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PREFACE.

THE design of the authors in the preparation of this work has
been to present the fundamental principles of Physics, the experi-
mental basis upon which they rest, and, so far as possible, the
methods by which they have been established. Illustrations of
these principles by detailed descriptions of special methods of ex-
perimentation and of devices necessary for their applications in the
arts have been purposely omitted. The authors believe that such
illustrations should be left to the lecturer, who, in the perform-
ance of his duty, wili naturally be guided by considerations
respecting the wants of his classes and the resources of his cabinet.

Pictorial representations of apparatus, which can seldom be
employed with advantage unless accompanied with full and exact
descriptions, have been discarded, and only such simple diagrams
have been introduced into the text as seem suited to aid in the
demonstrations. By adhering to this plan greater economy of space
has been secured than would otherwise have been possible, and thus
the work has been kept within reasonable limits,

A few demonstrations have been given which are not usually
found in elementary text-books except those which are much more
extended in their scope than the present work. This has been done
in every case in order that the argument to which the demonstra-
tion pertains may be complete, and that the student may be con-
vinced of its validity.

In the discussions the method of limits has been recognized
wherever it is naturally involved; the special methods uf the cal-

80776 “
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culus, however, have not been employed, since, in most institutions
in this country, the study of Physics is commenced before the stu-
dent is sufficiently familiar with them.

The authors desire to acknowledge their obligations to Wm. F.
Magie, Assistant Professor of Physics in the College of New Jersey,
who has prepared a large portion of the manuscript and has aided
in the final revision of all of it, as well as in reading the proof-
sheets.

W. A. ANTHONY,
O. F. BRACKETT.
September, 1887,



REVISER'S PREFACE.

BY the courtesy of the authors and publishers of this book, I
have been given an opportunity to make a rather extensive revision
of it. The principal changes which have been made, besides such
slight corrections or supplementary statements as seemed necessary,
are, an entire rearrangement and enlargement of the mechanice,
and the addition of a discussion of the kinetic theory of matter
and of a treatment of magnetism and electricity by the method of
tubes of force. The omissions have been largely of statements that
would naturally be made by the lecturer or of demonstrations in
which the results reached did not warrant the expenditure of time
and trouble necessary to master them. I trust that I have adhered
throughout to the original design of the authors.

During the last few years I have been using with my classes
Selby’s “Elementary Mechanics of Solids and Fluids,” and have
availed myself in many places in the present revision of the sugges-
tions which I received from that admirable book. The additions to
the Magnetism and Electricity are based upon the treatment of the
subject by J. J. Thomson in his “ Elementary Theory of Electricity
aud Magnetism.” i

W. F. MaGIk.

PRINCETON UNIVERSITY,
February, 1897.
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2 ELEMENTARY PHYSICS. [§2

cessful pursuit of knowledge in any one of them requires some
acquaintance with the others.

2. Methods.—The ultimate basis of all our knowledge of Nature
is experience,—experience resulting from the action of bodies on
our senses, and the consequent affections of our minds.

When a natural phenomenon arrests our attention, we call the
result an observation. Simple observations of natural phenomena
only in rare instances can lead to such complete knowledge as will
suffice for a full understanding of them. An observation is the
more complete, the more fully we apprehend the attending circum-
stances. We are generally not certain that all the circumstances
which we note are conditions on which the phenomenon, in a given
case, depends. In such cages we modify or supgress one of the
circumstances, and observe the effect on the phenomenon. If we
find a corresponding modification or failure with respect to the
phenomenon, we conclude that the circumstance, so modified, is a
condition, We may proceed in the same way with each of the
remaining circumstances, leaving all unchanged except the single
one purposely modified at each trial, and always observing the
effect of the modification. We thus determine the conditions on
which the phenomenon depends. In other words, we bring ez-
periment to our aid in distinguishing between the real conditions
on which a phenomenon depends, and the merely accidental cir-
cumstances which may attend it.

But this is not the only use of experiment. By its aid we may
frequently modify some of the conditions, known to be conditions,
in such ways that the phenomenon is not arrested, but so altered
in the rate with which its details pass before us that they may be
easily observed. Experiment also often leads to new phenomena,
and to a knowledge of activities before unobserved. Indeed, by
far the greater part of our knowledge of natural phenomena has
been acquired by means of experiment. To be of value, experi-
ments must be conducted with system, and so as to trace out the
whole course of the phenomenon.

Havipg acquired our facts by observation and experiment, we






4 ’ ELEMENTARY PHYSICS. [§4

attempt to change that state. This property is called inertia. It
must be carefully distinguished from inactivity.

Another essential property of matter is tmpenetrability, or the
property of occupying space to the exclusion of other matter.

We are almost constantly obliged, in physical science, to measure
the quantities with which we deal. We measure a quantity when
we compare it with some standard of the same kind. A simple
number expresses the result of the comparison.

If we adopt arbitrary units of length, time, and mass (or
quantity of matter), we can express the measure of all other quan-
tities in terms of these so-called fundamental units. A unit of
any other quantity, thus expressed, is called a derived unit.

It is convenient, in defining the measure of derived units, to
speak of the ratio between, or the product of, two dissimilar
quantities, such as space and time. This must always be under-
stood to mean the ratio between, or the product of, the numbers
expressing those quantities in the fundamental units. The result
of taking such a ratio or product of two dissimilar quantities is a
pumber expressing a third quantity in terms of a derived unit.

4. Unit of Length.—The wunit of lengtk usually adopted in
scientific work is the cenfimefre. It is the one hundredth part of
the length of a certain piece of platinum, declared to be a standard
by legislative act, and preserved in the archives of France. This
standard, called the metre, was designed to be equal in length to
one ten-millionth of the earth’s quadrant.

The operation of comparing a length with the standard is often
difficult of direct accomplishment. This may arise from the
minuteness of the object or distance to be measured, from the dis-
tant point at which the measurement is to end being inaccessible,
or from the difficulty of accurately dividing our standard into very
small fractional parts. In all such cases we have recourse to in-
direct methods, by which the difficulties are more or less com-
pletely obviated.

The vernier enables us to estimate small fractions of the unit
of length with great convenience and accuracy. It consists of an
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from 0 on the divided circle to the whole number into which it is
divided.

The cathetometer is used for measuring differences of level.
A graduated scale is cut on an upright
bar, which can turn about a vertical
axis. Over this bar slide two accu-
rately fitting pieces, one of which can
be clamped to the bar at any point,
and serve as the fixed bearing of a
micrometer screw. The screw runs
in a nut in the second piece, which
has a vernier attached, and carries
a horizontal telescope furnished with
cross-hairs.  The telescope having
been made accurately horizontal by
means of a delicate level, the cross-
hairs are made to cover one of the two
points, the difference of level between
which is sought, and the reading npon
the scale is taken; the fixed piece is

then uanclamped, and the telescope
~ raised or lowered until the second

point is covered by the cross-hairs,
and the scale reading is again taken. The difference of scale
reading is the difference of level sought.

The dividing engine may be used for dividing scales or for
comparing lengths. In its usual form it consists essentially of a
long micrometer screw, carrying a table, which slides, with a motion
accurately parallel with itself, along fixed guides, resting on'a firm
support. To this table is fixed an apparatus for making successive
cuts upon the object to be graduated.

The object to be graduated is fastened to the fixed support.
The table is carried along through any required distance deter-
mined by the motion of the screw, and the cuts can be thus made
at the proper intervals.

Fie. 2.
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readings and the known length of the side of the triangle formed
by the points of the tripod.

5. Unit of Time.—The unit of fime is the mean fime second,

which is the zzigy of a mean solar

] day. We employ the clock, regulated

; by the pendulum or the chronometer

Weeniea="Fd  balance, to indicate seconds. The
.
L

clock, while sufficiently accurate for
ordinary use, must for exact investiga-

2 ‘-—i tions be frequently corrected by as-

i‘

(G<

tronomical observations,

Smaller intervals of time than the
second are measured by causing some
vibrating body, as a tuning-fork, to
trace its path along some suitable sur-
face, on which also are recorded the beginning and end of the in-
terval of time to be measured. The number of vibrations traced
while the event is occurring determines its duration in known
parts of a second.

In estimating the duration of certain phenomena giving rise to
light, the revolving mirror may be employed. By its use, with
proper accessories, intervals as small as forty billionths of a second
have been estimated.

6. Unit of Mass.—The unit of mass usually adopted in scien-
tific work is the gram. It is equal to the one-thousandth part of
a certain piece of platinum, called the kilogram, preserved as a
standard in the archives of France. This standard was intended
to be equal in mass to one cubic decimetre of water at its greatest
density.

Masses are compared by means of the dalance, the construction
of which will be discussed hereafter.

7. Measurement of Angles.—Angles are usually measured by
reference to a divided circle graduated on the system of division
upon which the ordinary trigonometrical tables are based. A
pointer or an arm turns about the centre of the circle, and the

it

Fia. 4.






MECHANICS.

CHAPTER 1.
MECHANICS OF MASSES.

10. It is an obvious fact of Nature that material bodies move
from one place to another, and that their motions are effected at
different rates and in different manners. Continued experience
has shown that these motions are independent of many of the
characteristics of the bodies ; they depend on the arrangement and
condition of surrounding bodies, and on the fundamental prop-
erty of matter, called inertia. The science of Mechanics treats of
the motions here referred to, and in a wider sense of those phe-
nomena presented by bodies which depend more or less directly
upon their masses. .

The general subject of Mechanics is usually divided, in ex-
tended treatises, into two topics,—Kinematics and Dynamics. In
the first are developed, by purely mathematical methods, the laws
of motion considered in the abstract, independent of any causes
producing it, and of any substance in which it inheres ; in the
second these mathematical relations are extended and applied, by
the aid of a few inductions drawn from universal experience, to
the explanation of the motions of bodies, and the discussion of the
interactions which are the occasion of those motions.

For convenience, the subject of Dynamics is further divided
into Statics, which treats of forces as maintaining bodies in
equilibrium and at rest, and Kuinefics, which treats of forces as
setting bodies in motion.

10
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displacements are combined as if they were successive displace-
ments. Representing them both by straight lines, of which the
length measures the amount of the displacement, and the direction
the direction of the displacement (Fig. 5), we apply the initial point
of the second of these lines to the final point of the first and join the
initial point of the first to the final point of the second. The line
thus drawn is the resultant of the simultaneous displacements.
The two displacements of which the resultant is thus obtained are
called the components.

18. Vector Addition and Subtraction.—Any concept which is
completely described when its magnitude and direction are given
is called a vector. The sum of two vectors is the vector equivalent
to them both. 1t is obtained by the rule just given for the compo-
sition of two displacements, or by the following equivalent rule:
Draw from any point the two straight lines which represent the
vectors, and upon them construct a parallelogram; the diagonal of
this parallelogram, drawn from the point of origin, is the resultant

‘ector or the vector sum. Thus OC (Fig. 5) is the resultant of
OA and OB. This construction is called
the parallelogram construction or the par-

1 allelogram law. If more than two vectors

are to be added, the resultant of two of
o s them may be added to the third, the
Fia. 5. resultant thus obtained to the fourth, and
so on until all the vectors have been combined. This addition
is more easily made by drawing the vectors in succession, so that
they form the sides of a polygon (Fig. 6), the initial point of
each vector coinciding with the final point of the one preceding
it. In general thiz poiyger is not closed, and the line required
to close it, drawn from the initial point of the first vector to
the final point of the last, is the sum of the vectors. This con-
struction is called the polygon construction or the polygon law.

The difference of two vectors is the vector which added to one
of the two will give the other. It is obtained by drawing from a
given point the lines representing the vectors, and drawing a line

A (¢]
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The composition of vectors is often conveniently effected by re-
golving them in this way along the three coordinate axes; their
components along each of these axes may then be added algebra-
ically, and the vector obtained by combining the three sums is the
required resultant vector. Thus if the vectors B, R,... R, be
given, making angles with the z, y, z-axes of which the cosines
are A, A ... Ay, My, My oo May ¥y, V... Y, Tespectively, the sums
of the components of these vectors along the axes are

X= RIAI+RIA! + s + -Rnhn;
R Y=Rpu+RB.pu,+...4+ Rop,; § (1)
Z=Rv,+Ryv,4+...+ R,V
Y / The resultant vector is
: R=VT T 7 F7,
. 0 X and its direction cosines are
XY Z
Fie. 7. R, R, R,
respectively.

When ounly two vectors are given, they may be resolved along
two axes in the plane of the vectors. In this case, if the angles
made by the vectors B,, B, with the z-axis be ¢, 6, respectively,
(Fig. 7,) the component sums are

X =R, cos ¢ + R, cos 0,;_ @)
Y = R, sin ¢ + R, sin 6.

The resultant vector is B = ¥ X° + Y*, and the angle % which it
makes with the 2-axis is given by cos p = % or tan ¥ = %

15. Description of Motion.—If we observe a system of points ‘
in motion, we perceive not only the displacements of the points,
but also that these displacements are in some way connected
with the time required for their accomplishment. If we know the
law of this connection, we may describe the motion at any desired
instant, by the aid of certain derived concepts, which are now to be
studied.

If a variable quantity be a function of the tims, it is usual in
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The practical unit of velocity is the velocity of & point moving
uniformly through one centimetre in one second.

The dimensions of velocity are L7,

Velocity, which is fully defined when its magnitude and direc-
tion are given, is a vector quantity, and may be represented by a
straight line. Velocities may therefore be compounded and re-
solved by the rules already given for the composition and resolu-
tion of vectors.

17. Acceleration.—When the velocity of a point varies, either
by a change in its magnitude, or by a change in its direction, or by
changes in both, the rate of change is called the acceleration of the
point. Acceleration is either positive or negative, according as the
velocity increases or diminishes. If the path of the point be a
straight line, and if equal changes in velocity occur in equal
times, its acceleration is constanf. It is measured by the ratio of
the change in velocity to the time during which that chauge oc-
curs. If v and v represent the velocities of the point at the in-
stants 7, and 7, then its acceleration is represented by

=t )

If the path of the point be curved, or if the changes in velocity
in equal times be not equal, the acceleration is wvariable. A
A e variable acceleration in a curved path may
always be resolved into two components,
one of which is tangent and the other nor-
mal to the path. We will consider the case

in which the path lies in a plane.

Let 4 and B (Fig. 8) be two points in
the path very near each other, from which
normals are drawn on the concave side of

g the curve, meeting at the point O, and

J Pm Rmaking with each other the angle a. In
Fie. S. the limit, as a vanishes, the lines 04 and

OB become equal and are radii of curvature of the path at the
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direction are given. It is therefore a vector quantity and may be
represented by a straight line. Two or more accelerations may be
compounded by the rules for the composition of vectors.

18. Angular Velocity and Acceleration.—The angle contained
by the line passing through two points, one of which is in motion
in a plane, and any assumed line, in that plane, which passes through
the fixed point, will, in general, vary. The rate of its change is
called the angular velocity of the moving point. If ¢ and ¢, rep-
resent the angles made by the moving line with the fixed line at the
instants ¢ and ?,, then the angular velocity, if constant, is meas-
ured by

¢ — 9,
=T Y
If variable, it is measured by the limit of the same expression,
g;—p- = -¢t—:7¢°, as the interval ¢ — #, becomes indefinitely small.

‘ The angular acceleration is the rate of change of angular
velocity. If constant, it is measured by

@ — @,

T=3¢° {8)

a =

If variable, it is measured by the limit of the same expression,
d®w & — ®,
a - t=4t,

If the radian be taken as the unit of angle, the dimensions of
angle become [ﬁ%ﬂ] = '% = 1. Hence the dimensions of
angular velocity are 7"~’, and of angular acceleration 7"-*.

If any point be revolving about a fixed point as a centre, its
velocity in the circle is equal to the product of its angular velocity
and the length of the radius of the circle.

19. Linear Motion with Constant Acceleration.— The space
8 — 8, traversed by a point moving with a constant acceleration a,
during a time ¢ — ¢, , is determined by considering that, since the

as the interval ¢ — ¢, becomes indefinitely small.

acceleration is constant, the average velocity Y _2|_ % for the time
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point move in a circle its velocity is equal to the product of its
angular velocity and the radius of the circle; its acceleration in
the circle is equal to the product of its angular acceleration and
the radius of the circle. If its angular acceleration be constant,
the relations between the distance traversed by it in the circle,
its velocity, its acceleration in the circle and the time are the
same a8 those expressed in equations (9), (9a), (10). Substituting
for these quantities their equivalents in terms of the angular
magnitudes involved, we obtain the following relations among these
angular magnitudes:

$—p.=2F 2@ _1); 1)
¢ - ¢o = mo(t - to) + *a(t - t,)’; . (12)
@' = ! + 2a(p — &,). (13)

If the line describing the angle start from rest, @, = 0, and if we
take the line in this position as the initial line from which to
reckon ¢, and the time of starting as the origin of time, then
¢,=0,¢, =0, and equations (8), (12), (13), become ® = af,
¢ = $at’, and @' = 2a¢.

21. Simple Harmonic Motion —If a point move in a circle with a
constant velocity, the point of intersection of a diameter and a per-
pendicular drawn from the moving point to this diameter will have
a stmple harmonic motion. Its velocity at any instant will be the
projection of the velocity of the point moving in the circle at
that instant upon the diameter. The radius of the circle is the
amplitude of the motion. The period is the time between any two
successive recurrences of a particular condition of the moving
point. The position of a point executing a simple harmonic
motion can be expressed in terms of the interval of time which
has elapsed since the point last passed through the middle of its
path in the positive direction. This interval of time, when
expressed as a fraction of the period, is the pkase.

We further define rotation in the positive direction as that rota-
tion in the circle which is contrary to the motion of the hands of
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a clock, or counter-clockwise. Motion from left to right in the
diameter is also considered positive.

Displacement to the right of the X

centre is positive, and to the left

negative. \2
1f a point start from X (Fig. 10), /\

the , position of greatest positive ¥ 5 z’ é X

elongation, with a simple harmonic

motion, its distance ¢ from O or its

displacement at the end of the time

¢, during which the point in the

circle has moved through the arc e, 1;.

BX,is 0C = OB cos ¢. Now, OB
is equal to OX, the amplitude, represented by a. If @ represent
the angular velocity of the moving point, we have ¢ = @/. Hence
we have

8 = a cos &, (14)

To find the velocity at the point C, we must resolve the velocity
of the point moving in the circle into its components parallel to
the axes. The component at the point C along OX is Vsin ¢;
or, since V = wa,

¥ = — wa sin o, (15)

remembering that motion from right to left is considered negative.
The acceleration at the point C is the component along OX of

the acceleration of the point moving in the circle. The accelera-
. .

tion of Bis — —I;—, the minus sign being given because this accel-

eration is directed opposite to the positive direction of the radius.
The component at C along 0.X is

£
f=—£a-cosmtorf=—m’acosmt=—w’a. (16)

This formula shows that the acceleration in & simple harmonic



22 ELEMENTARY PHYSICS. [§21

motion is proportional to the displacement, and that acceleration
to the right of O is negative, to the left of O positive.

In these formulas the angular velocity @ may be replaced by an
equivalent factor involving the period 7. For, the line drawn
from O to the point moving in the circle sweeps out the angle 2#

in the time 7, so that @ = —27”

It is often convenient to reckon time from some other posi.tion
than that of greatest positive elongation. In that case the time
required for the moving point to reach its greatest positive elonga-
tion from that position, or the angle described by the correspond-
ing point in the circumference in that time, is called the epock of
the new starting-point. In determining the epoch, it is necessary
to consider, not only the position, but the direction of motion, of
the moving point at the instant from which time is reckoned.
Thus, if L, corresponding to K in the circumference, be taken as
the starting-point, the epoch is the time required to describe the
path LX. But if L correspond to the point X’ in the circumfer-
ence, the motion in the diameter is negative, and the epoch is the
time required for the moving-point to go from L through O to X”
and back to X.

The epochs in the two cases, expressed in angle, are, in the
first, the angle measured by the arc KX ; and, in the second, the
angle measured by the arc K’ X’ KX,

Choosing K in the circle, or L in the diameter, as the point
from which time is to be reckoned, the angle ¢ equals angle XOB
— angle KOX, or &t — €, where ¢ is now the time required for
the moving point to describe the arc KB, and € is the epoch, or
the angle KOX.

The formulas then become

8 = acos (@t — €);
¥ = — wa sin (&f — €);

J = — w'acos (wt — €);

(SRS
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and are in the same line. Let their displacements be represented
by s = a cos w?, and 8’ = a cos(wt — €).

The resultant displacement is the sum of the displacements due
to each; hence

8 + 8’ = a[cos @t + cos(wt — €)],

= a[cos @t 4 cos wi cos € + sin @t sin €,

= a[cos @? (1 4+ cos €) + sin @t sin €].
If for brevity we assume a value 4 and an angle ¢ such that
A cos @ =a(l + cos €), and 4 sin ¢» = asin €, we may represent the
last value of s 4 s’ by A cos(w’ — ¢). From the two equations
containing 4, we obtain, by adding the squares of the values of
A sin ¢ and 4 cos ¢, A = (2a* + 2a’ cos €)t; and, by dividing the
value of A4 sin ¢ by that of 4 cos ¢, we obtain ¢ = tan—? 1——_:_“2; p
The displacement thus becomes

848 = a(2 + 2 cos €)t cos (mt — tan-1 22 € )

14cose/ an

This equation is of great value in the discussion of problems in
optics.

The principle suggested by the result of the above discussion,
that the resultant of the composition of two simple harmonic
motions is a periodic motion of which the elements depend on
those of the components, can be easily seen to hold generally.

A very important theorem, of which this principle is the con-
verse, was given by Fourier. It may be stated as follows: Any
complex periodic function may be resolved into a number of simple
harmonic functions of which the periods are commensurable with
that of the original function.

22. Force. —When we lift or sustain a weight, stretch a spring,
or throw a ball, we are conscious of a muscular effort which we
designate as a force. Since no change can be perceived in the
weight if it be suspended from a cord, or in the spring if it be held
stretched by being fastened to a hook, and since the ball moves in
just the same way if it be projected from a gun, we conclude that
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can impart to a gram of matter one unit of acceleration; that is to
say, one unit of velocity in one second.

23. Impulse.—The product F(¢ — ¢,) is called the impulse. If
the force which acts upon the body vary during the time, the im-
pulse is determined by dividing the time into intervals so small
that the force which acts during any one of them may be consid-
ered constant, forming the product #(¢ — ¢,) for each interval, and
adding those products.

24. Momentum.—The product mv is called the momentum of
the body. It is sometimes defined as the quantity of motion of the
body; in Newton’s laws, which follow, the word “motion” is
equivalent to momentum, when it designates a measurable quan-
tity.

25. Laws of Motion.—The relation between force and accele-
ration, which is embodied in the formula # = ma, was first per-
ceived by Galileo, and illustrated by him by the laws of falling
bodies. This relation may be expressed otherwise by the state-
ment that the effect of a force on a body is independent of the
motion of the body. Newton, who first formulated the funda-
mental facts of motion in such a form that they can be made the
bagis of a science of Mechanics, extended (alileo’s principle by
recognizing that when several forces act on a body at once the
effect of each is independent of the others. Newton’s Laws of
Motion, in which the fundamental facts of motion are stated, are
as follows:

Law I.—Every body continues in its state of rest or of uni-
rorm motion in a straight line, except in so far as it may be com-
pelled by external forces to change that state.

Law II.—Change of motion is proportional to the external
foree applied, and takes place in the direction of the straight line
in which the force acts.

Law III.—To every action there is always an equal and con-
trary reaction; or, the mutual actions of any two bodies are
always equal and oppositely directed.

These laws cannot be applied, without some limitations or modi-
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further statement that more than one force can act on a body at
the same time, leads directly to a most important deduction re-
specting the combination of forces ; for the parallelogram law for
the resolution and composition of velocities being proved, and
forces being proportional to and in the same direction as the
velocities which they cause in any given body, it follows, if any
number of forces acting simultaneously on a body be represented
in direction and amount by lines, that their resultant can be
found by the same parallelogram construction as that which serves
to find the resultant velocity. This construction is called the
parallelogram of forces.

In case the resultant of the forces acting on a body be zero, the
body is said to be in equilibrium.

(3) When two bodies interact so as to produce, or tend to pro-
duce, motion, their mutual action is called a sfress. If one body
be conceived as acting, and the other as being acted on, the stress,
regarded as tending to produce motion in the body acted on, is a
force. The third law states that all interaction of bodies is of the
nature of stress, and that the two forces constituting the stress arn
equal and oppositely directed.

27. Constrained Motion.—One of the most interesting appli-
cations of the third law is to the case of constrained motion.
If the motion of a particle be restricted by the requirement
that the particle shall move in a particular path, it is said to
be constrained., If the velocity of the particle at a point in the

path, at which the radius of curvature is r, be v, its acceleration
3

toward the centre of curvature is :’7, and the force which must act

2
on it in that direction is "% However this force is applied,

whether by a pull toward the centre or by a push or pressure from
the body determining the path, or by the action of the forces
which bind the particle to others moving near it, the reaction of

the particle will in every case be equal to mTv, and will be directed
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equations thus obtained, we obtain for this general case the same
result as that already obtained for the special case. The forces
introduced by constraints need not be considered, since they are
always perpendicular to the path, and so do no work.

When several forces act at a point, the work done by them
during any small displacement of the point is equal to the work
done by their resultant; for the sum of the projections of all the
forces on the line of direction of the resultant is equal to the
resultant, and the sum of the projections of each of these projec-
tions upon the direction of motion or the projection of the result-
ant upon the direction of motion is equal to the sum of the pro-
jections of each force upon the direction of motion. If, then,
several forces do work on a particle, the kinetic energy gained by
the particle will be equal to Rs cos @, where R is the resultant of
the forces, and « the angle between its direction and the direction
of the displacement s. Let us suppose that the forces are so related
that =0. Then the work done by one of the forces must be
equal and opposite to that done by the others, the particle will
move with a constant velocity, and no kinetic energy will be
gained. If any of the forces against which work is done are such
that they depend only upon the position of the particle in the
field, the work that is done against these forces is equal to that
which is done by them if the particle traverse the path in the
opposite direction. Such forces are called conservative forces.
Other forces, which are not functions of the position of the par-
ticle only, but depend on its motion or some other property, are
called non-conservative forces. When a particle acted on by con-
servative forces is so displaced that work is done against those
forces, it is said to have acquired pofential energy. The measure
of the potential energy acquired is the work done against the
conservative forces.

Energy is frequently defined as the capacity for doing work.
The propriety of this definition is obvious in the case of potential
energy; for the particle, acted on by conservative forces, and left
free, will move under the action of these forces, and they will
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The density is then defined as the ratio of the mass of the body to
its volume, or as the mass contained in a unit of volume. By sup-
posing the mass of the body uniformly distributed throughout its
volume, so that the ratio of mass to volume has the same value no
matter how small the volume is, we may represent the mass con-
tained in any infinitesimal volume by the product of the density
and the volume., The concept of density used in this way is an
artificial one, and the validity of the results obtained by it is due
to the fact that the particles constituting a body are so small that
their distribution is practically uniform in a homogeneous body in
any yolume which can be examined by experiment.

The formula for density is D =%, and the dimensions are

[D] = ML The unit of density is the density of a homogeneous
body so constituted that' unit of mass is contained in unit of
volume.

By using the hypothesis of a continuous distribution of matter
in a body, we may define the density at & point in a body which is
not homogeneous as the ratio of the mass contained in a sphere
described about that point as centre to the volume of the sphere,
when that volume is diminished indefinitely.

30. Centre of Mass.—The centre of mass of two particles is
defined as the point which divides.the straight line joining the
particles into two segments, the lengths of which are inversely pro-
portional to the masses of the particles at their extremities.

Thus if 4 and B be the positions of the two particles of which
the masses are m, and m, respectively, then the point C, lying on
the line joining 4 and B, is the centre of mass if it divide 4B so
that m,. AC =m,. BC.

The centre of mass of more than two particles is found by find-
ing the centre of mass of two of them, supposing & mass equal to
their sum placed at that centre, finding the centre of mass of this
ideal particle and a third particle, and proceeding in a similar way
until all the particles of the system have been brought into com-
bination. The final centre thus found is the centre of mass of the
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£E-& _ sm(z—z,) .
T—g, Sm=2 g
n—n< _ m(y_ yo) .
—1, zm - t—' to ) (22)
£-¢ _ sm(z—2,)
=3, Sm=2—g,

The terms on the right are the components of momentum of the
separate particles, and the equations express the law that the veloc-
ity of the centre of mass of a system of particles is equal to the
resultant of the momenta of the separate particles divided by the
sum of all the masges of the system.

Representing the component velocities of the centre of mass by
U, V, W, and those of the separate particles by u, v, w, the rule
just given may be expressed by UZm = Zmu, VZm = Smv,
W2m = Smw.

If the velocities of some or all of the particles vary, the velocity
of the centre of mass will in general vary also. Its acceleration
depends upon the accelerations of the separate particles. Letting
U and U,, etc., represent the component velocities at the times
t and ¢,, we may express the component accelerations of the centre
of mass by

-0, _ mu—u,),
t—'to Zm_z—t_—to,
V-7, _smv—1v,)
W—W, _ sm(w—w,)
= Em_.Z—t_—t.———.

The terms on the right represent the components of the forces
which act on each particle of the system, and the equations express
the law that the acceleration of the centre of mass of a system of
particles is equal to the resultant of all the forces which act on the
separate particles divided by the sum of the masses of the particles.
This law may be otherwise expressed by saying that theacceleration
of the centre of mass is the same as that which would be given to
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sions for m,v* + Impp, ..., dmw. + mw,’ ... ve formed in a
similar manner, and added to the expression just obtained, we have
on the left the sum of the kinetic energies of the particles, and on
the right the expression

l‘( U’ + V‘ + W) Z'm + i”nl (al’ + bn’ +0;’) +%mi(al’ + b!’+ 0:) + e

The first of these terms expresses the kinetic energy of a mass
equal to the sum of all the masses moving with the velocity of the
centre of mass. The other terms express the kinetic energies of
the separate particles moving with their velocities relative to the
centre of mass. We therefore arrive at the following rule: The
kinetic energy of a system of particles is equal to the kinetic energy
of a mass equal to the sum of all the masses moving with the velocity
of the centre of mass, plus the kinetic energies of the separate
masses moving with their velocities relative to the centre of mass.
32. Work done by Forccs on a System of Particles. Potential
Energy.—The forces which act on the particles of a system may
be classified as external and infernal forces. The external forces
arise from the action of bodies outside the system, the internal
forces from action between parts of the system. If the resultant
of all the forces which act on any one particle be considered as the
force which acts on that particle, the particle will acquire kinetic
energy, given by the formula Fs = {mv* — {mv ’, already estab-
lished (§ 28). If, however, we consider the resultant of the ex-
ternal forces acting on the particle as producing kinetic energy
and doing work against the internal forces which act on the parti-
cle, the work done by the former will be equal to the kinetic en-
ergy gained by the particle plus the work done against the latter.
If the internal forces be conservative, the work done against them
can be recovered when the external forces cease to act. The action
of the external forces in that case gives to each particle potential
energy. In case the external forces equilibrate the internal forces
for each particle, the velocities of the particles remain constant, no
kinetic energy is gained, and the energy given to the system by
the work done is wholly potential. In any case the energy gained
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certain limitations assumed for the system, we are able fully to de-
scribe its motions. The first of these is that of a pair of bodies
which act on each other with a force, the direction of which is in
the line joining the bodies. This case, known as the problem of
two bodies, may be completely solved. The problem of three bodies
can be solved only approximately, under certain limitations as to
the relative magnitudes of the bodies. The second case is that in
which the system forms a rigid body. While no truly rigid bodies
exist in Nature, yet the changes of shape which most solids under-
go under the action of ordinary forces are so slight in comparison
with their'dimensions that in many cases we may consider such
solids as rigid, and illustrate the theorems relating to rigid bodies
by experiments made upon solids. We shall first examine the mo-
tion of rigid bodies, and we shall limit ourselves to the case in
which the motions of any one particle of the body always take
place in one plane. By thus restricting the problem, it is possible
to obtain the most essential facts connected with the motions of
rigid bodies without the use of advanced mathematical methods.
35. Impact.—The changes in motion impressed upon bodies by
their impact with others depend upon so many conditions that they
present complications which render the discussion of them impossi-
ble in this book. We will consider, however, the simple case of the
impact of two spheres, the centres of which are moving in the same
straight line. We call the masses of the two spheres m, and m,
and their respective velocities %, and #,. The two spheres consti-
tute a system for which the velocity of the centre of mass is given by

(m1 + m:) V = mlul + mnui' (25)

The bodies on impact are momentarily distorted, and a. force
arises between them tending to separate them, the magnitude of
which depends upon the elasticity of the bodies. The velocity of
the centre of mass will remain uniform, whatever be the forces act-
ing between the bodies, and the momenta of the two bodies relative
to the centre of mass, both before and after impact, will be equal
and opposite. Call the velocities of the bodies after impact v, and
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the collision. These extreme values of ¢ are never exhibited by
real bodies, though the value ¢ = 0 may be closely approached in
many instances. No body has a value of ¢ that is even appreciably
equal to 1, so that there is always a loss of kinetic energy by im-
pact. The energy thus lost is transformed into other forms of
energy, principally into heat.

36. Displacement of a Rigid Body.—Under the limitation that
we have set, that the points of the body shall move only in parallel
planes, it is manifest that the motion of the body is completely given
if the motion of its section by any one plane be given. In describ-
ing the displacement of a body under these limitations we need
only describe the displacement of one of its sections by one of the
planes in which the motion occurs. It is furthermore clear that
the motion of this section will be completely described if the
motion of any two points in it or of the line joining them be given.

When a body is so displaced that each point in it moves in a
straight line through the same distance, its displacement is called a
translation. When the points of the body describe arcs of circles
which have a common centre, its displacement is called a rofation.
Any displacement of a body may be effected by a translation com-
' bined with a rotation. To show this, let -

AB (Fig. 11) represent the initial posi-
tion of a line in the body, A4’ B’ its final
position. The transfer from the initial
to the final position may be effected
by & translation of the line 4B to such
a position that the point C, which may
, be any point in the body, coincides
A A A with the corresponding point C'.
Fie. 11. Taking this point C’ as the centre, a
rotation through an angle 6, which is the same whatever point be
chosen for C, will bring the line into its final position. While the
angle of rotation is the same whatever point be chosen for C, the
translation which brings C into coincidence with ¢” will differ for
different positions of C.
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through the centre of mass. The kinetic energy of the body rotat-
ing about this centre is %”Eml', and the kinetic emergy of the

whole body moving with the velocity of the centre of mass is
}@’'R*’Zm. By § 31 we have

@’ Smr* = @' R’ Sm + e’ Sml’. (29)

When a rigid body is so small that its kinetic energy due
to its rotation about its centre of mass is negligible in com-
parison with that due to its translation, it is called a parficle. This
definition supplements that of § 25.

38. Moment of Inertia.—The expression Smr® is called the
moment of inertia of the body about the axis from which ~ is
measured. The formula just obtained shows that the moment of
inertia about any axis is equal to the moment of inertia about a
parallel axis passing through the centre of mass plus the moment of
inertia of a particle of which the mass is equal to the mass of the
body placed at the centre of mass.

. The moment of inertia depends entirely upon the magnitude of
the masses making up the body and their respective distances from
the axis. If the mass of the body be distributed so that each ele-
ment of volume contains a mass proportional to the volume of the
element, the moment of inertia then becomes a purely geometrical
magnitude, and may be found by integration.

It is evident that it is always possible to find a length %# such
that #'Sm = Smr". This length £ is called the radius of gyra-
tion of the body about its axis.

The moment of inertia of any body, however irregular in form
or density, may be found experimentally by the aid of another body
of which the moment of inertia can be computed from its dimensions.
We will anticipate the law of the pendulum—which has not been
proved—for the sake of clearness. The body of which the moment
of inertia is desired is set oscillating about an axis under the action

of a constant force. Its time of oscillation is, then, { = 7r1/}z,



§ 39] MECHANICS OF MASSES, 43

where I is the moment of inertia and f a constant depending on
the magnitude of the force.

If, now, another body, of which the moment of inertia can be cal-
culated, be joined with the first, the time of oscillation changes to

¢ =.7ri/ 1%1, where I’ is the moment. of inertia of the body

added. Combining the two equations, we obtain, as the value of

the moment of inertia desired,
t" —_— ti’

89. Rotation about a Fixed Point.—Suppose & body so condi-
tioned that its only motion is a rotation about the fixed point O
(Fig. 13). Suppose the force F applied at a point in the body, which
moves under the action of the force
through the infinitesimal distance

QR. This motion is a rotation about R z
the point O through the angle ?
_ 9B
¢ = 00’ The work done by the
force during this rotation is
= QE Fia. 13.
W=F. "k QR.
Since, in the limit, when QR and QS are infinitesimal, the triangles
cmilar, & _ OF
RS and OPQ are similar, 08 = 00’ and hence
- 9F _
W=F.OP. OQ—-F. OP. ¢.

The work thus done is equal to the kinetic energy gained by the
rotating body, or to §w'l, where I is the moment of inertia of the
body and @ the angular velocity which it gains during the motion.
Now @' = 2a¢, where a is the angular acceleration (§ 20), and
hence '
F.OP = Ia. (31)
The product F. OP, or the product of the force and the perpen-
dicular let fall from the axis of rotation upon the line of direction
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of the force, is called the moment of the force about that axis. Since,
if several forces act on the body, they each contribute their share to
the angular acceleration produced, we have also ZF . OP = Ia.

40. Principle of Moments.—If the angular velocity of the body
be constant, we have « = 0, and hence ZF. OP = 0. The body
is then said to be in equilibrium about the fixed axis. Hence a
body free to rotate about a fixed axis is in equilibrium if the sum of
the moments of the forces which tend to turn it in one sense is
equal to the sum of the moments of the forces which tend to turn
it in the opposite sense. This theorem is called the principle of
moments.

41. Principle of Work.—If the body rotate uniformly about a
fixed axis, it does not gain angular velocity, and we have @ = 0,
" and therefore SF.OP.¢$=0. Now OP. ¢ is the distance trav-
ersed by the point of application of the force, and this is propor-
tional to the velocity v with which that point of application moves.
Therefore 2Fs = 0, or 2ZFv = 0. The body is in equilibrium
about a fixed axis when the positive work done upon it by some of
the forces applied to it during any small displacement is equal to
the negative work done by the other forcesupon it. The expression

Fy = ft,f measures the rate at which work is done by the force, and

the condition of equilibrium may be otherwise stated by saying that
the rotating body is in equilibrium when the rate at which positive
work is done upon the body equals the rate at which negative work
is done upon it.

42. Couples.—A combination of two forces which are equal and
oppositely directed, but not in the same straight line, is called a
couple. The sum of their moments (Fig. 14)

% is #.0Q — F.OP = F. P, and is mani-
F ¢ festly the same wherever the forces are applied
in the body, provided the distance P @ remains

Fie. 14. the same. P@ is called the arm of the couple.

Since the effect of different forces in producing rotation is the same
if the sum of their moments is the same, it is also clear that the
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celeration of the centre of mass is given by ¥ = Ma, and the an-
gular acceleration about the centre of mass by ¥ . R = Ia, where
R is the distance from the centre of mass to the line of the force.
The actual acceleration of any point of the body about the centre
of mass, due to this angular acceleration, is az, where z is the dis-
tance of the point from the centre of mass. The total acceleration
of any point on the line of R i8 ¢ + az = 5 + gz, the
positive or negative sign being used according as the point lies in
R itself, or in its prolongation through the centre of mass, If
a — az = 0, the point considered is at rest. The condition that

the point is at rest is therefore ;—l — %: =0, or
1
T = FR. (32)

The movement of the body will, therefore, not be altered if a fixed
axis be passed through this point. If the body be considered as free
to rotate about this axis, the point of application of the force, which
is distant B 4 2z from the axis, and which is such that the force
there applied will occasion no stress on the axis, is called the centre

of percussion. We have

I I+ MR*
By § 38, ] + MR’ is the moment of inertia of the body about the
axis of rotation, so that the distance from the axis of rotation to the
centre of percussion is equal to the moment of inertia of the body
divided by MR. The product MR is sometimes called the static
moment.

45. Mechanical Powers.—There are certain simple cases of the
combination of forces in accordance with the foregoing principles
which are of especial importance because of their application in the
construction of machines. They are generally called the mechani-
cal powers.

They are all designed to enable us, by the application of a cer-
tain force at one point, to obtain at another point a force, in general
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wheel. From these facts the relation of the applied force to the
force obtained in any combination of pulleys is evident.

(3) The Inclined Plane is any frictionless surface, making an
angle with the line of direction of the force applied at a point upon
it. Resolving the force P (Fig. 17), making an angle ¢ with the
normal to the plane, into its components P cos ¢ and P sin ¢
perpendicular to and parallel with the plane, P sin ¢ is alone effect-
ive to produce motion. Consequently, a force P sin ¢ acting parallel
to the surface will balance a force P, making an angle ¢ with

the normal to the surface. If the plane
be taken as the hypothenuse of a right-
angled triangle ABC, of which the base
AB is perpendicular to the line of direction
B8 of the force, then, by similarity of triangles,
the angle BAC equals ¢: whenco the
force obtained parallel to AC is equal to the force applied mul-
tiplied by the sine of the angle of inclination of the plane. If the
components of the force applied be taken, the one, as before, per-
pendicular to the plane A4C, and the other parallel to the base 4B,
the force obtained parallel to 4B is equal to the force applied mul-
tiplied by the tangent of the angle of inclination of the plane.

(4) The Wheel and Azle is essentially a continuously acting lever.

(5) The Wedge is made up of two similar inclined planes set to-
gether, base to base.

(6) The Screw is a combination of the lever and the inclined
plane.

The special formulas expressing the relations of the force ap-
plied to the force obtained by the use of these combinations are
deduced from those for the more elementary mechanical powers.

Any arrangement of the mechanical powers, designed to do
work, is called a machine. The more nearly the value of the work
done approaches that of the energy expended, the more closely the
machine approaches perfection. The elasticity of the materials
we are compelled to employ, friction, and other causes which mod-

Fia. 17.
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the plane, is the same. If ¢ be the angle between the direction
of the force W and the normal to the surface of the plane, and s
the distance traversed by the weight, this condition is fulfilled
when Ps — Ws sin ¢ = 0. Hence the condition of equilibrium is
P =W sin ¢.

The principle of work is of special value in all such cases as
those illustrated by the combination of pulleys, in which, however
complicated the arrangement of the parts of the system which trans-
fer the action of the applied force or power to the point of applica-
tion of the other force, we know that the forces equivalent to the
reactions between those parts occur in pairs, of which the members
are equal and opposite, so that the work done during any displace-
ment of the system by each of these pairs is zero; for in any such
case equilibrium obtains when the work done by the one force equals
the work done by the other.

47. Motion of a Rigid Body in Three Dimensions.—The motion
of a rigid body which is not under the restriction hitherto imposed
upon it, but which is free to move in all directions, is in many re-
spects analogous to the motion already studied, though the details
are necessarily more complicated. We will attempt no demonstra-
tion of the laws of the motion of a rigid body in the general case,
but will limit ourselves to a short description of them,

Any displacement of a rigid body may always be replaced by a
translation and a rotation about some axis; this may readily be seen
by considering any simple example. By the use of an example, it
will also appear that the direction of the axis does not in general
coincide with the direction of the translation; it is, however, always
possible to find a direction such that translation in that direction
and rotation about an axis in that direction will produce the dis-
placement required. An infinitesimal displacement may be pro-
duced, therefore, by an infinitesimal translation and a rotation about
an axie in the direction of the translation, that is, by a motion re-
sembling that of a screw when driven forward. The axis of rotation
in this case, which will in general change its direction and position
in space as the body traverses its path, is called the instantaneous
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well illustrated by the instrument called the Foucault pendulum.
This pendulum is a heavy spherical bob suspended by a long
cylindrical wire, so clamped that it is perfectly free to swing
in any plane. If such a pendulum were set up at the equator
and started swinging in a north and south line, it would be car-
ried around by the earth in its rotation and would evidently con-
tinue to swing in the same line on the earth’s surface. If, on

AN the other hand, it were set up at the pole
and set swinging along any line traced on

c B the earth’s surface, the oscillations of the

° pendulum would persist in the same plane
£ in space, and the earth would turn around

under it, so that the oscillations of the
pendulum would immediately begin to
deviate from the line on the earth along
an.$18. which the first oscillation took place; and
if the oscillations were continued the ex-
tremities of the paths of the pendulum would describe the arc of a
circle, and at the end of a day the pendulum would again swing in
the line in which it started. If now the pendulum be swung at
some intermediate point on the earth’s surface the angular velocity
of the earth can be resolved into two component angular velocities—
one about the axis 04 (Fig. 18), which coincides with the length
of the pendulum when it is at rest, and the other about an axis OB
at right angles to this. The angular velocity about the latter axis
will have no effect on the line traced out by the swinging pendu-
lum; the angular velocity about the former axis will occasion an
apparent angular displacement. By the parallelogram law this
angular velocity equals @ sin ¢, where @ is the angular velocity of
the earth about its axis, and ¢ is the latitude. By experiments
with such a pendulum this formula is verified and the rotation of
the earth established by direct experiment, and by assuming the
validity of this formula and determining the angular displacement
of the pendulum an approximate value of the length of the day has
been obtained.
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velocity about the points 4, a,, and the axle of the wheel will re-
main horizontal.

Let Fig. 20 represent the rotating wheel of the former diagram,

the axis being Bupposed to be nearly horizontal. If a weight be

hung at the point ¢, it tends to turn the wheel about

a horizontal axis CD. The direction of motion of

the particles at 4 and B is not changed by this rota-

tion, but the particles at C and D, and to a less ex-

tent all the other particles on the rim of the wheel,

are forced to change their directions of motion. Now

it has been shown (§ 27) that the change in the direc-

tion of motion of a particle is equivalent to a force
2

Fia. 20. '_"rﬁ, where m is the mass of the particle, » its veloc-

ity, and ~ the radius of the circle in which it moves. The reaction
of the particle is directed outward along the normal to the curve;
in the case of the particles considered at C and D, this reaction is
directed to the right at C and to the left at . These two forces,
therefore, and all others like them due to the reactions of the other
particles, combine to form a couple which tends to rotate the wheel
about the axis 4B. This rotation about 4B gives rise to similar
reactions at 4 and B, the reaction at 4 being directed to the left
and at B to the right. These forces, and all other similar ones
arising from the other particles of the wheel, combine to form a
couple which tends to rotate the wheel about the axis CD in the
opposite sense to that in which it is rotated by the weight at e.
Thus the weight applied at ¢ will produce a rotation about the ver-
tical axis AB.

48. Central Forces.—We now turn to the consideration of the
motion of a particle acted upon by a force always directed toward
a fixed centre or a ceniral force. Its motion will exhibit one
peculiarity which is independent of the law of the central force.
The radius drawn from the centre to the particle will always sweep
out equal areas in equal times, whatever be the law of the force.

It is at once obvious that the motion of a particle, acted on by
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is in general an ellipse, with its centre at the centre of force.
For, the force acting along the radius vector may be resolved into
two components along the two axes, which will be proportional to
the displacement of the particle from the axes. Each of these
components will cause proportional accelerations along the axes,
and these accelerations will be those of a point having simple har-
monic motions parallel to the axes. Since the constants which
enter into the measure of the components of the force, and there-
fore into the measure of the accelerations produced by them, are
the same for each component, the periods of these component
simple harmonic motions will be the same. The motion of the
particle will therefore be the resultant of two simple harmonic mo-
tions of equal periods at right angles to each other, and its path is
therefore (§ 21) an ellipse, with its centre at the centre of force.
50. Central Force Proportional to the Inverse Square of the
BRadius Veotor.—If the central force vary inversely with the
square of the distance of the particle from the centre, the path
described by the particle is in general a conic section, with the
centre of force at one of its foci. To prove this we will use a theo-
rem that will be demonstrated in § 55. It will there be shown that
if a particle of mass 4 be moved from an infinite distance under

the action of a central force equal to g, where m is a constant and

r the distance between the particle and the centre, the potential
energy which it will lose by moving to a point distant » from the

centre is given by I%‘ Thus, if uP represent the potential energy

of the particle at an infinite distance, uP — %n will represent its

potential energy at the distance . The sum of its potential and

3
kinetic energies is constant; and hence uP — 'ir-m + "‘—2” = uAd,

a constant, or \
F—2=4-P=g, (34)

a constant. C may be greater or less than zero, or equal to zero.
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_ If p, be the perpendicular let fall upon the line of direction of
the moving particle at a chosen time when its velocity is »,, and if
p and v be the perpendicular and velocity at any other time, we

know from § 48 that (35) vp = v,p,. If we substitute v = 5}%’

3,2
in the above equation, we have 2"2%’— - 'g = C, or

$ o’Po’ r
r=- m+ Cr' - 36)

This equation takes different forms depending upon the value of
C. It becomes for .
%P T L)

$

C>00=%c"m

ctr
v,'p,} r

0<0,p' =20 | (37)

C
-— i_vo'.po’
0=0,p = T )

In these equations C has now a positive value. The first equation
represents an hyperbola, the second an ellipse, and the third
& parabola (Puckle’s Conic Sections, §§ 204, 271). The focus of
each of these conic sections is the point from which p and r are
measured, or the centre of force.

The criteria which determine the nature of the curve may be

otherwise given by g-’ > "72 for the hyperbola,;— <’$ for the el-

lipse, and ;—’- = ’—: for the parabola. That is, for the three curves

respectively, the velocity of the particle at a point in its path is
greater than, less than, or equal to the velocity which it would ac-
quire by falling to that point from an infinite distance under the
action of the central force.

The elements of the path may be obtained from these equa-

tions. The latus rectum of the parabola is % The semi-



58 ELEMENTARY PHYSICS. [§ 51

major axis @ and the semi-minor axis b of the hyperbola and e]lipse
V0, _ 4y, p,}

are given by 2a =’-n6, b= Yo B Hence C = __, and

2a
. . . . . . v m
using this value of C in the original equation, we get g =, % §?z’
the upper and lower signs holding for the hyperbola and ellipse
respectively.

*In case the particle is moving in an ellipse, its periodic time
T, or the time in which it traverses the ellipse, may be found in
terms of the elements of the ellipse and the constant m. The
area of the ellipse is 7ab, and since the areas swept out in equal

times by the radius vector drawn to the particle are equal, the rate

at which the area is swept out is given by ;,b. But v,,zp <

also rep.

resents this rate, so that 7%1) = .,p -2~ Substituting in this equa-

2,3
tion the value of b = v, p“(:z )‘ weget (38) T'= zai’ or,m = 47;,? .
1f, therefore, different particles revolve in ellipses about a common
centre of force in such a way that the squares of their periodic
times are in the same ratio to the cubes of their semi-major axes,
the constant m is the same for all of them.
51. The Problem of Two Bodies.—The problem of two bodies
may be reduced to the problem of the action of a central force.
For, suppose two particles to attract each other with a force given

by ":—’,n, where u and m are their masses and » the distance between
them. The acceleration of the particle m, relative to the centre of
mass, which will remain fixed in position, is given by ma = l:—’,n, or

by a = :—"; The acceleration of the mass u relative to the centre of

mass is similarly ;n’_ If now an acceleration equal to ;—‘, and oppo-

gite to it in direction be impressed on both particles, the particle
m will remain fixed, and the particle u will move relatively to it
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particle along the z-axis is v cos @. If the force of gravity did
not act on the particle its displacement along the y-axis in the
same time would be »f gin a; but, since gravity acts, its real dis-
placement along that axis is less than this by s = }¢¢*, where ¢ is
the measure of the force or the acceleration of gravity, so that its
displacement along the y-axis is vfsin @ — 3¢g¢*. The path of the
particle, or the series of points which it occupies at successive in-
stants, is found by eliminating ¢ between the two equations for the
two rectangular displacements. The equation of the path thus
obtained is

_ sina g . -
T cma’ Zrcwa’ (39)
This represents a parabola passing through the origin. The axis
3 2
is vertical, and the latus rectum is %c—ﬂ. If @ =0, or if the

2
projection is horizontal, the equation becomes z* = — 27”;1/, repre-

senting a parabola with its vertex at the origin.
When the body is projected above the horizontal plane, so that

a lies between zero and §’ it will attain its greatest height at the

instant when its velocity along the y-axis becomes zero, or when
vsin @ = gf. The time required for it to describe its whole path

2 i
CLLLS Trange,

and return to the z-axis is double this time or

or the distance between its starting-point and the point at which it

again meets the z-axis, is given by the product of this time and its
3 3
horizontal velocity v cos a, or isz— 2sinacosa =% sin 2a. The range

is therefore a maximum whén a = 45°, Since sin (7 — 2a) = sin 24,
the range is the same for projections at the angles @ and 90° — «.
or for projections equally inclined to the line bisecting the angle
between the axes and on opposite sides of it.

53. Difference of Potential. The Potential.—Forces may arise
from various causes. In any case they are only exhibited when
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any path to the point B. It is clear that if it be moved back over
the same path from B to 4 the amount of work required to effect
this motion will be equal and opposite to that done during the
motion from 4 to B. This equality will also hold if the test unit
be moved from B to 4 by any other path, provided the field of
force is one which is nowhere interrupted by a region in which
the force is not a function only of the position of the test unit, or
is, a8 it is called, a singly connected region. The fields of force
due to all forces known in Nature, except those caused by elec-
trical currents, are singly connected regions. When the forces
which act on the test unit at different points in its path are paral-
lel, as in the case of gravity, this equality of the work done in
carrying the test unit from one place to another over any path is
obvious. If we assume the principle of the conservation of energy
as a general principle, this equality may also be shown for fields in
which the forces are not parallel; for, if the work done in moving
the test unit over one path between 4 and B were not equal to
that done in moving it over any other path between the same
points, an endless supply of work could be obtained by repeatedly
moving the unit over a path in which the work done by the forces
of the field is greater, and returning it to its starting-point by mo-
tion over a path in which the work done is less. As this result is
inconsistent with the principle of the conservation of energy, we
conclude that the hypothesis from which it is deduced is untrue,
and that the same amount of work will be done in moving the
unit from the one point to the other, by whatever path the motion
is effected. The difference of potential between the two points is
therefore a function of their positions only.

54, Equipotential Surfaces and Lines of Force.—Let the test
unit be moved from O along the different paths 04, OB, etc.
(Fig. 22), so that the same amount of work is done upon it in eac).
of these paths. The surface drawn through the end points of
these paths is called an equipotential surface ; as may be seen from
the proposition just proved, it is a surface in which the test unit
may be moved without doing any work upon it. Since the forces
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P, the force acting on it is ~—;; after it has moved through the

OP”
infinitesimal distance PR, the force acting on it at R is _0%

The work done upon it during this motion, equal to the product
of the force and the line P@, the pro-
jection of its path upon the direction

PQ

of the force, is greater than AL 4

opP*
m. PQ,
and less than o0 it may be shown

that the work done during this dis-
placement may be represented by
Fia. 28. m.PQ - — =
OP — OR in the limit, so that the work done in this displacement

m(OP — OR) _ (-___i .
equals 0P 0 —™0r "0 P)' The work done in travers-

X

ing the following elements of the path, RS, ST, etc., is expressed by

1 1 1 ) . .
m(m—- DTZ) ( 0T~ 08/’ etc. The work done in traversing
the whole path from P to X is the sum of these expressions, or

m(OLX_ 511’) By the definition of difference of potential, this

expression is equal to the difference of potential between the points
P and X, due to the force of which the centre is 0. If the point
X lie at an infinite distance from O, the work done by the force in

moving the unit mass to that.point equals — 0—";, This expres-

sion is called the pofential at the point P. It has been obtained
on the supposition that the force at P is directed toward O, or is
an attractive force. In this case the test unit at an infinite dis-
tance possesses the potential energy Z. In moving to P the forces

of the field do upon it the work —07%,, so that its potential energy

at Pis B — OP



§ 56] MECHANICS OF MABSES, 65

If the force at P and at the other points on the path be
directed from O, the work done in the successive elements of the
path is numerically equal to the expressions already obtained, but
is opposite in sign; so that the work' dome by such forces, as the

. . 1 1
test unit moves from P to X, is equal to m((ﬁ) - —O—A;.). When
the point X is at an infinite distance from O, the work done in

m
‘O_Po
tial at the point P, due to a repulsive force with its centre at O.
In this case the test unit at an infinite distance has no potential

energy, so that 0%, expresges its potential energy at P.

56. Flux of Force. Tubes of Force.—Still retaining the con-
vention that the forces of the field are due to mass attraction and
follow the law of inverse squares, we will now prove certain pro-
Ppositions which are of great importance in the theories of gravita-
tion, electricity, and magnetism.

If in a field an area 8 be described so small that the force is
the same for all points of it, the product of the area and the normal
component of the force is called the elementary fluz of force over
or throngh that area. We will show that the total flux of force,
that is, the sum of all the elementary fluxes, taken over a closed
trface in the field which does not contain any masses is equal to
zero, ,

We consider first the flux of force arising from a mass m situated
at the point 0. Let ABC (Fig. 24) rep-
resent a closed surface not containing the
masg m; draw a tube of force cutting
this surface in the elements s and &’
The forces due to the mass m at points

moving the test unit from P to X equals This is the poten-

in these areas will be ~; and G- respec- Fia. 24.

tively. We represent the angles between the common direc-
tion of these forces and the normals to the elements s and s’
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drawn outward from the surface by a and &’ respectively.

The components of the forces :_Lf and 7—1’?—, drawn outward normal
, . m m , .

to the surfaces s and s’ are ,acosa and o COBa respectively.

Hence the flux of force through these elements is ;_’-iscosa—l-

[
m
o s’ cosa’. But scos « and — ¢’ cos a’ are equal to the normal

cross-sections of the tube of force at the distances » and #’ from O,
the minus sign being inserted because one of the two cosines is
negative; and since the tube of force is a cone,

scosa 8 cosa’

-
Hence the flux of force through these two elements, due to the
mass at the point O, is equal to zero. Since similar tubes of force
may be drawn from the point O so as to include all the elements
of the surface ABC, and since to each pair of elements thus de-
termined the same proposition applies, it follows that the total flux
of force due to the mass m through the surface is equal to zero.
The same proposition will hold for the flux of force due to any
other particle situated outside the surface, and therefore holds true
for any mass whatever sitnated outside the surface.

The flux of force through a closed surface containing any
number of particles is equal to 47M, where M is the mass of all
the particles. To prove this, let us consider a single particle m
sitnated at the point 0. About this point describe a sphere of

radius ». The force at each point of the sphere is :_L:, and the total
flux of force through the sphere is equal to this force multiplied
by the area of the sphere, or to ;1:.47”’ =4mm. Now to prove a

similar proposition for any closed surface enclosing the mass m, we
describe about the point O a sphere which is entirely enclosed by
the surface. Since the region enclosed between this sphere and
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minishes indefinitely. If we consider an infinitely extended plane
sheet, it is evident that the lines of force in the region near it are
perpendicular to its surface. Take any small area on the surface
of the sheet, and consider the closed surface bounded by the lines
of force which pass through the boundary of that area and by two
cross-sections taken parallel with the sheet on the opposite sides of
it. The flux of force through the sides of the surface thus.formed
is zero, because the lines of force lie in that surface. The only
portions of the surface, therefore, which contribute to the flux of
force, are the end cross-sections. Let s represent the area of each
of these cross-sections, which are equal, 7' the force at one of them,
and F” that at the other. If o represent the surface density of
the sheet, o's is the mass enclosed within the closed surface. Ap-
plying the theorem of the flux of force, we have (£ 4 F')s =
4mos or F+ F* = 4no. Remembering that the directions of
these forces are outward from the closed surface, and that therefore
+ Fand — F” are forces drawn in the same direction along the
lines of force, this equation shows that in passing through a sheet
of surface density o the force changes by 4wo. If the forces in
the field be due only to the sheet, it is manifest, from symmetry,
that the force # and the force #” are equal, and that their direc-
tions are oppositee. We thus have F+ F’'=2F = 4xzg, or
F =2mno. That is, the force at a point infinitely near a plane
sheet of surface density o is equal to 27o. This proposition holds,
even if the sheet be not plane, for any points so near it that the
neighboring lines of force are parallel.

The force within a closed spherical shell of uniform surface
density vanishes at every point. For, let us construct a sphere in
the region contained by the shell and concentric with it. Since no
matter.is contained by this sphere, the total flux of force through
its surface is zero, and since, by symmetry, the force at any point
on the inner sphere must have the same value and the same direc-
tion to or from the centre, it follows that 2 Fs = Fim»* = 0, and
hence that /' = 0. The force, therefore, vanishes for all points in
the interior of the shell. It manifestly vanishes also within a
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closed surface formed of concentric spherical shells, in each one of
which the surface density is uniform. '

The force at a point outside a spherical shell of uniform surface
density varies inversely with the square of the distance between that
point and the centre of the spherical shell. For, describe a sphere
concentric with the shell and of radius r, greater than the radius
of the shell. Applying to this-sphere the theorem of the flux of
force, we have ZFs = 4w M, where M is the mass of the spherical
shell. It is evident, by symmetry, that the force at every point on
the sphere to which this theorem is applied must be the same in
magnitude and similarly directed along the radius of the sphere.

The flux of force 2 F's therefore equals . 47r* = 47w M, or F = i_—l{

This theorem manifestly holds also for the force at a point outside
any mass bounded by a spherical surface, provided that the matter
in the sphere is distributed uniformly or in concentric shells, in
each one of which the surface density is uniform.



CHAPTER 1II.

MASS ATTRACTION.

58. Mass Attraction.—The law of mass atiraction was the first
generalization of modern science. It may be stated as follows:—

Between every two material particles in the universe there is a
stress, tending to move them toward each other, which varies
directly as the product of the masses of the particles, and inversely
as the square of the distance between them. This law is sometimes
called the law of universal attraction and sometimes the law of

gravitation.

Some of the ancient philosophers had a vague belief in the ex-
istence of an attraction between the particles of matter. This
hypothesis, however, with the knowledge which they possessed,
could not be proved. The geocentric theory of the planetary
system, which obtained almost universal acceptance, offered none
of those simple relations of the planetary motions upon which the
law was finally established. It was not until the heliocentric theory
of Copernicus had been established by the discoveries of Galileo,
and the labors of Kepler, that the discovery of the law became pos-
sible. ‘

In particular, the three laws of planetary motion published by
Kepler in 1609 and 1619 laid the foundation for Newton’s demon-
strations. The laws are as follows:—

1. The planets move in ellipses of which one focus is situated
at the sun.

I1. The radius vector drawn from the sun to the planet sweeps

out equal areas in equal times.
70
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proportional to the mass of the body, since all bodies have the same
acceleration. He further brought forward, as the most satisfac-
tory theory which he could form, the general statement that every
particle of matter attracts and is attracted by every other par-
ticle.

The experiments necessary for a complete verification of this
last statement were not carried out by Newton. They were per-
formed in 1798 by Cavendish. His apparatus consisted essentially
of a bar furnished at both ends with small leaden balls, suspended

“horizontally by a long fine wire, so that it turned freely in the
horizontal plane. Two large leaden balls were mounted on a
bar of the same length, which turned about a vertical axis coinci-
dent with the axis of rotation of the suspended bar. The large
balls, therefore, could be set and clamped at any angular distance
desired from the small balls. The whole arrangement was enclosed
in a room, to prevent all disturbance. The motion of the suspended
system was observed from without by means of a telescope. Neg-
lecting as unessential the special methods of observation employed,
it is sufficient to state that an attraction was observed between the
large and small balls, and was found to be in accordance with the
law as above stated.

59. Centre of Gravity.—The forces with which the earth at-
tracts the particles of an ordinary body are parallel and proportional
to the masses of the particles, so that the sum of their moments
about any axis passing through the centre of mass will vanish, be-
cause the corresponding sum of the products of the masses and
their respective distances from any plane containing that axis van-
ishes by the definition.of the centre of mass. Gravity will, there-
fore, have no tendency to produce rotation in a free body or sys-
tem of particles. It will cause a translation of the body, if it be
rigid, such as would be produced if a force equal to the sum of all
the forces acting on the particles were applied at the centre of
mass. This point of application of the force is called the centre of
gravity of the body. If the forces acting on the particles be not
parallel, the body will, in general, have no centre of gravity. Cer-
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from a rigid support, so that it can oscillate about its position
' of equilibrium.

In the simple, or mathematical, pendulum the bob is

assumed to be a material particle, and to be suspended by

a thread without weight. If the bob be stationary and

acted on by gravity alone, the line of the thread will be the

direction of the force. If the bob be withdrawn from the
g position of equilibrium (Fig. 25), it will be acted on by a
force at right angles to the thread, in a direction opposite
that of the displacement, expressed by g sin ¢, where ¢ 18
the angle between the perpendicular and the new position
of the thread.

The force acting upon the bob at any point in the circle of
which the thread is radius, if it be released and allowed to swing
in that circle, varies as the sine of the angle between the perpendic-
ular and the radius drawn to that point. If we make the oscillation
so small that the arc may be substituted for its sine without sensi-
ble error, the force acting on the bob varies as the displacement of
the bob from the point of equilibrium.

A body acted on by a force varying as the displacement of the
body from a fixed point will have a simple harmonic motion about
its position of equilibrium (§ 21).

Hence it follows that the oscillations of the pendulum are sym-
metrical about the position of equilibrinm. The bob will have an
amplitude on the one side of the vertical equal to that which it has
on the other, and the oscillation, once set up, will continue forever
unless modified by outside forces.

The importance of the pendulum as a means of determining the
value of ¢ consists in this: that,instead of observing the space
traversed by the bob in one second, we may observe the number of
oscillations made in any period of time, and determine the time of
one oscillation; from this, and the length of the pendulum, we can
calculate the value of g. The errors in the necessary observations
and measurements are very slight in comparison with those of any
other method.

Fi1a. 25.
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of oscillation is the same as that of the whole pendulum. Its dis-
tance from the point of suspension is the length sought.

In determinations of the value of g by observations upon the
time of oscillation of a pendulum, the length of the equivalent
simple pendulum may be found in either of two ways:

(1) The pendulum may be constructed in such a manner that
its moment of inertia and the position of its centre of gravity may
be calculated. From these data the required length is readily
obtained.

To show this, we consider any mass swinging as a pendulum
about a horizontal axis. The force which sets it in oscillation is
its weight Mg. The effect of this force in producing rotation
about the axis is given by MgRsin ¢ = Ia (§ 39), where [ is its
moment of inertia about that axis and R is the distance from the
axis to its centre of gravity. As in the case of the simple pendu-
lum, when the oscillations are infinitesimal, sin ¢ may be replaced
by ¢. Now ¢ and « represent the angular displacement and the
angular acceleration of any point of the pendulum, and the actual
displacement and acceleration are proportional to them; and since
the displacement and acceleration are proportional to each other,
every point in the pendulum has a simple harmonic motion of the
. same period. The actual acceleration of the centre of mass equals
Ra = —g‘;}—@ . R¢p. Now R¢ is the displacement of the centre of
mass, and therefore from the formula connecting acceleration and
displacement in simple harmonic motion, used in § 61, we obtain
%’; = }!qu Hence 7'= 2”‘/%1?4' Or, if we designate by ¢
the time of oscillation from one extremity of the arc to the other,

we have -
t=ny/_L . (42)

MRg
We may replace I by its equivalent I’ 4 MR’, where I’ is the
moment of inertia about an axis parallel to the axis of suspension
and passing through the centre of gravity. By comparison of this
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equation with the one giving the time of oscillation of a simple
pendulum, it appears that the length ! of the simple pendulum
which will oscillate in the same time as the physical pendulum, or,
a8 it is called, the length of the equivalent simple pendulum, is
given by
I _I'+MR
T MR~ MR
A line drawn parallel with the axis of suspension, through a point
at the distance / from that axis and on the line drawn through the
centre of gravity perpendicular to that axis, is called the azis of
osctllation. It evidently contains the centre of percussion (§ 44).

A pendulum consisting of a heavy spherical bob suspended by
a cylindrical wire was used by Borda in his determinations of the
value of g. The moment of inertia and the centre of gravity of
the system were easily calculated, and the length of the simple
pendulum to which the system was equivalent was thus obtained.

() We may determine the length of the equivalent simple
pendnlum directly by observation. The method depends upon the
principle that, if the axis of oscillation be taken as the axis of sus-
pension, the time of oscillation will not vary. The proof of this
principle is as follows :

Suppose the pendulum suspended so as to swing about the axis
‘l of oscillation as a new axis of suspension. The distance of

the axis of oscillation from the centre of gravity is ! — R,

"l and the length I’ of the equivalent simple pendulum, in
1'+ M(l — Ry I'+ MR*
iR Nowl=W—
[] or I'’=MR (I — R), and substituting this value in the
equation for [’ and reducing, we obtain ¥ = I. That is, the
length of the equivalent simple pendulum, and consequently
the time of oscillation when the pendulum swings about its
axis of suspension, is the same as that when it is reversed
O and swings about its former axis of oscillation.

l (43)

this case, is I’ =

A pendulum (Fig. 26) so constructed as to take advan-
tage of this principle was used by Kater in his determination
of the value of g; and this form is known, in consequence,
as Kater’s pendulum.

Fia. 26.
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63. The Balance.—The weights of bodies, and hence also their
masses, are compared by means of the balance.

To be of value, the balance must be accurate and sensitive; that
is, it must be in the position of equilibrium when the scale-pans
contain equal masses, and it must move out of that position on the
addition to the mass in one pan of a very small fraction of the
original load.

The balance consists essentially of a regularly formed beam,
poised at the middle point of its length upon knife-edges which
rest on agate planes. From each end of the beam is hung a scale-

[*]
A
Cilc,
Af B,
B
Fia. 27.

pan, in which the masses to be compared are placed. Let O
(Fig. 27) be the point of suspension of the beam; A4, 5, the points of
suspension of the scale-pans; C, the centre of gravity of the beam,
the weight of which is W. Represent 04 = OB by !, OC by d,
and the angle 04 B by a.

If the weight in the scale-pan at 4 be P, and that in the one
at B be P + p, where p is a small additional weight, the beam will
turn out of its original horizontal position, and assume a new one.
Let the angle COC”, throngh which it turns, be designated by g.
Then the moments of force about O are equal; that is,

(P +p)l.cos(a+ B) = Pl.cos (e — B)+ Wd.sin 8;
from which we obtain, by expanding and transposing,

pleosar

nf =GP p)isina + W'

(44)

The conditions of greatest sensitiveness are readily deducible
from this equation. So long as cosa is less than unity, it is evi-
dent that tan 8, and therefore B, decreases as the weight 27 of
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beam from the position of equilibrium. If the balance be accu-
rately made and perfectly adjusted, and equal weights placed in
the scale-pans, the pointer will remain at rest, or will oscillate
through distances regularly diminishing on each side of the zero
of the scale.

If the weight of a body is to be determined, it is placed in one
scale-pan, and known weights are placed in the other until the
balance is in equilibrinm, or nearly so. The final determination of
the exact weight of the bodyis then made by one of three methods:
we may continue to add very small weights until equilibrium is
established; or we may observe the deviation of the pointer from
the zero of the scale, and, by a table prepared empirically, deter-
mine the excess of one weight over the other; or we may place a
known weight at such a point on a graduated bar attached to the
beam that equilibrium is established, and find what its value is, in
terms of weight placed in the scale-pan, by the relation between the
length of the arm of the beam and the distance of the weight from
the middle point of the beam.

If the balance be not accurately constructed, we can, neverthe-
less, obtain an accurate value of the weight desired. The method
employed is known as Borda’s method of double weighing. The
body to be weighed is placed in one scale-pan, and balanced with
fine shot or sand placed in the other. It is then replaced by known
weights till equilibrium is again established. It is manifest that
the replacing weights represent the weight of the body.

If the error of the balance consist in the unequal length of the
arms of the beam, the true weight of a body may be obtained -by
weighing it first in one scale-pan and then in the other. The
geometrical mean of the two values is the true weight; for let /,
and [, represent the lengths of the two arms of the balance, P the
srue weight, and P, and P, the values of the weights placed in the
pans at the extremities of the arms of lengths /, and /,, which
balance it. - Then Pl = Pl and Pl = P,l,; from which
P=yPP,

64. Density of the Earth. Constant of Mass Attraction.—One of
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mine vanishes. The mean density of the earth may, therefore, be
determined by the discrepancy between the values of g at the bot-
tom of the mine and at the surface.

Still another method, used by Jolly, consists in determining by
means of a delicate balance the increase in weight of a small mase
of lead when a large leaden block is brought beneath it. Jolly’s
results were very consistent, and give as the earth’s density the
value 5.69.

These methods have yielded results varying from that obtained
by Airy, who stated the mean specific gravity to be 6.623, to that
of Maskelyne, who obtained 4.7. The most elaborate experiments,
by Cornu and Baille, by the method of Cavendish, gave as the value
5.56. This is probably not far from the truth.

When the density of the earth is known, we may calculate from
it the value of the constant of mass attraction, that is, the attraction
between two unit masses at unit distance apart. Represent by D
the earth’s mean density, by R the earth’s mean radius, and by &
the constant of attraction. The mass of the earth is expressed by
47nR'D. Since by § 57 the attraction of a sphere is inversely as
the square of the distance from its centre, the attraction of the
earth on a gram at a point on its surface, or the weight of one

D . .
gram, is expressed by g = §7(RR, k = 47RDk. =R is twice the

length of the earth’s quadrant, or 2 X 10° centimetres. The value
of g at latitude 40° is 980.11, and from thc results of Cornu and
Buaille we may set D equal to 5.56. With these data we obtain %
equal to 0.000000066 dynes.






84 ELEMENTARY PHYSICS. [§ 67

coexistence of these properties we are compelled to assume that
bodies are composed of extremely small portions of matter, indi-
visible without destroying their identity, called molecules, and that
these molecules are separated by interstitial spaces occupied by a
medium called the ether.

These molecules can be divided only by chemical means. The
resulting subdivisions are called afoms. The atom, however, can-
not exist in a free state. The molecule is the physical unit of
matter, while the atom is the chemical unit.

67. Composition of Bodies.—It has just been said that atoms
cannot exist in a free state. They are always combined with
others, either of the same kind, forming simple substances, or of
dissimilar kinds, forming compound substances.

There are about seventy substances now known which cannot,
in the present state of our knowledge, be decomposed, or made to
yield anything simpler than themselves. We therefore call them
simple substances, elements, or, if we desire to avoid expressing
any theory concerning them, radicals. It is not improbable that
some of these will yet be divided, perhaps all of them. We can
call them elements, then, only provisionally.

68. States of Aggregation.—Bodies exist in three states—the
solid, the liquid, and the gaseous. In the solid state the form and
volume of the body are both definite. In the liguid state the
volume only-is definite. In the gaseous state neither form nor
volume is definite.

Many substances may, under proper conditions, assume either
of these three states of aggregation; and some substances, as, for
example, water, may exist in the three states under the same gen-
eral conditions. - :

It is proper to add, however, that there is no such sharp line of
distinction between the three states of matter as our definitions
imply. Bodies present all gradations of aggregation between the
" extreme conditions of solid and gas; and the same substance, in

passing from one state to the other, often presents all these grada-
tions. :
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what precedes, it is necessary to assume the existence of certain
forces other than the mass attraction considered in § 58, acting
between the molecules of matter. These forces seem to act only
within very small or insensible distances, and vary with the charac-
ter of the molecule. They are hence called molecular forces. In
liquids and solids there must be a force of the nature of attrac-
tion holding the molecules together, and a fdrcp equivalent to
repulsion preventing actual contact. The attractive force is
called cokesion when it unites molecules of the same kind, and
adhesion when it unites molecules of different kinds. The repul-
sive force is probably a manifestation of that motion of the moie-
cules which constitutes heat. In gases this motion is so great as
t) carry the molecules beyond the limit of their mutual molecular
attractions: thus the apparent repulsion prevails, and the gas only
ceases expanding when this repulsion is balanced by other forces.

72. Structure of the Molecule.—The facts brought to light in
the study of crystals compel us to ascribe a structural form to the
molecule, determining special points of application for the mo-
lecular forces. From this results the arrangement of molecules
which have the requisite freedom of motion into regular crystal-
line forms.

73. Nature of the Atom.—The wnfom, or the least part into
which matter can be divided by any means now known, must
itself possess inertia and impenetrability. Our inability to divide
the atom, and the demonstration by Lavoisier and others that
‘none of the matter which takes part in a chemical change is de-
stroyed by that change, lead us to assert that the atom is also inde-
structible, The kinetic theory of heat requires the additional
assumption that the atom is generally in motion; and the exist-
ence of molecular forces and of chemical -combination lead us to
assert also that the atoms exert force on one another. These prop-
erties were summed up by Newton, who first gave a description of
the atom, in a form suitable for use in physical science, in the fol-
lowing words: “It seems probable to me that God in the begin-
ning formed matter in solid, massy, hard, impenetrable, movable
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gerald’s theory of the vortex ether (§ 323), gives an almest eamplete
model of the essential features of the physieal universe; it does
not, however, explain grayitation, nor does it withoyt some addition
explain the inertia of a body, and not until it is shown that these
characteristic features of matter are explained by it can it be
adopted as a final theory of matter.

FRICTION.

74. General Statements.—When the surface of one body is
made to move over the surface of another, a resistance to the
motion is set up. This resistance is said to be due to friction be-
tween the two bodies. It is most marked when the surfaces of two
solids move over one another. It exists, however, also between the
surfaces of a solid and of a liquid or a gas, and between the sur-
faces of contiguous liquids or gases. When the parts of a body
move among themselves, there is a similar resistance to the motion,
which is ascribed to friction among the molecules of the body.
This internal friction is called viscosity.

The forces to which friction gives rise do not conform to the
conditions of conservative forces. They are not uniquely depend-
ent on the position of the moving body, and are exerted only
when the body is in motion, and always in such a sense as to op-
pose the motion. The work done on a body in moving it against
friction does not give the body potential energy, and the sum of
the kinetic and potential energies in a system, the parts of which
exert friction on one another, continually diminishes. Most of
the departures from the law of the conservation of mechanical
energy exhibited in the ordinary operations of Nature are due to
friction. The mechanical energy lost is for the most part trans-
formed into heat.

75. Laws of Friction.—Owing to our ignorance of the arrange-
ment and behavior of molecules, we cannot form a theory of fric-
tion based upon mechanical principles. The laws which have been
found are almost entirely experimental, and are only approxi-
mately true even in the cases in which they apply.
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portional to the volume, the limiting or constant velocity reached
is less for small than for large bodies. This explains why the fine
drops in a fog or cloud fall so slowly that their motion is scarcely
noticed, and why shot return to the ground with small velocities,
while the velocity of a returning rifle-ball is still considerable.

From considerations based upon the kinetic theory of gases,
Maxwell predicted that the coefficient of viscosity in a gas would
be independent of its density. This prediction has been verified by
experiment through a wide range of densities. For very low densi-
ties it has been shown that this law no longer holds true.

76. Theory of Friction.—The friction between solids is due
largely, if their surfaces be rough, to the interlocking of projecting
parts. In order to slide the bodies over one another, these pro-
jections must either be broken off, or the surfaces must separate
until they are released. There is also a’direct interaction of the
molecules which lie in the surfaces of contact. This appears in the
friction of smooth solids, and is the sole cause of the viscosity of
liquids and gases. That this molecular action is of importance in
producing the friction of solids is seen in the facts that the friction
of solids of the same kind is greater than that of solids of different
kinds, and that it requires a greater force to start one body sliding
over another than to maintain it in motion after it is once started.

CAPILLARITY.

77. Fundamental Facts.—If we immerse one end of a fine glass
tube having a very small, or capillary, bore in water, we observe
that the water rises in the tube above its general level. We also
observe that it rises around the outside of the tube, so that its sur-
face in the immediate vicinity of the tube is curved. If we im-
merse the same tube in mercury, the surface of the mercury within
and just outside the tube, instead of being elevated, is depressed.
If we change the tube for one of smaller bore, the water rises
higher and the mercury sinks lower within it; but the rise or de-
pression outside the tube remains the same. If we immerse the
same tube in different liquids, we find that the heights to which
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another. Young was the first to treat the subject satisfactorily,
though others had given partial and imperfect demonstrations
before him. He showed that a liquid can be dealt with as if it
were covered at the bounding surface with a stretched membrane,
in which is a constant tension tending to contract it. From this
basis he proceeded to deduce some of the most important of the
experimental laws. Laplace, proceeding directly from the law of
the attraction which we have already given, considered the attrac-
tion of a mass of liquid on a filament of the liquid terminating at
the surface, and obtained an expression for the pressure within the
mass at the interior end of the filament. He also was able, not
only to account for already observed laws, but to predict, in at
least one instance, a subsequently verified result. Some years later,
Gauss, dissatisfied with Laplace’s assumption, without a priori
demonstration, of a known experimental fact, treated the subject
from the basis of the principle of virtual velocities, which in this
case is the equivalent of that of the conservation of energy. He
proved that, if any change be made in the form of a liquid mass,
the work done or the energy recovered is proportional to the change
of surface, and hence deduced a proof of the fact which Laplace
assumed, and also an expression for the pressure within the mass
of aliguid identical with his. For purposes of elementary treat-
ment the earliest method is still the best. We shall accordingly
employ the idea of surface tension, after having shown that it may
be obtained from the hypothesis of molecular attraction.

80. Surface Tension.—Consider any liquid bounded by a plane
surface, of which the line mn (Fig. 28) is the trace, and let the

m TN n line m’n’ be the tl.'ace of a paral-
/ \ lel plane at the distance € from

1 £ ] the plane of mn. Beneath the

w W plane m’n’ the liquid will be
\\/ homogeneous at all points, and

the attraction on any one molecule

Fre. 28. of it due to the surrounding mol-

ecules will be the same in all directions. If we consider the
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the length of the rod, or the force applied per unit of length,
measures the surface tension.

81. Energy and Surface Tension.—If the shape of the liquid
mass be changed in such a way that its surface increases, work
must be done upon those molecules which pass from the interior
into the surface. This may either be viewed as work done upon
each molecule as it is forced out of the interior mass, where the
forces upon it are in equilibrinm, into the surface layer, in which
it is acted on by a force normal to the surface and in which there-
fore a movement along that normal involves the doing of work; or
it may be looked on as work done against the tension acting in the
surface. We call the potential energy gained when the surface in-
creases by one unit the surface energy per unit of surface; we will
show that it is numerically equal to the surface tension per unit of
length.

Suppose a thin film of liquid to be stretched on a frame 4 BCD
(Fig. 29), of which the part BCD is solid and fixed, and the part -

8

[ = —

U ’ i

Fia. 29.

A is a light rod, free to slide along C'and D. This film tends, as
we have said, to diminish its free surface. As it contracts, it draws
A towards B. 1f the length of 4 be a, and 4 be drawn towards
B over b units, and if & represent the surface energy per unit of
surface, the energy lost, or the work done, is expressed by Ead. If
we consider the tension acting normal to 4, the value of which is
7T for every unit of length, we have again for the work done during
the movement of 4, Tad. From these expressions we obtain at once
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negative, and the pressure is directed outwards. This pressure is
to be added to the constant molecular pressure which we have
already seen exists everywhere in the mass. If we denote this con-
stant molecular pressure by K, the expression for the total pressure
within the mass is X +4T('1l, + 112), where the convention with re-
gard to the signs of R’ and R must be understood. For a plane
surface, the radii of curvature are infinite, and the pressure under
such a surface reduces to A.

This equation is known as Laplace’s equation.

83. Angles of Contact.—Many of the capillary phenomena ap-
pear when different liquids, or liquids and solids, are brought 1n
contact with one another. It becomes, therefore, necessary to know
the relations of the surface tensions and the angles of contact.
They are determined by the following considerations:

Consider first the case when three liquids meet along a line. Let
O represent the poiat where this line cuts & plane drawn at right
angles to it (F1g. 31). Then the tension
T, of the surface of separation of the
liquid a from the liquid b, acting nor-
mal to this line, iz counterbalanced by
the teunsions 7, and 7T, of the surfaces
of separation of @ and ¢, » and ¢. These
tensions are always the same for the
three liquids under similar conditions
of temperature and purity. Knowing the value of the tensions,
the angles which they make with one another are determined at
once by the parallelogram of forces; and these angles are always
constant. _

Similar relations arise if one of the liquids be replaced by a gas.
Indeed, some experiments by Bosscha indicate that capillary phe-
‘nomena oceur at- surfaces of separation between gases. We need,
therefore, in- the subsequent discussions, make no distinction be-
tween gases and lijuids, and may use the general term fluids.

Fie. 81.
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to move as a mass, and was free to arrange itself entirely under the
action of the molecular forces. Referring to the equation of La-
place, already obtained, it is evident that equilibrinum can exist only

when the sum (—I;—, + %) is constant for every point on the surface.

This is manifestly a property of the sphere, and is true of no other
finite surface. Plateau found, accordingly, that the freely floating
mass at once assumed a spherical form. If a solid body—for instance,
a wire frame—be introduced into the mass of oil, of such a size as
to reach the surface, the oil clings to it, and there is a break in the
continuity of the surface at the points of contact. Each of the
portions of the surface divided from the others by the solid then
takes a form which fulfils the condition already laid down, that

(—}}?—,-i— ;) equals a constant. Plateau immersed a wire ring in

the mass of oil. So long as the ring nowhere reached the surface,
the mass remained spherical. On withdrawing a portion of the oil
with a syringe, that which was left took the form of two equal
calottes, or sections of spheres, forming a double convex lens. A
mass of oil, filling a short, wide tube, projected from it at either
end in a similar section of a sphere. As the oil was removed,
the two end surfaces became less curved, then plane, and finally
concave. ‘

Platean also obtained portions of other figures which fulfil the
required condition. For example, a mass of oil was made to sur-
round two rings placed at a short distance from one another. Por-
tions of the oil were then gradually withdrawn, when twe spherical
calottes formed, one at each ring, and the mass between the rings
became a right cylinder. It is evident that the cylinder fulfils the
required condition for every point on its surface.

Plateau also studied the behavior of films. He devised a mix-
ture of soap and glycerine, which formed very tough and durable
films ; and he experimented with them in air. Such films are so
light that the action of gravity on them may be neglected in com-
parison with that of the surface tension. If the parts of the frame
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expressed by 27rT cos . This force, for each unit area of the

D
tube, is ’—7—’1{;‘#80. The downward force, at the level of the

free surface, making equilibrium with this, is due to the weight

—

Fia. 88.

of the liquid column (§ 113). If we neglect the weight of the
meniscus, this force per unit area, or the pressure, is expressed by
hdg, where £ is the height of the column and d the density of the
liquid. We have, accordingly, since the column is in equilibrium,
2”’:T cos = hdg; whence & = &0—8—0, and the height is in-
nr rdg
versely as the radius of the tube.

If the liquid rise between two parallel plates of length ?, sepa-
rated by a distance 7, the upward force per unit area is given by the

expression 21—5_7' cos 6, and the downward pressure by dg; whence
h= %‘r%(;ﬂ” and the height to which the liquid will rise between

two such plates is equal to that to which it will rise in a tube the
radius of which is equal to the distance between the plates.

If the two plates be inclined to one another so as to touch along
one vertical edge, the elevated surface takes the form of a rectangu-
lar hyperbola; for, let the line of contact of the plates be taken as
the axis of ordinates, and a line drawn in the plane of the free sur-
face of the liquid as the axis of abscissas, the elevation correspond-
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87. ‘Porous Bodies.—Porous bodies may be considered as assem-
blages of more or less irregular capillary tubes. Thus the explana-
tion of many natural phenomena—as the wetting of a sponge, the
rise of the oil in the wick of a lamp—follows directly from the pre-
ceding discussion. , , ,

DIFFUSION.

88. Solution and Absorption.—Many solid bodies, immersed
in a liquid, after awhile disappear as solids, and are taken up by
the liquid. This process is called solufion. The quantity of any
body which a unit quantity of a given liquid will dissolve at a
given temperature, is called’its solubility in that liquid at that tem-
perature. The solubility of a given solid varies greatly for differ-
ent liquids, in many cases being so small as to be inappreciable.

One liquid may also be dissolved in another, the degree of solu-
bility differing very much for different liquids. At ordinary tem-
peratures many liquids are practically insoluble in others, but there
i reason to believe that as the liquids approach their critical points
(§ 223), their solubilities in other liquids increase, and that at their
critical points any liquid is soluble in all others in any proportion.

Gases are also taken into solution by liquids. The process 1s
usually called absorption. The quantity of gas dissolved in any
liquid depends upon the temperature, and varies directly with the
pressure. The solubility of any gas at a given temperature and at
standard pressure is called its coefficient of absorption at that
temperature.

Gases, in general, adhere strongly to the surfaces of solids with _
which they are in contact. This adhesion is so great, that the
gases are sometimes condensed so as to form a dense layer which
probably penetrates to some depth below the surface of the solid.
The process is called the absorption of gases by solids. When the
solid is porous, its exposed surface is greatly extended, and hence
much larger quantities of gas are condensed on it than would other-
wise be the case. When this condensation occurs there is in gen-
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unit time i8 x. The quantity «, called the coefficient of diffusion,
is, therefore, the quantity of salt that passes in unit time through
unit area of a horizontal plane when the difference of concentration
is unity. Coefficients of diffusion increase with the temperature,
and are found not to be entirely independent of the degree of
concentration.

As implied above, the units of mass and length employed in
these measurements are respectively the gram and the centimetre ;
but, since in most cases the quantity of salt that diffuses in one
second is extremely small, it is usual to employ the day as the unit
time. .

91. Diffusion through Porous Bodies.—It was found by Graham
that diffusion takes place through porous solids, such as unglazed
earthenware or plaster, almost as though the liquids were in direct
coutact, and that a very considerable difference of pressure can be
established between the two faces of the porous body while the rate
of diffusion remains nearly constant.

92. Diffusion through Membranes.—If the membrane through
which diffusion occurs be of a type represented by animal or vege-
table tissue, the resulting phenomena, though in some respects sim-
ilar, are subject to quite different laws. Colloid substances pass
through the membrane very slowly, while crystalloid substances pass
more freely. It isto be noted that the membrane is not a mere
passive medium, as is the case with the porous substances already
considered, but takes an active part in the process; and conse-
quently one of the liquids frequently passes into the other more
rapidly than would be the case if the surfaces of the liquids were
directly in contact. .

If the membrane separate two crystalloids, it often happens
that both substances pass through, but at different rates. In ac-
cordance with the usage of Dutrochet, we may say there is endos-
mose of the liquid which passes more rapidly to the other ligunid,
" and ezosmose of the latter to the former. The whole process is fre-
quently called osmosis. 1f the membrane be stretched over the end
of a tube, into which the more rapid current sets, and the tube be
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substances in solution. They may be calléd semi-permeable mem-
branes. .

Pfeffer’s results may be described most easily by using as an ex-
ample the case of solutions of cane-sugar and water. When the
cell was filled with water containing sugar in solution, and im-
mersed in pure water, the water began to enter the cell from with-
out; the pressure in the cell, as indicated by the manometer, began
at once to increase, and continued increasing for some time, until
a rather large definite increase of pressure had been reached. This
increase of pressure in the cell is called the osmotic pressure or
solution pressure of the solution. The most important laws estab-
lished by Pfeffer, de Vries, and others concerning the relations of
osmotic pressure to the character of the solution and its circum-
stances are as follows, it being understood that the statements to
be made refer to dilute solutions and to solutions which are not
electrolytes (§ 79). Solutions which are not electrolytes may be
called indifferent solutions (§ 285). For solutions which are eleo-
trolytes the statements need some modifications.

The osmotic pressure is independent of the nature of the sol-
vent and of the character of the membrane, provided it is imper-
vious to the substance dissolved.

The osmotic pressure is proportional to the concentration of the
solution or to the quantity of the dissolved substance contained in
unit volume. It increases as the temperature rises, and the rela-
tion between the increase of pressure and the rise of temperature
is the same as that which obtains for gases (§ 211).

Weights of different substances which are proportional to the
molecular weights of those substances contain equal numbers of
molecules. Solutions formed by dissolving, in equal quantities of
the solvent, masses of different substances proportional to the mo-
lecular weights of the substances, therefore contain equal numbers
of molecules of these substances. They may be called equimolecu-
lar solutions. 1t is found that the osmotic pressure exerted by
equimolecular solutions of different substances is the same. Solu-
tions which exert equal osmotic pressures are called isotonic.
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the esoape of bubbles from the end of the tube. If, now, the jar
be removed, diffusion outward occurs more rapidly than diffusion
inward: the pressure within soon becomes less than the atmos-
pheric pressure, as is shown by the rise of the water in the tube.
The laws of gaseous diffusion have been shown by Osborne
Reynolds to be consistént with the kinetic theory of gases.

ELASTICITY.

97. Strain and Stress.—In the discussion of the third law ot
motion (§ 26) stress was defined as the mutual action of two bodies.
In the applications made of the third law up to this point the
stress has been considered entirely with reference to the two bodics
between which it acts; that is, it has been tacitly assumed that the
action is immediate, or, as it is called, is an action at a distance.
But in many cases the action between two bodies is manifestly not
of this sort, but is due to the presence and action of intervening
bodies. These intervening bodies, when looked at generally, are
called the intervening medium. In these cases we may apply the
third law of motion to the parts of the medium, and assert that
there exists a stress between any two contiguous portions of the
medium. This stress will vary from point to point and with the
direction of the surface across which it acts, and also with the
peculiarities of the medium. Experiment shows that the applica-
tion of stress to a medium is always accompanied by a change of
form or deformation of the medium. This deformation is called a
strain.,

In some bodies equal stresses applied in any direction produce
equal and similar strains. Such bodies are 1sofropic. In others
the strain alters with the direction of the stress. These bodies are
eolotropic.

According to the molecular theory of matter, the form of a body
is permanent so long as the resultant of the stresses acting on it
from without, with the interior forces existing between the indi-
vidual molecules of the body, reduces to zero. The molecular
forces and motions are such that there is a certain form of the body






110 ELEMENTARY PHYSICS. [§ 98

of which the radius is 7, becomes by the strain the ellipsoid, of
which the axes are r(1 +¢,), 7(1 +¢,), (1 + ¢,); the increase in
volume of the sphere by the strain is therefore

grr'(14e)(1+¢,) (1 +e¢,) — 4nr' = 47r'(e, + 6,4 ¢,).

The quantity e, + ¢, + e, is called the coefficient of expansion of the
body. : ,

Two cases of strain need to be specially examined—the pure
expansion or dilatation, and the shear or shearing strain. A dilata-
tion occurs if the three coefficients of elongation are equal; in this
case the strained cube remains a cube, the strained sphere remains
a sphere, and the change of volume in each case is 3¢ times the
original volume. A shear occurs when one of the coefficiente, say
e,, equals zero, and when ¢, equals — ¢,; in this case the expansion
is zero.

The shear may be defined from another point of view. For,
consider a body subjected to a shear and suppose a section made in
it by the plane containing the elonga-
tions e and — e: it is clear that the shear
will be completely described if we de-
scribe the deformation of a figure in
this plane. We select for this purpose a

A B rhombus, 4 BDC, of which the diagonals

Fro. 84, AD and BC are so related that after the

shear we have AD(1+¢)= BC and BC(1 —e) = AD. If the
rhombus produced by the shear be turned until one of its sides co-
incides with 4B, we shall have the original rhombus and the one
produced by shear in the relation shown in Fig. 34. The new
rhombus 4("D’B may manifestly be produced from the original
rhombus by the displacement of all its lines parallel to the fixed
base 4B, each line being displaced by an amount proportional to
its distance from the line AB. The ratio of this displacement to
the distance of the displaced line from the base 4B is called the

. ne
amount of the shear; that is, % is the amount of the shear.

[+] C D E
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cules of B lying on the other side of that surface. Similarly, the
forces which act on B are in equilibrium with the forces which act
across the surface between the molecules of B and 4. Let us con-
sider any area s taken in the surface separating 4 and B. Repre-
sent by F the sum of the molecular forces which act across that
area. If the forces which act across different equal elements of the

area be equal, the ratio —f is called generally the pressure per unit

area on the surface s, or, simply, the pressure on the surface. This
pressure Is positive if the force #'be directed away from the portion
of the whole body which is held in equilibriu}n; negative if directed
toward that portion. It is plain, from the equality of action and
reaction, that if this force be directed toward the portion A4 of the
body, an equal force is directed toward the portion B at every
point of the surface which separates 4 and B.

The name pressure is frequently reserved for a negative pressure
in the sense just defined; when the pressure is positive, it is fre-
quently called a fenston. In case the force which acts across the
surface between A and B vary from element to element of that
surface, the pressure at a point of the surface is the limit of the

ratio -{ , When the area s is so drawn that its centre of inertia is

always kept at that point, and is diminished indefinitely.

The forces acting across the surface separating 4 and B will,
in general, make different angles with the surface at the different
points of it. Similarly, the pressure which is substituted for the
forces makes different angles with the surface at different points.
The pressure, being & vector quantity, like the force from which it
is derived, may be resolved into components perpendicular to the
surface and in the plane tangent to it. It is best, for the sake of
greater generality in our statements, to consider the tangential
component of pressure as resolved into two components, at right
angles to each other in the tangent plane. These components are
called respectively, the normal pressure and the fangential pres-
sures.
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The combination of tangential stresses which maintain equilib-
rium may be considered from another point of view. For, if we ex-
amine the triangular prism of which the cross-section is 48D
(Fig. 35), and to which the tangential stresses S and S’ are applied,
it appears at once that equilibrium will obtain when a force equal
to the resultant of aS and aS’, where a is the area of each of the
square faces of the prism, is applied to the face of which 4B is the
trace. The area of this face is a ¥2, and if .Y represent the pres-
sure on this face, the force applied to it is aX 2. But S equals 5",
and the resultant of aS and aS’ is aS #2; whence X = S. A similar
pressure acts in the opposite direction upon the face of the similar
prism ACB. These pressures are positive, that is, they are tensions
which tend to separate the parts of the body to which they are ap-
plied. If we compound the tangential stresses in another manner
by taking as the elements of the combination the stresses applied to
the faces 4D and AC, it is at once evident that they are equivalent
to a negative pressure Supon the diagonal face CD. A similar pres-
sure acts across the same face toward the other prism CBD.
We may therefore consider the set of stresses constituting the
couples in the plane ACBD as equivalent to a positive pressure or
tension in the direction of one diagonal and a negative pressure in
the direction of the other diagonal. This combination of couples,
or its equivalent tension and pressure, is called a skearing stress.

101. Superposition of Stresses.—Stresses, whether pressures or
tensions, being vector quantities, are compounded like other vector
quantities, and, in particular, when they are in the same line, are
added algebraically.

Suppose a cube so subjected to stress that equal and opposite
pressures, which we will assume to be directed outward from the
cube, act on two opposite faces, and that the other faces experience
nostress. ‘'Such a stress is called a longitudinal traction. We will
show that this form of stress may be obtained by the combination
of a stress made up of equal tensions acting on each face of the
cube, and of two shearing stresses.

In Fig. 36 let P represent the value of the longitudinal
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stress these forces are normal to their respective faces, and the
tetrahedron will be in equilibrinum when the components of the
force X are equal respectively to the forces applied to the other
faces; that is, when Xe.l = P.al, Xa.m = Q.am, Xa.n = R.an;
that is, when X = P = @ =R.

It has been stated that the stresses in a body may always be rep-
resented by the combination of three longitudinal stresses at right
angles to each other. Since a longitudinal stress may be replaced
by & hydrostatic stress and two shearing stresses, it follows that any
stress in a body may be replaced by a hydrostatic stress and a
proper combination of shearing stresses.

102. Relations of Stress and Strain. Modulus of Elasticity. —
When a body serves as the medium for the transmission of stress
it experiences a deformation or strain, the type of strain depending
upon the stress applied. The resistance offered by a body to de-
formation is ascribed to its elasticity. If the body be deformed in
a definite way by a given stress, and recover its original condition
when the stress is removed, it is said to be perfectly elastic. If the
deformation of a body do not exceed the limits within which it may
be considered perfectly elastic, it may be proved by experiment that
the strain is of the same type as the stress and proportional to it.
This law was proved for certain cases by Hooke, and is known as
Hooke’s Law. :

The ratio of the stress applied to the strain experienced by a
unit of the body measures the elasticity of the substance com-
posing the body. This ratio is called the modulus of elasticity of
the body, or simply its elasticity; its reciprocal is the cosfficient of
elnsticity. It is of course understood that the stress and strain
are of the same type. Thus, for example, the voluminal elasticity
of a fluid is measured by the ratio of any small change of pressure
to the corresponding change of unit volume. The tractional elas-
ticity of a wire stretched by a weight is measured by the ratio of
any small change in the stretching weight to the corresponding
change in unit length.

Since all stresses may be reduced to hydrostatic stresses and






118 ELEMENTARY PHYSICS. [§ 105

The modulus of rigidity is therefore equal to half the tangen-
tial stress S divided by the elongation of unit length along the axis
of the shear.

105. Modulus of Voluminal Elasticity of Gases.—Within cer-
tain limits of temperature and pressure, the volume of any gas, at
constant temperature, is inversely as the pressure upon it. This
law was discovered by Boyle in 1662, and was afterwards fully
proved by Mariotte, It is known, from its discoverer, as Boyle’s
law.

Thus, if p and p’ represent different pressures, » and v’ the cor-
responding volumes of any gas at constant temperature, then

2=, (45)

Now, p’v’ is a constant. which may be determined by choosing any
pressure p’ and the corresponding volume v’ as standards: hence
we may say, that, at any given temperature, the product pv is a
constant. The limitations to this law will be noticed later.

Let p and v represent the pressure and volume of & unit mass
of gas at a constant temperature. A small increase dp of the pres-
sure will cause a diminution of volume 4v; by Boyle’s law we have
the relation pv = (p + dp)(v — 4v) = pv + vdp — pdv — dpdv,
We may assume that the increment Jp is very small, in which case
4y will also be small; we may therefore, in the limit, neglect the

product of these increments and obtain jv p . Now f’— is the

change of unit volume, and therefore —%}—’v—v = p is the modulus of
voluminal elasticity. The elasticity of a gas at constant tempera-
ture is therefore equal to its pressure.

108. Modulus of Voluminal Elasticity of Liquids. —When liquids
are subjected to voluminal compression, it is found that their
modulus of elasticity is much greater than that of gases. For at
least & limited range of pressures the modulus of elasticity of any
one liquid is constant, the change in volume being proportional to






120 ELEMENTARY PHYSICS. [§ 107

regarded as incompressible. Thus, for example, the alteration of
volume for sea-water by the addition of the pressure of one atmos-
phere is 0.000044. The change in volume, then, at a depth in the
ocean of one kilometre, where the pressure is about 99.3 atmos-
pheres, is 0.00437, or about 5} of the whole volume.

107. Modulus of Voluminal Elasticity of Solids.—The modulus
of voluminal elasticity of solids is believed to be generally greater
than that of liquids, though no reliable experimental results have
yet been obtained.

The modulus, as with liquids, differs for different bodies.

108. Elasticity of Traction.—The first experimental determina-
tions of the relations between the elongation of a solid and a tension
acting on it were made by Hooke in 1678. Experimenting with
wires of different materials, he found that for small tractidns the
elongation is proportional to the stress. It was afterwards found
that this law is true for small compressions.

The ratio of the stretching weight to the elongation of unit
length of a wire of unit section is the modulus of tractional elas-
ticity. For different wires it is found that the elongation is pro-
portional to the length of the wires and inversely to their section.
The formula embodying these facts is

_st

o= (46)

where ¢ is the elongation, ! the length, s the section of the wire, S
the stretching weight, and u the modulus of tractional elasticity.
The behavior of a body under traction may be examined in the
following way: We assume for convenience that the traction is
applied to the upper and lower faces of a cube with sides of unit
length. As already shown, the traction P is equivalent to a hydro-

. . P . . _—
static tension 3 and two shearing stresses equivalent to two tensions

g in the direction of the traction, and a pressure —g in each of two

directions at right angles to this and to each other. The hydro-
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where 7 is the amount of torsion, 7 the length, » the radius of the
wire, C the moment of couple, and n the modulus of rigidity. No
general formula can be found for wires with sections of variable
form. '

The laws of torsion in wires were first investigated by Coulomb,
who applied them in the construction of an apparatus called the
torsion balance, of great value for the measurement of small forces.

The apparatus consists essentially of a small cylindrical wire,
suspended firmly from the centre of a disk, upon whish is cut a
graduated circle. By the rotation of this disk any required amount
of torsion may be given to the wire. On the other extremity of
the wire is fixed, horizontally, a bar, to the ends of which the
forces constituting the couple are applied. Arrangements are also
made by which the angular deviation of this bar from the point of
equilibrium may be determined. When forces are applied to the
bar, it may be brought back to its former point of equilibrium by
rotation of the upper disk. Let ©® represent the moment of torsion;
that is, the couple which, acting on an arm of unit length, will give
the wire an amount of torsion equal to a radian, C the moment of
couple acting on the bar, r the amount of torsion measured jin
radiang; then = ©r. We may find the value of ©® in absolute
measure by a method of oscillations analogous to that used to
determine ¢ with the pendulum.

A body of which the moment of inertia can be determined by
calculation is substituted for the bar, and the time 7 of one of its
oscillations about the position of equilibrium observed.

Since the amount of torsion is proportional to the moment of
couple, the oscillating body has a simple harmonic motion.

The angular acceleration a of the oscillating body is given by
the equation € = O7 = Ia (§ 39). Now, since every point in the
body has a simple harmonic motion, in which its displacement is
proportional to its acceleration, and since its displacement and ac-
celeration are proportional respectively to the angular displacement

7 and the angular acceleration a, we may set @ = 4?,,711. Making
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Upon these facts we may base a distinction between solids and
fluids : a solid requires the stress acting on it to exceed a certain
limit before any permanent set occurs, and it makes no difference
how long the stress acts, provided it lies within the limit. A jfluid,
on the contrary, may be permanently deformed by the slightest
shearing stress, provided time enough be allowed for the movement
to take place. The fundamental difference lies in the fact that
fluids have no rigidity and offer no resistance to shearing stress
other than that due te internal friction or viscosity.

A solid, if it be deformed by a slight stress, is sof?; if only by
a great stress, is hard or rigid. A fluid, if deformed quickly by
any stress, is mobile ; if slowly, is viscous.

It must not be understood, however, that the behavior of elastic
solids under stress is entirely independent of time. If, for exumple,
a steel wire be stretched by a weight which is nearly, but not quite,
sufficient to produce an immediate set, it is found that, after some
time has elapsed, the wire acquires a permanent set. If, on the other
hand, a weight be put upon the wire somewhat less than is required
to break it, by allowing intervals of time to elapse between the suc-
cessive additions of small weights, the total weight supported by
the wire may be raised considerably above the breaking-weight. 1f -
the weight stretching the wire be removed, the return to its origi-
nal form is not immediate, but gradual. If the wire carrying the
weight be twisted, and the weight set oscillating by the torsion of
the wire, it is found that the oscillations die away faster than can
be explained by any imperfections in the elasticity of the wire.

These and similar phenomena are manifestly dependent upon
peculiarities of molecular arrangement and motion. . The last two
are exhibitions of the so-called viscosity of solids. The molecules
of solids, just as those of liquids, move among themselves, but with
a certain amount of frictional resistance. This resistance causes
the external work done by the body to be diminished, and the in-
ternal work done among the molecules becomes transformed into
‘heat. '
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If a vessel filled with a fluid be fitted with & number of pis-
tons of equal area 4, and a force 4p be applied to one of them,
acting inwards, a pressure 4p will act outwards upon the face of
each of the pistons. These pressures may be balanced by a force
applied to each piston. If » 4+ 1 be the number of the pistons,
the outward pressure on n of them, caused by the force applied to
one, is npA.

The fluid will be in equilibrium when a pressure p is acting on
unit area of each piston. It is plain that the same reasoning will
hold if the area of one of the pistons be 4 and of another be nA.
A pressure Ap on the one will balance a pressure of n.dp on the
other. This principle governs the action of the Aydrostatic
press.

113. Relations of Fluid Pressures due to Qutside Forces.—If
forces, such as gravitation, act on the mass of a fluid from with-
out, Pascal’s law no longer holds true. For, suppose the fluid to
be acted on by gravity, and consider a cylinder of the fluid, the
axis of which is vertical, and which is terminated by two normal
cross-sections. The pressure on the cylindrical surface, being
everywhere normal to it, has no effect in sustaining the weight of
the cylinder. The weight is sustained wholly by the pressure on
the lower cross-section, and must be equal to the difference be-
tween that pressure and the pressure on the upper cross-section.
As the height of the cylinder may be made as small as we please,
it appears that, in the limit, the pressure on the two cross-sections
only differs by an infinitesimal; that is, the pressure in a fluid
acted on by outside forces is the same at one point for all direc-
tions, but varies continuously' for different points.

If, in a fluid acted on by gravity, a surface be considered which
is everywhere perpendicular to the lines of gravitational force, the
pressure at every point in this surface is the same. To show this
we draw a line in the surface between any two points of it, and
construct around it as axis a cylinder terminated at the chosen
points by end-surfaces drawn normal to the axis. The pressures
on the cylindrical surface. being normal to it, occasion resultant
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In an incompressible fluid or liquid the pressure at any point
is proportional to its depth below the surface. For, the weight of
a column of the liquid contained in a vertical cylinder, terminated
by the ’fre(_a surface and by a horizontal cross-section containing the
" point, is manifestly proportional to the height of the cylinder; and
this weight is sustained by the pressure on the lawer end cross-sec-
tion, which must therefore be proportional to the height of the
cylinder.

If the height of the cylinder be % and the area of its cross-section
s, and if the density of the liquid be .D, the weight of the column is
Dshg. 1f p represent the pressure at the base, the upward force
on the base is ps; so that we have

p=Dhy. (51)

From the foregoing principles it is evident that a liquid con-
tained in two communicating vessels of any shape whatever, will
stand at the same level in both. If, however, a liquid like mercury
be contained in the vessels, and if another liquid, like water, which
does not mix with it, be poured into one of the vessels, the surface
of separation will sink, and the free surface in the other vessel will
rise to a certain point. If a horizontal plane be passed through
the surface of separation between the two liquids, the pressures at
all points of it within the liquids, in both vessels, will be the same.
These pressures, which are due to the superincumbent columns of
liquid in the two vessels, are given by Dgh and D’gl’, and since
they are equal, we have Dk = D’%’; that is, the heights of the two
columns above the horizontal plane passing through the surface of
separation are inversely as the densities of the liquids.

There is nothing in this demonstration which requires us to
consider both the columns as liquid: one of them may be of any
fluid, and equilibrium will obtain when the pressure exerted by
that fluid on the surface of separation is equal to the pressure ex-
erted by the column of liguid in the other vessel on the horizontal
plane containing the surface of separation; so that, if we know the
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The form of barometer first made by Torricelli is still often
used, especially when the instrument is stationary, and is intended
to be one of precision. In the finest instruments of this class a
, tube is used which is three or four centimetres in diameter, so as to
avoid the correction for capillarity. A screw of known length,
pointed at both ends, is arranged so as to move vertically above the
surface of the mercury in the cistern. When an observation is to
be made, the screw is moved until its lower point just touches
the surface. The distance between its upper point and the top of
the column is measured by means of a cathetometer; and this dis-
tance, added to the length of the screw, gives the height of the
column.

Other forms of the instrument are used, most of which are
arranged with reference to convenient transportability. Various
contrivances are added by means of which the column is made to
move an index, and thus record the pressure on a graduated scale.
All these forms are only modifications of Torricelli’s original in-
strument.

The pressure indicated by the barometer is usually stated in
terms of the height of the column. Mercury being practically in-
compressible, this height is manifestly proportional to the pressure
at any point in the surface of the mercury in the cistern. The
pressure on any given area in that surface can be calculated if we
know the value of ¢ at the place and the specific gravity of mer-
cury, as well as the height of the column. The standard baro-
metric pressure, represented by 760 millimetres of mercury, is a
pressure of 1.033 kilograms on every square centimetre. It is
called a pressure of one atmosphere ; and pressures are often meas-
ured by atmospheres.

In the preparation of an accurate barometer it is necessary that
all air be removed from the mercury; otherwise it will collect in
the upper part of the tube, by its pressure lower the top of the
column, and make the barometer read too low. The air is removed
by partially filling the tube with mercury, which is then boiled in
the tube, gradually adding small quantities of mercury, and boiling
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is defined as the ratio of its weight to the weight of an equal
volume of pure water at a standard temperature.

The specific gravity of a solid that is not acted on by water
may be determined by means of the Aydrostatic balance. The
body under examination, if it will sink in water, is suspended from
one scale-pan of a balance by a fine thread, and is weighed. It is
then immersed in water, and is weighed again. The difference
between the weights in air and in water is the weight of the dis-
placed water, and the ratio of the weight of the body to the weight
of the displaced water is the specific gravity of the body.

If the body will not sink in water, a sinker of unknown weight
and specific gravity is suspended from the balance, and counter-
poised in water. Then the body, the specific gravity of which is
sought, is attached to the sinker, and it is found that the equilib-
rium is destroyed. To restore it, weights must be added to the
same side. These, being added to the weight of the body, repre-
sent the weight of the water displaced.

The specific gravity of a liquid is obtained by first balancing in
air a mass of some solid, such a8 platinum or glass, that is not acted
on chemically by the liquid, and then immersing the mass succes-
sively in the liquid to be tested and in water. The ratio of the
weights which must be used to restore equilibrium in each case is
the specific gravity of the liquid.

The specific gravity of a liquid may also be found by means of
the specific gravity bottle. This is a bottle fitted with a ground-
glass stopper. The weight of the water which completely fills it
is determined once for all. When the specific gravity of any liquid
is desired, the bottle is filled with the liquid, and the weight of the
liquid determined. The ratio of this weight to the weight of an
equal volume of water is the specific gravity of the liquid.

The same bottle may be used to determine the specific gravity
of any solid which cannot be obtained in continuous masses, but is
friable or granular. A weighed amount of the solid is introduced
into the bottle, which is then filled with water, and the weight of
the joint contents of the bottle determined. The difference






134 ELEMENTARY PHYSICS. [§ 118

of the air vitiates all weighings performed in it, by diminishing
the true weight of the body to be weighed and of the weights
employed, by an amount proportional to their volumes. The con-
sequent error is avoided either by performing the weighings in a
vacunm produced by the air-pump, or by correcting the apparent
weight in air to the true weight. Knowing the specific gravity of
the weights and of the body to be weighed, and the specific gravity
of air, this can easily be done.

118. Motions of Fluids.—If the parts of the fluid be moving
relatively to each other or to its bounding-surface, the circum-
stances of the motion can be determined only by making limitations
which are not actually found in Nature. There thus arise certain
definitions to which we assume that the fluid under consideration
conforms.

The motion of a fluid is said to be uniform when each element
of it has the same velocity at all points of its path. The motion is
steady when, at any one point, the velocity and direction of motion
of the elements successively arriving at that point remain the same
for each element. . If either the velocity or direction of motion
change for successive elements, the motion is said to be varying.
The motion is further said to be rofational or irrotational accord-
ing as the elements of the fluid have or have not an angular veloe-
ity about their axes.

In all discussions of the motions of fluids a condition is sup-
posed to hold, called the condition of confinuity. It is assumed
that, in any volume selected in the fluid, the change of density in
that volume depends solely on the difference between the amounts
of fluid flowing into and out of that volume. In an incompressi-
ble fluid, or liquid, 1f the influx be reckoned plus and the eflux
minus, we have, letting @ represent the amount of the liquid passing
through the boundary in any one direction, 2@ = 0. The results
obtained in the discussion of fluid motions must all be interpreted
consistently with this condition. -If the motion be such that the
fluid breaks up into discontinuous parts, any results obtained by
hydrodynamical considerations no longer hold true.
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of efflux, through a small orifice, of any fluid of density 4, from a
region in which it is under a constant pressure p,, into a vacuum.
Torricelli’s theorem is shown to be approximately true by al-
lowing liquids to run from an orifice in the side of a vessel, and
measuring the path of the stream. If the theorem be true, this
ought to be a parabola, of which the intersection of the plane of
the stream and of the surface of the liquid is the directrix; for each
portion of the liquid, after it has passed the orifice, will behave as
a solid body, and move in a parabolic path. The equation of this

path is found, as in § 52, to be 2* = — 271) y. Now by Torricelli’s

theorem we may substitute for »* its value 2¢4, whence z* = — 44y.
In this equation, since the initial movement of the stream is sup-
posed to be horizontal, the perpendicular line through the orifice
being the axis of the parabola, and the orifice being the origin,
is the distance from the orifice to the directrix. Experiments of
this kind have been frequently tried, and the results found to
approximate more nearly to the theoretical as various causes of
error were removed.

When, however, we attempt to calculate the amount of liquid
discharged in a given time, there is found to be a wider discre-
pancy between the results of calculation and the observed facts.
Newton first noticed that the diameter of the jet at a short distance
from the orifice is less than that of the orifice. He showed this to
be a consequence of the freedom of motion among the particles in
the vessel. The particles flow from all directions towards the ori-
fice, those moving from the sides necessarily issuing in streams in-
clined towards the axis of the jet. Newton showed that by taking
the diameter of the narrow part of the jet, which is called the
vena contracta, as the diameter of the orifice, the calculated
amount of liquid escaping agreed far more closely with theory.

When the orifice is fitted with a short cylindrical tube, the in-
terference of the different particles of the liquid is in some degree
lessened, and the quantity discharged increases nearly to that re-
quired by theory.
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121. Waves.—When a disturbance is set up at a point in the free
surface of a liquid, it moves over the surface of the liquid as a
wave or series of waves. * Each wave consists of a crest or elevated
portion and a hollow or depressed portion of approximately equal
length, and the distance from a particle at the summit of one
crest to a particle at the summit of the next succeeding crest,
or the distance between particles in successive waves which are
in the same condition of motion, is called a wave length. A line
which is drawn along the crest of any one wave or through the par-
ticles in that wave which are in the same condition of motion, and
which at every point is at right angles to the direction in which the
wave is propagated, may be called the wave front.

The formation of waves is explained by inequalities of hydro-
static pressure arising in the liquid if by any cause one part of it
be elevated above the rest. H.and W. Weber examined the peculi-
arities of waves in water and the motions of the water particles in
them by the aid of a long trough with glass sides; by immersing one
end of a glass tube below the surface, raising a column of water in
it a few centimetres high by suction, and allowing it to fall, they
excited a series of waves which proceeded down the trough and
could be examined through the sides. The motions of the particles
in the wave were studied by scattering through the water small
fragments of amber, which were so nearly of the same specific gravity
as the water that they remained suspended without motion except
during the passage of the wave, and took part in the motion ex-
cited by the wave as if they had been particles of water. It was
found that the wave motion was a form of motion transferred from
one portion to another of the water, and did not involve a displace-
ment of the particles concerned in it,—at least when the successive
waves had the same wave length. In that case—which is the typi-
cal one—the particles in the surface of the water described closed
curves, which were elliptical or circular in form, the diameter of
the circle being equal to the vertical distance between the crest and
the hollow or the keitght of the wave. In the upper part of the
circle the particle moved in the direction in which the wave was
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of the front of the crest becomes still steeper becanse of the re-
straint which then is imposed upon the movement of the particles
in the lower half of their paths, and at last the forward motion in
the crest 8o much predominates that the wave curls over and breaks.

122. Vortices.—A series of most interesting results has been ob-
tained by Helmholtz, Thomson, and others, from the discussion of
the rotational motions of fluids. Though' the proofs are of such a
nature that they cannot be presented here, the results are so im-
portant that they will be briefly stated.

A vortex line is defined as the line which coincides at every
point with the instantaneous axis of rotation of the fluid element
at that point. A vortex filament is any portion of the fluid bounded
by vortex lines.

A vortez is a vortex filament which has “contiguous to it over
its whole boundary irrotationally moving fluid.”

The theorems relating to this form of motion, as first proved by
Helmholtz, in 1868, show that,—

(1) A vortex in a perfect fluid always contains the same fluid
elements, no matter what its motion through the surrounding fluid
may be.

(2) The strength of a vortex, which is the product of its angu-
lar velocity by its cross-section, is constant; therefore the vortex in
an infinite fluid must always be a closed curve, which, however,
may be knotted and twisted in any way whatever.

(3) In a finite fluid the vortex may be open, its two ends termi-
nating in the surface of the fluid.

(4) The irrotationally moving fluid around a vortex has a mo-
tion due to its presence, and transmits the influence of the motion
of one vortex to another. _

(5) If the vortices considered be infinitely long and rectilinear,
any one of them, if alone in the fluid, will remain fixed in position.

(6) If two such vortices be present parallel to one another, they
revolve about their common centre of mass,

(7) If the vortices be circular, any one of them, if alone, moves
with a constant velocity along its axis, at right angles to the plane
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The working portion of the air-pump is constructed essentially
like the common lifting-pump already described. The valves must
be light and accurately fitted. The vessel from which the air is to
be exhausted is joined to the pump by a tube, the orifice of which
is closed by the valve in the bottom of the cylinder.

A special form of vessel much used in connection with the air-
pump is called the receiver. It is usually a glass cylinder, open at
one end and closed by a hemispherical portion at the other. The
edge of the cylinder at the open end is ground perfectly true, so
that all points in it are in the same plane. This ground edge fits
upon a plane surface of roughened brass, or ground glass, called the
plate, through which enters.the tube which joins the receiver to the
cylinder of the pump. The joint between the receiver and the
plate is made tight by a little oil or vaseline.

The action of the pump is as follows: As the piston is raised,
the pressure on the upper surface of the valve in the cylinder is
diminished, and the air in the vessel expands in accordance with
Boyle’s law, lifts the valve, and distributes itself in the cylinder, so
that the pressure at all points in the vessel and the cylinder is the
same. The piston is now forced down, the lower valve is closed by
the increased pressure on its upper surface, the valve in the piston
is opened, and the air in the cylinder escapes. At each successive
stroke of the pump this process is repeated, until the pressure of
the remnant of air left in the vessel is no longer sufficient to lift
the valves.

The density of the air left in the vessel after a given number of
strokes is determined, provided there be no leakage, by the relations
of the volumes of the vessel and the cylinder.

Let V represent the volume of the vessel, and C that of the
cylinder when the piston is raised to the full extent of the stroke.
Let d and d, respectively represent the density of the air in the
vessel before and after one stroke has been made. After one down
and one up stroke have been made, the air which filled the volume

d __V e
V now fills ¥V 4+ C. It follows that i-7F¥C As this ratio is
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ple, discussed in § 120, that a stream of liquid running down a
cylinder diminishes the pressure upon its walls. In the Sprengel
pump the liquid used is mercury. It runsfrom a large vessel down
a glass tube, into the wall of which, at a distance from the bottom
of the tube of more than 760 millimetres, enters the tube which
connects with the receiver. The lower end of the vertical tube
dips into mercury, which prevents air from passing up along the
walls of the tube. 'When the stream of mercury first begins to flow,
the air enters the column from the receiver, in consequence of the
diminished pressure, passes down with the mercury in large bub-
bles, and emerges at the bottom of the tube. As the exhaustion
proceeds, the bubbles become smaller and less frequent, and the
mercury falls in the tube with a sharp, metallic sound. It is evi-
dent that, as in the case of the ordinary air-pump, a perfect vacaum
cannot be secured. There is no leakage, however, in this form of
the air-pump, and a very high degree of exhaustion can be reached.

The Morren or Alvergniat mercury-pump is in principle merely
a common air-pump, in which combinations of stop-cocks are used
instead of valves, and a column of mercury in place of the piston.
Its particular excellence is that there is scarcely any leakage.

The compressing-pump is used, as its name implies, to increase
the density of air or any other gas within the receiver. The re-
ceiver in this case is generally a strong metallic vessel. The work-
ing parts of the pump are precisely those of the air-pump, with the
exception that the valves open downwards. As the piston is raised,
air enters the cylinder, and is forced into the receiver at the down-
stroke.

124. Manometers.—The manometer is an instrument used for
measuring pressures. One variety depends for its operation upon
the regularity of change of volume of a gas with change of pres-
sure. This, in its typical form, consists of a heavy glass tube of
uniform bore, closed at one end, with the open end immersed in a
basin of mercury. The pressure to be measured is applied to the
surface of the mercuryin the basin. As this pressure increases,
the air contained in the tube is compressed, and a column of mer-
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sures the gas follows Boyle’s law quite closely, becoming, however,
more compressible as the pressure increases, until the minimum
value of pv is reached. It then becomes gradually less compressi-
ble, and at high pressures its volume is much greater than that
determined by Boyle’s law. If the temperature be raised, the
agreement with the law is closer, and the pressure at which the
minimum value of pv occurs is greater. Hydrogen seems to differ
from the other gases, only in that the pressures at which the ob-
servations upon it were made were probably greater than the one
at which its minimum value of pv occurs. The volume of the
compressed hydrogen is uniformly greater than that required by
Boyle’s law.

Important modifications are introduced into the behavior of
gases under pressure by subjecting them to intense cold. It is then
found that all gases, without exception, can be liquefied, and most
of them solidified.

The subject is intimately connected with the subject of critical
temperature, and will be again discussed under Heat.
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flame in a mirror which is turned from side to side, while the flame
is quiescent, it appears drawn out into a broad band of light, but
when it is agitated by a sound near it, it appears serrate on its
upper edge or even as a series of separate flames. This lengthening
and shortening of the flame is evidence of a to-and-fro movement
of the membrane, and hence of the sounding body that gave rise
to the movement. If a hole be made in the side of an organ-pipe
and the capsule made to cover it, the vibrations of the air-column
within the pipe may be shown. By suitable devices the vibratory
motion of all sounding bodies may be demonstrated.

129. Propagation of Sound.—The vibratory motion of a sound-
ing body is ordinarily transmitted to the ear through the air. This
is proved by placing a sounding body under the receiver of an air-
pump and exhausting the air. The sound becomes fainter and
fainter as the exhaustion proceeds, and finally becomes inaudible if
the vacuum is good. Sound may, however, be transmitted by any
elastic body.

In order to study the character of the motion by which sound
is propagated, let us suppose 4B (Fig. 43) to represent a cylinder

’ 7 »
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Fia. 48.

of some elastic substance, and suppose the layer of particles a to
suffer a small displacement to the right. The effect of this dis-
placement is not immediately to move forward the succeeding
layers, but @ approaches b, producing a condensation, and develop-
ing a force that soon moves b forward; this in turn moves forward
the next layer, and 8o the motion is transmitted from layer to layer
through the cylinder with a velocity that depends upon the elas-
ticity (8 103) of the substance, and upon its density. This velocity

is expressed by the formula ¥V = 4/ %, in which Z represents the

elasticity of the substance,and D its density (§ 134). Now, if we
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y=0. Torz=4A,y=—a Forz=3Ay=0. Forz=iA,
y=a. Forz=A1,y =0, etc. Laying off these values of z on
OX and erecting perpendiculars equal to the corresponding values
of y, we have the curve Obcds . . . .

The above expression for ¥ may be put in the form

? s
y=asin27t(_T___ .
A

Hence, if any finite value be assigned to #, we shall obtain for y
the same values as were obtained above for £ = 0, if we increase

each of the values of z by % For instance, if ¢ equal 17, we

havey = 0 for z = A, y = — a for z = }A, ete,, and the curve
becomes the dotted line &'¢’d’ . . . . The effect of increasing ¢ is
to displace the curve along OX in the direction of propagation
of the wave.

The formula for constructing the curve of velocities is derived
in the same way as that for displacements, It is

= 2%a co8 271'(i - :_c)
V=" N\F ")
Fig. 46 shows the relation of the two curves. The upper is the
curve of displacement, and the lower of velocity.

Fig. 46.

132. Composition of Wave Motions.—The composition of wave
motions may be studied by the help of the curves explained above.
If two systems of waves coexist in the same body, the displacement
of any particle at any instant will be the algebraic sum of the dis-
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as 1:2. It will be noticed that the resultant curve is no longer a

ar

III

IV -

VI

VII -

VIIiI

IX

Fia. 49.

simple sinusoid.

_In the same way the resultant
wave may be constructed for any
number of wave systems having any
relation of wave lengths, amplitudes,
and phases. A very important case
is that of two wave systems of the

same period moving in opposite di-

rections with the same velocity. In
this case the two systems no longer
maintain the same relative positions,
and the resultant curve is not dis-
placed along the axis, but continu-
ally changes form. In Fig. 49 let the
full and dotted lines in I represent,
at a given instant, the displacements
due to the two waves respectively.
The resultant is plainly the straight
line ab, which indicates that at that
instant there is no displacement of
any particle. At an instant later by
} period, as shown in II, the wave
represented by the full line has
moved to the right } wave length,
while that represented by the dotted
line has moved to the left the same
distance. The heavy line indicates
the corresponding displacements.
In III, IV, V, etc., the conditions at
instants }, 3, §, etc., periods later are
represented. A comparison of these
figures will show that the particles

at ¢ and d are always at rest, that the particles between ¢ and d all
move in the same direction at the same time, and that particles on
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medium reaches the boundary, the bounding particles, instead of

stopping with a displacement such as they would reach in the in-

terior of the medium, move to a greater distance, and this move-

ment is communicated back from particle to particle as a reflected

wave, In which the motion has the same sign as in the direct wave.

It is reflection without change of sign. The two latter cases are

extremely important in the study of the formation of stationary
waves in sounding bodies.

Let us suppose a system of spherical waves departing from

the point C (Fig. 50). Let mn be the intersection of one of the

waves with the plane of the

paper. Let 4B be the trace of

. a plane smooth surface perpen-

dicular to the plane of the pa-

per, upon which the waves im-

- . pinge. mo shows the position

which the wave of which mn

is a part would have occupied

had it not been intercepted by

the surface. From the last sec-

tion it appears that reflection will

Fra. 50. take place as the wave mno

strikes the various points of 4B. In § 130 it was seen that any

point of a wave may be considered as the centre of a wave system,

and we may therefore take n’, n’’, etc., the points of intersection

of the surface 4B with the wave mn when it occupied the positions

m’n’, m’’n’’, etc., as the centres of systems of spherical waves, the

resultant of which would be the actnal wave proceeding from A4 B.

With n’ as a centre describe a sphere tangent to mno at 0. It is

evident that this will represent the elementary spherical wave of

which the centre 1s »’ when the main wave is at m#n. Describe

gimilar spheres with n’/, n’”’, etc., as centres. The surface np,

which envelops and is tangent to all these spheres, represents the

wave reflected from AB. If that part of the plane of the paper

below AB be revolved about AB as an axis until it coincides with
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of the particles in it at any instant will be always the same. Let
us call this velocity »,. The velocity of the cross-section relative
to the moving particles in it is then ¥V — v,. If we represent by
d, the density of the medium at the cross-section through which
the velocity of the particles is v,, which is the same for all positions
of the moving cross-section, and if we assume that the area of the
cross-section is unity, then the quantity of matter M wifich passes
through the moving cross-section in unit time is M = dy(V — v,).

If we conceive any other cross-section B to be moving with the
disturbance in a similar manner, the same quantity of matter 2/
will pass through it in unit time, since the two cross-sections move
with the same velocity and the density of the matter between them
remains the same. Hence we have M = d,(V — v,), where d» and
v, represent the quantities at the cross-section B corresponding to
those at the cross-section 4 represented by d, and v,. Hence
d,(V — v,) = dy(V — vp). Since this equation is true whatever be
the distance between the cross-sections, it is true for that position
of the cross-section B for which v, = 0, and for which d, = D, the
density of the medium in its undisturbed condition. Hence we
have M = DV, d,(V — v,) = DV, and

v, d,—D
V=4 (59)

If the disturbance be small, the expression on the right is ap-
proximately the condensation per unit volume of the medium at
the cross-section 4, and the equation shows that the ratio of the
velocity of the matter passing through the cross-section 4 to the
velocity of propagation of the disturbance is equal to the conden-
sation at that cross-section. :

Now, to eliminate the unknown quantities v, and d,, we must
find a new equation involving them. A quantity of matter M en-
ters the region between the two moving cross-sections with the
velocity v,, and an equal quantity leaves the region with the veloc-
ity v,. The difference of the momenta of the entering and out-
going quantities is M(v, — v,). This difference can only be due to
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The formula for velocity then becomes V = 1/ ’;P(l + at). This

formula shows that the velocity at any temperature is the velocity
at 0° multiplied by the square root of the factor of expansion.

136. Measurements of the Velocity of Sound.—The velocity of
sound in air has been measured by observing the time required for
the report of a gun to travel a known distance.

One of the best determinations was that made in Holland in
1822. Guns were fired alternately at two stations about nine miles
apart. Observers at one station observed the time of seeing the
flash and hearing the report from the other. The guns being fired
alternately, and the sound travelling in opposite directions, the
~effect of wind was eliminated in the mean of the results at the two
stations. It is possible, by causing the sound-wave to act upon dia-
phragms, to make it record its own time of departure and arrival,
and by making use of some of the methods of estimating very small
intervals of time the velocity of sound may be measured by experi-
ments conducted within the limits of an ordinary building.

The velocity of sound in water was determined on Lake Geneva
in 1826 by an experiment analogous to that by which the velocity
in air was determined.

In § 144 and § 146 it is shown that the time of one vibration of
any body vibrating longitudinally is the time required for a sound-
wave to travel twice the distance between two nodes. The velocity
may, therefore, be measured by determining the number of vibra-
tions per second of the sound emitted, and measuring the distance
between the nodes.

In an open organ-pipe, or & rod free at both ends, when the
fundamental tone is sounded the sound travels twice the length of
the rod or pipe during the time of one complete vibration. If rods
of different materials be cut to such lengths that they all give the
same fundamental tone when vibrating longitudinally, the ratio of
their lengths will be that of the velocity of sound in them.

In Kundt’s experiment, the end of a rod having a light disk at-
tached is inserted in a glass tube containing a light powder strewn
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over its ianer surface. When the rod is made to vibrate longitudi-
nally, the air-column in the tube, if of the proper length, is made
to vibrate in unison with it. This agitates the powder and causes
it to indicate the pogitions of the nodes in the vibrating air-column,
The ratio of the velocity of sound in the solid to that in air is thus
the ratio of the length of the rod to the distance between the nodes
in the air-column.



CHAPTER IL
SOUNDS AND MUSIC.
COMPARISON OF SOUNDS.

137. Musical Tones and Noises.—The distinction between the
impressions produced by musical tones and by noises is familiar to
all. Physically, a musical fone is a sound the vibrations of which
are regular and periodic. A noise is a sound the vibrations of
which are very irregular. It may result from a confusion of musi-
cal tones, and is not always devoid of musical value. The sound
produced by a block of wood dropped on the floor would not be
called a musical tone, but if blocks of wood of proper shape and
size be dropped upon the floor in succession, they will give the tones
of the musical scale.

Musical tones may differ from one another in ptéch, depending
upon the frequency of the vibrations; in loudness, depending upon
the amplitude of vibration; and in gualify, depending upon the
manner in which the vibration is executed. In regard to pitch,
tones are distinguished as high or low, acute or grave. In regard
to loudness, they are distinguished as loud or soff. The quality ot
musical tones enables us to distinguish the tones of different instru-
ments even when sounding the same notes.

138. Methods of Determining the Number of Vibrations of a
Musical Tone.—That the pitch of a tone depends upon the fre-

quency of vibrations may be simply shown by holding the corner of
164
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The number of vibrations of a sounding body may sometimes be

]
8

Fra. 52.

16:15

determined by attaching to it a light stylus
which is made to trace a curve upon a
smoked glass or cylinder. Instead of at-
taching a stylus to the sounding body di-
rectly, which is practicable only in a few
cases, it may be attached to a membrane
which is caused to vibrate by the sound-
waves which the body generates. A mem-
brane reproduces very faithfully all the
characteristics of the sound-waves, and the
curve traced by the stylus attached to it
gives information, therefore, not only in
regard to the number of vibrations, but to
some extent in regard to their amplitude
and form.

PHYSICAL THEORY OF MUSIC.

139. Concord and Discord. —When two
or more tones are seunded together, if the
effect be pleasing there is said to be con-
cord ; if harsh, discord. To understand
the cause of discord, suppose two tones of
nearly the same pitch to be sounded to-
gether. The resultant curve, constructed
as in § 13?, is like those in Fig. 52, which
represent the resultants when the periods
of the components have the ratio 81 : 80
and when they have the ratio 16 : 15. The
figure indicates, what experiment verifies,
that the resultant sound suffers periodic
variations in intensity. When these varia-
tions occur at such intervals as to be read-

ily distinguished, they are called deals. These beats occur.more
and more frequently as the numbers expressing the ratio of the
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MAJOR SCALE,

1 2
Tone Number....ceeeee. o 1 2 8 4 65 6 7 8 9
Letter.ce.ceeiinceccesnnses C D E F G A B CUD
Name......covvnvenne eseees doorutre mi fa sol la si ut re
Number of vibrations....... m $m f{m §m §m fm P¥m 2m m
Intervals from tone to tone.. t Y H £ ¥ I u

MINOR SCALE,

Tone Number...ccoeeessses 1 2 8 4 656 6 7 8 9
Letter....... A B C D E F G AP
Name....oviveeecconncscnns la. si ut re mi fa sol la si
Number of vibrations....... mfm fm fm §m fm $m 2m $m

Intervals from tone to tone. . 3 Y 2 B &tV

The derivation of the names of the intervals will now be appar-
ent. For example, an interval of a third is the interval between
any tone of the scale and the third one from it, counting the first
as 1. If we consider the intervals from tone to tone, it is seen that
the pitch does not rise by equal steps, but that there are three
different intervals, §, 12, and }§.. The first of these intervals is
called a major fone, the second, a minor fone. The third interval
is called a limma.

It is desirable to be able to use any tone of a musical instru-
ment as the first tone or fonic of a musical scale. To permit this,
when the tones of the instrument are fixed, it is plain that extra
tones, other than those of the simple scale, must be provided in
order that the proper sequence of intervals may be maintained.
Suppose the tonic to be transposed from C to D. The semitones
should now come, in the major scale, between F and G, and C’ and
D', instead of between E and F, and B and C’. To accomplish
this, a tone must be substituted for F and another for C’. These
are called F sharp and C’ sharp respectively, and their vibration
numbers are determined by multiplying the vibration numbers of
the tones which they replace by $§. The introduction of five such
extra tones, making twelve in the  octave, enables us to preserve
the proper sequence of whole tones and semitones, whatever tone is






CHAPTER IIL
VIBRATIONS OF SOUNDING BODIES.

143. General Considerations.—The principles developed in § 133
apply directly in the study of the vibrations of sounding bodies.
When any part of a body which' is capable of acting as a sounding
body is set in vibration, a wave is propagated through it to its
boundaries, and is there reflected. The reflected wave, travelling
away from the boundary, in conjunction with the direct wave
going toward it, produces a stationary wave. These stationary
waves are characteristic of the motion of all sounding bodies.
Fixed points of a body often determine the position of nodes, and
in all cases the length of the wave must have some relation to the
dimensions of the body.

144. Organ Pipes.—A column of air, enclosed in a tube of
suitable dimensions, may he made to vibrate and become a sound-
ing body. Let us suppose a tube closed at one end and open at
the other. If the air particles at the open end be suddenly moved
inward, a pulse travels to the closed end, and is there reflected
with change of sign (§133). It returns to the open end and is
again reflected, this time without change of sign, because there is
greater freedom of motion without than within the tube. As it
starts again toward the closed end, the air particles that compose
it move outward instead of inward. If they now receive an inde-
pendent impulse outward, the two effects are added and a greater
disturbance results. So, by properly timing small impulses at the
open end of the tube, the air in it may be made to vibrate strongly.

If a continuous vibration be maintained at the open end of the

tube, waves follow each other up the tube, are reflected with
170
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This lowest tone of the tube is called the fundamental, and
the others are called overfones, or harmonics. These simple rela-
tions between the length of the tube and length of the wave are
only realized when the tubes are so narrow that the air particles
lying in a plane cross-section are all actuated by the same move-
ment. This is never the case at the open end of the tube, and the
distance from this end to the first node is, therefore, always less
than a quarter wave length.

145. Modes of Exciting Vibrations in Tubes.—If a tuning-fork
be held in front of the open mouth of a tube of proper length,

the sound of the fork is strongly reinforced by the

vibration of the air in the tube. If we merely blow

across the open end of a tube, the agitation of the

air may, by the reaction of the returning reflected

pulses, be made to assume a regular vibration of the

proper rate and the column made to sound. In
' organ pipes a mouthpiece of the form
Y shown in Fig. 54 is often employed. The
thin sheet of air projected against the thin
N edge is thrown into vibration. Those ele-
s ments of this vibration which correspond
in frequency with the pitch of the pipe
are strongly reinforced hy the action ot
the stationary wave set up in the pipe, and
hence the tone proper to the pipe is pro-
duced. Sometimes reeds are used, as shown in Fig. 54a. The air
escaping from the chamber a through the passage ¢ causes the
reed 7 to vibrate. This alternately closes and opens the passage,
and so throws into vibration the air in the pipe. If the reed be
gtiff, and have a determined period of vibration of its own, it must
be tuned to suit the period of the air-column which it is intended
to set in vibration. If the reed be very flexible, it will accommo-
date itself to the rate of vibration of the air-column, and may then
serve to produce various tones, as in the clarionet.

In instruments like the cornet and bugle the lips of the player

Fia. 54a. Fie. 54.
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length. The number of vibrations is inversely as the length of the
cord, directly as the square root of the tension, and inversely as
the square root of the mass per unit length.

149, Transverse Vibrations of Rods, Plates, etc.—The vibrations
of rods, plates, and bells are all cases of stationary waves resulting
from systems of waves travelling in opposite directions. Subdivi-
sion into segments occurs, but in these cases the relations of the
various overtones are not so simple as in the cases before consid-
ered. For a rod fixed at one end, sounding its fundamental tone,
there is a node at the fixed end only. For the first overtone there
is a second node near the free end of the rod, and the number of
vibrations is a little more than six times the number for the funda-
mental,

A rod free at both ends has two nodes when sounding its funda-
mental, as shown in Fig. 55. The distance of these nodes from the

__ ends is about § the length of the rod.

=== If the rod be bent, the nodes approach

Fie. 85. the centre until, when it has assumed the

U form like a tuning-fork, the two nodes are very near the centre.
This will be understood from Fig. 56,

Fia. 56.

The nodal lines on plates may be shown by fixing the plate in
a horizontal position and sprinkling sand over its surface. When
the plate is made to vibrate, the sand gathers at the nodes and
marks their position. The figures thus' formed are known as

Chladni’s figures.
150. Resonance.—If several pendulums be suspended from the
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ing-forks made by Konig are mounted are of such dimensions that the
enclosed body of air will vibrate in unison with the fork, but they are
purposely made not quite of the dimensions for the best resonance,
in order that the forks may not too quickly be brought to rest.

A membrane or a disk, fastened by its edges, may respond to
and reproduce more or less faithfully a great variety of sounds.
Hence such disks, or diaphragms, are used in instruments like the
telephone and phonograph, designed to reproduce the sounds of
the voice. The phonograph consists of a mouthpiece and disk
similar to that used in the telephone, but the disk has fastened to
its centre, on the side opposite the mouthpiece, a short stiff stylus,
which serves to record the vibrations of the disk upon a sheet of
tinfoil or wax moved along beneath it. The wax is in the form of
a cylinder mounted on an axle moved by a screw working in a
fixed nut, so that when the cylinder revolves it has also an end-
wise motion, such that a fixed point would follow a spiral track on
its surface. To use the instrument, the disk is placed in position
with the stylus attached and slightly indenting the wax. The cyl-
inder is revolved while sounds are produced in front of the disk.
The disk vibrates, causing the stylus to indent the wax more or less
deeply, so leaving a permanent record. If now the cylinder be
turned back to the starting-point and then turned forward, causing
the stylus to go over again the same path, the indentations pre-
viously made in the wax now cause the stylus, and consequently the
disk, to vibrate and reproduce the sound that produced the record.

The sounding-boards of the various stringed instruments are
m effect thin disks, and afford examples of the reinforcement of
vibrations of widely different pitch and quality by the same body.
The strings of an instrument are of themselves insufficient to com-
municate to the air their vibrations, and it is only through the
sounding-board that the vibrations of the string can give rise to
audible sounds. The quality of stringed instruments, therefore,
depends largely upon the character of the sounding-board. '

The tympanum of the ear furnishes another example of the
facility with which membranes respond to a great variety of sounds.
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tion to one another. These may be produced simultaneously by
the same body, and so give rise to complex tones, the character of
which will vary with the nature and intensity of the simple tones
produced. It has been held that the quality of a complex tone is
not affected by change of phase of the component simple tones
relative to each other. Some experiments by Konig seem to indi-
cate, however, that the quality does change when there is merely
change of phase.

Fie. 58.

In Fig. 58 are shown three curves, each representing a funda-
mental accompanied by the harmonics up to the tenth. The
curves differ only in the different phases of the components rela-
tive to each other.

Fig. 59 shows similar curves produced by a fundamental accom-
panied by the odd harmonics.

Fie. 59.
152. Resonators for the Study of Complex Tones.—An apparatus

devised by Helmholtz serves to analyze complex tones and indicate
the simple tones of which they are composed. It consists of a series
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to the rear of the capsule, and singing into it the different vowel
sounds, the flame images assume distinct forms for each. Some of
these forms are shown in Fig. 60.

154. Optical Method of Studying Vibrations.— The vibratory
motion of sounding bodies may sometimes be studied to advantage

by observing the lines traced by luminous points upon the vibrating

Fia. 61.
body or by observing the movement of a beam of light reflected from
a mirror attached to the body.

Young studied the vibrations of strings by placing the string
where a thin sheet of light would fall across it, so as to illuminate
a single point. When the string was caused to vibrate, the path of
the point appeared as a continuous line, in consequence of the per-
- sistence of vision. Some of the results which he obtained are given
in Fig. 61, taken from Tyndall on Sound.

The most interesting application of this method was made by
Lissajous to illustrate the composition of vibratory motions at right
angles to each other. If a beam of light be reflected to a screen
from a mirror attached to a tuning-fork, when the tuning-fork
vibrates the spot on the screen will describe a simple harmonic
motion and will appear as a straight line of light. If the beam,
instead of being reflected to a screen, fall upon a mirror attached
to a second fork, mounted so as to vibrate in a plane at right angles
to the first, the spot of light will, when both forks vibrate, be
actuated by two simple harmonic motions at right angles to each
other, and the resultant path will appear as a curve more or less
complicated, depending upon the relation of the two forks to each
other as to both period and phase (§ 21). Fig. 62 shows some of
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3n + m vibrations, for instance, the first difference tone would make
2n + m vibrations. Thistone and the one making # vibrations would
give the tone making » + m vibrations; this tone, in turn, and the
one making n vibrations would give the tone making m vibrations.
This last tone is the one which is heard most plainly, and it seems
difficult to admit that it can be the resultant of tones which are only
heard very feebly, and often not at all. In Fig. 64 are represented
the resultant curves produced in several of these cases. The first
curve corresponds to two tones of which the vibration numbers are
as 15 : 16. It shows the periodic increase and decrease in ampli-
tude, occurring once every 15 vibrations, which, if not too frequent,
give rise to beats (§ 139). If the pitch of the primaries be raised,
preserving the relation 15:16, the beats become more frequent, and
finally a distinct tone is heard, the vibration number of which cor-
responds to the number of beats that should exist. It was for along
time considered that the resultant tone was merely the rapid recur-
rence of beats. Helmholtz has shown by a mathematical investi-
gation that a distinct wave making m vibrations will result from
the coexistence of two waves making » and » - m vibrations, and
he believes that mere alternations of intensity, such as constitute
beats, occurring ever so rapidly cannot produce a tone.

In II and III (Fig. 64) are the curves resulting from two tones,
the intervals between which are respectively 15:29(=2 X 15 — 1)
and 15:31(=2 X 15 4+ 1). Running through these may be seen
a periodic change corresponding exactly in period to that shown in
I. The same is true also of the curve in IV, which is the resultant
for two tones the interval between which is 15:46(=3Xx15+1). In
all these cases, as has been already said (§ 155), if the pitch of the
components be not too high, one beat is heard for every 15 vibra-
tions of the lower component. Fig. 63 shows the flame images tor
the intervals #n:n 4+ m and n:2n + m. The varying amplitudes
resulting in m beats per second are very evident in both. In all
these cases, also, as the pitch of the components rises the beats be-
come more frequent, and finally a resultant tone is heard, having,
as already stated, one vibration for every 15 vibrations of the lower
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component. In Fig. 65 are shown two resultant curves having

11629

II

Fira. 65.

{'.hree components of which the vibration numbers are as 1:15: 29.
In I the three componentsall start in the same phase. In II, when
15 and 29 are in the same phase, I is in the opposite phase.



HEAT,

CHAPTER 1.
MEASUREMENT OF HEAT.

157. General Effects of Heat.—Bodies are warmed, or their
temperature is raised, by heat. The sense of touch is often suffi-
cient to show difference in temperature; but the true criterion is
the transfer of heat from the hotter to the colder body when the
two bodies are brought in contact, and no work is done by one
upon the other. This transfer is known by some of the effects
described below.

Bodies, in general, expand when heated. Experiments show
that different substances expand differently tor the same rise of tem-
perature. (ases, in general, expand more than liquids, and hiquids
more than solids. Expansion, however, does not universally ac-
company rise of temperature. A few substances contract when
heated. .

Heat changes the state of aggregation of bodies, always in such
a way as to admit of greater freedom of motion among the mole-
cules. The melting of ice and the conversion of water into steam
are familiar examples.

Heat breaks up chemical compounds. The compounds of
godium, potassium, lithium, and other metals, give to the flame of
a Bunsen lamp the characteristic colors ot the vapors of the metals

186
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boiling-point by the friction of a blunt boring-tool within the bore
of a cannon. He showed that the heat manifested in this experi-
ment could not have come from any of the bodies present, and
also that heat would continue to be developed as long as the borer
continued to revolve, or that the supply of heat was practically
inexhaustible. The heat, therefore, must have been generated by
the friction.

That ice is not melted by the combination with it of a heat
substance was shown early in the present century by Davy. He
caused ice to melt by friction of one piece upon another in a vac-
uum, the experiment being performed in a room where the tem-
perature was below the melting-point of ice. There was no source
from which heat could be drawn. The ice must, therefore, have -
been melted by the friction. :

Rumford was convinced that the heat obtained in his experi-
ment was only transformed mechanical energy; but to demonstrate
this it was necessary to prove that the quantity of heat produced
was always proportional to the quantity of mechanical work done.
This was done in the most complete manner by Joule in & series
of experiments extending from 1842 to 1849. He showed that,
however the heat was produced by mechanical means, whether by
the agitation of water by a paddle-wheel, the agitation of mercury,
or the friction of iron plates upon each other, the same expendi-
ture of mechanical energy always developed the same quantity of
heat. Joule also proved the perfect equivalence of heat and elec-
trical energy.

These experiments prove that keat is a form of emergy. Con-
sistent explanations of most if not all of the phenomena of heat
may be given if we assume that the molecules of bodies, and the
atoms constituting the molecules, are in constant motion, that the
temperature of a body varies with the mean kinetic energy of an
atom, and that the heat in a body is the sum of the kinetic energies
of its atoms.






190 " ELEMENTARY PHYSICS, [§ 161

reached by the end of the mercury column is marked on the stens,
as before. The space between these two marks is then divided
into a number of equal parts.

While all makers of thermometers have adopted the same stand-
ard temperatures for the fixed points of the scale, they differ as to
the number of divisions between these points. The thermometers
used for scientific purposes, and in general use in France, have the
space between the fixed points divided into a hundred equal parts
or degrees. The melting-point of ice is marked 0°, and the boiling-
point 100°. This scale is called the Centigrade or Celsius scale.

The Réaumur scale, in use in Germany, has eighty degrees
between the melting- and boiling-points, and the boiling-point is
marked 80°.

The Fahrenheit scale, in general use in England and America,
has a hundred and eighty degrees between the melting- and boil-
ing-points. The former is marked 32°, and the latter 212°.

The divisions in all these cases are extended below the zero
point, and are numbered from zero downward. Temperatures
below zero must, therefore, be read and treated as negative quan-
tities.

A few points in the process of construction of a thermometer
deserve notice. It is found that glass, after it has been heated to
a high temperature, and again cooled, does not for some time return
to its original volume. The bulb of a thermometer must be heated
in the process of filling with mercury, and it will not return to its
normal volume for some months. The construction of the scale
should not be proceeded with until the reservoir has ceased to con-
tract. For the same reason, if the thermometer be used for high
temperatures, even the temperature of boiling water, time must be
given for the reservoir to return to its original volume before it is
used for the measurement of low temperatures.

It is essential that the diameter of the tube should be nearly
uniform throughout, and that the divisions of the scale should rep-
resent equal capacities in the tube. To test the tube a thread of
mercury about 50 millimetres long is introduced, and its length is






192 ELEMENTARY PHYSICS. [§ 163

the air-thermometer is taken as the standard instrument for scien-
tific purposes. Its use, however, involves several careful observa-
tions and tedious computations. It is therefore mainly employed
as a standard with which to compare other instruments. If we
make such a comparison, and construct a table of corrections, we
may reduce the readings of any thermometer to the corresponding
readings of the air-thermometer.

163. Limits in the Range of the Mercurial Thermometer.—The
range of temperature for which the mercurial thermometer may be
employed is limited by the freezing of the mercury on the one
hand, and its boiling on the other. For temperatures below the
freezing-point of mercury alcohol thermometers may be used. For
the measurement of high temperatures several different methods
have been employed. One depends upon the expansion of a bar
of platinum, another upon the variation in the electric resistance
of platinum wire, another upon the strength of the electric current
generated by a thermo-electric pair, another on the density of mer-
cury vapor.

The special devices used in applying these methods need not be
considered here.

CALORIMETRY.

164. Unit of Heat.—It is evident that more heat is required to
raise the temperature of & large quantity of a substance through a
given number of degrees than to raise the temperature of a small
quantity of the same substance through the same number of degrees.
It is further evident that the successive repetition of any operation
by which heat is produced will generate more heat than a single
operation. Heat is therefore a quantity the magnitude of which
may be expressed in terms of some unit. The unit of heat gen-
erally adopted is the heat required to raise the temperature of one
kilogram of water from zero to one degree. It is called a calorie.

It is sometimes convenient to employ a smaller unit, namely,
the quantity of heat necessary to raise one gram of water from zero
to one degree. This unit is designated as the lesser calorie or the
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degree as is required to raise the temperature of a kilogram of water
through the same range. In order to raise the temperatures of
other substances through the same range, quantities of heat peculiar
to each substance are required.

The quantity of heat required to raise the temperature of one
kilogram of a substance from zero to one degree is called the specific
heat of the substance.

If the temperature of one kilogram of a substance rise from ¢,
to 7, the limit of the ratio of the quantity of heat required to bring
about the rise in temperature to the difference in temperature, as
that difference diminishes indefinitely, is called the specific heat of
the substance at temperature f. If we represent the quantity of

7 _? 7= %tq— expresses this specific

heat by @, the limit of the ratio

heat.

The specific heats of substances are generally nearly constant
between zero and one hundred degrees. The mean specific heat of
a substance between zero and one hundred degrees is the one usually
given in the tables.

The measurement of specific heat is one of the important objects
of calorvmetry. .

167. Ice Calorimeter.—Black’s or Wilcke’s ice calorimeter con-
sists of a block of pure ice having a cavity in its interior covered by
a thick slab of ice. The body of which the specific heat is to be
determined is heated to ¢ degrees, then dropped into the cavity,
and immediately covered by the slab. After a short time the tem-
perature of the body falls to zero, and in so doing converts a certain
quantity of ice into water. This water is removed by a sponge of
known weight, and its weight is determined. It will be shown,
that to melt a kilogram of ice requires 80 calories; if, then, the
weight of the body be P, and its specific heat ¢, it gives up, in falling
from ¢ degrees to zero, Pct calories. On the other hand, if p kilo-
grams of ice be melted, the heat required is 80p. Therefore

Pct = 80p; whence
80p
c = ﬁ. (61)
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tained in the calorimeter. The whole will soon come to a common
temperature 6. The heat lost by the substance is Pc(#’ — 6) calories.
The heat gained by the calorimeter is the sum of that gained
by the water and that gained by the materials of which the calo-
rimeter is constructed. If p represent the mass of water, and p’
the water equivalent of the calorimeter, or the mass of water which
will rise by the same temperature interval as the calorimeter vessel
does on the introduction of a given quantity of heat, the total heat
gained by the calorimeter is (p + p’)(@ — ¢); and hence

Po(t’ — 0) = (p +p)(0 — 0), (62)

from which ¢ may be determined. The water equivalent p’ is de-
termined by experiment. .

There is a source of error in the use of the instrument, due to.
the radiation of heat during the experiment. This error may be
nearly eliminated by making a preliminary experiment to determine
what change of temperature the calorimeter will experience; then,
for the final experiment, the calorimeter and its contents are
brought to a temperature below the temperature of the surround-
ing air, by about half the amount of that change. The calorimeter
will then receive heat from the surrounding medium during the
first part of the experiment, and lose heat during the second part.
The rise of temperature is, however, much more rapid at the begin-
ning than at the end of the experiment. The rige from the initial
temperature to the temperature of the surrounding medium occu-
pies less time than the rise from the latter to the final temperature.
The gain of heat, therefore, does not exactly compensate for the
loss. If greater accuracy be required, the rate of cooling of the
calorimeter must be determined by putting into it warm wa‘ter, the
same in quantity as would be used in experiments for determining
specific heat, and noting its temperature from minute to minute.
Such an experiment furnishes the data for computing the loss or
gain by radiation. To secure accurate results the body must be
transferred from the bath to the calorimeter without sensible loss
of heat.
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Eliminating M, we obtain

N

171. Determination of the Mechanical Equivalent of Heat.—It
has been stated that whenever heat is produced by the expenditure
of mechanical energy, the quantity of heat produced is always pro-
portional to the quantity of mechanical energy expended.

The mechanical equivalent of heat is the energy in mechanical
units, the expenditure of which produces the unit of heat.

Heat applied to a body may increase the motion of its mole-
cules; that is, add to their kinetic energy. It may perform inter-
nal work by moving the molecules against molecular forces. It
may perform external work by producing motion against external
forces. If we could estimate these effects in mechanical units, we
might obtain the mechanical equivalent of heat. But the kinetic
energy of the molecules cannot be estimated, for we do not know
their mass or their velocity. We must, therefore, in the present
state of our knowledge, resort to direct experiment to determine
the heat equivalent. In one of the experiments of Joule, already
referred to, a paddle-wheel was made to.revolve, by means of
weights, in a vessel filled with water. In this vessel were stationary
wings, to prevent the water from acquiring a rotary motion with
the paddle-wheel. By the revolution of the wheel the water was
warmed. The heat so generated was estimated from the rise of
temperature, while the mechanical energy required to produce it
was given by the fall of the driving weight. Joule repeated this
experiment, substituting mercury for the water. In another exper-
iment he substituted an iron plate for the paddle-wheel, and made
it revolve with friction upon a fixed iron plate under water.

Joule expressed his results in kilogram-metres—that is, the
work done by a kilogram in falling under the force of gravity
through one metre. He stated the mechanical equivalent of one
calorie, in this unit, to be 423.9, from the experiments with water;
425.7, from those with mercury; and 426.1, from those with iron
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rise of temperature of 35° per hour; while in Joule’s experiments
the rise of temperature per hour was less than 1°. These experi-
ments give, for the mechanical equivalent of one calorie at 5°,
429.8 kilogram-metres; at 20°, 426.4 kilogram-metres.

Several other methods have been employed for determining the
mechanical equivalent. The concordance of the results by all
these methods is sufficient to warrant the statement that the ex-
peunditure of a given amount of mechanical energy always produces
the same amount of heat.

An experiment to determine the mechanical work done by the
expenditure of a known quantity of heat was executed by Hirn.
By the help of Regnault’s measurements of the heat of vaporization
Hirn was able to calculate the amount of heat which entered the
cylinder, during the operation of a steam-engine, with the steam
from the boiler, and by direct measurements he determined the
amount of heat which left the cylinder during the operation of the
engine and entered the condenser. So long as the engine was run-
ning without doing any external work, he found that these amounts
of heat were appreciably equal; when the engine was made to do
work, less heat passed from the cylinder into the condenser than
had entered it from the boiler. A comparison of the amount of
heat lost with the work done by the engine showed the same ratio
between heat and work as that determined by Joule. Hirn’s ex-
periments were on so large a scale and the sources of error and the
difficulties connected with the experiments were so numerous, that
the number obtained by him for the mechanical equivalent of heat is
of no great value. His experiments are, however, of very great in-
terest because, while the experiments of Joule and of all the others
who have worked on the problem prove the convertibility of work
into heat, those of Hirn alone have proved the converse converti-
bility of heat into work.
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rapidly falls to the freezing-point, while the great mass of the water
remains at the temperature of its maximum density.

174. Conduction.—If one end of a metal rod be heated, it is
found that the heat travels along the rod, since those portions at &
distance from the source of heat finally become warm. This proc-
ess of transfer of heat from molecule to molecule of a body, while
the molecules themselves retain their relative places, is called con-
duction.

In the discussion of the transfer of heat by conduction it is as-
sumed as a principle, borne out by experiment, that the flow of heat
between two very near parallel planes, drawn in a substance, is pro-
portional to the difference of temperature between those planes, or
that the flow of heat across a plane is proportional to the rate of
fall of temperature across that plane.

175. Flow of Heat across a Wall.—The simplest body in which
the flow of heat can be studied is a wall of homogeneous material
bounded by two parallel infinite planes, one of which is kept at
the temperature ¢’ and the other at the temperature ¢; we repre-
gent the distance between the planes or the thickness of the wall
by d. We suppose that the flow of heat across this wall has con-
tinued so long that it has become steady, or that the tem-
peratures at all points have assumed final values. Manifestly the
temperature at all points in any plane ﬁam]lel with the faces of
the wall is the same, and the same amount of heat passes
across any one such plane as passes across any other. We
conclude therefore by the fundamental principle assumed (§ 174)
that the rate of change of temperature across each plane in the
wall is the same, or that the change of temperature through-
out the wall from one face to the other is uniform; the rate of.

’
change of temperature is therefore given by tT_t, where it has
been assumed that #’ is the higher temperature. If d’ represent
the distance of any plane in the wall from the hotter surface, the

’
fall of temperature between it and the hotter surface is (¢’ — t)i,
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section, and is equal to the heat which escapes from the portion of
the bar beyond the section.

178. Measurement of Conductivity.—A bar heated at one end
furnishes a convenient means of meas-
uring conductivity. In Fig. 69 let
AB represent a bar heated at 4. Let
the ordinates aa’, bb’, cc’, represent the
— excess of temperatures above the tem-
B perature of the air at the points from

which they are drawn. These temper-
atures may be determined by means of thermometers inserted in
cavities in the bar, or by means of a thermopile. Draw the curve
a’t’c’d’ ... through the summits of the ordinates. The inclina
tion of this curve at any point represents the rate of fall of tem-
perature at that point. The ordinates to the line &4’m, drawn
tangent to the curve at the point 4’, show what would be the tem-
peratures at various points of the bar if the fall were uniform and
at the same rate as at &’. It shows that, at the rate of fall at &',
the bar would at m be at the temperature of the air; or, in the
length dm, the fall of temperature would equal the amount repre-

N ——
Fia. 69.

’
sented by bb’. The rate of fall is, therefore, ?:-n If Q represent

the quantity of heat passing the section at & in the unit time, we
have, from § 176,

Q = K X rate of fall of temperature X area of section.

Q is equal to the quantity of heat that escapes in unit time
from all that portion of the bar beyond &. It may be found by
heating a short piece of the same bar to a high temperature, allow-
ing it to cool under the same conditions that surround the bar 4 B,
and observing its temperature from minnte to minute as it falls.
These observations furnish the data for computing the quantity of
heat which escapes per minute from unit length of the bar at
different temperatures. It is then easy to compute the amount cf
heat that escapes per minute from each portion, bc, cd, etc., of the
bar beyond &; each portion being taken so short that its tempera-






CHAPTER IIL
EFFECTS OF HEAT.

184. The Kinetic Theory of Heat.—In order to describe more
easily certain of the effects of heat, it is advantageous to have an
idea of the theory by which they are explained. This theory, the
kinetic theory of heat, asserts that the molecules of all bodies are
in constant motion, and that the heat of a body is the kinetic
energy of its molecules. The idea that heat consists of the motion
of the least parts of matter was introduced into science by New-
ton, of course with a very imperfect knowledge of the facts. The
apparently unlimited production of heat by mechanical work led
Rumford and Davy, more particularly the latter, to assert the
equivalence of heat and motion. This theory was afterwards dis-
‘placed for many years by the influence of the French school of
physicists, who' considered bodies, at least in their mathematical
discussions, as assemblages of stationary particles, and heat as a
separate substance. It was revived by Mohr, who showed its very
general applicability in the explanation of ordinary heat phenomena.
Since the discovery of the conservation of energy, the reasons in its
favor have been very much strengthened and its foundations
securely laid by the complete success attained with it in explaining
the laws of gases. ‘

We will use this theory in its general form in the description of
some of the effects of heat, and will discuss it more fully in
§ 221 seq.

SOLIDS AND LIQUIDS,
185. Expansion of Solids.—When heat is applied to a body it

increases the kinetic energy of the molecules, and also increases the |
206
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may be neglected; and the volume of the cube after a rise in tem-
perature of one degree is 1 + 3a. 3a is, therefore, the coefficient
of voluminal expansion.

186. Measurement of Coeflicients of Linear Expansion.—Coeffi-
cients of linear expansion are measured by comparing the lengths,
at different temperatures, of a bar of the substance the coefficient
of which is required, with the length, at constant temperature, of
another bar. The constant temperature of the latter bar is secured
by immersing it in melting ice. The bar the coefficient of which
is sought may be brought to different temperatures by immersing
it in a liquid bath; but it is found better to place the bar upon the
instrument by means of which the comparisons are to be made,
and leave it for several hours exposed to the air of the room, which
is kept at a constant temperature by artificial means. Of course
several hours must elapse between any two comparisons by this
method, and its application is restricted to such ranges of temper-
ature as may be obtained in occupied rooms; but within this range
the observations can be made much more accurately than would be
the case when the bar is immersed in a bath, and it is within this
range that an accurate knowledge of coefficients of expansion is of
most importance.

187. Expansion of Liquids.—In studying the expansion of a
liquid, it is important to distinguish its absolute expansion, or the
real increase in volume, and its apparent expansion, or its increase
in volume in comparison with that of the containing vessel.

To determine the absolute expansion, some method must be
used which does not require a knowledge of the expansion of the
vessel containing the liquid. The method used by Regnault in
determining the absolute expansion of mercury consisted in compar-
ing the heights of two columns of mercury at different tempera-
tures when they were so adjusted as to give the same pressure.

The apparent expansion is determined by filling a vessel of
known volume with the liquid at one temperature, and by measur-
ing the amount of the liquid which runs out when the temperature
is raised. This method was also used by Regnault in his study of
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apparent expansion of this liquid found exactly as was that of mer-
cury. The absolute coefficient for the liquid is then the sum of the
coefficient of apparent expansion and the coefficient for the glass.

190, Expansion of Water.—The use of water as a standard with
which to compare the densities of other substances makes it neces-
sary to know, not merely its mean coefficient of expansion, but its
actual expansion, degree by degree. This is the more important
since water expands very irregularly. The best determinations of
the volumes of water at different temperatures are those of Mat-
thiessen. The method which he employed was to weigh in water a
mass of glass of which the coefficient of expansion had been pre-
viously determined. !

Water contracts, instead of expanding, from 0° to 4°. At 4° it
is at its maximum density, and from that temperature to its boiling-
point it expands. .

191. Effect of Variation of Temperature upon Specific Heat.—
It has already been stated (§ 166) that the specific heat of bodies
changes with temperature. With most substances the specific heat
increases as the temperature rises.

For example, the true specific heat of the diamond

At 0°is....... I R T RPN ereesssrscncccess 0.0047
At 50°is...cc000nnnn cesscesrccocsnesasanns evees 0.1485
At 100° is....... ereessssessss cesene seccncsrsesnns 0.1905
At 200° 18, ceiiueeieeneccsiiantcciocaroncinssnans 0.2719

192. Effect of Change of Physical State upon Specific Heat.—
The specific heat of a substance is not the same in its different
physical states. In the solid or gaseous state of the substance it is
generally less than in the liquid. For example:

)IeanSpe‘clﬂcHeat.
Bolid.  Liquid. Gaseous.
Water. ccceocoesce sovesesssesss 0.504 1.000 0.481
/ Mercury...eeoee sescocsssccse.. 0.0314  0.083
Tio...eens R | X 14T 0.0687
Lead....co00een. N 0.0814  0.0402

Bromine...c.ce0000ectecnconces 0.1120  0.0555
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The elementary gases obey a similar law with considerable ex-
actness; the constant given by the product of their specific heats at
constant pressure and their atomic weights is about 3.4.

The following table will illustrate the law of Dulong and Petit,
The atomic weights are those given by Clarke.

Specific Heat Product of Specific

Elements. of Atomic Weight. Heat and Atomic

Equal Weights. Weight.
Iron........ 0.114 55.9 6.372
Copper..... 0.095 . 63.17 6.001
Mercury.... 0.0314 (solid) 199.711 6.128
Silver....... 0.057 107.67 6.187
Gold....... 0.0329 196.15 6.453
Tin ..covns 0.056 117.7 6.591
Lead........ 0.0314 206.47 6.488
Zinc........ 0.0965 64.9 6.198

194. Fusion and Solidification.—When ice at a temperature
below zero is heated, its temperature rises to zero, and then the ice
begins to melt; and, however high the temperature of the medium
that surrounds it may be, its temperature remains constant at zero
g0 long ag it remains in the solid state. This temperature is the
melting-point of ice, and because of its fixity it is used as one of the
standard temperatures in graduating thermometric scales. Other
bodies melt at very different but at fixed and definite tempera-
tures. Many substances cannot be melted, as they decompose by
heat.

Alloys often melt at a lower temperature than any of their con-
stituents. An alloy of one part lead, one part tin, four parts bis-
muth, melts at 94°; while the lowest melting-point of its constitu-
ents is that of tin, 228°. An alloy of lead, tin, bismuth, and cad-
mium melts at 62°. - ,

If a liquid be placed in a medium the temperature of which is
below its melting-point, it will in general begin to solidify when
its temperature reaches its melting-point, and it will remain at that
temperature until it is all solidified. Under certain conditions,
however, the temperature of a liqnid may be lowered several degrees
below its melting-point without solidification, as will be seen below.
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the bottle and admitting air, crystallization commences, and spreads
rapidly through the mass, accompanied by a considerable rise of
temperature. If the amount of salt dissolved in the water be not
too great, the solution will remain liquid when cooled in the open
air,and it may even suffer considerable disturbance by foreign bod-
ies without crystallization; but crystallization begins immediately
upon contact with the smallest crystal of the same salt.

197. Freezing-point of Solutions.—It has been long known that
the freezing-point of a solution of salt and water is lower than that
of pure water. The relation of the lowering of the freezing-point
to the concentration of the solution was investigated by Blagden,
who found that for dilute solutions the lowering of the freezing-
point was proportional to the concentration. This matter has been
investigated by Raoult, who established some most important gen-
eralizations. Raoult showed that, for indifferent solutions, that is,
for solutions which are not electrolytes, provided they are very di-
lute, the lowering of the freezing-point is very closely proportional to
the concentration ; its amount differs for different solvents. He fur-
ther showed that, for any one solvent, the lowering of the freezing-
point is the same whatever be the dissolved substance, provided
that the solutions are equimolecular, that is, contain the same num-
ber of molecules of the dissolved substance in unit volume of the
solution. It may be shown on theoretical grounds that the change
in the freezing-point depends upon the osmotic pressure, the freez-
ing-point, the heat of fusion, and the density of the solution.

Solutions which are electrolytes, or are not indifferent, also ex-
hibit alowering of the freezing-point proportional to the concentra-
tion, but the amount of change is greater than in indifferent solutiona.
This difference is explained by assuming a partial or complete dis-
sociation of the molecules of the dissolved substances into their
constituent ions (§ 285).

198. Heat Equivalent of Fusion.—Some facts that have ap-
peared in the above account of the phenomena of fusion and solid-
ification require further study. It has been seen that, however
rapidly the temperature of a solid may be rising, the moment fusion
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Other calorimetric methods may be employed. The best ex-
periments give, for the heat equivalent of fusion of ice, very nearly
eighty calories.

VAPORS AND GASES.

200. The Gaseous State.—A gas may be defined as a highly
compressible fluid. A given mass of gas has no definite volume.
Its volume varies with every change in the external pressure to
which it is exposed. A wvapor is the gaseous state of a substance
which at ordinary temperatures exists as a solid or a liquid.

201. Vaporization is the process of formation of vapor. There
are two phases of the process: evaporation,in which vapor is formed
at the free surface of the liquid; and ebullition, in which the vapor
is formed in bubbles in the mass of the liguid, or at the heated
surface with which it is in contact.

202. Evaporation.—If a liquid be enclosed in a vessel which it
does not entirely fill, the space above the liquid begins at once to be
occupied by the vapor of the liquid. The presence of the vapor
can be detected in many ways, some of which are applicable only
in special cases. Those which are always applicable are the meas-
urement of the increased pressure due to the vapor and the con-
densation of the vapor into the liquid state after isolating it from
the mass of liquid beneath it. The process of forming vapor in
this way is evaporation. Evaporation goes on continually from
the free surfaces of many liquids, and even of solids. It increases
in rapidity as the temperature increases, and ceases when the vapor
has reached a certain density, always the same for the same tem-
perature, but greater for a higher temperature. It goes on very
rapidly in a vacuum; but it is found that the final density of the
vapor is no greater, or but little greater, than when some other gas
is present. While evaporation is going on, heat must be supplied
to the liquid to keep its temperature constant.

Evaporation may be readily explained on the kinetic theory
(§ 184) on the supposition that, in the interaction of the molecules,
the motion of any one may be more or less violent, as it receives
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was announced by Dalton that the quantity of vapor which satu-
rates a given space, and consequently the maximum pressure of that
vapor, is the same whether the space be empty or contain a gas,
Regnault has shown that, for water, ether, and some other sub-
stances, the maximum pressure of their vapors is slightly less when
air is present.

204. The Vapor Pressure of Solutions.—The pressure of the
saturated vapor formed from an indifferent solution, or one which
is not an electrolyte, is always less than the vapor pressure of
the pure solvent. Raoult discovered that the diminution of vapor
pressure is proportional to the concentration, provided the solutions
are very dilute and that, for any one solvent, the diminution of
vapor pressure is the same, whatever be the dissolved substance,
provided the solutions are equimolecular, that is, contain the same
number of molecules 1n equal volumes of the solutions. 1t may be
shown on theoretical grounds that the diminution of vapor pressure
depends upon the density of the vapor and the osmotic pressure
and density of the solution. ’

Solutions which are not electrolytes, or which are not indiffer-
ent, exhibit a diminution of vapor pressure proportional to the
-concentration, but the amount of change is greater than in indiffer-
ent solutions. This difference is explained by assuming a partial
or complete dissociation of the molecules of the dissolved substances
mto their constituent ions (§ 285).

205. Ebullition.—As the temperature of a liquid rises, the
pressure which its vapor may exert increases, until a point is
reached where the vapor is capable of forming, in the mass of the
liquid, bubbles which can withstand the superincumbent pressure
of the liquid and the atmosphere above it. These bubbles of vapor,.
escaping from the liquid, give rise to the phenomenon called ebul-
lition, or boiling. Boiling may, therefore, be defined as the agita-
tion of a liquid by its own vapor.

Generally speaking, for a given liquid, ebullition always occurs
at the same temperature for the same pressure ; and, when once
commenced, the temperature of the liquid no longer rises, no
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will soon fall below the limit necessary to maintain the spheroidal
state, the liquid will moisten the capsule, and there will be a rapid
ebullition with disengagement of vapor. If a liquid of very low
boiling-point, as liquid nitrous oxide, which boils at — 88°, be
poured into a red-hot capsule, it will assume the spheroidal state;
and, since its temperature cannot rise above its boiling-point, water,
or even mercury, plunged into it, will be frozen.

207. Production of Vapor in a Limited. 8pace.—When a liquid
is heated in a limited space the vapor generated accumulates, in-
creasing the pressure, and the temperature rises above the ordinary
boiling-point. Cagniard-Latour experimented upon liquids in
gpaces but little larger than their own volumes. He found that,
at a certain temperature, the liquid suddenly disappeared; that is,
it was converted into vapor in a space but little larger than its own
volume. It is supposed ¢that above the temperature at which this
occurs, which is called the critical temperature, the substance can-
not exist in the liquid state (§ 223).

208. Liguefaction.—Only a certain amount of vapor can exist at
a given temperature in a given space. If the temperature of a spaca
saturated with vapor be lowered, some of the vapor must condense
into the liquid state. It is not necessary that the temperature of
the whole space be lowered; for when the vapor in the cooled por-
tion is condensed, its pressure is diminished, the vapor from the
warmer portion flows in, to be in its turn condensed, and this con-
tinues until the whole is brought to the density and pressure due to
the cooled portion. Any diminution of the space occupied by a
saturated vapor at constant temperature will cause some of the
vapor to become liquid, for, if it do not condense, its pressure must
increase; but a saturated vapor is already at its maximum pressure.

If the vapor in a given space be not at its maximum pressure,
its pressure will increase when its volume is diminished, until the
maximum pressure is reached; when, if the temperature remain
constant, further reduction of volume causes condensation into thc
liquid state, without further increase of pressure or density. This
statement is true of several of the gases at ordinary temperatures.
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the pressure becomes constant for any further diminution of vol-
ume, and the gas assumes the liquid state. The less the pressure
and density of the gas, the more nearly it obeys Boyle’s law.

211. Gay-Lussac’s Law.—It has been stated already that gases
expand as the temperature rises. The law of this expansion, called,
after its discoverer, Gay-Lussac’s law, is that, for each increment
of temperature of one degree, every gas expands by the same con-
stant fraction of its volume at zero. This is equivalent to saying
that a gas has a constant coefficient of expansion, which is the same
for all gases.

Let V,, V; represent the volumes at zero and ¢ respectively,
and « the coefficient of expansion. Then, the pressure remaining
constant, we have

V. = V(1 + at). (69)

If d,, d; represent the densities at the same two temperatures
we have, since densities are inversely as volumes,

do

d,:m.

(70)

Later investigations, especially those of Regnault, show that .
this simple law, like the law of Boyle, is not rigorously true, though
it is very nearly so for all gases and vapors which are not too near
their points of saturation. The common coefficient of expansion
is @ = 0.003666 = g4y very nearly.

212. Boyle’s and Gay-Lussac’s Laws.—From the law of Boyle we
have, for a given mass of gas, if the temperature remain constant,
Vop = Vyp' = volume at pressure unity, where V,, V,, represent
the volumes at pressure p and p’ respectively.

From the law of Gay-Lussac we have, if the pressure remain

Ve _ Ve . '
1+at” 14at
both vary, we have

constant, V, = If the temperature and pressure

Vo _ Vou?'
1tat itat’ (")
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that if the volume diminish from OC to OG, the pressure will
become greater than GD; suppose it

to be GM. If a number of such

m points as M be found, and a line be
’\ drawn through them, it will repre-

\ sent the relation between volume
£ D and pressure when no heat enters
or escapes. It is called an adia-
v batic line. It evidently makes a
i greater angle with the horizontal
0 G ¢ than the isothermal.

Fra. 70. The tangents to these lines at

the point of intersection, being the ratios of the changes of pres-
sure to the same changes of volume under the conditions repre-
sented by those lines are proportional to the elasticity at constant
temperature, or the isothermal elasticity X, and to the elasticity
when no heat is allowed to enter or escape, or the adiabatic elas-
ticity %), respectively.

214. Specific Heats of Gases.—The amount of heat necessary to
raise the temperature of unit mass of a gas one degree, while the
volume remains unchanged, is called the specific heat of the gas at
constant volume. The amount of heat necessary to raise the tem-
perature of unit mass of a gas one degree when expansion takes
place without change of pressure, is called tke specific heat of the
gas at constant pressure.

The determination of the relation of these two quantities is a
very important problemn.

The specific heat of a gas at constant pressure may be found
by passing a current of warmed gas through a tube coiled in a
calorimeter. There are great difficulties in the way of an accurate
determination, because of the small density of the gas, and the
time required to pass enough of it through the calorimeter to obtain
a reasonable rise of temperature. The various sources of error pro-
duce effects which are sometimes as great as, or even greater than,
the quantity to be measured. It is beyond the scope of this work
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216. Ratio of the Elasticities and of the Specific Heats of a Gas.
—The ratio of the two principal specific heats of a gas is the same as
" the ratio of its two principal elasticities.

To show this, construct an adiabatic line

g ¢ and an isothermal line 6 (Fig. 71)
\ intersecting at the point O ; from that
i\o point draw a line parallel with the axis
of volumes and take a point 4 on that

k line very near the point 0. Through
that point draw a line parallel with the
axis of pressures, intersecting the isother-
mal and the adiabatic lines at B and C
respectively. 0A is the diminution of volume, 4v, caused by an
increase of pressure AB = dp if the compression is isothermal, or
by the increase of pressure 4C == dp if the compression is adiabatic.
From the definition of elasticity (§ 102) we have the equations

2

Fra. 71.

v. Op v.dp E, _4p

Ey= ———, E, = ——,and hence = = ==

¢ T4y 0 v’ B, dp
‘We will now determine the value of the ratio % in terms of the

principal specific heats. For convenience we assume that we are
dealing with a unit mass of gas. The diminution of volume 4v
at constant pressure sets free the quantity of heat C,. 4¢, where
4t is the change of temperature that occasions the change of volume;
the point 4 then represents the condition of the gas. The gas may
be brought into this same condition by an adiabatic compression
from O to C, during which no heat either enters or leaves the gas,
and by a diminution of pressure 4 = dp while the volume is con-
stant, cansed by the abstraction of the heat produced by the com-
pression. The heat which must be abstracted from the gas in
order that it shall attain the condition denoted by 4, is to the heat
that must be abstracted to cause the diminution of pressure
BA = dp in the ratio of dp to 6p. The heat which must be ab-
stracted to cause the diminution of pressure B4 = dp at constant
volume is C,. 4¢, where 4¢ has the same value as before, since the
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tion. By promoting evaporation, intense cold may be produced.
In a vacuum, water may be frozen by its own evaporation. If a
liquid be heated to a temperature above its ordinary boiling-point
under pressure, relief of the pressure is followed by a very rapid
evolution of vapor and a rapid cooling of the liquid. Liquid
nitrous oxide at a temperature of zero is still far above its boiling-
point, and its vapor exerts a pressure of about thirty atmospheres.
If the liquid be drawn off into an open vessel, it at first boils with
extreme violence, but is soon cooled to its boiling-point for the
atmospheric pressure, about — 88° and then boils away slowly,
while its temperature remains at that low point. By liquefying
nitrogen and then allowing it to evaporate under low pressure,
Olszewski obtained the temperature of — 220° C., and by allowing
liquid hydrogen to boil under atmospheric pressure, — 243.5° C.
was reached.

218. Heat Equivalent of Vaporization.—It is plain that the for-
mation of vapor is work requiring the expenditure of energy for
its accomplishment. Each molecule that is shot off into space
obtains the motion which projected it beyond the reach of the
molecular attraction, at the expense of the energy of the molecules
that remain behind. A quantity of heat disappears when a liquid
evaporates; and experiment demonstrates, that to evaporate a kilo-
gram of a liquid at a given temperature always requires the same
amount of heat. This is the heat equivalent of - vaporization.
When a vapor condenses into the liquid state, the same amount of
heat is generated as disappears when the liquid assumes the state
of vapor. The heat equivalent of vaporization is determined by
passing the vapor at a known temperature into a calorimeter, there
condensing it into the liquid state, and noting the rise of tempera-
ture in the calorimeter. This, it will be seen, is essentially the
method of mixtures. Many experimenters have given attention to
this determination; but here, again, the best experiments are those
of Regnault. He determined what he called the fofal heat of steam
at various pressures. By this was meant the heat required to raise
the temperature of a kilogram of water from zero to the temperature
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The emission of light or, in general, of radiant energy from a body
affords a demonstration of the existence of some motion in those
parts of a body which are so small that the motion cannot be directly
perceived by ordinary observation; for we can explain radiance only
a8 a motion in a medium through which it travels, and it is evident
that this motion cannot be due to the mere presence of a sub-
stance, but must be set up by the motion of matter.

We may first apply the kinetic theory to the distinction between
solids, liquids, and gases. Each molecule of a solid is supposed to
be retained within a certain small region by the action of the
surrounding molecules and to move within that region. The
phenomenon of crystallization leads us to think that molecules in
a solid have certain determinate forms and an arrangement in the
body; their motions, therefore, are such that they do not overstep
the limits of this arrangement, and we think of their motion as
vibratory, using the word vibratory in a rather loose sense. The
molecules of a liquid have no fixed position in the mass, but are
free to move from one point to another; they are in very close
proximity to one another, as appears from the phenomena of capil-
larity, and exert considerable forces on one another. The chief
difference between solids and liquids consists in the absence in the
latter of any definite arrangement; we may think of the molecules
of a liquid as rotating and as gliding past each other, and cau
characterize their motion as rotatory. The great increase in vol-
ume exhibited on the change of a mass of liquid into vapor shows
that the molecules of a vapor or gas are farther apart than those of
a liquid. They are so far apart that their mutual actions due to
molecular forces have very little influence on their motions, except
during the excessively short period within which any two of them
come close together or undergo an encounter. A molecule of a
gas is therefore thought of as moving in a succession of short rec-
tilinear paths, the direction of which is in general changed at each
encounter. We may therefore characterize the motion in a gas as
translatory. The consideration of this translatory motion is suffi-
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ble that any one will miss the target entirely; the vast majority of
the shots will meet the target, and their distances from the centre
will lie around a certain average distance. Similarly, it is extremely
improbable that any particular molecule of a gas will have a veloc-
ity far exceeding the average; the great majority of the molecules
will have velocities which lie around a certain mean velocity. The
law of distribution of velocities among molecules of liquids and
solids is not known, but it probably possesses the essential char-
acteristics of the law for gases. ‘

When a gas is heated, all but a very small part of the heat which
enters it is used in increasing the kinetic energy of the molecules;
this is not true for solids and liquids, because, when they are
heated, work is done against their molecular forces which does nof
appear a8 kinetic energy. The kinetic energy of the molecule is
the sum of the kinetic energy due to the motion of its centre of
mass or to its translation, and of the kinetic energy due to its
motion relative to its centre of mass. This latter energy may be
thonght of as due either to rotation about the centre of mass or to
the vibrations of the atoms constituting the molecule. We will
subsequently prove that the temperature of a gas is proportional to
the kinetic energy of its molecules. It is therefore natural to
agsume that the measure of temperature is some part of the kinetic
energy of the molecule. The most consistent explanation of all
the effects of heat can be reached by supposing that the cnergy of
atomic vibration or of molecular rotation is directly proportional to
the temperature measured on the absolute scale (§ 212). The total
kinetic energy of the molecules of a body measures the heat in the
body.

222. Kinetic Theory of Gases.—The foundation of the theory of
matter now under discussion is the Ainetic theory of gases. In this
theory a perfect gas consists c¢f an assemblage of free, perfectly
elastic molecules in constant motion. Iiach molecule moves in a
straight line with a constant velocity, until it encounters some other
molecule, or the side of the vessel. The impacts of the molecules
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to pass across the space between the two walls and back is 2—;; and

the number of impacts upon the first surface in unit time is ;—;.

Consider the molecules contained in a rectangular prism, with
bases of area @ in the walls. These molecules must be considered
a8 moving in all directions and with various velocities. But the
velocity of any molecule may be resolved in the direction of three
rectangular axes, one normal to the surface and the other two par-
allel to it, and the effect upon the walls will be due only to the
normal components. Let us single out for examination a group of
molecules which have a normal velocity that lies near the value #,,
and let n, represent the number of such molecules in unit volume.
Then the number of such molecules within the prism considered is
n,sa. The number of impacts made by them in unit time on one

of the walls is nsa. ;i; = "'—gu—', and in the time 6 is n,au,t‘).

Hence the total pressure which they exert on the area @ is
m_2_'_uJ n,0u,0
)

Now the total pressure on unit.of area is the sum of the pres-
sures due to all the ¢ groups into which the molecules of the gas
may be divided; or p = m(n,u* + nu,’ + ... nu’). If we repre-
sent by n the number of molecules in unit volume and by « the
mean velocity given by nu® = nu + n%. + ... nu’, we have
p = mnu'. Similar expressions hold for the pressures on the other
walls, the velocities normal to which are v and w, and we assume
that these mean velocities are independent of direction, so that
u* =" = w’. But the velocity of any molecule is given by
Ve =u!+ v+ w’, and the mean velocity is given by a similar
equation. Hence V* = 3u’ and we have finally,

p= ;—mn 7. (74)

The velocity ¥ in this expression is called the velocity of mean
square.
If we now suppose the volume of the gas to change so that the

= mn,u,’a, and on unit area i3 mn,u’
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resented by (C, — C,)4T. We shall show (§ 232) that this work
is also given by the product of the pressure by the increase in vol-
ume, or by pdv. Hence we have the relation pdv = (C,— Cn)4T.

The kinetic energy of molecular translation is }mn V? and if C,
represent its increase for a rise in temperature of one degree, C, 4T
represents its increase for the rise of temperature 47. But since
pv = ymn V*, we have C,4T = §p4v, and hence C, — C, = §C,, or

C, 3(0,, _ ) .

T a\e 1). ("7)
Now on the supposition that the molecules are particles which have
no energy except energy of translation, C, = C,, and hence —g" = g

We know by experiment that this is not always the case. For
monatomic gases, such as mercury vapor, and possibly argon,
G
[
3 = 1.4, and for gases with complex molecules, it is about $ = 1.33.
Hence, in the case of gases with more than one atom in the molecule,
the total energy is not merely the energy of translation, but in-
cludes other energy internal to the molecule. Boltzmann has
shown that the ratio of the internal energy to the energy of trans-
lation is such as can be accounted for by supposing the monatomic
molecules to be spheres or points, the diatomic molecules solids of
revolution, and the more complex molecules irregular solids. It is
likely that this is merely an artificial representation, since there is
strong reason to believe that the atoms vibrate within the molecule
and that the molecule is not rigid.

We have used C, to represent the increase in the energy of
molecular translation in a unit of mass when the temperature rises
one degree. If we represent the increase in the kinetic energy of a
gingle molecule by 43mV*, we have C, = nd{mV*. Now n is the
number of molecules in unit volume, which in this equation is the

= 1.66; but for the common diatomic gases it is more nearly

- . 1,
volume containing unit mass, so that 5 18 the mass of one mole-

cule or m. The gain in kinetic energy for a rise of temperature of
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tions exhibited by gases from the gaseous laws can be accounted
for by extending the theory so as to include the consideration of
the size of the molecules and of their mutual attractions. In the
elementary theory the molecules were assumed to be points or
particles of negligible magnitude, but if we assume them to have
volumes which, though small, are appreciable, it is plain that
the effective volume within which the molecules have free motion
¥ reduced by an amount dependent on the molecular volumes.
It was furthermore assumed in the elementary theory that the
time of encounter is negligible in comparison with the time
during which the molecule is free from the action of other
molecules; but if we assume that the time of an encounter,
though small, is not negligible, it is plain that the molecular at-
tractions will tend to hold together the mass of gas or will be
equivalent to an addition to the pressure upon the gas. From
these considerations van der Waals expressed the relations among
the pressure, volume, and temperature of a gas by the formula

(¢ +%)w—0)=rT, (78)

where ¢ is & constant depending upon the molecular attractions, and
b is four times the sum of the volumes of the molecules. This
formula, when tested by experiment, represents the behavior of
gases far more accurately than the simpler form; it is not, how-
ever, exact, and various others, constructed empirically, have been
proposed which give even a better representation of the facts. It
isas yet the only formula for which a theoretical demonstration has
been given. This formula possesses the great advantage that it can
represent the behavior of a body, at least in certain cases, not only
in the gaseous but in the liquid state; that is, it exhibits the con-.
tinuity which we have every reason to think exists between those
states. In particular it gives an explanation of critical temperature
and a determination of it in terms of the molecular constants @ and
b. If the formula be expanded and arranged in the order of the
a ab

descending powers of v, it becomes v* — v’ (b + %1) +v I; - ; =0.
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fore become rotatory and they are free to glide past each other in
the mass. We can explain the constancy of temperature dur-
ing melting, and the absorption of heat, by assuming that that por-
tion of the energy which measures temperatutre remains constant,
and that the heat is used in doing work against the molecular forces
which determine the direction of the molecules in the solid and in
giving the molecules increased velocity of translation. Such a
change as is here described, in which the energy received by the
molecule does work against the forces acting on it and gives it
greater velocity as a whole, while the mean energy of vibration
which it had at first is equal to the mean energy of rotation which
it acquires, has been shown by Eddy to be mechanically possible.
On melting, the body generally changes its volume, sometimes ex-
panding, sometimes contracting. This may be explained by sup-
posing that as the molecules are heated, their volumes diminish.
The admissibility of this assumption has been proved by Lorentz
and Sutherland. The change in volume on melting is then the
resultant of the expansion due to the increased molecular motion
and the contraction due to the shrinking of the molecules, and it
may therefore be either positive or negative,

After melting, the temperature of the body continues to rise
and the body generally expands until the boiling-point is reached;
at that point the temperature again ceases to rise and the liquid
becomes a vapor. We explain this by supposing that in consequence
of the changes in velocity which go on among the molecules, there
will arise an assemblage of molecules in a small region with veloci-
ties above the average; these will beat back the surrounding mole-
cules and form a small bubble within which the molecules are in the
gaseous state. Those molecules near the surface of this bubble
which possess velocities above the average will pass through the
liquid surface against the attractions of the molecules surrounding
them and will increase the gas contained in the bubble, until its size
becomes such that its buoyancy is able to overcome the viscosity of
the liquid, so that it rises and sets free a number of molecules at
the surface of the liquid in the gaseous state. The equality of
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other gases can be found by dividing this velocity by the square
root of the ratio of their masses to the mass of the molecule of
hydrogen, or by the square roots of their molecular weights divided
by 2. '

From calculations based on the behavior of gases with reference
to their viscosity and thermal conductivity, Maxwell deduced a
number of conclusions respecting the dimensions and motions of
molecules, which are given in the following table. The symbol
ppu denotes & micromillimetre, or the millionth of a millimetre.

Hydrogen. Oxygen.  Carbon dioxide.
Mean free path in uu. ... 96.5 56 43
Number of collisions per sec. 1.775.10° 0.7646.10'° A 0.972.10"
Diameter in uu, molecules
supposed spherical . ... 0.58 0.76 0.93
Mass in 10-** grams . . . . . 46 736 1012

The number of hydrogen molecules in a milligram is about 200
million million million, and about 2 million could be placed side
by side in one millimetre. The number of molecules of hydrogen,
and so also of any other gas, in one cubic centimetre at the standard
pressure and temperature is about 19 million million million.

From the experiments of Quincke and Reinhold and Riicker
the range of molecular action is estimated to lie between 50 uu
and 118 uu. The molecular forces give rise to pressures in the gas
which van der Waals estimates as, for hydrogen, 0; for air, 0.0028;
for carbon dioxide, 0.00874 in atmospheres,

Other calculations yield values for these various molecular
constants which, while not numerically the same as those of Max-
well, are yet of the same order of magnitude, and considerable
confidence can be placed in their general accuracy.
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an engine. In the ideal form it consists of a body called the source,
from which heat may be drawn, another body called the refrigerator,
into which heat may be sent, and a third body called the working
body, which expands or contracts on the reception or emission of
heat. The working body will itself always possess energy in the
form of heat and possibly also in other forms. If heat be supplied to
" it from the source, it will expand and do work, but no relation can
be stated between the work done and the heat supplied to it, because
the change in its own energy experienced during the expansion is, in
general, unknown. In order to obtain a relation between the heat
supplied to the working body and the work dome by it, the oper-
ations performed with it must be so conducted as to bring the
working body back to its original state. It will then possess the
same energy as at the outset, and the first law of thermodynamics
enables us to assert that the difference between the heat which
leaves the source and the heat which enters the refrigerator is
equal to the work done by the working body. Such a series of
operations is called a cycle. The ratio of the work done to the heat
which leaves the source is called the efficiency of the engine.

228. The Carnot’s Cycle.—In order to study the efficiency of
an engine we restrict the conditions under which the transforma-
tion of heat into work goes on. We suppose that the source is so
large and furnishes so unlimited a supply of heat that its temper-
ature S remains constant, notwithstanding the loss or gain of heat
which it may receive from the working body. Similarly, we sup-
pose the refrigerator to have a constant temperature R, notwith-
standing the gain or loss of heat it may receive from the working
body. The changes by which the working body does work are
supposed to occur only when the working body is either at the
temperature of the source or of the refrigerator, or when it is so
conditioned that it neither receives nor emits heat. While it is
kept at a constant temperature, its change is isothermal; when it
neither receives nor emits heat, its change is adiabatic (§ 213).

In order to exhibit the operation of this simple engine most
clearly, we will assume that the working body is one which
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perature RB. The operation is continued until the volume and
pressure of the body are again denoted by the point 4. During
this operation the quantity of heat % is transferred from the body
to the refrigerator. These operations constitute a cycle, for the
body at the end of the operation is in the same condition as regards
pressure, volume, and temperature as it was at the beginning.
The work done by it is therefore equal to the heat transformed into
work, or to H—h.

Such a cycle is reversidle, for if the body be constrained to go
through the operations just described, in the réverse order, the
same quantities of heat will be transferred in opposite senses and
the same quantity of work done upon the body that, in the direct
operation, was done by the body. That is, the refrigerator will
give up the quantity of heat %, the source will receive the quantity
of heat H, and the amount of work H—% will be done upon the
body. The only difference between the two operations will be that,
whereas in the direct operation the temperature of the body was
infinitesimally lower than that of the source while it was receiving
heat, and infinitesimally higher than that of the refrigerator while
it was emitting heat, in the reversed operation the temperature of
the body is” infinitesimally lower than that of the refrigerator
while it is receiving heat, and infinitesimally higher than that of
the source while it is emitting heat. These infinitesimal differences
may be neglected, and one of these operations may be considered
in every respect the reverse of the other.

229. Second Law of Thermodynamics.—We will now prove a
most important proposition, due to Carnot, the founder of the
theory of thermodynamics. To do this we make use of a principle
first laid down by Clausius and known either as Clausius’s princi-
ple or the second law of thermodynamics. This principle is, that
heat cannot pass of itself, or without compensation in the form of
work done or of heat transferred in the opposite sense, from a
colder to a hotter body. This principle is in conformity with our
common experience, that heat passes by conduction or radiation
from a place of higher to a place of lower temperature. It is not
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temperatures of the source and refrigerator, and the efficiency de-
pends only on the temperatures of the source and the refrigerator,
or is a function of these temperatures. If the temperatures be
represented on any conventional scale, the form of this function
may be found by experiment; on the other hand, the assumption
of a form of this function will determine a scale of temperatures.
The proposal to form such a scale, which is dependent only on the
efficiency of the reversible engine, and is therefore independent of
the properties of any particular body, was made by William
Thomson.

The scale of temperatures which is most convenient for applica-
tion in thermodynamics, and which is so distinguished by its sim-
plicity from all others that might be formed that it is called
distinctively fhe absolute scale of temperatures, is formed by as-
suming that the efficiency of a reversible engine is equal to the
ratio of the difference of temperature between the source and the
refrigerator and the temperature of the source, that is, by assuming

H—h S—R
7 T8 (*9)

This assumption may also be stated in the form

k_R

The maximum efficiency of an engine is attained when all the
heat which is received from the source is transformed into work,
go that no heat is transferred to the refrigerator; on the scale of
temperatures just assumed this condition is attained when R = 0.
This zero is an absolute and not an arbitrary zero. It depends on
the general properties of bodies, and not on the particular proper-
ties of any one body. It is the lowest temperature attainable in
Nature, for, if it were possible to have a refrigerator at a lower
temperature than this, the efficiency of an engine working with
that temperature as the temperature of its refrigerator, would be
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infinitesimal increment of volume, the sum of all the terms pdv
will equal the total work done by the expansion of the body. Now
let us consider the area 5B Cc standing under the line BC (Fig. 73).
This area may be conceived of as made up of a series of infinites-
imal rectangles, the heights of which are

the ordinates of the successive points of

the line B(C, and the bases of which are

successive elements taken along the line

be. 1f dv represent the length of one of

these elements, and p the corresponding

¢ ordinate, the area of the infinitesimal rect-

Fia. 78. angle determined by them is pdv. The

sum of such areas for the expansion indicated by the line BC is
the area 5BCc; and since =Zpdv represents the work done, the
area bB(Cc also represents the work done during the expansion of
the body in the way indicated by the line BC.

Now to demonstrate the relation between the temperatures in-
dicated by the perfect gas thermometer and those of the absolute
scale, let us suppose an engine 1n which the working body is a
perfect gas, and let us suppose that the changes in pressure and
volume experienced by the working body during the cycle are
so small that the portions of the isothermal and adiabatic lines
which bound it are straight, and that the cycle is a parallelogram.
This cycle is represented by the area ABCD (Fig. 73). We may
assume as the result of the experiments of Joule that when a gas
expands at constant temperature, no internal work is done upon
it, or that the heat which enters it is entirely spent in doing ex-
ternal work. Produce DA to e; then the parallelogram 4 BCD is
equal to the parallelogram ¢B(Cf, and this parallelogram represents:
the work done in the cycle by the gas acting as the working body.

The work done during the expansion from B to C, which is
equal to the heat received during that expansion, is represented by
the area bBCc. Let g be the middle point of the line BC; the
perpendicular g% will bisect the line ef at <. The area 6BCc =
be . gh, and the area e BCf = bc. g1. Therefore the efficiency of
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233. The Steam-engine.—The sfeam-engine in its usual form
consists essentially of a piston, moving in a closed cylinder, which
is provided with passages and valves by which steam can be ad-
mitted and allowed to escape. A boiler heated by a suitable fur-
nace supplies the steam. The valves of the cylinder are opened
and closed antomatically, admitting and discharging the steam at
the proper times to impart to the piston a reciprocating motion,
which may be converted into a circular motion by means of suita-
ble mechanism. _

There are two classes of steam-engines, condensing and non-
condensing. In condensing engines the steam, after doing its
work in the cylinder, escapes into a condenser, kept cold by a cir-
culation of cold water. Here the steam is condensed into water;
and this water, with air or other contents of the condenser, is re-
moved by a pump. In non-condensing engines the steam escapes
into the open air. In this case the temperature of the refrigerator
must be considered at least as high as that of saturated steam at
the atmospheric pressure, or about 100°, and the temperature of the
source must be taken as that of saturated steam at the boiler-pres-
S—R

S b
it will be seen that, for any boiler-pressure which it is safe to em-
ploy in practice, it is not possible, even with a perfect engine, to
convert into work more than about fifteen per cent of the heat used.

In the condensing engine the temperature of the refrigerator
may be taken as that of saturated steam at the pressure which ex-
ists in the condenser, which is usually about 30° or 40°: hence
S — R is a much larger quantity for condensing than for non-con-
densing engines. The gain of efficiency is not, however, so great
as would appear from the formula, because of the energy that must
be expended to maintain the vacuum in the condenser.

234. Hot-air and Gas Engines.—Hot-air engines consist essen-
tially of two cylinders of different capacities, with some arrange-
ment for heating air in, or on its way to, the larger cylinder. In
one form of the engine an air-tight furnace forms the passage be-

sure. Applying the expression for the efficiency (§ 231), ¢ =
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as the large one, the air in both cylinders is compressed, and there
is but little transfer from one to the other. There is, therefore,
comparatively little heat given up. The large piston, reaching its
lowest point, begins to ascend, while the descent of the smaller con-
tinues. The air is rapidly transferred to the larger heated cylinder,
and expands while taking heat from the highly heated surface.
After the small piston has reached its lowest point there is a short
time during which both the pistons are rising and the air expanding,
with but little transfer from one cylinder to the other, and with a
relatively small absorption of heat. When the descent of the large
piston begins, the small one still rising, the air is rapidly trans-
ferred to the smaller cylinder: its volume is diminished, and its
heat is given up to the cold surface with which it is brought in con-
tact. The completion of this operation brings the air back to the
condition from which it started. It will be seen that there are here
four operations, which, while not presenting the simplicity of the
four operations of Carnot,—since the first and third are not per-
formed without transfer of heat, and the second and fourth not with-
out change of temperature,—still furnish an example of work done
by heat through a series of changes in the working substance,
which brings it back, at the end of each revolution, to the same
condition ag at the beginning,

(as-engines derive their power from the force developed by the
combustion, within the cylinder, of a mixture of illuminating gas
and air.

As compared with steam-engines, hot-air and gas engines use
the working substance at a much higher temperature. S—R is,
therefore, greater, and the theoretical efficiency higher. There are,
however, practical difficulties connected with the lubrication of the
sliding surfaces at such high temperatures that have so far pre-
vented the use of large engines of this class.

235. Sources of Terrestrial Energy.—Water flowing from a
higher to a lower level furnishes energy for driving machinery.
The energy theoretically available in a given time is the weight of
the water that flows during that time multiplied by the height of
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time. Despretz and Dulong made similar experiments with more
perfect apparatus, and found that the heat produced by the animal
was about one-tenth greater than would have been produced by
the formation by combustion of the carbonic acid and water exhaled.

These and similar experiments, although not taking into ac-
count all the chemical actions taking place in the body, leave no
doubt that animal heat is due to atomic and molecular changes
within the body.

The work performed by muscular action is also the transformed
energy of food. Rumford, in 1798, saw this clearly; and he showed,
in a paper of that date, that the amount of work dore by a horse
is much greater than would be obtained by using its food as fuel
for a steam-engine.

Mayer, in 1845, held that an animal is a heat-engine, and that
every motion of the animal is a transformation into work of the
heat developed in the tissues. ’ »

Hirn, in 1858, executed a series of interesting experiments bear-
ing upon this subject. In a closed box was placed a sort of tread-
mill, which a man could cause to revolve by stepping from step to
step. He thus performed work which could be measured by suit-
able apparatus outside the box. The tread-wheel could also be made
to revolve backward by a motor placed outside, when the man de-
scended from step to step, and work was performed upon him.,

Three distinct experiments were performed; and the amount
of oxygen consumed by respiration, and the heat developed, were
determined. '

In the first experiment the man remainad in repose; in the sec-
ond he performed work by causing the wheel to revolve; in the
third the wheel was made to revolve backward, and work was per-
formed upon him. In the second experiment the amount of heat
developed for a gram of oxygen consumed was much less, and in
the third case much greater, than in the first; that is, in the first
case, the heat developed was due to a chemical action, indicated by
the absorption of oxygen; in the second, a portion of the chemical
action went to perform the work, and hence a less amount of heat
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are the source of all the forms of energy practically available, ex-
cept that of the tides. It has been estimated that the heat re-
ceived by the earth from the sun each year would melt a layer of
ice over the entire globe a hundred feet in thickness. This repre-
sents energy equal to one horse-power for each fifty square feet of
surface, and the heat which reaches the earth is only one twenty-
two-hundred-millionth of the heat that leaves the sun. Notwith-
standing this enormous expenditure of energy, Helmholtz and
Thomson have shown that the nebular hypothesis, which supposes
the solar system to have originally existed as a chaotic mass of
widely separated gravitating particles, presents to us an adequate
source for all the energy of the system. As the particles of the
system rush together by their mutual attractions, heat is generated
by their collision; and after they have collected into large masses,
the condensation of these masses continues to generate heat.

237. Dissipation of Energy.—It has been seen that only a _frac.
tion of the energy of heat is available for transformation into other
forms of energy, and that such transformation is possible only
when a difference of temperature exists. Every conversion of
other forms of energy into heat puts it in a form from which it
can be only partially recovered. Every transfer of heat from one
body to another, or from one part to another of the same body,
tends to equalize temperatures, and to diminish the proportion of
energy available for transformation. Such transfers of heat are
continually taking place; and, so far as our present knowledge
goes, there is a tendency toward an equality of temperature, or, in
other words, a uniform molecular motion, throughout the uni-
verse. If this condition of things were reached, although the total
amount of energy existing in the universe would remain unchanged,
the possibility of transformation would be at an end, and all ac-
tivity and change would cease. This is the doctrine of the dissipa-
tion of energy to which our limited knowledge of the operations of
Nature leads us; but it must be remembered that our knowledge is
very limited, and that there may be in Nature the means of restor-
ing the differences upon which all activity depends.
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are most strongly manifested. These regions are called the poles
of the magnet. The line joining two points in these regions, the
location of which will hereafter be more closely defined, is called
the magnetic axis. An imaginary plane drawn normal to the axis
at its middle point is called the equatorial plane.

If the magnet be balanced so as to turn freely in a horizontal
plane, the axis assumes a direction which is approximately north
and south. The pole toward the north is usually called the north
or positive pole; that toward the south, the south or negative pole.

If two magnets be brought near together, it is found that their
like poles repel and unlike poles attract one another.

If the two poles of a magnet be successively placed at the same
distance from a pole of another magnet, it is found that the forces
exerted are equal in amount and oppositely directed.

The direction assumed by a freely suspended magnet shows that
the earth acts as a magnet, and that its north magnetic pole is
situated in the southern hemisphere.

If a bar magnet be broken, it is found that {wo new poles are
formed, one on each side of the fracture, so that the two portions
are each perfect magnets. This process of making new magnets
by subdivision of the original one may be, so far as known, con-
tinued until the magnet is divided into its least parts, each of
which will be a perfect magnet.

This last experiment enables us at once to adopt the view that
the properties of a magnet are due to the resultant action of its
constituent magnetic molecules.

239. Law of Magnetic Force.—By the help of the torsion bal-
ance, the principle of which is described in §% 109, 253, and by us-
ing very long, thin, and uniformly magnetized bars, in which the.
poles can be considered as situated at the extremities, Coulomb
showed that the repulsion between two similar poles, and the at-
traction between two dissimilar poles, is inversely as the square of
the distance between them.

A more exact proof of the same law was given by Gauss, who
calculated the action of one magnet on another on the assumption
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- The quotient of the magnetic moment of such a magnet by its
volume, or the magnetic moment of unit of volume, is called the
intensity of magnetization. Since any magnet may be divided
into small magnets, each of which is uniformly magnetized, and
for which by this definition a particular value of the intensity of
magnetization can be found, it is clear that the magnetic condition
of any magnet can be stated in terms of the intensity of magnetiza-
tion of its parts.

The dimensions of magnetic moment and of intensity of mag-
netization follow from these definitions. They are respectively

[ml] = M{IAT- and ["l—”] =ML T

241. Distribution of Magnetism in a Magnet.—If we conceive
of a single row of magnetic molecules with their unlike poles in
contact, we can easily see that all the poles, except those at the
ends, neutralize one another’s action, and that such' a row will
have a free north pole at one end and a free south pole at the
other. If a magnet be thought of as made up of a combination of
such rows of different lengths, the action of their free poles may
be represented by supposing it due to a distribution of equal quan-
tities of two imaginary substances, called north and south magnet-
ism. This distribution will be, in general, both on the surface
and throughout the volume of the magnet. If the magnet be uni-
formly magnetized, the volume distribution becomes zero. The
surface distribution of magnetism will sometimes be used to
express the magnetization of a magnet, by the use of a concept
called the magnetic density. It is defined as the ratio of the quan-
tity of magnetism on an element of surface to the area of that ele-
ment. The magnetic density thus defined has the same numerical
value as the intensity of magnetization which measures the real
distribution. To illustrate this statement, we will consider an
infinitely thin and uniformly magnetized bar, of which the length
and cross-section are represented by / and s respectively. Its inten-
nl o om

T If, now, for the pole m we sub-

sity of magnetization is
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Let the angle PON equal 6 and draw the perpendiculars NQ
and OR to PS. Then, in the limit, if SN is very small in com-
parison with OP, we have PN = r — 4dr and PS = r 4 Adr,where
4y is a small length equal to SR =1.cos 6. The potential at A

due to the pole at Ni is A =m (l + A, ), since 47 is very small
in comparison with 7. Slmllarly the potential at P due to the pole

. m
at Sis — Ty ar s m( - The potential at P due to the

magnet is therefore

ZmAr __2mlcos 0 _ M cos

'rﬁ rﬂ - rﬂ H i (81)

where M is the magnetic moment of the magnet. We may consider
the magnetic moment as projected upon the line 7 by multiplica-
tion by cos 6; the formula shows that the potential at any point due
to a short magnet is equal to the projection of the magnetic mo-
ment upon the line joining the centre of the magnet with the point,
divided by the square of the length of that line.

The maximum value of the potential due to the magnet, for a

. .M .
given value of 7, is Ve where R represents the assigned value of 7.

If we set fﬂl‘ = Ji—gﬂ— we obtain 7* = R’ cos # agthe equation of

the equipotential surfaces at a considerable distance from the small
magnet. When R = =, it determines an equipotential surface of
zero potential, for which, for every finite value of r, we have

cos § =0, and 6 = 7—; The plane passing through the centre of the

magnet and perpendicular to its axis is therefore an equipotential
surface of zero potential. Since » = 0 whenever cos 6 = 0, whatever
be the value of R, all the other equipotential surfaces pass through
the point O; they are in general ovoid surfaces surrounding the
poles. Thelines of force of the magnet arise at the north pole and
pass perpendicularly through all these surfaces to the south pole.
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We designate by m’ the pole of the second magnet, by 27’ its
length, and by 6 the complement of the angle

,made by its axis with the line joining the cen-

8ON __________ 1/ tres of the magnets. On these assumptions,
8 the force acting on the north pole of the second

F . 2m'M . .
1a. 76. magnet is —5—, and the force acting on its

’
south pole is — ?Ln;.,ﬂ These two forces constitute a couple with

an arm 20’ cos 6, and the moment of this couple is

”nr
4m'l Jg cos & — 2M11£”cos 0, (83)

where M’ represents the magnetic moment of the second magnet.

This moment of couple varies from 2]{{” if the magnets are at

right angles to each other, to zero if they are in the same straight
line.

243. The Magnetic Shell. — A magnetic shell may be defined as an
infinitely thin sheet of magnetizable matter, magnetized transversely;
go that any line in the shell normal to its surfaces may be looked
on ag an infinitesimally short and thin magnet. These imaginary
magnets have their like poles contiguous. The product of the in-
tensity of magnetization at any point in the shell into the thick-
ness of the shell at that point is called the sirength of the shell at
that point, and is denoted by the symbol j.

Since we may substitute for the magnetic arrangement an imag-
inary distribution of magnetism over the surfaces of the shell, we
may define the strength of the shell as the product of the surface-
density and the thickness of the shell.

The dimensions of the strength of a magnetic shell follow at
once from this definition. We have [ /] equal to the dimensions of
intensity of magnetization multiplied by a length. Therefore [5]
= MILIT-.

We obtain first the potential of such a shell of infinitesimal
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face is 477, This resnlt is of importance in connection with elec-
trical currents.

244. Magnetic Measurements.—It was shown by Gilbert in a
work published in 1600, that the earth can be considered as a
magnet, having its positive pole toward the south and its negative
toward the north. The determination of the magnetic relations of
the earth are of importance in navigation and geodesy. The princi-
pal magnetic elements are the declination, the dip, and the horizontal
intensity.

The declination is the angle between the magnetic meridian, or
the direction assumed by the axis of a magnetic needle suspended
to move freely in a horizontal plane, and the geographical meridian.

The dip is the angle made with the horizontal by the axis of a
magnetic needle suspended so as to turn freely in a vertical plane
containing the magnetic meridian.

The horizontal 1ntensity is the strength of the earth’s magnetic
field resolved along the horizontal line in the plane of the magnetic
meridian. A magnet pole of strength m in a tield in which the
horizontal intensity is represented by H is urged along this horizontal
line with a force equal to mH. From this equation the dimensions
of the horizontal intensity, and so also of the strength of a magnetic

field in any case, are [H] = [M—I;n—q—:] =MLVT

The horizontal intensity can be measured relatively to some
assumed magnet as standard, by allowing the magnet to oscillate
freely in the horizontal plane about its centre, and noting the time
of oscillation. The relation between the magnetic moment M of
the magnet and the horizontal intensity H is calculated by a for-
mula analogous to that employed in the computation of g from
observations with the pendulum.

If the magnet be slightly displaced from its position of equilib-
rium, so a8 to make small oscillations about its point of suspension,
it can be shown, as in § 60, that it is describing a simple harmonic
motion. If ¢ represent the angle made by the magnet with the
magnetic meridian, the moment of couple acting on the magnet 1s
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in different relations. By the elimination of one of them the other
can be obtained in absolute units. In practice the simple condi-
tions assumed in this discussion cannot be obtained, and corrections
must be introduced, arising from the departures from these condi-
tions. In the determination of MH we must take into account
the change of the magnetic moment by the induction of the field,
and the facts that the oscillations are not infinitesimal, and that
they are affected by the friction of the air and the torsion of the
suspension fibre. In the determination of %Mj,we must take into
account the induction of one magnet on the other,and the fact that
the lengths of the magnets are not negligible in comparison with
the distance between them,

245.- The Magnetic Field. —Up to this point our discussion has
been conducted on the supposition that forces obeying a definite
law act directly between magnetic poles. Various phenomena,
especially those of magnetic induction and the relation between
magnetism and the electrical current,as well as the general tendency
of modern speculation in physics, lead us to think that this mode of
representing the interactions of magnets is an artificial one, and
that the true seat of the magnetic action is in the medium between
the magnets. From this point of view it is desirable to have a mode
of describing the magnetic field in such a way that the relation be-
tween its condition and the magnetic forces exhibited may be ex-
pressed in measurable terms. The most useful mode of describing
the field 1s that depending upon the use of lines and tubes of force.

Since the force due to a magnet pole obeys the law of inverse
squares, the theorems of §§ 53-57 are immediately applicable.

For the sake of clearness in statement we will define a wni¢ tube
of force in the following way: Consider a closed surface which
encloses a quantity of free positive magnetism m. By § 56,
ZFs = 4mm, where F represents the normal component of the
force at each point on the surface and s the area of the element of
surface over which it acts. Now let us suppose the whole surface
divided into 4mm parts, for each of which #s =1; then the tubes
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due to each face is 270 (§ 57), and the forces from the two faces
act in the same direction. The force upon the pole due to the
faces of the cavity is therefore 47 or 471, where 7 is the intensity
of magnetization (§ 241). The total force acting on the pole is
therefore

F=R+4 4nl; 87)
this quantity is called the magnetic induction within the body. It
is manifestly a directed quantity or a vector; in the example con-
sidered its direction is the same as that of the force. In bodies
which are not isotropic, the induction and the magnetizing force
are not necessarily in the same direction. We will confine our atten-
tion to isotropic bodies.

247. Tubes of Force of a Magnet. Tubes of Induction.—The
lines of force in the field outside a bar magnet are curves proceed-
ing from the horth to the south pole; these lines of force may be
conceived of as existing also within the body of the magnet if the
magnetic force within the magnet is determined within the long
narrow cylinder already described. On the other hand, a set of
tubes may be described, called fubes of induction, which are closed
tubes, proceeding through the magnet from the south to the north
pole and outside the magnet from the north to the south pole. To
show this let us suppose the magnet divided into two parts by a
gection at right angles’ to its axis, and let us consider a closed sur-
face passing between the two parts and enclosing that part which
contains the north pole. The distribution over the end of this
part which is exposed by the section is equal to the north pole at
the end of the original magnet, and is of opposite sign; so that the
flux of force =Fs =0 over the closed surface. Now the force
within the cavity formed by the section is directed inward, and is
at each point equal to 471 If @ represent the area of the section,
the flux of force across that part of the surface contained within
the section is 47la, and Ia = m, the strength of the pole of the
original magnet. The number of tubes of force which pass throngh
the section of the magnet is therefore equal to 4wm, or to the number
of tubes of force which proceed from the original pole and pass
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We assume that whatever bodies are in the field are of such a
character that their magnetization is proportional to the magnetiz-
ing force; on this assumption, the potential at any point and the
magnitude of the poles vary in the same proportion. Let m,, m,,
-...m, represent the values of the respective poles, and V,, V,,
...V, the potentials at the places occupied by them in the final
condition of the field. Each of these poles may be conceived of as

an assemblage of a great number z of small poles, each equal to ’_zm

If we think of the region occupied by the field as originally free
from magnets, its energy after the magnets are present in it will
be equal to the work done in forming the magnet poles by the suc-
cessive addition of such elementary poles. Let the field be free
from magnetism, and let the quantities of magnetism %‘: 7%’; seen %‘,
be brought to the points which the separate poles occupy in the
final condition of the field; since the potentials at those points are
originally zero, no work will be done in this operation. The
presence of these poles causes a rise of potential throughout the
field, and the potentials at the places occupied by the poles become
V., V. w .

o 7—:, e % - Let elementary poles similar to those already intro-

duced be brought to their respective places in the field; the work

done on any one of them is mT,V, and the work done on them all is

2‘%- By this increase in the quantities at the poles the potentials

%, cees ZZ—" This operation is repeated until »
quantities have been brought to each pole, so that the poles are in
their final condition and the potential has everywhere its final
value. The work done in bringing up the #** elementary pole to

become 25, 2
n

-

its place is 7:—:(n— 1)% ; the work done in forming the field is there-

_ fore 2’(1 +2+3 +n',"+ (n — 1))mV. Now
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2 2
in the cylinder is therefore Nis _ pR'ls ls, and the energy contained
M8 87
:]
in unit volume is N _ LB
M8 87

249. Paramagnetism and Diamagnetism. —It was discovered by
Faraday that all bodies are affected when brought into a magnetic
field: some of them, such as iron, nickel, cobalt, and oxygen, are
attracted by the magnet setting up the field; others, such as bis-
muth, copper, most organic substances, and nitrogen, are repelled
from the magnet. The former are said to be ferromagnetic or
paramagnetic, the latter diamagnetic.

The most obvious explanation of these phenomena, and the one
adopted by Faraday, is to ascribe them to a distribution of the in-
duced magnetization in paramagnetic bodies, in an opposite direc-
tion from that in diamagnetic bodies. If a paramagnetic body be
brought between two opposite magnet poles, a north pole is induced
in it near the external south pole, and a south pole near the external
north pole. The magnetic separation is then said to be in the di-
rection of the lines of force. Acocording to this explanation, then,
the separation of the induced magnetization in a diamagnetic body
is in a direction opposite to that of the lines of force. In other
words, if a diamagnetic body be brought between two opposite
magnet poles, the explanation asserts that a north pele is induced
in it near the external north pole, and a south pole near the exter-
nal south pole.

One of Faraday’s experiments, however, indicates that the dif-
ferent behavior of bodies of these two classes may be due only to a
more or less intense manifestation of the same action. He found
that a solution of ferrous sulphate, sealed in a glass tube, behaves,
immersed in a weaker solution of the same salt, as a paramagnetic
body; but, when immersed in a stronger solution, as a diamagnetic
body. It may from this experiment be concluded that the direc-
tion of the induced magnetization is the same for all bodies, and
that the exhibition of diamagnetic or paramagnetic properties de-
pends, not upon the direction of induced magnetization, but upon
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‘a8 to ‘make N* as small as possible, that is, will move from a
stronger to a weaker part of the field. Such a body is a diamag-
netic body. These motions are not necessarily along the lines of
force, but are in the directions in which N * changes most rapidly.

In general, the introduction of a body into a field changes the
arrangement of the tubes of induction and the force in the field ;
it has already been remarked that the resultant force at a point is
diminished by the presence of a paramagnetic body around that
point, because the induced distribution acts against the forces in
the field. Since the energy per unit length of the tubes of induc-

tion is equal to Sﬁ;r’ where R is the resultant force, a tube of in-

duction within a paramagnetic body possesses less energy per unit
length than it does outside that body. In accordance with the ten-
dency of the potential energy to become a minimum, the tubes of
induction will therefore move into a paramagnetic body. On the
other hand, the resultant force at a point being increased by the
presence of a diamagnetic body around that point, the tubes of in-
duction will move out from a diamagnetic body. This movement
of the tubes of induction, into or out of bodies in the field, ceases
when the loss of potential energy due to their movement into or
out of the body is balanced by the gain in potential energy due to
the lengthening of those tubes of the field which do not pass through
the body. This change in the arrangement of the tubes of induc-
tion does not invalidate the former conclusion that paramagnetic
bodies move from a place of weaker to a place of stronger mag-
netic force, while diamagnetic bodies move from a place of stronger
to a place of weaker magnetic force. A complete discussion of the
behavior of bodies in a magnetic field is outside the scope of this
work.

250. Changes in Magnetization. Hysteresis. —When a magnet-
izable body is placed in a powerful magnetic field, it often re-
ceives, temporarily, a more intense magnetization than it can
retain when removed. It is said to be safurated, or magnetized to
saturation, when the intensity of its magnetization has its highest
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ture at which it was. originally magnetized, its magnetization also
temporarily diminishes.

Any mechanical disturbance, such as jarring or friction, which
increages the freedom of motion among the molecules of a magnet,
in general brings about a diminution of its magnetization. On
the other hand, similar mechanical disturbances facilitate the ac-
quisition of magnetism by any magnetizable body placed in a mag-
netic field. :

251. Theories of Magnetism.—It has been shown by mathe-
matical analysis that the facts of magnetic interactions and dis-
tribution are consistent with the hypothesis, which we have al-
ready made, that the ultimate molecules of iron are themselves
magnets, having north and south poles which attract and repel
similar poles in accordance with the law of magnetic force.
Poisson’s theory, upon which most of the earlier mathematical
work is based, is that there exist in each molecule indefinite
quantities of north and south magnetic fluids, which are separated
and moved to opposite ends of the molecule by the action of an
external magnetizing force. Weber’s view, which is consistent
with other facts that Poisson’s theory fails to explain, is that each
molecule is a magnet, with permanent poles of constant strength;
that the molecules of an iron bar are, in general, arranged so as to
neutralize one another’s magnetic action, but that, under the in-
fluence of an external magnetizing force, they are arranged so
that their magnetic axes lie more or less in some one direction.
The bar is then magnetized. On this hypothesis there should be
a limit to the possible intensity of magnetization, which would be
reached when the axes of all the molecules have the same direction.
Direct experiments by Joule, J. Miiller, and Ewing indicate the
existence of such a limit. An experiment of Beetz, in which a
thin filament of iron deposited electrolytically in a strong mag-
netic field becomes a magnet of very great intensity, points in the
same direction. The coercive force is, on this hypothesis, the re-
gistance to motion experienced by the molecules. The facts that
magnetization is facilitated by a jarring of the steel brought into
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forces between the molecules maintain equilibrium in the mole-
cular groups after the magnetizing force has fallen below the value
at which they were formed; sufficient reduction of the magnetizing
force at last occasions a breaking down of these groups and per-
mits the formation of new ones, which exert less external magnetic
force. During the time in which this change in grouping occurs,
the intensity of magnetization diminishes rapidly; it does not,
however, vanish until the magnetizing force has attained a finite
negative value. From this point on, changes similar to those
already described go on in the reverse sense. Ewing’s theory also
explains very well all the facts explained by Weber’s form of the
theory.
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be classed with the metals,damp linen, or silk, as good conductors,
poor conductors, and tnsulators. The distinction is one of degree.
All conductors offer some opposition to the transfer of electrifica-
tion, and no body is a perfect insulator under all conditions.

A conductor separated from all other conductors by insulators
is said to be inswlafed. A conductor in conducting contact with
the earth is said to be grounded or joined to ground.

During the transfer of electrification in the experiment above
described the connecting conductor acquires certain properties
which will be considered under the head of the Electrical Current.

(3) If a positively electrified body be brought near an insulated
conductor, the latter shows signs of electrification. The end nearer
the first body is negatively, the farther end positively, electrified.
If the first body be removed, all signs of electrification on the con-
ductor disappear. If, before the first body is removed, the con-
ductor be joined to ground, the positive electrification disappears.
It now the connection with ground be broken, and the first body
removed, the conductor is negatively electrified.

The experiment can be carried out so as to give quantitative
results, in a way first given by Faraday. An electrified body, for
example a brass ball suspended by a silk thread, is introduced into
the interior of an insulated closed metallic vessel. The exterior of
the vessel is then found to be electrified in the same way as the
ball. This electrification disappears if the ball be removed. If
the ball be touched to the interior of the vessel, no change in the
amount of the external electrification can be detected. If, after
the ball 18 introduced irto the interior, the vessel be joined to
ground by a wire, all external electrification disappears. If the
ground connection be broken, and the ball removed, the vessel has
an electrification dissimilar to that of the ball. If the ball, after
the ground connection is broken, be first touched to the interior of
the vessel and then removed, neither the ball nor the vessel is any
longer electrified.

A body thus electrified without contact with any charged body
is said to be electrified by tnduction. The above-mentioned facts
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cal force within a charged sphere is then, from § 57, consistent with
the law of electrical force which has been given; and since the
means of detecting electrical force, if there were any, within a
charged conductor are very delicate, this fact affords a strong cor-
roborative proof of the law.

The determination of the distribution of electricity on irreg-
ularly shaped conductors is in general beyond our power. If we
consider, however, a conductor in the form of an elongated egg, it
can be readily seen that, in order that there may be no electrical
force within it, the surface density at the pointed end must be
greater than that anywhere else on 1ts surface. In general, the sur-
face density at points on a conducting surface depends upon the cur-
vature of the surface, being greater where the curvature is greater.
Thus, if the conductor be a long rod terminating in a point, the
surface density at the pointed end is much greater than that any-
where else on the rod.

255. Umit Charge.—The law of electrical force enables us to
define a unut charge, based upon the fundamental mechanical units.

Let there be two equal and similar positive charges.concentrated
at points unit distance apart in air, such that the repulsion between
them equals the wnit of force. Then each of the.charges is a uni?
charge, or & umit quantity of electricity. With this definition of
unit charge, it may be said that the force between two charges is
not merely proportional to, but equals, the product of the charges
divided by the square of the distance between them. The tactor &
n the expression for the force between two charges becomes unity,

’
and the dimensions of ~3- QQ are those of a force. 1f the charges be

equal, we have g-leLT". Hence [Q] = M*LIT- are the

dimensions of the charge. This equation gives the charge in abso-
lute mechanical units, and by means of it all other electrical qua'n-
tities may be expressed in absolute units. It is at the basis of the
electrostatic system of electrical measurements.

The practical unit of charge or quantity is called the coulomb.






290 ELEMENTARY PHYSICS, [§ 256

point within it the same, Electrical force depends on the space rate
of change of potential, and not on its absolute value. Hence the
changes without the closed conductor will have no effect on bodies
within it. Further, any electrical operations whatever within the.
closed conductor will not change the potential of points outside it.
For, whatever operations go on, equal amounts of positive and neg-
ative electricity always exist within the conductor, and hence the
potential of the conductor remains unaltered. Hence electrical ex-
periments performed within a closed room yield results which are
a8 valid as if the experiments were performed in free space.

The advantage gained by the use of the idea of potential in dis-
cussions of electrical phenomena may be illustrated by a statement
of the process of charging a conductor by induction described in
§ 252 (3). To fix our ideas, let us suppose that the field of force
is due to a positively electrified sphere, and that the body to be
charged is a long cylinder. When this cylinder, previously in con-
tact with the earth and therefore at zero potential, is brought end
on to a point near the sphere, it is in a region of positive potential,
and is itself at a positive potential. If we consider the original po-
tentials at the points in the region now occupied by the cylinder, it
is easily seen that the potential of points nearer the sphere was
higher than that of those more remote. When the cylinder is
brought into the field, therefore, the portion nearer the sphere is
temporarily raised to a higher potential than the portion more re-
mote. The difference of potential between these portions is annulled
by a flow of electricity from the points of higher potential to those
of lower potential at a rate depending on the conductivity of the
cylinder. The end of the cylinder nearer the sphere is negatively
charged, the end more remote is positively charged, and the two
charged portions are separated by a line on the surface, called the
neutral line, on which there is no charge.

If the cylinder be now joined to ground, a flow of electricity
takes place through the ground connection, and it is brought te
zero potential. The potential of the cylinder is therefore every-
where lower than the original potentials of the points in the regior
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position of other conductors in the field. When the charged con-
ductor is in very close proximity to another conductor which is
kept at zero potential, the amount of charge needed to raise it to
unit potential is very great as compared with that required when
the other conductor is more remote. Such an arrangement is called
a condenser. If the charge on a conductor be increased, the in-
crease in potential is directly as that of the charge. Hence the
capacity C is obtained by dividing any given charge on & conductor
by the potential of the conductor, or

_9
C= 7 (89)

The practical unit of capacity is the farad, which is the capacity
of a conductor, the charge on which is one coulomb (§ 255) when
its potential is one volt (§ 303). This unit is too great for con-
venient use. Instead of it a microfarad, or the one-millionth part
of a farad, is usually employed.

The equation gives the dimensions of capacity. Measured in

-1
electrostatic units, they are [C] = [—g:l = %:%;—% = L.

258. Specific Inductive Capacity.—The capacity of a condenser of
given dimensions depends upon the insulating medinm used to sepa-
rate its parts, or the dielectric. This was first discovered by Caven-
dish, and afterwards rediscovered by Faraday. If Q represent the
charge required to raise a condenser in which the dielectric is vacuum
to a potential V,then if another dielectric be substituted for vacuum,
it is found that a different charge @’ is required to raise the po-

’
tential to V. The ratio % = K is called the specific inductive

Q
capacity, or dielectric constant. Since €’ = %’ and C = %are the
capacities of the condenser with the two dielectrics, it follows that
¢’ = CK, (90)

where C is the capacity with vacuum as the dielectric. The specifie
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divide numerator and denominator by R’ and write ¢ = £ 7"
1-5;

R
Now;if R’ be greater than R by an infinitesimal, the fraction %

is less than unity by an infinitesimal, and the capacity of the ac-
cumulator is infinitely great. It becomes infinitely small if B be
diminished without limit. The presence of any finite charge at a
point would require an infinite potential at that point, which is of
course impossible. The existence of finite charges concentrated at
points, which we have assumed sometimes in order to more con-
veniently state certain laws, is therefore purely imaginary. If
electricity is distributed in space, it is distributed like a fluid, a
finite quantity of which never exists at a point.

If R’ increase without limit, C' becomes more and more nearly
equal to . Suppose the inner sphere to be surrounded not by the
outer sphere but by conductors disposed at unequal distances, the
nearest of which is still at a distance B’ so great that %, may be
neglected in comparison with unity. Then if the nearest conductor
were a portion of a sphere of radius R’ concentric with the inner
sphere, the capacity of the inner sphere would be approximately R.
And this capacity is evidently not less than that which would be
due to any arrangement of conductors at distances more remote
than R’. Therefore the capacity of a sphere removed from other
conductors by distances very great in comparison with the radius
of the sphere is equal to its radius £. This value R is often called
the capacity of a freely electrified sphere. Strictly speaking, a
freely electrified conductor cannot exist; the term is, however, a
convenient one to represent a conductor remote from all other con-
ductors.

A common form of condenser consists of two flat conducting
disks of equal area, placed parallel and opposite one another. The
capacity of such a condenser may be calculated from the capacity
of the spherical condenser already discussed. Let & represent the
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formed by joining them together by conductors is easily found. It
is assumed that the connecting conductors are fine wires, the
capacities of which may be neglected. Then the charges of the
respective bodies may be represented by C,V,, C,V,,...C,V,, and
the capacity of the system by the sum C, 4+ C,+ ... C,. Hence
V, the potential after connections have been made, is

yp=CV.+ OV, +...CV,
- C+C+...00 "

In the case of two freely electrified bodies joined up together by
CV,+CV, .
Ul_ia.ﬁ' When C, is very great
2
G,

a fine wire, we have V =

compared with C,, we obtain V' =V, 4+ 2V,.

Unless V, is 8o great that the term %V, becomes appreciable,

the potential of the system is appreciably equal to the original po-
tential of the larger body. The capacity of the earth, being equal
to its radius, is very great in comparison with the capacity of any
body used in our experiments, and hence the potential of the earth
is not changed when it is connected with a charged body. This
proposition justifies the adoption of the potential of the earth as
the standard or zero potential. N

261. Electroscopes and Electrometers.—An electroscope is an in-
strument used to detect the existence of a difference of electrical
potential. It may also give indications of the amount of difference.
It consists of an arrangement of some light body or bodies, such as
a pith ball suspended by a silk thread, or a pair of parallel strips of
gold-foil, which may be brought near or in contact with the body
to be tested. The movements of the light bodies indicate the ex-
istence, nature, and to some extent the amount of the potential dif-
ference between the body tested and surrounding bodies.

An electrometer is an apparatus which gives precise measure-
ments of differences of potential. The most important form is the
absolute or attracted disk electrometer, originally devised by Harris,
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always taken in the space between the plates as equal to 2zc
(§ 57). Every unit on the attracted disk is attracted with this
force, and the total attraction, which is measured by means of the
balance or spring, is # = 270*S. Substituting this value of o in
the former equation, we get

v,-v=af L, (93)

which gives the difference of potential between the two plates in
terms which are all measurable in absolute units.

Thomson’s guadrant electrometer is an instrument which is not
used for absolute measurement, but being extremely sensitive to
minute differences of potential, it enables us to compare them with
each other and with some known standard. The construction of
the apparatus can best be understood from
Fig. 81. Of the four metallic quadrants which
are mounted on insulating supports, the two
marked P and the two marked N are respec-
tively in conducting contact by means of wires.
The body C, technically called the needle, is a
thin sheet of metal, suspended symmetrically

Fia. 81. just above the quadrants by two parallel silk
fibres, forming what is known as a bifilar suspension. When there
is no charge in the apparatus, the axes of symmetry of the needle
lie above the spaces which separate the quadrants.

To use the apparatus, the needle is maintained at a high, con-
stant potential, and the two points, the difference of potential be-
tween which is desired, are joined to the pairs of quadrants P and
N. The needle is deflected from its normal position, and the
amount of deflection is an indication of the difference of potential
between the two pairs of quadrants. '

262. Electrical Machines.— Electrical machines may be divided
into two classes: those which depend for their operation upon
friction, and those which depend upon induction.

The frictional mackhine, in one of its forms, consists of a circu-
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ceptible charge on one plate is made to develop an indefinite
D, quantity of electricity of high
potential, is shown in Fig. 82. A4,

5, and 4, are conducting plates,
B, called inductors. In front of
o them two disks B, and B,, called

c SO )
_I'\_. carriers, are mounted on an arm

so as to turn about the axis Z.
Projecting springs b, and b, at-
tached to these disks are so fixed
as to touch successively the pins D,
Fie. 82. and D,, connected with the plates
A4, and 4,, and the pins C, and C,, insulated from the plates, but
joined to the prime conductors F, and F,.
~ Suppose the prime conductors to be in contact and the carriers
g0 placed that B, is between D, and C,, and suppose the plate 4,
to be at a slightly higher potential than the rest of the machine.
The carrier B, is then charged by induction. When the carriers
are turned in the direction of the arrows, and the carrier B, makes
contact with the pin C, it loses a part of its positive charge and
the prime conductors become positively charged. At the same
time the carrier B, becomes positively charged. As the carrier B,
passes over the upper part of the plate .4,, the lower part of the
plate A4, is charged positively by induction. This positive charge
is neutralized by the negative charge of the carrier B,, when con-
tact is made at ),. The plate 4, is then negatively charged. The
carrier B, at its contact at D, shares its positive charge with the
plate 4,. The carriers then return to the positions from which
they started, and the difference of potential between the plates A4,
and 4, is greater than it was at first. When, after sufficient
repetition of this process, the difference of potential has become
sufficiently great, the prime conductors may be separated, and the
transfer of electricity between the points 7 and #, then takes
place through the air. Obviously the number of carriers may
be increased, with a corresponding increase in the rapidity of

F\F2
C
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trating Faraday’s theory that the electrification of a conductor is
due to an actionin the dielectric surrounding it, may be performed
with a jar so constructed that both coatings can be removed from
it. If the jar be charged, the coatings removed by insulating
handles without discharging the jar, and examined, they will be
found to be almost without charge. If they be replaced, the jar
will be found to be charged as before. The jar will also be found
to be charged if new coatings similar to those removed be put in
their place. This result shows that the true seat of the charge is
in the dielectric. The experiment is due to Franklin.

That the arrangement in the dielectric is of the nature of a
strain is rendered probable by the fact, first noticed by Volta, that
the volume occupied by a Leyden jar increases slightly when the
jar is charged. Similar changes of volume were observed by
Quincke in fluid dielectrics as well as in different solids.

Another proof of the strained condition of dielectrics is found
in their optical relations. It was discovered by Kerr that dielec-
trics previously homogeneous become doubly refracting when sub-
jected to a powerful electrical stress. Maxwell has shown, from
the assumptions of his electromagnetic theory of light, that the
index of refraction of a transparent dielectric should be propor-
tional to the square root of its specific inductive capacity. Numer-
ous experiments, among which those of Boltzmann on the index of
refraction of light in gases and those of Hertz and others on the
index of refraction of electromagnetic waves in solids and liquids
are the most striking, show that this predicted relation is very
close to the truth.

It has further been shown that the specific inductive capacity
of sulphur has different values along its three crystallographic
axes. This is probably true also for other crystals.

Some crystals, while being warmed, exhibit on their faces posi-
tive and negative electrifications, which are reversed as the crystals
are cooling. This fact, while as yet unexplained, is probably due
to temporary modifications of molecular arrangement by heat.

If a jar be discharged and allowed to stand for a while, a second
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that these other conductors are at any distance from 4, and that
they are at the common potential zero. They are then equivalent .
to a single conductor B surrounding the conductor 4. Lines of
force start from every point of 4 and pass to corresponding points
of B.- Mark out a small area on the surface 4, and consider the
closed surface formed by the lines of force passing through the
contour of that area and surfaces drawn in the dielectric just out-
gide the conductor 4 and just outside the conductor B. This
closed surface is a tube of force, and if F, and Fp represent the
forces acting at the two cross-sections of the tube at 4 and B re-
spectively, and s, and s represent the areas of those cross-sections,
we have (§ 56), F,8, = — Fpsp, the forces being considered as
directed along the normals drawn outward from the conductors.
Since the force within the conductors vanishes, the force just outside
the surface of 4 is #, = 470 ,, and that just outside the surface
of Bis Fp = 4mop. Using these values for #, and Fj, we have

0484 = — 0pSg. Now these products are equal to the quantities
of electricity present on the areas s, and sz, so that we have
¢4 = — ¢p. The charges at the two ends of the tube of force are

therefore equal and of opposite sign. Since the tubes of force
which proceed from A either extend to infinity or end on con-
ductors, the charges on those conductors are never greater than the
total charge on A. If, as we have assumed, the conductors B com-
pletely surround 4, the charges on B are equal to the charge on 4.
If we divide the surface of A into areas upon each of which a unit
charge of electricity is present, and erect tubes of force upon those
areas, the dielectric will be mapped out by those tubes. Such a
tube may be called a wni? fube or a Faraday tube, in accordance
with the proposition of J. J. Thomson.

266. Electrical Forces explained by Tubes of Force.—The
strength of the field at any point in the dielectric is inversely as
the area of the normal cross-section of the unit tube of force at
that point. For, by § 56, the product F%s is constant throughout
the tube, At the surface of the conductor from which the tube
starts, # is equal to 470 and F's = 4708 = 4=, since s is the cross-
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just outside the surface is equal to ﬁ’K_o_', the pull on the end of

each unit tube is also given by %’

The forces which act upon electrified bodies may therefore be
considered as arising from tensions in the unit tubes, provided these
tensions are not mechanically impossible. It may be shown that a
medium in which such tensions exist is not in equilibrium unless
pressures numerically equal to the tensions, and at right angles to
them, act throughout the medium. In order, therefore, that we
may adequately represent the electrical field by the aid of unit
tubes, we must assume a tension in each of these tubes along the
lines of force and a pressure in every direction at right angles to it
of the same numerical value. The tensions tend to shorten the
tubes, the pressures to repel them from one another. All the forces
which act between electrified bodies may be explained in terms of
these actions between the tubes of force.

267. Energy in the Dielectric.—The tension on the cross-section

. F
of the unit tube at any point in the field is also 3 where F repre-

sents the force at that point. To show this, it 18 sufficient to suppose
one of the equipotential surfaces around the charged body replaced
by a conductor maintained at the potential of that surface. The
distribution in the field between the two conductors will then be
the same as before. By reasoning similar to that already employed,
it is seen at once that the force on the surface of the new conductor
which carries unit charge, or the pull on the end of a unit tube at

that surface, is given by g, where F is the force at & point in the

end of the unit tube. No restriction has been made as to the par-
ticular equipotential surface chosen to be replaced by a conductor,
and thus it appears that the tension or pull on the cross-section of

the tube of force is everywhere equal to g, where F is the force at

a point in that cross-section.
To find the tension or pull across unit area normal to the lines
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throughout the tube in such a way that each unit of length of the
tube contains the energy 49F. If the tube be a unit tube so that
¢ = 1, each unit of length of this tube will have in it a quantlty of
energy equal to }F.

To find the energy in unit volume of the dielectric, we consider a
small cylinder, its height / being taken along the lines of force and
its base s normal to them. The number of unit tubes which pass
through the base is Ns. Since the energy in unit length of each
of these tubes is {F, and since therefore the energy in the length ?
is } F1, we have the energy in the volume Is equal to }#Nis, or the
energy in unit volume equal to }#N. Now we have ¥ = dn ¥

K’
2
80 that the energy in unit volume is %V— = I—Z—f:-

By comparing this result with the value obtained for the tension
across unit area it appears that the tension across unit area and the
energy of unit volume are numerically equal. They both vary from
point to point in the dielectric, depending upon the electrical force
at each point. Unless the force is appreciably constant for all
points of a finite region, the actual tension across a unit area and
the actual energy of unit volume will not be given accurately by
these expressions: they are more strictly the limits of the ratios be-
tween the tension and the area on which it acts, and the energy
and the volume containing it.

268. Forces on Electrified Bodies.—It has already been stated
that the stresses between charges may be represented by supposing
that the tubes of force exert a tension along the lines of force and
an equal pressure in all directions perpendicular to the lines of
force, or as may be said, the lines of force tend to diminish in
length and to repel each other. This mode of conceiving the
stresses between charged bodies may be illustrated in some simple
cases without the aid of diagrams of lines of force. The lines of
force around a uniformly charged sphere are radial and the tubes
of force are similar cones; if the sphere be charged positively, the
force is directed outward from it, and if charged negatively, is
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greater than unity, so that the introduction of such a body into the
field involves a loss of energy, and this loss of energy is greater as
N is greater. Bodies tend to move so as to make their potential
energy a minimum, and the given body will therefore move from a
place of weaker to a place of stronger electrical force. This con-
. clusion is reached on the supposition that the electrical field is not
modified by the presence of the body—a supposition which can be
made only when X is very nearly equal to unity. When K is not
nearly equal to unity, the potential is not only diminished by the
movement of the body from a place of weaker to a place of stronger
electrical force, but also by the movement into it of the tubes of
force; for a unit tube of force is associated with less energy in a
medium of which the dielectric constant i1s X than in the medium
of which the dielectric constant is unity, and the potential energy
of the field is therefore diminished by a crowding of the tubes of
force into the given body. This process cannot go on indefinitely
so that the body includes all the tubes of force of the field, for as
some of them enter the body others outside of it are lengthened
and their energy is thereby increased. The concentration of the
tubes in the body ceases, therefore, when the loss of energy due to .
their entrance into the body is balanced by the gain of energy due
to the lengthening of those outside the body.

A conductor may be looked on as a body having a dielectric
constant K = . There 18 no electrical force within a conductor,

and the energy lost by the field in consequence of a conductor
2

8—7:’ where v 18 the volume of the con-

ductor. This loss of energy is greater a8 F is greater, and the
conductor therefore tends to move from a place of weaker to a
place of stronger electrical force. There will also be a diminution
of potential energy due to the concentration of tubes of force upon
the conductor ; the conductor disturbs the electrical field and con-
centrates the tubes of force upon it in a way similar to that of the
body just described, but to a greater extent.

269. Cause of the Stress in the Dielectric.—The theory that the

being introduced into it is






CHAPTER IIL
THE ELECTRICAL CURRENT.

270. Fundamental Effects of the Electrical Current.—In 1791
Galvani of Bologna published an account of some experiments made
two years before, which opened a new department of electrical
science. He showed that, if the lumbar nerves of a freshly skinned
frog be touched by a strip of metal and the muscles of the hind leg
by a strip of another metal, the leg is violently agitated when the
two pieces of metal are brought in contact. Similar phenomena
had been previously observed when sparks were passing from the
conductor of an electrical machine in the vicinity of the frog prep-
aration. )

He ascribed the facts observed to a hypothetical animal elec-
tricity or vital principle, and discussed them from the physiological
standpoint; and thus, although he and his immediate associates
pursued his theory with great acuteness, they did not affect any
marked advance along the true direction. Volta at Pavia followed
up Galvani’s discovery in a most masterly way. He showed that 1f
two different metals, or, in general, two heterogeneous substances,
be brought in contact, there immediately arises a difference of elec-
trical potential between them. He divided all bodies into two
classes. Those of the first class, comprising all simple bodies and
many others, are so related to one another that, if a closed circuit
be formed of them or any of them, the sum of all the differences of
potential taken around the circuit in one direction is equal to zero.
If a body of the second class be substituted for one of the first
class, this statement is no longer true. There exists then in the
circuit a preponderating difference of potential in one direction.

U ' 812
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clusively that if a Leyden jar be discharged through a circuit, it
will momentarily produce thermal, chemical, and magnetic effects
which are similar to those just described as produced continunously
by the voltaic battery. :

The discharge of the jar may be variously represented. So long
a8 electricity is considered as a fluid or substance, it is easiest to
think of the discharge as the transfer of electricity from a place
of higher to a place of lower potential, or rather as the equalization
of potential by the transfer of equal and opposite quantities in op-
posite senses, and to explain the continuous effects produced by the
voltaic battery by ascribing them to a current, or continuous trans-
fer of electricity around the circuit. This view is capable of rep-
resenting most of the phenomena of steady or permanent currents,
but it is less successful in representing the phenomena of variable
currents. If we consider electrical phenomena as due to actions in
the dielectric, we may obtain a more adequate representation of
the discharge and also of all the phenomena of the current by the
use of the unit tubes of force described in § 265. We may obtain
some idea of the connection of these tubes with the current if we
examine their behavior during the discharge of a condenser.

To make the discussion as simple as possible, we suppose the
condenser to be made of two equal plates 4 and B; their potentials
are V, and Vp, V, being the
greater. The lines of force origi-
nate at 4 and pass to B in the
manner shown in Fig. 83. This
figure has been roughly copied
from the one given by J. J. Thom-

Fie. 83. son. Let Q represent that part of
the charge on A4 to which corresponds an equal and opposite charge
on B: the number of unit tubes of force which pass from 4 to B
will then be given by . Now let us join 4 to B by a conductor C,
which for the sake of simplicity shall coincide with the direction of
the lines of force. No tube of force can exist within a conductor,
and those which were present in the volume which the conductor
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take place in the tubes of force, in a manner consistent with what
we know of their nature. Thus this latter view furnishes a more
adequate representation of the discharge than the older and simpler
view.

We have already seen (§ 267) that the energy contained in each
unit tube is equal to one half the difference of potential between its
ends. Since @ represents the number of unit tubes which pass
between the plates, the energy of the field is 4Q(V, — Vp);
after the discharge this energy has entered the conductor.

If an arrangement be effected by which the difference ¢f poten-
tial between 4 and B is kept constantly equal to (V, — V3), the
work done by the transfer of @ units of charge, and therefore the
energy lost by the disappearance of @ unit tubes of force, is
Q(V4— Vg). Let W represent the energy lost by such & continu-
ous discharge or current in unit time, and ¢ the time in which @
tubes of force disappear. Then Wt = Q(V, — V3), and

W= % Vi Va). (94)

The ratio g is represented by I and called the current strength

or simply the current in the conductor. It may be variously con-
sidered as the rate of transfer of charge between the conductors, or
as the rate at which the unit tubes of force are destroyed.

272. Electrostatic Unit of Current.—Let us denote the poten-
tials at the two points 1 and 2 in a circuit by V, and V,, and let
V, be greater than V,: then if, in the time ¢, a quantity of elec-
tricity equal to @ passes through a conductor joining those points
from potential V, to potential V,, the energy expended is
Q’ Vl - V:)'

1f the conductor be a single homogeneous metal or some analo-
gous substance, and if no motion of the conductor or of any exter
nal magnetic body take place, the energy expended in the conductor
is transformed into heat. If we suppose this transformation to go
on at a uniform rate, and denote the heat developed 'in unit time
by H, we may substitute H for W in equation (94), and have
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will equalize the potentials of two eleotrified conductors, if it be
used to connect them. Manifestly this property of the substances
forming a circuit will influence the strength of the current in the
circuit. It was shown on theoretical considerations, in 1827, by
Ohm that in a homogeneous conductor which is kept constant the
current varies directly with the difference of potential between the
terminals. If R represent a factor, constant for each conductor,
Ohm’s law is expressed in its simplest form by

IR=V,— 7V, (97)

The quantity R is called the resistance of the conductor. If
the difference of potential be maintained constant, and the con-
ductor be altered in any way that does not introduce an internal
electromotive force, the current will vary with the changes in the
conductor, and there will be a different value of R with each
change in the conductor. The quantity R is therefore a function
of the nature and materials of the conductor, and does not depend
on the current or the difference of potential between the ends of
the conductor. Since it is the ratio of the current to the differ-
ence of potential, and since we know these quantities in electro-
static units, we can measure R in electrostatic units. From the
dimensions of 7 and (¥, — V,) we may obtain the dimensions of R.
They are in electrostatic units )

(7= 57 2] =1

Since the difference of potential in equation (97) is the measure
of the electromotive force in the conductor considered, it is natural
to extend the relation therein expressed to the whole circuit, in
which the current is maintained by the electromotive force E.
The expression of Ohm’s law for the whole circuit is

IR = E. (98)
This relation cannot in every case be experimentally verified, but

in many cases in which the electromotive force may be directly and
accurately calculated its validity has been demonstrated.
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homogeneous. The heat which is sometimes evolved by chemical
action, or by the Peltier effect, occurs at non-homogeneous portions
of the circuit.

277. Counter Electromotive Force in the Circuit.—In many cases
the work done by the current does not appear wholly as heat devel-
oped in accordance with Joule’s law.

Besides the production of heat throughout the circuit, work
may be done during the passage of the current, in the decomposi-
tion of chemical compounds, in producing movements of magnetic
bodies or in heating junctions of dissimilar substances.

Before discussing these cases separately we will connect them
all by a general law, which will at the same time present the various
methods by which currents can be maintained. They differ from
the simple case in which the work done appears wholly as heat
throughout the circuit, in that the work done appears partly as
energy available to generate currents in the circuit. To show this
we will use the method given by Helmholtz and by Thomson. The
total energy expended in the circuit in the time #, which is such
that, during it, the current is constant, is JEZ. It appears partly
as heat, which equals I” B¢ by Joule’s law, and partly as other work,
which experiment proves is in every case proportional to 7,and can
be set equal to 74, where 4 is a factor which varies with the par-
ticular work done. Then we have /E¢ = I*R¢ 4 IA, whence

A
F-3

I=—7%— (101)

It is evident from the equation that E—% is an electromotive

force, and that the original electromotive force of the circuit has
been modified by work having been done by the current. In other
words, the performance of the work 74 in the time ¢ by the circuit

has set up a counter electromotive force % The separated con-

stituents of the chemical compound, the moved magnet, the heated
junction, are all sources of electromotive force which oppose that
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be steady, this number is the same whatever be the radius of the
circle; it therefore expresses also the number of unit tubes which
enter the wire in unit of time.

We have already seen that the energy carried into the conduc-
. tor by @ unit tubes, when the difference of potential is maintained
constant, is equal to @(V, — V,), that is, is twice the energy asso-
ciated with these tubes when at rest. It has also been shown that

the energy in unit length of a unit tube at rest is ZF’ and F there-

fore measures the energy carried into the conductor by unit length
of each unit tube. In the case before us, the energy transferred in
one second through a cylindrical surface of unit height and of
radius r, concentric with the wire,is 27zrv.NF. Now, on the view
of the current here taken, the number of unit tubes which dis-
appear in one second is equal to the current strength, so that
2nrvN = I. The energy introduced through the cylindrical sur-
face is therefore #'I. Since in this case the difference of potential
equals the electrical force multiplied by the length of the wire, the
energy introduced into the whole wire is I(V, —V,). The energy

which passes through unit area of the cylindrical surface is ?z% It

may be shown that the magnetic force due to the current at the
distance r is P = 2—;, and hence the energy which passes through

unit area may also be represented by Z—?

The example here given is a special case of a general theorem
due to Poynting. This theorem asserts that the energy expended
in the current enters the conductor from the dielectric, passing at
right angles to the lines of electrostatic force and the lines of mag-
netic force, and that the amount of energy which passes perpendic-
ularly through unit area is proportional to the electrostatic force
and to the magnetic force.
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called ons. One of them appears at the anode and is called the
anion, the other at the cathode and is called the cation.

For the sake of clearness we will describe some typical cases of
electrolysis. The original observation of the evolution of gas when
the current was passed through a drop of water, made by Nichol-
son and Carlisle, was soon modified by Carlisle in a way which is
still generally in use. Two platinum electrodes are immersed in
water slightly acidulated with sulphuric acid, and tubes are ar-
ranged above them so that the gases evolved can be collected sepa-
rately. When the current is passing, bubbles of gas appear on the
electrodes. When they are collected and examined, the gas which
appears at the anode is found to be oxygen, and that which appears
at the cathode to be hydrogen. The quantities evolved are in the
proportion to form water. This appears to be a simple decomposi-
tion of water into its constituents, but it is probable that the acid
in the water is first decomposed, and that the constituents of water
are evolved by a secondary chemical reaction.

An experiment performed by Davy, by which he discovered the
elements potassinm and sodium, is a good example of simple elec-
trolysis. He fused caustic potash in a platinum dish, which was
made the anode, and immersed in the fused mass a platinum wire
as cathode. Oxygen was then evolved at the anode, and the metal
potassium was deposited on the cathode. Thisis the type of alarge
number of decompositions.

If, in a solution of zinc sulphate, a plate of copper be made the
anode and a plate of zinc the cathode, there will be zinc deposited
on the cathode and copper taken from the anode, so that, after the
process has continued for a time, the solution will contain a quan-
tity of cupric sulphate. This is a case similar to the electrolysis of
acidulated water, in which the simple decomposition of the electro-
lyte is modified by secondary chemical reactions.

If two copper electrodes be immersed in a solution of cupric
sulphate, copper will be removed from the anode and deposited on
the cathode, without any important change occuring in the charac-
ter or concentration of the electrolyte. This is an example of the
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valent ions. To illustrate, we know that when hydrogen is evolved
from hydrochloric acid, HCI, its ion is univalent. Now when it
is evolved from water, H,0, we may either consider the H, as a
bivalent ion or as two univalent ions. Similarly we may consider
the O as a bivalent ion or as two univalent ions, though it can
never be actually broken up into two such ions. We may consider
a molecule, then, as made up either of two n-valent ions or of 2xn
univalent ions. The weight of each of the n-valent ions may be
measured in terms of the weight of the hydrogen atom taken as a
unit, and is the molecular weight of the ion. This weight divided
by the valency n is the weight of the univalent ion. It may be
called the tonic weight.

Now the passage of a current through different electrolytes
evolves their constituents in amounts proportional to their molec-
ular weights divided by their valencies. It therefore evolves the
ions in proportion to their ionic weights, or it evolves the same
number of univalent ions in each electrolyte. Faraday’s two laws
may therefore be summed up in the statement that the number
of univalent ions evolved by a current in any electrolyte is propor-
tional to the quantity of current.

By this mode of considering electrolysis, we are led to the
conclusion that each pair of univalent ions liberated during elec-
trolysis is associated with a pair of charges numerically equal and
of opposite sign. These charges are called ‘ontc charges. An
n-valent ion is associated with » ionic charges. If we use the con-
ception of tubes of force, each positive univalent ion may be con-
sidered as the origin of a tube of force which terminates on a
negative ion. Since the ionic charges are all equal, these tubes
may be taken as unit tubes, which are no longer defined arbitrarily,
but are based upon a constant of Nature.

281. The Voltameter.—These laws were used by Faraday to
establish a method of measuring current by reference to an arbi-
trary standard. The method employs a vessel containing an elec-
trolyte in which suitable electrodes are immersed, so arranged that
the products of electrolysis, if gaseous, can be collected and meas-






328 ELEMENTARY PHYSICS. [§ 283

an equivalent mass of the other ion, in which is included the heat
equivalent of the mechanical work done if the state of aggregation
change. Then I will represent the number of electro-chemical
equivalents evolved in unit time, and Je6f will represent the en-
ergy expended in the time /, which appears as chemical separation
and mechanical work. This is equal to 74; whence 4 = eff. All
these quantities are measured in absolute units. The quantity ef
represents the energy required to separate the quantity e of the ion
considered from the equivalent quantity of the other ion, and to

. - A
bring both constituents to their normal condition. Now, 7 Tepre-

gents the counter electromotive force set up in the circuit by elec-
trolysis. Hence the electromotive force set up in the electro—
lytic process may be measured in terms of heat units.

It often is the case that the two ions which appear at the elec-
trodes are not capable of direct recombination, as has been tacitly
assumed in the definition of #. A series of chemical exchanges is
always possible, however, which will restore the ions as constituents
of the electrolyte, and the total heat evolved for a unit mass of one
ion during the process is the quantity 6.

The theory here presented is abundantly verified by the experi-
ments of Joule, Favre and Silbermann, Wright, and others. The
extension of the theory to cases in which the electromotive force
varies with the temperature was made by Helmholtz.

283. Positive and Negative Ions. —Experiment shows that cer-
tain of the bodies which act as ions usually appear at the cathode,
and certain others at the anode. The former are called electro-
posttive elements ; the latter, electro-negative elements. Faraday
divided all the ions into these two classes, and thought that every
compound capable of electrolysis was made up of one electro-positive
and one electro-negative ion. But the distinction is not absolute.
Some ions are electro-positive in one combination and electro-
negative in another. Berzelius made an attempt to arrange the
ions in a series, such that any one ion should be electro-positive to
all those above it and electro-negative to all those below it. There






330 ELEMENTARY PHYSICS. [§ 285

by Grotthus’s theory, the explanation furnishes at the same time a
numerical relation between the ions which have wandered to their
respective regions in the-electrolyte which is not in accord with
experiment,

It is an objection against Grotthus’s theory, and indeed against
Thomson’s method given in § 282 of connecting chemical affinity
and electromotive force, that, on those theories, it would require an
electromotive force in the circuit greater than f;, the counter electro-
motive force in the electrolytic cell, to set up a current, and that
the current would begin suddenly, with a finite value, after this
electromotive force is reached. On the contrary, experiments
show that the smallest electromotive force will set up a current in
an electrolyte and even maintain one constantly, though the cur-
rent strength may be extremely small.

285. The Dissociation Theory of Electrolysis.—The foundations
of a more satisfactory theory of electrolysis were laid by Clausius,
who proceeded from the view with which he had become familiar
by his study of the kinetic theory of gases, that the molecules of all
bodies are in constant motion. He assumed that the collisions of the
molecules of the electrolyte occasionally caused a separation of some
of the molecules into their constituent ions, and that the province of
the electromotive force in the electrolyte was to direct the motion
of these ions toward their respective electrodes. A considerable
extension of Clausins’s theory has been made by Arrhenius and de-
veloped by Ostwald and others, in which the leading idea is, that
the molecules of an electrolyte in solution are always separated to
a greater or less extent into their constituent ions. In many cases,
and always in very dilute solutions, the separation, according to
this view, is complete. This theory is called the dissociation theory
of electrolysis. . The ions, however, are not in the condition of the
constituent parts of a molecule which have been dissociated at a
high temperature (§ 219), but possess certain peculiar electrical and
chemical properties. It has been proposed to call their condition
in solution ¢onization. This term certainly possesses ad vantages, but
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number of ions which pass through that cross-section in unit time
in both directions is therefore M(w + v) and the quantity of elec-
tricity carried through with them in both directions is cM(u 4 v).
But this quantity is equal to the current strength 7, and therefore
cMu+v)=kV,-V,);orut+v= &V‘c—;—v’) Now cM is the
quantity of current required to decompose the molecules in the cell,
or the mass which is in solution in unit volume of the electrolyte;
it ' may therefore be directly determined. Since equal volumes of
the electrolytes contain the same number of univalent ions, this
quantity of current is the same for all the cells, and since, with
a known value of /, we may determine the value of % in each case
by observations of ¥V, — V,, the formula just obtained enables us to
determine % -+ v.

This formula may be more conveniently used in another form.
Let n represent the weight of the hydrogen evolved by unit current
in unit time, and m the chemical equivalent of one of the products
of electrolysis in the cell. Then mn represents the weight of that

product evolved by unit current in unit time, and m_ln represents the

current that will evolve unit weight in unit time. Now the electro-
lytes are prepared so that the weights of the constituents in the
cells are given by Nm, where &N is a number which is the same for
all the cells. The current that will evolve these weights in the

respective cells is therefore equal to ]7:7 and this current has been

shown to be equal to ¢cM. Using this value of cM in the equation

nk(V, —

for » 4 v, we obtain v + v = Nﬂ In the experiments of

Kohlrausch the difference of potential ¥V, — V, was the same for

all the cells, and the value of j]%determined for each cell. The

values of % 4 v could then be calculated. The ratio J—];is called

the molecular conductivity.
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assumption that in this case the dissociation is not complete; the
ratio of the molecular conductivity found in such cases to the mo-
lecular conductivity at very great dilutions, in which case the disso-
ciation is assumed to be complete, is taken as the measure of the
dissociation in the solution. A similar theory of partial dissociation
was assumed to account for the departures from the normal laws of
osmotic pressure (§§ 94, 95), of the lowering of the freezing-point
(§ 197), and of the lowering of vapor pressure (§ 204).

The agreement between the conclusions reached by these entirely
independent methods with regard to the extent of dissociation is
strong evidence in favor of the hypothesis upon which the calcula-
tions are based. Starting with the same hypothesis, other relations
have been theoretically discovered among the physical properties of
solutions which have been confirmed by experiment. The dissocia-
tion theory of solution and of electrolysis is not yet fully established,
but it furnishes by far the most satisfactory explanation of the
nature and behavior of solutions.

288. Voltaic Cells.—From the discussion given in § 277 it is
obvious that, if an arrangement be made, in a circuit, of sub-
stances capable of uniting chemically and such as would result
from electrolysis, there will result an electromotive force in such
a sense as to oppose the current which would effect the electrolysis.
If, then, the electrodes of an electrolytic cell in which this electro-
motive force exists be joined by a wire, a current will be set up
through the wire in the opposite direction to the one which would
continue the electrolysis, and the ions at the electrodes will recom-
bineto form the electrolyte. There is thus formed an independent
source of current, the woltaic cell. The electrode 1n connection
with the electro-negative ion is called the posifive pole, and that
in connection with the electro-positive ion the negative pole.

Thus, if after the electrolysis of water in a voltameter, in which
the gases are collected separately in tubes over platinum electrodes,
the electrodes be joined by a wire, a current will be set up in it,
and the gases will gradually, and at last totally, disappear, and the
current will cease. The current which decomposes the water is
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of copper is immersed in the cupric sulphate, and a plate of zinc
in the zinc sulphate. The copper is the positive pole, the zinc the
" negative pole. When the circuit is made, and the current passes,
zinc is dissolved, the quantity of zinc sulphate increases and that
of the cupric sulphate decreases, and copper is deposited on the
copper plate. To prevent the destruction of the cell by the con-
sumption of the cupric sulphate, crystals of the salt are placed in
the solution. The electromotive force of this cell is evidently due
to the loss of energy in the substitution of zinc for copper in the
solution of cupric sulphate.

The secondary cell of Planté is an example of a cell made
directly by electrolysis, as has been assumed in the preliminary dis-
cussion. The electrodes are both lead plates, and the electrolyte
dilute sulphuric acid. When a current is passed through the cell,
the oxygen evolved on the anode combines with the lead to form
peroxide of lead, which coats the surface of the electrode. When
the cell is inserted in a circuit, a current is set up, the peroxide is
reduced to a lower oxide, and the metallic lead of the other plate
is oxidized.

Cells of this sort, which have been constructed directly by
coating lead piates with the proper oxides of lead, are called
storage cells. They may be put in condition for use by sending a
current through them in the proper direction. The sulphate
of lead formed plays an important part in the operation of these
cells.

The Latimer-Clarke standard cell is of great value as a
standard of electromotive force. The positive pole consists of pure
mercury, which is covered by a paste made by boiling mercurous
sulphate in a saturated solution of zinc sulphate. The negative
pole consists of pure zinc resting on the paste. Contact with the
mercury is made by means of a platinum wire. As no gases are
generated, this cell may be hermetically sealed against atmospheric
influences. According to the measurements of Rayleigh, the elec-
tromotive force of this cell is very constantly 1,435-10° C. G. S.
electromagnetic units at 15° Cent.
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the plates and the distance between them vary inversely. When
the faces of the two plates are in contact, that is, are separated
by molecular distances, these charges become very great. Such an
arrangement of equal and opposite charges, distributed over the
surfaces of two bodies in contact and separated by a distance com-
parable with the distance between the molecules, was called by
Helmholtz an electrical double-sheet. It evidently presents some
analogies to the magnetic shell.

The charges making up the double-sheet cannot be detected by
separating a plate of zinc from a plate of copper with which it has
been in contact and examining the separate plates, because the sepa-
ration cannot be effected 8o uniformly that no discharge takes place
between the two bodies. If, however, those faces of the zinc and
copper plates which are contiguous be insulated from each other by
a thin layer of shellac and contact made between the plates by
means of & metallic wire, so that a difference of potential is set up
between them, on removal of the wire and separation of the plates
they are found to possess charges of considerable magnitude.

We may explain in this way electrification by friction. We,
may assume that the two bodies rubbed together acquire different
potentials by contact; the friction forces large areas of their sur-
faces into close proximity, and the charges upon those surfaces be-
come very great; because the bodies ordinarily used for producing
electrification by friction are nonconductors, the charges on their
surfaces are not recombined as the bodies are separated, so that
each body retains a large free charge.

A similar electrical double-sheet will exist on the surfaces of
contact between a liquid and a metal. An arrangement by which
the effects due to this double-sheet may be observed was invented
by Lippmann. It consists of a vertical glass tube drawn out at its
lower end in a capillary tube. The capillary tube dips into dilute
sulphuric acid, which rests on mercury in the bottom of the vessel
containing it. Mercury is poured into the vertical tube until its
pressure is such that the capillary portion of the tube is nearly
filled with it. When the mercury in the vessel is joined with the

I3 .
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circuit, in a sense opposite to that which would change the area of
the meniscus back to its original amount.

The electrical double-sheet produced by contact of a liquid
and a solid serves also to explain the phenomenon of elecirical
endosmose.

It is found that, if an electrolyte be divided into two portions
by a porous diaphragm, there is a transfer of the electrolyte toward
the cathode, so that it stands at a higher level on the side of the
diaphragm nearer the cathode than on the other. This fact was
discovered by Reuss in 1807, and has been investigated by Wiede-
mann and Quincke. They found that the amount of the electrolyte
transferred is proportional to the current strength, and independent
of the extent of surface or the thickness of the diaphragm. Quincke
has also demonstrated a flow of the electrolyte toward the cathode
in a narrow tube, without the intervention of a diaphragm. Those
electrolytes which are the poorest conductors show the phenomenon
the best. In a very few cases the motion is towards the anode. The
material of which the tube is composed influences the direction of
flow. It has also been shown that solid particles move in the electro-
lyte, usually towards the anode.

Helmholtz showed that these movements can be explained by
taking into account the interaction between the ionic charges and
the double-sheet, and the viscosity of the liquid.
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be seen that the relation between the current and the lines of force
is also that between the lines of force and the current; that is, the
direction of the lines of force and the direction of the current are
related as the directions of translation and rotation of a right-
handed screw. A simple rule equivalent to these others is as fol-
lows: Let the conductor carrying the current be grasped with the
right hand and the thumb extended along it in the direction of the
current; the fingers then point in the direction of the lines of force.

In accordance with the views prevalent at the time, Biot sup-
posed that the action of the current upon a magnet pole was due
to the independent action of each element of the current. He
showed that the results of his experiments were consistent with the
assumption that a force acts between a magnet pole m and an ele-
ment ds of the current ¢, at the distance  from the magnet pole

. . misina ds
and making an angle a with 7, equal to — At present we
no longer consider the current as acting at a distance in accordance
with this formula, but consider it rather as setting up a magnetic
field, and we express its action upon a magnet pole in terms of the
field which it cets up. We will return to the consideration of
Biot’s formula after developing this method.

It was shown by Ampére, and later by Weber, that a very small
closed plane circuit sets up a magnetic field similar to that about a
small magnet placed with its centre at the centre of the circuit,
with its axis normal to the plane of the circuit. This magnet may
be replaced by a magnetic shell with its edge coincident with the
circuit, without altering the magnetic field. At all points outside
the shell its magnetic field is similar to the magnetic field set up
by the current; at those points in the field occupied by the sub-
stance of the shell the conditions are not the same in both cases.
The potential of a shell at a point outside it is ja (§ 243), where
7 is the strength of the shell and @ is the solid angle subtended by
the shell. This is also the potential of the current, if the current
be measured in such units that the current strength ¢ =j. Now
a shell of finite area may be built up of a number of elementary
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work is done in this displacement. The system then returns to its
original condition, and work equal to 4zi is done upon the pole.
This is expressed by saying that the potential of a closed current
is multiply-valued. The work done during any n:ovement depends
not only on the position of the initial and final points in the path,
as in the case of the ordinary single-valued gravitational, electrical,
and magnetic potentials, but also on the path traversed by the
moving magnet pole. Every time the path encloses the current,
work equal to 477 is done. The work done in moving by a path
which does not enclose the current, from a point where the solid
angle subtended by the circuit is £’ to one where it is £, 1s, as in
the case of the magnetic shell, equal to (2’ — £2). If the path
further enclose the current »# times, the work done is 4771, so that
the total work done, or the total difference of potential between the
two points, 18

V=V =1iQ — Q-+ 4nn), " (102)
where #» may have any value from 0 to infinity.

The fact that the potential of a current is multiply-valued is
well illustrated by any one of a series of experiments due to Fara-
day. If we imagine a wire frame forming three sides of a rectangle
to be mounted on a support so as to turn freely about one of its
sides a8 a vertical axis, while the free end of the opposite side dips
in mercury contained in a circular trough of which the axis of ro-
tation passes through the centre, and 1f we suppose a current to be
sent through the axis and the frame, passing out through the mer-
cury; then if a magnet be placed vertically with its centre on the
level of the trough, and with either pole confronting the frame, the
frame will rotate continuously about the axis,

Other arrangements are made by which more complicated rota-
tions of circuits can be effected. If the circuit be fixed and the
magnet movable, similar arrangements will give rise to motions of
the magnet or to rotations about its own axis.

291. Electromagnetic Unit of Current.—The relation which has
been discussed between a circuit and the equivalent magnetic shell
affords a means of defining a unit of current different from that
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circuit. These statements hold true not only in the case supposed,
in which the field is homogeneous, but also when the field contains
masses of magnetizable matter which distort the tubes of induction.
293. Energy of a Current in its own Field. —When the circuit is
traversed by a current, a magnetic field is present around it, and
the circuit possesses energy in consequence of the presence of that
field; we may calculate an expression for this energy, if we assume
that it is distributed in the tubes of induction around the circuit
according to the law developed in § 248. Let the number of unit
tubes of induction which pass through the circuit be represented
by N. The unit of length of each of these tubes contains an
amount of energy equal to 8%, where R is the resultant magnetic
2RAl
i 8z °’
where 4! is an element of length of the tube and the summation is
extended over the whole tube. But ZR4! equals the werk done
in carrying a unit pole over the whole length of the tube. The
tube is a continuous closed tube enclosing the circuit, and the work
done in carrying a unit pole over such a closed curve enclosing the
circuit is equal to 471 (§ 290), so that ZRA! = 4mi. The energy
of each unit tube is therefore equal to 4¢, and the energy of all the
tubes belonging to the circuit is equal to 3¢N. Therefore, the
energy of the circuit, due to its own current, is equal to one half
the product of the current and the number of tubes of induction
which pass through the circuit. Now we know by experiment that
the magnetic force due to a current or the number of tubes of in-
duction which pass through unit area is proportional to the current.
Let L represent the number of tubes of induction which pass
through the circuit when it is traversed by unit current; L is
called the coefficient of self-tnduction. Then N = Li, and the
energy of the circuit equals § L’
294. Energy of Two Circuits.—If two circuits be present in a
field, each of them possesses a certain amount of energy due to the
magnetic field set up by the other. Let N, represent the number

force. Any one tube therefore contains energy equal to
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potential of the pole is positive when the current, as seen from the
pole, is directed counterclockwise, that is, when the face of the cir-
cuit which confronts the pole is its positive face, which corresponds
to the north face of a magnetic shell. The energy of the circuit is
also positive in this position. It becomes zero when the pole is
brought into the plane of the circuit outside of it, and negative
when the pole confronts the negative face. The energy of the cir-
cuit is therefore diminished by turning its negative face toward
the pole and moving it up toward the pole. The tubes of induc-
tion of the pole then pass through the circuit in the positive direc-
tion, that is, in the same direction as the tubes of the circuit; and
the motien is such as to include as many of the tubes of the pole in
the circuit as possible. The rule thus illustrated is a general one:
a circuit in a magnetic field tends to move so that as many of the
tubes of the field as possible pass through it in the positive direc-
tion; or, more fully, it tends to move so that the difference between
the tubes which pass through it in the positive direction and in the
negative direction is as great as possible. In terms of the symbols
already used, the motion is such as to make N negative and nu-
merically as great ag possible. From this rule it is easy to see that
a circuit will be in stable equilibrium with a soft iron bar when the
axis of the bar 1s normal to the circuit, the tubes of induction in
the bar are in the same direction as those of the circuit, and the
bar is as near the edge of the circuit as possible.

When the field is due to the presence of another circuit the
motion is such as to set their tubes of induction in the same direc-
tion, and to include in each circuit as many of the tubes of the
other as possible ; that is, to make M negative and numerically as
great as possible. When the circuits are thus placed, their cur-
rents are travelling in the same sense. Their mutual action may
therefore be expressed by saying that currents travelling in the
same sense attract, and in opposite senses repel, each other.

The action on a circuit in a field due to magnets, or the mutual
action of two circuits, may be described in terms of the actions that
would be exerted on the magnetic shells which are equivalent to
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the circuit, or N — N’, is equal to the flux of force through the
cylindrical surface. Now let 6 represent the angle between s
and /; the area traversed by ! during its displacement is then
8l sinf. Let ¢ represent the angle between the normal to this
area and the direction of the magnetic force H acting through it.
Then Hcos ¢ is the component of the magnetic force normal to
this area, and Hslsin f cos @ is the flux of force through this
area. The flux of force through the cylindrical surface is there-
fore given by ZHslsinf cosp = N — N’. The energy lost by
the displacement, or «(V — N'), is equal to 1= Hslsin ¢ cos ¢;
and since all parts of the circuit are displaced through the same
distance s, this loss of energy is equal to the work which would be
done on the circuit by a force acting in the direction of s and equal
to 1= Hlsin 6 cos ¢, or by a force acting on each element of the
circuit equal to ¢Hlsin #cos . We may therefore consider the
action of the magnetic field on the circuit as the resultant of an
action of the magnetic field on each element of the circuit.

The magnitude and direction of the resultant force which acts
on each element may be found as follows: The force tH!sin # cos ¢
is equal to zero when sinf = 0, or when s and ! coincide with
each other; it is also equal to zero when cos ¢ = 0, or when the
direction of H les in the surface described by /.. The resultant or
maximum force which acts on the element is therefore at vight
angles to / and to H; the element 7 is urged to move at right
angles to itself and to the magnetic force. The magnitude of the
force acting on an element 1s obtained by supposing the element
displaced 1n this direction, that 18, along the normal to /and H.
In this case we have sin # = 1, and cos ¢» = sin a, where a is the
angle between the element ! and the direction of the magnetic
force H. Substituting these values, the resultant force on the ele-
ment is found to be equal to +H! sin a.

In the special case in which the magnetic field is due to a sin-

gle magnet pole of strength m, we have H = %n,—, where r is the

distance from the pole to the eloment of the circuit. The force
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the force is 2as. If therefore the force exerted be equal to 27,
1 will be equal to unity. We have thus arrived at another defini-
tion of unit current from the point of view of Biot's law. The
unit current is defined to be that current which, flowing in a circle
of unit radius, will exert upon a unit magnet pole at its centre a
force equal to 27 dynes. '

297. Ampére’s Law for the Mutual Action of Currents.—The
mutual action of two currents may also be considered as arising
from forces between the elements of the currents. It was from this
point of view that the action of currents was first investigated by
Ampére. While the results obtained by him were not a unique
solution of the problem, and must be regarded only as an artificial
representation of the action between currents, they are yet of great
interest. Without attempting to deduce Ampére’s law, we will
briefly consider the experiments upon which his deductions were
based.

Ampeére’s method consists in submitting a movable circuit or
part of a circuit carrying a current to the action of a fixed circuit,
and in so disposing the parts of the fixed circuit that the forces
arising from different parts exactly annul one another, so that the
movable circuit does not move when the current in the fixed circuit
is made or broken. In the first two of his experiments the mov-
able circuit consists of a wire frame of the form shown in Fig. 86.

5 The current passes into the frame by the points
ﬁ, a and b, upon which the frame is supported. It
' is evident that the two halves of the frame tend
to face in opposite directions in the earth’s mag-
u 1 I l netic field, so that there is no tendency of the

frame as a whole to face in any one direction
rather than any other. If a long straight wire be
placed near to one of the extreme vertical sides of
the frame and a current be sent through it, that
side will move towards the wire if the currents in it and in the wire
be in the same direction, and will move away from the wire if the
currents be in opposite directions.

Fig. 86.
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and any current whatever through B, it is found that B does not
move. The opposing forces due to the actions of 4 and C upon
B are in equilibrium. From this fourtk case of equilibrium is
deduced the law that the force between two current elements is
inversely as the square of the distance between them.

Ampére made the assumption that the action between two
current elements is in the line joining them. From the four cases
of equilibrium he then deduced an expression for the attraction
between two current elements. It is

. ’ B )
“ d:,d'g (% cos € — 3 cos ¢ cos &). (103)

In this formula ds and ds’ represent the elements of the two cir-
cuits, ¢ and ¢’ the strength of current in those circuits measured in
electromagnetic units, » the distance between the current elements,
€ the angles made by the two elements with one another, ¢ and 6’
the angles made by ds and ds’ with » or r produced, the direction
of the two elements being taken in the sense of their respective
currents. »

298, Solenoids and Electromagnets.—Ampére also showed that
- the action between two small plane circuits is the same as that
between two small magnetic shells, and that a circuit, or system of
circunits, may be constructed which is the complete equivalent of
any magnet. A long bar magnet may be looked on as made up of
a great number of equal and similar magnetic shells arranged per-
pendicularly to the axis of the magnet, with their similar faces all
in one direction. In order to produce the equivalent of this
arrangement with the circuit, a long insulated wire is wound into
a close spiral, straight and of uniform cross-section. The end of
the wire is passed back through the spiral. When the current
Ppasses, the action of each turn of the spiral may be resolved into
two parts—that due to the projection of the spiral on the plane
normal to the axis, and that due to its projection on the axis. This
latter component, for every turn, is neutralized by the current in
the returning wire, and the action of the spiral is reduced to that
of a number of similar plane circuits perpendicular to its axis.
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of these tubes is supposed to be connected with the peculiar motions
which characterize the molecule of the magnetic body. Diamagnet-
ism would then be explained by supposing a similar motion enforced
upon the molecules of the other bodies in the field to an extent in
each which depends upon the nature of the body.

300. The Hall Effect.—Hitherto it has been assumed that when
currents interact, it is their conductors alone which are affecte?,
and that the currents in the conductors are not in any way altered.
Hall has, however, discovered a fact which seems to show that cur-
rents may be displaced in their conductors. If the two poles of &
voltaic battery be joined to two opposite arms of a cross of gold-foil
mounted on a glass plate, and if a galvanometer be joined to the
other two arms at such points that no current flows through it, and
if a magnet pole be brought opposite the face of the cross, a per-
manent current will be indicated by the galvanometer. The same
effect appears in the case of other metals. The direction of the
permanent current and its amount differ under the same circum-
stances for different metals. The coefficient which represents the
amount of the Hall effect in any metal is called the rofational
coefficient of that metal.

Since the rotational coefficients of such metals as have been
tested agree in sign and in relative magnitude with their thermo-
electric powers (§ 316), it is argued by Bidwell, v. Ettingshausen,
and others that the Hall effect is due to thermoelectric action.

301. Currents in a Magnetic Field Due to Inequalities of Temper-
ature.—If a thin strip of bismuth be placed in a magnetic field so
that the magnetic force is normal to its surface, and if onc of the
edges of the strip be kept at a higher temperature than the other
and the two ends of the strip joined by a wire in which a galvanom-
eter is inserted, a continuous current will flow through the circuit.
The direction of this current changes when the direction of the
flow of heat changes or when the magnetic field is reversed. The
strength of the current is different in different metals. These facts
were discovered by v. Ettingshausen. Conversely, if a current be
gent through the strip of bismuth placed in the magnetic field, there
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this form it consists of a circular conductor set up in the earth’s
- magnetic field, so that its plane is parallel with the lines of force, and
having a small magnet placed at its centre. The magnet 18 free to
swing in the horizontal plane, If the current ¢ be sent through the
circuit, the couple which it will exert on the magnet, on the sup-
position that the magnet is so short that the force at its poles is the

same as that at its centre, is 2m M

cos @ (§ 296), where M repre-

sents the magnetic moment of the magnet, and ¢ the angle made
by the axis of the magnet with the direction of the lines of force.
The couple exerted by the field upon the magnet and tending to
turn it in the opposite sense is H.Msin ¢, where H represents the
horizontal intensity of the earth’s magnetism. Equilibrium will
obtain, and the magnet will be at rest, when these couples are equal,

or when il cos @ = HMsin ¢. From this equation we obtain

Hr -, an @ ‘ (104)

The current is therefore proportional to the tangent of the angle
of deflection. All the quantities in this expression for current, ex-
cept H, are either numbers or lengths and may be directly measured ;
and H may be determined in absolute units (§ 244). The tangent
galvanometer therefore permits of the determination of current
strength in absolute units.

In the more complicated forms of ‘the instrument, the dimen-
sions and position of its parts are so adjusted that the corrections
rendered necessary by the impossibility of fulfilling the conditions
assumed in the simple case may be either calculated or avoided.

Weber’s electro-dynamometer is an instrument with fixed coils
like those of the tangent galvanometer, but with a small suspended
coil substituted for the magnet. The small coil 1s usnally suspended
by the two fine wires through which the current is introduced into
it, and the moment of torsion of this so-called bifilar suspension
enters into the expression for the current strength. The same cur-
rent is sent through the fixed and the movable coils, and a measure-
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304. Resistance.—As in the discussion of § 274, we may define
the ratio of the electromotive force to the current in any circuit as
the resistance in that circuit. The electromagnetic unit of resistance
is the resistance of that circuit in which unit electromotive force
gives rise to unit corrent, when both these quantities are measured
in electromagnetic units.

In practice another unit of resistance is used, called the okm.
The ¢rue okm contains 10° C. G. S. electromagnetic units. The
dimensions of resistance in the electromagnetic system are [r] =

[:] = LT

The standard of resistance, usually called the B. A. unit, deter-
mined by the committee of the British Association, has a resistance
somewhat less than the true ohm as it is here defined. In practical
work resistances are used which have been compared with this
standard. The Electrical Congress of 1884 defined the legal ohm
to be “ the resistance of a column of mercury of one square milli-
metre section and of 106 centimetres of length at the temperature
of freezing.” This definition has since been modified by increas-
ing the length of the mercury column to 106.3 cm. The legal ohm
containg 1.0112 B.A. units. Boxes containing coils of wire of
definite resistance, so arranged that by different combinations of
them any desired resistance may be introduced into a circuit, are
called resistance boxes or rheostats.

305. Kirchhoff’s Laws.—In circuits which are made up of several
parts, forming what may be called a network of conductors, there
exist relations among the electromotive forces, currents, and resist-
ances in the different branches, which have been stated by Kirch-
hoff in a way which admits of easy application.

Several conventions are made with regard to the positive and
negative directions of currents. In considering the currents meet-
ing at any point, those currents are taken as positive which come
up to the point, and those as negative which move away from it. In
travelling around any closed portion of the network, those currents
are taken as positive which are in the direction of motion, and those
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follows at once a relation between the resistances, expressed in the
equation R

=TT, (105)
If, therefore, we know the value of 7, and know the ratio of 7, to
r,, we may obtain the value of r,.

This method of comparing resistances by means of the Whea.t-
stone’s bridge is of great importance in practice. By the use of a
form of apparatus known as the British Association bridge the
method can be carried to a high degree of accuracy. In this form of
the bridge, the portion marked 4CB (Fig. 87) is a straight cylin-
drical wire, along which the end of the branch CD is moved until a
point C is found, such that the galvanometer shows no deflection.
The two portions of the wire between C and 4, and C and B, are
then the two conductors of which the resistances are r, and r,, and
these resistances are proportional to the lengths of those portions
(§ 275). The ratio of 7, to r, is therefore the ratio of the lengths
of wire on either side of C, and only the resistance of , need be
known in order to obtain that of »,.

It is often convenient in determining the relations of current
and resistance in a network of conductors to use Ohm’s law direct-
ly, and consider the difference of potentiai between the two points
on a conductor as equal to the product s». When a part of a cir-
cuit is made up of several portions which all meet at two points 4
and B, the relation between the whole resistance and that of the
separate parts may be obtained easily in this way. For convenience
in illustration we will suppose
the divided circuit (Fig. 88) A
made up of only three portions, ¢ G

1, 2, 3, meeting at the points 4
and B, and that no electromotive
force exists in those portions. Then the difference of potential be-
tween 4 and Bis V,— Vs =1d,r, = i,r, = 4,;r,, We have also by
Kirchhoff’s first law — ¢, = ¢, 4+ 7, +4,. By the combination of
these equations we obtain '

— = (V.- V,,)( + -+ ) (106)

1

Fi1a. 88.
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the current due to this electromotive forcs will be in the direction
6pposite to that current which, by its action upon the magnet,
would assist the actual motion of the magnet. " This current is
called an ¢nduced current. From the equivalence between a
magnetic shell and an electrical current, it is plain that a similar
induced current will be produced in a closed circuit by the move-
ment near it of an electrical current or any part of one. Since the
joining up or breaking the circuit carrying a current is equivalent
to bringing up that same current from an infinite distance, or
removing it to an infinite distance, it is further evident that similar
induced currents will be produced in a closed circuit when a circuit
is made or broken in its presence.

The demonstration of the production of induced currents in
§ 277 depends upon the assumption that the path of the magnet
pole is such that work is done upon it by the current assumed to
exist in the circuit. The potential of the magnet pole relative to
_ the current is changed.

The change in potential from one point to another in the
magnetic field due to a closed current is (§ 290) 1(Q2’ — Q + 47n),
and the work done on a magnet pole m, in moving it from one
point to another, is mi(Q’ — Q + 47n). In the demonstration ot
§ 277 we may substitute m(Q’ — Q 4 47n) for 4, and, provided
the change in potential be uniform, we obtain at once the expres-
d Cot ‘? +47%) tor the electromotive force due to the
movement of the magnet pole. If the change in potential be not
uniform, we may conceive the time in which it oceurs to be
divided into indefinitely small intervals, during any ome of which,
!, it may be considered uniform. Then the limit of the expres-
m(Q'— Q + 4nn)

¢

sion —

gion — » 88 ¢ becomes indefinitely small, iz the

electromotive force during that interval.
The current strength due to this electromotive force is

o= m(Q’ — O+ 47n)
- rt *
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within it. If the two circuits are parallel, this current will be in
the same sense as that in circuit 1. The current induced in circuit
2 gives rise to tubes of induction which enter circuit 1, and their
entrance into circuit 1 is resisted by a current tending to repel them
from circuit 1, or to set up tubes of induction in the opposite sense.
Thus there will be a small current in cireunit 1 in the opposite sense
to that originally in it and the current in circuit 1 will therefore
diminish more rapidly than if circuit 2 were not present. On the
other hand, if neither circuit carries a current, and a carrent be
suddenly impressed on circuit 1, the tubes of induction to which it
gives rise will enter circuit 2, and will be resisted by a momentary
current in circuit 2 tending to repel them, or to set np tubes of
induction in the opposite sense. Thus the induced current in
circuit 2 in this case, if the two circuits are parallel, is in the oppo-
site sense to that in circuit 1. This current in circuit 2 will in turn
set up tubes of induction which enter circuit 1 and are there resisted
by a momentary small current which will be in the same sense as
that impressed upon circuit 1. Thus the presence of circuit 2 will
temporarily increase the current in circuit 1.

The fact that induced currents are produced in a closed circuit
by a variation in the number of lines of magnetic force included in
it was first shown experimentally by Faraday in 1831. He placed
one wire coil, in circuit with a voltaic battery, inside another which
was joined with a sensitive galvanometer. The first he called the
primary, the second the secondary, circuit. When the battery
circuit was made or broken, deflections of the galvanometer were
observed. These were in such a direction as to indicate a current
in the secondary coil, when the primary circuit was made, in the
opposite direction to that in the primary, and when the primary
circuit was broken, in the same direction as that in the primary.
When the positive pole of a bar magnet was thrust into or with-
drawn from the secondary coil, the galvanometer was deflected.
The currents indicated were related to the direction of motion of
the positive magnet pole, as the directions of rotation and propul-
gion in a left-handed screw. The direction of the induced currents
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induced current due to the loss of the tubes of induction which pass
through the circuit; this current is in the same sense as the current of

the circuit. Since by Ohm’slaw ¢ = ;, where ¢ is the electromotive
force impressed upon the circuit, the average electromotive force is

in both these cases ;té' Now ¢, the time required for the current

to rise from zero to its full value, or to sink from its full value to
zero, is very small, and the average electromotive force of induction
may be much larger than the electromotive force of the circuit.
When the current is made, this induced electromotive force
diminishes the electromotive force of the circuit; so that the current
is established gradually and not instantaneously. The time required
to establish the current depends upon the resistance and self-in-
duction of the circuit. When the circuit is broken, the electro-
motive force of induction is in the same sense as that of the circuit,
and produces a momentary current which is much greater than the
steady current of the circuit. The induced electromotive force is
frequently so high as to cause the current to leap across the gap
formed where the circuit is broken, and to give rise to a spark at
that gap. The induced current thus formed is often called the
extra current or the current of self-induction. It should be noted
that the induced electromotive force is proportional to the coefficient
of gelf-induction of the circuit. The establishment of a current in
the circuit may therefore be retarded and the extra current at the
break may be increased by so arranging the circuit as to increase its
coefficient of self-induction; while by so winding the circuit that
its coefficient of self-induction is reduced to a minimum these effects
may be almost entirely avoided. A wire doubled on itself, and
coiled so that a current in it always passes in opposite directions
throngh immediately contiguous portions of the wire, will mani-
festly have a very small coefficient of self-induction; such a coil is
called a non-inductive coil.

308. Alternating Currents.—If the electromotive force in a cir-
cuit be made to vary, especially if it be made to change in sense,
the tubes of induction which pass through the circuit will also vary,
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310. Determination of the Unit of Resistance.—If the circuit
considered in § 306 move from a point where its potential relative
to the magnet pole is m{2’ to one where it is m(2, provided that the
magnetic pole do not pass through the circuit, and that the move-
ment be so carried out that the induced current is constant, the

electromotive force of the indaced current is — m_(.(l'_z-_—ﬁ If
the movement take place in unit time, and if m(Q’ — 2) also equal
unity, the electromotive force in the circuit is the unit electromo-
tive force.

The expression m(2’ —(2) is equivalent to the change in the
number of tubes of induction passing through the circuit in the
positive direction. More generally, then, if a circuit or part of a
circuit so move in a magnetic field that, in unit time, the number
of tubes of induction passing through the circuit in the positive
direction increase or diminish by unity, at a uniform rate, the
electromotive force induced is unit electromotive force.

This definition is consistent with the one given in.§ 303. For,
the energy of a circuit carrying the current i, due to the field in
which it is placed, equals ¢V, and the change of this energy in
unit time is the energy expended in the circuit in tl}at time. But

’ 4
el : N, and N t— Nis the electromo-
tive force, so that e represents the energy expended in unit time.

A simple way in which the problem can be presented is as
follows: Suppose two parallel straight conductors at unit distance
apart, joined at one end by a fixed cross-piece. Suppose the circuit
to be completed by a straight cross-piece of unit length which can
slide freely on the two long conductors. Suppose this system placed
1n a magnetic field of unit intensity, so that the lines of force are
everywhere perpendicular to the plane of the conductors. Then, if
we suppose the sliding piece to be moved with unit velocity perpen-
dicular to itself along the parallel conductors, the electromotive
force set up in the circuit will be the unit electromotive force, and
if it move with any other velocity v, the electromotive force will
be equal to .

this change in energy is ¢
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in the two systems. From the dimensions of current in the elec-
tromagnetic system we have the dimensions of quantity [¢] =
[iT] = M*L* The dimensions of quantity in the electrostatic
system are [Q] = MYL!7T™'. The ratio of these dimensions is

[EQ = LT, or, the number of electrostatic units of quantity in

one electromagnetic unit is the velocity v.

In Weber and Kohlrausch’s method the charge of a Leyden jar
was measured in electrostatic units by a determination of its capac-
ity and the difference of potential between its coatings. The
current produced by its discharge through a galvanometer was
used to measure the same quantity in electromagnetic measure.

Thomson determined » by a comparison of an electromotive
force measured in the two systems. He sent a current through a
coil of very high known resistance, and measured it by an electro-
dynamometer. The electromagnetic difference of potential be-
tween the two ends of the resistance coil was then equal to the
product of the current by the resistance. The electrostatic differ-
ence of potentiai between the same two points was measured by an
absolute electrometer. From the dimensional formulas we have

E7 ML _ fop: The number of tic uni
[-e—] = LT . e number of electromagnetic units
of electromotive force in one electrostatic unit is v. The ratio of
the numbers expressing the electromagnetic and the electrostatic
measures of the electromotive force in Thomson’s experiment is
therefore the quantity v. This experiment was carried out by
Maxwell in a different form, in which the electrostatic repul-
sion of two similarly charged disks was balanced by an electro-
magnetic attraction between currents passing through flat coils on
the back of the two disks.

Other methods, depending on comparisons of currents, of
resistances, and other electrical quantities, have been employed.
The methods described are historically interesting as being the first
ones used. The values of v obtained by them differed rather
widely from one another. Recent determinations, however, give
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plates of the condenser, on the resistance of the circuit, and on its
self-induction. In case the resistance of the conductor is greater
than a certain value, determined by the self-induction of the circuit
and the capacity of the condenser, the current will decrease steadily
from its value at the beginning of the discharge to zero. But in
most cases this condition is not fulfilled, and in these cases the cur-
rent assumes another character. It goes through a series of alter-
nations in opposite senses, which are periodic in the sense that the
successive maximum values of the current follow each other at equal
intervals of time, though the absolute values of these maxima
diminish very rapidly. The discharge in this case is called an
oscillatory discharge. That the discharge of an ordinary conJdenser
is of this nature was discovered by Joseph Henry, from the manner
in which needles were magnetized by the discharge passed through
small coils of wire. The theory was afterwards indicated by
William Thomson, and his conclusions were fully confirmed by
the investigations of Feddersen. Feddersen observed the spark
produced by the discharge in a rotating mirror, and found that
instead of giving a single line of light in the mirror, it gave a series
of lines at equal distances apart. He showed that the period of the
oscillation could be changed by changing the conditions of the
circuit, and that by sufficiently increasing the resistance without
correspondingly increasing the self-induction, the period of the
oscillations was increased till finally the discharge ceased to exhibit
any oscillations whatever.

813. Electromagnetic Waves.—According to Maxwell’s theory
of electricity, an oscillatory discharge of the sort just described
ought to set up a series of disturbances in the medium surrounding
the circuit, which proceed outward from the circuit in the manner
of waves set up in any medium by a disturbance at a point in it;
sach disturbances may be called electromagnetic waves. The exist-
ence of such waves was demonstrated by Hertz, and the examination
of their properties by him and by others has shown that they con-
form practically in all respects to the predictions of the theory. The
arrangement used by Hertz to set up electromagnetic waves, called
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Hertz showed that the electromagnetic waves were reflected from
metal surfaces according to the law for the reflection of light
(§ 333), and that nodal points or points of interference between the
waves advancing from the vibrator and those returning from the
mirror could be detected, and thus the wave-length of the disturb-
ance determined. If the wave-length and the period be known,
the velocity of the wave may be calculated ; an approximate calcula-
tion of the period was made from the dimensions of the vibrator,
and the velocity of the waves determined to be of the same order of
magnitude as the velocity of light. Subsequent experiments, under
more favorable conditions and with vibrators which permit a more
precise calculation of the period, have confirmed the conclusion of
theory, that the velocity of very short electromagnetic waves is the
same as the velocity of light.

Hertz also proved that the electromagnetic waves are refracted
(8§ 334) when they pass from one medium into another. By the
use of a large prism of pitch he obtained a considerable deviation of
the waves and was able to calculate the index of refraction of pitch
for such waves; he obtained a number of the same order of magni-
tnde as the index of refraction of ordinary refracting bodies for
light.-

Owing to the way in which these waves are generated by an
oscillatory discharge in one line, the waves which proceed from them
are polarized (§ 376), that is, the electromotive forces transmitted
through the air remain parallel to that line. Hertz interposed
in the path of the waves a screen made of a number of parallel
wires; he found that when the wires were parallel with the line of
the discharge or with the electromotive forces in the successive
waves, the waves were almost entirely absorbed by the wires. If,
on the other hand, the wires were set so as to be at right angles to
the electromotive forces in the waves, the waves passed through the
gcreen without modification. The screen therefore exhibits a prop-
erty analogous to that of tourmaline in polarized light (§ 379).
Righi and others have observed similar effects produced by the
interposition of blocks of wood in the path of the waves, which






CHAPTER VI.
THERMO-ELECTRIC RELATIONS OF THE CURRENT.

314. Thermo-electric Currents.—The heating or cooling of a
junction of two dissimilar metals by the passage of a current,
referred to in § 270 as the Peltier effect, is the reverse of a phenom-
enon discovered in 1822-23 by Seebeck. He'found that, when
the junction of two dissimilar metals was heated, a current was sent
through any circuit of which they formed a part. It has since been
shown that the same phenomenon appears if the junction of two
liquids, or of a liquid and a metal, be heated. This fact, as has
been already shown in § 277, follows as a result of the Peltier
phenomenon. If we designate by P the heat developed at the
junction by the passage of unit current for unit time, we may sub-

stitute it for the cxpression%4 in the general equation of § 277, and

£ ; 2. The counter-electromotive force set up at the

obtain 7 =

heated junction is the coefficient P.

If the electromotive force Z and the current I be reversed in
the circunit, the junction is cooled and we obtain 7 = E_'; P, The
electrontotive force at the junction, therefore, tends to increase the
electromotive force of the circuit. Since the current in this case s
opposite to the current in the case in which the junction is heated,
the direction of the electromotive force at the junction is the same
in both cases. If there be no electromotive force Z in the circuit,

we have I = ——g in case a unit of heat is communicated to the

880
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of the other metals of the series. It is manifest, then, that in a
circuit made up of any metals whatever, at one temperature, no
electromotive force can be set up by changing the temperature of
the circuit as a whole. '

Thomson showed that it is not necessary for the production of
thermal currents that the circuit should contain two metals; but
that want of homogeneity arising from any strain of one part of an
otherwise homogeneous circuit will also admit of the production of
such currents. It has also been shown that when a portion of an
iron wire is magnetized, and is heated near one of the poles pro-
duced, a thermal current will be set np.

Cumming discovered in 1823 that, if the temperature of one
junction of a circuit of two metals be gradually raised, the current
produced will increase to a maximum, then decrease until it becomes
zero, after which it is reversed and flows in the opposite direction.
The experiments of Avenarius, Tait, and Le Roux show that, for
almost all metals, the temperature of the hot junction at which the
maximum current occurs is the mean between the temperatures of
the two junctions at which the current is reversed.

316. Thermoelectric Diagram.—The facts hitherto discovered
in relation to thermoelectricity may be collected in a general
formula or exhibited by means of a thermoelectric diagram.

Let us consider a circuit of two metals, copper and lead, in
which both junctions -are at first at the same temperature. We
may assume that there is an equal electromotive force at both junc-
tions acting from lead to copper. If one of the junctions be grad-
ually heated, a current will be set up, passing from lead to cop-
per across the hot junction. The heating has disturbed the equi-
librium of electromotive forces, and has increased the electromotive
force across the hot junction from lead to copper. The rate
at which this electromotive force changes with change in the tem-
perature is called the thermoelectric power of the two metals.
That is, if E represent the electromotive force, # the temperature,

and 6 the thermoelectric power, we have —l—:%? =6, ,in the limit
1 o
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motive force indicated by the area is from copper to the other metal
across the hot junction. At the point where the lines 44’ and
BB’ intersect, the thermoelectric power for the two metals van-
ishes. The temperature at which this occurs is called the neutral
temperature, and is designated by ¢,. When the temperature 7, lies
on the other side of the neutral temperature from ?,, the thermo- .
' electric power becomes negative, and
the electromotive force due to the rise
in temperature from ?, to ¢, is nega-
tive. In Fig. 91 it is at once seen
that 4’B’ is negative for f/,, and that
the area NAgB’ is also negative. The
electromotive force due to a rise of
temperature from 7, increases until
‘the temperature of the hot junction is ¢,, when it is a maximum,
and then decreases. When the area NA’B’ becomes equal to the
area ANB, the total electromotive force is zero; when NA’B’ is
greater than ANB, the electromotive force becomes negative, and
the current is. reversed. In case 44" and BB’ are straight lines,
it is plain that the temperature ¢, at which this reversal occurs,
will be such that the neutral temperature £, is a mean between
t,and Z,.

The same facts can be represented by a general formula.
Thomson first pointed out that the fact of thermoelectric inver-
sion necessitates the view that the thermoelectric power at a junc-
tion is a function of the temperature of that junction. Avenarius
embodied this idea in a formula, which his own researches, and
those of Tait, show to be closely in agreement with experiment.
Let us call the hot junction 1 and the cool junction 2, and set
the electromotive force at each junction as a quadratic function
of the absolute temperatures. We have B, = 4 + &¢, + ¢,* and
E,= A+ bt, + ct,’, where 4, b, and ¢ are constants. The dif-
ference E, — E,, or the electromotive force in the circuit, is

'EI - Es = b(tx - ta) + c(tl._ta’) = (tl - ta)(b + c(tl + ta))-

Fie. 91.
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continually decreases in numerical value, until at ¢, = ¢, it becomes
zero. At that temperature, then, the metals are thermoelectrically
neutral to one another, and a small change in the temperature
does not change the electromotive force at the junction.

317. The Thomson Effect.—1'homson has shown that, in certain
metals, there must be a reversible thermal effect when the current
passes between two unequally heated parts of the same metal. Let
us suppose a circuit of copper and iron, of which one junction is at
the neutral temperature and the other below the neutral tempera-
ture. The carrent then sets from copper to iron across the hot
junction. In the hot junction there is no thermal effect produced,
because the metals are at the neutral temperature. Across the
cold junction the current is flowing from iron to copper, and hence
is evolving heat. The current in the circunit can be made to do
‘work, and since no other energy is imparted to the circuit this work
must be done at the expense of the heat in the circuit. Since heat
18 not absorbed at either junction, it must be absorbed in the un-
equally heated parts of the circuit between the junctions.

To show this, Thomson used a conductor the ends of which
were kept at constant temperatures in two coolers, while the central
portion was heated. When a current was passed through this con-
ductor, thermometers, placed in contact with exposed portions of
the conductor between the heater and the coolers, indicated a rise
of temperature different according as the current was passing from
hot to cold or from cold to hot. The heat seems therefore to be
carried along by the current, and the process has accordingly been
called the electrical convection of heat. In copper the heat moves
with the current, in iron against it. In another form of statement
it may be said that, in unequally heated copper, a current from
hot to cold heats the metal, and from cold to hot cools it, while in
iron the reverse thermal effects occur. The experiments of Le
Roux show that the process of electrical convection of heat cannot
be detected in lead. For this reason lead is used as the standard
metal in constructing the thermoelectric diagram.
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will pass from one to the other. This phenomenon and others
associated with it are most readily studied by the use of an electrical
machine or an induction coil, between the electrodes of which a
great difference of potential can be easily produced. If the spark
be examined with the spectroscope, its spectrum is found to be
characterized by lines which are due to the metals composing the
electrodes, and to the medium between them,

The passage of the spark through air or any dielectric is attended
with a sharp report, and if the dielectric be solid, it is perforated or
ruptured. If the elgctrodes be separated by a considerable distance,
the path of the spark is usually a zigzag one. It is probable that
this is due to irregularities in the dielectric, due to the presence of
. dust particles.

With proper adjustment of the electrodes, the discharge may
sometimes be made to take the form of a long b»ush springing from
the positive electrode, with a single trunk which branches and be-
comes invisible before reaching the negative electrode. Accom-
panying this is usually a number of small and irregular brushes
starting from the negative electrode.

Another form of discharge consists of a pale luminous glow cov-
ering part of the surface of one or both electrodes. If a small con-
ducting body be interposed between the electrodes when the glow
is established, a portion of the glow will be cut off, marking out a
region on the electrode which is the projection of the intervening
conductor by the lines of electrical force. This phenomenon is
called the electrical shadow.

The difference of potential required to set up a spark between
two slightly convex metallic surfaces, separated by a stratum of air
0.125 centimetre thick, has been shown by Thomson to be about
5500 volts. The difference of potential which produces the sparks
between the electrodes of an electrical machine, which are some-
times fifty or sixty centimetres long, must therefore be very great.
The quantity of electricity which passes during.the discharge is,
however, exceedingly small, on account of the great resistance of
the medium through which the discharge takes place.
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vacuum-tube 1n which the exhaustion is such that the phenomena
are those here described is often called a Geissler tube. As the ex-
haustion is raised still higher, the rosy light in the tube fades out,
the non-laminous space around the negative electrode becomes very
much greater, and the phenomena in the tube become exceedingly
interesting. They were discovered and have been carefully studied
by Crookes, and the vacuum-tubes in which they appear are hence
called Crookes’ tubes. They may be most conveniently described
by assuming that the molecules of gas in the tube break into their
constituent ions in the region near the negative electrode, and that
the negative ions are repelled from that electrode. The stream of
negative ions may be called thecathode disckarge. This view re-
ceives some support from the fact that the relations of current and
resistance in the tube are such as to indicate a counter electromotive
force at the negative electrode.

The region occupied by the discharge from the negative elec-
trode may be recognized by a faint blue light, which was not visible in
the former condition of the tube. At every point on the wall of the
tube to which this discharge extends occursa brilliant phosphorescent
glow, the color of which depends on the nature of the glass. The
discharge seems to be independent of the position of the positive
electrode, and to take place in mnearly straight lines, which start
normally from the negative electrode. If two negative electrodes
be fixed in the tube, the discharge from one seems to be deflected
by the other, and two discharges which meet at right angles seem
to deflect one another.

If the discharge from a flat electrode be made to fall upon a
body which can be moved, such as a glass film, or the vane of a
light wheel, mechanical motions will be set up.

If the negative electrode be made in the form of a spherical cup,
and a strip of platinum-foil be placed at its centre, the foil will be-
come heated to redness when the discharge is set up.

There is no evidence that two discharges in the same direction
act directly on each other, but a magnet brought near the outside
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glass; he also showed that it could pass through other saubstances
with varying degrees of facility. Among the effects ascribed by
Lenard to this discharge were the production of fluorescence in
many fluorescent substances, the production of photographic action
in ordinary photographic dry-plates, and the penetration of the dis-
charge through bodies by.an amount dependent upon their densi-
ties, it being less as the densities are greater. The discharge was
deflected when brought into a magnetic field.

In 1895 Rontgen discovered that effects in some degree similar
to those investigated by Lenard could be obtained from any highly
exhausted vacuum tube. The results of his researches and of those
of many other physicists who have investigated the same action may
be described as follows: Wherever the cathode discharge falls upon
certain substances, the most important of which, as yet known, are
platinum and glass, an action is set up known as the Rintgen radi-
ance. 'This radiance excites fluorescence in many fluorescent sub-
stances and acts upon the photographic plate. It proceeds in
straight lines and its intensity varies inversely with the square of
the distance; it is not affected by the presence of a magnetic
field; in these respects it apparently differs from the action in-
vestigated by Lenard. It penetrates all substances and is partly
obstructed by all substances, the obstruction being greater as the
density of the substance is greater. It is apparently capable of true
reflection to a very small degree. No indubitable evidence has as
yet been given that 1t can be refracted, or that it exhibits the
phenomena of interference, diffraction, or polarization. When it
falls upon an electrified body the charge on the body gradually dis-
appears, the effect being to render the air or other gas surround-
ing the body a conductor.

No satisfactory theory of the Rontgen radiance can as yet be
given. It has been variously ascribed to the mechanical movement
of the molecules of the residual gas in the tube in which it origi-
nates or of the walls of the tube, to transverse vibrations in the ether
of a wave length much shorter than those of the shortest waves of
light hitherto known, and to longitudinal vibrations in the ether.
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The first explanation is supported by certain facts known with re.
gard to the changes that go on in the tube as the discharge is kept
up through it, but it is otherwise unsatisfactory. Most of the facts
known are consistent with the theory of short transverse vibrations,
but no explanation of their origin is given. The theory of longitu.
dinal vibrations has been to some extent developed by Jaumann; he
assumes that the characteristic factor of the dielectric, which we
have called the dielectric constant, is not really constant, but vari-
able, and a function of the electromotive force. He then shows
that on this assumption the electrical discharge in rarefied gase®
may set up longitudinal waves, and that these waves possess many,
if not all, of the properties of the cathode discharge. Since the
properties of the cathode discharge and of the Rontgen radiance
are not the same, we cannot conclude that the latter are explicable
by longitudinal waves, though there is as yet no evidence to the
<ontrary.



LIGHT.

CHAPTER 1.
PROPAGATION OF LIGHT.

822. Vision and Light.—The ancient philosophers before Aris-
‘totle believed that vision consisted in the contact of some subtle
emanation from the eye with the object seen. Aristotle showed the
absurdity of this view by suggesting that if it were true, one should
be able to see in the dark. Since his time it has been generally
admitted that vision results from something proceeding from the
body seen to the eye, and there impressing the optic nerve. This
we call light.

Optics treats of the phenomena of light. It is conveniently
divided into two branches: Physical Optics, which treats of the
phenomena resulting from the propagation of light through space
and through different media; and Physiological Optics, which
treats of the sense of vision.

323. Theories of Light. The Ether. —The principal facts
known about light in Newton’s time, especially its propagation in
straight lines, its reflection and refraction, could be explained by
the hypothesis that light consisted of small material particles or
corpuscles emitted from luminous bodies with very high velocities.
This emission theory was adopted and defended by Newton.

Newton’s contemporary Huygens proposed to explain the phe-
nomena of light as the result of waves set up in luminous bodies
and transmitted by an elastic medinm which pervades all space.
The properties which Huygens assigned to this medium were those

894
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The medium in which magnetic, electrical, and light phenomena
take place is called the efher. It pervades all space within the
bounds of the known universe, and is so far material that it can
transmit energy from one material body to another; the manner of
its connection with the atoms of matter is not well understood, and
the question of the influence of matter upon it is one of the most
obscure in modern physics. The ether was first represented by
Fresnel as an elastic solid possessing a rigidity estimated by Thom-
son to be about the one-thousand millionth of that of steel, and a
density estimated to be 9.36 X 10-* grams per cubic centimetre.
Thomson has shown that the properties of the ether, at least those
concerned in the transmission of light, may be explained by suppos-
ing it composed of minute material bodies rotating like gyroscopes
about definite axes. The most interesting view of the ether is that
recently proposed by Fitzgerald. He conceives of it as a continuous
fluid filled with vortices. = These vortices may be either infinitely
long linear vortices threading past each other in all directions, or
ring vortices interlinked with each other; Fitzgerald has shown that
such an assemblage of vortices will transmit electromagnetic vibra-
tions comparable in all respects to those of light. The connection
of this theory with Thomson’s theory of the vortex atom gives it
additional interest.

324. Wave Surfaces.—In § 130 is explained the general mode
of propagation of wave motion in accordance with Huygens’ prin-
ciple. When light emanating from a point proceeds with the same
velocity in all directions, the wave fronts are evidently concentric
spherical surfaces. There are, however, many cases, especially in
crystalline bodies, of unequal velocities in different directions. In
these cases the wave fronts are not spherical, but ellipsoidal, or sur-
faces of still greater complexity. ‘

325. Straight Lines of Light.—When a small screen 4 (Fig.
92) is placed between the eye and a luminous point, the luminous -
point is no longer visible. Light cannot reach the eye by the
curved or broken line PAE, and is therefore said to move in
straight lines. This seems not to accord with Huygens’ principle,
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Aa =,\/(z+%)’— = \/zl +—l4:;

Ab =¥ (x + L)' —2* = Y2 + L%
Ac = ¥V (z + FA)’ — 2" = 321 + 1A%
Ad = ¥z + 20y — 2 = Vizk 1 41°;
etc. = etc.

For light the values of A are between 0.00039 and 0.00076 mm.,
and if « be taken as 1000 mm., A* will be very small in comparison
with zA, and may be omitted. The above formulas then become,
if #/zA be represented by /,

Ada=1¥1; Ab=1¥2; Ac =1¥3; Ad =1¥4; ete. = ete.,
and the several portions into which the wave front is divided are

da=1 =11; ab=1(¥2 —1) =0.414;
be = I(¥3 — ¥2) = 0.318]; ¢d = (Y& — ¥/3) = 0.268L.

Taking now the pairs of which the effects at P are opposite in
sign, we find Aa a little more than twice ab, while b¢c and cd are
nearly equal. It is evident, also, that for portions beyond 4 adja-
cent pairs will be still more nearly equal, and the effect at P, there-
fore, of each pair of segments beyond & almost vanishes. The
effect at P is then almost wholly due to that portion of Aa that is
not neutralized by ab. But, taking the greatest value of A, 4a =
¥YzA = #0.76 = 0.87 mm., a very small distance. = Hence, under
the conditions assumed, the effect at any point P is due to that
portion of the wave-front near the
foot of the perpendicular let fall
from P on the wave-front. It may
be demonstrated by experiment that
the portions of the wave beyond Aa
neutralize each other. Suppose a
screen mn in the position shown in
Fig. 94. The point P will be in
shadow. If the darkness at P is due

QS a &

Fia. 94.
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wave, and some other explanation must be given for the rectilincar
propagation of light in such a wave. For consider a plane wave
advancing toward a point P, and describe on it a series of circles,
the distances of which from P differ by half a wave-length. These
circles cut a line in the surface drawn from 4 (Fig. 93), the foot of
the perpendicular to the wave-front from P, in the points a, , c,
etc., and the rings enclosed between them are half-period elements.
The areas of these rings are zda, 7(4b — 4a’), n(dc — 4b"),
etc. If A be very small, they each become equal to zl*. Hence
if their effects at P depend only on their areas, they would annul
one another, and no light would reach P. We are therefore forced
to assume that the effect of each area in sending light to P dimin-
ishes as the obliquity increases, so that the first area is more effi-
cient than the second, the second than the third, and so on. The
effectiveness of the areas diminishes at first slowly, and afterwards
more rapidly, the more distant areas having nearly the same effi-
ciency. Representing the efficiency of the areas by m, , m,, m,,
etc.,, and remembering that the even areas oppose the action -
of the odd ones, we may write the total efficiency in the form
im, + $(m, — m,) — (m, — m,) + #(m, —m,) —. ... Each of
the terms in parenthesis is very nearly equal to zero, and the effi
ciency at P is therefore nearly half of that of the central area.
The light therefore appears to reach P from a small area around A.

It is important to note that the deductions of this section apply
only where A is small in relation to , so that A* may be neglected
in comparison with zA. With sound-waves this is not true, and if
a computation similar to that given above for light-waves be made
for sound, not omitting A*, it will be seen why there are no definite
straight lines of sound and no sharp acoustic shadows.

326. Principle of Least Time.—The above are only particular
cases of a law of very general application, that light in going from
one point to another follows the path that requires least time. The
reason is that values in the vicinity of a minimum change slowly,
and there will be a number of points in the neighborhood of that
point from which the light-waves are propagated to the given point
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VELOCITY OF LIGHT.

829. Velocity Determined from Eclipses of Jupiter's Moons.—
Roemer, a Danish astronomer, was led to assume a progressive
motion for light in order to explain some apparent irregularities in
the motions of Jupiter’s satellites. A few observations of one of
Jupiter’s moons are sufficient to determine the time of its eclipses
for months in advance. If these observations be made when the
earth and Jupiter are on the same side of the sun, and the time of
an eclipse occurring about six months later predicted from them be
compared with the observed time of that eclipse, it is found that
the observed time is about 164 minutes later than the predicted
time. This discrepancy is explained if it be assumed tkat light has
a progressive motion and requires 16§ minutes to cross the earth’s
orbit, for the distance of the earth from Jupiter in the second case
is about the diameter of its orbit greater than in the first.

330. Aberration of the Fixed Stars.—The apparent direction of
the light coming from a star to the earth, that is, the apparent
direction of the star from the earth, is the resultant of the motion
of the light and the motion of the earth. As the motion of the
earth changes direction the apparent direction of the star will change
also, and the amount of that change will depend on the relation
between the velocity of light and the change in the velocity of the
earth in its orbit, understanding by change of velocity change in
direction as well as in amount. This apparent change in the posi-
tion of the stars is called aberration. Knowing its amount corre-
sponding to a known change in the earth’s motion, we may compute
the velocity of light. This method was first employed by Bradley.

Though the agreement of the velocity of light thus determined
with that measured by other methods seems to confirm the validity
of the reasoning here given, yet there are serious and unexplained
difficulties in the theory of aberration, arising from the discrepant
results of experiments instituted to determine the relations of the
ether to bodies moving through it.

331. Fizeau's Method. —Several methods have been employed
for measuring the velocity of light by determining the time réquired
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falls on m, is reflected, when m is in a suitable position, through the
lens L, and forms an image at §”. S and §’ are conjugate foci of

m
8 - .
..'.-:;:::'--_," 7 )
—”’
T

Fia. 97.

the lens, and by so placing the lens that .S shall be a little beyond
the principal focus, $’ may be removed to as great a distance as de-
sired. The mirror m’ is perpendicular to the axis of the lens, and
at such a distance that the image S falls upon its surface. It is
evident that any light reflected back from m’ through L will return
to the conjugate focus S, whatever the position of the mirror m’, so
long as it sends the light in such a direction as to pass through L
both going and returning. 1f now the mirror m be given a rapid
rotation clockwise, light passing through Z will return to find m in
a changed position, and the image will be displaced from S to some
point 8’” to the left of S. Knowing the displacement S8’/ and the
number of rotations of the mirror per second, the time required for
light to pass from m to 8’ and back i1s determined. The value of
the velocity of light, as determined by Michelson in 1879, is
299,910, and in 1882, 299,853, kilometres per second.
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all other points of the mirror shall send light to the same point, or
that the reflected wave shall be a sphere with its centre at . In
order that this shall be the case, the distance LB -+ B/ must be
constant wherever the point B is situated on the reflecting sur-
face. Draw BD perpendicular to the axis of the mirror. Repre-
sent BD by y, AD by x, LA by p, A by p’, and C4 byr. Then
we have LB =¥ (p—2)'+y' and y* = (2r —2)z = 2rz — 2’
Hence follows
LB = ¥p' — 2pz + 2" + 2rz — 2* = ¥p' + 2(r — p).

If the aperture be small, z will be small in comparison with the
other quantities, and we may obtain the value of LB to & near ap-
proximation by extracting the root of this expression and omitting
terms containing the second and higher powers of z. We obtain

LB =p+§(r—p)+....

In like manner we have

lB-‘:p'—‘-Iz"’—'(" —p’)+ooo’

whence LB+IB=p+p' +§(r -9+ %,(r - 7).

When B coincides with 4, the above value becomes p 4 »’, and
the condition that all values of LB + 1B are equal, whatever be the
value of z within the limits already set to it, is found from

p+p=p+7 +g(r —?) +;;,(r —7')
. . LT ) pr
From this equation we obtain 7 +p_’_ 2 and p’ = 2pp— 2

For the apertures for which the approximations by which the
result was arrived at are admissible, the wave surface is practically
spherical, and the point, the distance of which from the mirror is
given by this equation, is the centre of the reflected wave. Since
the disturbances propagated from &b reach ! simultaneously, their
effects are added, and the disturbance at [ is far greater than at any
other point. The effect of the wave motion is concentrated at !,
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centre ! fall on the mirror. Plainly they would be reflected to L
r
! P
formula. If r be negative, the centre is behind the mirror. The
mirror is then convex, and the formula shows that for all positive
values of p, p’ is negative and numerically smaller than p.

837. Refraction at Spherical Surfaces.—The method of discus-
sion which has been applied to reflection may be employed to study
" refraction at spherical surfaces. Let BD (Fig. 103) be a spherical

4
B\"\h\f'?//

\

at a distance from the mirror less than ;> as may be seen from the

Fre. 108.

surface separating two transparent media. Let v represent the
velocity of light in the first medium, to the left,and v’ the velocity
in the second medium, to the right, of BD. Let L be a radiant
point, and mn a surface representing the position which the wave
surface would have occupied at a given instant had there been no
change in the medium, m’n’ the wave surface as it exists at the
same instant in the second medium in consequence of the different
velocity of light in it, and ! the point where the prolongation of
Bm’ibackwards cuts the axis. We will investigate the conditions
which must be fulfilled in order that the refracted wave shall
appear to proceed from a point on the axis, or shall be a spherical
wave. :

In order that this should be the case, the time occupied by the
light in travelling from the point 7 on the axis with the velocity
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surface, u’ the new index, and p’ the new focal distance, we have
Pl _p-—1

i
If we suppose the lens to be very thin, we may put s = p”’. If
we suppose also that the medium to the right is the same as that

to the left of the lens, u’ is equal to /17 On these suppositions

1 1
7_‘ -1 B : Maultiplying through by u, we have
v p v
1 p _1—p_ _p—1
o r
Eliminating p’’ between this equation and equation (110), we obtain
Lelowenfoly an

which expresses the relation between the conjugate foci of the
lens. It should be noted that r in the above formulas represents
the radius of the surface on which the light is incident, and 7’ that
of the surface from which the light emerges. All the quantities are
positive when measured toward the source of light. Fig. 204

ANN Y I7 7
VR AN N

Fia. 1us.

shows sections of the different forms of lenses produced by com-
binations of two spherical surfaces, or of one plane and one spherical
surface.

An application of equation (111) willshow that for the first three,
which are thickest at the centre, light is concentrated, and for the
second three diffused. The first three are therefore called con-
verging, and the second three diverging, lenses. ZLet us consider
the first and fourth forms as typical of the two ¢lasses. The first






)

416 ELEMENTARY PHYSICS. [8 338

surface. Hence p’ is always negative and the focus virtual when
L is real. '

838. Images formed by Mirrors.—In Fig. 105 let ab represent
an object in front of the concave mirror mn. We know from
what precedes that if we consider only the light incident near ¢,
the light reflected will be concentrated at some point a’ on the
axis ac at a distance from the mirror given by equation (109).

Fie. 105.

o’ is a real image of a. In the same way &’ is an image of
b. If axes were drawn through other points of the object, the
images of those points would be found in the same way. They
would lie between a’ and 4’, and a’d’ is therefore a real image of
the object. It is inverted, and lies between the axes ac, bd, drawn
through the extreme points of the object. The ratio of its size to
that of the object is seen from the similar triangles abdC, a’5’C, to

be the ratio of the distances from C. From equation (109) we ob-
’ ’

tain 2=_T TP

p Rp—r p—r

Since » — p’ and p — r are respectively the distances from
the centre of the image and object, we have a’?’ =_=P '= p_'; or,

» ab  p—r p

the image and object are to each other in the ratio of their respective
distances from the mirror. As the object approaches, the imnage
recedes from the mirror and increases in size. At the centre of
curvature the image and object are equal, and when the object is
within the centre and beyond the principal focus the image is
outside the centre and larger than the object. When the object

is between the principal focus and the mirror, the image is virtual
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1t we draw AB, cutting the axis at O, the triangle C40, C’BO

CA co CA

are similar, and B0 But B

being the ratio of the

radii, 18 constant for all parts of the surfaces, hence g—,% must be

constant, or all lines such as 4 B must cut the axis at one point O.
O is the optical centre, and light passing through it is not devi-
ated by the lens.

341. Geometrical Construction of Images.—For the geometrical
construction of images formed by curved surfaces, it is convenient
to use, in place of the waves themselves, lines perpendicular to the
wave front, which represent the paths which the light follows, and
are called rays of light. 'T'hese rays, when perpendicular to a plane
wave surface, are parallel, and an assemblage of such rays, limited
by an aperture in a screen, is called a beam. When the rays are
perpendicular to a spherical wave surface, they pass through the
wave centre, and constitute a pencil.

A plane wave surface perpendicular to the axis of a lens is con-
verted by the lens into a spherical wave surface with 1ts centre at
the principal focus. The rays perpendicular to the plane wave sur-
face are parallel to the axis, and after emergence must all pass
through the principal focus. Conversely, rays emanating from the
principal focus emerge from the
lens as rays parallel to the axis.
Also, rays emanating from any
A focus must, after emerging from

the lens, meet at the conjugate

focus. Let L, Fig. 108, be a con-
verging lens, and 4B an object. Let O be the optical centre, and
F the principal focus. Since all the rays from 4 must meet, after
emerging from the lens, at the conjugate focus, which is the image
of A4, to find the position of the image it is only necessary to draw
two such rays and find their intersection. The ray through the
optical centre is not deviated, and the straight line 44" represents
both the incident and emergent rays. The ray AL may be consid-

A

<—— j-—;> r
]

s

Fia. 1us.
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is a property of an ellipse with foci at L and J. If the ellipse
be constructed and revolved about Z! as an axis, it will generate a
surface which will have the required property. If one of the points
L be removed to an infinite distance, the corre-
sponding wave becomes a plane perpendicular to
Ll, and we must have LB+ BC (Fig. 111) con-
stant, a property of the parabola. A parabolic
mirror will therefore concentrate at its focus in-
cident light moving in paths parallel to its axis,
or will reflect incident light diverging from its
focus in plane waves perpendicular to its axis.

Mirrors and lenses having surfaces which are not spherical are
seldom made becanse of mechanical difficulties of construction. It
becomes necessary, therefore, to consider how the disadvantages
arising from the use of spherical surfaces of large aperture for re-
flecting or refracting light may be avoided or reduced.

We will consider first the case of a spherical mirror. It was
shown above that light from one focus of an ellipsoid is reflected
from the ellipsoidal surface in perfectly spherical waves concentric
with .the other focus. Let Fig. 112 represent a plane section
through the axis of an ellipsoid, and Fca a small incident pencil of
light proceeding from the focus #. F’ac is a section of the re-
flected pencil. It is a property of the ellipse that the normals to
the curve bisect the angles formed by lines to the two foci. The
normal ae bisects the angle FaF”, and hence in the triangle FaF”

h Fa _ Fe
we have 5 = —;

BZc
g c

Fie. 111.

If d move toward ¢, F'a increases and Fa diminishes. Hence,
from the above proportion, #'’¢ must increase and Fe diminish; or,
the successive normals as we approach the minor axis cut the
major axis in points successively nearer the centre of the ellipse.
The normals produced will therefore meet each other at # beyond
the axis. If ac be taken small enough, it may be considered the arc
of a circle of which an, ¢n are radii and n the centre. It is there-
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flected pencil. It will intersect the axis of the mirrer between z
and y. If a plane be passed through the point of intersection per-
pendicular to the axis of the pencil, its intersection with the pencil
will be like an elongated figure 8, which may be considered as a
focal line at right angles to the axis of the pencil, and in the plane
of the paper, and therefore at right angles to the focal line through
F’. Between these two focal lines there is a section of least area,
nearly circular, which is the nearest approach to an image of F
produced by an oblique incidence such as we have been considering.

If refraction instead of reflection had takcn place at ac, a result
very similar would have been obtained for the refracted pencil.
This failure of spherical reflecting or refracting surfaces to bring
the light exactly to a focus is called spherical aberration. In
order to obtain a sharp focus, therefore, if only a single spherical
surface be employed, the light must be confined within narrow
limits of normal incidence. When reflection or refraction takes
place at two or more surfaces in succession, the aberration of one
may be made to partially correct the aberration of the other. For
instance, when the waves incident upon a double convex lens are
plane, the emerging waves are most nearly spherical when the
radius of the second surface is six times that of the first. Two or
more lenses may be so constructed and combined as to give, for
sources of light at a certain distance, almost perfectly spherical
emerging waves. Such combinations are called aplanatic. The
same term is applied to single surfaces so formed as to give by re-
flection or refraction truly spherical waves.

SIMPLE OPTICAL INSTRUMENTS.

344. The Camera Obscura.—If a converging lens be placed in
an opening in the window-shutter of a darkened room, well-defined
images of external objects will be formed upon a screen placed at a
suitable distance. This constitutes a camera obscura. The photog-
rapher’s camera is a box in one side of which is a lens 8o adjusted
as to form an image of external objects on a plate on the opposite
side. The relation deduced in § 339 serves to determine the size of
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is much more distinct than the other parts. - How small this most
sensitive area is, can be judged by carefully analyzing the effort to
see distinctly the minute details of an object. For instance, in
looking at the dot of an 7, a change can be detected in the effort of
the muscles that control the eyeball, when the attention is directed
from the upper to the lower edge of the dot. The eye can then
be directed with great precision to a very small object. The line
joining the centre of the crystalline lens with the centre of the
sensitive spot may be called the optic axis; and when the attention
ig directed to any particular point of an object, the eyeballs are
turned by a muscular effort, until both the optic axes produced
outward meet at the point. For objects at a moderate distance we
have learned to associate a particular muscular effort with a par-
ticular distance, and our judgment of such distances depends
mainly on this association. The angle between the optic axes
when they meet at a point is called the optic angle. Our estimate
of the size of an object is based on our judgment of its distance,
together with the angle which the object subtends at the eye,
called the visual angle. In Fig. 114, when ab is an object and !
the crystalline lens, a is the visual anglc. It is plain that the size
of the image on the retina is proportional to the visual angle.

Fra. 114.

It is plain, too, that an object of twice the size, at twice the dis-
tance, would subtend the same visual angle and have an image of
the same size as ab. Nevertheless, if we estimate its distance
correctly we shall estimate its size as twice that of ab; but if in
any way we are deceived as to its distance, and judge it to be less
than it really is, we underestimate its size. The visual angle is
the apparent size of the object.

A less precise estimate of distance can be made with a single
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Oa’’, when the angle subtended is 4’’0b’’. The ratio of these
angles is very nearly that of Oa’’ to OF. Hence the magnifying
power is the ratio of the distance of distinct vision to the focal
length of the lens. .

348. The Compound Microscope.—A still greater magnifying
power may be obtained by first forming & real enlarged image of
the object (§ 339) and using the magnifying-glass upon the image,
as shown in Fig. 116. The lens 4 is called the objective, and £ is
called the eye-lens or ocular. As will be seen in § 359, both 4
and E often consist of combinations of lenses for the purpose of
correcting aberration.

349. Telescopes.—If a lens or mirror be arranged to produce a
real image of a distant object, either on a screen or in the air, we
may observe the image at the distance of distinct vision, when the
visual angle for the object is enlarged in the ratio of the focal
length of the lens to the distance of distinct vision. This will be plain
from Fig. 117. Suppose the nearest point from which the ohject
can be observed by the naked eye to be the centre of the lens O.

Fia. 117.

The visual angle is then 4 OB = a0b, while the visual angle for the
image is aEb. Since these angles are always very small, we have
aFb _ Oc
a0b~ Ec
~ the focal length of the lens. By using a magnifying-glass to ob-
serve the image, the magnifying power may be still further in-
creased in the ratio of the distance of distinet vision to the focal
length of the magnifying-glass. The magnifying pov~r of the
combination is therefore the ratio of the focal length of the object-
glass to the focal length of the eye-glass. A concave mirror may
be substituted for the object-glass for producing the real image.

very nearly. But when 4B is at a great distance, Oc is



CHAPTER IIL
INTERFERENCE AND DIFFRACTION.

350, Interference of Light from Two Similar Sources.—If has
already been shown that the disturbance propagated to any point
from a luminous wave is the algebraic sum of the disturbances
propagated from the various elements of the wave. The phenom-
ena due to this compogition of light-waves are called 1néerference
phenomena. '

Let us consider the case in which two elements only are efficient
in producing the dlsturbance Let 4 and B (Fig. 118) represent two

elements of the same wave surfacesep-

A arated by the very small distance 4 B.
? The disturbance at m, a pomnt on a
3 distant screen mmn, parallel with 4B,

Fre. 118. due to these two elements, is the re-
sultant of the disturbances due to each separately. The light 1s
supposed to be homogeneous, and its wave length is represented
by A.

When the distance mB — mA equals A, or any odd multiple
of 3A, there will be no disturbance at m. Take mC = mA, and
draw BC. mCB is an isosceles triangle; but gince 4B is very
small compared to Om, the angle at ¢ may be taken as a right

angle; the triangle 4CB, therefore, is similar to Osm, and we:
AB Om Os

have — 0= = very nearly. Represent sm by z, Os by ¢,
ABby b, AC by n X $A, where # is any number, Then we have
$Acn .
2= (113)
427
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If n be any even whole number, the values of 2 given by this equa-
tion represent points on the screen mn at which the waves from
A and B meet in the same phase and unite to produce light. If n
be any odd whole number, the corresponding values of z represent
points where the waves meet in opposite phases, and therefore pro-
duce darkness. It appears, therefore, that starting from s, for

A
which # = 0, we shall have darkness at distances Lbc, 1}:_0, 5—20,
. Ac 31
etc.; and light at distances 0, éb—c, 276, Z-_lb_c’ etc.

From eqaation (113) we have n = %v Since 3nA is the number

of wave lengths that the wave front from B falls behind that from
A, 3nT, where T represents the period of one vibration, is the time
that must elapse after the wave from 4 produces a certain displace-
ment before that from B produces a similar displacement. The ex-

2ainT

pression —p o =nw is, therefore, the difference in epoch of the

two wave systems. Substituting nz for € in equation (17), we have

et sin nr
= ’ = i Tl tap-l oA
S=s8+4+8 =a(®+ 2cosnmn) cos( 7 — tan 1+ cos n7r)' ow

the intensity of light for a vibration of any given period is propor-
tional to the mean energy of the vibratory motion,and this can be
shown to be proportional to the square of the amplitude. Substi-

tuting in the expression for the amplitude the value of # and
9
squaring, we have 4" = a’(2 + 2 cos ;—[;\ain), in which 4 is propor-
tional to the intensity of the illumination at distances 2 from s.
2bx

When 2= 0, its cosine is 1, and A" is a maximum and equal to
bz

4a’. As z increases A’ diminishes, until A T=min which case

A*=0. A* then increases until it becomes again a maximum,
2bx
ek
of Fig. 118, the ordinates to a sinuous curve like abc will represent
the intensities of the light along that line.

when 7 = 2. In short, if 4B (Fig. 119) represent the line mn
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other things being equal, z varies with A; hence we must conclude
that the greater distance between the bands indicates a greater

la. 122,
wave length; that is, that the wave length of red light is greater
than that of blue.
351, Measurement of Wave Lengths.—Data may be obtained
from any of the above experiments for the determination of the

wave length of light. From equation (113) we have A = 2c—b:, where

¢, b, and z are distunces that can be measured. The distance z
is the distance from s to a point m, the centre of a light band,
and » equals twice the number of dark bands between s and m.
Better methods than this of measuring wave lengths will be found
described in § 355.

352. Interference from Thin Films.—Thin films of transparent
substances, such as the wall of a soap-bubble or a film of oil on
water, present interference phenomena when seen in a strong light,
due.to the interference of waves reflected from the two surfaces of the
film. Let 44, BB (Fig. 123) be the surfaces of a transparent film.
Light falling on 44 is partly reflected and partly transmitted.
The reflection at the upper surface takes place with change of sign
(§ 132). The light entering the film is partly reflected at the lower

‘ surface without change of sign, and re-

. M , turning partly emerges at the upper
— \ g surface. It is there compounded with
Fia. 1238. the wave at that moment reflected.

Let us suppose the light homogeneous, and the thickness of the
film such that the time occupied by the light in going through it
and returning-is the time of one complete vibration. The returning
wave will be in the same phase as the one at that moment entering,
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and, therefore, opposite in phase to the wave then reflected. The
reflected and emerging waves destroy each other, or would do so
if their amplitudes were equal, and the result is that, apparently,
no light is reflected. If the light falling on the film be white light,
any one of its constituents will be suppressed when the time occu-
pied in going through the film and returning is the period of one
vibration, or any whole number of such periods, of that constitu-
ent. The remaining constituents produce a tint which is. the ap-
parent color of the film.

Similar phenomena are produced by the interference of that
portion of the incident light which is transmtted directly through
the film, with that portion which is transmitted after undergoing
an even number of internal reflections. Since these reflections
occur without change of sign, the thickness of the film for which
the reflected light is & minimum is that for which the transmitted
light is a maximum.

This theory must be slightly modified on account of the internal
reflections in the film. The light which enters the film and is re-
flected does not all pass out in the reflected beam, but part of it is
again sent through the film to the other surface, when it is agan
divided, so that the reflected and transmitted beams both contain
light that has been several times reflected. The theory shows that
the reflected beam is totally extinguished when the thickness is
that indicated by the elementary theory, and that the transmitted
beam is never totally extingnished, __ e .
but merely passes through a mini- ——2 e — %
mum intensity. This conclusion is
confirmed by observation.

Newton was the first to study
these phenomena. He placed a plane
glass plate upon a convex lens of long
radius, and thus formed between the
two a film of air, the thickness of
which at any point could be deter-
mined when the radius of the sphere and the distance from the

Fia. 124,
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point of contact were known. With this arrangement Newton found
a black spot at the point of contact, and surrounding this,when white
light was used, rings of different colors. When homogeneous light
was used, the rings were alternately light and dark. Let ae
(Fig. 124) be the radius of the first dark ring, and denote it by d, and
let r represent the radius of curvature of the lens. The thickness

be = ef, which may be denoted by, is 2 =

. Since z is ver,
2r —x y

3
small in comparison with 27, this becomes z = :i_r This distance

for the first dark ring, when the incident light is normal to the
plate, is equal to half the wave length of the light experimented
upon. Newton found the thickness for the first dark ring 1753
inches, which corresponds to a wave length of about zz}4y inches,
or 0.00057 mm. This method affords a means of measuring the
wave lengths of light, or, if the wave lengths be known, we may
determine the thickness of a film at any point.
353. Effects Produced by Narrow Apertures.—It has been seen
(§ 325) that cutting off a portion of a light-wave by means of
screens, thus leaving a narrow aperture for the passage of the light.
prevents the interference which confines the light to straight lines,
and gives rise to & luminous disturbance within the geometrical
shadow. This phenomenon is called diffraction. Let us consider
the aperture perpendicular to the plane of
T aes  the paper, and an approaching plane wave
parallel to the plane of the aperture. Let
A B (Fig. 125) represent the aperture, and
mn one position of the approaching wave.
To determine the effect at any point we
must consider the elementary waves pro-
ceeding from the various points of the
P wave front lying between 4 and B. First
Fio. 125. consider the point P on the perpendicular
to AB at its middle point. AB is so small that the distances
from P to each point of 4B may be regarded as equal, or
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that are not neutralized, and the light reappears, giving a second
maximum, much less than the first in intensity. Beyond this the
light diminishes rapidly in intensity until a point is reached where
the paths differing by half a wave length divide 4B into four
parts, when the light is again zero. Theoretically, maximum and
minimum values alternate in this way, to an indefinite distance,
but the successive maxima decrease so rapidly that, in reality, only
a few bands can be seen.

854. Effect of a Narrow Screen in the Path of the Light.—It can
be shown that the effect of a narrow screen is the complement of
a that of a narrow aperture; that is, where a
narrow aperture gives light, a screen produces
darkness. Let mn (Fig. 128) be a plane wave
and AB a surface on which the light falls, If
no obstacle intervene, the surface 4B will be
equally illuminated. The illumination at any
B point C is the sum of the effects of all parts of

Fia, 138, the wave mn. Let the effects due to the part
of the wave op be represented by I and that due to all the rest of
the wave by Z’. Then the illumination at C is 74 1', equal to the
general illumination on the surface. Let us now suppose mn to be
a screen and po a narrow aperture in it. If the illumination at C .
remain unchanged, it must be that the parts mo and pn of the
wave had no effect, and if, for the screen with the narrow aperture,
we substitute a narrow screen at op, there will be darkness at C.
If, however, a dark band fall at C, when op is an aperture, a screen
at op will not cut off the light from C. That is, if C be illuminated
when op is an aperture, it will be in darkness when op is a screen;
and if it be in darkness when op is an aperture, it will be illumi-
nated when op is a screen. ,

355. Diffraction Gratings.—Let A B (Fig. 129) be a screen hav-
ing several narrow rectangular apertures parallel and equidistant.
Such a screen is called a grating. Let the approaching waves, mov-
ing in the direction of the arrow, be plane and parallel to 4B, and
let the points @, c, etc., be the centres of the apertures. Draw

[2)
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the parallel lines ab, cd, etc., at such an angle that the distance
from the centre of @ to the foot of the

perpendicular let fall from the centre of L -
the adjacent opening on ab shall be equal
to some definite wave length of light.
It is evident that an will contain an
exact whole number of wave lengths, co
one wave length less, etc. The line mn
is, therefore, tangent to the fronts of a
series of elementary waves which are in
the same phase, and may be considered as a plane wave, which, if
it were received on a converging lens, would be concentrated to a
focus. If the obliquity of the lines be increased until ae equals 24,
3, etc., the result will be the same. Let us, however, suppose
* that ae is not an exact multiple of a wave length, but some frac-
tional part of a wave length, £%A for example. Let m be the
fifty-first opening counting from ¢ ; then an will be #%A X 50 =
49.51. Hence the wave from the first opening will be in the oppo-
site phase to that from the fifty-first. So the wave from the second
opening will be in the opposite phase to that from the fifty-second,
etc. If there were one hundred openings in the screen, the second
fifty would exactly neutralize the effect of the first fifty in the
direction assumed. Light 1s found, therefore, only in directions
given by

Fia. 129.
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direction given by the formuls, or, in other words, light of only one
wave length is found in any one direction. If white light, or any
light consisting of waves of various lengths, fall on the grating,
the light corresponding to different wave lengths will make differ-
ent angles with 4 C, that is, the light is separated into its several
constituents, and produces a pure spectrum. Since different values
of n will give different values of ¢ for each value of A, it is plain
that there will be several spectra corresponding to the several
values of 7. When % equals 1 the spectrum is of the first order ;
when 7 equals 2 the spectrum is of the second order, ete. The
grating furnishes the most accurate and at the same time the most
simple method of determining the wave lengths of light. Know-
ing the width of an element of the grating, it is only necessary to
measure ¢ for any given kind of light.

Hitherto the spaces from which the elementary waves proceed
have been considered infinitely narrow, so that only one system of
waves from each space need be considered. In practice, these spaces
must have some width, and it may happen that the waves from two

parts of the same space may cancel each other.

Let the openings, Fig. 130, be equal in width

a to the opaque spaces, and let the direction am be
taken such that ae equals 2A. Then ae¢’ equals

) 1A, or the waves from one half of each opening

M .are opposite in phase to those from the other half,
’\ and there can be no light in the direction am. In

general, if d equal the width of the opening, there

Fig. 13v. will be interference, and light will be destroyed
in that direction for which sin 6 = %l, if the incident light be

normal to the grating. Let f represent the width of the opaque

space. Then d 4 f =s, and light occurs in the direction given by
sin 0 = (71:—7_\7., provided that the value of 6 given by this equation
does not satisfy the first equation also.

nA _ nd

itr=od When 7 is even,

If d equal f, we have sin 0 =
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reading and the reading when the grating is in such a position that
the reflected image of the slit is seen in the telescope is the angle
B. 1f the grating be now turned until the light of which the wave
length is required is observed, the angle through which it is turned
from its last position is the angle 6. If the width s of an element
of the grating be known, these measurements substituted in the
equation

A = 2s cos @sin 0 (115)
give the value of A,

Wave lengths are generally given in terms of a unit called a
tenth metre ; that is, 1 metre X 107'°. The wave lengths of the
visible spectrum lie between 7500 and 3900 tenth metres. Langley
has found in the lunar radiations wave lengths as long as 170,000
tenth metres, and Rowland has obtained photographs of the solar
spectrum in which are lines representing wave lengths of about
3000 tenth metres.

Instead of the arrangement which has been described, Rowland
has devised a grating ruled on a concave surface, and is thus en-
abled to dispense with the collimating lens and the telescope.



CHAPTER IV.
DISPERSION.

3857. Dispersion.—When white light falls upon a prism of any
refracting medium, it is not only deviated from its course but
separated into a number of colored lights, constituting an image
called a spectrum. These merge imperceptibly from one into an-
other, but there are six markedly different colors: red, orange,
yellow, green, blue, and violet. Red is the least and violet the
most deviated from the original course of the light. Newton
showed by the recomposition of these colors by means of another
prism, by a converging lens, and by causing a disk formed of
colored sectors to revolve rapidly, that these colors are constituents
of white light, and are separated by the prism because of their
different refrangibilities. To arrive at a clear understanding of
the formation of this spectrum, let us suppose first a small source
of homogeneous light, L (Fig. 132). If this light fall on & con-
verging lens from a point at a distance from it a little greater

~
LS TN ]

Fie. 132.

than that of the principal focus, a distinct image of the source will
be formed at the distant conjugate focus /. If now a prism be
placed in the path of the light, it will, if placed so as to give the
minimum deviation, merely deviate the light without interfering
with the sharpness of the image, which will now be formed at

instead of at I. If the source L give two or three kinds of
489
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i light, the lens may be so constructed as to produce a single sharp
image at ! of the same color as the source, but when the prism is

introduced the lights of different colors will be differently de-
viated, and two or three distinct images will be found near . If
there be many such images, some may overlap, and if there be a
great number of kinds of light varying progressively in refrangi-
bility, there will be a great number of overlapping images con-
stituting a continuous spectrum.

358. Dispersive Power.—It is found that prisms of different
substances giving the same mean deviation of the light deviate the
light of different colors differently, and so produce a longer or
shorter spectrum. The ratio of the difference between the devia-
tions of the extremities of the spectrum to the mean deviation
may be called the dispersive power of the substance. Thus if
d’, d’” represent the extreme deviations, and @ the mean deviation,
a’ — ar

d

359. Achromatism.—If in Newton’s experiment of recomposi-
tion of white light by the reversed prism the second prism be of
higher dispersive power than the first, and of such an angle as to
effect as far as possible the recomposition, the light will not be
restored to its original direction, but will still be deviated, and we
shall have deviation without dispersion. This is & most important
fact in the construction of optical instruments., The dispersion of
light by lenses, called chromatic aberration, was a serious evil in
the early optical instruments, and Newton, who did not think it
possible to prevent the dispersion, was led to the construction of

reflecting telescopes to remedy the evil. It is
plain, however, from what has been said above,
that in a combination of two lenses of different
kinds of glass, one converging and the other di-
verging, one may correct the dispersion of the
other within certain limits, while the combina-

Fre. 133. tion still acts as a converging lens forming real

images of objects. Fig. 133 shows how this principle is applied to

the dispersive power is
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the secondary axis o'’ R of the eye-lens C at such relative distances
as to produce one virtual image at V. It will be noted that the
image 7’ is smaller than would have been formed by the objective.
The magnifying power of the instrument is therefore less than it
would be if the lens C were used alone as the eyepiece. This loss
of magnifying power is more than counterbalanced by the in-
creased distinctness.

" Fig. 135 shows the Ramsden or positive eyepiece. The focal
length of tne lenses in this combination is generally the same, and
the distance between them is two-thirds the focal length. The
aid it gives in correcting the residual errors of the objective is
evident from the figure.

Fia. 185. Fia. 136.

360. The Rainbow.—The rainbow is due to refraction and
dispersion of sunlight by drops of rain. The complete theory of
. the rainbow is too abstruse to be given here, but a partial explana-
tion may be given. Let O, Fig. 136, represent a drop of water,
and SA the paths of the incident light from the sun. The light
enters the drop, suffers refraction on entrance, is reflected from
the interior surface near B, and emerges near C, as a wave of
double curvature of which mn may be taken as the section. Of
this wave the part near p, the point of inflection, gives the maxi-
mum effect at a distant point, and if the eye be placed in the
prolongation of the line CE perpendicular to the wave surface,
light will be perceived, but at a very little distance above or below
CE there will be darkness. The direction CZ is very nearly that
of the minimum deviation produced by the drop with one internal
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as the source of light. C is an achromatic lens, called a collimat-
ing lens, so placed that § is in its principal focus. The waves
emerging from it will then be plane. These will be deviated by
the prism, and the waves representing the different colors will be

‘l »\&\\AW/;&,“% I »

Fie. 188.

separated, so that after passing through the second lens O these
different colors will each give a separate image. These images
may be received upon a screen, or observed by means of an eye-
piece. Sometimes a series of prisms is used to canse a wider sepa-
ration of the different images.

If the images at F be received on a sensitive photographic
plate, it will be found that the image extends far beyond the visi-
ble spectrum in the direction of greater refrangibility, and a ther-
mopile or bolometer will show that it also extends a long distance
in the opposite direction beyond the visible red. The solar radia-
tions, therefore, do not all have the power of exciting vision.
Much the larger part of the solar beam manifests its existence
only by other effects. It will be shown that, physically, the vari-
ous constituents into which white light is separated by the prism
differ essentially only in wave length.
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most common effect of such absorption is to generate heat, and
there are some surfaces upon which heat will be generated by the
absorption of ethereal waves of any length. Langley, by means of
the bolometer, has been able to measure the energy throughout the
spectrum. He has demonstrated the existence, in the lunar spec-
trum, of waves as long as 170,000 tenth metres, or more than
twenty-two times as long as the longest that can excite human
vision. '

363. Intensity of Radiations.—The intensity of radiations can
only be determined by their effects. If the radiations fall on a body
by which they are completely absorbed and converted into heat,
the amount of heat developed in unit time may be taken as the
measure of the radiant energy. Let us suppose the radiations to
emanate from a point equally in all directions, and represent the
total energy in a wave by Z. Let the point be at the centre of a
hollow sphere, of which the radius is 7, and represent by I the en-
ergy per unit area of the sphere. Then, since the surface of the
sphere equals 477', we have £ = 4nr’],

E
That is, the energy which falls upon a given surface is in the in-
verse ratio of the square of its distance from the source. As we
know by experiment that the intensity of light follows the same
law, we conclude that the intensity and energy are proportional.

If the surface be not normal to the rays, the radiant energy it
receives is less, as will appear
from Fig. 139. Let ab be asur-
face the normal to which makes
with the ray the angle 6; then
ab will receive the same quan-
tity of radiant energy as a’ b’ its

3 4 projection on the plane normal
Fic. 139. to the ray. But a’d’ equals
ab cos 0; and if I represent the energy on unit area of a’ %, and

* a’ a
N

0
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of it may, by moving it toward one or the other, be made to appear
alike, and the translucent portion almost invisible. The light
transmitted through this portion in one direction then equals that
transmitted in the opposite direction; that is, the two surfaces are
equally illuminated. :

365. Transmission and Absorption of Radiations.—It is a
familiar fact that colored glass transmits light of certain colors
only, and the inference is easy that the other colors are absorbed
by the glass. It is only necessary to form a spectrum, and place
the colored glass in the path of the light either before or after the
separation of the colors, to show which colors are transmitted, and
which absorbed.

By the use of the thermopile or bolometer, both of which are
sensitive to radiations of all periods of vibration, it is found that
some bodies are apparently perfectly transparent to light, and -
opaque to the obscure radiations. Clear, white glass is opaque to a
large portion of the obscure rays of long wave length. Water and
solution of alum are still more opaque to these rays, and -pure ice
transmits almost none of the radiations of which the wave lengths
are longer than those of the visible red. Rock salt transmits well
both the luminous and the non-luminous radiations.

On the other hand, some substances apparently opaque are
transparent to radiations of long wave length. A plate of glass or
rock salt rendered opaque to light by smoking it over a lamp is
still as transparent as before to the radiations of longer wave length.
Selenium is opaque to light, but transparent to the radiations of
longer wave length. This fact explains the change of its electrical
resistance by light, but not by non-luminous rays. Carbon disul-
phide, like rock salt, transmits nearly equally the luminous and
non-luminous rays; but if iodine be dissolved in it, it will at first
-ut off the luminous rays of shorter wave length, and as the solu-
rion becomes more and more concentrated the absorption extends
down the spectrum to the red, and finally all light is extinguished,
and the solution to the eye becomes opaque., The radiations of
which the wave lengths are longer than those of the red still pass
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candescent solid, such as the lime of the oxyhydrogen light or the
carbons of the electric lamp, be examined with the spectroscope, a
continuous spectrum like that produced by sunlight is seen, but
the black lines are absent (§ 361). Solids and liquids give in gen-
eral only continuous spectra. (ases, however, when incandescent
give continuous spectra only very rarely. Their spectra are bright
lines which are distinct and separate images of the slit. The num-
ber and position of these lines differ with each gas employed.
Hence, if a mixture of several gases not in chemical combination
be heated to incandescence, the spectral lines belonging to each
constituent, provided all be present in sufficient quantity, will be
found in the resultant spectrum. Such a spectrum will therefore
serve to identify the constituents of a mixture of unknown compo-
sition. Many chemical compounds are decomposed into their ele-
ments, and the elements are rendered gaseous at the temperature
necessary for incandescence. In that case the spectrum given is
the combined spectra of the elements. A compound gas 'that does
not suffer dissociation at incandescence gives its own spectrum,
which is, in general, totally different from the spectra of its ele-
ments.

The appearance of a gaseous spectrum depends in some degree
on the density of the gas. When the gas is sufficiently compressed,
the lines become broader and lose their sharply defined edges, and
if the compression be still further increased the lines may widen
until they overlap, and form a continuous spectrum. Some of the
dark lines of the solar spectrum are found to coincide in position
with the bright lines of certain elements. This coincidence is ab-
solute with the most perfect instrnments at our command; and not
only so, but if the bright lines of the element differ in brilliancy
the corresponding dark lines of the solar spectrum differ similarly
in darkness.

The close coincidence of some of these lines was noted as early
as 1822 by Sir John Herschel, but the absolute coincidence was
demonstrated by Kirchhoff, who also pointed out its significance.
Placing the flame of a spirit-lamp with a salted wick in the path
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these bodies will in time all come to the temperature of the enclosure.
It can be shown that, for this to be true, the ratio of the emissive
to the absorbing power must be the same for all bodies, not only for
the sum total of all radiations, but for radiations of each wave
length. For example, a body which does not absorb radiations of
long wave length cannot emit them, etherwise, if placed in an en-
closure where it could only receive such radiations, it would become
colder than other bodies in the same enclosure. This is only a
general statement of the fact which has been already stated for
gases, that bodies absorb radiations of exactly the same kind as those
which they emit.

Since radiant energy is energy of vibratory motion, it may be
supposed to have its origin in the vibrations of the molecules or
atoms of the radiating body. It has been shown that the various
phenomena of gases are best explained by assuming a constant
motion of their molecules: If the atoms of these molecules should
have definite periods of vibration, remaining constant for the same
gas through wide ranges of pressure and temperature, this would
fully explain the peculiarities of the spectra of gases,

In § 150 it was seen that a vibrating body may communicate its
vibrations to another body which can vibrate in the same period,
and will lose just as much of its own energy of vibration as it im-
parts to the other body. Moreover, a body which has a definite
period of vibration is undisturbed by bodies vibrating in a period
different from its own. This explains fully the selective absorption
of a gas. For, if a beam of white light pass through a gas, there
are, among the vibrations constituting such a beam, some which
correspond 1n period to those of the molecules of the gas, and,
unless the energy of vibration of these molecules is already too
great, it will be increased at the expense of the vibrations of the
same period in the beam of light. Hence, at the parts in the spec-
trum where light of those vibration periods would fall, the light.
will be enfeebled, and those parts will appear, by contrast, as dark
lines.

In solids and lignids, the molecules are o constrained in their
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temperature, and that to these are added shorter and shorter wave
lengths as the temperature rises. Draper showed that the spectrum
of u red-hot body exhibits no rays of shorter wave length than the
red, but that as the temperature rises the spectrum is extended in
the direction of the violet, the additions occurring in the order of
the wave lengths. At the same time the colors previously existing
increase in brightness, indicating an increase in energy of the vibra-
tions of longer wave length as those of shorter wave length become
visible. Experiments by Nichols on the radiations from glowing
platinum show that vibrations of shorter wave length are not alto-
gether absent from the radiations of a body of comparatively low
temperature, and he was led to believe that all wave lengths are
present in the radiations from even the coldest bodies, but are too
feeble to be detected.

With gases, as has been seen, the radiations are apparently con-
fined to a few definite wave lengths, but careful observations of
the spectra of gases show that the lines are not defined with abso-
lute sharpness, but fade away, althongh very rapidly, into the dark
background. In many cases the existence of radiations may be
traced throughcut the spectrum, and it is a question whether the
spectra of gases are not after all continuous, only showing strongly
marked and sharply defined maxima where the lines occur. In
general, increase of temperature does not alter the spectra of gases
except to increase their intensity, but there are some cases in
which additional lines appear as the temperature rises, and a few
cases in which the spectrum undergoes a complete change at a cer-
tain temperature. This occurs with those compound gases which
suffer dissociation at a certain temperature, and at higher temper-
atures give the spectra of their elements. When it occurs with
gases supposed to be elements it suggests the question whether
they are not really compounds, the molecnles of which at the
high temperature are divided, giving new molecules of which the
rates of vibration are entirely different from those of the original
body.

372. Fluorescence and Phosphorescence.—A few substances,’
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such as sulphate of quinine, uranium glass, and thallene, have the
property, when illuminated by rays of short wave length, even by
the invisible rays beyond the violet, of emitting light of longer
wave length. Such substances are fluorescent. 'The light emitted
by them, and the conditions favorable to their luminosity, have
been studied by Stokes. It appears that the light emitted is of the
same character, covering a considerable region of the spectrum,
no matter what may be the incident light, provided this be such as
to produce the effect at all. The light emitted is always of longer
wave length than that which causes the luminosity.

There is another class of substances which, after being exposed
to light, will glow for some time in the dark. These are phos-
phorescent. They must be carefully distingnished from such
bodies as phosphorus and decaying wood, which glow in conse-
quence of chemical action. Some phosphorescent substances,
especially the calcium sulphides, glow for several hours after ex-
posure. All fluorescent bodies are also phosphorescent, but the
time during which they remain luminous after the exciting light
is removed, is so short that it can generally be dotected only by
special devices.

873. Anomalous Dispersion.—As has been already stated, there
is a class of bodies which show a selective absorption at their sur-
faces. The light reflected from such bodies is complementary to
the light which they can transmit. Kundt, following np isolated
observations of other physicists, has shown that all such bodies
give rise to an anomalous dispersion; that is, the order of the
colors in the spectrum formed by a prism of one of these sub-
stances is not the same as their order in the diffraction spectrum
or in the spectrum formed by prisms of substances which do not
show selective absorption at their surfaces. Solid fuchsin, when
viewed by reflected light, appears green. In solution, when viewed
by transmitted light, it appears red. Christiansen allowed light
to pass through a prism formed of two glass plates making a smali
angle with each other, and containing a solution of fuchsin in
alcohol. He found that the green was almost totally wanting in
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the spectrum, while the order of the other colors was different
from that in the normal spectrum. In the spectrum of fuchsin
the colors in order, beginning with the one most deviated, were
violet, red, orange, and yellow, Other aubstances give rise to
anomalous dispersion in which the order of the colors is different.

In order to account for these phenomena, the ordinary theory
of light is extended by the assumption that the ether and mole-
cules of a body materially interact upoen one another, so that the
vibrations in a light-wave are modified by the vibrations of the
molecules of a transparent body through whieh light is passing.
This hypothesis, in the hands of Helmholtz and Ketteler, has been
sufficient to account for most of the phenomena of light.



CHAPTER VI
DOUBLE REFRACTION AND POLARIZATION.

874. Double Refraction in Iceland Spar.—If refraction take
place in a medium which is not isotropic, as has been assumed in
the previous discussion of refraction, but eolotropic, a new class
of phenomena arises. Iceland spar is an eolotropic medium by
the use of which the phenomena referred to are strikingly ex-
hibited. Crystals of Iceland spar are rhombohedral in form, and
a crystal may be a perfect rhombohedron with six equal plane
faces, each of which is a rhombus. Fig. 140 represents such a

Fia. 140

crystal. At 4 and X are two solid angles formed by the obtuse
angles of three plane faces. The line through 4 making equal
angles with the three edges 4B, AE, AD, or any line parallel to it,
is an optic axis of the crystal.

Any plane normal to a surface of the crystal and parallel to the
optio axis is called a principal plane. If such a crystal be laid upon
a printed page, the lines of print will, in general, appear double.
If a dot be made on a blank paper, and the crystal placed upon it,
two images of the dot are seen. If the crystal be revolved about an

457
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axis perpendicular to the paper, one of the images remains station-
ary, and the other revolves around it. The images lie in a plane
perpendicular to the paper, and parallel to the line joining the two
obtuse angles of the face by which the light enters or emerges.
The entering and emerging light is supposed in this case to be nor-
mal to the surfaces of the crystal. If the crystal be turned with its
faces oblique to the light, the line joining the images will, in cer-
tain cases, not lie parallel to the line joining the obtuse angles of
the faces. If the distances of the two images from the observer be
carefully noticed it will be seen that the stationary one appears
nearer than the other. If the obtuse angles 4 and X be cut away,
and the new surfaces thus formed at right angles to the optic axis
be polished, images seen perpendicularly through these faces do
not appear double. By cutting the crystal into prisms in various
ways its indices of refraction may be measured. It is found that,
of the two beams into which light is, in general, divided in the
crystal, one obeys the ordinary laws of refraction, and has a refrac-
tive index 1.658. It is called the ordinary ray. The other has
no constant refractive index, does not in general lie in the normal
plane containing the incident ray, and refraction may occur when
the incidence is normal. It is the eztraordinary ray. The ratio
between the sines of the angles of incidence and refraction varies,
for the Fraunhofer line D, from 1.658, the ordinary index, to 1.486.
This minimum value is called the extraordinary ind.z.

375. Explanation of Double Refraction.—In § 334 it was seen
that the index of refraction of a substance is the reciprocal of the
ratio of the velocity of light in the substance to its velocity in a
vacuum. It is plain, then, that the velocity of light for the ordi-
nary ray of the last section is the same for all directions, and that,
if light emanate from a point within the crystal, the light, following
the ordinary laws of refraction, must proceed in spherical waves
about that point as a centre, as in any singly refracting medium
The phenomena presented by the extraordinary light in Iceland
spar are fully explained by assuming that the velocities in different
directions in the crystal are such as to give a wave front in the
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form of a flattened spheroid, of which the polar diameter, parallel
to the optic axis, is equal to the diameter.of the ordinary spherical

Fia. 141.

wave, and the equatorial diameter is to its polar diameter as 1.658
is to 1.486. From these two wave surfaces the path of the light
may easily be determined by construction by methods already ex-
plained in § 334,and exemplified in Fig. 141,in which ic represents
the direction of the incident light, and co and ce the ordinary and
extraordinary rays respectively.

376. Polarization of the Doubly Refracted Light.—If a second
crystal be placed in front of the first in any of the experiments de-
scribed in the last section, there will be seen in general four images
instead of two; but if the secorrd crystal be turned, the images
change in brightness, and for four positions of the second ecrystal,
when its principal plane is parallel or at right angles to the princi-
pal plane of the first, two of the images are invisible, and the other
two are at a maximum brightness. If one of the beams of light
produced by the first crystal be intercepted by a screen, and the
other allowed to pass alone through the second crystal, the phe-
nomena presented are easily followed. If the principal planes of
the two crystals coincide, only one image is seen. If the second
crystal be now rotated abont the beam of light as an axis, a second
image at once appears, at first very faint, but increasing in bright-
ness. The original image at the same time diminishes in bright-
ness, and the two are equally bright when the angle between the
principal planesis 45°. 1f the angle be 90° the first image disap-
pears, and the second is at its maximum brilliancy. As the rotation
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is continued the first image reappears, while the second grows dim
and disappears when the angle between the principal planes is 180°.
These changes show that the light which emerges from the first
crystal of spar is not ordinary light. Another experiment shows
this in a still more striking manner. Let the extraordinary ray be
cut off by a screen, and the ordinary ray be received on a plane un-
silvered glass at an angle of incidence of 57°. When the plane of
incidence coincides with the principal plane of the spar, the light
is reflected like ordinary light. If the mirror be now turned about
the incident ray as an axis, that is, so turned that, while the angle
of incidence remains unchanged, the plane of incidence makes
successively all possible angles with the principal plane of the erys-
tal, the reflected light gradually diminishes in brightness, and when
the angle between the plane of incidence and the principal plane of
the crystal is 90° it failsaltogether. If the rotation be continued it
gradually returns to its original brightness, which it attains when
the angle between the same planes is 180°, and then diminishes
until it fails when the angle is 270°. The extraordinary ray presents
the same phenomena except that the reflected light is brightest
when the angle between the planes is 90° and 270°, and fails when
that angle is 0° and 180°. Beams of light after double refraction
present different propertjes on different sides, and are said to he
polarized. The explanation must, of course, be found in the char-
acter of the vibratory motion.

In the polarized beam jt is plain that the vibrations must be
transverse; for if the light were the result of longitudinal vibra-
tions, or even of vibrations having a longitudinal component, it
could not be completely extingnished for certain azimuths of the
second crystal or of the glass reflector. This conclusion ig verified
by the experiments of Fresnel and Arago on the interference of
polarized light. The difference between ordinary and palarized
light is explained if we assume that, in both, the vibrations of the
ether particles take place at right angles to the line of propagation
of the wave, and that in ordinary light they occur irregularly in all
azimuthe about that line, and may be performed in ellipses or






462 ELEMENTARY PHYSICS. [§ 377

it and the optic axis is in the direction of the greatest elasticity to
which any vibration giving rise to that ray of light can correspond.
In that direction is the second component vibration. The two
component vibrations are therefore always at right angles. One of
the components is always at right angles to the optic axis, and
hence in the direction of least elasticity. The light resulting from
this component always travels with the same velocity whatever its
direction, and hence suffers refraction on entering the crystal or
emerging from it, according to the ordinary law for single refrac-
tion. The other component, being in the plane containing the ray
and the optic axis and at right angles to the ray, may make all
angles with the optic axis from 0°, when it is in the direction of
maximum elasticity and is propagated with the greatest velocity, to
90°, when it is in a direction in which the elasticity is the same as
that for the other component, and the entire beam is propagated as
ordinary light. Light for which vibrations occur in all azimuths
will, on entering the crystal, give rise to equal components, but
light already polarized will give rise to components the intensities
of which are determined by the law for the resolution of motions.
When its own direction of vibration coincides with that of either of
the components, the other component will be zero, and only when
its vibrations make an angle of 45° with the components can these
components be equal. The varying intensities of the two beams
into which a polarized beam is divided by a second crystal are thus
explained.
377. Polarization by Reflection.—Light reflected from a trans-
¢ parent medium 1s found in general
to be partially polarized, and for a
certain angle of incidence the polar-
¥ ization is nearly perfect. This angle
is that for which the reflected and
refracted rays are at right angles.
In Fig. 142 let xy represent the sur-
face of a transparent medium, ab the
incident, bc the reflected, and &d the refracted ray. If the angle

Fre. 142.
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cbd = 90°, we have r 4+ 7 = 90° also; and since u = 3—2—:, we have

M= %: tan <. Hence the angle of complete polarization is
given by the equation tan ¢ = u. The fact embodied in this equa-
tion was discovered by Brewster, and is known as Brewster’s law.
The angle of complete polarization is called the polurizing angle.
The plane of incidence is the plane of polarization. The vibrations
of polarized light are assumed to be at right angles to the plane of
polarization. In the transmitted ray is an equal amount of polarized
light, the vibrations of which are in the plane of incidence.

If a beam of ordinary light traverse a transparent medium, in
which are suspended minute solid particles, the light which is re-
flected from them is found to be partially polarized. The maxi-
mum polarization is found in the light reflected at right angles to
the beam. The plane of polarization of the polarized beam is the
plane of the original beam and the beam which reaches the eye of
the observer.

378. Interference of Polarized Light.—The assumption that has
been made in the foregoing descriptions, that the vibrations in the
polarized beam are transverse to the direction of propagation, is
fully justified, not only by the satisfactory way in which it explains
the various modes of production of polarized light and the phe-
nomena connected with it, but also by direct experiment. Fresnel
and Arago examined the interference of polarized beams and
arrived at the following conclusions: Two rays of light polarized
at right angles with each other do not appear to affect each other
at all in the same circumstances in which two rays of ordinary light
destroy each other by interference. Two rays of light polarized in
the same plane act on one another like ordinary light, so that in
the two cases the phenomena of interference are absolutely the
same. Two rays originally polarized at right angles to each other
can afterwards be so modified that they are both polarized in the
same plane without acquiring the power of interfering with each
other. Two rays polarized at right angles and afterwards brought
to the same plane of polarization interfere like ordinary light if
they come from the same polarized beam.
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From the first and second of these statements it is plain that
the vibration in the polarized beam must be transverse to the direc-
tion of propagation, for if it were otherwise, there would be some
interference of the two rays, even when they are polarized at right
angles to each other.

We may here consider the nature of common light. The pecu-
liarity of common light is that it furnishes two images of equal
intensity when it passes through a doubly refracting crystal, and
that it -cannot produce colored fringes when passed through a crys-
tal plate and examined with an analyzer (§ 379). These peculiari-
ties can be explained by supposing that the direction of vibration
in the wave frequently changes. On the other hand, the interfer-
ence of common light proves that this change of direction does not
occur in every wave. In the experiments of Michelson and Morley
interference was obtained between two beams of light of which
the difference in path was 200,000 wave lengths. Such inter-
ference could not have occurred if the direction of the vibration
had changed during the time taken by light to traverse that dis-
tance. We are accordingly compelled to assume that the vibrations
of common light are polarized in one plane for a very short time,
which is, however, sufficiently long for the light to execute a large
number of vibrations in it, and that at certain intervals the plane
of polarization changes its direction.

379. Polariscopes.—In experimenting with polarized light we
need a polarizer to produce the polarized beam, and an analyzer to
show the effects of the polarization. A piece of plane glass, reflect-
ing light at the polarizing angle, is a simple polarizer. Doubly
refracting crystals, if means be employed to suppress one of the

F1a. 143.

beams into which the light is divided, are excellent polarizers.
Tourmaline is a doubly refracting crystal which has the property






466 ELEMENTARY PBHYSICS, [§ 380

right angles to the principal plane. The latter is reflected to one
side and absorbed, and the former is transmitted. As the angle
between the two principal planes increases, the transmitted com-
ponent diminishes in intensity, until when this angle becomes 90°
it disappears entirely. In this position the polarizer and analyzer
are said to be crossed.

380. Effects of Plates of Doubly Refracting Crystals on Polar-
ized Light.—If a plate cut from a doubly refracting crystal so that
its faces are parallel to the optic axis, or at least not at right angles
to it, be placed between the crossed polarizer and analyzer, and the
principal plane of the plate coincide with, or be at right angles to,
the plane of vibration, no effect is perceived. But if the plate be
rotated so that its principal plane makes an angle with the plane
of vibration, the motion may be considered as resolved into two
components, one in, and the other at right angles to, the principal
plane of the plate, and these two components on reaching the
analyzer are again resolved each into two others, one in, and the
other at right angles to, the principal plane of the analyzer. The
sibrations in the principal plane of the analyzer are transmitted
through it, and hence, in general, the introduction of the plate re-
stores the light which the crossed polarizer and analyzer had ex-
tinguished. It is easy to see that the restored light will be most
intense when the principal plane of the plate makes an angle of
45° with the plane of vibration of the polarized ray.

It is not to be understood that in the plate there are two sepa-
rate beams of light, in one of which one set of particles is vibrating

1n one plane, and in the other another set in an-
8 other planc. What really takes place is that each

particle in the path of the light describes a path

which is the resultant of the two components
\\ spoken of above. Let ab (Fig. 145) be a plate of
Iceland spar, and cd the direction of its optic
axis. Suppose the path of the light perpendicu-
lar to the plane of the paper, and ef to represent
the direction of the disturbance produced by the entrance of a
plane polarized wave. A motion in the direction of ¢f is com-

N/

Fia. 145.
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light that the other lacks; hence if the analyzer be turned through
90°, the image will change to the complementary color. In Fig.
146, let ab represent the plane of the vibratiens in the polarized
ray, and let ¢d and ef represent the two planes of vibration of the
rays in the interposed plate. At the instant of entering the plate
the primary vibration and its two components will have the relation
shown in the figure. The two components are then in the same
phase. As the movement penetrates the plate, one component
falls behind the other, and the relation of their phases changes,
until, with a retardation of one wave length, the phases are again
as in the figure. Suppose the thickness of the plate such that this
retardation occurs for some constituent of white light. After leav-
ing the plate the relative phases of the components remain un-
changed, and the constituent in question enters the analyzer as two
vibrations at right angles and in the same phase. In Fig. 147 let
o¢e and od represent the two components, and 2z and yy the two

v planes of vibration in the analyzer.

a ) oe will give the components om and

N Bn Iz on, and od the components om’
N pd and on’. Since the components

§ AN om and om’ annul each other, the
e 9N m - color to which they correspond is
7 N’ wanting in the light resulting from

by vibrations in the plane zz, while

Fia. 147. since the components..on and on’

are added, this color is found in full intensity among the vibra-
tions in the plane yy. For light of other wave lengths, the relative
retardation is different, but for each vibration period, the compo-
nent in the direction 2z combined with that in the direction yy
represents the total light for that period in the beam entering the
analyzer; that is, the total effect of vibrations in the direction zz
combined with that of vibrations in the direction yy must produce
white light, and one effect must, therefore, be the complement of

the other.
* Let us suppose the plate thick enough to cause a retardation
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only necessary to take account of the time that elapses between
the impulse in the direction c¢d and the corresponding impulse in
the direction ab. It is sufficient to consider any particle as actu-
ated by two vibratory wotions in the direc-
tions c¢d and ab at right angles, and differing
in phase. In Fig. 149, one side of the rect-
angle represents the greatest displacement in
the direction cd, and the other side the dis-
placement occurring at the same instant in
the direction da. The point r will represent
the actual position of the vibrating particle.
Constructing now the successive displace-
v ments of the particles in the directions cd

Fra. 149. and ba and combining these, we have the
elliptical path as shown. As the light penetrates farther and
farther into the plate the relative phases of the two vibrations
change continually, and the ellipse passes through all its forms
from the straight line yy to the straight line zz at right angles to
it and back to the straiglt line yy. The direction of the path of
the particle in the surface of the plate as the light emerges will be
the direction of the path of all the particles in the polarized beam
beyond the plate. If the component vibrations be in the same
phase, that 1s, if they reach their elongations in the directions bda
and cd (Fig. 149) at the same instant, the resultant vibration is in
the line yy and the light is plane polarized exactly as it left the
polarizer. This will occur when the retardation of light in the
plane of ba with respect so that in the plane of cd is one, two, or
more whole wave lengths. When the retardation is one half, three
halves, or any odd number of half wave lengths, the phases of
the two vibrations are as shown in Fig. 150, and the resultant is a
plane polarized beam the vibrations of which are at right angles
to those of the beam from the polarizer. A case of special interest
18 shown in Fig. 151, in which the difference of phase is one fourth
a period, and the resultant vibration is a circle. A difference of
three fourths will give a circle also, but with the rotation in the
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opposite direction. A plate of such thickness as to produce a
retardation of one quarter of a wave length will give a circular
vibration, and the beam issuing from the plate is then circularly
polarized. Its peculiarity is that the two beams into which it is
divided by a doubly refracting crystal are always of the same in-
tensity, and no form of analyzer will distinguish it from ordinary

Fia. 150. Fia. 151.

light. Quarter wave plates are often made by splitting sheets of
mica until the required thickness is obtained.

882. Circular Polarization by Reflection.—It has been stated
that light refected from a transparent medium at a certain angle
is polarized, and that an equal amount of polarized light exists in
the refracted beam. Light totally reflected in the interior of a
medium is also polarized, and here, there being no refracted beam,
the two components exist in the reflected light, but so related in
phase that the light is elliptically polarized. Fresnel has devised
an apparatus known as Fresnel’s rhomb, by means of which circu-
larly polarized light is obtained by two internal reflections of a
beam of light previously polarized in a plane at an angle of 45°
with the plane of incidence.

883. Effect of Plates Cut Perpendicularly to the Axis from a
Uniaxial Crystal.—A crystal, such as Iceland spar, which has but
one optic axis, is called a wniazial crystal. Polarized light pass-
ing perpendicularly through & plate cut from such a crystal per-
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pendicularly to its optic axis suffers no change. If, however, the
plate between the crossed polarizer and analyzer be inclined to the
direction of the beam, light passes through the analyzer. It is
generally colored, the color changing with the obliquity of the
plate. If a system of lenses be used to convert the polarized beam
into a conical pencil and the plate be placed in this perpendicular
to its axis, the central ray of the pencil will be unchanged, but the
oblique rays will be resolved except in and at right angles to the
plane of vibration, and there will appear beyond the analyzer a
system of colored rings surrounding a dark centre, and intersected
by a black cross. If the analyzer be turned through 90° a figure
complementary to the first in all its shades and tints is obtained:
the black cross and centre become white, and the rings change to
complementary colors.

384. Biaxial Crystals.—Most crystals have two optic axes or
lines of no double refraction, instead of one. They are biazial
crystals. Their optic axes may be inclined to each other at any
angle from 0° to 180°. The wave surfaces within these crystals
are no longer the sphere and the ellipsoid, but surfaces of the
fourth order with two nappes tangent to each other at four points
where they are pierced by the optic axes. Neither of the two rays
in such a crystal follows the law of ordinary refraction. The outer
wave surface around one of the points of tangency has a depres-
sion something like that of an apple around the stem. By refer-
ence to the method already employed for constructing a wave
front, it will be seen that there may be such a position for the in-
cident wave that, when the elementary wave surfaces are con-
structed, the resultant wave will be a tangent to them in the circle
around one of these depressions where it is pierced by the optic
axis. Now since the direction of a ray of light is from the centre
of an elementary wave surface to the point of tangency of that
surface and the resultant wave, we shall have in this case an in-
finite number of rays forming a cone, of which the base is the
circle of tangency. In other words, one ray entering the plate in
" a proper direction may be resolved into an infinite number of rays
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planes of polarization of its constituents rotated through different
angles, and the effect of rotating the analyzer is to quench one after
another of the colors as the plane of polarization for each is reached.
The result is a colored beam which changes its tint continuously as
the analyzer rotates.
The best explanation of these phenomena was given by Fresnel.
It is found that neither of the two beams from a quartz crystal is
plane polarized. The polarization is in general elliptical, but be-
comes circular for waves perpendicular to the axis of the crystal,
the motion in one ray being right-handed and in the other left-
handed. Each particle of ether in the path of the light within the
crystal is actuated at the same time by two circular motions in
opposite directions. Its real motion is in the
diameter which bisects the chord joining any
two simultaneous hypothetical positions of the
particle in the two circles. In Fig. 152 let P
and @ represent these two simultaneous posi-
tions. It is plain that the two components in
the direction 4B have the same value and are
¢ added, while those at right angles to 4B are
Fia. 162. equal and opposite and annul each other. So
long as the two components retain the same relation as that
assumed, the real motion of the particle is in the line AB. But in
the quartz plate one of the motions is propagated more rapidly
than the other, and another particle farther on in the path of the
light may reach the point P in one of its circular vibrations at the
same time that it reaches @’ in the other. This will give CD as its
real path, and the plane of its vibration has been rotated through
the angle BOD. When the light finally emerges from the plate its
plane of vibration will have been rotated through an angle which
is proportional to the thickness of the plate and depends upon the
wave length of the light employed. A plate of quartz one mil-
limetre in thickness rotates the plane of polarization of red light
corresponding to Fraunhofer’s line B, 15° 18’, of blue light corre-
sponding to the line @, 42° 12’. Some specimens of quartz rotate
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force, be reflected back through the glass against the lines of force,
the rotation will be doubled. It is important to note that this is
the reverse of the effect produced by quartz, solutions of sugar, etc.,
which rotate the plane of polarization in consequence of their own
molecular state. When light of which the plane of polarization has
been rotated by passage through such substances is reflected back
upon 1tself, the rotation produced during the first passage is exactly
reversed during the return, and the returning light is found to be
polarized in the same plane as at first.

In the magnetic field the effect is as though the medium which
conveys the light were rotating around an axis parallel to the lines
of force, and carrying with 1t the plane of vibration. Evidently the -
plane of vibration would be turned through a certain angle during
the passage of the light through the body, and would be turned
still further in the same direction if the light were to return.

When we remember that iron becomes magnetic by the effect
of currents of electricity flowing in conductors around it, and that
Ampére conceived that a permanent magnet consists of molecules
surrounded by electric currents, all in the same direction, it 1s easy
to imagine that the magnetic field is a region where the ether is
actuated by vortical motions, all in the same direction, and in planes
at right angles to the lines of magnetic force. Such a motion
would account for the rotational effects of the magnetic field upon
polarized light.

Not only glass but most liquids and gases exhibit rotational
effects when placed in a powerful magnetic field; and Kerr has
shown that when light is reflected from the polished pole of an
electromagnet, its primitive plane of polarization is rotated when
the current is passed, in one direction for a north pole, and in the
opposite direction for a south pole.

389. Maxwell’s Electromagnetic Theory of Light.—In Maxwell’s
treatment of electricity and magnetism he assumed that electrical
and magnetic actions take place through a universal medium. In
order to determine whether this medium may not be identical with
the luminiferous ether, he investigated its properties when a
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ether. Maxwell explained the fact that many electrolytes are trans-
parent and yet are good conductors by supposing that the rapidiy
elternating electromotive forces which occur during the transmis-
sion of the electrical disturbance act for so short a time in one
direction, that no complete separation of the molecules of the elec-
trolyte is effected. No electrical current, therefore, is set up in
the electrolyte, and electrical energy is not lost during the trans-
mission of the disturbance.

The experiments of Hertz and others, described in § 313, have
proved that electromagnetic waves may be set up in 2 medinm, and
that they possess the properties predicted for them by Maxwell’s
theory. In very many respects these waves behave exactly like
light-waves; they are transmitted with the same velocity, they
move more slowly through dense bodies than in a vacuum, they are
reflected, refracted, and polarized cxactly as light-waves are, and
they penetrate bodies which are transparent to light, and are
stopped by bodies which are opaque to light. There are certain
differences between their behavior and that of light-waves, which
are readily explained by the fact that the shortest electromagnetic
waves which can be produced directly are several centimetres long,
while none of the light-waves are as long as one one-thousandth of
a millimetre. The periods of vibration of the electromagnetic
waves are much greater than those of light-waves, and such proper-
ties of these waves as depend upon their periods are to some extent
different from those of light.

One of the most important conclusions of the electromagnetic
theory was that of the relation between the index ot refraction and
the specific inductive capacity. This relation is very far from
being confirmed by experiment when the index of refraction is that
of light. This discrepancy between theory and experiment 1s ex-
plained by those who maintain that light is an electromagnef,ic dis-
turbance of the sort described in the following way: The methods
by which the specific inductive capacity is determined either involve
setting up a steady electrical force in the dielectric or the use of an
alternating electrical force which at best only alternates with a
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period that is enormously large in comparison with that of the light-
vibrations. Since observation shows that the specific inductive
capacity obtained diffcrs when different rates of alternation are em-
ployed in the experiment, it may readily be supposed that, if alter-
nations were used which were as rapid as those of light, values of
the specific inductive capacity would be obtained which would con-
firm the theory. Since this cannot be done, the only method of
comparison possible is to calculate, as well as it can be done, the
index of refraction for light of very long period; this is done by
the aid of a formula for the dispersion of light derived by Cauchy,
from which the index of refraction of infinitely long waves ic calcu-
lated. The agreement obtained by this method is still very far
from good, but this may easily be explained by supposing that
Cauchy’s formula, which rests, after all, only on an empirical basis,
and has been tested only within narrow limits, does not apply to
waves of very long wave length, or that, in other words, the waves
of long wave length exhibit anomalous dispersion. The experi-
ments which have been made to test the relation between the
specific inductive capacity and the index of refraction of electro-
magnetic waves show in very many cases an exceedingly good
agreement, and in no case a disagreement, with the theory.

While there are still difficulties to be overcome and questions to
be answered, it is yet highly probable that the true theory of light
is the electromagnetic theory or some extension of it. We may
therefore view magnetic, electrical, and luminous actions as actions
occurring in the ether, and arising in some way from the interactions
between the ether and matter, by which the energy of matter is
transformed into energy in the ether, and this energy in the ether
traneferred through it to other matter,






TABLES.

TABLE L
UNI’I:B OoF LENGTH
Foot =  80.48 cm. log. 1.484015
Inch = 2.54 cm. log. 0.404830
UniTs oF Mass,
Pound 453.59 grams, log. 2.656664

Grain = 0.0648 grams.  log. 8.811576

TABLE II.
ACCELERATION CF GRAVITY.

g = 980.6056 — 2.5028 cos 2 — 0.000008%, where { is the latitude of the station
and 4 its height in centimetres above the sea-level.

g at Washington = 980.07 | g at Puaris = 980.94
g at New York = 980.26 | g at Greenwich = 981.17
TABLE IIL
Units oF WoORK.'

Kilogram-metre =  100.000g ergs.
Foot-pound = 13.825¢g ergs.

= 1.855 X 10" ergs, log 7.18200, when g = 980,

Units oF RATE oF WORKING.
Watt = 10? ergs per second.

Horse-power = 550 foot-pounds per second.

= 746 Watts.

Uxit oF HEAT.
Lesser calorie (gram degree) = 4,198 x 107 ergs.

.
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TABLE IV.

DENSITIES OF SUBSTANCES AT 0°.

The densities of solids given in this table must be taken as only approxi-
mate. Specimens of the sume substance differ among themselves to such an
extent as to render it impossible to give more precice values.

Aluminium...oovvuiieennnnnn. Iron (wrought)...... ceenen 76t078
Brass... «vveeee eerennaeas oa- R (Y- ) P 7.2t0 7.7
Copper ....... Gesesiecrenosnes Lead......... cas essesace eee.s 113
Gold............ teeeens .. Mercury....... cecves ceeesess 13.596
Glass (CrOWn),eeeeensrenns 2.5to 2.7 | Platinum....... teecessccessss 215
Hydrogen....cooeeeeeienn 0.0000895 | Silvgr.... ... .ceeceesseseces. 10.5
Ice..ciieenneonscnnsssoreee: s 0.918 | ZinC .vvveveescecncessossaness Tl
TABLE V.
UNITS OF PRESSURE FOR g = 981,

Grams per 8q. cm. Dynes per sq. cm,
Pound per square inch............ cevee 70.31 6.9 X 104
1 inch of mercury at 0°..... ceseenncene 84.534 3.388 Xx 104
1 millimetre of mercury at 0°........... 1.3596 1333.8
1 atmosphere (760 mm.)...... teteseanas 1033.3 1.0136 x 10¢
1 atmosphere (80 inches)...cvveeeencanns 1036. 1.0163 x 10¢

TABLE VI

ELAsTICITY.

If pis the force in dymes per unit area tending to extend or compress a

body, the linear elasticity is Z%)' and the volume elasticity is v

1.07 x 10

dp

dp dp

ai dv’
6.03 x 101 4.15 x 10n
2.14 X 10" 1.84 x 10'®

. 8.44 X 101
2.02 x 10
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70,0000
80...c0000nen
1)
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Density.
0.99236
0.98821
0.98339
0.97795
0.97195
0.96557

TABLES.
TABLE VII.

ABSOLUTE DENSITY OF WATER AT #° IN GRAMS PER CUBIC CENTIMETRE.
to. Density. | t°. Density,

[ 0.999884 | 7.....000 ... 0.999946

1 iiieennne.. 0999941 8............ 0.999899

2....... veeese 0999982 9......... ... 0.999837

8.iieienennee. 1000004 10............ 0.999760

4. iiieeenene 1000018 15... 0. 0.999173

S iietienanese. 1.000008( 20.... ....... 0.998272

6. ceeinonnane. 0999983 30... 000000, 0.9957781100 ... 000 0neene

TABLE VIIIL
DENSITY OF MERCURY AT ¢°, WATER AT 4° BEING 1.
te. Density. log. to. Density.
O.eeennnene., 135953 1.13339 | 20....... eees 13.5461

10..000000eees 13,5707 1.13260

TABLE IX.

80...cc00000e.. 136217

COEFFICIENTS OF LINEAR EXPANSION.

Temperature.
Aluminium.......... weeos 16° to 100°
Brass...ccooeiectccecsonnns 0 to 100
Copper........... 0 to 100
German silver....... ... to 100
Gluss... .ieeieieiensnncee 0 to 100
Iron .......... eeraieeens 13 to 100
Lead.....on0iivaiinenenns 0 to 100
Platinum........... P 0 to 100
Bilver..ceieieieeeinnncnnas -0 to 100
Zinc......connen. ereaaeen 0 to 100

Coeflicients of voluminal expansion,

dal
'G = 'J"t'.

0.0000235
---0.0000188
- 0.0000167
0.0000184
0.0000071
0.0000123
0.0000280
0.0000089
0.0000194
0.00002380

av
o =3

0.95866

log.
1.13182
1.18103
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TABLE X.
SPECIFIC HEATS—WATER AT 0° = 1,
Solids and Ligquids.

Aluminium....ooeeevenneee.. 0.212 | Mercury..ceeeeesececcscees. 0.033

Brass....... sesessser seessss 0.086 | Platinum....ceeeeeeeeeces.. 0.082
Copper..... cecsvessacsnsnns 0.093 | Silver...... cececesssessssses 0.056
Iron..ieieeeiivenacenenerees 0112 | Water(0°to 100°).cceeevee... 1005

Lead...cccceievenenceecease 0081 | Zinc.ovoieevesosencersese.. 0.056

Gases and Vapors at Constant Pressure.

Alr.iiiveneessncoescscenees 0.287 ] Nitrogen ...coeeeeeesesesess 0.244
Hydrogen..ceecoseeeciosee.. 8410 | OXygen...c.coeeeerescoosass 0.217

Ratio, ?";2 = 1404
v

TABLE XI

I. MELTING-POINTS. II. BoiLiNg-porNTs. III. HEATS OF LIQUEFACTION.
IV. HEATS OF VAPORIZATION. V. MAXIMUM PRESSURE OF VAPOR AT
0° IN MILLIMETRES OF MERCURY.

) & II. 1oL Iv. V.
Ammonia....ccoeesee o . — 83.7° .. 04 at 7.8° 8344
Carbon dioxide......cc.. — 65° — 78.2 . 49.3 at 0° 27100
Chlorine....cccesevencas . — 83.6 .e .e 4560
COpPer..earsee voreeees 1200 . .. . ..
Lead.....cune oo cesaens 326 .e 5.9° .e ..
MeErCury.. .eeoveeeees . — 89 857 2.8 62 0.02
Nitrous oxide, N;O..... .. — 105 .. . 24320
Platinum ...... teeeenne 1780 .. 21.2 .o ..
Silver... cooeeees veees. 1000 . 21.1 .o ..
Water. .ooceescasessanne 0 100 80 587 4.6
Zinc...... T 5 . . 28.1 . ..
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TABLE XII.

MaxiMUM PRESSURE OF VAPOR OF WATER AT VARIOUS TEMPERATURES IN
(1.) DYNES PER SQUARE CENTIMETRE, (II.) MILLIMETRES OF MRERCURY.

Temp. L
—20°........ 1286
—10°........ 2790

0% . .enne ... 06183
10 ....00aene. 12220
2 ...00000... 28190

80 ...enee. .o 42050
40 ~iaveve... 78200
80 ceeeencaees 1,228 X 10¢

IL. | Temp.
. 60°....00ec..
4.6 (100 ..........
92120 ...000u0u.
174 [ 140 ..veunne.
81.6 | 160 ..ceeenen
54.6 | 180 ... ..u.es
96.2 1200 ...0.0000e
TABLE XIII

L II.
1.9856 x 10* 149,
4.729 X 10* 3855,

10.14 X 10*°  760.
19.88 X 10*° 1491,
86.26 X 10* 2718,
62.10 X 10* 4652.
100.60 X 10* 7546,
156. X 10° 11689.

CRITICAL TEMPERATURES (7') AND PRESSURES IN ATMOSPHERES (P), AT
THEIR CRITICAL TEMPERATURES, OF VARIOUS (RASES.

T.
Hydrogen ...ccoc. = 220,
Nitrogen...e.o000o — 148,
Oxygen... esccccce ™ 119.

P.
20. | Carbon dioxide.
85.
51,
TABLE XIV.

T. P
...... 80.9 .

Sulphur dioxide .... 155.4 7.

COEFFICIENTS OF CoNDUCTIVITY FOR HEAT (K) IN C. G. 8. UNrrs, 1N
WHIOH @ I8 GIVEN IN LEssER CALORIES.

COPPer..ccoevecrne vovosnnnss

Qlass. ..c.io0ieecinnnienneess 0.0005
Ice...cioee.vovennnsssanssen. 0.0057

IrOn. . ceiiienenorens vennnes
lll‘ﬂd.....o..--..-.-----c.-..

111

0.16

Mercury...coveevei eenenn.. 0.015

Parafin........
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TABLE XV.

ENERGY PRODUCED BY COMBINATION OF 1 GRAM OF CERTAIN SUBSTANCES

WwITH OXYGEN.

Gram-degree of Heat. Energy in ergs.

Carboun forming CO........0u ... 2141 8.98 x 101
“ “  COse cvvvenneass .. 8000 - 8.86 x 10U
Carbon monoxide, forming CO;. .. 2420 1.02 x 101
Copper, CuO.......... seseesnnns 602 2.53 x 10%°
Hydrogen, HiO..o0vvveiennine... 84000 1.43 X 10*
Marsh gas, CO,; and H,O......... = 13100 5.50 x 101
Zine, ZnO ..civeivveriioninnnnns 1301 5.46 X 101
TABLE XVI.
ATtoMic WEIGHTS AND COMBINING NUMBERS.
Atomic Weight. Combining Number.
Aluminium........ 27.04 9.01
Copper....... ceeseracss seasenee 63.18 (cupric) 81.59
i iesesaiesessesssesansene ¢ (cuprous) 63.18
Gold... vecevrnarensrcassnssases 1962 65.4
Hydrogen.... ceeveeececonsonnnee 1. 1.
Iron.......c..n ceeeaee terseeaeee 56.88 (ferric) 18.63
N teeveseen.eataee Ceeee “  (ferrous) 27.94
Mercury ....eeeeesveccesncsses. 199.8  (mercuric 99.9
€ ieeaseanne terseeanen s cee ‘“ (mercurous) 199.8
Nickel....... iesesscencoarnonns 58.6 29.8
OXygen ...ieevieveacsonanenonss 15.96 7.98
Platinum....coceveeensanes eeees 190438 64.8
Silver.ceiceeatenonsnerenasnaeass 1077 107.7
ZinC,.+eeeoececsscsssscscscarsae 64.88 82.44

. TABLE XVIL
MoLECULAR WEIGHTS AND DENSITIES OF GASES.

Simple Gases. )
) Atomic Weight. Sp.gr., H=1. Massin
Chlorine, Cls..cvvveevuennes 70.75 85,37
Hydrogen, Hsvceotveerosocne 2.00 ) 1.00
Nitrogen, Na.voaveeeeeesnnn 28.024 . 14012

Oxygen, Og ...ovvuvnn P 31.927 16.96

1 Litre.
8.167
0.0895
1.254
1.429
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Compound Gases.

Atomic Weight. Sp. gr., H=1., Massin 1 Litre.
Carbonic oxide, CO.... ..... 27.937 14.97 1.251
Carbonic dioxide, CO, ...... 43.90 21.95 1.965
Hydrochloric acid, HCL....... 36.376 18.188 1.628
Vapor of water, H,O........ 17.96 8.98 0.804
Atmospheric air........... . 1.293

TABLE XVIIIL
ELECTROMOTIVE FORCE OF VoLrarc CELLS,

Daniell........ 1.1 volt. | Grove....... 1.88 volt. | Clark... 1.435 volt at 15°.

Electromotive force of Clark cell for any temperature £ 18
1.435[1 — 0.00077(t — 15)].

TABLE XIX.
ELECTROCHEMICAL EQUIVALENTS,
Grams per second deposited by the electromagnetic unit current,
Hydrogen, 0.0001038, C

To find the electrochemical equivalents of other substances, multiply the
electrochemical equivalent of hydrogen by the combining number of the sub-
stance.

TABLE XX.
ELECTRICAL RESISTANCE.

Absolute resistance R in C. G. 8. units of a centimetre cube of the substance.
Temperature coeflicient, a. R; = Ro(1 + at).

R,. .

Aluminium.... ...... teseassenne 2889 ..

Copper.......... cereneee Cerienes 1611 0.00388
German silver.... coovvciieeinans 207 0.00044
Gold......... 2041 0.00365
Iron......cocvvvnnee [P 9638 ..

MeErcury..cos ceaeeecennanns eee o 94340 0.00072
lemum . R 8982 0.00376
Platinum sllver 2 Pt 1 Ag 24190 0.00031
Silver....oeeeee e teeereceseeacane 1580 0.003877

Zinc...coovnnann resane cecrasienae 5581 0.00365
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R,.
Carbon (Carré’s electric light)........ tecesenrae 8.9 X 10¢
Glass at 200°............ teeestesecnttnncansans 2.28x 10
Gutta percha, at 24° ......... tersenenn cisesaene 8.46< 10
o o S | veesanne 6.87x 10%
Selenium, at 100°............ cessnee ssesecensane 5.9 x 101
Water, at 22°. .. cvvviecanens teesesscensesens ane 7.0 x 10
Zinc sulphate + 28H;0........c00uvnens ceetenns 1.88x 10
Copper sulphate 4 45Hs0....c.cv cieiiviieeanns 1.91x 10%
TABLE XXI.
INDICES OF REFRACTION.
Index. lﬁz‘;t‘.’f Index. %IJ;% t(.’t
Soft crown glass .... 1.5090 A | Canada balsam...... 1.528 Red
1.5180 E | Water............... 1.831 B
1.5266 G 1.336 E
Dense fiint glass. .... 1.6157 B 1.344 H
1.6289 E | Carbon disulphide.. . 1.614 A
1.6453 G 1.646 E
Rock salt..ceoeeoee.. 1.56366 A 1.684 G
1.5490 E | Airat 0°,760 mm.... 1.00029 A
1.5613 G 1.000296 E
Diamond............ 2.47 D 1.000300 H
Amber.........00.0.. 1.582 D
Ordinary Index. Kind of Light. Extraordinary Index.
Iceland spar....... 1.658 D - 1.486
Quartz ........... 1.544 D 1.558
TABLE XXII.

‘WAVE LENGTHS OF L1GHT—ROWLAND'S DETERMINATIONS,
Fraunhofer's line A (edge), 7593.975 tenth metres.

B  6867.382
C ¢ 6562.965
D, * 5896.080
D, ¢  5890.125

E « 5270.420
b ¢ b5188.785
F ¢ 4861.428
G ¢ 4307.961
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TABLE XXIII.

ROTATION OF PLANE OF POLARIZATION BY A QUARTZ PLATE, 1 MM. THICK,
CUT PERPENDICULAR TO AXIS.

A...... tecenne testinesieas 12°668 | E........... cecesasesaess 27°.5643
Biiiiieeeiitinncniniennnee 15°748 | Fovviiqiienensencnneanes 82°.778
C.viverreronresasecsnseses 110818 | Guiviniiienienincaneass. 42°.604
Daierieccrenensonctanseees B°T2T | H iiveiviencccascecsenss 51°198
TABLE XXIV.
VELOCITIES OF LIGHT.
Cm. per Sec. Cm. per Sec.
Michelson, 1879...... 2.99910 X 10 | Foucault, 1862....... 2.98000 x 10
Michelson, 1882...... 2.99858 X 10 | Cornu, 1874......... 2.98500 x 10%

Newcomb, 1882...... 2.99860 x 10!

Cornu, 1878......... 2.99990 X 10

THE RATIO BETWEEN THE ELECTROSTATIC AND ELECTROMAGNETIC UNITS.

Cm. per Sec.
‘Weber and Kohlrausch 8.1074 X 10
W. Thomson.......... 2.825 X 10%
Maxwell............. 2.88 X 10
Ayrton and Perry..... 2.98 X 10"
J. J. Thomson........ 2.968 X 10

Cm. per Sec.
Exner..ce.coe cevonnn 2.920 X 101
Klemenéi€....o00000... 8.018 X 101
Himstedt...ocoee c0eeea 8.007 X 100
Colley.cceeeeceascece.. 8.0156 X 10"
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ABERRATION, spherical, 422 ; chromatic, 440

Aberration of fixed stars, 402

Absolute temperature, 223, 235, 247; zero of, 223, 285, 249, scale of, 223, 247

Absorption, 102 ; coefficient of, 102 ; of gases, 102

Absorption of radiant energy, 445 ; of radiations, 448 ; by gases, 449 ; relation
of, to emission, 451

Acceleration, 16 ; angular, 18 ; composition and resolution of, 17

Achromatisin, 440

Acoustics, 149

Adhesion, 86

Adiabatic line, 224

Aggregation, states of, 84

Air-pump, 143; receiver of, 144; plate of, 144; theory of Sprengel, 189 ;
Sprengel, 145 ; Morren, 146

Airy, determination of earth’s density, 81

Alloys, melting-point of, 213 .

Ampdre, relation of current and magnet, 318 ; relation of current and lines o
force, 341; equivalence of circuit and small magnet, 342 ; and magnetic
shell, 842, 834 ; mutual action of currents, 852 ; theory of magnetism, 855

Ampere, a unit of electrical current, 345

Awmplitude of a simple harmonic motion, 18 ; its relation to intensity of light,
428

Analyzer, 464

Andrews, critical temperature, 221; heat of chemical combination, 229

Aneroid, 147

Angle, measurement of,’8 ; unit of, 9

Animal heat and work, 255

Anode, 323

Antinode, 157

Apcrture of spherical mirrors, 409

Apertures, diffraction effects at, 433

Archimedes, principle in hydrostatics, 181

Aristotle, theory of vision, 894

491
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Arrhenius, theory of dissociation in solutions, 107, 883 ; theory of electrolysis,
830

Astatic system of magnetic needles, 357

Atmosphere, pressure of, 130 ; how stated, 130

Atom, 84 ; nature of, 86

Atomic heat, 211

Attraction, mass or universal, 70 ; constant of, 82

Avenarius, experiments in thermo-electricity, 882 ; thermo-electric formula,
384

Avogadro’s law, a consequence of the kinetic theory of gases, 235

Axis of rotation, 50; of strain, 109 ; of stress, 113 ; of floating body, 131; mag-
netic, 260, 263 ; of spherical mirror, 409 ; optic, of crystal, 457, 471, 472

BALANCE, 78 ; hydrostatic, 182

Barometer, 129 ; Torricellian form of, 130 ; modifications of, 130; preparation
of, 180

Beam of light, 418

Beats of two tones, 166, 181; Helmholtz’s theory of, 181; Konig’s theory of,
182 ; Cross’s experiment on, 183

Beetz, experiment on a limit of magnetization, 280

Bernoulli, velocity of efflux, 136

Berthelot, heat of chemical combination, 229

Berzelius, electro-chemical series, 828

Bidwell, view of Hall effect, 356

Bifilar suspension, 298, 358

Biot, law of action between magnet and electrical current, 842

Biot and Savart, action between magnet and electrical current, 841

Black’s calorimeter, 194

Blagden, freezing-point of solutions, 214

Bodies, composition of, 84 ; forces determining structure of, 85; isotropic and
eolotropic, 108

Body, 1; rigid, 87; displacement of rigid, 40 ; energy of rotating, 43 ; motion
of free, 45 ; motion of rigid, in three dimensions, 50

Boiling. See Ebullition, 216

Boiling-point, 219

Bolometer, depends upon change of resistance with temperature, 819 ; used to
study spectrum, 444 .

Boltzmann, distribution of energy in a gas, 236; specific inductive capacity of
gases, 302

Borda, pendulum, 77; method of double weighing, 80

Bosscha, capillary phenomena in gases, 96

Boutigny, spheroidal state, 219

Boyle, law for gases, 118, 222 ; limitations of, 147; departures from, 221; a
consequence of the kinetic theory of gases, 285

Bradley, determined velocity of light, 402
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Breaking weight, 124

Brewster, law of polarization by reflection, 468

British Association bridge, 362

British Association, experiment to determine unit of resistance, 378
Buunsen, calorimeter, 195 ; photometer, 447

CAGNIARD-LATOUR, critical temperature, 220

Cailletet, condensation of gases, 221

Calorie, 192 ; lesser, 192

Calorimeter, Black’s ice, 194 ; Bunsen’s ice, 195 ; water, 195 ; thermocalorime-
ter of Regnault, 197; water equivalent of, 196

Calorimetry, 194 ; method of fusion, 194 ; of mixtures, 195; of comparison,
197; of cooling, 197

Cumera obscura, 422

Capacity, electrical, 291; unit of, 292 ; of spherical condenser, 293 ; of freely.
electrified sphere, 294 ; of plate condenser, 285 ; of Leyden jar, 295

Capacity, specific inductive, 292 ; relation of, to index of refraction, 802, 379,
477, 478 ; relation of, to crystallographic axes, 802

Capillarity, facts of, 90 ; law of force treated in, 91; equation of, 85 ; in gases,
96 ; Plateau’s experiments in, 97

Carlini, determination of Earth’s density, 81

Carlisle, apparatus for electrolysis of water, 324

Carnot, cycle, 244 ; engine, 244 ; theorem, 247

Cathetometer, 6

Cathode, 328

Cauchy’s formula for dispersion, 479

Caustic curve, 421; surface, 421

Cavendish, experiment to prove mass attraction, 72 ; determination of Earth’s
density, 81; on force in electrified conductor, 285; specific inductive
capacity, 292

Centimetre, 4

Central forces, propositions connected with, 54-89 ; proportional to the radius
vector, 55 ; proportional to the inverse square of the radius vector, 56

Centrobaric bodies, 78

Charge, unit, electrical, 288; energy of electrical, 801

Chemical affinity measured in terms of electromotive force, 328

Chemical combination, heat equivalent of, 229 ; energy of, 255

Chemical separation, energy required for, 229; gives rise to electromotive
force, 827

Chladni’s figures, 174

Christiansen, anomalous dispersion in fuchsin, 456

Circle, divided, 9

Circuit, clectrical, direction of lines of force due to, 841; equivalenoe of, to
magnetic shell, 842, 849. Ses Current, electrical.

Clark, standard cell, 836; its electromotive force, 836
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Clausius, kinetic theory of gases, 231; principle in thermodynamics, 246 ;

: theory of electrolysis, 830

Clement and Desormes, determination of ratio of specific heats of gases, 225

Coercive force, 2569

Cohesion, 86

Collimating lens, 437, 444

Collision of bodies, 38

Colloids, 85; diffusion of, 104

Colors of bodies, 449 ; produced by a thin plate of doubly refracting crystal
in polarized light, 467; by a thick plate, 469 *

Colors and figures produced by a thin plate of doubly refracting crystal in
polarized light, 467, 469, 472, 478, 474

Comparator, 7

Component of vector, 12

Compressibility, 83

Compressing pump, 146

Concord in music, 166 :

Condenser, electrical, 292 ; spherical, 293 ; plane, 204 ; discharge of, 814 ; os-
cillatory discharge of, 875

Conduction of electricity, 283

Conductivity for heat, 203 ; measurement of, 204 ; changes of, with tempera-
ture, 2035 ; of crystals, 205 ; of non-homogeneous solids, 205 ; of. liquids,
205

Conductivity, molecular, 332

Conductivity, specific electrical, 319 ; in electrolyte dependent on jonic veloc-
ities, 831

Counductors, good, 284 ; poor, 284 ; systems of, 295 opacity of, 477

Configuration, 11

Conical refraction. 478

Conservation of energy, 87

Contact, angle of, 96

Continuity, condition of, 134; for a liquid, 185

Convection of heat, 201

Cooling, Newton’s law of, 453

Copernicus, heliocentric theory, 70

Cords, longitudinal vibrations of, 173; transverse vibrations of, 173

Cornn and Baille, determination of Earth’s density, 82

Coulomb, laws of torsion, 122; torsion. balance, 122; law of magnetic force,
260; distribution of magnetlsm, 268; law of electrical force, 286

Coulomb, a unit of quantity of electricity, 288

Counter electromotive force, 320; general law of, 820; of decomposition,
measure of, 827; of polarization, 835; of electric arc, 887 .

Couple, 44; moment of, 44

Critical angle of substance, 408

Critical temperature, 220, 221, 239
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Crookes, the radiometer, 287; tubes, 890; explanation of phenomena in tubes,
891

Cross, experiment on beats, 183

Crystul systems, 85

Crystalloids, 85; diffusion of, 104

Crystals, conductivity of, for heat, 205; specific inductive capacity of, 302;
electrification of, by heat, 802; optic axis of, 457; principal plane of, 457;
varying elasticity in, 461; varying velocity of light in, 462; effects of
plates of, on polarized light, 466, 469, 471, 472, 473; uniaxial, 471; biaxial,
472; optic axes of biaxial, 472

Ctesibius, force pump, 129

Cumming, reversal of thermo-electric currents, 882

Current, electrical, 313; effects of, 312; represented by movement of tubes of
force, 314; electrostatic unit of, 316; strength, 816; strength depends on
nature of circuit, 317; sustained by energy from dielectric, 321; set up by
movement of a liquid surface, 339; magnetic field of, 841; direction of
lines of force due to, 341, 346; electromagnetic unit of, 344; practical unit
of, 845; energy of, in magnetic field, 845; energy of, in its own field, 346;
mutual energy of two, 346; mutual action of two, 846, 348; motion of,
in a magnetic field, 847; action of, on magnet'pole, 849; Ampére’s law
for the mutual action of, 852; deflected in a conductor by a magnet, 856;
due to inequalities of temperature, 8356; measured in absolute units, 358;
Kirchhoff’s laws of, 360; alternating, 368

Current, extra, 3868

Current, induced electrical, 863; quantity and strength of, 864; measured in
terms of lines of force, 365; discovered by Faraday, 866; Lenz’s law of,
867; Faraday’s experiments relating to, 367; of self-induction, 367

Cycle, 244; Carnot’s, 244; illustrated in hot-air engines, 2563

DALTON, law of vapor-pressure, 218

Daniell’s cell, 335

Dark lines in solar spectrum, explanation of, 451

Davy, melting of ice by friction, 188; conception of heat as motion, 205; elec-
trolysis of caustic potash, 824

Declination, magnetic, 268

Deformation, 108

De 1a Rive and de Candolle, conductivity of wood, 205

Density, 81

Density, magnetic, 262; electrical, 287

Despretz and Dulong, measurement of animal heat by, 256

De Vries, osmotic pressure, 106

Dialysis, 105

Diamagnet, distinguished from paramagnet, 276, 278

Diamagnetism, 276; explanation of, by Faraday, 276; on Ampdre’s theory,
'856; by Weber, 855 ’ )
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Diaphragm, vibrations of, 176

Dielectric, 292; strain in, 301; energy in, 806; stress in, 810

Dielectric constant, 292. See Capacity, specific inductive.

Diffraction of light, 432; at narrow apertures, 482; at narrow screens, 434;
grating, 434

Diffusion, 108; of liquids, 103; coefficient of, 103; through porous bodies, 104;
through membranes, 104; of gases, 107

Dilatability, 83 :

Dilatations, 110

Dimensional equation, 9

Dimensions of units, 9

Dip, magunetic, 268.

Discord, in music, 168

Dispersion, normal, 408, 489; anomalous, 465

Dispersive power of substance, 440

Displacement, 11; composition and resolution of, 11

Dissociation, 229; heat equivalent of, 229

Dissociation, in solutions, 107; freezing-point of solutions, 214; vapor-pressure
of solutions, 218; in electrolytes, 830; theory of electrolysis, 830

Distribution of electricity on conductors, 287

Dividing engine, 6

Divisibility, 83

Double refraction in Iceland spar, 457; explanation of, 4568; by isotropic sub-

tances when strained, 473

Draper, study of spectrum in relation to temperature, 454

Dulong and Petit, law connecting specific heat and atomic weight, 211; this
law a consequence of the kinetic theory of gases, 237, 241; formula for
loss of heat by radiation, 458

Dutrochet, definition of osmosis, 104

Dynamics, 10

Dynamo-machine, 871

Dyne, 25

EAR, tympanum of, 176

Earth, density of, 80

Ebullition, 216; process of, 218; causes affecting, 219

Eddy, mean energy of vibrating body, 240

Edlund, study of counter electromotive force of electric arc, 887

Efflux through narrow tubes, 89; of a liquid, 185; quantity of, 188

Elasticity, 83, 116; modulus and coefficient of, 116; perfect, 116; voluminal,
117; voluminal, of gases, 118; of liquids, 118; of solids, 120; of traction,
120; of torsion, 121; of flexure, 123; limits of, 123

Llasticity of gases, 118, 228; at constant temperature, 228; when no heat enters
or escapes, 228; ratio of these, 226; determined from velocity of sound, 227

Electric arc, 887: counter electromotive force of, 887
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Electric discharge, in alr, 887; in rarefied gnses, 389

Electric pressure, 291

Electrical convection of heat, 386

Electrical double-sheet, 837

Electrical endosmose, 840; shadow, 388

Elcctrical force. See Force, electrical.

Electrical machine, 298; frictional, 298; induction, 299

Electricity, fundamental facts of, 283; unit quantity of, 288; flow of, 289,
814, 316

Electrification by friction, 283; positive and negative, 288, 2856; by induction,
284; explanation of electrification by friction, 838

Electrified body, forces on, 308

Electro-chemical equivalent, 325

Electrode, 323

Electrodynamometer, 358

Electrolysis, 828; bodies capable of, 823; typical cases of, 324; influenced by
secondary chemical reactions, 824; Faraday’s laws of, 825; Grotthus's
theory of, 329; dissociation theory of, 830; Clausius’s view of, 830

Electrolyte, 823

Electromagnet, 355

Electromagnetic system of electrical units, basis of, 844

Electromagnetic waves, 376; similarity of, to light waves, 478

Electrometer, 296; absolute, 296; quadrant, 298; capillary, 839

Electromotive force, 317, 359; measured by difference of potential, 817;
means of setting up, 321; measured in heat units, 328; a measure of chem-
ical afilnity, 828; of polarization, 835; theories of, of voltaic cell, 337;
electromagnetic unit of, 859; practical unit of, 859; due to motion in mag-
netic field, 872; measured in terms of tubes of force, 872; depends on rate
of motion, 872; at a heated junction, 880; required to force spark through
air, 388

Electromotive force, counter. Ses Counter electromotive force, 820

Electrophorus, 299 .

Electroscope, 296

Electrostatic system of electrical units, basis of, 288

Elements, chemical, 84, electro-positive and eleetro-negative, 328

Elongation, 109; how produced, 111

Emission of radiant exergy, 451; relation of, to absorption, 458

Endosmometer, Dutrochet’s, 105

Endosmose, 104

Endosmose, electrical, 340

Energy, 29, 30; kinetic, 29; potential, 30; and work, equivalence of, 29; unfit
of, 81; conservation of, 87; of fusion, 215; of vaporization, 227; sources of
terrestrial, 234; of sun, 257; dissipation of, 258; electrical, in dielectric,
806; expended in a circuit, 317

Engine, thermodynamic, 243; efliciency of heat, 244; Carnot, 244; reversible,
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246; efficiency of reversible, 247, 248; steam, 252; hot air, 253; gas, 252;
Stirling, 253; Rider, 253

Eolotropic bodies, 108

Epoch of a simple harmonic motion, 22

Equatorial plane of a magnet, 260

Equilibrium, 28, 44; of free body, 45

Equipotential surface, 62

Erg, 31

Ether, 84; luminiferous, 396; interacts with molecules of bodies, 456; transmits
electrical and magnetic disturbances, 895, 476; theories of, 396

Ettingshausen, view of Hall effect, 356 ; currents due to inequalities of tem-
perature, 856 .

Evaporation, 216; process of, 216

Ewing, magnetic hysteresis, 279; limit of magnetization, 280; theory of mag-
netization, 281

Exosmose, 104

Expansion, 111; of solids by heat, 206; linear, 207; voluminal, 207, 209; coefli-
cient of, 207; factor of, 207; measurement of coeflicient of, 208, 209; of
liquids by heat, 208; absolute, 208, 209; apparent, 208; of mercury, absolute,
208; apparent, 208; of water, 210; of guses by hent, 222; coeflicient of, 222;
heat absorbed and work done during, 225; work done by pressure during,
249

Extraordinary ray, 468; index, 458

Eye, 4238; estimation of size and distance by, 424

Eye-lens or eye-piece, 426; negative or Huygens, 441; positive or Ramsden, 442

FARAD, a unit of electrical capacity, 292

Faraday, magnetic induction in all bodies, 276 ; explanation of this, 276;
experiment in electrical induction, 284; on force in electrified body, 285;
specific inductive capacity, 292; theory of electrification, 302, 811; thcory
illustrated, 302; explanation of residual charge, 808; discharge of jar can
produce effects of current, 813; nomenciature of electrolysis, 823; laws of
electrolysis, 825; voltameter, 826; division of ions, 328; theory of electrolysis,
329; chemical theory of electromotive force, 387; electromagnetic rotations,
844; induced currents, 866; effect of medium on luminous discharge, 389;
electromagnetic rotation of plane of polarization, 475

Favre and Silbermann, heat of chemical combination, 229; connection of
electromotive force and heat units, 328

Feddersen, oscillatory discharge, 376

Ferromagnet. See Paramagnet, 276

Field of force, 61; strength of, 61

Filament, in a fluid, 185

Films, studied by Platean, 98; interference of light fro.n, 430

Fitzgerald, vortex ether, 396
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Fizeau, introduced condenser in connection with induction coil, 871; deter-
mined velocity of light, 402

Flexure, elasticity of, 123

Floating bodies, 131

Flow of heat, 202; across a wall, 202; proportional to rate of fall of tempera-
ture, 202; along a bar, 203

Fluid, body immersed in, 181; body floating on, 181

Fluids, distinction between solids and, 124; mobile, viscous, 124; perfect, 125

Fluids, motions of. Ses Motions of a fluid, 134

Fluorescence, 454

Focal line, 421

Focus, of spherical mirror, 411; real, conjugate, 411; principal, 411; virtual, 411

Forbes, measurement of conductivity, 205

Force, 24; unit of, 25; centrifugal, 29 ; conservative, 80; internal, 85, 86;
external, 36; moment of, 43; field of, 61; defined by potential, 61; line of,
63; tube of, 63; flux of, 65; near a plane sheet, 68; within spherical shell,
68; outside a spherical shell, 69

Force, capillary, law of, 91

Force, electrical, in charged conductor, 285 ; law of, 286 ; screen from, 289 ;
just outside an electrified conductor, 291; tubes of, 803; unit or Faraday
tube of, 804 ; vepresentation of, by tubes of force, 804 ; on bodies in the
electrical field, 808

Force, magnetic, law of, 260; due to bar magnet, 265; unit tube of, 270; within
a magnet, 271; lines of, 272; between magnet and long straight current,
841; between magnet and current element, 842, 849; due to circular cur-
rent, 351

Forces, composition and resolution of, 28; resultant of parallel, 47; central, 54

Forces, determining structure of bodies, 85; molecular, 85, 108; of colesion,
86; of adhesion, 86

Foucault, pendulum, 52; velocity of light, 408

Fourier, theorem, 24

Franklin, complete discharge of electrified body, 285; experimeut with Leyden
jar, 802; identity of lightning and electrical discharge, 889

Fraunhofer, lines in solar spectrum, 443

Freezing-point, change of, with pressure, etc., 218; of solutions, 214

Fresnel, assumption of transverse vibrations, 895; elastic solid ether, 896 ;
interference of light from two similar sources, 429; rhomb, 471; explana-
tion of rotation of plane of polarization by quartz, 474

Fresnel and Arago, interference of polarized light, 460, 463

Friction, 88; laws of, 88; coeflicient of, 89; of solid in ‘fluid, 89; theory of, 90

Fusion, 212; heat equivalent of, 214; energy necessary for, 215; determination
of heat equivalent of, 215

GALILEO, relation of force and mass, 26; path of projectiles, 59; the heliocentric
theory, 70; measurement of gravity, 78; weight of atmosphere, 129
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Galvani, physiological effeets of electrical current, 312

Galvanometer, 857; Schweigger’s multiplier, 857; tangent, 857

Gas, definition of, 216; perfect, 249

Gases, 84, 230; absorption of, 102; diffusion of, 107; elasticity of, 118; lique.
faction of, by pressure, 147, 220; departure of, from Boyle’s law, 221;
pressure of saturated, 221; coefficient of expansion of, 222; formula con-
necting pressure, volume, and temperature of, 222 ; elasticities of, 223 ;
specific heats of, 224; van der Waal’s theory of, 237; spectra of, 450

Gases, kinetic theory of. See Kinetic theory of gases, 231

Gauss, theory of capillarity, 92; proof of law of magnetic force, 260

Gay-Lussac, law of expansion of gases by heat, 222

Geissler tubes, 390

Gilbert, showed Earth to be a magnet, 268

Graham osmometer, 105; method of dialysis, 105

Gram, 8

Gram-degree, 193

Grating, diffraction, 434; element of, 435; pure spectrum produced by, 436;
with irregular openings, 436; wave lengths measured by, 487; Rowland’s
curved, 438

Gravitation, attraction of, 70

Gravity, centre of, 72

Gravity, measurement of, 73; value of, 78

Griffiths, mechanical equivalent of heat, 198

Grotthus, theory of electrolysis, 320

Grove, gas battery, 334

Gyration, radius of, 42

Gyroscope, 53

HaLL, deflection of a current in a conductor, 858

Halley, theory of gravitation, 71

Hamilton, prediction of conical refraction, 478

Harmonic tones of pipe, 172

Harris, absolute electrometer, 296

Heat, effects of, 186; production of, 187; nature of, 187; a form of energy, 188;
unit of, 192; mechanical unit of, 193; mechanical equivalent of, 198; Joule’s
determination of, 198: Rowland’s, 199; Hirn’s 200; transfer of, 201; con-
vection of, 201; conduction of, 202; internal, of Earth, a source of energy,
257; developed by the electrical current, 318, 319; generated by absorption
of radiant energy, 446

Heat, atomic, 211 .

Heat, kinetic theory of, 206, 229

Helmbholtz, vortices, 142; resonators, 178; vowel sounds, 179; theory of beats,
181; theory of solar energy, 258; law of counter-electromotive force, 820;
electromotive force of ceM, 828; electrical double-sheet, 838; modification
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of eurface tendfen by electrical currents, 888; explanationp of .electrigal
endosmose, 840: interaction of ether and molecules of bodigs, 45¢ :

Henry, oscillatory discharge, 876

Herschel, st'udy of spectrum, 459

Hertz, relation of index of refraction and specific inductive capacity, 802;
experiments on electromagnetic wives 876, 478; passage of cathode dis-
charge through aluminium, 891

Hirn, mechanical equivalent of heat, 200; work done by animals, 256

Hittorf, migration of ions, 338

Holtz, electrical machine, 301

Hooke, theory of gravitation, 71; law of elasticity, 116, 120

Hopkinson, relation between index of refraction and specific inductive capac-
ity, 477

Horizontal intensity of Earth’s magnetism, 268; measurement of, by standard
magnet, 263; absolute, 269 )

Hot-air engine, 252

Huygens, theorems of, on motion in a circle, 71; views of, respecting gravita-
tion, 71; principle of wave propagation, 151; theory of light, 394; eye-
piece, 441

Hydrometer, 133

Hydrostatic balance, 182

Hydrostatic press, 126

Hydrostatic stress, 115

Hysteresis, magnetic, 279

IcE, melting-point of, used as standard, 212; density of, 318

Iceland spar, 457; wave surface in, 458

Images, formed by small apertures, 401; virtual, 408; by mirrors, 416; by
lenses, 417; geometrical construction of, 418

Impact, 38

Impenetrability, 4

Impulse, 26

Inclined plane, 48, 49

Induced magnetization, coefficient of, 278

Induction coil, 871; condenser connected with, 871

Induction, electrical, 284, 280

Induction, magnetic, 259, 272, 278; tubes of, 273

Induction of currents, 863

Inductive capacity, magnetic, 278

Inertia, 4, 25; moment of, 42

Instantaneous axis, 50

Insulator, electrical, 284; transparency of, 477

Intensity in a fleld of force, 61

Interference of light, cause of propagation in straight lines, 896; from two
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similar sources, 427; experimental realization of, 429; from thin films, 430

Internode, 157

Intervals, 167 )

Ionic weight, 326; charge, 828; velocities, 331 *

Ions, 324, 825; electro-positive and electro-negative, 828; arrangement of, by
Faraday, 328; by Berzelius, 328; migration of, 829

Isothermal line, 223

Isotropic bodies, 108

JoLry, determination of Earth’s density, 82

Joule, equivalence of heat and energy, 188; mechanical equivalent of heat,
198; expansion of gas without work, 225, 233; limit of magnetization, 280;
law of heat developed by electrical current, 319; electromotive force in
heat units, 328; development of heat in electrolysis, 829

Joule and Thomson, expansion of gas without work, 226

Jurin, law of capillary action, 99

KATER, pendulum, 77

Kepler, laws of planetary motion, 70

Kerr, optical effect of strain in dielectric, 802; rotation of plane of polarization
by reflection from magnet, 476

Ketteler, interaction of ether and molecules of bodies, 456

Kinematics, 10 )

Kinetics, 10

Kinetic theory of heat, 206, 229; explanation by it of properties of bodies, 239

Kinetic theory of gases, 231, 282 '

Kirchhoff, laws of electrical currents, 860; spectrum analysis, 450

Kohlrausch, measurement of ionic velocities, 331

Konig, A., modification of surface tension by electrical currents, 339

Konig, R., manometric capsule, 149; pitch of tuning-forks made by, 169;
boxes of his tuning-forks, 175; quality as dependent on change of phase,
178; investigation of beats, 182

Kopp, atomic heat, 211

Kundt, experiment to measure velocity of sound, 162; anomalous dispersion,
455 :

LaNG, counter electromotive force of electric arc, 887

Langley, bolometer, 319; wave lengths in lunar radiations, 488, 446

Laplace, theory of capillarity, 92; equation of capillarity, 96

Lavoisier, measurement of animal heat, 255

Lenst time, principle of, 400

Lenard, the cathode discharge, 391

Length. unit of, 4; measurements of, 4

Lenses, 413; formula for, 414; forms of, 414; focal length of, 415; images
formed by, 417; optical centre of, 417; thick, 419; of large aperture, 419;
aplanatic combinations of, 422; achromatic combinations of, 440
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Leng, law of induced currents, 867

Le Roux, experiments in thermo-electrieity, 382; electrical convection of heat
in lead, 886

Lever, 47, 49

Leyden jar, capacity of, 205; dissected, 302; volume changes in, 802; residual
charge of, 803

Light, agent of vision, 894; theories of, 394; propagated in straight lines, 396;
principle of least time, 400; reflection of, 404; refraction of, 406; ray of,
beam of, pencil of, 418; characteristics of common, 464

Light, velocity of, determined from eclipses of Jupiter's satellites, 402; from
aberration of fixed stars, 402; by Fizeau, 402; by Foucault, 403; by
Michelson, 404

Light, electromagnetic theory of, 476

Lightning, an electrical discharge, 389

Lines of magnetic force, positive direction of, 848

Lippmann, electrical effects on capillary surface, 388; capillary clectrometer,
889; production of current by modification of capillary surface, 889

Liquefaction, 220; of gases, by pressure, 220

Liquids, 84, 230; modulus of elasticity of, 118

Lissajous, optical method of compounding vibrations, 180

Lorentz, shrinkage of molecules with rise of temperature, 240

Loudness of sound, 164

MacHINE, 48; efficiency of, 49; electrical, 208; dynamo- and magneto-, 370

Magnet, natural, 259; bar, relations of, 263; couple between two-bar, 265

Maguetic elements of Earth, 268

Magnetic force Ses Force, magnetic, 260

Magnetic induction, 259; axis, 260, 263; pole, 260, 263; moment, 261; den-
sity, 262; fleld, 270; inductive capacity, 278; permeability, 273; field,
energy in, 278

Magnetic shell, 266; strength of, 266; potential due to, 267; equivalence of, to
closed current, 342

Magnetic system of units, basis of, 261

Magnetism, fundamental facts of, 259; distribution of, in magnet, 262; deter-
mination of, 263; theories of, 280; Ampére's theory of, 855; theory of,
described by tubes of force, 855

Magnetization, intensity of, 262; changes in, 378

Magneto-machine, 870

Magnifying-glass, 425

Maguifying-power, 425

Manometer, 146

Manometric capsule, 149

Mariotte, study of expansion of gases, 118

Maskelyne, determination of Earth’s density, 81

Mass, 25; unit of, 8; centre of, 32
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Masses, comparison of, 8

Matter, 1, 3; constitution of, 83; kinetic theory of, 206, 229; statas of, 380

Matthiessen, expansion of water, 209

Mayer, views concerning work done by animals, 256

Maxwell, coefficient of viscosity of & gas, 90; kineiic theory of gases, 281; law
of distribution of energy in gases, 235; molecular constants, 242; relation
between specific inductive capecity and index of refraction, 808, 477; ex-
planation of residual charge, 803; theory of electrification, 311; relation
of current and lines of force, 841; suggested test of Weber’s theory of dia-
magnetism, 855; measurement of v, 874; force on magnet due to moving
electrical charge, 375; electromagnetic theory of light, 476

Mechanics, 10

Mechanical powers, 46

Melloni, use of thermopile, 881 °

Melting-point of ice, 212; of alloys, 212; change of, with pressure, 213

Mercury, expansion of, by heat, 209

Metacentre, 181

Micbhelson, velocity of light, 404

Michelson and Morley, difference of path of interfering light, 464

Microfarad, 202

Micrometer screw, 5

Microscope, simple, 425; compound, 426

Migration of ions, 329; constant, 333

Mirrors, plane. 408; spherical, 409; images formed by, 416; of large aperture,
419

Modulus of elasticity. See Elasticity, 116

Mohr, kinetic theory of heat, 205

Molecular forces, 86; action, range of, 91, 242; motion, 229. 8ee Kinetic
theory.

Molecule, 88; structure of, 86; Kinetic energy of, proportional tp temperature,
235; mean velocity of, 286; dimensions of, 241

Moment, of force, 44; of couple, 44; principle of, 44

Moment of inertia, 42; experimentally determined, 42

Moment of torsion, 122; determination of, 122

Moment, magnetic, 261; changes in, 278; depends on temperatuxe 279; on
mechanical disturbance, 280

Momentum, 26; conservation of, 85

Motion, 11; description of, 14; linear, with constant aceeleration, 18; angular,
with constant angular acceleration, 19; in a circle, 17, 28: simple bar-
monic, 20; Newton’s laws of, 26; constrained, 28: in an ellipse, 57

Motions, composition and resolution of simple harmonic, 23; of a fluid, 134;
optical method of compounding, 180. See Displacement, 11

Miiller, J., limit of magnetization, 280

Mutual induction, coefficient of, 347
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NERNST, migration of fons, 833

Neumann, atomic heat, £11

Newton, laws of motion, 26; law of mass attraction, 71; degeription of atam,
86; quantity of liquid flowing through orifice, 188; theory of Hght, 400;
interference of light from films, 481; compositionp of w‘hite light, 439;
chromatic aberration, 440; law of cooling, 458

Nichols, study of radiations, 454

Nicholson and Carlisle, decomposition of water by electrical current, 818

Nicol prism, 466

Node, 157

Noise, 164

Non-inductive coil, 868

OBJECTIVE, 426

Ocean currents, energy of, 2565

Oersted, piezometer, 119; relation between magnetism and electricity, 813

Ohm, law of electrical current, 318

Ohm, a unit of electrical resistance, 860; various values of, 860; determination
of, 872

Olszewski, condensation of gases, 221; low temperatures obtained by, 228

Optic angle, 424; axis of crystal, 457, 471, 472

Optics, 894

Ordinary ray, 458; index, 458

Organ pipe, 170; fundamental of, 172; harmonics of, 172; mouthpiece of, 172;
reeds used with, 172

Oscillation, axis of, 77

Oscillatory discharge of condenser, 875

Osimometer, Graham’s, 105

Osmosis, 104, 105

Osmotic pressure, 108; laws of, 106

Ostwald, theory of electrolysis, 830

Overtones, of pipe, 172

PARALLELOGRAM, of vectors, 12; of forces, 28

Paramagnet, 276

Particle, 27, 42

Pascal, pressure in fluid, 125; pressure modified by gravity, 126; barometer,
129

Peltier, heating of junctions by passage of electrical current, 818; effect, 818, 830

" Pencil of light, 418

Pendulum, Foucault’s, 62; simple, 74; formula for, 75; physical, 75; Borda’s,
77, Kater’s or reversible, 77

Peoumbra, 401

Percussion, centre of, 45

Period, of a simple harmonic motion, 20



506 INDEX.

Permeability, magnetic, 278

Pfeffer, study of osmosis, 105; of osmotic pressure, 105 laws of osmotic
pressure, 106

Phase, of a simple harmonic motion, 20

Phonograph, 176

Phosphorescence, 454

Photometer, Bunsen’s, 447

Photometry, 447

Pictet, condensation of gases, 221

Piezometer, Oersted’s, 119; Regnault’s, 119

Pitch of tones, 164; methods of determining, 164; standard, 169

Planté, secondary cell of, 336

Plateau, experiments of, in capillarity, 97

Plates, rise of liquid between, 100; transverse vibrations of, 174

Poisseuille, friction in liquids, 89

Poisson, correction for use of piezometer, 119; theory of magnetism, 280

Polariscope, 465

Polarization of cells, 335

Polarization of light, by double refraction, 459; by reflection, 462; plane of,
463; by refraction, 463; by reflection from fine particles, 463; elliptic and
circular, 469; circular by reflection, 471; rotation of plane of, by quarts,
473; by liquids, 475; in magnetic field, 475

Polarized light, 460; explanation of, 460; interference of, 463; effects of plates
of doubly refracting crystals on, 466, 469, 471, 4723, 478

Polarizer, 464

Polarizing angle, 463

Pole, magnetic, 260, 263; unit magnetic, 261

Poles, of a voltaic cell, 334

Polygon of vectors, 12

Porous body, 102

Potential, difference of, 81; its relation to force, 61; in a field of force varying
inversely with the square of the distance, 63

Potential, electrical, in a closed conductor, 286, 289; of a conductor, 289; zero,
positive, and negative, 289; of a system of conductors, 205; difference of,
measured, 297; contact difference of, 812

Potential, magnetic, due to bar magnet, 263; due to magnetic shell, 267; of a
closed circuit is multiply-valued, 843; illustrated by Faraday, 844

Poynting, theorem, 321

Pressure, 112; in a fluid, 125; modified by outside forces, 126 ; surfaces of
equal, 126; on surface of separation, 127; proportional to depth, 128;
diminished on walls containing moving liquid column, 139

Prevost, Inw of exchanges, 451

Principal plane of crystal, 457

Prism, 407

Problem of two bodies, 58
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Projectiles, 59

Properties of matter, 4

Pulley, 47, 49

Pump, 187; air, 143; compressing, 146

QUALITY of tones, 164, 177; dependent upon harmonic tones, 178; upon change
of phase, 178 '

Quarter wave plates, 471

Quartz, effects of plates of, in polarized light, 478; imitation of, 475

Quincke, range of molecular action, 242; change in volume of dielectric, 302;
electrical endosmose, 340; movements of electrolyte, 340

RapiIAN, 9

Radiunt energy, effects of, 445; transmission and absorption of, 448; emission
of, 451; origin of, 452

Radiation, 205 ; intensity of, as dependent on distance, 446; on angle of in-
cidence, 446; kind of, as dependent on temperature, 4568

Radicals, chemical, 84

Radiometer, 237

Rainbow, 442; secondary, 443

Ramsden, eye-piece, 442

Rankine, theoretical velocity of sound, 159

Raoult, freezing-points of solutions, 214; vapor pressure of solutions, 218

Ratio between electrostatic and electromagnetic units, 373; a velocity, 378;
physical significance of, 875; equal to velocity of light, 477

Ray of light, 418

Rayleigh, electromotive force of Clark’s cell, 336

Reeds, in organ pipes, 172; lips used as, 172; vocal chords as, 178

Reflection, of waves, 157; law of, 158; of light, lJaw of, 405; total, 408; at
spherical surfaces, 409; of spherical waves, 419; sclective, 449; polarization
of light by, 463

Refraction of light, law of, 408; index of, 407; dependent on wave length, 408;
at epherical surfaces, 412; polarization of light by, 463: conical, 473

Regelation, 213

Regnault, plezometer, 119; specific heat of water, 193; thermocalorimeter, 197;
expansion of mercury, 208; extension of Dulong and Petit’s law, 211;
modification of Dalton’s law, 218; pressure of water vapor, 221; modifica-
tion of Gay-Lussac’s law, 222; total heat of steam, 228

Reinhold and Ricker, range of molecular action, 242

Residual charge, 303

Resistance, electrical, 818, 859; depends on circuit, 318; of homogeneous cyl-
inder, 319; specific, 319; varies with temperature, 819; electromagnetic
unit of, 360; practical unit of, 860; boxes, 860; measurement of, 362; of a
divided circuit, 363; determination of unit of, 872

Resonance, 174
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Resonator, 178

Restitution, coefficient of, 89

Resultant of vectors, 11

Reusch, artificial quartzes, 475

Reuss, electrical endosmose, 340

Reynolds, laws of diffusion of gases, 108

Rheostat, 360

Rider, hot-air engine, 253

Righi, transmission of electroniagnetic waves through wood, 878

Rigidity, 117; modulus of, 117, 128

Rods, longitudinal vibrations of, 178; transverse vibrations of, 174

Roemer, determination of velocity of light, 402

Rontgen, the Rontgen radiance, 392; theories of, 892

Rotation, 40; of body about a fixed point, 48

Rotation of plane of polarization by quartz, 478; right-handed and left-handed,
475; by liquids, 475; in maguetic field, 475; explanation of, 476; by retiec-
tion from magnet, 476

Rotational coefficient, Hall's, 856

Rowland, specific heat of water, 193; mechanical equivalent of heat, 199; force
on magnet due to moving electrical charge, 875 ; measurement of o, 875:
photographs of solar spectrum, 438; curved grating, 488

Ruhmkorff’s coil, 871

Rumford, relation of heat and energy, 187; conception of heat as motion, 206;
views concerning work done by animals, 256

SACCHARIMETER, 475

Sarasin and de la Rive, velocity of electromagnetic waves, 876
Saturation of a magnet, 278, 281

Savart, toothed wheel, 165 .

Scales, musical, 167; transposition of, 168; tempered, 169
Schénbein, chemical theory of electromotive force, 887
Schweigger, multiplier, 857

Screeus, diffraction effects at, 434

Screw, 48

Second, 8

Seebeck, thermo-electric currents, 880; thermo-eleotric series, 881
Self-induction, coefficient of, 846; current of, 867

Set, 128

Shadows, optical, 401

Shear, 110, 117; amount of, 110, 117

Shearing strain, 110; stress, 114

Shunt circuit, 868

Siphon, 186

Siren, determination of number of vibrations by, 165

Smee's cell, 335
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Snell, law of refraction, 407

Solenoid, 354

Solidification, 213

Solids, 84, 280; structure of, 85; crystalline, amorphous, 85; movements of, due
to capillarity, 101; distinction between fluids and, 124; soft, hard, 124

Solubility, 102

Solution, 102; equimolecular, 106; indifferent, 106; isotonic, 106

Sound, 149; origin of, 149; propagation of, 150; theoretical velocity of, 159;
velocity of, in air, 161; measurements, 162

Sounding boards, 176

Specific gravity, 181; determination of, for solids, 182; for liquids, 132; for
gases, 138

Specific gravity bottle, 182

Specific heat, 193; mean, 194; varies with temperature, 210; with change of
state, 310

Specific heat of gases, 224; at constant volume, 224; at constant pressure, 224;
determination of, at constant pressure, 224; ratio of these, 225; relation to
elasticities, 226

Specitic inductive capacity. 8ee Capacity, specific inductive, 202

Spectromster, 487; method of using, 437

Spectroscope, 443

Spectrum, pure, 486; produced by diffraction grating, 436; of first order, ete.,
436; formed by prism, 439; solar, 448; dark lines in, 443; study of, 445;
of solids and liquids, 445; of gases, 450; explanation of, of a gas, 463;
characteristics of, 454; of gases which undergo dissociation, 454

Spectrum analysis, 449

Spheroidal state, 219

Spherometer, 7

Spottiswoode ard Moulton, eleetrieal discharge in high vacua, 891

Sprengel, air-pump, 145; theery of, 189

Statics, 10

Steam, total heat of, 238

Steam-engine, 352

Stirling’s hot-air engine, 253

Stokes, study of fluorescence, 455

Storage cells, 336

Btrain, 108, 109; homogeneous, 109: principal axis of, 109; superposition of
111

Stress, 28; in medium, 108, 111; superpesition of, 114; hydrostatic, 115

Substances, simple, compound, 84

Sun, energy of, 257

Sutface density, 67; of magnetism, 362; of electrification, 287

Surface energy of liquids, 94

Burface tension of liquids, 82; relations to surface energy, 94; modified by
electrical effects, 889
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Sutherland, shrinkage of molecules with rise of temperature, 240
System of points, 11

Tarrt, experiments in thermo-electricity, 882; thermo-electric formula, 885

Telephonic transmitters and receivers, 870

Telescope, 425, 426; magnifying power of, 426

Temperament of musical scale, 169

Temperature, 189; scales of, 190; change of, during solidification, 213; critical,
220, 221, 239; absolute zero of, 228, 285, 248; absolute, 223, 247, 249;
kinetic measure of, 232; absolute, relation of, to temperature of air-ther-
mometer, 249; movable equilibrium of, 451; radiation of heat dependent
on, 453

Tension, 112

Thermodyunamics, first law of, 243; second law of, 246

Thermo-electric currents, 380; how produced, 881; reversal of, 383

Thermo-electric dingram, 882

Thermo-¢lectric element, 381

Thermo electric power, 382

Thermo-electrically positive and negative, 381

Thermometer, 189; construction of, 189; air, 191, 228; limits in range of, 192;
weight, 209; zero of air, 223

Thermopile, 881

Thomson, J. J., tubes of force, 804; theory of electrical field, 811; currents
due to inequalities of temperature, 857; explanation of discharge in
rarefied gases, 391

Thomson, Sir Wm. (Lord Kelvin), theory of vortex atom, 87; vortices, 143;
absolute scale of temperature, 248; theory of solar energy, 258; absolute
electrometer, 297; quadrant electrometer, 298; law of counter electromo-
tive force, 820; contact theory of electromotive force, 887; measurement
of o, 874; oscillatory discharge, 376; thermo-electric currents in non-
homogeneous circuits, 382: thermo-electric power a function of temper-
ature, 384; the Thomson effect, 886; electromotive force required to force
spark through air, 888; gyroscopic model of ether, 396; estimates of
rigidity and density of ether, 396

Thomson effect, 386

Tides, energy of, 257

Time, 3; unit of, 8; measurement of, 8

Tones, musical, 164: differences in, 164; determination of number of vibra-
tions in, 164; whole and semi-, 168; fundamental, 172; analysis of com-
plex, 178; resultant, 183

Tonic, 168

Torricelli, barometer, 129; experiment of, 129; theorem for velocity of eflux,
136; experiments to prove, 188

‘Torsion, amount of,-121; moment of, 123

Torsion balance, 122, 286
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Tourmaline, 464

Traction, longitudinal, 114; elasticity of, 120
Translation, 40

Transmission of radiations, 448

Triad, major, 167; minor, 167

Trouton, polarization of electromagnetic waves, 879
Trowbridge, changes in intensity of magnetization, 279
Tubes, rise of liquid in capillary, 99

Tubes of force, 63; relation of force to cross-section of, 67
Tuning-fork, 174; sounding-box of, 1756

Tyudall, conductivity of wood, 205

UMBRa4, 401
Units, fundamental and derived, 4; dimensions of, 9; systems of, 9

VacuuM TUBE, electrical discharge in, 889

Van der Waals, theory of a gas, 237; pressures in gases, 242

Vapor, 216; saturated, 217; pressure of, 217; pressure of, over solutions, 218;
production of, in limited space, 220; departure of, from Boyle’s law, 221;
pressure of saturated, 221

Vaporization, 216; energy necessary for, 227; heat equivalent of, 228

Vector, 12; composition and resolution of, 13

Velocity, 15; angular, 18; composition and resolution of, 16

Velocity of eflux of a liquid, 185; into a vacuum, 187

Velocity, mean, of molecules of gas, 284, 241

Velocities, composition and resolution of, 16; of angular, 51

Vena contracta, 138

Ventral segment, 157

Verdet, electromagnetic rotation of plane of polarization, 475

Vernier, 4

Vertex of spherical mirror, 409

Vibrations of sounding bodies, 170; modes of exciting, in tubes, 172; longi-
tudinal, of rods, 178; of cords, 173; transverse, of cords, 178; of rods,
174; of plates, 174; communication of, 174; of a membranc, 176; optical
method of studying, 180

Vibrations, light, transverse to ray, 460, 463; relation to plane of polarization,
461; elliptical and circular, 469

Viscosity, 88: of fluids, 89; of gases, 90; of solids, 124

Vision, ancient theory of, 894; Aristotle’s view of, 894

Visual angle, 424

Vocal chords, 178

Volt, a unit of electromotive force, 859

Volta, change in volume of Leyden jar, 802; electrophorus, 209; contact differ-
ence of potential, 812; voltaic battery, 318; heating by current, 818; con-
tact theory of electromotive force, 837
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Voltaic cells, 884; polarization of, 885; theories of electromotive force of, 387;
arrangements of, 363

Voltaic cells: Grove’s gas battery, 884; Smee’s, 885; Daniell’s, 835; Planté’s
secondary, 336; Clark’s, 386

Voltameter, 326; weight, 327; volume, 827

Volume, change of, with change of state, 218

Vortex, in perfect fluid, 143; line, 142; filament, 142; propérties of a, 142;
strength of, 142; illustrations of, 143

Vortex atom, theory of, 87

Vowel sounds, dependent on quality, 179

WATER, specific heat of, 193; maximum density of, 201, 210; expansion of,
by heat, 210; on solidification, 213

‘Water-power, energy of, 2565

‘Wave, on surface of liquid, 140; studied by H. and W. Weber, 140

Wave, sound, 151; mode of propagation of, 151; graphic representation of, 152;
displacement in, 153; velocity of vibration in, 154; stationary, 156; reflec-
tion of, 157; in sounding bodies, 170

Wave, light, surface of, 896; relation of, to the direction of propagation, 899;
emergent from prism, 407, 408; measurement of length of, 480, 437;
values of lengths of, 488; surface of, in uniaxial crystals, 458; in biaxial
crystals, 472

‘Weber, theory of magnetism, 280; equivalence of circuit and small magnet,
842; theory of diamagnetism, 855; electrodynamometer, 858,

‘Weber, H. and W., study of waves, 140

Weber and Kohlrausch, measurement of o, 878

‘Wedge, 48 .

‘Weighing, methods of, 80

Weight of a body, 78

‘Wheatstone's bridge, 361

‘Wheel and axle, 48

‘Wiedemann, electrical endosmose, 340

Wilcke's calorimeter, 194

‘Wind-power, energy of, 255

‘Wollaston, dark lines in solar spectrum, 448

‘Work, 29; and energy, equivalence of, 39; unit of, 81; principle of, 42

‘Wren, theory of gravitation, 71

‘Wright, connection of electromotive force and heat of chemical combination,
328

Younae, theory of capillarity, 92; optical method of studying vibrations, 180;
interference of light from two similar sources, 439















