Also

ABC will be a self-polar triangle to this conic, and hence L', M',

N' lie on the conic.

97. Theorem. The chords of contact of four tangents to

a conic pass through the vertices of the diagonal triangle.

Let KL, MN, OP, the diagonals of the four-side formed by

tangents at A, B, C, D, form the triangle UVW (tig. 83).

The tangents KA, KC touch the conic at A, C ; intersect at K

;

and are cut by two other tangents at M, O and P, N respectively.

.-. {KAMO} = {CKPN},

.-. {KAMO} = {KCNP};

two rows with a common corresponding point K, therefore AC,

MN, OP are concurrent; i.e. AC passes through U.

Similarly BD passes through U : AB and CD through V : and

AD, BC through W.

Corollaries. 1. The diagonal triad of four points on a conic

are the vertices of the diagonal triangle of the four lines which

touch the conic at those four points.
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2. The diagonals of a circumscribing quadrilateral form a

self-polar triangle.

3. Given a self-polar triangle and one tangent three others

can be constructed (cf. § 94).

4. Given a self-polar triangle and two tangents, the conic

can be constructed, except in certain special cases.

Fig. 83.

5. If two four-sides have a common diagonal triangle, the

eight lines either touch one conic, or pass through two points

lying on one of the diagonals (cf. § 96).

6. If two conies have a common self-polar triangle the}'^ have

either four common tangents or none. For if they have one

common tangent we can construct three others by Cor. 3.
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7. Two or more conies touching four given lines have a

common self-polar triangle. Also pairs of tangents from a vertex

of this triangle form a pencil in involution (cf. § 95).

Pole Theorem.

98. If VW is any straight line there exists a point U through

which pass the chord of contact of tangents from any point of

VW ; the harmonic conjugate of VW with respect to tangents to

the conic from any point of VW ; and the joins of intersections of

the tangents from any two points of VW. This point U is called

the pole of VW.

If VW cuts the conic, its pole is the intersection of tangents

drawn at the points of section.

If U is the pole of VW, then VW is the polar of U as defined

in § 92.

If we join any point V on a line VW to U the pole of VW, then

VW contains the pole of VU. Two lines through a point each of

which contains the pole of the other are called conjugate lines.

If U is the pole of VW, aud W of VU, then V is the pole of UW:
and UVW is a self-polar triangle.

99. Theorem. As a line tarns round a pointy its pole

moves along the polar of the point describing a row projective with

the pencil of the line.

Let AP be the line, turning round A, and cutting a, the polar

of A, at P.

Take any fixed line through A cutting the conic at L and M.

Let PL, PM cut the conic again at X, Y respectively.

P is on the polar of A, therefore XY passes through A.

Therefore LY, MX meet at P', the pole of A P.

Hence as P moves along «, P' also moves along a, and (L, M
being fixed) the pencil described by AP at A = the pencil of LP

p. p. G. 8
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or LX at L = the pencil of MX at M (by the detinition of a

conic) = the row described by P' on the transversal a.

Corollary. Conjugate points (P, P') describe projective rows

on a straight line : again when P is at P', P' is at P, since P is the

pole of AP', hence {PP'QR} = {P'PQ'R'}, i.e. the double row of con-

jugate points on a line are in involution.

When the line cuts the conic these results follow directly

from the fact that P, P' are harmonically conjugate to the points

of intersection, which are the double points of the involution.

Conjugate lines at any point describe a pencil in involution.

If the point is outside the conic the tangents from it are the

double rays of the involution.

Fig. 84 (i). Fig. 84 (ii).

100. Theorem. If P, Q and A, B be two pairs of conjugate

points, then the intersections K, L of PA, QB and PB, QA respec-

tively are also conjugate points.

Let R, C be the poles of PQ and AB. Draw PR to cut BC at

G, and AC at H ; QR to cut BC at E ; and PB to cut AC at Y.
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Then E lies on the polars of A and P, hence it is the pole of

AP ; similarly G is the pole of AQ, so B, C, E, G are the poles of

AC, AB, AP, AQ,

and .". {BCEG} = pencil A {CBPQ} = transversal {YBPL},

therefore {BCEG} = {BYLP} by a double exchange of terms: and
these are two projective rows with a common point B, tlierefore

CY, EL, GP are concurrent : viz. EL passes through H.

Now E is the pole of AP, and H is the pole of BQ (being the

intersection of the polars of B and Q) : therefore EH is the polar

of K.

Hence the polar of K passes through L. q. e. d.

J—

2
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101. Given a self-conjugate triangle ABC and a point P and

its polar jo, to find the conic.

Join PC to cut p at Z, and AB at F, then C, F and P, Z are

two pairs of conjugate points on PC, and hence we may find the

double points K, L of the involution on PC, These will be the

points at which PC cuts the conic, similarly we may find two

points on PA, and two on PB.

Fig. 86.

Now one vertex of a self-conjugate triangle lies inside the conic,

and two outside. Hence one at least of the lines PA, PB, PC must

cut the conic, so that we have found at least one pair of real points.

Again let BC cut p at Q, and PA at Q'.

Then Q lies on p and BC, hence its polar passes through P and

A, therefore Q, Ql are conjugate points on BC, and so also are B, C,

hence the involution on BC is determined, and its double points,

M, N, are a pair of points on the conic. But two sides of a self-

conjugate triangle cut the conic and the other does not. Hence

we get two pairs of real points, and one imaginary pair.

Hence we have got at least six real points of the conic (viz.

four on the sides of triangle ABC, and two on one of the lines PA,

PB, PC), and the conic is completely determined.



Polar

s

117

Corollary. If P lies on a side AB of the triangle ABC, its

polar is a line CQ through C, and the construction fails.

In this case let CQ cut AB at Q. Then PCQ is also a self-polar

triangle. P, Q and A, B determine the involution on AB ; let G, H

be the double points of this involution, then any conic which

touches CG, CH at G, H satisfies the conditions.

102. Two conies cannot have more than one common self-con-

jugate triangle [unless they touch two given lines OG, OH at the

same points G, H, in which case any triangle whose vertices are O
and two harmonic conjugates P, Q with respect to G, H is a com-

mon self-conjugate triangle].

If U, V are two points which have common polars for the

conies, and these polars intersect at W, then W has a common
polar UV and UVW is the common self-polar triangle.

If there exists a point U which has the same polar QR for both

conies, the conjugate points on QR for each conic trace an involu-

tion, these involutions have one pair of common points, which

may or may not be real: if they are real, viz. V and W, then UVW
is a self-polar triangle common to the conies.

Hence two conies have not more than one common pole and

polar, except when they have a common self-polar triangle.

Common Conjuga.tb Points and Lines for two Conics.

103. If the polars of P for two conics intersect at P', the

polars of P' intersect at P, and P' is the conjugate of P for both

conics : P has only one common conjugate point P', except when

it has a common polar for the two conics, in which case it is the

common conjugate of any point on that polar.

If P, P' and Q, Q' are two pairs of common conjugate points,

the intersections of PQ, P'Q' and PQ', P'Q are also common conju-

gate points (§ 100).
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If P is an intersection of the conies it coincides with its

common conjugate P'.

If P lies on a common chord AB its common conjugate also lies

on AB and is the harmonic conjugate of P for A and B; if P is the

intersection of two common chords it has a common polar for the

two conies.

On any line the conjugate points for either conic trace an

involution, and two non-coincident involutions on a line have one

and only one pair of common points, real or imaginary, hence on

any line which is not a common chord there is one and only one

pair of common conjugates (real or imaginary) : if on a line there

are two pairs of common conjugates (the involutions coincide, and)

the line is a common chord cutting both conies at the (real or

imaginary) double points.

On a common tangent to two conies the common conjugate

points are the points of contact.

104. Conjugate lines. If c, D are the poles of AB for

two conies, the poles of CD lie on AB, and AB, CD are common
conjugate lines for the two conies : AB has one conjugate line CD,

except when it is a line having the same pole for each, in which

case it is conjugate for both conies to any line through the com-

mon pole.

If AB is a common taingent it coincides with its common
conjugate.

If AB passes through the intersection O of two common
tangents, its common conjugate also passes through O and is the

harmonic conjugate of AB with respect to the common tangents.

Through any point which is not an intersection of common
tangents pass one, and only one, pair of common conjugate lines

(real or imaginary). If more than one pair of common conjugates

can be drawn through a point, that point is an intersection of

common tangents, viz. the (real or imaginary) double rays of the

involution.
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105. Theorem. If U has a common polar for two conies,

and P, P' are a pair of common conjugate points, the common
conjugate of any point Qon UP lies on UP'.

Proof. Let the poles of UP for the two conies be S, T (lying

on the polar of U), the polars of

P are SP', TP' : also if UP cuts

ST at F, the polars of F are SU,

TU. Let the polars of Q be

SQ', TQ'.

Then each of the two pen-

cils formed at S and T by join-

ing to F, U, P', Q' is projective

with {UFPQ}, since the cross-

ratio of four points on a line

is equal to that of their four

polars at the pole of the line

(§ 99)-

Thus at S, T we have two

projective pencils with a com-

mon ray SF (the polar of U), hence they are in perspective, and

therefore U, P', Q' are collinear.

Hence as P moves along a line U P its common conjugate moves
along another line through U.

If UP' cuts ST at F', then {F'UP'Q'} = {UFPQ} = {FUQP}, hence

P'Q and PQ' intersect on FF', i.e. on ST.

106. Conversely: if P, Q, R are three collinear points

whose common conjugates for two conies P', Q', R' are also col-

linear, the intersection of PQ and P'Q' has a common polar for the

two conies. Let S, T be the poles of PQ for the two conies, then

SP', SQ', SR' and TP', TQ', TR' are the polars of P, Q, R : also if

P'Q' cuts ST at F', the pole of SF' for the one conic is a point U

on PQ such that {PQRU} = {P'Q'R'F'}, and the polar of TF' for the

other conic is the same point U.

Fig. 87.
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Hence ST has the same pole U (lying on PQ) for both conies,

and hence by the theorem above the common conjugates P', Q', R'

of P, Q, R lie on one line through U.

Corollary. The common conjugate of any other point of PQ
lies on P'Q'.

Conjugate Conic of a Line with respect to two Conics.

107. Problem. To find the locus of the common conjugate

points for two conics, of all points lying on a given line.

1. If the line has the same pole U for both conics, the

common conjugate to any point on the line is at U (but if there

is a self-polar triangle UVW the points V, W of the line are conju-

gate to any points on UW and VW respectively) : also, if the

conjugates of two points K, L of the line are the same point that

point is the pole of KL for both conics.

2. If the line passes through a common pole the locus of the

conjugate points is another line through that pole: and if the

conjugate points K', L', M' of three points K, L, M are collinear, the

intersection of KL, K'L' is a common pole, and the common conju-

gate of any point of KL lies on K'L' ; the locus is a straight line.

3. If the above special conditions are not satisfied, let K', L',

M' be the conjugates of three points K, L, M of the line, and S, T
the poles of the line for the two conics, so that SK', TK' are the

respective polars of K, etc., etc.

Take any other point P of the line, and its polars SP', TP'.

Because the cross-ratio of four points on a line equals the

cross-ratio of their polars at the pole of the line (§ 99),

.-. S {K'L'M'P'} = {KLMP} = T {K'L'M'P'},

and K', L', M' are not collinear, therefore the locus of P' is a conic

given by the five points S, T, K', L', M'. It is called the conju-

gate conic of the line.
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Corollary 1. The conjugate conic cuts the line at the pair

of common conjugate points which lie on the line.

Corollary 2. If U is a point which has a common polar QR
for the two conies it lies on the conjugate conic of any line, for it

is conjugate to the point where QR cuts the line : if the conies

have a common self-polar triangle its vertices lie on the conjugate

conic of any line.

Corollary 3. If A, B on the line have common conjugates

A', B' and A'B' cuts AB at C, the common conjugate of C is the

intersection C' of AB' and BA' (§ 100).

Corollary 4. If P is any other point on AB, and P' the

common conjugate of P, and K is any other point of the con-

jugate conic of AB, we have K {A'B'C'P'} = S {A'B'C'P'} = {ABCP}; but

A, A', B, B', C, C' are pairs of vertices of a four-side, therefore the

joins to K are in involution, hence KP and KP' describe pencils in

involution at K.

If the common conjugate points are real points X, Y (§ 103)

this may be proved as follows.

The pencil K{P' ...} = S {P' ...} = {P ...}; hence KP', KP describe

two projective pencils at K. Also, in these pencils, KX corre-

sponds to KY and KY to KX, hence the pencils are in involution.

Corollary 5. If U is a point which has the same polar for

both conies, and a common chord through U cuts AB at P, the

common conjugate P' also lies on UP. Hence the common chords

through U are the real or imaginary double rays of the involution

described by UP, UP' at U ; and UP, UP' are harmonically conju-

gate with respect to the two common chords.

108. Theorem. If two conies have a common self-polar

triangle they have either one or three pairs of common chords.

Let UVW be the self-polar triangle, through each vertex pass

two, real or imaginary, common chords. If two pairs are real,

there are four real intersections of the conies, and the third pair

of common chords are real.
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Also, by § 94, Cor., if the conies intersect at all, they intersect

in four points, and therefore there are three pairs of common

chords.

Suppose, however, that the common chords through V and W
are imaginary, and take a point P within the triangle UVW. Let

P' be the common conjugate of P.

Since the double rays of the involution at V are imaginary,

VP and VP' lie in supplementary angles at V (§ 32) ; and, in the

same way, WP and WP' lie in supplementary angles at W.

Hence P' lies either in the angle between VU produced and

WU produced, or in the space bounded by UV produced, UW
produced and VW. In either case UP' and UP lie in the same or

opposite angles at U, and therefore the double rays of the involu-

tion at U are real (§ 32), forming a pair of real common chords.

Hence the conies either intersect in four points, and have

three pairs of real, common chords, or they do not intersect at

all, but still have one pair of real, common chords, i.e. a pair of

lines which, although they do not cut either conic, still satisfy a

certain test which applies to common chords.

109. Theorem. Any two conies have at least one common

pole and polar.

Take two lines KL, KM and find their conjugate conies for the

two conies : these intersect at K', the common conjugate of K,

hence they intersect in at least one other point U.

Let Q be the point of KL which corresponds to U, and R the

point of KM ; then QR is the polar of U for both conies.

Corollary. If two conies intersect at A, we can find a point

U which has the same polar GIR for both conies, and another

common point of the conies will be the harmonic conjugate on

UA of A with respect to U and the point where UA cuts QR.

110. On the polar QR of U conjugate points with respect to

either conic trace an involution whose double points are the

points where QR cuts the conic. Now two involutions on a line
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have one and only one pair of common points, but these are

imaginary if, and only if, the double points are the ends of real

and overlapping segments (§ 28).

Let V, W be the common pair of conjugate points on the polar

of U, if they are real UVW is a self-polar triangle : and therefore

the conies intersect in four points or not at all.

Conversely: if two conies do not intersect at all (and U, QR are

the common pole and polar), one conic must lie entirely within

the other or else each outside the other, in either case QR cuts the

conies in segments which are one or both imaginary, or if both

real not overlapping, and therefore V, W are real. [In this case

there are two real common chords (§ 108).]

Hence it follows that if V, W are imaginary the conies must

intersect in one and only one pair of points, and (conversely) if

they intersect in one pair of points only, V, W are imaginary. In

this case the line QR cuts both conies, and therefore its pole U is

outside both conies.

If U is a common pole to a common polar QR, and AB is a

common tangent meeting QR at A, then another common tangent

is the harmonic conjugate of AB with respect to QR and AU.

Hence two conies have 4, 2, or common tangents.

If U, V, W are real the conies have four common tangents or

none, and conversely, if they have either four or no common

tangents then V, W are real.

Hence when U is real, but V and W are imaginary, there are

two and only two common tangents : conversely also if there are

two and only two common tangents, V, W are imaginary (and the

conies intersect in two points).

Problem. To construct the common chords of two conies

which do not intersect.

Take two points A, B and their common conjugates A', B' ; and

construct the conjugate conies of the lines AB, A'B'. These will

intersect at C, the intersection of AB' and A'B, and also at three

other real points U, V, W forming the self-polar triangle UVW.
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We can now construct the involutions joining U, V, W to

A, A', B, B', C, C' and in one of these the double rays will be

real, and these are the common chords.

111. Theorem. If any straight line be drawn to cut the

six joins of a four-point, and the harmonic conjugate be taken on

each join of the point where the line cuts it, these six conjugates

lie on a conic, which also passes through the diagonal triad of the

four-point.

A

Let AB cut the line at K, and find K' the harmonic conjugate

of K on AB.

Similarly let CD, AC, BD, AD, BC cut the line at L, M, N, O, P

and L', M', N', O', P' be the respective harmonic conjugates.

Let AB, CD meet at U ; AC, BD at V ; AD, BC at W,

{ABKK'} = {ACMM'},

hence BC, KM, K'M' are concurrent, ^.e. K'M' passes through P.
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Similarly K'N', K'O', K'P' pass through O, N, M respectively.

Hence K' {M'N'O'P'} = {PONM} - {MNOP}.

Similarly L' {M'N'O'P'} = {MNOP},

therefore K', L' lie on the same conic through M', N', O', P'.

Again UM', UN', UO', UP' are the harmonic conjugates of DM,

UN, UO, UP with respect to UA and UC.

.-. U {M'N'O'P'} = {MNOP} = K' {M'N'O'P'},

therefore U also lies on this conic, and similarly V and W.

Corollary. Since K'M', L'N' meet at P and K'N', L'M' at O,

therefore O, P are two diagonal points of K'L'M'N'; hence K'L', M'N'

intersect at X, the harmonic conjugate with respect to K', L' of

the point where K'L' cuts the given line ; similarly O'P' cuts K'L'

at the same point X.

Also X is the pole of the given line for the conic.

Again K', L', M', N', O', P' form an involution on the conic

:

which is otherwise proved since

U {K'L'M'O'} = {KLMO} - {LKNP} - U {L'K'N'P'}

because KL, MN, OP form an involution on the line.

This conic may be called the harmonic or nine-point

conic of the line with respect to the four-point.

112. Theorem. The nine-point conic of a line with respect

to four points is the locus of the poles of the line with respect to a

system of conies through thefour points.

Let S be the pole of the line with respect to any conic through

A, B, C, D. Then (using the last figure) the polars of M, N, O, P

are SM', SN', SO', SP', therefore S {M'N'O'P'} = {MNOP}, therefore

S lies on the conic UVWK'L'M'N'O'P'.

Corollary. The nine-point conic of a line with respect to

four points is the conjugate conic of the line with respect to any

two conies through the four points.
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For K, K' are conjugate points with respect to any two conies

through AB, etc., etc., hence K', L', M', N', O', P' are six points on

the conjugate conic of the line, which therefore coincides with

the nine-point conic.

Corollary. The polars of a point Y with respect to a system

of conies passing through four points A, B, C, D are concurrent.

Through Y draw any straight line, and construct its nine-

point conic. Let S be the pole of the line for any conic of the

system, and SY' the polar of Y, cutting the nine-point conic at S

and Y', then Y' is conjugate to Y for all conies of the system.

113. Correlative theorems on the conjugate conic of

lines through a point.

If the poles of AB for two conies are C and D, the poles of CD
lie on AB, and AB, CD are conjugate lines for both conies.

If a line turns round a point its common conjugate for two

given conies envelopes a conic conjugate to the point.

If the conies have a common self-polar triangle its sides touch

the conjugate conic of any point.

If any point be joined to the six intersections of a four-side,

and the harmonic conjugate be taken at each vertex with respect

to the two sides of the four-side which meet at that vertex, these

six conjugates touch a conic which also touches the sides of the

diagonal triangle of the four-side.

The intersections of the three pairs of these conjugate lines

drawn through pairs of opposite vertices lie on a straight line

;

which is the polar of the given point with respect to the conic.

This nine-tangent conic is the envelope of the polar of the

point with respect to a system of conies touching the four lines

which form the four-side.

It also coincides with the conjugate conic of the point for any

pair of conies touching the four lines.

The poles of any line with respect to a system of conies

touching four given lines are coUinear.
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EXAMPLES. VI.

1. Prove that any line through the pole of a chord AB cuts the lines

joining A and B to any other point C of the conic in conjugate points.

2. Through a given point two lines are drawn to cut a conic at four

points which lie on a circle. Prove that the given point has the same polar

for each circle thus obtained. Also prove that the circles are coaxal.

3. Prove that the diagonal points of a four-point inscribed in a conic

are the vertices of a self-polar triangle.

4. A system of conies through four points trace an involution on each

side of the diagonal triangle of the four points.

5. The three diagonals of a quadrilateral circumscribing a conic form a

self-polar triangle.

6. If a line be drawn through a fixed point, and its pole with respect to

a given conic be joined to another fixed point, prove that the locus of the

intersection of the two lines is a conic, which passes through the two fixed

points.

7. Through a given point conjugate lines are drawn with respect to a

given conic
;
prove that they form a pencil in involution.

8. If two pairs of sides of a four-point are conjugate lines with respect

to a conic, the third pair of joins will also be conjugate.

9. If ABC, A'B'C are two self-polar triangles for a conic, and AB, AC
cut B'C at K, L respectively, and A'B', A'C cut BC at M, N respectively,

prove that {B'C'KL} = {MNBC}.
Also prove (1) that A, B, C, A', B', C lie on a conic ; and

(2) that the six sides of the two triangles touch a conic.

10. A conic is inscribed in a triangle which is self-polar to another

conic; KL is any tangent to the inscribed conic, and M is the pole of KL with

respect to the other conic. Prove that the two tangents from M to the

inscribed conic form with KL a triangle which is self-polar to the other

conic.

H. If two conies be such that a triangle can be inscribed in one which

is self-polar for the other, then an infinite number of such triangles can be

described.

12. If a system of conies touch four given lines, pairs of tangents drawn

to them from an intersection of two diagonals of the four-side will form an

involution.
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13. Find the conjugate conic of a straight line with respect to the two

conies which respectively touch the line at two given points, and pass through

three other given points.

14. Prove that two conies intersect in an even number of points.

15. Find the common chords of two ellipses, one of which is entirely

within the other.

16. The poles with respect to two given conies of a straight line which

passes through a fixed point are P, Q. Prove that the join PQ envelopes a

fixed conic inscribed in the common self-polar triangle.

17. The locus of the centres of conies inscribed in a four-side is a

straight line.

18. The locus of the centres of conies which pass through four given

points is a conic.

19. Tangents are drawn to a conic from any two points
;
prove that the

four points of contact and the two given points lie on one conic.

20. Find the nine-point conic of a tangent to a circle with respect to

the four ends of two diameters of the circle.

21. Find the nine-tangent conic of the focus of a parabola with respect

to four lines which touch the parabola.

22. Prove that the polars of any point with respect to a system of

conies passing through four given points are concurrent.



CHAPTER VII

POLYGONS. CONSTRUCTIONS

114. In this chapter we consider

:

1. The properties of inscribed and circumscribed triangles,

hexagons, pentagons and quadrilaterals.

2. Some properties of systems of conies satisfying four

conditions {e.g. the system of conies which touch two lines at

two given points),—in many of the cases there is an involution

of points on a transversal or of tangents from an external

point.

3. The construction of conies to satisfy given conditions, and

other problems relating to conies.

Conies are constructed :

(a) to touch 5 lines (§ 119);

(6) to pass through 4 points and touch 1 line (§ 121)

;

(c) to touch 4 lines and pass through 1 point (§ 123);

(d) to touch 1 line at a given point, and pass through

3 other points (§ 124)

;

(e) to touch 1 line at a given point, 1 other line and pass

through 2 points (§ 127)

;

{/) to touch 1 Hue at a given point, and 3 other lines

(§128);

P. P. G. 9
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(g) to touch 1 line at a given point, 2 other lines and pass

through 1 point (§§ 130, 138)

;

(A) to touch 2 lines at given points, and pass through 1 point

(§§132,143);

(i) to touch 2 lines at given points, and 1 other line

(^135,139);

{j) to touch 2 lines and pass through 3 points (§ 137)

;

(Jc) to touch 3 lines and pass through 2 points (§ 144).

For the sake of convenience we may add to this list the

construction in § 94 of a conic with a given self-polar triangle

and passing through 2 points ; and, in § 101, of a conic when a

self-polar triangle is given, and a point (not on the conic) and its

polar.

Circumscribed and Inscribed Triangles.

115. Theorem. If a conic touches the three sides of a

triangle then the lines joining the vertices to the points of contact

of opposite sides are concurrent.

A

Fig. 89.

Let the conic touch BC at K, CA at L, AB at M.

Let BL, CM intersect at O ; and LM cut BC at X.
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Then, by § 77, Cor. 6, K, X are harmonic conjugates with

respect to B, C.

But the diagonals AO, LM of the four-side AMOL, divide the

third diagonal BC harmonically, hence AO passes through K. q. e. d.

Otherwise. It has been proved (§ 77) that pencils

M{KLCA}, L{KMBC}

are harmonic, and they have a common ray LM, hence the

intersections of MK, MC, MA with LK, LB, LC respectively, viz.

K, O, A, are collinear.

n ^^ -i
AM BK CL

Corollary 1. — . — . — = - 1.
^ MB KG LA

Corollary 2. If LM is parallel to BC, the conic touches BC
, at its middle point, and conversely.

Problem. Given three tangents to a conic, and the points

of contact of two of them, find the point of contact of the third.

116. Theorem. If a triangle be inscribed in a conic the

tangents at the vertices meet the opposite sides in three collinear

points.

Let the tangents at A, B, C respectively be LM, MK, KL and

let them meet the sides BC, CA, AB of the triangle ABC in X, Y, Z
respectively.

It has been proved that {LMAX} is harmonic; also that

{LKCZ} is harmonic.

Hence these rows, having a common point L, are in per-

spective,

i.e. MK, CA, XZ are concurrent, and Y lies on XZ.

[Otherwise from the previous theorem, since ABC, KLM are in

perspective.]

Problem.. Given three points on a conic and the tangents

at two of them, find the tangent at the third point.

Theorem.. If the sides of a triangle KLM touch a conic at

9—2
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A, B, C, and if AK, BL, CM intersect at O and BC, LM ; CA, MK
;

AB, KL at X, Y, Z respectively, then the line XYZ is the polar

of O.

For X lies on BC, the polar of K, hence the polar of X passes

through K ; it also passes through A, and so it is KA, which passes

through O.

Fig. 90.

Similarly the polars of Y and Z are LB, MC respectively.

Hence the polars of X, Y, Z all pass through O. q.e.d.

This is another proof that, if AK, BL, CM are concurrent, then

X, Y, Z are collinear.

We may call O and XY the pole and polar of the inscribed

triangle ABC or of the circumscribed triangle KLM with respect

to the conic.
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117. Complementary triangles. Let the sides LM, MK,

KL of a triangle KLM touch a conic at A, B, C, and let O and XYZ
be the pole and polar of the triangle.

^M'

y'S

Fig. 91.

Let KA cut the conic again at A', then the tangent L'M' at A'

passes through X ; and if LB, MC cut the conic at B', C' respec-

tively, the tangents M'K', K'L' at B', C' pass respectively through

Y and Z.



134 Projective Geometry

Hence we get a triangle K'L'M' formed by the tangents at A',

B', C' which is in homology with KLM, the axis of homology

being the polar XYZ.

Further, considering the tangents from K and K', we find that

the lines BB', CC' joining points of contact of opposite tangents

intersect on KK'. Hence KK' passes through O. Similarly LL',

MM' pass through O, and therefore O is the centre of homology of

the triangles KLM, K'L'M'.

If AA' cuts BC at R, we have proved that {BCRX} =-1 and

therefore, projecting from O, we find that {L'M'A'X} = - 1, hence

B'C' passes through X, similarly C'A' passes through Y, and A'B'

through Z.

Hence the triangles ABC, A'B'c' are also in homology with O
as centre and XY as axis of homology.

Also O and XY are the pole and polar of the complementary

triangles A'B'C and K'L'M'.

Inscribed and Circumscribed Hexagons.

118. Pascal's Theorem. The intersections of the three pairs

of opposite sides of a hexagon inscribed in a conic are collinear.

Fig. 92 (1).
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Let ABCDEF be the hexagon, and let AB, DE meet at K; BC,

EF at L; CD, FA at M.

Also let AB meet CD at X, and BC meet DE at Y.

Then AJBCDF} = E {BCDF} by definition; hence, taking

transversals CD and BC,

{XCDM} = {BCYL},

two rows with a common point C, hence BX, DY, ML are con-

current ; but BX, DY intersect at K, hence K, L, M are collinear.

Q.E.D.

A/- AF

6

Fig. 92 (2).

Theorem. If the three pairs of opposite sides of a hexagon

intersect in collinear points, the vertices of the hexagon lie on

one conic.

Problem. Given five points on a conic, to find where any

line through one of them cuts the conic again.

Pascal lines of a hexagon inscribed in a conic :

—

Given six points on a conic we can form 60 different hexagons

(y 1
5) by joining them in various ways, and each of these gives a

different line of intersection of pairs of opposite sides, hence 6

given points furnish 60 Pascal lines.

If A, B, C, D, E, F are six points forming a convex hexagon.
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the 60 hexagons arrange themselves in 12 distinct types, as

follows, (the number after each is the number of hexagons of

that type) : ABCDEF (1), ABDCEF (6), ABDCFE (6), ABEDCF (3),

ABDFCE (6), ABDECF (12), ABDFEC (6), ABECFD (6), ABEDFC (6),

ABEFCD (2), ABFDEC (3), ACFDBE (3).

119. Problem,
given lines.

Construct the conic which touches five

Fig. 93.

Let three of the tangents cut the other two at A, B ; C, D

;

E, F respectively.

Let AB, EF cut CD at K, L respectively.

Take any point P on BE, and let PK, PL cut AC, BD at Q, R,

then GIR is a tangent to the conic. Let CD cut EB at M.
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Then, projecting from K, we have {ACEQ} = {BMEP} and,

projecting from L, we have {BMEP} = {BDFR},

hence {ACEQ} = {BDFR},

and therefore QR is a tangent to the conic.

Thus, as P moves along EB, we get a series of positions of QR
enveloping the conic.

Corollary. We might have taken P on AF, instead of

on EB.

120. Brianchon's Theorem. If the six sides of a hexagon

touch a conic, the lines joining the three pairs of opposite vertices

are concurrent.

Let AF cut CD at Y, AB cut DE at X.

Let EF cut AB, CD at K, L.

Then {BAKX} = {CYLD}, hence pencil E {BAKX} = F {CYLD}, and

these have a common ray EK or FL, hence the intersections of
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EB, FC; EA, FY; EX, FD are collinear ; hence EB, FC, DA are

concurrent.

Corollary. Six tangents to a conic form (J |5 =) 60 Brian-

chon hexagons, and therefore furnish 60 " Brianchon points " of

intersection of joins of opposite vertices.

Theorem. If the three joins of opposite vertices of a

hexagon are concurrent, all the sides touch the same conic.

Problem. Given five tangents to a conic, and a point on

one of them, draw the other tangent from that point.

Exercise 1. If two triangles are in homology, the six points of intersec-

tion of the sides of the one with the non-corresponding sides of the other lie

on a conic; also the six joins of the vertices of one with the non-correspond-

ing vertices of the other touch a conic.

2. If P, Q, R, S are four points on a conic and PQ, RS intersect at K,

and if A, B are two other points on the conic, then through K pass the joins

of the intersections of AP, BR and AS, BQ ; AP, BS and AR, BQ; AQ, BR
and AS, BP ; AQ, BS and AR, BP ; and similarly four joins pass through L,

and four through M, the other two diagonal points of the four-point P, Q,
R, S.

3. If the points K on AB, L on BC and M on CD are collinear, then

any line through L cuts KD and MA in two points lying on the same conic

through A, B, C, D.

121. Theorem.. Any straight line cuts a system of conies

through four given points in an involution.

Let A, B, C, D be the points, and LPP' the line cutting BC at

L and one of the conies at P, P' : if PD cuts AB at Q and P'A

cuts CD at R, then Q, R are collinear with L.

Therefore Q, R describe projective rows on AB and CD : hence

projecting from D, A respectively we find that P, P' describe

projective rows on the given line.

If the point P moves to the point where CD cuts the line,

then P' becomes the point where AB cuts the line : hence and

similarly if AB, BC, CA cut the line at K, L, M and CD, AD, BD
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cut it at K', L', M' then to K, L, M of the row described by P

correspond K', L', M' of the row described by P', so that

{KLMP} = {K'L'M'P'}.

But K, K', L, L', M, M' form an involution [being the points at

which the line is cut by the six joins of a four-point], hence P, P'

describe a double row in involution.

Corollary 1. An involution has two, real or imaginary,

double points : hence two, real or imaginary, conies of the system

touch the line.

Also, if a common tangent to two conies of the system cut any

other conic at P, Q then P, Q are harmonic conjugates with

respect to the two points of contact.

Corollary 2. On any line there is one and only one pair of

points which are common conjugate points for any two conies of

the system, viz. the double points of the involution.

Corollary 3. Two diagonal points of a four-point are

harmonically conjugate to the points at which their join is cut

by any conic through the four points.

Problem. Describe a conic to pass through four points

and touch a given line.

Let A, B, C, D be the four points.

Their joins cut the line in three

pairs of points in involution, find

E, F the double points of this in-

volution. Then A, B, C, D, E and

A, B, C, D, F give the solutions

:

which are two real and different or

coincident or imaginary conies.

122. Theorem. If a conic

touches 4 lines KA, AB, BC, CK
and a line from A to a point D in

CK, cuts a line from C to any point

E on AK at O, the tangents from D,

E intersect on BO ; i.e. the joins of

E, D to any point on BO touch the same conic touching the 4 lines.

Fig. 95.
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Hence if we take any conic touching 4 lines KA, AB, BC, CK
and draw any line through B, and from any point P on the

line we draw tangents PD to cut CK at D, PE to cut AK at E,

then shall AD and CE intersect on the line BP.

Theorem. The tangents from a fixed point to a system of

conies touching four given lines form a pencil in involution ; and

the joins of the given point to the three pairs of intersection of

opposite sides are pairs of corresponding rays of the involution.

Take the 4 lines KA, AB, BC, CK, and the fixed point P.

Let tangents from P cut CK, AK at D, E respectively, and let

AD, CE intersect at O, which lies on BP.

Pencil described by PD = row of D on CK = row of O on BP

(by projection from A) = row of E on AK (by projection from C)

= pencil described by PE, hence tangents PD, PE describe pro-

jective pencils.

Also if PE cuts CK at D' and PD cuts AK at E', we have PD' of

the first pencil corresponding to PE' of the second pencil, i.e. PE of

the first pencil corresponds to PD of the second, so that PE, PD
are interchangeable.

Hence the double pencil at P forms an involution.

Further as O approaches very near to P, the line PD ap-

proaches the position PA, and PE the position PC, so that

ultimately PA, PC are a pair of rays of the involution, which

proves the latter part of the theorem.

Corollary. When PD, PE coincide then DE is a tangent

touching the conic at P. Now an involution has two real

different, or coincident, or imaginary double rays, hence there are

two conies of the system which pass through P, and their

respective tangents at P are the double rays of the pencil in

involution.

123. Problem. Given 4 straight lines and a point con-

struct a conic to touch the 4 lines and pass through the point.

Let P be the point, and let the sides intersect in pairs at A, B

;

C, D ; E, F ; find the double rays PK, PL of the involution
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determined by PA, PB; PC, PD; PE, PF. Then the 4 given

lines and either PK or PL determine a conic which satisfies the

conditions.

There are two real and different, or coincident, or imaginary

solutions.

Theorem. If through a given point P pass two conies

which touch 4 given lines, and their tangents at P are PK and

PL, then the tangents from P to any other conic touching the

4 lines are harmonic conjugates with respect to PK and PL.

Theorem. From a diagonal point of the complete four-side

formed by four lines the tangents drawn to any inscribed conic are

harmonic conjugates with respect to the lines which join that

diagonal point to the other two.

For UV, UW are the double rays of the involution formed by

joining U to A, B, C, D, E, F.

Pentagon.

124. Problem. Construct a conic to touch a given line at

a given point, and to pass through three other points.

Fig. 96.
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Let AT be the line, which is to touch the conic at A, and

B, C, D the other points.

Then we have rays AT, AC, AD at A to correspond to BA, BC,

BD at B and the problem can be uniquely solved.

Construction. Let BC cut AT at K, draw any line through

K to cut AD at R, CD at Q, and let AQ, BR intersect at P.

Let CD cut AK at X, and AD cut BC at Y.

Then A {TCDP} = {XCDQ}

= {AYDR} by projection from K

= B {ACDP},

hence P lies on the conic, and as the line KR turns round K, the

point P describes the conic.

Now APBCD is a pentagon inscribed in the conic, and so we
get the following theorem.

125. Theorem. If a pentagon ABCDE be inscribed in a

conic, the tangent at A meets the opposite side CD in a point

collinear with the intersections of AB with DE, and AE with CB.

Fig. 97.

Let the tangent at A meet CD at T, and let AB, DE and AE,

BC intersect at L, M respectively.
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Let DE cut AT at X, and AE cut CD at Y.

Then A {TDEB} = C {ADEB} because the points lie on the conic,

hence {XDEL} = {AYEM}, which are two rows with a common
point E, hence XA, YD and LM are collinear, viz. T is collinear

with L, M.

Corollary. Given five points on a conic, we can draw the

tangents at those points.

This theorem may also be deduced from Pascal's Theorem by

making two of the vertices of the hexagon coincide, and

supposing the vanishing side to become a tangent.

Problem. Given 4 points A, B, C, D and the tangent AT, to

find where a line AP cuts the conic.

Pentagon lines. Five points give (J|4=) 12 different

pentagons. These, if the pentagon is convex, give 4 distinct

types ABODE (1), ABDCE (5), ACBED (5), ACEBD (1); yielding

respectively 1, 3, 3, 1 kinds of lines.

The tangent at A meets CD in a point collinear with (1) the

intersections of AB, DE and AE, CB ; and (2) the intersections of

AB, CE and AE, DB ; the tangent at A meets similarly each of the

6 joins of the 4 points B, C, D, E, and through each intersection pass

2 pentagon lines, giving in all 12 pentagon lines corresponding to

the tangent at A. Hence the pentagon furnishes 60 pentagon

lines.

There are 15 intersections of pairs of opposite sides, and

8 lines pass through each.

126. Theorem. Let A, B, E be given and a line AT, on AE
take any point M and on AB any point L, let LM cut AT at K, then

shall any line through K cut MB and LE at points lying on the

same conic of the system of conies which touch AT at A, and pass

through B and E.

Theorem. Let A, B, C be given and a line AT, let any line

through C cut AT at T, and a line through A cut BC at M, and
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let AB cut TM at L, then any line through L cuts AM and CT at

points lying on the same conic of the system of conies which

touch AT at A, and pass through B and C.

Theorem. Any straight line cuts a system of conies each

of which touches a given line at a given pointy and passes

through two other given points in an involution.

For if AT is the given tangent at A, and B, C the other two

points, and if the given line cuts AB at K, and one of the conies

at X, Y and XC cuts AT at Q, and YA cuts BC at R, QR are collinear

with K. Hence rows described by Q on AT, R on BC are projective,

and hence rows described by X, Y on the given line are pro-

jective : also X, Y are interchangeable, hence the two rows form

an involution.

Corollary 1. The points where AT, BC cut the line are

a pair of points of the involution. So also are the points where

AB, AC cut the line.

Corollary 2. Two conies of the system (real and different,

or coincident, or imaginary) touch any given straight line, their

points of contact being the double points of the involution.

Corollary 3. If a common tangent to two conies of the

system touches these two conies at P, Q it cuts any other conic

of the system in points harmonically conjugate with respect

to P, Q.

127. Problem. Given two points and two lines to con-

struct a conic to pass through the two points, touch one line at

a given point, and also touch the other line.

To construct a conic to touch TA at A, pass through B, C and

touch TD.

Let BC cut TD at U, and AB, AC cut TD at K, L.

Take any point M on TD and draw a conic through A, B, M, C
touching AT at A (§ 124) ; let it cut the line again at N.
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Find X, Y the double points of the involution determined by

T, U; K, L; M, N.

Then either of the conies touching AT at A and passing

through B, C, X or B, C, Y satisfies the required conditions.

Y D

Fig. 98.

128. Problem. Given four tangents to a conic, and the

point of contact of one of them, to construct the conic.

To construct a conic to touch TB at A, and to touch BC,

CD, DT.

Join AD, on it take any point P, let BP, CP cut TD, TA at E,

p. P. G. 10
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F respectively. Then as P moves along AD, the line EF will

envelop the required conic.

Let BC cut AD at K and TD at L ; and DC cut TA at M.

Then, by projection from C, {ABMF} = {AKDP} and, by pro-

jection from B, {AKDP} = {TLDE}, therefore {ABMF} = {TLDE},

hence BL, MD, FE describe projective rows on TA, TD with A on

TA corresponding to D on TD. Hence they all touch the same

conic touching TA at A, and TD.

129. Theorem. If a conic touches five lines BC, CD, DE,

EF, FB and A is the point of contact with FB, then AD, BE, CF
are concurrent.

For {TEDL} = {AFMB}, where FB cuts DE at T, DC at M, and

BC cuts ED at L, therefore pencil B{TEDL} = C {AFMB}, but BL is

the same line as CB, hence these pencils are in perspective, viz.

the intersections of BT, CA ; BE, CF; BD, CM are collinear,

hence A, D are collinear with the intersection P of BE, CF.

Note. This theorem might be deduced from Brianchon's

Theorem^ by supposing two of the sides to coincide, but the direct

proof is preferable.

Exercise. Find the number of pentagon points of five tangents to a

130. Theorem. If a system of conies touch a given line

at a given point and also touch two other lines, the tangents

from a given point form an involution.

Let the conies touch AB, AC, BC, touching BC at K, and P be

the given point.

If tangents from P to one of the conies cut AB, AC at M, L

respectively ; then, by the previous theorem, BL, CM intersect at

a point O on PK.

Then the pencil described by PL equals the pencil described

by BL, and the pencil described by PM equals the pencil described
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by CM, but the pencils of BL at B and CM at C each equal the

row of O on PK, hence PL, PM describe projective pencils at P.

Also PM, PL are interchangeable ; hence PL, PM form a pair

of corresponding rays of an involution at P.

Corollary 1. If PK cuts AC at R, then when O is very near

R, L is very near R and M is very near A, so that PK, PA are two

corresponding rays of the involution.

Corollary 2. By taking O at K we see that PB, PC are

corresponding rays of the involution.

Corollary 3. Two conies of the system pass through any

point, their tangents at that point being respectively the double

rays of the involution formed there by tangents to the various

conies of the system.

Corollary 4. If two conies of the system pass through a

given point P, and touch PX, PY respectively ; then tangents

from P to any other conic of the system are harmonically conjugate

with respect to PX and PY.

10—2
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Problem. Construct a conic to touch. a given line at a

given point, to touch two other given lines and to pass through a

given point.

131. Theorem. If a system of conies touch four lines, KF,

FB, BC, CK, the pencil described by the tangent from a fixed point

E on KF is projective with the row described on FB by the point

of contact of the conic.

Let EB, FC intersect at L, -

Then if we take one of the conies which touches FB at Q, and

whose tangent from E cuts CK at P, PQ always passes through L.

Hence the pencil described by EP

= the row described by P on CK

= the row described by Q on BF. q e.d.

Problem. Given five tangents to a conic, find their points

of contact. Hence construct the conic as a point locus.
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Quadrilaterals.

132. Problem. Given two tangents and their points of

contact, also a third point, construct the conic.

Let TA, TB be tangents at A, B and let C be another point on

the conic. Join BC, cutting

AT at K; AC, cutting BT at

L ; and let any line through

T cut BC and AC at Q, R

respectively ; then AQ, BR will

intersect at a point D on the

conic.

For

A {TBCD} = {KBCQ} - {ALCR}

(by projection from T)

= B {ATCD},

hence D lies on the conic

determined by AT, AB, AC at

A, and corresponding rays BA, BT, BC at B. Also, as QR turns

round T, D describes the conic.

Theorem. If A, B, C, D are points on a conic, the intersection

of tangents at A, B is collinear with the intersections of AC, BD

and AD, BC.

Let AC, BD intersect at R ; AD, BC at Q and tangents from A,

B at T ; also let BC cut AT at K and AC cut BT at L.

Then A {TBCD} = B {ATCD}, hence {KBCQ} = {ALCR}, two rows

with their intersection C corresponding to itself, and hence KA,

LM, QR are collinear, viz. T lies on QR.
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133. Theorem. If A, B, C, D lie on a conic, the inter-

sections of the tangent at A with

BC, and the tangent at B with AD
are collinear with the intersection

of AB, CD.

Let K, L, M be the respective

intersections; also let AD meet BC

at X, AT meet DC at Y.

Then A {TBCD} = B {ATCD},

hence {YMCD} = {ALXD}, .'. YA, ML,

XC are concurrent, i.e, K lies on LM.
Fig. 103.

Corollary. Through M also passes the join of the inter-

sections of the C tangent with DA, and the D tangent with CB :

also of the C tangent with DB and the D tangent with CA : also

of the A tangent with BD and the B tangent with AC.

Corollary. This affords another solution of the problem

above, to construct a conic to touch TA at A, TB at B and pass

through C.

Let BC cut AT at K, through K draw any straight line to cut

BT at L and AB at M j the intersection of CM, AL determines a

point D of the conic.

Note. These theorems might have been deduced from Pascal's

theorem by making two pairs of vertices coincide.

134. Problem. Given four points A, B, C, D on a conic

and the tangent AT at one of them, to construct the tangent at

another of the points.

First Construction. Let AC, BD meet at K, AD, BC at L.

Join KL to cut AT at M. Then BM is the required tangent at B.

Second Construction. Let AB, CD intersect at K, AT, BC

at L. Join KL to cut AD at M. Then BM is the required tangent

at B.
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135. Theorem. A system of conies touching two lines at

given points trace an involution on any straight line which cuts

them.

Let the system of conies touch TA at A, TB at B ; and let XY
be the fixed line cutting AB at M, and

any one of the conies at C, D.

Let BC meet TA at K, AD meet TB
at L.

Then K, L, M are collinear (§ 133),

.*. K, L describe projective rows on TA,

TB.

But if we project the K row from

centre B on XY we get the row described

by C ; similarly L projects into D, from

centre A.

Hence C, D describe projective rows

on X, Y. Also they are interchangeable

;

for when C is transferred to D, BD cuts

TA at a point K', and K'M cuts BT at L',

and AL' cuts XY at C. Hence C, D are

pairs of an involution on X, Y.

Corollary 1. When C is near X,

K is near X, lience L is near Y, and there-

fore D is near Y, so that ultimately X, Y

are a pair of the involution.

Corollary 2. When C is near M,

K is near A, hence L is near B, and there-

fore D is near M : so that ultimately M
is a double point of the involution.

Corollary 3 . The other double point

is the harmonic conjugate M' of M with respect to X, Y.

Hence if a fixed line cuts AB at M, and two other lines TA,

TB at X, Y, and M' is the harmonic conjugate of M with respect
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to X, Y; then any conic touching TA, TB at A and B cuts the

line in points harmonically conjugate to M and M'.

Problem. To describe a conic to touch two given lines (TA,

TB) at given points (A, B) and to touch another given line. Find

the double points M, M' as in the previous corollaries. No conic

can pass through A, B, M because they are collinear ; hence there

is only one solution, viz. the conic touching TA, TB at A, B and

passing through M^

Cf. § 77 where it was proved that, if a conic touches two sides

TX, TY of a triangle TXY at A, B, it touches the third side XY at

a point M' which is the harmonic conjugate of the point M, at

which AB cuts XY.

136. Problem. To describe conies to touch two given lines

and pass through two given points.

Fig. 105.

Let E, F be the given points and TX, TY the given lines cutting

EF at X, Y.

Find the centre O of the involution determined on EF by the

pairs of points E, F and X, Y ; and hence the double point M (such

that OM^ = OE . OF = OX . OY).
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Through M draw any line to cut TX, TY at A, B. Then the

conic which touches TX, TY at A, B and passes through E will

also pass through F and will be a conic of the system.

An infinite system of conies can be obtained by turning the

line MA round the fixed point M.

A second system may be got by taking instead of M the other

double point of the involution.

137. Problem. To construct a conic to touch two given

straight lines and pass through three given points. Shew that

there are four such conies.

Fig. 106.

Let E, F, G be the three points and TX, TY the given lines

cutting EF at X, Y ; FG at X', Y' ; and EG at X", Y".

Find M a double point of the involution EF, XY and M' a

double point of FG, X'Y'.
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Join MM' cutting TX, TY in A, B respectively.

Then because AB passes through M, the conic which touches

TA, TB at A, B and passes through F also passes tlirough E. And
because AB passes through M' this conic passes through G.

If M, N are the two double points on EF and M', N' on FG,

there will be four conies given by the lines MM', MN', NM', NN'.

Hence there are four solutions to the problem.

N.B. Two belong to each of the two systems of conies which

touch TA, TB and pass through E, F.

Since the MM' conic passes through E and G, the chord AB
must pass through M" one of the two double points of the

involution, NN' will also pass through M" ; and MN', M'N will

pass through the other double point N" on EG. Thus the three

pairs of double points will be the vertices of a four-side (of which

EFG is the diagonal triangle).

Corollary. If MN, M'N', M"N" are the three pairs of vertices

of a four-side and any straight line cut MN, M'N', M"N" at X, X',

X", then the harmonic conjugates of X with respect to MN, of X'

to M'N', and of X" to M"N" are on a straight line.

Also if these two straight lines cut any one of the four sides

at A, B the conic through A, B and the vertices of the diagonal

triangle EFG of the four-side touches those two straight lines at

A and B.

138. Problem. Construct a conic to touch a line at a

given point, pass through two other points and touch one other

line. Shew that there are two solutions.

[Let TX, TY be the given lines, A the given point on TX, and

E, F be the other two given points. Let E, F cut TX, TY at X, Y.

Find a double point M on EF, XY and join MA cutting TY at B.]

139. Problem. Given three tangents to a conic and the

points of contact of two of them, to construct the conic.
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To construct a conic to touch TK at A, TL at B, and also

touch KL.

Take any point R on AB, and join KR, LR cutting TL, TK
at M, N respectively. Then MN is a tangent, and as R moves

along AB, MN envelopes the required conic.

Fig. 107.

For, if AB cuts KL at O, {TAKN} = {BAOR}, by projection from

L, {BTLM} = {BAOR}, by projection from K.

.-. {TAKN} = {BTLM},

.". MN is a tangent to the conic which touches TA at A, etc.
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Theorem. If a conic touches four lines KL, LM, MN, NK,

the join of the points of contact of LM and KN is concurrent with

KM, LN.

Let the points of contact be A, B.

Then {TAKN} = {BTLM} = {TBML} (by a double interchange),

.'. AB, KM and LN are concurrent.

Corollary 1. The join of the points of contact C, D of KL,

MN also passes through the intersection of KM and LN.

Corollary 2. If KN, LM meet at T, and KL, MN at U, then

AC, BD both pass through the intersection Q of LN, TU ; also BC,

AD both pass through the intersection P of TU and KM.

140. Theorem. If a, h, c, d are four tangents to a conic

of which a touches the conic at A, b at B, the joins of A to

Fig. 108.

intersection be, and B to intersection ad, are concurrent with the

join of intersections ab and cd.

Let KL, KN touch the conic at A, B respectively ; and let LM,
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MN be the other two tangents, which cut KB, KA respectively

at S, R.

Then {LKAR} = {SBKN}, hence the pencil M {LKAR} = L {SBKN}

;

but ML coincides with LS, hence the intersections of MK, LB;

MA, LK ; and MR, LN are collinear ; viz. MK, LB intersect on AN.

Q.E.D.

Corollary 1. This leads to another solution of the problem,

given two tangents (KL, KS) and their points of contact (A, B),

also a third tangent (LS), to construct the conic as an envelope.

Take any point M on LS, join KM to cut LB at O, and let AO
cut KS at N, then MN is a tangent to the conic ; and as M moves

along LS, MN envelopes the conic.

Corollary 2. KM also passes through the intersection of

AS, BR : also of CL, DN, and CS, DR, where C, D are the points

of contact of NM and ML.

Note. These theorems on circumscribed quadrilaterals might

have been deduced from Brianchon's Theorem, by making two

pairs of tangents coincide.

141. Problem. Given four tangents to a conic and the

point of contact of one of them, to find the points of contact of

the other three.

K
K

^/T\
a

/ ^^j> n\

A
Y S

Fig. 109. Fig. 110.
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Let KL, LM, MN, NK be the four tangents (and let KL, MN
meet at R ; KN, LM at S).

Given that KL touches the conic at A, to find where KN touches

the conic.

First Construction. Let LN, RS meet at X, AX will cut KN

at B, the required point of contact, fig. 109.

If KM cuts RS at Y, then AY will cut LM at D, the point of

contact of LM ; and DX or BY will cut MN at C, the point of

contact of MN.

Second Construction. Let an cut km at O, then LO will

cut KN at its point of contact B, fig. 110.

If AM cuts LN at P, then KP will cut LM at its point of

contact D; also if BM cuts LN at Q, then KQ will cut MN at its

point of contact C.

142. Theorem. A system of conies touches two given

lines at given points, prove that

the tangents drawn from any-

other given point form an

involution.

Let TA, TB be tangents at A,

B : and P a given point. Join

PT. Let the tangents from P to

any conic of the system cut TA,

TB at K, L.

Then BK, AL intersect at a

point O on PT.

Hence the row of K on TA
= the row of O on TP = row of

L on TB, and hence PK, PL

describe projective pencils ; also

PK, PL are interchangeable (as shewn in the dotted lines of the

figure), and hence the double pencil at P forms an involution.

Fig. 111.
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Corollary 1. PA, PB are a pair of rays of the involution.

Corollary 2. PT is a double ray of the involution.

Corollary 3. Hence the other double ray is the harmonic

conjugate of PT, with respect to PA, PB.

Corollary 4. If PT cuts AB at X, and {ABXY} = -1, then

the tangents from P to any conic which touches TA, TB at A, B

are harmonically conjugate with respect to PX and PY.

This result has been established previously.

Fig. 112.

143. Problem. To describe a conic to touch TA at A and

TB at B, and to pass through a point P.

Join PT to cut AB at X, find Y such that {ABXY} = -1 ; then

PX, PY being the double rays of the involution the conic must

touch PX or PY : but it cannot touch three lines TA, TB, TP ; lience

the only solution is the conic which touches PY.

We have now two tangents and their points of contact, and

one other tangent, and hence the conic can be uniquely described.

144. Problem. To describe conies to touch two given

lines PQ, PR and pass through two given points A, B.

Find m a double ray of the pencil in involution determined

by PA, PB ; PQ, PR, and on it take any point T. Join TA, TB,
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then the conic which touches TA at A, TB at B and touches PQ
also touches PR. By varying the position of T on m we get a

system of such conies ; and we get a second system if, instead of

m, we take n the other double ray of the involution.

Problem. To construct a conic to touch three given lines

PQ, QR, RP and pass through two given points A, B. Shew that

there are four solutions.

Find m a double ray of the involution determined by PA, PB

and PQ, PR ; and m' a double ray of the involution QA, QB and

QP, QR, let them intersect at T. Then the conic which touches

TA, TB at A and B, and also touches PQ, is the conic required.

If the other double ray n' of the second involution cuts m at

U, then by taking U instead of T we get another solution, and

two others may be obtained by taking V, W the points at which

m' and n' cut ri the other double ray of the first involution.

These are the only four possible solutions.

Since the T conic touches RP and RQ and passes through A, B

the line RT must be a double ray of the involution given by RA,

RB and RP, RQ. Similarly W lies on the same double ray at R :

and U, V on the other double ray at R.

Thus the three pairs of double rays at P, Q, R will be the

sides of a four-point T, U, V, W (of which PQR is the diagonal

triangle).

Corollary. If P, [Q, R the diagonal points of a four-point

T, U, V, W (P on TU, Q on TV and R on TW) be joined to any

point A, then the harmonic conjugates of PA with respect to PT,

PV ; QA to QT, QU and RA to RT, RV also meet at a point B.

Also the conic which touches TA, TB and the three sides of the

diagonal triangle PQR passes through A and B ; and similarly if

for T we substitute U, V, or W.

Problem. Construct a conic to touch a given line at a given

point, touch two other given lines and pass through one other

given point. Shew that there are two solutions.
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Fig. 113.

Let a be the given line and A its point of contact ; let e, f be

the other two given tangents meeting at P ; and let B be the other

given point. Join PA, PB and take a double ray tn of the involu-

tion of rays through P, of which PA, PB and e, / are two pairs.

If m meets a at T, the conic which touches TA, TB at A, B and

touches e, also touches y, and is one solution.

145. Theorem. The diagonal 11017118 offour points on a conic

are the vertices of the diagonal triangle of thefour tangents at those

points.

Let tangents at A, B, C, D be KM, ML, KN, NL and let KN,

LM meet at P and KM, NL at O.

Let OP, MN meet at U ; KL, OP at V; MN, KL at W, so that

UVW is the diagonal triangle of the four tangents.

Then it has been proved (§ 139) that AC, BD both pass through

U ; AB, CD through V; AD, BC through W, hence U, V, W are the

diagonal triad of A, B, C, D.

p. p. Q. 11
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Fig. 114.

146. Corollary. If the points of contact of one pair of

tangents are coUinear with the intersection of the other pair;

then the points of contact of the second pair are collinear with

the intersection of the first pair.

If BD passes through K, then the tangents at B, D intersect on

AC (§ 77, Cor. 5), i.e. A, C are collinear with L. In this case

A, C are harmonic to B, D.

147. Theorem. If km, KN touch a conic at A, D, and LM,

LN touch it at C, B respectively, then the points R, R' at which

MB, NC and NA, MD intersect on KL are harmonic conjugates

with respect to the points X, Y at which KL is cut by MN, and

the other diagonal OP of KLMN.
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Let MN cut BD at E.

Then, by projection from M, {XYRR'} = {EYBD} and, by pro-

jection from N, {EYBD} = {XYLK}, but {XYLK}=-1 by the theory

of four-sides.

Hence {XYRR'}=-1. q.e.d.

Does CD pass through the intersection of LA and MB*? Since

the positions of B, L, C, M, A are independent of the position of

D and its tangent KN, CD does not generally pass through the

intersection of LA and MB.

Fig. 115.

148. Theorem. K, L, M, N, O, P, A, B, C, D being defined

as in the previous theorem, if CD passes through the intersection

of LA and M B, it also passes through P ; also the same line contains

the intersections of NA and KB ; also AB passes through O and

contains the intersections of KC, MD and NC, LD.

11—2
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For it has been proved (§ 115) that MB, LA intersect on PC,

hence PC, CD are collinear; and NA, KB by the same proposition

intersect on PD.

Again it has been proved (§ 146) that, if CD passes through

P, AB passes through O, and the intersection of MD, KC lies on

OA, and of LD, NC on OB.

149. Theorem. If a system of conies touch four lines KMP,

LNP, KNO, LMO, that conic of the system which touches KM at

the harmonic conjugate A of P with respect to K, M, also touches

LN at the harmonic conjugate B of P with respect to L, N, also

touches LM, NK at the harmonic conjugates C, D of O with

respect to L, M and N, K ; also AB passes through O and CD
through P.

For if a conic touches the sides of a triangle OKM at A, C, D

the line CD cuts KM at the harmonic conjugate of A with respect

to K, M : hence CD passes through P.

But if CD passes through P, then AB passes through O (§ 146),

also A, B, C, D are harmonic conjugates of P, O with respect to

K, M ; L, N ; L, M ; K, N respectively.

Definition. The conic which touches KMP, LNP, KNO, LMO
at points harmonically conjugate to P, O with respect to K, M

;

L, N ; K, N ; L, M respectively may be called the harmonic conic

of the four-side, with respect to the diagonal OP.

There are three harmonic conies of a four-side, viz. those which

are harmonic with respect to the three diagonals OP, MN, KL.

Corollary 1. The points A, B, C, D are harmonically

conjugate on the conic.

Corollary 2. If KMP, LNP, KNO, LMO are four given lines,

XYZ the diagonal triangle, then XP, XO cut the sides in four

points (A, A, A, A in the figure) where the first harmonic conic

touches the four lines ; similarly YM, YN determine the points B, B,

B, B where the second harmonic conic touches the figure ; and

ZK, ZL determine the points of contact C, C, C, C of the third
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harmonic conic. X, Y, Z form the diagonal triad of each of the

three four-points AAAA, BBBB, CCCC. Through X pass two AA

lines, two BB lines, two CC lines, and these six lines form an

involution whose double rays are XY and XZ. Similarly at Y

and Z.

b/

y^C

-.r

Fis. 116.
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150. Theorem. If AB, CD intersect at X ; AD, BC at Y

;

AC, BD at Z and K, L are the points where the C tangent and the

B tangent cut AD : then XK, XL are harmonically conjugate with

respect to XY, XZ.

Fig. 117.

Let XZ cut AD, BC at G, H.

Then X {YZKL} = {YGKL}, but we have proved that tangents at

B, C intersect on XZ, at E say, hence by projection from E we get

{YGKL} = {YHCB} ; and, by the theory of four-points, {YHCB} = -1.

Hence X{YZKL}--1.

Note. XK also passes through the intersection of the

D tangent with CB ; and XL through the intersection of the

A tangent with BC.
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151. Theorem. If a system of conies pass through four

points A, B, C, D that conic of

the system which touches at A
the harmonic conjugate of AB
with respect to AC, AD, also

touches at B the harmonic con-

jugate of BA with respect to BC
and BD ; and also touches at C,

D the harmonic conjugates of

CD for CA, CB and DA, DB.

Let the tangent at A cut CD
at O, also let AB, CD intersect at X.

Fig. 118.

Then, by hypothesis, AC, AX are harmonic conjugates with

respect to AC, AD: hence {CDXO} = — 1. Hence, by the theory

of inscribed triangles, XA passes through P the intersection of

tangents at C, D, i.e. tangents at C, D intersect on AB. There-

fore tangents at A, B intersect on CD.

Again, {CDXO} = — 1, hence BA, BO are harmonically conjugate

to BC, BD.

Again, because tangents from O on CD touch the conic at

A, B it follows that {ABXP} = — 1, so that DP is the harmonic

conjugate of DC with respect to DA, DB, and CP of CD with

respect to CA and CB.

Definition. If X is a diagonal point of A, B, C, D, that

conic through A, B, C, D which touches, at each, the harmonic

conjugate of the line joining it to X with respect to the other

two sides through it, may be called the harmonic conic of

the four points with respect to X.

There are three harmonic conies of a four-point.

Corollary 1. The points A, B, C, D (and the tangents at

them) are harmonically conjugate with respect to the conic.
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Corollary 2. Let AB, CD intersect at X ;
AC, BD at Y

;

AD, BC at Z.

If YZ be cut by AB, CD at O, P then OC, CD, PA, PB are

tangents to the first harmonic conic.

If XZ is cut by AC, BD at Q, R then QB, QD, RA, RC are

tangents to the second harmonic conic.

If XY is cut by AD, BC at S, T then SB, SC, TA, TD are

tangents to the third harmonic conic.

Corollary 3. Since {CAYQ} is harmonic, BQ cuts YZ at the

harmonic conjugate of Y with respect to O, Z ; similarly AR cuts

YZ at the same point, so that BQ, RA intersect on YZ. So also

do QD, RC. Similarly RA, QD and RC, CB on XY.

Hence XYZ is the diagonal triangle of the four tangents QB,

QD, RA, RC.

Similarly it is the diagonal triangle of each of the other two

sets of four tangents.

Corollary 4. Each set of four tangents intersect in pairs

on YZ at points which are harmonically conjugate with respect

to Y, Z.
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EXAMPLES. VII.

1. If a conic touches three lines and two of them at given points, find

where it touches the third.

2. Construct a conic, having given (a) five points, (&) four points and a

tangent, (c) three points and two tangents, {d) two points and three tangents,

{e) one point and four tangents, (/) five tangents.

How many solutions are there in each case ?

3. Construct a conic having given a tangent and its point of contact

and three other points or tangents.

4. Construct a conic having given two tangents and their points of con-

tact and either (a) one other point or {h) one other tangent.

How many solutions are there in each case ?

5. Shew that if A, B, C, D, E lie on one branch of a hyperbola and F lies

on the other branch, 32 types of hexagons can be formed by joining the six

points.

6. The six intersections of non-corresponding sides of two triangles in

homology lie on a conic.

7. A, A' and B, B' are corresponding points of two projective rows on a

conic, and the projective axis of the rows cuts the conic at X, Y, so that AB',

A'B intersect at P on XY ; also A'Y, B'X meet at O. Prove that the inter-

section K of AA' with the tangent at X is collinear with O, P.

Also prove that the intersection L' of A'B' with the tangent at Y lies

on OP.

8. A, A' and B, B' are corresponding points of two projective rows on a

conic and the projective axis cuts the conic at X, Y. If the tangents at

X, Y are met by AA' at K, K' and by BB' at L, L', prove that KL', K'L inter-

sect on XY.

9. The joins of corresponding points of two projective rows on a conic

envelope a conic, which has double contact with the given conic.

10. A conic touches BC, CA, AB at P, Q, R and QR, RP, PQ meet

80, OA, AB at K, L, M. Prove that K, L, M are collinear.
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11. A conic touches BC, CA, AB at points P, Q, R such that AP, BQ,
CR are parallel, and QR, RP, PQ meet BC, CA, AB respectively at K, L,

M. Prove that KLM passes through the centre of the conic. Also prove

that for conies satisfying this condition KLM envelopes a conic inscribed in

the triangle ABC, and find where this conic touches the sides of ABC.

12. The lines which touch a conic at A, B, C meet the chords BC, CA,
AB at K, L, M respectively ; and the joins of A, B, C to any other point

P of the conic cut BC, CA, AB at X, Y, Z respectively. Prove that KLM is

a tangent to a conic which touches BC at X, CA at Y and AB at Z.

13. An ellipse whose centre is O is inscribed in a triangle ABC and the

diameters conjugate to OA, OB, OC meet any tangent in D, E, F respectively;

prove that AD, BE, CF are concurrent.

14. A circle touches the sides of an isosceles triangle, prove that the

mid-points of the three pairs of tangents lie on a conic.

15. A parabola passes through A, B, C, D ; AC meets the diameter

through B at K, and BD meets the diameter through A at L. Prove that KL
is parallel to CD.

16. Conies circumscribe a triangle ABC and touch a given line, prove

that the polars of a given point P with respect to these conies envelope a

conic. Also prove that, if AP cuts BC at K, this conic passes through the

harmonic conjugate of P with respect to A, K.

17. Two conies through four given points touch a given line at K, L
respectively

;
prove that the conic through the four points and the mid-point

of KL has an asymptote parallel to KL.

18. Two conies through A, B, C and D have a common tangent touching

them at K, L respectively; and KL cuts AC, BD at E, F. Prove that K, L
are harmonic conjugates with respect to E, F.

Deduce a construction to find K, L for a given line.

Given four tangents to a parabola draw through any point on one of them

the other tangent to the parabola from that point.

19. Four lines are given, find the points of contact of a parabola which

touches them.

20. If AB is an asymptote, and BC, CD, DA tangents to a hyperbola,

construct the other tangent through any point P on AD.
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21. Prove that the pair of points at which a line cuts a conic through

four points belong to the involution determined on the line by the six joins

of the four points.

22. If the chords AB, BC, CD of a given conic respectively pass

through three given coUinear points, then will DA always pass through a
fixed point collinear with the other three.

23. Given five points on a conic, construct the tangent at any one of

them.

24. Any straight line cuts a conic at P, Q, two tangents at K, L and
their chord of contact at X, prove that X has the same harmonic conjugate

for P, Q that it has for K, L.

Deduce that the middle point of a chord of a hyperbola is also the

middle point of the line intercepted on it by the asymptotes.



CHAPTER YIII

THE PARABOLA. CENTRAL CONICS

152. Definition. A parabola is the envelope of the join

of corresponding points of two similar rows not in perspective.

[Of. § 80, Cor.]

Fig. 120.



The Parabola 173

If on two lines we take segments KL and MN, and divide

them similarly at P, Q, so that KP : PL= MQ : QN, then PQ will

move in such a way that it is always tangent to a curve, and the

point at which it touches the curve will be the ultimate position

on PQ of its intersection by a near tangent P'Q' when P' is

brought very near to P, and therefore Q' to Q.

Let KL, MN intersect at T. Then, if KT : TL= MT : TN, the

rows are in perspective, and KM, LN, PQ are all parallel : but if

not there will be a point A in KL, such that KA : AL= MT : TN,

and a point B in MN such that MB : BN = KT : TL. Also, when
Q is very near to T, P is very near to A, and if QP is made to

coincide with TA, their intersection is ultimately at A. Hence
the line TA touches the curve at A; similarly TB is the tangent

at B.

The points T, A, B completely determine the curve, for

AP : PT = TQ : QB.

153. Note. The property of a parabola thus taken as a definition can

be deduced from the focal definition in the following manner, by those who
prefer to commence with that definition, and as the converse is proved in

§ 158, the two classes of curves are proved to be identical.

Tlieorein. If a point P moves so that its distance from a fixed point is

equal to its distance from a fixed hne then any tangent to the locus of P will

describe similar rows on any two given tangents to the locus.

I. Let S be the fixed point and AB the fixed Hne.

Take two points P, Q such that SP= PM, a perpendicular drawn to AB
;

and SQ=QN, perpendicular to AB.

The circles with P as centre, PS as radius, and centre Q, radius QS, will

touch the line AB at M and N respectively.

Let the common chord SH cut AB at K and draw a line from K perpen-

dicular to A B to cut PQ at V.

Then SH is a common chord, and is therefore perpendicular to PQ, also

KM2 = rect. KH.KS=KN2,
.-. MK=KN.

But KV is parallel to MP and QN, hence PV= VQ.
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Hence a line from S perpendicular to chord PQ meets the directrix AB
at a point K, such that a line from K at right angles to the directrix bisects

PQ.

If now we take any other chord parallel to PQ; the line perpendicular to

it through S will still be SK.

Hence the middle points of any set of parallel chords lie on one straight

line perpendicular to the directrix.

Fig. 121.

II. Let P'Q' be another chord parallel to PQ, then PP', QQ' will meet

on the line which passes through their middle points \yiz. at a point Z such

that ZV: ZV=P'V':PV].

But if P'Q' is moved into coincidence with PQ, then PP', QQ' will

simultaneously become the tangents at P and Q. Hence the tangents at P,

Q meet on the diameter which bisects PQ.

III. Now take the two tangents TP, TQ and join T to V, the middle point

of PQ. Let any other tangent touch the curve at R and cut TP, TQ at A
and B. Draw AD, BE, RF parallel to TV to meet PQ at D, E, F.
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Then AD, being parallel to TV, bisects PR, the chord of contact of tan-

gents AP, AR, and is parallel to RF, therefore PD = DF. Similarly QE= EF.

Hence DE= |PQ, and therefore PD = VE and DV=EQ.

.-. PA:AT=PD: DV=VE:EQ= TB: BQ,

i.e. A and B divide PT, TQ similarly, q.e. d.

154. Theorem. A tangent to a parabola describes on any

given tangent a row similar to the rows which it describes on the

original pair of lines.

Let the parabola be determined by TA and TB, and take any

line PQ, such that AP : PT = TQ : QB.

Draw any other tangent P'Q' to cut TA, TB, PQ at P', Q', X,

and to cut a line through P parallel to TB at K (fig. 123).

Then PX : XQ :- PK : Q'Q.

Now PK : TQ' = P'P : P'T = Q'Q : Q'B, since the rows on AT, TB
are similar.

.*. PX : XQ = TQ' : Q'B = AP' : P'T.

Hence X divides PQ in the same ratio in which P' divides AT
and Q' divides TB. Q. e.d.
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Corollary. The point R at which PQ touches the curve is

given by PR : RQ = AP : PT.

Fig. 123.

155. Theorem. The intercept PQ of any tangent by two
given tangents TA, TB is divided harmonically by its point of

contact R, and the point R' at which it cuts AB.

Draw PL parallel to TB to meet AB.

PL:TB = AP : AT = TQ : TB. .-. PL = TQ.

Now PR': R'Q--PL:QB = -TQ :QB = -PR : RQ (§ 154, Cor.).

.*. {PQRR'} = — I, and the range is harmonic.

156. Theorem. The joins of two points A, B on a parabola

to a variable point P on the parabola describe projective pencils

Let the tangent at P cut the tangents TA, TB at K, L.

Join AP to cut TB at M, and BP cutting AT at N.
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Then, if LK cuts AB at P', the range {KLPP'} is harmonic;

hence, projecting from A and B, we have two harmonic ranges

{TLMB} and {KTNA}.

Hence TM : MB == J .TL : LB and AN : NT = 2 . AK : KT.

.'. TM : MB = J. AN : NT. /. {TBMM'} = {ATNN'}, hence IVI

and N describe projective rows on TB and AT, and therefore AP
and BP describe projective pencils at A, B.

Also in these pencils AT, AB at A correspond to BA, BT at B.

Fig. 124.

Corollary. WhenTM : MB =-l, AN : NT = - 2, and AM, BN
are both parallel to the line joining T to the mid-point of AB

:

hence P is at infinity. Also K, L are now at infinity, and the

tangent KL is wholly at infinity.

157. Theorem.
two points bisecting

direction.

p. p. G.

The line through the intersection of

their chord of contact is constant in

12
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1. AB = AV.

Let the tangent at P cut TA, TB at K, L, and draw KD, PC,

LE parallel to the line TV which

bisects AB at V.

AK : KT = TL : LB.

.-. AD : DV = VE: EB,

but AV^VB. .-. DE

But KP:PL = AK:KT.

.*. DC :CE = AD : DV,

hence AD = DC and CE = EB.

.'. KD parallel to TV bisects

chord A P.

Similarly if Q is any other point

on the curve the line through the

intersection of tangents at P, Q and

bisecting PQ is parallel to KD, and

therefore to TV.

Fig. 125.

Corollary. AC : cb=ad : ce=ad : dv = ak : kt = J . an : NT,

where BP cuts AT at N. Hence the pencil described by BP at B

is projective with the row described by C on AB, it is therefore

projective with the row described b}' a line through P parallel to

the constant direction on any transversal.

These parallel lines may be regarded as the pencil of lines

joining successive positions of P to the point of the curve which

is at infinity in the direction TV.

158. Theorem. The join of the intersection of two

tangents to the mid-point of their chord of contact cuts the

parabola at the point of contact of a tangent parallel to the

chord, and is bisected there.

For the line KK' joining the mid-points of TP and TP' bisects

TV at A ; it is a tangent, since PK : KT = TK' : K'P' ; and its point

of contact is A, since KA : AK' = PK : KT.
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Theorem. The middle j^oints of any set ofparallel chords lie

on a line parallel to a constant direction.

For each lies on a line parallel to a constant direction through

the point of contact A of the tangent which is parallel to the

chords.

Definition. This line is called a diameter. The seniichord

(PV) is the ordinate, and AV is the abscissa of P with respect to

the diameter through A,

The diameter which bisects that set of chords which are

perpendicular to the direction of diameters is the axis.

Theorem. If PV, QW and AV, aw are the ordinates and

abscissae of P and Q with respect

to the diameter through A, then

PV- : QW- =^ AV : AW.

Draw QE parallel to AV, and

join AGl to cut PV at D.

The row described on PP' by-

transversals through P, P', Q, A

is {PP'EV}, and the pencil formed

by joining A to the same points

is AP, AP', AD, AK.

.*. {PP'EV} = -PD : DP'.

.'. PE : EP' = -PD:DP',

i.e. {PP'DE} is harmonic.

.-. VD . VE = VP-.

Hence QW^ : PV- = QW- : EV . DV = QW : DV ( •/ QW = EV)

= AW : AV (by similar triangles).

Corollary. If L is a point whose ordinate LR is double the

abscissa AR, then PM^ = i^R . AV, and QW2 = 4AR . AW.

Also the tangents at L and L' meet at Z on RA such that

RZ = 2 . RA = RK = RK', hence LZL' is a right angle.

12—2

Fig. 126.
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159. If S is a point on the axis such that AS is half the

ordinate SL perpendicular to the axis, and PN, AN are the ordinate

and abscissa of P for the axis, we have PN^ = 4AS . AN. This point

S is called the focus, and the chord LSL' is the latus rectum.

The tangents at L, L' meet at a point X on the axis produced

such that AX = AS. The polar of S is a line through X parallel

to the tangent at A, and hence perpendicular to the axis, this is

the directrix.

Theorem. The distance of any point of the parabola from

the focus equals its distance from the directrix.

For SP2-PN2+SN2 = 4AS . AN +SN2 = XN2 = PMI

Corollary 1. If the tan-

gent at P meets the axis at T,

we have AT = AN.

.'. ST = XN, hence SP = ST.

Corollary 2. Since

SP=-ST,

the angle SPT^STP = TPM,

i.e. the tangent bisects SPM.

Corollary 3. If pt cuts

the directrix at Z, the triangles

SPZ, MPZ are equal by s. a. s.

Hence PSZ is a right angle,

and ZP bisects angle SZM.
Fig. 127.

Again if P' is the point where PS meets the curve again, P'SZ

is a right angle, and hence P'Z is the tangent at P', and it bisects

SZM'.

Hence the tangents at the ends of any chord passing through

the focus meet on the directrix and are perpendicular to each

other.
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Corollary 4. Since Z is tlie pole of SP, the lines SZ, SP are

conjugate, and S is a point at which all jmirs of conjugate lines

are perpendicular.

Corollary 5. If KK' is a focal chord whose middle point is

M, and tangents at K, K' meet at T (on the directrix and at right

angles), TM cuts the parabola at C, such that TC = CM = J. KM.
A

Also TSM is a right angle.

Hence SC = CT = CM; SC is called the parameter of the

diameter CM. .'. the focal chord (KK') is four times the para-

meter of the diameter which bisects it.

Also, if PV, AV are the ordinate and abscissa to this diameter

of any point P on the parabola, we have PV^ = 4CM . CV = 4SC . CV.

Another Proof dependent on the Properties of

Poles and Polars.

160. Let KK' be a chord such that tangents KT, K'T are

perpendicular.

Draw TS at right angles to KK'. Also draw TM to the

middle point M of KK' and TR at right angles to TM.

Then TS, TR make equal angles with TK ; but TK, TK' are

the perpendicular rays of the involution of conjugate lines

through T, hence TR, TS are conjugate lines.

Also {KK'RS} = - 1. Hence TR is the polar of S.

Hence S is a point on the axis (since TR is parallel to the

tangent at the end of the axis).

Also ST, SR are a pair of perpendicular conjugate lines at S

;

and so, also, are the axis and a line perpendicular to it through S
;

hence all pairs of conjugate lines at S are perpendicular.

Therefore S is a fixed point on the axis, and it is therefore

that point on the axis whose ordinate is twice the abscissa, viz.

the focus.
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Hence all pairs of perpendicular tangents meet on the

directrix, and their chords of contact pass through the focus,

and each subtends a right angle at the focus.

161. Central Conies. In the projective rows described

by a variable tangent PQ to a conic on two fixed tangents TA, TB
when the rows are not similar, there are two vanishing points I, J

such that IP . JQ has a constant value k (the power) [§§ 37, 38].

Also lA. JT = IT. JB = A;; {TBQJ} = - AP : PT,

and {TAPI} = -BQ:QT.

Fig. 128 (i).

Hence lA : IT = JB : JT, and therefore AB is parallel to I J.

Also ID parallel to TJ and JU parallel to Tl are two of the

joins tangent to the curve.
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If the variable tangent PQ, cutting IT at P and JT at Q, also

cuts Ul at R and UJ at S, by similar triangles IR :IP = JQ:JS,
.'. IR,JS = IP.JQ, hence I, J are the vanishing points of pro-

jective rows described by R on Ul and S on UJ, and the power of

the two rows, viz. IR . JS, has the same value k.

Again IP: IA = JT : JQ, .'. IP:AP = JT : QT, .*. IP.TQ = AP.TJ,

but, by similar triangles, TP : IP = TQ : IR, .'. TP . IR = IP . TQ.

.*. TP. IR = TJ .AP = UI.PA, to each add TP. Ul.

.•. TP. UR = U!. TA.
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Hence T, U are the vanishing points of projective rows

described by P and R on IT and lU. Similarly T, U are vanishing

points of projective rows described by Q, S on JT, JU ; also the

power TQ. US = TP. UR.

162. Since the power of R, S on Ul, UJ has the same value

as the power of P, Q on Tl, TJ, it follows that if D, E are the

points of contact of Ul, UJ we have UE = BT and UD = AT. Hence

DE is equal and parallel to BA ; and AD, BE bisect each other at

the intersection of UT and I J.

If we keep the pair of parallel tangents TA, UD fixed, and

vary the other pair, the middle point of BE will always be at the

middle point of AD. Hence

The middle point of the chord of contact of a pair of

parallel tangents is a fixed point, and every chord through
that point is bisected there.

This point is called the centre.

163. Another Proof. Let P, P' be points of contact of

parallel tangents PT, P'T' ; and A any point on the conic.

Complete the parallelogram PAP'A'.

Then the pencils P {TAP'A'}, P' {T'A'PA} have their corresponding

rays parallel and are therefore equal.

.'. P {TAP'A'} = P' {PAT'A'}, hence A' lies on the conic.

Hence any chord AA' which passes through the middle point

of PP' is bisected there.

Also if AU, A'U' are the tangents at A, A' we have

A' {P'APU'} = A {P'UPA'} = A {PA'P'U};

but A'P' is parallel to AP, and A'P to AP', hence A'U' is parallel

to AU.

Definition. The envelope of the join of projective rows on

TA, BT, whose vanishing points are I, J, is an ellipse if A lies

between T and I, and a hyperbola if A does not lie between T
and I (cf. §§ 79, 80).
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164. I. The Ellipse. Complete the parallelogram TIUJ,

and let A, B, D, E be the points of contact of the sides.

[Then ABDE is a parallelogram whose sides are parallel to IJ

and TU and diagonals intersect at C, the intersection of IJ, TU.]

If a tangent KL cuts TA internally, then since IT> IK> lA, we

have JB<JL<JT, hence L is also between T and B.

Hence LK cuts AB at a point X on AB produced.

Hence the polar of X, which passes through T, cuts AB

internally, and hence it cuts KL internally.

Therefore the point of contact P of KL lies within the triangle

TAB.

Similarly it may be proved that when K is between I and A,

the contact is within the triangle lAE : and that when K is in

the produced parts of IT towards I and T respectively, the point

of contact is within triangles UDE and BJD respectively.

Also when KL is parallel

to AB, P lies on TM. Now
lA : IK = JL : JT (by definition)

= IK : IT (by parallel projection).

.'. AK : IK=KT : IT,

and hence TK > KA, .'. TP > PM,

which shews that there are no

infinity directions (cf. § 79).

L

Fig. 130.
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165. II. The Hyperbola. Let IA>IT (then JB>JT).

As K moves from A to T, L moves from T to B, then KL and AB

cut each other externally, hence the point of contact P is within

the triangle ATB.

Fig. 131.

The parallel tangent to KL, by symmetry about the centre C,

will envelope an arc in the triangle DUE, and will cut Tl

successively at all points from infinity to I.

As K moves from T to I, L moves from B to infinity : let KL

cut lU at N.

Then AB cuts KL internally, hence P cuts KL externally.

Also TK.UN = TI. UE, and hence UN> UE.

.*. DE cuts LN internally, and hence P cuts LN externally.
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Hence P is in LN produced, either in the angle ATB or DUE.

Similarly when K is between A and infinity, L is between T
and J, N between I and U, and M is in UD produced ; and P is

again within angles BTA or EUD.

166. Asymptotes. On A I take points K, K' such that

AK2 = AK'2 = AT . Al, and draw K'L parallel to AB to cut TB at L.

Then

But

IK. IK' = IA2-AK2

= IA"+IA.AT

= IA. IT.

IK' : JL = IT : JT (by parallels)

IK. JL=IA. JT,

and hence KL is a tangent.
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But KA = AK', hence AB bisects KL, and therefore the point of

contact of KL is at infinity.

Similarly, if KL' is drawn parallel to AB, we get another

tangent K'L' whose point of contact is at infinity,

167. Theorem. The asymptotes pass through the centre.

Since
TK _ K'T

1<l
~ kT

(because KK'TI is harmonic),

TK _ LT

"kT" LJ'

TK _ LT
*'

ItT ~ 1 (LT + LJ)
'

hence (by similar triangles) LK passes through the centre C.

Similarly L'K' also passes through the centre.

Thus there are two tangents at infinity, passing through the

centre.

Corollary. If TX be drawn parallel to KL to cut AB at X,

then BX : XA = CK : CL= IK : IK' = JL' : JL.

Similarly a line TX' parallel to K'L' cuts AB at X', where

AX'=BX.

Exercise. Prove that X, X' are the

double points of the projective rows

described on AB by lines through T
parallel to PA, PB.

168. Theorems. I. The

intercept of the asymptotes on

any tangent is bisected at its point

of contact.

For KK' is bisected at A

(fig. 132).

II. On any chord the intercepts

between the asymptotes and the

conic are equal. Fig. 133.
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Let PP' be a chord which cuts the asymptotes at Q, Ql\ and

A the point whose tangent is parallel to PP', cutting the

asymptotes at K, K'.

Then CA is the diameter which bisects PP' at N. But KA = AK',

.-. QN = NQ'.

Hence QP = P'Q'. q. e. d.

169. Conjugate Diameters. If KLMN is a parallelogram

whose sides touch a conic at A, B, D, E it has been proved that

AB and DE are parallel to LN, and AE, BD to KM. Also that

KM, LN, AD, BE intersect at the centre C.

Further KM bisects AB, hence it contains that diameter which

bisects all chords parallel to LN (§ 78) ; also LN bisects all chords

parallel to KM.

Hence if we draw any diameter PCP' bisecting all chords

parallel to QQ', the diameter QlQl bisects all chords parallel to PP'.

Thus we get pairs of conjugate diameters.

The diagonals of a circumscribing parallelogram lie along

conjugate diameters. The sides of an inscribed parallelogram are

parallel to conjugate diameters.
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170. Conjugate Diameters form an Involution. Let

AD be any diameter through the

centre C ; take any point B on the

conic and join to A and D.

Then CP, CQ parallel to DB, AB

are a pair of conjugate diameters.

Also pencil described at C by

CPE pencil of DB at D = pencil of

AB at A = pencil of the parallel line

CQ at C, thus CP and CQ describe

projective pencils at C.

Complete the parallelogram

ABDE, then when B is at E, CP assumes the position CP' in a

straight line with CQ, and CQ becomes at the same time CQ',

which is in a line with CP.

Hence in the double pencil at C, the same ray CQ corresponds

to CP whether we regard CP as belonging to the first or second

pencil, hence the two pencils are in involution.

Corollary. Tf CP is a diameter the conjugate diameter CQ
is parallel to the tangent at P. Hence when the tangent at

P passes through the centre, the diameter coincides with its

conjugate; and conversely.

Hence in an ellipse there are no real double rays of the

involution formed by the pairs of conjugate diameters. [Hence

the term " elliptic " involution.] Whereas in a hyperbola there are

two double rays, viz. the asymptotes. [" Hyperbolic " involution.]

Otherwise : Let the tangent at any point P of a hyperbola

cut the asymptotes in T, T', then we have TP = PT'. But the

diameter CQ conjugate to CP is parallel to TT'.

Hence CP and CQ are harmonically conjugate with respect to

the asymptotes, and therefore form an involution, whose double

rays are the asymptotes.
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Hence also of any two conjugate diameters of a hyperbola,

one and one only cuts the curve.

171. Conjugate Diameters at Right Angles. In an
involution there is always one pair of perpendicular conjugate

rays ; and if there is more than one, then every pair of conjugate

rays are perpendicular.

To construct the perpendicular conjugate diajneters

of a conic. If the tangent at P is perpen-

dicular to CP, then CP and its conjugate are

the required diameters.

If not describe a circle with radius CP
to cut the conic again at Q. Then PC and

QC meet both circle and conic again at P'

and Q' respectively, and PQP'Q' is a rect-

angle, which is inscribed in the conic.

Hence diameters parallel to PQ and PQ'

are a pair of perpendicular conjugate diameters.

The perpendicular conjugate diameters are called principal

diameters or axes.

The conic will be symmetrical with respect to each of its

principal diameters. In the case of a hyperbola the principal

diameters will bisect the angles between the asymptotes.

172. Segments of Diameters. Theorem. If tangents

TQ, TQ' be drawn to a conic whose centre is C, and CT cuts QlQl

at V, and the conic at P, then CV . CT = CP-.

If CV cuts the conic at P, P', then T, V are conjugate points

on PP' and hence harmonically conjugate to P, P', and C is the

middle point of PP', hence CV . CT == CP^.

But in the case of a hyperbola CT may not cut the conic in

real points, however T, V being conjugate points still describe an
involution as T moves along a fixed line through C, and C is the
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centre of the involution. Hence for all positions of T on a given

Hue through C, the value of CV. CT is constant, but in this case

the value is negative. We may find it convenient to speak of

this quantity as the square of the semi-diameter along CT.

173. Theorem A. In an ellipse a chord 0.0! moves parallel

to itself, so that its middle point V describes the diameter PP',

then QV^ : PV. VP' has the constant value CD'^ : CP^, where CD is

a semi-diameter parallel to QV.

Let the tangent at Q cut CP at T and CD at U : draw QR

parallel to CP to meet CD at W.

QV2:CD2=CW2:CD2

^CW^iCW.CU

(by previous theorem)

=VQ:CU
= VT : CT = CV . VT : CP^.

But CV . VT = CV . CT - CV^

= CP2-CV2=PV. VP'.

.-. QV^: PV. VP'^CD^-.CPl

Theorem B. In a hyperbola, Fig. 137.

if the diameter which bisects the

chord QQ' at V meets the curve in real points P, P', then QV^ : PV . VP'

is constant, as V moves along PP'.

Let the tangent at Q cut CP at T and the conjugate diameter

at U, and draw QW parallel to CP to cut CU at W.

Then CU . CW has a constant value d.

:. QV2:o? = cW-:CW. CU

= CW:CU
=VQ:CU
= VT : CT

= CV . VT : CP=2.
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But CV . VT - CV . CT - CV2 = CP- - CV^ = PV . VP'.

.*. QV^ .PW .yp' = d: CP2.

[Here PV . VP' and d are both negative.]

193

Fig. 138.

Corollary 1. If VQ cuts the asymptote at R, then RV : CV
= ultimate value of QV : CV when CV is very large.

Now when CV is very large QV- : CV- differs by a very small

amount from QV^ : CV^- CP^, which equals —d: CP^,

.'. R\/^:Cy- = -d'.CP\

Corollary 2. If PH the tangent at P meets the asymptote

at H, then PH^ = ~d: and if HD be drawn parallel to CP to meet

the conjugate diameter at D, CD- = - d.

p. p. G. 13
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Corollary 3. Since RV^ '.c\i^ = -d'. CP^ = QV'-^ : cv^ - CP^,

/. RV2-QV2:CP2 = -(^:CP2,

hence RV^ — QV^, which equals RQ . QR', is constant (= PH^).

Hence as CV increases RQ continually decreases, or the curve

continually approaches nearer to its asymptote.

Theorem C. If QQ' is a chord such that the diameter which

bisects it at V does not meet the hyperbola, but CV . CT =7?, then

QV^ :/)~CV^= CD^ :p, where CD is the semi-diameter parallel

to QV.

Fig. 139.

Let the tangent at Q cut CD at U and CV at T j draw QW
parallel to CV to meet CD at W.

Then QV^ : CD'^ = CW^ : CD^

= CW : CU = VQ : CU = VT : CT

=r CV . VT : CV . CT

= CV . VT : p.

But CV . VT = CV . CT - CV2 =;? - CV^,

here p - CV^ and p are both negative.
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Fig. 140.

174. Theorem. If from a point T on the diameter PP' of

a conic, tangent TQ be drawn, and r, ^j

are the squares of semi-diameters parallel

to TQ and CT,. then

TQ^.-TP. TP' = r :p,

if PP' cuts the conic in real points, but

if not TQ^ : CT^ -p = r :p.

Case I. If CT cuts the conic.

Draw an ordinate PW to the semi-

diameter CQ.
TQ^: PW2 = CT^ :CP2

and PW^ : r = CQ^ - CW^ ; CQ^ = CT^ - CP^ : CT',

.•. TQ2 :r = CT2-Cp2:CP2

or TQ2 : TP. TP' = r : Cp2:=r :j9.

Case II. Where CT does not cut the conic.

Let TQ cut the asymptotes at H, H'; and draw a line RR'

through Q and parallel to CT to meet the asymptotes at R, R'.

Fig. 141.

13—2



196 Projective Geometry

Then

and

QH2=QH'2 = -r

RQ . QiR' = —p.

But CT : HT = RQ: HQ,

CT : H'T = QR':QH',

.-. CT2 : TQ2 _ QH2 ^ rq . qr' ; HQ^

.-. CT^ : TQ2 + r = p : r

and :. CT^-p:TQ^ = p'.r,

hence TGl^ : CT^ -p-r \ p.

Corollary. If CQ, CR are conjugate diameters of an ellipse

and tangents at Q, R meet at T, then 07^ = 20?^, where CT cuts

the conic at P. ForTQ = CR.

175. Theorem. If O is any point on a chord QQ' and r the

square of the parallel semi-diameter, then OQ . OQ' : r - CO'^ - p : p^

where p is the square of the semi-diameter along OC.

Fig. 142.

Case I. If p is positive, and OC cuts the conic at P, P'.

Draw a diameter to bisect QQ', and let its power be k.

Then OW^ : PV^ = CW^ : CV^,

and QW^ : PM"^ : r =^ k - CW^ :k-C\/^:k,

:. QW^ -r:PV'-r = CW^ : CV^,

.'. OW2 - QW^' + r : r = CW2 : CV^ = CO^ : CP2,

.'. OW2 - QW^ : r = CO^ - CP^ : CP^,

i.e. OQl, OQi :r = CO^-p :p.
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Case II. If OC does not cut the curve.

197

Let OQ cut the asymptotes at R, R' ; draw a line through Q
parallel to OC to cut the asymptotes at S, S'.

Then

but

Fig. 143.

0C2 : OR . OR' = SQ . QS' : RQ . QR'

=p:r,

.'. OC^:p = OV--RV- :r,

.'. OC^-p :jt? = OV2- RV^-r :r,

r= RQ. QR'=RV2-QV2,

.*. OC'-p :p = OW^-Q.\f^ '.r

= OQ . OQ' : r.

Corollary. If two chords QQ' and XX' pass through a point

O, and r, y are the squares of the parallel semi-diameters, then

OQ.OQ' :r = OX. OX' : y.

Hence if the directions of the chords are fixed, the

ratio OQ . OQ' : OX . ox' is the same for all positions of o.
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176. Focus. At any point N on the principal axes one

pair of conjugate perpendicular lines are the axis and a chord

PNP' perpendicular to the axis : the pole of PP' being a point T
on the axis. Also CN . CT^CA^; and the polar of N is a line

through T perpendicular to the axis.

If more than one pair of conjugate pairs are perpendicular,

then all pairs are.

Fig. 144.

I. In the Ellipse. Let CB be the other principal axis, and

take a point S on CA such that CS^^CA^ — CB^

The tangent at B is parallel to CA, let it meet the polar XM of

S at M. Join SM, SB.

\^Then CS . SX = CS . CX -CS2 = CB2.

.'. CS :CB = XM : SX,

hence the angles XSM, CSB are complementary, and SB, SM are

perpendicular.

But the point M is on the polar of S, and on the tangent at B,

hence its polar is SB : i.e. SB, SM are a pair of (perpendicular)

conjugate rays. Hence every pair of rays at S are perpendicular.



Central Conies 199

The point S is called a focus. There will be two foci on AA',

equally distant from C, so that CS^ = CS'^ = CA^ - CBl

The line XM, the polar of S, is called a directrix.

The line LL' through S perpendicular to S is the latus

rectum.

Corollary. The intercept on any tangent between the

point of contact and the directrix subtends a right angle at the

focus.

Also the tangents at L, L' pass through X.

177. If P is any point on an ellipse, focus S, and PM a line

perpendicular to the directrix which is polar to S, then SP : PM
is a constant ratio.

Draw PN perpendicular to the axis CS.

Then SP- = SN2 + PN2.

Now PN2 : CA- - CN2 = CB^ : CA^.

But if^CS = e . CA, CB^ = CA^ - CS^ - (1 - e") CA

.-. PN2 = (l-e2)(CA2-CN2).
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Sp2 = (CS-CN)2 + (l-e2)(CA2-CN2)

= {e.C^- CN)2 + (1 - e") (CA^- CN^)

= CA^ - 2e . CA . CN + e^ CN^,

.*. SP = CA-e. CN
== e . CX - e . CN = e . NX = e . PM,

i.e. SP : PM has the constant value e.

Corollary. If PM' is the perpendicular on the directrix of

the other focus S', S'P = e . PM'. Hence

SP + S'P = e. MM' = e. XX' = AA'.

Corollary. The tangents at L, L' pass through X, hence the

conic is an ellipse or hyperbola as XA ^ AS, i.e. as e $ 1.

178. II. In the Hyperbola. On the asymptote take CK
equal to CA, draw KS perpendicular to CK to meet the axis at S,

and draw KX perpendicular to the axis. Draw SI parallel to CK.

Then

Fig. 146.

CS. CX = CK2 = CA2.

.". KX is the polar of S.

Since SI passes through S its pole is on KX, and since SI
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passes through the point of contact of CK its pole lies on CK, .'. K

is the pole of SI, and SK, SI are a pair of conjugate lines at S,

which are at right angles.

Hence all pairs of conjugate lines at S are perpendicular to

each other.

S is the focus of the hyperbola. There will be two foci on

the axis equally distant from C. XK is the directrix corre-

sponding to S.

If we draw AY perpendicular to the axis to meet CK at Y,

then by equality of the triangles CKS, CAY we have CS = CY.

CS^ = CA^ + AY^ = CA^ — h, where h is the (negative) square of

the semi-diameter perpendicular to CA.

179. Theorem. SP = e. PM, where PM is a perpendicular

from a point P of the conic to the directrix XM.

For SP'^ = SN^ + PN2, but PN^ : CA^ - CN^ = 6 : CA^

;

now if CS = e . CA, 6 = CA^ - CS^ = (1 - e") CA-,

.-. PN2 = (1 -e2)(cA2-CN-),

.-. SP2= (e . CA - CN)2 + (1 - e") (CA^ - CN^)

= CA2- 2e . CA . CN + ^2 . CN2,

.-. SP = CA-e.CN = e (CX~CN) = e. XN=e. PM.

Corollary. If S' is the other focus then S'P = e . PM', hence

S'P-SP = e. MM' = e. XX' = AA'.

180. Theorem. The tangent makes equal angles with
the focal distances.

I. In the Ellipse.

SP : S'P=NX :X'N

= CX-CN:CX + CN

= CX . CT - CA^ : CX . CT + CA^

= CT-e.CA :CT + e.CA

= CT - CS : CT + CS = ST : S'T.

.'. PT bisects the exterior angle at P between SP and S'P.
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II. In the Hyperbola.

SP : S'P^XN : X'N

= CN-CX : CN +CX
= CA^ - CX . CT : CA^ + CX . CT

. = e . CA - CT : e . CA + CT

= CS - CT : CS + CT = TS : S'T.

..FT bisects the interior angle between SP and S'P.

C G N S A X

Fig. 147.

Corollary 1. The normal, i.e. the line drawn through P

perpendicular to the tangent at P, bisects the other angle between

SP, SP', hence it meets the axis at G the harmonic conjugate of

T with respect to S, S', and . •. CG . CT = CS'- = e^ . CA^.

Corollary 2. If the perpendicular SY from S to the tangent

meets S'P at R, PR = PS and RY=YS. Hence S'R = the sum or

difference of SP, S'P = AA'. Also CY = JS'R = CA.
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Hence Y lies on a circle with AA' as diameter ; this is called

the auxiliary circle of the conic.

Corollary 3. If the tangents at P, P' meet at T, and R, R'

are the images of S, S' in those tangents, then the triangles TRS',

TR'S are equal in every respect. But angle TSP = TRS', and

TS'P' = TR'S.

Hence two tangents to a conic subtend equal (or supple-

mentary) angles TSP, TS'P' at the foci.

EXAMPLES. VIII.

1. SA meets a given line in K and TA meets a parallel line in L. Prove

that if A moves along a straight line KL will envelope a parabola.

2. If ABCD is a square find the parabola which touches AB at B and

AC at C.

Find where it intersects a parabola touching BA at A and BD at D.

3. Three parabolas are drawn each touching two sides of a triangle at

the ends of the third side, find their points of intersection.

4. Two parabolas have a common focus and a common axis, prove that

they intersect at right angles.

6. A line touches a parabola at K, cuts two other tangents at L, M and

the diameter bisecting their chord of contact at N. Prove that LK equals

MN.

6. A tangent to a parabola at K cuts two tangents TA, TB at L, M
respectively, and the chord of contact AB at N. Prove that AN : BN as

LK2 : KM2.

7. The foot of the perpendicular from a point to its polar with respect

to a parabola is at the same distance from the focus as the point itself is from

the directrix.

8. The vertices A, A' and foci S, S' of two parabolas are coUinear, and

AS, SA', A'S' are equal. If any focal chord PSQ of the first parabola meets

it at P and Q and the normals PG, QH meet the axis at G, H, prove that

G and H are the feet of ordinates of a focal chord of the second parabola.

9. Triangles are described self-polar to a given parabola, and having one

vertex at a given point
;
prove that their nine-point circles form a coaxal

system.
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10. If a chord of a parabola passes through a fixed point O, the rect-

angle of the segments of the chord is equal to the rectangle of the parallel

focal chord and the intercept, on the diameter through O, between O and the

parabola.

11. The rectangles of the segments of two intersecting chords of a para-

bola are in the same ratio as the parallel focal chords.

12. In a parabola the rectangle of the abscissae with respect to a given

diameter of the ends of a chord passing through a given point on the

diameter is constant.

13. The mid-point of the chord of contact of tangents from P to a

parabola lies on a fixed line, prove that the locus of P is a parabola. Also

find its axis and focus.

14. Parabolas are described each passing through a given point and

touching two given lines. Prove that the envelope of the diameter through

one end of the chord of contact with the two lines is a hyperbola, and find

its asymptotes.

Prove that the two hyperbolas thus obtained are of the same dimensions.

15. The two tangents drawn to a parabola from any point subtend

equal angles at the focus.

16. Prove that the focus of a parabola lies on the circumcircle of the

triangle formed by any three tangents ; and find its pedal line with respect

to the triangle.

17. A conic touches two lines TA, TB at A, B and passes through the

centroid of the triangle TAB; and the joins of A, B to any point of the conic

cut TB, TA at K, L. Prove that the envelope of KL is a parabola.

18. A conic touches TA, TB at A, B and the joins of A, B to any point

P of the conic cut TB, TA at K, L. Prove that the envelope of KL is a

conic, and find whether it is an ellipse, parabola or hyperbola. Also find its

centre.

10. A variable tangent to a conic cuts at K, L two fixed tangents whose

points of contact are A, B. Prove that the locus of the intersection of AL,

BK is a conic. Find when this conic is a parabola, when an ellipse, and when

a hyperbola. Find its centre.

20. A chord CD of a circle is bisected at K by a diameter AB, and the

tangents at C, D intersect at L. Prove that any conic having its centre on

AB and touching AC, AD, BC, BD divides KL harmonically.
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21. Prove that two concentric conies have only one pair of common
conjugate diameters, and that these are harmonically conjugate to the com-

mon chords of the two conies.

22. Prove that the common chords of a central conic and any circle are

equally inclined to the principal diameters of the conic.

28. If A B is a diameter of a central conic, and the join BT of B to any

point T on the tangent at A cuts the conic at P, shew that the tangent at

P bisects AT.

24. Two parallel tangents to a central conic are cut by any other tan-

gent at T, T'
;
prove that CT, CT' lie along conjugate diameters.

Also prove that TP . PT' = CD2, where P is the point of contact of TT',

and CD is the semi-diameter conjugate to CP.

25. If CP, CD are conjugate semi-diameters of an ellipse, whose prin-

cipal semi-diameters are CA, CB and foci S, S' ; prove that SP . S'P= CD2

;

and that CP2 + CD2= CA2-i-CB2.

26. The portion of any tangent to an ellipse intercepted by a pair of

conjugate diameters subtends supplementary angles at the foci.

27. A conic cuts the sides BC, CA, AB of a triangle at Aj and A2, Bi

and B2 , Ci and C2 respectively, prove that the product of

BAi . BA2 CB1.CB2 ACi . AC2

CAi . CA2 ABi . AB2 • BCi . BC2

is unity. [Garnet's Theorem.]

28. If a conic cuts the sides BC, CA, AB of a triangle at Ki, K2 ; Li,

L2 ; Ml, M2 respectively, and AKi, BLj, CMi are concurrent, so also are

AK2, BL2,CM2.

29. Prove that the lines which join the vertices of a triangle to any two

given points cut the opposite sides in six points which lie on a conic.

30. A conic touches the sides of a triangle ABC at the feet of the per-

pendiculars from the opposite vertices, and the join of A to the centre of the

conic cuts BC at K
; prove that BK : KC as BA2 : CA2.

31. The centroid of the triangle formed by the two tangents from P to

a given conic and their chord of contact lies on the conic, find the locus

of P.

32. A tangent to an ellipse whose foci are S, S' is cut by a pair of

paraUel tangents at T, T', prove that ST . ST' : S'T . S'T'= SP : S'P.
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33. Tangents from any point T on an equiconjugate diameter of an

ellipse touch the ellipse at A and B. Prove that the circle through T, A and

B passes through the centre of the ellipse.

34. In an ellipse, centre C, CP is conjugate to the normal at Q; prove

that CQ is conjugate to the normal at P.

35. Prove that the tangent to an ellipse at any point makes equal angles

with the focal distances of the point.

If SY, S'Y' are the perpendiculars from the foci S, S' to any tangent to

an ellipse whose major axis is AA', prove that the pencil described by AY at

A is projective with the row described by the tangent on the fixed tangent at

A'. Also prove that the locus of the intersection of AY, A'Y' is a conic

having AA' as one of its principal axes.

36. The directrix corresponding to a focus S of an ellipse cuts the chord

of contact AB of two tangents AT, BT at K, and ST cuts AB at L, prove

that K, L are harmonic conjugates to A, B ; also prove that ST bisects the

angle ASB.

37. An ellipse touches the sides of a triangle and has one focus at the

orthocentre, find the position of the other focus.

38. Prove that the distance of a point P on a hyperbola from its focus

is equal to a line drawn from P to the directrix parallel to an asymptote.

Also find the locus of the focus of a hyperbola which passes through two

given points and has its asymptotes parallel to two given lines.

39. A line through a point P of a hyperbola parallel to the transverse

axis cuts an asymptote at K, and the focal chord SP cuts the asymptote at

L, prove that the sum of LP, LK is constant.

40. A tangent to a central conic meets the principal axes at T, T' and

the normal meets them at G, G', prove that CG . CT = CS'^ = CG' . CT'.

41. Conies are drawn touching a given line KL, and having given

parallel lines KX, LY as directrices. Prove that the locus of the focus

corresponding to KX is a circle passing through K and bisecting KL.

42. Tangents are drawn to a set of confocal conies from a point on the

common axis ; prove that their points of contact lie on a circle.

43. Any point P on an ellipse is joined to the foci S, S'
;
prove that

the loci of the centres of the escribed circles of the triangle SPS' are two

straight lines and an ellipse.
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44. The polar of T with respect to a hyperbola cuts the asymptotes at

K and L, and tangents from K, L touch the hyperbola at P, Q respectively.

Prove that TP, TQ are parallel to the asymptotes.

45. A line touches a hyperbola at P and cuts an asymptote at K, a line

parallel to the other asymptote through any point L on this tangent cuts the

first asymptote at Q and the curve at R. Prove that KP2 : PL2 as QL : LR.

46. A line through a point A on a hyperbola parallel to one asymptote

meets a chord BC at K, and a line through B parallel to the other asymptote

meets the chord AC at L. Prove that KL is parallel to the tangent at C.

47. Two tangents from T to a hyperbola cut one asymptote at A, B, and

the parallel tangents cut the other asymptote at A', B' respectively. Prove

that AB', A'B and CT are parallel.

48. If the asymptotes of a hyperbola are at right angles conjugate

diameters are equal. Prove also that the orthocentre of any triangle

inscribed in a rectangular hyperbola lies on the conic.

49. A circle cuts two fixed circles orthogonally and a diameter is drawn

parallel to a given direction. Prove that the locus of its extremities is a

rectangular hyperbola.

50. A point moves so that the perpendicular from it to a given line-

equals the distance of the foot of the perpendicular from a given point.

Prove that the locus of the point is a rectangular hjrperbola.

51. A tangent to a circle cuts two parallel sides of a circumscribing

square at P, Q ; and the parallel tangent cuts the other two sides of the

square at R, S. Prove that P, Q, R, S and the centre of the circle lie on a
rectangular hyperbola whose centre lies on the circle.

52. A circle cuts a rectangular hyperbola, centre C, at K, L, M, N,

prove that CK2 + CL2-1-CM2 + CN2 equals the square of the diameter of the

circle.

A rectangular hyperbola passes through four concyclic points A, B, C, D
and P is the orthocentre of the triangle ABC, prove that DP is a diameter.

53. The base of a triangle is given and the difference of the angles at

the base, prove that the locus of the vertex is a rectangular hyperbola.

54. Given the asymptotes and one tangent to a hyperbola, construct the

foci.

55. If parallel straight lines touch a series of confocal conies, their

points of contact lie on a rectangular hyperbola.



208 Projective Geometry

56. Prove that the tangents from any point to a central conic make
equal angles with the lines joining the point to the foci ; and deduce that if

a focus of a conic lies on the circumcircle of a triangle formed by three

tangents the conic must be a parabola.

67. A triangle PQR circumscribes a conic whose centre is C, and ordi-

nates are drawn from Q, R to the diameters CR, CQ respectively, prove that

the join of the feet of these ordinates passes through the points of contact of

PQ and PR.

58. A point moves so that the perpendicular drawn from it to the chord

of contact of tangents to a given parabola passes through a given point,

prove that its locus is a rectangular hyperbola.

59. Given one diameter of an ellipse in position and magnitude, and

the sum of the squares of conjugate semi-diameters, prove that the ellipse

touches a fixed ellipse whose foci are the ends of the given diameter, and

that the common tangent is perpendicular to the conjugate diameter.

60. Two rectangular hyperbolas are concentric with, and each touches,

a given hyperbola, prove that they intersect on the bisectors of the angles

between the lines joining the centre to the points of contact.



CHAPTER IX

RECIPROCATION

181. Theorem. If a system of lines envelope a conic, the

locus of their poles with respect to a given fixed conic is also a
conic.

Fig. 149.

P. P. G. 14
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Let a, h be two tangents to a conic Ci, and A, B their poles

with respect to a fixed conic R : let p-^ be any other tangent to Cj

,

and Pa its pole witb respect to R.

If pi cuts a, h respectively at K, L, then as p^ envelopes the

conic Cj, K, L describe two projective rows on a, h (§ 78).

Also AP2 is the polar of K, hence APg turns about A in a pencil

projective with the row described by K on a (§ 99) ; similarly BPg

describes a pencil with vertex B projective with the row of L on h.

Hence APg, BPg describe projective pencils ;
.'. the locus of Pg

is a conic passing through A and B.

Conversely. If a point P describes a conic, its polar />, with

respect to a given fixed conic R, envelopes a conic.

182. The locus of the poles with respect to a conic R, of

tangents to a conic Cj, is the same conic as the envelope of the

polars with respect to R of points on Cj.

Let C2 be the conic described by the pole with respect to R of

tangents to C^.

Let jt?i, q^ touch the conic C^ at P^ Qj ; and let P2, GI2 be their

poles with respect to R. Then PgQa is the polar of the intersection

X of 7?i and q-^.

But, if q-^ is made to coincide with p^ , X becomes the point of

contact Pj.

At the same time Qg coincides with Pg, .'. P2Q2 becomes the

tangent p^ through Cg at Pg.

Hence the polar of P^ touches Cg : and as Pj describes the

conic Ci its polar envelopes Cg.

Thus each conic is either the pole locus or polar envelope

derived from the other, the two conies Ci, Cg are called polar

reciprocal conies with respect to the conic of reference R.

To each point P^ of one conic C^ corresponds one point Pg of

the other conic Cg, such that P^ is the pole with respect to R of

the Line p.^ which touches C^ at Pj, and' P2 is also the pole of the

line/>i which touches C^ at P^.
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183. Theorem. If a conic C^ lies entirely within the

conic of reference R, its polar reciprocal C^ lies entirely outside R.

For every tangent to C^ cuts R in real points, hence its pole

lies outside R.

Conversely. If R is entirely within 0^, then Cg is entirely

within R. [In this case, if R is a circle or ellipse, so also is Cg.]

But if Ci is entirely outside R, C^ is not necessarily entirely

within R.

Common Points and Tangents. If Cj and R have a

common tangent touching R at L, then Cg cuts R at L. Hence if

Ci, R have four common tangents, then Cg, R have four real

intersections; and if Cj, R have four common points, then Cg, R

have four common tangents.

If Ci touches R, then Cg touches R at the same point.

If Ci cuts Cg at P, the polar of P is a common tangent to Cj

,

Cg. Hence the number of real intersections of Cj, Cg is the same

as the number of real common tangents.

Exercise. Draw figures to illustrate these statements in various cases.

Parallel tangents to Cj reciprocate into points on Cg which are

coUinear with the centre O of the conic of reference R.

For, if the parallel tangent to R touches it at K, the polars of

the two lines lie on OK.

184. To find the centre of the reciprocal conic.

Let O be the centre of the conic of reference R, and x-^ its

polar with respect to 0^, then the reciprocal of x-^ {i.e. its pole with

respect to R) is the centre of the reciprocal conic Cg.

Draw any diameter KL of R, cutting the conic Ci at A^, Bj and

the line x^ at X^. The reciprocals of the points Aj, Bi, X^ on OK
are three lines a.,, 62, x.2 parallel to the tangent to R at K; let

them cut OK at D, E, Y respectively.

14—2
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Then OAj . 0D = OBj. 0E = OXj. OY^OKl

But a?! is the polar of O for the conic Cj ; hence

{OXABi} = -l.112
OAi OBi OXj

'

Hence Xgis equidistant from the lines a^, h^ which are parallel

tangents to the conic Cg, and therefore x^ passes through the

centre of Cg.

Similarly the reciprocal of each point of x-^ passes through the

centre of Cg. Hence the centre of Cg is the reciprocal Xg of x-^.

Fig. 150.

Corollary 1. If O lies on C^^ x^ is the tangent to Cj at O
and is a diameter of R. Hence the centre of C2 is an infinitely

distant point on the diameter OK' of R conjugate to ic^. Hence

Cg is a parabola, and its diameter is parallel to OK'.

Corollary 2. If two real tangents can be drawn from O to

the conic Ci, these lie along two diameters OK, OL of R and their

reciprocals are infinitely distant points on the diameters OK', OL'

respectively conjugate to OK, OL.
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Hence C2 is a hyperbola whose asymptotes are parallel to

OK', OL'.

If the tangents OK, OL from O to O^ touch C^ at Xj, Yj, the

asymptotes are the reciprocals of Xj, Yj. They pass through

the centre (since X^Y^ is the line x whose reciprocal is the centre

of C2), and touch the hyperbola at infinity.

185. Theorem. Conjugate diameters reciprocate into

conjugate points on a straight line.

For the centre of Cj reciprocates into the polar with respect

to C2 of O, the centre of the conic of reciprocation R. Hence
diameters of Cj reciprocate into points on this line.

Let p^ be any diameter of Cj, AjBi the conjugate diameter,

and AjK, B^L the tangents (parallel to j)i) at Aj, Bj : these three

lines, being parallel, reciprocate into three points P2, Ao, B2

coUinear with O, the centre of R.

Let A2K2, B2K2 be the tangents to Ca at Ag, Bj; they are the

reciprocals of A^, Bj ; hence Kg is the reciprocal of the diameter

AjBi of Cj.

But P2 lies on the chord of contact AjBg of tangents from Kg to

the conic C^. Hence Pg, Kg are conjugate points with respect

to C2.

Corollary. Pairs of conjugate points on a straight line

describe an involution (§ 99, Cor.), hence pairs of conjugate

diameters of any conic form an involution (cf. § 170).

186. Reciprocation with respect to a point. We may
take a circle as the conic of reference R. The polar reciprocal of

a figure with respect to a point O is the polar reciprocal with

respect to a circle whose centre is at O.

If the reciprocals of points Pj, Qj with respect to O are the

lines P2J ^2) *hey are respectively perpendicular to OPj, OQi.

Hence the angle between p<^^ q^ equals the angle subtended at O
by the join PiQj.
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Exercises. 1. Keciprocate a triangle with respect to its orthocentre.

2. If P, Q move along two fixed lines so that their join PQ subtends a

constant angle at a given point O, prove that the reciprocal of PQ with

respect to O describes a circle.

3. Prove that the reciprocal of a parabola with respect to a point on

the directrix is a rectangular hyperbola. State the converse theorem.

4. Prove that the reciprocal of a central conic with respect to a point

on the director circle is a rectangular hyperbola.

187. Theorem. The reciprocal of a conic with respect to a

focus is a circle.

Fig. 151.

Let O be the focus, XM the directrix, OX the perpendicular to

it from O, and PM from a point P of the conic, so that OP : PM = a

constant e.

The reciprocal of P is a line QR perpendicular to OP through

a point Ql such that OP.OQ = r^; the reciprocal of the directrix

is a point Y on OX such that OX . OY = r^.

Draw YR, YD perpendicular to QR, OQ respectively, and PN

perpendicular to OX.
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Then OP : OY = OX : OQ,

but OP : OY = ON : OD (by similar triangles),

.•. OP : OY = NX : DQ = PM : YR,

.•. OP:PM = OY:YR;

hence YR is a constant, and the reciprocal of P envelopes a circle,

whose centre Y is the reciprocal of the directrix.

Exercise. Find the reciprocals of the centre, the other focus and the

other directrix.

188. Polar Reciprocation in general. If we take a
** conic of reciprocation " R, and if we have any figure made up of

straight lines and points we may, by taking the poles of the lines

and polars of the points, obtain another figure with lines and

points corresponding respectively to the points and lines of the

first.

The intersection of two lines in the first figure has for its

polar the join of the corresponding points of the second figure, and

conversely.

If we consider the first figure as a system of points and take

their polars to form the second figure, and thus obtain a system

of points in which these polars intersect, and if we then take the

polars of these intersections we shall get a system of lines whose

intersections are the original points. Hence either system is got

from the other by this process, the two figures are therefore called

polar reciprocal figures with respect to R. But the figures

must be complete, i.e. include all possible joins and inter-

sections.

Concurrent straight lines reciprocate into collinear points

;

parallel straight lines into points collinear with the centre of the

conic R of reciprocation. Conversely collinear points reciprocate

either into concurrent lines or parallel lines according as they are

not or are collinear with the centre of R.

A triangle reciprocates into a triangle.
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A complete four-side reciprocates into a complete four-point,

and the descriptive properties of a four-point follow from those

of a four-side. E.g. from the proposition that "any point is

joined to the six vertices of a four-side by six rays forming an

involution" follows that "any straight line cuts the six sides of

a four-point in an involution "
: and conversely.

189. Again a curve in the original figure may be regarded

as the locus of a point, and if we take the polars of this

continuous system of points we obtain a continuous system

of lines enveloping a new curve. Or we may regard the original

curve as enveloped by a system of lines and the locus of the poles

of these lines will form a new curve.

The two curves so obtained are identical. For if we take

two points A, B on the original curve whose polars are ct, 6, then

the pole of the chord AB is the intersection of a, 6 : but if B is

made to coincide with A, AB becomes the tangent at A, and at the

same time h will coincide with a, and their intersection will

become the point of contact of a, so that the pole of the tangent

at A becomes the point of contact of a : hence the poles of the

successive tangents to the first curve are the successive points of

the second.

Thus each of the curves may be obtained from the other

either by taking the pole locus or the polar envelope ; the curves

are hence called polar reciprocal curves.

Notice that in this case we do not take the complete set of

joins and intersections.

The points in which a straight line cuts a curve become the

tangents from its pole to the reciprocal curve. Hence the

degree or order of one equals the class of the other, and

conversely.

190. Duality. Any descriptive theorem relating to lines

and their intersections furnishes by reciprocation a theorem
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relating to points and their joins, and conversely : any theorem

about a curve, its tangents and their intersections becomes a

theorem about the reciprocal curve, its points and the chords

joining them.

Thus reciprocation doubles the number of descriptive theorems,

and any theorem should be at once reciprocated,—the new
theorem may or may not be already known.

Exercise. Reciprocate a four-side and its three harmonic inscribed

conies (Chapter VI), with respect to one of those conies, and shew that the

resulting conies are the conic of reciprocation and the other two harmonic

conies circumscribed to the four-point formed by the points of contact of

the original four lines.

EXAMPLES. IX.

1. Prove that the polar reciprocal of a conic with respect to (a circle

whose centre is) the focus is a circle. Find the reciprocals of the other

focus, the minor axis and the directrices.

2. Two conies have a common focus
;
prove that they cannot have more

than two common tangents.

3. Two given conies have a common focus ; if any other conic having

the same focus touches them at PiQi, prove that PQ passes through a fixed

point. Also prove that the corresponding directrix of the variable conic has

an envelope consisting of two conies, and find when one of these two conies

is imaginary.

4. If PK touches a circle at K and subtends a right angle at a point S
within the circle, prove that the locus of P is a polar reciprocal of an envelope

of normals drawn to a conio section.

5. Prove that the locus of the pole of the tangent to a circle with

respect to a concentric conic is a concentric conic ; and that if these two
conies cut orthogonally at their four points of intersection, then the tangents

from any point on the circle to the given conic are perpendicular.

6. Beciprocate, with respect to the circumcentre, the theorem that if

a conic touches the sides of a triangle and passes through the circumcentre

its director circle touches the nine-point circle.
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7. Prove that the reciprocal of a circle with respect to a circle whose
centre lies on the circumference of the given circle is a parabola.

A system of parabolas has a common focus S and all touch a given line

passing through a given point T
;
prove that the points of contact of the

other tangents from T lie on a circle, which passes through S.

Eeciprocate this theorem with respect to S.

8. Find the polar reciprocal of a system of confocal conies, with respect

to a circle with centre at one of the common foci.

0. Prove by reciprocation that, if two confocal conies intersect, the

tangents at their intersection are perpendicular.

10. Prove, and then reciprocate with respect to a focus

:

If tangents be drawn to a system of confocal conies from a point on the

common axis, their points of contact lie on a circle.

11. Eeciprocate with respect to a focus, that if PT touches an ellipse

at P, and TQ perpendicular to TP touches a confocal ellipse at Q, then CT
bisects PQ, C being the centre.

12. Eeciprocate :
** Angles in the same segment of a circle are equal."

13. Prove that the poles of a given line with respect to a system of

confocal conies are collinear.

14. S, S' are two conies having a real and finite common self-conjugate

triangle ; Si , Si' are the polar reciprocals of S, S' each with respect to the

other ; S2 , S2' are similarly formed from Si and Si' ; and so on.

Shew that either one or both of the conies S„ , S„' when n is infinite will

be a pair of straight lines.

15. The polar reciprocal of an ellipse with respect to the circle on the

major axis as diameter is a similar ellipse.

16. A circle passes through the centre of a hyperbola ; find its reciprocal

with respect to the hyperbola.

17. A system of circles pass through two points A, B. Find their

reciprocals with respect to a rectangular hyperbola of which A, B are

respectively the centre and one focus.

18. Eeciprocate a triangle and its circumcircle, incircle and nine-point

circle with respect to a rectangular hyperbola passing through the three

vertices and the orthocentre.
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19. Two conies have four given intersections and four given common
tangents ; find the conic with respect to which they are reciprocal.

20. Prove that two triangles which are reciprocal with respect to a given

conic are in homology. Also shew that the six points in which the sides of

one triangle intersect the non-corresponding sides of the other lie on a conic

Ci, and the six lines joining the vertices of one to the non-corresponding

vertices of the other touch a conic C2, and prove that C^, C2 are reciprocals

with respect to the given conic.

21. Prove that, if a rectangular hyperbola passes through the vertices

of a triangle, it also passes through the orthocentre.

Eeciprocate this proposition with respect to the orthocentre.

22. A chord of a conic moves so as to subtend a constant angle at the

focus ; find its envelope.

23. A chord of a conic subtends a constant angle at a given point on

the conic ; find its envelope.



CHAPTER X

HOMOLOGY

191. In connection with Desargues' Theorem (§§ 43—45) we

have defined homology, axis of homology, and centre of homology.

We have seen that two quadrilaterals ABCD, A'B'C'D' are not

necessarily in homology when the four pairs of lines AB, A'B' ; BC,

B'C' ; CD, C'd' ; DA, D'A' meet in points lying on one straight line

(axis) : but if a fifth pair of joins of the two four-points, say AC,

A'C', meet on this axis, then the joins of corresponding vertices

AA', BB', CC', DD' meet at one point (centre of homology), the

sixth pair of joins of the four-points BD, B'D' intersect on the axis

and the two four-points are in homology.

If we take two four-sides a, b, c, d and a, h', c\ d', the two

triangles abc, a'h'c are in homology if the joins of ah, a'h' ; ac, ac'
;

be, b'c pass through a centre S, and then the intersections aa', bb',

cc' lie on an axis s. If now the joins of ad, ad' and bd, b'd' pass

through S, then the triangles abd, a'b'd' are in homology, and d, d
intersect on s. Now we have the intersections bb', cc, dd' lying

on s, hence the triangles are in homology, and the join of the

vertices cd, c'd' is concurrent with the joins of be, b'c and bd, b'd'

and therefore passes through the centre S. Therefore two four-

sides are in homology if five intersections of one are joined to the

corresponding five intersections of the other by lines meeting at

one point S ; the join of the sixth vertices passes through S, and

the four sides of one meet the corresponding sides of the other at

four points lying on one axis s.
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192. Let Aj, Ag ... A„; A/, Ag' ... A„' be two sets of 72-points

in homology, so that the n-joins A^A/, A2A2' ... A„A,/ all pass

through a centre of homology S, and each join Aj^Ag of the first

set meets the corresponding join A;/A/ of the other at a point

lying on a fixed axis of homology s.

Take another pair of corresponding points B, B' to satisfy the

two conditions that BAj, B'A/ meet on «, and BAg, B'Ag' meet on 8.

Then the triangles BA^Aa, B'A/Ag' are in homology (by the

converse of Desargues' Theorem) ; hence BB' also passes through S.

Again, since BB', AjA/, A^A^^' pass through S, the triangles

BAjAj., B'A/A;;.' ^^^ ill homology ; but BA^, B'A/ meet on s, and also

AjAfc, A/Ajfc' ; hence BA^, B'A;fc' meet on s.

The two systems of (n + 1) points are therefore in complete

homology.

Hence two more conditions are to be satisfied when one point

is added to each of the two sets in homology.

Two systems of w-points are in homology if (2n — 3) joins of

the one system, of which at least two pass through each of the

n points, meet the (2n- 3) corresponding joins of the other system

in points lying on one straight line s. If these conditions are

satisfied, the remaining J {n-2){n- 3) joins of the first system

meet the corresponding joins of the second system at points also

lying on s, and the n lines joining the points of one system to the

corresponding points of the other meet at one centre S.

A set of n lines is in homology with another set of n lines, if

(2n-3) intersections of the first set of lines, of which each of

the n lines contains at least two, are joined to the respectively

corresponding intersections of the second set by lines passing

through one centre S : in that case the n points in which

corresponding lines of the two sets meet lie on one axis s, and

all the joins of the \n {n—\) intersections of the first n lines to

the corresponding intersections of the second set pass through S.
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Note that systems of lines are in homology if (a certain

number of) their intersections are collinear with a centre S
;

systems of points are in homology if (a certain number of) their

joins meet corresponding joins at points lying on an axis s.

193. Homology of Plane Curves. I. If to each point

of one plane curve can be assigned a corresponding point of

another plane curve, such that the line joining any two points of

the one meets the corresponding join of the other always on a

fixed line 5, then the corresponding points of the two curves are

collinear with a fixed point S, and the two curves are in homology

with s as axis and S as centre of homology.

II. If to each tangent to one curve can be assigned a tangent

to another curve such that the intersection of any pair of tangents

of the one curve is joined to the corresponding intersection of

tangents to the other curve by a line passing through a fixed

point S, then the corresponding tangents meet on a fixed line s.

Since a tangent is the limit of a chord joining two points of a

curve, and also the point of contact of a tangent is the limiting

position on the tangent of the point at which it is met by an

adjacent tangent, it follows that if the points of two curves are

in homology (as in I) then the systems of tangents to the curves

are in homology (as in II) with the same centre and axis ; and

conversely.

III. If P, Q, R, ... are consecutive points of one figure and

P', Q', R', ... of the other, and A, A' two points connected with the

curves, so that AP, AQ, AR, ... meet corresponding lines A'P', A'Q',

A'r', ... and also PQ, QR, ... meet P'Q', Q'R', ... at points lying

on one straight line s, the two curves are in homology.

Let AA', PP' meet at S, The triangles APQ, A'P'Q' are in

homology, therefore QlQl passes through S. Hence and similarly

RR', ... pass through S.

Also AA', PP', ZZ' pass through S, therefore the triangles
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APZ, A'P'Z' are in homology. But AP, A'P' and AZ, A'Z' meet at

points lying on s, hence corresponding chords PZ, P'Z' meet on s.

Hence two curves are in homology, if the tangent at each

point of one meets the corresponding tangent at a point lying on

a fixed axis s, and also the join of each point of one curve to a

certain point meets the join of the corresponding point of the

second curve to a second fixed point on the same axis.

IV. If A, B are related to one curve PQ..., and A'B' to

another curve P'Q'..., and if to each point P of one curve we

can assign a point P' of the other, so that AP, A'P' and also BP,

B'P' intersect always on a fixed line s which passes through the

intersection of AB, A'B'; then the curves are in homology, with

that line s as axis, and with the intersection S of AA', BB' as

centre of homology.

[For AP, AQ, BP, BQ, AP meet the corresponding five joins of

the four-point A', B', P', o! at points lying on s ; hence PQ, P'Ql

intersect on s.]

194. Problem. To find a curve passing through two

points a', B', and in homology with a given conic.

Fig. 152.
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Take any chord AB of the conic meeting A'B' at C, draw any
line CD through C.

Take any point P of the conic, and let AP, BP cut CD at K, L

respectively. Join A'K, B'L intersecting at P'.

The locus of P' is the curve required.

Also the pencil A {P ...} = B {P ...},

.-. the row {K ...} = {L ...},

.*. the pencil A' {P'...} = B' {P'...};

hence the locus of P' is a conic passing through A', B'.

195. The vanishing line. If O is the centre of homology,

and XY the axis, and PA, PA' corresponding lines (intersecting at

a point P on XY), the point A' on the second line corresponding

to A on the first is the point at which OA meets the second line.

Again, if Q is any other point of XY, QA corresponds to QA'.

If now OV is drawn parallel to PA' to meet PA at V, then V is

the one point of PA which has no finite corresponding point on

PA'. Further the line corresponding to QV must be a line QB'

parallel to PA'.
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Thus to a system of lines meeting at V in the first figure

corresponds a system of parallel lines in the second figure. V is

called the vanishing point of lines parallel to PA'.

The vanishing point W of lines parallel to any other direction

QA' is found by drawing OW parallel to QA' meeting QA at W.

Then, from the similar triangles OVA, A'AP, we have

VA : AP = OA : AA'

and, similarly WA : AQ =^ OA : AA'.

A
Hence VA : WA = AP : AQ, also VAW = PAQ, hence the triangles

VAW, PAQ are similar.

.'. VW is parallel to PQ.

Hence, and similarly, the vanishing points of all directions in

the homologous figure lie on a line through V parallel to the axis.

This line is called the vanishing line of the second figure.

Since VW passes through V, the homologous line to VW does

not meet OV ; since VW is parallel to the axis, the homologous

line does not meet the axis; there is no finite line of the

homologous figure to satisfy these conditions.

We may call the line homologous to VW, the line at infinity,

each point of it is an intersection of parallel lines in the

homologous figure.

Problems. 1. Given the centre O, axis XY, and a vanishing

point V, to find the homologue of a point A.

[If VA cuts the axis at P, a line through P, parallel to OV, will

cut OA at the required point A'.]

2. Given the centre O, axis XY, and vanishing line VW, to

find the homologue of a line a.

[If a cuts VW at V, and XY at P, the homologue is the line

through P parallel to OV.]

3. Given the centre O, axis XY, and two homologous points

A, A', to construct the vanishing line.

p. p. G. 15
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[Take any point P on XY ; a line OV, parallel to PA', will

meet PA at a point V on the vanishing line.

If the line VW (parallel to XY) cuts OA at W, and OA cuts XY
at K, then WA : AK = VA : AP = OA : AA'.]

If we draw OV' parallel to PA, meeting PA' at V', then all lines

parallel to PA in the original figure become, in the homologous

figure, lines passing through V' ; and V' of the second figure is

the vanishing point of all lines parallel to PA.

We thus get, in the homologous figure, a secondary
vanishing line v'w'.

Since OVPV' is a parallelogram, the perpendicular from O to

V'W' equals the distance of VW from the axis.

196. Homology of Conies. Homologous pencils are

projective, for they cut the axis in the same row.

Homologous rows are projective, for they are transversals of

one pencil, whose vertex is the centre of homology.

If A, B, K, L, M, N on a conic are homologous to A', B', K', L',

M', N'; thepencilsAJKLMN}, A'{K'L'M'N'}, B {KLMN}, B' {K'L'M'N'}

are all projective. Hence K', L', M', N' lie on a conic through

A', B'.

Hence the homologous curve is a conic.

Also the cross-ratio of four points on a conic equals the cross-

ratio of the homologous points on the homologous conic.

197. Problem. Given a conic, and a centre and axis of

homology, to construct the homologous conic passing through a

given point A'.

Let OA' cut the given conic at A.

Join A to any point P of the conic, cutting the axis at K

;

join A'K, cutting OP at P'.

As P moves round the conic, P' will describe the homologous

conic.
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Since OA' cuts the conic in two real and different, or

coincident, or imaginary points, there are two solutions of the

problem.

If O lies inside the conic the two solutions are always real.

If O lies outside the conic the solutions are real and different

if A' and the conic lie in the same or opposite angles formed at O
by tangents to the conic; coincident if A' lies on one of those

tangents ; imaginary if A' and the conic lie in supplementary

angles formed by the tangents from O.

Problem. Given a conic and a centre and axis of homology,

to construct the homologous conic which touches a given line a'.

Shew that there are two solutions, and find when they are real.

198. Problem. Given the centre and axis of homology

and the vanishing line, to construct the conic homologous with a

given conic.

Fig. 154.

Take any point V on the vanishing line ; and join a point P

of the conic to V, and produce PV to cut the axis at K.

Draw KP' parallel to OV, cutting PO at P'.

As P moves round the conic, P' will describe the homologous

conic.

15—2
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If we take any other point U on the vanishing line, and PU

cuts the axis at L,

UV is parallel to KL, /. PU : UL= PV : VK,

but VO is parallel to KP', /. PV : VK - PO : OP',

hence PU : UL ^ PO : OP', .'. LP' is parallel to UO.

Hence we get the same point P', if we take U in place of V

;

i.e. there is one solution only.

Exercise. Construct the homologous conic by drawing tangents to the

given conic, and finding the homologous tangents (and points of contact).

199. Theorem. If through the centre of homology O we

can draw a tangent OG to the given conic, then OG also touches

the homologous conic.

Fig. 155.
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Also if GH be the chord of contact of tangents from O to the

given conic, then OG, OH touch the homologous conic at G'H' such

that GH, G'H' meet on the axis.

If A' is a given point on the homologous conic, and we join

AG to meet the axis at B, then A'B cuts OG at G' : and if GH
meets the axis at M, then MG' cuts OH at H'. Hence the

homologous conic is the conic which touches OG, OH at G', H'

and passes through A'.

The polar of M with respect to the given conic passes through

O and is the harmonic conjugate of OM with respect to OG, OH,

hence it is also the polar of M with respect to the homologous

conic.

200. Theorem. If the given conic cuts the axis at E, F

then the homologous conic also passes through E, F ; and the

tangents at E, F to the two conies meet at points T, T' coUinear

with O.

We thus obtain another construction for the homologous

conic which touches a given line a'.

Let a' cut the axis and from this point draw a tangent a to

the given conic ; let a cut ET at B, join OB to cut a' at B', then

B'E is the tangent at E to the homologous conic. If B'E cuts OT
at T', then T'F is the tangent at F. Hence the homologous

conic is that conic which touches T'E, T'F at E, F and also

touches a.

The pole of TT'O with respect to either conic lies on the axis

and is the harmonic conjugate with respect to EF of the point

where TT' cuts EF.

201. To find the centre of the homologous conic. If

we take a tangent to the given conic parallel to the axis, the

homologous tangent is also parallel to the axis. Hence if we

draw tangents AU, BV to the given conic parallel to the axis,

and A', B' are the points homologous to A, B, then A'B' is a
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diameter of the homologous conic, and its middle point is the

centre (cf. § 203, Cor. 1).

202. Theorem. If the vanishing line cuts the given conic

in two real points the homologous conic is a hyperbola : if it

touches, a parabola ; if it does not cut it, an ellipse : and

conversely.

Fig. 156.

I. Let the given conic cut the vanishing line at V, V'.

Draw a tangent VT to cut the axis at T and draw TC parallel to

OV.

Then TC is the tangent homologous to TV, and its point of

contact (the homologue of V) is at infinity.

Hence TC is an asymptote : the other asymptote CT' may be

similarly obtained from the tangent at V'.

Their intersection is the centre C.
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II. If the vanishing line VU touches the conic at V. There

is only one infinity direction of the homologous conic : and the

homologous tangent to VU is entirely at infinity. Hence the

homologous conic is a parabola whose axis is parallel to OV.

III. If the vanishing line does not cut the conic there are

no infinity directions.

Corollary. If the given conic is a hyperbola the secondary

vanishing line cuts the homologous conic.

203. Theorem. A point and its polar with respect to a

conic project into a pole and polar with respect to the homologous

conic. Also conjugate lines through a point project into conjugate

lines in the homologous figure.

Corollary 1. The centre of the homologous conic is

the point homologous to the pole of the vanishing line

with respect to the given conic.

Corollary 2. If the centre of homology is a focus of the

given conic, conjugate lines at that point are perpendicular, and

these lines project into the same lines in the homologous figure,

hence the centre of homology is also a focus of the homologous

conic.

Corollary 3. If the vanishing line is a directrix of the

given conic, the corresponding focus projects into the centre of

the homologous conic.'&^

Corollary 4. If a focus S be taken as centre of homology

and its directrix as vanishing line, S is the centre of the

homologous conic, and all conjugate diameters are perpendicular,

hence the homologous conic is a circle.

Corollary 5. The homologue of a circle whose centre is the

centre of homology is a conic whose focus is at that centre, and

the corresponding directrix is the secondary vanishing line. If

the circle touches the primary vanishing line the homologous

conic is a parabola.
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Corollary 6. A system of concentric circles project into a

system of conies with a common focus and directrix.

204. To find the eccentricity of the conic homologous to a

circle whose centre O is the centre of homology.

Draw OA perpendicular to the axis, cutting the primary

vanishing line at W, and the secondary vanishing line at X.

Take any point P on the circle, join PW, cutting the axis at K
;

and draw KP' parallel to OA, cutting

PO at P', and the secondary vanish-

ing line at M. P' is homologous

to P.

Also OW = XA=MK,

and PO : OW = PP' : P'K,

.'. PO : OW = OP' : P'M.

Hence OP' : P'M has a constant

value : and P' describes a conic with

O as focus and XM as directrix.

Corollary. This is another

proof that the distance of a point

from its focus bears a constant ratio

to its distance from the correspond-

ing directrix ; and that the ratio is

greater than, equal to, or less than unity according as the conic is

a hyperbola, parabola or ellipse.

205. To find when the homologous conic is a circle.

Let P be the pole of the vanishing line with respect to the given

conic. Draw ON perpendicular to the vanishing line
;
join PN,

cutting the axis at K ; draw KC parallel to ON to meet PO
at C.

C is the centre of the homologous conic.

Draw any pair of conjugate lines through P, cutting the

vanishing line at A, B; and the axis at G, H.

1
b\ P'

w

\
X

A

\ M

K

Fig. 157.
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Then CG, CH are conjugate diameters ; hence, if the homologous

conic is a circle, these lines are perpendicular ; therefore the

parallel pair of lines OA, OB are perpendicular, and AN . NB = ON^.

Hence the homologous conic is a circle, if the involution

traced on the vanishing line by pairs of points conjugate with

respect to the given conic has its centre at N the foot of the

perpendicular from O, and its power is— ON-.

Fig. 158.

Homology of two given conics.

206. Theorem. If two conies touch the same line at the

same point they are in homology with that point as centre.

Let OT be the common tangent at O.
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Draw OAA' to cut the conies at A, A' respectively.

Let any other lines through O cut the conies at P, P' ; Q, Q'

;

R, R', respectively.

Hence, from the definition of the conic, the pencil

A {OPQR} = O {TPQR}, and A' {OP'Q'R'} = O {TP'Q'R'}.

.'. A {OPQR} = A' {OP'Q'R'}, and these are two projective

pencils with a common self-corresponding ray AA'O :
.*. the two

pencils are in perspective, i.e, the intersections of AP with A'P',

AQ with A'Q', etc. lie on a straight line 8.

Again the triangles APQ, A'p'Q' are in homology with O as

centre, and AP, A'P', AQ, A'Q' intersect on s, hence PQ, P'Q' meet

on s.

Hence and similarly the join of any two points on one conic

meets the join of the corresponding points of the other conic

on s.

Hence the conies are in homology with O as centre and s as

axis.

Corollary. If the conies intersect in two other points X, Y,

then XY is the axis s of homology.

207. Theorem. If two conies touch a line at the same

point they are in homology with that line as axis.

From any point T on the common tangent TA draw tangents

TB, TB' to the two conies.

From any points P, Q on TA draw tangents to the two conies

to cut a at K, L and d at K', L' respectively.

Then, since a variable tangent traces projective rows on two

fixed tangents (§ 78)

{ATPQ} = {TBKL}, and {ATPQ} = {TB'K'L'}.

.*. {TBKL} = {TB'K'L'}, and in these projective rows, the inter-

section T corresponds to itself, hence the rows are in perspective,

.*. B'B, L'L, K'K are concurrent.

Hence all the joins KK', LL', etc. cut BB' at the same point O.



Homology 235

Again, if PK, QL intersect at U, and PK', QL' at U', the

triangles UKL, U'K'L' have corresponding sides intersecting on TA,
.'. UU' passes through the intersection O of KK', LL'.

Fig. 160.

Similarly the intersections of any pairs of corresponding

tangents are collinear with O.

But when the points P, Q coincide U, U' become the points on

the conies, where the tangents from P touch them.

Hence the conies are in homology with O as centre and TA as

axis.

208. Theorem. If two conies pass through two given

points E, F they are in homology with EF as axis : unless the

segment EF is within one conic, and without the other (the latter

in that case being a hj^erbola with E, F on different branches).
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From any point T on EF draw tangents TA, TA' to the two

conies.

Take any points K, L on EF, and let AK, AL cut the A conic

again at P, Q; and A'K, A'L cut the A' conic again at P', Q'

respectively.

¥m. 161.

Then P {AEFQ} = A {TEFQ} = {TEFL},

and P' {A'EFQ'} = A' {TEFQ'} = {TEFL},

.*. P {AEFQ} = P' {A'EFQ'}.

But PA, P'A' cut EF at the same point K, .*. PQ, P'q' intersect

on EF.

Hence and similarly the joins of any pair of corresponding

points intersect on EF.

Again the triangles APQ, A' P'Q' being in homology (with EF

as axis), the lines AA', PP', QlQl are concurrent.

.*. joins PP', QQ', ..., cut AA' at a fixed point O.
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Hence the conies are in homology with EF as axis and O as

centre.

Corollary 1. If the tangents at P, P' cut EF at U, U' we
have

{EFKU} = A {EFTP} = {EFTK},

and similarly {EFKU'} = {EFTK},

hence U, U' coincide, i.e. the tangents at P, P' meet on EF.

Corollary 2. If TA, TB are the tangents from T to one

conic, and TA', TB' to the other, then TA, TA' being chosen the

solution proceeds without ambiguity, giving a centre O, as above

[and TB will correspond to TB' (Cor. 1)].

But TB, TA' will give a dififerent solution, with another centre

of homology O' [and TA will correspond to TB'].

Thus the two conies are in homology with respect to the axis

EF, and each of two different centres of homology O, O' : and
these are two of the diagonal points of A, A', B, B', the third

being the harmonic conjugate to T on EF.

Corollary 3. Any common tangent must pass through one,

but not both, of the centres of homology.

209. If two conies intersect in four points they are in

homology in either four or twelve different ways. Let A, B, C, D
be the four points.

The segment AB can only be external to the conic if A, B lie

on different branches of a hyperbola. Let A, B lie on one branch

and C, D on the other branch of a hyperbola ; if the other conic is

an ellipse or parabola then AB, CD are possible axes, the other

pairs AC, BD ; AD, BC are not.

If the other conic is a hyperbola with ABCD all on one branch

the same holds.

If a hyperbola with AC on one branch and BD on another,

then neither AB, CD nor AC, BD are possible, but AD and BC are

possible being external to both conies.
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Hence either one or three pairs of the joins of A, B, C, D may-

be used as axes of homology, and each join may be taken with

either of two centres, giving either four or twelve different

homologies.

The two centres corresponding to AB are the same as those

of the opposite join CD : so that there are two or six centres

respectively. If there are four common tangents then the six

centres are the vertices of the four-side which they form.

Since the self-polar triangle is real (being the diagonal

triangle of the four points), if there is one common tangent there

must be three others, and six centres of homology.

If one conic lies entirely within the other, we can construct

two real common chords (§ 110), and there are a double pair of

centres giving homology in four different ways.

210. Theorem. If two conies have a pair of common
tangents, their intersection is a centre of homology, provided the

conies lie in the same or opposite angles formed by the two

tangents.

Through O draw a line to cut the conies at A, A' and draw

tangents at A, A' cutting the common tangents at BC and B'C'.

Draw any line through O to cut BC, B'C' at T, T' and draw

the second tangent TP from T cutting OB, OC at Q, R and from

T\ tangent T'P' cutting OB, OC at Q', R'.

Because tangents describe projective rows on any two tangents

.'. {PQRT} = {TBCA}, and {P'Q'R'T'} = {T'B'C'A'}
;

but, by projection from O, {TBCA} = {T'B'C'A'}
;

hence {PQRT}= {p'Q'r'T'}, but QQ', RR', TT' meet at O, hence P,

P' are collinear with O.

Hence the conies are in homology with O as centre, and the

locus of intersection of tangents PQ, P'Q' is a straight line, on

which also intersect AP and A'P', and all other corresponding

pairs of chords.
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Corollary 1. If OA cuts the first conic at A and D, and the

second at A', D', then A, A' being taken to correspond (as above)

the solution proceeds without further ambiguity, D corresponding

to D'. We shall get one, and only one other homology with

centre O, by taking A to correspond to D (in which case D

corresponds to A').

Fig. 162.

Thus the conies are in homology with respect to centre O and
each of two axes : which are two of the diagonals of the four-side

formed by the tangents at A, A', D, D'. [The third diagonal

passes through O, and is the harmonic conjugate of OA with

respect to OB, OC]

Corollary 2. Any point common to the two conies must lie

on one or other of the axes of homology.

Corollary 3. If two conies have four common tangents

they are in homology in either four or twelve different ways.
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Either one or three of the pairs of vertices of the four-side

formed by the common tangents will be possible.

The two axes corresponding to any vertex will be the same as

those corresponding to the opposite vertex, thus there are two or

six axes of homology respectively. If the conies intersect in

four points, the sides of the four-point are the six axes.

211. If the chords of contact of the tangents from O meet at

M, then each axis passes through M. (See fig. 155.)

If the axis cuts the conies at E, F then M is a double point

of the involution determined by E, F and the points where the

tangents cut the axis.

M has the same polar with respect to each conic, viz. the

harmonic conjugate of OM with respect to the two tangents OG,

OH from O.

Let this polar cut the first conic at a point P, join GP to cut

MG' at L ; let OP cut the second conic at P'Q' and G'P', G'Q' cut

GP at X, Y. Then MX, MY are the two axes.

But at G' the pencil G' {OMP'Q'} is harmonic

.'. {GLXY} is harmonic; .'. M {GG'XY} is a harmonic pencil,

i.e. the axes are harmonic conjugates with respect to the chords of

contact.

If from any point on the axis we draw the two tangents TP,

TR to one conic and TP', TR' to the other, then PP' and RR' will

pass through O, but PR' and P'R will pass through a second centre

of homology O', so that the conies are also in homology with

respect to O' and this axis. If there are two other common
tangents then O' is their intersection.

Exercises. 1. The second centre for MY will be the same point O'.

2. The polars of O' pass through M and are harmonic conjugates to

MX, MY.

3. The intersection M of the axes is the pole for either conic of the

join OO' of the vertices.
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212. If the diameters DE, D'E' of two conies meet at M, and the

conjugate diameters AB, A'B' are parallel to a line MX, and if also

DE^ D'E"
MD. ME : MD'. ME' as

with MX as axis.

A 82 A'B
7^ , the two conies are in homology

Take any point P on the first conic, and let DP, EP cut MX at

K, L.

Join KD', LE' intersecting one another at P'.

Draw PV parallel to MX to meet DE at V, and pV parallel to

MX to meet D'E' at V'.

Then PV- : EV . VD = AB^ : DE^.

But PV : VD = KM : MD ; PV : EV = ML : ME,

.*. PV2 : EV . VD = KM . ML : MD . ME,

DE^
MD. ME : KM. ML

AB^

D'E'2
.-. MD'. ME' : KM.ML=3 ,~- .

P. P. G. 16
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But PV2 : EV' . V'D' = K'M . ML : M'D' . M'E',

/. P'V'2 : EV . V'D' = A'B'2 : D'E'^,

therefore P' lies on the second conic.

Hence, and similarly, to each point P of the first conic

corresponds a point P' of the second so that DP, D'P' meet on MX,

and also EP, E'P'. Hence, by § 193 (lY), the conies are in

homology with MX as axis, and the intersection of DD', EE' as

centre of homology.

Corollary. The line MX is a common chord of the two

conies, cutting them in the same two (imaginary) points.

213. Problem. Given a conic and an axis of homology, to

construct the homologous conic passing through three given

points.

F

Let A, B, C be the three given points ; and let BC, CA, AB

meet the axis at K, L, M respectively.

Draw a line through K to cut the given conic at D, E and

draw LD, ME, cutting the conic again at F, G. Join FG cutting

the axis at N.

If a quadrilateral inscribed in a conic has three of its sides

passing through three fixed points lying on one straight line, the
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fourth side will pass through a fourth pomt on that line. Hence
if we turn FG round N until it becomes a line NA' touching the

conic at A', and A'M, A'L cut the conic at B', C' respectively, B'C
will pass through K.

We have now constructed a triangle A' B'C' in homology with

ABC with the given line as axis, hence AA', BB', CC' meet at a

point S, which is the centre of the required homology ; and the

homologous conic can be completely determined (§ 197).

Corollary. The two tangents from N to the given conic

give two centres of homology ; but two conies are in homology

with a given line as axis with two different centres.

Hence the two centres determine only one homologous conic.

Problem. Given a conic and a centre of houiology S, to

construct the homologous conic passing through three given points

A, B, C.

Join SA, SB, SC cutting the given conic at A', B', C' ; the

triangles ABC, A'B'C' determine the axis of homology. Hence
the homology is completely determined.

Since there are two positions, in general, of each of the points

a', B', C' there are eight different positions of the axis, giving four

different homologous conies.

Corollary. If S is outside the given conic, the problem is

identical with the construction of a conic to pass through three

points and touch two lines (the tangents from S).

Problem. Given five points on a conic to construct the

centre.

Let A, B, C, D, E be the five points. Describe a circle passing

through D, E and construct the centre of homology S for the

circle, the axis DE, and the three points A, B, C. The conic

ABCDE is the conic homologous to the circle, with S as centre

and DE as axis of homology, hence its centre is given by the

construction of § 201.

16—2
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Problem. Find the pole of a given line with respect to the

conic which passes through five given points.

[Pole and polar are homologous to pole and polar.]

Exercises. 1. Given a conic and an axis of homology, construct the

homologous conic,

(a) passing through two given points and touching a given line
;

(6) passing through one given point and touching two given lines
;

(c) touching three given Unes.

2. Given a conic and a centre of homology, construct the homologous
conic to satisfy the condition (a) (6) or (c) of exercise 1.

3. Construct the centre of the conic which passes through n points and
touches (5 - n) lines, where n is 0, 1, 2, 3 or 4.

4. Construct the asymptotes and axes of a conic which satisfies five

given conditions.

214. Projection in Space. A point A may be projected

from a centre S on to a plane a, by joining SA by a line cutting a

at A'.

A line a is projected by drawing a plane through S and a to

cut the plane a in a line a', which is the projection of a.

Figures in a plane a may be projected into figures in another

plane a'. The straight line in which the two planes intersect is

called the axis of projection ; any line and its projection meet on

the axis, and lie in one plane passing through the centre of

perspective.

Collinear points project into collinear points, and concurrent

lines into concurrent lines.

We may regard the figure as made of a system of points, and

project by means of a sheaf of lines all passing through the

centre S ; or we may regard it as a set of lines, and project by

means of a sheaf of planes all passing through the centre S.

A curve is projected either {a) by means of a sheaf of lines

through S and the system of points which form the curve, or
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(J))
by means of a sheaf of planes through S and the system of

tangents which envelope the curve, the sheaf cutting the plane a

in a system of lines whose envelope is the projected curve. The
curves obtained by the two methods are identical.

If we project from a plane on to a parallel plane, any line

AB will project into a parallel line A'B', and the length AB : A'B'

as the perpendiculars from S to the two planes. Hence the

projection will be similar and similarly situated to the original

figure. E.g. the projection of a circle on a parallel plane is also

a circle.

Straight lines intersecting at a point V in a project into

straight lines meeting at the point V' where SV meets a'. If

V lies on the line v in which the plane a is cut by a plane through

S parallel to a', the lines which meet at V project into parallel

lines in the plane a.

Also parallel lines in a project into lines meeting at a point

lying on the line v in which a is cut by a plane through S

parallel to a.

These two lines (v, v) are called the vanishing lines of the

projection ; they are parallel to the axis s. Each point of the

vanishing line v is the vanishing point of lines parallel to one

direction in a. The vanishing point of lines in a! perpendicular

to the axis s is N the foot of the perpendicular from S to ?; ; the

vanishing point of lines making an angle A with that perpendicular

direction is a point V such that angle NSV equals A; if A is 45°

then NV equals NS.

Exercises. 1. Given the axis s, and NV the vanishing line, of which N
is the foot of the perpendicular from S, and NV=NS, construct the figure

whose projection is a square with one side AB lying in the axis s.

[Take BK along s equal to AB. Join KV cutting BN at C; draw CD
parallel to BA cutting AN at D.

ABCD is the figure required. For the projection of KC makes an angle

of 45° with KB, hence CBK projects into an isosceles right-angled triangle,

and the projection of BC equals BK.]
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2. Find the figure whose projection is a square with one side parallel

to s.

3. Find the figure whose projection is

(rt) a square with one side inclined to s at 30°
;

(6) a hexagon with one side lying along s
;

(c) a hexagon with one side perpendicular to s.

The construction of figures by the use of vanishing points

and lines is called Perspective Drawing, and the student may refer

to books on that subject for further illustrations of the applications

of the theory to the solution of practical problems. We may
note that if, in place of figures lying in one plane a we have

figures in several planes, e.g. the faces of a solid body, the

corresponding figures in a will have various vanishing lines, but

figures in parallel planes will have one and the same vanishing

line.

215. If A, B, C, D are four collinear points in the plane a,

their projectors lie in one plane through S and AB, hence their

projections A', B', C', D' lie in a straight line lying in the same

plane and in the plane a. Also A'b' and AB are two transversals

of a plane pencil, hence {ABCD} = {A'b'C'D'}.

Hence a row of points on a straight line projects into

a projective row.

If a, 6, G, d are four concurrent lines in the plane a, meeting

at T, their projecting planes form an axial pencil with ST as axis,

and the projections are four lines a\ b', c', d' meeting at the

point T' which is the projection of T. Also the planes Sa, S6,

Sc, So? will cut the axis s at four points A, B, C, D which also lie

on the lines a, h', c', d' ; and ABCD is a transversal of both pencils,

hence {ahcd} = {a'h'c'd'}.

Hence a plane pencil projects into a plane pencil

projective with the original pencil.

The Projection of a Conic is a Conic. First Proof.

The conic is the locus of the intersections of corresponding



Homology 247

rays of two projective pencils ; but these pencils project into two

pencils projective with the original pencils and therefore with

each other. Hence the points forming the conic project into the

intersections of corresponding rays of two projective pencils, and

these form a conic. [See also § 217.]

Second Proof. The conic is the envelope of the joins of

two linear projective rows in the plane a, and these project into

two linear projective rows in the plane a', hence the projection is

a conic.

Corollary 1. The cross-ratio {ABCD} of four points on the

conic equals the cross-ratio {A'B'C'd'} of the corresponding points

on the projected conic.

Corollary 2. Parallel tangents do not, in general, project

into parallel tangents ; hence the centre does not, in general,

project into the centre of the projected conic.

216. Connection between Projection in Space and
Homology in a Plane. If a figure in a plane a is projected into

a figure in a plane a', corresponding lines meet on the intersection

8 of the two planes. If now the plane a be turned about the

axis », and brought into coincidence with a ; corresponding

lines still meet on s, and the figures become figures in homology

with 8 as axis ; also S will become the centre of homology.

Conversely two plane figures in homology become two figures

in projection if a plane containing one of the figures be turned

about the axis of homology, corresponding lines continuing to

meet on the axis, and the joins of corresponding points meeting

now at one point S (lying outside both planes).

Locus of S. The vanishing lines of the homology become

the vanishing lines of the projection, and a plane through S will

cut the axis s and the two vanishing lines v, v' at points A, W, X

(cf. fig. 157), such that SWAX is a parallelogram. Hence S

describes a circle with centre W, and radius equal to AX, lying in

a plane perpendicular to the axis.
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217. Plane Sections of a Cone whose Base is a Circle.

Theorem. Any plane section of a cone on a circular base is a

curve such that the joins of any two points on it to a variable

point on it describe two projective pencils with those two points

as vertices.

T'/

Fig. 165.

Let O be the vertex of a cone on a circular base ABP, and

A'B'P' any plane section.

Join OA', OB' and produce to meet the circle at A, B.

Join any other point P' on the section to O by a line cutting

the circle at P.
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Let the planes OAP, OBP cut at K, L respectively the line in

which the plane of the section cuts the plane of the circular base.

Then AP, A'P' both pass through K, and BP, B'P' both pass

through L.

Now as P moves round the circle AP, BP turn through equal

angles at A, B and therefore describe two projective pencils;

hence K, L describe projective rows on KL.

Therefore, in the plane A'B'p', A'p' and B'P' describe projective

pencils about the vertices A', B'.

Corollary 1. If the tangents TA, TB meet KL at U, V

respectively, the planes OTA, OTB touch the sides of the cone,

and therefore contain the tangents T'A', T'b' to the section, also

passing through U, V. But in the circle AB at A corresponds to

BT at B.

Hence, in the section, A'B' at A' corresponds to B'T' at B', and

similarly B'A' to A'T'.

Therefore the tangents at A', B' to the section are those rays

of the pencils which correspond respectively to B'A' and A'B'.

Corollary 2. The section is a hyperbola, parabola or ellipse

according as a parallel plane through O cuts the sides of the cone

in two real and different lines, or touches the cone or cuts it only

at O.

Corollary 3. This proposition is equally true whether the

cone is right or oblique.

218. Theorem. A tangent to any plane section of a

circular cone describes projective rows on any two given tangents

to that section.

Let T'A', T'b' be two given tangents to the plane section, and

A'B' any other tangent cutting these two at A', B' respectively.

The planes OT'a", OT'B', OA'B' touch the sides of the cone;

hence they cut the plane of the circular base in lines TA, TB, AB

which touch the circle.
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Now a variable tangent AB to a circle describes projective

rows on two given tangents, therefore A, B describe projective

rows on TA, TB.

But, in the plane OTA, we have two transversals TA, TA' of a

pencil whose vertex is O, hence the row described by A' is

projective with the row described by A.

Similarly the row described by B' is projective with the row

described by B.

Hence A', B' describe projective rows on TA', TB'.

Corollary. On the tangents to the circle T on TA corresponds

to B on TB. Hence T on TA' corresponds to B' on TB'. Similarly

T on TB' corresponds to A' on TA'.

Exercise. Find the point of TB' corresponding to a point at infinity on

TA', for different positions of the plane TA'B'.

219. Theorem. Every curve which is an envelope of the

joins of two projective rows on two straight lines in a plane is a

section of some cone which has a circular section.

Let TA, TB be the two fixed lines, touching the envelope at

A, B. In any plane through TA describe a circle to touch TA at A,

and draw the second tangent TB' to this circle. Let PQ be any

other tangent to the envelope cutting TA, TB at P, Q (corre-

sponding points of the projective rows) ; and draw a second

tangent PQ' to the circle, meeting TB' at Q' ; similarly take

another tangent RS to the envelope, and RS' to the circle.

Then {TBQS} - {ATPR} ; also in the plane of the circle we

have {TB'Q'S'} = {ATPR}.

Hence {TBGIS} = {TB'Q'S'}, two projective rows with a common

point T, therefore SS' always passes through the point O where

QQ' meets BB'.

If then we keep P, Q, Ql fixed and vary R, S, S', the point O
will be fixed and RS will lie in a plane ORS' which touches the

cone whose vertex is O and whose base is the circle.

Hence the envelope of RS is a section of that cone.
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Corollary. By suitable choice of A, the plane through TA
and the circle in that plane, the cone may be made a right

circular cone.

220. Theorem. Any locus of intersections of corre-

sponding rays of two projective pencils is a section of some cone

of which one section is a circle.

Take two points E, F on the locus (but not lying on different

branches if the locus is a hyperbola) and in a plane through EF

draw a circle passing through E and F.

From any point T on EF produced draw tangents TA, TA' to

the circle and the locus. Join A, A' to any point K on EF, let AK
meet the circle again at B, A'K meet the locus again at B'.

Then BB' lies in the plane AKA', and therefore meets AA' at

some point O.

Let P be aay other point of EF, and let AP, A'P meet the

circle and conic respectively again at Q, Ql.

Then B {AEFQ} = A {TEFQ} - {TEFP},

and B'{A'EFQ'} = A'{TEFQ'} = {TEFP},

.-. B {AEFQ} = B' {A'EFQ'},

but BA, B'A' cut EF at the same point K, hence BQ, B'Q' also

intersect on EF, and therefore lie in one plane.

Hence QlQl meets BB', but it also meets AA', hence it passes

through O.

Hence, and similarly, each point of the locus lies on a line

joining O to some point of the circle ; and the locus is a section

of the circular cone.

Corollary 1. The proof holds equally well if for the circle

we substitute any conic passing through E, F.

Corollary 2. If two conies cut the intersections of their

planes at the same two points, two and only two cones can be

drawn to pass through them ; one vertex will lie in each pair of

opposite dihedral angles between the planes.
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221. Problem. Given the vertex O and a circular section

of a cone to find a second set of circular sections (not parallel to

the given circle).

Make a plane through O perpendicular to the given circle

and passing through its centre C, let AB be the diameter of the

circle lying in this plane.

Divide CO at N so that CN^-ON^ = CA^, and draw NP perpen-

dicular to CO to meet CA at P. In the plane of the circle draw

a line PX perpendicular to CP.

Then PO^ = PC^ - CA- = PA . PB = PC . PP' (where P' is the pole

of PX).

Take any pair of conjugate points Q, R on PX ; P' is the ortho-

centre of the triangle CQR, therefore QP . PR = PC . PP' = PO^

Hence QR always subtends a right angle at O.

If PE, PF are the tangents from P to the circle, and K is any

point on the circle, KE and KF describe projective pencils on PX,

in which P is the vanishing point of both rows, hence KE, KF cut

PX at conjugate points Q, R.

Now take a section of the cone through EF parallel to the

plane OPX, let OK cut the section at L.

Then EL, FL are parallel to QO, OR ; hence ELF is a right

angle, and therefore the section is a circle of which EF is a

diameter.

Hence the sections parallel to the plane OPX are circles.

Corollary. There are only two sets of circular sections of

the cone, viz. those parallel to the given circular section and

those parallel to the plane OPX.
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EXAMPLES. X.

1. state and prove the condition that two sets of n points may be in

homology.

2. Six lines a, 6, c, d, e, / touch a conic, prove that another set of six

lines a', b', c', d', e', f in homology with them also touch one conic.

3. If A, B be two fixed points and P any point lying on a conic ; and if

PA cuts a fixed line at Q, the line through Q parallel to AB cuts PB at

a point whose locus is a conic.

4. Given the centre, axis and vanishing line of homology, find the

condition that the conic homologous to a given conic shall be a rectangular

hyperbola.

6. If the vanishing line touches a given conic construct the focus of the

homologous parabola.

6. A given parabola cuts the vanishing line of homology, find the centre

of the homologous conic.

7. Draw the figure of § 208 for the case of two hyperbolas in each of

which E, F lie on different branches.

8. Construct the two centres of homology described in § 208, Cor. 2.

0. (a) Two conies have common tangents meeting at O, and a line

through O cuts the conies at A, A' respectively. If points P, P' move from
A, A' round the conies so that O, P, P' are always collinear, prove that the

locus of the intersection of AP, A'P' is a straight line.

(fc) If, in the same figure, we replace A, A' by P, P' we get the same line.

(c) Tangents at P, P' meet on the same line.

(d) GP, GP' intersect on this line, G, G' being the points where the

conies touch one of the common tangents through O.

(e) The chords of contact of the two fixed tangents from O intersect on

this same line.

(/) If OA cuts the second conic again at D', and we take A, D' in place

of A, A' we get another line with similar properties.

lO. Two conies have common tangents GG', HH' meeting at O, and
any line through O cuts the conies at P, P' respectively. If GP, G'P'

intersect at K, and HP, H'P' at L, prove that K, L lie on an axis

of homology of the conies, and that they describe projective rows on that

axis.
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11. Find the polar of a given straight line with respect to the conic

which passes through five given points.

12. Find the nature of the conic which (a) touches five given lines,

(6) touches two given lines and passes through three given points.

If the curve is a hyperbola construct its asymptotes.

13. Find the foci of the conic which passes through five given points.

14. Find the centre of homology of the two conies which pass through

four given points and touch a given straight line.

15. Prove that a given conic can be projected into a circle and at the

same time a given line to infinity,

16. Prove that a given conic can be projected into a circle and at the

same time a given point into its centre.

17. Prove that a conic can be projected so that two given points become
foci.

18. Prove that two conies can be projected into two confocal conies.

19. Generalize by projection that the angles between pairs of tangents

from a given point to a system of confocal conies have a common bisector.

20. Generalize by projection that if a conic touches two given lines and
has a given focus, the locus of the other focus is a straight line.

21. Prove that a system of conies touching four given lines can be

projected into a system of confocal conies.

22. The join of PQ is divided harmonically by two opposite edges of a

tetrahedron, and the join PR is divided harmonically by another pair of

opposite edges ;
prove that QR meets the two remaining edges and is divided

harmonically by them.

23. A plane turns round a line OA, and another plane turns round OB
so that the two planes are always perpendicular to each other, prove that

their intersection describes a cone of the second degree, which is cut by any

plane perpendicular to OA or OB in a circular section. Also that any plane

perpendicular to the plane AOB cuts the cone in a section of which one

principal axis lies in the plane AOB.

24. Two projective ranges A, B, C, ..., A', B', C, ... lie on two non-

intersecting lines in space; shew that AA', BB', ... all intersect an infinite

number of other fixed lines.
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25. A set of planes have a common line of intersection, and a straight

line cuts them at A, B, C, ..., prove that the pencils formed by joining any

two points on the common axis to A, B, C, ... are projective.

26. Two parallel straight lines cut an axial pencil in projective rows.

27. Any two non-intersecting lines are cut by a system of axial planes

in two projective pencils.

28. If two triangles in perspective be taken in two planes, and one of

the planes with its triangle be turned about the line of intersection of the

planes, the centre of perspective will describe a circle.

29. The axis of an axial pencil of planes (a, ^, 7, 5) intersects the axis

of a projective axial pencil (a', /3', 7', 5')
;
prove that a plane through the

two lines of intersection of a, /3' and a', /3 cuts the planes in a pencil in

involution.

30. The latus rectum of a section of a right circular cone is proportional

to the perpendicular from the vertex of the cone to the plane of the section.

31. Find the circular sections of a right elliptic cone.

32. The latus rectum of a parabolic section of a right circular cone is a

third proportional to the distance of its vertex from the vertex of the cone

and the diameter of the circular section through its vertex.

33. Determine whether a given line can be the directrix of any section

of a given right circular cone. Also shew that, when the necessary condition

is satisfied, there are two such sections, and that their latera recta are

proportional to their eccentricities.

34. Given a parabola, construct a circle touching it at the vertex so

that the circle can be turned about the axis of homology to make the cone

of projection right circular.

35. Given a central conic, construct a circle touching it at the end of a

major axis, and such that it can be turned about the common tangent to a

position in which the cone of projection is a right circular cone.

36. If a point S be taken within a cone at a constant distance from the

vertex, two sections containing S will have S as focus and the diameters of

the corresponding focal spheres inscribed in the cone and touching those

sections at S, will contain a constant rectangle.

37. (a) Prove that those chords common to a conic and a system of

circles touching the conic at a given point S, which are conjugate to the

common tangent, are parallel to each other.

(b) Hence, also, construct the circle of curvature, i.e. that circle which
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has three of its intersections with the conic coinciding at the point S of the

conic, giving a contact of the second order.

(c) If S is at the end of a principal axis, prove that the contact is of the

third order, and construct the circle of curvature in that case.

38. If corresponding vertices of two tetrahedra lie on four concurrent

lines, prove that the six edges of one meet the corresponding edges of the

other in six points lying three by three on four straight lines. Deduce that

these six points lie on a plane, and that the four pairs of corresponding

faces of the tetrahedra meet in four coplanar lines.

39. Three conies in different planes are such that each two have a

common chord (along the intersection of their two planes), prove that these

three common chords are concurrent ; also prove that two cones pass

through each pair of conies, and that the six vertices of the three pairs of

conies lie three by three on four straight lines and are therefore coplanar.

CAMBBIDOE : PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS.





m

Th

14 DAY USE
RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.
This book is due on the last date stamped below, or

on the date to which renewed.
Renewed books are subject to immediate recall.

GlStrin'.^

K^JillVED
3 lim'Sr

APR 2 7 '67 -10 PM

MAY 2

LOAN DEPT.

Mr 1 5 1968 t $

HeC'D

MARIO '68 iU ^

# •AM .CTF"

m
v.

LD 21-1007

LD 21A-60m-7,'66
(G4427sl0)476B

General Library
University of California

Berkeley

D

L



•>

738290

aA47/

:-^^:
UNIVERSITY OF CALIFORNIA UBRARY

^.'K\A




