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PREFACE.

The design of the authors in the preparation of this work has

been to present the fundamental principles of Physics, thfe experi-

mental basis upon which they rest, aiid^so-.-far^^s possible, the

methods by which they have been established. Illustrations of

these principles by detailed descriptions of special methods of ex-

perimentation and of devices necessary for their applications in the

arts have been purposely omitted. The authors believe that such

illustrations should be left to the lecturer, who, in the perform-

ance of his duty, will naturally be guided by considerations

respecting the wants of his classes and the resources of his cabinet.

Pictorial representations of apparatus, which can seldom be

employed with advantage unless accompanied with full and exact

descriptions, have been discarded, and only such simple diagrams

have been introduced into the text as seem suited to aid in the

demonstrations. By adhering to this plan greater economy of space

has been secured than would otherwise have been possible, and thus

the work has been kept within reasonable limits.

A few demonstrations have been given which are not usually

found in elementary text-books except those which are much more

extended in their scope than the present work. This has been done

in every case in order that the argument to which the demonstra-

tion pertains may be complete, and that the student may be con-

vinced of its validity.

In the discussions the method of limits has been recognized

wherever it is naturally involved; the special methods (tf the cal-
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cuius, however, have not been employed, since, in most institutions

in this country, the study of Physics is commenced before the stu-

dent is sufficiently familiar with them.

The authors desire to acknowledge their obligations to Wm. F.

Magie, Assistant Professor of Physics in the College of New Jersey,

who has prepared a large portion of the manuscript and has aided

in the final revision of all of it, as well as in reading the proof-

sheets.

W. A. Anthony,

C. F. Brackett.

September, 1887.



REVISER'S PREFACE.

By the courtesy of the authors and publishers of this book, I

have been given an opportunity to make a rather extensive revision

of it. The principal changes which have been made, besides such

slight corrections or supplementary statements as seemed necessary,

are, an entire rearrangement and enlargement of the mechauicvi,

and the addition of a discussion of the kinetic theory of matter

and of a treatment of magnetism and electricity by the method of

tubes of force. The omissions have been largely of statements that

would naturally be made by the lecturer or of demonstrations in

which the results reached did not warrant the expenditure of time

and trouble necessary to master them. I trust that I have adhered

throughout to the original design of the authors.

During the last few years I have been using with my classes

Selby's "Elementary Mechanics of Solids and Fluids," and have

availed myself in many places in the present revision of the sugges-

tions which I received from that admirable book. The additions to

the Magnetism and Electricity are based upon the treatment of the

subject by J. J. Thomson in his " Elementary Theory of Electricity

aud Magnetism."

W. F. Magie.

Princeton Unitersity,

February, 1897.
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INTRODUCTION.

1. Divisions of Natural Science.—Everything which can affect

our senses we call mutter. Any limited portion of matter, how-

ever great or small, is called a body. All bodies, together with

their unceasing changes, constitute Nature.

Natural Science makes us acquainted with the properties of

bodies, and with the changes, or phenomena, which result from

their mutual actions. It is therefore conveniently divided into

Lwo principal sections,

—

Natural History and Natural Philosophy.

The former describes natural objects, classifies them according

to their resemblances, and, by the aid of Natural Philosophy,

points out the laws of their production and development. The

latter is concerned with the laws which are exhibited in the

mutual action of bodies on each other.

These mutual actions are of two kinds : those which leave the

essential properties of bodies unaltered, and those which effect

a complete change of properties, resulting in loss of identity.

Ohanges of the first kind are called physical changes ; those of

the second kind are called chemical changes. Natural Philosophy

has, therefore, two subdivisions,

—

Physics and Chemistry.

Physics deals with all those phenomena of matter which are

not directly related to chemical changes. Astronomy is thus a

branch of Physics, yet it is usually excluded from works like the

present on account of its special character. .

It is not possible, however, to draw sharp lines of demarcatiou

between the various departments of Natural Science, for the sue-



^ ELEMENTARY PHYSICS. [§ 2

•cessful pursuit of knowledge in any one of them requires some

.acquaintance Avith the others.

2. Methods.—The ultimate basis of all our knowledge of Nature

is experience,—experience resulting from the action of bodies on

our senses, and the consequent affections of our minds.

When a natural phenomenon arrests our attention, we call the

result an observation. Simple observations of natural phenomena

only in rare instances can lead to such complete knowledge as will

suffice for a full understanding of them. An observation is the

more complete, the more fully we apprehend the attending circum-

stances. We are generally not certain that all the circumstances

which we note are conditions on which the phenomenon, in a given

case, depends. In such cases we modify or suppress one of the

circumstances, and observe the effect' on the phenomenon. If we

find a corresponding modification or failure witii respect to the

phenomenon, we conclude that the circumstance, so modified, is a

condition. We may jDroceed in the same way with each of the

remaining circumstances, leaving all unchanged except the single

one purposely modified at each trial, and always observing the

effect of the modification. We thus determine the conditions on

which the phenomenon depends. In other words, we bring ex-

periment to our aid in distinguishing between the real conditions

on which a phenomenon depends, and the merely accidental cir-

cumstances which may attend it.

But this is not the only use of experiment. By its aid we may

frequently modify some of the conditions, known to be conditions,

in such ways that the phenomenon is not arrested, but so altered

in the rate with which its details pass before us that they may be

easily observed. Experiment also often leads to new phenomena,

and to a knowledge of activities before unobserved. Indeed, by

far the greater part of our knowledge of natural phenomena has

been acquired by means of experiment. To be of value, experi-

ments must be conducted with system, and so as to trace out the

whole course of the phenomenon.

Having acquired our facts by observation and experiment, we
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seek to find out how they are related; that is, to discover the

laws which connect them. The process of reasoning by which we

discover such laws is called indttctio?i. As we can seldom be sure

that we have apprehended all the related facts, it is clear that our

inductions must generally be incomplete. Hence it follows that

conclusions reached in this way are at best only probable
;

yet

their probability becomes very great when we can discover no

outstanding fact, and especially so when, regarded provision-

ally as true, they enable us to predict phenomena before un-

known.

In conducting our experiments, and in reasoning upon them,

we are often guided by suppositions suggested by previous experi-

ence. If the course of our experiment be in accordance with our

supposition, there is, so far, a presumption in its favor. So, too,

in reference to our reasonings: if all our facts are seen to be con-

sistent with some supposition not unlikely in itself, we say it

thereby becomes probable. The term hypothesis is usually em-

ployed instead of supposition.

Concerning the ultimate modes of existence or action, we know

nothing whatever; hence, a law of nature cannot be demonstrated

in the sense that a mathematical truth is demonstrated. Yet so

great is the constancy of uniform sequence with which phenomena

occur in accordance with the laws which we discover, that we have

no doubt respecting their validity.

When we would refer a series of ascertained laws to some

common agency, we employ the term theory. Thus we find in the

" wave theory " of light, based on the hypothesis of a universal

ether of extreme elasticity, satisfactory explanations of the laws of

reflection, refraction, diffraction, polarization, etc.

3. Measurements.—All the phenomena of Nature occur in

matter, and are presented to us in time and space.

Time and space are fundamental conceptions: they do not

admit of definition. Matter is equally indefinable : its distinctive

characteristic is its persistence in whatever state of rest or motion

it may happen to have, and the resistance which it offers to any
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attempt to change that state. This property is called inertia. It

must be carefully distinguished from inactivity.

Another essential property of matter is imj)enetrahilitij , or the

property of occupying space to the exclusion of other matter.

We are almost constantly obliged, in physical science, to measure

the quantities with which we deal. We measure a quantity when

we compare it with some standard of the same kind. A simple

number expresses the result of the comparison.

If we adopt arbitrary units of length, time, and mass (or

quantity of matter), we can express the measure of all other quan-

tities in terms of these s,o-c^\\Qi\ fuudamental units. A unit of

any other quantity, thus expressed, is called a derived unit.

It is convenient, in defining the measure of derived units, to

speak of the ratio between, or the product of, two dissimilar

quantities, such as space and time. This must always be under-

stood to mean the ratio between, or the product of, the numbers

expressing those quantities in the fundamental units. The result

of taking such a ratio or product of two dissimilar quantities is a

number expressing a third quantity in terms of a derived' unit.

4. Unit of Length.—The unit of length usually adopted in

scientific work is the centimetre. It is the one hundredth part of

the length of a certain piece of platinum, declared to be a standard

by legislative act, and preserved in the archives of France. This

standard, called the metre, was designed to be equal in length to

one ten-millionth of the earth's quadrant.

The operation of comparing a length with the standard is often

difficult of direct accomplishment. This may arise from the

minuteness of the object or distance to be measured, from the dis-

tant point at which the measurement is to end being inaccessible,

or from the difficulty of accurately dividing our standard into very

small fractional parts. In all such cases we have recourse to in-

direct methods, by which the difficulties are more or less com-

pletely obviated.

The vernier enables us to estimate small fractions of the unit

of length with great convenience and accuracy. It consists of an
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accessery piece, fitted to slide on the principal scale of the instru-

ment to which it is applied. A portion of the accessory piece,

equal to n minus one or n plus one divisions of

the principal scale, is divided into n divisions. In

the former case, the divisions are numbered in the

same sense as those of the principal scale ; in the

latter, they are numbered in the opposite sense.

In either case we can measure a quantity accu-

rately to the one ni\\ part of one of the primary

divisions of the principal scale. Fig. 1 will make

the construction and use of the vernier plain.

In Fig. 1, let 0,1, 2, 3 ... 10 be the divisions

on the vernier ; let 0, 1, 2, 3 . . . 10 be any set

of consecutive divisions on the principal scale.

If we suppose the of the vernier to be in

coincidence with the limiting point of the magni-

tude to be measured, it is clear that, from the

position shown in the figure, we have 29.7, expressing that magni-

tude to the nearest tenth; and since the sixth division of the ver-

nier coincides with a whole division of the principal scale, we have

_6_ of yi^j, or yf y, of a principal division to be added: hence the

whole value is 29.76.

The micrometer screiu is also much employed. It consists of a

carefull}' cut screw, accurately fitting in a nut. The head of the

screw carries a graduated circle, which can turn past a fixed line.

This is frequently the straight edge of a scale with divisions equal

in magnitude to the pitch of the screw. These divisions will then

show through how many revolutions the screw is turned in any given

trial; while the divisions on the graduated circle will show the frac-

tional part of a revolution, and consequently the fractional part of

the pitch that must be added. If the screw be turned through n

revolutions, as shown by the scale, and through an additional

fraction, as shown by the divided circle, it will pass through n

times the pitch of the screw, and an additional fraction of the

pitch determined by the ratio of the number of divisions read
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from on the divided circle to the whole number into which it is

divided.

The cathetometer is used for measuring differences of level.

^ A graduated scale is cut on an upright

bar, which can turn about a vertical

axis. Over this bar slide two accu-

rately fitting pieces, one of which can

be clamped to the bar at any point,

and serve as the fixed bearing of a

micrometer screw. The screw runs

in a nut in the second piece, which

has a vernier attached, and carries

a horizontal telescope furnished with

cross-hairs. The telescope having

been made accurately horizontal by

means of a delicate level, the cross-

hairs are made to cover one of the two

points, the difference of level between

which is sought, and the reading upon

the scale is taken; the fixed piece is

then undamped, and the telescope

raised or lowered until the second

point is covered by the cross-hairs,

and the scale reading is again taken. The difference of scale

reading is the difference of level sought.

The dividing engine may be used for dividing scales or for

comparing lengths. In its usual form it consists essentially of a

long micrometer screw, carrying a table, which slides, with a motion

accurately parallel with itself, along fixed guides, resting on a firm

support. To this table is fixed an apparatus for making successive

cuts upon the object to be graduated.

The object to be graduated is fastened to the fixed support.

The table is carried along through any required distance deter-

mined by the motion of the screw, and the cuts can be thus made

at the proper intervals.

Fig. 2.
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The same instrument, furnished with microscopes and access-

ories, may be employed for comparing lengths with a standard. It

may then be called a comparator.

The spherometer is a special form of the micrometer screw. As

Fig. 3.

its name implies, it is primarily used for measuring the curvature

of spherical surfaces.

It consists of a screw with a large head, divided into a great

number of parts, turning in a nut supported on three legs terminat-

ing in points, which form the vertices of an equilateral triangle.

The axis of revolution of the screw is perpendicular to tiie plane of

the triangle, and passes through its centre. The screw ends in a

point which may be brought into the same piano with the points

of the legs. This is done by placing the legs on a truly plane sur-

face, and turning the screw till its point is just in contact with

the surface. The sense of touch will enable one to decide with

great nicety when the screw is turned far enough. If, now, we

note the reading of the divided scale and also that of the divided

head, and then raise the screw, by turning it backward, so that the

given curved surface may exactly coincide with the four points, we

can compute the radius of curvature from the difference of the two
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Fig. 4.

readings and the known length of the side of the triangle formed

by the points of the tripod.

5. Unit of Time.—The unit of time is the rnean time seco7id,

which is the g^iiro of a mean solar

day. We employ the clock, regulated

by the pendulum or the chronometer

balance, to indicate seconds. The

clock, while sufficiently accurate for

ordinary use, must for exact investiga-

tions be frequently corrected by as-

tronomical observations.

Smaller intervals of time than the

second are measured by causing some

vibrating body, as a tuning-fork, to

trace its path along some suitable sur-

face, on which also are recorded tlie beginning and end of the in-

terval of time to be measured. The number of vibrations traced

while the event is occurring determines its duration in known

parts of a second.

In estimating the duration of certain phenomena giving rise to

light, the revolving mirror may be employed. By its use, with

proper accessories, intervals as small as forty billiouths of a second

have been estimated.

6. Unit of Mass.—The unit of mass usually adopted in scien-

tific work is the gram. It is equal to the one-thousandth part of

a certain piece of platinum, called the kilogram, preserved as a

standard in the archives of France. This standard was intended

to be equal in mass to one cubic decimetre of water at its greatest

density.

Masses are compared by means of the balance, the construction

of which will be discussed hereafter.

7. Measurement of Angles.—Angles are usually measured by

reference to a divided circle graduated on the system of division

upon which the ordinary trigonometrical tables are based. A
pointer or an arm turns about the centre of the circle, and the
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angle between two of its positions is measured in degrees on the

are of the circle. For greater accuracy, the readings may be made

by the help of a vernier. To facilitate the measurement of an

angle subtended at the centre of the circle by two distant points,

a telescope with cross-hairs is mounted on the movable arm.

In theoretical discussions the unit of angle often adopted is

the radian, that is, the angle subtended by the arc of a circle equal

to its radius. In terms of this unit, a semi-circumference equals

7t — 3.141592. The radian, measured in degrees, is 57° 17' 44.8."

8. Dimensions of Units.—Any derived unit may be represented

by the product of certain powers of the symbols representing the

fundamental units of length, mass, and time.

Any equation showing what powers of the fundamental units

enter into the expression for the derived unit is called its dimen-

sional equation. In a dimensional equation time is represented by

T, length by L, and mass by M. To indicate the dimensions of

any quantity, the symbol representing that quantity is enclosed in

brackets.

For example, the unit of area varies as the square of the unit of

length ; hence its dimensional equation is [area] = U. In like

manner, the dimensional equation for volume is [vol.] = U.
9. Systems of Units.—The system of units adopted in this

book, and generally employed in scientific work, based upon the

centimetre, gram, and second, as fundamental units, is called the

centimetre-gram-second system or the C. G. S. system. A system

based upon the foot, grain, and second was formerly much used in

England. One based upon the millimetre, milligram, and second

is still sometimes used in Germany.
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CHAPTER I.

MECHANICS OF MASSES.

10. It is an obvious fact of Nature that material bodies move
from one place to another, and that their motions are effected at

different rates and in different manners. Continued experience

has shown that these motions are independent of many of the

characteristics of the bodies ; they depend on the arrangement and

condition of surrounding bodies, and on the fundamental prop-

erty of matter, called inertia. The science of Mechanics treats of

the motions here referred to, and in a wider sense of those phe-

nomena presented by bodies which depend more or less directly

upon their masses.

The general subject of Mechanics is usually divided, in ex-

tended treatises, into two topics,

—

Kinematics and Dynamics. In

the first are developed, by purely mathematical methods, the laws

of motion considered m the abstract, independent of any causes

producing it, and of any substance in which it inheres ; in the

second these mathematical relations are extended and applied, by

the aid of a few inductions drawn from universal experience, to

the explanation of the motions of bodies, and the discussion of the

interactions which are the occasion of those motions.

For convenience, the subject of Dynamics is further divided

into Statics, which treats of forces as maintaining bodies in

equilibrium and at rest, and Kinetics, which treats of forces as

setting bodies in motion.

10
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It has been found more convenient to neglect these formal dis-

tinctions in the very brief presentation of the subject which will

be given in this book.

11. Configuration and Displacement.—An assemblage of points

may be completely described by selecting some one point as a point

of reference and assigning to each of the others a definite distance

and direction measured from this fixed point. Such a set of points

*is called a system of points, and the assemblage of distances and

directions which characterize it is called its configuration. The
motion of one or more of the points is recognized by a change in

the configuration. The change in position of any one point, de-

termined by the distance between its initial and final positions and

the direction of the line drawn between those positions, is called

the displacement of the point.

Any particle in the system may be taken as the fixed point of

reference, and the motion of the others may be measured from it.

Thus, for example, high-water mark on the shore may be taken as

the fixed point in determining the rise and fall of the tides; or, the

sun may be assumed to be at rest in computing the orbital motions

of the planets. We can have no assurance that the particle which

we assume as fixed is not really in motion as a part of some larger

system; indeed, in almost every case we know that it is thus in

motion. As it is impossible to conceive of a point in space recog-

nizable as fixed and determined in position, our measurements of

motion must always be relative.

12. Composition and Kesolution of Displacements.—If a point

undergo two or more successive displacements, the final displace-

ment IS obviously given by the line joining its initial to its final

position. This displacement is called the resultant of the others.

If the point considered be referred to a point which is itself dis-

placed relative to a third point taken as fixed, the motion of the

moving point relative to the fixed point may be considered as re-

sulting from a combination of the displacement of the first point

relative to the second point, and the displacement of the second

point relative to the third or fixed point. These simultaneous
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displacements are combined as if they were successive displace-

ments. Representing them both by straight lines, of which the

length measures the amount of the displacement, and the direction

the direction of the displacement (Fig. 5), we apply the initial point

of the second of these lines to the final point of the first and join the

initial point of the first to the final point of the second. The line

thus drawn is the resultant of the simultaneous displacements.

The two displacements of which the resultant is thus obtained are

called the components.

13. Vector Addition and Subtraction.—Any concept which is

completely described when its magnitude and direction are given

is called a vector. The sum of two vectors is the vector equivalent

to them both, it is obtained by the rule Just given for the compo-

sition of two displacements, or by the following equivalent rule:

Draw from any point the two straight lines which represent the

vectors, and upon them construct a parallelogram; the diagonal of

this parallelogram, drawn from the point of origin, is the resultant

vector or the vector sum. Thus OC (Fig. 5) is the resultant of

OA and OB. This construction is called

the parallelogram construction or the 2^nr-

allelogram Imu. If more than two vectors

are to be added, the resultant of two of

them may be added to the third, the

resultant thus obtained to the fourth, and

so on until all the vectors have been combined. This addition

is more easily made by drawing the vectors in succession, so that

they form the sides of a polygon (Fig. 6), the initial point of

each vector coinciding with the final point of the one preceding

it. In general this polygon is not closed, and the line required

to close it, drawn from the initial point of the first vector to

the final point of the last, is the sum of the vectors. This con-

struction is called the polygon construction or the polygon law.

The difference of two vectors is the vector which added to one

of the two will give the other. It is obtained by drawing from a

given point the lines representing the vectors, and drawing a line
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from the final point of the subtrahend to the final point of the

minuend. This line represents the vector difference of the two

vectors. Thus AC (Fig. 5) is the difference between OC and OA.

The same difference may be obtained by the following method: If

two lines, equal in, length, be drawn in

opposite directions, they represent two vec-

tor quantities which have the same mag-

nitude but are affected with opposite signs.

If, therefore, a vector be given which is to be

subtracted from another, it may be replaced ^^^- ''•

by a vector of the. same magnitude having the opposite direction,

and the resultant obtained by adding this vector to the one which

serves as the minuend is the difference of the two given vectors.

14. Resolution and Composition of Vectors.— It is in many cases

convenient to obtain component vectors which are equivalent to a

given vector. If one component be completely given, the other is

obtained by vector subtraction. If two components be desired, and

their directions be given so that they and the original vector are

in the same plane, their magnitudes may be determined by drawing

from a common origin lines of indefinite length in the given direc-

tions, drawing from the same origin the line representing the given

vector, and drawing from its final point lines parallel to the given

directions. The sides of the parallelogram thus constructed repre-

sent the component vectors in these given directions.

If three components be desired in three given directions not m
the same plane, and so placed that the given vector does not lie in

a plane containing any two of these directions, they may be found

by constructing upon lines drawn in these directions a parallelepi-

ped of which the diagonal is the given vector. This construction

is most frequently used when the three directions are at right

angles to one another. Representing the angles between them and

the direction of the given vector by a, ft, y, the component vectors

are proportional to cos a, cos /?, cos y. If these three directions

be the directions of the axes of a system of rectangular coordinates,

these cosines are called the direction cosines of the vector.
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The composition of vectors is often conveniently effected by re-

solving them in this way along the three coordinate axes; their

components along each of these axes may then be added algebra-

ically, and the vector obtained by combining the three sums is the

required resultant vector. Thus if the vectors i?, R^. . . /?„ be

given, making angles with the x, y, ^-axes of which the cosines

are A„ A^ . . . A„, ^,, //^ . . . /<„, v^, v^.. . v„, respectively, the sums
of the components of these vectors along the axes are

r=-R,M.+R,M, + -..+BnMn; \ (1)

The resultant vector is

Fig. 7.

E = VX' + F= + Z\
and its direction cosines are

-X y z
E' E' E'

respectively.

When only two vectors are given, they may be resolved along

two axes in the plane of the vectors. In this case, if the angles

made by the vectors Ii\ , E.^ witli the a;-axis be 0, 0, respectively,

(Fig. 7,) the component sums are

X= Ej cos + ^2 cos B^
I

r = i?, sin + E.^ sin d. )

(3)

The resultant vector is E = VX' + Y\ and the angle zp which it

makes with the .r-axis is given by cos ip = ^ or tan ip = ~^.E X
15. Description of Motion.—If we observe a system of points

in motion, we perceive not only the displacements of the points,

but also that these displacements are in some way connected

with the time required for their accomplishment. If we know the

law of this connection, we may describe the motion at any desired

instant, by the aid of certain derived concepts, which are now to be

studied.

If a variable quantity be a function of the time, it is usual in
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Mechanics to call the limit of the ratio of a small change in that

quantity to the time-interval in which it occurs the rate of change

of the quantity. This ratio is the differential coefficient of the

quantity with respect to time. Other differential coefficients which

occur in Mechanics, in which the independent variable is not the

time, are sometimes spoken of as rates, though not frequently.

The motion of a point is described when we know not only the

path, along which it is displaced, but the rates connected with its

displacement.

16. Velocity.—The rate of displacement of a point is called

its velocity. If tlie point move in a straight line, and describe

equal spaces in any arbitrary equal times, its velocity is constant.

A constant velocity is measured by the ratio of the space traversed

by the point to the time occupied in traversing that space. If s^

and s represent the distances of the point from a fixed point on its

path at the instants t^ and t, then its velocity is represented by

If the path of the point be curved, or if the spaces described by

the point in equal times be not equal, its velocity is variable. The

path of a point moving with a variable velocity may be approxi-

mately represented by a succession of very small straight lines,

which, if the real path be curved, will differ in direction, along

which the point moves with constant velocities which may differ

in amount. The velocity in any one of these straight lines is rep-

§ g
resented by the formula v = , 7^. As the interval of time t — t„t- t,

approaches zero, each of the spaces s — s^ will become indefinitely

small, and in the limit the imaginary path will coincide with the

real path. The limit of the expression j will represent the

velocity of the point along the tangent to the path at the time

t = t„, or, as it is called, the velocity in the path. This limit is

ds
usually expressed by -7-,.

(XZ
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The practical unit of velocity is the velocity of a point moving

uniformly through one centimetre in one second.

The dimensions of velocity are LT~\
Velocity, which is fully defined when its magnitude and direc-

tion are given, is a vector quantity, and may be represented by a

straight line. Velocities may therefore be compounded and re-

solved by the rules already given for the composition and resolu-

tion of vectors.

17. Acceleration.—When the velocity of a point varies, either

by a change in its magnitude, or by a change in its direction, or by

changes in both, the rate of change is called the acceleration of the

point. Acceleration is either positive or negative, according as the

velocity increases or diminishes. If the path of the point be a

straight line, and if equal changes in velocity occur in equal

times, its acceleration is constant. It is measured by the ratio of

the change in velocity to the time during which that change oc-

curs. If v^ and V represent the velocities of the point at the in-

stants t^ and t, then its acceleration is represented by

t - t:
(4)

If the path of the point be curved, or if the changes in velocity

in equal times be not equal, the acceleration is variable. A
variable acceleration in a curved path may

always be resolved into two components,

one of which is tangent and the other nor-

mal to the path. We will consider the case

in which the path lies in a plane.

Let A and B (Fig. 8) be two points in

the path very near each other, from which

normals are drawn on the concave side of

the curve, meeting at the point 0, and

making with each other the angle a. In

jPjQ 8. ^^6 limit, as a vanishes, the lines OA and

OB become equal and are radii of curvature of the path at the
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point A. Draw the lines FQ and FE in the directions of the

tangents at A and B, equal to the velocities t\ and v of the point

at .1 and B respectively. The line QF is the change in the

velocity of the point during the time in which it traverses the

distance AB. Draw the line QS perpendicular to FF. The angle

QFF, being the angle between the tangents at A and B, equals

tlie angle a. In the limit, as a vanishes, v and i\ differ by the

infinitesimal iSF, and QS equals va. The line SF represents the

change in the numerical magnitude of the velocity during the time

t — t^, and the rate of that change, which takes place along the

tangent to the path, is given by

The line QS represents the change in velocity during the same

time along the normal to the path. The acceleration along that

normal is therefore -j-. Now under the conditions assumed in
'' ~ K

4 R
these statements AB = ra, and 7^ =1 v, the velocity of the

TCI
' point. Hence v = 7 , and the acceleration along the normal to

t — f,

the path is

«„ = ^. (6)

If the path be a straight line, the normal acceleration vanishes,

and the whole acceleration is given by the limit of the ratio

V — V civ

^
7^' = -77. If the path be a circle, and if the point move in it

(. — P„ at

uniformly, the whole acceleration is given by —

.

The unit of acceleration is that of a point, the velocity of which

changes at a uniform rate by one unit of velocity in one second.

The dimensions of acceleration are LT'"'.

Acceleration is completely described when its magnitude and
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direction are given. It is therefore a vector quantity and may be

represented by a straight line. Two or more accelerations may be

compounded by the rules for the composition of vectors.

18. Angular Velocity and Acceleration.—The angle contained

hy the line passing through two points, one of which is in motion,

and iiny assumed line passing through the fixed point, will, in gen-

eral, vary. The rate of its change is called the angular velocity of

the moving point. If and 0„ represent the angles made by the

moving line with the fixed line at the instants t and t^, then the

angular velocity, if constant, is measured by

t - t^
(7)

If variable, it is measured by the limit of the same expression,

Jr. — i_ J-" as the interval t — t^ becomes indefinitely small.
dt t — i,

^

The angular acceleration is the rate of change of angular

Telocity. If constant, it is measured by

ft) — CO.

t - /„
(8)

angle become -y- = 1. Hence the dimensions of

If variable, it is measured by the limit of the same expression,

1= ^, as the interval t — t^ becomes indefinitely small.
dt t — *«

If the radian be taken as the unit of angle, the dimensions of

arc

radius

angular velocity are T~\ and of angular acceleration T'"".

If any point be revolving about a fixed pomt as a centre, its

velocity in the circle is equal to the product of its angular velocity

and the length of the radius of the circle.

19. Linear Motion with Constant Acceleration.— The space

s — s^ traversed by a point moving with a constant acceleration a,

during a time t — t^ ,\s, determined by considering that, since the

acceleration is constant, the average velocity —^r

—

- for the time
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if — ^„ , multiplied by t —t^, will represent the space traversed;

hence

*-^ = ^^°(^-0; (9)

or, since — = ° -, we have, in another form,

s-s, = vXt-t,) + \a{t-t:)\ (9a)

Multiplying equations (4) and (9), we obtain

V' = v; + 2a{s - 5„). (10)

When the point starts from rest, v^ = ; and if we take the

starting-point as the origin from which to reckon s, and the time

of starting as the origin of time, then 5„ =i 0, t^ = 0, and equa-

tions (4), (9a), and (10) become v = at, s = ^af, and v^ = 2as.

Formula (9a) may also be obtained by a geometrical construction.

At the extremities of a line AB (Fig. 9), equal in length to

t — tg, erect perpendiculars AC and BD, proportional to the initial

and final velocities of the moving point. For any interval of time

Aa, so short that the velocity during it may

be considered constant, the space described

is represented by the rectangle Ca, and the

space described in the whole time t — ^„, ^ e^
by a point moving with a velocity increas-

ing by successive equal increments, is rep-

resented by a series of rectangles, eb, fc, gdy ^" ^' '^

etc., described on equal bases, ah, he, ccl, etc.

If ah, he ... he diminished indefinitely, the sum of the areas of the

rectangles can be made to approach as nearly as we please the area

of the quadrilateral A BCD. This area, therefore, represents the

space traversed by the point, having the initial velocity v„, and

moving with the acceleration a during the time t — t^. But

ABCn is equal to A C{t - t^) + {BD — AC){t- t,) -^2 ; whence

s-s, = vSt - t,) + i,a{t - t,y. (9a)

20. Angular Motion with Constant Angular Acceleration.—If a
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point move in a circle its velocity is equal to the product of its

angular velocity and the radius of the circle; its acceleration in

the circle is equal to the product of its angular acceleration and

the radius of the circle. If its angular acceleration be constant,

the relations between the distance traversed by it in the circle,

its velocity, its acceleration in the circle and the time are the

same as those expressed in equations (9), (9a), (10). Substituting

for these quantities their equivalents in terms of the angular

magnitudes involved, we obtain the following relations among these

angular magnitudes:

0-00 = ^^(^-0; (11)

- 0„ = oo^t - O + ^^{t - t,y; (12)

co' = co; + 2a{cp-(P^). (13)

If the line describing the angle start from rest, &?„ = 0, and if we

take the line in this position as the initial line from which ta

reckon 0, and the time of starting as the origin of time, then

0^ = 0, ^„ = 0, and equations (8), (13), (13), become go — at^

= ^af, and oo' = 2a<f).

21. Simple Harmonic Motion — If a point move in a circle with a

constant velocity, the point of intersection of a diameter and a per-

pendicular drawn from the moving point to this diameter will have

a simple harmonic motion. Its velocity at any instant will be the

projection of the velocity of the point moving in the circle at

that instant upon the diameter. The radius of the circle is the

amplitude of the motion. The period is the time between any two

successive recurrences of a particular condition of the moving

point. The position of a point executing a simple harmonic

motion can be expressed in terms of the interval of time which

has elapsed since the point last passed through the middle of its

path in the positive direction. This interval of time, when

expressed as a fraction of the period, is the phase.

We further define rotation in the positive direction as that rota-

tion in the circle which is contrary to the motion of the hands of
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a clock, or counter-clockwise. Motion from left to right in the

diameter is also considered positive.

Displacement to the right of the

centre is positive, and to the left

negative.

If a point start from X (Fig. 10),

the position of greatest positive

elongation, with a simple harmonic

motion, its distance s from or its

displacement at the end of the time

t, during which the point in the

circle has moved through the arc

i?X, is 00= OB cos (p. Now, OB
is equal to OX, the amplitude, represented by a. If go represent

the angular velocity of the moving point, we have = oot. Hence

we have

s := a cos Got. (14)

To find the velocity at the point C, we must resolve the velocity

of the point moving in the circle into its components parallel to

the axes. The component at the point C along OX is V sin
;

or, since V = coa,

V = — Goa sin cot, (15)

remembering that motion from right to left is considered negative.

The acceleration at the point C is the component along OX of

the acceleration of the point moving in the circle. The accelera-

tion of i? is , the minus sign being given because this accel-

eration is directed opposite to the positive direction of the radius.

The component at C along OX is

f = cos oot or/ = — oo'^a cos Got = — go's. (16)

This formula shows that the acceleration in a simple harmonic
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motion is proportional to the displacement, and that acceleration

to the right of is negative, to the left of positive.

In these formulas the angular velocity oo may be replaced by an

equivalent factor involving the period T. For, the line drawn

from to the point moving in the circle sweeps out the angle 2;r

in the time T, so that go = —=-

.

It is often convenient to reckon time from some other position

than that of greatest positive elongation. In that case the time

required for the moving point to reach its greatest positive elonga-

tion from that position, or the angle described by the correspond-

ing point in the circumference in that time, is called the epoch of

the new starting-point. In determining the epoch, it is necessary

to consider, not only the position, but the direction of motion, of

the moving point at the instant from which time is reckoned.

Thus, if L, corresponding to /i in the circumference, be taken as

the starting-point, the epoch is the time required to describe the

path LJT. But if L correspond to the point K' in the circumfer*

ence, the motion in the diameter is negative, and the epoch is the

time required for the moving-point to go from L through to X'

and back to X
The epochs in the two cases, expressed in angle, are, in the

first, the angle measured by the arc KX ; and, in the second, the

angle measured by the arc K'X*KX.
Choosing K in the circle, or L in the diameter, as the point

from which time is to be reckoned, the angle equals angle KOB
— angle KOX, or oot — e, where t is now the time required for

the moving point to describe the arc KB, and e is the epoch, or

the angle KOX.
The formulas then become

s = a cos {cot — e);

V = — ooa sin {wf — e);

/= — ay'a cos {cot — e);
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Returning to our first suppositious, letting X be the point from

which epoch and time are reckoned, it is plain that, since

BC = a sin <p = a cosf — -\ — adO'&ioot — -],

the projection of B on the diameter OY also has a simple harmonic

71
motion^ differing in epoch from that in the diameter OX by —

.

It follows immediately that the composition of two simple harmonic

motions at right angles to each other, having the same amplitude

and the same period, and differing in epoch by a right angle, Avill

produce a motion in a circle of radius a with a constant velocity.

More generally, the coordinates of a point moving with two simple

harmonic motions at right angles to one another are

X = a cos(0 — e) and y = b cos 0.

If and 0' are commensurable, that is, if 0' = ncf), the curve

is re-entrant. Making this supposition,

X =^ a cos cos e -{- a sin sin e, and y ^=b cos w0.

Various values may be assigned to a, to b, and to n. Let a

equal b and n equal 1; then

X = y cos 6 -}- (fl' — y'^y sin e
;

from which

x^ — "Zxy cos 6 + y" cos' e = a^ sin' e — ?/' sin' e,

or,

a;' — 2xy cos e -j- ?/' = a' sin' e.

This becomes, when e = 90°, a;' + y' = a', the equation for a circle.

When 6 = 0°, it becomes x — y = 0, the equation for a straight

line through the origin, making an angle of 45° with the axis of X.

With intermediate values of e, it is the equation for an ellipse. If

we make n = |, we obtain, as special cases of the curve, a parabola

and a lemniscate, according as e =: 0° or 90°. If a and b are un-

equal, and ti = 1, we get, in general, an ellipse.

We shall now show, in the simplest case, the result of com-

pounding two simple harmonic motions which differ only in epoch
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and are in the same line. Let their displacements be represented

hj s = a cos ooi, and s' = a cos{oot — e).

The resultant displacement is the sum of the displacements due
to each; hence

s -\- s' = a[cos Got + cos{ci)t — e)],

= «[cos Got + cos Got COS € + sin a>t sin e],

= a[cos Got (1 + COS e) -f sin cot sin e].

If for brevity we assume a vaUie A and an angle such that

A cos (p = a{l -\- cos e), and A sm = «sin e, we may represent the

last value of -s + s' by Acos{oot — 0). From the two equations

containing A, we obtain, by adding the squares of the values of

A sin and A cos (p, A = (2«' + 2a' cos e)*; and, by dividing the

sm e
value of A sin by that of A cos 0, we obtain = tan"' ,

1 + cos e

The displacement thus becomes

s + s' = a(2 + 2 cos e)* cos [Gji - tan'i ,
^^^ ^

V (17>
\ 1 + cos 6/

'

This equation is of great value in the discussion of problems in

optics.

The principle suggested by the result of the above discussion,

that the resultant of the composition of two simple harmonic

motions is a periodic motion of which the elements dejjend on

those of the components, can be easily seen to hold generally.

A very important theorem, of which this principle is the con-

verse, was given by Fourier. It may be stated as follows: Any
complex periodic function may be resolved into a number of simple

harmonic functions of which the periods are commensurable with

that of the original function.

22. Force.—When we lift or sustain a weight, stretch a spring,

or throw a ball, we are conscious of a muscular effort which we

designate as a force. Since no change can be perceived in the

weight if it be suspended from a cord, or in the spring if it be held

stretched by being fastened to a hook, and since the ball moves in

just the same way if it be projected from a gun, we conclude that
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bodies can exert force on one another. This conclusion is not

strictly justifiable, and our comparison of the action of one body

on another to the action of our muscles may be only a convenient

analogy.

If we throw a weight by exerting a certain effort for a short

time, and then by exerting an equal effort for a longer time, we

find that the velocity acquired by the weight is greater in the

latter case. If we apply different efforts for the same time

in throwing the same weight, we find that the effort which we are

•conscious of as greater gives the weight a greater velocity than that

effort which we are conscious of as less. We may substitute for tlie

forces exerted by our muscles those forces which we have assumed

by analogy to act between bodies. Relying upon the uniformity

Avitli which these forces act, as determined by universal experience,

we 'can exhibit, more precisely than by the use of our muscular

effort, the relations which obtain between the force exerted and the

motion caused by it. As our experiments increase in precision,

and as one disturbing cause after another is eliminated, we find

that the velocity acquired by a given body acted on by a given force

increases m proportion to the time during which the force acts, or,

as may be said, a constant force produces a uniform acceleration.

Further, if different forces act on the same body for the same time,

the velocities produced are proportional to the forces. If /'repre-

sent the magnitude of the force, t the time during which it acts, v

the velocity which the body acquires, and m a proportional factor,

the results of these experiments may be embodied in the formula

Ft = mv. (18)

The factor m is called the mass or the inertia of the body. Since

— measures the acceleration of the body, this equation is equiva-

lent to

F=ma. (19)

The dimensions of force are MLT'^.

The practical unit of force is the dyoie, which is the force that
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cau impart to a gram of matter one unit of acceleration; that is to

say, one unit of velocity in one second.

23. Impulse.—The product Ft is called the impulse. If the

force which acts upon the body vary during the time, the impulse

is determined by dividing the time into intervals so small that the

force which acts during any one of them may be considered con-

stant, forming the product Ft for each interval, and adding those

products.

24. Momentum.—The product mv is called the momentum of

the body. It is sometimes defined as the quantity of motion of the

body; in Newton's laws, which follow, the word "motion" is

equivalent to momentum, when it designates a measurable quan-

tity.

25. Laws of Motion.—The relation between force and accele-

ration, which is embodied in the formula F = ma, was first per-

ceived by Galileo, and illustrated by him by the laws of falling

bodies. This relation may be expressed otherwise by the state-

ment that the effect of a force on a body is independent of the

motion of the body. Newton, who first formulated the funda-

mental facts of motion in such a form that they can be made the

basis of a science of Mechanics, extended Galileo's principle by

recognizing that when several forces act on a body at once the

effect of each is independent of the others. Newton's Laws of

Motion, in which the fundamental facts of motion are stated, are

as follows:

Law I.—Every body continues in its state of rest or of uni-

lorm motion in a straight line, except in so far as it may be com-

pelled by external forces to change that state.

Law II.—Change of motion is proportional to the external

force applied, and takes place in the direction of the straight line

in which the force acts.

Law III.—To every action there is always an equal and con-

trary reaction; or, the mutual actions of any two bodies are

always equal and oppositely directed.

These laws cannot be applied, without some limitations or modi-
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fications, to all bodies. They are to be understood as applying to

very small masses, for which we can neglect the velocity of rotation

in comparison with the velocity of translation. Such a mass is

called Q. particle. A particle may also be defined as a mass concen-

trated at a point. Another definition will be given in § 37.

These laws of motion are not immediately susceptible of proof
;

they are abstractions, which can be illustrated but not proved by

experiment. They cannot be referred to any more ultimate prin-

ciples deduced from our observation of Nature, and are therefore

to be considered as postulates upon which the science of Mechanics

IS erected. The question of their validity as expressions of the

mode of motion of matter is one which lies outside the range of

the purely physical study of the subject.

26. Discussion of the Laws of Motion.— (1) The first law is a

statement of the important truths, that motion, as well as rest, is

a natural state of matter ; that moving bodies, when entirely free

to move, proceed in straight lines, and describe equal spaces in

equal times ; and that any deviation from this uniform rectilinear

motion is caused by a force.

That a body at rest should continue indefinitely in that state

seems perfectly obvious as soon as the proposition is entertained
;

but that a body in motion should continue to move in a straight

line is not so obvious, since motions with which we are familiar are

frequently arrested or altered by causes not at once apparent.

This important truth, which is forced upon us by observation and

experience, may, however, be presented so as to appear almost self-

evident. If we conceive of a body moving in empty space, we can

think of no reason why it should alter its path or its rate of motion

in any way whatever.

(2) The second law presents, first, the proposition on which

the measurement of force depends ; and, secondly, states the

identity of the direction of the change of motion with the direc-

tion of the force. Motion is here synonymous with momentum as

before defined. The first proposition we have already employed

in deriving the formula representing force. The second, with the
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further statement that more than one force can act on a body at

the same time, leads directly to a most important deduction re-

specting the combination of forces ; for the parallelogram law for

the resolution and composition of velocities being proved, and

forces being proportional to and in the same direction as the

velocities which they cause in any given body, it follows, if any

number of forces acting simultaneously on a body be represented

in direction and amount by lines, that their resultant can be

found by the same parallelogram construction as that which serves

to find the resultant velocity. This construction is called the

parallelogram of forces.

In case the resultant of the forces acting on a body be zero, the

body is said to be in equilibrium.

(3) When two bodies interact so as to produce, or tend to pro-

duce, motion, their mutual action is called a stress. It one body

he conceived as acting, and the other as being acted on, the stress,

regarded as tending to produce motion in the body acted on, is a

force. The third law states that all interaction of bodies is of the

nature of stress, and that the two forces constituting the stress aro

equal and oppositely directed.

27. Constrained Motion.—One of the most interesting appli-

cations of the third law is to the case of constrained motioti.

it the motion of a particle be restricted by the requirement

that the particle shall move in a particular path, it is said to

be constrained. If the velocity of the particle at a point in the

path, at which the radius of curvature is r, be v, its acceleration

toward the centre of curvature is — , and the force which must act
r

7nv^
on it in that direction is —^. However this force is applied,

whether by a pull toward the centre or by a push or pressure from

the body determining the path, or by the action of the forces

which bind the particle to others moving near it, the reaction of

the particle will in every case be equal to -~^, and will be directed
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outward along the normal to the path. This reaction is sometimes

called a centrifugal force.' There are certain cases in which it

may be treated as if it were a real force, determining the motion

of a body.

28. Work and Energy.—If the point of application of a force

F move through a distance s, making the angle a with the direction

of the force, the product Fs cos a is defined as the ivork done by

the force during the motion. If the force or the angle between

the direction of the force and the displacement vary during the

displacement, the work done may be found by dividing the path

of the point into portions so small that F cos a may be considered

constant for each one of them. By forming the product Fs cos a

for each portion of the path, and adding all such products, the

work done in the path is obtained.

In the defined sense of the term, no work is done upon a body

by a force unless it is accompanied by a change of position, and

the amount of work is independent of the time taken to perform

it. Both of these statements need to be made, because of our

natural tendency to confound work with conscious effort, and to

estimate it by the effect on ourselves.

If work be done upon a particle which is perfectly free to move,

its velocity will increase. In this case the force F is measured by

ma, where m is the mass of the particle and a its acceleration.

We may suppose that the particle has the velocity v„ when it enters

upon the distance s, and that the distance s coincides with the

direction of the force. Using equation (10), we then have

Fs = mas = ^mv" — ^mv^^. (20)

The product ^jnv" is called the kinetic energy of the particle.

The equation shows that the work done upon the particle by a

constant force is equal to the kinetic energy which it gains during

the motion. If the direction of the motion or the magnitude of

the force vary, we may divide the path into small j)ortions, for each

of which the force may be considered constant. Forming the

equation just proved for each of these portions and adding the
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equations thus obtained, we obtain for this general case the same

result as that already obtained for the special case. The forces

introduced by constraints need not be considered, since they are

always perpendicular to the path, and so do no work.

When several forces act at a point, the work done by them

during any small displacement of the point is equal to the work

done by their resultant; for the sum of the projections of all the

forces on the line of direction of the resultant is equal to the

resultant, and the sum of the projections of each of these projec-

tions upon the direction of motion or the projection of the result-

ant upon the direction of motion is equal to the sum of the pro-

jections of each force upon the direction of motion. If, then,

several forces do work on a particle, the kinetic energy gained by

the particle will be equal to Es cos a, where R is the resultant of

the forces, and a the angle between its direction and the direction

of the displacement s. Let us suppose that the forces are so related

that B = 0. Then the work done by one of the forces must be

equal and opposite to that done by the others, the particle will

move with a constant velocity, and no kinetic energy will be

gained. If any of the forces against which work is done are such

that they depend only upon the position of the particle in the

field, the work that is done against these forces is equal to that

which is done by them if the particle traverse the path in the

opposite direction. Such forces are called conservative forces.

Other forces, which are not functions of the position of the par-

ticle only, but depend on its motion or some other property, are

called non-conservative fo7xes. When a particle acted on by con-

servative forces is so displaced that work is done against those

forces, it is said to have acquired potential energy. The measure

of the potential energy acquired is the work done against the

conservative forces.

Energy is frequently defined as the capacity for doing work.

The propriety of this definition is obvious in the case of potential

energy; for the particle, acted on by conservative forces, and left

free, will move under the action of these forces, and they will
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thereby do work. The particle possessing kinetic energy has also

the capacity for doing work, for, in order to bring it to rest, the

amount of work given by the formula Fs = ^mv^ must be done

upon it.

The unit of work and energy is the work done by a unit force

upon a particle while it is displaced in the direction of the force

through unit distance.

The dimensions of energy are MUT~^, the same as those of

work. Since the square of a length cannot involve direction, it

follows that energy is a quantity independent of direction and is

not a vector quantity.

The practical unit of work and energy is the ei'g.

It is the work done by a force of one dyne, in moving its point

of application in the line of the force through a space of one cen-

timetre;

Or, it is the energy of a body so conditioned that it can exert

the force of one dyne through a space of one centimetre

:

Or, it is the energy of a mass of two grams moving with unit

velocity.

29. Bodies, Density.—The particle with which we have been

dealing hitherto has no counterpart in Nature. In our experi-

ence we have to deal with extended bodies or systems of bodies,

and the description of their motions and of the way in which forces

act on them is more complicated than the corresponding descrip-

tion for the ideal particle. The notion of the particle is never-

theless of great utility : we may in the first place consider bodies

as composed of numbers of these particles or as being systems of

particles; and, in the second place, we may to some extent de-

scribe the motion of bodies by comparison with the motion of a

particle.

It is, however, often convenient to be able to represent the

mass of a body as distributed continuously throughout its volume.

In that case we make use of a special concept, the densiii/. To
define it we suppose the particles of the body so distributed that

each unit volume in the body contains the same number of them.



33 ELEMENTARY PHYSICS. [§ 30

The density is then defined as the ratio of the mass of the body to

its volume, or as the mass contained in a unit of volume. By sup-

posing the mass of the body uniformly distributed throughout its

volume, so that the ratio of mass to volume has the same value no

matter how small the volume is, we may represent the mass con-

tained in any infinitesimal volume by the product of the density

and the volume. The concept of density used in this way is an

artificial one, and the validity of the results obtained by it is due

to the fact that the particles constituting a body are so small that

their distribution is practically uniform in a homogeneous body in

any volume which can be examined by experiment.

M
The formula for density is D = -^r > ^^^ the dimensions are

[D] = ML'^' The unit of density is the density of a homogeneous

body so constituted that unit of mass is contained in unit of

volume.

By using the hypothesis of a continuous distribution of matter

in a body, we may define the density at a point- in a body which is

not homogeneous as the ratio of the mass contained in a sphere

described about that point as centre to the volume of the sphere,

when that volume is diminished indefinitely.

30. Centre of Mass.—The centre of mass of two particles is

defined as the point which divides the straight line joining the

particles into two segments, the lengths of which are inversely pro-

portional to the masses of the particles at their extremities.

Thus if A and B be the positions of the two particles of which

the masses are ??«„ and w^ respectively, then the point C, lying on

the line joining A and B, is the centre of mass if it divide AB so

that via . AC = nih . BC.

The centre of mass of more than two particles is found by find-

ing the centre of mass of two of them, supposing a mass equal to

their sum placed at that centre, finding the centre of mass of this

ideal particle and a third particle, and proceeding in a similar way

until all the particles of the system have been brought into com-

bination. The final centre thus found is the centre of mass of the



§ 30] MECHANICS OF MASSES. 3S

system. The point thus determined is independent of the order in

which the particles are taken into combination; it is a unique point,

and depends only on the positions of the particles and their masses.

The centre of mass may be defined analytically as follows: Let

the particles m,, ni^, ... be referred to a system of rectangular

coordinates. The coordinates 5, r/, C of the centre of mass are

then given by the equations

^ _ 7)1, x^ + 7/1 ^x^ + • • • _ ^'^nx

tn^ -\- 7)1^ + . . . ^m '

Q =

7)1^ -{- 7)1^ -r . . . 2m '

m,z, + m^z, -t- • . . _ 2mz
m, + w, + . . . ~ ^7)1

'

(21)

These equations are evidently consistent with the former defini-

tion of the centre of mass, if we remember that if the line joining

any two particles be projected on one of the axes, the segments

into which it is divided by the centre of mass of the two particles

will be in the same ratio after projection as before. Consider the

two particles m, and 7n^, and denote the a:-coordinate of their

centre of mass by 5. Then from the former definition of the

centre of mass we have ?«,(^ — .^•,) = fn^{x^ — ^), from which

$ =—^^-5—

,

^—^. This demonstration can easily be extended to
w, + ???,

include all the particles of the system.

If some of the particles of the system be in motion, the centre of

mass will, in general, also move. Its velocity is determined by the

velocities of the separate particles. Let ^„, rf^, C„, represent the co-

ordinates of the centre of mass at the time t„ , while ^, ?;, C repre-

sent its coordinates at a later time t. The component velocities of

the centre of mass are then given by the limit of the ratios

~. 7—% "7 j^, -. f-"- Using the equations which define the

coordinates of the centre of mass, we have

:
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^-5„
t--h
V -

- V.

t--to

C--Co

2m = 2

2m = 2

m{x-z„)
]

t-

m{y

t.

yj
t-t. ;\ (22)

t-t.
m {z — z^)2m = 2— --^.

t f„

The terms on the right are the components of momentum of the

separate particles, and the equations express the law that the veloc-

ity of the centre of mass of a system of particles is equal to the

resultant of the moments of the separate particles divided by the

sum of all the masses of the system.

Representing the component velocities of the centre of mass by

U, V, W, and those of the separate particles by u, v, w, the rule

Just given may be expressed by U2vi = 2mu, V2m = 2mv,

W2m — 2mw.
It the velocities of some or all of the particles vary, the velocity

of the centre of mass will in general vary also. Its acceleration

depends upon the accelerations of the separate particles. Letting

U and U„,etG., represent the component velocities at the times

t and t^, we may express the component accelerations of the centre

of mass by

V- V.

t-t^

w-w,
t-t.

-° 2m

2m = 2_ m{w - ?y„)

t-t.

(23)

The terms on the right represent the components of the forces

which act on each particle of the system, and the equations express

the law that the acceleration of the centre of mass of a system of

particles is equal to the resultant of all the forces which act on the

separate particles divided by the sum of the masses of the particles.

This law may be otherwise expressed by saying that the acceleration

of the centre of mass is the same as that which would be given to
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a particle having a mass equal to the sum of all the masses if it

were acted on by a force equal to the resultant of all the forces.

Forces which act between particles belonging to the same system

are called internal forces ; such forces do not affect the motion of

the centre of mass, for, by Newton's third law of motion, they al-

ways occur in pairs, of which the two members are equal and oppo-

site. They therefore contribute nothing to the resultant force, and

so do not influence the acceleration of the centre of mass. If the

only forces which act be internal forces, the acceleration of the

centre of mass is zero and the momentum of the system remains

constant. This principle is known as the conservation of mo-

mentum.

31. Kinetic Energy of a System of Particles,—The kinetic en-

ergy of a system of particles may also be expressed in terms of the

velocity of the centre of mass. Eepresent by u, v, tv the compo-

nents of velocity of each particle, by U, V, W the components of

velocity of the centre of mass, and by a, b, c the components of

velocity of each particle relative to the centre of mass. We have

then
w,= U+a^, u^ - U-\-a^,. ..

10^ = W+ c„ w^ = PF+ c, , . . .

The kinetic energy of the particle ?«, is \m^{u^'' + y," -|- u\\

and the kinetic energy of all the particles or of the system is the

sum of the similar expressions obtained for each particle of the

system. Substitute in the equation for the kinetic er-'^rgy the val-

ues of w', y% w'. We consider first the values of «^ We have

^l; =U' + a^ + 2a^ U, u^ = U' -f < + 2aJ^, . . .

Multiplying by ^m and adding, we obtain

2^mu^ = ^U\m^ + m, + . . .
) + im,«/ + !??»,«,' + . . . '

-f U{m^a^ -\- m^a^ +...).

Now since a,, a„, . . . are referred to the centre of mass as origin,

and since in that case the coordinates of the centre of mass are

zero, the sum m^a^ + m^a^ . . . must equal zero. If bhe expres-
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sions for |m,v,' + 1^1,^,' . . .
,
^ni^w^' + \m^20^' ... be formed in a

similar manner, and added to the expression just obtained, we liave

on the left the sum of the kinetic energies of the particles, and on

the right the expression

^(f7^+ F^+ pp)^-;n+ im.(a;+ ^»/+ c;)+ i"^.«+ V+^;) + • • •

The first of these terms expresses the kinetic energy of a mass

equal to the sum of all the masses moving with the velocity of the

centre of mass. The other terms express the kinetic energies of

the separate particles moving with their velocities relative to the

centre of mass. AVe therefore arrive at the following rule: The

kinetic energy of a system of particles is equal to the kinetic energy

of a mass equal to the sum of all the masses moving with the velocity

of the centre of mass, plus the kinetic energies of the separate

masses moving with their velocities relative to the centre of mass.

32. "Work done by Forces on a System of Particles. Potential

Energy.—The forces which act on the particles of a system may

be classified as external and internal forces. The external forces

arise from the action of bodies outside the system, the internal

forces from action between parts of the system. If the resultant

of all the forces which act on any one particle be considered as the

force which acts on that particle, the particle will acquire kinetic

energy, given by the formula Fs = \mv^ — \mv^, already estab-

lished (§ 28). If, however, we consider the resultant of the ex-

ternal forces acting on the particle as producing kinetic energy

and doing work against the internal forces which act on the parti-

cle, the work done by the former will be equal to the kinetic en-

ergy gained by the particle plus the work done against the latter.

If the internal forces be conservative, the work done against them

can be recovered when the external forces cease to act. The action

of the external forces in that case gives to each particle potential

energy. In case the external forces equilibrate the internal forces

for each particle, the velocities of the particles remain constant, no

kinetic energy is gained, and the energy given to the system by

the work done is wholly potential. In any case the energy gained
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by the system is equal to the work done on it by the external

forces. If no external forces act on a system, its energy remains

constant, however the velocities of the separate particles may

change in consequence of the action of internal forces.

A rigid body is one in which the particles retain the same rela-

tive positions. Whatever internal forces act between the particles,

they are equilibrated by others due to the reactions in the system.

The internal forces can therefore do no work, and the internal en-

ergy of such a body is wholly kinetic energy.

33. Conservation of Energy.—The theorem stated in the last

section is the simplest illustration of the general principle known

as the conservation of energy. If no external forces act on a sys-

tem, and if the internal forces be conservative, the sum of the ki-

netic and potential energies of the system remains constant. In

iiuuiy operations in Nature, however, the internal forces are not all

conservative, and the theorem just stated no longer holds true. Ex-

periment has shown that when no?i-conservative forces act, other

forms of energy are developed, which cannot as yet be expressed

as the potential and kinetic energies of masses, and that if these

forms of energy be taken into account, the sum of all the energies

of the system remains constant so long as no external forces act on

it. This principle is called the principle of the conservation of

energy. It may be used as a working principle in solving ques-

tions in mechanics, and finds a very wide application in all depart-

ments of physical science. The evidence for it will appear in

connection with many of the topics which are subsequently treated.

34, Systems to be Studied.—The description of the motions of

a system of particles which are free to move among themselves,

and between which forces act, cannot in most cases be given. Cer-

tain general theorems relating to this general case can be found,

but the conditions which determine the individual motions of the

particles are so complicated that they cannot be brought into a

form suitable for mathematical discussion, and hence the motion

of the system cannot be completely described. There are two

cases, however, of very general character, in which, by the aid of
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certain limitations assumed for the system, we are able fully to de-

scribe its motions. The first of these is that of a pair of bodies

which act on eacli other with a force, the direction of which is in

the line joining the bodies. This case, known as the problem of

two bodies, may be completely solved. The problem of three bodies

can be solved only approximately, under certain limitations as to

the relative magnitudes of the bodies. The second case is that in

which the system forms a rigid body. While no truly rigid bodies

exist in Nature, yet the changes of shape which most solids under-

go under the action of ordinary forces are so slight in comparison

with their dimensions that in many cases we may consider such

solids as rigid, and illustrate the theorems relating to rigid bodies

by experiments made upon solids. We shall first examine the mo-

tion of rigid bodies, and we shall limit ourselves to the case in

which the motions of any one particle of the body always take

place in one plane. By thus restricting the problem, it is possible

to obtain the most essential facts connected with the motions of

rigid bodies without the use of advanced mathematical methods.

35. Impact.—The changes in motion impressed upon bodies by

their impact with others depend upon so many conditions that they

present complications which render the discussion of them impossi-

ble in this book. We will consider, however, the simple case of the

impact of two spheres, the centres of which are moving in the same

straight line. We call the masses of the two spheres m, and m^

and their respective velocities u^ and w,. The two spheres consti-

tute a system for which the velocity of the centre of mass is given by

(m, + mj V = m^u^ -f m^^t-^. (25)

The bodies on impact are momentarily distorted, and a force

arises between them tending to separate them, the magnitude of

which depends upon the elasticity of the bodies. The velocity of

the centre of mass will remain uniform, whatever be the forces act-

ing between the bodies, and the momenta of the two bodies relative

to the centre of mass, both before and after impact, will be equal

and opposite. Call the velocities of the bodies after impact v, and
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v^. We then nave m,(M, — V) = mJ^V — u^) and w,(F— vj =
m^(Vj — V). That these equations may both be true we must have

V — V V — V
f^
= ^ = e, an experimental constant, called the coef-

Jicient of restitution. The coefficient e depends upon the elasticity

of the bodies and their mode of impact. It has been shown by

experiment to be always less than unity. From these equations

we deduce

e{u^ - wj = V, - V,. (26)

Combining this equation with the equation for the velocity of the

centre of mass, we obtain for the velocities v^ and v^ after impact

the equations

V,— V -?

—

e{u^ — M,);

(27)

The kinetic energy before impact equals \m^u^ + \m^u^. The
kinetic energy after impact equals fm,z;/ + ^wi^y,''. Substituting

in this last expression the values just obtained for y, and v, and

reducing, we obtain for the kinetic energy after impact

(m. +m,)(l-e') F' e'(m.2^/ + m^u:)
O "To*

By subtracting this from the kinetic energy before impact we find

that the loss of kinetic energy by impact is

m,m, 1 — e% ,, ,„^,

If the bodies are such that e = 0, or such that the velocities after

impact are both equal to the velocity of the centre of mass, they

are called inelastic bodies; the kinetic energy lost by their collision is

-

—

\
—^ .

' ^
—^— . If, on the other hand, e = 1, so that the

m, + m^ 2

velocities after impact relative to the centre of mass are equal to

those before impact but of opposite sign, the bodies are called

perfectly elastic bodies. In this case no kinetic energy is lost by
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the collision. These extreme values of e are never exhibited by

real bodies, though the value e = may be closely approached in

many instances. No body has a value of e that is even appreciably

equal to 1, so that there is always a loss of kinetic energy by im-

pact. The energy thus lost is transformed into other forms of

energy, principally into heat.

36. Displacement of a Rigid Body.—Under the limitation that

we have set, that the points of the body shall move only in parallel

planes, it is manifest that the motion of the body is completely given

if tlie motion of its section by any one plane be given. In describ-

ing the displacement of a body under these limitations we need

only describe the displacement of one of its sections by one of the

planes in which the motion occurs. It is furthermore clear that

the motion of this section will be completely described if the

motion of any two points in it or of the line joining them be given.

When a body is so displaced that each j)oint in it moves in a

straight line through the same distance, its displacement is called a

translation. When the points of the body describe arcs of circles

which have a common centre, its displacement is called a rotation.

Any displacement of a body may be effected by a translation com-

bined with a rotation. To show this, let

AB (Fig. 11) represent the initial posi-

tion of a line in the body, xi'B' its final

position. The transfer from the initial

to the final 2:»osition may be effected

by a translation of the line AB io such

a position that the point C, which may

be any point in the body, coincides

with the corresponding point 6".

Taking this point C as the centre, a

rotation through an angle 6, which is the same whatever point be

chosen for C, will bring the line into its final position. While the

angle of rotation is the same whatever point be chosen for C, the

translation which brings C into coincidence with C" will differ for

different positions of C.
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If the line AB be rotated through the angle (^ about any point

in it, and if then another point in it be taken and the line rotated

about that point through an angle —0, the result is a translation

of the line AB. We may therefore substitute for a rotation about

one point a translation and an equal and similar rotation about

another properly chosen point.

By the following construction it is always possible to find a

point in the plane in which AB moves, such that a pure rotation

of AB about it will bring the body from its initial to its final posi-

tion.

Join AA', BB' (Fig. 12), and bisect the lines AA' and BB' at

the points C and D. At those points erect

perpendiculars which will intersect at the

point 0. Join OA, OB, OA', OB'. By the

geometry of tlie figure the triangles AOB
and A'OB' are similar, and adding to their

equal angles at the common angle A' OB,

we have AOA' = BOB'. Hence a rotation through the angle

AOA' = BOB' will transfer AB to A'B'. The perpendicular

through may be called the axis of rotation. This construction

fails when the initial and final positions oi AB are parallel.

37. Kinetic Energy of a Rotating Body.—Let r represent the

distance of any particle of the body, of mass m, from the axis about

which the body rotates, and oo its angular velocity about that axis.

Then the kinetic energy of this particle is ^mr-'^oo'^, and the kinetic

energy of the rotating body is ^co^2mr'' . In § 36 we have shown

that we may replace a rotation by a translation and a rotation of

the same amount about another axis. Since velocities are measured

by the displacements of the moving particle which occur in the same

interval of time, it is also possible to replace an angular velocity by

a velocity of translation and an equal angular velocity in the oppo-

site sense about another axis. We choose for the new axis that

passing through the centre of mass, at the distance R from the

original axis. The velocity of the centre of mass is then Rod. We
represent by I the distance of the mass m from the axis passing
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through the centre of mass. The kinetic energy of the body rotat-

ing about this centre is ~2mr, and the kinetic energy of the

whole body moving with the velocity of the centre of mass is

^Go^E'^?!!. By § 31 we have

^a)'2m7-' = ^Go'E':Sm + ^oo'^mr. (29)

When a rigid body is so small that its kinetic energy due

to its rotation about its centre of mass is negligible in com-

parison with that due to its translation, it is called a particle. This

definition supplements that of § 25.

38. Moment of Inertia.—The expression ^mr^ is called the

moment of inertia of the body about the axis from which r is

measured. The formula just obtained shows that the moment of

inertia about any axis is equal to the moment of inertia about a

parallel axis passing through the centre of mass plus the moment of

inertia of a particle of which the mass is equal to the mass of the

body placed at the centre of mass.

The moment of inertia depends entirely upon the magnitude of

the masses making up the body and their respective distances from

the axis. If the mass of the body be distributed so that each ele-

ment of volume contains a mass proportional to the volume of the

element, the moment of inertia then becomes a purely geometrical

magnitude, and may be found by integration.

It is evident that it is always possible to find a length k such

that k'^^m = ^inr'^. This length k is called the radius of gyra-

tion of the body about its axis.

The moment of inertia of any body, however irregular in form

or density, may be found experimentally by the aid of another body

of which the moment of inertia can be computed from its dimensions.

We will anticipate the law of the pendulum—which has not beeii

proved—for the sake of clearness. The body of which the moment
of inertia is desired is set oscillating about an axis under the action

of a constant force. Its time of oscillation is, then, t = Try --,
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where I is the moment of inertia and/a constant depending on

the magnitude of the force.

If, now, another body, of which the moment of inertia can be cal-

culated, be joined with the first, the time of oscillation changes to

t'

f
, where /' is the moment of inertia of the body

added. Combining the two equations, we obtain, as the value of

the moment of inertia desired,

I=jrr—i.' (30)

39. Rotation about a Fixed Point.— Suppose a body so condi-

tioned that its only motion is a rotation about the fixed point

(Fig. 13). Suppose the force ^applied at a point in the body, which

moves under the action of the force ^

through the infinitesimal distance

QR. This motion is a rotation about

the point through the angle

(b = yry,. The work done by the
OQ ^

force during this rotation is

Since, in the limit, when QR and QS are infinitesimal, the triangles

QRS and OPQ are similar,— = -^, and hence

W=F.OP.^ = F.OP.(p.

The work thus done is equal to the kinetic energy gained by the

rotating body, or to ^oo^I, where / is the moment of inertia of the

body and co the angular velocity which it gains during the motion.

Now go' — 2a(p, where a is the angular acceleration (§ 20), and

hence
F.OP = Ia. (31)

The product F. OP, or the product of the force and the perpen-

dicular let fall from the axis of rotation upon the line of direction
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of the force, is called the moment of the force about that axis. Since,

if several forces act on the body, they each contribute their share to

the angular acceleration produced, we have also ^F . OP = lex.

40. Principle of Moments.—If the angular velocity of the body

be constant, we have a- = 0, and hence 2F . OP = 0. The body

is then said to be in equilibrium about the fixed axis. Hence a

body free to rotate about a fixed axis is in equilibrium if the sum of

the moments of the forces which tend to turn it in one sense is

equal to the sum of the moments of the forces which tend to turn

it in the opposite sense. This theorem is called the principle of

moments.

41. Principle of Work.—If the body rotate uniformly about a

fixed axis, it does not gain angular velocity, and we have co — 0,

and therefore 2F . OP .0 = 0. Now OP . is the distance trav-

ersed by the point of application of the force, and this is propor-

tional to the velocity v with which that point of application moves.

Therefore 2Fs = 0, or 2Fv = 0. The body is in equilibrium

about a fixed axis when the positive work done upon it by some of

the forces applied to it during any small displacement is equal to

the negative work done by the other forces upon it. The expression

Fv =
-J-

measures tlie rate at which work is done by the force, and

the condition of equilibrium may be otherwise stated by saying that

the rotating body is in equilibrium when the rate at which positive

work is done upon the body equals the rate at which negative work

is done upon it.

42. Couples.—A combination of two forces which are equal and

oppositely directed, but not in the same straight line, is called a

cowple. The sum of their moments (Fig. 14)

is F . OQ - F .OP = F .PQ, and is mani-

festly the same wherever the forces are applied

in the body, provided the distance PQ remains

Fig. 14. the same. P^ is called the arm of the couple.

Since the effect of different forces in producing rotation is the same

if the sum of their moments is the same, it is also clear that the
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couple may be replaced by any other couple if the product F . PQ
is the same for both. The couple will have the same moment

whatever point be chosen as the fixed point. Since the two forces

which constitute the couple are equal and opposite, their resultant

is zero, and therefore no single force can be found which will equi-

librate a couple.

43. Movement of a Free Body.—Whatever forces act on a free

body,, they may always be reduced to a single force applied at the

centre of mass and to a single couple which will produce rotation

about the centre of mass. Let F (Fig. 15) be any one of these forces.

Apply the equal and opposite forces i^and —F
at the centre of mass 0. These two forces,

having no resultant, will not affect the motion

of the body. The force T'' applied at the centre

of mass will determine the effect of the orig- Fig. 15.

inal force F in producing translation of the centre of mass. The

original force F and the force — F constitute a couple, the arm of

which is OP and which produces rotation about the centre of mass.

Treating all other forces applied to the body in a similar way, we

have finally an assemblage of forces applied at the centre of mass,

the resultant of which determines the acceleration of the centre of

mass or the translation of the body, and a set of couples, equivalent

to a single couple of which the moment is equal to the sum of

their moments, which produces rotation about the centre of mass.

A free body is in equilibrium, or undergoes no change in the

velocity of its centre of mass or in its rotation, when the resultant

R of the forces applied to it vanishes, and the moment of couple to

which the moments of these forces about the centre of mass may

be reduced also vanishes, that is, the body is in equilibrium when

i? = and ^F . OP = 0.

44. Centre of Percussion.—We will illustrate the foregoing

principles by considering the motion of a free body to which a force

is applied for a very short time, during which it may be considered

constant. The force is supposed to act in the plane containing the

centre of mass of the body. Then, as has just been shown, the ac-
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celeration of the centre of mass is given by i^ = Ma, and the an-

gular acceleration about the centre of mass hy F . E = la, where

Ji is the distance from the centre of mass to the line of the force.

The actual acceleration of any point of the body about the centre

of mass, due to this angular acceleration, is ax, where x is the dis-

tance of the point from the centre of mass. The total acceleration

F F . R
of any point on the line of R is a ± o'ar = -— ± —— x, the

positive or negative sign being used according as the point lies in

R itself, or in its prolongation through the centre of mass. If

a — ax — ^, the point considered is at rest. The condition that

\ Rx
the point is at rest is therefore — — 0, or^ Ml'
The movement of the body will, therefore, not be altered if a fixed

axis be passed through this point. If the body be considered as free

to rotate about this axis, the point of application of the force, which

is distant R -\- x from the axis, and which is such that the force

there applied will occasion no stress on the axis, is called the centre

of percussio}i. We have

/
, „ I + MR^

By § 38, 7 + MR'' is the moment of inertia of the body about the

axis of rotation, so that the distance from the axis of rotation to the

centre of percussion is equal to the moment of inertia of the body

divided by MR. The product MR is sometimes called the static

moment.

45. Mechanical Powers.—There are certain simple cases of the

combination of forces in accordance with the foregoing principles

which are of especial importance because of their application in the

construction of machines. They are generally called the mechani-

cal powers.

They are all designed to enable us, by the application of a cer-

tain force at one point, to obtain at another point a force, in general
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not equal to the one applied. Six mechanical powers are usually

enumerated—the lever, pulley, wheel and axle, inclined plane,

wedge, and screw.

(1) The Lever is any rigid bar, of which the weight may be

neglected, resting on a fixed point called a fulcrum. From the

proposition in § 40 it may be seen that if forces be applied to the

ends of the lever there will be equilibrium when the resultant

passes through the fulcrum, and the moments of force about the

fulcrum are equal. Hence, if the forces act in parallel lines, it fol-

lows that the force at one end is to the force at the other end in the

inverse ratio of the lengths of their respective lever-arms. If I and

V represent the lengths of the arms of the lever, and P and P' the

forces applied to their respective extremities, then PI = P'V.

The principle of the equality of action and reaction enables us

to substitute for the fulcrum a force equal to the resultant of the

two forces. We have then a combina-

tion of forces as represented in the dia-

gram (Fig. 16). Plainly, any one of these

forces may be considered as taking the

place of the fulcrum, and either of the Fig. 16.

others the power or the weight.

The lever is said to be of the first kind if E is fulcrum and P
power, of the second kind if P' is fulcrum and P power, of the

third kind if P is fulcrum and R power.

(2) The Pulley is a frictionless wheel, in the groove of which

runs a perfectly flexible, inextensible cord.

If the wheel be on a fixed axis, the pulley merely changes the

direction of the force applied at one end of the cord. If the wheel

be movable and one end of the cord fixed, and a force be applied

to the other end parallel to the direction of the first part of the

cord, the force acting on the pulley is double the force applied : for

the stress on the cord gives rise to a force in each branch of it equal

to the applied force ; each of these forces acts on the wheel, and

since the radii of the wheel are equal, the resultant of these two

forces is a force equal to their sum applied at the centre of the
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wheel. From these facts the relation of the applied force to the

force obtained in any combination of pulleys is evident.

(3) llie Inclined Plane is any frictionless surface, making an

angle with the line of direction of the force applied at a point upon

it. Resolving the force P (Fig. 17), making an angle with the

normal to the plane, into its components P cos and P sin (p

perpendicular to and parallel with the j)lane, P sin is alone effect-

ive to produce motion. Consequently, a force P sin acting parallel

to the surface will balance a force P, making an angle with

the normal to the surface. If the plane

be taken as the hypothenuse of a right-

angled triangle ABC, of which the base

AB is perpendicular to the line of direction

.8 of the force, then, by similarity of triangles,

the angle BAG equals : whence the

force obtained parallel to AG is equal to the force applied mul-

tiplied by the sine of the angle of inclination of the plane. If the

components of the force applied be taken, the one, as before, per-

pendicular to the plane AG, and the other parallel to the base AB,

the force obtained parallel to AB is equal to the force applied mul-

tiplied by the tangent of the angle of inclination of the plane.

(4) The Wheel and A xle is essentially a continuously acting lever.

(5) The Wedge is made up of two similar inclined planes set to-

gether, base to base.

(6) TJie Screw is a combination of the lever and the inclined

plane.

The special formulas expressing the relations of the force ap-

plied to the force obtained by the use of these combinations are

deduced from those for the more elementary mechanical powers.

Any arrangement of the mechanical powers, designed to do

work, is called a machine. The more nearly the value of the work

done approaches that of the energy expended, the more closely the

machine approaches perfection. The elasticity of the materials

we are compelled to employ, friction, and other causes which mod-
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llj the conditions required by theory, make the attainment of such

perfection impossible.

Tiie ratio of the useful work done to the energy expended is

called the efficiency ot the machine. Since in every actual machine

there is a loss of energy m the transmission, the efficiency is always

a proper fraction.

46. Application of the Principle of Work to the Mechanical

Powers.

(1) The Lever.—If the lever be displaced through a small angle

<p about its fixed point or fulcrum, the distances traversed by the

points of application of the two forces which act on its ends, these

forces bemg supposed parallel, are equal to /0 and l'(p. The lever is

in equilibrium, by the principle of work, when the work done by

the force P during this rotation is equal and of opposite sign to

that done by the force P' , or when PI — P'l' = 0. Hence equilib-

rium obtains, as already shown, when PI = P'l'.

(2) The, Pulley.—In any combination of pullejs the forces which

are equivalent to the reaction of the parts of the system always

occur in pairs, and the work done by the two members of each of

these pairs is equal in magnitude but opposite in sign, so that all

such forces may be neglected in the enumeration of those forces

which are concerned in doing work in the system, and which must

be considered in applying the principle of work. The only forces

which need be considered are the external force W, the weight, and

the external force P, the power, which is applied to equilibrate the

weight. If w and /; represent the distances passed over by W and

P respectively, when the cord is drawn through the pulleys, equilib-

W
rium will obtain when Ww = Pp. The dependence of the ratio yr

upon the number of pulleys and their arrangement may always be

deduced from this equation.

(3) The Inclined Plane.— If the weight W which rests upon the

plane be acted upon by the force P parallel with the surface of the

plane, equilibrium will obtain when the work done by each of these

forces, during any small displacement of the weight up or down
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the plane, is the same. If be the angle between the direction

of the force W and the normal to the surface of the plane, and s

the distance traversed by the weight, this condition is fulfilled

when Fs — Ws sin = 0, Hence the condition of equilibrium is

F = W sin 0.

The principle of work is of special value in all such cases as

those illustrated by the combination of pulleys, in which, however

complicated the arrangement of the parts of the system which trans-

fer the action of the applied force or power to the point of applica-

tion of the other force, we know that the forces equivalent to the

reactions between those parts occur in pairs, of which the members

are equal and opposite, so that the work done during any displace-

ment of the system by each of these pairs is zero; for in any such

case equilibrium obtains when the work done by the one force equals

the work done by the other.

47. Motion of a Rigid Body in Three Dimensions.—The motion

of a rigid body which is not under the restriction hitherto imposed

upon it, but which is free to move in all directions, is in many re-

spects analogous to the motion already studied, though the details

are necessarily more complicated. We will attempt no demonstra-

tion of the laws of the motion of a rigid body in the general case,

but will limit ourselves to a short description of them.

Any displacement of a rigid body may always be replaced by a

translation and a rotation about some axis; this may readily be seen

by considering any simple example. By the use of an example, it

will also appear that the direction of the axis does not in general

coincide with the direction of the translation; it is, however, always

possible to find a direction such that translation in that direction

and rotation about an axis in that direction will produce the dis-

placement required. An infinitesimal displacement may be pro-

duced, therefore, by an infinitesimal translation and a rotation about

an axis in the direction of the translation, that is, by a motion re-

sembling that of a screw when driven forward. The axis of rotation

in this case, which will in general change its direction and position

in space as the body traverses its path, is called the instantaneous
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axis, and any infinitesimal motion of a body is a screw motion

around the instantaneous axis.

The rotation of a rigid body free to move and acted on by no

forces will be about an axis passing through the centre of mass.

The kinetic energy of the rotating body depends on its moment of

inertia about its axis of rotation, and this may be shown to depend

upon the moments of inertia of the body about three axes in it at

right angles to each other; these axes, called ih.e pri7icipal axes of

inei'tia, are such that the moment of inertia about one of them is

the greatest, and that about another the least, that the body can

have. If a body be set rotating around either of these two axes, it

will continue to rotate about that axis forever, and its condition is

stable; that is, if an infinitesimal change be made in the direction

of its axis of rotation, this deviation will never become large. If

it be set rotating about the third or mean axis, it will continue to

rotate about that axis forever, but its condition is unstable; that is,

if an infinitesimal change be made in the direction of the axis of

rotation, this deviation will tend continually to increase, and will

become finite. If the body be set rotating about any axis which is

not coincident with one of the principal axes, the direction of the

axis of rotation in the body changes continually. In the case of

real bodies set in rotation and acted on by friction and other such

forces, the tendency is for the body to rotate with increasing exact-

ness around the axis of greatest moment of inertia:

In the study of the angular velocity of a rotating body we rep-

resent the axis of rotation by a line and the amount of the angular

velocity by a length measured on that line. If we conceive of two

angular velocities about intersecting axes, it may be shown that

they are equivalent to a single angular velocity about another axis

passing through the point of intersection; the amount of this an-

gular velocity and the direction of the axis are determined by the

parallelogram law. Manifestly this law may be applied to the

composition and resolution of any number of angular velocities

about axes which intersect at one point.

The resolution of angular velocities into their components isr
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well illustrated by the instrument called the FoucauU pendulum.

This pendulum is a heavy spherical bob suspended by a long

cylindrical wire, so clamped that it is perfectly free to swing-

in any plane. If such a pendulum were set up at the equator

and started swinging in a north and south line, it would be car-

ried around by the earth in its rotation and would evidently con-

tinue to swing in the same line on the earth's surface. If, on

the other hand, it were set up at the pole

and set swinging along any line traced on

the earth's surface, the oscillations of the

pendulum would persist in the same plaice

in space, and the earth would turn around

under it, so that the oscillations of the

pendulum would immediately begin to

deviate from the line on the earth along

which the first oscillation took place; and

if the oscillations were continued the ex-

tremities of the paths of the pendulum would describe the arc of a

circle, and at the end of a day the pendulum would again swing in

the line in which it started. If now the pendulum be swung at

some intermediate point on the earth's surface the angular velocity

of the earth can be resolved into two component angular velocities

—

one about the axis OA (Fig. 18), which coincides with the length

of the pendulum when it is at rest, and the other about an axis OB
at right angles to this. The angular velocity about the latter axis

will have no effect on the line traced out by the swinging pendu-

lum; the angular velocity about the former axis will occasion an

apparent angular displacement. By the parallelogram law this

angular velocity equals oo sin 0, where go is the angular velocity of

the earth about its axis, and is the latitude. By experiments

with such a pendulum this formula is verified and the rotation of

the earth established by direct experiment, and by assuming the

validity of this formula and determining the angular displacement

of the pendulum an approximate value of the length of the day has

been obtained.
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If a body in rotation about its axis of greatest moment of in-

ertia be acted on by a couple tending to change the direction of

rotation, that is, to give it an angular acceleration about another

axis at right angles to this, the various reactions which arise from

the changing directions of the parts of the body which are in mo-

tion occasion other couples which oppose the action of the applied

couple. That is, the rotating body possesses a certain stability due

to its rotation. This effect is illustrated by the instrument called

the gyroscope and by the common top.

The construction of the gyroscope can best be understood by

the help of the diagram (Fig. 19). The outermost ring rests in a

L

Fig. 19.

frame, and turns on the points a, a^. The inner rests in the outer

one, and turns on the pivots h, h^ at right angles to the line of a,a^.

Within this ring is mounted the wheel G^, the axle of which is at

right angles to the line hb^, and in a plane passing through ««,. At
the point e is fixed a hook, from which weights may be hung. It

is evident that if the wheel be mounted on the middle of the axle

the equilibrium of the apparatus is neutral in any position, and

that a weight hung on the hook e will bring the axle of the wheel

vertical, without moving the outer ring. If, however, the wheel be

set in rapid rotation, with its axle horizontal, and a weight be hung
on the hook, the whole system will revolve with a constant angular
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velocity about the points a, a^ , and the axle of the wheel will re-

main horizontal.

Let Fig. 20 represent the rotating wheel of the former diagram,

the axis being supposed to be nearly horizontal. If a weight be

hung at the point e, it tends to turn the wheel about

a horizontal axis CD. The direction of motion of

the particles at A and B is not changed by this rota-

tion, but the particles at C and D, and to a less ex-

tent all the other particles on the rim of the wheel,

are forced to change their directions of motion. Now
it has been shown (§ 27) that the change in the direc-

tion of motion of a particle is equivalent to a force

— , where m is the mass of the particle, v its veloc-
r

ity, and r the radius of the circle in which it moves. The reaction

of the particle is directed outward along the normal to the curve;

in the case of the particles considered at C and D, this reaction is

directed to the right at C and to the left at D. These two forces,

therefore, and all others like them due to the reactions of the other

particles, combine to form a couple which tends to rotate the wheel

about the axis AB. This rotation about AB gives rise to similar

reactions at A and B, the reaction at A being directed to the left

and at B to the right. These forces, and all other similar ones

arising from the other particles of the wheel, combine to form a

couple which tends to rotate the wheel about the axis CD in the

opposite sense to that in which it is rotated by the weight at e.

Thus the weight applied at e will produce a rotation about the ver-

tical axis AB.

48. Central Forces.—We now turn to the consideration of the

motion of a particle acted upon by a force always directed toward

a fixed centre or a central force. Its motion will exhibit one

peculiarity which is independent of the law of the central force.

The radius drawn from the centre to the particle will always sweep

out equal areas in equal times, whatever be the law of the force.

It is at once obvious that the motion of a particle, acted on by
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any central force, will always lie in one plane—that containing its

original direction of motion and that of the force.

Suppose that the moving particle, which starts fron the point

A (Fig. 21), and which in the time t moves over the distance AB,
D is acted on at the point B by an

impulse directed toward the centre 0,

such that the particle is displaced

O'^^ '*^ toward in the next equal time-inter-
FiG. 21.

^

val t by the distance BU. If the par-

ticle were not acted on by the impulse at B it would continue to

move in the line AB, and at the end of the second time-interval / it

would reach the point B, the line BD being equal to the line AB.

Join OD, draw DC parallel to OB, and £>'C parallel to BD; con-

nect BC. Now the line BC is the resultant of the displacement

BD, which the particle would have in consequence of its original

motion, and the displacement BB, given to it by the impulse at B.

It is therefore the path traversed by the particle in the second

time-interval. But the triangles OCB and ODB, being on the

same base and between the same parallels, are equal; and the tri-

angles OBD and OAB, being on equal bases and having the same

vertex 0, are equal. Therefore the triangle OCB and the triangle

OAB, described in equal time-intervals, are equal. If now the in-

tervals into which the whole time is divided become infinitely

small, in the limit the broken line ABC approaches indefinitely

near to a curve, and the areas swept out in equal times by the radius

vector drawn to the curve are equal.

If a line be drawn tangent to the path at any point, and a per-

pendicular, 2), drawn to it from the centre, the area swept out by

the radius vector as the particle describes a small distance s = vt,

where v is its velocity and t the time in which s is described, is

given by ^vpt, and since the areas described in equal times are equal,

the product vp is constant for all parts of the path.

49. Central Force Proportional to the Radius Vector.—If

the central force which acts on the particle be proportional to the

distance of the particle from the centre, the path which it describes
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is in general an ellipse, with its centre at the centre of force,

ror, the force acting along the radius vector may be resolved into

two components along the two axes, which will be proportional to

the displacement of the particle from the axes. Each of these

•components will cause proportional accelerations along the axes,

and these accelerations will be those of a point having simple har-

monic motions parallel to the axes. Since the constants which

enter into the measure of the components of the force, and there-

fore into the measure of the accelerations produced by them, are

the same for each component, the periods of these component

simple harmonic motions will be the same. The motion of the

particle will therefore be the resultant of two simple harmonic mo-

tions of equal periods at right angles to each other, and its path is

tlierefore (§ 21) an ellipse, with its centre at the centre of force.

50. Central Force Proportional to the Inverse Square of the

Radius Vector.—If the central force vary inversely with the

square of the distance of the particle from the centre, the path

described by the particle is in general a conic section, with the

centre of force at one of its foci. To prove this we will use a theo-

rem that will be demonstrated in § 55. It will there be shown that

if a particle of mass fx be moved from an infinite distance under

the action of a central force equal to —„, where m is a constant and
r

r the distance between the particle and the centre, the potential

energy which it will lose by moving to a point distant r from the

centre is given by — . Thus, if )a.P represent the potential energy

of the particle at an infinite distance, fxP will represent its

potential energy at the distance r. The sum of its potential and

kinetic energ;

a constant, or

2 7

a constant. C may be greater or less than zero, or equal to zero.

kinetic energies is constant; and hence yuP y '-— =. fxA,
T hi

--=A-P=C, (34)
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If p^ be the perpendicular let fall upon the line of direction of

the moving particle at a chosen time when its velocity is v^, and If

p and V be the perpendicular and velocity at any other time, we

know from § 48 that (35) vp = i\p^. If we substitute v = -^-^

ir
a 3

V 7) in
in the above equation, we have ~^ = C, or

This equation takes different forms depending upon the value of

C It becomes for

O<0,f = '^^.:^^^^—; > (37)

^ 2m

In these equations C has now a positive value. The first equation

represents an hyperbola, the second an ellipse, and the third

a parabola (Puckle's Conic Sections, §§ 204, 271). The focus of

each of these conic sections is the point from which j) and r are

measured, or the centre of force.

The criteria which determine the nature of the curve may be

,, . . , t'^ 7)1 , , , . ^ v^ tn . ,, ,

otherwise given by — > — for the hyperbola, 5- < — for the el-

lipse, and — = - for the parabola. That is, for the three curves

respectively, the velocity of the particle at a point in its path is

greater than, less than, or equal to the velocity which it would ac-

quire by falling to that point from an infinite distance under the

action of the central force.

The elements of the path may be obtained from these equa-

tions. The latus rectum of the parabola is
""

>

"
. The semi-
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major axis a and the semi-minor axis h of the hyperbola and ellipse

are given by 2a = 7;, i" = -"^ = °^°. Hence C = — , and

using this value of C in the original equation, we get — = — ± —

^

the upper and lower signs holding for the hyperbola and ellipse

respectively.

In case the particle is moving in an ellipse, its periodic time

T, or the time in which it traverses the ellipse, may be found in

terms of the elements of the ellipse and the constant in. The
area of the ellipse is nab, and since the areas swept out in equal

times by the radius vector drawn to the particle are equal, the rate

at which the area is swept out is given by -^. But -~-^ also rep-
-Z /i

TCdh V p
resents this rate, so that -^ = -^. Substituting in this equa-

tion the value of o = v^pA — 1 , we g»t (38) I = —r-, or, m = ^ ,

If, therefore, different particles revolve in ellipses about a common

centre of force in such a way that the squares of their periodic

times are in the same ratio to the cubes of their semi-major axes^

the constant m is the same for all of them.

51. The Problem of Two Bodies.—The problem of two bodies

may be reduced to the problem of the action of a central force.

For, suppose two particles to attract each other with a force given

by ^—^, where yu and m are their masses and r the distance between

them. The acceleration of the particle m, relative to the centre of

mass, which will remain fixed in position, is given by ma = -^, or

by a = ^. The acceleration of the mass jj. relative to the centre of

mass is similarly -^. If now an acceleration equal to —^ and oppo-

site to it in direction be impressed on both particles, the particle

m will remain fixed, and the particle pi will move relatively to it
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with the acceleration ^-—^^— . The path of the particle /x relative to

the particle m will be therefore that due to a central force pro-

ceeding from m and equal to ^-^^^-—^ . The radius vector drawn

to fi from m will still sweep out equal areas in equal times, and

the path of yu will still be a conic section. If its patli be an el-

lipse, the periodic time will be given hy T = -—---—-; so that

4;rV
/^ + w = -j^'

52. Motion of Projectiles. —In the special case of central motion

in which the distance of the centre from the moving particle is

very great and the velocity of the particle small, the particle de-

scribes a portion of an ellipse which differs very little from a para-

V^ 7/1 97t

bola. This may be seen at once from the equation - = ^,

for if r be very great and v small, the semi-major axis a must also

be very great, and the path approaches the curve for which 2a is

infinite, or a parabola.

This is the path described by a particle moving near the surface

of the earth under the earth's attraction. The force which acts on

the particle is really variable and directed toward the earth's cen-

tre, but within the limits of the path it may be considered constant

and directed vertically downward.

This motion was first discussed by Galileo in connection with

his study of falling bodies. His method was as follows: Let us as-

sume the rectangular coordinates x and y, of which x is horizon-

tal and y vertical, drawn upward in the direction opposite to the

acting force. Let a particle be projected from the origin in the

plane of the axes with the velocity « in a direction which makes

with the a;-axis the angle a.

The component velocities along the two axes are then v cos a

and V sin a. At the end of any time t reckoned from the instant

at which the particle leaves the origin, the displacement of the
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particle along the a;-axis is vt cos a. If the force of gravity did

not act on the particle its displacement along the ?/-axis in the

same time would be vt sin a; but, since gravity acts, its real dis-

placement along that axis is less than this by s = |^f, where g is

the measure of the force or the acceleration of gravity, so that its

displacement along the y-axis is vt sin a — Igt''. The path of the

particle, or the series of points which it occupies at successive in-

stants, is found by eliminating t between the two equations for the

two rectangular displacements. The equation of the path thus

obtained is

sin a (I „ , s

y = -^ - o . . ^ • 39)
cos a 2v cos a '

This represents a parabola passing through the origin. The axis

^u COS oc

is vertical, and the latus rectum is . If a = 0, or if the
9

projection is horizontal, the equation becomes a;^ = — —^, repre-

senting a parabola with its vertex at the origin.

When the body is projected above the horizontal plane, so that

a lies between zero and -,it will attain its greatest height at the

instant when its velocity along the ?/-axis becomes zero, or Avhen

V sin a = gt. The time required for it to describe its whole path

/3'/' sill (X
and return to the a;-axis is double this time or — . Its range,

or the distance between its starting-point and the point at which it

again meets the ar-axis, is given by the product of this time and its

, V V
horizontal velocity v cos a, or is - 2 sin o-cos a = — sin 2a. The range

is therefore a maximum when a = 45°. Since sin {tc — 2a) = sin 2a,

the range is the same for projections at the angles a and 90° — a,

or for projections equally inclined to the line bisecting the angle

between the axes and on opposite sides of it.

53. Diflference of Potential. The Potential.—Forces may arise

from various causes. In any case they are only exhibited when
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they affect the motion of bodies and they may be considered, for

purposes of mathematical representation, as acting between the par-

ticles of the bodies. Afield offorce is a region in which a particle,

constituting a part of a mutually interacting system, will be acted

on by a force, and will move, if free to do so, in the direction of the

force. The strength offield or the intensity in the field at a point

is measured by the force which acts upon a unit quantity or test

U7iit of that agent to which the force is due when placed at that

point. The test unit is supposed not to affect the forces of the

field.

When the force acting on a particle depends only on the position

of the particle the study of its effects is often very much facilitated

by the use of a concept called the potential. To explain this con-

cept and its relation to force, we begin with a definition of the dif-

ference ofpotential. The difference of potential between two points

in a field of force is equal to the work done by the forces of the

field in moving a test unit from the one point to the other.

If Vp — Vq represent the difference of potential between the

points P and Q, and if F represent the average force between those

points and s the distance between them, then the amount of work

done by that force in moving a test unit from P to Q, and hence

the difference of potential between P and Q, is represented by

Vp-V^ = Fs.

From this relation we have

p^ Vp-yQ ^_VQ-^p^
(40)

* s

If .9 become indefinitely small, in the limit F represents the

V — V dV
force at the point P. and ^ = 1— becomes the rate

^ ' s ds

of change of potential at that point with respect to space, taken

with the opposite sign. Hence we obtain a definition of potential.

It is a function, the rate of change of which at any point, with re-

spect to space, taken with the opposite sign, measures the force at.

that point.

Let the test unit be situated at the point A and be moved over
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any path to the point B. It is clear that if it be moved back over

the saihe path from B to A the amount of work required to effect

this motion will be equal and opposite to that done during the

motion from A to B. This equality will also hold if the test unit

be moved from B to ^ by any other path, provided the field of

force is one which is nowhere interrupted by a region in which

the force is not a function only of the position of the test unit, or

is, as it is called, a singly connected region. The fields of force

due to all forces known in Nature, except those caused by elec-

trical currents, are singly connected regions. When the forces

which act on the test unit at different points in its path are paral-

lel, as in the case of gravity, this equality of the work done in

carrying the test unit from one place to another over any path is

obvious. If we assume the principle of the conservation of energy

as a general principle, this equality may also be shown for fields in

which the forces are not parallel ; for, if the work done in moving

the test unit over one path between A and B were not equal to

that done in moving it over any other path between the same

points, an endless supply of work could be obtained by repeatedly

moving the unit over a path in which the work done by the forces

of the field is greater, and returning it to its starting-point by mo-

tion over a path in which the work done is less. As this result is

inconsistent with the principle of the conservation of energy, we

conclude that the hypothesis from which it is deduced is untrue,

and that the same amount of work will be done in moving the

unit from the one point to the other, by whatever path the motion

is effected. The difference of potential between the two points is

therefore a function of their positions only.

54. Equipotential Surfaces and Lines of Force.—Let the test

unit be moved from along the different paths OA, OB, etc.

(Fig. 22), so that the same amount of work is done upon it in each

of these paths. The surface drawn through the end points of

these paths is called an equipotential surface ; as may be seen from

the proposition just proved, it is a surface in which the test unit

may be moved without doing any work upon it. Since the forces
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in the field will only do no work on the test unit when it is moved

at right angles to their directions, it follows that the forces at the

different points in an equipotential surface are normal to that sur-

face. Draw the normals AP, BQ, etc., of such lengths that the

work done in moving the test unit over them is the same. The

surface drawn through their end points

is again an equipotential surface. By

repeating this process, the whole field of

force may be mapped out by equipoten-

tial surfaces. In the limit, as the lengths

of the normals thus drawn become in-

finitesimal, the successive normals will

form continuous curves, everywhere nor-

mal to the equipotential surfaces which

they cut. These curves, which represent the direction of the force

at the points through which they pass, are called Imes of force.

If a small area be described on an equipotential surface, the

lines of force which pass through its boundary will form a tubular

surface, which will cut out corresponding areas on the other equi-

potential surfaces. This tubular surface, with the region enclosed

by it, is called a tube of force.

55. An Expression for DiflFerence of Potential.—In what follows

we will for convenience assume that the test unit is a unit mass,

and that the field of force is due to the presence of particles which

attract the unit mass with forces that are proportional to their

masses and vary inversely with the square of the distance. By the

proper choice of units the force due to any one particle may be set

equal to — , where m is a constant proportional to the mass of the

particle and r the distance between it and the test unit.

Let the point (Fig. 23) be the point at which a particle m
is placed, and let a unit mass traverse the path PRX under the

action ©f the force -» directed toward 0. When the particle is at
r
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7/i

P, the force acting on itis-y^^; after it has moved through the

lit

infinitesimal distance PR, the force acting on it at R is --^5.
UK

The work done upon it during this motion, equal to the product

of thfi force and the line PQ, the pro-

jection of its path npon the direction

of the force, is greater than —k-jsr-

and less than — ' ; it may be shown

that the work done during this dis-

placement may be represented by

""''• (f™ NowPe=0P-Oe =

OP — OR in the limit, so that the work done in this displacement

,
m{OP- OR) I \ M rri ^ Aequals —-t^p

—
np— ~

''^^['nJ?
~

TTpI'
work done m travers-

ing the following elements of the path, RS, ST, etc., is expressed by

m(-y^ — >rp], '"^[7yr~ 7j^j> ^^^' "^^^ work done in traversing

the whole path from P to X is the sum of these expressions, or

mf-?pj>— -ypj. By the definition of difference of potential, this

expression is equal to the difference of potential between the points

P and X, due to the force of which the centre is 0. If the point

Xlie at an infinite distance from 0, the work done by the force in

moving the unit mass to that point equals — -;^. This expres-

sion is called the potetitial at the point P. It has been obtained

on the supposition that the force at P is directed toward 0, or is

an attractive force. In this case the test unit at an infinite dis-

tance possesses the potential energy PJ. In moving to P the forces

of the field do upon it the work -^, so that its potential energy

atPis^--^.
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If the force at P and at the other points on the path be

directed from 0, the work done in the successive elements of the

path is numerically equal to the expressions already obtained, but

is opposite in sign ; so that the work done by such forces, as the

test unit moves from P to X, is equal to '^^ApT'p ~ TTk)- When

the point X is at an infinite distance from (9, the work done in

moving the test unit from P to X equals j-^. This is tlie poten-

tial at the point P, due to a repulsive force with its centre at 0.

In this case the test unit at an infinite distance has no potential

energy, so that
jYp expresses its potential energy at P.

56. Flux of Force. Tubes of Force.—Still retaining the con-

vention that the forces of the field are due to mass attraction and
follow the law of inverse squares, we will now prove certain pro-

positions which are of great importance in the theories of gravita-

tion, electricity, and magnetism.

If in a field an area s be described so small that the force is

the same for all points of it, the product of the area and the normal
component of the force is called the elementary _^m.t of force over

or through that area. We will show that the total flux of force,

that is, the sum of all the elementary fluxes, taken over a closed

surface in the field which does not contain any masses is equal to

zero.

We consider first the flux of force arising from a mass m situated

at the point 0. Let ABC (Fig. 24) rep-

resent a closed surface not containing the

mass m\ draw a tube of force cutting

this surface in tlie elements s and s'

.

Tlie forces due to the mass m at points

in these areas will be -„ and —^ respec- Fig. 24.

tively. We represent the angles between the common direc-

tion of these forces and the normals to the elements 8 and «'
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drawn outward from the surface by a and a' respectively.

tix f)l

The components of the forces -^ and -^ drawn outward normal

to the surfaces s and s' are —. cos a and -rr cos a' respectively
r r

. m
Hence the flux of force through these elements is --^ s cos « +

—,-:r s' cos a'. But s cos (X and — s' cos a' are equal to the normal
r

cross-sections of the tube of force at the distances r and r' from 0,

the minus sign being inserted because one of the two cosines is

negative; and since the tube of force is a cone,

s cos a s' cos a'

Hence the flux of force through these two elements, due to the

mass at the point 0, is equal to zero. Since similar tubes of force

may be drawn from the point so as to include all the elements

of the surface ABC, and since to each pair of elements thus de-

termined the same proposition applies, it follows that the total flux

of force due to the mass 7n through the surface is equal to zero.

The same proposition will hold for the flux of force due to any

other particle situated outside the surface, and therefore holds true

for any mass whatever situated outside the surface.

The flux of force through a closed surface containing any

number of particles is equal to '^^nM, where M is the mass of all

the particles. To prove this, let us consider a single particle m
situated at the point 0. About this point describe a sphere of

171.

radius r. The force at each point of the sphere is -, and the total

flux of force through the sphere is eqlial to this force multiplied

m
by the area of the sphere, or to - Attt"^ = Anm. Now to prove a

similar proposition for any closed surface enclosing the mass m, we

describe about the point a sphere which is entirely enclosed by

the surface. Since the region enclosed between this sphere and
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the surface contains no mass, the total flux of force through it

equals zero. But the flux of force through the sphere equals

~ 4:7t7}i, the minus sign being used because the normals to the

sphere, when considered as bounding the region enclosing the mass

and as bounding the region between it and the closed surface, have

opposite directions. Therefore the flux of force through the

closed surface must equal 4;tw. This proposition holds for each

of the masses contained within the closed surface, so that, if the

sum of these masses be M, the total flux of force through the closed

surface is AttM.

Let us apply the theorem just proved to the region bounded

by a tube of force of very small cross-section and by two rectan-

gular cross-sections of the tube. Since the tube of force is every-

where bounded by lines of force, and since, therefore, the force at

a point on the tube has no component normal to the surface of the

tube, the only parts of the closed surface under consideration

which contribute to the flux of force through it are the two

end cross-sections. Represent the areas of the two cross-sections

by s and s', and the forces acting at them by i^and F' respec-

tively. Then, since the total flux of force equals zero, we have

Fs + F's' = or Fs = — F's'. The minus sign appears because

the force and the normal to the cross-section are in the same direc-

tion at one end of the tube and in opposite directions at the

other. If we confine our attention to the numerical value of the

product Fs, we may say that the flux of force is the same for all

cross-sections of the tube of force. This proposition, thougli here

proved only for a tube of force of very small cross-section, mani-

festly may be generalized for any tube of force whatever.

57. Special Cases.—It is sometimes important, especially in the

study of electricity, to know the force which is exerted by a plane

sheet of matter at a point near it. We call the quantity of matter

which is enclosed by a unit area drawn on such a sheet the surface

density oi the sheet at the point where the area is taken; more

strictly, the surface density is the ratio of the quantity of matter

enclosed by the area to the magnitude of the area, as the area di-
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minishes indefinitely. If we consider an infinitely extended plane

sheet, it is evident that tlie lines of force in the region near it are

perpendicular to its surface. Take any small area on the surface

of the sheet, and consider the closed surface bounded by the lines

of force which pass through the boundary of that area and by two

cross-sections taken parallel with the sheet on the opposite sides of

it. The flux of force through the sides of the surface thus formed

is zero, because the lines of force lie in that surface. The only

portions of the surface, therefore, which contribute to the flux of

force, are the end cross-sections. Let s represent the area of each

of these cross-sections, which are equal, i^the force at one of them,

and F' that at the other. If o" represent the surface density of

the sheet, as is the mass enclosed within the closed surface. Ap-

plying the theorem of the flux of force, we have {F ^ F')s ^
'^:7tas or F A^ F' ^= AiTKT . Remembering that the directions of

these forces are outward from the closed surface, and that therefore

-]- F and — F' are forces drawn in the same direction along the

lines of force, this equation shows that in passing through a sheet

of surface density c the force changes by ^na. If the forces in

the field be due only to the sheet, it is manifest, from symmetry,

that the force F and the force F' are equal, and that their direc-

tions are opposite. We thus have F -Y F' ^=-^F — ^na, or

F=^^7i(T. That is, the force at a point infinitely near a plane

sheet of surface density cr is equal to 'iTtcr. This proposition holds,

even if the sheet be not plane, for any points so near it that the

neighboring lines of force are parallel.

The force witlun a closed spherical shell of uniform surface

density vanishes at every point. For, let us construct a sphere in

the region contained by the shell and concentric with it. Since no

matter is contained by this sphere, the total flux of force through

its surface is zero, and since, by symmetry, the force at any point

on the inner sphere must have the same value and the same- direc-

tion to or from the centre, it follows that 2Fs = FiTtr'' = 0, and

hence that F = 0. The force, therefore, vanishes for all points in

the interior of the shell. It manifestly'' vanishes also within a
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closed surface formed of concentric spherical shells, in each one of

which the surface density is uniform.

The force at a point outside a spherical shell of uniform surface

density varies inversely with the square of the distance between that

point and the centre of the spherical shell. For, describe a sphere

concentric with the shell and of radius r, greater than the radius

of the shell. Applying to this sphere the theorem of the flux of

force, we have 2Fs = ^nM, where J/is the mass of the spherical

shell. It is evident, by symmetry, that the force at evei-y point on

the sphere to which this theorem is applied must be the same in

magnitude and similarly directed along the radius of the sphere.

The flux of force 2Fs therefore equals i^, 4;rr' = '^nM, or F = —

.

This theorem manifestly holds also for the force at a point outside

any mass bounded by a spherical surface, provided that the matter

in the sphere is distributed uniformly or in concentric shells, in

each one of which the surface density is uniform.



CHAPTER II.

MASS ATTRACTION.

58. Mass Attraction.—The law of mass attraction was the first

generalization of modern science. It may be stated as follows:

—

BetNveeu every two material particles in the universe there is a

stress, tending to move them toward each other, which varies

directly as the product of the masses of the particles, and inversely

as the square of the distance between them. This law is sometimes

called the law of universal attraction and sometimes the law of

gravitation.

Some of the ancient philosophers had a vague belief in the ex-

istence of an attraction between the particles of matter. This

hvpothesis, however, with the knowledge which they possessed,

could not be proved. The geocentric theory of the planetary

system, which obtained almost universal acceptance, offered none

of those simple relations of the planetary motions upon which the

law was finally established. It was not until the heliocentric theory

of Copernicus had been established by the discoveries of Galileo,

and the labors of Kepler, that the discovery of the law became pos-

sible.

In particular, the three laws of planetary motion published by

Kepler in 1609 and 1619 laid the foundation for Xewton's demon-

strations. The laws are as follows :

—

I. The planets move in ellipses of which one focus is situated

ai the sun.

II. The radius vector drawn from the sun to the planet sweeps

out equal areas in equal times.

70
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III. The squares of the periodic times of the planets are pro-

portional to the cubes of the semi-major axes of their orbits.

Kepler could gixe no physical reason for the existence of such

laws. Later in the century, after Huygens had discovered certain

theorems relating to motion in a circle, it was seen that the third

law would hold true for bodies moving in concentric circles, and

attracted to the common centre by forces varying inversely as the

squares of the radii of the circles. Several English philosophers,

among them Hooke, Wren, and Halley, based a belief in the exist-

ence of an attraction between the sun and the planets upon this

theorem.

The demonstration was by no means a rigorous one, and was

not generally accepted. It was left for Xewton to show that not

only the third, but all, of Kepler's laws were completely satisfied by

the assumption of the existence of an attraction acting between the

sun and the planets, varying inversely as the square of the distance.

The demonstrations which show that the law of universal attrac-

tion is consistent with Kepler's laws are given in .|§ -IS, 50.

Xewton also showed that the attraction holding the moon in its

orbit, which is presumably of the same nature as that existing be-

tween the sun and the planets, is of the same nature as that which

causes heavy bodies to fall to the earth. This he accomplished by

showing that the deviation of the moon from a rectilinear path is

such as should occur if the force which at the earth's surface is the

force of gravity were to extend outwards to the moon, and vary in

intensity inversely as the square of the distance.

Two further steps were necessary before the final generalization

could be reached. One was, to show the relation of the attraction

to the masses of the attracting bodies; the other, to show that this

attraction exists between all particles of matter, and not merely, as

Huygens believed, between those particles and the centres of the

sun and planets.

The first step was taken by Xewton. By means of pendulums

having the same length, but with bobs of different materials, he

showed that the force acting on a bodv at the earth's surface is
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proportional to tlie mass of the body, since all bodies have the same

acceleration. He further brought forward, as the most satisfac-

tory theory which he could form, the general statement that every

particle of matter attracts and is attracted by every other par-

ticle.

The experiments necessary for a complete verification of this

last statement were not carried ont by Newton. They were per-

formed in 1798 by Cavendish. His apparatus consisted essentially

of a bar furnished at both ends with small leaden balls, suspended

horizontally by a long fine wire, so that it turned freely in the

horizontal plane. Two large leaden balls were mounted on a

bar of tlie same length, which turned about a vertical axis coinci-

dent with the axis of rotation of the suspended bar. The large

balls, therefore, could be set and clamped at any angular distance

desired from the small balls. The whole arrangement was enclosed

in a room, to prevent all disturbance. The motion of the suspended

system was observed from without by means of a telescope. Neg-

lecting as unessential the special methods of observation employed,

it is sufficient to state that an attraction was observed between the

large and small balls, and was found to be in accordance with the

law as above stated.

59. Centre of Gravity.—The forces with which the earth at-

tracts the particles of an ordinary body are parallel and proportional

to the masses of the particles, so that the sum of their moments

about any axis passing through the centre of mass will vanish, be-

cause the corresponding sum of the products of the masses and

their respective distances from any plane containing that axis van-

ishes by the definition of the centre of mass. Gravity will, there-

fore, have no tendency to produce rotation in a free body or sys-

tem of particles. It will cause a translation of the body, if it be

rigid, such as would be produced if a force equal to the sum of all

the forces acting on the particles were applied at the centre of

mass. This point of application of the force is called the centre of

gravity of the body. If the forces acting on the particles be not

parallel, the body will, in general, have no centre of gravity. Cer-
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tain bodies, which have a centre of gravity even when the forces

are not parallel, are called centrobaric bodies.

60. Measurement of the Force of Gravity.—When two bodies at-

tract each other, their accelerations relative to their fixed centre of

mass are inversely as their masses. In the case of the attraction

between the earth and a body near its surface, the mass of the earth

is so great that its acceleration may be neglected and the accelera-

tion of the body alone need be considered. Since the force acting

upon it varies with its mass, and since its gain in momentum also

varies with its mass, it follows that its acceleration will be the same,

whatever its mass may be. We may, therefore, obtain a direct measure

of the earth's attraction, or of the /orce o/^rfiz;j/i/, by allowing a

body to fall freely, and determining its acceleration. It is found

that a body so falling at latitude 40° will describe in one second

about 16.08 feet, or 490 centimetres. Its acceleration is therefore

3-3.16 in feet and seconds or 980 in centimetres and seconds. We
denote this acceleration by the symbol g.

The force acting on the body, or the weight of the body, is seen

at once to be mg, where m is the mass of the body.

On account of the difficulties in the employment of this method,

various others are used to obtain the value of g indirectly. For

example, we may allow bodies to slide or roll down a smooth in-

clined plane, and observe their motion. The force effective in

producing motion on tlie plane is ^/sin 0, where is the angle of

the })lane with the horizontal; the space traversed in the time t is

s — \gf sin (p. By observing s and t, the value of g may be ob-

tained. The motion is so much less rapid than that of a freely

falling body that tolerably accurate observations can be made. Ir-

regularities due to friction upon the plane and the resistance of

the air, however, greatly vitiate any calculations based upon these

observations. This method was used by Galileo in his investiga-

tion of the laws of falling bodies.

The most exact method for determining the value of g is based

upon observations of the oscillation of a pendulum.

A pendulum maybe defined as a heavy mass, or bob, suspended
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from a rigid support, so that it can oscillate about its position

of equilibrium.

In the simple, or mathematical, pendulum the bob is

assumed to be a material particle, and to be suspended by

a thread without weight. If the bob be stationary and

acted on by gravity alone, the line of the thread will be the

direction of the force. If the bob be withdrawn from the

ff position of equilibrium (Fig. 25), it will be acted on by a

force at right angles to the thread, in a direction opposite

that of the displacement, expressed by g sm 0, where is

the angle between the perpendicular and the new position

of the thread.

The force acting upon the bob at any point in the circle of

which the thread is radius, if it be released and allowed to swing

in that circle, varies as the sine of the angle between the perpendic-

ular and the radius drawn to that point. If we make the oscillation

so small that the arc may be substituted for its sine without sensi-

ble error, the force acting on the bob varies as the displacement of

the bob from the point of equilibrium.

A body acted on by a force varying as the displacement of the

body from a fixed point will have a simple harmonic motion about

its position of equilibrium (§ 21).

Hence it follows that the oscillations of the pendulum are sym-

metrical about the position of equilibrium. The bob will have an-

amplitude on the one side of the vertical equal to that which it has

on the other, and the oscillation, once set up, will continue forever

unless modified by outside forces.

The importance of the pendulum as a means of determining the

value of g consists in this: that, instead of observing the space

traversed by the bob in one second, we may observe the number of

oscillations made in any period of time, and determine the time of

one oscillation; from this, and the length of the pendulum, we can

calculate the value of g. The errors in the necessary observations

and measurements are very slight in comparison with those of any

other method.
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61. Formula for Simple Pendulum.—The formula connecting the

time of oscillation with the value of ^ is obtained as follows: The
acceleration of the bob at any point in the arc is, as we have seen,

g sin 0, or gcp if the arc be very small. The acceleration in a simple

harmonic motion is — co'^s = ^,^s, where s is the displacement.

Since the bob has a simple harmonic motion, we may set these

two expressions for the acceleration equal, neglecting the minus

sign, which merely expresses the fact that the acceleration is toward

47r'
the centre of the path; hence g(p = -™*.

The displacement s is equal to l(p, if I represent the length of

the thread; hence g = -™-j from which T =27r^ / - .

In this formula T represents the time of a double oscillation.

It is customary to observe the time of a single oscillation, when the

formula becomes

=v^-« = .y -. (41)

62. Physical Pendulum.—Any pendulum fulfilling the require-

ments of the foregoing theory is, of course, unattainable in practice.

We may, however, calculate from the known dimensions and mass

of the portions of matter making up the phi/sical pendulum, what

would be the length of a simple pendulum which would oscillate in

the same time. It is clear that there must be some point in every

physical pendulum the distance of which from the point of suspen-

siorf is equal to the length of the corresponding simple pendulum;

for the particles near the point of suspension tend to oscillate more

rapidly than those more remote, and the time of oscillation of the

system, if it be rigid, will be intermediate between the times of

oscillation which the particles nearest to, and most remote from

the point of suspension would have if they were oscillating freely.

There will, therefore, be some one particle of which the proper rate
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of oscillation is the same as that of the whole pendulum. Its dis-

tance from the point of suspension is the length sought.

In determinations of the value of g by observations upon the

time of oscillation of a pendulum, the length of the equivalent

simple pendulum may be found in either of two ways:

(I) The pendulum may be constructed in such a manner that

its moment of inertia and the position of its centre of gravity may
be calculated. From these data the required length is readily

obtained.

To show this, we consider any mass swinging as a pendulum

about a horizontal axis. The force which sets it in oscillation is

its weight My. The effect of this force in producing rotation

about the axis is given by MgR sin = /or (§ 39), where 1 is its

moment of inertia about that axis and R is the distance from the

axis to its centre of gravity. As in the case of the simple pendu-

lum, when the oscillations are infinitesimal, sin may be replaced

by 0. Now and a represent the angular displacement and the

angular acceleration of any point of the pendulum, and the actual

displacement and acceleration are proportional to them; and since

the displacement and acceleration are proportional to each other,

every point in the pendulum has a simple harmonic motion of the

same period. The actual acceleration of the centre of mass equals

Ra = —y— . R<p. Now R(p is the displacement of the centre of

mass, and therefore from the formula connecting acceleration and

displacement in simple harmonic motion, used in § 61, we obtain

-=7r = —'/— . Hence T = 2;ri/ i Or, if we designate by t

T' 1 ^ MRg ^ ^

the time of oscillation from one extremity of the arc to the other,

we have

t = n\/ ^
. (42)

^ MRg
We may replace / by its equivalent 1' + MR'^, where /' is the

moment of inertia about an axis parallel to the axis of suspension

and passing through the centre of gravity. By comparison of this
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equation with the one giving the time of oscillation of a simple

pendulum, it appears that the length I of the simple pendulum

which will oscillate in the same time as the physical pendulum, or,

as it is called, the length of the equivalent simple pendulum, is

given by

^-MR- MR •

^^"^

A line drawn parallel with the axis of suspension, through a point

at the distance / from that axis and on the line drawn through tlie

centre of gravity perpendicular to that axis, is called the axis of

oscillation. It evidently contains the centre of percussion (§ 44).

A pendulum consisting of a heavy spherical bob suspended by

a cylindrical wire was used by Borda in his determinations of the

value of g. The moment of inertia and the centre of gravity of

the system were easily calculated, and the length of the simple

pendulum to which the system was equivalent was thus obtained.

(2) We may determine the length of the equivalent simple

pendulum directly by observation. The method depends upon tlie

principle that, if the axis of oscillation be taken as the axis of sus-

pension, the time of oscillation will not vary. The proof of this

principle is as follows :

Suppose the pendulum suspended so as to swing about the axis

of oscillation as a new axis of suspension. The distance of

the axis of oscillation from the centre of gravity \^l — R,

and the length V of the equivalent simple pendulum, in

this case, is I = —j^ . Now I

—

M{1 - R) ' MR
|~| or /' =MR {I — R), and substituting this value in the

equation for I' and reducing, we obtain V — I. That is, the

length of the equivalent simple pendulum, and consequently

the time of oscillation when the pendulum swings about its

axis of suspension, is the same as that when it is reversed

and swings about its former axis of oscillation.

A pendulum (Fig. 26) so constructed as to take advan-

tage of this principle was used by Kater in his determination

" of the value of y, and this form is known, in consequence,

as Kater's pendulum.
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63. The Balance.—The weights of bodies, and heni3e also their

masses, are compared by means of the T)alance.

To be of value, the balance must be accurate and sensitive; that

is, it must be in the position of equilibrium when the scale-pans

contain equal masses, and it must move out of that position on the

addition to the mass in one pan of a very small fraction of the

original load.

The balance consists essentially of a regularly formed beam,

poised at the middle point of its length upon knife-edges which

rest on agate planes. From each end of the beam is hung a scale-

FiG. 27.

pan, in which the masses to be compared are placed. Let

(Fig. 27) be the point of suspension of the beam; J, v9, the points of

suspension of the scale-pans; C, the centre of gravity of the beam,

the weight of which is W. Represent OA — OB by /, OC by d,

and the angle OA B by a.

If the weight in the scale-pan at A be P, and that in the one

at 5 be P + p, where p is a small additional weight, the beam will

turn out of its original horizontal position, and assume a new one.

Let the angle COC, through which it turns, be designated by ^.

Then the moments of force about are equal; that is,

{P -\-p)l. cos {a + ft) = PI. cos {a - (3)-\- Wd . sin /?;

from which we obtain, by expanding and transposing.

tan/?
plcosa

{2P -\- p)ls'ma + Wd'
(44)

The conditions of greatest sensitiveness are readily deducible

from this equation. So long as cos a is less than unity, it is evi-

dent that tan /?, and therefore ft, decreases as the weight 2P of
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the load increases. As the angle a becomes less, the value of /5

increases for a given load, and is less affected by changes in the

load, until, when A, 0, and B are in the same straight line, it

depends only on '^-n, and is independent of the load. In this case

tan fi increases as d, the distance from the point of suspension to

the centre of gravity of the beam, diminishes, and as the weight of

the beam W diminishes. To secure sensitiveness, therefore, the

beam must be as long and as light as is consistent with stiffness,

the points of suspension of the beam and of the scale-pans must be

very nearly in the same line, and the distance of the centre of

gravity from the point of suspension of the beam must be as small

as possible. Great length of beam, and near coincidence of the

centre of gravity with the axis, are, however, inconsistent with

rapidity of action. The purpose for which the balance is to be

used must determine the extent to which these conditions of sensi-

tiveness shall be carried.

Accuracy is secured by making the arms of the beam of equal

length, and so that they will perfectly balance, and by attaching

scale-pans of equal weight at equal distances from the centre of

the beam.

In the balances usually employed in physical and chemical

investigations, various means of adjustment are provided, by means

of which all the required conditions may be secured. The beam is

poised on knife-edges; and the adjustment of its centre of gravity

is made by changing the position of a nut which moves on a screw,

placed vertically, directly above the point of suspension. Perfect

equality in the moments of force due to the two arms of the beam

is secured by a similar horizontal screw and nut placed at one end

of the beam. The beam is a flat rhombus of brass, large portions

of which are cut out so as to make it as light as possible. The

knife-edge on which the beam rests, and those upon which the

scale-pans hang, are arranged so that, with a medium load, they are

all nearly in the same line. A long pointer attached to the beam

moves before a scale, and serves to indicate the deviation of the
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beam from the position of equilibrium. If the balance be accu-

rately made and perfectly adjusted, and equal weights placed in

the scale-pans, the pointer will remain at rest, or will oscillate

through distances regularly diminishing on each side of the zero

of the scale.

If the weight of a body is to be determined, it is placed in one

scale-pan, and known weights are placed in the other until the

balance is in equilibrium, or nearly so. The final determination of

the exact weight of the body is then made by one of three methods:

we may continue to add very small weights until equilibrium is

established; or we may observe the deviation of the pointer from

the zero of the scale, and, by a table prepared empirically, deter-

mine the excess of one weight over the other; or we may place a

known weight at such a point on a graduated bar attached to the

beam that equilibrium is established, and find what its value is, in

terms of weight placed in the scale-pan, by the relation between the

length of the arm of the beam and the distance of the weight from

the middle point of the beam.

If the balance be not accurately constructed, we can, neverthe-

less, obtain an accurate value of the weight desired. The method

employed is known as Borda's method of double weighing. The

body to be weighed is placed in one scale-pan, and balanced with

fine shot or sand placed in the other. It is then replaced by known

weights till equilibrium is again established. It is manifest that

the replacing weights represent the weight of the body.

If the error of the balance consist in the unequal length of the

arms of the beam, the true weight of a body may be obtained by

weighing it first in one scale-pan and then in the other. The

geometrical mean of the two values is the true weight ; for let l^

and l^ represent the lengths of the two arms of the balance, F the

true weight, and P, and P, the values of the weights placed in the

pans at the extremities of the arms of lengths l^ and l^ , which

balance it. Then Pl^ = P,?, and Pl^ = PJ^ ; from which

P = V1\P,.

64. Density of the Earth, Constant of Mass Attraction.

—

One of
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the most interesting problems connected with the physical aspect

of gravitation is the determination of the constant of mass attrac-

tion. It has been attacked in several ways, each of which is worthy

of consideration. The methods employed usually depend upon a

determination of the mean density of the earth.

The first successful determination of the earth's density was

based upon experiments made in 1774 by Maskelyne. He observed

the deflection from the vertical of a plumb-line suspended near the

mountain Schehallion in Scotland. lie then determined the density

of the mountain by the specific gravity of specimens of earth and

rock from various parts of it, and calculated the ratio of the volume

of the mountain to that of the earth. From these data the mean

density of the earth was determined to be about 4.7.

The next results were obtained from the experiments of Caven-

dish, in 1798, with the torsion balance already described. The

density, volume, and attraction of the leaden balls being known,

the constant of mass attraction could be calculated, and also the

density of the earth obtained. The value obtained by Cavendish

for the latter was about 5.5.

Another method, employed by Carlini in 1824, depends upon

the use of the pendulum. The time of the oscillation of a pendu-

lum at the sea-level being known, the pendulum is carried to the

top of some high mountain, and its time of oscillation again ob-

served. The value of g as deduced from this observation will, of

course, be less than that obtained by the observation at the sea-level.

It will not, however, be as much less as it would be if the change

depended only on the increased distance from the centre of the

earth. The discrepancy is due to the attraction of the mountain,

which can, therefore, be calculated, and the calculations completed

as in Maskelyne's experiment. The value obtained by Carlini by

this method was about 4.8.

A fourth method, due to Airy, and employed by him in 1854,

consists in observing the time of oscillation of a pendulum at the

bottom of a deep mine. By § 57 it appears that the attraction of

a spherical shell of earth the thickness of which is the depth of the
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mine vanishes. The mean density of the earth may, therefore^ be

determined by the discrepancy between the values of g at the bot-

tom of the mine and at the surface.

Still another method, used by Jolly, consists in determining by

means of a delicate balance the increase in weight of a small mass

of lead when a large leaden block is brought beneath it. Jolly's

results were very consistent, and give as the earth's density the

value 5.69.

These methods have yielded results varying from that obtained

by Airy, who stated the mean specific gravity to be 6.623, to that

of Maskelyne, who obtained 4.7. The most elaborate experiments,

by Cornu and Bailie, by the method of Cavendish, gave as the value

5.56. This is probably not far from the truth.

When the density of the earth is known, we may calculate from

it the value of the constant of mass attraction, that is, the attraction

between two unit masses at unit distance apart. Eepresent by D
the earth's mean density, by R the earth's mean radius, and by k

the constant of attraction. The mass of the earth is expressed by

^TiRW. Since by § 57 the attraction of a sphere is inversely as

the square of the distance from its centre, the attraction of the

earth on a gram at a point on its surface, or the weight of one

gram, is expressed by ^ = ^'^"^^^' ~ ^nRDk. nR is twice the

length of the earth's quadrant, or 2 X 10' centimetres. The value

of .^ at latitude 40° is 980.11, and from the results of Cornu and

Bailie we may set D equal to 5.56. With these data we obtain h

equal to 0.000000066 dynes.



CHAPTER III.

MOLECULAR MECHANICS.

CONSTITUTION OF MATTER.

65. General Properties of Bodies, — Besides the properties

already defined in § 3 as characteristic and essential properties of

matter, we find that all bodies possess the properties of compres-

sibility and divisibility.

Compressibility.—All bodies change in volume by change of

pressure and temperature. If a body of a given volume be sub-

jected to pressure it will return to its original volume when the

pressure is removed, provided the pressure has not been too great.

This property of assuming its original volume is called elasticity.

The property of changing volume by the application of heat is

sometimes specially called dilatability.

Divisibility.—Any body of sensible magnitude may, by me-

chanical means, be divided, and each of its parts may again be sub-

divided; and the process may be continued till the resulting par-

ticles become so minute that we are no longer able to recognize

them, even when assisted by the most perfect appliances of the

microscope. If the body be one that can be dissolved, it may be

put in solution, and this may be greatly diluted; and in some

cases the body may be detected by the color Avhich it imparts to

the diluent, even when constituting so small a proportion as one

one-hundred-millionth part of the solution.

66. Molecules.—We are not, however, at liberty to conclude

that matter is infinitely divisible. The fact, established by obser-

vation, that bodies are impenetrable, and the one just noted, that

they are also compressible, as well as other considerations, to be

adduced later, lead to the opposite conclusion. To explain the

83
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coexistence of these properties we are compelled to assume that

bodies are composed of extremely small portions of matter, indi-

visible without destroying their identity, called molecules, and that

these molecules are separated by interstitial spaces occupied by a

medium called the ether.

These molecules can be divided only by chemical means. .The

resulting subdivisions are called atoms. The atom, however, can-

not exist in a free state. The molecule is tlie physical unit of

matter, while the atom is the chemical unit.

67. Composition of Bodies.—It has just been said that atoms

cannot exist in a free state. They are always combined with

others, either of the same kind, forming simple substances, or of

dissimilar kinds, forming compound substances.

There are about seventy substances now known which cannot,

in the present state of our knowledge, be decomposed, or made to

yield anything simpler than themselves. AVe therefore call them

simj)le substances, elements, or, if we desire to avoid expressing

any theory concerning them, radicals. It is not improbable that

some of these will yet be divided, perhaps all of them. We can

call them elements, then, only provisionally.

68. States of Aggregation.— Bodies exist in three states—the

solid, the liquid, and the gaseous. In the solid state the form and

volume of the body are both definite. In the liquid state the

volume only is definite. In the gaseous state neither form nor

volume is definite.

Many substances may, under proper conditions, assume either

of these three states of aggregation; and some substances, as, for

example, water, may exist in the three states under the same gen-

eral conditions.

It is proper to add, however, that there is no such sharp line of

distinction between the three states of matter as our definitions

imply. Bodies present all gradations of aggregation between the

extreme conditions of solid and gas; and the same substance, in

passing from one state to the other, often presents all these grada-

tions.
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69. Structure of Solids.—With the exception of orgauized

bodies, all solids may be divided into two classes. The bodies of

one class, which are characterized by more or less regularity of

form, are called crystalline; those of the other class, exhibiting

no such regularity, are called amorphous. For the formation of

crystals a certain amount of freedom of motion of the molecules

is necessary. Such freedom of motion is found in the gaseous and

liquid states; and when crystallizable bodies pass slowly from these

to the solid state, crystallization usually occurs. It may also occur

in some solids spontaneously, or in consequence of agitation of the

molecules by mechanical means, such as friction or percussion.

Crystallizable bodies are called crystalloids.

Some amorphous bodies cannot, under any circumstances,

assume the crystalline form. They are called colloids.

70. Crystal Systems.— Crystals are arranged by mineralogists

in six systems.

In the first, or Isometric, system all the forms are referred to

three equal axes at right angles. The system includes the cube,

the regular octahedron, and the rhombic dodecahedron.

In the second, or Dimetric, system all the forms are referred

to a system of three rectangular axes, of which only two are equal.

In the third, or Hexagonal, system the forms are referred to

four axes, of which three are equal, lie in one plane, and cross each

other at angles of 60°. The fourth axis is at right angles to the

plane of the other three, and passes through their common inter-

section.

The fourth, or OrthorJiombic, system is characterized by three

rectangular axes of unequal length.

In the fifth, or Monoclinic, system the three axes are unequal.

One of them is at right angles to the plane of the other two. The

angles which these two make with each other, as well as the rela-

tive lengths of the axes, vary greatly for different substances.

In the sixth, or Triclinic, system the three axes are oblique to

each other, and unequal in length.

71. Forces Determining the Structure of Bodies.—In view of
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Avhat precedes, it is necessary to assume the existence of certain

forces other than the mass attraction considered in § 58, acting

between the molecules of matter. These forces seem to act only

within very small or insensible distances, and vary with the charac-

ter of the molecule. They are hence called molecular forces. h\

liquids and solids there must be a force of the nature of attrac-

tion holding the molecules together, and a force equivalent to

repulsion preventing actual contact. The attractive force is

called colieuon when it unites molecules of the same kind, and

adhesion when it unites molecules of different kinds. The repul-

sive force is probably a manifestation of that motion of the mole-

cules which constitutes heat. In gases this motion is so great as

id carry the molecules beyond the limit of their mutual molecular

attractions: thus the apparent repulsion prevails, and the gas only

ceases expanding when this repulsion is balanced by other forces.

72. Structure of the Molecule.—The facts brought to light in

the study of crystals compel us to ascribe a structural form to the

molecule, determining special points of application for the mo-

lecular forces. From this results the arrangement of molecules

which have the requisite freedom of motion into regular crystal-

line forms.

73. Nature of the Atom.—The atom, or the least part into

which matter can be divided by any means now known, must

itself possess inertia and impenetrability. Our inability to divide

the atom, and the demonstration by Lavoisier and others that

none of the matter which takes part in a chemical change is de-

stroyed by that change, lead us to assert that the atom is also inde-

structible. The kinetic theory of heat requires the additional

assumption that the atom is generally in motion; and the exist-

ence of molecular forces and of chemical combination lead us to

assert also that the atoms exert force on one another. These prop-

erties were summed up by Newton, who first gave a description of

the atom, in a form suitable for use in physical science, in the fol-

lowing words: "It seems probable to me that God in the begin-

ning formed matter in solid, massy, hard, impenetrable, movable
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particles, of such sizes and figures and with such other properties

and in such proportion to space as most conduced to the end for

which He formed them ; and that these primitive particles, being

solids, are incomparably harder than any porous bodies compounded

of them, even so very hard as never to wear or break in pieces; no

ordinary power being able to divide what God Himself made one in

the first creation. ... It seems to me, farther, that these particles

have not only a vis i7iertice, accompanied with such passive laws of

motion as naturally result from that force, but also that they are

moved by certain active principles."

The science of physics has been erected upon the conception of

the atom embodied in tiiis description. It is not, however, a

theory of the nature of the atom in any proper sense: any theory

must explain the various properties ascribed to the atom on me-

chanical principles, with as few assumptions as are necessary to

apply those principles. Such a theory was proposed by Thomson:

it is known as the vortex atom theory. This theory assumes that

the space occupied by the universe is filled with a continuous, in-

compressible, perfect fluid, and that each atom is a small closed

vortex in this fluid. A comparison of the properties of the atom

with those of the closed vortex, described in § 122, shows that the

two sets of properties are identical. Thus the vortex, like the

atom, retains its identity throughout any changes it may undergo,

that is, it is not composed merely of matter in similar states of

motion, but of identically the same matter at all times. No two

vortices can cut each other or can occupy the same spaceatthe same

time; they are therefore indestructible and impenetrable. Fur-

thermore, a vortex must move as a whole, and any two vortices

near each other change their directions of motion as if they exerted

force on each other. A vortex in which the vortex line is impli-

cated or knotted any number of times will always retain the same

degree of implication; so that if a vortex of a special sort be once

set up, it will always retain its essential characteristics, correspond-

ing to the retention of special characteristics by the atoms of the

different elements. This theory, taken in connection with Fitz-
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gerald's theory of the vortex ether (§ 323), gives an almost complete

model of the essential features of the physical universe; it does

not, however, explain gravitation, nor does it without some addition

explain the inertia of a body, and not until it is shown that these

characteristic features of matter are explained by it can it be

adopted as a final theory of matter.

FRICTION.

74. General Statements.—When the surface of one body is

made to move over the surface of anotlier, a resistance to the

motion is set up. This resistance is said to be due to friction be-

tween the two bodies. It is most marked when the surfaces of two

solids move over one another. It exists, however, also between the

surfaces of a solid and of a liquid or a gas, and between the sur-

faces of contiguous liquids or gases. When the parts of a body

move among themselves, there is a similar resistance to the motion,

v/hich is ascribed to friction among the molecules of the body.

This internal friction is called viscosity.

The forces to which friction gives rise do not conform to the

conditions of conservative forces. They are not uniquely depend-

ent on the position of the moving body, and are exerted only

when the body is in motion, and always in such a sense as to op-

pose the motion. The work done on a body in moving it against

friction does not give the body potential energy, and the sum of

the kinetic and potential energies in a system, the parts of which

exert friction on one another, continually diminishes. Most of

the departures from the law of the conservation of mechanical

energy exhibited in the ordinary operations of Nature are due to

friction. The mechanical energy lost is for the most part trans-

formed into heat.

75. Laws of Friction.—Owing to our ignorance of the arrange-

ment and behavior of molecules, we cannot form a theory of fric-

tion based upon mechanical principles. The laws which have been

found are almost entirely experimental, and are only approxi-

mately true even in the cases in which they apply.
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It was found by Coulomb that, when one solid slides over an-

otlier, the resistance to the motion is proportional to the pressure

normal to the surfaces of contact, and is independent of the area

of the surfaces and of the velocity with which the moving body

slides over the other. It depends upon the nature of the bodies

and the character of the surfaces of contact. The ratio of the

force required to keep the moving body in uniform motion to the

force acting upon it normal to the surfaces of contact is called the

coeficient offriction.

It was shown experimentally by Poiseuille that the rate of out-

flow of a liquid from a vessel through a long straight tube of very

small diameter is proportional directly to the difference in pressure

in the liquid at the two ends of the tube, to the fourth power of

tlie radius of the tube, and inversely to the length of the tube.

The flow of liquid under such conditions can be determined by

mathematical analysis, and it is found that the results obtained

by Poiseuille can only occur if the coefficient of friction between

the liquid and the wall of the tube be very great. In other words,

we may think of the liquid particles nearest the wall as adhering

to it and forming a tube of molecules of the same sort as those of

the liquid. The outflow then depends only upon the coefficient of

viscosity of the liquid.

The frictional resistance experienced by a solid moving through

a liquid or a gas is a function of its velocity. When the motion is

slow, approximate results are reached by setting it proportional to

the velocity. For higher velocities it is more nearly proportional

to their squares, and for very high velocities to still higher powers.

It results from this tliat tJie motion of a body falling toward the

earth will be resisted by a force that increases as its velocity in-

creases, so that after it has attained a certain velocity the fnctional

resistance and its weight may become equal, and the body, from

that time on, will move with a constant velocity. This explains

why rain-drops or falling shot reach the earth with much lower

velocities than they would have if there were no friction. Further,

since the friction depends on the surface, while the weight is pro-
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portioiml to the volume, the limiting or constant velocity reached

is less for small than for large bodies. This explains why the fine

drops in a fog or cloud fall so slowly that their motion is scarcely

noticed, and why shot return to the ground with small velocities,

while the velocity of a returning rifle-ball is still considerable.

From considerations based upon the kinetic theory of gases,

Maxwell predicted that the coefficient of viscosity in a gas would

be independent of its density. This prediction has been verified by

experiment through a wide range of densities. For very low densi-

ties it has been shown that this law no longer holds true.

76. Theory of Friction.—The friction between solids is due

largely, if their surfaces be rough, to the interlocking of projecting

parts. In order to slide the bodies over one another, these pro-

jections must either be broken off, or the surfaces must separate

until they are released. There is also a direct interaction of the

molecules which lie in the surfaces of contact. This appears in the

friction of smooth solids, and is the sole cause of the viscosity of

liquids and gases. That this molecular action is of importance in

producing the friction of solids is seen in the facts that the friction

of solids of the same kind is greater than that of solids of different

kinds, and that it requires a greater force to start one body sliding

over another than to maintain it in motion after it is once started.

CAPILLARITY.

77. Fundamental Facts.—If we immerse one end of a fine glass

tube having a very small, or capillary, bore in water, we observe

that the water rises in the tube above its general level. We also

observe that it rises around the outside of the tube, so that its sur-

face in the immediate vicinity of the tube is curved. If we im-

merse the same tube in mercury, the surface of the mercury within

and just outside the tube, instead of being elevated, is depressed.

If we change the tube for one of smaller bore, the water rises

higher and the mercury sinks lower within it; but the rise or de-

pression outside the tube remains the same. If we immerse the

same tube in different liquids, we find that the heights to which
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they ascend vary for the different liquids. If, instead of changing

the diameter, we change the thickness of the wall of the tube, no

variation occurs in the amount of elevation or depression; and,

finally, the rise or depression in the tube varies for any one liquid

with its temperature,

78. Law of Force Assumed.—It is found that a force such as is

given by the law of mass attraction is not sufficient to produce

these phenomena. They can, however, be explained if we assume

an additional attraction between the molecules, as we have already

done. The expression, then, of the stress between two molecules

m and m', at distance r, becomes F= —r, 1- mm'f{r).

The only law which it is necessary to assign to the function of

r in the second term is, that it is very great at insensible distances,

diminishes rapidly as r increases, and vanishes while r, though

measurable, is still a very small quantity. For adjacent molecules

this molecular attraction is so much greater than the mass attrac-

tion, that it is customary, in the discussion of capillary phenomena,

71171%'

to omit the term —j- from the expression for the force. The dis-

tance through which this attraction is appreciable is often called

the range of molecular action, and is denoted by the symbol e. It

is a very small distance, but is assumed to be much greater than

the distance between adjacent molecules. Other facts, however,

connected Avith the behavior of gases, lead us to think that the dis-

tance between molecules and the range of molecular action are of

the same order of magnitude. The theory has not been developed

from this point of view, but it is easy to see that the auxiliary idea

of surface tension is not incompatible with it, though the precise

connection between it and the molecular forces will not have the

same form as that given by the older theory.

79. Methods of Development.—The different methods which

have been employed to deduce, from this assumed attraction, re-

sults which could be submitted to experimental verification, are

worthy of notice. They are distinct, though compatible with one
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another. Young was the first to treat the subject satisfactorily,

though others had given partial and imperfect demonstrations

before him. He showed that a liquid can be dealt with as if it

were covered at the bounding surface with a stretched membrane,

in which is a constant tension tending to contract it. From this

basis he proceeded to deduce some of the most important of the

experimental laws. Laplace, proceeding directly from the law of

the attraction which we have already given, considered the attrac-

tion of a mass of liquid on a filament of the liquid terminating at

the surface, and obtained an expression for the pressure within the

mass at the interior end of the filament. He also was able, not

only to account for already observed laws, but to predict, iu at

least one instance, a subsequently verified result. Some years later,

Gauss, dissatisfied with Laplace's assumption, without a priori

demonstration, of a known experimental fact, treated the subject

from the basis of the principle of virtual velocities, which in this

case is the equivalent of that of the conservation of energy. He
proved that, if any change be made in the form of a liquid mass,

the work done or the energy recovered is proportional to the change

of surface, and hence deduced a proof of the fact which Laplace

assumed, and also an expression for the pressure within the mass

of a liquid identical with his. For purposes of elementary treat-

ment the earliest method is still the best. We shall accordingly

employ the idea of surface tension, after having shown that it may

be obtained from the hypothesis of molecular attraction.

80. Surface Tension.—Consider any liquid bounded by a plane

surface, of which the line mn (Fig. 28) is the trace, and let the

line m'n' be the trace of a paral-

lel plane at the distance e from

the plane of mn. Beneath the

plane m'n' the liquid will be

homogeneous at all points, and

the attraction on any one molecule

of it due to the surrounding mol-

all directions. If we consider the

m /^ N n

(
\

P \
/

"' V /

Fig. 28.

ecules will be the same in
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attraction for each other of the molecules lying on either side of

a small area taken within the body of the liquid, it is easy to see

that, if we suppose the molecules on one side of this surface to be

removed, while those on the other side are still acted on by the

same forces as those which they experienced before, equilibrium

may be maintained by the application of a pressure to all points of

the surface. On account of the homogeneity of the liquid this

pressure will be the same in all directions; when measured for unit

of surface it is called the molecular pressure in the liquid, and is

denoted by K.

The condition of things is different in the surface layer in-

cluded between the planes m'«' and nni. In the first place, the

conditions within the range of molecular action around any one

molecule, such as P, are not the same in all directions, and P is

therefore acted on by a force which is always normal to the surface,

and which is greater when P is nearer the surface 7n)i. This ap-

pears at once from the figure, which shows that P is drawn toward

the body of the liquid by the molecules contained within the lower

hemisphere determined by the range of molecular action, and is

drawn upward by those contained within that portion of the upper

hemisphere determined by the surface mn and the parallel plane

passing through P. In the second place, the pressure on a surface

containing P will not be the same for all positions of the surface.

It diminishes as P approaches m7i, and vanishes at the surface of

the liquid. If we consider a surface perpendicular to m^?-, and sup-

pose the molecules on one side of it removed, it is evident that

the forces which act on P will not be normal to the surface and

will tend to displace the molecule at P and draw it into the body

of the liquid. Such forces give rise to a so-called tension in the

surface, which tends to contract it. This tensioii is best conceived

of by considering the surface of the liquid interrupted by a thin

rigid rod and the liquid removed from one side of it; a force must

then be applied to the rod directed away from the liquid, in order

,
to maintain equilibrium. The ratio of the total force applied to
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the length of the rod, or the force applied per unit of length,

measures the surface tension.

81. Energy and Surface Tension.—If the shape of the liquid

mass be changed in such a way that its surface increases, work

must be done upon those molecules which pass from the interior

into the surface. This may either be viewed as work done upon

each molecule as it is forced out of the interior mass, where the

forces upon it are in equilibrium, into the surface layer, in which

it is acted on by a force normal to the surface and in which there-

fore a movement along that normal involves the doing of work ; or

it may be looked on as work done against the tension acting in the

surface. We call the potential energy gained when the surface in-

creases by one unit the surface energy per unit of surface; we will

show that it is numerically equal to the surface tension per unit of

length.

Suppose a thin film of liquid to be stretched on a frame ABCD
(Fig. 29), of which the part BCD is solid and fixed, and the part

Fig. 29.

^ is a light rod, free to slide along C and D. This film tends, as

we have said, to diminish its free surface. As it contracts, it draws

A towards B. If the length of A be a, and A be drawn towards

B over h units, and if E represent the surface energy per unit of

surface, the energy lost, or the work done, is expressed by Eal). If

we consider the tension acting normal to A, the value of which is

Tfor every unit of length, we have again for the work done during

the movement of A, Tab. From these expressions we obtain at once
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E = T', that is, the numerical value of the surface energy per unir

of surface is equal to that of the tension in the surface, normal to

any line in it, per unit of length of that line.

82. Equation of Capillarity.—The surface tension introduces

modifications in the pressure within the liquid mass (§§ li;i seq.)

depending upon the curvature of the surface.

Consider any infinitesimal rectangle (Fig. 30)

on the surface. Let the length of its sides be

represented by s and s' respectively, and the

radii of curvature of those sides by R and R\
Also let (p and 0' represent the angles in circu-

lar measure subtended by the sides from their

respective centres of curvature. Now, a tension

T for every unit of length acts normal to s and

tangent to the surface. The total tension across

s is then Ts; and if this tension be resolved Fig. 30.

parallel and normal to the normal at the point P, the centre of the

rectangle, we obtain for the paraJlel component Tssin ^, or, since

0' S'
<p' is a very small angle, Ts— or Tsz-^,. The opposite side gives

a similar component; the side s' and the side opposite it give each

s
a component Ts' ^^. The total force along the normal at P is

then Tss'i^, + -^j; and since ss' is the area of the infinitesimal

rectangle, the force or pressure normal to the surface at P referred

to unit of surface is TI-^ -\- -^j. From a theorem given by Euler

we know that the sum ^ + ^ is constant at any point for any

position of the rectangular normal plane sections ; hence the ex-

pression we have obtained fully represents the pressure at P.

If the surface be convex, the radii of curvature are positive,

and the pressure is directed towards the liquid; if concave, they are
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negative, and the pressure is directed outwards. This pressure is

to be added to the constant molecular pressure which we have

already seen exists everywhere in the mass. If we denote this con-

stant molecular pressure by K, the expression for the total pressure

within the mass is K + 2^(77/ + t,)* '^vhere the convention with re-

gard to the signs of R' and R must be understood. For a plane

surface, the radii of curvature are infinite, and the pressure under

such a surface reduces to K.

This equation is known as Laplace's equation.

83. Angles of Contact.—Many of the capillary phenomena ap-

pear when different liquids, or liquids and solids, are brought in

contact with one another. It becomes, therefore, necessary to know

the relations of the surface tensions and the angles of contact.

They are determined by the following considerations:

Consider first the case when three liquids meet along a line. Let

represent the point where this line cuts a plane drawn at right

angles to it (Fig. 31), Then the tension

Tah of the surface of separation of the

liquid a from the liquid h, acting nor-

mal to this line, is counterbalanced by

the tensions T^c and 7"^^ of the surfaces

of separation of a and c, b and c. These

tensions are always the same for the

three liquids under similar conditions

of temperature and purity. Knowing the value of the tensions,

the angles which they make with one another are determined at

once by the parallelogram of forces ; and these angles are always

constant.

Similar relations arise if one of the liquids be replaced by a gas.

Indeed, some experiments by Bosscha indicate that capillary {)he-

nomeiia occur at surfaces of separation between gases. We need,

therefore, in the subsequent discussions, make no distinction be-

tween gases and liquids, and may use the general term fluids.

Fig. 31.
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If Tab be greater than the sum of T^c and T^c, the angle be-

tween Tac and Tf,„ becomes zero, and the

fluid c spreads itself out in a thin sheet be-

tween a and b. Thus, if a drop of oil be

placed on water, the tension of the surface of

separation between the air and water is greater

than the sum of the tensions of the surfaces

between the air and oil, and between the

oil and water; hence the drop of oil spreads

out over the water until it becomes almost

indefinitely thin.

In the case of two fluids in contact Avith a

plane solid (Fig. 32), it is evident that the

system is in equilibrium when the surface of separation between

the fluids a and b makes the angle (V with the solid C given by

T^o = The + Tab cos 0. The angle of contact is then determined

7' — 7'
-^ nn -'-be

Fig. 32.

by the equation cos =
T„

If Tao be greater than T^b^ Tbc the equation gives an impossi-

ble value for cos 0. In this case the angle becomes evanescent,

the fluid b spreads itself out, and wets the whole surface of the

solid. In other cases the value of 6* is finite and constant for the

same substances. Thus, a drop of water placed on a horizontal

glass plate will spread itself over the whole j^late; while a small

quantity of mercury placed on the same plate will gather together

into a drop, the edges of which make a constant angle with the

surface.

84. Plateau's Experiments.—The preceding principles will en-

able us to explain a few of the most important experimental facts

of capillarity.

A series of interesting results was obtained by Plateau from the

examination of the behavior of a mass of liquid removed from the

action of gravity. His method of procedure was to place a mass of

oil in a mixture of alcohol and water, carefully mixed so as to have

the same specific gravity as the oil. The oil then had no tendency
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to move as a mass, and was free to arrange itself entirely nnder the

action of the molecular forces. Referring to the equation of La-

place, already obtained, it is evident that equilibrium can exist only

when the sum (-Kv-f- -p) is constant for every point on the surface.

This is manifestly a property of the sphere, and is true of no other

finite surface. Plateau found, accordingly, that the freely floating

mass at once assumed a spherical form. If a solid body—for instance,

a wire frame—be introduced into the mass of oil, of such a size as

to reach the surface, the oil clings to it, and there is a break in the

continuity of the surface at the points of contact. Each of the

portions of the surface divided from the others by the solid then

takes a form which fulfils the condition already laid down, that

|-p>+ j equals a constant. Plateau immersed a wire ring in

the mass of oil. So long as the ring nowhere reached the surface,

the mass remained spherical. On withdrawing a portion of the oil

with a syringe, that which was left took the form of two equal

calottes, or sections of spheres, forming a double convex lens. A
mass of oil, filling a short, wide tube, projected from it at either

end in a similar section of a sphere. As the oil was removed,

the two end surfaces became less curved, then plane, and finally

concave.

Plateau also obtained portions of other figures which fulfil the

required condition. For example, a mass of oil was made to sur-

round two rings placed at a short distance from one another. Por-

tions of the oil were then gradually withdrawn, when two spherical

calottes formed, one at each ring, and the mass between the rings

became a right cylinder. It is evident that the cylinder fulfils the

required condition for every point on its surface.

Plateau also studied the behavior of films. He devised a mix-

ture of soap and glycerine, which formed very tough and durable

films ; and he experimented with them in air. Such films are so

light that the action of gravity on them may be neglected in com-

parison with that of the surface tension. If the parts of the frame
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upon which the film is stretched be all in one plane, the film will

manifestly lie in that plane. When, however, the frame is con-

structed so that its parts mark the edges of any geometrical volume,

the films which are taken up by it often meet. Any three films

thus meeting arrange themselves so as to make angles of 120°

with one another. This follows as a consequence of the proposition

which has already been given to determine the equilibrium of sur-

faces of separation meeting along a line. If four or more films

meet, they always meet at a point.

Plateau also measured the pressure of air in a soap-bubble, and

found that it differed from the external pressure by an amount

which varied inversely as the radius of the bubble. This follows

at once from Laplace's equation. This measurement also gives us

a means of determining the surface tension; for, from Laplace's

o
equation, the pressure inwards, due to the outer surface, is T^,

and the pressure in the same direction due to the inner surface is

2 '

.

also T^, for the film is so thin that we may neglect the difference

in the radii of the two surfaces: hence the total pressure inwards is

4T
-f^; and if this be measured by a manometer, we can obtain the

value of T.

85. Liquids influenced by Gravity.—Passing now to consider

liquid masses acted on by gravity, we shall treat only a few of the

most important cases.

If a glass tube having a narrow bore be immersed perpendicu-

larly in water, the water rises in the tube to a height inversely pro-

portional to the diameter of the tube. This law is known as

Jurin's law.

Let Fig. 33 represent the section of a tube of radius r immersed

in a liquid, the surface of which makes an angle 6 with the wall.

Then if The the surface tension of the liquid, the tension acting

upward is the component of this surface tension parallel to the

wall, exerted all around the circumference of the tube. This is
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expressed hj 27TrT cos0. This force, for each unit area of the

'^ tttT cos 6
tube, is 7,

. The downward force, at the level of the
7ir

free surface, making equilibrium with this, is due to the weight

^

Fig. 33.

of the liquid column (§ 113). If we neglect the weight of the

meniscus, this force per unit area, or the pressure, is expressed by

hdg, where li is the height of the column and d the density of the

liquid. We have, accordingly, since the column is in equilibrium,

27ir 2T cos,—T,T cos = hda ; whence h = ^
, and the height is in-

Tir
^ '

rdff

versely as the radius of the tube.

If the liquid rise between two parallel plates of length I, sepa-

rated by a distance r, the upward force per unit area is given by the

21
expression ^7^ cos 6, and the downward pressure by hdg; whence

2 7^ cos &
7i = ;

, and the height to which the liquid will rise between
rdg ° ^

two such plates is equal to that to which it will rise in a tube the

radius of which is equal to the distance between the plates.

If the two plates be inclined to one another so as to touch along-

one vertical edge, the elevated surface takes the form of a rectangu-

lar hyperbola; for, let the line of contact of the plates be taken as

the axis of ordinates, and a line drawn in the plane of the free sur-

face of the liquid as the axis of abscissas, the elevation correspond-
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ing to each abscissa is inversely as the distance between the plates

at that point, and the elevations are therefore inversely as the

abscissas: hence the product of any abscissa by its corresponding

ordinate is a constant. The extremities of the ordinates then

mark out a rectangular hyperbola referred to its asymptotes.

86. Movements of Solids.—In certain cases the action of the

capillary forces produces movements in solid bodies partially im-

mersed in a liquid. For example, if two plates, which are both

either wetted or not wetted by the liquid, be partially immersed

vertically, and brought so near together that the rise or depression

of the liquid due to the capillary action begins, then the plates will

move towards one another. In either case this movement is ex-

plained by the inequality of pressure on the two sides of each plate.

When the liquid rises between the plates, the joressure is zero at

that point in the column which lies in the same plane as the free

external surface. At every internal point above this the molecules

of the liquid are in a state of negative pressure or tension, and the

plates are consequently drawn together. When the liquid is de-

pressed between the plates, they are pressed together by the exter-

nal liquid above the plane in which the top of the column between

the plates lies. When one of the plates is wetted by the liquid and

the other not, the plates move apart. This is explained by 7ioting,

that, if the plates be brought near together, the convex surface at

the one will meet the concave surface at the other, and there will be

a consequent diminution in both the elevation and the depression

at the inner surfaces of the plates. The elevation and depression at

the outer surfaces remaining unchanged, there will result a pull

outwards on the wetted plate and a pressure outwards on the plate

which is not wetted ; and they will consequently move apart. La-

place showed, however, as the result of an extended discussion, that,

though seeming repulsion exists between two plates such as we have

just considered, yet, if the distance between the plates be dimin-

ished beyond a certain value, this repulsion changes to an attraction.

This prediction has been completely verified by the most careful

experiments.
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87. Porous Bodies.—Porous bodies may be considered as asse^u-

blages of more or less irregular capillary tubes. Thus the explana-

tion of many natural phenomena—as the wetting of a sponge, the

rise of the oil in the wick of a lamp—follows directly from the pre-

ceding discussion.

DIFFUSION".

88. Solution and Absorption.—Many solid bodies, Immersed

in a liquid, after awhile disappear as solids, and are taken up by

the liquid. This process is called solution. The quantity of any

body which a unit quantity of a given liquid will dissolve at a

given temperature, is called its solubility in that liquid at that tem-

perature. The solubility of a given solid varies greatly for differ-

ent liquids, in many cases being so small as to be inappreciable.

One liquid may also be dissolved in another, the degree of solu-

bility differing very much for different liquids. At ordinary tem-

peratures many liquids are practically insoluble in others, but there

is reason to believe that as the liquids approach their critical points

(§ 223), their solubilities in other liquids increase, and that at their

critical points any liquid is soluble m all others in any proportion.

Gases are also taken into solution by liquids. The process is

usually called absoi'ption. The quantity of gas dissolved m any

liquid depends upon the temperature, and varies directly with the

pressure. The solubility of any gas at a given temperature and at

standard pressure is called its coefficient of absorption at that

temperature.

Gases, in general, adhere strongly to the surfaces of solids with

which they are in contact. This adhesion is so great, that the

gases are sometimes condensed so as to form a dense layer which

probably penetrates to some depth below the surface of the solid.

The process is called the absorption of gases by solids. When the

solid is porous, its exposed surface is greatly extended, and hence

much larger quantities of gas are condensed on it than would other-

wise be the case. When this condensation occurs there is in gen-
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eral a rise of temperature, which may be so great as to raise the

solid to incandescence. Thus, for example, spongy platinum,

placed in a mixture of oxygen and hydrogen, becomes so heated as

to inflame it.

89. Free Diffusion of Liquids.—When two liquids which are

miscible are so brought together in a common vessel that the heav-

ier is at the bottom and the lighter rests upon it in a well-defined

layer, it is found that after a time, even though no agitation occurs,

they become uniformly mixed. Molecules of the lieavier liquid

make their way upwards through the lighter; while those of the

lighter make then* way downwards through the heavier, in appar-

ent opposition to gravitation. Diffiision is the name which is em-

ployed to designate this phenomenon and others of a similar

nature.

When one of the liquids is colored,—as, for example, solution of

cupric sulphate,—while the other is colorless, the progress of the

experiment may easily be watched and noted. When both liquids

are colorless, small glass spheres, adjusted and sealed so as to have

different but determinate specific gravities between those of the

liquids employed, may be placed in the vessel used m the exper-

iment, and will show by their positions the degree of diffusion

which has occurred at any given time.

90. Coefficient of Diffusion —Experiment shows that the amount

of a salt in solution which at a given temperature passes, in unit

time, through unit area of a horizontal surface, depends upon the

nature of the salt and the rate of change of concentration at that

surface,—that is, the quantity of a salt that passes a given horizon-

tal plane in unit time is kCA, where A is the area, C the rate of

change of concentration, and k a coefficient that depends upon the

nature of the substance. By rate of change of concentration is

meant the difference in the quantities of salt in solution, measured

in grams per cubic centimetre, at two horizontal planes one centi-

metre apart, supposing the concentration to diminish uniformly

from one to the other. It is plain, that, if C and A in the above

expression be each equal to unity, the quantity of salt passing in
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unit time is k. The quantity k, called the coefficient of diffusion,

is, therefore, the quantity of salt that passes in unit time through

unit area of a horizontal plane when the dilierence of concentration

is unity. Coefficients of diffusion increase with the temperature,

and are found not to be entirely independent of the degree of

concentration.

As implied above, the units of mass and length employed in

these measurements are respectively the gram and the centimetre
;

but, since in most cases the quantity of salt that diffuses in one

second is extremely small, it is usual to employ the day as the unit

time.

91. Diffusion through Porous Bodies.—It was found by Graham

that diffusion takes place through porous solids, such as unglazed

earthenware or plaster, almost as though the liquids were m direct

contact, and that a very considerable difference of pressure can be

established between the two faces of the porous body while the rate

of diffusion remains nearly constant.

92. Diffusion through Membranes.—If the membrane through

which diffusion occurs be of a type represented by animal or vege-

table tissue, the resulting phenomena, though in some respects sim-

ilar, are subject to quite different laws. Colloid substances pass

through the membrane very slowly, while crystalloid substances pass

more freely. It is to be noted that the membrane is not a mere

passive medium, as is the case with the porous substances already

considered, but takes an active part in the process; and conse-

quently one of the liquids frequently passes into the other more

rapidly than would be the case if the surfaces of the liquids were

directly in contact.

If the membrane separate two crystalloids, it often happens

that both substances pass through, but at different rates. In ac-

cordance with the usage of Dutrocliet, we may say there is endos-

mose of the liquid which passes more rapidly to the other liquid,

and cxosmose of the latter to the former. The whole process is fre-

quently called osmosis. If the membrane be stretched over the end

of a tube, into which the more rapid current sets, and the tube be
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piaeed in a vertical position, the liquid will rise in the tube until r.

very considerable pressure is attained. Dutrochet called such an

instrument an endosmometer.

Graham made use of a similar instrument, which he called an

osmometer, by means of which he studied, not only the action of

porous substances, such as are mentioned above, but also that of

various organic tissues; and he was able to reach quantitative re-

sults of great value. PfefCer has more recently made an extended

study of the phenomena of osmosis, especially in those as^^ects re-

lating to . physiological phenomena. He has shown that colloid

membranes produced by purely chemical means are even more

efficient than the organic membranes employed by Graham.

93. Dialysis.—Upon the principles just set forth Graham has

founded a method of separating crystalloids from any colloid mat-

ters in which they may be contained, which is often of great im-

portance in chemical investigations. The apjoaratus employed by

Graham consists of a hoop, over one side of which parchment

paper is stretched so as to constitute a shallow basin. In this basin

IS placed the mixture under investigation, and the basin is then

floated upon pure water contained m an outer vessel. If crystal-

loids be present, they will m due time pass through the membrane

into the water, leaving the colloids behind. The process is often

employed in toxicology for separating poisons from ingesta or other

matters suspected of containing them. It is called dialysis, and

the substances that pass through are said to dialyse.

94. Osmotic Pressure.—PfefEer carried out a series of investiga-

tions to determine whether osmosis produces inequalities of pres-

sure on the opposite sides of the membrane. In his examination of

this question Pfeffer used membranes formed by chemical action

in the pores of earthenware cells. These cells, which were designed

to hold the solution to be examined, could be tightly closed and

counected with a manometer, or instrument for measuring pres-

sure. In the typical cases examined, the membranes permitted the

solvent to pass through them freely, but were impervious to the
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substances in solution. They may be called semi-permeable mem-

branes.

Pfefier's results may be described most easily by using as an ex-

ample the case of solutions of cane-sugar and water. When the

cell was filled with water containing sugar in solution, and im-

mersed in pure water, the water began to enter the cell from with-

out; the pressure in the cell, as indicated by the manometer, began

at once to increase, and continued increasing for some time, until

a rather large definite increase of pressure had been reached. This

increase of pressure m the cell is called the osmotic ^Jvessure or

solution pressure of the solution. The most important laws estab-

lished by Pfeffer, de Vries, and others concerning the relations of

osmotic pressure to the character of the solution and its circum-

stances are as follows, it being understood that the statements tO'

be made refer to dilute solutions and to solutions which are not

electrolytes (§ 279). Solutions which are not electrolytes may b&

called indiffere^it solutions (§ 285). For solutions which are elec-

trolytes the statements need some modifications.

The osmotic pressure is independent of the nature of the sol-

vent and of the character of the membrane, provided it is imper-

vious to the substance dissolved.

The osmotic pressure is proportional to the concentration of the

solution or to the quantity of the dissolved substance contained in

unit volume. It increases as the temperature rises, and the rela-

tion between the increase of pressure and the rise of temperature

is the same as that which obtains for gases (§ 211).

Weights of different substances which are proportional to the

molecular weights of those substances contain equal numbers of

molecules. Solutions formed by dissolving, in equal quantities of

the solvent, masses of different substances proportional to the mo-

lecular weights of the substances, therefore contain equal numbers;

of molecules of these substances. They may be called equimolecu-

lar solutions. It is found that the osmotic pressure exerted by

equimolecular solutions of different substances is the same. Solu-

tions which exert equal osmotic pressures are called isotonic.
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Solutions whicli are isotonic at one temperature are isotonic at

all temperatures, or, the change of osmotic pressure with tempera-

ture is the same for all equimolecular solutions. The absolute

value of the osmotic pressure is the same as the pressure which

would be exerted by a gas contained in the same vessel as the solu-

tion, and having the same number of molecules as there are mole-

cules of the substance dissolved.

It should be stated that these laws have not all been proved

conclusively by experiment, but they are well established on theo-

retical grounds.

95. Dissociation.—The foregoing laws of osmotic pressure do

not hold for all solutions. The deviations which appear in solu-

tions which are not highly dilute are explained in the same way as

the departure of highly-compressed gases from the similar laws of

gaseous pressure, namely, by the absence of those simple conditions

upon which only these laws are theoretically possible. The devia-

tions of electrolytes from these laws, which are sometimes very

great, have been explained by Arrheuius as the result of the sepa-

ration of some or all of the molecules of the dissolved substance

into their constituent portions or ions. This sepai-ation is called

dissociation. The dissociation theory receives abundant support

from the phenomena of electrolysis, and will be discussed in that

connection (§ 285).

96. Laws of Diffusion of Gases.—Gases obey the same elementary

laws of diffusion as liquids. The rate of diffusion varies inversely

as the pressure, directly as the square of the absolute temperature,

and inversely as the square root of the density of the gas. A
gas diffuses through porous solids according to the same laws.

An apparatus by which this may be conveniently illustrated

consists of a porous cell, the open end of which is closed by a

stopper, through which passes a long tube. This is placed in a

vertical position, with the open end of the tube in a vessel of

water. If, now, a bell-jar containing hydrogen be placed over the

porous cell, hydrogen passes into the cell more rapidly than the air

escapes from it: the pressure inside is increased, as is shown by
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the escape of bubbles from the end ol the tube. If, now, the jar

be removed, diffusion outward occurs more rapidly than diffusion

inward : the pressure within soon becomes less than the atmos-

pheric pressure, as is shown by the rise of the water in the tube.

The laws of gaseous diffusion have been shown by Osborne

Reynolds to be consistent with the kinetic theory of gases.

ELASTICITY.

97. strain and Stress.—In the discussion of the third Uw ot

motion (§ 2G) stress was defined as the mutual action of two bodies.

In the applications made of the third law up to this point the

stress has been considered entirely with reference to the two boilios

between which it acts; that is, it has been tacitly assumed that the

action is immediate, or, as it is called, is an action at a distance.

But in many cases the action between two bodies is manifestly not

of this sort, but is due to the presence and action of intervening

bodies. These intervening bodies, when looked at generally, are

called the intervening medium. In these cases we may apply the

third law of motion to the parts of the medium, and assert that

there exists a stress between any two contiguous portions of the

medium. This stress will vary from point to point and with the

direction of the surface across which it acts, and also with the

peculiarities of the medium. Experiment shows that the applica-

tion of stress to a medium is always accompanied by a change of

form or deformation of the medium. This deformation is called a

strain.

In some bodies equal stresses applied in any direction produce

equal and similar strains. Such bodies are isotropic. In others

the strain alters with the direction of the stress. These bodies are

eolotropic.

According to the molecular theory of matter, the form of a body

is permanent so long as the resultant of the stresses acting on it

from without, with the interior forces existing between the indi-

vidual molecules of the body, reduces to zero. The molecular

forces and motions are such that there is a certain form of the bodv
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for every external stress in which its molecules are in equilibrium.

Any change of the stress iu the body is accompanied by a readjust-

ment of the molecules, which is continued until equilibrium is

again established.

98. Strains.—The complete geometrical representation of the

changes of form which occur when a body is strained is in general

impossible, or at least exceedingly complicated. In the theory of

elasticity it is generally possible to avail ourselves of a simplifica-

tion in the character of the strain, which facilitates its geometrical

representation, by assuming that the strain is such that a line in

the body which was straight in its unstrained position remains

straight after the strain: such a strain is called a homogeneous

strain. It may be shown, by an argument too extended for pre-

sentation here, that in any case of homogeneous strain there are

always three directions in the strained body, at right angles to

one another, in which the only change produced by the strain is a

change in length and not a change in relative direction. Thus, if

the strained body be originally a cube, with its sides parallel to

these three directions, the cube will strain into a rectangular

parallelepiped. If the strained body be originally a sphere, it will

strain into an ellipsoid, the three axes of the ellipsoid being the

three directions already mentioned. These three directions are

called the jyrincijyal axes of strain.

The increase in length of a line of unit length by strain is

called its elongation. Evidently, from the description of the rela-

tions of a homogeneous strain to the principal axes, the whole strain

will be described if the elongations along the principal axes be

given. Let us denote by e, , e, , e^ the elongations, which may be

either positive or negative, along the three principal axes. These

elongations are assumed to be so small in comparison with the unit

line that their squares or products may be neglected. Then, in the

examples just given, if a represent a side of the cube before strain

and a' its volume, the increase in volume of the cube by the strain

is given by a'{l + e,) (1 + ej (1 + e^) - a' = a\e^ + e, + e^}, since

the products of the e's may be neglected. Similarly, the sphere,
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of which the radius is r, becomes by the strain the ellipsoid, of

which the axes are r(l + e,), r(l + e^), r{l -\- e^); the increase in

volume of the sphere by the strain is therefore

f 7rr'(l + e,){l + ej (1 + e,) - f 7rr= = |7rr^(e, + e, + ^3).

The quantity e, + e, + e^ is called the coefficient of expansion of the

body.

Two cases of strain need to be specially examined—the pure

expansion or dilatation, and the shear or shearing strain. A dilata-

tion occurs if the three coefficients of elongation are equal; in this

case the strained cube remains a cube, the strained sphere remains

a sphere, and the change of volume in each case is 3e times the

original volume. A shear occurs when one of the coefficients, say

e, , equals zero, and when e, equals — e, ; in this case the expansion

is zero.

The shear may be defined from another point of view. For,

consider a body subjected to a shear and suppose a section made in

Q c D E n ^^ ^y ^^^® plane containing the elonga-

\ 7 \ i 7 tioris e and — e: it is clear that the shear

/ will be completely described if we de-

scribe the deformation of a. figure in

this plane. We select for this purpose a
'^ ^ rhombus, .45/) (7, of which the diagonals

AD and BC are so related that after the

shear we have AD{l+e) = BC and BC{\-e) = AD. If the

rhombus produced by the sliear be turned until one of its sides co-

incides with AB, we shall have the original rhombus and the one

produced by shear in the relation shown in Fig. 34. The new
rhombus AC'D'B may manifestly be produced from the original

rhombus by the displacement of all its lines parallel to the fixed

base AB, each line being displaced by an amount proportional to

its distance from the line AB. The ratio of this displacement to

the distance of the displaced line from the base AB is called the

DD'
amount of the shear; that is, -^775- is the amount of the shear.
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99. The Superposition of Strains.—We will now show that two

elongations, applied successively or simultaneously in the same

direction, are equivalent to a single elongation equal to their sum.

This follows from the assumption already made, that the elonga-

tions are so small that their squares or products may be neglected.

For, suppose a line of unit length to receive the elongation e, ; its

length becomes 1 + e,. If it then receive the elongation e, , its

length becomes 1 -)- e, + ^,(1+6,) = 1 +6, + «, > because the pro-

duct e/j may be neglected. This principle is called the principle

of the snperpositio7i of strains.

By its help we may show that a simple elongation may be pro-

duced by the combination of a dilatation and two equal shears in

planes at right angles to each other. In the case of a simple elon-

gation, the elongations along the principal axes are e, 0, 0. Let

6 € 6
US suppose a dilatation of which the elongations are :3, ^, ^; a shear

o o o

g g
of which the elongations are—,—:;) 0; and a shear of which the

o o

6 6
elongations are -, 0, — ;=. By the principle of the superposition of

o o

strains we find the elongations produced if these three strains be

superposed by adding the three elongations along the three axes.

Carrying out this operation we obtain e, 0, as the elongations pro-

duced by the superposition, that is, the superposition of these three

strains is equivalent to a simple elongation. Since all homogeneous

strains may be produced by three simple elongations at right

angles to each other, any homogeneous strain may be produced by

a combination of dilatations and shears.

100. Stresses.—If a body be maintained in equilibrium by forces

applied to points on its surface, and if we conceive it divided into

two parts, A and B, by an imaginary surface drawn through it,

and if we assume, for the present, the molecular structure of matter,

it is clear that the forces applied to the portion A of the body are

in equilibrium with the forces which act between the molecules of

A lying near the surface which divides it from B, and the mole-
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cules of B lying on the other side of that surface. Similarly, the

forces which act on B are in equilibrium with the forces which act

across the surface between the molecules of B and A. Let us con-

sider any area s taken in tlie surface seiDarating A and B. Repre-

sent by F the sum of the molecular forces which act across that

area. If the forces which act across different equal elements of the

F
area be equal, the ratio - is called generally the pressure per unit

area on the surface s, or, simply, the^jress^^re on the surface. This

pressure is positive if the force i-'be directed away from the portion

of the whole body which is held in equilibrium, negative if directed

toward that portion. It is plain, from the equality of action and

reaction, tliat if this force be directed toward the portion A of the

body, an equal force is directed toward the portion B at every

point of the surface which separates A and B.

The name pressure is frequently reserved for a negative pressure

in the sense just defined; when the pressure is positive, it is fre-

quently called a tension. In case the force which acts across the

surface between A and B vary from element to element of that

surface, the pressure at a point of the surface is the limit of the

F
ratio -

, when the area s is so drawn that its centre of inertia is
5

always kept at that point, and is diminished indefinitely.

The forces acting across the surface separating A and B will,

in general, make different angles with the surface at the different

points of it. Similarly, the pressure which is substituted for the

forces makes different angles with the surface at different points.

The pressure, being a vector quantity, like the force from which it

is derived, may be resolved into components perpendicular to the

surface and in the plane tangent to it. It is best, for the sake of

greater generality in our statements, to consider the tangential

component of pressure as resolved into two components, at right

angles to each other in the tangent plane. These components are

called respectively, the nortnal pressure and the tangential pres-

sures.
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To examine the relations which must hold among the compo-

nents of pressure in different directions at any point within a body

subjected to stress, we consider a small cube described in a body,

and examine the relations among the pressures on its faces neces-

sary to maintain it in equilibrium. We assume that no external

forces act directly on the matter contained in the cube. In gen-

eral, each of the faces of the cube will be subjected to a stress.

This stress may be resolved into a normal component and two tan-

gential components taken parallel with the sides of the face to which

the stress is applied. Culling the nornuil components acting on two

opposite faces P and P',those acting on another pair of opposite faces

Q and Q', and those acting on the third pair R and 1\', we may ex-

press the conditions that the centre of mass of the cube will not be

displaced by the equations P— P', Q — Q', R ^ R'.

Since the forces which act upon the cube are in equilibrium,

and since their normal components maintain the equilibrium of the

centre of mass, their tangential components give rise to couples,

and these couples are also in equilibrium. These couples are ar-

ranged as shown in Fig. 35, for those lying

in the plane of one pair of faces. Since

equilibrium exists, the two couples formed

by the forces S and the forces *S'are equal, _Q_

and therefore S = S', where S and S' may

be used to denote the tangential pressures

on the surfaces of the cube. Similar coup-

les in equilibrium will act on the cube in two

other planes at right angles with this one

so that the whole set of pressures acting on the cube are the three

normal pressures P, Q, R, and the three tangential pressures S, T,

U. It may be shown, by an analytical method that need not be

given, that if a small sphere be described about a point in the body

and the pressures applied to its surfaces examined, there will be

three radii at right angles to each other, at the extremities of which

the pressures are normal to the surface of the sphere. These three

directions are called the ijriiicipal axes of stress.
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The combination of tangential stresses which maintain equilib-

rium may be considered from another point of view. For, if we ex-

amine the triangular prism of which the cross-section is ABD
(Fig. 35), and to which the tangential stresses S and S' are applied,

it appears at once that equilibrium will obtain when a force equal

to the resultant of aS and aS', where a is the area of each of the

square faces of the prism, is applied to the face of which ^i> is the

trace. The area of this face is a V2, and if X represent the pres-

sure on this face, the force applied to it is aXV2. But S equals *S",

and the resultant of aS and aS' is aS V2; whence J:'= S. A similar

pressure acts in the opposite direction upon the face of the similar

prism AOB. These pressures are positive, that is, they are tensions

which tend to separate the parts of the body to which they are ap-

plied. If we compound the tangential stresses m another manner

by taking as the elements of the combination the stresses applied to

the faces AD and A C, it is at once evident that they are equivalent

to a negative pressure S upon the diagonal face CD. A similar pres-

sure acts across the same face toward the other prism CBD.

We may therefore consider the set of stresses constituting the

couples in the plane ACBD as equivalent to a positive pressure or

tension in the direction of one diagonal and a negative pressure in

the direction of the other diagonal. This combination of couples,

or its equivalent tension and pressure, is called a shearing stress.

101. Superposition of Stresses.—Stresses, whether pressures or

tensions, being vector quantities, are compounded like other vector

quantities, and, in particular, when they are in the same line, are

added algebraically.

Suppose a cube so subjected to stress that equal and opposite

pressures, which Ave will assume to be directed outward from the

cube, act on two opposite faces, and that the other faces experience

no stress. Such a stress is called a longitudinal traction. We will

show that this form of stress may be obtained by the combination

of a stress made up of equal tensions acting on each face of the

cube, and of two shearing stresses.

In Fig. 36 let P represent the value of the longitudinal
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traction.

P
3

*tions

It may be considered as made np of three equal trac-

Apply to each of the four other faces of the cube two

opposite stresses, each equal to — . Two of

these pairs of stresses are represented in

the figure. These stresses on the sides of

the cube, being equal and opposite, are

equivalent to no stress. It is evident that

the combination of stresses here described

p
is equivalent to a tension -^ applied to

each face of the cube, to a shearing

p
stress — acting in the plane of the figure, Fig. 36,

and to a shearing stress — acting in the plane at right angles to the

plane of the figure. Thus the longitudinal traction may be resolved

into a tension uniform in all directions and two shearing stresses,

all of the same numerical value.

The uniform tension just employed is an example of a hydro-

static stress. More generally, a hydrostatic stress is a stress which is

normal to any surface element drawn in a body, whatever be its di-

rection. The numerical value of a hydrostatic stress is the same in

whatever direction the surface be drawn to which it is applied. To

show this, we examine the relations of the pressures on the faces of

the tetrahedron formed bypassing a plane through the.points ABC
taken infinitely near the point (Fig. 37) on lines

drawn through that point in the directions of the

three coordinate axes. Let /, in, n represent the di-

rection cosines of the normal to the face ABC, and

let a represent the area of this face; the areas of the

other faces are respectively equal to al, am, an. Let

X, P, Q, R represent the pressures on the faces in

the order mentioned : the forces acting on the faces

I

are then Xa, Pal, Qam, and Jia7i. By the definition of hydrostatic
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stress these forces are normal to their respective faces, and tlie

tetrahedron will be in equilibrium when the components of the

force X are equal respectively to the forces applied to the other

faces ; that is, when Xa A = P. al, Xa .m — Q. am, Xa .n = E . an
;

that is, when X = P = Q =E.
It has been stated that the stresses in a body may always be rep-

resented by the combination of three longitudinal stresses at right

angles to each other. Since a longitudinal stress may be replaced

by a hydrostatic stress and two shearing stresses, it follows that any

stress in a body may be replaced by a hydrostatic stress and a

proper combination of shearing stresses.

102. Relations of Stress and Strain. Modulus of Elasticity.—
When a body serves as the medium for the transmission of stress

it experiences a deformation or strain, the type of strain depending

upon the stress applied. The resistance offered by a body to de-

formation is ascribed to its elasticity. If the body be deformed in

a definite way by a given stress, and recover its original condition

when the stress is removed, it is said to be perfectly elastic. If the

deformation of a body do not exceed the limits within which it may

be considered perfectly elastic, it may be proved by experiment that

the strain is of the same type as the stress and proportional to it.

This law was proved for certain cases by Hooke, and is known as

Hooke's Laio.

The ratio of the stress applied to the strain experienced by a

unit of the body measures the elasticity of the substance com-

posing the body. This ratio is called the modulus of elasticity of

the body, or simply its elasticity; its reciprocal is the coefficient of

elasticity. It is of course understood that the stress and strain

are of the same type. Thus, for example, the voluminal elasticity

of a fluid is measured by the ratio of any small change of pressure

to the corresponding change of unit volume. The tractional elas-

ticity of a wire stretched by a weight is measured by the ratio of

any small change in the stretching weight to the corresponding

change in unit length.

Since all stresses may be reduced to hydrostatic stresses and
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shearing stresses, and all strains to dilatations and shearing strains,

the knowledge of the voluminal elasticity and of the elasticity ex-

hibited during a shear, or the rigidity, is sufficient to describe the

elasticity of the body under any form of stress.

103. Voluminal Elasticity.—Let a body of volume V be sub-

jected to a uniform hydrostatic stress P, by which it undergoes a

change of volume, given by v. From Hooke's law we know that,

at least within certain limits of stress and consequent deformation,

V and P are proportional. The dilatation or the change of the unit

V
of volume is -y. The modulus of elasticity in this case, or the vol-

P V
uminal elasticity of the body, is therefore — . The voluminal

elasticity is denoted by h.

104. Rigidity.—Let S be one of the tangential stresses which

constitute a simple shearing stress, that is, a shearing stress of

which the elements act in one plane; then the deformation pro-

duced is a simple shear. The modulus of rigidity is measured by

the ratio of the shearing stress to the amount of the shear (§ 98);

it is denoted by n.

The amount of the shear may be defined in a more convenient

form as follows: Let us suppose that the rhombus ACDB (Fig. 38)

has been strained by a simple shear into the ,•^ ^
. CO D E D

rhombus A CD'B, and that this deformation

is infinitesimal. The elongation of the diag-

onal AD is then FD'. The triangle DFD'
is then an isosecles triangle, since the angle

DFD' is a right angle, and the angle DD'F
differs from half a right angle only by an in-

finitesimal. Therefore FD' V~2 = DD'. Now ^'^- ^^

AD, being the diagonal of a rhombus that is only infinitesimally dif-

ferent from a square, is equal to BF V2; and therefore the amount of

the shear, or vttt ' 6C[^^^^s
'^

, that is, equals twice the elonga-
liB AJJ

tion along the axis of the shear.
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The modulus of rigidity is therefore equal to half the tangen-

tial stress S divided by the elongation of unit length along the axis

of the shear.

105. Modulus of Voluminal Elasticity of Gases.—Within cer-

tain limits of temperature and pressure, the volume of any gas, at

constant temperature, is inversely as the pressure upon it. This

law was discovered by Boyle in 1662, and was afterwards fully

proved by Mariotte. It is known, from its discoverer, as Boyle's

Imo.

Thus, if p and p' represent different pressures, v and v' the cor-

responding volumes of any gas at constant temperature, then

pv = p'v\ (45)

Now, p'v' is a constant which may be determined by choosing any

jiressure 7/ and the corresponding volume ?>' as standards: hence

we may say, that, at any given temperature, the product pv is a

constant. The limitations to this law will be noticed later.

Let j^ and v represent the pressure and volume of a unit mass

of gas at a constant temperature. A small increase Jjo of the pres-

sure will cause a diminution of volume /Iv; by Boyle's law we have

the relation pv =: (p -\- Ap){v — Av) =pv + vAp — pAv — ApJv.

We may assume that the increment Jp is very small, in which case

Av will also be small; we may therefore, in the limit, neglect the

product of these increments and obtain —- = — . Now— is the^ Av V V

An
change of unit volume, and therefore —^v = p is the modulus of* ' Av ^

voluminal elasticity. The elasticity of a gas at constant tempera-

ture is therefore equal to its pressure.

106. Modulus of Voluminal Elasticity of Liquids.—When liquids

are subjected to voluminal compression, it is found that their

modulus of elasticity is much greater than that of gases. For at

least a limited range of pressures the modulus of elasticity of any

one liquid is constant, the change in volume being proportional to
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the change in the pressure. The modulus differs for different

liquids.

The instrument used to determine the modulus of elasticity of

liquids is called a piezometer. The first form in which the instru-

ment was devised by Oersted, while not the best for accurate deter-

minations, may yet serve as a type.

The liquid to be compressed is contained in a thin glass flask,

the neck of which is a tube with a capillary bore. The flask is im-

mersed in water contained in a strong glass vessel fltted with a

water-tight metal cap, through which moves a piston. By the

piston, pressure may be applied to the water, and through it to the

flask and to the liquid contained in it.

The end of the neck of the small flask is inserted downwards

under the surface of a quantity of mercury which lies at the bottom

of the stout vessel. The pressure is registered by means of a com-

pressed-air manometer (§ 124) also inserted in the vessel. When
the apparatus is arranged, and the piston depressed, a rise of the

mercury in the neck of the flask occurs, which indicates that the

water has been compressed.

An error may arise in the use of this form of apparatus from

the change in the capacity of the flask, due to the pressure. Oer-

sted assumed, since the pressure on the interior and exterior walls

was the same, that no change would occur. Poisson, however,

showed that such a change Avould occur, and gave a formula by

which it might be calculated. By introducing the proper correc-

tions, Oersted's piezometer may be used with success.

A different form of the instrument, employed by Regnault, is,

however, to be preferred. In it, by an arrangement of stopcocks,

it is possible to apply the pressure upon either the interior or ex-

terior wall of the flask separately, or upon'both together, and in

this way to experimentally determine the correction to be applied

for the change in the capacity of the flask.

It is to be noted that the modulus of elasticity for liquids is so

great, that, within the ordinary range of pressures, they may be
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regarded as incompressible. Thus, for example, the alteration of

volume for sea-water by the addition of the pressure of one atmos-

phere is 0.000044. The change in volume, then, at a depth in the

ocean of one kilometre, where the pressure is about 99.3 atmos-

pheres, is 0.00437, or about -^^-^ of the whole volume.

107. Modulus of Voluminal Elasticity of Solids.—The modulus

of voluminal elasticity of solids is believed to be generally greater

than that of liquids, though no reliable experimental results have

yet been obtained.

The modulus, as with liquids, differs for different bodies.

108. Elasticity of Traction.—The first experimental determina-

tions of the relations between the elongation of a solid and a tension

acting on it were made by Hooke in 1678. Experimenting with

wires of different materials, he found that for small tractions the

elongation is proportional to the stress. It Avas afterwards found

that this law is true for small compressions.

The ratio of the stretching weight to the elongation of unit

length of a wire of unit section is the modulus of tractional elas-

ticity. For different wires it is found that the elongation is pro-

portional to the length of the wires and inversely to their section.

The formula embodying these facts is

e = -, (40)
pis

where e is the elongation, I the length, s the section of the wire, *S^

the stretching weight, and ju the modulus of tractional elasticity.

The behavior of a body under traction may be examined in the

following way: We assume for convenience that the traction is

applied to the upper and lower faces of a cube with sides of unit

length. As already shown, the traction P is equivalent to a hydro-

P
static tension — and two shearing stresses equivalent to two tensions

O

P P— in the direction of the traction, and a pressure — in each of two
3 o

directions at right angles to this and to each other. The hydro-
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P
Static tension causes an increase of volume given by ^. This is

equivalent to an elongation of each side of the cube equal to -—r-,

since the changes of form are supposed infinitesimal (§ 98). One

of the shears produces an elongation between the upper and lower

p
faces equal to ;;;— , and a negative elongation or contraction equal to

p
~— between one pair of the other faces. The other shear produces

an equal elongation between the upper and lower faces and an equal

contraction between the remaining pair of faces. The total elonga-

tion between the uj)per and lower faces is therefore P (—r + 5—)

5

and the total contraction between either pair of the other faces is

given by p(l-^-g^).

Since the two shears involved in the longitudinal traction cause

no change of volume, the change of volume experienced by the

body is due to the hydrostatic tension alone. It is therefore equal

P
to -J-. A body under longitudinal traction will therefore experi-

ence an increase of volume unless it is practically incompress-

P
ible, that is, unless the ratio -,- is negligible.

109. Elasticity of Torsion.—AVhen a cylindrical wire, clamped

at one end, is subjected at the other to the action of a couple, the

axis of which is the axis of the cylinder, it is found that the amount

of torsion, measured by the angle of displacement of the arm of

the couple, is proportional to the moment of the couple, to the

length of the wire, and inversely to the fourth power of its radius.

It also depends on the modulus of rigidity. The relation among

tliese magnitudes may be shown to be represented by the formula

r =—., (47)
Tinr
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where r is the amount of torsion, I the length, r the radius of the

wire, C the moment of couple, and n the modulus of rigidity. No
general formula can be found for wires with sections of variable

form.

The laws of torsion in wires were first investigated by Coulomb,

who applied them in the construction of an apparatus called the

torsion balance, of great value for the measurement of small forces.

The apparatus consists essentially of a small cylindrical wire,,

suspended firmly from the centre of a disk, upon whi«h is cut a

graduated circle. By the rotation of this disk any required amount

of torsion may be given to the wire. On the other extremity of

the wire is fixed, horizontally, a bar, to the ends of which the

forces constituting the couple are applied. Arrangements are also

made by which the angular deviation of this bar from the point of

equilibrium may be determined. When forces are applied to the

bar, it may be brought back to its former point of equilibrium by

rotation of the upper disk. Let represent the moment of torsion;

that is, the couple which, acting on an arm of unit length, will give

the wire an amount of torsion equal to a radian, C the moment of

couple acting on the bar, r the amount of torsion measured in

radians; then C= 0r. We may find the value of in absolute

measure by a method of oscillations analogous to that used to

determine g with the pendulum.

A body of which the moment of inertia can be determined by

calculation is substituted for the bar, and the time T oi one of its

oscillations about the position of equilibrium observed.

Since the amount of torsion is proportional to the moment of

couple, the oscillating body has a simple harmonic motion.

The angular acceleration a of the oscillating body is given by

the equation C = Gt = la (§ 39). Now, since every point in the

body has a simple harmonic motion, in which its displacement is

proportional to its acceleration, and since its displacement and ac-

celeration are proportional respectively to the angular displacement

r and the angular acceleration a, we may set a = -^r. Making
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4:71''

I

this substitution, we obtain = -^, or

= ^, (48)

if we observe the single instead of the double oscillation.

The torsion balance may therefore be used to measure forces in

absolute units.

If the value of just obtained be substituted in equation (47),

we obtain

2QI 27tll
n =

Ttr' rH^
(49)

Since all these magnitudes may be expressed in absolute units, we
may obtain the value of n, the rigidity, by observing the oscilla-

tions of a wire of known dimensions, carrying a body of which the

moment of inertia is known.

110. Elasticity of Flexure.—If a rectangular bar be clamped by

one end, and acted on at the other by a force normal to one of its

sides, It will be bent or flexed. The amount of flexure—that is, the

amount of displacement of the extremity of the bar from its origi-

nal position—is found to be proportional to the force, to the cube

of the length of the bar, and inversely to its breadth, to the cube of

its thickness, and to the modulus of tractional elasticity. The

formula expressing the relations of these magnitudes is

4FP

111. Limits of Elasticity. — The theoretical deductions and

empirical formulas which we have hitherto been considering are

strictly applicable only to perfectly elastic bodies. It is found that

the voluminal elasticity of fluids is perfect, and that within certain

limits of deformation, varying for dilferent bodies, we may consider

both the voluminal elasticity and the rigidity of solids to be prac-

tically perfect for every kind of strain. If the strain be carried

beyond the limits of perfect elasticity, the body is permanently de-

formed. This permanent deformation is called set.
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Upon these facts we may base a distinction between solids and

fluids : a solid requires the stress acting on it to exceed a certain

limit before any permanent set occurs, and it makes no difference

how long the stress acts, provided it lies within the limit. Kjiiiid,

an the contrary, may be permanently deformed by the slightest

shearing stress, provided time enough be allowed for the movement

to take place. The fundamental difference lies in the fact that

fluids have no rigidity and offer no resistance to shearing stress

other than that due to internal friction or viscosity.

A solid, if it be deformed by a slight stress, is soft; if only by

a great stress, is hard or rigid. A fluid, if deformed quickly by

any stress, is mobile ; if slowly, is viscous.

It must not be understood, however, that the behavior of elastic

solids under stress is entirely independent of time. If, for example,

a steel wire be stretched by a weight which is nearly, but not quite,

sufficient to produce an immediate set, it is found that, after some

time has elapsed, the wire acquires a permanent set. If, on the other

hand, a weight be put upon the wire somewhat less than is required

to break it, by allowing intervals of time to elapse between the suc-

cessive additions of small weights, the total weight supported by

the wire may be raised considerably above the hreaking-iveight. If

the weight stretching the wire be removed, the return to its origi-

nal form is not immediate, but gradual. If the wire carrying the

weight be twisted, and the weight set oscillating by the torsion of

the wire, it is found that the oscillations die away faster than can

be explained by any imperfections in the elasticity of the wire.

These and similar phenomena are manifestly dependent upon

peculiarities of molecular arrangement and motion. The last two

are exhibitions of the so-called viscosity of solids. The molecules

of solids, just as those of liquids, move among themselves, but with

a certain amount of frictional resistance. This resistance causes

the external work done by the body to be diminished, and the in-

ternal work done among the molecules becomes transformed into

heat.



CHAPTER IV.

MECHANICS OF FLUIDS.

112. Pascal's Law.—A perfect fluid may be defined as a body

which offers no resistance to shearing-stress. No actual fluids are

perfect. Even those which approximate that condition most nearly,

offer resistance to shearing-stress, due to their viscosity. With most,

however, a very short time only is needed for this resistance to

vanish; and all mobile fluids at rest can be dealt with as if they

were perfect, in determining the conditions of equilibrium. If

they are in motion, their viscosity becomes a more important factor.

As a consequence of this deflnitiou of a perfect fluid follows

a most important deduction. In a fluid in equilibrium, not acted

on by any outside forces except the pressure of the containing

vessel, the pressure at every point and in every direction is the

same. This law was flrst stated by Pascal, and is known as

Pascal's law.

The truth of Pascal's law appears at once from what has been

proved about hydrostatic stress (§ 101). For since the fluid offers

no resistance to a shearing stress, the only stress within it on any

surface must be perpendicular to that surface, and hence has the

same value in all directions at a point. To compare the pressure

at any two points we draw a line joining them, and, with it as an

axis, describe a right cylinder with an infinitesimal radius, and

through the two points take cross-sections normal to the axis.

Then the pressures on the cylindrical surface being everywhere nor-

mal to it, have no tendency to move it in the direction of its axis,

and since it is in equilibrium, the pressures on its end surfaces must

be equal.

125
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If a vessel filled with a fluid be fitted with a number of pis-

tons of equal area A, and a force Ap be applied to one of them,

acting inwards, a pressure Ap will act outwards upon the face of

each of the pistons. These pressures may be balanced by a force

applied to each piston. If n -\- 1 be the number of the pistons,

the outward pressure on n of them, caused by the force applied to

one, is npA.

The fluid will be in equilibrium when a pressure p is acting on

unit area of each piston. It is plain that the same reasoning will

hold if the area of one of the pistons be A and of another be nA,

A pressure Ap on the one Avill balance a pressure of 7iAp on the

other. This principle governs the action of the hydrostatic

press.

113. Relations of Fluid Pressures due to Outside Forces.—If

forces, such as gravitation, act on the mass of a fluid from with-

out, Pascal's law no longer holds true. For, suppose the fluid to

be acted on by gravity, and consider a cylinder of the fluid, the

axis of which is vertical, and which is terminated by two normal

cross-sections. The pressure on the cylindrical surface, being

everywhere normal to it, has no effect in sustaining the weight of

the cylinder. The weight is sustained wholly by the pressure on

the lower cross-section, and must be equal to the difference be-

tween that pressure and the pressure on the upper cross-section.

As the height of the cylinder may be made as small as we please,

it appears that, in the limit, the pressure on the two cross-sections

only differs by an infinitesimal; that is, the pressure in a fluid

acted on by outside forces is the same at one point for all direc-

tions, but varies continuously for different points.

If, in a fluid acted on by gravity, a surface be considered which

is everywhere perpendicular to the lines of gravitational force, the

pressure at every point in this surface is the same. To show this

we draw a line in the surface between any two points of it, and

construct around it as axis a cylinder terminated at the chosen

points by end-surfaces drawn normal to the axis. The pressures

on the cylindrical surface, being normal to it, occasion resultant
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forces which are everywhere in the opposite direction to the gravi-

tational force and make equilibrium with it. The cylinder being

in equilibrium, by hypothesis, the forces on the end surfaces, which

alone can produce movement in the direction of the axis, must also

be equal, and the pressures on those surfaces are therefore equal.

Surfaces of equal pressure are equipotential surfaces; in small

masses of liquid they are horizontal planes; in larger masses, such

as the oceans, they are curved so as to be always at right angles to

the divergent lines of force.

The surface of separation between two fluids of different den-

sities in a field in which the lines of gravitational force may be

supposed parallel is a horizontal plane. For, take two points,

a and c, in the same horizontal plane in the lower fluid, and from

them draw equal vertical lines terminated at the points b and d,

respectively, in the upper fluid. The horizontal planes containing

a and c, h and d, respectively, are surfaces of equal pressure. Now
with these lines as axes construct right cylinders with the same small

radius and terminated by equal cross-sections in the upper and

lower horizontal planes. The pressures on the cylindrical surfaces,

being everywhere normal to them, will have no effect in sustaining

the weights of these cylinders. Their weights are sustained by the

difference in pressure between the upper and lower cross-sections,

and, since these cross-sections are in surfaces of equal pressure, the

difference of pressure is the same for both cylinders, and the

weights of the cylinders are therefore equal. By the construction

the cylinders contain portions of both the fluids, and since these

fluids are of different densities the weights in the cylinders can

only be the same when each cylinder contains the same quantity of

each fluid, that is, when the surface of separation between the

fluids is parallel with the planes which contain the end cross-sec-

tions. The surface of separation is therefore also a horizontal

plane. This theorem may be extended so as to prove that the sur-

face of separation between two fluids in any gravitational field is at

right angles to the lines of gravitational force, or is an equipoten-

tial surface. «
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In an incompressible fluid or liquid the pressure at any point

is proportional to its depth below the surface. For, the weight of

a column of the liquid contained in a vertical cylinder, terminated

by the free surface and by a horizontal cross-section containing the

point, is manifestly proportional to the height of the cylinder; and

this weight is sustained by the pressure on the lower end cross-sec-

tion, which must therefore be proportional to the height of the

cylinder.

If the height of the cylinder be h and the area of its cross-section

s, and if the density of the liquid be D, the weight of the column is

-Dshg. If p represent the pressure at the base, the upward force

on the base i&ps; so that we have

p = Dhg. (51)

From the foregoing principles it is evident that a liquid con-

tained in two communicating vessels of any shape whatever, will

stand at the same level in both. If, however, a liquid like mercury

be contained in the vessels, and if another liquid, like water, which

does not mix with it, be poured into one of the vessels, the surface

of separation will sink, and the free surface in the other vessel will

rise to a certain point. If a horizontal plane be passed through

the surface of separation between the two liquids, the pressures at

all points of it within the liquids, in both vessels, will be the same.

These pressures, which are due to the superincnmbent columns of

liquid in the two vessels, are given by Dgh and D'gli', and since

they are equal, we have Dh = D'h'; that is, the heights of the two

columns above the horizontal plane passing through the surface of

separation are inversely as the densities of the liquids.

There is nothing in this demonstration which requires us to

consider both the columns as liquid : one of them may be of any

fluid, and equilibrium will obtain when the pressure exerted by

that fluid on the surface of separation is equal to the pressure ex-

erted by the column of liquid in the other vessel on the horizontal

plane containing the surface of separation; so that, if we know the
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density and the height of the liquid column, the pressure exerted

by tlie fluid may be measured.

114. The Barometer.—The instrument which illustrates these

principles, and is also of great importance in many physical inves-

tigations, is the barometer. It was invented by Torricelli, a pupil

of Galileo. The fact that water can be raised in a tube in which a

complete or partial vacuum has been made was known to the

ancients, and was explained by them, and by the schoolmen after

them, by the maxim that " Nature abhors a vacuum." They must

have been familiar with the action of j^nmps, for the force-pump, a

far more complicated instrument, was invented by Ctesibius of

Alexandria, who lived during the second century B.C. It was not

until the time of Galileo, however, that the first recorded observa-

tions were made that the column of water in a pump rises only to a

height of about 10.5 metres. Galileo failed to give the true ex-

planation of this fact. He had, however, taught that the air has

weight; and his pupil Torricelli, using that principle, was more

successful.

He showed, that if a glass tube sealed at one end, over 7G0

millimetres long, were filled with mercury, the open end stopped

with the finger, the tube inverted, and the unsealed end plunged

beneath a surface of mercury in a basin, on withdrawing the finger

the mercury in the tube sank until its top surface was about 760

millimetres above the surface of the mercury in the basin. The

specific gravity of the mercury being 13.59, the pressure of the

mercury column and that of the water column in the pump agreed

so nearly as to show that the maintenance of the columns in both

cases was due to a common cause,—the pressure of the atmosphere.

This conclusion was subsequently verified and established by Pas-

cal, who requested a friend to observe the height of the mercury

column at the bottom and at the top of a mountain. On making

the observation, the height of the column at the top was found to

be less than at the bottom. Pascal himself afterwards observed a

slight though distinct diminution in the height of the column on

ascending the tower of St. Jacques de la Boucherie in Paris,
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The form of barometer first made by Torricelli is still often

used, especially when the instnunent is stationary, and is intended

to be one of precision. In the finest instruments of this class a

tube is used which is three or four centimetres in diameter, so as to

avoid the correction for capillarity. A screw of known length,

pointed at both ends, is arranged so as to move vertically above the

surface of the mercury in the cistern. When an observation is to

be made, the screw is moved until its lower point just touches

the surface. The distance between its upper point and the top of

the column is measured by means of a cathetometer; and this dis-

tance, added to the length of the screw, gives the height of the

column.

Other forms of the instrument are used, most of which are

arranged with reference to convenient transportability. Various

contrivances are added by means of which the column is made to

move an index, and thus record the pressure on a graduated scale.

All these forms are only modifications of Torricelli's original in-

strument.

The pressure indicated by the barometer is usually stated in

terms of the height of the column. Mercury being practically in-

compressible, this height is manifestly proportional to the pressure

at any point in the surface of the mercury in the cistern. The

pressure on any given area in that surface can be calculated if we

know the value of g at the place and the specific gravity of mer-

cury, as well as the height of the column. The standard baro-

metric pressure, represented by 760 millimetres of mercury, is a

pressure of 1.033 kilograms on every square centimetre. It is

called a pressure of one atmosphere ; and pressures are often meas-

ured- by atmospheres.

In the preparation of an accurate barometer it is necessary that

all air be removed from the mercury; otherwise it will collect in

the upper part of the tube, by its pressure lower the top of the

column, aTid make the barometer read too low. The air is removed

by partially filling the tube with mercury, which is then boiled in

the tube, gradually adding small quantities of mercury, and boiling
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after each addition, until the tube is filled. The boiling must not

be carried too far; for there is danger, in this process, of expelling

the air so completely that the mercury will adhere to the sides of

the tube, and will not move freely. For rough work the tube may

be filled with cold mercury, and the air removed by gently tapping

the tube, so inclining it that the small bubbles of air which form

can coalesce, and finally be set free at the surface of the mercury.

115. Archimedes' Principle.—If a solid be immersed in a fluid,

it loses in weight an amount equal to the weight of the fluid dis-

placed. This law is known, from its discoverer, as Archmiedes'

pruiciple.

The truth of this law will appear if we consider the space in

the fluid which is afterwards occupied by the solid. The fluid in

this space will be in equilibrium, and the upward pressure on it

must exceed the downward pressure by an amount equal to its

weight. The resultant of the pressure acts through the centre of

gravity of the assumed portion of fluid, otherwise equilibrium

would not exist. If, now, the solid occupy the space, the differ-

ence between the upward and the downward pressures on it must

still be the same as before,—namely, the weight of the fluid dis-

placed by the solid ; that is, the solid loses in apparent weight an

amount equal to the weight of the displaced fluid.

116. Floating Bodies.
—"When the solid floats on the fluid, the

weight of the solid is balanced by the upward pressure. In order

that the solid shall be in equilibrium, these forces must act in the

same line. The resultant of the pressure, which lies in the vertical

line passing through the centre of gravity of the displaced fluid,

must pass through the centre of gravity of the solid. Draw the

line in the solid joining these two centres, and call it the axis of

the solid. The equilibrium is stable when, for any infinitesimal

inclination of the axis from the vertical, the vertical line of upward

pressure cuts the axis in a point above the centre of gravity of the

solid. This point is called the metacentre.

117. Specific Gravity.—Archimedes' principle is used to deter-

mine the specific gravity of bodies. The sjiecific gravity of a body
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is defined as the ratio of its weight to the weight of an equal

volume of pure water at a standard temperature.

The specific gravity of a solid that is not acted on by water

may be determined by means of the hydrostatic balance. The

body under examination, if it will sink in water, is suspended from

one scale-pan of a balance by a fine thread, and is weighed. It is

then immersed in water, and is weighed again. The difference

between the weights in air and in water is the weight of the dis-

placed water, and the ratio of the weight of the body to the weight

of the displaced water is the specific gravity of the body.

If the body will not sink in water, a sinker of unknown weight

and specific gravity is suspended from the balance, and counter-

poised in water. Then the body, the specific gravity of which is

sought, is attached to the sinker, and it is found that the equilib-

rium is destroyed. To restore it, weights must be added to the

same side. These, being added to the weight of the body, repre-

sent the weight of the water displaced.

The specific gravity of a liquid is obtained by first balancing in

air a mass of some solid, such as platinum or glass, that is not acted

on chemically by the liquid, and then immersing the mass succes-

sively in the liquid to be tested and in water. The ratio of the

weights which must be used to restore equilibrium in each case is

the specific gravity of the liquid.

The specific gravity of a liquid may also be found by means of

the specific gravity bottle. This is a bottle fitted with a ground-

glass stopper. The weight of the water which completely fills it

is determined once for all, AVhen the specific gravity of any liquid

is desired, the bottle is filled with the liquid, and the weight of the

liquid determined. The ratio of this weight to the weight of an

equal volume of water is the specific gravity of the liquid.

The same bottle may be used to determine the specific gravity

of any solid which cannot be obtained in continuous masses, but is

friable or granular. A weighed amount of the solid is introduced

into the bottle, which is then filled with water, and the weight of

the joint contents of the bottle determined. The difference
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between the last weight and the sum of the weights of the solid

and of the water filling the bottle is the weight of the water dis-

placed by the solid. The ratio of the weight of the solid to the

weight thus obtained is the specific gravity of the solid.

The specific gravity of a liquid may also be obtained by means

of hydrometers. These are of two kinds—the hydrometers of con-

stant 'Weight and those of constant volume. The first consists

usually of a glass bulb surmounted by a cylindrical stem. The

bulb is weighted, so as to sink in pure water to some definite point

on the stem. This point is taken as the zero; and, by successive

trials with different liquids of known specific gravity, points are

found on the stem to which tlie hydrometer sinks in these liquids.

^Y ith these as a basis, the divisions of the scale are determined and

cut on the stem.

The hydrometer of constant volume consists of a bulb weighted

so as to stand upright in the liquid, bearing on the top of a narrow

stem a small pan, in which weights may be placed. The weight of

the hydrometer being known, it is immersed in water; and, by the

addition of weights in the pan, a fixed point on the stem is brought

to coincide with the surface of the water. The instrument is then

transferred to the liquid to be tested, and the weights in the pan

changed until the fixed point again comes to the surface of the

liquid. The sum of the weight of the hydrometer and the weights

added in each case gives he weight of equal volumes of water and

of the liquid, from which the specific gravity sought is easily

obtained.

The specific gravity of gases is often referred to air or to hydro-

gen instead of water. It is best determined by filling a large glass

flask, of known weight, with the gas, the specific gravity of which

is to be obtained, and weighing it, noting the temperature and the

pressure of the gas in the flask. The weight of the gas at the

standard temperature and pressure is then calculated, and the ratio

of this weight to the weight of the same volume of the standard

gas is the specific gravity desired. The weight of the flask used in

t"his experiment must be very exactly determined. The presence
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of the air vitiates all weighings performed in it, by diminishing

the true weight of the body to be weighed and of the weights

employed, by an amount proportional to their volumes. The con-

sequent error is avoided either by performing the weighings in a

vacuum produced by the air-pump, or by correcting the apparent

weight in air to the true weight. Knowing the specific gravity of

the weights and of the body to be weighed, and the specific gravity

of air, this can easily be done.

118. Motions of Fluids.—If the parts of the fluid be moving

relatively to each other or to its bounding-surface, the circum-

stances of the motion can be determined only by making limitations

which are not actually found in Nature. There thus arise certain

definitions to which we assume that the fluid under consideration

conforms.

The motion of a fluid is said to be umform when each element

of it has the same velocity at all points of its path. The motion is

steady when, at any one point, the velocity and direction of motion

of the elements successively arriving at that point remain the same

for each element. If either the velocity or direction of motion

change for successive elements, the motion is said to be varying.

The motion is further said to be rotational or irrotational accord-

ing as the elements of the fluid have or have not an angular veloc-

ity about their axes.

In all discussions of the motions of fluids a condition is sup-

posed to hold, called the condition of contimtity. It is assumed

that, in any volume selected in the fluid, the change of density in

that volume depends solely on the difference between the amounts

of fluid flowing into and out of that volume. In an incompressi-

ble fluid, or liquid, if the influx be reckoned plus and the efflux

minus, we have, letting Q represent the amount of the liquid passing

through the boundary in any one direction, :2Q = 0. The results

obtained in the discussion of fluid motions must all be interpreted

consistently with this condition. If the motion be such that the

fluid breaks up into discontinuous parts, any results obtained by

hydrodynaraical considerations no longer hold true.
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If we consider any stream of incompressible fluid, of which the

cross-sections at two points where the velocities of the elements are

v^ and v^ have respectively the areas J, and A^, we can deduce at

once from the condition of continuity

A.v, A,v^. (53)

Fig. 39.

I

119. Velocity of Efflux.—We shall now apply this principle to

discover the velocity of efflux of a liquid from an orifice in the walls

of a vessel.

Consider any small portion of the liquid,

bounded by stream lines, which we may call

a filament. Kepresent the velocity of the

filament at B (Fig. 39) by v, , and at C by v,

and the areas of the cross-sections of the fila-

ment at the same points by Ai and A. We
have then, as above, A^v^ = Av. We assume

that the flow has been established. for a time

sufficiently long for the motion to become steady. The energy of

the mass contained in the filament between B and C is, therefore,

constant. Let I", represent tlie potential or the potential energy

of unit mass at B due to gravity, V the potential at C, and d the

density of the liquid. The mass that enters at B in a unit of

time or the rate at which mass enters at B is dA^v^. The rate at

which mass goes out at C is the equal quantity dAv. The energy

entering at B is dA^v^{^v^^ + ^i)j the energy passing out at 6' is

dAv{lv-' + V).

If the pressures at B and C on unit areas be expressed by ^9,

and p, the rate at which work is done at B on the entering mass

by the pressure p^ is p.A^v.., and at C on the outgoing mass is ^j^y.

This may be seen by considering the cross-section of the filament

at C. The pressure p acting on each unit of area of that cross-

section is equivalent to a force pA, and v is the rate at which the

cross-section moves forward, so that pAv is the rate at which the

pressure does work. The energy within the filament remaining

constant, the incoming must equal the outgoing energy; therefore
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pAv + dAv{^v'^ -\- V) = PiA^v^ + (lA^v^dv^^ + V^), whence, since

A^v^ = Av, we have | + |y= + F =
^l^
+ ^?>,'+ F,.

By using again the relation A^v^ = Av, this equation becomes

iv^[l -£,)=( F, - F ) + ^^^. (53)

To apply equation (53) to the case of a liquid flowing freely into

air from an orifice at C, we observe that the difference of potential

( V^ ~y) equals the work done in carrying a gram from Cto j5 or

equals g{h — AJ, where h represents the height of the surface above

C, and /i, that of the surface above B. Further we have p^ = 2^^

+ dgli^, where ;;„ is the atmospheric pressure. At the orifice j)

I A' \

equals Pa- We have then Iv'il — —
j
= g{Ji — h,) -{- (jh^ — gli,

whence v"^ = —^-^^ . If, now, A becomes indefinitely small as

compared with yl, , in the limit the velocity at C becomes

V =- i/2gh ; (54)

that is, the velocity of efflux of a small stream issuing from an ori-

fice in the wall of a vessel is independent of the density of the

liquid, and is equal to the velocity which a body would acquire in

falling freely through a distance equal to that between the surface

of the liquid and the orifice.

This theorem was first given by Torricelli from considerations

based on experiment, and is known as Torricelli^s theorem. Its

demonstration is due to Daniel Bernoulli.

We may apply the general equation to the case of the efflux of a

liquid through a siplion. A siphon is a bent tube which is used to

convey a liquid by its own weight over a barrier. One end of the

siphon is immersed in the liquid, and the discharging end, which

must be below the level of the liquid, opens on the other side of
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the barrier. To set the siphon in operation it must be first filled

with the liquid, after which a steady flow is maintained.

In this case, as before, we may set -— = 0, v^ = 0, p and p^

both =Pa, and ( F, — V) = gl, where I is the distance between

the surface level and the discharging orifice. The velocity be-

comes V — V2gL The siphon, therefore, discharges more rapidly

the greater the distance between the surface level and the orifice.

It is manifest that the height of the bend in the tube cannot be

greater than that at which atmospheric pressure would support the

liquid.

The flow of a liquid into the vacuum formed in the tube of an

ordinary pump may also be discussed by the same equation. The

jnimp consists essentially of a tube, fitted near the bottom with a

partition, in which is a valve opening upwards. In the tube slides

a tightly fitting piston, in which is a valve, also opening upwards.

The piston is first driven down to the partition in the tube, and

the enclosed air escapes tlirough the valve in the piston. AVhen

the piston is raised, the liquid in which the lower end of the tube

is immersed passes through the valve in the partition, rises in the

tube and fills the space left behind the piston. When the piston

is again lowered, the space above it is filled with the liquid, which

is lifted out of the tube at the next up-stroke.

To determine the velocity of the liquid following the piston,

we notice that in this case p^ = p^ and ^j = if the piston move

upward very rapidly, ( F, — V) = — gh, where h is the height of

the top of the liquid column above the free surface in the reser-

voir, and -— again = 0. We then have ^v'' = ^-^ — gh.
A^ Ct

The velocity when h = is v = y -y • When h is such that

dgh = Pa, V = 0, which expresses the condition of equilibrium.

The equation v = y -^ expresses, more generally, the velocity
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of efflux, through a small orifice, of any fluid of density d, from a

region in which it is under a constant pressure pa, into a vacuum.

Torricelli's theorem is shown to be approximately true by al-

lowing liquids to run from an orifice in the side of a vessel, and

measuring the path of the stream. If the theorem be true, this

ought to be a parabola, of which the intersection of the plane of

the stream and of the surface of the liquid is the directrix; for each

portion of the liquid, after it has passed the orifice, will behave as

a solid body, and move in a parabolic path. The equation of this

path is found, as in § 52, to be a;^ = ^ y. Now by Torricelli's

theorem we may substitute for v' its value '2gh, whence x^ -= — 4:hy,

In this equation, since the initial movement of the stream is sup-

posed to be horizontal, the perpendicular line through the orifice

being the axis of the parabola, and the orifice being the origin, li

is the distance from the orifice to the directrix. Experiments of

this kind have been frequently tried, and the results found to

approximate more nearly to the theoretical as various causes of

error were removed.

When, however, we attempt to calculate the amount of liquid

discharged in a given time, there is found to be a wider discre-

pancy between the results of calculation and the observed facts.

Newton first noticed that the diameter of the jet at a short distance

from the orifice is less than that of the orifice. He showed this to

be a consequence of the freedom of motion among the particles in

the vessel. The particles flow from all directions towards the ori-

fice, those moving from the sides necessarily issuing in streams in-

clined towards the axis of the jet. Newton showed that by taking

the diameter of the narrow part of the jet, which is called the

vena contracta, as the diameter of the orifice, the calculated

amount of liquid escaping agreed far more closely with theory.

When the orifice is fitted with a short cylindrical tube, the in-

terference of the different particles of the liquid is in some degree

lessened, and the quantity discharged increases nearly to that re-

quired by theory.
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120. Diminution of Pressure.—The Sprengel air-pump, an im-

portant piece of apparatus to be described hereafter, depends for

its oj^eratiou on the diminution of pressure at

points along the line of a flowing column of

liquid. Let us consider a large reservoir filled

with liquid, which runs from it by a vertical tube

entering the bottom of the reservoir. From

equation (53) the value of p, the pressure at

any point in the tube, is ;; = ^^ + (F, — V)d

— l-dv''[l r-1. The ratio ^, may be set

equal to zero. If li (Fig. 40) represent the Fig. 40.

height of the upper surface above the point in the tube at

which we desire to find the pressure, then {V^— V) = gh. We
then have p = p^-\- dgh — ^dv^. If the tube be always filled with

the liquid, Av = A^v^, where A and A^ represent the areas of the

cross-sections of the tube at the point we are considering and at

the bottom of the tube, and v and v, represent the corresponding

velocities. Further, vj' = 2gh^ if /i„ represent the distance from

the upper surface to the bottom of the tube. We obtain, by sub-

stitution,

p = p^^dg[Jt-^h,j. (55)

If h equal -jh^o) ^^ have ;j = j^^; and if an opening be made in

the wall of the tube, the moving liquid and the air will be in equi-

A ^

librium. If h be less than -tt^^o) the pressure p will be less than

Pa, and air will flow into the tube. Since this inequality exists

when A^ = A,\t follows that, if a liquid flow from a reservoir

down a cylindrical tube, the pressure at any point in the wall of

the tube is less than the atmospheric pressure by an amount equal

to the pressure of a column of the liquid, the height of which is

equal to the distance between the point considered and the bottom

of the tube.
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121. Waves.—"When a disturbance is set up at a point in the free

surface of a liquid, it moves over the surface of the liquid as a

wave or series of waves. Each wave consists of a crest or elevated

portion and a hollow or depressed portion of approximately equal

length, and the distance from a particle at the summit of one

crest to a particle at the summit of the next succeeding crest,

or the distance between particles in successive waves which are

in the same condition of motion, is called a wave length. A line

which is drawn along the crest of any one wave or through the par-

ticles in that wave which are in the same condition of motion, and

which at every point is at right angles to the direction in which the

wave is propagated, may be called the wave front.

The formation of waves is explained by inequalities of hydro-

static pressure arising in the liquid if by any cause one part of it

be elevated above the rest. H. and W. Weber examined the peculi-

arities of waves in water and the motions of the water particles in

them by the aid of a long trough with glass sides; by immersing one

end of a glass tube below the surface, raising a column of water in

it a few centimetres high by suction, and allowing it to fall, they

excited a series of waves which proceeded down the trough and

could be examined through the sides. The motions of the particles

in the wave were studied by scattering through the water small

fragments of amber, which were so nearly of the same specific gravity

as the water that they remained suspended without motion except

during the passage of the wave, and took part in the motion ex-

cited by the wave as if they had been particles of water. It was

found that the wave motion was a form of motion transferred from

one portion to another of the water, and did not involve a displace-

ment of the particles concerned in it,—at least when the successive

waves had the same wave length. In that case—which is the typi-

cal one—the particles in the surface of the water described closed

curves, which were elliptical or circular in form, the diameter of

the circle being equal to the vertical distance between the crest and

the hollow or the height of the wave. In the upper part of the

circle the particle moved in the direction in which the wave was
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moving, in the lower part of the circle in the opposite direction.

The velocity of the wave was found to be dependent on its height

and on the period of oscillation in the wave, and to be independent

of the density of the liquid. The disturbance of the liquid by the

wave is not merely on the surface, but extends to a considerable

depth; as the depth increases the elliptic paths of the particles

approach more and more closely to short horizontal lines.

The theory of these waves is extremely complicated, and has not

yet been satisfactorily worked out; but we can indicate in a general

way their causes and the mode of their propagation. Imagine a

small hillock of water elevated at some print in the surface, and

consider a particle at the base of this hillock; the hydrostatic

pressure arising from the elevated column near it will tend to move

it upward and outward from the centre of the hillock. It will ac-

cordingly begin to move in the upper half of its circular path and

in the direction in which the wave is propagated; the precise form

of its path being determined by the changes of pressure which it

experiences and by its inertia. Since the pressure which sets it in

motioii Avill be different for different heights of the hillock which

gives rise to it, the velocity of the particles, and therefore also

the velocity of the wave, will depend on the height of the wave,

being greater as this is greater; the velocity of the wave is also

greater as the wave length is greater. Since the pressure behind

the particle and the inertia are both proportional to the density of

the liquid, it is evident that the acceleration of the particle will be

the same under similar circumstances, whatever be its density, so

that the velocity of the wave should not depend on the density of

the liquid.

The form of a wave is greatly modified by the character of the

channel in which it moves, on account of the motion of the parti-

cles extending to a considerable depth, and on account of their

viscosity. On the free surface of a large and very deep body of

water the successive waves have the same form; the slope of the

crest is a little steeper than the slope of the hollow, and its length

is less than that of the hollow. As the depth decreases, the slope
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of the front of the crest becomes still steeper because of the re-

straint which then is imposed upon the movement of the particles

in the lower half of their paths, and at last the forward motion in

the crest so much predominates that the wave curls over and breaks.

122. Vortices.—A series of most interesting results has been ob-

tained by Helmholtz, Thomson, and others, from the discussion of

the rotational motions of fluids. Though the proofs are of such a

nature that they cannot be presented here, the results are so im-

portant that they will be briefly stated.

A vortex line is defined as the line which coincides at every

point with the instantaneous axis of rotation of the fluid element

at that point. A vortex filament is any portion of the fluid bounded

by vortex lines.

A vortex is a vortex filament which has " contiguous to it over

its whole boundary irrotationally moving fluid."

The theorems relating to this form of motion, as first proved by

Helmholtz, in 1868, show that,

—

(1) A vortex in a perfect fluid always contains the same fluid

elements, no matter what its motion through the surrounding fluid

may be.

(2) The strength of a vortex, which is the product of its angu-

lar velocity by its cross-section, is constant; therefore the vortex in

an infinite fluid must alwaj^s be a closed curve, which, however,

may be knotted and twisted in any way whatever.

(3) In a finite fluid the vortex may be open, its two ends termi-

nating in the surface of the fluid.

(4) The irrotationally moving fluid around a vortex has a mo-

tion due to its presence, and transmits the influence of the motion

of one vortex to another.

(5) If the vortices considered be infinitely long and rectilinear,

any one of them, if alone in the fiuid, will remain fixed in position.

(6) If two such vortices be present parallel to one another, they

revolve about their common centre of mass.

(7) If the vortices be circular, any one of them, if alone, moves

with a constant velocity along its axis, at right angles to the plane



§ 123] MECHANICS OF FLUIDS. 143

of the circle, in the direction of the motion of the fluid rotating on

the inner surface of the ring.

(8) The fluid encircled by the ring moves along its axis in the

direction of the motion of the ring, and with a greater velocity.

(9) If two circular vortices move along the same axis, one fol-

lowing the other, the one in the rear moves faster, and diminishes

in diameter; the one in advance moves slower, and increases in

diameter. If the strength and size of the two be nearly equal,

the one in the rear overtakes the other, and passes through it.

The two now having changed places, the action is repeated in-

definitely.

(10) If two circular vortices of equal strength move along the

same axis toward one another, the velocities of both gradually de-

crease and their diameters increase. The same result follows if one

such vortex move toward a solid barrier.

The preceding statements apply only to vortices set up in a

perfect fluid. They may, however, be illustrated by experiment.

To produce circular vortices in the air, we use a box which has one

of its ends flexible. A circular opening is cut in the opposite end.

The box is filled with smoke or with finely divided sal-ammoniac,

resulting from the combination of the vapors of ammonia and hy-

drochloric acid. On striking the flexible end of the box smoke-

rings are at once sent out.

The smoke-ring is easily seen to be made up of particles revolv-

ing about a central core in the form of a ring. With such rings

many of the preceding statements may be verified.

An illustration of the open vortex is seen when an oar-blade is

drawn through the water. By making such open vortices, using a

circular disk, many of the observations with the smoke-rings may

be repeated in another form.

123. Air-pumps,—Tlie fact that gases, unlike liquids, are easily

compressed, and obey Boyle's law under ordinary conditions of

temperature and pressure, underlies the construction and operation

of several pieces of apparatus employed in physical investigations.

The most important of these is the air-piwip.
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The working portion of the air-pump is constructed essentially

like the common lifting-pump already described. The valves must

be light and accurately fitted. The vessel from which the air is to

be exhausted is joined to the pump by a tube, the orifice of which

is closed by the valve in the bottom of the cylinder.

A special form of vessel much used in connection with the air-

pump is called the receiver. It is usually a glass cylinder, open at

one end and closed by a hemispherical portion at the other. The

edge of the cylinder at the open end is ground jDerfectly true, so

that all points in it are in the same plane. This ground edge fits

upon a plane surface of roughened brass, or ground glass, called the

jjlute, through which enters the tube which joins the receiver to the

cylinder of the pump. The joint between the receiver and the

plate is made tight by a little oil or vaseline.

The action of the pump is as follows: As the piston is raised,

the pressure on the upper surface of the valve in the cylinder is

diminished, and the air in the vessel expands in accordance with

Boyle's law, lifts the valve, and distributes itself in the cylinder, so

that the pressure at all points in the vessel and the cylinder is tlie

same. The piston is now forced down, the lower valve is closed by

the increased pressure on its upper surface, the valve in the piston

is opened, and the air in the cylinder escapes. At each successive

stroke of the pump this process is repeated, until the pressure of

the remnant of air left in the vessel is no longer sufficient to lift

the valves.

The density of the air left in the vessel after a given number of

strokes is determined, provided there be no leakage, by the relations

of the volumes of the vessel and the cylinder.

Let V represent the volume of the vessel, and C that of the

cylinder Avhen the piston is raised to the full extent of the stroke.

Let d and c?, respectively represent the density of the air in the

vessel before and after one stroke has been made. After one down

and one up stroke have been made, the air which filled the volume

d V
V now fills V 4- C. It follows that ^^ = ^.

, ^ . As this ratio is
a V -\- (J
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constant no matter what density may be considered, it follows that,

if fZ„ represent the density after n strokes,

1 = [rhJ- (««)

As this fraction cannot vanish until n becomes infinite, it is plain

that a perfect vacuum can never, even theoretically, be obtained by

means of the air-pump. If, however, the cylinder be large, the

fraction decreases rapidl}^, and a few strokes are sufficient to bring

the density to such a point that either the pressure is insufficient

to lift the valves, or the leakage through the various joints of the.

pump counterbalances the effect of longer pumping.

In the best air pumps the valves are made to open automati-

FiG. 41.

cally. In Fig. 41 is represented one of the methods by which this

is accomplished. They can then be made heavier and with a larger

surface of contact, so that the leakage is diminished, and the limit

of the useful action of the pump is much extended. With the best

pumps of this sort a pressure of half a millimetre of mercury is

reached.

The Sprengel air-pump depends for its action upon the princi-
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pie, discussed in § 120, that a stream of liquid running down a

cylinder diminishes the pressure upon its walls. In the Sprengel

pump the liquid used is mercury. It runs from a large vessel down
a glass tube, into the wall of which, at a distance from the bottom

of the tube of more than 760 millimetres, enters the tube which

connects with the receiver. The lower end of the vertical tube

dips into mercury, which prevents air from passing up along the

walls of the tube. When the stream of mercury first begins to flow,

the air enters the column from the receiver, in consequence of the

diminished pressure, passes down with the mercury in large bub-

bles, and emerges at the bottom of the tube. As the exhaustion

proceeds, the bubbles become smaller and less frequent, and the

mercury falls in the tube with a sharp, metallic sound. It is evi-

dent that, as in the case of the ordinary air-pump, a perfect vacuum

cannot be secured. There is no leakage, however, in this form of

the air-pump, and a very high degree of exhaustion can be reached.

The Morren or Alvergniat mercury-pump is in principle merely

a common air-pump, in which combinations of stop-cocks are used

instead of valves, and a column of mercury in place of the piston.

Its particular excellence is that there is scarcely any leakage.

The compressing-jncmp is used, as its name implies, to increase

the density of air or any other gas within the receiver. The re-

ceiver in this case is generally a strong metallic vessel. The work-

ing parts of the pump are precisely those of the air-pump, with the

exception that the valves open downwards. As the piston is raised,

air enters the cylinder, and is forced into the receiver at the down-

stroke.

124. Manometers.—The manometer is an instrument used for

measuring pressures. One variety depends for its operation upon

the regularity of change of volume of a gas with change of pres-

sure. This, in its typical form, consists of a heavy glass tube of

uniform bore, closed at one end, with the open end immersed in a

basin of mercury. The pressure to be measured is applied to the

surface of the mercury in the basin. As this pressure increases,

the air contained in the tube is compressed, and a column of mer-
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cury is forced up the tube. The top of this column serves as an

index. We know from Boyle's law that when the volume of the

air has diminished one half, the pressure is doubled. The down-

ward pressure of the mercury column makes up a part of this

pressure; and the pressure acting on the surface of the mercury in

the basin is greater than that indicated by the compression of the

air in the tube, by the pressure due to the mercury column. For

many purposes the manometer tube may be made very short, and

the pressure of the mercury column that rises in it may be neg-

lected.

125. Aneroids.—The aneroid is an instrument used to deter-

mine ordinary atmospheric pressures. On account both of its deli-

cacy and its easy transportability, it is often used instead ,of the

barometer. It consists of a metallic box, the cover of which is

made of thin sheet metal corrugated in circular grooves. The air

is partially exhausted from the box, and it is then sealed. Any

change in the pressure of the atmosphere causes the corrugated top

to move. . This motion is very slight, but is made perceptible,

either by a combination of levers, which amplifies it, or by an arm

rigidly fixed on the top, the motion of which is observed by a mi-

croscope. The indications of the aneroid are compared with those

of a standard mercurial barometer, and an empirical scale is thus

made, by means of which the aneroid may be used to determine

pressures directly.

126. Limitations to the Accuracy of Boyle's Law.— In all the

previous discussions we have dealt with gases as if they obeyed

Boyle's law with absolute exactness. This, however, is not the

case. In the first place, some gases at ordinary temperatures can

be liquefied by pressure. As these gases approach more nearly the

point of liquefaction, the product jni of the volume and pressure

becomes less than it ought to be in accordance with Boyle's law.

Secondly, those gases which cannot be liquefied at ordinary tem-

peratures by any pressure, however great, show a different departure

from the law. For every gas, except hydrogen, there is a minimum

value of the product ;jy. At ordinary temperatures and small pres-
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sures the gas follows Boyle's law quite closely, becoming, however,

more compressible as the pressure increases, until the minimum

value of pv is reached. It then becomes gradually less compressi-

ble, and at high pressures its volume is much greater than that

determined by Boyle's law. If the temperature be raised, the

agreement with the law is closer, and the pressure at which the

minimum value of pv occurs is greater. Hydrogen seems to differ

from the other gases, only in that the pressures at which the ob-

servations upon it Avere made were probably greater than the one

at which its minimum value of pv occurs. The volume of the

compressed hydrogen is uniformly greater than that required by

Boyle's law.

Important modifications are introduced into the behavior of

gases under pressure by subjecting them to intense cold. It is then

found that all gases, without exception, can be liquefied, and most

of them solidified.

The subject is intimately connected with the subject of critical

temperature, and will be again discussed under Heat.



SOUND.

CHAPTEE I.

ORIGIN AND TRANSMISSION OF SOUND.

127. Definitions.—Acoustics has for its object the study of

those phenomena which may be perceived by the ear. The sensa-

tions produced tlirough tlie ear, and the causes that give rise to

them, are called sounds.

128. Origin of Sound.—Sound is produced by vibratory move-

ments in elastic bodies. The vibratory motion of bodies when pro-

ducing sound is often evident to the eye. In some cases the sound

seems to result from a continuous movement, but even in these

cases the vibratory motion can be shown by means of an apparatus

known as a manotnetric capsule, devised by Konig. It consists of

a block A (Fig. 42) in which is a cavity covered by

a membrane l. By means of a tube c illuminat-

ing gas is led into the cavity, and, passing out

through the tube d, burns in a jet at e. It is evi-

dent that, if the membrane b be made to move

suddenly inward or outward, it will compress or Fig. 42.

rarefy the gas in the capsule, and so cause the flow at the orifice

and the height of the flame to increase or diminish. Any sound of

suflficient intensity in the vicinity of the capsule causes an alter-

nate lengthening and shortening of the flame, which, however,

occurs too frequently to be directly observed. By moving the eyes

while keeping the flame in view, or by observing the image of the

149
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flame in a mirror which is turned from side to side, while the flame

is quiescent, it appears drawn out into a broad band of light, but

when it is agitated by a sound near it, it appears serrate on its

upper edge or even as a series of separate flames. This lengthening

and shortening of the flame is evidence of a to-and-fro movement

of the membrane, and hence of the sounding body that gave rise

to the movement. If a hole be made in the side of an organ-pipe

and the capsule made to cover it, the vibrations of the air-column

within the pipe may be shown. By suitable devices the vibratory

motion of all sounding bodies may be demonstrated.

129. Propagation of Sound.—The vibratory motion of a sound-

ing body is ordinarily transmitted to the ear through the air. This

is proved by placing a sounding body under the receiver of an air-

pump and exhausting the air. The sound becomes fainter and

fainter as the exhaustion proceeds, and finally becomes inaudible if

the vacuum is good. Sound may, however, be transmitted by any

elastic body.

In order to study the character of the motion by which sound

is propagated, let us suppose AB (Fig. 43) to represent a cylinder

.1 - / ,/ " i/it I'll

tKO a a d a a a B

Fig. 43.

of some elastic substance, and suppose the layer of particles a to

suffer a small displacement to the right. The effect of this dis-

placement is not immediately to move forward the succeeding

layers, but a approaches J, producing a condensation, and develop-

ing a force that soon moves h forward; this in turn moves forward

the next layer, and so the motion is transmitted from layer to layer

through the cylinder with a velocity that depends upon the elas-

ticity (§ 103) of the substance, and upon its density. This velocity

is expressed by the formula F = y _, in which E represents the

elasticity of the substance, and D its density (§ 134). Now, if we
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suppose the layer a, from any cause whatever, to execute regular

vibrations, this movement will be transmitted to the succeeding

layers with the velocity given by the formula, and, in time, each

layer of particles in the cylinder will be executing vibrations simi-

lar to those of a. If the vibrations of a be performed in the time

t, the motion will be transmitted during one complete vibration of

a to a distance s = vt, where v is the velocity of propagation, say

to a', during two complete vibrations of a to a distance 2s — 2vt,

or to a", during three complete vibrations to a'", and so on. It is

evident that the layer «' begins its first vibration at the instant

that a begins its second vibration, «" begins its first vibration at

the instant that a' begins its second and a its third vibration.

The layer midway between a and a' evidently begins its vibration

just as a completes the first half of its vibration, and therefore

moves forward while a moves backward. This condition of things

existing in the cylinder constitutes a wave motion. While a moves

forward, the portions near it are compressed. While it moves

bacliward, they are dilated. Whatever the condition at a, the same

condition will exist at the same instant at a', a", etc. The distance

aa' — a'a" is called a ivave length; it is the distance from any one

particle to the next one of which the vibrations are in the same

phase (§ 21). If the condition at a and a' be one of condensation,

it is evident that at d, midway between a and a' , there must be a

rarefaction. In the wave length aa' exist all intermediate con-

ditions of condensation and rarefaction. These conditions must

follow each other along the cylinder with the velocity of the trans-

mitted motion, and they constitute a progressive ivave moving with

this velocity. If the vibratory motion with which a is endowed

be communicated by a sounding body, the wave is a sound-wave.

If, instead of a cylinder of the substance, we have an indefinite

medium in the midst of which the sounding body is placed, the

motion is transmitted in all directions as spherical waves about the

sounding body as a centre.

130. Mode of Propagation of Wave Motion.—The mode of

transmission of wave motions was first shown by Huygens, and
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Fig. 44.

the principle involved is known as Huygens' principle. Let a

(Fig. 44) be a centre at which sound origi-

nates. At the end of a certain time it will have

reached the surface mn. From the preceding

discussion it is evident that each particle of tlie

surface 7nn has a vibratory motion similar to

that at a. Any one of those particles would,

if vibrating alone, be, like a, the centre of a

system of spherical waves, and each of them

must, therefore, be considered as a wave centre

from which spherical waves proceed. Supj)ose

such a wave to proceed from each one of them

for the short distance cd. Since the number

of the elementary spherical waves is very great,

it is plain that they will coalesce to form the surface m'n'

which determines a new position of the wave surface. In some

cases the existence of these elementary waves need not be consid-

ered, but there are many phenomena of wave motion which can

only be studied by recognizing the fact that propagation always

takes place as above described.

131. Graphic Representation of Wave Motion.—In order to

study the movements of a body in which a wave motion exists, es-

pecially when two or more systems of waves exist in the same body,

it is convenient to represent the movement by a sinusoidal curve.

Suppose the layer a (Fig. 45) to move with a simple harmonic

motion of which the amplitude is a and the period T, and let time

be reckoned from the instant that the particles pass the position of

equilibrium in a positive direction. A sinusoidal curve may be

constructed to represent either the displacements of the various

layers from their positions of equilibrium, or the velocities with

which they are severally moving at a given time.

To construct the first curve let the several points along OX
(Fig. 45) represent points of the body through which the wave is

moving. Let Oy = a be the amplitude of vibration of each par-

ticle. The displacement of the particle at at any instant t after
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passingitspositioii of equilibrium is ^ = « COS [^^^ -), since when

t is reckoned from the position of equilibrium e == -. Hence
hi

'Int
y = a sin -^. If v represent the velocity of propagation of the

wave, the particle at the distance x from the origin will have a

displacement equal to that of the particle at at the instant t, at an

d

rv\N /7^
/ 9'

>^.../ Vbxi.-' ^

Fig. 45.

instant later than t by the time taken for the wave to travel over the

distance x, or - seconds. Hence its displacement at the instant t will
V ^

X
be tlie same as that which existed at 0, — seconds earlier. But the

V

displacement at 0, - seconds earlier, is

2/ = « sin y^^ = « sin 2;r ^- - -^j. (57)

The quantity wT equals the distance through which the movement

is transmitted during the time of one complete vibration of the

particle at 0. Putting this equal to A, we have finally

?/ = asin2;r (^^— |j. (58)

Suppose ^ = 0, and give to x various values. The corresponding

values of y will represent the displacement at that instant of the

particle the distance of which from the origin is x. For a; = 0,
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y = 0. For x =z ^X, y = —a. For x = i-A, ?/ = 0. For x = fA,

?/ = rt. For X = X, y =^ Q, etc. Laying off these values of x on

OX and erecting perpendiculars equal to the corresponding values

of y, "we have the curve Obcde ....
The above expression for y may be put .in the form

a
y = a sin'ZTt \ T

X
-2-(L3

Hence, if any finite value be assigned to t, we shall obtain for y
the same values as were obtained above for ^ = 0, if we increase

each of the values of x by -™-. For instance, if t equal ^T, we

have?/ = for x = ^^A, y = — a for x = |A, etc., and the curve

becomes the dotted line b'c'd' .... The effect of increasing t is

to displace the curve along OJT in the direction of propagation

of the wave.

The formula for constructing the curve of velocities is derived

in the same way as that for displacements. It is

27ra
y = -^ cos 27t

Fig. 46 shows the relation of the two curves. The upper is the

curve of displacement, and the lower of velocity.

Fig. 46.

132. Composition of Wave Motions.—The composition of wave

motions may be studied by the help of the curves explained above.

If two systems of waves coexist in the same body, the displacement

of any particle at any instant will be the algebraic sum of the dis-
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placements due to the systems taken separately. If the curve of

displacements be drawn for each system, the algebraic sum of the

ordinates will give the ordinates of the curve representing the

actual displacements. In Fig. 47 the dotted line and the light full

line represent respectively the dis-

placements due to two wave sys-

tems of the same period and am-

plitude. The heavy line repre-

sents the actual displacement.

In I the two systems are in the

same phase; in II the phases dif-

fer by i, and in III by |, of a

period. If both wave systems

move in the same direction, it is

evident that the conditions of the

body will be continuously shown

by supposing the heavy line to

move in the same direction with ^^°- ^'^'

the same velocity. The condition represented in III is of special

interest. It shows that two wave systems may completely annul

each other. Fig. 48 represents the resultant wave when the pe-

r
PI
<- >\y

/ y

-^
•

<^
\^

y/ ^Vy

f\

\^\ /-

/ N
\

-y ^
\

i

/ \^^ \K
Fig. 48.

riods, and consequently the wave lengths, of the two systems are
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as 1 : 2. It will be noticed tliat the resultant curve is no longer a

simple sinusoid.

In the same way the resultant

wave may be constructed for any

number of wave systems having any

relation of wave lengths, amplitudes,

and phases. A very important case

is that of two wave systems of the

same period moving in opposite di-

rections with the same velocity. In

this case the two systems no longer

maintain the same relative positions,

and the resultant curve is not dis-

placed along the axis, but continu-

ally changes form. In Fig. 49 let the

full and dotted lines in I represent,

at a given instant, the displacements

due to the two waves respectively.

The resultant is plainly the straight

line ah, which indicates that at that

instant there is no displacement of

any particle. At an instant later by

\ period, as shown in II, the wave

represented by the full line has

moved to the right -| wave length,

while that represented by the dotted

line has moved to the left the same

distance. The heavy line indicates

the corresponding displacements.

In III, IV, V, etc., the conditions at

instants \, |, |, etc., periods later are

represented. A comparison of these

figures will show that the particles

at c and d are always at rest, that the particles between c and d all

move in the same direction at the same time, and that particles on

VII

vin

Fig. 49.
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the opposite sides of c or d are always moving in opposite direc-

tions. It follows that the resultant wave has no progressive mo-

tion. It is a stationarj/ wave. Places where no motion occurs,

such as c and d, are called 7iodes. The space between two nodes is

an internode or ventral segment. The middle of a ventral seg-

ment, where the motion is greatest, is an anti-node. It will be

seen later that all sounding bodies aJfford examples of stationary

waves.

133. Reflection of Waves.—When a wave reaches the bounding

surface between two media, one of three cases may occur:

(1) The particles of the second medium may have the same

facility for movement as those of the first. The condition at the

boundary will then be the same as that at any point previously

traversed, and the wave will proceed as though the first medium

were continuous.

(2) The particles of the second medium may move with less

facility than those of the first. Then the condensed portion of a

wave which reaches the boundary becomes more condensed in con-

sequence of the restricted forward movement of the bounding par-

ticles, and the rarefied portion becomes more rarefied, because those

particles are also restricted in their backward motion. The con-

densation and rarefaction are communicated backward from parti-

cle to particle of the first medium, and constitute a reflected toave.

It will be seen that when the condensed portion of the wave, in

which the particles have a forward movement, reaches the bound-

ary, the effect is a greater condensation, that is, the same effect as

would be produced by imparting a backward movement to the

bounding particles if no wave previously existed. In the direct

rarefied portion of the wave the movement of the particles is back-

ward, and the effect, at the boundary, of a greater rarefaction is

what would be produced by a forward movement of those particles.

The effect in this case is, therefore, to reverse the motion of the

particles. It is called reflection with change of sign.

(3) The particles of the second medium may move more freely

than those of the first. In this case, when a wave in the first
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medium reaches the boundary, the bounding particles, instead of

stopping with a displacement such as they would reach in the in-

terior of the medium, move to a greater distance, and this move-

ment is communicated back from particle to particle as a reflected

wave, m which the motion has the same sign as in the direct wave.

It is reflection loitliout cliange of sign. The two latter cases are

extremely important in the study of the formation of stationary

waves in sounding bodies.

Let us suppose a system of spherical waves departing from

the point C (Fig. 50). Let mn be the intersection of one of the

waves with the plane of the

paper. Let AB be the trace of

a 'plane smooth surface perpen-

dicular to the plane of the pa-

per, upon which the waves im-

pinge, mo shows the position

which the wave of which mn
is a part would have occupied

had it not been intercepted by

the surface. From the last sec-

tion it appears that reflection will

^®- 50. take jflace as the wave mno

strikes the various points of AB. In § 130 it was seen that any

point of a wave may be considered as the centre of a wave system,

and we may therefore take oi', n" , etc., the points of intersection

of the surface AB with the wave mn when it occupied the positions

m'n', m"n" , etc., as the centres of systems of spherical waves, the

resultant of which would be the actual wave proceeding from AB.
With n' as a centre describe a sphere tangent to mno at o. It is

evident that this will represent the elementary spherical wave of

which the centre is n' when the main wave is at mn. Describe

similar spheres with n" , n'" , etc., as centres. The surface np,

which envelops and is tangent to all these spheres, represents the

wave reflected from AB. If that part of the plane of the paper

below AB \)Q. revolved about AB as an axis until it coincides with
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the paper above AB, so will coincide with s}), s'o' with s'p', etc.,

and hence no with np. But no is a circle with C as a centre; np is,

therefore, a circle of which the centre is C, on a perpendicular to

AB through C, and as far below AB as C is above. When, there-

fore, a wave is reflected at a plane surface, the centres of the in-

cident and reflected waves are on the same line perpendicular to

the reflecting surface, and at equal distances from the surface on

opposite sides.

134. Theoretical Velocity of Sound.—The disturbance of the

parts of any elastic medium which is propagating sound is assumed,

in theoretical discussions, to take place in the line of direction of the

propagation of the sound, and to be such that the type of the dis-

turbance remains unaltered during its propagation. The velocity

of propagation of such a disturbance may be investigated by the

following method, due to Eankine,

Let us consider, as in § 129, a portion of the elastic medium in

the form of an indeflnitely long cylinder. If a disturbance be set up

at any cross-section of this cylinder (Fig. 51), which consists of a

displacement of the matter in that cross-section in the direction of

the axis of the cylinder, it will, by hypothesis, be propagated in

the direction of the axis with a constant velocity V, which is to be

determined. If we consider any cross-section of the cylinder

which is traversed by the disturbance, the matter which passes

«i >

Fig. 51.

through it at any instant will have a velocity which may vary from

zero to the maximum velocity of the vibrating matter, either posi-

tively when this velocity is in the direction of propagation of the

disturbance, or negatively when it is opposite to it.

If we now conceive an imaginary cross-section A to move along

the cylinder with the disturbance with the velocity V, the velocity
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of the particles in it at any instant will be always the same. Let

us call this velocity ?;„. The velocity of the cross-section relative

to the moving particles in it is then V — v„. If we represent by

da the density of the medium at the cross-section through which

the velocity of the particles is Va, which is the same for all positions

of the moving cross-section, and if we assume that the area of the

cross-section is unity, then the quantity of matter M which passes

through the moving cross-section in unit time is M =^ da{V — ?'„).

If we conceive any other cross-section B to be moving with the

disturbance in a similar manner, the same quantity of matter M
will pass through it in unit time, since the two cross sections move

with the same velocity and the density of the matter between them

remains the same. Hence we have M = d^{V — v,,), where db and

Vi, represent the quantities at the cross-section B corresjionding to

those at the cross-section A represented by d^ and ?'„. Hence

da{ V — Va) = dh{ V — Vh). Since this equation is true whatever be

the distance between the cross-sections, it is true for that position

of the cross-section B for which Vf, = 0, and for which di, = D, the

density of the medium in its undisturbed condition. Hence we

have M= DV,da{V-Va) = D V, and

1=^. (.0)

If the disturbance be small, the expression on the right is ap-

proximately the condensation per unit volume of the medium at

the cross-section A, and the equation shows that the ratio of the

velocity of the matter passing through the cross-section A to the

velocity of propagation of the disturbance is equal to the conden-

sation at that cross-section.

Now, to eliminate the unknown quantities Va and da, we must

find a new equation involving them. A quantity of matter J/ en-

ters the region between the two moving cross-sections with the

velocity Va, and an equal quantity leaves the region with the veloc-

ity Vfy. The difference of the momenta of the entering and out-

going quantities is M{Va — Vh). This difference can only be due to
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the different pressures p^ and ^^ on the moving cross-sections, since

the interactions of the portion of matter between those cross-sec-

tions cannot change the momentum of that portion. Hence we

have i/(f„ — z'fe) = Pa — Pb-

If we for convenience assume Vi, = 0, we havejt?^ = F, the pres-

sure in the medium in its undisturbed condition. If we further

p — p
substitute for v^ its value, we obtain MV — d^- r;* If the

da- ^
p — P

changes in pressure and density be small, the quantit}^ ^a ,"
j]

equals B, the modulus of elasticity of the medium. If we further

substitute for M its value VB, we obtain finally

V' = ^ or V=/^. (60)

135. Velocity of Sound in Air.—In air at constant temperature

the elasticity is numerically equal to the pressure (§ 105). The

compressions and rarefactions in a sound-wave occur so rapidly

that during the passage of a wave there is no time for the transfer

of heat, and the elasticity to be considered, therefore, is the elasti-

city when no heat enters or escapes (§ 213).

If the ratio of the two elasticities be represented by y we have

for the elasticity when no heat enters or escapes PJ = yP, and the

velocity of a sound-wave in air at zero temperature is given by F =

y ^-jr-. The coefficient ;/ equals 1.41. P is the pressure exerted

by a column of mercury 76 centimetres high and with a cross-

section of one square centimetre, or 76 X 13.59 X 981 = 1013373

dynes per square centimetre. D equals 0.001293 gram at 0°, hence

„ ./1.41 X 1013373
'^

001 ^QQ
~ 33240, or 332.4 metres per second.

Since the density of air changes with the temperature, the ve-

locity of sound must also change. If dt represent the density at

temperature t, and d^ the density at zero, dt = -—-—-, from §211.
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The formula for velocity then becomes V = y -^(l + at). This

formula shows that the velocity at any temperature is the velocity

at 0° multiplied by the square root of the factor of expansion.

136. Measurements of the Velocity of Sound.—The velocity of

sound in air has been measured by observing the time required for

the report of a gun to travel a known distance.

One of the best determinations was that made in Holland in

1822, Guns were fired alternately at two stations about nine miles

apart. Observers at one station observed the time of seeing the

flash and hearing the report from the other. The guns being fired

alternately, and the- sound travelling in opposite directions, the

effect of wind Avas eliminated in the mean of the results at the two

stations. It is possible, by causing the sound-wave to act upon dia-

phragms, to make it record its own time of departure and arrival,

and by making use of some of the methods of estimating very small

intervals of time the velocity of sound may be measured by experi-

ments conducted within the limits of an ordinary building.

The velocity of sound in water was determined on Lake Geneva

in 1826 by an experiment analogous to that by which the velocity

in air was determined.

In § 144 and § 146 it is shown that the time of one vibration of

any body vibrating longitudinally is the time required for a sound-

wave to travel twice the distance between two nodes. The velocity

may, therefore, be measured by determining the number of vibra-

tions per second of the sound emitted, and measuring the distance

between the nodes.

In an open organ-pipe, or a rod free at both ends, when the

fundamental tone is sounded the sound travels twice the length of

the rod or pipe during the time of one complete vibration. If rods

of different materials be cut to such lengths that they all give the

same fundamental tone when vibrating longitudinally, the ratio of

their lengths will be that of the velocity of sound in them.

In Kundt's experiment, the end of a rod having a light disk at-

tached is inserted in a glass tube containing a light powder strewn
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over its ;arier surface. When the rod is made to vibrate longitudi-

nally, the air-column in the tube, if of the proper length, is made

to vibrate in unison with it. This agitates the powder and causes

it to indicate the positions of the nodes in the vibrating air-column.

The ratio of the velocity of sound in the solid to that in air is thus

the ratio of the length of the rod to the distance between the nodes

in the air-column.



CHAPTER 11.

SOUNDS AND MUSIC.

COMPAKISON OF SOUNDS.

137. Musical Tones and Noises.—The distinction between the

impressions produced by musical tones and by noises is familiar to

all. Physically, a musical tone is a sound the vibrations of which

are regular and periodic. A noise is a sound the vibrations of

which are very irregular. It may result from a confusion of musi-

cal tones, and is not always devoid of musical value. The sound

produced by a block of wood dropped on the floor would not be

called a musical tone, but if blocks of wood of proper shape and

size be dropped upon the floor in succession, they will give the tones

of the musical scale.

Musical tones may differ from one another in pitch, depending

upon the frequency of the vibrations; in loudness, depending upon

the amplitude of vibration; and in qiiality, depending upon the

manner in which the vibration is executed. In regard to pitch,

tones are distinguished as high or loiv, acute or grave. In regard

to loudness, they are distinguished as loud or soft. The quality of

musical tones enables us to distinguish the tones of different instru-

ments even when sounding the same notes.

138. Methods of Determining the Number of Vibrations of a

Musical Tone.—That the pitch of a tone depends upon the fre-

quency of vibrations may be simply shown by holding the corner of

164
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a card against the teeth of a revolving wheel. With a very slow

motion the card snaps from tooth to tooth, making a succession of

distinct taps, which, when the revolutions are sufficiently rapid,

blend together and produce a continuous tone, the pitch of which

rises and falls with the changes of speed. Savart made use of such

a wheel to determine the number of vibrations corresponding to a

tone of given pitch. After regulating the speed of rotation until

the given pitch was reached, the number of revolutions per second

was determined by a simple attachment; this number multiplied

by the number of teeth in the wheel gave the number of vibrations

per second.

The si?'eu is an instrument for producing musical tones by puffs

of air succeeding each other at short equal intervals. A circular

disk having in it a series of equidistant holes arranged in a circle

around its axis is supported so as to revolve parallel to and almost

touching a metal plate in which is a similar series of holes. The
plate forms one side of a small chamber, to which air is supplied

from an organ bellows. If there be twenty holes in the disk, and

if it be placed so that these holes correspond to those in the plate,

air will escape through all of them. If the disk be turned through

a small angle, the holes in the plate will be covered and the escape

of air will cease. If the disk be turned still further, at one twen-

tieth of a revolution from its first position, air will again escape,

and if it rotate continuously, air will escape twenty times in a revo-

lution. AVhen the rotation is sufficiently rapid, a continuous tone

is produced, the pitch of which rises as the speed increases. The
siren may be nsed exactly as the toothed wheel to determine the

number of vibrations corresponding to any tone.

By drilling the holes in the plate obliquely forward in the

direction of rotation, and those in the disk obliquely backward, the

escaping air will cause the disk to rotate, and the speed of rotation

may be controlled by controlling the pressure of air in the chamber.

Sirens are sometimes made with several series of holes in the

disk. These serve not only the purposes described above, but also

to compare tones of which the vibration numbers have certain ratios.
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The number of vibrations of a sounding body may sometimes be

determined by attaching to it a light styhis

which is made to trace a curve upon a

smoked glass or cylinder. Instead of at-

taching a stylus to the sounding body di-

rectly, which is practicable only in a few

cases, it may be attached to a membrane
which is caused to vibrate by the sound-

waves which the body generates. A mem-
brane reproduces very faithfully all the

characteristics of the sound-waves, and the

curve traced by the stylus attached to it

gives information, therefore, not only in

regard to the number of vibrations, but to

some extent in regard to their amplitude

and form.

PHYSICAL THEORY OF MUSIC.

139. Concord and Discord.—When two

or more tones are sounded together, if the

effect be pleasing there is said to be con-

cord ; if harsh, discord. To understand

the cause of discord, suppose two tones of

nearly the same pitch to be sounded to-

gether. The resultant curve, constructed

as in § 132, is like those in Fig. 52, which

represent the resultants when the periods

of the components have the ratio 81 : 80

and when they have the ratio 16 : 15. The

figure indicates, what experiment verifies,

that the resultant sound suffers periodic

variations in intensity. When these varia-

FiG. 52. tions occur at such intervals as to be read-

ily distinguished, they are called heats. These beats occur more

and more frequently as the numbers expressing the ratio of the



§142] SOUNDS AND MUSIC. 167

vibrations reduced to its lowest terms become smaller, until they

are no longer distinguishable as separate beats, but appear as an

unpleasant roughness in the sound. If the terms of the ratio be-

come smaller still, the roughness diminishes, and when the ratio is

I the effect is no longer unpleasant. This, and ratios expressed by

smaller numbers, as f , f , |, |, f , represent concordant combinations.

140. Major and Minor Triads.—Three tones of which the vi-

bration numbers are as 4 : 5 : 6 form a concordant combination

called the major triad. The ratio 10 : 13 : 15 represents another

concordant combination called the minor triad. Fig. 53 shows the

resultant curves for the two triads.

A

Fig. 53.

141. Intervals.—The interval between two tones is expressed

by the ratio of their vibration numbers, using the larger as the

numerator. Certain intervals have received names derived from

the relative positions of the two tones in the musical scale, as de-

scribed below. The interval f is called an octave; f, a fifth; f , a

fourth; |, a major third; |, a minor third.

142. Musical Scales.—A musical scale is a series of tones which

have been chosen to meet the demands of musical composition.

There are at present two principal scales in use, each consisting of

seven notes, with their octaves, chosen with reference to their fit-

ness to produce pleasing effects when used in combination. In

one, called the major scale, the first, third, and fifth, the fourth,

sixth, and eighth, and the fifth, seventh, and ninth tones, form

major triads. In the other, called the minor scale, the same tones

form minor triads. From this it is easy to deduce the following

relations

:
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Tone Number
Letter

Name
Number of vibrations

Intervals from tone to tone.

Tone Number
,

Letter
,

N ame
Number of vibrations

,

Intervals from tone to tone.

MAJOR SCALE.

r 2'

12 3 4 5 6 7 8 9

C D E F G A B C D'

do or ut re mi fa sol la si ut re

m |m |m |m |m |m '/m 2m |m

1 V if 1 V° f U
MINOR SCALE.

12 3 4 5 6 7 8 9ABC D E F G A' B'

la si ut re mi fa sol la si

m |m |m |m |m |m |m 2m |m

1 U V 9
if 1 V

The derivation of the names of the intervals will now be appar-

ent. For example, an interval of a third is the interval between

any tone of the scale and the third one from it, counting the first

as 1. If we consider the intervals from tone to tone, it is seen that

the pitch does not rise by equal steps, but that there are three

different intervals, |, ^^- , and ||. The first two are usually con-

sidered the same, and are called tvJioIe to7ies. The third is a half-

tone or semitojie.

It is desirable to be able to use any tone of a musical instru-

ment as the first tone or tonic of a musical scale. To permit this,

when the tones of the instrument are fixed, it is plain that extra

tones, other than those of the simple scale, must be provided in

order that the proper sequence of intervals may be maintained.

Suppose the tonic to be transposed from C to D. The semitones

should now come, in the major scale, between F and G, and C and

D', instead of between E and F, and B and C. To accomiilish

this, a tone must be substituted for F and another for C These

are called F sharp and C sharp respectively, and their vibration

numbers are determined by multiplying the vibration numbers of

the tones which they replace by ff . The introduction of five such

extra tones, making twelve in the octave, enables us to preserve

the proper sequence of whole tones and semitones, whatever tone is
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taken as the tonic. But if we consider that the whole tones are

not all the same, and propose to preserve exactly all the intervals

of the transposed scale, the problem becomes much more difficult,

and can only be solved at the expense of too great complication in

the instrument. Instead of attempting it, a system of tuning,

called temperament, is used by which the twelve tones referred to

above are made to serve for the several scales, so that while none

are perfect, the imperfections are nowhere marked. The system of

temperament usually employed, or at least aimed at, called the

eve7i temperament, divides the octave into twelve equal semitones,

and each interval is therefore the twelfth root of 2. With instru-

ments in which the tones are not fixed, like the violin for instance,

the skilful performer may give them their exact value.

For convenience in the practice of music and in the construc-

tion of musical instruments, a standard pitch must be adopted.

This pitch is usually determined by assigning a fixed vibration

number to the tone above the middle C of the piano, represented

by the letter A'. This number is about 440, but varies somewhat

in different countries and at different times. In the instruments

made by Konig for scientific purposes the vibration number 256

is assigned to the middle C. This has the advantage that the vi-

bration numbers of the successive octaves of this tone are powers

of 2.



CHAPTER III.

VIBRATIONS OP SOUNDING BODIES.

143. General Considerations.—The principles developed in § 133

apply directly in the study of the vibrations of sounding bodies.

When any part of a body which is capable of acting as a sounding

body is set in vibration, a wave is propagated through it to its

boundaries, and is there reflected. The reflected wave, travelling

away from the boundary, in conjunction with the direct wave

going toward it, produces a stationary wave. These stationary

waves are characteristic of the motion of all sounding bodies.

Fixed points of a body often determine the position of nodes, and

in all cases the length of the wave must have some relation to the

dimensions of the body.

144. Organ Pipes.—A column of air, enclosed in a tube of

suitable dimensions, may be made to vibrate and become a sound-

ing body. Let us suppose a tube closed at one end and open at

the other. If the air particles at the open end be suddenly moved

inward, a pulse travels to the closed end, and is there reflected

with change of sign (§ 133). It returns to the open end and is

again reflected, this time without change of sign, because there is

greater freedom of motion without than within the tube. As it

starts again toward the closed end, the air particles that compose

it move outward instead of inward. If they now receive an inde-

pendent impulse outward, the two effects are added and a greater

disturbance results. So, by properly timing small impulses at the

open end of the tube, the air in it may be made to vibrate strongly.

If a continuous vibration be maintained at the open end of the

tube, waves follow each other up the tube, are reflected with

170
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change of sign at the closed end, and returning, are reflected

without change of sign at the open end. Any given wave a,

therefore, starts up the tube the second time with its phase

changed by half a period. The direct wave that starts up the tube

at the same instant must be in the same phase as the reflected

wave, and it therefore differs in phase half a period from the direct

wave a. In other words, any wave returning to the mouthpiece

must find the vibrations there opposite in phase to those which

existed when it left. This is possible only when the vibrating

body makes, during the time the wave is going up the tube and

back, 1, 3, 5, or some odd number of half-vibrations. By con-

structing the curves representing the stationary wave resulting

from the superposition of the two systems of vibrations, it will be

seen that there is always a node at the closed end of the tube and

an anti-node at the mouth. When there is 1 half-vibration while

the wave travels up and back, the length of the tube is \ the wave

length; when there are 3 half-vibrations in the same time, the

length of the tube is f the wave length, and there is a node at one

third the length of the tube from the mouth.

If the tube be open at both ends, reflection without change of

sign takes place in both cases, and the reflected wave starts up the

tube the second time in the same phase as at first. The vibrations

must therefore be so timed that 1,2, 3, 4, or some whole number

of complete vibrations are performed while the wave travels up the

tube and back. A construction of the curve representing the

stationary wave in this case will show, for the smallest number of

vibrations, a node in the middle of the tube and an anti-node

at each end. The length of the tube is therefore | the wave

length for this rate of vibration. The vibration numbers of the

several tones produced by an open tube are evidently in the ratio

of the series of whole numbers 1, 2, 3, 4, etc., while for the closed

tube only those tones can be produced of which the vibration

numbers are in the ratio of the series of odd numbers 1, 3, 5, etc.

It is evident also that the lowest tone of the closed tube is an

octave lower than that of the open tube of the same length.
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This lowest tone of the tube is called the fundamental, and

the others are called overtones, or harmonics. These simple rela-

tions between the length of the tube and length of the wave are

only realized when the tubes are so narrow that the air particles

lying in a plane cross-section are all actuated by the same move-

ment. This is never the case at the open end of the tube, and the

distance from this end to the first node is, therefore, always less

than a quarter wave length.

145. Modes of Exciting Vibrations in Tubes.—If a tuning-fork

be held in front of the open mouth of a tube of proper length,

the sound of the fork is strongly reinforced by the

vibration of the air in the tube. If we merely bloiv

across the open end of a tube, the agitation of tlie

air may, by the reaction of the returning reflected

pulses, be made to assume a regular vibration of the

proper rate and the column made to sound. In

organ pipes a mouthpiece of the form

shown in Fig. 54 is often employed. The

I I ^ ^ thin sheet of air projected against the thin

edge is thrown into vibration. Those ele-

ments of this vibration which correspond

in frequency with the pitch of the pipe

are strongly reinforced by the action ot

the stationary wave set up in the pipe, and

hence the tone proper to the pipe is pro-

duced. Sometimes reeds axe used, as shown in Fig. 54a. The air

escaping from the chamber a through the passage c causes the

reed r to vibrate. This alternately closes and opens the passage,

and so throws into vibration the air in the pipe. If the reed be

stiff, and have a determined period of vibration of its own, it must

be tuned to suit the period of the air-column which it is intended

to set in vibration. If the reed be very flexible, it will accommo-

date itself to the rate of vibration of the air-column, and may then

serve to produce various tones, as in the clarionet.

In instruments like the cornet and bugle the lips of the player

Fig. 54ffl. Fig. 54.
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act as a reed, and the player may at will produce many of the

different overtones. In that way melodies may be played without

the use of keys or other devices for changing the length of the air-

column.

Vibrations may be excited in a tube by placing a gas flame at

the proper point in it. The flame thus employed is called a sing-

ing fiame. The organ of frhe voice is a kind of reed pipe in which

little folds of membrane, called vocal chords, serve as reeds which

can be tuned to different pitches by muscular effort, and the cavity

of the mouth and larynx serves as a pipe in which the mass of air-

may also be changed at will, in form and volume.

146. Longitudinal Vibrations of Rods.—A rod free at both

ends vibrates as the column of air in an open tube. Any displace-

ment produced at one end is transmitted with the velocity of sound

in the material to the other end, is there reflected without change

of sign, and returns to the starting-point to be reflected again

exactly as in the open tube. The fundamental tone corresponds

to a stationary wave having a node at the centre of the rod.

147.. Longitudinal Vibrations of Cords.—Cords fixed at both

ends may be made to vibrate by rubbing them lengthwise. Here

reflection with change of sign takes place at both ends, which

brings the wave as it leaves the starting-point the second time to

the same phase as when it first left it, and there must be, therefore,

as in the open tube, 1, 2, 3, 4, etc., vibrations while the wave

travels twice the length of the cord. The velocity of transmission

of a longitudinal displacement in a wire depends upon the elasticity

and density of the material only. The velocity and the rate of

vibration are, therefore, nearly independent of the stretching force.

148. Transverse Vibrations of Cords.—If a transverse vibration

be given to a point upon a wire fastened at both ends, everything

relating to the reflection of the wave motion and the formation of

stationary waves is the same as for longitudinal displacements.

The velocity of transmission, and consequently the freqnency of

the vibrations, are, however, very different. They depend on the

stretching force or tension and on the mass of the cord per unit
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length. The number of vibrations is inversely as the length of the

cord, directly as the square root of the tension, and inversely as

the square root of the mass per unit length.

149. Transverse Vibrations of Rods, Plates, etc.—The vibrations

of rods, plates, and bells are all cases of stationary waves resulting

from systems of waves travelling in opposite directions. Subdivi-

sion into segments occurs, but in these cases the relations of the

various overtones are not so simple as in the cases before consid-

ered. For a rod fixed at one end, sounding its fundamental tone,

there is a node at the fixed end only. For the first overtone there

is a second node near the free end of the rod, and the number of

vibrations is a little more than six times the number for the funda-

mental.

A rod free at both ends has two nodes when sounding its funda-

mental, as shown in Fig. 55. The distance of these nodes from the

^ __ ends is about f the length of the rod.

-.--^' ~
""'""--

If the rod be bent, the nodes approach

Fig. 55. the centre until, when it has assumed the

U form like a tuning-fork, the two nodes are very near the centre.

This will be understood from Fig. 56.

Fig. 56.

The nodal lines on plates may be shown by fixing the plate in

a horizontal position and sprinkling sand over its surface. When

the plate is made to vibrate, the sand gathers at the nodes and

marks their position. The figures thus formed are known as

Chladni's figures.

150. Resonance.—If several pendulums be suspended from the
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same support, iiid one of them be made to vibrate, any others which

have the same period of vibration will soon be found in motion,

while those which have a different period will show no signs of dis-

.

turbance. The vibration of the first pendulum produces a slight

movement of the support, which is communicated alike to all the

other pendulums. Each movement may be considered as a slight

impulse, which imparts to each pendulum a very small vibratory

motion. For those pendulums having the same period as the one

in vibration, these impulses come just in time to increase the mo-

tion already produced, and so, after a time, produce a sensible

motion; while for those pendulums having a different period the

vibration at first imparted will not keep time with the impulses,

and these will therefore as often tend to destroy as to increase

the motion. It is important to note that the pendulum imparting

the motion loses all it imparts. This is not only true of pendulums,

but of all vibrating bodies. Two strings stretched from the same

support and tuned to unison will both vibrate when either one is

caused to sound. A tuning-fork suitably mounted on a sounding-

box will communicate its vibrations to another tuned to exact unison

even when they are thirty or forty feet apart and only air intervenes.

In this case it is the sound-wave generated by the first fork which

excites the second fork, and in so doing the wave loses a part of its

own motion, so that beyond the second fork, on the line joining the

two, the sound will be less intense than at the same distance in

other directions. Such communication of vibrations is called

7-esonance.

Air-columns of suitable dimensions will vibrate m sympathy

with other sounding bodies. If water be gradually poured into a

deep jar, over the mouth of which is a vibrating tuning-fork, there

will be found in general a certain length of the air-column for

which the tone of the fork is strongly reinforced. From the

theory of organ pipes, it is plain that this length corresponds ap-

proximately to a quarter wave length for that tone. In this case,

also, when the strongest reinforcement occurs, the sound of the

fork will rapidly die away. The sounding-boxes on which the ti.n-
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ing-forks made by Konig are mounted are of such dimensions that the

enclosed body of air will vibrate in unison with the fork, but they are

purposely made not quite of the dimensions for the best resonance,

in order that the forks may not too quickly be brought to rest.

A membrane or a disk, fastened by its edges, may respond to

and reproduce more or let=rf faithfully a great variety of sounds.

Hence such disks, or diaphragms, are used in instruments like the

telephone and phonograph, designed to reproduce the sounds of

the voice. The phonograph consists of a mouthpiece and disk

similar to that used in the telephone, but the disk has fastened to

its centre, on the side opposite the mouthpiece, a short stiff stylus,

which serves to record the vibrations of the disk upon a sheet of

tinfoil or wax moved along beneath it. The wax is in the form of

a cylinder mounted on au axle moved by a screw working in a

fixed nut, so that when the cylinder revolves it has also an end-

wise motion, such that a fixed point would follow a spiral track on

its surface. To use the instrument, the disk is placed in position

with the stylus attached and slightly indenting the wax. The cyl-

inder is revolved while sounds are produced in front of the disk.

The disk vibrates, causing the stylus to indent the wax more or less

deeply, so leaving a permanent record. If now the cylinder be

turned back to the starting-point and then turned forward, causing

the stylus to go over again the same path, the indentations pre-

viously made in the wax now cause the stylus, and consequently the

disk, to vibrate and reproduce the sound that produced the record.

The sounding-boards of the various stringed instruments are

m effect thin disks, and afford examples of the reinforcement of

vibrations of widely different pitch and quality by the same body.

The strings of an instrument are of themselves insufficient to com-

municate to the air their vibrations, and it is only through the

sounding-board that the vibrations of the string can give rise to

audible sounds. The quality of stringed instruments, therefore,

depends largely upon the character of the sounding-board.

The tympanum of the ear furnishes another example of the

facility with which membranes respond to a great variety of sounds.



CHAPTER IV.

ANALYSIS OF SOUNDS AND SOUND SENSATIONS.

151. Quality.—As has already been stated, the tones of differ-

ent instruments, althougli of the same pitch and intensity, are dis-

tinguished by their quality. It was also stated that the quality of

a tone depends upon the manner in which the vibration is exe-

cuted. The meaning of this statement can best be understood by

Fig. 57.

considering the curves which represent the vibrations. In Fig. 57

are given several forms of vibration curves of the same period.

Every continuous musical tone must result from a periodic

vibration, that is, a vibration which, however complicated it may

be, repeats itself at least as frequently as do the vibrations of the

lowest audible tone. According to Fourier's theorem (§ 21), every

periodic vibration is resolvable into simple harmonic vibrations

having commensurable periods. It has been seen that all sound-

ing bodies may subdivide into segments, and produce a series of

tones of which the vibration periods generally bear a simple rela-

177
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tion to one another. These may be produced sirnultaneonsly by

the same body, and so give rise to complex tones, the character of

which will vary with the nature and intensity of the simple tones

produced. It has been held that the quality of a complex tone is

not affected by change of phase of the component simple tones

relative to each other. Some experiments by Konig seem to indi-

cate, however, that the quality does change when there is merely

change of phase.

Fig. 58.

In Fig. 58 are shown three curves, each representing a funda-

mental accompanied by the harmonics up to the tenth. The

curves differ only in the different phases of the components rela-

tive to each other.

Fig. 59 shows similar curves produced by a fundamental accom-

panied by the odd harmonics.

Fig. 59.

152. Resonators for the Study of Complex Tones.—An apparatus

devised by Helmholtz serves to analyze complex tones and indicate

the simple tones of which they are composed. It consists of a series
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of hollow spheres or cylinders, called resonators, which are tuned to

certain tones. If a tube lead from the resonator to the ear and a

Fig. 60.

sound be produced, one of the components of which is the tone to

which the resonator is tuned, the mass of air in it will be set in

vibration, and that tone will be clearly heard ; or, if the resonator

be connected by a rubber tube to a manometric capsule (§ 128), the

gas flame connected with the capsule will be disturbed whenever

the tone to which the resonator is tuned is produced in the vicinity,

either by itself or as a component of a complex tone. By trying

the resonators of a series, one after another, the several components

of a complex tone may be detected and its composition demonstrated.

153. Vowel Sounds.—Helmholtz has shown that the differences

between the vowel sounds are only differences of quality. That the

vowel sounds correspond to distinct forms of vibration is well shown

by means of the manometric flame. By connecting a mouthpiece
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to the rear of the capsule, and singing into it the different vowel

sounds, the flame images assume distinct forms for each. Some of

these forms are shown in Fig. 60.

154. Optical Method of Studying Vibrations.— The vibratory

motion of sounding bodies may sometimes be studied to advantage

Fig. 61.

by observing the lines traced by luminous points upon the vibrating

body or by observing the movement of a beam of light reflected from

a mirror attached to the body.

Young studied the vibrations of strings by placing the string

where a thin sheet of light would fall across it, so as to illuminate

a single point. When the string was caused to vibrate, the path of

the point appeared as a continuous line, in consequence of the per-

sistence of vision. Some of the results which he obtained are given

in Fig. 61, taken from Tyndall on Sound.

The most interesting application of this method was made by

Lissajous to illustrate the composition of vibratory motions at right

angles to each other. If a beam of light be reflected to a screen

from a mirror attached to a tuning-fork, when the tuning-fork

vibrates the spot on the screen will describe a simple harmonic

motion and will appear as a straight line of light. If the beam,

instead of being reflected to a screen, fall upon a mirror attached

to a second fork, mounted so as to vibrate in a plane at right angles

to the first, the spot of light will, when both forks vibrate, be

actuated by two simple harmonic motions at right angles to each

other, and the resultant path will appear as a curve more or less

complicated, depending upon the relation of the two forks to each

other as to both period and phase (§21). Fig. 62 shows some of
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the simpler forms of these curves. The figures of the upper line

are those produced by two forks in unison ; those of the second

Fig. 63.

line by two forks of which the vibration numbers are as 2: 1; those

of the lower line by two forks of which the vibration nutnbers are

as o I /v.

155. Beats.—It has already been explained (§139) that, when

two tones of nearly the same pitch are sounded together, variations

of intensity, called beats, are heard. Helmholtz's theory of the

perception of beats was, that, of the little fibres in the ear which

are tuned so as to vibrate with the various tones, those which are

nearly in unison affect one another so as to increase and diminish

one another's motions, and hence that no beats could be perceived

unless the tones were nearly in unison. Beats are, however, heard

when a tone and its octave are not quite in tune, and, in general,

a tone making n vibrations produces m beats when sounded with a

tone making 2n ± m, on ± ?«,etc., vibrations. This was explained

in accordance with Helmholtz's theory, by assuming that one of

the harmonics of the lower tone, which is nearly in unison with the

up^er, causes the beats, or, in cases where this is inadmissible, that

they are caused by the lower tone in conjunction with a resultant
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tone (§ 15C). An exhaustive research by Kouig, however, has de-

monstrated that beats are perceived when neither of the above sup-

positions is admissible. Figs. 63 and 64 show that the resultant

II

Fig. 63.

vibrations are affected by changes of amplitude similar to, though

less in extent than, the changes which occur when the tones are

nearly in unison. In Fig. 63 I represents a llame image obtained

III

15:46

IV

Fig. 64.

when two tones making n and n ± m vibrations, respectively, are

produced together, and II represents the image when the number
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of vibrations are n and 2n ± vi. Fig. 64 shows traces obtained

mechanically. In I the numbers of the component vibrations were

11 and 11 + m, in II and III n and 2m ± m, and in IV n and 3m +
m. In all these cases a variation of amplitude occurs during the

same intervals, and it seems reasonable to suppose that those varia-

tions of amplitude should cause variations in inteueity in the

sound perceived.

Cross has shown that the beating of two tones is perfectly well

perceived when the tones themselves are heard separately by the

two ears ; one tone being heard directly by one ear, while the

other, produced in a distant room, is heard by the other ear by

means of a telephone. Beats are also perceived when tones are

produced at a distance from each other and from the listener, who

hears them by means of separate telephones through separate lines.

In this case there is no possibility of the formation of a resultant

wave, or of any combination of the two sounds in the ear.

156. Resultant Tones.

—

Resultant tones are produced by com-

binations of two tones. Those most generally recognized have a

vibration number equal to the sum or difference of the vibration

numbers of their primaries. For instance, ut^, making 2048 vibra-

tions, and re^, making 2304 vibrations, when sounded together give

utj, making 256 vibrations. These tones are only heard well when

the primaries are loud, and it requires an effort of the attention

and some experience to hear them at all. Summation tones are

more difficult to recognize than difference tones, nevertheless they

have an influence in determining the general effect produced when

musical tones are sounded together. Other resultant tones may be

heard under favorable conditions. As described above, two tones

making n and n + m vibrations respectively, when m is considerably

less than n, give a resultant tone making m vibrations; but a tone

making n vibrations in combination with one making 'Zn -\- m,

3n + m, or xn + m vibrations, gives the same resultant. This has

sometimes been explained by assuming that intermediate resultants

are produced, which, with one of the primaries, produce resultants

of a higher order. In the case of the two tones making n and
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3w + VI vibrations, for instance, the first difference tone would make

2n -\- m vibrations. This tone and the one making n vibrations would

give the tone making n + m vibrations ; this tone, in turn, and the

one making n vibrations would give the tone making 7n vibrations.

This last tone is the one which is heard most plainly, and it seems

difficult to«admit that it can be the resultant of tones which are only

heard very feebly, and often not at all. In Fig. 64 are represented

the resultant curves produced in several of these cases. The first

curve corresponds to two tones of which the vibration numbers are

as 15 : 16. It shows the periodic increase and decrease in ampli-

tude, occurring once every 15 vibrations, which, if not too frequent,

give rise to beats (§ 139). If the pitch of the primaries be raised,

preserving the relation 15 : 16, the beats become more frequent, and

finally a distinct tone is heard, the vibration number of which cor-

responds to the number of beats that should exist. It was for a long

time considered that the resultant tone was merely the rapid recur-

rence of beats. Helmholtz has shown by a mathematical investi-

gation that a distinct wave making m vibrations will result from

the coexistence of two waves making n and n + m vibrations, and

he believes that mere alternations of intensity, such as constitute

beats, occurring ever so rapidly cannot produce a tone.

In II and III (Fig. 64) are the curves resulting from two tones,

the intervals between which are respectively 15: 29(= 2 X 15 — 1)

and 15:31(= 2 X 15 + 1), Eunning through these may be seen

a periodic change corresponding exactly in period to that shown in

I. The same is true also of the curve in IV, which is the resultant

for two toues the interval between which is 15:46(= 3X15-J-1). In

all these cases, as has been already said (§ 155), if the pitch of the

components be not too high, one beat is heard for every 15 vibra-

tions of the lower component. Fig. 63 shows the flame images for

the intervals n:n-\-m and w:2w + m. The varying amplitudes

resulting in m beats per second are very evident in both. In all

these cases, also, as the pitch of the components rises the beats be-

•come more frequent, and finally a resultant tone is heard, having,

as already stated, one vibration for every 15 vibrations of the lower
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component. In Fig. 65 are shown two resultant curves having

1:15:29

II

Fig. 65.

three components of which the vibration numbers are as 1:15: 29,

In I the three components all start in the same phase. In II, when

15 and 29 are in the same phase, I is in the opposite phase.



HEAT.

CHAPTER I.

MEASUREMENT OF HEAT.

157. General Effects of Heat.—Bodies are warmed, or their

temperature is raised, by heat. The sense of touch is often suffi-

cient to show difference in temperature; but the true criterion is

the transfer of heat from the hotter to the colder body when the

two bodies are brought in contact, and no work is done by one

upon the other. This transfer is known by some of the effects

described below.

Bodies, in general, expand when heated. Experiments show

that different substances expand differently lor the same rise of tem-

perature. Gases, in general, expand more than liquids, and liquids

more than solids. Expansion, however, does not universally ac-

company rise of temperature. A few substances contract when

heated.

Heat changes the state of aggregation of bodies, always in such

a way as to admit of greater freedom of motion among the mole-

cules. The melting of ice and the conversion of water into steam

are familiar examples.

Heat breaks up chemical compounds. The compounds of

sodium, potassium, lithium, and other metals, give to the flame of

a Bunsen lamp the characteristic colors ot the vapors of the metals

186
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which they contain. This fact shows that the heat separates the

metals from their combinations.

When the junction of two dissimilar metals in a conducting

circuit is heated, electric currents are produced.

Heat performs mechanical work. For example, the heat pro-

duced in the furnace of a steam-boiler may be used to drive an en-

gine.

158. Production of Heat.—Heat is produced by various proc-

esses, some of which are the reverse of the operations just men-

tioned as the effects of heat. As examples of such reverse opera-

tions may be mentioned, the production of heat by the compression

of a body which expands when heated; the production of heat

during a change in the state of aggregation of a body, when the

freedom of motion among the molecules is diminished; the pro-

duction of heat during chemical combination; and the production

of heat when an electric current passes through a junction of two

dissimilar metals in an opposite direction to that of the current

which is set up when the junction is heated.

Heat is produced in general in any process involving the ex-

penditure of mechanical energy. The heat produced in such

processes cannot be used to restore the whole of the original me-

chanical energy. The production of heat by friction is the best

example of these processes.

Further, an electric current, in a homogeneous conductor, gen-

erates heat at every point in it, while if every point in the conduc-

tor be equally heated no current will be set up.

These cases are examples of the production of heat by non-

reversible processes.

159. Nature of Heat.—Heat was formerly considered to be a

substance which passed -from one body to another, lowering the

temperature of the one and raising that of the other, which com-

bined with solids to form liquids, and with liquids to form gases

or vapors. But the most delicate balances fail to show any

change of weight when heat passes from one body to another.

Rumford was able to raise a considerable quantity of water to the
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boiling-point by the friction of a blunt boring-tool within the bore

of a cannon. He showed that the heat manifested in this experi-

ment could not have come from any of the bodies present, and

also that heat would continue to be developed as long as the borer

continued to revolve, or that the supply of heat was practically

inexhaustible. The heat, therefore, must have been generated by

the friction.

That ice is not melted by the combination with it of a heat

substance was shown early in the present century by Davy. He
caused ice to melt by friction of one piece upon another in a vac-

uum, the experiment being performed in a room where the tem-

perature was below the melting-point of ice. There was no source

from which heat could be drawn. The ice must, therefore, have

been melted by the friction.

Kumford was convinced that the heat obtained in his experi-

ment was only transformed mechanical energy; but to demonstrate

this it was necessary to prove that the quantity of heat produced

was always proportional to the quantity of mechanical work done.

This was done in the most complete manner by Joule in a series

of experiments extending from 1842 to 1849. He showed that,

however the heat was produced by mechanical means, whether by

the agitation of water by a paddle-wheel, the agitation of mercury,

or the friction of iron plates upon each other, the same expendi-

ture of mechanical energy always developed the same quantity of

heat. Joule also proved the perfect equivalence of heat and elec-

trical energy.

These experiments prove that heat is a form of energy. Con-

sistent explanations of most if not all of the phenomena of heat

may be given if we assume that the molecules of bodies, and the

atoms constituting the molecules, are in constant motion, that the

temperature of a body varies with the mean kinetic energy of an

atom, and that the heat in a body is the sum of the kinetic energies

of its atoms.
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THEEMOMETEY.

160. Temperature.—Two bodies are said to be at the same

temperature when, if they be brought into each other's presence,

no heat is transferred from one to the other. A body is at a higher

temperatiire than the other bodies around it when it gives up heat

to them. The fact that it gives up heat may be shown by its

change in volume. A body is at a loiver temperature when it re-

ceives heat from surrounding bodies. It is understood, of course,

in what is said above, that one body has no action upon the other,

or that no work is done by one body upon the other.

161. Thermometers.—Experiments show that, in general, bodies

expand, and their temperature rises progressively, with the appli-

cation of heat. An instrument may be constructed which will

show at any instant the volume of a body selected for the purpose.

If the volume increase, we know that the temperature rises; if the

volume remain constant or diminish, we know that the tempera-

ture remains stationary or falls. Such an instrument is called a

thermometer.

The thermometer most in use consists of a glass bulb with a

fine tube attached. The bulb and part of the tube contain mer-

cury. In order that the thermometers of different makers may

give similar readings, it is necessary to adopt two standard tem-

peratures which can be easily and certainly reproduced. The tem-

peratures adopted are the melting-point of ice, and the temperature

of steam from boiling water, under a pressure equal to that of a

column of mercury 760 millimetres high at Paris. After the instru-

ment has been filled with mercury, it is plunged in melting ice,

from which the water is allowed to drain away, and a mark is

made upon the stem opposite the end of the mercury column. It

is then placed in a vessel in which water is boiled, so constructed

that the steam rises through a tube surrounding the thermometer,

and then descends by an annular space between that tube and an

outer one, and escapes at the bottom. The thermometer does not

touch the water, but is entirely surrounded by steam. The point
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reached by the end of the mercury column is marked on the stem,

as before. The space between these two marks is then divided

into a number of equal parts.

While all makers of thermometers have adopted the same stand-

ard temperatures for the fixed points of the scale, they differ as to

the number of divisions between these points. The thermometers

used for scientific purposes, and in general use in France, have the

space between the fixed points divided into a hundred equal parts

or degrees. The melting-point of ice is marked 0°, and the boiling-

point 100°. This scale is called the Centigrade or Celsius scale.

The Reaumur scale, in use in Germany, has eighty degrees

between the melting- and boiling-points, and the boiling-point is

marked 80°.

The Fahrenheit scale, in general use in England and America,

has a hundred and eighty degrees between the melting- and boil-

ing-points. The former is marked 32°, and the latter 212°.

The divisions in all these cases are extended below the zero

point, and are numbered from zero downward. Temperatures

below zero must, therefore, be read and treated as negative quan-

tities.

A few points in the process of construction of a thermometer

deserve notice. It is found that glass, after it has> been heated to

a high temperature, and again cooled, does not for some time return

to its original volume. The bulb of a thermometer must be heated

in the process of filling with mercury, and it will not return to its

normal volume for some months. The construction of the scale

should not be proceeded with until the reservoir has ceased to con-

tract. For the same reason, if the thermometer be used for high

temperatures, even the temperature of boiling water, time must be

given for the reservoir to return to its original volume before it is

used for the measurement of low temperatures.

It is essential that the diameter of the tube should be nearly

uniform throughout, and that the divisions of the scale should rep-

resent equal capacities in the tube. To test the tube a thread of

mercury about 50 millimetres long is introduced, and its length is
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measured in different parts of the tube. If the length vary by more

than a millimetre, the tube should be rejected. If the tube be

found to be suitable, a bulb is attached, mercury is introduced, and
the tube sealed after the mercury has been heated to expel the air.

AYhen it is ready for graduation, the fixed points are determined;

then a thread of mercury having a length equal to about ten de-

grees of the scale is detached from the column, and its length

measured in all parts of the tube. By reference to these measure-

ments, the tube is so graduated that the divisions represent parts

of equal capacity, and are not necessarily of equal length.

If such a thermometer indicate a temperature of 10°, this

means that the thermometer is in such a thermal condition that

the volume of the mercury has increased from zero one tenth of

its total expansion from zero to 100°. There is no reason for sup-

posing that this represents the same proportional rise of tempera-

ture. If a thermometer be constructed in the manner described,

using some liquid other than mercury, it will not in general indi-

cate the same temperature as the mercurial thermometer, except at

the two standard points. It is plain, therefore, that a given frac-

tion of the expansion of a liquid from zero to 100° cannot be taken

as representing the same fraction of the rise of temi^erature.

162. Air-thermometer.—If a gas be heated, and its volume kept

constant, its pressure increases. For all the so-called permanent

gases—that is, those which are liquefied only with great difficulty

—the amount of increase in pressure for the same increase of tem-

perature is found to be almost exactly the same. This fact is a

reason for supposing that the increase of pressure is proportional

to the increase of temperature. There are theoretical reasons, as

will be seen later, for the same supposition.

An instrument constructed to take advantage of this increase in

pressure to measure temperature is called an air-thermometer. A
bulb so arranged that it may be placed in the medium of which the

temperature is to be determined, is filled with air or some other

gas, and means are provided for maintaining the volume of the gas

constant, and measuring its pressure. For the reasons given above,
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the air-thermometer is taken as the standard instrument for scien-

tific purposes. Its use, however, involves several careful observa-

tions and tedious computations. It is therefore mainly employed

as a standard with which to compare other instruments. If we
make such a comparison, and construct a table of corrections, we

may reduce the readings of any thermometer to the corresponding-

readings of the air-thermometer.

163. Limits in the Range of the Mercurial Thermometer.—The
range of temperature for which the mercurial thermometer may be

employed is limited by the freezing of the mercury on the one

hand, and its boiling on the other. For temperatures below the

freezing-point of mercury alcohol thermometers may be used. For

the measurement of high temperatures several different methods

have been employed. One depends upon the expansion of a bar

of platinum, another upon the variation in the electric resistance

of platinum wire, another upon the strength of the electric current

generated by a thermo-electric pair, another on the density of mer-

cury vapor.

The special devices used in applying these methods need not be

considered here.

CALORIMETRY. .

164. Unit of Heat.—It is evident that more heat is required to

raise the temperature of a large quantity of a substance through a

given number of degrees than to raise the temperature of a small

quantity of the same substance through the same number of degrees.

It is further evident that the successive repetition of any operation

by which heat is produced will generate more heat than a single

operation. Heat is therefore a quantity the magnitude of which

may be expressed in terms of some unit. The unit of heat gen-

erally adopted is the heat required to raise the temperature of one

kilogram of water from zero to one degree. It is called a calorie.

It is sometimes convenient to employ a smaller unit, namely,

the quantity of h^at necessary to raise one gram of water from zero

to one desfree. This unit is designated as the Itsser calorie or the
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gram-degree. It is one one-thousandth of the larger imit. It may.

therefore, be called a miUicalorie.

The fact that heat is energy enables us to employ still another

unit. It is that quantity of heat which is equivalent to an erg.

Tliis unit is called the mechanical imit of heat. According to the

determination of Griffiths, a calorie contains about 41,982,000,000

mechanical units.

165. Heat required to raise the Temperature of a Mass of

Water.— It is evident that to raise the temperature of m kilograms

of water from zero to one degree will require m calories. If the

temperature of the same quantity of water fall from one degree to

zero, the same quantity of heat is given to surrounding bodies.

Experiment shows, that if the same quantity of water be raised

to different temperatures, quantities of heat nearly proportional to

the rise in temperature will be required: hence, to raise the tem-

perature of m kilograms of water from zero to t degrees requires 7nt

calories very nearly. This is shown by mixing water at a lower

temperature with water at a higher temperature. The temperature

of the mixture will be almost exactly the mean of the two. Regnault,

who tried this experiment with the greatest care, found the tempera-

ture of the mixture a little higher than the mean, and concluded

that the quantity of heat required to raise the temperature of a

kilogram of water one degree increases slightly with the temperature

;

that is, to raise the temperature of a kilogram of water from twenty

to twenty-one degrees, requires a little more heat than to raise the

temperature of the same quantity of water from zero to one degree.

Rowland found, by mixing water at various temperatures, and

also by measuring the energy required to raise the temperature of

water by agitation by a paddle-wheel, that, when the air thermo-

meter is taken as a standard, the quantity of heat necessary to raise

the temperature of a given quantity of water one degree diminishes

slightly from zero to thirty degrees, and then increases to the boiling-

point.

166. Specific Heat.—Only one thirtieth as much heat is required

to raise the temperature of a kilogram of mercury from zero to one
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degree as is required to raise the temperature of a kilogram of water

through the same rauge. In order to raise the temperatures of

other substances through the same range, quantities of heat peculiar

to each substance are required.

The quantity of heat required to raise the temperature of one

kilogram of a substance from zero to one degree is called the sjjecijic

heat of the substance.

If the temperature of one kilogram of a substance rise from t^

to t, the limit of the ratio of the quantity of heat required to bring

about the rise in temperature to the difference in temperature, as

that difference diminishes indefinitely, is called the specific heat of

the substance at temperature t. If we represent the quantity of

heat by Q, the limit of the ratio j- = -j- expresses this specific

heat.

The specific heats of substances are generally nearly constant

between zero and one hundred degrees. The 7nean specific heat of

a substance between zero and one hundred degrees is the one usually

given in the tables.

The measurement of specific heat is one of the important objects

of calorimetry.

167. Ice Calorimeter.

—

Black's or Wilcke's ice calorimeter con-

sists of a block of pure ice having a cavity in its interior covered by

a thick slab of ice. The body of which the specific heat is to be

determined is heated to t degrees, then dropped into the cavity,

and immediately covered by the slab. After a short time the tem-

perature of the body falls to zero, and in so doing converts a certain

quantity of ice into water. This water is removed by a sponge of

known weight, and its weight is determined. It will be shown,

that to melt a kilogram of ice requires 80 calories; if, then, the

weight of the body be P, and its specific heat c, it gives up, in falling

from t degrees to zero, Pet calories. On the other hand, if p kilo-

grams of ice be melted, the heat required is 80;?. Therefore

Pet — 80^j; whence

-If- (")



168] MEASUREMENT OF HEAT. 195

Bunsen's ice calorimeter (Fig. 66) is used for determining the

specific heats of substances of which only a small quantity is at

hand. The apparatus is entirely of glass. The tube B is filled

with water and mercury, the latter extending into the graduated

capillary tube C. To use the apparatus, alcohol which has been

artificially cooled to a temperature below zero is passed through

the tube A. A layer of ice forms around

the outside of this tube. As water freezes,

it expands. This causes the mercury to

advance in the capillary tube C. When
a sufficient quantity of ice has been

formed, the alcohol is removed from A, g

tlie apparatus is surrounded by melting

snow or ice, and a small quantity of water

is introduced, which soon falls in tem-

perature to zero. The position of the

mercury in C is now noted; and the sub-

stance the specific heat of which is to be Fig. 66.

determined, at the temperature of the surrounding air, is dropped

into the water in A. Its temperature quickly falls to zero, and the

heat which it loses is entirely employed in melting the ice which

surrounds the tube A. As the ice melts, the mercury in the tube

retreats. The change of position is an indication of the quantity of

ice melted, and the quantity of ice melted measures the heat given

up by the substance. The number of divisions of the tube C cor-

responding to one calorie can be determined by direct experiment.

168. Method of Mixtures.—The method of mixtures consists in

bringing together, at different temperatures, the substance of which

the specific heat is desired and another of which the specific heat is

known, and noting the change of temperature which each undergoes.

The tvater calorimeter consists of a vessel of very thin copper or

brass, highly polished, and placed within another vessel upon non-

conducting supports. A mass P of the substance of which the

specific heat is to be determined is brought to a temperature t' in

a suitable bath, then plunged in water at a temperature t, con-
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fcained in the calorimeter. The whole will soon come to a common

temperature d. The heat lost by the substance is Pc{t'— d) calories.

The heat gained by the calorimeter is the sum of that gained

by the water and that gained by the materials of which the calo-

rimeter is constructed. If p represent the mass of water, and 'p'

the water equivalent of the calorimeter, or the mass of water which

will rise by the same temperature interval as the calorimeter vessel

does on the introduction of a given quantity of heat, the total heat

gained by the calorimeter is (;j -\- p'){P — t); and hence

Pcit' - 0) = {p + p'){d - t), (62)

from which c may be determined. The water equivalent |?' is de-

termined by exi^eriment.

There is a source of error in the use of the instrument, due to

the radiation of heat during the experiment. This error may be

nearly eliminated by making a preliminary experiment to determine

what change of temperature the calorimeter will experience; then,

for the final experiment, the calorimeter and its contents are

brought to a temperature below the temperature of the surround-

ing air, by about half the amount of that change. The calorimeter

will then receive heat from the surrounding medium during the

first part of the experiment, and lose heat during the second part.

The rise of temperature is, however, much more rapid at the begin-

ning than at the end of the experiment. The rise from the initial

temperature to the temperature of the surrounding medium occu-

pies less time than the rise from the latter to the final temperature.

The gain of heat, therefore, does not exactly compensate for the

loss. If greater accuracy be required, the rate of cooling of the

calorimeter must be determined by putting into it warm water, the

same in quantity as would be used in experiments for determining

specific heat, and noting its temperature from minute to minute.

Such an experiment furnishes the data for computing the loss or

gain by radiation. To secure accurate results the body must be

transferred from the bath to the calorimeter without sensible loss

of heat.
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169. Method of Comparison.—The method of comparison con-

sists in conveying to the substance of which the specific heat is to

be determined a known quantity of heat, and comparing the con-

sequent rise of temperature with that produced by the same amount

of heat in a substance of which the specific heat is known. In the

early attempts to use this method, the heat produced by the same

tiame burning for a given time was applied successively to different

liquids. A more exact method was the combustiou, within the

calorimeter, of a known weight of hydrogen. The best method of

obtaining a known quantity of heat is by means of an electrical

current of known strength flowing through a wire of known resist-

ance wrapped upon the calorimeter.

170. Method of Cooling.—The method of cooling consists in

noting the time required for the calorimeter, in a space kept con-

stantly at zero, to cool from a temperature t' to a tem-

perature /, when empty, when containiug a given weight

of water, and when containing a given weight of the

substance of which the specific heat is sought. The

thermo-calorimeter of Eegnanlt, represented in Fig. 67,

is an example. It consists of an alcohol thermometer,

with its bulb A enlarged and made in the form of a hollow

cylinder, inside of which the substance is placed. The

thermometer is warmed, and then placed in a vessel

surrounded by melting ice. It radiates heat to the sides

of the vessel, and the column of alcohol in the tube falls.

Let X be the time occupied in falling from the division

II to the division n' when the space B is empty. Let the

times occupied in falling between the same two divi-

sions, when the space B contains a mass P of water, and

when it contains a mass P' of the substance of which

the specific heat c' is sought, be respectively x' and x".

Let M be the water equivalent of the instrument.

M _M + P M + P'c'

X

Fig. 67.

We then have

since, under the conditions of the ex-
X X

periment, the heat lost per second must be the same in each case
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Eliminating M, we obtain

P Ix" - x\

' = p(^rr^)- <«5)

171. Determination of the Mechanical Equivalent of Heat.—It

has been stated that whenever heat is produced by the expenditure

of mechanical energy, the quantity of heat produced is always pro-

portional to the quantity of mechanical energy expended.

The mechanical equivalent of heat is the energy in mechanical

units, the expenditure of which produces the unit of heat.

Heat applied to a body may increase the motion of its mole-

cules; that is, add to their kinetic energy. It may perform inter-

nal work by moving the molecules against molecular forces. It

may perform external work by producing motion against external

forces. If we could estimate these effects in mechanical units, we

might obtain the mechanical equivalent of heat. But the kinetic

energy of the molecules cannot be estimated, for we do not know
their mass or their velocity. We must, therefore, in the present

state of our knowledge, resort to direct experiment to determine

the heat equivalent. In one of the experiments of Joule, already

referred to, a paddle-wheel was made to revolve, by means of

weights, in a vessel filled with water. In this vessel were stationary

wings, to prevent the water from acquiring a rotary motion Avith

the paddle-wheel. By the revolution of the wheel the water was

warmed. The heat so generated was estimated from the rise of

temperature, while the mechanical energy required to produce it

was given by the fall of the driving weight. Joule repeated this

experiment, substituting mercury for the water. In another exper-

iment he substituted an iron plate for the paddle-wheel, and made

it revolve with friction upon a fixed iron plate under water.

Joule expressed his results in kilogram-metres—that is, the

work done by a kilogram in falling under the force of gravity

through one metre. He stated the mechanical equivalent of one

calorie, in this unit, to be 423.9, from the experiments with water;

425.7, from those with mercury; and 426. 1, from those with iron
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plates. He gave the preference to the smallest value, and it has

been generally accepted as the mechanical equivalent. This me-

chanical equivalent is called Joule's equivalent, and is represented

by J. In absolute units, according to the later determinations of

Griffiths, it is about 41,982,000,000 ergs per calorie.

Rowland has repeated Joule's experiment Avitli water; but he

caused the paddle-wheel to revolve by means of an engine, and de-

termined the moment of the couple required to prevent the revolu-

tion of the calorimeter. Fig. 68 shows the apparatus. The shaft

^==0 iO='

Fig. 68.

of the paddle-wheel projects through the bottom of the calorimeter^

and is driven by means of a bevel-gear. The vessel A is suspended

from C by a torsion wire, and its tendency to rotate balanced by

weights attached to cords which act upon the circumference of a

pulley D. By this disposition of the apparatus he was able to ex-

pend about one half a horse-power in the calorimeter, and obtain a
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rise of temperature of 35° per hour; while in Joule's experiments

the rise of temperature per hour was less than 1°. These experi-

ments give, for the mechanical equivalent of one calorie at 5°,

439.8 kilogram-metres; at 20°, 42G.4 kilogram-metres.

Several other methods have been employed for determining the

mechanical equivalent. The concordance of the results by all

these methods is sufficient to warrant the statement that the ex-

penditure of a given amount of mechanical energy always produces

the same amount of heat.

An experiment to determine the mechanical work done by the

expenditure of a known quantity of heat was executed by Hirn.

By the help of Kegnault's measurements of the heat of vaporization

Hirn was able to calculate the amount of heat which entered the

cylinder, during the operation of a steam-engine, with the steam

from the boiler, and by direct measurements he determined the

amount of heat which left the cylinder during the operation of the

engine and entered the condenser. So long as the engine was run-

ning without doing any external work, he found that these amounts

of heat were appreciably equal; when the engine was made to do

work, less heat passed from the cylinder into the condenser than

had entered it from the boiler. A comparison of the amount of

heat lost with the work done by the engine showed the same ratio

between heat and work as that determined by Joule. Hirn's ex-

periments were on so large a scale and the sources of error and the

difficulties connected with the experiments were so numerous, that

the number obtained by him for the mechanical equivalent of heat is

of no great value. His experiments are, however, of very great in-

terest because, while the experiments of Joule and of all the others

who have worked on the problem prove the convertibility of work

into heat, those of Hirn alone have proved the converse converti-

bility of heat into work.



CHAPTER II.

TRANSFER OF HEAT.

172. Transfer of Heat.—In the preceding discussions it has been

assumed that heat may be transferred from one body to another,

and that if two bodies in contact be at different temperatures, heat

will be transferred from the hotter to the colder body. In general,

if transfer of heat be possible in any system, heat will pass from the

hotter to the colder parts of the system, and the temperature of the

system will tend to become uniform. There are three ways in which

this transfer is accomplished, called respectively convection, con-

duction, and radiation,

173. Convection.— If a vessel containing any fluid be heated at the

bottom, the bottom layers become less dense than those above, pro-

ducing a condition of instability. The lighter portions of the fluid

rise, and the heavier portions from above, coming to the bottom, are

in their turn heated. Hence continuous currents are caused. This

process is called convection. By this process, masses of fluid, al-

though fluids are poor conductors, may be rapidly heated. Water

is often heated in a reservoir at a distance from the source of heat

by the circulation produced in pipes leading to the source of heat

and back. The winds and the great currents of the ocean are con-

vection currents. An interesting result follows from the fact that

water has a maximum density (§ 190). AVhen the water of lakes

cools in winter, currents are set up and maintained, so long as the

surface water becomes more dense by cooling, or until the whole

mass reaches 4°. Any further cooling makes the surface water'

lighter. It therefore remains at the surface, and its temperature

201
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rapidly falls to the freezing-point, while the great mass of the water

remains at the temperature of its maximum density.

174. Conduction.—If one end of a metal rod be heated, it is

found that the heat travels along the rod, since those portions at a

distance from the source of heat finally become warm. This proc-

ess of transfer of heat from molecule to molecule of a body, while

the molecules themselves retain their relative places, is called con-

duction.

In the discussion of the transfer of heat by conduction it is as-

sumed as a principle, borne out by experiment, that the flow of heat

between two very near parallel planes, drawn in a substance, is pro-

portional to the difference of temperature between those planes, or

ihat the flow of heat across a plane is proportional to the rate of

fall of temperature across that plane.

175. Flow of Heat across a Wall.—The simplest body in which

the flow of heat can be studied is a wall of homogeneous material

bounded by two parallel infinite planes, one of which is kept at

the temperature t' and the other at the temperature t ; we repre-

sent the distance between the planes or the thickness of the wall

by d. We suppose that the flow of heat across this wall has con-

tinued so long that it has become steady, or that the tem-

peratures at all points have assumed final values. Manifestly the

temperature at all points in any plane parallel with the faces of

the wall is the same, and the same amount of heat passes

across any one such plane as passes across any other. We
conclude therefore by the fundamental principle assumed (§ 174)

that the rate of change of temperature across each plane in tlie

wall is the same, or that the change of temperature through-

out the wall from one face to the other is uniform; the rate of

f — t
change of temperature is therefore given by —

^
— , where it has

been assumed that i' is the higher temperature. If d' represent

the distance of any plane in the wall from the hotter surface, the

d'
fall of temperature between it and the hotter surface is it' — t)—

d
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d'

and the temperature of the plane is t' - {f - t)-^. The confirma-

tion by experiment of this law of temperature distribution in a

wall is a warrant for our assumption of the fundamental princi-

ple of the flow of heat.

176. Conductivity.—If, now, we consider a prism extending

across the wall, bounded by planes perpendicular to the exposed

surfaces, and represent the area of its exposed bases by A, the

quantity of heat which flows in a time T through this prism may

be represented by

q^K^'-^AT, (64)

where ^ is a constant depending upon the material of which the

wall is composed. K is the conductivity of the substance, and may

be defined as the quantity of heat which in unit time flows through

a section of unit area in a wall of the substance whose thickness is

unity, Avhen its exposed surfaces are maintained at a difference of

temperature of one degree; or, in other words, it is the quantity of

heat which in unit time flows through a section of unit area in a

substance, where the rate of fall of temperature at that section is

unity. In the above discussions the temperatures t' and t are taken

as the actual temperatures of the surfaces of the wall. If the

colder surface of the wall be exposed to air of temperature T, to

which the heat which traverses it is given up, t will be greater than

T. The difference will depend upon the quantity of heat which

flows, and upon the facility with which the surface parts with

heat.

177. Flow of Heat along a Bar.—If a prism of a substance have

one of its bases maintained at a temperature t, while the other base

and the sides are exposed to air at a lower temperature, the con-

ditions of uniform fall of temperature no longer exist, and the

amount of heat which flows through the different sections is no

longer the same; but the amount of heat which flows through any

section is still proportional to the rate of fall of temperature at that
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section, and is equal to the heat which escapes from the portion of

the bar beyond the section.

178. Measurement of Conductivity.—A bar heated at one end

furnishes a convenient means of meas-

uring conductivit3^ In Fig. 69 let

AB represent a bar heated at A. Let

the ordinates aa', hh', cc', represent the

excess of temperatures above the tem-

^ perature of the air at the points from

which they are drawn. These temper-

atures may be determined by means of thermometers inserted in

cavities in the bar, or by means of a thermopile. Draw the curve

a'h'c'd' . . . through the summits of the ordinates. The inclma

tion of this curve at any point represents the rate of fall of tem-

perature at that point. The ordinates to the line b'm, drawn

tangent to the curve at the point b', show what would be tlie tem-

peratures at various points of the bar if the fall were uniform and

at the same rate as at h'. It shows that, at the rate of fall at b',

the bar would at m be at the temperature of the air; or, in the

length hm, the fall of temperature would equal the amount repre-

bb'
sen ted by bb'. The rate of fall is, therefore, ^— . If ^ represent

the quantity of heat passing the section at b m the unit time, we

have, from § 17G,

Q = K X rate offall of temperature X area of section.

Q is equal to the quantity of heat that escapes in unit time

from all that portion of the bar beyond b. It may be found by

heating a short piece of the same bar to a high temperature, allow-

ing it to cool under the same conditions that surround the harAB,

and observing its temperature from minute to minute as it falls.

These observations furnish the data for computing the quantity of

heat which escapes per minute from unit length of the bar at

different temperatures. It is then easy to compute the amount cf

heat that escapes per minute from each portion, be, cd, etc , of tl:e

bar beyond b; each portion being taken so short that its tempera-
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ture throughout may, without sensible error, be considered uniform

and the same as that at its middle point. Summing up all these

quantities, we obtain the quantity Q which passes the section b in

the unit time. Then

^^^ Q
.

rate of fall of temperature at b X area of section

179. Conductivity diminishes as Temperature rises.—By the

method described above, Forbes determined the conductivity of a

bar of iron at points at different distances from the heated end, and

found that the conductivity is not the same at all temperatures,

but is greater as tlie temperature is lower.

180. Conductivity of Crystals.—The conductivity of crystals of

the isometric system is the same in all directions, but in crystals of

the other systems it is not so. In a crystal of Iceland spar the con-

ductivity is greatest in the direction of the axis of symmetry, and

equal in all directions in a plane at right angles to that axis.

181. Conductivity of Non-homogeneous Solids.—De la Rive and

De Candolle were the first to show that wood conducts heat better

in the direction of the fibres than at right angles to them. Tyndall,

by experimenting upon cubes cut from wood, has shown that the

conductivity has a maximum value parallel to the fibres, a minimum
value at right angles to the fibres and parallel to the annual layers.

Feathers, fur, and the materials of clothing are poor conductors

because of their want of continuity,

182. Conductivity of Liquids.—The conductivity of liquids can

be measured, in the same way as that of solids, by noting the fall

of temperature at various distances from the source of heat in a

column of liquid heated at the top. Great care must be taken in

these experiments to avoid errors due to convection currents.

Liquids are generally poor conductors.

183. Radiation.—We have now considered those cases in which

there is a transfer of heat between bodies in contact. Heat is also

transferred between bodies not in contact. This is effected by a

process called radiation, which will be subsequently considered.



CHAPTEE III.

EFFECTS OF HEAT.

184. The Kinetic Theory of Heat.—In order to describe more

easily certain of the effects of heat, it is advantageous to have an

idea of the theory by which they are explained. This theory, the

kinetic theory of heat, asserts that the molecules of all bodies are

in constant motion, and that the heat of a body is the kinetic

energy of its molecules. The idea that heat consists of the motion

of the least parts of matter was introduced into science by New-

ton, of course with a very imperfect knowledge of the facts. The

apparently unlimited production of heat by mechanical work led

Kumford and Davy, more particularly the latter, to assert the

equivalence of heat and motion. This theory was afterwards dis-

placed for many years by the influence of the French school of

physicists, who considered bodies, at least in their mathematical

discussions, as assemblages of stationary particles, and heat as a

separate substance. It was revived by Mohr, who showed its very

general applicability in the explanation of ordinary heat phenomena.

Since the discovery of the conservation of energy, the reasons in its

favor have been very much strengthened and its foundations

securely laid by the complete success attained with it in explaining

the laws of gases.

We will use this theory in its general form in the description of

some of the effects of heat, and will discuss it more fully in

§ 32 L seq.

SOLIDS AND LIQUIDS.

185. Expansion of Solids.—When heat is applied to a body it

increases the kinetic energy of the molecules, and also increases the

206
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potential energy, by forcing the molecules farther apart against

their mutual attractions and any external forces that may resist ex-

pansion. Since the internal work to be done when a solid or liquid

expands varies greatly for different substances, it might be expected

that the amount of expansion for a given rise of temperature would

vary greatly.

In studying the expansion of solids, we distinguish linear and

volunii?ial expansion.

The increase which occurs in the unit length of a substance for

a rise of temperature from zero to 1° C. is called the coefficient of

linear expansion. Experiment shows that the expansion for a rise

of temperature of one degree is very nearly constant between zero

and 100°.

Eepresent by /„ the distance between two points in a body at

zero, by /, the distance between the same points at the temperature

t, and by a the coefficient of linear expansion of the substance of

which the body is composed.

The increase in the distance ?„ for a rise of one degree in tem-

perature is al^ , for a rise of t degrees atl^. Hence we have, after a

rise in temperature of / degrees,

U = Zo(l + «0. (65)

The binomial 1 -\- at i& called the factor of expansion.

In the same way, if k represent the coefficient of vohwmial ex-

pansion, the volume of a body at a temperature t will be

V, = V,{l + kt); (66)

and if d represent density, since density is inversely as volume, we

have

'• = TTTr (^''

For a homogeneous isotropic solid, the coefficient of voluminal

expansion is three times that of linear expansion ; for, if the tem-

perature of a cube, with an edge of unit length, be raised one

degree, the length of its edge becomes 1 -\- a, and its volume

1 _j_ 3« -j_ 3a'' + a\ Since a is very small, its square and cube
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may be neglected; and the volume of the cube after a rise in tem-

perature of one degree is 1 + 3a. 3a is, therefore, the coefficient

of voluminal expansion.

186. Measurement of Coefficients of Linear Expansion.—Coeffi-

cients of linear expansion are measured by comparing the lengths,

at different temperatures, of a bar of the substance the coefficient

of which is required, with the length, at constant temperature, of

another bar. The constant temperature of the latter bar is secured

by immersing it in melting ice. The bar the coefficient of which

is sought may be brought to different temperatures by immersing

it in a liquid bath; but it is found better to place the bar upon the

instrument by means of which the comparisons are to be made,

and leave it for several hours exposed to the air of the room, which

is kept at a constant temperature by artificial means. Of course

several hours must elapse between any two comparisons by this

method, and its application is restricted to such ranges of temper-

ature as may be obtained in occupied rooms; but within this range

the observations can be made much more accurately than would be

the case when the bar is immersed in a bath, and it is within this

range that an accurate knowledge of coefficients of expansion is of

most importance.

187. Expansion of Liquids.—In studying the expansion of a

liquid, it is important to distinguish its absolnfe expansion, or the

real increase in volume, and its apparent expansion, or its increase

in volume in comparison with that of the containing vessel.

To determine the absolute expansion, some method must be

used which does not require a knowledge of the expansion of the

vessel containing the liquid. The method used by RegTiault in

determining the absolute expansion of mercury consisted in compar-

ing the heights of two columns of mercury at different tempera-

tures when they were so adjusted as to give the same pressure.

The apparent expansion is determined by filling a vessel of

known volume with the liquid at one temperature, and by mensur-

ing the amount of the liquid which runs out when the temperature

is raised. This method was also used by Eegnault in his study of
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the expansion of mercury. The vessel which he used was a glass

bulb furnished with a capillary tube. It was filled with mercury

at a known temperature, and its volume determined by the weight

of the mercury contained in it and the specific gravity of mercury.

It was then heated to another known temperature, and the mer-

cury which ran out was collected and weighed. From these data

the apparent expansion of mercury in glass could be determined.

When the absolute expansion of mercury is known the knowl-

edge of its apparent expansion in glass enables us to determine the

absolute expansion of glass also.

If the apparent expansion of mercury be known, and if we

assume that its expansion is proportional to the rise of tempera-

tui-e, we may evidently use the amount of mercury which runs out

when the bulb is heated as a measure of its change of temperature.

The instrument just described is therefore called a weight ther-

mometer.

188. Determination of Voluminal Expansion of Solids.—The

weight thermometer may be used to determine the coefficient of

voluminal expansion of solids. For this purpose, the solid, of

which the volume at zero is known, must be introduced into the

bulb by the glass-blower. If the bulb containing the solid be filled

with mercury at zero, and afterward heated to the temperature t^

it is evident that the amount of mercury that will overflow will

depend upon the coefficient of expansion of the solid, and upon the

coefficient of apparent expansion of mercury. If the latter has been

determined for the kind of glass used, the former can be deduced.

By this means the coefficients of voluminal expansion of some

solids have been determined; and the results are found to verify

the conclusion, deduced from theory (§ 185), that the voluminal

coefficient is three times the linear.

189. Absolute Expansion of Liquids other than Mercury.—The
weight-thermometer may also serve to determine the coefficients of

expansion of liquids other than mercury; for, if the absolute expan-

sion of glass has been found as described above, the instrument may
be filled with the liquid the coefficient of which is desired, and the
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apparent expansion of this liquid found exactly as was that of mer-

cury. Tlie absolute coefficient for the liquid is then the sum of the

coefficient of apparent expansion and the coefficient for the glass. •

190. Expansion of Water,—The use of water as a standard with

which to compare the densities of other substances makes it neces-

sary to know, not merely its mean coefficient of expansion, but its

actual expansion, degree by degree. This is the more important

since water expands very irregularly. The best determinations of

the volumes of water at different temperatures are those of Mat-

thiessen. The method which he employed was to weigh in water a

mass of glass of which the coefficient of expansion had been pre-

viously determined.

AVater contracts, instead of expanding, from 0° to 4°. At 4° it

is at its maximum density, and from that temperature to its boiling-

point it expands.

191. Effect of Variation of Temperature upon Specific Heat.

—

It has already been stated (§ 166) that the specific heat of bodies

changes with temperature. With most substances the specific heat

increases as the temperature rises.

For example, the true specific heat of the diamond

At OMs 0.0947

At .00° is 0.1435

At 100" is 0.1905

At 200° is 0.2719

192. Effect of Change of Physical State upon Specific Heat,

—

The specific heat of a substance is not the same in its difierent

physical states. In the solid or gaseous state of the substance it is

generally less than in the liquid. For example:

llean Specific Heat.

Solid. Liquid, Gaseous.

Water 0.504 1.000 0.481

/ Mercury 0.0314 0,033

Tin 0.056 0.0637

Lead 0.0314 0,0402

Broraiue 0.1129 0.0555
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193. Dulong and Petit's Law. Atomic Heat.—In their study of

tiie sj^ecific heats of a number of chemical elements which are solid

at ordinary temperatures, Dulong and Petit found that the product

of the specific heat by the atomic weight of the element was ap-

proximately a constant quantity. Further researches, especially

those of Kopp, have confirmed this statement as a general law for

all solid elements. The constant number to which the product of

the specific heat and the atomic weight approximates is ordinarily

given as 6.4 when the specific heat is measured in calories, though

this is probably a little too high. The deviations from this number

presented by different elements are rather large, amounting in

many cases to as much as 5 per cent.

If masses of the different elements be taken which are propor-

tional to their atomic weights, these masses will contain the same

numbers of atoms. The heat required to raise one of these masses

one degree in temperature is therefore the same for all such sub-

stances. This statement is of course true only within the limits of

accuracy with which the different substances conform to Dulong

and Petit's law. The experiments of F. Neumann and Regnault

showed that a similar law applies to compounds of solids which are

of the same chemical constitution; that is, which contain the same

number of atoms in the molecule. For all such bodies the product

of the specific heat and the molecular Aveight is a constant; this

constant is different for the different classes of substances—that is,

for those substances which have different numbers of atoms in the

molecule. But if the constant obtained for each class of substances

be divided by the number of atoms in the molecule of that class,

the quotient is approximately the same constant, 6.4, as that ob-

tained for the elements. By applying this law to compounds in

Avhich one of the elements is a substance, like hydrogen, which

cannot be examined directly in the solid state, the atomic heat of

that substance may be calculated. It is found that the atomic

heats of certain substances, notably hydrogen, carbon, ox3^gen,

nitrogen, and silicium, deviate very widely from the constant with

which the other atomic heats approximately agree.
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The elementary gases obey a similar law with considerable ex-

actness; the constant given by the product of their specific heats at

constant pressure and their atomic weights is about 3.4.

The following table will illustrate the law of Dulong and Petit.

The atomic weights are those given by Clarke.

Specific Heat Product of Specific

Elements of Atomic Weight. Heat and Atomic
Equal Weights. - Weight.

Iron 0.114 55.9 6.372

Copper 0.095 68.17 6.001

Mercury.... 0.0314 (solid) 199.71 6.128

Silver 0.057 107.67 6.137

Gold 0.0329 196.15 6.458

Tin 0.056 117.7 6.591

Lead 0.0314 206.47 6.483

Ziuc 0.0955 64.9 6.198

194. Fusion and Solidification.—When ice at a temperature

below zero is heated, its temperature rises to zero, and then the ice

begins to melt; and, however high the temperature of the medium

that surrounds it may be, its temperature remains constant at zero

so long as it remains in the solid state. This temperature is the

melting-point of ice, and because of its fixity it is used as one of the

standard temperatures in graduating thermometric scales. Other

bodies melt at very different but at fixed and definite tempera-

tures. Many substances cannot be melted, as they decompose by

heat.

Alloys often melt at a lower temperature than any of their con-

stituents. An alloy of one part lead, one part tin, four parts bis-

muth, melts at 94°; while the lowest melting-point of its constitu-

ents is that of tin, 228°. An alloy of lead, tin, bismuth, and cad-

mium melts at 62°.

If a liquid be placed in a medium the temperature of which is

below its melting-point, it will in general begin to solidify when

its temperature reaches its melting-point, and it will remain at that

temperature until it is all solidified. Under certain conditions,

however, the temperature of a liquid maybe lowered several degrees

below its melting-point without solidification, as will be seen below.
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195. Change of Volume with Change of State.—Substances are

generally more dense in the solid than in the liquid state, but there

are some notable exceptions. Water, on solidifying, expands; so

that the density of ice at zero is only 0.9167, while that of water at

4° is 1. This expansion exerts considerable force, as is evidenced

by the bursting of vessels and pipes containing water.

196. Change of Melting- and Freezing-points.—If water be en-

closed in a vessel sufficiently strong to prevent its expansion, it

cannot freeze except at a lower temperature. The freezing-point

of water is, therefore, lowered by pressure. On the other liand,

substances which contract on solidifying have their solidification

hastened by pressure.

The lowering of the melting-point of ice by pressure' explains

some remarkable phenomena. If pieces of ice be pressed together,

even in warm water, they will be firmly ujiited. Fragments of ice

may be moulded under heavy pressure, into a solid, transparent

mass. This soldering together of masses of ice is called regelation.

If a loop of wire be placed over a block of ice and weiglited, it will

cut its way slowly through the ice, and regelation will occur be-

hind it. After the wire has passed through, the block will be

found one solid mass, as before. The explanation of these phe-

nomena is, that the ice is partially melted by the pressure. The
liquid thus formed is colder than the ice; it finds its way to

points of less pressure, and there, because of its low temperature,

it congeals, firmly uniting the two masses.

Water, when freed from air and kept perfectly quiet, will not

form ice at the ordinary freezing-point. Its temperature may be

lowered to —10° or —12° without solidification. In this condition

a slight jar, or the introduction of a small fragment of ice, will

cause a sudden congelation of part of the liquid, accompanied by a

rise in temperature in the whole mass to zero.

A similar phenomenon is observed in the case of several solu-

tions, notably sodium sulphate and sodium acetate. If a saturated

hot solution of one of these salts be made, and allowed' to cool in a

closed bottle in perfect quiet, it will not crystallize. Upon opening
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the bottle and admitting air, crystallization commences, and spreads

rapidly through the mass, accompanied by a considerable rise of

temperature. If the amount of salt dissolved in the water be not

too great, the solution will remain liquid when cooled in the open

air, and it may even snffer considerable disturbance by foreign bod-

ies without crystallization; but crystallization begins immediately

upon contact with the smallest crystal of the same salt.

197. Freezing-point of Solutions.—It has been long known that

the freezing-point of a solution of salt and water is lower than that

of pure water. The relation of the lowering of the freezing-point'

to the concentration of the solution was investigated by Blagden,

who found that for dilute solutions the lowering of the freezing-

point was proportional to the concentration. This matter has been

investigated by Raoult, who established some most important gen-

eralizations. Raoult showed that, for indifferent solutions, that is,

for solutions which are not electrolytes, provided they are very di-

lute, the lowering of the freezing-point is very closely proportional to

the concentration; its amount differs for different solvents. He fur-

ther showed that, for any one solvent, the lowering of the freezing-

point is the same whatever be the dissolved substance, provided

that the solutions are equimoleailar, that is, contain the same num-

ber of molecules of the dissolved substance in unit volume of the

solution. It may be shown on theoretical grounds that the change

in the freezing-point depends upon the osmotic pressure, the freez-

ing-point, the heat of fusion, and the density of the solution.

Solutions which are electi'olytes, or are not indifferent, also ex-

hibit a lowering of the freezing-point proportional to the concentra-

tion, but the amount of change is greater than in indifferent solutions.

This difference is explained by assuming a partial or complete dis-

sociation of the molecules of the dissolved substances into their

constituent ions (§ 285).

198. Heat Equivalent of Fusion.—Some facts that have ap-

peared in the al)ove account of the phenomena of fusion and solid-

ification require further study. It has been seen that, however

rapidly the temperature of a solid may be rising, the moment fusion
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begins the rise of temperature ceases. Whatever the heat to wliich

a solid may be exposed, it cannot be made hotter than its melting-

point. When ice is melted by pressure its temperature is lowered.

When a liquid is cooled, its fall of temperature ceases when solidi-

fication begins; and if, as may occur under favorable conditions, a

liquid is cooled below its melting-point, its temperature rises at

once to the melting-point, when solidification begins. Heat, there-

fore, disappears when a body melts, and is generated when a liquid

becomes solid.

It was stated (§ 159) that ice can be melted by friction; that is,

by the expenditure of mechanical energy. Fusion is, therefore,

work which requires the expenditure of some form of energy to ac-

complish it. The heat required to melt unit mass of a substance is

the heat equivalent affusion of that substance. When a substance

solidifies, it develops the same amount of heat as was required to

melt it.

As will be shown later at greater length, the absorption of heat

which occurs when a solid is melted is explained by supposing that

it is used in doing work against the forces which determine the direc-

tion of the molecules in the solid and in increasing the kinetic

energy of molecular translation.

199. Determination of the Heat Equivalent of Fusion.—The iieat

equivalent of fusion may be determined by the method of mixtures

(§ 168), as follows: A mass of ice, for example, represented by P,

at a temperature t below its melting-point, to insure dryness, is

plunged into a mass P' of warm water at the temperature T.

Represent by d the resulting temperature, when the ice is all

melted. If p represent the water equivalent of the calorimeter,

{P' -\- p) {T — 6) is the heat given up by the calorimeter and its

contents. Let c represent the specific heat of ice, and x the heat

equivalent of fusion. The ice absorbs, to raise its temperature

to zero, Ptc calories; to melt it, Px calories; to warm the water

after melting, P6 calories. We then have the equation

Ptc + Pd + Px = {P' + p){T - 6), (68)

from which x may be found.
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Other calorimetric methods may be employed. The best ex-

periments give, for the heat equivalent of fusion of ice, very nearly

eighty calories.

VAPORS AND GASES.

200. The Gaseous State.—A gas may be defined as a highly

compressible fluid. A given mass of gas has no definite volume.

Its volume varies with every change in the external pressure to

which it is exposed. A vapor is the gaseous state of a substance

which at ordinary temperatures exists as a solid or a liquid.

201. Vaporization is the process of formation of vapor. There

are two phases of the process: evaporation, in which vapor is formed

at the free surface of the liquid; and ebullition, in which the vapor

is formed in bubbles in the mass of the liquid, or at the heated

surface with which it is in contact.

202. Evaporation.—If a liquid be enclosed in a vessel which it

does not entirely fill, the space above the liquid begins at once to be

occupied by the vapor of the liquid. The presence of the vapor

can be detected in many ways, some of which are applicable only

in special cases. Those which are always applicable are the meas-

urement of the increased pressure due to the vapor and the con-

densation of the vapor into the liquid state after isolating it from

the mass of liquid beneath it. The process of forming vapor in

this way is evaporation. Evaporation goes on continually from

the free surfaces of many liquids, and even of solids. It increases

in rapidity as the temperature increases, and ceases when the vapor

has reached a certain density, always the same for the same tem-

perature, but greater for a higher temperature. It goes on very

rapidly in a vacuum; but it is found that the final density of the

vapor is no greater, or but little greater, than when some other gas

is present. While evaporation is going on, heat must be supplied

to the liquid to keep its temperature constant.

Evaporation may be readily explained on the kinetic theory

(§ 18-i) on the supposition that, in the interaction of the molecules,

the motion of any one may be more or less violent, as it receives
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motion from its neighbors or gives up motion to them. At the ex-

posed surface of tlie substance the motion of a molecule may at

times be so violent as to project it beyond the reach of the molec-

ular attractions. If this occur in the air, or in a space filled with

any gas, the molecule may be turned back, and made to rejoin the

molecules in the liquid mass; but many will find their way to such

a distance that they will not return. They then constitute a vapor

of the substance. As the number of free molecules in the space

above the liquid increases, it is plain that there may come a time

when as many will rejoin the liquid as escape from it. The space

is then saturated with the vapor. The more violent the motion in

the liquid, that is, the higher its temperature, the more rapidly the

molecules will escape, and the greater must be the number in the

space above the liquid before the returning will equal in number

the outgoing molecules. In other words, the higher the tempera-

ture, the more dense the vapor that saturates a given space. If the

space above a liquid be a vacuum, the escaping molecules will at

first meet with no obstruction, and, as a consequence, the space will

be very quickly saturated witli the vapor. The presence of another

vapor or a gas impedes the motion of the outgoing molecules, and

causes evaporation to go on slowly, but it has very little influence

upon the number of molecules that must be present in order that

those which return may equal in number those which escape. Since

only the more rapidly moving molecules escape, they carry off more

than their share of the heat of the liquid, and thus the temperature

will fall unless heat is supplied from without.

203. Pressure of Vapors.—As a liquid evaporates in a closed

space, the vapor formed exerts a pressure upon the enclosure and

upon the surface of the liquid, which increases so long as the

quantity of vapor increases, and reaches a maximum when the space

is saturated. This maximum pressure of a vapor increases with the

temperature. When evaporation takes place in a space filled by

another gas which has no action upon the vapor, the pressure of the

vapor is added to that of the gas, and the pressure of the mixture

is, therefore, the sum of the pressures of its constituents. The law
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was announced by Dalton that the quantity of vapor which satu-

rates a given space, and consequently the maximum pressure of that

vapor, is the same whether the space be empty or contain a gas.

Regnault has shown that, for water, ether, and some other sub-

stances, the maximum pressure of their vapors is slightly less whem

air is present.

204. The Vapor Pressure of Solutions.—The pressure of the

saturated vapor formed from an indifferent solution, or one which

is not an electrolyte, is always less than the vapor pressure of

the pure solvent. Raoult discovered that the diminution of vapor

pressure is proportional to the concentration, provided the solutions

are very dilute and that, for any one solvent, the diminution of

vapor pressure is the same, whatever be the dissolved substance,.

provided the solutions are equimolecular, that is, contain the same

number of molecules m equal volumes of the solutions. It may bo

shown on theoretical grounds that the diminution of vapor pressure

depends upon the density of the vapor and the osmotic pressure

and density of the solution.

Solutions which are not electrolytes, or which are not indiffer-

ent, exhibit a diminution of vapor pressure proportional to the

concentration, but the amount of change is greater than in indiffer-

ent solutions. This difference is explained by assuming a partial

or complete dissociation of the molecules of the dissolved substances

into their constituent ions (§ 285).

205. Ebullition.—As the temperature of a liquid rises, the

pressure which its vapor may exert increases, until a point is

reached where the vapor is capable of forming, in the mass of the

liquid, bubbles which can withstand the superincumbent pressure

of the liquid and the atmosphere above it. These bubbles of vapor,

escaping from the liquid, give rise to the phenomenon called ebul-

lition, or hoiUng. Boiling may, therefore, be defined as the agita-

tion of a liquid by its own vapor.

Generally speaking, for a given liquid, ebullition always occurs

at the same temperature for the same pressure ; and, when once

commenced, the temperature of the liquid no longer rises, no
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matter how intense the source of heat. This fixed temperature is

called the boiling-point of the liquid. It differs for different

liquids, and for the same liquid under different pressures. That

the boiling-point must depend upon the pressure is evident from

the explanation of the phenomenon of ebullition above given.

Substances in solution, if less volatile than the liquid, raise the

boiling-point. While pure water boils at 100°, water saturated

with common salt boils at 109°. The material of the containing

vessel also influences the boilmg-point. In a glass vessel the tem-

perature of boiling water is higher than in one of metal. If

water be deprived of air by long boiling, and then cooled, its tem-

perature may afterwards be raised considerably above the boiling-

point before ebullition commences. Under these conditions the

first bubbles of vapor will form with explosive violence. The air

dissolved in water separates from it at a high temperature in

minute bubbles. Into these the water evaporates, and, whenever

the elastic force of the vapor is sufficient to overcome the superin-

cumbent pressure, it enlarges them, and causes the commotion that

marks the phenomenon of ebullition. If no such openings in the

mass of the fluid exist, the cohesion of the fluid, or its adhesion to

the vessel, as well as the pressure, must be overcome by the vapor.

This explains the higher temperature at which ebullition com-

mences when the liquid has been deprived of air.

206. Spheroidal State.—If a liquid be introduced into a highly

heated capsule, or poured upon a very hot plate, it does not wet

the heated surface, but forms a flattened spheroid, which presents

no appearance of boiling, and'evaporates only very slowly. Boutigny

has carefully studied these phenomena, and made known the fol-

lowing facts: The temperature of the spheroid is below the boil-

ing-point of the liquid. The sjilieroid does not touch the heated

plate, but is separated from it by a non-conducting layer of vapor.

This accounts for the slowness of the evaporation. To maintain

the liquid in this condition the temperature of the capsule must be

mucli above the boiling-point of the liquid; for water it must be ac

least 200° C. If the capsule be allowed to cool, the temperature
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will soon fall below the limit necessary to maintain the spheroidal

state, the liquid will moisten the capsule, and there will be a rapid

ebullition with disengagement of vapor. If a liquid of very low

boiling-point, as liquid nitrous oxide, which boils at — 88°, be

poured into a red-hot capsule, it will assume the spheroidal state;

and, since its temperature cannot rise above its boiling-point, water,

or even mercury, plunged into it, will be frozen.

207. Production of Vapor in a Limited Space.—When a liquid

is heated in a limited space the vapor generated accumulates, in-

creasing the pressure, and the temperature rises above the ordinary

boiling-point. Cagniard-Latour experimented upon liquids in

spaces but little larger than their own volumes. He found that,

at a certain temperature, the liquid suddenly disappeared; that is,

it was converted into vapor in a space but little larger than its own

volume. It is supposed that above the temperature at which this

occurs, which is called the ci'itical temperature, the substance can-

not exist in the liquid state (§ 223),

208. Liquefaction.— Only a certain amount of vapor can exist at

a given temperature in a given space. If the temperature of a space

saturated with vapor be lowered, some of the vapor must condense

into the liquid state. It is not necessary that the temperature of

the whole space be lowered; for when the vapor in the cooled por-

tion is condensed, its pressure is diminished, the vapor from the

warmer portion flows in, to be in its turn condensed, and this con-

tinues until the whole is brought to the density and pressure due to

the cooled portion. Any diminution of the space occupied by a

saturated vapor at constant temperature will cause some of the

vapor to become liquid, for, if it do not condense, its pressure must

increase; but a saturated vapor is already at its maximum pressure.

If the vapor in a given space be not at its maximum pressure,

its pressure will increase when its volume is diminished, until the

maximum pressure is reached; when, if the temperature remain

constant, further reduction of volume causes condensation into the

liquid state, without further increase of pressure or density. This

statement is true of several of the gases at ordinary temperatures.



§ V!10] EFFECTS OF HEAT. 321

Chlorine, sulphur dioxide, ammonia, nitrous oxide, carbon dioxide,

and several other gases, become liquid under sufficient pressure.

Andrews found that at a temperature of 30.92° pressure ceases to

liquefy carbon dioxide. This is the critical temperature for that

substance. The critical temperatures of oxygen, hydrogen, and

the other so-called permanent gases, are so low that it is only by

methods capable of yielding an extremely low temperature that

they can be liquefied. By the use of such methods any of the gases

may be made to assume the liquid state. In the case of hydrogen,

however, the low temperature necessary for its liquefaction has.

only been reached by allowing the gas to expand from a condition

of great condensation, in which it had already been cooled to a very

low point. The first successful attempts to condense these gases

were made by Cailletet and Pictet, working independently. The

best work on the subject has been done by Olszewski, who has

succeeded in obtaining large quantities of liquid oxygen, nitrogen,

and hydrogen, and in freezing nitrogen.

209. Pressure and Density of Saturated Gases and Vapors.—It

has been seen that, for each gas or vapor at a temperature below

the critical temperature, there is a maximum pressure which it can

exert at that temperature. To each temperature there corresponds

a maximum pressure, which is higher as the temperature is higher.

A gas or vapor in contact with its liquid in a closed space will exert

its maximum pressure.

The relation between the temperature and the corresponding

maximum pressure of a vapor is a very important one, and has

been the subject of many investigations. The vapor of water has

been especially studied, the most extensive and accurate experi-

ments being those of Regnault.

210. Pressure and Density of Non-saturated Gases and Vapors.—
If a gas or vapor in the non-saturated condition be maintained at

constant temperature, it follows very nearly Boyle's law (^ 105).

If its temperature be below its critical temperature, the product of

volume by pressure diminishes, and near the point of saturation

the departure from the law may be considerable. At this point
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the pressure becomes constant for any further diminution of vol-

ume, and the gas assumes the liquid state. The less the pressure

and density of the gas, the more nearly it obeys Boyle's law,

211. Gay-Lussac's Law.—It has been stated already that gases

expand as the temperature rises. The law of this expansion, called,

after its discoverer, Gay-Liissac's Imv, is that, for each increment

of temperature of one degree, every gas expands by the same con-

stant fraction of its volume at zero. This is equivalent to saying

that a gas has a constant coefficient of expansion, which is the same

. for all gases.

Let Vq , Vf represent the volumes at zero and t respectively,

and a the coefficient of expansion. Then, the pressure remaining

constant, we have

Vt = Fo(l + at). (69)

If do , dt represent the densities at the same two temperatures

we have, since densities are inversely as volumes.

Later investigations, especially those of Regnault, show that

this simple law, like the law of Boyle, is not rigorously true, though

it is very nearly so for all gases and vapors which are not too near

their points of saturation. The common coefficient of expansion

is o- = 0.003666 = ^\^ very nearly.

212. Boyle's and Gay-Lussac's Laws.—From the law of Boyle we

have, for a given mass of gas, if the temperature remain constant,

Vpp = Vp.p' = volume at pressure unity, where Vp , Vp, represent

the volumes at pressure p and p' respectively.

From the law of Gay-Lussac we have, if the pressure remain

constant, Vo = .r^—
'/
— T^—7/ ^^ ^^^^ temperature and pressure

both vary, we have
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that is, if the volume of a given mass of gas be multiplied by the

corresponding pressure and divided by the factor of expansion, the

quotient is constant.

Let us represent this constant by C and write ^\^ for a and v

for Fp(. ^ Then we have v^ — -^ = R, where i2 is a constant.

If the temperatures of the gas be reckoned from a zero point which

is 273° below the melting-point of ice, or the zero of the centi-

grade thermometer, we may set 273 -\-t =T, where T is the tem-

perature reckoned from the new zero, and have finally

pv = RT (72)

as the equation which embodies Boyle's and Gay-Lussac's laws.

The temperature T is called the temperature on the scale of the

air-thermometer, and the zero from which it is reckoned is called

the zero of the air-thermometer. For reasons which will subse-

quently appear, it is also called the absolute temperature, and its

zero the absolute zero.

213. Elasticity of Gases. —It has been shown (§ 105) that the

elasticity of a gas obeying Boyle's law is numerically equal to the

pressure. This is the elasticity for constant temperature. But

when a gas is compressed it is heated (§158); and heating a gas

increases its pressure. Under ordinary conditions, therefore, the

ratio of a small increase of pressure to the corresponding decrease

of unit volume is greater than when the temperature is constant.

It is important to consider the case when all the heat generated by

the compression is retained by the gas. The elasticity is then a

maximum, and is called the elasticity when no heat is alloived to

enter or escape.

Let mn (Fig. 70) be a curve representing the relation between

volume and pressure for constant temperature, of which the

abscissas represent volumes and the ordinates pressures. Such a

curve is called an ifiothermal line. It is plain that to each tem-

perature must correspond its own isothermal line. If, now, we

suppose the gas to be compressed, and no heat to escape, it is plain
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that if the volume diminish from OC to OG, the pressure will

become greater than GD; suppose it

to be GM. If a number of such

points as M be found, and a line be

drawn through them, it will repre-

sent the relation between -volume

and pressure when no heat enters

or escapes. It is called an adia-

hatic line. It evidently makes a

greater angle with the horizontal

than the isothermal.

The tangents to these lines at

the point of intersection, being the ratios of the changes of pres-

sure to the same changes of volume under the conditions repre-

sented by those lines are proportional to the elasticity at constant

temperature, or the isothermal elasticity Et, and to the elasticity

when no heat is allowed to enter or escape, or the adiabatic elas-

ticity Eh, respectively.

214. Specific Heats of Gases.—The amount of heat necessary to

raise the temperature of unit mass of a gas one degree, while the

volume remains unchanged, is called the specific heat of the gas at

constant volume. The amount of heat necessary to raise the tem-

perature of unit mass of a gas one degree when expansion takes

place without change of pressure, is called the specific heat of the

gas at constant pressure.

The determination of the relation of these two quantities is a

very important problem.

The specific heat of a gas at constant pressure may be found

by passing a current of warmed gas through a tube coiled in a

calorimeter. There are great difficulties in the way of an accurate

determination, because of the small density of the gas, and tlie

time required to pass enough of it through the calorimeter to obtain

a reasonable rise of temperature. The various sources of error pro-

duce effects which are sometimes as great as, or even greater than,

the quantity to be measured. It is beyond the scope of this work
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to describe in detail the means by which the effects of the disturb-

ing causes have been determined or eliminated.

The specific heat of a gas at constant volume is generally de-

termined from the ratio between it and the specific heat at constant

pressure. The first direct determination of this ratio was accom-

plished by Clement and Desormes. It is now most commonly de-

termined from the velocity of sound (§§ 135, 216).

215. Work Done by the Expansion of a Gas.—It was shown by

Joule that when a gas expands without doing external work, its

temperature remains practically constant. His experiment consisted

in allowing gas compressed within a reservoir to flow into another

reservoir in which a vacuum had been made. The reservoirs were

immersed in the water of a calorimeter; it was found that in these

circumstances the expansion of the gas was not attended either by

the evolution or absorption of heat. As the gas had done no ex-

ternal work during the expansion, this proved that its energy

remained unchanged. The energy of a gas is therefore a function

of its temperature alone.

If the temperature of a unit mass of gas be raised 1° while its

volume is kept constant, the quantity of heat C^, the specific heat

at constant volume, must enter the gas. If its temperature be

raised by the same amount while it is allowed to expand under con-

stant pressure and to do work IF by that expansion, a quantity of heat

Cp, the specific heat at constant pressure, must be used. Since the

gas is at the same temperature at the end of each of these opera-

tions, its energy must be the same m both cases, and the difference

between the quantities of heat employed, or Op — C„, must be equal

to the work W done by the expansion.

The experiments of Joule and Thomson, which proved that the

experiment of Joule just described was not sufficiently sensitive to

yield an exact result, and that the temperature of a gas really falls

slightly when it expands without doi ug external work, do not seriously

invalidate the conclusion just drawn; they merely prove that some

internal work is done in the gas during its expansion. This internal

work is so small in amount that it may be neglected in most cases.
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216. Ratio of the Elasticities and of the Specific Heats of a Gas.

—The ratio of the two principal specific heats of a gas is the same as

the ratio of its two principal elasticities.

To show this, construct an adiabatic line

and an isothermal line (Fig. 71)

intersecting at the point ; from that

point draw a line parallel with the axis

of volumes and take a point A on that

line very near the point 0. Through

that point draw a line parallel with the

axis of pressures, intersecting the isother-

'^' ' nial and the adiabatic lines at B and C

respectively. OA is the diminution of volume, ^v, caused by an

increase of pressure AB — Sp if the compression is isothermal, or

by the increase of pressure AC— ^p if the compression is adiabatic.

From the definition of elasticity (§ 102) we have the equations

Ft =
^'

, Fh = —V- , and hence -~ = -^

•

• ^PWe will now determine the value of the ratio -„ m terms of the
op

principal specific heats. For convenience we assume that we are

dealing with a unit mass of gas. The diminution of volume Jv

at constant pressure sets free the quantity of heat Cp. At, where

At is the change of temperature that occasions the change of volume;

the point A then represents the condition of the gas. The gas may

be brought into this same condition by an adiabatic compression

from to C, during which no heat either enters or leaves the gas,

and by a diminution of pressure AC = Ap while the volume is con-

stant, caused by the abstraction of the heat produced by the com-

pression. The heat which must be abstracted from the gas in

order that it shall attain the condition denoted by A, is to the heat

that must be abstracted to cause the diminution of pressure

BA = Sp in the ratio of Ap to dp. The heat which must be ab-

stracted to cause the diminution of pressure BA = dp at constant

volume is C't, . At, where At has the same value as before, since the
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change of temperature is that experienced in passing from the

isothermal OB to the isothermal which passes through A. The

heat abstracted to produce the diminution of pressure z//j is there-

Ap
fore C\ . -^ . At. Now the internal energy of the gas in the con-

dition represented by A depends only on its temperature and is

independent of the way in which that condition is reached. The

work done on the gas in its change from to A does depend on

the way in which the change is effected, but the difference between

the work done on it during the first operation and that done on it

during the second operation is an infinitesimal of the second order,

represented by the area OCA (§ 232), and may be neglected. The

quantities of heat abstracted during the two operations may there-

Ap
fore be set equal, so that we have C^At -- 6'„y^z//, and hence

by the eqiaation already obtained.

It has been shown that the velocity of sound in any medium is

equal to the square root of the quotient of the elasticity divided by

/'E
the density of the medium; that is, velocity = y — . In the

progress of a sound-wave the air is alternately compressed and

rarefied, .the compressions and rarefactions occurring in such rapid

succession that there is no time for any transfer of heat. If this

equation be applied to air, the E becomes Bf^ , or the elasticity under

the condition that no heat enters or escapes. Since we know the

density of the air and the velocity of sound, E^. can be computed.

In § 105 it is shown that Et is numerically equal to the pressure;

hence we have the values of the two elasticities of air, and, as seen

above, their ratio is the ratio of the two specific heats of air.

217. Examples of Energy absorbed by Vaporization.—Wlien a

liquid boils, its temperature remains constant, however intense tlie

source of heat. This shows that the heat applied to it is expended

in producing the change of state. Heat is absorbed during evapora-
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tion. By promoting evaporation, intense cold may be produced.

In a vacuum, water may be frozen by its own evaporation. If a

liquid be heated to a temperature above its ordinary boiling-point

under pressure, relief of the pressure is followed by a very rapid

evolution of vapor and a rapid cooling of the liquid. Liquid

nitrous oxide at a temperature of zero is still far above its boiling-

point, and its vapor exerts a pressure of about thirty atmospheres.

If the liquid be drawn off into an open vessel, it at first boils with

extreme violence, but is soon cooled to its boiling-point for the

atmospheric pressure, about — 88°, and then boils away slowly,

while its temperature remains at that low point. By liquefying

nitrogen and then allowing it to evaporate under low pressure,

Olszewski obtained the temperature of — 220° C, and by allowing

liquid hydrogen to boil under atmospheric pressure, — 243.5° C.

was reached;

218. Heat Equivalent of Vaporization.—It is plain that the for-

mation of vapor is work requiring the expenditure of energy for

its accomplishment. Each molecule that is shot off into space

obtains the motion which projected it beyond the reach of the

molecular attraction, at the expense of the energy of the molecules

that remain behind. A quantity of heat disappears when a liquid

evaporates; and experiment demonstrates, that to evaporate a kilo-

gram of a liquid at a given temperature always requires the same

amount of heat. This is the heat equivalent of va-porization.

When a vapor condenses into the liquid state, the same amount of

heat is generated as disappears when the liquid assumes the state

of vapor. The heat equivalent of vaporization is determined by

passing the vapor at a known temperature into a calorimeter, there

condensing it into the liquid state, and noting the rise of tempera-

ture in the calorimeter. This, it will be seen, is essentially the

method of mixtures. Many experimenters have given attention to

this determination: but here, again, the best experiments are those

of Regnault. He determined what he called the total heat of steam

at various pressures. By this was meant the heat required to raise

the' temperature of a kilogram of water from zero to the temperature
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of saturated vapor at the pressure chosen, and then convert it wholly

into steam. The result of his experiments give, for the heat equiva-

lent of vaporization of water at 100°, 537 calories. That is, he

found that by condensing a kilogram of steam at 100° into water,

and then cooling the water to zero, 637 calories were obtained.

But almost exactly 100 calories are derived from the water cooling

from 100° to zero ; hence 537 calories is the heat equivalent of

vaporization at 100°.

219. Dissociation.—It has already been noted (§ 157), that, at

high temperatures, compounds are separated into their elements.

To effect this separation, the powerful forces of chemical affinity

must be overcome, and a considerable amount of energy must be

consumed.

220. Heat Equivalent of Dissociation and Chemical Union.—From

the principle of the conservation of energy, it may be assumed that

the energy required for dissociation is the same as that developed

by the reunion of the elements. The heat equivalent of chemical

union is not easy to determine, because the process is usually com-

plicated by changes of physical state. We may cause the union of

carbon and oxygen in a calorimeter, and, bringing the products of

combustion to the temperature of the elements before the union,

measure the heat given to the instrument; but the carbon has

changed its state from a solid to a gas, and some of the chemical

energy must have been consumed in that process. The heat meas-

ured is the available heat. The best determinations of the available

heat of chemical union have been made by Andrews, Favre and

Silbermann, and Berthelot.

THE KINETIC THEORY OF HEAT.

221. Molecular Motion. States of Matter.—The continued pro-

duction of heat by the expenditure of mechanical work proves that

heat is not a substance, and suggests that it must be in some way

dependent on motion. It has been seen that such phenomena as

expansion and fusion may be explained on the hypothesis that the

molecules of a body move more rapidly when the body is heated.
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The emission of light or, in genera], of radiant energy from a body

affords a demonstration of the existence of some motion in those

parts of a body which are so small that the motion cannot be directly

perceived by ordinary observation; for we can explain radiance only

as a motion in a medium through which it travels, and it is evident

that this motion cannot be due to the mere presence of a sub-

stance, but must be set up by the motion of matter.

AVe may first apply the kinetic theory to the distinction between

solids, liquids, and gases. Each molecule of a solid is supposed to

be retained within a certain small region by the action of the

surrounding molecules and to move within that region. The

phenomenon of crystallization leads us to think that molecules in

a solid have certain determinate forms and an arrangement in the

body; their motions, therefore, are such that they do not overstep

the limits of this arrangement, and we think of their motion as

vibratory, using the word vibratory in a rather loose sense. The

molecules of a liquid have no fixed position in the mass, but are

free to move from one point to another; they are in very close

proximity to one another, as appears from the phenomena of capil-

larity, and exert considerable forces on one another. The chief

difference between solids and liquids consists in the absence in the

latter of any definite arrangement; we may think of the molecule?

of a liquid as rotating and as gliding past each other, and cai.

characterize their motion as rotatory. The great increase in vol-

ume exhibited on the change of a mass of liquid into vapor shows

that the molecules of a vapor or gas are farther apart than those of

a liquid. They are so far apart that their mutual actions due to

molecular forces have very little influence on their motions, except

during the excessively short period within which any two of them

come close together or undergo an encounter. A molecule of a

gas is therefore thought of as moving in a succession of short rec-

tilinear paths, the direction of which is in general changed at each

encounter. We may therefore characterize the motion in a gas as

translatory. The consideration of this translatory motion is suffi-
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cient to explain most of the laws of gases, though to explain others

a rotation or something equivalent to it must be assumed.

The characteristics of the molecular motion assumed in the

kinetic theory may be best explained by considering the motion in

a gas. Let us suppose that a very large number of material par-

ticles is distributed uniformly throughout the region contained

within a closed vessel, and that velocities are given to these mole-

cules at a certain instant in various directions. If we further sup-

pose that these molecules act on each other only by collision or by

forces which are effective only wheii two molecules are extremely

near each other, it is plain that the paths of the molecules thus

assumed will in general be short straight lines, changing in direc-

tion with every encounter between two molecules. It is also evi-

dent that, no matter what the initial velocities were, they will not

be maintained for any length of time, but that the velocity of any

one molecule will change at each encounter, and that the velocities

of the molecules in the mass will speedily acquire values ranging

from zero to a very great or practically infinite velocity. It is also

plain that very few molecules will possess these extreme velocities

at any one time, and that most of them will possess velocities

which do not depart far from a certain mean. An obvious con-

dition to which the velocities must conform is that the kinetic

energy of all the molecules in the mass must remain the same at

all times, it being assumed that no energy enters the mass from

without and that the encounters do not involve the loss of kinetic

energy. It was shown by Clausius, and afterwards more rigorously

by Maxwell, that the distribution of velocity among the molecules

may be deduced by the theory of probabilities. Some idea of it

may be got from the distribution of shots in a target; if a rifleman

shoot at a target a great many times, and if the distance of the

shots from the centre of the bull's eye be measured, these distances

conform to the same law of distribution. It is clearly infinitely

improbable that any one of the shots will strike the exact centre of

the bull's eye, and also infinitely improbable that any one will be

sent directly away from the target, and it is very highly improb-
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able that any one will miss the target entirely; the vast majority of

the shots will meet the target, and their distances from the centre

will lie around & certain average distance. Similarly, it is extremely

improbable that any molecule of a gas will have a velocity far

exceeding the average; the great majority of them will have veloci-

ties which lie around a certain mean velocity. The law of distri-

bution of velocities among molecules of liquids and solids is not

known, but it probably possesses the essential characteristics of

the law for gases.

When a gas is heated, all but a very small part of the heat which

enters it is used in increasing the kinetic energy of the molecules;

this is not true for solids and liquids, because, when they are

heated, work is done against their molecular forces which does not

appear as kinetic energy. The kiuetic energy of the molecule is

the sum of the kinetic energy due to the motion of its centre of

mass or to its translation, and of the kinetic energy due to its

motion relative to its centre of mass. This latter energy may be

thought of as due either to rotation about the centre of mass or to

the vibrations of the atoms constituting the molecule. We will

subsequently prove that the temperature of a gas is proportional to

the kinetic energy of its molecules. It is therefore natural to

assume that the measure of temperature is some part of the kinetic

energy of the molecule. The most consistent explanation of all

the effects of heat can be reached by supposing that the energy or

atomic vibration or of molecular rotation is directly proportional to

the temperature measured on the absolute scale (§ 212). The total

kinetic energy of the molecules of a body measures the heat in the

body.

222. Kinetic Theory of Gases.—The foundation of the theory of

matter now under discussion is the linetic theory of gases. In this

theory a perfect gas consists cf an assemblage of free, perfectly

elastic molecules in constant motion. Each molecule moves in a

straight line with a constant velocity, until it encounters some other

molecule*, or the side of the vessel. The impacts of the molecules
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upon the sides of the vessel are so numerous that their effect is that

of a continuous constant force or pressure.

The entire independence of the molecules is assumed from the

fact that, when gases or vapors are mixed, the pressure of one is

added to that of the others; that is, the pressure of the mixture is

the sum of the pressures of the separate gases. It follows from

this, that no energy is required to separate the molecules; in other

words, no internal work need be done to expand a gas. This was

demonstrated experimentally by Joule (§ 215).

The action between two molecules, or between a molecule and

a solid wall, must be of such a nature that no energy is lost; that

is, the sum of the kinetic energies of all the molecules must remain

constant. Whatever be the nature of this action, it is evident that

when a molecule strikes a solid stationary wall it must be reflected

back ivith a velocity equal to that before impact. If the velocity

be resolved into two components, one parallel to che wall and tho

other normal to it, the parallel component remains unchanged,

while the normal component is changed from + w, its value before

impact, to — u, its value after impact. The change of velocity is

therefore 2«, and if 6 represent the duration of impact, the mean

'Hii . 2u
acceleration is ^, and the mean force of impact p = m-rr-, where

a
_

u

m represents the mass of the molecule.

Since the effect of the impacts is a continuous pressure, the

total pressure exerted upon unit area is equal to this mean force of

impact of one molecule multiplied by the number of molecules

meeting unit area in the time ^. To find this latter factor, we sup-

pose the molecules confined between two parallel walls at a dis-

tance s from each other. Any molecule may be supposed to suffer

reflection from one wall, pass across to the other, be reflected back

to the first, and so on. Whatever may be the effect of the mutual

collisions of the molecules, the number of impacts upon the surface

considered wiii be the same as though each one preserved its rec-

tilinear motion unchansred, except when reflected from the solid

walls. The time required for a molecule moving with a velocity n
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to pass across the space between the two walls and back is — ; and

the number of impacts upon the first surface in unit time is —.

Consider the molecules contained in a rectangular prism, with

bases of area a in the walls. These molecules must be considered

as moving in all directions and with various velocities. But the

velocity of any molecule may be resolved in the direction of three

rectangular axes, one normal to the surface and the other two par-

allel to it, and the effect upon the walls will be due only to the

normal components. Let us single out for examination a group of

molecules which have a normal velocity that lies near the value w,

,

and let ?i, represent the number of such molecules in unit volume.

Then the number of such molecules within the prism considered is

WjSrt. The number of impacts made by them in unit time on one

of the walls is n,sa . v = -^ > and m the time 8 is ' ' -.

^ 2s 2 2

Hence the total pressure which they exert on the area a is

2u, n,au,6 i j -i.
• i .w—- .

' ' - = nm^Uj a, and on unit area is mn^u^ .

Now the total pressure on unit of area is the sum of the pres-

sures due to all the * groups into which the molecules of the gas

may be divided, or p = m{n^ii^'' + w,m,' + • • • '««?'/)• If we repre-

sent by n the number of molecules in unit volume and by n the

mean velocity given by nu^ = n^u^ + n^u^ + • • • ^^-^A we have

p = mmi\ Similar expressions hold for the pressures on the other

walls, the velocities normal to which are v and lo, and we assume

that these mean velocities are independent of direction, so thiit

u"" = y" = w\ But the velocity of any molecule is given by

F/ = V* -f Vj* 4- w,', and the mean velocity is given by a similar

equation. Hence F" = 3w^ and we have finally,

p = \mnV\ (74)

The velocity V in this expression is called the velocity of mean

sqtiare.

If we now suppose the volume of the gas to change so that the
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volume which contains % molecules becomes v, the pressure takes a

new value, which we will still designate by p. We have

p = —77i~V\ or pv = —tnnV^. (75)
^ S V o

Since V remains constant so long as the temperature is con-

stant, and since m and n are fixed, we have pv constant. Hence

Boyle's law follows from the kinetic theory of gases.

From Gay-Lussac's law (§ 211) it has been shown that if we

reckon temperature from — 273° C. as a zero, we have pv = ET
for all gases. Using the equation just proved, we have

JiT=lnmV\ (76)
O

NowimF' is the mean kinetic energy of the molecule. The

formula shows, therefore, that the temperature on the scale of the

air-therrnometer is proportional to the mean kinetic energy of the

molecule. The zero of this scale will be that temperature at which

V = 0, or at which the molecules are at rest. There can be no

temperature lower than this, and hence we obtain a warrant for call-

ing this temperature a real or absolute zero. The final demonstra-

tion of the existence of such a zero will be given in § 231, where it

is not based upon any particular theory of matter.

It was demonstrated by Maxwell that the mean kinetic energies

of the molecules of different gases at the same temperature

are the same, or that j?^, T,^ = ^m^F/. If we consider equal

volumes of two gases at the same pressure and temperature, for

which, therefore, im^n^ F," = iin^n^ F/, we obtain n^ = n^ , or the

numbers of molecules of the two gases in the same volume are the

same. This is Avogadro's Imv.

Up to this point we have considered the molecules as particles,

and have supposed that all their energy exists as the kinetic energy

of molecular motion. It is easy to show, however, that this suppo-

sition is in error, and that the molecules possess more energy than

that given by linn V. Let us consider a unit mass of gas, the tem-

perature of which is raised under constant pressure by a small

amount AT. Then the work done by its expansion (§ 215) is rep-
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resented by (Cp - Cv)AT. We shall show (§ 232) that this work

is also given by the product of the pressure by the increase in vol-

ume, or by pAv. Hence we have the relation pAv = (Cp— Cv)AT.

The kinetic energy of molecular translation is \m)i V', and if C^

represent its increase for a rise in temperature of one degree, C^A T
represents its increase for the rise of temperature AT. But since

pv = \mn V% we have C^AT — %pAv, and hence Cp— C^ = |(7„, or

Now on the supposition that the molecules are particles which have

C 5
no energy except energy of translation, C„ = C,,, and hence J' — -.

We know by experiment that this is not always the case. For

monatomic gases, such as mercury vapor, and possibly argon,

C-~ = 1.66; but for the common diatomic gases it is more nearly

I = 1.4, and for gases with complex molecules, it is about | = 1.33.

Hence, in the case of gases with more than one atom in the molecule,

the total energy is not merely the energy of translation, but in-

cludes other energy internal to the molecule. Boltzmann has

shown that the ratio of the internal energy to the energy of trans-

lation is such as can be accounted for by supposing the monatomic

molecules to be spheres or points, the diatomic molecules solids of

revolution, and the more complex molecules irregular solids. It is

likely that this is merely an artificial representation, since there is

strong reason to believe that the atoms vibrate within the molecule

and that the molecule is not rigid.

We have used C„ to represent the increase in the energy of

molecular translation in a unit of mass when the temperature rises

one degree. If we represent the increase in the kinetic energy of a

single molecule by AlmV', we have C„ = nA^mV^. Now n is the

number of molecules in unit volume, which in this equation is the

volume containing unit mass, so that - is the mass of one mole-

cule or m. The gain in kinetic energy for a rise of temperature of
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one degree is, by Maxwell's law, the same for all gases, so that

z/|wV is a constant for all gases; and hence C^m is a constant for

C
all gases. (7„ cannot be directly observed, but we may set --^ = /3,

and observe Cv. If /3 is the same for all gases, Cj)i should also be

constant. This is Dulong and Fetit's law for gases. It holds

quite closely for all gases of the same type of molecular structure,

and the departures from it are readily explained by the probability

that ft is not the same for all gases.

The phenomena exhibited by the radiofneter afford a strong

experimental confirmation of the kinetic theory of gases. These

phenomena were discovered by Crookes. In the form first given

to it by him, the instrument consists of a delicate torsion balance

suspended in a vessel from which the air is very completely ex-

hausted. On one end of the arm of the torsion balance is fixed a

light vane, one face of which is blackened. When a beam of light

falls on the vane it moves as if a pressure were applied to its black-

ened surface. The explanation of this movement is, that the mole-

cules of air remaining in the vessel are more heated when they

come in contact with the blackened face of the vane than when they

come in contact with the other face, and are hence thrown off with

a greater velocity, and react more strongly upon the blackened face

of the vane. At ordinary pressures the free paths of the molecules

are very small, their collisions very frequent, and any inequality in

the pressures is so speedily reduced that no effect upon the vane is

apparent. At the high exhaustions at which the movement of the

vane becomes evident, the collisions are less frequent, and hence

an immediate equalization of pressure does not occur. The vane

therefore, moves in consequence of the greater reaction upon its

blackened surface.

223. Influence of the Size and Attractions of the Molecules.

Critical Temperature.—On the elementary theory which has just

becTi developed all gases should conform precisely to tlie so-called

gaseous laws, whereas in fact they only conform to those laws

approximately. It was shown by van der Waals that the devia-



238 ELEMENTARY PHYSICS. [§ 223

tions exhibited by gases from the gaseous laws can be accounted

for by extending the theory so as to include the consideration of

the size of the molecules and of their mutual attractions. In the

elementary theory the molecules were assumed to be points or

particles of negligible magnitude, but if we assume them to have

volumes which, though small, are appreciable, it is plain that

the effective volume within which the molecules have free motion

js reduced by an amount dependent on the molecular volumes.

It was furthermore assumed in the elementary theory that the

time of encounter is negligible in comparison with the time

during which the molecule is free from the action of other

molecules; but if we assume that the time of an encounter,

though small, is not negligible, it is plain that the molecular at-

tractions will tend to hold together the mass of gas or will be

equivalent to an addition to the pressure upon the gas. From

these considerations van der Waals expressed the relations among

the pressure, volume, and temperature of a gas by the formula

[p + ''-){v-b)=RT, (78)

where a is a constant depending upon the molecular attractions, and

b is four times the sum of the volumes of the molecules. This

formula, when tested by experiment, represents the behavior of

gases far more accurately than the simpler form; it is not, how-

ever, exact, and various others, constructed empirically, have been

proposed which give even a better reprebentation of the facts. It

is as yet the only formula for which a theoretical demonstration has

been given. This formula possesses the great advantage that it can

represent the behavior of a body, at least in certain cases, not only

in the gaseous but in the liquid state; that is, it exhibits the con-

tinuity which we have every reason to think exists between those

states. In particular it gives an explanation of critical temperature

and a determination of it in terms of the molecular constants a and

b. If the formula be expanded and arranged in the order of the

descending powers off, it becomes v^ — v'^ib -{ j -\-v — = 0-
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This is a cubic equation, and, for given values of p and T, will

have three roots, which are either all real or of which one is real and

the others imaginary, depending upon the values of the constants

and on the particular values chosen for j) and T. The existence of

three real roots shows that for the assumed values of pressure and

temperature three different volumes are possible; one of these is

the volume of the body as a gas, another its volume as a liquid, and

the third its volume in an intermediate or transition state which is

unstable. The existence of only one real root shows that, for the

particular values of pressure and temperature which give it, the

substance can exist in only one state, either as a liquid or as a gas.

The study of the real roots shows that, as the pressure and tempera-

ture increase, the values of the roots become more nearly equal,

until for a certain definite pressure and temperature they become

coincident; when the value of the temperature is still higher two

of the roots cease to be real. The temperature which corre-

sponds to the existence of three coincident roots is the critical tem-

perature; at any temperature higher than that the substance can

exist only as a gas.

224. General Explanation of Liquefaction, etc.—We will now
apply the kinetic theory to give an explanation of the principal

phenomena exhibited by a substance as it is heated. Let us con-

sider a substance in the solid state at a temperature below its melt-

ing point; suppose heat applied to it gradually and at a uniform

rate from some source. Its temperature will rise and it will in

general expand; the rise of temperature is of course due to the in-

crease in that part of the kinetic energy of the body whicli is the

measure of temperature; on the view we have adopted, to the

increase in the kinetic energy of molecular rotation or atomic

vibration. The expansion is explained by the increase in the

kinetic energy of translation, which enables the molecules to move

farther from one another and so to increase the regions occupied

by them. When the temperature rises to the melting-point, these

regions have become so large that the molecules in them are no

longer constrained to any definite directions; their motions there-
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fore become rotatory and they are free to glide past each other in

the mass. We can explain the constancy of temperature dur-

ing melting, and the absorption of heat, by assuming that that por-

tion of the energy which measures temperature remains constant,

and that the heat is used in doing work against the molecular forces

which determine the direction of the molecules in the solid and in

giving the molecules increased velocity of translation. Such a

change as is here described, in which the energy received by the

molecule does work against the forces acting on it and gives it

greater velocity as a whole, while the mean energy of vibration

which it had at first is equal to the mean energy of rotation which

it acquires, has been shown by Eddy to be mechanically possible.

On melting, the body generally clianges its volume, sometimes ex-

panding, sometimes contracting. This may be explained by sup-

posing that as the molecules are heated, their volumes diminish.

The admissibility of this assumption has been proved by Lorentz

and Sutherland. The change in volume on melting is then the

resultant of the expansion due to the increased molecular motion

and the contraction due to the shrinking of the molecules, and it

may therefore be either positive or negative.

After melting, the temperature of the body continues to rise

and the body generally expands until the boiling-point is reached

;

at that point the temperature again ceases to rise and the liquid

becomes a vapor. We explain this by supposing that in consequence

of the changes in velocity which go on among the molecules, there

will arise an assemblage of molecules in a small region with veloci-

ties above the average; these will beat back the surrounding mole-

cules and form a small bubble within which the molecules are in the

gaseous state. Those molecules near the surface of this bubble

which possess velocities above the average will pass through the

liquid surface against the attractions of the molecules surrounding

them and will increase the gas contained in the bubble, until its size

becomes such that its buoyancy is able to overcome the viscosity of

the liquid, so that it rises and sets free a num.ber of molecules at

the surface of the liquid in the gaseous state. The equality of
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temperature between the liquid and the vapor formed from it, and

the absorption of heat during this process, are explained by sup-

posing that that part of the kinetic energy which measures tem-

perature remains constant, and that the heat is used in doing work

against the molecular forces which determine the volume of the

liquid. Any further heating of the vapor increases its total kinetic

energy and that part of it which measures temperature in nearly

tlie same proportion.

The specific heat of the substance increases when it passes from

the solid to the liquid state, and decreases when it becomes a gas.

This is explained by the supposition, which many facts rendei*

probable, that the kinetic energy of translation of the molecule is

greater in the liquid state than in either of the other two states in

comparison with the kinetic energy of rotation or of atomic vibra-

tion.

The explanation of evaporation which goes on from many solids

and liquids at all temperatures has been already given (§ 202); it

depends upon the fact that the velocity of some of the molecules is

always far greater than the average velocity, and may be sufficient

to carry those molecules beyond the range of molecular action.

The hypothesis that the temperature is measured by the kinetic

energy of rotation or of atomic vibration is confirmed by its appli-

cation to Dulong and Petit's law; as it is our purpose to give a

general idea of the theory rather than a defence of it, we will not

enter upon the discussion of this point.

225. Molecular Velocities and Dimensions. — The formula

pv = \mnV" enables us to calculate F, the velocity of mean square,

since nin is the mass in the volume v, and p can be measured in abso-

lute units. If we apply the equation to hydrogen under atmospheric

pressure, we have p = 1013373 dynes per square centimetre and

— , or the density, = 0.00008954 grams per cubic centimetre, and

hence V =184260 centimetres per second, or a little more than a

mile per second. Since for different gases with the same pressure,

volume, and temperature V is inversely as in, the velocities in the



342 ELEMENTARY PHYSICS. [§ 225

other gases can be found by dividing this velocity by the square

root of the ratio of their masses to the mass of the molecule of

hydrogen, or by the square roots of their molecular weights divided

by 2.

From calculations based on the behavior of gases with reference

to their viscosity and thermal conductivity, Maxwell deduced a

number of conclusions respecting the dimensions and motions of

molecules, which are given in the following table. The symbol

y.jj. denotes a micromillimetre, or the millionth of a millimetre.

Hydrogen. Oxygen. Carbon dioxide.

Mean free path m m^ . . . . 96.5 56 43

Number of collisions per sec. 1.775.10'° 0.7646-10'° 0.972- 10"

Diameter in yw/^, molecules

supposed spherical .... 0.58 0.76 0.93

Mass in 10"" grams 46 736 1012

The number of hydrogen molecules in a milligram is about 200

million million million, and about 2 million could be placed side

by side in one millimetre. The number of molecules of hydrogen,

and so also of any other gas, in one cubic centimetre at the standard

pressure and temperature is about 19 million million million.

From the experiments of Quincke and Reinhold and Riicker

the range of molecular action is estimated to lie between 50 iajx

and 118 /i//. The molecular forces give rise to pressures in the gas

which van der Waals estimates as, for hydrogen, 0; for air, 0.0028;

for carbon dioxide, 0.00874.

Other calculations yield values for these various molecular

constants which, while not numerically the same as those of Max-

well, are yet of the same order of magnitude, and considerable

confidence can be placed in their general accuracy.



CHAPTER IV.

THERMODYNAMICS.

226. First Law of Thermodynamics.—The law of the conser-

vation of energy, in the special case of heat and mechanical work,

\& cq\\q^ i\\e first law of thermodynamics. It maybe thus stated:

When heat is transformed into work, or work into heat, the quan-

tity of work is equivalent to the quantity of heat. The experiments

of Joule, Rowland, and Hirn establishing this law, and determin-

ing the mechanical equivalent, have already been described (§ 171).

227. The Thermodynamic Engine.—When a body does work

against non-conservative forces, so that heat is evolved, the opera-

tions may be so regulated that all, or practically all, of the work done

is transformed into heat. On the other hand, if a certain quantity of

heat be present in a body, from which it may be drawn in any

manner, so that it can be used for the doing of work, it is never

possible, under conditions attainable on the earth's surface, even if

they were ideally perfect, to transform the whole of this heat into

work. The operations necessary for the transformation of some of

it involve the transfer of the rest to other bodies of lower temper-

ature.

The operation of transforming heat into work is in general

very complicated; it is, however, possible to conceive of a simple

operation by means of which heat may be transformed into work,

and in which a relation may be found between the quantities of

heat and the temperatures concerned. The relations thus developed

may then be extended to far more complicated cases.

An arrangement designed to transform heat into work is called

243
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an engine. In the ideal form it consists of a body called the source,

from which heat may be drawn, another body called the refrigerator^

into which heat may be sent, and a third body called the ivorking

hody, which expands or contracts on the reception or emission of

heat. The working body will itself always possess energy in the

form of heat and possibly also in otlier forms. If heat be supplied to

it from the source, it will exj)and and do work, but no relation can

be stated between the work done and the heat supplied to it, because

the change in its own energ}^ experienced during the expansion is, in

genera], unknown. In order to obtain a relation between the heat

supplied to the working body and the work done by it, the oper-

ations performed with it must be so conducted as to bring the

working body back to its original state. It will then possess the

same energy as at the outset, and the first law of thermodynamics

enables us to assert that the difference between the heat which

leaves the source and the heat which enters the refrigerator is

equal to the work done by the working body. Such a series of

operations is called a cycle. The ratio of the work done to the heat

which leaves the source is called the efficiency of the engine.

228. The Carnot's Cycle.—In order to study the efficiency of

an engine we restrict the conditions under which the transforma-

tion of heat into work goes on. We suppose that the source is so

large and furnishes so unlimited a supply of heat that its temper-

ature *S' remains constant, notwithstanding the loss or gain of heat

which it may receive from the working body. Similarly, we sup-

pose the refrigerator to have a constant temperature R, notwith-

standing the gain or loss of heat it may receive from the working

body. The changes by which the working body does work are

supposed to occur only when the working body is either at the

temperature of the source or of the refrigerator, or when it is so

conditioned that it neither receives nor emits heat. While it is

kept at a constant temperature, its change is isothermal; when it

neither receives nor emits heat, its change is adiabatic (§ 213).

In order to exhibit the operation of this simple engine most

clearly, we will assume that the working body is one which
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increases in volume on the introduction of heat, and does work by

expansion, under a pressure which is the same for all points on its

surface.

Construct two rectangular axes of volume and pressure as in

Fig. 72. Let the pressure and corresponding volume of the body,

when its temperature R is that of the refrigerator,

be represented by the point A. The operation

of transforming the heat received from the

source into work is then performed as follows:

Tlie body, being so placed that it can neither re-

ceive nor emit heat, is compressed adiabatically; ^''^- ''^

its volume diminishes and its temperature rises, and the operation

is continued until its temperature becomes S, equal to that of the

source. Its pressure and volume in this state are represented by

the point B. It is then put in contact with the source and allowed

to expand; as soon as its expansion begins, its temperature falls

and heat enters from the source. The expansion may be so reg-

ulated that the difference of temperature between the body and

the source never exceeds an infinitesimal, so that the heat which

enters the body during this part of the process enters it at the con-

stant temperature *S'. The expansion may be allowed to continue

until any desired quantity of heat H is taken from the source.

The pressure and corresponding volume attained by this isothermal

expansion are represented by the point C. The body is then

removed from the source and allowed to continue its expansion

under such conditions that it neither receives nor emits heat. Its

volume will increase and its temperature will fall. This adiabatic

expansion is allowed to continue until the temperature of the body

becomes R, that of the refrigerator. The body is then placed in

contact with the refrigerator and compressed. As its volume begins

to diminish, its temperature rises, and heat passes out from it into

the refrigerator. The compression may be so regulated that the

difference of temperature between the body and tlie refrigeratot

never exceeds an infinitesimal, so that the heat wliich leaves the

body during this part of the process leaves it at the constant tem-
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perature R. The operation is continued until the volume and

pressure of the body are again denoted by the point A. During

this operation the quantity of heat li is transferred from the body

to the refrigerator. These operations constitute a cycle, for the

body at the end of the operation is in the same condition as regards

pressure, volume, and temperature as it was at the beginning.

The work done by it is therefore equal to the heat transformed into

work, or to H—h.
Such a cycle is reversible, for if the body be constrained to go

through the operations just described, in the reverse order, the

same quantities of heat will be transferred in opposite senses and

the same quantity of work done upon the body that, in the direct

operation, was done by the body. That is, the refrigerator will

give up the quantity of heat h, the source will receive the quantity

of heat H, and the amount of work H—h will be done upon the

body. The only difference between the two operations will be that,

whereas in the direct operation the temperature of the body was

infinitesimally lower than that of the source while it was receiving

heat, and infinitesimally higher than that of the refrigerator while

it was emitting heat, in the reversed operation the temperature of

the body is infinitesimally lower than that of the refrigerator

while it is receiving heat, aud infinitesimally higher than that of

the source while it is emitting heat. These infinitesimal differences

may be neglected, and one of these operations may be considered

in every respect the reverse of the other.

229. Second Law of Thermodynamics.—We will now prove a

most important proposition, due to Carnot, the founder of the

theory of thermodynamics. To do this we make use of a principle

first laid down by Clausius and known either as Clausius's princi-

ple or the second law of thermodynamics. This principle is, that

heat cannot pass of itself, or without compensation in the form of

work done or of heat transferred in the opposite sense, from a

colder to a hotter body. This principle is in conformity with our

common experience, that heat passes by conduction or radiation

from a place of higher to a place of lower temperature. It is not
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susceptible of immediate demonstration, and is accepted as a gen-

eral principle for reasons similar to those which determine the

acceptance of Newton's laws of motion as statements of general

truths respecting motion.

230. Efficiency of a Reversible Engine.—Carnot's proposition,

which is now to be proved, asserts that the efficiency of all reversi-

ble engines is the same. To show this, let us suppose a reversible

engine A and a non-reversible engine B, working between the same

source and the same refrigerator, and let us assume that the effi-

ciency of the non-reversible engine B is greater than that of the

reversible engine A. Let the engine B work forward, so as to do

work l^Tand give to the refrigerator the quantity of heat /t^; it will

therefore take from the source the quantity of heat //^ = W -{-h^.

Let the work W be expended in driving the reversible engine A
backward. The engine A will take from the refrigerator the

quantity of heat h^ and give to the source the quantity of heat

H^ = W -\- Jia' Now, by hypothesis, the efficiency of the non-

JV W
reversible engine B is the greater, so that ^7 > yj-, and there-

fore B^ > Bb, and also h^ > Ag. The result of these combined

operations is that no work is done by the engines, and that the

source receives heat while the refrigerator loses heat. This conclu-

sion is contrary to Clausiuss principle and must be rejected, as

inconsistent with the operations of Nature. We conclude, there-

fore, that no engine can have an efficiency greater than that of the

reversible engine. It follows as a corollary that the efficiency of

all reversible engines is the same.

231. Absolute Scale of Temperatures.— Since the efficiency of

all reversible engines is the same and is a maximum, it is mani-

festly indifferent what material is used in the working body; in-

deed, since the demonstration just given does not involve as

essential the particular mode of doing work assumed in the con-

struction of the diagram, it is also indifferent in what way the

working body changes its dimensions and does work. The work

done depends only on the heat received from the source and on the
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temperatures of the source and refrigerator, and the efficiency de-

pends only on the temperatures of the source and the refrigerator,

or is a function of these temperatures. If the temperatures be

represented on any conventional scale, the form of this function

may be found by experiment; on the other hand, the assumption

of a form of this function will determine a scale of temperatures.

The proposal to form such a scale, which is dependent only on the

efficiency of the reversible engine, and is therefore independent of

the properties of any particular body, was made by William

Thomson.

The scale of temperatures which is most convenient for applica-

tion in thermodynamics, and which is so distinguished by its sim-

plicity from all others that might be formed that it is called

distinctively the absolute scale of temperatures, is formed by as-

suming that the efficiency of a reversible engine is equal to the

ratio of the difference of temperature between the source and the

refrigerator and the temperature of the source, that is, by assuming

(79)

This assumption may also be stated in the form

h R
H S'

(80)

The maximum efficiency of an engine is attained when all the

heat which is received from the source is transformed into work,

so that no heat is transferred to the refrigerator; on the scale of

temperatures just assumed this condition is attained when R = 0.

This zero is an absolute and not an arbitrary zero. It depends on

the general properties of bodies, and not on the particular proper-

ties of any one body. It is the lowest temperature attainable in

Nature, for, if it were possible to have a refrigerator at a lower

temperature than this, the efficiency of an engine working with

that temperature as the temperature of .its refrigerator, would be
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greater than unity. This temperature is therefore called the abso-

lute zero.

The length of the degree on the absolute scale may be deter-

mined by designating the difference of temperature between two

bodies by an arbitrarily chosen number and by measuring the effi-

ciency of an engine working between the temperatures of those

bodies. The most convenient assumption to make is that the abso-

lute difference between the temperature of boiling water and the

temperature of melting ice is 100 degrees. The temperature inter-

vals or degrees on the scale thus formed are very nearly those of

the Centigrade scale.

232. Relation of the Absolute Temperature to the Temperature

of the Air Thermometer.—Let us assume that a substance exists

which obeys perfectly the laws of Boyle and Gay-Lussac; such a

substance is called a perfect gas. We wish to show that the tem-

peratures indicated by the expansion of a perfect gas, used as a

thBrmometric substance, will be those of the absolute scale.

We must first prove that the work done by the expansion of a

gas is equal to the area included between the lines representing its

changes of pressure and volume, the two ordiuates representing its

extreme pressures and the horizontal line of zero volume. The

proof of this proposition does not depend on the properties of a

perfect gas, and the proposition holds in all cases in which the body

does work by expanding under a hydrostatic pressure which is the

same at all points of its surface. Let us select a small area s on the

surface of the body. The pressure }) is applied to all j^oints of the

surface, and the force which acts on the area s is therefore ;j6'. Let

the body expand slightly, so that the area s is displaced along its

normal through the distance 7i. The work done in displacing the

area .9 is psn, and the work done in expanding the whole body is

2ps7i = p^sn, since p is the same for all points on the surface.

Now 2s?i is equal to the increase in the volume of the body, or to

dr. The work done during the small exj)ansion is therefore pdv.

This expansion will, in general, involve an infinitesimal change in

the pressure; but if the process here described be repeated for each
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Fig. 73.

infinitesimal increment of volume, the sum of all the terms pdv

will equal the total work done by the expansion of the body. Now
let us consider the area bBCc standing under the line BC (Fig, 73).

This area may be conceived of as made up of a series of infinites-

imal rectangles, the heights of which are

the ordinates of the successive points of

the line BC, and the bases of which are

successive elements taken along the line

he. If dv represent the length of one of

these elements, and /> the corresponding
"~

ordinate, the area of the infinitesimal rect-

angle determined by them is j)dv. The

sum of such areas for the expansion indicated by the line BC i&

the area bBCc; and since 2pdv represents the work done, the

area bBCc also represents the work done during the expansion of

the body in the way indicated by the line BC.

Now to demonstrate the relation between the temperatures in-

dicated by the perfect gas thermometer and those of the absolute

scale, let us suppose an engine in which the working body is a

perfect gas, and let us suppose that the changes in pressure and

volume experienced by the working body during the cycle are

so small that the portions of the isothermal and adiabatic lines

which bound it are straight, and that the cycle is a parallelogram.

This cycle is represented by the area ABCD (Fig. 73). We may

assume as the result of the experiments of Joule that when a gas

expands at constant temperature, no internal work is done upon

it, or that the heat which enters it is entirely spent in doing ex-

ternal work. Produce DA to e; then the parallelogram ABCD is

equal to the parallelogram eBCf, and this parallelogram represents

the work done in the cycle by the gas acting as the working body.

The work done during the expansion from B to C, which is

equal to the heat received during that expansion, is represented by

the area, bBCc. Let ^ be the middle point of the line ^6'; the

perpendicular gh will bisect the line ef at i. The area bBCc =
be . gh, and the area. eBCf= be . gi. Therefore the efficiency of
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the engine, or ^ , equals —^ . Now gh represents the pressure of

the gas at the temperature t of the source, when its volume is Oh,

and gi represents the diminution of pressure caused by a fall of

temperature to ^, the temperature of the refrigerator, when the

volume is kept constant. Thg efficiency of the engine is therefore

^ ^ . And since the efficiency is also given by—^^— , where S

and E are the temperatures of source and refrigerator on the ab-

solute scale,—^^ = ——- or - =^^-. We know, from the experi-
*S Pt ^ Pt

ments of Gay-Lussac, that if t and 6 be measured on the Centigrade

scale, and if Po represent the pressure of the gas at the Centigrade

zero on the condition that the volume is constant, pt — p^i}- + ^0

and pe =i^o(l + ^^)y where a = —- is the coefficient of expansion.

• .1 , .• . ^ . R I + ad
Usinsf these values in the above equation we obtain -^ = =^ ^ o 1 -\- at

273 4- d
-!—

. If the pressure or volume of a gas, the two being inter-

changeable by Boyle's law, be used as a measure of its temperature,

the pressure or volume and the temperature will always be directly

proportional, provided the zero of temperature be taken at — 273°

Centigrade; this temperature is the zero of the perfect gas thermom-

eter. From the equation just obtained it is clear that the absolute

scale of temperatures is the same as the one given by the perfect

gas thermometer, and that the absolute zero is the zero of the per-

fect gas thermometer.

No gases conform precisely to the laws of Boyle and Gay-Lussac,

and consequently no gas thermometer can be constructed which

will accurately indicate the absolute scale of temperatures. Never-

theless, some gases depart only slightly from the conditions of a

perfect gas, and the temperature determinations given by thermom-

eters in which such gases are employed may be converted by suit-

able corrections into the corresponding absolute temperatures.
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233. The Steam-engine,—The steam-engine in its usual form

consists essentially of a piston, moving in a closed cylinder, which

is provided with passages and valves by which steam can be ad-

mitted and allowed to escape. A boiler heated by a suitable fur-

nace supplies the steam. The valves of the cylinder are opened

and closed automatically, admitting and discharging the steam at

the proper times to impart to the piston a reciprocating motion,

which may be converted into a circular motion by means of suita-

ble mechanism.

There are two classes of steam-engines, condensing and non-

condensing. In condensing engines the steam, after doing its

work in the cylinder, escapes into a condenser, kept cold by a cir-

culation of cold water. Here the steam is condensed into water;

and this water, with air or other contents of the condenser, is re-

moved by a pump. In non-condensing engines the steam escapes

into the open air. In this case the temperature of the refrigerator

must be considered at least as high as that of saturated steam at

the atmospheric pressure, or about 100°, and the temperature of the

source must be taken as that of saturated steam at the boiler-pres-

a r)

sure. Applying the expression for the efficiency (§ 231), e =—-—

,

o

it will be seen that, for any boiler-pressure which it is safe to em-

ploy in practice, it is not possible, even with a perfect engine, to

convert into work more than about fifteen per cent of the heat used.

In the condensing engine the temperature of the refrigerator

may be taken as that of saturated steam at the pressure which ex-

ists in the condenser, which is usually about 30° or 40° : hence

iS — i? is a much larger quantity for condensing than for non-con-

densing engines. The gain of efficiency is not, however, so great

as would appear from the formula, because of the energy that must

be expended to maintain the vacuum in the condenser.

234. Hot-air and Gas Engines.—Hot-air engines consist essen-

tially of two cylinders of different capacities, with some arrange-

ment for heating air in, or on its way to, the larger cylinder. In

one form of the engine an air-tight furnace forms the passage be-
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tween the two cylinders, of which the smaller may be considered as

a snpply-pump for taking air from outside and forcing it through

tlie furnace into the larger cylinder, where, in consequence of its

expansion by the heat, it is enabled to perform work. On the re-

turn stroke this air is expelled into the external air, still hot, but

at a lower temperature than it would have been had it not ex-

panded and performed work. This case is exactly analogous to

that of the steam-engine, in which water is forced, by a piston work-

ing in a small cylinder, into a boiler, is there converted into steam,

and then, acting upon a much larger piston, performs work, and is

rejected. In another form of the engine, known as the "ready

motor," the air is forced into the large cylinder through a passage

kept supplied with crude petroleum. The air becomes saturated

with the vapor, forming a combustible mixture, which is burned in

the cylinder itself.

The Stirling hot-air engine and the Rider " compression-engine "

are interesting as realizing an approach to Carnot's cycle.

These engines, like those described above, consist of two cylin-

ders of different capacities, in which work air-tight pistons; but,

unlike those, there are no valves communicating with the external

atmosphere. Air is not taken in and rejected; but the same mass

of air is alternately heated and cooled, alternately expands and con-

tracts, moving the piston, and performing work at the expense of a

portion of the heat imparted to it.

It is of interest to study a little more in detail the cycle of

operations in these two forms of engines. The larger of the two

cylinders is kept constantly at a high temperature by means of a

furnace, while the smaller is kept cold by the circulation of water.

The cylinders communicate freely with each other. The pistons

are connected to cranks set on an axis, so as to make an angle of

nearly ninety degrees with each other. Thus both pistons are

moving for a short time in the same direction twice during the

revolution of the axis. At the instant that the small piston reaches

the top of its stroke, the large piston will be near the bottom of the

cylinder, and descending. The small piston now descends, as well
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as the large one, the air in both cylinders is compressed, and there

is but little transfer from one to the other. There is, therefore,

comparatively little heat given up. The large piston, reaching its

lowest point, begins to ascend, while the descent of the smaller con-

tinues. The air is rapidly transferred to the larger heated cylinder,

and expands while taking heat from the highly heated surface.

After the small piston has reached its lowest point there is a short

time during which both the pistons are rising and the air expanding,

with but little transfer from one cylinder to the other, and with a

relatively small absorption of heat. When the descent of the large

piston begins, the small one still rising, the air is rapidly trans-

ferred to the smaller cylinder: its volume is diminished, and its

heat is given up to the cold surface with which it is brought in con-

tact. The completion of this operation brings the air back to the

condition from which it started. It will be seen that there are here

four operations, which, while not presenting the simplicity of the

four operations of Carnot,—since the first and third are not per-

formed without transfer of heat, and the second and fourth not with-

out change of temperature,—still furnish an example of work done

by heat through a series of changes in the working substance,

which brings it back, at the end of each revolution, to the same

condition as at the beginning.

Gas-engines derive their power from the force developed by the

combustion, within the cylinder, of a mixture of illuminating gas

and air.

As compared with steam-engines, hot-air and gas engines use

the working substance at a much higher temperature. S—R is,

therefore, greater, and the theoretical efficiency higher. There are,

however, practical difficulties connected with the lubrication of the

sliding surfaces at such high temperatures that have so far pre-

vented the use of large engines of this class.

235. Sources of Terrestrial Energy.—Water flowing from a

higher to a lower level furnishes energy for driving machinery.

The energy theoretically available in a given time is the weight of

the water that flows during that time multiplied by the height of
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the fall. If this energy be not utilized, it develops heat by friction

of the water or of the material that may be transported by it. But

water-power is only possible so long as the supply of water con-

tinues. The supply of water is dependent upon the rains; the

rains depend upon evaporation; and evaporation is maintained by

solar heat. The energy of loater-'power is, therefore, transformed

solar energy.

A moving mass of air possesses energy equal to the mass multi-

plied by half the square of the velocity. This energy is available

for propelling ships, for turning windmills, and for other work.

Winds are due to a disturbance of atmospheric equilibrium by solar

heat ; and the energy of wind-foiver,\\Vq that of water-power, is,

therefore, derived from solar energy.

The ocean currents also possess energy due to their motion,

and this motion is, like that of the winds, derived from solar

energy.

By far the largest part of the energy employed by man for his

purposes is derived from the combustion of wood and coal. This

energy exists as the potential energy of chemical combination of

oxygen with carbon and hydrogen. Now, we know that vegetable

matter is formed by the action of the solar rays through the

mechanism of the leaf, and that coal is the carbon of plants that

grew and decayed in a past geological age. The energy of wood

and coal is, therefore, the transformed energy of solar radia-

tions.

It is well known that, in the animal tissues, a chemical action

takes place similar to that involved in combustion. The oxygen

taken into the lungs and absorbed by the blood combines, by proc-

esses with which we are not here concerned, with the constituents

of the food. Among the products of this combination are carbon

dioxide and water, as in the combustion of the same substances

elsewhere. Lavoisier assumed that such chemical combinations

were the source of animal heat, and was the first to attempt a

measurement of it. He compared the heat developed with that

due to the formation of the carbon dioxide exhaled in a given
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time. Despretz and Dulong made similar experiments witli more

perfect apparatus, and found that the heat produced by the animal

was about one-tenth greater than would have been produced by

the formation by combustion of the carbonic acid and water exhaled.

These and similar experiments, although not taking into ac-

count all the chemical actions taking place in the body, leave no

doubt that animal heat is due to atomic and molecular changes,

within the body.

The work performed by muscular action is also the transformed

energy of food. Kumford, in 1798, saw this clearly; and he showed,

in a paper of that date, that the amount of work done by a horse

is much greater than would be obtained by using its food as fuel

for a steam-engine.

Mayer, in 1845, held that an animal is a heat-engine, and that

every motion of the animal is a transformation into work of the

heat developed in the tissues.

Hirn, in 1858, executed a series of interesting experiments bear-

ing upon this subject. In a closed box was placed a sort of tread-

mill, which a man could cause to revolve by stepping from step to

step. He thus performed work which could be measured by suit-

able apparatus outside the box. The tread-wheel could also be made

to revolve backward by a motor placed outside, when the man de-

scended from step to step, and work was performed upon him.

Three distinct experiments were performed; and the amount

of oxygen consumed by respiration, and the heat developed, were

determined.

In the fiist experiment the man remain'^d in repose; in the sec-

ond he performed work by causing the wheel to revolve; in tlie

third the wheel was made to revolve backward, and work was per-

formed upon him. In the second experiment the amount of heat

developed for a gram of oxygen consumed was much less, and in

the third case much greater, than in the first; that is, in the first

case, the heat developed was due to a chemical action, indicated by

the absorption of oxygen; in the second, a portion of the chemical

action went to perform the work, and hence a less amount of heat
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was developed; while iu the third case the motor, causing the

tread-wheel to revolve, performed work, which produced heat in ad-

dition to that due to the chemical action.

It has been thought that muscular energy is due to the waste

of the muscles themselves; but experiments show that the waste of

nitrogenized material is far too small in amount to account for the

energy developed by the animal; and we must, therefore, conclude

that tlie principal source of muscular energy is the oxidation of the

non-nitrogenized material of the blood by the oxygen absorbed in

respiration.

An animal is, then, a machine for converting the potential en-

ergy of food into mechanical work: but he is not, as Mayer sup-

posed, a heat-engine; for he performs far more work than could

be performed by a perfect heat-engine, working between the same

limits of temperature, and using the food as fuel.

The food of animals is of vegetable origin, and owes its energy

to the solar rays. Animal heat and energy are, therefore, the trans-

formed energy of the sun.

The tides are mainly caused by the attraction of the moon

upon the waters of the earth. If the earth did not revolve upon

its axis, or, rather, if it always presented one face to the moon, the

elevated waters would remain statio7iary upon its surface, and fur-

nish no source of energy. But as the earth revolves the crest of

the tidal wave moves apparently in the opposite direction, meets

the shores of the continents, and forces the water up the bays and

rivers, where energy is wasted in friction upon the shores or

may be made use of for turning mill-wheels. It is evident that

all the energy derived from the tides comes from the rotation of

the earth upon its axis; and a part of the energy of the earth's rota-

tion is, therefore, being dissipated in the heat of friction it causes.

The internal heat of the earth and a few other forms of energy,

such as that of native sulphur, iron, etc., are of little consequence

as sources of useful energv. They may be considered as the rem-

nants of the original energy of the earth.

236. Energy of the Sun —It has been seen that the sun's rays
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are the source of all the forms of energy practically available, ex-

cept that of the tides. It has been estimated that the heat re-

ceived by the earth from the sun each year would melt a layer of

ice over the entire globe a hundred feet in thickness. This repre-

sents energy equal to one horse-power for each fifty square feet of

surface, and the heat which reaches the earth is only one twenty-

two-hundred-millionth of the heat that leaves the sun. Notwith-

standing this enormous expenditure of energy, Helmholtz and

Thomson have shown that the nebular hypothesis, which supposes

the solar system to have originally existed as a chaotic mass of

widely separated gravitating particles, presents to us an adequate

source for all the energy of the system. As the particles of the

system rush together by their mutual attractions, lieat is generated

by their collision; and after they have collected into large masses,

the condensation of these masses continues to generate heat.

237. Dissipation of Energy.—It has been seen that only a frac-

tion of the energy of heat is available for transformation into other

forms of energy, and that such transformation is possible only

when a difference of temperature exists. Every conversion of

other forms of energy into heat puts it in a form from which it

can be only partially recovered. Every transfer of heat from one

body to another, or from one part to another of the same body,

tends to equalize temperatures, and to diminish the proportion of

energy available for transformation. Such transfers of heat are

continually taking place; and, so far as our present knowledge

goes, there is a tendency toward an equality of temperature, or, in

other words, a uniform molecular motion, throughout the uni-

verse. If this condition of things were reached, although the total

amount of energy existing in the universe would remain unchanged,

the possibility of transformation would be at an end, and all ac-

tivity and change would cease. This is the doctrine of the dissipa-

tion of energy to which our limited knowledge of the operations of

Nature lenrlsus; but it must be remembered that our knowledge is

very limited, and that there may be in Nature the means of restor-

ing the differences upon which all activity depends.
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MAGNETISM.

238. Fundamental Facts.—Masses of iron ore are sometimes

found whicli possess the property of attracting pieces of iron and a

few other substances. Such masses are called natural magnets or

lodestones. A bar of steel may be so treated as to acquire similar

pro]3erties. It is then called a magnet. Such a magnetized steel

bar may be used as fundamental in the investigation of the proper-

ties of magnetism.

If pieces of iron or steel be brought near a steel magnet, they

are attracted by it, and unless removed by an outside force they

remain permanently in contact with it. While in contact with the

magnet, the pieces of iron or steel also exhibit magnetic properties.

The iron almost wholly loses these properties when removed from

the magnet. The steel retains them and itself becomes a magnet.

The reason for this difference is not fully known. It is usually

said to be due to a coercive force in the steel. The attractive power

of the original magnet for other iron or steel remains unimpaired

by the formation of new magnets.

A body which is thus magnetized or which has its magnetic

condition disturbed is said to be affected by magnetic ind^iction.

In an ordinary bar magnet there are two small regions, near

the ends of the bar, at which the attractive powers of the magnet

259
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are most strongly manifested. These regions are called the poles

of the magnet. The line joining two points in these regions, the

location of- which will hereafter be more closely defined, is called

the magnetic axis. An imaginary plane drawn normal to the axis

at its middle point is called the equatorial plane.

If the magnet be balanced so as to turn freely in a horizontal

plane, the axis assumes a direction which is approximately north

and south. The pole toward the north is usually called the north

or positive pole; that toward the south, the south or negative pole.

If two magnets be brought near together, it is found that their

like poles rej^el and unlike poles attract one another.

If the two poles of a magnet be successively placed at the same

distance from a pole of another magnet, it is found that the forces

exerted are equal in amount and oppositely directed.

The direction assumed by a freely suspended magnet shows that

the earth acts as a magnet, and that its north magnetic pole is

situated in the southern hemisphere.

If a bar magnet be broken, it is found that two new poles are

formed, one on each side of the fracture, so that the two portions

are each perfect magnets. This process of making new magnets

by subdivision of the original one may be, so far as known, con-

tinued until the magnet is divided into its least parts, each of

which will be a perfect magnet.

This last experiment enables us at once to adopt the view that

the properties of a magnet are due to the resultant action of its

constituent magnetic molecules.

239. Law of Magnetic Force.—By the help of the torsion bal-

ance, the principle of which is described in g*} 109, 253, and by us-

ing very long, thin, and uniformly magnetized bars, in which the

poles can be considered as situated at the extremities. Coulomb

showed that the repulsion between two similar poles, and the at-

traction between two dissimilar poles, is inversely as the square of

the distance between them.

A more exact proof of the same law was given by Gauss, who
calculated the action of one magnet on another on the assumption
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of the truth of the law, and showed by oxperiment that the action

calculated was actually exerted.

All theories of magnetism assume that the force between two

magnet poles is proportional to the product of the strengths of the

poles. The law of magnetic force is then the same as that upon

which the discussion of potential and of flux of force was based.

The theorems there discussed are in general applicable in the study

of magnetism, although modifications in the details of their appli-

cation occur, arising from the fact that the field of force about a

magnet is due to the combined action of two dissimilar and equal

poles.

If m and m' represent the strengths of two magnet poles, /• the

distance between them, and k a factor depending on the units in

wliich the strength of the pole is measured, the formula expressing

the force between the poles is k—;—

„

240. Definitions of Magnetic Quantities.—The law of magnetic

force enables us to define a unit magnet pole, based upon the

fundamental mechanical units.

If two perfectly similar magnets, infinitely thin, uniformly and

longitudinally magnetized, be so placed that their positive poles

are unit distance apart, and if these poles repel one another with

unit force, the magnet poles are said to be of unit strength.

Hence, in the expression for the force between two poles, k becomes

unity, and the dimensions of -^ are those of a force. That is,

—J I

= MLT'', from which the dimensions of a magnet pole

are [w?] = M^L^T". This definition of a unit magnet pole is the

foundation of the magnetic system of units. The strength of a

magnet pole is then equal to the force which it will exert on a unit

pole at unit distance.

The product of the strength of the positive pole of a uniformly

and longitudinally magnetized magnet into the distance between

its poles is called its magnetic moment.
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The quotient of the magnetic moment of such a magnet by its

volume, or the magnetic moment of unit of volume, is called the

intensity of magnetization. Since any magnet may be divided

into small magnets, each of which is uniformly magnetized, and

for which by this definition a particular value of the intensity of

magnetization can be found, it is clear that the magnetic condition

of any magnet can be stated in terms of the intensity of magnetiza-

tion of its parts.

The dimensions of magnetic mom6nt and of intensity of mag-

netization follow from these definitions. They are respectively

'ml'
\ml\^M^L^T-' and

r
= M^L'^ T

241. Distribution of Magnetism in a Magnet.—If we conceive

of a single row of magnetic molecules with their unlike poles in

contact, we can easily see that all the poles, except those at the

ends, neutralize one another's action, and that such a row will

have a free north pole at one end and a free south pole at the

other. If a magnet be thought of as made up of a combination of

such rows of different lengths, the action of their free poles may

be represented by supposing it due to a distribution of equal quan-

tities of two imaginary substances, called north and south magnet-

ism. This distribution will be, in general, both on the surface

and throughout the volume of the magnet. If the magnet be uni-

formly magnetized, the volume distribution becomes zero. The

surface distribution of magnetism will sometimes be used to

express the magnetization of a magnet, by the use of a concept

called the magnetic density. It is defined as the ratio of the quan-

tity of magnetism on an element of surface to the area of that ele-

ment. The magnetic density thus defined has the same numerical

value as the intensity of magnetization which measures the real

distribution. To illustrate this statement, we will consider an

infinitely thin and uniformly magnetized bar, of which the length

and cross-section are represented by I and s respectively. Its inten-

sity of magnetization is y- or — . If, now, for the pole m we sub-
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stitute a continuous surface distribution over the end of the bar,

then — is also the density of that distribution.

The dimensions of magnetic density follow from this definition.

They are
|

- M^L^T-'^^,^.,^

Coulomb showed, by oscillating a small magnet near different

parts of a long bar magnet, that the magnetic force at different points

along it gradually increases from the middle of the bar, where it is

imperceptibk", to the extremities. This would not be the case if the

bar magnet were made up of equal straight rows of magnetic

molecules in contact, placed side by side. With such an arrange-

ment there would be no force at any point along the bar, but it

would all appear at the two ends. The mutual interaction of the

molecules of contiguous rows makes such an arrangement, how-

ever, impossible.

In the earth's magnetic field, in which the lines of magnetic

force may be considered parallel, a couple will be set up on any

magnet, so magnetized as to have only two poles, due to the action

of equal quantities of north and soutli magnetism distributed in the

magnet. The points at which the forces making up this couple are

applied are the poles of the magnet, and the line joining them is

the magnetic axis. These definitions are more precise than those

which could be given at the outset.

242. Action of One Magnet on the Other.—The investigation of

the mechanical action of one mag-

net on another is important in the

construction of apparatus for the

measurement of magnetism.

(1) To determine the potential

of n short l)ar magnet at a point

distant from it, let NS (Fig 74)

represent the magnet of length 2/,

the poles of which are of strength m, and let the point P be at a

distance r from the centre of the magnet, taken as origin.



264 ELEMENTARY PHYSICS. [§ 243

Let the angle POiV equal 6 and draw the perpendiculars NQ
and OR to PS. Then, in the limit, if SN is very small in com-

parison with OP, we have PN = r — Ar and PS'= r + Jr, where

Ar is a small length equal to SE = I. cos 0. The potential at P

due to the pole at iV'is -; -r-; = m \-~\—^^-j, since z/r is very small

in comparison with r. Similarly the potential at Pdue to the pole

at S is T- = — mi ^ ). The potential at Pdue to the
r + z/r \r r J

^

magnet is therefore

2,mAr _ 2ml cos _M cos 6—
'Za
— ~ ^^2 — ~2 }

(°1)

where M is the magnetic moment of the magnet. We may consider

the magnetic moment as projected upon the line r by multiplica-

tion by cos 6; the formula shows that the potential at any point due

to a short magnet is equal to the projection of the magnetic mo-

ment upon the line joining the centre of the magnet with the point,

divided by the square of the length of that line.

The maximum value of the potential due to the magnet, for a

M
given value of r, is ^7, where R represents the assigned value of r.

If we set -r=-7 = —'-—

5

we obtain r^ = R'^ cos 6 as the equation of
R r

the equipotential surfaces at a considerable distance from the small

magnet. When 7? = cc , it determines an equipotential surface of

zero potential, for which, for every finite value of r, we have

7T

cos «y = 0, and 6 = ~. The plane passing through the centre of the

magnet and perpendicular to its axis is therefore an equipotential

surface of zero potential. Since r = whenever cos 6' = 0, whatever

be the value of R, all the other equipotential surfaces pass through

the point 0; they are in general ovoid surfaces surrounding the

poles. The lines of force of the magnet arise at the north pole and

pass perpendicularly through all these surfaces to the south pole.
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(2) The force due to a short bar magnet in any direction may

be determined by determining tiie rate of change of its potential

in that direction. It is not, however, important to determine this

force in the general case: it will be sufficient to determine it for

points in the line of the axis of the magnet.

Let the length of the magnet NS (Fig. 75) be represented by

2/ and the distance from its centre SON ?i_ _P

to the point P by r. Then the force at
Fig 75

P due to the pole at N, and directed

til

away from the magnet, is -; ttt, and the force due to the pole at

S, and directed toward the magnet, is -.
—

--fr.. JNow we may write
' *

(y 4- 1)

m m / 1 2A .

-— = -^ —- = m -, -j—= , since l is very small in compari-
(?• — /)- r- — 2/r Vr' ' rV -^ ^

m I 1 2/\
son with r, and similarly -,

—
tTa^ ~ ''^ ("^ ^^j*

'^^^^ force at P

due to the magnet and directed away from it is, therefore,

(3) In the construction of apparatus used in the measuring of

magnetic quantities it is important to know the moment of couple

set up by one magnet on another. We will determine this for the

particular case in which both the magnets are small in comparison

witli the distance between their centres, and in which the centre

of one is situated on the prolongation of the axis of the other. We
will call the magnet, the axis of which lies in the line joining the

centres, the first magnet, and the other the second magnet, and

will examine the couple exerted on the second magnet by the first.

Under the limitations made as to the size of the magnets, we may
assume that the forces exerted by the first magnet on the poles of

the second are the same as if the poles of the second magnet lay in

the prolongation of the axis of the first magnet, and that they are

t!ie same for any position of the second magnet (Fig. 76).
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We designate by m' the pole of the second magnet, by 21' its

length, and by the complement of the angle

^made by its axis with the line joining the cen-

i^'" tres of the magnets. On these assumptions,

the force acting on the north pole of the second

2m'M
Fig. 76. magnet is —^— , and the force acting on its

south pole is 3— . These two forces constitute a couple with

an arm 2V cos 6, and the moment of this couple is

4m'I'M cos d _ 2MWcos8

where M' represents the magnetic moment of the second magnet.

2MM'
This moment of couple varies from —^^— if the magnets are at

right angles to each other, to zero if they are in the same straight

line.

243. The Magnetic Shell. —A magnetic shell may be defined as an

infinitely thin sheet of magnetizable matter, magnetized transversely

;

so that any line in the shell normal to its surfaces may be looked

on as an infinitesimally short and thin magnet. These imaginary

magnets have their like poles contiguous. The product of the in-

tensity of magnetization at any point in the shell into the thick-

ness of the shell at that point is called the strength of the shell at

that point, and is denoted by the symbol /.

Since we may substitute for the magnetic arrangement an imag-

inary distribution of magnetism over the surfaces of the shell, we
may define the strength of the shell as the product of the surface-

density and the thickness of the shell.

The dimensions of the strength of a magnetic shell follow at

once from this definition. We have [j] equal to the dimensions of

intensity of magnetization multiplied by a length. Therefore [/]

We obtain first the potential of such a shell of infinitesimal
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area. Let the origin (Fig. 77) be taken half-way between the two

faces of the shell, and let the shell stand

perpendicular to the x axis. Let a rep- ^^"-^
\

resent the area of the shell, supposed in- ^^'^
\y

finitesimal, 2/ the thickness of the shell, ^tv^'"'
"

and cl the intensity of magnetization. LtT ~x

The volume of this infinitesimal magnet ^'^- ''^

is 2a7, and, from the definition of intensity of magnetization, laid is

its magnetic moment. The potential at the point P is then given by

M laid
equation (81), since I is very small. We have F= — cos d = —j- cos Q.

Now a cos 6 is the projection of the area of the shell upon a plane

through the origin normal to the radius vector r, and, since a is

a cos ^
infinitesimal, ^— is the solid angle oa bounded by the lines drawn

from P to the boundary of the area a. The potential then becomes

F= lldoa — joo, since lid is what has been called the strength of

the shell.

The same proof may be extended lo any number of contiguous

areas making up a finite magnetic shell. The potential due to such

a shell is then ^y&?. If the shell be of uniform strength, the poten-

tial due to it becomes y^uj, and is got by summing the elementary

solid angles. This sum is the solid angle /2, bounded by the lines

drawn from the point of which the potential is required to the

boundary of the shell. The potential due to a magnetic shell of

uniform sti'ength is therefore

ja. (84)

It does not depend on the form of the shell, but only on the angle

subtended by its contour. At a point very near the positive face

of a flat shell, so near that the solid angle subtended by the shell

equals 27r, the potential is 27r/; at a point in the plane of the shell

outside its boundary, where the angle subtended is zero, the poten-

tial is zero ; and near the other or negative face of the shell it is

— 2 Try. The whole work done, then, in moving a unit magnet

pole from a point very near one face to a point very near the other
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face is 4 Try. This result is of importance in connection with elec-

trical currents.

244. Magnetic Measurements.— It was shown by Gilbert in a

work published in IGOO, that the earth can be considered as a

magnet, having its positive pole toward the south and its negative

toward the north. The determination of the magnetic relations of

the earth are of importance in navigation and geodesy. The princi-

pal magnetic elements are the declination, the dip, and the horizontal

intensity.

The declination is the angle between the magnetic meridian, or

the direction assumed by the axis of a magnetic needle suspended

to move freely m a horizontal plane, and the geograj^hical meridian.

The dij) is the angle made with the horizontal by the axis of a

magnetic needle suspended so as to turn freely in a vertical plane

containing the magnetic meridian.

The horizontal intensity is the strength of the earth's magnetic

field resolved along the horizontal line in the plane of the magnetic

meridian. A magnet pole of strength m in a held in which the

horizontal intensity is represented by H is urged along tbis horizontal

line with a force equal to mH. From this equation the dimensions

of the horizontal intensity, and so also of the strength of a magnetic

VML T'^n
field in any case, are [//] = —

i = M^L'^T''.

The horizontal intensity can be measured relatively to some

assumed magnet as standard, by allowing the magnet to oscillate

freely in the horizontal plane about its centre, and noting the time

of oscillation. The relation between the magnetic moment M of

the magnet and the horizontal intensity H is calculated by a for-

mula analogous to that employed in the computation of g from

observations with the pendulum.

If the magnet be slightly displaced from its position of equilib-

rium, so as to make small oscillations about its point of suspension,

it can be shown, as in § 60, that it is describing a simple harmonic

motion. If represent the angle made by the magnet with the

magnetic meridian, the moment of couple acting on the magnet is
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given by MH sin = MH(p, if the oscillations are always very small.

If /represent the moment of inertia of the magnet, we have (§ 39)

MH(p — Icy, where cy is the angnlar acceleration. Now since the

motion ot each particle of the magnet is simple harmonic, and since

the linear motions of the particles are proportional to their an-

47r'
gular motions, we have a = -^(p, and by substituting this value of

a, we obtain

3IH = ^I. (85)

The moment of inertia / may be either computed directly from

the magnet itself, if it be of symmetrical form, or it may be deter-

mined experimentally by the method given in § 37, which applies

in this case. The horizontal intensity is then determined relative

to the magnetic moment of the assumed standard magnet.

This result may be used to give an absolute measure of H by

combining with it the result of another observation which gives an

independent relation between M and H. In the arrangement of

the apparatus two magnets are used: one, the deflected magnet, is

so suspended as to turn freely m the horizontal plane; and the

other, the deflecting magnet, the one of moment J/ used in the last

operation, is carried upon a bar which can be set at right angles to

the magnetic meridian. The centre of the deflected magnet is m
the prolongation of the axis of the deflecting magnet. The deflected

magnet makes an angle with the magnetic meridian determined

by the equality between the two couples acting on the deflected

magnet, one arising from the action of the earth's magnetism, and

the other from that of the deflecting magnet. This latter has

been already discussed in § 242.

The couple due to the deflecting magnet is given by "^

—

^— cos 6,

and that due to the earth's magnetism by M 'H sin 8. We have then

9 MM' M—^L cos d = M'H sin 6, or ~ = |r' tan B. (86)

Equations (85) and (86) contain the unknown quantities ilf and H
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in different relations. By the elimination of one of them the other

can be obtained in absolute units. In practice the simple condi-

tions assumed in this discussion cannot be obtained, and corrections

must be introduced, arising from the departures from these condi-

tions. In the determination of AlH we must take into account

the change of the magnetic moment by the induction of the field,

and the facts that the oscillations are not infinitesimal, and that

they are affected by the friction of the air and the torsion of the

M
suspension fibre. In the determination of j^, we must take into

account the induction of one magnet on the other, and the fact that

the lengths of the magnets are not negligible in comparison with

the distance between them.

245. The Magnetic Field.—Up to this point our discussion has

been conducted on the supposition that forces obeying a definite

law act directly between magnetic poles. Various phenomena,

especially those of magnetic induction and the relation between

magnetism and the electrical current,as well as the general tendency

of modern speculation m pliysics, lead us to think that this mode of

representing the interactions of magnets is an artificial one, and

that the true seat of the magnetic action is in the medium between

the magnets. From this point of view it is desirable to have a mode

of describing the magnetic field in such away that the relation be-

tween its condition and the magnetic forces exhibited may be ex-

pressed in measurable terms. The most useful mode of describing

the field is that depending upon tiie use of lines and tubes of force.

Since the force due to a magnet pole obeys the law of inverse

squares, the theorems of §§ 53-57 are immediately applicable.

For the sake of clearness in statement we will define a unit tube

of force in the following way: Consider a closed surface which

encloses a quantity of free positive magnetism m. By § 56,

2Fs = 47rm, where F represents the normal component of the

force at each point on the surface and s the area of the element of

surface over which it acts. Now let us suppose the whole surface

divided into 47rwi parts, for each of which Fs = \; then the tubes
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of force determined by the contours of these areac will be called

unit tubes. Since - = iV'is the number of unit tubes which pass
s

through a unit .area, we have N — F. Hence the magnetic force at

a point is equal to the number of unit tubes which pass perpendic-'

ularly through unit area at that point.

246. Magnetic Force and Magnetic Induction.—If a body like a

piece of iron be brought into a magnetic field it will be magnetized

by induction, and will in turn affect the distribution of the tubes

of force in the field. To determine the way in which its magneti-

zation is affected, we need some convention upon which we shall

measure the force within it. This force is measured within a cavity

in the mass of iron, and will have different values for different

forms of the cavity. Let us first suppose the cavity cylindrical,

with its axis in the direction of the lines of force, and with its bases

infinitesimal in comparison with its height. The distribution of

magnetism throughout the iron will give rise to free magnetism on

the bases of the cylinder, and the force on a unit pole placed at the

middle of the cylinder will be due to the original force in the field,

to the forces arising from the induced poles, and to the forces

exerted by these distributions. These last forces are infinitesimal,

in case the bases are infinitesimal in comparison with the length

of the cylinder, and may be neglected. The force on the pole is

called the magnetic force at the point where the pole is placed.

Let us in the second place suppose the cavity in the shape of a

disk, with its faces normal to the lines of force, and infinitely great

in comparison with the distance between them. The magnetization

of the iron will give rise to a distribution of free magnetism on

each of these faces. If we consider the lines of force of the field

as passing into the iron from left to right, the distribution on the

left-hand face of the cavity is positive and that on the right-hand

face negative. The force on a unit pole placed within the cavity

is due to the original force R in the field, and the forces exerted by

the distributions on the faces of the cavity. If we represent by (T

the density of this distribution on either face, the force on the pole
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due to each face is ^ncr (§ 57), and the forces from the two faces

act in the same direction. The force upon the pole due to the

faces of the cavity is therefore Arra or 'inl, where /is the intensity

of magnetization (§ 241). The total force acting on the pole is

therefore
^ ^F=E + 47r/; (87)

this quantity is called the magnetic induction within the body. It

is manifestly a directed quantity or a vector; in the example con-

sidered its direction is the same as that of the force. In bodies

which are not isotropic, the induction and the magnetizing force

are not necessarily in the same direction. We will confine our atten-

tion to isotropic bodies.

247. Tubes of Force of a Magnet. Tubes of Induction.—The

lines of force in the field outside a bar magnet are curves proceed-

ing from the north to the south pole; these lines of force may be

conceived of as existing also within the body of the magnet if the

magnetic force within the magnet is determined within the long

narrow cylinder already described. On the other hand, a set of

tubes may be described, called tul)es of induction, which are closed

tubes, proceeding through the magnet from the south to the north

pole and outside the magnet from the north to the south pole. To

show this let us suppose the magnet divided into two parts by a

section at right angles to its axis, and let us consider a closed sur-

face passing between the two parts and enclosing that part which

contains the north pole. The distribution over the end of this

part which is exposed by the section is equal to the north pole at

the end of the original magnet, and is of opposite sign ; so that the

flux of force 2Fs = over the closed surface. Nov/ the force

within the cavity formed by the section is directed inward, and is

at each point equal to AttI. If a represent the area of the section,

the flux of force across that part of the surface contained within

the section is 4;r/«, and la = m, the strength of the pole of the

original magnet. The number of tubes of force which pass through

the section of the magnet is therefore equal to 4;rw, or to the number

of tubes of force which proceed from the original pole and pass
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tijrouojh the rest of the closed surface from withiu outward. The

tubes of force of the magnet are therefore closed tubes, passing

through the magnet in the manner already described. The tubes

thus considered, in which account is taken of the effect of the dis-

tributions on the disk-shaped cavity within the magnet, are called

tubes of induction.

If the magnet be a bar placed with its axis along the lines of

force in a unifonu magnetic field and magnetized by induction, the

induction (§ 2-16) is equal to i^ = R-{-4i7Tl. If the magnetization

of the bar be proportional to the force of the field, so that 1 = IcR,

we have
F= {\+Anl:)R = >.iR. (88)

The number of tubes of induction which pass through unit area in

a cross-section of the bar is equal to this, for the total number of

tubes that pass through the section of the magnet is (A'-)- 4;r/)«;

that is, N — i^iR.

The coefficient ^• is called the coefficient of imUiced magnetiza-

tion; it is assumed to be zero for a vacuum, and may be either

positive or negative. The coefficient /< = 1 + 4;r^ is called the

magnetic inductive capacity or the magnetic permeability. It

must be noticed that when /;>0, so that the induction is greater

than the magnetic force of the field, the resultant magnetic force

within the body is less than the magnetic force of the field, because

the poles induced in the body act in the opposite sense to the force

of the field.

248. Energy in a Magnetic Field.—On the view we are now

taking, that the actions between magnets are due to a condition of

the medium which occupies the field, it is natural to suppose that

the energy of a set of magnets is distributed in the field. We will

find a law for this distribution, which associates the energy with

the tubes of induction.

The energy of the system is manifestly equal to the work that

would be required to construct that system. We will first show

that this may be expressed, in terms of the magnet poles and of the

potentials of the places occupied by them, by the formula S^m V.
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"We assume that whatever bodies are in the field are of such a

•character that their magnetizatiou is proportional to the magnetiz-

ing force; on this assumption, the potential at any point and the

magnitude of the poles vary in the same proportion. Let m,, m^,

. . . .m„ represent the values of the respective poles, and F,, V^,

. . . . F„ the potentials at the places occupied by them in the final

condition of the field. Each of these poles may be conceived of as

an assemblage of a great number n of small poles, each equal to-.

If we think of the region occupied by the field as originally free

from magnets, its energy after the magnets are present in it will

be equal to the work done in forming the magnet poles by the suc-

cessive addition of such elementary poles. Let the field be free

. . . m m 7»„
from magnetism, and let the quantities ox magnetism — > —j —

?

be brought to the points which the separate poles occupy in the

final condition of the field; since the potentials at those points are

originally zero, no work will be done in this operation. The

presence of these poles causes a rise of potential throughout the

field, and the potentials at the places occupied by the poles become

F, Vi V—, —

,

. . . .
—!^. Let elementary poles similar to those already intro-

duced be brought to their respective places in the field; the work

mV
done on any one of them is —^) and the work done on them all is

m F2

—

-' By this increase in the quantities at the poles the potentials

become 2 —> 2—^, • • •• 2 —^. This operation is repeated until n
11 11 11

^

quantities have been brought to each pole, so that the poles are in

their final condition and the potential has everywhere its final

value. The work done in bringing up the if^ elementary pole to

111 T'
its place is -(« — !)—; the work done in forming the field is there-

f ^a + 2 + 3 + . . . + (w - 1)\ ^^ ,^
fore ^ — —5 ^—^^ m V. Kow
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1 + 2 + 3 + . . . + (w - 1) _ {n - \)n __ 1/ 1

9^
^ ; 1

7i' -in- 2\ nl

if H be supposed to be very large. The work done in forming the

magnetic field is therefore 2\tn V.

Now, to show how this energy may be distributed in the field,

we may consider any one of the magnets which give rise to the field

as being the origin of Artla unit tubes of induction, the magnets

being thought of as bar magnets. The energy of this magnet is,

by the previous proposition, equal to lm{Vn— Vg), where V„ and

Vg are the potentials at the places occupied by its poles; the pole in

is equal to la (§ 241). The difference of potential V„ — F^ equals

'2RAI, where R is the force along a line of force in the field pass-

ing outside the magnet from its north to its south pole, and M is an

element of that line, the summation being extended over the whole

line. If, therefore, we suppose each unit tube of induction which

proceeds from the magnet to contain an amount of energy equal to

^-^— , the energy contained in the bundle of tubes belonging to

the magnet will equal the energy of the magnet. We may therefore

consider the energy of the magnet as distributed throughout the

field, in such a way that each unit length of a unit tube of induc-

tion contains 7— units of energy. The tubes of induction here con-

sidered are those which exist outside the magnets. It has already

been shown that the number of tubes of induction which pass

through unit area is equal to the induction, or that N— F =
(1 + 4:7tk)E = /^B. Hence the energy in unit length of a tube

iV
of induction may be expressed by -—

—

The energy in unit volume of the field may be determined

by considering a small cylinder of length / and cross-section s

placed in the field with its end surfaces normal to the lines of in-

duction. The number of tubes of induction which pass through

the end surfaces is JVs = /uEs, and the energy contained in the

length I of each of these tubes is—-- = -;;— . The enerffv contained
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in the cylinder is therefore —^ = ^—^, and the energy contained
fASn 871 ' °-^

m unit volume is -—— = •

249. Paramagnetism and Diamagnetism.—It was discovered by
Faraday that all bodies are affected when brought into a magnetic

field: some of them, such as iron, nickel, cobalt, and oxygen, are

attracted by the magnet setting up the field; others, such as bis-

muth, copper, most organic substances, and nitrogen, are repelled

from the magnet. The former are said to he ferromagnetic or

paramagnetic, the latter diamagnetic.

The most obvious explanation of these phenomena, and the one

adopted by Faraday, is to ascribe them to a distribution of the in-

duced magnetization in paramagnetic bodies, in an opposite direc-

tion from that in diamagnetic bodies. If a paramagnetic body be

brought between two opposite magnet poles, a north pole is induced

in it near the external south pole, and a south pole near the external

north pole. The magnetic separation is then said to be in the di-

rection of the lines of force. According to this explanation, then,

the separation of the induced magnetization in a diamagnetic body

is in a direction opposite to that of the lines of force. In other

words, if a diamagnetic body be brought between two opposite

magnet poles, the explanation asserts that a north jiole is induced

in it near the external north pole, and a south pole near the exter-

nal south pole.

One of Faraday's experiments, however, indicates that the dif-

ferent behavior of bodies of these two classes may be due only to a

more or less intense manifestation of the same action. He found

that a solution of ferrous sulphate, sealed in a glass tube, behaves,

immersed in a weaker solution of the same salt, as a paramagnetic

body; but, when immersed in a stronger solution, as a diamagnetic

body. It may from this experiment be concluded that the direc-

tion of the induced magnetization is the same for all bodies, and

that the exhibition of diamagnetic or paramagnetic properties de-

pends, not upon the direction of induced magnetization, but upon
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the greater or less intensity of magnetization of the surrounding

medium.

Faraday discovered that many bodies while in a vacuum exhibit

diamagnetic properties. In accordance with this explanation, we

must conclude that a vacuum can have magnetic properties. It

seemed to Faraday unlikely that this should be tlie case, and he

therefore adopted the explanation which was first given. As it has

since been shown that the ether which serves as a medium lor the

transmission of light, and which pervades every so-called vacuum,

is also probably concerned in electrical and magnetic phenomena,

there is no longer any reason for the opinion that the possession of

magnetic properties by a vacuum is inherently improbable.

To classify bodies as paramagnetic or diamagnetic, we examine

the energy existing in them when placed in a magnetic field. We
will first assume that h, the coefficient of magnetization, is so small

that the resultant force in the region occupied by the body is not

appreciably changed by the presence of the body. The value of h

for vacuum is assumed to be zero, and for air it is very slightly dif-

ferent from zero; hence the value of /./ for air may be set equal to

1. Before a body is brought into the field, the energy per unit

volume in the space finally occupied by it is ^ ; the energy per

unit volume in the same space when the body is brought into the

field is —„— . The increase of energy caused by the introduction

of the body, on the assumption we have made that the field is not

disturbed by the body, or that jV remains the same after the

iVVl — lA
introduction of the body as it was before, is -— —], and this

•^

SttV M I

is positive or negative according as /< is less or greater than 1.

Now a body free to move will move so as to diminish its potential

energy, and therefore a body for which i-i > 1 will move so as to

make iV^ as large as possible, or will move from a weaker to a

stronger part of the field. Such a body is called a paramagnetic

body. On the other hand, a body for which yu < 1 will move so
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as to make iV^' as small as possible, that is, will move from a

stronger to a weaker part of the field. Such a body is a diamag-

netic body. These motions are not necessarily along the lines of

force, but are in the directions in which N^ changes most rapidly.

In general, the introduction of a body into a field changes the

arrangement of the tubes of induction and the force in the field
;

it has already been remarked that the resultant force at a point is

diminished by the presence of a paramagnetic body around that

point, because the induced distribution acts against the forces in

the field. Since the energy per unit length of the tubes of iuduc-
r)

tion is equal to ^— , where li is the resultant force, a tube of in-

duction within a paramagnetic body possesses less energy per unit

length than it does outside that body. In accordance with the ten-

dency of the potential energy to become a minimum, the tubes of

induction will therefore move into a paramagnetic body. On the

other hand, the resultant force at a point being increased by the

presence of a diamagnetic body around that point, the tubes of in-

duction will move out from a diamagnetic body. This movement

of the tubes of induction, into or out of bodies in the field, ceases

when the loss of potential energy due to their movement into or

out of the body is balanced by the gain in potential energy due to

the lengthening of those tubes of the field which do not pass through

the body. This change in the arrangement of the tubes of induc-

tion does not invalidate the former conclusion that paramagnetic

bodies move from a place of weaker to a place of stronger mag-

netic force, while diamagnetic bodies move from a place of stronger

to a place of weaker magnetic force. A complete discussion of the

behavior of bodies in a magnetic field is outside the scope of this

work.

250. Changes in Magnetization. Hysteresis.—When a magnet-

izable body is placed in a powerful magnetic field, it often re-

ceives, temporarily, a more intense magnetization than it can

retain when removed. It is said to be saturated, or magnetized to

saturation, when the intensity of its magnetization has its highest
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possible value. The coercive force of steel is much greater than

that of any other substance; the intensity of magnetization which

it can retain is, therefore, relatively very great, and it is hence

used for permanent magnets. The coercive force depends upon

the quality and temper of the steel.

It was found by Ewing that the intensity of magnetization of a

mass of iron in a magnetic field of given intensity is not depend-

ent upon that intensity alone, but depends also upon the previous

history of the magnetic body. In general the intensity of mag-
netization lags behind the magnetizing force; that is, if the mag-
netizing force be increasing, the intensity of magnetization is less

for a given value of the force than it is for the same value if the

force be diminishing. The relations between

these two quantities are exhibited in Fig. 78,

in which the magnetizing force is measured

along the axis H, the intensity of magnet-

ization along the axis I. The curve ACBD
represents the relation of these quantities as

the magnetizing force of the field changes

from a high negative to a high positive value.

The area between these curves may be shown

to measure the work done on the magnet dur-

ing the cycle A CBD ; this work is almost wholly expended in

heating the magnet. The phenomenon here described is called

magnetic hysteresis.

Changes of temperature cause corresponding changes in the

magnetization of a magnet. If the temperature of a magnet be

gradually raised, its magnetization diminishes by an amount
which, for small temperature changes, is nearly proportional to the

change of temperature. The magnet recovers its original mag-

netization when cooled again to the initial temperature, provided

that the temperature to which it was raised was never very high.

If it be raised, however, to a red heat, all traces of its original

magnetization permanently disappear. Trowbridge has shown
that, if the temperature of a magnet be carried below the tempera-
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ture at which it was originally magnetized, its magnetization also

temporarily diminishes.

Any mechanical disturbance, such as jarring or friction, which

increases the freedom of motion among the molecules of a magnet,

in general brings about a diminution of its magnetization. On

the other hand, similar mechanical disturbances facilitate the ac-

quisition of magnetism by any magnetizable body placed in a mag-

netic field,

251. Theories of Magnetism.—It has been shown by mathe-

matical analysis that the facts of magnetic interactions and dis-

tribution are consistent with the hypothesis, which we have al-

ready made, that the ultimate molecules of iron are themselves

magnets, having north and south poles which attract and repel

similar poles in accordance with the law of magnetic force.

Poisson's theory, upon which most of the earlier mathematical

work is based, is that there exist in each molecule indefinite

quantities of north and south magnetic fluids, which are separated

and moved to opposite ends of the molecule by the action of an

external magnetizing force. Weber's view, which is consistent

with other facts that Poisson's theory fails to explain, is that each

molecule is a magnet, with permanent poles of constant strength;

that the molecules of an iron bar are, in general, arranged so as to

neutralize one another's magnetic action, but that, under the in-

fluence of an external magnetizing force, they are arranged so

that their magnetic axes lie more or less in some one direction.

The bar is then magnetized. On this hypothesis there should be

a limit to the possible intensity of magnetization, which would be

reached when the axes of all the molecules have the same direction.

Direct experiments by Joule, J. Miiller, and Ewing indicate the

existence of such a limit. An experiment of Beetz, in which a

thin filament of iron deposited electrolytically in a strong mag-

netic field becomes a magnet of very great intensity, points in the

same direction. The coercive force is, on this hypothesis, the re-

sistance to motion experienced by the molecules. The facts that

magnetization is facilitated by a jarring of the steel brought into
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the magnetic field, that a bar of iron or steel after being removed

from the magnetic field retains some of its magnetic properties,

that the dimensions of an iron bar are altered by magnetization,

the bar becoming longer and diminishing in cross-section, and that

a magnetized steel bar loses its magnetism if it be highly heated,

are all best explained by Weber's hypothesis.

The phenomena of hysteresis led Ewiug to form an extension

of Weber's theory. Ewing called attention to the fact that the

neutral state of a mass of iron or other magnetizable mutter can-

not be due to an indiscriminate or unordered arrangement of its

constituent magnetic molecules, as was assumed in Weber's form

of the theory, but that the interactions' of the molecular magnets

occasion the formation of groups of molecules, definitely ordered,

and such that they separately produce no external magnetic effect.

Such groups may be roughly represented by an assemblage of

small magnets floated on water or mounted on needle points, and

left free to arrange themselves under the influence of their mag-

netic forces. If a mass of iron be placed in a field in which the

magnetizing force continually increases, the first effect will be a

slight development of the magnetism of the iron, due to slight

cluinges in the directions of its molecules. AVhen these changes

have progressed so far that the original groups of molecules break

down, a very rapid increase of magnetism results and new groups

are formed, which are in equilibrium under the magnetic forces of

the molecules and the forces of the field. As the force in the field

still further increases, the increase in the magnetization of the

iron still goes on, but more slowly, this increase being duo to slight

changes in the positions of the molecules in tlie new grouj^s, which

do not, however, destroy those groups. Saturation is reached, on

this theory, when the molecules are arranged in parallel lines; no

increase in the intensity of magnetization will then be produced by

any further increase in the magnetizing force. This limit has been

practically reached by Ewing in some of his experiments. If the

magnetizing force be now diminished, the intensity of magnetiza-

tion also diminishes, but at first only slightly. The magnetic
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forces between the molecules maintain equilibrium in the mole-

cular groups after the magnetizing force has fallen below the value

at which they were formed; sufficient reduction of the magnetizing

force at last occasions a breaking down of these groups and per-

mits the formation of new ones, which exert less external magnetic

force. During the time in which this change in grouping occurs,

the intensity of magnetization diminishes rapidly; it does not,

however, vanish until the magnetizing force has attained a finite

negative value. From this point on, changes similar to those

already described go on in the reverse sense. Swing's theory also

explains very well all the facts explained by Weber's form of the

theory.



CHAPTER II.

ELECTRICITY IN EQUILIBRIUM.

252. Fundamental Facts.— (1) If a piece of glass and a piece of

resin be brought in contact, or preferably rubbed together, it is

found that, after separation, the two bodies are attracted towards

each other. If a second piece of glass and a second piece of resin

be treated in like manner, it is found that the two pieces of glass

repel each other and the two pieces of resin repel each other, while

either piece of glass attracts either piece of resin. These bodies

are said to be electrified or charged.

All bodies may be electrified, and in other ways than by con-

tact. It is sufficient for the present to consider the single example

presented. The experiment shows that bodies may be in two dis-

tinct and dissimilar states of electrification. The glass treated as

has been described is said to be vitreously or positively electrified,

and the resin resinously or negatively electrified. The experiment

shows also that bodies similarly electrified repel one another, and

bodies dissimilarly electrified attract one another.

(2) If a metallic body, supported on a glass rod, be touched by

the rubbed portion of an electrified piece of glass, it will become

positively electrified. If it be then joined to another similar body

by means of a metallic wire, the second body is at once electrified.

If the connection be made by means of a damp linen thread, the

second body becomes electrified, but not so rapidly as before. If

the connection be made by means of a dry white silk thread, the

second body shows no signs of electrification, even after the lapse

of a considerable time. Bodies are divided according as they can

283
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be classed with the metals, damp linen, or silk, as good conductors,

poor conductors, and insulators. The distinction is one of degree.

All conductors offer some opposition to the transfer of electrifica-

tion, and no body is a perfect insulator under all conditions.

A conductor separated from all other conductors by insulators

is said to be insulated. A conductor in conducting contact with

the earth is said to be grounded or joined to ground.

During the transfer of electrification in the experiment above

described the connecting conductor acquires certain properties

which will be considered under the head of the Electrical Current.

(3) If a positively electrified body be brought near an insulated

conductor, the latter shows signs of electrification. The end nearer

the first body is negatively, the farther end positively, electrified.

If the first body be removed, all signs of electrification on the con-

ductor disappear. If, before the first body is removed, the con-

ductor be joined to ground, the positive electrification disappears.

If now the connection with ground be broken, and the first body

removed, the conductor is negatively electrified.

The experiment can be carried out so as to give quantitative

results, in a way first given by Faraday. An electrified body, for

examiDle a brass ball suspended by a silk thread, is introduced into

the interior of an insulated closed metallic vessel. The exterior of

the vessel is then found to be electrified in the same way as the

ball. This electrification disappears if the ball be removed. If

the ball be touched to the interior of the vessel, no change in the

amount of the external electrification can be detected. If, after

the ball is introduced into the interior, the vessel be joined to

ground by a wire, all external electrification disappears. If the

ground connection be broken, and the ball removed, the vessel has

an electrification dissimilar to that of the ball. If the ball, after

the ground connection is broken, be first touched to the interior of

the vessel and then removed, neither the ball nor the vessel is any

longer electrified.

A body thus electrified without contact with any charged body

is said to be electrified by induction. The above-mentioned facts
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show that an insulated conductor, electrified by induction, is elec-

trified both positively and negatively at once; that the electrifica-

tion pf a dissimilar kind to that of the inducing body persists, how-

ever the insulation of the conductor be afterwards modified ; and

that the total positive electrification induced by a positively charged

body is equal to that of the inducing body, while the negative elec-

trification can exactly neutralize the positive electrification of the

inducing body.

The use of the terms positive and negative is thus justified, since

they express the fact that equal electrifications of dissimilar kinds

are exactly complementary, so that if they be superposed on a body

that body is not electrified. These two kinds of electrification may

then be spoken of as opposite.

If the glass and resin considered in the first experiment be

rubbed together within the vessel, and in general if any apparatus

which produces electrification be m operation within the vessel, no

sio-ns of any external electrification can be detected. It is thus

shown that, whenever one kind of electrification is produced, an

equal electrification of the opposite kind is also produced at the

same time.

Franklin showed that, by the use of a closed conducting vessel

of the kind just described, a charged conductor introduced into its

interior and brought into conducting contact with its walls is

always completely discharged, and the charge is transferred to the

exterior of the vessel. This procedure furnishes a method of add-

ing together the charges on any number of conductors, whether

they be charged positively or negatively. It is thus theoretically

possible to increase the charge of such a conductor indefinitely.

(4) If any instrument for detecting forces due to electrifica-

tions be introduced into the interior of a closed conductor charged

in any manner, it is found that no signs of force due to the charge

nan be detected. The experiment was accurately executed by

Cavendish, and afterwards tried on a large scale by Faraday. It

proves that within a closed electrified conductor there is no elec-
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trical force due to the charge on the conductor, or that the potential

due to the electrical forces is uniform within the conductor.

253. Law of Electrical Force.—If two charged bodies be con-

sidered, of dimensions so small that they may be neglected m com-

parison with the distance between the bodies, the stress between

the two bodies due to electrical force is proportional directly to the

product of the charges which they contain, and inversely to the

square of the distance between them.

If Q and Q' represent two similar charges, r the distance be-

tween them, and /c a factor depending on the units in which the

charges are measured, the formula expressing the repulsion between

• ,QQ'
them IS fc—x—

.

Coulomb used the torsion balance (§ 109) to demonstrate this

law. At one end of a glass rod suspended from the torsion wire

and turning in the horizontal plane is placed a gilded pith ball,

and through the lid of the case containing the apparatus can be

introduced a similar insulated ball, so arranged that its centre is at

the same distance from the axis of rotation of the suspended sys-

tem, and m the same horizontal plane, as the centre of the first

ball. This second ball may be called the carrier.

To prove the law as respects quantities, the suspended ball is

brought into equilibrium at the point afterwards to be occupied by

the carrier ball. The carrier ball is then charged and introduced

into the case. When it comes in contact with the suspended ball,

it shares its charge with it and a repulsion ensues. The torsion

head must then be rotated until the suspended ball is brought to

some fixed point, at a distance from the carrier which is less than

that which would separate the two balls in the second part of the ex-

periment if no torsion were brought upon the wire. The repulsion

is then measured in terms of the torsion of the wire. The charge

on the carrier is then halved, by touching it with a third similar

insulated ball, and, the charge on the suspended ball remaining the

same, the repulsion between the two balls at the same distance is

again observed. If the case be so large that no disturbing effect
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of the walls enters, and if the balls be small and so far apart that

their inductive action on one another may be neglected, the repul-

sion in the second case is found to be one half that in the lirst case.

In general the problem is a far more difficult one, for the distribu-

tion on the two spheres is not uniform. That portion of the dis-

tribution dependent on the induction of the balls can be calculated,

but the irregularities of distribution due to the action of the walls

of the case and other disturbing elements can only be allowed for

approximately.

The law as respects distance is proved in a somewhat similar

way. The repulsions at two di£ferent distances are measured m
terms of the torsion of the wire, the charges on the two balls re-

maining the same. The same corrections must be introduced as m
the former case.

254. Distribution.—The law of electrical force has been stated

in terms of the charges of two bodies. We may, however, consider

electricity as a quantity which has an existence independent of

matter and which is distributed in space. The fact cited in § 252

(4) shows that this distribution must be looked on as being on the

surfaces of conductors, and not m their interiors. If we define

surface density of electrification at any point on the surface of a

charged conductor as the limit of the ratio of the quantity of elec-

tricity on an element of the surface at that point to the area of the

element as that area approaches zero, we may measure quantities of

electricity m terms of surface density. The surface density of

electricity is usually designated by a.

If the law of electrical force hold true not only for charges on

bodies, but also for quantities of electricity on the surface elements

of a conductor, it is evident, from the fact that within an electrified

conductor there is no electrical force, that its surface density of

electrification must be proportional at every point on its surface to

the thickness at that point of a shell of matter which is so dis-

tributed on that surface that there is no force at any point enclosed

by the surface. The distribution on a charged sphere may, from

symmetry, be assumed uniform. The fact that there is no electri-

V
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cal force within a charged sphere is then, from § 57, consistent with

the law of electrical force which has been given; and since the

means of detecting electrical force, if there were any, within a

charged condnctor are very delicate, this fact affords a sti'ong cor-

roborative proof of the law.

The determination of the distribution of electricity on irreg-

ularly shaped conductors is in general beyond our power. If we
consider, however, a conductor in the form of an elongated egg, it

can be readily seen that, in order that there may be no electrical

force within it, the surface density at the pointed end must be

greater than that anywhere else on its surface. In general, the sur-

face density at points on a conducting surface depends upon the cur-

vature of the surface, being greater where the curvature is greater.

Thus, if the conductor be a long rod terminating in a point, the

surface density at the pointed end is much greater than that any-

where else on the rod.

255. Unit Charge,—The law of electrical force enables us to

define a unit charge, based upon the fundamental mechanical units.

Let there be two equal and similar positive charges concentrated

at points unit distance apart in air, such that the repulsion between

them equals the unit of force. Then each of the charges is a umt

charge, or a unit quantitij of electricity. With this definition of

unit charge, it may be said that the force between two charges is

not merely proportional to, but equals, the product of the charges

divided by the square of the distance between them. The factor h

m the expression for the force between two charges becomes unity,

00'
and the dimensions of -^ are those of a force. If the charges be

r

equal, we have = MLT-\ Hence [Q] = M^L'-T-' are the

dimensions of the charge. This equation gives the charge in abso-

lute mechanical units, and by means of it all other electrical quan-

tities may be expressed in absolute units. It is at the basis of the

electrostatic system of electrical measurements.

The practical unit of charge or quantity is called the coulomb.
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It is the quantity of electricity transferred during one second by a

current of one ampere (§ 291).

256. Electrical Potential.—The electrical forces have a potential

similar to that discussed in §§ 53-57. The unit quantity of positive

electricity is taken as the test unit. Since (§ 252, (4)) the potential

at every point of a charged conductor is the same, the surface of

the conductor is an equipotential surface. The potential of this

surface is often called tlie potential of the conductor. A conductor

joined to ground is at tlie potential of the earth. It will be shown

(§ 260) that the potential of the earth is not appreciably modified

when a charged conductor is joined to ground.

For these reasons it is usual to take the potential of the earth as

the fixed potential or zero from which to reckon the potentials of

electrified bodies. The potential of a freely electrified conductor

and of the region about it is thus positive when the charge of the

conductor is positive, and negative when it is negative. A conduc-

tor joined to ground is at zero potential.

The difference of potential between two points is equal to the

work done in carrying a unit quantity of electricity from one point

to the other. We then have the equation Q{V' — V) = work.

ML' T-^

Hence follows the dimensional equation \V' — Fl = —,

—

z =

M^ L^T'^ , the dimensions of difference of potential in electrostatic

units.

If any distribution of a charge exist on a conductor, which is

such that the potential at all points in the conductor is not the

same, it is unstable, and a rearrangement goes on until the potential

becomes everywhere the same. The process of rearrangement is

said to consist in a flow of electricity from points of higher to points

of lower potential.

On this propert}'^ of electricity depends the fact that a closed

conducting surface completely screens bodies within it from the

action of external electrical forces. For, whatever changes in po-

tential occur in the region outside the closed conductor, a redistrib-

ution will take place in it such as to make the potential of every
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point within it the same. Electrical force depends on the space rate

of change of potential, and not on its absolute value. Hence the

changes without the closed conductor will have no effect on bodies

within it. Further, any electrical operations whatever within the

closed conductor will not change the potential of points outside it.

For, whatever operations go on, equal amounts of positive and neg-

ative electricity always exist within the conductor, and hence the

potential of the conductor remains unaltered. Hence electrical ex-

periments performed within a closed room yield results which are

as valid as if the experiments were performed in free space.

The advantage gained by the use of the idea of potential in dis-

cussions of electrical phenomena may be illustrated by a statement

of the process of charging a conductor by induction described in

§ 252 (3). To fix our ideas, let us suppose that the field of force

is due to a positively electrified sphere, and that the body to be

charged is a long cylinder. When this cylinder, previously in con-

tact with the earth and therefore at zero potential, is brought end

on to a point near the sphere, it is in a region of positive potential,

and is itself at a positive potential. If we considei* the original po-

tentials at the points in the region now occupied by the cylinder, it

is easily seen that the potential of points nearer the sphere was

higher than that of those more remote. When the C3dinder is

brought into the field, therefore, the portion nearer the sphere is

temporarily raised to a higher potential than the portion more re-

mote. The difference of potential between these portions is annulled

by a flow of electricity from tlie points of higher potential to those

of lower potential at a rate depending on the conductivity of the

cylinder. The end of the cylinder nearer the sphere is negatively

charged, the end more remote is positively charged, and the two

charged portions are separated by a line on the surface, called the

neutral line, on which there is no charge.

If the cylinder be now joined to ground, a flow of electricity

takes place through the ground connection, and it is brought to

zero potential. The potential of the cylinder is therefore every-

where lower than the original potentials of the points in the region
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which it oocupies This necessitates a negative charge distributed

over the whole cylinder. In other words, the earth and the cylin-

der may be considered as forming one conductor charged by induc-

tion, in which the neutral line is not within the cylinder.

If the ground connection be broken the electrical relations are

not disturbed. If the cylinder be now removed to a region of

lower potential against the attraction of the sphere, work will be

done against electrical forces, which reappears as electrical energy.

The potential of the cylinder is lowered, and, if it be again con-

nected with the earth, work will be done by a flow of electricity

to it.

In § 57 it was shown that the forces on the opposite side of a

sheet, in which the surface density is cr, differ by 47ro-. Now the

force within an electrified conductor vanishes, so that the force at a

point just outside it is given by Atcct.

The pressure outwards on the surface of an electrified conductor

due to the repulsion of the various parts of the charge for one an-

other is equal to 2;ro"^ For the force just outside the conductor,

which is equal to Attct, is due to that part of the conductor imme-

diately under the point considered, which may be considered plane,

and to the rest of the conductor. The force due to the plane part

is (§ 57) equal to 27ro", and that due to tlie rest of the conduotor

is therefore also 27ra. Select any small portion of the surface of

the conductor of area a. The force on unit quantity acting out-

ward from the conductor at a point in that area due to the charge

of the rest of the conductor is 2;rcr. This force acts on every unit

of charge on the area. The force on the area acting outwards is

then 27rfl!0"^ or the pressure at a point in the area referred to uTiit of

area is ^na''. This quantity is often called the electric presstire.

257. Capacity.—The electrical capacity of a conductor is defined

to be the charge which a conductor must receive to raise it from

zero to unit potential, while all other conductors in the field are

kept at zero potential. This charge varies for any one conductor

in a way which cannot be always definitely determined, depending

upon the medium in which the conductor is immersed and the
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position of other conductors in the field. When the charged con-

ductor is in very close proximity to another conductor which is

kept at zero potential, the amount of charge needed to raise it to

unit potential is very great as compared with that required when
the other conductor is more remote. Such an arrangement is called

a condenser. If the charge on a conductor be increased, the in-

crease in potential is directly as that of the charge. Hence the

capacity C is obtained by dividing any given charge on a conductor

by the potential of the conductor, or

(7 = |. (89)

The practical unit of capacity is the farad, which is the capacity

of a conductor, the charge on which is one coulomb (§ 255) when

its potential is one volt (§ 303). This unit is too great for con-

venient use. Instead of it a microfarad, or the one-millionth part

of a farad, is usually employed.

The equation gives the dimensions of capacity. Measured in

electrostatic units, they are [C]
V

-1

258. Specific Inductive Capacity.—The capacity of a condenser of

given dimensions depends upon the insulating medium used to sepa-

rate its parts, or the dielectric. This was first discovered by Caven-

dish, and afterwards rediscovered by Faraday. If Q represent the

charge required to raise a condenser in which the dielectric is vacuum

to a potential V, then if another dielectric be substituted for vacuum,

it is found that a different charge Q' is required to raise the po-

0'
tential to V. The ratio yr = K \& called the specific inductive

0'
capacity, or dielectric constant. Since C ^= — and C = -~ are che

capacities of the condenser with the two dielectrics, it follows that

C = CK, (90)

where C is the capacity with vacuum as the dielectric. The specific
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inductive capacity K is always greater than unity. Some dielec-

trics, such as glass and hard rubber, have a high specific inductive

capacity, and at the same time are capable of resisting the strain

put upon them by the electric stress to a much greater extent than

such dielectrics as air. They are therefore used as dielectrics in

the construction of condensers.

259. Condensers.—The simplest condenser, one which admits of

the direct calculation of its capacity, and from which the capaci-

ties of many other condensers may be approxi-

mately calculated or inferred, consists of a con-

ducting sphere surrounded by another hollow

concentric conducting sphere which is kept al-

ways at zero potential by a ground connection.

For convenience we assume the specific induc-

tive capacity of the dielectric separating the

spheres to be unity. Let the radius of the Fig. 79.

small sphere (Fig. 79) be denoted by R, that of the inner spherical

surface of the larger one by E'; let a charge Q be given to the inner

sphere by means of a conducting wire passing through an open-

ing in the outer sphere, which may be so small as to be negligible.

This charge Q will induce on the outer sphere an equal and oppo-

site charge, — Q. Since the distribution on the surface of the

spheres may be assumed uniform, the potential at the centre of the

two spheres, due to the charge on the inner one, is -p, and the po-

tential due to the charge of the outer sphere is — jy,. Hence the

actual potential V at the centre, due to both charges, is -^ — p? =

Hence the capacity is

In order to find the effect of a variation of the value of E,
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divide numerator and denominator by R' and write C = p-.

1 - —
R'

Now, if R' be greater than R by an infinitesimal, the fraction -p>

is less than unity by an infinitesimal, and the capacity of the ac-

cumulator is infinitely great. It becomes infinitely small if R be

diminished without limit. The presence of any finite charge at a

point would require an infinite potential at that point, which is of

course impossible. The existence of finite charges concentrated at

points, which we have assumed sometimes in order to more con-

veniently state certain laws, is therefore purely imaginary. If

electricity is distributed in space, it is distributed like a fluid, a

finite quantity of which never exists at a point.

If R' increase without limit, C becomes more and more nearly

equal to R. Suppose the inner sphere to be surrounded not by the

outer sphere but by conductors disposed at unequal distances, the

nearest of which is still at a distance R' so great that —, may be

neglected in comparison with unity. Then if the nearest conductor

were ,i, portion of a sphere of radius R' concentric with the inner

sphere, the capacity of the inner sphere would be approximately R.

And this capacity is evidently not less than that which would be

due to any arrangement of conductors at distances more remote

than R'. Therefore the capacity of a sphere removed from other

conductors by distances very great in comparison with the radius

of the sphere is equal to its radius R. This value R is often called

the capacity of a freely electrified sphere. Strictly speaking, a

freely electrified conductor cannot exist; the term is, however, a

convenient one to represent a conductor remote from all other con-

ductors.

A common form of condenser consists of two flat conducting

disks of equal area, placed parallel and opposite one another. The

capacity of such a condenser may be calculated from the capacity

of the spherical condenser already discussed. Let d represent the
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distance R' — R between the two spherical surfaces. Let A and

A' represent the area of the surfaces of the two spheres of radius

A A'
R and R'. Then we have i?' = - and R''' = -—

. The capacity

V^AA'
of the spherical condenser may then be written ——^. If R' and

R increase indefinitely, in such a manner that R' — R always

equals d, in the limit the surfaces become plane and A becomes

equal to A'. The capacity therefore equals -—
-.. Since the charge

is uniformly distributed, the capacity of any portion of the surface

cut out of the sphere is proportional to the area 8 of that surface, or

This value is obtained on the assumption that the distribution over

the whole disk is uniform, and the irregular distribution at the

edges of the disk is neglected. It is therefore only an approxima-

tion to the true capacity of such a condenser.

The so-called Leydea jar is the most usual form of condenser

in practical use. It is a glass jar coated with tin-foil within and

without, up to a short distance from the opening. Through the

stopper of the jar is passed a metallic rod furnished with a knob on

the outside and in conducting contact with the inner coating of the

]ar. To charge the jar, the outer coating is put in conducting

contact with the ground, and the knob brought in contact with

some source of electrification. It is discharged when the two coat-

ings are brought in conducting contact. When the wall of the jar

is very thin in comparison with the diameter and with the height

of the tin-foil coating, the capacity of the jar may be inferred from

tlie preceding propositions. It is approximately proportional

directly to the coated surface, to the specific inductive capacity of

the glass, and inversely to the thickness of the wall.

260. Systems of Conductors.—If the capacities and potentials

of two or more conductors be known, the potential of the system
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formed by joining them together by conductors is easily found. It

is assumed that the connecting conductors are fine wires, the

•capacities of whicli may be neglected. Then the charges of the

respective bodies may be represented by C^ F„ C\V^, . . . CnV„, and

the capacity of the system by the sum C^ -{- C^ -\- . . . C„. Hence

V, the potential after connections have been made, is

In the case of two freely electrified bodies joined up together by

C V -^ C V
a fine wire, we have V = ' ' /—^. When C^ is very great

^1 + ^2

C,
compared with C^, we obtain V = V^-\- -} V^.

C
Unless Fj is so gr^at that the term 77 I'^ becomes appreciable,

^1

the potential of the system is appreciably equal to the original po-

tential of the larger body. The capacity of the earth, being equal

to its radius, is very great in comparison with the capacity of any

body used in our experiments, and hence the potential of the earth

is not changed Avhen it is connected with a charged body. This

proposition justifies the adoption of the potential of the earth as

the standard or zero potential.

261. Electroscopes and Electrometers.—An electroscope \?, an in-

strument used to detect the existence of a difference of electrical

potential. It may also give indications of the amount of difference.

It consists of an arrangement of some light body or bodies, such as

a pith ball suspended by a silk thread, or a pair of parallel strips of

gold-foil, which may be brought near or in contact with the body

to be tested. The movements of the light bodies indicate the ex-

istence, nature, and to some extent the amount of the potential dif-

ference between the body tested and surrounding bodies.

An electrometer is an apparatus which gives precise measure-

ments of differences of potential. The most important form is the

absolute or attracted disk electrometer, originally devised by Harris,
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and improved by Thomson. The essential portions of the instru-

ment (Fig. 80) are a large flat disk B, which ^

can be put in conducting contact with one c J^_a

of the two bodies between which the differ- s

ence of potential is desired; a similar disk Fig. 80.

C, in the centre of which is cut a circular opening, placed parallel

to and a little distance above the former one; a smaller disk A with

u diameter a little less than that of the opening, which can be

placed accurately in the opening and brought plane with the larger

disk; and an arrangement, either a balance arm or a spring of

known strength, from which the small disk is suspended, and by

means of which the force acting on the disk when it is plane with

the surface of the larger disk can be measured. The three disks

can be conveniently styled the attracting disk, the guard ring, and

the attracted disk. The position of the attracted disk when it is in

the plane of the guard ring is often called the sighted jwsitioii. The

guard ring is employed in order that the distribution on the at-

tracted disk may be uniform.

To determine the difference of potential between the attracted

and attracting disks, we consider them first as forming a flat con-

denser. If we represent by Q the quantity of electricity on the at-

tracted disk, by Fand F, the potentials of the attracted and attract-

ing disks respectively, by d the distance between them, and by S

the area of the attracted disk, tlien, as has been shown in § 259, the

Q S
capacity of such a condenser is ^ _ y —

-—
-,. Now from the

nature of the condenser, and in consequence of the regular distribu-

tion due to the presence of the guard ring, we have -^ = cr, the

V — V
surface density on either plate, whence a = —^^

—

j—. The surface

density cannot be measured, and must be eliminated by means of

an equation obtained by observation of the force with which the

two disks are attracted. The plates are never far apart, and the

force on a unit charge due to the charge on the lower one may be
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always taken in the space between the plates as equal to 'Ztc(T

(§ 57). Every unit on the attracted disk is attracted with this

force, and the total attraction, which is measured by means of the

balance or spring, is i^ = 27ra^S. Substituting this value of cr in

the former equation, we get

'.-F = V^,s (93)

which gives the difference of potential between the two plates in

terms which are all measurable in absolute units.

Thomson's quadrant electi-ometer is an instrument which is not

used for absolute measurement, but being extremely sensitive to

minute differences of potential, it enables us to compare them with

each other and with some known standard. The construction of

the apparatus can best be understood from

Fig. 81. Of the four metallic quadrants which

are mounted on insulating supports, the two

marked P and the two marked N are respec-

tively in conducting contact by means of wires.

The body C, technically called the needle, is a

thin sheet of metal, suspended symmetrically

Fig. 81. Just above the quadrants by two parallel silk

fibres, forming what is known as a bifilar suspension. When there

is no charge in the apparatus, the axes of symmetry of the needle

lie above the spaces which separate the quadrants.

To use the apparatus, the needle is maintained at a high, con-

stant potential, and the two points, the difference of potential be-

tween which is desired, are joined to the pairs of quadrants P and

N. The needle is deflected from its normal position, and the

amount of deflection is an indication of the difference of potential

between the two pairs of quadrants.

262. Electrical Machines.—Electrical machines may be divided

into two classes: those which depend for their operation upon

friction, and those which depend upon induction.

The frictional machine, in one of its forms, consists of a oircu-
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lar glass plate, mounted so that it can be turned about an axis, and

a rubber of leather, coated with a metal amalgam, pressed against

it. The rubber is mounted on an insulating support, but, during

the operation of the machine, it is usually jomed to ground. Dia-

metrically opposite is placed a row of metal points, fixed in a

metallic support, constituting what is technically called the co7nb.

The comb is usually joined to an accessory part of the machine

presenting an extended metallic surface, called the lyrime con-

ductor. The prime conductor is carried on an insulating support.

When the plate is turned, an electrical separation is produced

by the friction of the rubber, and the rubbed portion of the plate is

charged positively. When the charged portion of the plate passes

before the comb, an electrical separation occurs in the prime con-

ductor due to the inductive action of the plate, a negative charge

passes from the comb to neutralize the positive charge of the plate,

and the prime conductor is charged positively. Since accessions

are received to the charge of the prime conductor as each portion

of the plate passes the comb, it is evident that the potential of the

prime conductor will continuously rise, until it is the same as that

of the plate, or until a discharge takes place.

The fundamental operations of all inchiction machines are pre-

sented by the action of the electrophorus, an instrument invented

by Volta in 1771. It consists of a plate of sulpliur or rubber,

which rests on a metallic plate, and a metallic disk mounted on an

insulating handle. The sulphur is electrified negatively by fric-

tion, and the disk, placed upon it and joined to ground, is charged

positively by induction. When the ground connection is broken

and the disk lifted from the sulphur, its positive charge becomes

available. The process is precisely similar to that described in

§ 25G. It may evidently be repeated indefinitely, and the electro-

phorus may be used as a permanent source of electricity.

It is evident that a charged metallic plate may be substituted

for the sulphur in the construction of an electrophorus, provided

that the disk be not brought in contact with it, but only near it.

A plan by which this is realized, and at the same time an imper-
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Fig. 83.

ceptible charge on one plate is made to develop an indefinite

quantity of electricity of high

potential, is shown in Fig. 82. A.

and A^ are conducting plates,

called inclucto7'S. In front of

them two disks B^ and B^, called

carriers, are mounted on an arm

so as to turn about the axis E.

Projecting springs ft, and b^ at-

tached to these disks are so fixed

: as to touch successively the pins Z),

and D^, connected with theplntos

A^ and A^, and the pins C\ and C^, insulated from the plates, but

joined to the prime conductors F^ and F^.

Suppose the prime conductors to be in contact and the carriers

so placed that B^ is between Z), and C,, and suppose the plate J,

to be at a slightly higher potential than the rest of the machine.

The carrier i?, is then charged by induction. When the carriers

are turned in the direction of the arrows, and the carrier B^ makes

contact with the pm C\ it loses a part of its positive charge and

the prime conductors become positively charged. At the same

time the carrier B^ becomes positively cbarged. As the carrier B^

passes over the upper part of the plate A^, the lower part of the

plate A^ is charged positively by induction. This positive charge

is neutralized by the negative charge of the carrier i?,, when con-

tact is made at D^. The plate A„ is then negatively charged. The

carrier B^ at its contact at Z>, shares its positive charge with the

plate A^. The carriers then return to the positions from which

they started, and the difference of potential between the plates J,

and A^ is greater than it was at first. AVhen, after sufficient

repetition of this process, the difference of potential has become

sufficiently great, the prime conductors may be separated, and the

transfer of electricity between the points F^ and F^ then takes

place through the air. Obviously the number of carriers may

be increased, with a corresponding increase in the rapidity of
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action of the machine. This improvement is usually effected by

attaching disks of tin-foil at equal distances from each other on

one face of a glass wheel, so that, as the wheel revolves, they pass

the contact points in succession.

Another induction machine, invented by Holtz, differs in plan

from the one just described in that the metallic carriers are re-

placed by a revolving glass plate, and the two metallic inductor

plates by a fixed glass plate. In the fixed plate are cut two open-

ings, diametrically opposite. Near these openings, and placed

symmetrically with respect to them, are fixed upon the back of

the plate two paper sectors or armatures, terminating in points

which project into the openings. In front of the revolving plate

and opposite the ends of the armatures nearest the openings

are the combs of two prime conductors. Opposite the other ends

of the armatures, and also in front of the revolving wheel, are two

other combs joined together by a cross-bar.

In order to set this machine in operation, one of the paper

armatures must be charged from some outside source. The sur-

face of the revolving plate performs the functions of the carriers

in the induction machine already explained. The armatures take

the place of the inductors, and the points in which they terminate

serve the same purpose as the contact points in connection with

the inductors. The explanation of the action of this machine is,

in general, similar to that already given. The effect of the combs

joined by the cross-bar is equivalent to joining to ground that por-

tion of the outside face of the revolving plate which is passing

under them.

263. Energy of a System of Charged Bodies.—If the charge

on a body be changed, the potential at every point in the field

changes in the same proportion. To obtain the energy of a system

of charged bodies we may apply the method used in § 248 to ob-

tain the energy of a system of magnets. If Q represent the charge

of one of the bodies and V its potential, the energy of the system

is given by ^^QV.
264. Strain in the Dielectric.—An instructive experiment illus-
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trating Faraday's theory that the electrification of a conductor is

due to an action in the dielectric surrounding it, may be performed

with a jar so constructed that both coatings can be removed from

it. If the jar be charged, the coatings removed by insulating

handles Avithout discharging the jar, and examined, they will be

found to be almost without charge. If they be replaced, the jar

will be found to be charged as before. The jar will also be found

to be charged if new coatings similar to those removed be put in

their place. This result shows that the true seat of the charge is

in the dielectric. The experiment is due to Franklin.

That the arrangement in the dielectric is of the nature of a

strain is rendered probable by the fact, first noticed by Volta, that

the volume occupied by a Leyden jar increases slightly when the

jar is charged. Similar changes of volume were observed by

Quincke in fluid dielectrics as well as in different solids.

Another proof of the strained condition of dielectrics is found

in their optical relations. It was discovered by Kerr that dielec-

trics previously homogeneous become doubly refracting when sub-

jected to a powerful electrical stress. Maxwell has shown, from

the assumptions of his electromagnetic theory of light, that the

index of refraction of a transparent dielectric should be propor-

tional to the square root of its specific inductive capacity. Numer-

ous experiments, among which those of Boltzmann on the index of

refraction of light in gases and those of Hertz and others on the

index of refraction of electromagnetic waves in solids and liquids

are the most striking, show that this predicted relation is very

close to the truth.

It has further been shown that the specific inductive capacity

of sulphur has different values along its three crystallographic

axes. This is probably true also for other crystals.

Some crystals, while being warmed, exhibit on their faces posi-

tive and negative electrifications, which are reversed as the crystals

are cooling. This fact, while as yet unexplained, is probably due

to temporary modifications of molecular arrangement by heat.

If a jar be discharged and allowed to stand for a while, a second
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discharge can be obtained from it. By similar treatment several

such discharges can be obtained in succession. The charge which

the jar })ossesses after the first discharge is called the retfidual

enlarge. It does not attain its maximum immediately, but gradu-

ally, after the first discharge. The attainment of the maximum is

liastened by tapping on the wall of the jar. This phenomenon

was ascribed by Faraday to an absorption of electricity by the di-

electric, but this explanation is at variance with Faraday's own
theory of electrification. Maxwell explains it by assuming that

want of homogeneity in the dielectric admits of the production of

induced electrifications at the surfaces of separation between the

non-homogeneous portions. When the jar is discharged the in-

duced electrifications within the dielectric tend to reunite, but,

owing to the want of conductivity in the dielectric, the reunion is

gradual. After a sufficient time has elapsed, the alteration of the

electrical state of the dielectric has proceeded so far as to sensibly

modify the field outside the dielectric. The residual charge then

appears in the jar. This explanation is supported by the fact that

no residual charge remains when the dielectric is a fluid.

265. Tubes of Electrical Force.—If we admit that the nature

and condition of the dielectric between conductors determine the

charge upon them, an admission which the facts of specific induc-

tive capacity and those cited in the last section render necessary,

we must conclude that the hypothesis of electrical charges acting

on each other directly at a distance, which we have used up to this

point, is an artificial one, and that a more accurate representation

of the real state of an electrical field will be had by assuming the

action between the electrified bodies to be due to an action in the

dielectric. We cannot explain the relation between electricity and

the condition of the dielectric which will cause the actions observed

between the electrified bodies, but we can show that these actions

are consistent with certain conditions in the dielectric which are

mechanically possible.

Let us consider a positively charged conductor A which is

everywhere surrounded with other conductors. We may assume
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that these other conductors are at any distance from A, and that

they are at the common potential zero. They are then equivalent

to a single conductor B surrounding the conductor A. Lines of

force start from every point of A and pass to corresponding points

of B. Mark out a small area on the surface A, and consider the

closed surface formed by the lines of force passing through the

contour of that area and surfaces drawn in the dielectric just out-

side the conductor A and just outside the conductor B. This

closed surface is a tube of force, and if F^ and F^ represent the

forces acting at the two cross-sections of the tube at A and B re-

spectively, and s^ and s^ represent the areas of those cross-sections,

we have (§ 56), F^s^ = — FbSb, the forces being considered as

directed along the normals drawn outward from the conductors.

Since the force within the conductors vanishes, the force just outside

the surface of A is F^ = 4;r(r^, and that just outside the surface

of B is Fb = 47ro-£. Using these values for F^ and F^, we have

^A^A = — (^B^B- Now these products are equal to the quantities

of electricity present on the areas s^ and Sb, so that we have

q^ = — qg. The charges at the two ends of the tube of force are

therefore equal and of opposite sign. Since the tubes of force

which proceed from A either extend to infinity or end on con-

ductors, the charges on those conductors are never greater than the

total charge on A. If, as we have assumed, the conductors B com-

pletely surround u4, the charges on B are equal to the charge on A.

If we divide the surface of A into areas upon each of which a unit

charge of electricity is present, and erect tubes of force upon those

areas, the dielectric will be mapped out by those tubes. Such a

tube may be called a U7iit tube or a Faraday lube, in accordance

with the proposition of J. J. Thomson.

266. Electrical Forces explained by Tubes of Force.—The

strength of the field at any point in the dielectric is inversely as

the area of the normal cross-section of the unit tube of force at

that point. For, by § 56, the product Fs is constant throughout

the tube. At the surface of the conductor from which the tube

starts, i^is equal to 4;ro- and Fs — 4:7C(Ts — 47r, since s is the cross-
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section of the unit tube at the charged surface, and us is therefore

equal to unity. The force F at any point in the dielectric is there-

4:7t

fore equal to —, or is inversely as the cross-section of the tube. If

we represent by N the number of unit tubes which pass through

a unit area of an equipotential surface, and if we assume that the

force is appreciably constant over this area, we have iV = - and

F= 47r3^, that is, the force at any point in the field is proportional

to the number of unit tubes which pass perpendicularly through a

uiiit area at that point.

In the discussion up to this point we have assumed that the

medium between the two conductors has the specific inductive

capacity or dielectric constant unity. If the dielectric constant be

not unity, but some other number, say /t, the difference of poten-

tial between A and B that will be produced by a given charge on

A is less than that which will be produced when the dielectric con-

stant is unity, in the ratio of 1 to A'. The general expression for

47r^y
the force in the field is therefore F = —r^.A
The electric pressure or force on unit area of the surface of the

conductor, when the conductor is surrounded by a medium of which

the dielectric constant is K, is given by —^ . This may be seen

at once by applying the proof of § 256 to this case, remembering

that, as has just been shown, the force outside the conductor is

47r(j
given by -j^. Now on the view here taken, that the electrical

forces are due to actions in the dielectric, this pressure should not

be looked at as the result of the repulsions of the various elements

of charge on the conductor, but rather as the result of some action

in the dielectric. This action must be a pull or tension on the

surface of the conductor. Since a represents the number of unit

tubes which proceed from unit area of the conductor, this pull is

27T(r
equal to -^^ applied to the end of each unit tube, or since the forceA
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4:7rO'
just outside the surface is equal to —^, the pull on the end of

F
each unit tube is also given by —

.

lit

The forces which act upon electrified bodies may therefore be

considered as arising from tensions in the unit tubes, provided these

tensions are not mechanically impossible. It may be shown that a

medium in which such tensions exist is not in equilibrium unless

pressures numerically equal to the tensions, and at right angles to

them, act throughout the medium. In order, therefore, that we

may adequately represent the electrical field by the aid of unit

tubes, we must assume a tension in each of these tubes along the

lines of force and a pressure in every direction at right angles to it

of the same numerical value. The tensions tend to shorten the

tubes, the pressures to repel them from one another. All the forces

which act between electrified bodies may be explained in terms of

these actions between the tubes of force.

267. Energy in the Dielectric.—The tension on the cross-section

F
of the unit tube at any point m the field is also -, where F repre-

sents the force at that point. To show this, it is sufficient to suppose

one of the equipotential surfaces around the charged body replaced

by a conductor maintained at the potential of that surface. The

distribution in the field between the two conductors will then be

the same as before. By reasoning similar to that already employed,

it is seen at once that the force on the surface of the new conductor

which carries unit charge, or the pull on the end of a unit tube at

F
that surface, is given by -, where F is the force at a point in the

end of the unit tube. No restriction has been made as to the par-

ticular equipotential surface chosen to be replaced by a conductor,

and thus it appears that the tension or pull on the cross-section of

F
the tube of force is everywhere equal to -, where F is the force at

a point in that cross-section.

To find the tension or pull across unit area normal to the lines
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of force, we notice that if iV represent the number of tubes of force

which pass through unit area drawn at a certain point in the

field normal to the lines of force, and if s represent a small urea

normal to the lines of force, then Ns represents the number of tubes

of force which pass through that area, and the tension on that area

is iFNs. Now we have seen that in any field in which the dielec-

4/TiV
trie constant is K, F =—^ . Hence, substituting for N and di-

viding by .<?, we have the tension on unit area given by
j^ —"stt'

On the view which we are now taking it is natural to consider

the work done in charging bodies in a field as expended in modify-

ing the dielectric or in setting up unit tubes in it. We will examine

on this supposition the distribution of energy in the electrical field.

It has already been proved (§ 263) that the energy of a system of

charged bodies is equal to l^^Q V, where Q is the charge and V the

potential of each body. Let us consider a tube of force starting

from a body at potential F, and proceeding to another body at po-

tential V^; the charges at the ends of these tubes of force are equal and

of opposite sign. The energy of the first conductor due to the por-

tion of its charge we are now considering, which may be called q,

is ^q F, ; the energy of the second conductor due to the correspond-

ing equal charge is ^q F,. The energy, therefore, due to the charges

associated with a tube of force is |r/( F, — V^). All charges in the

field may be associated in this way in pairs, and the total energy of

the field expressed by ^2q{ F, — F,). Now F, — F, measures the

work done by the electrical forces in moving a unit charge from

the first conductor to the second. If F represent the force at

any point in a tube of force and z/? an element of length of the

tube, the product F/il represents the work done in moving the

unit charge along that element, and the total work done in moving

over the length of the whole tube is ^F^l = F, — F,. The

energy associated with the whole tube is therefore Iq'SFAl, and if

we assume the unit length so small that the force does not appreci-

ably vary within it, this energy may be considered as distributed
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throughout the tube in such a way that each unit of length of the

tube contains the energy \qF. If the tube be a unit tube so that

q = \, each unit of length of this tube will have in it a quantity of

energy equal to |i^.

To find the energy in unit volume of the dielectric, we consider a

small cylinder, its height / being taken along the lines of force and

its base s normal to them. The number of unit tubes which pass

through the base is Ns. Since the energy in unit length of each

of these tubes is \F, and since therefore the energy in the length I

is \Fl, we have the energy in the volume Is equal to \FNls, or the

4:71N
energy in unit volume equal to \FN. Now we have i^ = —pr,

27tN'' KF''
so that the energy in unit volume is —^— = ——

.

By comparing this result with the value obtained for the tension

across unit area it appears that the tension across unit area and the

energy of unit volume are numerically equal. They both vary from

point to point in the dielectric, depending upon the electrical force

at each point. Unless the force is appreciably constant for all

points of a finite region, the actual tension across a unit area and

the actual energy of unit volume will not be given accurately by

these expressions: they are more strictly the limits of the ratios be-

tween the tension and the area oh which it acts, and the energy

and the volume containing it.

268. Forces on Electrified Bodies.—It has already been stated

that the stresses between charges may be represented by supposing

that the tubes of force exert a tension along the lines of force and

an equal pressure in all directions perpendicular to the lines of

force, or as may be said, the lines of force tend to diminish in

length and to repel each other. This mode of conceiving the

stresses between charged bodies may be illustrated in some simple

cases without the aid of diagrams of lines of force. The lines of

force around a uniformly charged sphere are radial and the tubes

of force are similar cones; if the sphere be charged positively, the

force is directed outward from it, and if charged negatively, is
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directed toward it. When two such spheres, one charged positively

and the other negatively, are brought near each other, the tubes of

force in the region between them to some extent coincide, so that

the number of tubes of force which pass through unit area in the

region between them is greater than that passing through the same

area when only one of the spheres is present. On the other hand,

the tubes in the region outside both the spheres counteract each

other, and the number of tubes of force which pass through unit

area in this region is less than when only one of the spheres is

present. It may be seen thus roughly, and a diagram of the actual

tubes of force in the field shows clearly, that the number of tubes

of force which proceed from unit area of either one of the spheres

on the surfaces confronting each other is greater than the number

wliich proceeds from unit area on the outer surfaces. The tensions

tending to draw the spheres together are tiins greater than the

tensions tending to separate them, and the spheres therefore appear

to attract each other. If the two spheres which are brought near

each other have similar charges, the tubes of force in the region

between them are opposed to each other and the number of tubes

of force in that region is therefore diminished, while in the region

outside the two spheres their tubes of force partly coincide and the

number is increased. The tension is therefore greater on the outer

surfaces of the spheres, and they are pulled apart or appear to repel

eacli other. In these explanations no account has been taken of

the inductive action of one sphere on the other.

We may use the results obtained in the last section in the dis-

cussion of the forces which act upon a body originally uncharged,

having a dielectric constant iTand brought into an electrical field

set up in a medium of which the dielectric constant is different

from K\ for convenience, we will assume it to be unity. Let us

assume that the body to be brought into the field is small and

represent its volume by v. Now, before the body is brought into

the field the energy in the volume afterwards occupied by it is

27T.N''v. The energy in the same volume, after it is occupied by

the body, is —p— . Now we know by experiment that /iTis always
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greater than unity, so that the introduction of such a body into the

field involves a loss of energy, and this loss of energy is greater as

N is greater. Bodies tend to move so as to make their potential

energy a minimum, and the given body will therefore move from a

place of weaker to a place of stronger electrical force. This con-

clusion is reached on the supposition that the electrical field is not

modified by the presence of the body—a supposition which can be

made only when K is very nearly equal to unity. When K is not

nearly equal to unity, the potential is not only diminished by the

movement of the body from a place of weaker to a place of stronger

electrical force, l)ut also by the movement into it of the tubes of

force; for a unit tube of force is associated with less energy m a

medium of which the dielectric constant is K than in the medium

of which the dielectric constant is unity, and the potential energy

of the field is therefore diminished by a crowding of the tubes of

force into the given body. This process cannot go on indefinitely

so that the body includes all the tubes of force of the field, for as

some of them enter the body others outside of it are lengthened

and their energy is thereby increased. The concentration of the

tubes in the body ceases, therefore, when the loss of energy due to

their entrance into the body is balanced by the gam of energy due

to the lengthening of those outside the body.

A conductor may be looked on as a body having a dielectric

constant K — oo. There is no electrical force within a conductor,

and the energy lost by the field m consequence of a conductor

F'v
beins introduced into it is --— , where v is the volume of the con-

ductor. This loss of energy is greater as F is greater, and the

conductor therefore tends to move from a place of weaker to a

place of stronger electrical force. There will also be a diminution

of potential energy due to the concentration of tubes of force upon

the conductor ; the conductor disturbs the electrical field and con-

centrates the tubes of force upon it in a way similar to that of the

body just described, but to a greater extent.

269. Cause of the Stress in the Dielectric.—The theory that the
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electrical forces are due to stresses in the medium between the

electrified bodies serves very well in expressing the results of

experiment, but it gives no information about the origin or cause

of the stresses in the medium. Faraday, who originated the

theory, apparently thought that they arise from the electrification

by induction of the separate particles or molecules of the medium

in such a way that they resemble, so far as their external action is

concerned, the magnetic molecules in Weber's theory of magnet-

ism. This view was not held consistently even by its author, and

cannot be accepted if we remember that electrical actions take

place through vacuum. Maxwell conceived of electricity as dis-

tributed everywhere in space, and considered the charging of a

body as a displacement of the electricity in the region around it in

one sense if the body is charged positively, in the opposite sense

if charged negatively. Conductors offer no resistance to such a

displacement, but in dielectrics the displacement is resisted by

an action which Maxwell called electrical elasticity. This mode of

describing the electrical field is satisfactory so long as the field is

considered in equilibrium, but becomes difficult of application

when movements of charges occur in the field. J. J. Thomson has

shown that all the phenomena of the electrical field may be

described m terms of the motions or interactions of tubes of force,

one of which is supposed to be connected with each atom of matter

in the field. Thomson gives no mechanical explanation of the

properties which these tubes must be assumed to have, only saying

that " the analogies between their properties and those of the tubes

of vortex motion irresistibly suggest that we should look to the

rotary motion in the ether for their explanation."



CHAPTER III.

THE ELECTRICAL CURRENT.

270. Fundamental Effects of the Electrical Current.—In 1791

Giilvani of Bologna published an account of some experiments made

two years before, which opened a new department of electrical

science. He showed that, if the lumbar nerves of a freshly skinned

frog be touched by a strip of metal and the muscles of the hind leg

by a strip of another metal, the leg is violently agitated when the

two pieces of metal are brought in contact. Similar phenomena

had been previously observed when sparks were passing from the

conductor of an electrical machine in the vicinity of the frog prep-

aration.

He ascribed the facts observed to a hypothetical animal elec-

tricity or vital principle, and discussed them from the physiological

standpoint; and thus, although he and his immediate associates

pursued his theory with great acuteness, they did not affect any

marked advance along the true direction. Volta at Pavia followed

up Galvani's discovery in a most masterly way. He showed that if

two different metals, or, m general, two heterogeneous substances,

be brought m contact, there immediately arises a difl'ereuce of elec-

trical potential between them. He divided all bodies into two

classes. Those of the first class, comprising all simple bodies and

many others, are so related to one another that, if a closed circuit

be formed of them or any of them, the sum of all the differences of

potential taken around the circuit in one direction is equal to zero.

If a body of the second class be substituted for one of the first

class, this statement is no longer true. There exists then in the

circuit a preponderating difference of potential in one direction.

312
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Volta described in 1800 an arrangement for utilizing these proper-

ties of bodies for the production of continuous electrical currents.

lie placed in a vessel, containing a solution of salt in water, ]ilate8

of copper and zinc separated from one another. When wires joined

to the copper and zinc were tested, they were found to be at dif-

ferent potentials, and they could be used to produce the effects ob-

served by Galvani. The effects were heightened, and especially the

difference of potential between the two terminal wires was increased,

when several such cups were used, the copper of one being joined

to the zinc of the next, so as to form a series. This arrangement

was called by Volta the galvanic battery, but is now generally

known as the voltaic hatfenj.

Volta observed that if the terminals of his battery were joined

the connecting wire became heated.

Soon after Volta sent an account of the invention of his battery

to the Royal Society, Nicholson and Carlisle observed that, when

the terminals of the battery were joined by a column of acidulated

water, the water was decomposed into its constituents, hydrogen

and oxygen.

In 1820 Oersted made the discovery of the relation between

electricity and magnetism. He showed that a magnet brought near

a wire joining the terminals of a battery is deflected, and tends to

stand at right angles to the wire. His discovery was at once fol-

lowed up by Ampere, who showed that, if the wire joining the ter-

minals be so bent on itself as to form an almost closed circuit, and

if the rest of the circuit be so disposed as to have no appreciable

influence, the magnetic potential at any point outside the wire will

be similar to that due to a magnetic shell.

In 1834 Peltier showed that, if the terminals of the battery be

joined by wires of two different metals, there is a production or an

absorption of heat at the point of contact of the wires, depending

u])on which of the wires is joined to the terminal the potential of

which is positive with respect to the other. This fact is referred

to as the Peltier effect.

271. The Electrical Current.—In 1833 Faraday showed con-
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clusively that if a Leyden jar be discharged through 'a circuit, it

will momentarily produce thermal, chemical, and magnetic effects

which are similar to those just described as produced continuously

by the voltaic battery.

The discharge of the jar may be variously represented. So long

as electricity is considered as a fluid or substance, it is easiest to

think of the discharge as the transfer of electricity from a place

of higher to a place of lower potential, or rather as the equalization

of potential by the transfer of equal and opposite quantities in op-

posite senses, and to explain the continuous effects produced by the

voltaic battery by ascribing them to a current, or continuous trans-

fer of electricity around the circuit. This view is capable of rep-

resenting most of the phenomena of steady or permanent currents,

but it is less successful in representing the phenomena of variable

currents. If we consider electrical phenomena as due to actions in

the dielectric, we may obtain a more adequate representation of

the discharge and also of all the phenomena of the current by the

use of the unit tubes of force described in § 265. We may obtain

some idea of the connection of these tubes with the current if we

examine their behavior during the discharge of a condenser.

To make the discussion as simple as possible, we suppose the

condenser to be made of two equal plates A and B\ their potentials

are F^ and Fg, F^ being the

greater. The lines of force origi-

nate at A and pass to B in the

manner shown in Fig. 83. This

figure has been roughly copied

from the one given by J. J. Thom-
FiG. 83. son. Let Q represent that part of

the charge on A to which corresponds an equal and opposite charge

on B: the number of unit tubes of force which pass from A to B
will then be given by Q. Now let us join ^ to i? by a conductor C,

which for the sake of simplicity shall coincide with the direction of

the lines of force. No tube of force can exist within a conductor,

and those which were present in the volume which the conductor
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occupies immediately disappear. For our purposes the manner of

this disappearance of the tubes of force is of no consequence: it

may be described as a shrinking of the tubes in the conductor, so

that the ends which leave the plates of the condenser move toward

the middle of the conductor and at last meet. The disappearance

of these tubes from the conductor relieves those lying immediately

around it of the lateral pressure which maintained them in equilib-

rium, and they are accordingly driven into the conductor and in

turn disappear. This process is continued until all the tubes of

force have disappeared. The discharge of the condenser may there-

fore be represented as the lateral movement of the tubes of force

originally in the field and their disappearance in the conductor. The
discharge is not really so simple as it is here supposed to be. We
have supposed the process to cease when the difference of potential

between the two plates becomes zero, but this is in fact not the case:

the discharge is really oscillatory, the difference of potential being

alternately positive and negative, rapidly diminishing in numerical

value until it disappears. In order to account for this, something

analogous to inertia must be ascribed to the tubes of force.

While the discharge is going on, a magnetic field exists around

the conductor. If the discharge be thought of as being merely

the transfer of charge along the conductor, there is no ap])arent

mechanism connecting the discharge with the magnetic force, but

on the view now being presented the magnetic field may be thought

of as due in some way to the movement through the dielectric of

the tubes of force. If the discharge pass through a compound

body, capable of decomposition by it, a portion of that body will be

resolved into two constituents. On the view that the discharge is

a mere transfer of charge, these constituents must be supposed to

serve as carriers of that charge, but this view cannot represent

the connection between these constituents and their charges, nor

the conditions which enable them to give up their charges. On the

other hand, by supposing each unit of the constituent to be invari-

ably associated with a tube of force, we may describe the discharge

through such a chemical compound in terms of the changes which
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take place in the tubes of force, iu a manner consistent with what

we know of their nature. Thus this latter view furnishes a more

adequate representation of the discharge than the older and simpler

view.

We have already seen (§ 267) that the energy contained in each

unit tube is equal to one half the difference of potential between its

ends. Since Q represents the number of unit tubes which pass

between the plates, the energy of the field is \,Q{Vj^~ 1'^);

after the discharge this energy has entered the conductor.

If an arrangement be effected by which the difference of poten-

tial between A and B is kept constantly equal to ( F^ — F^), the

work done by the transfer of Q units of charge, and therefore tlie

energy lost by the disappearance of Q unit tubes of force, is

Qiy^ — Ffi). Let W represent the energy lost by such a continu-

ous discharge or current in unit time, and t the time in which Q
tubes of force disappear. Then Wt = Q{Vji — Vb), and

W^-f(F, -F^). (94)

The ratio -j is represented by / and called the ciirrent strength

or simply the current in the conductor. It may be variously con-

sidered as the rate of transfer of charge between the conductors, or

as the rate at which the unit tubes of force are destroyed,

, 272. Electrostatic Unit of Current.—Let us denote the poten-

tials at the two points 1 and 2 in a circuit by F, and F, , and let

Fj be greater than F^: then if, in the time t, a quantity of elec-

tricity equal to Q passes through a conductor joining those points

from potential F, to potential T"^ , the energy expended is

Q' V. - ^J.

If the conductor be a single homogeneous metal or some analo-

gous substance, and if no motion of the conductor or of aiiy exter-

nal magnetic body take place, the energy expended in the conductor

is transformed into heat. If we suppose this transformation to go

on at a uniform rate, and denote the heat developed in unit time

by H, Ave may substitute H for W in equation (94), and have
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H=I{V,-V:). (95)

If heat and difference of potential be measured in absolute units,

this equation enables us to determine the absolute U7iit of current.

The system of units here used is the electrostatic system. The di-

mensions of current strength in the electrostatic system are obtained

from this equation. We have [/] = = M^L^T
Q'

t ^

273. Electromotive Force.—We may consider the current as an

023eration by which energy is transformed in the conductor, either

by tlie transfer of electricity through it or by the entrance of tubes

of force into it and their disappearance within it. In the example

before us, we have assumed that the transfer or the movement of

tlie tubes was due to some cause which set up a difference of poten-

tial between parts of the conductor. This condition is not neces-

sary for the maintenance of a current; in certain circumstances

energy may be expended in a conductor, without the existence of a

finite difference of potential between neighboring parts of the con-

ductor. The power of establishing and sustaining the conditions

which make a continuous expenditure of energy possible is called

electromotive force.

The energy expended in unit time in a circuit carrying the

current /, and in which the electromotive force is E, is

W = IE. (96)

In a circuit containing a voltaic battery, if two points on the

circuit outside the battery be tested by an electrometer, a differ-

ence of potential between them will be found. If tbe circuit be

broken between the two points considered, the difference of poten-

tial between them becomes greater. This maximum difference of

potential is the sum of finite differences of potential supposed to be

due to molecular interactions at the surfaces of contact of different

substances in the circuit, and is the measure of the electromotive

force of the battery.

274. Ohm's Law.—In § 252 it was remarked that a body is

distinguished as a good or a poor conductor by the rate at which it
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will equalize the potentials of two electrified conductors, if it be

used to connect them. Manifestly this property of the substances

forming a circuit will influence the strength of the current in the

circuit. It was shown on theoretical considerations, in 182T, by

Ohm that in a homogeneous conductor which is kept constant the

current varies directly with the difference of potential between the

terminals. If R represent a factor, constant for each conductor,

Ohm's laio is expressed in its simplest form by

IR = F. - V,. (97)

The quantity R is called the resistance of the conductor. If

the difference of potential be maintained constant, and the con-

ductor be altered in any way that does not introduce an internal

electromotive force, the current will vary with the changes in the

conductor, and there will be a different value of R with each

change in the conductor. The quantity R is therefore a function

of the nature and materials of the conductor, and does not depend

on the current or the difference of potential between the ends of

the conductor. Since it is the ratio of the current to the differ-

ence of potential, and since we know these quantities in electro-

static units, we can measure R in electrostatic units. From the

dimensions of /and ( F, — FJ we may obtain the dimensions of R.

They are in electrostatic units

[R]=\J^^~\ = L-^T.

Since the difference of potential in equation (97) is the measure

of the electromotive force in the conductor considered, it is natural

to extend the relation therein expressed to the whole circuit, in

which the current is maintained by the electromotive force E.

The expression of Ohm's law for the whole circuit is

IR = E. (98)

This relation cannot in every case be experimentally verified, but

in many cases in which the electromotive force may be directly and

accurately calculated its validity has been demonstrated.
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275. Specific Conductivity and Specific Resistance.—If two

points be kept at a constant difference of potential, and be joined

by a homogeneous conductor of uniform cross-section, it is found

that the current in the conductor is directly proportional to its

cross-section and inversely to its length. The current also depends

upon the nature of the conductor. If conductors of similar dimen-

sions, but of different materials, are used, the current in each is

proportional to a quantity called the specific conductivity of the

material. The numerical value of the current set up in a conduct-

ing cube, with edges of unit length, by unit difference of potential

between two opposite faces, is the measure of the conductivity of

the material of the cube. The reciprocal of this number is the

specific resistance of the material. If p represent the specific re-

sistance of the conducting material, S the cross-section, and I the

length of a portion of the conductor of uniform cross-section

between two points at potentials F, and F,, Ohm's law for this

special case is presented in the formula

The specific resistance is not perfectly constant for any one

material, but varies with the temperature. In metals the specific

resistance increases with rise in temperature; in liquids and in car-

bon it diminishes with rise in temperature. Upon this fact of

change of resistance with temperature is based a very delicate in-

strument, called by Langley, its inventor, the bolometer, for the

measurement of the intensity of radiant energy.

276. Joule's Law.—If we modify the equation H = I{V^ — FJ
by the help of Ohm's law, we obtain

H^ PR. (100)

The heat developed in a homogeneous portion of any circuit is

equal to the square of the current in the circuit multiplied by the

resistance of that portion. This relation was first experimentally

proved by Joule in 1841, and is known as Joule's laio. It holds true

for any homogeneous circuit or for all parts of a circuit which are
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homogeneous. The heat which is sometimes evolved by chemical

action, or by the Peltier effect, occurs at non-homogeneous portions

of the circuit.

277, Counter Electromotive Force in the Circuit.—In many cases.

the work done by the current does not appear wholly as heat devel-

oped in accordance with Joule's law.

Besides the production of heat throughout the circuit, work

may be done during the passage of the current, in the decomposi-

tion of chemical compounds, in producing movements of magnetic

bodies or in heating junctions of dissimilar substances.

Before discussing these cases separately we will connect them

all by a general law, which will at the same time present the various

methods by which currents can be maintained. They differ from

the simple case in which the work done appears wholly as heat

throughout the circuit, in that the work done appears partly as

energy available to generate currents in the circuit. To show this

we will use the method given by Helmholtz and by Thomson. The
total energy expended in the circuit in the time t, which is such

that, during it, the current is constant, is lEt. It appears partly

as heat, which equals PRt by Joule's law, and partly as other work,

which experiment proves is in every case proportional to /, and can

be set equal to IA, where ^ is a factor which varies with the par-

ticular work done. Then we have lEt = PRt -\- lA, whence

F ^

R (101)

A
It is evident from the equation that E -is an electromotive

force, and that the original electromotive force of the circuit has

been modified by work having been done by the current. In other

words, the performance of the work lA in the time t by the circuit

A
has set up a counter electromotive force — . The separated con-

stituents of the chemical compound, the moved magnet, the heated

Junction, are all sources of electromotive force which oppose that
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of the original circuit. If then, in a circuit containing no im-

pressed electromotive force, or in which F = 0, there be brought

an arrangement of uncombined chemical substances which-

are capable of combination, or if in its presence a magnet be

moved, or if a junction of two dissimilar parts of tlie circuit be

heated, there will be set np an electromotive force — , and a cur-

A
rent I = ,^. Any of these methods may then be used as the

means of generating a current. The first gives the ordinary bat-

tery currents of Volta, the second tlie induced currents discovered

by Faraday, and the third the thermoelectric currents of Seebeck.

This demonstration fails when applied to the case of the induc-

tion of one current by another, in consequence of the changes pro-

duced in both by tlieir mutual interactions. The correct demon-

stration in this case can only be reached by the aid of the dynamical

equations of the electromagnetic field.

278. Poynting's Theorem.—On the view that the current con-

sists of the disappearance of tubes of force in the conductor, the

energy developed in the circuit enters it from the dielectric. By
choosing a very simple case we may determine the rate at which

this energy moves through the dielectric and into the conductor.

We Avill suppose the current maintained in a very long straight

cylindrical wire stretched between two parallel and very large

planes, which are kept at the potentials F, and V^. In such an

arrangement the tubes of force are cylindrical, passing perpendicu-

larly between the two plates and parallel with the conductor join-

ing them; the electrical force in such a field is everywhere the

same. Now consider a plane parallel with the plates, and describe

in it a circle having any radius r with its centre at the centre of the

wii-e. Let N represent the number of tubes of force which pass

through unit area in this plane, and v the velocity with which these

tubes of force pass through the circumference of the circle of radius

r. Then the number of tubes which pass through this circum-

ference in unit time is "InrvN, and since the current is supposed to
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be steady, this number is the same whatever be the radius of the

circle; it therefore expresses also the number of unit tubes which

enter the wire in unit of time.

We have already seen that the energy carried into the conduc-

tor by Q unit tubes, when the difference of potential is maintained

constant, is equal to Q^V^ — V^, that is, is twice the energy asso-

ciated with these tubes when at rest. It has also been shown that

the energy in unit length of a unit tube at rest is -, and F there-

fore measures the energy carried into the conductor by unit length

of each unit tube. In the case before us, the energy transferred in

one second through a cylindrical surface of unit height and of

radius r, concentric with the wire, is 2nrvNF. Now, on the view

of the current here taken, the number of unit tubes which dis-

appear in one second is equal to the current strength, so that

InrvN = 1. The energy introduced through the cylindrical sur-

face is therefore Fl. Since in this case the difference of potential

equals the electrical force multiplied by the length of the wire, the

energy introduced into the whole wire is /( F, — V^. The energy

Fl
which passes through unit area of the cylindrical surface is ^—;. It

may be shown that' the magnetic force due to the current at the

27
distance r is P = — , and hence the energy which passes through

FP
unit area may also be represented by ——

.

The example here given is a special case of a general theorem

due to Poynting. This theorem asserts that the energy expended

in the current enters the conductor from the dielectric, passing at

right angles to the lines of electrostatic force and the lines of mag-

7ietic force, and that the amount of energy which passes perpendic-

ularly through unit area is proportional to the electrostatic force

and to the magnetic force.



CHAPTEE IV.

€HEMICAL RELATIONS OF THE CURRfeNT.

279. Electrolysis.—It has been already mentioned that, in cer-

tain cases, the existence of an electrical current in a circuit is

accompanied by the decomposition into their constituents of chem-

ical compounds forming part of the circuit. This process, called

electrolysis, must now be considered more fully. It is one of those

treated generally in § 277, in which work other than heating the

circuit is done by the current. That work is done by the decom-

position of a body the constituents of which, if left to themselves,

tend to recombine, is evident from the fact that, if they be allowed

to recombine, the combination is always attended with the evolution

of heat or the appearance of some other form of energy. The

amount of heat developed, or the energy gained, is, of course, the

measure of the energy lost by combination or necessary to decom-

position.

Those bodies which exhibit electrolysis are always such as have

considerable freedom of motion among their molecules. Ordinarily,

they are liquids or solids in solution or fused. The discharge

through gases is also probably accompanied by electrolysis. Bodies

which can be decomposed were called by Faraday, to whom the

nomenclature of this subject is due, electrolytes. The current is

usually introduced into the electrolyte by solid terminals called

electrodes. The one at the higher potential is called the positive

electrode or anode; the other, the negative electrode, or cathode.

The two constituents into which the electrolyte is decomposed are

333
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called io7is. One of them appears at the anode and is called the

anion, the other at the cathode and is called the cation.

For the sake of clearness we will describe some typical cases of

electrolysis. The original observation of the evolution of gas when
the current was passed through a drop of water, made by Nichol-

son and Carlisle, was soon modified by Carlisle in a way which is

still generally in use. Two platinum electrodes are immersed in

water slightly acidulated with sulphuric acid, and tubes are ar-

ranged above them so that the gases evolved can be collected sepa-

rately. AVhen the current is passing, bubbles of gas appear on the

electrodes. When they are collected and examined, the gas which

appears at the anode is found to be oxygen, and that which appears

at the cathode to be hydrogen. The quantities evolved are in the

proportion to form water. This appears to be a simple decomposi-

tion of water into its constituents, but it is probable that the acid

in the water is first decomposed, and that the constituents of water

are evolved by a secondary chemical reaction.

An experiment performed by Davy, by which he discovered the

elements potassium and sodium, is a good example of simple elec-

trolysis. He fused caustic potash in a platinum dish, which was

made the anode, and immersed in the fused mass a platinum wire

as cathode. Oxygen was then evolved at the anode, and the metal

potassium was deposited on the cathode. This is the type of a large

number of decompositions.

If, in a solution of zinc sulphate, a plate of copper be made the

anode and a plate of zinc the cathode, there will be zinc deposited

on the cathode and copper taken from the anode, so that, after the

process has continued for a time, the solution will contain a quan-

tity of cupric sulphate. This is a case similar to the electrolysis of

acidulated water, in which the simple decomposition of the electro-

lyte is modified by secondary chemical reactions.

If two copper electrodes be immersed in a solution of cupric

sulphate, copper will be removed from the anode and deposited on

the cathode, without any important change occuring in the clnirac-

ter or concentration of the electrolyte. This is an example of the
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special case in which the secondary reactions in the electrolyte

exactly balance the work done by the current in decomposition, so

that on the whole no chemical work is done.

280. Faraday's Laws.—The researches of Faraday in electroly-

sis developed two laws, which are of great importance in the theory

of chemistry as well as in electricity:

(1) The amount of an electrolyte decomposed is directly pro-

portional to the quantity of electricity which passes through it

;

or, the rate at which a body is electrolyzed is proportional to the

current strength.

(2) If the same current be passed through different electro-

lytes, the quantity of each ion evolved is proportional to its chemi-

cal equivalent. The chemical equivalent is the weight of the

radical of the ion in terms of the weight of the atom of hydrogen,

divided by its valency.

If we define an electro-chemical equivalent as the quantity of

any ion which is evolved by unit current in unit time, then the

two laws may be summed up by saying :

The number of electro chemical equivalents evolved in a given

time by the passage of any current through any electrolyte is equal

to the number of units of electricity which pass through the elec-

trolyte in the given time.

The electro-chemical equivalents of different ions are propor-

tional to their chemical equivalents. Thus, if zinc sulphate, cu-

pric sulphate, and argentic chloride be electrolyzed by the same

current, zinc is deposited on the cathode in the first case, copper in

the second, and silver in the third. The amounts by weight de-

posited are in proportion to the chemical equivalents, 32.6 parts of

zinc, 31.7 parts of copper, and 108 parts of silver.

Faraday's laws may also be stated in another form, in which

the word " ion " has a different meaning. The process of electroly-

sis consists in the separation of each molecule of the electrolyte

into its constituent radicals. Each of these radicals is called an

ion. If the valency of the radical be 1, the ion is called a univa-

lent ion; if it be n, the ion is either called an w-valent ion or n-x\m-
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valeiit ions. To illustrate, we know that when hydrogen is evolved

from hydrochloric acid, IICl, its ion is univalent. Now when it

is evolved from water, H,0, we may either consider the 11^ as a

bivalent ion or as two univalent ions. Similarly we may consider

the as a bivalent ion or as two univalent ions, though it can

never be actually broken up into two such ions. We may consider

a molecule, then, as made up either of two ?i-valent ions or of 2u

univalent ions. The weight of each of the 7i-valent ions may be

measured in terms of the weight of the hydrogen atom taken as a

unit, and is the molecular weight of the ion. This weight divided

by the valency 7i is the weight of the univalent ion. It may be

called the ionic weight.

Now the passage of a current through different electrolytes

evolves their constituents in amounts proportional to their molec-

ular weights divided by their valencies. It therefore evolves the

ions in proportion to their ionic weights, or it evolves the same

number of univalent ions in each electrolyte. Faraday's two laws

may therefore be summed up in the statement that the number

of univalent ions evolved by a current in any electrolyte is propor-

tional to the quantity of current.

By this mode of considering electrolysis, we are led to the

conclusion that each pair of univalent ions liberated during elec-

trolysis is associated with a pair of charges numerically equal and

of opposite sign. These charges are called ionic charges. An
w-valent ion is associated with n ionic charges. If we use the con-

ception of tubes of force, each positive univalent ion may be con-

sidered as the origin of a tube of force which terminates on a

negative ion. Since the ionic charges are all equal, these tubes

maybe taken as unit tubes, which are no longer defined arbitrarily,

but are based upon a constant of Nature.

281. The Voltameter.—These laws were used by Faraday to

establish a method of measuring current by reference to an arbi-

trary standard. The method employs a vessel containing an elec-

trolyte in which suitable electrodes are immersed, so arranged that

the products of electrolysis, if gaseous, can be collected and meas-
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ured, or, if solid, can be weighed. This arrangement is called a

voltameter. If the current strength be desired, the current must

be kept constant in the voltameter by suitable variation of the

resistance in the circuit during the time in which electrolysis is

going on.

Two forms of voltameter are in frequent use.

In the first form there is, on the whole, no chemical work done

in the electrolytic process. The system consisting of two copper

electrodes and cupric sulphate as the electrolyte is an example of

such a voltameter. The weight of the copper deposited on the

cathode measures the current.

The second form depends for its indications on the evolution

of gas, the volume of which is measured. The water voltameter

is a type, and is the form especially used. The gases evolved are

either collected together, or the hydrogen alone is collected. The

latter is preferable, because oxygen is more easily absorbed by

water than hydrogen, and an error is thus introduced when the

oxygen is measured.

282. Measure of the Counter Electromotive Force of Decomposi-

tion.—In the general formula developed in § 277 the quantity lA

represents the energy expended in the circuit which does not ap-

pear as heat developed in accordance with Joule's law. In the

present case it is the energy expended during electrolysis in de-

composing chemical compounds and in doing mechanical work.

In many cases the mechanical work done is not appreciable; but

when a liquid like water is decomposed into its constituent gases,

work is done by the expansion of the gases from their volume as

water to their volume as gases. In many cases some of this energy

is also used in keeping the temperature of the electrolyte constant.

These cases occur when the electromotive force developed varies

with the temperature.

In case no such variation with the temperature occurs, we may

calculate the electromotive force developed in terms of heat. Let

e represent the electro-chemical equivalent of one of the ions, and ^

the heat evolved by the combination of a unit mass of this ion with
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an equivalent mass of the other ion, in which is included the heat

equivalent of the mechanical work done if the state of aggregation

change. Then / will represent the number of electrochemical

equivalents evolved in unit time, and leOt will represent the en-

ergy expended in the time t, which appears as chemical separation

and mechanical work. This is equal to IA; whence A — edt. All

these quantities are measured in absolute units. The quantity ed

represents the energy required to separate the quantity e of the ion

considered from the equivalent quantity of the otlier ion, and to

bring both constituents to their normal condition. JNow, - repre-

sents the counter electromotive force set up in the circuit by elec-

trolysis. Hence the electromotive force set up m the electro-

lytic process may be measured in terms of heat units.

It often is the case that the two ions which appear at the elec-

trodes are not capable of direct recombination, as has been tacitly

assumed in the definition of 0. A series of chemical exchanges is

always possible, however, which will restore the ions as constituents

of the electrolyte, and the total heat evolved for a unit mass of one

ion during the process is the quantity 0.

The theory here presented is abundantly verified by the experi-

ments of Joule, Favre and Silbermann, Wright, and others. The

extension of the theory to cases in which the electromotive force

varies with the temperature was made by Helmholtz.

283. Positive and Negative Ions.—Experiment shows that cer-

tain of the bodies which act as ions usually appear at the cathode,

and certain others at the anode. Tlie former are called electro-

positive elements ; the latter, electro-negative elements. Faraday

divided all the ions into these two classes, and thought that every

compound capable of electrolysis was made up of one electro-positive

and one electro-negative ion. But the distinction is not absolute.

Some ions are electro-positive in one combination and electro-

negative in another. Berzelius made an attempt to arrange the

ions in a series, such that any one ion should be electro-positive to

all those above it and electro-negative to all those below it. There



§ 284] CHEMICAL RELATIONS OF THE CUERENT. 329

is no reason to believe that such a rigorous arrangement of the

ions can be made.

284. Grotthus's Theory of Electrolysis.—The foundation of all

the present theories of electrolysis is found in the theory published

by Grotthus in 1805. He considered the constituent ions of a mole-

cule as oppositely electrified to an equal amount. When the cur-

rent passes, owing to the electrical attractions of the electrodes, the

molecules arrange themselves in lines with their similar ends in one

direction, and then break up. The electro-negative ion of one mole-

cule moves toward the positive electrode and meets the electro-

positive ion of the neighboring molecule, with which it momentarily

unites. At the ends of the line an electro-negative ion with its

charge is freed at the anode, and an electro-positive ion with its

charge is freed at the cathode. This process is rej)eated indefinitely

so long as the current passes.

Faraday modified this view, in that he ascribed the arrangement

of the molecules, and their disruption, to the stress in the medium

winch was the cardinal point in his electrical theories. Otherwise

he held closely to Grotthus's theory. He showed that an electrical

stress exists in the electrolyte by means of fine silk threads im-

mersed in it. These arranged themselves along the lines of electri-

cal stress.

Other phenomena, however, show that Grotthus's hypothesis

can only be treated as a rough illustration of the main facts.

Joule showed that during electrolysis there is a development of

heat at the electrodes, in certain cases, which is not accounted for

by the elementary theory above given. It must depend upon a more

complicated process of electrolysis than the one we have described.

I'he results of researches on the so-called migration of the ions

are also at variance with Grotthus's theory. If the electrolysis of a

copper salt, in a cell with a copper anode at the bottom, be ex-

amined, it will be found that the solution becomes more concen-

trated about the anode and more dilute about the cathode. These

changes can be detected by the color of the parts of the solution,

and substantiated by chemical analysis. If this result be explained
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by Grotthus's theory, the explanation furnishes at the same time a

numerical relation between the ions which have wandered to their

respective regions in the electrolyte which is not in accord with

experiment.

It is an objection against Grotthus's theory, and indeed against

Thomson's method given in § 382 of connecting chemical affinity

and electromotive force, that, on those theories, it would require an

electromotive force in the circuit greater than — , the counter electro-
z

motive force in the electrolytic cell, to set up a current, and that

the current would begin suddenly, with a finite value, after this

electromotive force is reached. On the contrary, experiments

show that the smallest electromotive force will set up a current in

an electrolyte and even maintain one constantly, though the cur-

rent strength may be extremely small.

285. The Dissociation Theory of Electrolysis.—The foundations

of a more satisfactory theory of electrolysis were laid by Clausius,

who proceeded from the view with which he had become familiar

by his study of the kinetic theory of gases, that the molecules of all

bodies are in constant motion. He assumed that the collisious of the

molecules of the electrolyte occasionally caused a separation of some

of the molecules into their constituent ions, and that the province of

the electromotive force in the electrolyte was to direct the motion,

of these ions toward their respective electrodes. A considerable

extension of Clausius's theory has been made by Arrhenius and de-

veloped by Ostwald and others, in which the leading idea is, th;it

the molecules of an electrolyte m solution are always separated to

a greater oi- less extent into their constituent ions. In many cases,

and always in very dilute solutions, the separation, according to

this view, is complete. This theory is called the dissociation theory

of electrolysis. The ions, however, are not in the condition of the

constituent parts of a molecule which have been dissociated at a

high temperature (§ 219), but possess certain peculiar electrical and

chemical properties. It has been proposed to call their condition

in solution ionization. This term certainly possesses advantages, but
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it has not yet come into common use, and we will therefore retain

the term dissociation.

We have already seen that a current in an electrolyte may be

considered as the transfer of charges on the moving ions. If the

ions in solution be dissociated from each other, and if the effect of

the electromotive force in the circuit be merely directive, it is plain

that the quantity of current transferred will depend on the relative

velocity with which the ions move past each other in the solution

as well as on their number. Starting with this conception, we

will show that the conductivity of an electrolyte is proportional

to the sum of the velocities of its ions. The discovery of

this fact by Kohlrausch laid the foundation for the dissociation

theory.

Let us suppose a series of electrolytic cells, each one of which is a

cubical box with sides of unit length, and so arranged that a current

passes in them between two opposite faces which serve as electrodes.

The column of the electrolyte between the electrodes is tlien one

centimetre long and has a cross-section of ojie square centimetre.

Let the electrolytes used in these cells be prepared by dissolving in

equal volumes of the same solvent masses of the substances to be

decomposed which are proportional to the sums of the ionic weights

of their constituent ions (§ 280). Equal volumes of these solutions

will then contain the same number of univalent ions.

If a current be sent through the series of cells containing these

solutions, the same number "of univalent ions will be liberated in

each. The difference of potential between the terminals of the

cells will be in general different for each of them. We have from

Ohm's law the relation /= A; (F, — F,), where the current 1 is the

same for each cell and the difference of potential F, — F, and the

conductivity h (§ 275) different for the different cells. Now con-

sider a cross-section in one of the cells parallel with the electrodes;

let w and v represent the velocities of the ions evolved in this cell.

Let 2 J/ represent the number of univalent ions in the cell, and let

c represent the iouic charge. Now the relative velocity of the ions

which pass through the cross-section taken in the cell is w + ?;; the
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number of ions which pass through that cross-section in unit time

in both directions is therefore M{u + v) and the quantity of elec-

tricity carried through with them in both directions is cM{u -\- v).

But this quantity is equal to the current strength /, and therefore

cM{u + v) = k{ V, - FJ ;oTu-\-v = ^'^
^'^ ~ ^'\ Now ciM is the

quantity of current required to decompose the molecules in the cell,

or the mass which is in solution in unit volume of the electrolyte;

it may therefore be directly determined. Since equal volumes of

the electrolytes contain the same number of univalent ions, this

quantity of current is the same for all the cells, and since, with

a known value of /, we may determine the value of k in each case

by observations of F, — F, , the formula just obtained enables us to

determine u + v.

This formula may be more conveniently used in another form.

Let n represent the weight of the hydrogen evolved by unit current

in unit time, and ni the chemical equivalent of one of the products

of electrolysis in the cell. Then inn represents the weight of that

product evolved by unit current in unit time, and — represents the

current that will evolve unit weight in unit time. Now the electro-

lytes are prepared so that the weights of the constituents in the

cells are given by Nm, where ^is a number which is the same for

all the cells. The current that will evolve these weights in the

N
respective cells is therefore equal to -

, and this current has been

shown to be equal to c3L Using this value of cM in the equation

T , .
,

nk( V. — F„) -r XI • ^ a
for « + V, we obtain u -\- v — —^—

' ^. in the experiments of

Kohlrausch the difference of potential V^ — V^ was the same for

k
all the cells, and the value of ^ determined for each cell. The

values ot u -\- V could then be calculated. The ratio ^ is called

the molecular conductivity.
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Kow in order to determine the values of m and v, we need them

combined in another rehition ; this relation may be obtained from a

study of the migration of the ions. For, consider a row of mole-

cules in the electrolyte stretching between the electrodes, of which

the ions are moving independently, the positive ions to the right

with the velocity u, and the negative ions to the left with the

velocity v. Let n represent the number of ions of either sort in

unit length of this line. At the end of the short time t the relative

displacement of the rows of ions will be {u -\- v)t, and the number

of ions freed at either end will be the same and equal to 7i{u + v)t.

Though the number of ions which are freed at either end is the

same, the loss of molecules or of pairs of associated ions is different

at the two ends. If a line be drawn perpendicularly across the line

of molecules, the number of ions which pass to the right, and there-

fore the number of molecules lost on the left of this line is nut,

while the number of molecules lost on its right is nvt. If, there-

fore, we measure the diminution of the substance decomposed at

each electrode, the ratio of the values found will be the ratio of the

velocities u and v of the constituent ions. The ratio of one of these

losses or diminutions to the sum of them both, or the ratio

of the velocity of the corresponding ion to the sum of the veloci-

ties of the two ions, is called the migration constant of the ion.

The migration constants have been determined for many ions by

Hittorf, Nernst, and others. By combining the ratios of the veloc-

ities thus found with the sums of the velocities found by Kohl-

rausch, the velocities may be separately determined. It is found

that the velocity of any one ion is the same, whatever be the electro-

lyte of which it forms a part, provided the solution be sufficiently

dilute. This result is a strong confirmation of the theory of the

independent motion of the ions upon which the calculations are

based.

In many cases, especially when the solution is not very dilute,

the molecular conductivity is found to be less than that assigned by

theory on the assumption that all the ions of the electrolyte are

dissociated. This discrepancy is explained by Arrhenius by the



334 ELEMENTAKY PHYSICS. [§ 286

assumption that in this case the dissociation is not complete; the

ratio of the molecular conductivity found in such cases to the mo-

lecular conductivity at very great dilutions, in which case the disso-

ciation is assumed to be complete, is taken as the measure of the

dissociation in the solution. A similar theory of partial dissociation

was assumed to account for the departures from the normal laws of

osmotic pressure (§§ 94, 95), of the lowering of the freezing-point

(§ 197), and of the lowering of vapor pressure (§ 204).

The agreement between the conclusions reached by these entirely

independent methods with regard to the extent of dissociation is

strong evidence in favor of the hypothesis upon which the calcula-

tions are based. Starting with the same hypothesis, other relations

have been theoretically discovered among the physical properties of

solutions which have been confirmed by experiment. The dissocia-

tion theory of solution and of electrolysis is not yet fully established,

but it furnishes by far the most satisfactory explanation of the

nature and behavior of solutions.

286. Voltaic Cells.—From the discussion given in § 277 it is

obvious that, if an arrangement be made, in a circuit, of sub-

stances capable of uniting chemically and such as would result

from electrolysis, there will result an electromotive force in such

a sense as to oppose the current which would effect the electrolysis.

If, then, the electrodes of an electrolytic cell in which this electro-

motive force exists be joined by a wire, a current will be set up

through the wire in the opposite direction to the one which would

continue the electrolysis, and the ions at the electrodes will recom-

bine to form the electrolyte. There is thus formed an independent

source of current, the voltaic cell. The electrode in connection

with the electro-negative ion is called the positive pole, and that

in connection with the electro-positive ion the negative pole.

Thus, if after the electrolysis of water in a voltameter, in which

the gases are collected separately in tubes over platinum electrodes,

the electrodes be joined by a wire, a current will be set up in it,

and the gases will gradually, and at last totally, disappear, and the

current will cease. The current which decomposes the water is
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conventionally said to flow through the liquid from the anode to

the cathode, from the electrode above which oxygen is collected to

the electrode above which hydrogen is collected. The current

existing during the recombination of the gases flows through the

liquid from the hydrogen electrode to the oxygen electrode, or out-

side the liquid from the positive to the negative pole. Such an

arrangement as is here described was devised by Grove, and is

called the Grove's gas hattery.

A combination known as Srnee's cell consists of a plate of zinc

and one of platinum, immersed in dilute sulphuric acid. It is

such a cell as would be formed by the complete electrolysis of a

solution of zinc sulphate, if the zinc plate were made tlie cathode.

When the zinc and platinum plates are joined by a wire, a current

is set up from the platinum to the zinc outside the liquid, and the

zinc combines with the acid to form zinc sulphate. The hydrogen

thus liberated appears at the platinum plate, where, since the

oxygen which was the electro-negative ion of the hypothetical

electrolysis by which the cell was formed does not exist there

ready to combine with it, it collects in bubbles and passes up

through the liquid. The presence of this hydrogen at once lowers

the current from the cell, for it sets up a counter electromotive

force, and also diminishes the surface of the platinum plate in

contact with tlie liquid, and thus increases the resistance of the

cell. It may be partially removed by mechanical movements of

the plate or by roughening its surface. The counter electromotive

force is called the electromotive force of polarization. It occurs

soon after the circuit is joined up in all cells in which only a

single liquid is used, and very much diminishes the currents which

are at first produced.

Advantage is taken of secondary chemical reactions to avoid

this electromotive force of polarization. The best example, and a

cell which is of great practical value for its cheapness, durability,

and constancy, is the DanieU's cell. Two liquids are used—solu-

tions of cupric sulphate and zinc sulphate. They are best sepa-

rated from one another by a porous porcelain diaphragm. A plate
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of copT)er is immersed iu the ciipric sulphate, and a plate of zinc

in the zinc sulphate. The copper is the positive pole, the zinc the

negative pole. When the circuit is made, and the current passes,

zinc is dissolved, the quantity of zinc sulphate increases and that

of the cupric sulphate decreases, and copper is deposited on the

copper plate. To prevent the destruction of the cell by the con-

sumption of the cupric sulphate, crystals of the salt are placed in

the solution. The electromotive force of this cell is evidently due

to the loss of energy in the substitution of zinc for copper in the

solution of cupric sulphate.

The secondary cell of Plante is an example of a cell made

directly by electrolysis, as has been assumed in the preliminary dis-

cussion. The electrodes are both lead plates, and the electrolyte

dilute sulphuric acid. When a current is passed through the cell,

the oxygen evolved on the anode combines with the lead to form

peroxide of lead, which coats the surface of the electrode. When

the cell is inserted in a circuit, a current is set up, the peroxide is

reduced to a lower oxide, and the metallic lead of the other plate

is oxidized.

Cells of this sort, which have been constructed directly by

coating lead plates with the proper oxides of lead, are called

storage cells. They may be put in condition for use by sending a

current through them iu the proper direction. The sulphate

of lead formed plays an important part in the operation of these

cells.

The Latimer-Clarke standard cell is of great value as a

standard of electromotive force. The positive pole consists of pure

mercury, which is covered by a paste made by boding mercurous

sulphate in a saturated solution of zinc sulphate. The negative

pole consists of pure zinc resting on the paste. Contact with the

mercury is made by means of a platinum wire. As no gases are

generated, this cell may be hermetically sealed against atmospheric

influences. According to the measurements of Rayleigh, the elec-

tromotive force of this cell is very constantly 1,435 • 10' C. G. S.

electromagnetic units at 15° Cent.
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287. Theories of the Electromotive Force of the Voltaic Cell,—

The plan followed in the preceding discussions has rendered it

nnnecessar}^ for us to adopt any tlieory to explain the cause of the

electromotive force of the voltaic cell. The different theories

which have been advanced may be classed under one of two gen-

eral theories, the contact theory and the chemical theory. On the

contact theory, as advanced by Volta and supported by Tliomson

and others, th.e difference of potential which exists between two

heterogeneous substances in contact is due to molecular inter-

actions across the surface of contact, or, as it is commonly stated,

is due merely to the contact. The cheniictd theory, as advocated

by Faraday and Schonbein, holds that the difference of potential

considered cannot arise unless chemical action or a tendency to

chemical action exist at the surface of contact.

Numerous experiments have shown that the sum of all the

differences of potential at the surfaces of contact of the various

substances making up any voltaic cell is equal to the electromotive

force of that cell. This is true even when the cell is formed solely

of liquid elements. On the contact theory, this electromotive

force is due merely to the several contacts, while the chemical

actions of the cell begin only when the circuit is made, and supply

the energy for the maintenance of the current. On the chemical

theory the chemical action of the medium is concerned in the pro-

duction of the difference of potential observed.

On either theory it is clear that the energy maintaining the

current must have its origin in the chemical actions which go on

in the voltaic cell.

288. The Electrical Double-sheet.— Suppose two plates of dif-

ferent materials, say one zinc and the other copper, joined by a

wire and placed opposite each other like the plates of a condenser:

as stated in the last section, a difference of potential then exists be-

S{V —V)
tween them. The charge on one of them is given by -'

(§ 259, (Eq. 92)). The difference of potential will remain the same,

whatever be the distance between the plates, so that the charges on



338 ELEMENTARY PHYSICS. [§ 288

the plates and the distance between them vary inversely. When
the faces of the two plates are in contact, that is, are separated

by molecular distances, these charges become very great. Such an

arrangement of equal and opposite charges, distributed over the

surfaces of two bodies in contact and separated by a distance com-

parable with the distance between the molecules, was called by

llelniholtz an electrical douhle-slieet. It evidently presents some

analogies to the magnetic shell.

The charges making up the double-sheet cannot be detected by

separating a plate of zinc from a plate of copper with which it has

been in contact and examining the separate plates, because the sepa-

ration cannot be effected so uniformly that no discharge takes place

between the two bodies. If, however, those faces of the zinc and

copper plates which are contiguous be insulated from each other by

a thin layer of shellac and contact made between the plates by

means of a metallic wire, so that a difference of potential is set up

between them, on removal of the wire and separation of the plates

they are found to possess charges of considerable magnitude.

We may explain in this way electrification by friction. We
may assume that the two bodies rubbed together acquire different

potentials by contact; the friction forces large areas of their sur-

faces into close proximity, and the charges upon those surfaces be-

come very great; because the bodies ordinarily used for producing

electrification by friction are nonconductors, the charges on their

surfaces are not recombined as the bodies are separated, so that

each body retains a large free charge.

A similar electrical double-sheet will exist on the surfaces of

contact between a liquid and a metal. An arrangement by which

the effects due to this double-sheet may be observed was invented

by Lippmann. It consists of a vertical glass tube drawn out at its

lower end in a capillary tube. The capillary tube dips into dilute

sulphuric acid, which rests on mercury in the bottom of the vessel

containing it. Mercury is poured into the vertical tube until its

pressure is such that the capillary portion of the tube is nearly

filled with it. When the mercury in the vessel is joined with the
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positive pole of a voltaic cell, and that in the tube with the nega-

tive pole, the meniscus in the capillary tube moves upward, in the

sense in which it would move if its surface tension were increased.

This movement may be explained as follows: An electrical

double-sheet will be formed on the curved surface of contact of the

mercury and acid in the capillary tube, and the interaction of the

parts of this double-sheet will give rise to an electrical pressure

(§ 256), that diminishes the apparent surface tension in that surface.

If a weak current be sent through the solution, the difference of

potential between the liquid and mercury will be diminished or in-

creased by the ionic charges transferred by the current, according

as the current flows in one direction or the other. The apparent

surface tension will be altered and the end of the mercury column

will be displaced; the true surface tension of the surface will be

efficient only when the mercury and solution are at the same poten-

tial, and this surface tension will be a maximum. The experiments

of Helmholtz and A. Konig have shown that such a maximum

exists in a way consistent with this view.

The arrangement described can manifestly be used to produce

the effects just discussed only when the electromotive force intro-

duced into the circuit is less than that required to cause active de-

composition of the electrolyte.

Lippmann constructed an apparatus similar to the one described,

Math the addition of an arrangement by which pressure can be ap-

plied to force the end of the mercury column in the capillary tube

back to the fixed position which it occupies when no electromotive

force is introduced into the circuit. He found that when small

electromotive forces were introduced, the pressures required to

bring the end of the column back to the fixed position were pro-

portional to the electromotive forces. He hence called this appa-

ratus a capillary electrometer.

Lippmann also found that if the area of the surface of separa-

tion between the mercury and the liquid in the capillary tube were

altered by increasing the pressure and driving the mercury down

the tube, a current was set up in a galvanometer inserted in the
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circuit, in a sense opposite to that which would change the area of

the meniscus back to its original amount.

The electrical double-sheet produced by contact of a liquid

and a solid serves also to explain the phenomenon of electrical

endosmose.

It is found that, if an electrolyte be divided into two portions

by a porous diaphragm, there is a transfer of the electrolyte toward

the cathode, so that it stands at a higher level on the side of the

diaphragm nearer the cathode than on the other. This fact was

discovered by Reuss in 1807, and has been investigated by Wiede-

mann and Quincke. They found that the amount of the electrolyte

transferred is proportional to the current strength, and independent

of the extent of surface or the thickness of the diaphragm. Quincke

has also demonstrated a flow of the electrolyte toward the cathode

in a narrow tube, without the intervention of a diaphragm. Those

electrolytes which are the poorest conductors show the phenomenon

the best. In a very few cases the motion is towards the anode. The

material of which the tube is composed influences the direction of

flow. It has also been shown that solid particles move in the electro-

lyte, usually towards the anode.

Helmholtz showed that these movements can be explained by

taking into account the interaction between the ionic charges and

the double-sheet, and the viscosity of the liquid.



CHAPTER V.

THE MAGNETIC RELATIONS OF THE CURRENT.

289. The Magnetic Field of a Current.—Soon after the discovery

by Oersted of the force exerted by an electrical current on a magnet,

Biot and Savart instituted experiments to discover the law of this

force. They suspended a small magnet near a long vertical wire

through whicli a current was passing and counteracted the earth's

magnetic field by magnets, so that, if no current passed through

the wire, the small maguet Avas free from any directive force. When

the current passed, the maguet placed itself at right angles to the

plane containing the wire and the centre of the nuiguet. By oscil-

lating the magnet, the strength of the magnetic field acting upon

the magnet was found to be directly proportional to the strength

of the current and inversely proportional to the distance between

the magnet and tlie current.

It follows at once, from the position assumed by the short mag-

net, that the lines of magnetic force set up by the current are circles

with their centres in the current. The relation between the direc-

tion of the current and the direction of the lines of force set up by

it may be described in several ways. Ampere's rule is as follows:

If the observer imagine himself swimming with the current and

looking toward the magnet, the north pole of the magnet tends to

move toward his left. Maxwell's rule is, that the direction of the

current and the direction of its lines of force are related as the

directions of translation and rotation of a right-handed screw.

This rule is the one now commonly used. By supposing the wire

carrying the current bent around into a closed curve, it will easily

341
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be seen tjiat the relation between the current and the lines of force

is also that between the lines of force and the current; that is, the

direction of the lines of force and the direction of the current are

related as the directions of translation and rotation of a right-

handed screw. A simple rule equivalent to these others is as fol-

lows: Let the conductor carrying the current be grasped with the

right hand and the thumb extended along it in the direction of the

current; the fingers then point in the direction of the lines of force.

In accordance with the views prevalent at the time, Biot sup-

posed tliat the action of the current upon a magnet pole w-as due

to the independent action of each element of the current. He
showed that the results of his experiments Avere consistent witli the

assumption that a force acts between a magnet pole m and an ele-

ment ds of the current i, at the distance r from the magnet pole

7}ix Sill rv d^
and making an angle a with r, equal to ^ . At present we

no longer consider the current as acting at a distance in accordance

with this formula, but consider it rather as setting up a magnetic

field, and we express its action upon a magnet pole in terms of the

field which it sets up. We will return to the consideration of

Biot's formula after developing this method.

It was shown by Ampere, and later by Weber, that a very small

closed plane circuit sets up a magnetic field similar to that about a

small magnet placed with its centre at the centre of the circuit,

with its axis normal to the plane of the circuit. This magnet may

be replaced by a magnetic shell with its edge coincident with the

circuit, without altering the magnetic field. At all points outside

the shell its magnetic field is similar to the magnetic field set up

by the current; at those points in the field occupied by the sub-

stance of the shell the conditions are not the same in both cases.

The potential of a shell at a point outside it \^ joo (§ 243), where

/ is the strength of the shell and oo is the solid angle subtended by

the shell. This is also the potential of the current, if the current

be measured in such units that the current strength i = j. Now

a shell of finite area may be built up of a number of elementary
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shells, and likewise a current in a circuit coincident with the

boundary of the finite shell may be built up of the elementary cir-

cuits corresponding to the elementary shells; for the current in

each of the elementary circuits will be everywhere neutralized by

the equal and opposite currents of the contiguous circuits except

at the boundary of the surface occupied by the circuits. At the

boundary the currents of the elementary circuits are in the same

direction, and are not neutralized by other currents; they are there-

fore equivalent to the current in the cir-

cuit coincident with the boundary of the

shell. This reasoning is plain from Fig.

84. If the strength of a finite shell be

constant, the potential of the shell is jH,

where £1 is the solid angle subtended by Fig. 84.

the shell from an external point. The potential of the equivalent

current is therefore ifl.

290. Multiply-valued Potential of the Current.—There is an

important difference between the potential due to a cui-rent and

that due to its equivalent magnetic shell, owing to the fact that the

substance of the shell interrupts the field so that tlie potential

within it does not follow the same law as. that outside it. If we

suppose that the shell is plane, the potential at a point on its posi-

tive face is 27ij and that at the corresponding point on the negative

face is — ^nj, so that the work done in transferring a unit pole from

one point to the other is 4;r; (§ 243). The pole can only be brought

back to the point from which it started by carrying it around the

edge of the shell and by doing upon it the work 47r;, so that when

it is returned to the starting-point the work done upon it is zero.

If, on the other hand, the pole is moving under the influence

of the circuit equivalent to the magnetic shell, the work done in

transferring it outside the circuit from the positive to the negative

face is equal to 4:71 i. But it is not necessary to carry it again

outside the circuit to return it to the starting-point. This may

be accomplished by an infinitesimal displacement through the

plane of the circuit; and since the force is everywhere finite, no
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work is done in this displacement. Tiie system then returns to its

original condition, and work equal to 4t7Ti is done upon the pole.

This is expressed by saying that the potential of a closed current

is multiply-valued. The work done during any movement depends

not only on the position of the initial and final points in the path,

as in the case of the ordinary single-valued gravitational, electrical,

and magnetic potentials, but also on the path traversed by the

moving magnet pole. Every time the path encloses the current,

work equal to 'ini is done. The work done m moving by a path

which does not enclose the current, from a point where the solid

angle subtended by the circuit is il' to one where it is £1, is, as m
the case of the magnetic shell, equal to t{il' — il). If the path

further enclose the current n times, the work done is ^nni, so that

the total work done, or the total difference of potential between the

two points, is

V - V = / (Q' -n + 47rn), (102)

where n may have any value from to infinity.

The fact that the potential of a current is multiply-valued is

well illustrated by any one of a series of experiments due to Fara-

day. If we imagine a wire frame forming three sides of a rectangle

to be mounted on a support so as to turn freely about one of its

sides as a vertical axis, while the free end of tiie opposite side dips

in mercury contained in a circular trough of which the axis of ro-

tation passes through the centre, and if we suppose a current to be

sent through the axis and the frame, passing out through the mer-

cury; then if a magnet be placed vertically with its centre on the

level of the trough, and with either pole confronting the frame, the

frame will rotate continuously about the axis.

Other arrangements are made by which more complicated rota-

tions of circuits can be efiected. If the circuit be fixed and the

magnet movable, similar arrangements will give rise to motions of

the magnet or to rotations about its own axis.

291. Electromagnetic Unit of Current.—The relation which has

been discussed between a circuit and the equivalent magnetic shell

affords a means of defininsf a unit of current different from that
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before defined iu the electrostatic system. That current is defined

as the u?iii cicrretit, which will set up the same magnetic field as

that due to a magnetic shell of which the edge coincides with the

circuit, and the strength is unity.

The unit based upon these definitions is called the electromag-

netic unit of current. It is fundamental in the construction of the

electromagnetic system of units, in just the same way as the unit of

quantity is fundamental in the electrostatic system.

The dimensions of current in the electromagnetic system are

the same as those of strength of shell, that is, [i] = M^L^T'^.

In practice, another unit of current is used, called the ampere.

It contains 10"' absolute electromagnetic units.

292. Energy of a Current in a Magnetic Field.—It has been

shown (§ 289) that the potential at a point in a field due to a cur-

rent is equal to ?Jl, where £1 is the solid angle subtended by the

circuit at the point. If a pole of strength m be placed at that

point, the potential energy of the pole is equal to 7nifl; and since

the same amount of work will be done if the circuit be fixed and

the pole moved to an infinite distance as is done if the pole be

fixed and the circuit removed to an infinite distance, the expres-

sion mi£l also measures the energy of the circuit in the field due

to the pole. Now -^nm is the number of unit tubes which proceed

from the pole, and therefore mil is the number of unit tubes which

pass through the circuit. We may therefore express the energy of

the circuit due to the pole by iN, where N is the number of unit

tubes which pass through the circuit. If the circuit be placed in

any magnetic field, the forces in the field and the tubes of induc-

tion may be considered as due to an assemblage of magnetic poles,

to each of which the proposition just stated applies. The energy

of the circuit in any magnetic field is therefore given by iN, where

N IS the number of tubes of induction due to the field which pass

through the circuit, N is positive when the tubes of induction of

the field pass through the circuit in a direction opposed to that of

the tubes of induction of the circuit; and is negative when they

pass through in the same direction as that of the tubes of the
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circuit. These statements hold true not only in the case supposed,

in which the field is homogeneous, but also when the field contains

masses of magnetizable matter which distort the tubes of induction.

293. Energy of a Current in its own Field.—When the circuit is

traversed by a current, a magnetic field is present around it, and

the circuit possesses energy in consequence of the presence of that

field; we may calculate an expression for this energy, if we assume

that it is distributed in the tubes of induction around the circuit

according to the law developed in § 248. Let the number of unit

tubes of induction which pass through the circuit be represented

by N. The unit of length of each of these tubes contains an

amount of energy equal to -— , where E is the resultant magnetic

force. Any one tube therefore contains energy equal to -—— ,

where z/Z is an element of length of the tube and the summation is

extended over the whole tube. But 2R/il equals the work done

in carrying a unit pole over the whole length of the tube. The

tube is a continuous closed tube enclosing the circuit, and the work

done in carrying a unit pole over such a closed curve enclosing the

circuit is equal to 4;ri (§ 290), so that 2Ejdl — 47ri. The energy

of each unit tube is therefore equal to ^i, and the energy of all the

tubes belonging to the circuit is equal to ^iJV. Therefore, the

energy of the circuit, due to its own current, is equal to one half

the product of the current and the number of tubes of induction

which pass through the circuit. Now we know by experiment that

the magnetic force due to a current or the number of tubes of in-

duction which pass through unit area is proportional to the current.

Let L represent the number of tubes of induction which pass

through the circuit when it is traversed by unit current; L is

called the coefficient of self-induction. Then N = Li, and the

energy of the circuit equals iLi^.

294. Energy of Two Circuits.— If two circuits be present in a

field, each of them possesses a certain amount of energy due to the

magnetic field set up by the other. Let N^ represent the number
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of tubes of induction which pass through circuit 1 in consequence

of the current in the other circuit. Then the energy of circuit 1,

in consequence of the presence of tlie other circuit, is i,J\\; the

energy of circuit 2, in consequence of the presence of circuit 1, will

be similarly /„iV,. Now since there will be no mutual action be-

tween the circuits if either one of them is removed to an infinite

distance, the work done in removing one of them is equal to its en-

ergy due to the presence of the other; and since, manifestly, the

same amount of work is done if either one of the circuits be kept

fixed and the other removed to an infinite distance, their energies

must be equal, or i^N^ = i.,A\. Now iV, and A\ are proportional

respectively to the currents in circuits 2 and 1. Let J/, represent

the number of tubes of induction which pass through circuit 1 in

consequence of unit current m circuit 2, and if, the corresponding

number which pass through circuit 2 in consequence of unit cur-

rent m circuit 1. Then t.i^M, = i.i^M^ or M^ = J/, = M. The

number of tubes of induction which pass through either circuit m
consequence of a unit current in the other circuit is the same; the

coefficient M which expresses this number is called the coefficient

of mutual induction.

The energy of two circuits is equal to the energy which tliey

possess due to their own currents, and the energy which each of them

possesses due to the current in the other. If L and N are their

coefficients of self-mduction and M their coefficient of mutual in-

duction, their energy is equal to ^Li^'^Mi^i^ + iNi,\ This energy

may be represented as divided between the two circuits by the

equivalent formula i^,(Z^, + M,)+ |i,{J/?,+iVz,), where the terms

represent one half the current in the circuit multiplied by the

number of tubes of induction which pass through the circuit.

295. Motion of a Circuit in a Magnetic Field.—The motion of a

circuit in a magnetic field, if the current in it be supposed con-

stant, may always be found, from the results of the preceding sec-

tions, by the help of the general rule that the motion is such as to

make the energy of the circuit as small as possible. In the simple

case where the magnetic field is due to a north magnet pole, the
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potential of the pole is positive when the current, as seen from the

pole, is directed counterclockwise, that is, when the face of the cir-

cuit which confronts the pole is its positive face, which corresponds

to the north face of a magnetic shell. The energy of the circuit is

also positive m this position. It becomes zero when the pole is

brought into the plane of the circuit outside of it, and negative

when the pole confronts the negative face. The energy of the cir-

cuit is therefore diminished by turning its negative face toward

the pole and moving it up toward the pole. The tubes of induc-

tion of the pole then pass through the circuit in the positive direc-

tion, that is, in the same direction as the tubes of the circuit; and

the motion is sucli as to include as many of the tubes of the pole in

the circuit as possible. The rule thus illustrated is a general one :

a circuit in a magnetic field tends to move so that as many of the

tubes of the field as possible pass through it in the positive direc-

tion; or, more fully, it tends to move so that the difference between

the tubes which pass through it in the positive direction and in the

negative 'direction is as great as possible. In terms of the symbols

already used, the motion is such as to make JV negative and nu-

merically as great as possible. From this rule it is easy to see that

a circuit will be m stable equilibrium with a soft iron bar when the

axis of the bar is normal to the circuit, the tubes of induction in

the bar are in the same direction as those of the circuit, and the

bar is as near the edge of the circuit as possible.

When the field is due to the presence of another circuit the

motion is such as to set their tubes of induction in the same direc-

tion, and to include in each circuit as many of the tubes of the

other as possible ; that is, to make M negative and numerically as

great as possible. When the circuits are thus placed, their cur-

rents are travelling in the same sense. Their mutual action may

therefore be expressed by saying that currents travelling in the

same sense attract, and in opposite senses repel, each other.

The action on a circuit in a field due to magnets, or the mutual

action of two circuits, may be described in terms of the actions that

would be exerted on the magnetic shells which are equivalent to
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them. Or, we may consider the tubes of induction as tending to

dimmish in length and to repel eacli other, and describe the action

on a circuit in terms of the tensions due to the tubes of induc-

tion. Tliese various modes of description necessarily yield similar

results.

296. Action of a Current on a Magnet Pole.—We will now show

that the force between a magtiet pole and a circuit carrying a cur-

rent may be considered as the resultant of

forces which act between the pole and the

elements of the circuit, and that this action

follows the law deduced by Biot directly

from his experiments (§ 289). On the view

we have taken, this representation of the

action is an artificial one, the real action

being due to the magnetic field associated

with the circuit.

Let AB (Fig. 85) represent a circuit car-

rying the current i, placed in a magnetic

field in which the permeability is unity; let

I represent the length of an element of the

circuit, and H the strength of the magnetic field near that element.

If N represent the number of unit tubes of force which pass

through the circuit, the energy of the circuit is expressed by iN.

Suppose the circuit displaced so that all parts of it move through

the same small distance s. The number of tubes of force which

pass through it after its displacement is represented by N'; the

energy lost by the displacement is i{N — JV '). This energy is

equal to the work done upon the circuit by the forces of the field.

If we consider the closed surface bounded by the planes of the

circuit in its two positions and by the cylinder traced by the circuit

during its displacement, and remember that there is no free mag-

netism within this surface, the flux of force over it is zero (§ 56).

And since the change in the number of unit tubes passing through

the circuit measures the change in the flux of force through the

circuit, it is evident that the change in the flux of force through

Fig. 85.
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the circuit, or N— N', is equal to the flux of force through the

cylindrical surface. Now let 6 represent the angle between s

and I', the area traversed by I during its displacement is then

si sin6'. Let cp represent the angle between the normal to this

area and the direction of the magnetic force H acting through it.

Then i/cos (p is the component of the magnetic force normal to

this area, and Hsl sin 6 cos (p is the flux of force through this

area. The flux of force through the cylindrical surface is there-

fore given by 2Hsl sin t^ cos (p = JV — JV' . The energy lost by

the displacement, or t{N — JV'), is equal to 12Hsl s]n (^ cos (p;

and since all parts of the circuit are displaced through the same

distance s, this loss of energy is equal to the work which would be

done on the circuit by a force acting in the direction of s and equal

to i2HI sin cos (p, or by a force acting on each element of the

circuit equal to iHl sin ^ cos (p. We may therefore consider the

action of the magnetic field on the circuit as the resultant of an

action of the magnetic field on each element of the circuit.

The magnitude and direction of the resultant force which acts

on each elem.ent may be found as follows: The force iHl sin dcos(p

is equal to zero when sm B -— 0, or when s and I coincide with

each other; it is also equal to zero when cos = 0, or when the

direction of H lies m the surface described by /. The resultant or

maximum force which acts on the element is therefore at right

angles to I and to //; the element / is urged to move at right

angles to itself and to the magnetic force. The magnitude of the

force acting on an element is obtained by supposing the element

displaced m this direction, that is, along the normal to I and H.

In this case we have sm ^ = 1, and cos (p — sin a, where a ib the

angle between the element / and the direction of the magnetic

force H. Substituting these values, the resultant force on the ele-

ment is found to be equal to iHl sin a.

In the special case in which the magnetic field is due to a sin-

gle magnet pole of strength m, we have H = -^, where r is the

distance from the pole to the ebment of the circuit. The force
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exerted by a mugnet pole on an element of the circuit is therefore

—^ sin a, and this force urges the element to move at right angles

to itself and to the line joining it with the magnet pole. Since the

action between the pole and the circuit is mutual and the work

done dependent only on their relative displacements, the force

which each element of the circuit exerts on the pole is also equal to

— sin a, and tends to urge the pole to move at right angles to the
r'

plane containing it and the element of the circuit. This action on

the magnet pole is the same as that deduced by Biot from his study

of the force between a pole and a long straight current.

We will apply this theorem to determine the force due to a

circular current on a magnet pole placed at a point on the line

drawn normal to the plane of the circuit through its centre. The

force on the circuit, and thei-efore the force on the pole, has been

shown to be equal to i'2111 sin d cos 0. In the case before us

H = ^, where m is the strength of the magnet pole and E the

distance from the pole to the circuit. Since the elements of the

circuit are symmetrical with respect to the pole, the fouce on the

pole IS along the line joining it to the centre of the circuit. The

angle t^ therefore equals -- and sin 0=1; the angle is the angle

7'

between the radius of the circle and R ; and cos = p-, where r is

the radius of the circle. The sum of all the elements of the circuit

equals the circumference of the circle, or 27tr. The force on the

pole IS therefore equal to —^^—

.

If the magnet pole be placed at the centre of the circle, so that

R = r, the force on it becomes -. Let the radius of the circle
' r

be the unit length, or one centimetre; the force acting on the

magnet pole is then 2nmi, and if the magnet pole be the unit pole,
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the force is 27ii. If therefore the force exerted be equal to 27r,

I will be equal to unity. We have thus arrived at anotlier defini-

tion of unit current from the point of view of Biot's law. The

unit current is defined to be that current which, flowing in a circle

of unit radius, will exert upon a unit magnet pole at its centre a

force equal to 2^ dynes.

297. Ampere's Law for the Mutual Action of Currents.—The

mutual action of two currents may also be considered as arising

from forces between the elements of the currents. It was from this

point of view that the action of currents was first investigated by

Ampei-e. While the results obtained by him were not a unique

solution of the problem, and must be regarded only as an artificial

representation of the action between currents, they are yet of great

interest. Without attempting to deduce Ampere's law, we will

briefly consider the experiments upon which his deductions were

based.

Ampere's method consists in submitting a movable circuit or

part of a circuit carrying a current to the action of a fixed circuit,

and in so disposing the parts of the fixed circuit that the forces

arising from different parts exactly annul one another, so that the

movable circuit does not move when the current in the fixed circuit

is made or broken. In the first two of his experiments the mov-

able circuit consists of a wire frame of the form shown in Fig. 86.

The current passes into the frame by the points

a and b, upon which the frame is supported. It

is evident that fhe two halves of the frame tend

to face in opposite directions in the earth's mag-

netic field, so that there is no tendency of the

frame as a whole to face in any one direction

rather than any other. If a long straight wire be
"

'
,

placed near to one of the extreme vertical sides of
Fig. 8<).

'

the frame and a current be sent through it, that

side will move towards the wire if the currents in it and in the wire

be in the same direction, and will move away from the wire if the

currents be in opposite directions.

I

I I
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If now this wire be doubled on itself, so that near the frame

there are two equal currents occupying practically the same posi-

tion, but in opposite directions, then no motion of the fi'ame can be

observed when a current is set up in the wire. This is Ampere's

first case of equilibrium. It shows that the forces due to two cur-

rents, identical in strength and in position, but opposite i;i direction,

are equal and opposite.

If the portion of the wire which is doubled back be not left

straight, but bent into any sinuosities, provided these be small com-

pared with the distance between the wire and the frame, still no

motion of the frame occurs when a current is set up in the wire.

This is Ampere's second case of equilibrium. It shows that the

action of the elements of the curved conductor is the same as that

of their projections on the straight conductor.

To obtain the third case of equilibrium, a wire, bent in the arc

of a circle, is arranged so that it may turn freely about a vertical

axis passing through the centre of the circle of which the wire

forms an arc, and normal to the plane of that circle. The wire is

then free to move only in the cii'cumference of that cii-cle, or in

the direction of its own length. Two vessels filled with mercury,

so that the mercury stands above the level of their sides, are brought

under the wire arc, and raised until conducting contact is made

between the wire and the mercury in both vessels. A current is

then passed through the movable wire through the mercury. Then

if any closed circuit whatever, or any magnet, be brought near the

wire, it is found that the wire remains stationary. The deduction

from this observation is that no closed circuit tends to displace an

element of current in the direction of its length.

In the fourth experiment throe circuits are used, which we may

call respectively A, B, and C. They are alike in form, and the dimen-

sions of B are mean proportionals to the corresponding dimensions

of A and C. B is suspended so as to be free to move, and A and

Care placed on opposite sides of B, so that the ratio of their dis-

tances from B is the same as the ratio of the dimensions of A to

those of B. If then the same current be sent through A and C,
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and any current whatever tlirough B, it is found that B does not

move. Tlie opposing forces due to the actions of A and C upon

B are in equilibrium. From tliis fourth case of equilibrium is

deduced tlie law that the force between two current elements is

inversely as the square of tlie distance between them.

Ampere made the assumption that the action between two

current elements is in the line joining them. From the four cases

of equilibrium he then deduced an expression for the attraction

between two current elements. It is

ti' ds c/s'

\-i
— (2 cos e — 3 cos 8 cos 6'). (103)

In this formula ds and ds' represent the elements of the two cir-

cuits, I and i' the strength of current in those circuits measured in

electromagnetic units, r the distance between the current elements,

e the angles made by the two elements with one another, and 6'

the angles made by ds and ds' with r or r produced, the direction

of the two elements being taken in the sense of their respective

currents.

298. Solenoids and Electromagnets.—Ampere also showed that

the action between two small plane circuits is the same as that

between two small magnetic shells, and that a circuit, or syt^tem of

circuits, may be constructed which is the complete equivalent of

any magnet. A long bar magnet may be looked on as made up of

a great number of equal and similar magnetic shells arranged per-

pendicularly to the axis of the magnet, with their similar faces all

in one direction. In order to produce the equivalent of this

arrangement with the circuit, a long insulated wire is wound into

a close spiral, straight and of uniform cross-section. The end of

the wire is passed back through the spiral. When the current

passes, the action of each turn of the spiral may be resolved into

two parts—that due to the projection of the spiral on the plane

normal to the axis, and that due to its projection on the axis. This

latter component, for every turn, is neutralized by the current in

the returning wire, and the action of the spiral is reduced to that

of a number of similar plane circuits perpendicular to its axis.
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Sucli an arrangement is called a solenoid. The poles of a solenoid

of very small cross-section are situated at its ends, and it is equiv-

alent to a bar magnet uniformly magnetized.

If a bar of soft iron be introduced into the magnetic field within

a solenoid it will become magnetized by induction. This combina-

tion is called an electromagnet. Since the strength of the magnetic

field varies with the strength of the current in tiie solenoid, and

with the number of layers of wire wrapped around the iron core,

the magnetization of any bar of iron whatever may be raised to its

maximum by increasing the current and the number of turns of wire.

299. Ampere's Theory of Magnetism.—Ampere based upon

these facts a theory of magnetism which bears his name. He
assumed that around every molecule of iron there circulates an

electrical current, and that to such molecular currents are due all

magnetic phenomena. He made no hypothesis with regard to the

origin or the permanency of these currents. The theory agrees

with Weber's hypothesis that magnetization consists in an arrange-

ment of magnetic molecules.

Ampere's theory admits of an explanation of diamagnetism,

which was given by AVeber. He assumes that all diamagnetic

molecules are capable of carrying molecular currents, but that those

currents, under ordinary conditions, do not exist in them. When,
however, a diamagnetic body is moved up to a magnet an induced

current due to tiie motion (§ 306) is set up in each molecule, and

in such a direction that the molecules become elementary magnets,

with their poles so directed towards the magnet in the field that

there is repulsion between them. If this theory be true, it ought

to be possible, as suggested by Maxwell, to lessen the intensity of

magnetization of a body magnetized by induction, by increasing the

strength of the field beyond a certain limit. No such effect has as

yet been observed

We may state the facts of magnetism in a way which is more in

accordance with our view that the current is the result of actions

in the medium by saying that each magnetic molecule is the origin

of a certain definite number of tubes of induction. The existence
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of these tubes is supposed to be connected with the peculiar motions

whicli characterize the molecule of the magnetic body. Diamagnet-

ism would then be explained by supposing a similar motion enforced

upon the molecules of the other bodies in the field to an extent in

each which depends upon the nature of the body.

300. The Hall Eflfect.—Hitherto it has been assumed that when

currents interact, it is their conductors alone which are affecte'\

and that the currents in the conductors are not in any way altered.

Hall has, however, discovered a fact which seems to show that cur-

rents may be displaced in their conductors. If the two poles of a

voltaic battery be joined to two opposite arms of a cross of gold-foil

mounted on a glass plate, and if a galvanometer be joined to the

other two arms at such points that no current flows through it, and

if a magnet pole be brought opposite the face of the cross, a per-

manent current will be indicated by the galvanometer. The same

effect appears in the case of other metals. The direction of the

permanent current and its amount differ under the same circum-

stances for different metals. The coefficieut which represents the

amount of the Hall effect in any metal is called the rotational

coefficient of that metal.

Since the rotational coefficients of such metals as have been

tested agree in sign and in relative magnitude with their thermo-

electric powers (§316), it is argued by Bidwell, v. Ettingshausen,

and others that the Hall effect is due to thermoelectric action.

301. Currents in a Magnetic Field Due to Inequalities of Temper-

ature.—If a thin strip of bismuth be placed in a magnetic field so

that the magnetic force is normal to its surface, and if one of the

edges of the strip be kept at a higher temperature than the other

and the two ends of the strip joined by a wire in which a galvanom-

eter is inserted, a continuous current will flow through the circuit.

The direction of this current changes when the direction of the

flow of heat changes or when the magnetic field is reversed. The

strength of the current is different in different metals. These facts

were discovered by v. Ettingshausen. Conversely, if a current be

sent through the strip of bismuth placed in the magnetic field, there
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will be a flow of heat across the strip and the temperatures of its

edges will differ. This difference of temperature is due to a cooling

of one edge of the strip. These effects are not reversible in the

sense in which the Peltier effect and the thermoelectric effect are

reversible, but J. J. Thomson has shown that they are consistent

with each other.

302. Measurement of Current.—Instruments which are used to

detect the presence of a current, or to measure its strength, by

means of the deflection of a magnetic needle, are commonly called

gah'anometers.

The simplest form of the galvanometer is the instrument called

the Schweif/ger's inultiplier. It consists of a flat spool upon which

an insulated wire is Avound a number of times. The plane of the

coils is vertical, and usually also coincides with the plane of the

magnetic meridian. A magnetic needle is suspended in the interior

of the spool. When a current is passed through the wire, the needle

is deflected from the magnetic meridian. Usually, in order to make

the indications of the apparatus more sensitive, a combination of

two needles is used. They are joined rigidly together, so that when

suspended the lower one hangs in the interior of the spool, and the

other in the same plane directly above the spool. These needles are

magnetized so that the positive end of one is above the negative

end of the other. If they are of nearly equal strength, such a com-

bination will have very little directive tendency in the earth's mag-

netic field. It is therefore called an astatic system. When a current

pas.ses in the wire, however, the lines of force due to the current

form closed curves passing through the coil, and both needles tend

to turn in the same direction. Since the earth's field offers almost

no resistance to this tendency, an astatic system will indicate the

presence of very feeble currents. The apparatus here described is

no longer used to measure currents, but only to detect their pres-

ence and direction.

The tangent galvanometer is that form of galvanometer which

is commonly used to measure electrical currents in electromagnetic

units. We will consider it only in one of its simplest forms. In



358 ELEMENTARY PHYSICS. [§ 303

this form it consists of a circular conductor set up in the earth's

magnetic field, so that its plane is parallel with the lines of force, and

having a small magnet placed at its centre. The magnet is free to

swing in the horizontal plane. If the current i be sent through the

circuit, the couple which it will exert on the magnet, on the sup-

position that the magnet is so short that the force at its poles is the

27iiM
same as that at its centre, is —-— cos0 (§ 296), where M repre-

sents the magnetic moment of the magnet, and tiie angle made

by the axis of the magnet witli the direction of the lines of force.

The couple exerted by the field upon the magnet and tending to

turn it in the opposite sense is //if sin 0, where H represents the

horizontal intensity of the earth's magnetism. Equilibrium will

obtain, and the magnet will be at rest, when these couples are equal,

27ciM
or when cos (p = HMsin 0. From this equation we obtain

. Hr
I = -- tan 0. (104)

The current is therefore proportional to the tangent of the angle

of deflection. All the quantities in this expression for current, ex-

cept //, are either numbers or lengths and may be directly measured
;

and // may be determined in absolute units (§ 244). The tangent

galvanometer therefore permits of the determination of current

strength in absolute units.

In the more complicated forms of the instrument, the dimen-

sions and position of its parts are so adjusted that the corrections

rendered necessary by the impossibility of fulfilling the conditions

assumed in the simple case may be either calculated or avoided.

Weber's electro-dynamometer is an instrument with fixed coils

like those of the tangent galvanometer, but with a small suspended

coil substituted for the magnet. The small coil is usually suspended

bv the two fine wires through which the current is introduced into

it, and the moment of torsion of this so-called bifilar suspension

enters into the expression for the current strength. The same cur-

rent is sent through the fixed and the movable coils, and a measure-
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ment of its strength can be obtained in absolute units, as witli the

tangent galvanometer. By a proper series of experiments, this

measurement is made independent of the horizontal intensity of the

earth's magnetism. When the current is reversed m the instru-

ment, the couple tending to turn the suspended coil does not

change. If the effects of terrestrial magnetism can be avoided, the

electro-dynamometer can therefore be used to measure rapidly

alternating currents.

303. Electromotive Force.—The electromotive force in a circuit

is defined as before (§ 273), as the power of establishing or sustain-

ing the conditions which make the expenditure of energy in the

circuit possible,and it is measured, as before, by the energy expended

in the circuit. If W represent the energy expended in unit time,

we have W = ie, where e is the electromotive force measured in

electromagnetic units. Since we may measure current in electro-

magnetic units by the tangent galvanometer, this relation enables

us to measure electromotive force in absolute electromagnetic

units.

The electromagnetic unit of electromotive force is that electro-

motive force which will produce the expenditure of one unit of

energy in unit time, when the electromagnetic unit of current is

traversing the conductor.

The dimensions of electromotive force in the electromagnetic

system are obtained from the fact that the electromotive force

multiplied by the current strength equals the rate of work. The

dimensions of rate of work are -7^ so that [e]
AT

VW
Jr.

In practice another unit is used, called the volt. It contains

10^ C. G. S. electromagnetic units.

It will be shown subsequently (§ 310) that the unit of electro-

motive force may be defined by the effects produced in a circuit

by its motion m a magnetic field, the two definitions being of

course consistent with each other.
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304. Resistance.—As in the discussion of § 274, we may define

the ratio of the electromotive force to the current in any circuit as

the resistance in that circuit. The eledromagnetic unit of resistance

is the resistance of tliat circuit in whicli unit electromotive force

gives rise to unit current, when both these quantities are measured

in electromagnetic units.

In practice another unit of resistance is used, called the ohm.

The triie ohm contains 10° C. G. S. electromagnetic units. The

dimensions of resistance in the electromagnetic system are [r] =

\ I"
^^"*

The standard of resistance, usually called the B. A. unit, deter-

mined by the committee of the British Association, has a resistance

somewhat less than the true ohm as it is here defined. In practical

work resistances are used which have been compared with this

standard. The Electrical Congress of 1884 defined the legal ohm

to be " the resistance of a column of mercury of one square milli-

metre section and of 106 centimetres of length at the temperature

of freezing." This definition has since been modified by increas-

ing the length of the mercury column to 106.3 cm. The legal ohm

contains 1.0112 B.A. units. Boxes containing coils of wire of

definite resistance, so arranged that by difi'erent combinations of

them any desired resistance may be introduced into a circuit, are

called resistance boxes or rheostats.

305. Kirchhoff's Laws.—In circuits which are made up of several

parts, forming what may be called a network of conductors, there

exist relations among the electromotive forces, currents, and resist-

ances in the different branches, which have been stated by Kirch-

hoff in a way which admits of easy application.

Several conventions are made with regard to the positive and

negative directions of currents. In considering the currents meet-

ing at any point, those currents are taken as positive which come

up to the point, and those as negative which move away from it. In

travelling around any closed portion of the network, those currents

are taken as positive which are in the direction of motion, and those
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as negative which are opposite to the direction of motion. Fur-

ther, those electromotive forces are positive which tend to set up

positive currents in their respective branches. "With these con-

ventions Kirchlioff's laivs may be stated as follows:

1, The algebraic sum of all the currents meeting at any point

of junction of two or more branches is equal to zero- This first

law is evident, because, after the current has become steady, there

is no accumulation of electricity at the junctions.

2. The sum, taken around any number of branches forming a

closed circuit, of the products of the currents in those branches and

their respective resistances is equal to the sum of the electromotive

forces in those branches. This law can easily be seen to be only a

modified statement of Ohm's law.

These lav/s may be illustrated by their application in a form of

apparatus known as Wheatstone's h'idge. The circuit of the Wheat-

stone's bridge is made up of six branches. An end of any branch

meets two, and only two, ends of

otlier branches, as shown in Fig. 87.

In the branch 6 is a voltaic cell

with an electromotive force E. In

the branch 5 is a galvanometer

which will indicate the presence of

a current in that branch. In the

other branches are conductors, the
Fto 87

resistances of which may be called

respectively )\, i\, t\, )\.

From Kirchlioff's first law the sum of the currents meeting at

the point C is ^, + i^ ~\- i^= 0, and of those meeting at the point

I) is ij + i\+ i^= 0. By the second law, the sum of the products

ir in the circuit J Z)C is i^i\-\- i^r^-i- i\r^= 0, and in the circuit

DfJC is i^r^-^- i.^7\ -\- ij^— 0, since there are no electromotive

forces in those circuits. If we so arrange the resistances of the

branches 1, 2, 3, 4 that the galvanometer shows no deflection, the

current i^ is zero, and these equations give the relations i\= — /,,

/,= — i^, i^r^= — i^r^, i^i\= — ij-^. From these four equations
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follows at once a relation between the resistances, expressed in the

equation
r,r, = r^r,. (105)

If, therefore, we know the value of r^ and know the ratio of r, to

i\ , we may obtain the value of r,.

This method of comparing resistances by means of the Wheat-

stone's bridge is of great importance in practice. By the use of a

form of apparatus known as the British Association bridge the

method can be carried to a high degree of accuracy. In this form of

the bridge, the portion marked ACB (Fig. 87) is a straight cylin-

drical wire, along which the end of the branch CD is moved until a

point C is found, such that the galvanometer shows no deflection.

The two portions of the wire between C and A, and C and B, are

then the two conductors of which the resistances are r, and r,, and

these resistances are proportional to the lengths of those portions

(§ 275). The ratio of r, to r, is therefore the ratio of the lengths

of wire on either side of C, and only the resistance of r^ need be

known in order to obtain that of r^.

It is often convenient in determining the relations of current

and resistance in a network of conductors to use Ohm's law direct-

ly, and consider the difference of potential between the two points

on a conductor as equal to the product ir. Wlien a part of a cir-

cuit is made up of several portions which all meet at two points A
and B, the relation between the wliole resistance and that of the

separate parts may be obtained easily in this way. For convenience

in illustration we will suppose

the divided circuit (Fig. 88)

made up of only three portions,

1, 2, 3, meeting at the points A
and B, and that no electromotive

force exists in those portions. Then the difference of potential be-

tween A and B is F^ — V^ = i^r^ = i^r^ = i^r^. We liave also by

Kirchhoff's first law — i^ = i, -f i^ -\-i^. By the combination of

these equations we obtain

-i. = (r.-F,)(l + i +
J-).

(106)
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The current in the divided circuit equals the difLerence of po-

tential between A and B multiplied by the sum of the reciprocals

of the resistances of the separate portions. If we set this sum equal

to -.and call r the resistance of the divided circuit, we mav say

that the reciprocal of the resistance of a divided circuit is equal to

the sum of the reciprocals of the resistances of the separate por-

tions of the circuit. When there are only two portions into which

the circuit is divided, one of them is usually called a sliunt, and

the circuit a shunt circuit.

The rules for joining up sets of voltaic cells in circuits so as

to accomplish any desired purpose may be discussed by the same

method. Let us suppose that there are n cells, each witli an elec-

tromotive force e and an internal resratance r, and that the external

resistance of the circuit is s. If m be a factor of n, and if we join

up the cells with the external resistance so as to form a divided cir-

cuit of m parallel branches, each containing — cells, we shall have

for the electromotive force in such a circuit — , and for the resist-m
nv

ance of the circuit s -\ 5. The current in the circuit is thereforem

i = —-—
. Two cases may arise which are common in practice.

7)fs + 117-
-^ -^

The resistance s of the external circuit may be so great that, in

comparison with nfs, nr may be neglected. In that case i is a maxi-

mum when m = 1, that is, when the cells are arranged tandem, or

in series, with their unlike poles connected. On the other hand, if

trfs be very small as compared with nr, it may be neglected, and i

becomes a maximum when m = oi, that is, when the cells are

arranged abreast, or in multiple arc, with their like poles in con-

tact.

306. Induced Currents.—It was shown in § 277 that the move-

ment of a magnet in the neighborhood of a closed circuit vrill give

rise, in general, to an electromotive force in the circuit, and that
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the current due to this electromotive force will be in the direction

opposite to that current which, by its action upon the magnet,

would assist the actual motion of the magnet. This current is

called an induced current. From the equivalence between a

magnetic shell and an electrical current, it is plain that a similar

induced current will be produced in a closed circuit by the move-

ment near it of an electrical current or any part of one. Since the

joining up or breaking the circuit carrying a current is equivalent

to bringing up that same current from an infinite distance, or

removing it to an infinite distance, it is further evident that similar

induced currents will be produced in a closed circuit when a circuit

is made or broken in its presence.

The demonstration of the production of induced currents in

§ 277 depends upon the assumption that the path of the magnet

pole is such that work is done upon it by the current assumed to

exist in the circuit. The potential of the magnet pole relative to

the current is changed.

The change in potential from one point to another in thd

magnetic field due to a closed current is (§ 290) i{fL' — /2 -f 47rw),

and the work done on a magnet pole m, in moving it from one

point to another, is mi{£l' — X2 -f- '^^n). In the demonstration ot

§ 277 we may substitute wi(.Q' — £1 -\- Ann) for A, and, provided

the change in potential be uniform, we obtain at once the expres-

sion '^ 7—^^^^ ' for the electromotive force due to the
z

movement of the magnet pole. If the change in potential be not

uniform, we may conceive the time in which it occurs to be

divided into indefinitely small intervals, during any one of which,

t, it may be considered uniform. Then the limit of the expres-

m{n'— n -\- 4:7in)
sion ~

, as t becomes indefinitely small, is the

electromotive force during that interval.

The current strength due to this electromotive force is

., _ m{n' - n + Artn)
'
~

H •
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If the induced current be steady, the tot

flowing in the circuit is expressed by i't —

If the induced current be steady, the total quantity of electricity

m{fV — /I + 47r«)

r

The total quantity of electricity flowing in the circuit depends,

therefore, only upon the initial and final positions of the magnet

pole, and the number of times it passes through the circuit, and

not upon its rate of motion. The electromotive force due to the

movement of the magnet, and consequently the current strength,

depends, on the other hand, upon the rate at which the potential

changes with respect to time.

A more general statement of the mode in which induced cur-

rents are produced may be given in terms of the changes in the

number of tubes of induction which pass through the circuit.

When the number of tubes of induction which pass through a

circuit is altered, an electromotive force is induced in the circuit

which is proportional to the rate of change of the number of tubes

of induction. This law may be easily proved, as in the special case

already considered, if the change in the number of tubes of induc-

tion be produced by a movement of magnet poles or their equivalents,

and not by changes in other currents in the field; in case there are

other currents in the field, the interacfion'? between them introduce

conditions which cannot be discussed by elementary methods. The

law, however, is a perfectly general one, and holds for all cases in

which the tubes of induction passing through the circuit change in

number.

While we cannot, by elementary methods, determine exactly the

laws of the production of an induced current in a circuit by changes

in the currents in neighboring circuits, we may yet form some idea

of the induced current by considering the magnetic field about the

circuits. Suppose that a current traverses circuit 1 and that there

is no current in circuit 2; circuit 2 encloses a number of tubes of

induction due to the current in circuit 1. If the current in circuit

1 be suddenly interrupted, these tubes of induction are removed

from circuit 2, and from the dynamical principle that a change is

resisted by the non-conservative forces to which it gives rise, there

will arise in circuit 3 a current tending to maintain the tubes
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within it. If the two circuits are parallel, this current will be in

the same sense as that in circuit 1 . The current induced in circuit

2 gives rise to tubes of induction which enter circuit 1, and their

entrance into circuit 1 is resisted by a current tending to repel them
from circuit 1, or to set up tubes of induction in the opposite sense.

Thus there will be a small current hi circuit 1 in the opposite sense

to that originally in it and the current in circuit 1 will therefore

diminish more rapidly than if circuit 2 were not present. On the

other hand, if neither circuit carries a current, and a current be

suddenly impressed on circuit 1, the tubes of induction to which it

gives rise will enter circuit 2, and will be resisted by a momentary

current in circuit 2 tending to repel them, or to set up tubes of

induction in the opposite sense. Thus the induced current in

circuit 2 in this case, if the two circuits are parallel, is in the oppo-

site sense to that in circuit 1. This current in circuit 2 will in turn

set up tubes of induction which enter circuit 1 and are there resisted

by a momentary small current which will be in the same sense as

that impressed upon circuit 1. Thus the presence of circuit 2 v/ill

temporarily increase the current m circuit 1.

The fact that induced currents are jiroduced in a closed circuit

by a variation in the number of lines of magnetic force included in

it was first shown experimentally by Faraday in 1831. He placed

one wire coil, in circuit with a voltaic battery, inside another which

was joined with a sensitive galvanometer. The first he called the

primary, the second the secondary, circuit. When the battery

circuit was made or broken, deflections of the galvanometer were

observed. These were in such a direction as to indicate a current

in the secondary coil, when the primary circuit was made, in the

opposite direction to that in tlie primary, and when the jirimafy

circuit was broken, in the same direction as that in the primary.

When the positive pole of a bar magnet was thrust into or with-

drawn from the secondary coil, the galvanometer was deflected.

The currents indicated were related to the direction of motion of

the positive magnet pole, as the directions of rotation and propul-

sion in a left-handed screw. The direction of the induced currents
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in these experiments is easily seen to be in accordance with the law

above stated. A simple statement, known as Lenz'a law, which

enables us to determine the sense of an induced current produced

by the motion of a magnet or a circuit, is as follows : When an

induced current is produced, it is always in such a sense as to oppose

the action which produces it. This is equivalent to the statement

that the induced current tends to oppose the change in the number
of tubes of induction which pass through the circuit.

The case in which an induced current in the secondary circuit

is set up by making the primary circuit is, as has been said, an

extreme case of the movement of the primary circuit from an infinite

distance into the presence of the secondary. The experiments of

Faraday and others show that the total quantity of electricity

induced when the primary circuit is made is exactly equal and oppo-

site to that induced when the primary circuit is broken. They also

show that the electromotive force induced in the secondary circuit

is independent of the materials constituting either circuit, and is

proportional to the current strength in the primary circuit. These

results are consistent with the formula already deduced for the

induced current.

307. Currents of Self-induction.—If the current in a circuit

be changed, the number of tubes of induction which pass through

the circuit will vary, and an induced current will be set up in the

circuit. If there be originally no current in the circuit and if an
electromotive force be suddenly impressed upon it, so that th« cur-

rent which finally exists in the circuit is i, the number of tubes of

induction developed through the circuit is equal to Li (§ 293).

Let t be the time required for the current to rise to its full value

;

then the average electromotive force induced in the circuit by the

increase in the number of tubes of induction which pass through it

will be —-, and the average current will be —-. The total current
t rt

Li
due to this induced electromotive force is therefore — , and is op-

r

posed, in sense, to the current impressed upon the circuit. If the

circuit be suddenly broken, the same expression represents the total
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induced current due to the loss of the tubes of induction which pass

through the circuit; tliis current is in the same sense as the current of

the circuit. Since by Ohm's law i = -, where e is the electromotive

force impressed upon the circuit, the average electromotive force is.

in both these cases --. Now t. the time required for the current
rt

^

to rise from zero to its full value, or to sink from its full value to

zero, is very small, and the average electromotive force of induction

may be much, larger than the electromotive force of the circuit.

When the current is made, this induced electromotive force

diminishes the electromotive force of the circuit; so that the current

is established gradually and not instantaneously. The time required

to establish the current depends upon the resistance and self-in-

duction of the circuit. When the circuit is broken, the electro-

motive force of induction is in the same sense as that of the circuit,

and produces a momentary current which is much greater than the

steady current of the circuit. The induced electromotive force is

frequently so high as to cause the current to leap across the gap

formed where the circuit is broken, and to give rise to a spark at

that gap. The induced current thus formed is often called the

extra current or the current of self-induction. It should be noted

that the induced electromotive force is proportional to the coefficient

of self-induction of the circuit. The establishment of a current in

the circuit may therefore be retarded and the extra current at the

break may be increased by so arranging the circuit as to increase its

coefficient of self-induction; while by so winding the circuit that

its coefficient of self-induction is reduced to a minimum these effects

may be almost entirely avoided. A wire doubled on itself, and

coiled so that a current in it always passes in opposite directions

through immediately contiguous portions of the wire, will mani-

festly have a very small coefficient of self-induction ; such a coil is

called a non-inductive coil.

308. Alternating Currents.—If the electromotive force in a cir-

cuit be made to vary, especially if it be made to change in sense,

the tubes of induction which pass through the circuit will also vary,
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and the curreufc iu the circuit will vary in a way dependent not

only on the variations in the electromotive force, but also on the

currents produced by induction. The case of the greatest interest

and importance is that in which the electromotive force varies

periodically; in this case the current also varies ijeriodically. It

may be shown, by a method which cannot be given here, that the

maximum value of the current is never as great as that deduced

from the maximum electromotive force on the supposition that the

current follows Ohm's law. The formula which expresses the maxi-

mum value of the current is —
., ^„ , , where e is the maximum

r + -
rp i

electromotive force and T the period of the alternation. The de-

nominator of this expression is a quantity of the same order as

resistance, but it involves, besides the resistance of the circuit, its

coefficient of self-induction and the period. In case is very

large in comparison with r^, the current has its maximum value at

the time when the electromotive force is zero, and is zero when the

electromotive force is a maximum. The theory further shows that

the rate of propagation of the electrical disturbance along the con-

ductor is a function of the period of the alternation, being less

when the period is greater. When the period is infinitesimal, or in

general when it is very small, the velocity is equal to the velocity v,

the ratio between the electrostatic and the electromagnetic units

(§ 311), or to the velocity of light. The currents developed in the

conductor, by rapid alternations of electromotive force, are not the

same for all parts of the cross-section of the conductor, but diminish

from the outside of the conductor inwards. For very rapid alter-

nations the currents exist only in a small layer near the surface of

the conductor. These deductions of theory have been fully con-

firmed by experiment.

309. Apparatus employing Induced Currents.—The production

of induced currents by the relative movements of conductors and

magnets is taken advantage of in the construction of pieces of
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apparatus which are of great importance not only for laboratory use

but in tlie arts.

The telephonic receiver consists essentially of a bar magnet

around one end of which is carried a coil of fine insulated wire. In

front of this coil is placed a thin plate of soft iron. When the coils

of two such instruments are joined in circuit by conducting wires,

any disturbance of the iron diaphragm in front of one coil will

change the magnetic field near it, and a current will be set up in

the circuit. The strength of the magnet in the other instrument

will be altered by this current, and the diaphragm in front of it will

move. When the diaphragm of the first instrument, or transmitter,

is set m motion by sound waves due to the voice, the induced cur-

rents, and the consequent movements of the diaphragm of the

second instrument, or receiver, are such that the words spoken into

the one can be recognized by a listener at the other.

Other transmitters are generally used, in which the diaphragm

presses upon a small button of carbon. A current is passed Irom a

battery through the diaphragm, the carbon button, and tiie rest of

the circuit, including the receiver. When the diaphragm moves,

it presses upon the carbon button, and alters the resistance of the

circuit at the point of contact. This change in resistance gives rise

to a change in the current, and the diaphragm of the receiver is

moved. The telephone serves in the laboratory as a most delicate

means of detecting rapid changes of current in a circuit.

The various forms of magneto-electrical and dynamo-electrical

machines are too numercus and too complicated for description. In

all of them an arrangement of conductors, usually called the arma-

ture, is moved in a powerful magnetic field, and a suitable arrange-

ment is made by which the currents thus induced may be led oflf

and utilized in an outside circuit. The magnetic field is sometimes

established by permanent magnets, and the machine is called a

:magneto-machine. In most cases, however, the circuit containing

the armature also contains the coils of the electromagnets to which

the magnetic field is due. When the armature rotates, a current

starts in it, at first due to the residual magnetism of some part of
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the machine: this cuiTent passes through the field magnets and

increases the strength of the magnetic field. This in turn reacts

upon the armature, and the current rapidly increases until it attains

a maximum due to the fact that the magnetic field does not increase

proportionally to the current which produces it. Such a machine

is called a dynamo-machine. By suitable arrangements of the con-

ductors which lead the current from the machine, either direct or

alternating currents may be obtained.

The induction coil, or Ruhmkorff''s coil, consists of two circuits

wound on two concentric cylindrical spools. The inner or primary

circuit is made up of a comparatively few layers of large wire, and

the outer, or secondary, of a great number of turns of fine wire.

Withm the primary circuit is a bundle of iron wires, which, by its

magnetic action, increases the electromotive force of the induced

current in the secondary coil. Some device is employed by which

the primary circuit can be made or broken mechanically. The

electromotive force of the induced current is proportional to the

number of windings in the secondary coil, and as this is very great

the electromotive force of the induced current greatly exceeds that

of the primary current. The electromotive force of the induced

current set up when the primary circuit is broken is further

heightened by a device proposed by Fizeau. To two points in the

primary circuit, one on either side of the point where the circuit is

broken, are joined the two surfaces pi a condenser. When the

circuit is broken, the extra current, if the condenser be not intro-

duced, forms a long spark across the gap, and so prolongs the fall

of the primary current to zero. The electromotive force of the

induced current is therefore not so great as it would be if the fall

of the primary current could be made more rapid. When the con-

denser is introduced, the extra current is partly spent in charging

the condenser, the difference of potential between the two sides of

the gap is not so great, the length of the spark and consequently

the time taken by the primary current to become zero is lessened,

and the electromotive force of the induced current is proportionally

increased.
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310. Determination of the Unit of Resistance.—If the ciicuit

considered iu § 306 move from a point where its potential relative

to the magnet pole is nifl' to one where it is mil, provided that the

magnetic jwle do not pass tlirough the circuit, and that the move-

ment be so carried out that the induced current is constant, the

electromotive force of the induced current is ^^ ^. If

the movement take jDlace in unit time, and if m{(l' —£1) also equal

unity, the electromotive force in the circuit is the unit electromo-

tive force.

The expression m{fl' —fl) is equivalent to the change in the

number of tubes of induction passing through the circuit in the

positive direction. More generally, then, if a circuit or part of a

circuit so move in a magnetic field that, in unit time, the number

of tubes of induction passing through the circuit in the positive

direction increase or diminish by unity, at a uniform rate, the

electromotive force induced is unit electromotive force.

This definition is consistent with the one given in § 303. For,

the energy of a circuit carrying the current /, due to the field in

which it is placed, equals iN, and the change of this energy in

unit time is the energy expended in the circuit in that time. But

this change in energy is i -, , and is the electromo-

tive force, so that ie represents the energy expended in unit time.

A simple way in which the problem can be presented is as

follows: Suppose two parallel straight conductors at unit distance

apart, joined at one end by a fixed cross-piece. Suppose the circuit

to be completed by a straight cross-piece of unit length which can

slide freely on the two long conductors. Supjiose this system placed

in a magnetic field of unit intensity, so that the lines of force are

everywhere perpendicular to the plane of the conductors. Then, if

we suppose the sliding piece to be moved with unit velocity perpen-

dicular to itself along the parallel conductors, the electromotive

force set up in the circuit will be the unit electromotive force, and

if it move with any other velocity v, the electromotive force will

be equal to v.
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If we now insert a galvanometer in the fixed cross-piece, and

suppose the resistance of all the circuit except the sliding piece to

be negligible, and move the sliding piece at such a rate that the

current in the galvanometer is unity, we have the resistance of the

sliding piece determined from the velocity with whicli it moves.

For, by Ohm's law, i = - , and since i = 1 and e — v, we have

Such an arrangement as that here described is of course impos-

sible in practice, but it embodies the principle of the method

actually used to determine the unit of resistance by the Committee

of the British Association. In their method, a circular coil of wire,

in the centre of which was suspended a small magnetic needle, was

mounted so as to rotate with constant velocity about a vertical

diameter. From the dimensions and velocity of rotation of the coil

and the intensity of the earth's magnetic field, tlie induced electro-

motive force in the coil was calculated. The current in the same

coil was determined by the deflection of the small magnet. The

ratio of these two quantities gave the resistance of the coil.

311. Ratio between the Electrostatic and Electromagnetic

Units.—When the dimensions of any electrical quantity derived

from its electrostatic definition are compared with its dimensions

derived from its electromngnetic definition, the ratio between them

is always of the dimensions of some power of a velocity. The i-atio

between the electrostatic and electromagnetic unit of any electrical

quantity is, therefore, some ])Ovver of a velocity. If this ratio be

obtained for any set of units, the number expressing it will also

express some power of a velocity. This velocity is an absolute

quantity or constant of Nature. Whatever changes are made in

the units of length and time, the number expressing this velocity

in the new units will also express the ratio of the two sets of

electrical units.

This ratio, which is called v, can be measured in several ways.

The method which was first used, by Weber and Kohlrausch,

depends upon the comparison of a quantity of electricity measured
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in the two systems. From the dimensions of current in tlie elec-

tromagnetic system we have the dimensions of quantity [q] =
[iT] = M^L^. The dimensions of quantity in the electrostatic

system are [Q] = M^L^T~\ The ratio of these dimensions is

- = LT'\ or, the number of electrostatic units of quantity in

one electromagnetic unit is the velocity v.

In Weber and Kohlrausch's method the charge of a Leyden jar

was measured in electrostatic units by a determination of its capac-

ity and the difference of potential between its coatings. The

current produced by its discharge through a galvanometer was

used to measure the same quantity in electromagnetic measure.

Thomson determined v by a comparison of an electromotive

force measured in the two systems. He sent a current thi-ough a

coil of very high known resistance, and measured it by an electro-

dynamometer. The electromagnetic difference of potential be-

tween the two ends of the resistance coil was then equal to the

product of the current by the resistance. The electrostatic differ-

ence of potential between the same two points was measured by an

absolute electrometer. From the dimensional formulas we have

— = —i—5 =1 L~^T. The number of electromagnetic units

of electromotive force in one electrostatic unit is v. The ratio of

the numbers expressing the electromagnetic and the electrostatic

measures of the electromotive force in Thomson's experiment is

therefore the quantity v. This experiment was carried out by

Maxwell in a different form, in which the electrostatic repul-

sion of two similarly charged disks was balanced by an electro-

magnetic attraction between currents passing through flat coils on

the back of the two disks.

Other methods, depending on comparisons of currents, of

resistances, and other electrical quantities, have been employed.

The methods described are historically interesting as being the first

ones used. The values of v obtained by them differed rather

widely from one another. Kecent determinations, however, give
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more consistent results. It is found that v, considered as a

velocity, is about 3.10'° centimetres in a second. This velocity

agrees very closely with the velocity of light.

An experiment was executed by Rowland in which this velocity

V was obtained by comparison with the actual velocity of a moving

charge. The principle of the experiment is as follows: If we con-

sider an indefinitely extended plane surface on which the surface

density of electrification is a measured in electrostatic units, or -

measured in electromagnetic units, since the ratio of the electro-

static to the electromagnetic unit of quantity is v; and conceive it

to move in its own plane with a velocity x; the charge moving

with it may be considered as the equivalent of a current in that

surface, the strength of which, measured by the quantity of elec-

tricity which crosses a line of unit length, perpendicular to the

direction of movement, in unit time, is —^. The force due to such
V

a current on a magnet may be calculated. Conversely, if the force

on the magnet be observed, and the surface density a and the

velocity x be also measured, the value of v may be calculated. The

probability of such an action as the one here described was stated

by Maxwell.

The experiment by which Rowland verified Maxwell's view con-

sisted in rotating a disk cut into numerous sectors, each of which

was electrified, under an iistatic magnetic needle. During the

rotation of the disk, a deflection of the needle was observed, in the

same sense as that in which it would have moved if a current had

been flowing about the disk in the direction of its rotation. From

the measured values of the deflecting force, of the surface density

of electrification on the disk, and the velocity of rotation, Rowland

calculated a value of v which lies between those given by Weber and

Maxwell.

312. Oscillatory Discharge of a Condenser.—If a condenser be

discharged through a circuit, the current in the circuit will mani-

festly depend on the original difference of potential between the
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plates of the condenser, on the resistance of the circuit, and ori its

self-induction. In case the resistance of the conductor is greater

than a certain value, determined by the self-induction of the circuit

and the capacity of the condenser, the current will decrease steadily

from its value at the beginning of the discharge to zero. But in

most cases this condition is not fulfilled, and in these cases the cur-

rent assumes another character. It goes through a series of alter-

nations in opposite senses, which are periodic in the sense that the

successive maximum values of the current follow each other at equal

intervals of time, though the absolute values of these maxima

diminish very rapidly. The discharge in this case is called an

oscillatory discharge. That the discharge of an ordinary condenser

is of this nature was discovered by Joseph Henry, from the manner

in which needles were magnetized by the discharge passed through

small coils of wire. The theory was afterwards indicated by

AVilliam Thomson, and his conclusions were fully confirmed by

the investigations of Feddersen. Feddersen observed the spark

produced by the discharge in a rotating mirror, and found that

instead of giving a single line of light in the mirror, it gave a series

of lines at equal distances apart. He showed that the period of the

oscillation could be changed by changing the conditions of the

circuit, and that by sufficiently increasing the resistance without

correspondingly increasing the self-induction, the period of the

oscillations was increased till finally the discharge ceased to exhibit

any oscillations whatever.

313. Electromagnetic Waves.—According to Maxwell's theory

of electricity, an oscillatory discharge of the sort just described

ought to set up a series of disturbances in the medium surrounding

the circuit, which proceed outward from the circuit in the manner

of waves set up in any medium by a disturbance at a point in it;

such disturbances may be called electromagnetic waves. The exist-

ence of such waves was demonstrated by Hertz, and the examination

of their properties by him and by others has shown that they con-

form practically in all respects to the predictions of the theory. The

arrangement used by Hertz to set up electromagnetic waves, called
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by liim the vibrator, consisted, in a typical form, of two metal

plates set up in the same plane, each carrying a rod on the end of

which was a small sphere; the plates were so placed that the spheres

were near together, with a short air-gap left between them. When
the plates were joined to the two terminals of a Holtz machine or

to the two terminals of an induction-coil, a series of sparks passed

across the air-gap between the spheres. It may be shown that the

electrical oscillations in the sparks are practically independent of

the peculiarities of the Holtz machine or the induction-coil, and

depend only on the capacity of the plates and the resistance and self-

induction of the plates and rods carrying the spheres. The electro-

magnetic waves originate at the spark-gap. The instrument used

by Hertz to detect the waves, called by him the resonator, consisted

simply of a plane circuit broken at one point by a very small gap

;

the presence of an electrical disturbance in this circuit could be

detected by the appearance of sparks in the gap. The dimensions

of the resonator were so adjusted that the period of the electrical

oscillations which would originate in it if a momentary discharge

were sent through it was the same as the period of the discharge of

the vibrator. The electromagnetic waves coming fi'om the vibrator

set up electrical disturbances in the resonator, which were detected

by the passage of sparks across the gap.

By the aid of these instruments, Hertz first proved the existence

of electromagnetic waves; he then impressed upon a wire an elec-

trical oscillation of the same period as that sent through the air

around the wire, and compared the rate of propagation of the two

disturbances. Hertz's own experiments were misleading, for reasons

which perhaps cannot now be given, but Sarasin and de la Eive,

working under more favorable circumstances, reached the conclu-

sion, which was accepted by Hertz, that the velocity of propagation

of the wave in the wire was the same as that in air, when the periods

of vibrations were very small. This result is in accordance with

theory. It follows immediately from the view we have taken that

the current is due to the movement of tubes of force through tne

dielectric surroundino- the circuit.
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Hertz showed that the electromagnetic waves were reflected from

metal surfaces according to tlie law for the reflection of light

(§ 333), and that nodal points or points of interference between the

waves advancing from the vibrator and those returning from the

mirror could be detected, and thus the wave-length of the disturb-

ance determined. If the wave-length and the period be known,

the velocity of the wave may be calculated ; an approximate calcula-

tion of the period was made from the dimensions of the vibrator,

and the velocity of the waves determined to be of the same order of

magnitude as the velocity of light. Subsequent experiments, under

more favorable conditions and with vibrators which permit a more

precise calculation of the period, have confirmed the conclusion of

theory, that the velocity of very short electromagnetic waves is the

same as the velocity of light.

Hertz also proved that the electromagnetic waves are refracted

(§ 334) when they pass from one medium into another. By the

use of a lar^e prism of pitch he obtained a considerable deviation of

the waves and was able to calculate the index of refraction of pitch

for such waves; he obtained a number of the same order of magni-

tude as the index of refraction of ordinary refracting bodies for

light.

Owing to the way in which these waves are generated by an

oscillatory discharge in one line, the waves which proceed from them

are polarized (§ 376), that is, the electromotive forces transmitted

through the air have always the same direction. Hertz interposed

in the path of the waves a screen made of a number of parallel

wires; he found that when the wires were parallel with the line of

the discharge or with the electromotive forces in the successive

waves, the waves were almost entirely absorbed by the wires. If,

on the other hand, the wires were set so as to be at right angles to

the electromotive forces in the waves, the waves passed through the

screen without modification. The screen therefore exhibits a prop-

erty analogous to that of tourmaline in polarized light (§ 379).

Righi and others have observed similar effects produced by the

interposition of blocks of wood in the path of the waves, which
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absorbed the waves in different degrees according as the grain of the

wood was i^arallel with the electromotive forces of the waves or was

transverse to them.

Trouton observed that, when the electromagnetic waves were

directed obliquely against a thick stone wall, the waves were, in

general, partly reflected and partly transmitted. The ratio between

the intensity of the reflected and transmitted waves depended upon

the obliquity and upon the angle between the direction of the electro-

motive forces in the waves and a plane containing the normal to the

incident waves and the normal to the reflecting surface. For a

certain obliquity, the incident waves were entirely reflected, in case

the electromotive forces in the waves wer& at right angles to the

plane of incidence, or were parallel with the reflecting surface. In

this case there was no transmitted wave. When, with tlie same

obliquity, the electromotive forces in the waves were in the plane of

incidence, there was no reflected wave and the incident wave Avas

entirely transmitted. These properties are exactly analogous to

those exhibited by the reflection and refraction of polarized light

(§ 377). Trouton found that he could not obtain similar action

from sheets of window-glass. These laws of reflection and refrac-

tion, and the impossibility of obtaining reflections and refractions

consistent with them when the wave-length is long in comparison

with the thickness of the reflecting body, are consistent Avith theory.

Several observers have determined the velocity of the electro-

magnetic waves in various dielectrics in comparison with their

velocity in air. According to Maxwell's theory the ratio of the

velocity in air to the velocity in the dielectric, or the index of

refraction of the dielectric (§ 334), is equal to the square root of the

dielectric constant. This conclusion of theory has been verified in

very many cases.

The consideration of these experiments will be resumed in con-

nection with the electromagnetic theory of light.



CHAPTER VI.

THERMO-ELECTRIC RELATIONS OF THE CURRENT.

314. Thermo-electric Currents.—The heating or cooling of a

junction of two dissimilar metals by the passage of a current,

referred to in § 270 as the Peltier effect, is the reverse of a phenom-

enon discovered in 1822-23 by Seebeck. He found that, when
the junction of two dissimilar metals was heated, a current was sent

through any circuit of which they formed a part. It has since been

shown that the same phenomenon appears if the junction of two

liquids, or of a liquid and a metal, be heated. This fact, as has
,

been already shown in § 277, follows as a result of the Peltier

phenomenon. If we designate by P the heat developed at the

junction by the passage of unit current for unit time, we may sub-

stitute it for tlie expression — in the general equation of § 277, and

E — P
obtain I = ^— . The counter-electromotive force set up at the

heated junction is the coefficient P.

If the electromotive force E and the current / be reversed in

E 4- P
the circuit, the junction is cooled and we obtain /= —j-— . The

electromotive force at the junction, therefore, tends to increase the

-electromotive force of the circuit. Since the current in this case iS

opposite to the current in the case in which the junction is heated,

the direction of the electromotive force at the junction is the same

in both cases. If there be no electromotive force E in the circuit,

P .

we have / = —^ in case a unit of heat is communicated to the

380
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p
junction and absorbed by it in nnit time, and I —

-f in ease aR
similar quantity of heat is removed from the junction by coolino-.

If two strips of dissimilar metals, for example antimony and
bismuth, be placed side by side, and united at one end of the pair,

being everywhere else insulated from one another, the combination

is called a thermoelectric element.

If several such elements be joined in

series, so that their alternate junc-

tions lie near together and in one

plane, as indicated in Fig. 89, such

an arrangement is called a thermo-

pile. When one face of the pile is

heated, the electromotive force of

the pile is the sum of the electro-

motive forces of the several elements. Such an instrument was

used by Melloni, in connection with a delicate galvanometer, in his

researches on radiant heat.

When a thermoelectric element is constructed of any two

metals, that metal is said to be thermoelectrically positive to the

other from which the current flows across the heated junction.

315. Thermoelectric Series.—It was found by the experiments

of Seebeck himself, and those of others, that the metals may be

arranged in a series such that any metal in it is thermoelectrically

positive to those which follow it, and thermoelectrically negative

to those which precede it.

If a circuit be formed of any two metals in this series, and one

of the junctions be kept at the temperature zero, while the other is

heated to a fixed temperature, there will be set up an electromotive

force which can be measured. If now the circuit be broken at

either junction, and the gap filled by the introduction of any other

metals of the series, then, provided that the junction which has not

been disturbed be kept at the temperature which it previously Had,

and that the other junctions in the circuit be all raised to the tem-

perature of the junction which was broken, there will be the same

electromotive force in the circuit as existed before the introduction
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of the other metals of the series. It is manifest, then, that in a

circuit made up of any metals whatever, at one temperature, no

electromotive force can be set up by changing the temperature of

the circuit as a whole.

Thomson showed that it is not necessary for the production of

thermal currents that the circuit should contain two metals; but

that want of homogeneity arising from any strain of one part of an

otherwise homogeneous circuit will also admit of the production of

such currents. It has also been shown that when a portion of an

iron wire is magnetized, and is heated near one of the poles pro-

duced, a thermal current will be set up.

Gumming discovered in 1823 that, if the temperature of one

junction of a circuit of two metals be gradually raised, the current

produced will increase to a maximum, then decrease until it becomes

zero, after which it is reversed and flows in the opposite direction.

The experiments of Avenarius, Tait, and Le Eoux show that, for

almost all metals, the temperature of the hot junction at which the

maximum current occurs is the mean between the temperatures of

the two junctions at which the current is reversed.

316. Thermoelectric Diagram.—The facts hitherto discovered

in relation to thermoelectricity may be collected m a general

formula or exhibited by means of a thermoelectric diagram.

Let us consider a circuit of two metals, copper and lead, in

which both junctions are at first at the same temperature. We
may assume that there is an equal electromotive force at both junc-

tions acting from lead to copper. If one of tlie junctions be grad-

ually heated, a current will be set up, passing from lead to cop-

per across the hot junction. The heating has disturbed the equi-

librium of electromotive forces, and has increased the electromotive

force across the hot junction from lead to copper. Tl]3 rate

at which tliis electromotive force changes with change in the tem-

perature is called the thermoelectric poiver of the two metals.

That is, if E represent the electromotive force, t the temperature,

E — E
and 6 the thermoelectric power, we have -t^ t-° = 6^ , in the limit
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jjere f, and /, are indefinitely near one another. Hence if we lay

oil on the axis of abscissas (Fig. 90) an infinitesimal length /, — ^,,

and erect as ordinate the corresponding thermoelectric power 6^,

the area of the rectangle formed by the two lines will represent the

electromotive force E^ — E^, due to the change in tem{>eratnre. If,

Ijeginningat the point /,, we layoff the similar infinit^imal length

/, — /,, and erect as ordinate the thermoelectric power ^,, we shall

obtain another rectangle representing the electromotive force

E^ — £*,. So for any temperature changes the total area of the

figure bounded by the axis of

temperatures, by the ordinates

representing the thermoelectric

powers at the temperatures f,

and /,, and Vjy the curve AA'
passing through the summits of

the rectangles so obtained, will

represent the electromotive force Fig. 90.

due to the heating of the junction from /, to t^

It was found by Tait and Le Boux that the thermoelectric

power, referred to lead as a standard, of all metals but iron and

nickel, is proportional to the rise m temperature. The curve AA'

IS therefore for those metals a straight line. For iron and nickel

the curve is not straight.

For another metal in comparison with lead, the line BB', cot-

responding to the line AA' tor copper, may have a different direc-

tion. From what has been said about the po^bility of arranging

the metals in a thermoelectric series, it is evident that the thermo-

electric power between copper and the other metal is the difference

of their thermoelectric powers referred to lead, and that the elec-

tromotive force at the junction of the two metals, due to a rise of

temperature from t, to t^^ is represented by the area of the figure

contamed by the two terminal ordinate and the two lines AA' and
BB'. The thermoelectric power is reckoned positive when the

current sets from lead to copper across the hot junction. In the

diagram the thermoelectric power AB \s podtive, and the electro-
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motive force indicated by the area is from copper to the other metal

across the hot junction. At the point wliere the lines AA' and

£B' intersect, the thermoelectric power for the two metals van-

ishes. The temperature at which this occurs is called the neutral

temperature, and is designated by tn. When the temperature t^ lies

on the other side of the neutral temperature from i^, the thei-mo-

electric power becomes negative, and

the electromotive force due to tb.e rise

in temperatui'e from t„ to 4 is nega-

tive. In Fig. 91 it is at once seen

that A'B' is negative for t^, and tliat

the area NA'B' is also negative. The
^° '

' electromotive force due to a rise of
FiCr 91

temperature from to increases until

the temperature of the hot junction is t,„ when it is a maximum,

and then decreases. When the area NA'B' becomes equal to the

area ANB, the total electromotive force is zero; when NA'B' is

greater than ANB, the electromotive force becomes negative, and

the current is reversed. In case AA' and BB' are straight lines,

it is plain that tlie temperature t^, at which this reversal occurs,

will be such that the neutral temperature t^ is a mean between

t^ and t^.

The same facts can be represented by a general formula.

Thomson first pointed out that the fact of thermoelectric inver-

sion necessitates the view that the thermoelectric power at a junc-

tion is a function of the temperature of that junction. Avenarius

embodied this idea m a formula, which his own researches, and

those of Tait, show to be closely in agreement with experiment.

Let us call the hot junction 1 and the cool junction 2, and set

the electromotive force at each junction as a quadratic function

of the absolute temperatures. We have E^ = A -\- bt^ + ^/. ' and

E^ = A -]- bt^-\- ct^, where A, I, and c are constants. The dif-

ference E^ — E^, or the electromotive force in the circuit, is

E,~E, = hit, - O 4- c(t,^-t,^) = {t, - t,)(b + c{t, + t,)).
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This equation may be put in the form used by Tait, if we write

b = ntn aud c = — -. We then have

E,-E, = a{t, - g(^„ - i(^, + t,)y (107)

The electromotive force in the circuit can become zero when

either of these terms equals zero. It has been already stated that

when /", = t^, or when both junctions are at the same temperature,

there is no electromotive force in the circuit. When \{t^ -|- t^

equals ^„,or when the mean of the temperatures of the hot and

cold junctions equals a certain temperature, constant for each pair

of metals, there will be also no electromotive force in the circuit.

This temperature t^ is that which has already been called the neu-

tral temperature. The formula also assigns the value to that tem-

perature t^ at which, for fixed values of t,. and t^, the electromotive

force in the circuit is a maximum. If we represent the difference

between tn and t^ by x, then t^ = t„ ± x. Using this value in the

formula, we obtain U. — E„ = ^\{t„ — t^y — x"). This is mani-

lest^y a maximum when x = 0. The electromotive force in a cir-

cuit is then, according to the formula, a maximum when the tem-

perature of one junction is the neutral temperature.

The formula also shows that the thermoelectric power is zero

when /, = /„. We may set E^ = A + atj^ — ~t^\ Now if t, take

any small increment Ji^ , E^ has a corresponding increment /iE^.

Hence we have E^ + J^, = A+ atj^ - '^t;' + af„/}t^ - at^Jt^

,

if we neglect the term containing z/^/. From this equation we

JE
obtain -j-- = «/„ — at^, which in the limit, as At^ becomes indefi-

nitely small, is the thermoelectric power at the temperature t^.

It is positive for values of /^ below f,,; is zero for t, = f„, and

negative for higher values of /,. That is, if we assume t^ = t^

lower than t^, and then gradually raise the temperature t^, the

thermoelectric power at the heated junction is at first positive, but
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continually decreases in numerical value, until at t^ = t„ it becomes

zero. At that temperature, then, tlie metals are thermoelectricallj

neutral to one another, and a small change in the temperature

does not change the electromotive force at the junction.

317. The Thomson Effect.—Thomson has shown that, in certain

metals, there must be a reversiljle thermal effect when the current

passes between two unequally heated parts of the same metal. Let

us suppose a circuit of copper and iron, of which one Junction is at

the neutral temperature and the other below the neutral tempera-

ture. The current then sets from copper to iron across the hot

junction. In the hot junction there is no thermal effect produced,

because the metals are at tlie neutral temperature. Across the

cold junction the current is flowing from iron to copper, and hence

is evolving heat. The current in the circuit can be made to do

work, and since no other energy is imparted to the circuit this work

must be done at the expense of the heat in the circuit. Since heat

IS not absorbed at either junction, it must be absorbed in the un-

equally heated parts of the circuit between the junctions.

To show this, Thomson used a conductor the ends of which

were kept at constant temperatures in two coolers, while the central

portion was heated. When a current was passed through this con-

ductor, thermometers, placed in contact with exposed portions of

the conductor between the heater and the coolers, indicated a rise

of temperature different according as the current was passing from

hot to cold or from cold to hot. The heat seems therefore to be

carried along by the current, and the process has accordingly been

called the electrical convection of heat. In copper the heat moves

with the current, in iron against it. In another form of statement

it may be said that, in unequally heated copper, a current from

hot to cold heats the metal, and from cold to hot cools it, while in

iron the reverse thermal effects occur. The experiments of Le

Roux show that the process of electrical convection of heat cannot

1)6 detected in lead. For this reason lead is used as the standard

metal in constructing the thermoelectric diagram.



CHAPTEK VII.

LUMINOUS EFFECTS OF THE CURRENT

318. The Electric Arc.—If the termiiials of an electric circuit,

in which is an electromotive force of forty or more volts, be formed

of carbon rods, a brilliant and permanent luminous arc will appear

between the ends of the rods if they be touched together and then

withdrawn a short distance from each other. The temperature of

the arc is so high that the most refractory substances melt or are

dissipated when placed in it. The carbon forming the positive

terminal is hotter tiian the other. Botli the carbons are gradually

oxidized, the loss of the positive terminal being about twice as

great as that of the negative. The arc is, however, not due to com-

bustion, since it can be formed in a vacuum.

The current passing m the arc is, in ordinary cases, not greater

than ten amperes, while the measurements of the resistance of the

arc show that it is altogether too small to account for this current

when the original electromotive force is taken into account. This

"fact has been explained by Edlund and others on the hypothesis

that there is a counter electromotive force set up in the arc, which

diminishes the effective electromotive force of the circuit. The

measurements of Lang show that this counter electromotive force

in an arc formed between carbon points is about thirty-six volts,

and in one formed between metal points about twenty-three volts.

319. The Spark, Brush, and Glow Discharges.—When a con-

ductor is charged to a high potential and brought near another

conductor which is joined to ground, a spark or a series of sparks

387
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will pass from one to the other. This phenomenon and others

associated with it are most readily studied by the use of an electrical

machine or an induction coil, between the electrodes of which a

great difference of potential can be easily produced. If the spark

be examined with the spectroscope, its spectrum is found to be

characterized by lines which are due to the metals composing the

electrodes, and to the medium between them.

The passage of the spark through air or any dielectric is attended

Avith a sharp report, and if the dielectric be solid, it is perforated or

ruptured. If the electrodes be separated by a considerable distance,

the path of the spark is usually a zigzag one. It is probable that

this is due to irregularities in the dielectric, due to the presence of

dust particles.

With proper adjustment of the electrodes, the discharge may

sometimes be made to take the form of a long brush springing from

the positive electrode, with a single trunk which branches and be-

comes invisible before reaching the negative electrode. Accom-

panying this is usually a number of small and irregular brushes

starting from the negative electrode.

Another form of discharge consists of a pale luminous gloto cov-

ering part of the surface of one or both electrodes. If a small con-

ducting body be interposed between the electrodes when the glow

is established, a portion of the glow will be cut off, marking out a

region on the electrode which is the projection of the intervening

conductor by the lines of electrical force. This phenomenon is

called the electrical shadow.

The difference of potential required to set up a spark between

two slightly convex metallic surfaces, separated by a stratum of air

0.125 centimetre thick, has been shown by Thomson to be about

5500 volts. The difference of potential which produces the sparks

between the electrodes of an electrical machine, which are some-

times fifty or sixty centimetres long, must therefore be very great.

The quantity of electricity which passes during the discharge is,

however, exceedingly small, on account of the great resistance of

the medium through which the discharge takes place.
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Faraday showed that many of the phenomena of the discharge

depend to some extent upon the medium in which it occurs. The

differences in color and in the facility with which various forms of

the discharge were set up in the gases upon which he experimented

were especially noticeable.

It was proved by Franklin that the lightning flash is an electri-

cal discharge between a cloud and the earth or another cloud at a

diflerent electrical potential. The differences of potential to which

such discharges are due must be enormous, and the heat developed

by the discharge shows that the quantity of electricity which passes

in it is considerable.

Slowly moving fire-balls are sometimes seen, which last for a

considerable time and disappear with a loud report and with all the

attendant phenomena of a lightning discharge. It is probable that

they are glow discharges which appear just before the difference of

potential between the cloud and the earth becomes sufficiently

great to give rise to a lightning flash.

320. The Electrical Discharge in Rarefied Gases.—If the air be-

tween the electrodes of an electrical machine be heated, it is found

that the discharge takes place with greater facility and that the

spark which can be obtained is longer than befure. Similar phe-

nomena appear if the air about the electrodes be rarefied by means

of an air-pump. After the rarefaction has reached a certain point

the discharge ceases to pass as a spark, and becomes apparently

continuous. The arrangement in which this discharge is studied

consists of a glass tube into which are sealed two platinum or,

preferably, aluminium wires to serve as electrodes, and from which

the air is removed to any required degree of exhaustion by an air-

pump. Such an arrangement is usually called a vacuum-tuhe.

As the exhaustion proceeds there appears about the negative

electrode in the tube a bright glow, separated from the electrode by

a small non-luminous region. The body of the tube is filled with a

faint rosy light, which in many cases breaks up into a succession of

bright and dark layers transverse to the direction of the discharge.

The discharge in this case is called the stratified discharge. A
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vacuum-tube m which the exhaustion is sucli that the phenomena

are those here described is often called a Geissler tube. As the ex-

haustion is raised still higher, the rosy light in the tube fades out,

the non-luminous space around the negative electrode becomes very

much greater, and the phenomena in the tube become exceedingly

interesting. They were discovered and have been carefully studied

by Crookes, and the vacuum-tubes in which they appear are hence

called Crookes' tubes. They may be most conveniently described

by assuming that the molecules of gas in the tube break into their

constituent ions in the region near the negative electrode, and that

the negative ions are repelled from that electrode. The stream of

negative ions may be called the cathode discharge. This view re-

ceives some support from the fact that the relations of current and

resistance in the tube are such as to indicate a counter electromotive

force at the negative electrode.

The region occupied by the discharge from the negative elec-

trode may be recognized by a faint blue light, which was not visible in

the former condition of the tube. At every point on the wall of the

tube to which this discharge extends occurs a brilliant phosphorescent

glow, the color of which depends on the nature of the glass. The

discharge seems to be independent of the position of the positive

electrode, and to take place in nearly straight lines, which start

normally from the negative electrode. If two negative electrodes

be fixed in the tube, the discharge from one seems to be deflected

by the other, and two discharges which meet at right angles seem

to deflect one another.

If the discharge from a flat electrode be made to fall upon a

body which can be moved, such as a glass film, or the vane of a

light wheel, mechanical motions will be set up.

If the negative electrode be made in the form of a spherical cup,

and a strip of platinum-foil be placed at its centre, the foil will be-

come heated to redness when the discharge is set up.

There is no evidence that two discharges in the same direction

act directly on each other, but a magnet brought near the outside
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of the tube will deflect a discharge as if it were an electrical cur-

rent.

The explanation of these phenomena was indicated by Crookes,

and Spottiswoode and Moulton. The particular form of it here

given was developed by J. J. Thomson. It is assumed that they are

due to the presence of the gas left in the tube after the exhaustion

has been brought to an end. The mean free path of the molecules

in the tube is much greater than that at ordinary densities, and they

can accordingly move through long distances in the tube before

their motion is checked by collisions. It is assumed that the mole-

cules of gas in the tube are dissociated near the negative electrode,

and that their negative ions are repelled from it. The phenomena

which have been described are then due to the collision of these ions

with other bodies or with the wall of the tube, or to their mutual

electrical repulsions and to the action between a moving quantity

of electricity and a magnet.

The experiments of Spottiswoode and Moulton, who showed that

the same phenomena appeared at lower exhaustions, if the intensity

of the discharge were increased, are in favor of this explanation.

So is also the fact that the Crookes phenomena appear with a max-

imum intensity at a certain period during the exhaustion of the

tube, while if the exhaustion be carried as far as possible, by the

help of chemical means, they cease altogether and no current passes

in the tube. The connection of these phenomena with the action

of the radiometer (§ 223) is also at once apparent.

321. The Rontgen Radiance.—It was discovered by Hertz that

the cathode discharge will pass through a thin strip of aluminium-

foil placed in its path within the tube. In 1894 Lenard constructed

a tube in which a part of the glass wall was replaced by aluminium-

foil, and found that when the cathode discharge was directed upon

the aluminium-foil a series of phenomena was obtained outside the

tube, which he ascribed to the cathode discharge which passed

through the aluminium. He found that similar effects could be

produced outside a tube in which there was no aluminium window,

and so concluded that the cathode discharge could pass through
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glass; he also showed that it could pass through other substances

with varying degrees of facility. Among the effects ascribed by

Lenard to this discharge were the production of fluorescence in

many fluorescent substances, the production of photographic action

in ordinary photographic dry-plates, and the penetration of the dis-

charge tlirough bodies by an amount dependent upon their densi-

ties, it being less as the densities are greater. The discharge was

deflected when brought into a magnetic field.

In 1895 Kontgen discovered that effects in some degree similar

to those investigated by Lenard could be obtained from any highly

exhausted vacuum tube. The results of his researches and of those

of many other physicists who have investigated the same action may

be described as follows: Wherever the cathode discharge falls upon

certain substances, the most important of which, as yet known, are

platinum and glass, an action is set up known as the R'6)ttgen radi-

ance. This radiance excites fluorescence in many fluorescent sub-

stances and acts upon the photographic plate. It proceeds in

straight lines and its intensity varies inversely with the square oi

the distance; it is not affected by the presence of a magnetic

field ; in these respects it apparently differs from the action in-

vestigated by Lenard. It penetrates all substances and is partly

obstructed by all substances, the obstruction being greater as the

density of the substance is greater. It is apparently'' capable of true

reflection to a very small degree. No indubitable evidence has as.

yet been given that it can be refracted, or that it exhibits the

phenomena of interference, diffraction, or polarization. When it

falls upon an electrified body the charge on the body gradually dis-

appears, the effect being to render the air or other gas surround-

ing the body a conductor.

No satisfactory theory of the Rontgen radiance can as yet be

given. It has been variously ascribed to the mechanical movement

of the molecules of the residual gas in the tube in which it origi-

nates or of the walls of the tube, to transverse vibrations in the ether

of a wave length much shorter than those of the shortest waves of

light hitherto known, and to longitudinal vibrations in the ether.
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The first explanation is supported by certain facts known with ro-

gard to the changes that go ou iu the tube as the discharge is kept

up through it, but it is otherwise unsatisfactory. Most of the facts

known are consistent vvitli the theory of short transverse vibrations,

but no explanation of their origin is given. The theory of longitu-

dinal vibrations has been to some extent developed by Juumann; he

assumes that the characteristic factor of the dielectric, which we

have called the dielectric constant, is not really constant, but vari-

able, and a function of the electromotive force. He then shows

that on this assumption the electrical discharge in rarefied gases

may set up longitudinal waves, and that these waves possess many,

if not all, of the properties of the cathode discharge. Since the

properties of the cathode discharge and of the Rontgen radiance

are not the same, we cannot conclude that the latter are explicable

by longitudinal waves, though there is as yet no evidence to the

contrary.



LIGHT.

CHAPTER I.

PROPAGATION OF LIGHT.

322. Vision and Light.—The ancient philosophers before Aris-

totle believed that vision consisted in the contact of some subtle

emanation from the eye with the object seen. Aristotle showed the

absurdity of this view by suggesting that if it were true, one should

be able to see in the dark. Since his time it has been generally

admitted that vision results from something proceeding from the

body seen to the eye, and there impressing the optic nerve. This

we call light.

Optics treats of the phenomena of light. It is conveniently

divided into two branches: Physical Optics, which treats of the

phenomena resulting from the propagation of light through space

and through different media; and Physiological Optics, which

treats of the sense of vision.

323. Theories of Light. The Ether. — The principal facts

known about light in Newton's time, especially its propagation in

straight lines, its reflection and refraction, could be explained by

the hypothesis that light consisted of small material particles or

corpuscles emitted from luminous bodies with very high velocities.

This eynission theory was adopted and defended by Newton.

Newton's contemporary Huygens proposed to explain the phe-

nomena of light as the result of waves set up in luminous bodies

and transmitted by an elastic medium which pervades all space.

The properties which Huygens assigned to this medium were those

394
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of a fluid, in which only longitudinal waves, like those of sound, can

exist, and they were therefore inadequate to explain polarization,

which shows that light in some way differs in different directions

in the wave front, or, as Newton expressed it, has sides; and

further, since observation and theory, so far as it was then devel-

oped, showed that a wave which has passed through an opening

will spread in all directions from that opening and will not be

propagated in a line, as light is, Newton rejected the wave theory,

and developed the emission theory by assigning such properties to

the light corpuscles as were needed to explain the facts then known.

The discovery by Young of interference, which can be most

easily explained by the wave theory, and the demonstration by

Fresnel that rectilinear propagation can be explained by taking

into account the shortness of the wave length, and the further bold

assumption by Fresnel that the properties of the medium are those

of a solid and that the vibrations in the light wave are transverse

to the line of progress, removed the objections which had been felt

by Newton and set the loave theory on a secure foundation. Tbe

one objection Avhich was still felt arose from the necessity of assum-

ing the existence of an all-pervading medium, which cannot be

made evident to any of our senses and which possesses properties

unlike those of any known body. This objection 'has gradually

disappeared in view of the almost complete success attained by the

wave theory in explaining the phenomena of light. The demon-

stration by Maxwell that all magnetic and electrical phenomena can

be explained by actions in a similar medium, and that the properties

of electromagnetic waves in such a medium are precisely the same

as those of light waves, has done much to strengthen the evidence

for the existence of this medium. Its properties are probably not

those of an elastic solid, but they are such as to enable us to repre-

sent light waves as if they were waves in an elastic solid; we will

accordingly, in what follows, use this mode of rej)resentation, with

the understanding that the rigidity and density which are ascribed

to the medium are representative of other properties of the medium,

which, in respect to light waves, are equivalent properties.
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The medium in which magnetic, electrical, and light phenomena

take place is called the ether. It pervades all space within the

bounds of the known universe, and is so far material that it can

transmit energy from one material body to another ; the manner of

its connection with the atoms of matter is not well understood, and

the question of the influence of matter upon it is one of the most

obscure in modern physics. The ether was first represented by

Fresnel as an elastic solid possessing a rigidity estimated by Thom-
son to be about the one-thousand millionth of that of steel, and a

density esthnated to be 9. 36 X 10"^^ grams per cubic centimetre.

Thomson has shown that the properties of the ether, at least those

concerned in the transmission of light, may be explained by suppos-

ing it composed of minute material bodies rotating like gyroscopes

about definite axes. The most interesting view of the ether is that

recently proposed by Fitzgerald. He conceives of it as a continuous

fluid filled with vortices. These vortices may be either infinitely

long linear vortices threading past each other in all directions, or

ring vortices interlinked with each other; Fitzgerald has shown that

such an assemblage of vortices will transmit electromagnetic vibra-

tions comparable in all respects to those of light. The connection

of this theory with Thomson's theory of the vortex atom gives it

additional interest.

324. Wave Surfaces.—In § 130 is explained the general mode

of propagation of wave motion in accordance with Huygens' prin-

ciple. When light emanating from a point proceeds with the same

velocity in all directions, the wave fronts are evidently concentric

spherical surfaces. There are, however, many cases, especially in

crystalline bodies, of unequal velocities in different directions. In

these cases the wave fronts are not spherical, but ellipsoidal, or sur-

faces of still greater complexity.

325. Straight Lines of Light.—When a small screen A (Fig.

92) is placed between the eye and a luminous point, the luminous

point is no longer visible. Light cannot reach the eye by the

curved or broken line PAE^ and is therefore said to move in

straight lines. This seems not to accord with Huygens' principle.
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which makes any wave front the resultant of an infinite number of

elementary waves proceeding from the various points of the same

Fig. ya.

Fig. 93.

wave front in one of its earlier positions. It can, however, easily

be shown that when the wave lengths are small, the disturb-

ance at any point P (Fig. 93) is due

almost wholly to a very small portion

of the approaching wave. Let us con-

sider first the case of an isotropic

medium, in which light moves in all

directions with the same velocity. Let

mn be the front of a linear wave per-

pendicular to the plane of the paper,

moving from left to right or towards

P. Dra-j^ PA perpendicular to the wave front, and draw Pa, Ph,

etc., at such obliquities that Pa shall exceed PA by half a wave

length, Ph exceed Pa by half a wave length, etc. We will designate

the wave length by A.

It is evident that the total effect at P will be the sum of the

effects due to the small portions Aa, ah, etc., called half-period

elements. Since Pa is half a wave length greater than PA, and

Ph half a wave length greater than Pa, each point of ah is half

a wave length farther from P than some poijit in Aa\ hence

elementary waves from ah will meet at P waves from Aa in the

opposite phase. It appears, therefore, that the effects at P of

the portions ah and Aa are opposite in sign, and tend to annul

each other. The same is true of he and cd. But the effects oi Aa
and ah may be considered as proportional to their lengths.

Hence, by computing the lengths, we can determine the resultant

effect at P. Let AP = x. From the construction we have
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Aa =./(x + -^ -x' = W.a + —

;

Ab = V{x + A)^ — x' = V2xX + X';

Ac = V{x + |A)= -x'= V'dxX + ^X';

Ad = V{x + 2Xy - x^ = S/^xk + 4A*;

etc. = etc.

For light the values of A are between 0.00039 and 0.00076 mm.,

and if x be taken as 1000 mm., A^ will be very small in comparison

with x\, and may be omitted. The above formulas then become,

if ^xX be represented by /,

Aa = lVl; Ah = l V'2; Ac = I VJ; Ad = I VI; etc. = etc.,

and the several portions into which the wave front is divided are

Aa = l =11; ab = l{V2-'l) =0.414/;

be = l{V~d - V2) = 0.318/; cd = 1{VI - V^) = 0.268/.

Taking now the pairs of which the effects at P are opposite in

sign, we find Aa a little more than twice ab, wliile be and cd are

nearly equal. It is evident, also, that for portions beyond d adja-

cent pairs will be still more nearly equal, and the effect at P, there-

fore, of each pair of segments beyond b almost vanishes. The

effect at P is then almost wholly due to that portion of Aa that is

not neutralized by ab. But, taking the greatest value of A, Aa =
VxX = |/0.76 = 0.87 mm., a very small distance. Hence, under

the conditions assumed, the effect at any point P is due to that

portion of tlie wave-front Jiear the

foot of the perpendicular let fall

from P on the wave-front. It may
be demonsti-ated by experiment that

the portions of the wave beyond Aa
neutralize each other. Suppose a

screen mn in the position shown in

Fig. 94. The point P will be in

shadow. If the darkness at P is due
Fig. 94.
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to interference as explained, light should be restored by suppressing

the interfering waves. If a second screen be placed at m'n' so as

to cut off the waves proceeding from points above h, waves from

points between a and h will no longer be neutralized, and light

should fall at P. To test this conclusion the edge of a flat flame

. may be observed through a narrow slit in a screen. Instead of the

narrow edge of the flame, a broad luminous surface is seen, in

which the brightness gradually diminishes from the centre towards

the edges. If we" consider the wave-front just entering the slit, it

will be seen that elementary waves proceed from all points of it,

antl the slit being very narrow it is only in very oblique directions

that pairs of these waves can meet in opposite phases. Hence

light proceeds in oblique lines behind the screen, and from our

habit of locating visible objects back along the line of light entering

the eye, the flame appears as a broad surface. It will be seen by

reference to Fig. 93 that the elementary wave that first reaches P
is the one to which the disturbance there is princi-

pally due. Other waves arriving later find there the

opposite phase of some wave that has preceded them.

When the velocity in all directions is the same, the

first wave to reach P is the one that starts from the

foot of a perpendicular let fall from P on the wave-

front. Hence light is said to travel in straight lines

perpendicular to the wave-front. If, however, light

does not move with equal velocities in all directions,

the last statement is no longer true, as will be seen

from Fig. 95. Here mn represents a wave-front, pro-

ceeding towards P in a medium in which the veloci- ^^^- ^5-

ties in different directions are such that the elementary wave-

surfaces are ellipsoids. The ellipses Iti the figure may be taken as

sections of these ellipsoids. The wave first to reach P is not the

one that starts from A at the foot of the perpendicular, but from

A'. It is from A' that P derives its light, and the line of propa-

gation is no longer perpendicular to the wave-front.

The demonstration here given fails when applied to a plane

\tn

-,3''

\.
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wave, and some other explanation must be given for the rectilinear

propagation of light in such a wave. For consider a plane wave

advancing toward a point P, and describe on it a series of circles,

the distances of which from P differ by half a wave-length. These

circles cut a line in the surface drawn from A (Fig. 93), the foot of

the perpendicular to the wave-front from P, in the points a, b, c,

etc., and the rings enclosed between them are half-period elements.

The areas of these rings are nAa, 7t{Ah — Aa ), 7i{Ac — Al ),

etc. If A. be very small, they each become equal to nV. Hence

if their effects at P depend only on their areas, they would annul

one another, and no light would reach P. We are therefore forced

to assume that the effect of each area in sending light to P dimin-

ishes as the obliquity increases, so that the first area is more effi-

cient than the second, the second than the third, and so on. The

effectiveness of the areas diminishes at first slowly, and afterwards

more rapidly, the more distant areas having nearly the same effi-

ciency. Eepresenting the efficiency of the areas by m^, m^, m^,

etc., and remembering that the even areas oppose the action

of the odd ones, we may write the total efficiency in the form

i^«i + i('", — ^«J — ^{in^ — w^a) + i('"3 — W4) — • • • . Each of

the terms in parenthesis is very nearly equal to zero, and the effi

eiency at P is tlierefore nearly half of that of the central area.

The light therefore appears to reach P from a small area around A.

It is important to note that the deductions of this section apply

only where A, is small in relation to x, so that A" may be neglected

in comparison with xX. With sound-waves this is not true, and if

a computation similar to that given above for light-waves be made

for sound, not omitting A% it will be seen why there are no definite

straight lines of sound and no sharp acoustic shadows.

326. Principle of Least Time.—The above are only particular

cases of a law of very general application, that light in going from

one point to another follows the path that requires least time. The

reason is that values in the vicinity of a minimum change slowly,

and there will be a number of points in the neighborhood of that

point from which the light-waves are propagated to the given point
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in the least time, from which waves will proceed to that point in

sensibly the same time, and, meeting in the same phase, combine to

produce light. It is also true that values change slowly in the

vicinity of a maximum, and there are cases where the path fol-

lowed by the light is determined by the fact that the time is a

maximum instead of a minimum.

327. Shadows.—An optical shndoiv is the space from which light

is excluded by an opaque body. When the luminous source is a

point, or very small, the boundary between the light and shadow is

very sharp. When the luminous source is large, there is a portion

of the space behind the ojiaque body, called the iimbra, which is in

deep shadow, and surrounding this is a space which is in shadow

with reference to one portion of the luminous source while it is in

the light with reference to another portion. The space from which

light is only partially excluded is the -penumbra. Fig. 9G shows the

Fig. 96.

boundaries of the umbra and penumbra. It is evident that the light

diminishes gradually from the outer boundary of the penumbra to

the boundary of the umbra.

328. Images by Small Apertures.—If light from a single lumi-

nous point pass through a small hole of any form, and fall on a

screen at some distance, it produces a luminous spot of the same

form as the opening. Light from several points will produce several

such spots. If the luminous source be a surface, the spots produced

by the light from its several points will overlap each other and form
an illuminated surface, which, if the source be large in comparison

with the opening, will have the general form of the source, and will

be inverted. The illuminated surface is an inverted image of the

source. If a small opening be made in the window-shutter of a

darkened room, images of external objects will be seen on the wall

opposite. The smaller the opening, the more sharply defined, but

the less brilliant, is the image.
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VELOCITY OF LIGHT,

329. Velocity Determined from Eclipses of Jupiter's Moons,—
Koemer, a Danish astronomer, was led to assume a progressive

motion for light in order to explain some apparent irregularities in

the motions of Jupiter's satellites. A few observations of one of

Jupiter's moons are sufficient to determine the time of its eclipses

for mouths in advance. If these observations be made when the

earth and Jupiter are on tlie same side of the sun, and the time of

an eclipse occurring about six months later predicted from them be

compared with the observed time of that eclipse, it is found that

the observed time is about 1G| minutes later than the predicted

time. This discrepancy is explained if it be assumed that light has

a progressive motion and requires 1G| minutes to cross the earth's

orbit, for the distance of the earth from Jupiter in the second case

is about the diameter of its orbit greater than in the first.

330. Aberration of the Fixed Stars.—The apparent direction of

the light coming from a star to the earth, that is, the apparent

direction of the star from tlie earth, is the resultant of the motion

of the light and the motion of the earth. As the motion of the

earth changes direction the apparent direction of the star will change

also, and the amount of that change will depend on the relation

between the velocity of light and the change in the velocity of the

earth in its orbit, understanding by change of velocity change in

direction as well as in amount. This apparent change in the posi-

tion of the stars is called aberration. Knowing its amount corre-

sponding to a known change in the earth's motion, we may compute

the velocity of light. This method was first employed by Bradley.

Though the agreement of the velocity of light thus determined

with that measured by other methods seems to confirm the validity

of the reasoning here given, yet there are serious and unexplained

difficulties in the theory of aberration, arising from the discrepant

results of experiments instituted to determine the relations of the

ether to bodies moving through it.

331. Fizeau's Method.—Several methods have been employed

for measuring the velocity of light by determining the time required
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for it to pass over a small distance on the earth's snrface. In the

form of experiment devised by Fizeau, a beam of light is allowed to

pass out through a small hole in the shutter of a darkened room to

a distant station, Avhere it is reflected back on itself. It returns

through the opening and produces an image of the source. A
toothed wheel is placed in front of the opening in such a position

that, to pass out or back, the light must pass through the spaces

between the teeth. If the wheel revolve slowly, as each space passes

the opening in the shatter light will pass out, and returning from

the distant station will enter through the space by which it made

its exit. An image of the source will therefore be visible whenever

a space passes the opening, and in consequence of the persistence

of vision this image will appear continuous. Smce it takes time for

the light to go to the distant station and back, it is possible to give

to the wheel such a velocity that when the light which passed out

through a given space returns, it will find the adjacent tooth cover-

ing the opening, so that no image of the source can be seen. If the

velocity of rotation be sufficiently increased, the image again comes

into view when the light can enter through the space following

that by which it emerged. A still further increase of velocity may

cause a second extinction of the image. The experiment consists in

determining accurately the velocities for which the several extinc-

tions and reappearances of the image occur. A high degree of ac-

curacy cannot be attained because the extinction of the image is not

sudden. It disappears by a gradual fading away, and reappears by

a gradual brightening. For quite a range of velocity the image

cannot be seen at all.

332. Foucaulfs Method.—Foucault's method depends upon the

use of the revolving mirror as a means of measuring a very small

interval of time. Foucault's experiments were repeated with some

modification by Michelson in 1879 and again m 1882. The general

theory of the experiment may be understood from the following brief

description: Let tS (Fig. 97) be a narrow slit, m a mirror which

may revolve about an axis in its own plane, L a lens, and 7k' a sec-

ond mirror. Light from a source behind S passes through the slit.
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falls on m, is reflected, when m is in a suitable position, through the

lens L, iuid forms an image at S'. S and ;S" are conjugate foci of

Fig. 97.

the lens, and by so placing the lens that S shall be a little beyond

the principal focus, S' may be removed to as great a distance as de-

sired. The min-or m' is perpendicular to the axis of the lens, and

at such a distance that the image iS" falls upon its surface. It is

evident that any light reflected back from m' through L will return

to the conjugate focus S, whatever the position of the mirror m', so

long as it sends the light in such a direction as to pass through L
both going and returning. If now the mn-ror m be given a rapid

rotation clockwise, light passing through L will return to find m in

a changed position, and the image will be displaced from *S'to some

point S" to the left of S. Knowing the displacement SS'' and the

number of rotations of the mirror per second, the time required for

light to pass from m to S' and back is determined. The value of

the velocity of light, as determined by Michelson in 1879, is

299,910, and in 1882, 299,853, kilometres per second.



CHAPTER II.

REFLECTION AND REFRACTION.

333. Law of Reflection.—In § 133 it is shown that when a wave

passes from one medium into another where the particles constitut-

ing the wave move with greater or less facihty, a wave is propagated

back into the first medium. It is shown in § 133, that when the

surface separating the two media is a plane surface, the centres of

tlie incident and reflected waves are on the same perpendicular to

the surface, and at equal distances on ^

opposite sides. Considering the lines c "^"-^^

to which, as shown in §325, the wave j\. j** ^>^ itn

propagation in the case of light is re- ! \},x \/n

stricted, a very simple law follows at
{

/^ /

once from this relation of the incident \/
and reflected waves In Fig. 98, Cand ^

Fir Q8C represent the centres of tlie incident

and reflected waves mn, on. CA, AB are the paths of the incident

and reflected light. It will be evident from the figure that CA,

AB are m the same plane normal to the reflecting surface, and

that they make equal angles with the normal AN. CAN is called

the angle of incidence, and NAB i\\Q angle of reflection. Hence

we may state the law of reflection as follows : The angles of inci-

dence and reflection are equal, and lie in the same plane normal to

the reflecting surface. By constructing half-period elements in the

reflecting surface, it can easily be shown that the portion of the

wave from which light reaches B is that lying around A. This

may likewise be shown by proving, as can easily be done, that light

traverses the path CAB from C to B which fulfils this law, in

less time than it requires to traverse any other path by way of the

reflecting surface.

405
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334. Law of Refraction.— If the incident wave pass from tlie

one medium into the other, there is, in general, a change in the

wave front, and a consequent change in the direction of the light.

Let us first consider the simple case of a plane wave entering a

homogeneous, isotropic medium of which the bounding surface is

plane. Suppose both planes perpendicular to the plane of the

paper, and let AB (Fig. 99) represent the intersection of the surface

of the medium, and ww the intersection of the wave with that

N

Fig. 99.

plane. Let v represent the velocity of light in the medium above

AB, and v' the velocity in the medium below it. Let ni'o be the

position of the wave in the first medium after a time t. Then vio

equals vf. As the wave front passes from mn to m'o, the points of

the separating surface between n and o are successively disturbed,

and become centres of spherical waves propagated into the second

medium Avith the velocity v\ The wave surface of which the

centre is n would, at the end of time t, have a radius w?i" = v't,

such that —J,
= -,. Similarly, the wave from any other point, as

st V
s, would have a radius st' such that --. = —,, and the wave surface

st V

within the second medium is evidently the plane on". As the di-

rection of propagation is perpendicular to the wave front, op will

represent the direction of the light in the second medium. In the

triangles non' and wow" we have nn' = no sin Aon', and

sin Aon' _ nn' __ v

sin Ao7i" nn" v''
nn = no sin Aon" ; hence
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If we represent tlie angle of incidence tnoJVhy i, and the angle

of refraction poN' by r, we have

sm IV
, ,

-. = — = yt/, a constant.
sin r V

(108)

This constant is called the index of refraction. This is the

expression of Snell's laiu of refraction. Here again the time

required for the light to pass by 7nop from m in one medium to p
in the other is less than by any other path.

We may now trace a wave through a medium bounded by plane

surfaces. Suppose tlie wave front and bounding planes of the

medium all perpendicular to the plane of the paper. We shall

sm 'I V
have as above for the first surface -.— = —. = u, and for the

sm '/• v'

= V^ = ^'second suriace .

—

sm r

If, as is often the case, the light emerge into the first medium,
sin i' v' 1

v" = V, and
sin r' V

If the bounding planes be parallel, i' = r, and we have

-.
J = — : hence i = r\ or the incident and emergent waves are

sin r )x

parallel. If the two bounding planes form an angle A the body is

called a prism. The wave incident upon the second face will make

with it an angle A — r, and the

emergent wave is found by the relation

sin {A — r) _ 1 sin r' _
sin r' yw sin (A — r)

X
The direction of the emerging wave

\

front may be found by construction.

Draw Ai (Fig. 100) parallel to

the incident wave. From some point

B on. AB describe an arc tangent to

Ai; from the same point with a

Bi
radius —^ describe the arc rr. Ar,

tangfent to rr, is the refracted wave front.

Fig. 100.

From some point C on
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-4 (7 describe an arc tangent to Ar, and from the same point as centre

describe another arc r'y' with a radius jx x Cy. A tangent from

A to r'r' is parallel to the emergent wave. It might be that A
would fall inside the arc r'r' so that no tangent could be drawn.

That would mean that there could be no emergent wave. The
angle of incidence for which this occurs can readily be obtained.

Txr 1
sin i' 1 . , . ., ,^We have -.

-, = —, or sin r' — }x sm i '. Now the maximum valuesm r yu

of sin r' is 1, which is reached when sin ?
' = -. Any larger value

of sin i' gives an impossible value for sin ?•'. The angle i' = sin"' -
M

is called the critical angle of the substance. For larger angles of

incidence the light cannot emerge, but is totally reflected within

the medium.

If a beam of white light be allowed to fall upon a prism

through a narrow slit, it will be refracted, in general, in accord-

ance with the law already given. The image of the slit, however,

when projected upon a screen, appears not as a single line of white

light, but as a variously colored band. This is due to the fact that

the indices of refraction for light of different colors are different.

Hence the index of refraction of a substance, as ordinarily given,

depends upon the color of the light used in determining it, and

has no definite meaning unless that color is stated.

335. Plane Mirrors.—The wave ow, represented in Fig. 98, is

the same as would have come from a luminous point at C if the

reflecting surface did not intervene. If this wave reach the eye of

an observer, it has the same effect as though coming from such a

point, and the observer apparently sees a luminous point at C,

C is a virtual image of C. When an -object is in front of a plane

mirror each of its points has an image symmetrically situated in

relation to the mirror, and these constitute an image of the object

like the latter in all respects, except that by reason of symmetry it

is reversed in one direction.

336. Spherical Mirrors.—A spherical mirror is a portion of a
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spherical surface. It is a concave mirror if reflection occur on the

concave or inner surface; a convex mirror if it occur on the con-

vex surface. The centre of the sphere of which the mirror forms

a part is its centre of curvature. The middle point of the

surface of the mirror is the vertex. A line through the centre

of curvature and the vertex is the principal axis. Any other

line through the centre of curvature is a secondary axis. The

angle between radii drawn to the edge of the mirror on oppo-

site sides of the vertex is the aperture. To investigate the effects

of reflection from a spherical surface, let us consider first a con-

cave mirror. Let a light-wave emanate from a point L on the

principal axis (Fig. 101). In general, different points of the wave

FiQ. 101.

will reach the mirror successively, and, considering the elementary

waves that proceed in turn from its several points, the reflected

wave surface may be constructed as for a plane mirror. If the

mirror were not there the wave front would, at a certain time,

occupy the position aa. Drawing the elementary wave surfaces we

have yb, the position at that instant of the reflected wave. Its

form suggests that of a spherical surface, concave toward the front,

and having a centre at some point on the axis. The elementary

waves at B will certainly send light to some point I on the axis.

We will examine the conditions which must be fulfilled in order that
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all other points of the mirror shall send light to the same point, or

that the reflected wave shall be a sphere with its centre at I. In

order that this shall be the case, the distance LB -\-Bl must be

constant wherever the point B is situated on the reflecting sur-

face. Draw BD perpendicular to the axis of the mirror. Kepre-

sent BD hj y, AD by x, LA by p, IA hj p', and CA by r. Then

we have LB = V{p — x)'' -j- y', and ?/' = (2r — x)x = 2rx — x''.

Hence follows

LB = Vp' — 2px + a;' + 2rx — x' = Vf + 2x{r — p).

If the aperture be small, x will be small in comparison with the

other quantities, and we may obtain the value of LB to a near ap-

proximation by extracting the root of this expression and omitting

terms containing the second and higher powers of x. We obtain

LB=p-\-%-p)-^.,,,
t'

In like manner we have

z^ = y + ^-,(r -/) + ...,

whence LB -\-lB =p + 2^' + zi^ - P) + -A^ - p')-
p y

When B coincides with A, the above value becomes ;:* -\- p' , and

the condition that all values ol LB -\- IB are equal, whatever be the

value of X within the limits already set to it, is found from

P +P' =P + V' +% - /;) ^r^--,{r - p').
jj p

From this equation we obtain - + -,— 2 and/j' = —^^-
^ p p 2p — r

For the apertures for which the approximations by which the

result was arrived at are admissible, the wave surface is practically

spherical, and the point, the distance of which from the mirror is

given by this equation, is the centre of the reflected wave. Since

the disturbances propagated from lb reach I simultaneously, their

effects are added, and the disturbance at I is far greater than at any

other point. The effect of the wave motion is concentrated at I,
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and this point is therefore called a focus. Since the light passes

through /, it is a real focus. If / were the radiant point, it is clear

that the reflected light would be concentrated at L. These two

points are therefore called conjugate foci. If we divide both sides

T r
of the equation - -j—,=: 2 by r, we have

1 + L (109)

which is the usual form of the equation used to express the rela-

tion between the distances of the conjugate foci from the mirror.

A discussion of this equation leads to some interesting results.

Suppose JO = cx), then^j' = \r\ that is, when the radiant is at an

infinite distance from the mirror, the focus is midway between the

mirror and the centre. In this case the incident wave is normal to

the principal axis, and the focus is called the 'principal focus.

Suppose jij = r; ^' = r also. When p = |r, p' = oo . When
r 1 2 12 1»<-,->- and —7 = , a negative quantity. To interpret
2 p r V .

f P
this negative result it should be remembered that all the distances

in the formulas were assumed positive when measured from the

Fig. 102.

mirror toward the source of light. A negative result means that

the distance must be measured in the opposite direction, or behind

the mirror. Fig. 102 represents this case. It is evident that the

reflected wave is convex toward the region it is approaching, and

proceeds as though it had come from I. I is therefore a virtual

focus. Either of the other quantities of the formula may have

negative values, p will be negative if waves approaching their
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centre I fall on the mirror. Plainly they would be reflected to L
r

at a distance from the mirror less than -> as may be seen from the

formula. If r be negative, the centre is behind the mirror. The

mirror is then convex, and the formula shows that for all positive

values of j), j)' is negative and numerically smaller than p.

337. Refraction at Spherical Surfaces.—The method of discus-

sion which has been applied to reflection may be employed to study

refraction at spherical surfaces. Let BD (Fig. 103) be a spherical

Fig. 103.

surface separating two transparent media. Let v represent the

velocity of light in the first medium, to the left, and v' the velocity

in the second medium, to the right, of BD. Let Z be a radiant

point, and mri a surface representing the position which the wave

surface would have occupied at a given instant had there been no

cliange in the medium, m'n' the wave surface as it exists at the

same instant in the second medium in consequence of the different

velocity of light in it, and I the point where the prolongation of

Bm' backwards cuts the axis. We will investigate the conditions

which must be fulfilled in order that the refracted wave shall

appear to proceed from a point on the axis, or shall be a spherical

wave.

In order that this should be the case, the time occupied by the

light in travelling from the point I on the axis with the velocity
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which it has in the second medium should be the same for all points

on the refracted wave. This time is given hy i'= --^ ~
V' V'

we are to investigate the conditions that this shall be the same for

all points on the refracted wave.

The time occupied by the light in travelling from L to m' is

T Ti Ftin

'

-\ — = Gi a constant for all points on the refracted wave.

Subtracting from this the expression for t', we have

C —t' — J, and the condition that t' should be constant is
V V

therefore that r is constant. Since —, = u, we may write

the expression which should be constant LB — jaIB = LA — /n IA.

Using the notation of the last section, and substituting the val-

ues of LB and IB as there found, except that p'^ is used instead of

ju', we have as the condition that t' is a constant, whatever be the

value of X within the limits set to it, the equation

P+^i^ -P) - f^[p" +j7^(^ ~ ^' V =^
~ MF

T JUT
From this we obtain ^ = 1 — u,

P P

and J^-l = !^—ll. (110)p" p r ^ '

Hence the point at the distance js" from the centre of the refract-

ing surface is the centre of a spherical refracted wave.

If the medium to the right of BD be bounded by a second

spherical surface, it constitutes a le?is. Suppose this second sur-

face to be concave toward / and to have its centre on A C. The

wave in'oi', in passing out at this second surface, suffers a new

change of form precisely analogous to that occurring at the first

surface, and the new centre is given by the formula just deduced by

substituting for p the distance of the wave centre from the new sur-

face, and for fx the index of refraction of the third medium in rela-

tion to the second. If s represent the distance of / from the new
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surface, }i.' the new index, and 'p' tlie new focal distance, we have

p' S J-' '

If we suppose the lens to be very thin, we may put s = p". If

we suppose also that the medium to the right is the same as that

to the left of the lens, yu' is equal to —. On these suppositions
M

1 , L-i
t!- _ J_= t!. Multiplying through by yu, we have
p' p" r'

1 /^_l~"/^_ /^ — 1.

p' p" r' r'

Eliminating jt?" between this equation and equation (110), we obtain

}.-^=(A'-l)(^-^,), (111)

which expresses the relation between the conjugate foci of the

lens. It should be noted that r in the above formulas represents

the radius of the surface on which the light is incident, and r' that

of the surface from which the light emerges. All tlie quantities are

positive when measured toward tlie source of liglit. Fig. 104

shows sections of the different forms of lenses produced by com-

binations of two spherical surfaces, or of one plane and one spherical

surface.

An application of equation (111) will show that for the first three,

which are thickest at the centre, light is concentrated, and for the

second three diffused. The first three are therefore called con-

verging, and the second three diverging, lenses. Let us consider

the first and fourth forms as typical of the two classes. The first
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is a double-convex lens. The r of equation (HI) is negative because

measured from the lens away from the source of light. The sec-

ond term of the formula has therefore a negative value, and f' is

1 '] 1 \

negative except when - > (yu — 1)U -J. If ;? = co , we have

- = and — == (/I — 1)( ~V a negative quantity because /• is

negative. ]/ is then the distance of the principal focus from the

lens, and is called the focal length of the lens. The focal length

is usually designated by the symbol/. Its negative value shows

that the principal focus is on the side of the lens opposite the

source of light. This focus is real, because the light passes through

it. Equation (111) is a little more simple in application if, in-

stead of making tlie algebraic signs of the quantities depend on the

direction of measurement, they are made to depend on the form of

the surfaces and the character of the foci. If we assume that

radii are positive when the surfaces are convex, and that focal dis-

tances are positive when foci are real, the signs of p' and r in ^hat

equation must be changed, since in the investigation p' is the dis-

tance of a virtual focus, and r the radius of a concave surface. The
formula then becomes

To apply this formula to a double-concave lens, r and r' are

both negative; p' is then negative for all positive values of ;;.

That is, concave lenses have only virtual foci. For a plano-convex

lens (Fig. 104, 2), if light be incident on the plane surface,

r = CO and -, = (yu — 1)-^ -|—

.

p ^ 'r' p

This gives positive values of p' and real foci for all values of

-<(/<- \)-j.
p r

For a concavo-convex lens (Fig. 104, 6) the second member
of the equation will be negative, since the radius of the concave

surface is negative and less numerically than that of the convex



416 ELEMENTARY PHYSICS. [§ 338

surface. Hence p' is always negative and the focus virtual when

L is real.

338, Images formed by Mirrors.—In Fig. 105 let ab represent

an object in front of the concave mirror mn. AVe know from

what precedes that if we consider only the light incident near c,

the light reflected will be concentrated at some point a' on the

axis ac at a distance from the mirror given by equation (109).

Fig. 105.

a' is a real image, of a. In the same way h' is an image of

J. If axes were drawn through other points of the object, the

images of those points would be found in the same way. They

would lie between a' and V , and a'V is therefore a real image of

the object. It is inverted, and lies between the axes ac, hd, drawn

through the extreme points of the object. The ratio of its size to

that of the object is seen from the similar triangles ahC, a'h'C, to

be the ratio of the distances from C. From equation (109) we ob-

p'_ r _r — p'
tain

p 2p — r p — r
'

Since r — p' and p — r are respectively the distances from

the centre of the image and object, we have
a'b' _'>' ~ P'_v'
ah

= -;or,
p — r p

the image and abject are to each other in the ratio of their respective

distances from the mirror. As the object approaches, the image

recedes from the mirror and increases in size. At the centre of

curvature the image and object are equal, and when the object is

within the centre and beyond the principal focus the image is

outside the centre and larger than the object. When the object

is between the principal focus and the mirror, the image is virtual
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and larger than the object. Convex mirrors produce only virtual

images, which are erect and smaller than the object.

339. Images formed by Lenses.—Let us suppose an object in

front of a double-convex lens, which may be taken as a tyjje of the

converging lenses. The point c (Fig. 106) will have an image at

the conjugate focus on the principal axis, a and I will have im-

&'

Fig jo.).

ages on secondary axes drawn through those points respectively,

and a point called the optical centre of the lens. So long as these

secondary axes make but a small angle with the principal axis, de-

finite foci will be formed at the same distances as on the principal

axis, and an image a'b' will be formed which will be real and inverted,

or virtual and erect, according to the distance of the object from the

lens. The formula - + -^ = (^m — 1)(- -f-—^ = -^ shows that
J) p ^ '\r r I f

when p increases p' diminishes, and conversely. It shows also

that when p is less than /, p' is negative, and the image virtual.

It is plain from the figure that the sizes of image and object arc

in the ratio of their distances from the lens. Diverging lenses,

like diverging mirrors, produce only virtual images smaller than

the object.

340. Optical Centre.—It was stated in the last section that the

secondary axes of a lens pass through a point called the optical

centre. The position of this point is determined as follows: In

Fig. 107, let C, C be the centres

of curvature of the two surfaces of

the lens, and let CA and C'B be

two parallel radii. The tangents

at A and B are also parallel, and

light entering at B and emerging at A is light passing through a

medium with parallel surfaces (§ 334), and suffers no deviation.
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If we draw AB, cutting the axis at 0, the triangle CAO, CBO
CA CO ,. , CA

are similar, and
C'B ~ CO'

But 7777^, being the ratio of the

CO
radii, is constant for all parts of the surfaces, hence ^ny "^^st be

cojistant, or all lines such as AB must cut the axis at one point 0.

O is the optical centre, and light passing through it is not devi-

ated by the lens.

341. Geometrical Construction of Images.—For the geometrical

construction of images formed by curved surfaces, it is convenient

to use, in place of the waves themselves, lines perpendicular to the

wave front, which represent the paths which the light follows, and

are called rays of light. These rays, when perpendicular to a plane

wave surface, are parallel, and aii assemblage of such rays, limited

by an aperture in a screen, is called a beam. When the rays are

perpendicular to a spherical wave surface, they pciss through the

wave centre, and constitute a pencil.

A plane wave surface perpendicular to the axis of a lens is con-

verted by the lens into a spherical wave surface with its centre at

the principal focus. The rays perpendicular to the plane wave sui*-

face are parallel to the axis, and after emergence must all pass

through the principal focus. Conversely, rays emanating from the

principal focus emerge from the

lens as rays parallel to the axis.

Also^ rays emanating from any

focus must, after emerging from

ihe lens, meet at the conjugate

focus. Let L, Fig. 108, be a con-

verging lens, and AB an object. Let be the optical centre, and

F the principal focus. Since all the rays from A must meet, after

emerging from the lens, at the conjugate focus, which is the image

of A, to find the position of the image it is only necessary to draw

two such rays and find their intersection. The ray through the

optical centre is not deviated, and the straight line A A' represents

both the incident and emergent rays. The ray AL may be consid-

Fiu. lu».
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ered as one of a group parallel to the axis. All such rays must,

after passing through the lens, pass through the principal focus.

LA', passing through F, is therefore the emerging ray, and its in-

tersection with AA' locates the image of A. Hence, to construct

the image of a point, draw from

the point two incident rays,

and determine the correspond-

ing emergent rays. The inter-

section of these will determiiu'

the image. The rays most con-

venient to use are the ray through the optical centre and the ray

parallel to the axis or through the principal focus. Fig. 109 gives

another example of an image determined by construction.

342. Thick Lenses.—When a lens is of considerable thickness,

the formula derived in § 337 does not give the true position of the

conjugate foci. A formula involving the thickness of the lens

may be derived without difficulty, but for practical purposes it is

usual to refer all measurements to two planes, called the principal

2)lanes of the lens. The determination of the position of these

planes involves a discussion which does not come within the scope

of this book.

343. Mirrors and Lenses of Large Aperture.—The equations

derived in §§ 336, 337 are only approximations, applying with suf-

ficient exactness to mirrors and lenses of small aperture. But for

large apertures, terms containing the higher powers of x cannot be

neglected, x will not disappear from the expression of //, and ;>'

will, therefore, not have a definite value. In other words, the re-

flected or refracted wave is not spherical, and there is no one point

I where the light will be concentrated. Surfaces may, however, be

constructed which will, in certain particu-

lar cases, produce by reflection or refraction

perfectly spherical waves. If we desire to

find a surface such that light from L (Fig.

^'^' ^^^-
110) is concentrated by reflection at I, we

remember that the sum LB -f- Bl must be constant, and that this
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is a property of an ellipse with foci at L and 1. If the ellipse

be constructed and revolved about LI as an axis, it will generate a

surface which will have the required property. If one of the points

L be removed to an infinite distance, the corre-

sponding wave becomes a plane perpendicular to

LI, and we must have LB -\- BC (Fig. Ill) con-

stant, a property of the parabola. A parabolic

mirror will therefore concentrate at its focus in-

cident light moving in paths parallel to its axis,

or will reflect incident light diverging from its

focus in plane waves perpendicular to its axis.

Mirrors and lenses having surfaces which are not spherical are

seldom made because of mechanical difificulties of construction. It

becomes necessary, therefore, to consider how the disadvantages

arising from the use of spherical surfaces of large aperture for re-

flecting or refracting light may be avoided or reduced.

We will consider first the case of a spherical mirror. It was

shown above that light from one focus of an ellipsoid is refiected

from the ellipsoidal surface in perfectly spherical waves concentric

with the other focus. Let Fig. 112 represent a plane section

through the axis of an ellipsoid, and Fca a small incident pencil of

light proceeding from the focus F. F'ac is a section of the re-

flected pencil. It is a property of the ellipse that the normals to

the curve bisect the angles formed by lines to the two foci. The

normal ae bisects the angle FaF' , and hence in the triangle FaF'

Fa Fe
we have -y^t- — ~nr'

F'a F'e

If d move toward c, Fa increases and Fa diminishes. Hence,

from the above proportion, F'e must increase and Fe diminish; oi",

the successive normals as we approach the minor axis cut the

major axis in points successively nearer the centre of the ellipse.

The normals produced will therefore meet each other at n beyond

the axis. If ac be taken small enough, it may be considered the arc

of a circle of which aw, en are radii and oi the centre. It is there-
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fore a meridian section of an element of a spherical surface of which

Fn is an axis.

Sections of wave surfaces reflected from the ellipsoid have their

centre at F', and are also sections of wave surfaces reflected from

the elementary spherical surface. Evidently the same would be

true for any other meridian section passing through FA of the

Fig. 112.

sphere of which the elementary surface forms a part, and the form

of the wave surfaces may be conceived by supposing the whole

figure to revolve about FA as an axis. The arc ac describes a zone

of the sphere, s., s, r, r, describe wave surfaces, and F' describes a

circumference having its centre on FA. The wave surfaces are

portions of the surfaces of curved tubes of which the axis is the

arc described by the point F\ The line described by i^' is a

focal line, and all the light from the zone described by ac passes

through it, or does so very approximately. If ac be taken nearer

to A on the sphere, F^ approaches the axis along the curve F'F"

and finally coincides with F", the focus conjugate to F. F'F" is

a caustic curve, which, when the figure revolves about the axis AF,

describes a caustic surface. It will be noted that all the light

from the zone described by ac passes through the axis .^i^ between

the points x and y. The light coming from i^aud reflected from

a small portion of the spherical surface around h, the middle point

of ac, is then concentrated first in a line through F' at right angles

to the paper, and again into the line xy in the plane of the paper.

Nowhere is it concentrated into a point. A line drawn through h

and the middle of the focal line through F' is the axis of the re-
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fleeted pencil. It will intersect the axis of the mirror between x

and y. If a plane be passed through the point of intersection per-

pendicular to the axis of the pencil, its intersection with the pencil

will be like an elongated figure 8, which may be considered as a

focal line at right angles to the axis of the pencil, and in the plane

of the paper, and therefore at right angles to the focal line through

F' . Between these two focal lines there is a section of least area,

nearly circular, which is the nearest approach to an image of F
produced by an oblique incidence such as we have been considering.

If refraction instead of reflection had taken place at ac, a result

very similar would have been obtained for the refracted pencil.

This failure of spherical reflecting or refracting surfaces to bring

the light exactly to a focus is called spherical aberration. In

order to obtain a sharp focus, therefore, if only a single spherical

surface be employed, the light must be confined within narrow

limits of normal incidence. When reflection or refraction takes

place at two or more surfaces in succession, the aberration of one

may be made to partially correct the aberration of the other. For

instance, when the waves incident upon a double convex lens are

plane, the emerging waves are most nearly spherical when the

radius of the second surface is six times that of the first. Two or

more lenses may be so constructed and combined as to give, for

sources of light at a certain distance, almost perfectly spherical

emerging waves. Such combinations are called aplanafic. The

same term is applied to single surfiue^ so formed as to give by re-

flection or refraction truly spherical waves.

SIMPLE OPTICAL INSTRUMENTS.

344. The Camera Obscura.—If a converging lens be placed in

an opening in the window-shutter of a darkened room, well-defined

images of external objects will be formed upon a screen placed at a

suitable distance. This constitutes a camera obscura. The photog-

rapher's camera is a box in one side of which is a lens so adjusted

as to form an image of external objects on a plate on the opposite

side. The relation deduced in § 339 serves to determine the size of
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the image which a given lens will produce, or the focal length of a

lens necessary to produce an image of a certain size.

345. The Eye as an Optical Instrument.—The eye, as may be

seen from Fig. 113, which represents a section by a horizontal

plane, is a camera obscura. a is a transparent

membrane called the cornea, behind which is a

watery fluid called the aqueous humor, filling the

space between the cornea and the crystalline lens.

Behind this is the vitreous humor, filling the en-

tire posterior cavity of the eye. The aqueous

humor, crystalline lens, and vitreous humor con-

stitute a system of lenses, equivalent to a single

lens of about two and a half centimetres focus,
-tig- Ho.

which produces a real inverted image of external objects upon a

screen of nervous tissue called the retina, which lines the inner

surface of the posterior half of the eyeball. The retina is an ex-

pansion of the optic nerve. The light that forms the image upon

it excites the ends of the nerve, and, through the nerve-fibres lead-

ing to the brain, produces a mental impression, which, partly by

the aid of the other senses, we have learned to interpret as the

characteristics of the object the image of which produces the im-

pression. For distinct vision the image must be sharply formed on

the retina; but as an object approaches, its image recedes from a

lens, and if, in the eye, there were no compensation, we could see

distinctly objects only at one distance. The eye, however, adjusts

itself to the varying distances of the object by changing the curva-

ture of the front surface of the crystalline lens. There is a limit

to this adjustment. For most eyes, an object nearer than fifteen

centimetres does not have a distinct image on the retina.

We may here consider the means by which we estimate the

distance and size of an object. The retina is not all equally sen-

sitive. The depression at b, called the yellow spot, is much more
sensitive than the other portions, and a minute area in the centre

of that depression is much more sensitive than the rest of the

yellow spot. That part of an image which falls on this small area
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is much more distinct than the other parts. How small this most

sensitive area is, can be judged by carefully analyzing the effort to

see distinctly the minute details of an object. For instance, in

looking at the dot of an i, a change can be detected in the effort of

the muscles that control the eyeball, when the attention is directed

from the upper to the lower edge of the dot. The eye can then

be directed with great precision to a very small object. The line

joining the centre of the crystalline lens with the centre of the

sensitive spot may be called the optic axis; and when the attention

is directed to any particular point of an object, the eyeballs are

turned by a muscular effort, until both the optic axes produced

outward meet at the point. For objects at a moderate distance we

have learned to associate a particular muscular effort with a par-

ticular distance, and our judgment of such distances depends

mainly on this association. The angle between the optic axes

when they meet at a point is called the optic angle. Our estimate

of the size of an object is based on our judgment of its distance,

together with the angle which the object subtends at the eye,

called the visual angle. In Fig. 1 14, when ab is an object and I

the crystalline lens, ex is the visual angle. It is plain that the size

of the image on the retina is proportional to the visual angle.

b

Fig. 114.

It is plain, too, that an object of twice the size, at twice the dis-

tance, would subtend the same visual angle and have an image of

the same size as ab. Nevertheless, if we estimate its distance

correctly we shall estimate its size as twice that of ab; but if in

any way we are deceived as to its distance, and judge it to be less

than it really is, we underestimate its size. The visual angle is

the aj)pn7'ent size of the object.

A less precise estimate of distance can be made with a single
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eye, probably from the perception of the effort required to get the

object clearly focussed on the retina.

346. Magnifying Power.—To increase the apparent size of an

object, and so improve our perception of its details, we must in-

crease the visual angle. This can be done by bringing the object

nearer the eye, but it is not always convenient or possible to bring

an object near, and even with objects at hand there is a limit to

the near approach, due to our inability to see distinctly very near

objects. Certain optical instruments serve to increase the visual

angle, and so improve our vision. Instruments for examining

small objects, and increasing the visual angle beyond that which

the object subtends at the nearest point of distinct vision by the

unaided eye, are called microscopes. Those used for observing

a distant object and enlarging the visual angle under which it is

seen at that distance are telescopes. In both cases the ratio of the

visual angles, as the object is seen with the instrument, and with-

out it, is the magnifying poiver.

347. The Magnifying-glass.—Fig. 115 shows how a converg-

ing lens may be employed to magnify small objects. The point a

of an object just inside the principal focus i^of the lens A is the

origin of light-waves which, after passing through the lens, are

changed to waves having a centre a' (§ 337) which, when the lens

Fig. 115.

is properly adjusted, is at the distance of distinct vision. Waves
coming from b enter the eye as though from h'. The object is

therefore distinctly seen, but under a visual angle a' Ob', while, to

be seen distinctly by the unaided eye, it must be at the distance
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Oa" , when the angle subtended is a" Oh". The ratio of these

angles is very nearly that of Oa" to OF. Hence the magnifying

power is the ratio of the distance of distinct vision to tlie focal

length of the lens.

348. The Compound Microscope.—A still greater magnifying

power may be obtained by first forming a real enlarged image of

the object (§ 339) and using the magnifying-glass upon the image,

as shown in Fig. 116. The lens A is called the objective, and E is

called the eye-lens or ocular. As will be seen in § 359, both A
and E often consist of combinations of lenses for the purpose of

correcting aberration.

349. Telescopes.—If a lens or mirror be arranged to produce a

real image of a distant object, either on a screen or in the air, we

may observe the image at the distance of distinct vision, when the

visual angle for the object is enlarged in the ratio of the focal

length of the lens to the distance of distinct vision. This will be plain

from Fig. 117. Suppose the nearest point from which the o'^ject

can be observed by the naked eye to be the centre of the lens 0.

A

5

Fig. 117.

The visual angle is then AOB = a Ob, while the visual angle for the

image is aEb. Since these angles are always very small, we have

—~ = -—- very nearly. But when AB is at a great distance, Oc is

aOb Ec -^
•'

the focal length of the lens. By using a magnifying-glass to ob-

serve the image, the magnifying power may be still further in-

creased in the ratio of the distance of distinct vision to the focal

length of the magnifying-glass. The magnifying pow^r of the

combination is therefore the ratio of the focal length of the object-

glass to the focal length of the eye-glass. A concave mirror may

be substituted for the object-glass for producing the real image.



CHAPTER III.

INTERFERENCE AND DIFFRACTION.

350. Interference of Light from Two Similar Sources.—It has

already been shown that the disturbance propagated to an}^ point

from a luminous wave is the algebraic sum of the disturbances

propagated from the various elements of the wave. The phenom-

ena due to this composition of light-waves are called interference

phenomena.

Let us consider the case in which two elements only are efficient

in producing the disturbance. Let A and B (Fig. 118) represent two

4m elements of the same wave surface sep-

arated by the very small distance A B.

The disturbance at m, a point on a

\j^ (]istant screen mn, parallel with AB,
^i«- li*^- due to these two elements, is the' re-

sultant of the disturbances due to each separately. The light is

supposed to be homogeneous, and its wave length is represented

by A.

When the distance mB — mA equals |A, or any odd multiple

of ^A, there will be no disturbance at m. Take mC = m.B, and

draw BC. mCB is an isosceles triangle; but since AB is very

small compared to Om, the angle at C may be taken as a right

angle; the triangle ACB, therefore, is similar to Osm, and we
AB Om Os

have -y, —— =: — very nearly. Represent stn by x, Os by c,

ABhy b, AC hj n X ^A, where n is any number. Then we have

iXcn2'

b
x=^-^. (113)

437
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If n be any even whole number, the values of x given by this equa-

tion represent points on the screen mw at which the waves from

A and B meet in the same phase and unite to produce light. If n

be any odd whole number, the corresponding values of x represent

points where the waves meet in opposite phases, and therefore pro-

duce darkness. It appears, therefore, that starting from s, for

which u = 0, we shall have darkness at distances \-, -^f •^-,bob
etc., and light at distances 0, y, -y-, -y-, etc.

2bx
From equation (113) we have n = —y. Since JwA.is the number

of wave lengths that the wave front from B falls behind that fI'om

A, \nT, where T represents the period of one vibration, is the time

that must elapse after the wave from A produces a certain disphice-

ment before that from B produces a similar displacement. The ex-

27r^nT
pression —-^— = iitt is, therefore, the difference in epoch of the

two wave systems. Substituting nrr for e in equation (17), we have

/ /^ , ^ \i C^^i ^ 1 sin w;r \

S = s -^ s = a(2 + 2 cos UTrh cos^^ tan"V . Now
^

\ 1 1 + cos nTTj

the intensity of light for a vibration of any given period is propor-

tional to the mean energy of the vibratory motion, and this can be

shown to be proportional to the square of the amplitude. Substi-

tuting in the expression for the amplitude the value of n and
/ 2hx \

squaring, we have A'' = «^( 2 + 2 cos -^r-^j, iii which A'' is propor-

tional to the intensity of the illumination at distances x from s.

2bx
When —^-TT = 0, its cosine is 1, and A'' is a maximum and equal to

6' A.

2bx
4a\ As X increases A'' diminishes, until ^r- ;r = ;r, in which case

cA

A^ = 0. A'' then increases until it becomes again a maximum,

2bx
when —rTr = 27t. In short, if AB (Fig. 119) represent the line mn

of Fig. 118, the ordinates to a sinuous curve like abc will represent

the intensities of the light along that line.
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The phenomena described above may be obtained experiment-

ally in several ways. Young admitted sunlight into a darkened

room through a small hole in a win-
^ ^

dow-shutter. It fell upon a screen /\ /\ /\ /\ /\
in which were two small holes close iv B

together, and, on passing through *^' ^^^-

these, was received upon a second screen. Light and dark bands

were observed upon this screen, the distances of which from the

central band were in accordance with theory.

Fresnel received the light from a small luminous source upon

two mirrors making a very large angle, as in Fig. 120. The light

reflected from each mirror proceeded

as though from the image of the source

produced by that mirror. The reflected

light, therefore, consisted of two wave

systems, from two precisely similar

p, ,^ sources A and B. Light and dark

bands were formed in accordance with

theory. In order that the experiment may be successfully repeated

reflection must take place from the front surface of each mirror only,

the angle made by the mirrors must be nearly 180°, and the reflect-

ing surfaces must meet exactly at the vertex of

the angle. Two similar sources of light may be ^*

obtained also by sending the light through a >\„

double prism, as shown in Fig. 131. Light

from A proceeds after passing through the

prism as from the two virtual images a and a'. ' '^

A divided lens. Fig. 122, serves the same purpose. The light

from A is concentrated in two real images a and a', from which

proceed two wave systems as in the previous cases. What are

really seen in these cases, when the source of light is white, are iris-

colored bands instead of bands of light and darkness merely. When
the light is monochromatic, the bands are simply alternations of

light and darkness, the distances between them being greatest for

red light, and least for blue. From equation (113) it appears that.
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other things being equal, x varies with A; hence we must conclude

that the greater distance between the bands indicates a greater

wave length; that is, that the wave length of red light is greater

than that of blue.

351. Measurement of Wave Lengths.—Data may be obtained

from any of the above experiments for the determination of the

wave length of light. From equation (113) we have A, = — , where

c, 1), and X are distances that can be measured. The distance x

is the distance from s to a point m, the centre of a light band,

and n equals twice the number of dark bands between s and m..

Better methods than this of measuring wave lengths will be found

described in § 355.

352. Interference from Thin Films.—Thin films of transparent

substances, such as the wall of a soap-bubble or a film of oil on

water, present interference phenomena when seen in a strong light,

due to the interference of waves reflected from the two surfaces of the

film. Let AA, BB (Fig. 123) be the surfaces of a transparent film.

Light falling on AA is partly reflected and partly transmitted.

The reflection at the upper surface takes place with change of sign

(§' 132). The light entering the film is partly reflected at the lower

surface without change of sign, and re-

turning partly emerges at the upper

surface. It is there compounded with

Fig. 12b. the wave at that moment reflected.

Let us suppose the light homogeneous, and the thickness of the

film such that the time occupied by the light in going through it

and returning is the time of one complete vibration. The returning

wave will be in the same phase as the one at that moment entering,
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and, therefore, opposite in phase to the wave then reflected. Tlie

reflected and emerging waves destroy each other, or would do so

if their amplitudes were equal, and the result is that, apparently,

no light is reflected. If the light falling on the film be white light,

any one of its constituents will be suppressed when the time occu-

pied in going through the film and I'eturning is the period of one

vibration, or any whole number of such periods, of that constitu-

ent. The remaining constituents produce a tint which is the ap-

parent color of the film.

Similar phenomena are produced by the interference of that

portion of the incident light which is transmitted directly through

the film, with that portion which is transmitted after undergoing

an even number of internal reflections. Since these reflections

occur without change of sign, the thickness of the film for which

the reflected light is a minimum is that for which the transmitted

light is a maximum.

This theory must be slightly modified on account of the internal

reflections in the film. The light which enters the film and is re-

flected does not all pass out in the reflected beam, but part of it is

again sent through the fllm to the other surface, when it is again

divided, so that the reflected and transmitted beams both contain

light that has been several times reflected. The theory shows that

the reflected beam is totally extinguished when the thickness is

that indicated by the elementary theory, and that the transmitted

beam is never totally extinguished,

but merely passes through a mini-

mum intensity. This conclusion is

confirmed by observation.

Newtoii was the first to study

these phenomena. He placed a plane

glass plate upon a convex lens of long

radius, and thus formed between the

two a film of air, the thickness of

which at any point could be deter- " ~'
'

mined when the radius of the sphere and the distance from the
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point of contact were known. With this arrangement Newton found

a black spot at the point of contact, and surrounding this,when white

light was used, rings of different colors. When homogeneous light

was used, the rings were alternately light and dark. Let ae

(Fig. 124) be the radius of the first dark ring, and denote it by d, and

let r represent the radius of curvature of the lens. The thickness

be = ef, which may be denoted hyx, is x
2r

Since X is very

This distance
d''

small in comparison with 2r, this becomes x = —

.

for the first dark ring, when the incident light is normal to the

plate, is equal to half the wave length of the light experimented

upon. Newton found the thickness for the first dark ring tttooo

inches, which corresponds to a wave length of about jj|ot inches,

or 0.00057 mm. This method affords a means of measuring the

wave lengths of light, or, if the wave lengths be known, we may

determine the thickness of a film at any point.

353. Effects Produced by Narrow Apertures.—It has been seen

(§ 325) that cutting off a portion of a light-wave by means of

screens, thus leaving a narrow aperture for the passage of the light,

prevents the interference which confines the light to straight lines,

and gives rise to a luminous disturbance within the geometrical

shadow. This phenomenon is called diffraction. Let us consider

the aperture perpendicular to the plane of

the paper, and an approaching plane wave
°™°™

parallel to the plane of the aperture. Let

AB (Fig. 125) represent the aperture, and

mn one position of the approaching wave.

To determine the effect at any point we

must consider the elementary waves pro-

ceeding from the various points of the

wave front lying between A and B. First

consider the point Pon the perpendicular

to AB at its middle point. AB is so small that the distances

from P to each point oi AB may be regarded as equal, or

A CB

p

Fig. 125.
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AcB

Ficx. 1-^0.

the time of passage of the light from each point of AB to P may

be made the same, by placing a converging lens of proper focus be-

tween AB and F. Then all the elementary waves from points of

AB meet at F in the same phase, and the point F is illuminated.

Now consider a second point, P', in an oblique

direction from C (Fig. 126), and suppose the

obliquity such that the time of passage from B
to P' is half a vibration period less than the

time of passage from to P', and a whole vibra-

tion period less than the time of passage from

A to P'. Plainly the elementary waves from

B and C will meet at P' in opposite phases, and

every wave from a point between B and C will

meet at F' a wave in the opposite phase from some point between

C and A. The point F' is, therefore, not illuminated. Suppose

another point, P" (Fig. 127), still further from P, such that AB
mav l)e divided into three equal parts, each of which is half a wave

length nearer P" than the adjacent part. It

is plain that the two joarts Be and ca will

annul each other's effects at P", but that the

odd part Aa will furnish light. At a greater

obliquity, AB may be divided into four parts,

the distances of which from the point, taken

in succession, differ by half a wave length.

There being an even number of these parts,

the sum of their eft'ects at the point will be

zero. Now let us suppose the point P to

occupy successively all positions to the right or left of the normal.

While the line joining P with the middle of the aperture is only

slightly oblique, the elementary waves meet at P in nearly the same

phase, and the loss of light is small. As P approaches P'

(Fig. 126), more and more of the waves meet in opposite phases, the

light grows rapidly less, and at P' becomes zero. Going beyond P'

the two parts that annul each other's effects no longer occupy the

whole space A B, some of the points of the aperture send to P waves

Fig. 127.
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that are not neutralized, and the light reappears, giving a second

maximum, much less than the first in intensity. Beyond this the

light diminishes rapidly in intensity until a point is reached where

the paths differing by half a wave length divide AB into four

parts, when the light is again zero. Theoretically, maximum and

minimum values alternate in this way, to an indefinite distance,

but the successive maxima decrease so rapidly that, in reality, only

a few bands can be seen.

354. Effect of a Narrow Screen in the Path of the Light.— It can

be shown that the effect of a narrow screen is the complement of

that of a narrow aperture; that is, where a

narrow aperture gives light, a screen produces

darkness. Let mn (Fig. 128) be a plane wave

and AB a, surface on which the light falls. If

no obstacle intervene, the surface AB will be

equally illuminated. The illumination at any

point C is the sum of the eft'ects of all parts of

Fig. 128.
^-j^g wave mn. Let the effects due to the part

of the wave op be represented by I and that due to all the rest of

the wave by 1
'. Then the illumination at C is /+ -^

'? equal to the

general illumination on the surface. Let us now suppose mn to be

a screen and po a narrow aperture in it. If the illumination at C
remain unchanged, it must be that the parts 7no and pn of the

wave had no effect, and if, for the screen with the narrow aperture,

we substitute a narrow screen at oj), there will be darkness at C.

If, however, a dark band fall at 6\ when op is an aperture, a screen

at op will not cut off the liglit from C. That is, if 6' be illuminated

when op is an aperture, it will be in darkness when op ls a screen;

and if it be in darkness when op is an aperture, it will be illumi-

nated when op is a screen.

355, Diffraction Gratings.—Let AB (Fig. 129) be a screen hav-

ing several narrow rectangular apertures parallel and equidistant.

Such a screen is called a grating. Let the approaching waves, mov-

ing in the direction of the arrow, be plane and parallel to AB, and

let the points a, c, etc., be the centres of the apertures. Draw
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the parallel lines ab, cd, etc., at such an angle that the distance

from the centre of a to the foot of the

perpendicular let fall from the centre of

the adjacent opening on ab shall be equal

to some definite wave length of light.
^

.

It is evident that an will contain an

exact whole number of wave lengths, co ^*|C^^\\^^
one wave length less, etc. The line mil ^' ^\S^
is, therefore, tangent to the fronts of a ^^
series of elementary waves which are in

the same phase, and may be considered as a plane wave, which, if

it were received on a converging lens, would be concentrated to a

focus. If the obliquity of the lines be increased until ae equals 2A,

3A, etc., the result will be the same. Let us, however, suppose

that ae is not an exact multiple of a wave length, but some frac-

tional part of a wave length, yW'^ ^o^' example. Let m be the

fifty-first opening counting from a ; then an will be jVqA. x 50 =
49.5A. Hence the wave from the first opening will be in the oppo-

site phase to that from the fifty-first. So the wave from the second

opening will be in the opposite phase to that from the fifty-second,

etc. If there were one hundred openings in the screen, the second

fifty would exactly neutralize the effect of the first fifty in the

direction assumed. Light is found, therefore, only in directions

given by

sin^ = ^, (lU)

where n is a whole number, 6 the angle between the direction of

the light and the normal to the grating, and d the distance from

centre to centre of the openings, usually called an element ot the

grating. Gratings are made by ruling lines on glass at the rate of

some thousands to the centimetre. The rulings may also be made

on the polished surface of speculum metal, and the same effects as

described above are produced by reflection from its surface. Since

the number of lines on one of these gratings is several thousands,

it is seen that the direction of the light is closely confined to the
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direction given by the formula, or, in other words, light of only one

wave length is found in any one direction. If white light, or any

light consisting of waves of various lengths, fall on the grating,

the light corresponding to different wave lengths will make differ-

ent angles with A C, that is, the light is separated into its several

constituents, and produces a pure spectrum. Since different values

of n will give different values of t/ for each value of A, it is plain

that there will be several spectra corresponding to the several

values of n. When n equals 1 the spectrum is of the first order /

when 11 equals 3 the spectrum is of the second order, etc. The

grating furnishes the most accurate and at the same time the most

simple method of determining the wave lengths of light. Know-

ing the width of an element of the grating, it is only necessary to

measure /^ for any given kind of light.

Hitherto the spaces from which the elementary waves proceed

have been considered infinitely narrow, so that only one system of

waves from each space need be considered. In practice, these spaces

must have some width, and it may happen that the waves from two

parts of the same space may cancel each other.

Let the openings, Fig. 130, be equal in width

to the opaque spaces, and let the direction am be

taken such that ae equals 2A. Then oe' equals

-U, or the waves from one half of each opening

are opposite in phase to those from the other half,

and there can be no light in the direction am. In

general, if d equal the width of the opening, there
^^'

"^
'

will be interference, and light will be destroyed

u'\-
in that direction for which sin 6 = -— , if the incident light be

d *

normal to the grating. Let f represent the width of the opaque

space. Then d -{- f — s, and light occurs in the direction given by

sin 6 = y-j—7.5 provided that the value of given by this equation

does not satisfy the first equation also.

If d equal /, we have sin = ..= ^-r. When n is even.
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sin 6 becomes 7n = -i\ k—,
— -tj etc., and satisfies the equation

2d d 2d d ' ^

sin 6 =
-J,

which expresses the condition under which light is all

destroyed. Hence in this case all the spectra of even orders fail.

Moreover, the spectra after the first are not brilliant. When /
equals 2d the spectrum of the third order fails.

356. Measurement of Wave Lengths,—To realize practically

the conditions assumed in the theoretical discussion of the last

section, some accessory apparatus is required. It has been assumed

that the wave incident upon the grating was plane. Such a wave

would proceed from a luminous point or line at an infinite distance.

In practice it may be obtained by illuminating a very narrow slit,

taking it as the source of light, and placing it in the principal focal

plaiie of a well-corrected convergiug lens. The plane wave thus

obtained passes through the grating, or is reflected from it, and is

received on a second lens similar to the first, which gives an image

either on a screen or in front of an eyepiece, where it is viewed by

the eye. The general construction of the apparatus may be in-

ferred from Fig. 131. It is called the spectrometer.

A is a tube carrying at its outer end the slit and at its inner

end the lens, called a collimating lens, CD is a horizontal gradu-

ated circle, at the centre of which is a

table on which the grating is mounted,

and so adjusted that the axis of the

circle lies in its plane and parallel to its

lines. In using a refiecting grating the

collimating and observing telescopes

may be fixed at a constant angle 2/5 with

each other, which may be determined

once for all in making the adjustments

of the instrument. To determine this

angle the grating is turned until light thrown through the observing

telescope upon the grating is reflected back on itself. The position

of the graduated circle is then read. The difference between this

3:^H3Z>
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reading and the reading when the grating is in such a position that

the reflected image of the slit is seen in the telescope is the angle

/?. If the grating be now turned until the light of which the wave

length is required is observed, the angle through which it is turned

from its last position is the angle B. If the width s of an element

of the grating be known, these measurements substituted in the

equation

A. = 25 cos /? sin ^ (115)

give the value of \.

Wave lengths are generally given in terms of a unit called a

tentlt. metre ; that is, 1 metre X 10~'". The wave lengths of the

visible spectrum lie between 7500 and 3900 tenth metres. Langley

has found in the lunar radiations wave lengths as long as 170,000

tenth metres, and Rowland has obtained photographs of the solar

spectrum in which are lines representing wave lengths of about

3000 tenth metres.

Instead of the arrangement which has been described, Rowland

has devised a grating ruled on a concave surface, and is thus en-

abled to dispense with the colliraating lens and the telescope.



CHAPTER IV.

DISPERSION.

357. Dispersion.—When white light falls upon a prism of any

refracting- medium, it is not only deviated from its course but

separated into a number of colored lights, constituting an image

called a spectrum. These merge imperceptibly from one into an-

other, but there are six markedly different colors: red, orange,

yellow, green, blue, and violet. Red is the least and violet the

most deviated from the original course of the light. Newton

showed by the recomposition of these colors by means of another

prism, by a converging lens, and by causing a disk formed of

colored sectors to revolve rapidly, that these colors are constituents

of white light, and are separated by the prism because of their

different refrangibilities. To arrive at a clear understanding of

the formation of this spectrum, let us suppose first a small source

of homogeneous light, L (Fig. 132). If this light fall on n con-

verging lens from a point at a distance from it a little greater

Fig. 133.

than that of the principal focus, a distinct image of the source will

be formed at the distant conjugate focus /. If now a prism be

placed in the path of the light, it will, if placed so as to give the

minimum deviation, merely deviate the light without interfering

with the sharpness of the image, which will now be formed at V

instead of at I. If the source L give two or three kinds of

439
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light, the lens may be so constructed as to produce a single sharp

image at / of the same color as the source, but when the prism is

introduced the lights of different colors ttiU be differently de-

Tiated, and two or three distinct images will be found near V. If

there be many such images, some may overlap, and if there be a

great number of kinds of light varying progressively in refrangi-

bility, there will be a great number of overlapping images con-

stituting a continuous sjwctrum.

358. Dispersive Power.—It is found that prisms of different

substances giving the same mean deviation of the light deviate the

light of different colors differently, and so produce a longer or

shorter spectrum. The ratio of the difference between the devia-

tions of the extremities of the spectrum to the mean deviation

may be called the dispersive power of the substance. Thus if

d\ d" represent the extreme deviations, and d the mean deviation,

the dispersive power is—-^ .

359. Achromatism.—If in Xewton's experiment of recomposi-

tiou of white light by the reversed prism the second prism be of

higher dispersive power than the first, and of such an angle as to

effect as far as possible the recomposition, the light will not be

restored to its original direction, but will still be deviated, and we

shall have deviation without dispersion. This is a most important

fact in the construction of optical instruments. The dispersion of

light by lenses, called chromatic aberrofion, was a serious evil in

the early optical instruments,, and Xewton, who did not think it

possible to prevent the dispersijon, was led to the construction of

reflecting telescopes to remedy the evil. It is

plain, however, from what has been said above,

that in a combination of two lenses of different

kinds of glass, one converging and the other di-

verging, one may Correct the dispersion of the

other within certain limits, while the combina-

FiG. 133. tion still acts as a converging lens forming real

Images of objects. Fig. 133 shows how tliis principle is applied to
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the correction of chromatic aberration in the object-glaises of tele-

scopes.

Thus far nothing has been said of the relative separation of the

different colors of the spectrum by refraction by different sub-

stances. Suppose two prisms of different substances to have such

refracting angles that the spectra produced are of the same length.

If these two spectra be superposed, the extreme colors may be

made to coincide, but the intermediate colors do not coincide at

the same time for any two substances of which lenses can be made.

Perfect achromatism by means of lenses of two substances is there-

fore iuipossible. In practice it is usual to construct an achromatic

combination to superpose, not the extreme colors, but those that

have most to do with the brilliancy of the image.

The indistinctness due to chromatic aberration, existing even

in the compound objective, may be much diminished by a proper

disposition of the lenses of the eyepiece. Fig. 134 shows the

negative or Huygens eyepiece.

Fig. 134.

Let A be the objective of a telescope or microscope. A point

situated on the secondary axis ov would, if the objective were a

single lens, have images on that axis, the violet nearest and the

red farthest from the lens. If the lens could be perfectly cor-

rected, these images would all concide. By making the lens a

little over-corrected, the violet may be made to fall beyond the

red. Suppose r and v to be the images. P> and C are the two

lenses of the Huygens eyepiece. B is called \.he field-lens, and is

three times the focal length of C. It is placed between the ob-

jective and its focal plane, and therefore prevents the formation of

the images rv, but will form images at r'v' on the secondary axes

o'r, o'v. If everything is properly proportioned, r'v' will fall on
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the secondary axis o"R of the eye-lens C at such relative distances

as to produce one virtual image at RV. It will be noted that the

image r' is smaller than would have been formed by the objective^

The magnifying power of the instrument is therefore less than it

wonld be if the lens C were used alone as the eyepiece. This loss

of magnifying power is more than counterbalanced by the in-

creased distinctness.

Fig. 135 shows the Ramsden or positive eyepiece. The focal

length of tiie lenses in this combination is generally the same, and

the distance between them is two-thirds the focal length. The

aid it gives in correcting the residual errors of the objective is

evident from the figure.

Fig. 135.

360. The Rainbow.—The rainbow is due to refraction and

dispersion of sunlight by drops of rain. The complete theory of

the rainbow is too abstruse to be given here, but a partial explana-

tion may be given. Let 0, Fig. 136, represent a drop of water,

and SA the paths of the incident light from the 'sun. The light

enters the drop, suffers refraction on entrance, is reflected from

the interior surface near B, and emerges near O, as a wave of

double curvature of which mn may be taken as the section. Of

this wave the part near p, the point of inflection, gives the maxi-

mum effect at a distant point, and if the eye be placed in the

prolongation of the line CF perpendicular to the wave surface,

light will be perceived, but at a very little distance above or below

C^ there will be darkness. The direction CE is very nearly that

of the minimum deviation produced by the drop with one internal



§ 361] DISPERSION. 443

reflection. It is also the direction in which the angle of emergence

equals the angle of incidence. The direction GE corresponds to

the minimum deviation for only one kind of light. If this be red

light, the yellow will be more deviated, and the blue still more.

To see these colors the eye must be higher up, or the drop lower

down. If the eye remain stationary, other drops below will

send to it the yellow and blue, and other colors of the spectrum.

Since this effect depends only on the angle between the directions

aS*^ and CE, it is clear that a similar

effect will be received by the eye at E
from all drops lying on the cone swept

out by the revolution of the line CE
and all similar lines drawn to the drops

above and below the drop 0, about an •

axis drawn through the sun and the eye, and hence parallel to

SA. This cone will trace out the primary rainbow naving the red

on the outer and the blue on the inner edge. The secondary bow,

which is fainter, a,nd appears outside the primary, is produced by

two reflections and refractions as shown in Fig. 137.

361. The Solar Spectrum.—As has been stated (§ 357), solar

light when refracted by a prism gives in general a continuous

spectrum. Wollaston, in 1802, was the first to observe that when

solar light is received upon a prism through a very narrow opening

at a considerable distance, dark lines are seen crossing the other-

wise continuous spectrum. Later, in 1814-15, Fraunhofer studied

these lines, and mapped about 600 of them. That these may be

well observed in the prismatic spectrum it is important that the

apparatus should be so constructed as to avoid as far as possible

spherical and chromatic aberrations. The slit must be very nar-

row, so that its images may overlap as little as possible. The

most important condition for avoiding spherical aberration is that

the waves reaching the prism should be plane waves, since all

others are distorted by refraction at a plane surface. Fig. 138

shows the disposition of the essential parts of the apparatus

known as the spectroscope. S is the slit, which may be considered
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as the source of light. C is an achromatic lens, called a collwiat-

%ng lens, so placed that S is in its principal focus. The waves

emerging from it will then be plane. These will be deviated by

the prism, and the waves representing the different colors will be

M\Mm;i
Fig. 138.

separated, so that after passing through the second lens these

different colors will each give a separate image. These imnges

may be received upon a screen, or observed by means of an eye-

piece. Sometimes a series of prisms is used to cause a wider sepa-

ration of the different images.

If the images at F be received on a sensitive photographic

plate, it will be found that the image extends far beyond the visi-

ble spectrum in the direction of greater refrangibility, and a tlier

mopile or bolometer will show that it also extends a long distance

in the opposite direction beyond the visible red. The solar radia-

tions, therefore, do not all have the power of exciting vision.

Much the larger part of the solar beam manifests its existence

only by other effects. It will be shown that, physically, the vari-

ous constituents into which white light is separated by the prism

differ essentially only in wave length.



CHAPTER V.

ABSORPTION AND EMISSION.

362. Effects of Radiant Energy.—It has been stated that the

solar spectrum, whether produced by means of a prism or by a

grating, may, under certain conditions, give rise to heat, light, or

chemical changes. It was formerly supposed that these were due

to three distinct agents emanating from the sun, giving rise to

three spectra which were partially superposed. Numerous experi-

ments show, however, that, at any place in the spectrum where

light, heat, and chemical effects are produced, nothing which we

can do will separate one of these effects from the others. Whatever

diminishes the light at any part of the spectrum diminishes the

heat and chemical effects also. Physicists are now agreed that all

these phenomena are due to vibratory motions transmitted from

the sun, which differ in length of wave, and which are separated

by a prism, because waves differing in length are transmitted in

the substance of the prism with different velocities. The effect

produced at any place in the spectrum depends upon the nature of

the surface upon which the radiations fall. On the photographic

plate they produce chemical change, on the retina the sensation of

light, on the thermopile the effect of heat. Only those waves of

which the wave lengths lie between 3930 and 7600 tentii metres

affect the optic nerve. Chemical changes and the effects of heat

are produced by radiations of all wave lengths.

To produce any effect the radiations must be absorbed ; that is,

the energy of the ethereal vibrations must be imparted to the sub-

stance on which they fall, and cease to exist as radiant energy. The
445



446 ELEMENTARY PHYSICS. [§ 363

most common effect of such absorption is to generate beat, and

there are some surfaces upon which heat will be generated by the

absorption of ethereal waves of any length. Langley, by means of

the bolometer, has been able to measure the energy throughout the

spectrum. He has demonstrated the existence, in the lunar spec-

trum, of waves as long as 170,000 tenth metres, or more than

twenty-two times as long as the longest that can excite human

vision.

363. Intensity of Radiations.—The intensity of radiations can

only be determined by their effects. If the radiations fall on a body

by which they are completely absorbed and converted into heat,

the amount of heat developed in unit time may be taken as the

measure of the radiant energy. Let us suppose the radiations to

emanate from a point equally in all directions, and represent the

total energy in a wave by E. Let the jjoint be at the centre of a

hollow sphere, of which the radius is ;•, and represent by /the en-

ergy per unit area of the sphere. Then, since the surface o£ the

sphere equals 4;rr% we have E = 4;rrV,

and /:
E

Anr'
(116)

That is, the energy which falls upon a given surface is in the in-

verse ratio of the square of its distance from the source. As we

know by experiment that the intensity of light follows the same

law, we conclude that the intensity and energy are proportional.

If the surface be not normal to the rays, the radiant energy it

receives is less, as will appear

from Fig. 139. Let ah be a sur-

face the normal to which makes

with the ray the angle O; then

ah will receive the same quan-

tity of radiant energy as a' h' , its

projection on the plane normal

Fig. 139. to the ray. But a'h' equals

db cos B\ and if / represent the energy on unit area of a' h', and V
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the energy on unit area of ab, we have /' = /cos d; or, the

energy of the radiations falling on a given surface is proportional

to the cosine of the angle made by the surface and the plane

normal to the direction of the rays.

364. Photometry.—The object of photometry is to compare the

luminous effects of radiations. It is not supposed that the radia-

tions which fall on the retina are totally absorbed by the nerves

that impart the sensation of light. The luminous effects, there-

lore, depend on the susceptibility of these nerves, and can only bo

.compared, at least when different wave lengths are concerned, by

means of the eye itself. The photometric comparison of two lumi-

nous sources is effected by so placing them that the illuminations

produced by them respectively, upon two surfaces conveniently

placed for observation, appear to the eye to be equal. If E and E'

represent the intensities of the sources, / and F the intensities

of the illuminations produced by them on surfaces at distances r

and r', the ratio between these intensities, as was seen in the last

section, is

E
I _ r' _ Er^

,

l'~'W ~ E'r' '

and when /and /' are equal, Er'"^ = E^r\ or

E _ r^

E' " r"'
(117)

That is, when two luminous sources are so placed as to pro-

duce equal illuminations on a surface, their intensities are as the

squares of their distances from the illuminated surfaces.

In Bunsen's photometer the sources to be compared are placed

on the opposite sides of a paper screen, a portion of which has

been rendered translucent by oil or paraffine. When this screen is

illuminated upon one side only, the translucent portion appears

darker on that side, and lighter on the other side, than the opaque

portion. When placed between two luminous sources, both sides
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of it may, by moving it toward one or the other, be made to appear

alike, and the translucent portion almost invisible. The light

transmitted through this portion in one direction then equals that

transmitted in the opposite direction; that is, the two surfaces are

equally illuminated.

365. Transmission and Absorption of Radiations.—It is a

familiar fact that colored glass transmits light of certain colors

only, and the inference is easy that the other colors are absorbed

by the glass. It is only necessary to form a spectrum, and place

the colored glass in the path of the light either before or after the

separation of the colors, to show which colors are transmitted, and

which absorbed.

By the use of the thermopile or bolometer, both of which are

sensitive to radiations of all periods of vibration, it is found that

some bodies are apparently perfectly transparent to light, and

opaque to the obscure radiations. Clear, white glass is opaque to a

large portion of the obscure rays of long wave length. Water and

solution of alum are still more opaque to these rays, and pure ice

transmits almost none of the radiations of which the wave lengths

are longer than those of the visible red. Rock salt transmits well

both the luminous and the non-luminous radiations.

On the other hand, some substances apparently opaque are

transparent to radiations of long wave length. A plate of glass or

rock salt rendered opaque to light by smoking it over a lamp is

still as transparent as before to the radiations of longer wave length.

Selenium is oj)aque to light, but transparent to the radiations of

longer wave length. This fact explains the change of its electrical

resistance by light, but not by non-luminous rays. Carbon disul-

phide, like rock salt, transmits nearly equally the luminous and

non-luminous rays; but if iodine be dissolved in it, it will at first

cut off the luminous rays of shorter wave length, and as the solu-

tion becomes more and more concentrated the absorption extends

down the spectrum to the red, and finally all light is extinguished,

and the solution to the eye becomes opaque. The radiations of

which the wave lengths are longer than those of the red still pass
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freely. Black vulcanite seems perfectly opaque, yet it also trans-

mits radiations of long wave length. If the radiations of the elec-

tric lamp be concentrated by means of a lens, and a sheet of black

vulcanite placed between the lamp and the lens, bodies may be

still heated in the focus.

366. Colors of Bodies.—Bodies become visible by the light

which comes from them to the eye, and bodies which are not self-

luminous must become visible by sending to the eye some portion

of the light that falls on them. Of the light vvhicli falls on a

body, pare is reflected from the surface; the remainder which

enters the body is, in general, partly absorbed, and the unabsorbed

})ortion either goes on through the body, or is turned back by re-

flection at a greater or less depth within the body, and mingles

with the light reflected from the surface.

In general the surface reflection is small in amount, and the

different colors are reflected almost in the proportion in which they

exist in the incident light. Much the larger portion of the light

by Avhich a body becomes visible is turned back after penetrating

a short distance beneath the surface, and contains those colors

Avhich the substance does not absorb. This determines the color

of the object. In many instances there is a selective reflection

from the surface (§ 373). For example, the light reflected from

gold-leaf is yellow, while that which it transmits is green.

367. Absorption by Gases.— If a pure spectram be formed from

the white light of the electric lamp, and sodium vapor, obtained

by heating a bit of sodium or a bead of common salt in the Bunsen

flame, be placed in the path of the beam, two narrow, sharply de-

fined dark lines will be seen to cross the spectrum in the exact

position tliat would be occupied by the yellow lines constituting

the spectrum of sodium vapor. Gases in general have an effect

similar to that of the vapor of sodium; that is, they absorb from

the light which passes through +hem distinct radiations correspond-

ing to definite wave lengths, which are always the same as those

which would be emitted by the gas were it rendered incandescent,

368. Spectrum Analysis.—If the light of a lamp or of any in-
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-candescent solid, such as the lime of the oxyhydrogen light or the

carbons of the electric lamp, be examined with the spectroscope, a

continuous spectrum like that produced by sunlight is seen, but

the black lines are absent (§ 361). Solids and liquids give in gen-

eral only continuous spectra. Gases, however, when incandescent

give continuous spectra only very rarely. Their spectra are bright

lines which are distinct and separate images of the slit. The num-
ber and position of these lines differ with each gas employed.

Hence, if a mixture of several gases not in chemical combination

be lieated to incandescence, the spectral lines belonging to each

constituent, provided all be present in sufficient quantity, will be

found in the resultant spectrum. Such a spectrum will therefore

serve to identify the constituents of a mixture of unknown compo-

sition. Many chemical compounds are decomposed into their ele-

ments, and the elements are rendered gaseous at the temperature

necessary for incandescence. In that case the spectrum given is

the combined spectra of the elements. A compound gas that does

not suffer dissociation at incandescence gives its own spectrum,

which is, in general, totally different from the spectra of its ele-

ments.

The appearance of a gaseous spectrum depends :n some degree

on the density of the gas. When the gas is sufficiently corajDressed,

the lines become broader and lose their sharply defined edges, and

if the compression be still further increased the lines may widen

until they overlap, and form a continuous spectrum. Some of the

dark lines of the solar spectrum are found to coincide in position

with the bright lines of certain elements, This coincidence is ab-

solute with the most perfect instruments at our command; and not

only so, but if the bright lines of the element differ in brilliancy

the corresponding dark lines of the solar spectrum differ similarly

in darkness.

The close coincidence of some of these lines was noted as early

as 1823 by Sir John Herschel, but the absolute coincidence was

demonstrated by Kirchhoff, who also pointed out its significance.

Placing the flame of a spirit-lamp with a salted wick in the path
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of the solar beam which illuminated the slit of his spectroscope,

Kirchhoff found the two dark lines corresponding in position to the

two bright lines of sodium to become darker, that is, the flame of

the lamp had absorbed from the more brilliant solar beam light of

the same color as it would itself emit. The explanation of tJie

dark lines of the solar spectrum is obvious. The light from tlie

body of the sun gives a continuous spectrum like that of an incan-

descent solid or liquid. Somewhere m its course this light passes

tlirough an atmosphere of gases which absorbs from the solar beam

such light as these gases would emit if they were self-luminous.

8ome of this absorption occurs in the earth's atmosphere, but most

of it is known to occur in the atmosphere of the sun itself. By
comparison of these dark lines with the spectra of various incan-

descent substances upon which we can experiment, the probable

constitution of the sun is inferred,

369. Emission of Radiations.—Not only incandescent bodies,

but all bodies at whatever temperature they may be, emit radiations.

A warm body continues to grow cool until it arrives at the tem-

perature of surrounding bodies, and then if it be moved to a place

of lower temperature, it cools still further. To this process wq can

ascribe no limit, and it is necessary to admit that the body will

radiate heat, and so grow cooler, whatever its own temperature, if

only it be warmer than surrounding bodies. But it cannot be

supposed that a body ceases to radiate heat when it comes to the

temperature of surrounding bodies, and begins again when the tem-

perature of these is lowered. It is necessary, therefore, to assume

that all bodies, at whatever temperature they may be, are radiating

heat, and that, when any one of them arrives at a stationary tem-

perature, it is, if no change take place within it involving the

generation or consumption of heat, receiving heat as rapidly as it

parts with it. This is called the principle of movable equiUhrium

of temperature, or Provost's law of exchanges. We know that if

a number of bodies, none of which are generating or consuming

heat otherwise than in change of temperature, be placed in an en-

closure, the walls of which are maintained at a constant temperature.
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these bodies will in time all come to the temperature of the enclosure.

It can be shown that, for tins to be true, the ratio of the emissive

to the absorbing power must be the same for all bodies, not only for

the sum total of all radiations, but for radiations of each wave

length. For example, a body which does not absorb radiations of

long wave length cannot emit them, otherwise, if placed in an en-

closure where it could only receive such radiations, it would become

colder than other bodies in the same enclosure. This is only a

general statement of the fact which has been already stated for

gases, that bodies absorb radiations of exactly the same kind as those

which they emit.

Since radiant energy is energy of vibratory motion, it may be

supposed to have its origin in the vibrations of the molecules or

atoms of the radiating body. It has been shown that the various

phenomena of gases are best explained by assuming a constant

motion of their molecules. If the atoms of these molecules should

have definite periods of vibration, remaining constant for the same

gas through wide ranges of pressure and temperature, this would

fully exj)lain the peculiarities of the s^icctra of gases.

In § 150 it was seen that a vibrating body may communicate its

vibrations to another body which can vibrate in the same period,

and will lose just as much of its own energy of vibration as it im-

parts to the other body. Moreover, a body which has a definite

period of vibration is undisturbed by bodies vibrating m a period

different from its own. This explains fully the selective absorption

of a gas. For, if a beam of white light pass through a gas, there

are, among the vibrations constituting such a beam, some which

correspond in period to those of the molecules of the gas, and,

unless the energy of vibration of these molecules is already too

great, it will be increased at the expense of the vibrations of the

same period in the beam of light. Hence, at the parts in the spec-

trum where light of those vibration periods would fall, the light

will be enfeebled, and those parts will appear, by contrast, as dark

lines.

In solids and liquids, the molecules are so constrained in their
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movements that they do not vibrate in definite periods. Vibrations

of all periods may exist; but if in a given case there were a tendency

to one period of vibration more than to another, it is evident that

the body would transfer to or receive from another, that is, it would

emit or absorb, vibrations of that period more than of any other.

Furthermore, a good radiator is a body so constituted as to impart

to the medium around it the vibratory motion of its own molecules.

But the same peculiarity of structure which fits it for communi-

cating its own motion to the medium when its own motion is the

greater, fits it also for receiving motion from the medium when its

own motion is the less. Theory, therefore, leads us to the conclusion

which experiment has established, that at a given temperature

emissive and absorbing powers have the same ratio for all bodies.

370. Loss of Heat in Relation to Temperature.—The loss of heat

by a body is the more rapid the greater the difference of tempera-

ture between it and surrounding bodies. For a small difference of

temperature the loss of heat is nearly proportional to this difference.

This law is known as Neioton's laiu of cooluig. For a large differ-

ence of temperature the loss of heat increases more rapidly than

the difference of temperature, and depends not merely upon this

difference, but upon the absolute temperature of the surrounding

bodies. An extended series of experiments by Dulong and Petit

led to a formula expressing the quantity of heat lost by a body in

an enclosure during unit time. It is (> = w (1.0077)^(1.0077* — 1),

where ^ represents the temperature of the enclosure, t the difference

of temperature between the enclosure and the radiating body, both

measured in Centigrade degrees, and m a constant depending on the

substance, and the nature of its surface.

371. Kind of Radiation as Dependent upon Temperature.—When

a body is heated we may feel the radiations from its surface long

before those radiations render the body visible. If we continue to

raise the temperature, after a time the body becomes red-hot; as the

temperature rises still further it becomes yellow, and finally attains

a white heat. Even this rough observation indicates that the radi-

ations of great wave length are the principal radiations at the lower
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temperature, and that to these are added shorter and shorter wave

lengths as tlie temperature rises. Draper showed that the spectrum

of a red-hot body exhibits no rays of shorter wave lengtli tlian the

red, but that as the temperature rises the spectrum is extended in

the direction of the violet, the additions occurring in the order of

the wave lengths. At the same time the colors previously existing

increase in brightness, indicating an increase in energy of the vibra-

tions of longer wave length as those of shorter wave length become

visible. Experiments by Nichols on the radiations from glowing

platinum show that vibrations of shorter wave length are not alto-

gether absent from the radiations of a body of comparatively low

temperature, and he was led to believe that all wave lengths are

present in the radiations from even the coldest bodies, but are too

feeble to be detected.

With gases, as has been seen, the radiations are apparently con-

fined to a few definite wave lengths, but careful observations of

the spectra of gases show that the lines are not defined with abso-

lute sharpness, but fade away, although very rapidly, into the dark

background. In many cases the existence of radiations may be

traced throughout the spectrum, and it is a question whether the

spectra of gases are not after all continuous, only showing strongly

marked and sharply defined maxima where the lines occur. In

general, increase of temperature does not alter the spectra of gases

except to increase their intensity, but there are some cases in

which additional lines appear as the temperature rises, and a few

cases in which the spectrum undergoes a complete change at a cer-

tain temperature. This occurs with those compound gases which

suffer dissociation at a certain temperature, and at higher temper-

atures give the spectra of their elements. When it occurs with

gases supposed to be elements it suggests the question whether

they are not really compounds, the molecules of which at tlie

high temperature are divided, giving new molecules of which the

rates of vibration are entirely different from those of the original

body.

372. Fluorescence and Phosphorescence.—A few substances.
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such as sulphate of quiuine, uranium glass, and thallene, have the

property, when illuminated by rays of short wave length, even by

the invisible rays beyond the violet, of emitting light of longer

wave length. Such substances oxe fluorescent. The light emitted

by them, and the conditions favorable to their luminosity, have

been studied by Stokes. It appears that the light emitted is of the

same character, covering a considerable region of the spectrum,

no matter what may be the incident light, provided tliis be such as

to produce the effect at all. The light emitted is always of lono-er

wave length than that which causes the luminosity.

There is another class of substances which, after being exposed

to light, will glow for some time in the dark. These are jihos-

Ijlioi'escent. They must be carefully distinguished from such

bodies as phosphorus and decaying wood, which glow in conse-

quence of chemical action. Some phosphorescent substances,

especially the calcium sulphides, glow for several hours after ex-

posure. All fluorescent bodies are also phosphorescent, but the

time during which they remain luminous after the exciting light

is removed, is so short that it can generally be detected only by

apecial devices.

373. Anomalous Dispersion.—x\s has been already stated, there

is a class of bodies which show a selective absorption at their sur-

faces. The light reflected from such bodies is complementary to

the light which they can transmit. Kundt, following up isolated

observations of other physicists, has shown that all sucli bodies

give rise to an cmomalous dispersioji; that is, the order of the

colors in the spectrum formed by a prism of one of these sub-

stances is not the same as their order in the diffraction spectrum

or in the spectrum formed by prisms of substances which do not

show selective absorption at their surfaces. Solid fuchsin, when

viewed by reflected light, appears green. In solution, when viewed

by transmitted light, it appears red. Christiansen allowed light

to pass through -a prism formed of two glass plates making a small

angle with each other, and containing a solution of fuchsin in

alcohol. He found that the green was almost totally wanting in
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the spectrum, while the order of the other colors was different

from that iu the normal spectrum. In the spectrum of fuchsin

the colors in order, beginning with the one most deviated, were

violet, red, orange, and yellow. Other substances give rise to

anomalous dispersion in which the order of the colors is different.

In order to account for these phenomena, the ordinary theory

of light is extended by the assumption that the ether and mole-

cules of a body materially interact upon one another, so that the

vibrations in a light-wave are modified by the vibrations of the

molecules of a transparent body through which light is passing.

This liypothesis, in the hands of Helmholtz and Ketteler, has been

sufficient to account for most of the phenomena of light.



CHAPTEK VI.

DOUBLE REFRACTION AND POLARIZATION.

374. Double Eefraction in Iceland Spar.—If refraction take

place in a medium which is not isotropic, as has been assumed in

the previous discussion of refraction, but eolotropic, a new class

of phenomena arises. Iceland spar is an eolotropic medium by

the use of which the phenomena referred to are strikingly ex-

hibited. Crystals of Iceland spar are rhombohedral in form, and

a crystal may be a perfect rhombohedron with six equal plane

faces, each of which is a rhombus. Fig. 140 represents such a

D c

E G

Fig. 140

crystal. At A and X are two solid angles formed by the obtuse

angles of three plane faces. The line through A making equal

angles with the three edges AB, AE, AD, or any line parallel to it,

is an optic axis of the crystal.

Any plane normal to a surface of the crystal and parallel to the

optic axis is called a principal plane. If such a crystal be laid upon

a printed page, the lines of print will, in general, appear double.

If a dot be made on a blank paper, and the crystal placed upon it,

two images of the dot are seen. If the crystal be revolved about an

457
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axis perpendicular to the paper, one of the images remains station-

ary, and the other revolves around it. The images lie in a plane

perpendicular to the paper, and parallel to the line joining the two

obtuse angles of the face by which the light enters or emerges.

The entering and emerging light is supposed in this case to be nor-

mal to the surfaces of the crystal. If the crystal be turned with its

faces oblique to the light, the line joining the images will, in cer-

tain cases, not lie parallel to the line joining the obtuse angles of

the faces. If the distances of the two images from the observer be

carefully noticed it will be seen that the stationary one appears

nearer than the other. If the obtuse angles A and X be cut away,

and the new surfaces thus formed at right angles to the optic axis

be polished, images seen perpendicularly through these faces do

not appear double. By cutting the crystal into prisms in various

ways its indices of refraction may be measured. It is found that,

of the two beams into which light is, in general, divided in the

crystal, one obeys the ordinary laws of refraction, and has a refrac-

tive index 1.658. It is called the ordinary ray. The other has

no constant refractive index, does not in general lie in the normal

plane containing the incident ray, and refraction may occur when

the incidence is normal. It is the extraordinary ray. The ratio

between the sines of the angles of incidence and refraction varies,

for the Fraunhofer line D, from 1.658, the ordinary itidex, to 1.486.

This minimum value is called the e.rfraordinary index.

375. Explanation of Double Refraction.—In § 334 it was seen

that the index of refraction of a substance is the reciprocal of the

ratio of the velocity of light in the substance to its velocity in a

vacuum. It is plain, then, that the velocity of light for the ordi-

nary ray of the last section is the same for all directions, and that,

if light emanate from a point within the crystal, the light, following

the ordinary laws of refraction, must proceed in spherical waves

about that point as a centre, as in any singly refracting medium

Tlie phenomena j^resented by the extraordinary light in Iceland

spar are fully explained by assuming that the velocities in different

directions in the crystal are such as to give a wave front in the
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form of a flattened spheroid, of which the polar diameter, parallel

to the optic axis, is equal to the diameter of the ordinary spherical

m

Fig. 141.

wave, and the equatorial diameter is to its polar diameter as 1.658

is to 1.486. From these two wave surfaces the path of the li^ht

may easily be determined by construction by methods already ex-

plained in § 334, and exemplified in Fig. 141, in which ic represents

the direction of the incident light, and co and ce the ordinary and

extraordinary rays respectively.

376. Polarization of the Doubly Refracted Light.— If a second

crystal be placed in front of the first in any of the experiments de-

scribed in the last section, there will be seen in general four images

instead of two; but if the second crystal be turned, the images

change in brightness, and for four positions of the second crystal,

when its principal plane is parallel or at right angles to the princi-

pal plane of the first, two of the images are invisible, and the other

two are at a maximum brightness. If one of the beams of light

produced by the first crystal be intercepted by a screen, and tlie

other allowed to pass alone through the second crystal, the phe-

nomena presented are easily followed. If the principal planes of

the two crystals coincide, only one image is seen. If the second

crystal be now rotated about the beam of light as an axis, a second

image at once appears, at first very faint, but increasing in bright-

ness. The original image at the same time diminishes in bright-

ness, and the two are equally bright when the angle between the

principal planes is 45". If the angle be 90° the first image disap-

pears, and the second is at its maximum brilliancy. As the rotation
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is continued the first image reappears, while the second grows dim

and disappears when the angle between the principal planes is 180°.

These changes show that the light which emerges from the first

crystal of spar is not ordinary light. Another experiment shows

this in a still more striking manner. Let the extraordinary ray be

cut off by a screen, and the ordinary ray be received on a plane un-

«ilvered glass at an angle of incidence of 57°. When the plane of

incidence coincides with the principal plane of the spar, the light

is refiected like ordinary light. If the mirror be now turned about

the incident ray as an axis, that is, so turned that, while the angle

of incidence remains unchanged, the plane of incidence makes

successively all possible angles with the principal plane of the crvs-

tal, the reflected light gradually diminishes in brightness, and when

the angle between the plane of incidence and the principal plane of

the crystal is 90° it fails altogether. If the rotation be continued it

gradually returns to its original brightness, which it attains when

the angle between the same planes is 180°, and then diminishes

until it fails when the angle is 270°. The extraordinary ray presents

the same phenomena except that the reflected light is brightest

when the angle between the planes is 90° and 270°, and fails when

that angle is 0° and 180°. Beams of liglit after double retraction

present different properties on different sides, and are said to be

polarized. The explanation must, of course, be found m tlie char-

acter of the vibratory motion.

In the polarized beam it is plain that the vibrations must be

transverse; for if the light were the result of longitudinal vibra-

tions, or even of vibrations having a longitudinal component, it

could not be completely extinguished for certain azimuths of the

second crystal or of the glass reflector. This conclusion is verified

by the experiments of Fresnel and Arago on the interference of

polarized light. The difference between ordinary and polarized

light is explained if we assume that, in both, the vibrations of the

ether particles take place at right angles to the line of propagation

of the wave, and that in ordinary light they occur irregularly in all

azimuths about that line, and may be performed in ellipses or
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circles as well as in straight lines, while in polarized light they

occnr in one plane. In the ordinary ray in Iceland spar the vibra-

tions are in a plane at right angles to the optic axis. In the extra-

ordinary ray they are in the plane containing the optic axis and the

ray. If we assume that the rigidity of the ether is different in

different directions in the crystal, that at right angles to the optic

axis it is a minimum and along the optic axis a maximum, and

varies between these two directions according to a simple law, all

the phenomena of double refraction and polarization in the crystal

are accounted for. If a crystal be cut so as to present faces paral-

lel to the optic axis, and if light enter along a normal to one of

these faces, the vibrations, which previous to entering the crystal

were in all azimuths, are resolved in it in two directions—that of

greatest and that of least elasticity, or parallel to and at right angles

to the optic axis. The wave made up of vibrations parallel to the

optic axis is propagated with the greater velocity. In this case the

two wave fronts continue in parallel planes, and upon emergence

constitute apparently one beam of light. If the incidence be ob-

lique and in a plane at right angles to the principal plane, the two-

component vibrations are still parallel to and at right angles to the

optic axis, but a refraction occurs which is greater for the ray of

which the vibrations are m the direction of least elasticity. If the

incidence be oblique and in the principal plane, it is evident that

there may be a component vibration at right angles to the optic

axis, but the other component, since it must be at right angles to

the ray, cannot be parallel to the optic axis, and therefore cannot

be in the direction of greatest elasticity m the crystal. The second

component is, however, in the direction of greatest elasticity in the

plane of vibration, which direction is at right angles to the first

component. In general, if a ray of light pass in any direction

within the crystal, the line drawn at right angles to that direction

and to the optic axis, that is, at right angles to the plane deter-

mined by the ray and the optic axis, is in the direction of least

elasticity. One of the component vibrations is in that direction.

A line drawn at right angles to the ray and m the plane formed by
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it and the optic axis is in the direction of the greatest elasticity to

which any vibration giving rise to that ray of light can correspond.

In that direction is the second component vibration. The two

component vibrations are therefore always at right angles. One of

the components is always at right angles to the optic axis, and

hence in the direction of least elasticity. The light resulting from

this component always travels with the same velocity whatever its

direction, and hence suffers refraction on entering the crystal or

emerging from it, according to the ordinary law for single refrac-

tion. The other component, being in the plane containing the ray

and the optic axis and at right angles to the ray, may make all

angles with the optic axis from 0°, when it is in the direction of

maximum elasticity and is propagated with the greatest velocity, to

90°, when it is in a direction in which the elasticity is the same as

that for the other comj^onent, and the entire beam is propagated as

ordinary light. Light for which vibrations occur in all azimuths

will, on entering the crystal, give rise to equal components, but

light already polarized will give rise to components the intensities

of which are determined by the law for the resolution of motions.

When its own direction of vibration coincides with that of either of

the components, the other component will be zero, and only when

its vibrations make an angle of 45" with the components can these

components be equal. The varying intensities of the two beams

into which a polarized beam is divided by a second crystal are thus

explained.

377. Polarization by Reflection.—Light reflected from a tians-

,c parent medium is found m general

to be partially polarij^ed, and for a

certain angle of incidence the polar-

^ ization is nearly perfect. This angle

is that for whicli the reflected and

refracted rays are at right angles.

In Fig. 142 let xy represent the sur-

^^' '^'

face of a transparent medium, ab the

incident, he the reflected, and bd the refracted ray. If the angle
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cbd = 90°, we have r -{- i = 90° also; and since u = -.— , we have
sm r

sini
, - TT

A* = • — tan I. Hence the angle of complete polarization is

given by the equation tan i = jit. The fact embodied in this equa-

tion was discovered by Brewster, and is known as Brewster's laiv.

The angle of complete polarization is called the polarizing angle.

The plane of incidence is the plane of polarization. The vibrations

of polarized light are assumed to be at right angles to the plane of

polarization. In the transmitted ray is an equal amount of polarized

light, the vibrations of which are in the plane of incidence.

If a beam of ordinary light ti-averse a transparent medium, in

which are suspended minute solid particles, the light which is re-

flected from them is found to be partially polarized. The maxi-

mum polarization is found in the light reflected at right angles to

the beam. The plane of polarization of the polarized beam is the

plane of the original beam and the beam which reaches the eye of

the observer.

378. Interference of Polarized Light.—The assumption that has

been made in the foregoing descriptions, that the vibrations in the

polarized beam are transverse to the direction of propagation, is

fully justified, not only by the satisfactory way in which it explains

the various modes of production of polarized light and the phe-

nomena connected with it, but also by direct experiment. Fresnel

and Arago examined the interference of polarized beams and

arrived at the following conclusions: Two rays of light polarized

at right angles with each other do not appear to affect each other

at all in the same circumstances in which two rays of ordinary light

destroy each other by interference. Two rays of light polarized in

the same plane act on one another like ordinary light, so that in

the two cases the phenomena of interference are absolutely the

same. Two rays originally polarized at right angles to each other

can afterwards be so modified that they are both polarized in the

same plane without acquiring the power of interfering with each

other. Two rays polarized at right angles and afterwards brought

to the same plane of polarization interfere like ordinary light if

they come from the same polarized beam.
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From the first and second of these statements it is plain that

the vibration in the polarized beam must be transverse to the direc-

tion of propagation, for if it were otherwise, there would be some

interference of the two rays, even when they are polarized at right

angles to each other.

We may here consider the nature of common light. The pecu-

liarity of common light is that it furnishes two images of equal

intensity when it passes through a doubly refracting crystal, and

that it cannot produce colored fringes when passed through a crys-

tal plate and examined with an analyzer (§ 379). These peculiari-

ties can be explained by supposing that the direction of vibration

in the wave frequently changes. On the other hand, the interfer-

ence of common light proves that this change of direction does not

occur in every wave. In the experiments of Michelson and Morley

interference was obtained between two beams of light of which

the difference in path was 200,000 wave lengths. Such inter-

ference could not have occurred if the direction of the vibration

had changed during the time taken by light to traverse that dis-

tance. We are accordingly compelled to assume that the vibrations

of common light are polarized in one plane for a very short time,

which is, however, sufficiently long for the light to execute a large

number of vibrations in it, and that at certain intervals the plane

of polarization changes its direction.

379. Polariscopes.—In experimenting with polarized light we

need a polarizer to produce the polarized beam, and an analyzer to

show the effects of the polarization. Apiece of plane glass, reflect-

ing light at the polarizing angle, is a simple polarizer. Doubly

refracting crystals, if means be employed to suppress one of the

FiCx. 143.

beams into which the light is divided, are excellent polarizers.

Tourmaline is a doubly refracting crystal which has the property
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of being more transparent to the extraordinary than to the ordinary

ray. By grinding plates of tourmaline to the proper thickness, the

ordinary ray is completely absorbed, while the extraordinary ray is

transmitted. The best method of obtaining a polarized beam is by

the use of a crystal of Iceland spar in which, by an ingenious device,

the ordinary ray is suppressed and the extraordinary transmitted.

Fig. 143 shows how this is accomplished, ^i? is a crystal of con-

siderable length. It is divided along the plane AB, making an

angle of 22° with the edge AD and perpendicular to a principal

plane of the face AC. The faces of the cut are polished and the

two halves cemented together again by Canada balsam in the same

position as iit first. In Fig. 144, which is a section through A CBD
of Fig. 143, ah represents the direction of the light which is inci-

dent upon the face AC. It is separated into two rays, o and e.

Since the refractive index of the balsam is intermediate between

the ordinary and extraordinary indices of the spar, and since the

Fig. 144.

angle DAB is so chosen that the ray o strikes the balsam at an

angle of incidence greater than the critical angle, the ray o is totally

reflected. The ray e, on the other hand, having a refractive index

in the spar less than in the balsam, is not reflected, but continues

through the crystal. A crystal of Iceland spar so treated is called

a Nicol's prism, or often simply a Nicol.

A pair of Nicol's prisms, mounted with their axes coinciding,

serves as a polariscope. The first Nicol transmits a single beam of

polarized light the vibrations of which are in the principal plane.

When the principal plane of the second Nicol coincides with that

of the first this light is wholly transmitted through it. If the

second Nicol or analyzer be turned about its axis, whenever its

principal plane makes an angle with the direction of the vibrations,

these are resolved into two components, one in and the other at
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riglit angles to the principal plane. The latter is reflected to one

side and absorbed, and the former is transmitted. As the angle

between the two principal planes increases, the transmitted com-

ponent diminishes in intensity, until when this angle becomes 90°

it disappears entirely. In this position the polarizer and analyzer

are saiJ to be crossed.

380. Effects of Plates of Doubly Refracting Crystals on Polar-

ized Light.—If a plate cut from a doubly refracting crystal so that

its faces are parallel to the optic axis, or at least not at right angles

to it, be placed between the crossed polarizer and analyzer, and the

principal plane of the plate coincide with, or be at right angles to,

the plane of vibration, no effect is perceived. But if the plate be

rotated so that its principal plane makes an angle with the plane

of vibration, tlie motion may be considered as resolved into two

components, one in, and the other at right angles to, the principal

plane of the plate, and these two components on reaching the

analyzer are again resolved each into two others, one in, and the

other at right angles to, the principal plane of the analyzer. The

ibrations in the principal plane of the analyzer are transmitted

through it, and hence, in general, the introduction of the plate re-

stores the light which the crossed polarizer and analyzer had ex-

tinguished. It is easy to see that the restored light will be most

intense when the principal plane of the plate makes an angle of

45° with the plane of vibration of the polarized ray.

It is not to be understood that in the plate there are two sepa-

rate beams of light, in one of which one set of particles is vibrating

m one plane, and in the other another set m an-

other piano. What really takes place is that each

particle in the path of the light describes a path

which is the resultant of the two components

spoken of above. Let ah (Fig. 145) be a plate of

Iceland spar, and cd the direction of its optic

axis. Suppose the path of the light perpendicu-

lar to the plane of the paper, and ef io represent

the direction of the disturbance produced by the entrance of a

plane polarized wave. A motion in the direction of &f is com-
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pounded of two motions, one along the axis, and the other perpen-

dicular to it. In the propagation of this motion to the next par-

ticle, the motion in the direction of the optic axis will begin a

little sooner than that at right angles because of the greater elas-

ticity in the former direction, and this difference becomes greater

as the light is propagated into the plate. This is equivalent to a

change in the relative phases of two vibrations at right angles, and

this causes the path of a vibrating particle to change from the

straight line to an ellipse. The result is, therefore, that, when the

initial disturbance has any direction except in or at right angles to

the principal plane of the plate, the motion of the vibrating par-

ticles within the plate becomes elliptical, the ellipses changing

form as the distance from the front surface of the plate increases.

It is entirely admissible, however, in the discussion of the problem

to substitute for the actual motion its two components, as was done

above.

It remains to consider what is the effect of the retardation or

change of phase of one of the components with respect to the other.

It will be remembered that in the analyzer each ray from the plate

is again resolved into two components, and that two of these com-

ponents are in the principal plane of the analyzer and are trans-

mitted. These two components will evidently differ
^

in phase just as did the two motions from which d

they were derived, and since they are in tba same

plane their resultant is represented by their algebraic

sum. If they differ in phase by half a period their

algebraic sum will be zero, and no light will be <?

transmitted by the analyzer. This will occur for a «

certain thickness of the interposed plate. If the ^^^- '*^-

light experimented upon be white, it may occur for some wave

lengths and not for others. Hence, some of the constituents of

white light may fail in the beam transmitted by the analyzer, and

the image of the plate will then appear colored. A study of the

resolution of the vibrations for this case shows that, of the two

beams formed in the analyzer, one contains just that portion of the

/^

#

/

%
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light that the other lacks; hence if the analyzer be turned througli

90°, the image will change to the complementary color. In Fig.

146, let ah represent the plane of the vibrations in the polarized

ray, and let cd and ef represent the two planes of vibration ol the

rays in the interposed plate. At the instant of entering the plate

the primary vibration and its two components will have the relation

shown in the figure. The two components are then in the same

phase. As the movement penetrates the plate, one component

falls behind the otiier, and tlie relation of their phases changes,

until, with a retardation of one wave length, the phases are again

as in the figure. Suppose the thickness of the plate such that this

retardation occurs for some constituent of white light. After leav-

ing the plate the relative phases of the components remain un-

changed, and the constituent in question enters the analyzer as two

vibrations at right angles and in the same phase. In Fig. 147 let

oe and od represent the two components, and xx and yy the two

^y planes of vibration in the analyzer.

,
j

oe will give the components om and
"~~

07t, and od the components om'

and on'. Since the components

om and om' annul each other, the

^,-
I

s, "v color to which they correspond is

'^
!

'^ wanting in the light resulting from

\y vibrations in the plane xx, while

Fig. 147. since the components on and 07i'

are added, this color is found in full intensity among the vibra-

tions in che plane yy. For light of other wave lengths, the relative

retardation is different, but for each vibration period, the compo-

nent in the direction xx combined with that in the direction yy

represents the total light for that period in the beam entering the

analyzer; that is, the total effect of vibrations in the direction xx

combined with that of vibrations in the direction yy must produce

white light, and one effect must, therefore, be the complement of

the other.

Let us suppose the plate thick enough to cause a retardation

0/
*-
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«qual to a certain number of wave lengths, which we will assume

to be ten, of the shortest waves of the visible spectrum. Since the

longest waves of the visible spectrum are about twice the length of

the shortest, they will suffer a retardation of five wave lengths.

Other waves will suffer a retardation of nine, eight, seven, and

six wave lengths. But, as was seen above, a retardation of one

or more whole wave lengths of anj kind of light causes extinc-

tion of that kind of light in the beam transmitted by the crossed

analyzer. In the case considered the transmitted beam will lose

six kinds of light distributed at about equal distances along the

spectrum. The light remaining will consist of the different colors

in about the same proportions as they exist in white light, and the

beam will therefore be white but diminished in intensity. Hence,

when a thick plate is interposed between the crossed polarizer and

analyzer the restored light is white.

381. Elliptic and Circular Polarization,—In the last section,

in discussing tbe effects of a thin plate, we considered the two

components of the vibratory motion propagated from it. It was

stated that tlie real motion of the vibrating particles was in gen-

eral elliptical. Let us consider more fully the real motion. Let

us suppose that the light is light of one wave length only, and

that, as before, the principal plane of the plate makes an angle of

45° with the plane of vibration of the incident light. In Fig. 148

let
j/i/

represent the original plane of vibra-

tion, and ab and cd the planes of maximum
and minimum elasticity in the plate. As al-

ready explained, the first disturbance as the

light enters the plate is in the direction ?/?/;

but as the disturbance is propagated into the

plate, each disturbed particle receives an im-

pulse first of all m the direction cd of greatest c/^ \
elasticity, then in other directions between cd

and cib, and finally in the direction ab. From
this results an elliptical orbit with the major Fig. 148.

axis in the direction yy. To determine this orbit exactly it is
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only necessary to take account of the time that elapses between

the impulse in the direction cd and the corresponding impulse in

the direction ab. It is sufficient to consider any particle as actu-

ated by two vibratory uiotions in the direc-

tions cd and ah at right angles, and differing

in phase. In Fig. 149, one side of the rect-

/ angle represents the greatest displacement in

the direction cd, and the other side the dis-

placement occurring at the same instant in

the direction ia. The point r will represent

the actual position of the vibrating particle.

"^ Oonstrjicting now the successive displace-

^y ments of the particles in the directions cd

and ha and combining these, we have the

elliptical path as shown. As the light penetrates farther and

farther into the plate the relative phases of the two vibrations

change continually, and the ellipse passes through all its forms

from the straight line ijy to the straight line xx at right angles to

it and back to the straight line xjy. The direction of the path of

the particle in the surface of the plate as the light emerges will be

the direction of the path of all the particles in the polarized beam

beyond the plate. If the component vibrations be in the same

phase, that is, if they reach their elongations in the directions ha

and cd (Fig. 149) at the same instant, the resultant vibration is m
the line yij and the light is plane polarized exactly as it left the

polarizer. This will occur when the retardation of light in the

plane of ha with respect to that in the plane of cd is one, two,«or

more whole wave lengths. When the retardation is one half, three

halves, or any odd number of half wave lengths, the phases of

the two vibrations are as shown in Fig. 150, and the resultant is a

plane polarized beam the vibrations of which are at right angles

to those of the beam from the polarizer. A case of special interest

IS shown in Fig. 151, in which the difference of phase is one fourth

a period, and the resultant vibration is a circle. A difference of

three fourths will give a circle also, but with the rotation in the



383] DOUBLE KEFRACTION AND POLARIZATIOJST. 471

opposite direction. A plate of such thickness as to produce a

retardation of one quarter of a wave length will give a circular

vibration, and the beam issuing from the plate is then circularly

polarized. Its peculiarity is that the two beams into which it is

divided by a doubly refracting crystal are always of the same in-

tensity, and no form of analyzer will distinguish it from ordinary

a\
^«^'

/

V ^5

Fig. 150.

y

Fig. 151.

light. Quarter wave plates are often made by splitting sheets of

mica until the required thickness is obtained,

382. Circular Polarization by Eeflection.—It has been stated

that light reflected from a transparent medium at a certain angle

is polarized, and that an equal amount of polarized light exists in

the refracted beam. Light totally reflected in the interior of a

medium is also polarized, and here, there being no refracted beam,

the two components exist in the reflected light, but so related in

phase that the light is elliptically polarized. Fresnel has devised

an apparatus known as Fresnel's I'lwmb, by means of which circu-

larly polarized light is obtained by two internal reflections of a

beam of light previously polarized in a plane at an angle of 45**

with the plane of incidence.

383. Effect of Plates Cut Perpendicularly to the Axis from a

Uniaxial Crystal.—A crystal, such as Iceland spar, which has but

one optic axis, is called a uniaxial crystal. Polarized light pass-

ing perpendicularly through a plate cut from such a crystal per-
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peudicularly to its optic axis suffers no change. If, however, the

plate between the crossed polarizer and analyzer be inclined to the

direction of the beam, light passes through the analyzer. It is

generally colored, the color changing with the obliquity of the

plate. If a system of lenses be used to convert the polarized beam

into a conical pencil and the plate be placed in this perpendicular

to its axis, the central ray of the pencil will be unchanged, but the

oblique rays will be resolved except in and at right angles to the

plane of vibration, and there will appear beyond the analyzer a

system of colored rings surrounding a dark centre, and intersected

by a black cross. If the analyzer be turned through 90°, a figure

complementary to the first in all its shades and tints is obtained

:

the black cross and centre become white, and the rings change to

complementary colors.

384. Biaxial Crystals.—Most crystals have two optic axes or

lines of no double refraction, instead of one. They are biaxial

cri/stal-i. Their optic axes may be inclined to each other at any

angle from 0° to 180°. The wave surfaces within these crystals

are no longer the sphere and the ellipsoid, but surfaces of the

fourth order with two nappes tangent to each other at four points

where they are pierced by the optic axes. Neither of the two rays

in such a crystal follows the law of ordinary refraction. The outer

wave surface around one of the points of tangency has a depres-

sion something like that of an apple around the stem. By refer-

ence to the method already employed for constructing a wave

front, it will be seen that there may be such a position for the in-

cident wave that, when the elementary wave surfaces are con-

structed, the resultant wave will be a tangent to them in the circle

nround one of these depressions where it is pierced by the optic

axis. Now since the direction of a ray of light is from the centre

of an elementary wave surface to the point of tangency of that

surface and the resultant wave, we shall have in this case an in-

finite number of rays forming a cone, of which the base is the

circle of tangency. In other words, one ray entering the plate in

a proper direction may be resolved into an infinite number of rays
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forming a cone, which will become a hollow cylinder of light on

emerging from the crystal. This phenomenon is called conical

refraction. It was predicted by Hamilton from a mathematical

analysis of the wave propagation in such crystals.

If a plate be cut from a biaxial crystal perpendicular to the line

bisecting the angle formed by the optic axes, and placed between

the polarizer and analyzer in a conical pencil of light, there will be

seen a series of colored curves called lemniscates, resembling some-

what a figure 8. The existence of this phenomenon was also pre-

dicted and the forms of the curves investigated by mathematical

analysis before they were seen.

385, Double Refraction by Isotropic Substances when Strained.

—A piece of glass between the crossed polarizer and analyzer, if

subjected to forces tending to distort it, will restore the light be-

yond the analyzer and in some cases produce chromatic effects.

Unequal heating produces this result, and a long tube made to

vibrate longitudinally shows it when the light crosses it near the

node. Pieces cut from plates of unannealed glass exhibit double

refraction when examined by polarized light. Indeed, the absence

of double refraction is a test of perfect annealing.

386. Effects of Plates of Quartz.—A quartz crystal is uniaxial,

and gives an ordinary and an extraordinary ray, but is unlike Ice-

land spar in that the extraordinary wave front in it is a prolate

spheroid and lies within the spherical ordinary wave. The effects

due to plates of quartz in polarized light differ very greatly from

those due to Iceland spar or selenite. If a plate of quartz cut per-

pendicularly to the axis be placed in a beam of parallel, homogen-

eous, plane polarized light at right angles to its path, the light is, in

general, restored beyond the analyzer, and is unchanged by the

rotation of the quartz through any azimuth. If the analyzer be

rotated through a certain angle, depending on the thickness of the

quartz plate, the light is extinguished. It is evident that the plane

of polarization has simply been rotated through a certain angle.

Light of a different wave length would have been rotated through a

different angle. A beam of white polarized light, therefore, has the
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planes of polarization of its constituents rotated through different

angles, and the effect of rotating the analyzer is to quench one after

another of the colors as the plane of polarization for each is reached.

The result is a colored beam which changes its tint continuously as

the analyzer rotates.

The best explanation of these phenomena was given by Fresnel.

It is found that neither of the two beams from a quartz crystal is

plane polarized. The polarization is in general elliptical, but be-

comes circular for waves perpendicular to the axis of the crystal,

the motion in one ray being right-handed and in the other left-

handed. Each particle of ether in the path of the light within the

crystal is actuated at the same time by two circular motions in

opposite directions. Its real motion is in the

diameter which bisects the chord joining any

two simultaneous hypothetical positions of the

particle in the two circles. In Fig. 153 let P
and Q represent these two simultaneous posi-

tions. It is plain that the two components in

the direction AB have the same value and are

added, while those at right angles to AB are

equal and opposite and annul each other. So

long as the two components retain the same relation as that

assumed, the real motion of the particle is in the line AB. But in

the quartz plate one of the motions is propagated more i-apidly

than the other, and another particle farther on in the path of the

light may reach the point P in one of its circular vibrations at the

same time that it reaches Q' in the other. This will give CD as its

real path, and the plane of its vibration has been rotated tlirough

the angle BOD. When the light finally emerges from the plate its

plane of vibration will have been rotated through an angle w^hich

is proportional to the thickness of the plate and depends upon the

wave length of the light employed. A plate of quartz one mil-

limetre in thickness rotates the plane of polarization of red light

corresponding to Fraunhofer's line B, 15° 18', of blue light corre-

sponding to the line G, 42° 12'. Some specimens of quartz rotate
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the plane of polarization in one direction, and some in the opposite.

Kotatiou which is related to the direction of the light as the direc-

tions of rotation and propulsion in a right-handed screw is said to

be right-handed, and that in the opposite direction is left-handed.

Kensch has reproduced all the effects of quartz plates by super-

posing thin films of mica, each film being turned so that its prin-

cipal plane makes an angle of 45° or 60°, always in the same

direction, with that of the film below. If a plane polarized wave

enter such a combination, an analysis of the resolution of the vi-

bration as it passes from film to film will show that the result is

equivalent to that of two contrary circular vibrations, one of which

is propagated less rapidly than the other. This helps to establish

Fresnel's theory of the rotational effects of quartz.

387. Rotation of the Plane of Polarization by Liquids.—Many

liquids rotate the plane of polarization, but to a less amount than

quartz. A solution of sugar produces a rotation varying with the

strength of the solution, and instruments called saccharimeters are

made for determining the strength of sugar solutions from their

effect in rotating the plane of polarization. In these instruments

the effect is often measured by interposing a wedge-shaped piece of

quartz, and moving it until a thickness is found which exactly com-

pensates the rotation produ(;ed by the solution.

388, Electromagnetic Rotation.— Faraday discovered that when
polarized light passes through certain substances in a magnetic field

the plane of polarization is rotated through a certain angle. The
experiment succeeds best with a very dense glass consisting of borate

of lead, so placed that the light may traverse it along the lines of

magnetic force, in the field produced by a powerful electromagnet.

The amount of rotation is proportional to the difference of mag-
netic potential between the two ends of the glass. The direction

of rotation, as was shown by Verdet, is generally right-handed in

diamagnetic media, and left-handed in paramagnetic media. It also

depends upon the direction of the lines of force, and is therefore

reversed by reversing the current in the electromagnet. It follows,

also, that if the light, after traversing the glass with the lines oi
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force, be reflected back through the glass against the lines of force,

the rotation will be doubled. It is important to note that this is

the reverse of the effect produced by quartz, solutions of sugar, etc.,

which rotate the plane of polarization in consequence of their own

molecular state. When light of which the plane of polarization has

been rotated by passage through such substances is reflected back

upon itself, the rotation produced during the first passage is exactly

reversed during the return, and the returning light is found to be

polarized in the same plane as at first.

In the magnetic field the effect is as though the medium which

conveys the light were rotating around an axis parallel to the lines

of force, and carrying with it the plane of vibration. Evidently the

plane of vibration would be turned through a certain angle during

the passage of the light through the body, and would be turned

still further in the same direction if the light were to return.

When we remember that iron becomes magnetic by the effect

of currents of electricity flowing in conductors around it, and that

Ampere conceived that a permanent magnet consists of molecules

surrounded by electric currents, all in the same direction, it is easy

to imagine that the magnetic field is a region where the ether is

actuated by vortical motions, all in the same direction, and in planes

at right angles to the lines of magnetic force. Such a motion

would account for the rotational effects of the magnetic field upon

polarized light.

Not only glass but most liquids and gases exhibit rotational

effects when placed in a powerful magnetic field; and Kerr has

shown that when light is reflected from the polished .pole of an

electromagnet, its primitive plane of polarization is rotated when

the current is passed, in one direction for a north pole, and in the

opposite direction for a south pole.

389. Maxwell's Electromagnetic Theory of Light.—In Maxwell's

treatment of electricity and magnetism he assumed that electrical

and magnetic actions take place through a universal medium. In

order to determine whether this medium may not be identical with

the luminiferous ether, he investigated its properties when a
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periodic electromagnetic disturbance is supposed to be set up in it,

sucli as would result from a rapid reversal of electromotive force at

a poiTit, and compared them with the observed properties of the

ether, on the assumption that light is an electromagnetic disturb-

ance. He showed that such a disturbance would be propagated

through the medium in a way similar to that in which vibrations

are transmitted in an elastic solid. He showed further that if

light were such a disturbance, its velocity in the ether should be

equal to v, the ratio of the electrostatic to the electromagnetic sys-

tem of units. Numerous measurements of the velocity of light

and of this ratio show that they are very nearly equal.

He also showed that the indices of refraction of transparent

media should be equal to the square roots of their specific inductive

capacities. Measurements of indices of refraction and specific in-

ductive capacities have shown that the relation which has been

stated holds true in many cases. Hopkinson has shown, however,

that there are many bodies for which it does not hold true.

The theory leads to the conclusion that the direction of propa-

gation of the electrical disturbance and the accompanying magnetic

disturbance at right angles to it is normal to the plane of these

disturbances. By making the assumption, which is justified by

Boltzmann's measurements upon sulphur, that an eolotroj^ic medium

has different specific inductive capacities m different directions.

Maxwell showed also that the propagation of the electrical disturb-

ance in a crystal will be similar to that of light. It has also been

shown that the electrical disturbance will be reflected, refracted,

and polarized at a surface separating two dielectrics.

Lastly, Maxwell concluded that, if his theory be true, bodies

which are transparent to the vibrations of the ether should be di-

electrics, while opaque bodies should be good conductors. In the

former the electrical disturbance is propagated without loss of

energy; in the latter the disturbance sets up electrical currents,

which heat the body, and the disturbance is not propagated through

the body. Observation shows that, in fact, solid dielectrics are

transparent, and solid conductors are opaque, to radiations in the
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ether. Maxwell explained the fact that many electrolytes are trans-

parent and yet are goou conductors by supposing that the rapidly

rlternating electromotive forces which occur during the transmis-

sion of the electrical disturbance act for so short a time in one

direction, that no complete separation of the molecules of the elec-

trolyte is effected. No electrical current, therefore, is set up in

the electrolyte, and electrical energy is not lost during the trans-

mission of the disturbance.

The experiments of H^rtz and others, described in § 313, have

proved that electromagnetic waves may be set up in a medium, and

that they possess the properties predicted for them by Maxwell's

theory. In very many respects these waves behave exactly like

light-waves; they are transmitted with the same velocity, they

move more slowly through dense bodies than in a vacuum, they are

reflected, refracted, and polarized exactly as light-waves are, and

they penetrate bodies which are transparent to light, and are

stopped by bodies which are opaque to light. There are certain

differences between their behavior and that of light-waves, wiiich

are readily explained by the fact that the shortest electromagnetic

waves which can be produced directly are several centimetres long,

while none of the light-waves are as long as one one-thousandth of

a millimetre. The periods of vibration of the electromagnetic

waves are much greater than those of light-waves, and such proper-

ties of these waves as depend upon their periods are to some extent

different from those of light.

One of the most important conclusions of tho electromagnetic

theory was that of the relation between the index of refraction and

the specific inductive capacity. This relation is very far from

being confirmed by experiment when the index of refraction is that

of light. This discrepancy between theory and experiment is ex-

plained by those who maintain that light is an electromagnetic dis-

turbance of the sort described in the following way: Tlie methods

by which the specific inductive capacity is determined either involve

setting up a steady electrical force in the dielectric or the use of an

alternating electrical force which at best only alternates with a
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period that is enormously large in comparison with that of the light-

vibrations. Since observation shows that the specific inductive

capacity obtained differs when different rates of alternation are em-

ployed in the experiment, it may readily be supposed that, if alter-

nations were used which were as rapid as those of light, values of

the specific inductive capacity would be obtained which would con-

firm the theory. Since this cannot be done, the only method of

comparison possible is to calculate, as well as it can be done, the

index of refraction for light of very long period; tliis is done by

the aid of a formula for the dispersion of light derived by Cauchy,

from which the index of refraction of infinitely long waves is calcu-

lated. The agreement obtained by this method is still very far

from good, but this may easily be explained by su^iposing tliat

Cauchy's formula, winch rests, after all, only on an empirical basis,

and has been tested only within narrow limits, does not apply to

waves of very long wave length, or that, in other Avords, the waves

of long wave length exhibit anomalous dispersion. The experi-

ments which have been made to test the relation between the

specific inductive capacity and the index of refraction of electro-

magnetic waves show in very many cases an exceedingly good

agreement, and in no case a disagreement, with the theory-

While there are still difficulties to be overcome and questions to

be answered, it is yet highly probable that the true theory of light

is the electromagnetic theory or some extension of it. We may
therefore view magnetic, electrical, and luminous actions as actions

occurring in the ether, and arising in some way from the interactions

between the ether and matter, by which the energy of matter is

transformed into energy in the ether, and this energy in the ether-

transferred through it to other matter.





TABLES.

TABLE I.

Units of Length

Foot ^ 30.48 cm. log. 1.484015

Inch ^ 2.54 cm.

Units of Mass.

log. 0.404830

Pound = 453.59 grams. log. 2.656664

Grain = 0.06iS grams. lufi. « 811575

TABLE II.

AcCELEIiATION OF GRAVITY.

g = 980.6056 — 2.5028 cos 2^ - 0.000003/i, where I is the latitude of the station

and h its height lu centimetres above the sea-level.

^ at Washington = 980.07 1 ^ at Paris = 980.94

^ at New York = 980.26
|

£r at Greenwicli = 981.17

Kilogram-metre =
Foot-pound =

TABLE III.

Units of Work.

100,000,9 ergs.

13,825.7 ergs.

= 1.355 X 10^ ergs, log 7.13200, when 5- = 980.

Units of Rate of Working.

Watt . = 10'' ergs per second.

Horse-power = 550 foot-pounds per second.

= 746 Watts.

Unit of Heat.

Lesser calorie (gram degree) = 4.198 X 10' ergs.

481
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TABLE IV.

Densities of Substances at 0°.

The deusities of solids given iu this tuble must be taken as only approxi-

mate. Specimens of the same substance ditfer among themselves to such an

extent as to render it impossible to give more precise values.

Aluminium 2.6

Brass 8.4

Copper y. 9

Gold 19.3

Glass (crown) 2.5 to 2.7

Hydrogen 0.0000895

Ice 0.918

Iron (wrought) 7.6 to 7 8

" (cast) 7.2 to 7.7

Lead 11.3

Mercury 13.596

Platinum 21.5

Silver 10.5

Zinc 7.1

TABLE V.

Units of Pressure for g — 981.

Grams per sq. cm. Dynes per sq. cm.

Pound per square inch 70.31 6.9 X 10*

1 inch of mercury at 0° 34.534 3.388 X 10*

1 millimetre of mercury at 0° 1.3596 1333.8

1 atmosphere (760 mm.) 1033.3 1.0136x106
1 atmosphere (30 inches) 1036. 1.0163 x 10*

TABLE VI.

Elasticity.

If p is the force in dynes per unit area tending to extend or compress a

body, the linear elasticity is
dp

di'
and the volume elasticity is —

.

dp
Tif'

Glass 6.03 x 10"

Steel 2.14X10"'
Brass 1.07 X 10'^

Mercury ....

Water ....

dp
dv

'

4.15 X 10"

1.84 X 10'2

3.44 X lO'o

2.03 X lO'o
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TABLE VII.

Absolute Density of Water at f in Grams per Cubic Centimetre.

t°. Density.

0.999884

1 0.999941

3 0.999983

3 1.000004

4 1.000013

5 1.000003

i°. Deusity.

7 0.999946

8 0.999899

9 0.999837

10 0.999760

15 0.999173

30 0.998373 90
0.999983J 30 0.995778 100 0.95866

t°. Density.

40 0.99336

50 0.98831

60.,... 0.98339

70 0.97795

80 0.97195

0.96557

TABLE VIII.

Density of Mercury at t°, "Water at 4° being 1.

t°. Density.

13 5953

10 13.5707

log.

1.13339

1.13360

t^. Density.

30 ... 13.5461

30 13.5317

log.

1.13183

1.13103

TABLE IX.

Coefficients of Linear Expansion.

Temperature.

Aluminium 16° to 100° 0.

Brass to 100 0.

Copper to 100 0.

Germau silver to 100 0.

Gliiss to 100 0.

Iron 13 to 100 0.

Lead to 100 0.

Platinum . to 100 0.

Silver to 100 0.

Zinc to 100 0.

dV
Coefficients of voluminal expansion, -—

-

dl

''=Tf
0000335

0000188

0000167

0000184

0000071

0000133

0000380

0000089

0000194

0000330

= 3a.
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TABLE X.

Specific Heats—Water at 0' = 1.

Solids and Liquids.

Aluminium 0.212

Brass 0.086

Copper 0.093

Iron 0.112

Lead 0.031

Mercury 0. 033

Plaliuum 0.032

Silver 0.056

Water (O°tol00°) 1005
Zinc 0.056

Gases and Vapors at Constant Pressure.

Air 0.237

Hydrogen 3.410

Nitrogen 0.244

Oxygen 0.217

Ratio, jf = 1.404

TABLE XI.

I. Melting-points. II. Boiling-points. III. Heats of Liquefaction.

IV. Heats of Vaporization. V. Maximum Pressure of Vapor at
0° IN Millimetres of Mercury.

I.

Ammonia
Carbon dioxide —65°

Clilorine

Copper 1200

Lead 325

Mercury — 39

Nitrous oxide, NaO
Platinum 1780

Silver 1000

Water

Zinc 415

II. m. IV. V.

- 33.7° 294 at 7.8° 3344
- 78.3 49.3 at 0° 27100
- 33.6

5.9°

••

4560

357 2.8 62 0.02

-105

27.2

21.1

••

24320

100 80

28.1

537 4.6



TABLES. 485

TABLE XII.

Maximum Pressure op Vapor op Water at Various Temperatures in

(I.) Dynes per Square Centimetre, (II.) Millimetres of Mercury.

Temp. I.

- 20° . . . 1236

- 10°.... . . . 2790
0°

. . . 6133

10 13220

20 23190

30 ... 42050

40 73200

50 1.226 X 10»

II. Temp.
60°

I

. . . . 1.98.

80 4 72<

4.6 100 .... 10.14

9.2 120 .... 19.88

17.4 140 .... 36.26

31.5 160 .... 62.10

54.6 180 .... 100.60

96.2 200 .... 156.

II.

X 105 149.

X 10" 355.

X 10" 760.

X 10" 1491.

X 10" 2718.

X 10" 4652.

X 10" 7546.

X 10" 11689.

TABLE XIII.

Critical Temperatures {T) and Pressures in Atmospheres (P), at
their Critical Temperatures, of Various Gases.

T. P. T. P.

Hydrogen ... - 220. 20. Carbon dioxide . 30.9 77.

Nitrogen .... -146. 35. Sulphur dioxide . .

.

. 155.4 79

Oxygen ... -119. 51.

TABLE XIV.

Coefficients op Conductivity for Heat (K) in C. G. S, Units, in
WHICH Q is given in Lesser Calories.

Brass 0.30

Copper 1.11

Glass 0.0005

Ice 0.0057

Iron,

Load

.

0.16

0.08

Mercury 0.015

Paraffin 0.00014

Silver 1.09

Vulcanized india-rubber 0.00009

Water , 0,0015
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TABLE XV.

Enekgy Produced by Combination op 1 Gkam of Certain Substances
WITH Oxygen.

Gram-degree of Heat. Energy in ergs.

Carbon forming CO 2141 8,98 x 10«>

CO2 8000 3.36x10'!

Carbon monoxide, forming CO2... 2420 1.02 X lO'^

Copper, CuO 603 2.53 X 10«»

Hydrogen, H2O 34000 1.43 X lO'"''

Marsh gas, CO2 and H2O 13100 5.50 X lO'i

Zinc, ZuO 1801 5.46 X 10">

TABLE XVI.

Atomic Weights and Combining Numbers.

Atomic Weight. Combining

Aluminium 27.04 9.

Copper 63.18 (cupric) 31.

" " (cuprous) 63.

Gold 196.2 65.

Hydrogen 1. L
Iron 55.88 (ferric) 18.

" " (ferrous) 27.

Mercury 199.8 (mercuric 99.

" " (mercurous) 199.

Nicliel 58.6 29.

0.\'ygen 15.96 7.

Platinum 194 3 64.

Silver 107.7 107.

Zinc 64.88 32.

? Number.

01

59

18

4

63

94

9

8

3

TABLE XVII.

Molecular Weights and Densities of Gases.

Simple Gases.

Atomic Weight. Sp. gr., H = 1. Mass in 1 Litre.

Chlorine. CU 70.75 35.37 3.167

Hydrogen, Hj 2.00 1.00 0.0895

Nitrogen, N2, 28.024 14.013 1.254

Oxygen.Oj 31.927 15.96 1.429
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Compound Gases,

Atomic Weight. Sp. gr., if = 1. Mass in 1 Litre.

Carbonic oxide, CO 27.937 14.97 1.251

Carbouic dioxide, CO2 43.90 2L95 1.965

Hydrochloric acid, HCl 86.376 18.188 1.C28

Vapor of water, H^O 17.96 8.98 0.804

Atmospheric air. 1.293

TABLE XVIII.

Electromotive Force of Voltaic Cells.

Daniell 1.1 volt.
1
Grove 1.88 volt.

|
Clark... 1.435 volt at 15°

Electromotive force of Clark cell for any temperature t is

1.435[1 - 0.00077(!: - 15)].

TABLE XIX.

Electrochemical Equivalents.

Grams per second deposited by the electromagnetic unit current,

Hydrogen, 0.0001038.

To find the electrochemical equivalents of other substances, multiply the

electrochemical equivalent of hydrogen by the combining number of the sub-

stance.

TABLE XX.

Electrical Resistance,

Absolute resistance R in C. G. S. units of a centimetre cube of the substance.

Temperature coefficient, a. Rt = Ro{i + at).

•Bo-

Aluminium 2889

Copper 1611

German silver 20763

Gold 2041

Iron 9638

Mercury 94340

PliUiimm 8982

Platinum silver, 2 Pt. 1 Ag 24190

Silver 1580

Zinc 5581

0.00388

0.00044

0.00365

0.00073

0.00376

0.00031

0.00377

0.00365
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i?o.

Carbon (Carre's electric light) 3.9 x 10*

Glass at 200° 2.23X 10'«

Gutta percba, at 24° 3.46x lO'^^

" 0° 6.87X lO''*

Seleuium, at 100° 5.9 X 10'*

Water, at 22° 7.0 X 10'»

Zluc sulpbate + 23H2O 1.83X 10"

Copper sulphate + 45HaO 1.91 X lO'**

TABLE XXI.

Indices of Refraction.

Index.

Soft crown glass 1.5090

1.5180

1.5266

Dense flint glass 1.6157

1.6289

1.6453

Rock salt 1.5366

1.5490

1.5613

Diamond 2.47

Amber 1.532

Kind of
Light.

A
E
G
B
E
G
A
E
G
D
D

Index.

Canada balsam 1.528

Water 1.331

1.336

Carbon disulphide.

,

Air at 0°, 760 mm...

Iceland spar.

Quartz

1.344

1.614

1.646

1.684

1.00029

1.000296

1.000300

Kind of
Light.

Red
B
E
H
A
E
G
A
E
H

Ordinary Index.

1.658

1.544

Kind of Light.

D
D

Extraordinary Index.

1.486

1.553

TABLE XXII.

Wave Lengths of Light—Rowland's Determinations.

Fraunhofer's line A (edge), 7593.975 tenth metres.

B ' 6867.382

C ' 6562.965

D, ' 5896.080

D. ' 5890.125

E • 5270.429

b ' 5183.735

F ' 4861.428

G ' 4307.961
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TABLE XXIII.

Rotation op Plane of Polarization by a Quartz Plate, 1 mm. thick,

CUT PERPENDICULAR TO AxiS.

A 12°.668

B 15°.746

C 17°.318

Da 21°.727

E 27°.543

F 32°.773

G 42^.604

H 51M93

TABLE XXIV.

Velocities of Light.

Cm. per Sec.

Michelson, 1879 2.99910 X lO'"

Michelsoo, 1882 2.99853 X 10'»

Newcoiub, 1883 2.99860 X 10'»

Cm. per Sec.

Foucault, 1862 2.98000 x 10">

Coruu, 1874 2.98500 X lO'"

Coruu, 1878 2.99990 X 10'"

The Ratio between the Electrostatic and Electromagnetic Units.

Cm. per Sec.

Weber and Kohlrausch 3.1074 X 10'"

W. Tliomson 2.825 X 10'»

Maxwell 2.88 X lO'"

Ayrton and Perry 2.98 X 10'"

J. J. Thomson 2.963 X 10'"

Cm. per Sec.

Exner. 2.920 X 10'»

Klemencic 3.018 X 10'"

Himstedt 3.007 X 10"»

Colley 3.015 X lO""
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Aberration, spherical, 422 : chromatic, 440

Aberratiou of fixed stars, 402

Absolute temperature, 223, 235, 247; zero of, 223, 235, 249; scale of, 223, 247

Absorption, 1U2 ;
coefficient of, 102 ; of gases, 102

Absorption of radiaut energy, 445 ; of radiations, 448 ; by gases, 449 ; relation

of, to emission, 451

Acceleration, 16 ; angular, 18 ;
composition and resolution of, 17

Achromatism, 440

Acoustics, 149

Adhesion, 86

Adiabatic line, 224

Aggregation, states of, 84

Air-pump, 143; receiver of, 144; plate of, 144; theory of Sprengel, 189;

Sprengel, 145 ; Morren, 146

Airy, determination of earth's density, 81

Alloys, melting-point of, 212

AmpSre, relation of current and magnet, 813 ; relation of current and lines of

force, 341; equivalence of circuit and small magnet, 342 ;
and magnetic

shell, 342, 354 ; mutual action of currents, 352 ; theory of magnetism, 355

Ampere, a unit of electrical current, 345

Amplitude of a simple harmonic motion, 18 ; its relation to intensity of light,

428

Analyzer, 464

Andrews, critical temperature, 221; heat of chemical combination, 239

Aneroid, 147

Angle, measurement of, 8 ; unit of, 9

Auimal heat and work, 255

Anode, 323

Antinode, 157

Aperture of spherical mirrors, 409

Apertures, diffraction effects at, 482

Archimedes, principle in hydrostatics, 131

Aristotle, theory of vision, 394

491
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Arrbenius, theory of dissociation in solutions, 107, 333 ; theory of electrolysis,

380

Astatic system of magnetic needles, 357

Atmosphere, pressure of, 130 ; how slated, 130

Atom, 84 ; nature of, 86

Atomic heat, 211

Attraction, mass or universal, 70 ; constant of, 83

Avenarius, experiments in thermo-electricity, 383 ; thermo-electric formula,

384

Avogadro's law, a consequence of the kinetic theory of gases, 235

Axis of rotation, 50; of strain, 109 ; of stress, 113 ; of floating body, 131; mag-

netic, 260, 363 ; of spherical mirror, 409 ; optic, of crystal, 457, 471, 473

Balance, 78 ; hydrostatic, 133

Barometer, 139 ; Torricellian form of, 130 ; modifications of, 130
;
preparation

of, 130

Beam of light, 418

Beats of two tones, 166, 181; Helmholtz's theory of, 181; Konig's theory of,

183 ; Cross's experiment on, 183

Beetz, experiment on a limit of magnetization, 380

Bernoulli, velocity of efflux, 136

Berthelot, heat of chemical combination, 239

Berzellus, electro-chemical series, 338

Bidwell, view of Hall effect, 356

Bifilar suspension, 398, 358

Biot, law of action between magnet and electrical current, 343

Biot and Savart, action between magnet and electrical current, 341

Black's calorimeter, 194

Blagden, freezing-point of solutions, 314

Bodies, composition of, 84 ; forces determining structure of, 85 ; isotropic and

eolotropic, 108

Body, 1; rigid, 37; displacement of rigid, 40 ; energy of rotating, 43 ; motion

of free, 45 ; motion of rigid, in three dimensions, 50

Boiling. See Ebullition, 216

Boiling-point, 219

Bolometer, depends upon change of resistance with temperature, 319 ; used to

study spectrum, 444

Boltzmann, distribution of energy in a gas, 236; specific inductive capacity of

gases, 303

Borda, pendulum, 77; method of double weighing, 80

Bosscha, capillary phenomena in gases, 96

Boutigny, spheroidal state, 219

Boj^le, law for gases, 118, 223; limitations of, 147; departures from, 321; a-

consequence of the kinetic theory of gases, 335

Bradley, determined velocity of light, 403
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Breaking weight, 124

Brewster, law of polarization by reflection, 463

British Association bridge, 363

British Association, experiment to determine unit of resistance, 373

BuLseu, calorimeter, 195
;
photometer, 447

Cagniard-Latour, critical temperature, 220

Cailletet, condensation of gases, 221

Calorie, 192 ; lesser, 192

Calorimeter, Black's ice, 194 ; Bunseu's ice, 195 ; water, 195 ; thermocalorime-

ter of Regnault, 197; water equivalent of, 196

Calorimetry, 194 ; method of fusion, 194 ; of mixtures, 195 ; of comparison,

197; of cooling, 197

Camera obscura, 422

Capacity, electrical, 291; unit of, 292 ; of spherical condenser, 293 ; of freely

electrified sphere, 294 ; of plate condenser, 295 ; of Leydeu jar, 295

Capacity, specific inductive, 292 ; relation of, to index of refraction, 302, 379,

477, 478 ; relation of, to crystal lographic axes, 302

Capillarity, facts of, 90 ; law of force treated in, 91; equation of, 95 ; in gases,

96 ; Plateau's experiments in, 97

Carlini, determination of Earth's density, 81

Carlisle, apparatus for electrolysis of water, 324

Carnot, cycle, 244 ; engine, 244 ; theorem, 347

Cathetometer, 6

Cathode, 323

Cauchy's formula for dispersion, 479

Caustic ciu've, 431 ; surface, 421

Cavendish, experiment to prove mass attraction, 72 ; determination of Earth's

density, 81; on force in electrified conductor, 285; specific inductive

capacity, 292

Centimetre, 4

Central forces, propositions connected with, 54-69
;
proportional to the radius

vector, 55
;
proportional to the inverse square of the radius vector, 56

Centrobaric bodies, 73

Charge, imit, electrical, 288; energy of electrical, 301

Chemical aflinity measured in terms of electromotive force, 328

Chemical combination, heat equivalent of, 229 ; energy of, 255

Chemical separation, energy required for, 229; gives rise to electromotive

force, 327

Chladni's figures, 174

Christiansen, anomalous dispersion in fuchsin, 455

Circle, divided, 9

Circuit, electrical, direction of lines of force due to, 341; equivalenee of, to

magnetic shell, 342, 349. See Current, electrical.

Clark, standard cell, 336; its electromotive force, 336
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Clausius, kinetic theory of gases, 231; principle in thermodynamics, 246
;

theory of electrolysis, 330

Clement and Desormes, determination of ratio of specific heats of gases, 225

Coercive force, 259

Cohesion, 86

Collimaling lens, 437, 444

Collision of bodies, 38

Colloids, 85; diffusion of, 104

Colors of bodies, 449
;
produced by a thin plate of doubly refracting crystal

in polarized light, 467; by a thick plate, 469

Colors and figures produced by a thin plate of doubly refracting crystal in

polarized light, 467, 469, 472, 473, 474

Comparator, 7

Component of vector, 12

Compressibility, 83

Compressing pump, 146

Concord in music, 166

Condenser, electrical, 292 ; spherical, 293 ;
plane, 294 ; discharge of, 314 ; os-

cillatory discharge of, 375

Conduclion of electricity, 283

Conductivity for heat, 203 ; measurement of, 204 ; changes of, with tempera-

ture, 205 ; of crystals, 205 ; of uon-homogeueous solids, 205 ; of liquids,

205

Conductivity, molecular, 332

Conductivity, specific electrical, 319 ; in electrolyte dependent on ionic veloc-

ities, 331

Conductors, good, 284; poor, 284; systems of, 295; opacity of, 477

Configuration, 11

Conical refraction. 473

Conservation of energy, 37

Contact, angle of, 96

Continuity, condition of, 134; for a liquid, 135

Convection of heat, 201

Cooling, Newton's law of, 453

Coperuic\is, heliocentric theory, 70

Cords, longitudinal vibrations of, 173; transverse vibrations of, 173

Corn 11 and Buille, determination of Earth's densit}', 82

Coul )nib, laws of torsion, 122; torsion balance, 122; law of magnetic force,

260; distribution of magnetism, 263; law of electrical force, 286

Coulomb, a unit of quantity of electricity, 288

Counter electromotive force, 320; general law of, 320; of decompositiou,

measure of, 327; of polarization, 335; of electric arc, 387

Couple, 44; moment of, 44

Critical angle of substance, 408

Critical temperature, 220, 221, 239
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Crookes, the radiometer, 237; tubes, 390; explanation of phenomena in tubes,

391

Cross, experiment on beats, 183

Crystal systems, b5

Crystalloids, 85; diffusion of, 104

Crystals, conductivity of, for beat, 205; specific inductive capacity of, 302;

electribcation of, by heat, 302; optic axis of, 457; principal plane of, 457;

varying elasticity in, 461; varying velocity of ligbt in, 462; effects of

plates of, on polarized ligbt, 466, 469, 471, 472, 473; uniaxial, 471; biaxial,

472; optic axes of biaxial, 472

Ctesibius, force pump, 129

Cummiug, reversal of thermo-electric currents, 382

Current, electrical, 313; effects of, 312; represented by movement of tubes of

force, 314; electrostatic unit of, 316; strength, 316; strength depends on

nature of circuit, 317; sustained by energy from dielectric, 321; set up by

movement of a liquid surface, 339; magnetic field of, 341; direction of

lines of force due to, 341, 346; electromagnetic unit of, 344; practical unit

of, 345; energy of, in magnetic field, 345; energy of, in its own field, 346;

mutual energy of two, 346; mutual action of two, 346, 348; motion of,

in a magnetic field, 347; action of, on magnet pole, 349; Ampere's law

for the mutual action of, 352; deflected in a conductor by a magnet, 356;

due to inequalities of temperature, 356; measured in absolute units, 358;

Kirchhoff's laws of, 360; alternating, 368

Current, extra, 368

Current, induced electrical, 363; quantity and strength of, 364; measured in

terms of lines of force, 365; discovered by Faraday, 366; Lenz's law of,

367; Faraday's experiments relating to, 367; of self-induction, 367

Cycle, 244; Carnot's, 244; illustrated in hot-air engines, 253

Dalton, law of vapor-pressure, 218

Daniell's cell, 335

Dark lines in solar spectrum, explanation of, 451

Davy, melting of ice by friction, 188; conception of heat as motion, 205; elec-

trolysis of caustic potash, 324

Declination, magnetic, 268

Deformation, 108

De la Rive and de Candolle, conductivity of wood, 205

Density, 31

Density, magnetic, 262; electrical, 287

Despretz and Dulong, measurement of animal heat by, 256

De Vries, osmotic pressure, 106

Dialysis, 105

Diamagnet, distinguished from paramagnet, 276, 278

Diamagnetism, 276; explanation of, by Faraday, 276; on AmpSre's theory,

355; by Weber, 355
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Diaphragm, vibrations of, 176

Dielectric, 292; strain in, 301; energy in, 306; stress in, 310

Dielectric constant, 292. See Capacity, specific inductive.

Diffraction of light, 432; at narrow apertures, 432; at narrow screens, 434;

gratiiig, 434

Diffusion, 103; of liquids, 103; coefficient of, 103; through poroxis bodies, 104;

through membranes, 104; of gases, 107

Dilatability, 83

Dilatations, 110

Dimensional equation, 9

Dimensions of units, 9

Dip, magnetic, 268

Discord, in music, 166

Dispersion, normal, 408, 439; anomalous, 455

Dispersive power of substance, 440

Displacement, 11; composition and resolution of, 11

Dissociation, 229; heat equivalent of, 229

Dissociation, in solutions, 107; freezing-point of solutions, 214; vapor-pressure

of solutions, 218; in electrolytes, 380; theory of electrolysis, 330

Distribution of electricity on conductors, 287

Dividing engine, 6

Divisibility, 83

iJouble refraction in Iceland spar, 457; explanation of, 458; by isotropic sub-

tances when strained, 473

Draper, study of spectrum in relation to temperature, 454

Duloug and Petit, law connecting specific heat and atomic weight, 211; this

law a consequence of the kmetic theory of gases, 237, 241; formula for

loss of heat by radiation, 453

Dutrochet, definition of osmosis, 104

Dynamics, 10

Dynamo-macliine, 371

Dyne, 25

Ear, tympanum of, 176

Earth, density of, 80

Ebullition, 216; process of, 218; causes affecting, 219

Eddy, mean energy of vibrating body, 240

Edlund, study of counter electromotive force of electric arc, 387

Efflux through narrow tubes, 89; of a liquid, 135; quantify of, 138

Elasticity. 83, 116; modulus and coefficient of, 116; perfect, 116; voluminal,

117; voluminal, of gases, 118; of liquids, 118; of solids, 120; of traction,

120; of torsion, 121; of fiexure, 123; limits of, 123

Elasticity of gases, 118, 223; at constant temperature, 223; when no heat enters

or escapes, 223; ratio of these, 226; determined from velocity of sound, 227

Electric arc, 387; counter electromotive force of, 387
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Electric discharge, in air, 387; iu rarefied gases, 389

Electric pressure, 291

Electrical couvection of heat, 386

Electrical double-sheet, 337

Electrical endosmose, 340: shadow, 388

Electrical force. See Force, electrical.

Electrical machine, 298; frictioiial, 298; induction, 299

Electricity, fundamental facts of, 2S3; unit quantity of, 288; flow of, 289,

314, 316

Elect ritication by friction, 283; positive and negative, 283, 285; by induction,

284; explanation of electrification by friction, 338

Electrified body, forces on, 308

Electro-chemical equivalent, 325

Electrode. 323

Electrodyuamometer, 358

Electrolysis, 323; bodies capable of, 323; typical cases of, 324; influenced by

secondary chemical reactions, 324; Faraday's laws of, 325; Grotthus's

theory of, 329; dissociation theory of , 330; Clausius's view of, 330

Electrolyte, 323

Electromagnet, 355

Electromagnetic system of electrical units, basis of, 344

Electromagnetic waves, 376; similarity of, to light waves, 478

Electrometer, 296; absolute, 296; quadrant, 298; capillary, 339

Electromotive force, 317, 359; measured by difference of potential, 317;

means of setting up, 321; measured in heat units, 328; a measure of chem-

ical affinity, 328; of polarization, 335; theories of, of voltaic cell, 337;

electromagnetic unit of, 359; practical unit of, 359; due to motion iu mag-

netic field, 372; measured in terms of tubes of force, 372; depends on rate

of motion, 372; at a heated junction, 380; required to force spark through

air, 388

Electromotive force, counter. See Counter electromotive forct-, 320

Electrophorus, 299

Electroscope, 296

Electrostatic system of electrical units, basis of, 288

Elements, chemical, 84, electro-positive and electro-negative, 328

Elongation, 109; how produced, 111

Emission of radiant energy, 451; relation of, to absorption, 453

Endosmometer, Dutrochet's, 105

Endosmose, 104

Endosmose, electrical, 340

Energy, 29, 30; kinetic, 29; potential, 30; and work, equivalence of, 29; unit

of, 31; conservation of, 37; of fusion, 215; of vaporization, 227; sources of

terrestrial, 254; of sun, 257; dissipation of, 258; electrical, in dielectric,

306; expended in a circuit, 317

Engine, thermodynamic, 243; efliciency of heat, 244; Carnot, 244; reversible,

i.
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246; efficienc}'- of reversible, 247, 248; steam, 252; hot air. 252; gas, 252;

Stirling, 253; Rider, 253

Eolotropic bodies, 108

JSpocli of a simple biumouic motion, 22

Eciuutorial plane of a magnet, 260

Equilibrium, 28, 44; of free body, 45

Equipntenlial surface, 62

Erg, 31

Eilier, 84; luminiferous, 396; interacts with molecules of bodies, 456; transmits

electrical and magnetic disturbances, 395, 476; theories of, 396

Ettiugshausen, view of Hall effect, 856; currents due to inequalities of tem-

perature, 356

Evaporation, 216; process of, 216

Ewing, magnetic hysteresis, 279; limit of magnetization, 280; theory of mag-

netization, 281

Exosmose, 104

Expansion, 111; of solids by heat, 206; linear, 207; voluminal, 207, 209; coefii-

cient of, 207; factor of, 207; measurement of coethcient of, 208, 209; of

liquids by heat, 208; absolute, 208, 209; apparent, 208; of mercury, absolute,

208; apparent, 208; of water, 210; of gases by heat, 222; coethcient of, 222;

heat absorbed and work done during, 225; work done by pressure during,

249

Extraordinary ray, 458; index, 458

Eye, 423; estimation of size and distance by, 424

Eye-lens or eye-piece, 426; negative or Huygeus, 441; positive or Rarasdeu, 442

Farad, a unit of electrical capacity, 292

Faraday, magnetic induction in all bodies, 276 ; explanation of this, 276 ;

experiment in electrical induction, 284; on force in electrified body, 285;

specific inductive capacity, 293; theory of electrification, 302, 311; theory

illustrated, 302; explanation of residual charge, 303; discbarge of jar can

produce effects of current, 313; nomenclature of electrolysis, 323; laws of

electrolj'sis, 325; voltameter, 326; division of ions, 328; theory of electrolysis,

329; chemical theory of electromotive force, 337; electromagnetic rotations,

344; induced currents, 366; effect of medium on luminous discharge, 389;

electromagnetic rotation of plane of polarization, 475

Favre and Silbermanu, heat of chemical combination, 229; connection of

electromotive force and heat units, 328

Feddersen, oscillatory discharge, 376

Ferromagnet. See Paramagnet, 276

Field of force, 61; strength of, 61

Filament, in a fluid, 135

Films, studied by Plateau, 98; interference of light from, 430

Fitzgerald, vortex ether, 896
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Fizeau, introduced condenser in connection with induction coil, 371; deter-

mined velocity of light, 402

Flexure, elasticity of, 123

Floating bodies, 181

Flow of heat, 202; across a wall, 202; proportional to rate of fall of tempera-

ture, 202; along a bar, 203

Fluid, body immersed in, 131; body floatiug on, 131

Fluids, distinction between solids and, 124; mobile, viscous, 124; perfect, 125

Fluids, motions of. See Motions of a fluid, 134

Fluorescence, 454

Focal line, 421

Focus, of spherical mirror, 411; real, conjugate, 411; principal, 411; virtual, 411

Forbes, measurement of conductivity, 205

Force, 24 ; unit of, 25 ; centrifugal, 29 ; conservative, 30 ; internal, 35, 36 ;

external, 36; moment of, 43; Held of, 61; defined by potential, 61; line of,

63; tube of, 63; flux of, 65; near a plane sheet, 68; within spherical shell,

68; outside a spherical shell, 69

Force, capillary, law of, 91

Force, electrical, in charged conductor, 285; law of, 286; screen from, 289;

just outside an electrified conductor, 291; tubes of, 303; unit or Faraday
tube of, 304 ; representation of, by tubes of force, 304 ; on bodies in the

electrical field, 308

Force, magnetic, law of, 260; due to bar magnet, 265; unit tube of, 270; within

a magnet, 271; lines of, 272; between magnet and long straight current,

341; between magnet and current element, 342, 349; due to circular cur-

rent, 351

Forces, composition and resolution of, 28; resultant of paridlel, 47; central, 54

Forces, determining structure of bodies, 85; molecular, 85, 108; of cohesion,

86; of adhesion, 86

Foucault, pendulum, 52; velocity of light, 403

Fourier, theorem, 24

Franklin, complete discharge of electrified body, 285; experiment with Leydeu
jar, 302; identity of lightning and electrical discharge, 389

Fraunhofer, lines in solar spectrum, 443

Freezing-i)oint, change of, with pressure, etc., 213; of solutions, 214

Fresnel, assumption of transverse vibrations, 395; elastic solid ether, 396;

interference of light from two similar sources, 429; rhomb, 471; explana-

tion of rotation of plane of polarization b}' quartz, 474

Fresnel and Arago, interference of polarized light, 460, 463

Friction, 88; laws of, 88; coeflicieut of, 89; of solid in fluid, 89; theory of, 90

Fusion, 212; heat equivalent of, 214; energy necessary for, 215; determination

of heat equivalent of, 215

Galileo, relation of force and mass, 26; path of projectiles, 59; the heliocentric

theory, 70; measurement of gravity, 73; weight of atmosphere, 129
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Galvani, physiological effects of electrical current, 312

Galvanometer, 357; Schweigger's multiplier, 357; tangent, 357

Gas, definition of, 216; perfect, 249

Gases, 84, 230; absorption of, 102; diffusion of, 107; elasticity of, 118; lique.

faction of, by pressure, 147, 220; departure of, from Boyle's law, 221;

pressure of saturated, 221; coefficient of expansion of, 222; formula con-

necting pressure, volume, and temperature of, 222 ; elasticities of, 223 ;

specific beats of, 224; van der Waal's theory of, 237; spectra of, 450

Gases, kinetic theory of. See Kinetic theory of gases, 231

Gauss, theory of capillarity, 92; proof of law of magnetic force, 260

Gay-Lussac, law of expansion of gases by beat, 222

Geissler tubes, 390

Gilbert, showed Earth to be a magnet, 268

Graham osmometer, 105; method of dialysis, 105

Gram, 8

Gram-degree, 193

Grating, diffraction, 434; element of, 435; pure spectrum produced by, 436;

with irregular openings, 436; wave lengths measured by, 437; Rowland's

curved, 438

Gravitation, attraction of, 70

Gravity, centre of, 72

Gravity, measurement of, 73; value of, 73

Griffiths, mechanical equivalent of heat, 193

Grotthus, theory of electrolysis, 329

Grove, gas battery, 334

Gyration, radius of, 42

Gyroscope, 53

Hall, deflection of a current in a conductor, 356

Halley, theory of gravitation, 71

Hamilton, prediction of conical refraction, 473

Harmonic tones of pipe, 172

Harris, absolute electrometer, 296

Heat, effects of, 186; production of, 187; nature of, 187; a form of energy, 188;

unit of, 192; mechanical unit of, 193; mechanical equivalent of, 198; Joule's

determination of, 198; Rowland's, 199; Ilirn's 200; transfer of, 201; con-

vection of, 201; conduction of, 202; internal, of Earth, a source of energy,

257; developed by the electrical current, 313, 319; generated by absorption

of radiant energy, 445

Heat, atomic, 211

Heat, kinetic theory of, 206, 229

Helmholtz, vortices, 142; resonators, 178; vowel sounds, 179; theory of beats,

181; theory of solar energy, 258; law of counter-electromotive force, 320;

electromotive force of ceM, 328; electrical double-sheet, 338; modification
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of surfate tension by electrical currents, 339; explanation of electrical

endo/miose, 340; interaction of ether and molecules of bodies, 456

Henry, oscillatory discharge, 376

Herschel, study of spectrum, 450

Hertz, relation of index of refraction and specific inductive capacity, 302;

experiments on electromagnetic waves 376, 478; passage of cathode dis-

charge through aluminium, 391

Hiru, mechanical equivalent of heat, 200; work done by animals, 356

Hittorf, migration of ions, 333

Holtz, electrical machine, 301

Hooke, theory of gravitation, 71; law of elasticity, 116, 120

Hopkiuson, relation between index of refraction and specific inductive capac-

ity, 477

Horizontal intensity of Earth's magnetism, 268; measurement of, by standard

magnet, 268; absolute, 269

Hot-air engine, 252

Huygens, theorems of, on motion in a circle, 71; views of, respecting gravita-

tion, 71; principle of wave propagation, 151; theory of light, 394; eye-

piece, 441

Hydrometer, 133

Hydrostatic balance, 133

Hydrostatic press, 126

Hydrostatic stress, 115

Hysteresis, magnetic, 279

Ice, melting-point of, used as standard, 212; density of, 213

Iceland spar, 457; wave surface in, 458

Images, formed by small apertures, 401; virtual, 408; by mirrors, 416; by
lenses, 417; geometrical construction of, 418

Impact, 38

Impenetrability, 4

Impulse, 26

Inclined plane, 48, 49

Induced magnetization, coefficient of, 273

Induction coil, 371; condenser connected with, 371

Induction, electrical, 284, 290

Induction, magnetic, 259, 272, 273; tubes of, 273

Induction of cuirents, 363

Inductive capacity, magnetic, 273

Inertia, 4, 25; moment of, 43

Instantaneous axis, 50

Insulator, electrical, 284; transparency of, 477

Intensity in a field of force, 61

Interference of light, cause of propagation in straight lines, 396; from two
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similar sources, 437; experimeutal realization of, 429; from tbiu films, 430
Interiiode, 157

lulervals, 167

louic weight, 326; charge, 326; velocities, 381

Ions, 324, 325; electro-positive and electro-negative, 328; arrangement of, by-

Faraday, 328; by Berzelius, 328; migration of, 329

Isothermal Hue, 223

Isotropic bodies, 108

Jolly, determination of Earth's density, 82

Joule, equivalence of heat and energy, 188; mechanical equivalent of heat,

198; expansion of gas without work, 225, 233; linut of maguetizatiou, 280;

law of heat developed by electrical current, 319; electromotive force in

heat units, 328; development of heat in electrolysis, 329

Joule and Thomson, expansion of gas without work, 225

Jurin, law of capillary action, 99

Kater, pendulum, 77

Kepler, laws of planetary motion, 70

Kerr, optical effect of strain in dielectric, 302; rotation of plane of polarization

by reflection from magnet, 476

Ketteler, interaction of ether and molecules of bodies, 456

Kinematics, 10

Kinetics, 10

Kinetic theory of heat, 206, 229; explanation l)y it of properties of bodies, 239

Kinetic theory of gases, 231, 232

Kirchhoff, laws of electrical currents, 360; spectrum analysis, 450

Kohlrausch, measurement of ionic velocities, 331

KiJnig, A., modification of surface tension by electrical currents, 339

Konig, R., manometric capsule, 149; pitch of tuning-forks made by, 169;

boxes of his tuning-forks, 175; quality as dependent on change of phase,

178; investigation of beats, 182

Kopp, atomic heat, 211

Kundt, experiment to measure velocity of sound, 162; anomalous dispersion,

455

Lang, counter electromotive force of electric arc, 387

Langley, bolometer, 319; wave lengths in lunar radiations, 438, 446

Laplace, theory of capillarity, 92; equation of capillarity, 96

Lavoisier, measurement of animal heat, 255

Least time, principle of, 400

Lenard, the cathode discharge, 391

Length, unit of, 4; measurements of, 4

Lenses, 413; formula for, 414; forms of, 414; focal length of, 415; images

formed by, 417; optical centre of, 417; thick. 419; of large aperture, 419;

aplanatic combinations of, 422; achromatic combinations of, 440

I
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Lenz, law of induced ciirrents, 367

Le Roux, experiments in thermo-electricity, 383; electrical convection of heat

in lead, 386

Lever, 47, 49

Leydeu jar, capacity of, 295; dissected, 302; volume changes in, 302; residual

charge of, 303

Light, agent of vision, 394; theories of, 394; propagated in straight lines, 396;

principle of least time, 400; retleclion of, 404; refraction of, 406; ray of,

beam of, pencil of, 418; characteristics of common, 464

Light, velocity of, determined from eclipses of Jupiter's satellites, 402; from

aberratiun of fixed stars, 402; by Fizeau, 402; by Foucault, 403; by

Michelson, 404

Light, electromagnetic theory of, 476

Lightning, an electrical discharge, 389

Lines of magnetic force, positive direction of, 348

Lippmann, electrical effects on capillary surface, 338; capillary electrometer,

339; production of current by modification of capillary surface, 339

Liquefaction, 220; of gases, by pressure, 220

Liquids, 84, 230; modulus of elasticity of, 118

Lissajous, optical method of compounding vibrations, 180

Lorentz, shrinkage of molecules with rise of temperature, 240

Loudness of sound, 164

Machine, 48; efficiency of, 49; electrical, 298; dynamo- and magneto-, 370

Magnet, natural, 259; bar, relations of, 263; couple between two-bar, 265

Magnetic elements of Earth, 268

Magnetic force See Force, magnetic, 260

Magnetic induction, 259; axis, 260, 268; pole. 260, 263; moment, 261; den-

sity, 262; field, 270; inductive capacity, 273; permeability, 273; field,

energy in, 273

Magnetic shell, 266; strength of, 266; potential due to, 267; equivalence of, to

closed current, 342

Magnetic system of units, basis of, 261

Magnetism, fundamental facts of, 259; distribution of, in magnet, 262; deter-

mination of, 263; theories of, 280; Ampere's theory of, 355; theory of,

described by tubes of force, 355

Magnetization, intensity of, 262; changes in, 278

Magneto-machine. 370

Magnifying-glass, 425

Magnifying-power, 425

Manometer, 146

Manometric capsule, 149

Mariotte, study of expansion of gases, 118

Maskelyne. determination of Earth's density, 81

Mass, 25; unit of, 8; centre of, 32
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Masses, comparison of, 8

Matter, 1, 3; constitution of, 83; kinetic theory of, 206, 229; states of, 229

Matthiesseu, expansion of water, 209

Mayer, views concerning work done by animals, 256

Maxwell, coefficient of viscosity of a gas, 90; kinetic theory of gases, 231; law

of distribution of energy in gases, 235; molecular constants, 243; relation

between specific inductive capacity and index of refraction, 302, 477; ex-

planation of residual charge, 303; theory of electriticalion, 311; relation

of current and lines of force, 341; suggested test of Weber's theory of dia-

magnetism, 355; measurement of v, 374; force on magnet due to moving

electrical charge, 375; electromagnetic theory of light, 476

Mechanics, 10

Mechanical powers, 46

Melloui, use of thermopile, 381

Melting-point of ice, 212; of alloys, 212; change of, with pressure, 213

Mercury, expansion of, by heat, 209

Metaceutre, 131

Micbelson, velocity of light, 404

Michelson and Morley, difference of path of interfering light, 464

Microfarad, 292

Micrometer screw, 5

Microscope, simple, 425; compound, 426

Migration of ions, 329; constant, 333

Mirrors, plane. 408; spherical, 409; images formed by, 416; of large aperture,

419

Modulus of elasticity. See Elasticity, 116

Mohr, kinetic theory of heat, 205

Molecular forces, 86; action, range of, 91, 242; motion, 229. See Kinetic

theory.

Molecule, 83; structure of, 86; kinetic energy of, proportional to temperature,

235; mean velocity of, 236; dimensions of, 241

Moment, of force, 44; of couple, 44; principle of, 44

Moment of inertia, 42; experimentally determined, 42

Moment of torsion, 122; determination of, 122

Moment, magnetic, 261; changes in, 278; depends on temperature, 279; on

mechanical disturbance, 280

Momentum, 26; conservation of, 35

Motion, 11; description of, 14; linear, with constant acceleration, 18; angular,

with constant angular acceleration, 19; in a circle, 17, 23; simple har-

monic, 20; Newton's laws of, 26; constrained, 28: in an ellipse, 57

Motions, composition and resolution of simple harmonic, 23; of a fluid, 134;

optical method of compounding, 180. See Displacement, 11

Miiller, J., limit of magnetization, 280

Mutual induction, coefficient of, 347
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Neknst, migration of ions, 333

Neumann, atomic beat, 211

Hewtou, laws of motion, 26; law of mass attraction, 71; description of atom,

b6; quautit}-^ of liquid flowing through orilice, 138; theory of light, 400;

interference of light from films, 431; composition of white light, 439;

chromatic aberration, 440; law of cooling, 453

Nichols, study of radiations, 454

Nicholson and Carlisle, decomposition of water by electrical current, 313

Nicol prism, 465

Node, 157

Noise, 164

Non-inductive coil, 368

Objective, 426

Ocean currents, energy of, 255

Oersted, piezometer, 119; relation between magnetism and electricity, 813

Ohm, law of electrical current, 318

Ohm, a unit of electrical resistance, 360; various values of, 360; determination

of. 372

Olszewski, condensation of gases, 221 ; low temperatures obtained by, 228

Opiic angle, 424; axis of crystal, 457, 471, 472

Optics, 394

Ordinary ray, 458; index, 458

Organ pipe, 170; fundamental of, 172; harmonics of, 172; mouthpiece of, 172;

reeds used with, 172

Oscillation, axis of, 77

Oscillatory discharge of condenser, 375

Osmometer, Graham's, 105

Osmosis, 104, 105

Osmotic pressure, 106; laws of, 106

Ostwald, theory of electrolysis, 330

Overtones, of pipe, 1 72

Parallelogram, of vectors, 12; of forces, 28

Paramagnet, 276

Particle, 27, 42

Pascal, pressure in fluid, 125; pressure modified by gravity, 126; barometer,

129

Peltier, heating of junctions by passage of electrical current, 313; effect, 313, 380

Pencil of light, 418

Pendulum, Foucault's, 53; simple, 74; formula for, 75; physical, 75; Borda's,

77; Kater's or reversible, 77

Penumbra, 401

Percussion, centre of, 45

Period, of a simple harmonic motion, 20
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Permeability, magnetic, 273

Pfeffer, study of osmosis, 105; of osmotic pressure, 105; laws of osmotic

pressure, 106

Pliase, of a simple harmonic motion, 20

Phonograph, 176

Phosphorescence, 454

Photometer, Bunsen's, 447

Photometry, 447

Pictet, condensation of gases, 221

Piezometer, Oersted's, 119; Regnault's, 119

Pitch of tones, 164; methods of determining, 164; standard, 169

Plante, secondary cell of, 386

Plateau, experiments of, in capillarity, 97

Plates, rise of liquid between, 100; transverse vibrations of, 174

Poisseuille, friction in liquids, 89

Poisson, correction for use of piezometer, 119; theory of magnetism, 280

Polariscope, 465

Polarization of cells, 335

Polarization of light, by double refraction, 459; by reflection, 463; plane of,

463; by refraction, 463; by reflection from fine particles, 463; elliptic and

circular, 469; circular by reflection, 471; rotation of plane of, by quartz,

473; by liquids, 475; in magnetic field, 475

Polarized light, 460; explanation of, 460; interference of, 463; effects of plates

of doubly refracting crystals on, 466, 469, 471. 472. 473

Polarizer, 464

Polarizing angle, 463

Pole, magnetic, 260, 263; unit magnetic, 261

Poles, of a voltaic cell, 334

Polygon of vectors, 12

Porous body, 102

Potential, difference of, 61; its relation to force, 61; in a field of force varying

inversely with the square of the distance, 63

Potential, electrical, in a closed conductor, 286, 289; of a conductor, 289; zero,

positive, and negative, 289; of a system of conductors, 295; difterence of,

measured, 297; contact difference of, 312

Potential, magnetic, due to bar magnet, 263; due to magnetic shell, 267; of a

closed circuit is multiply-valued, 343; illustrated by Faraday, 344

Poyntiug, theorem, 321

Pressure, 112; in a fluid, 125; modified by outside forces, 126; surfaces of

equal, 126; on surface of separation, 127; proportional to depth, 128;

diminished on walls containing moving liquid column, 139

Prevost, law of exchanges, 451

Principal plane of crystal, 457

Prism, 407

Problem of two bodies, 58
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Projectiles, 59

Properties of matter, 4

Pulley, 47, 49

Pump, 137; air, 143; compressing, 146

Quality of tones, 164, 177; dependent upon harmonic tones, 178; upon change

of phase, 178

Quarter wave plates, 471

Quartz, effects of plates of, in polarized light, 473; imitation of, 475

Quincke, range of molecular action, 242; change in volume of dielectric, 303;

electrical eudosmose, 340; movements of electrolyte, 340

Radian, 9

Radiant euerg3% effects of, 445; transmission and absorption of, 448; emission

of, 451; origin of, 452

Radiation, 205 ;
intensity of, as dependent on distance. 446; on angle of in-

cidence, 446; kind of, as dependent on temperature, 453

Radicals, chemical, 84

Radiometer, 237

Rainbow, 442; secondary, 443

Ramsdeu, eye-piece, 442

Rankine, theoretical velocity of sound, 159

Raoult, freezing-points of solutions, 214; vapor pressure of solutions, 218

Ratio between electrostatic and electromagnetic units, 373; a velocity, 373;

physical significance of, 37o; equal to velocity of light, 477

Ray of light, 418

Rayleigh, electromotive force of Clark's cell, 336

Reeds, in organ pipes, 172; lips used as, 172; vocal chords as. 173

Reflection, of waves, 157; law of, 158; of light, law of, 405; total, 408: at

spherical surfaces, 409; of spherical waves, 419; selective, 449; polarization

of light by, 463

Refraction of light, law of, 406; index of, 407; dependent on wave length, 408;

at spherical surfaces, 412; polarization of light by, 463; conical, 473

Regelation, 213

Regnanlt, piezometer, 119; specific heat of water, 193; therm ocal or i meter, 197;

expansion of mercury, 208; extension of Dulong and Petit's law, 211;

modification of Dalton's law, 218; pressure of water vapor, 221; modifica-

tion of Gay-Lussac's law, 222; total heat of steam, 228

Reinhold and Riicker, range of molecular action, 242

Residtial charge, 303

Resistance, electrical, 318, 359; depends on circuit, 318; of homogeneous cyl-

inder, 319; specific, 319; varies with temperature, 319; electromagnetic

unit of, 360; practical unit of, 360; boxes, 360; measurement of, 362; of a

divided circuit, 363; determination of unit of, 372

Resonance, 174
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Resonator, 178

Restitution, coeflSicient of, 39

Resultant of vectors, 11

Reuscb, artificial quartzes, 475

Reuss, electrical endosmose, 340

Reynolds, laws of diffusion of gases, 108

Rheostat, 360

Rider, hot-air engine, 253

Righi, transmission of electromagnetic waves through wood, 378

Rigidity, 117; modulus of, 117, 123

Rods, longitudinal vibrations of, 173; transverse vibrations of, 174

Roemer, determination of velocity of light, 402

Routgen, the Rontgeu radiance, 392; theories of, 392

Rotation, 40; of bod}'' about a fixed point, 43

Rotation of plane of polarization by quartz, 473; right-handed and left-handed,

475; by liquids, 475; in magnetic field, 475; explanation of, 476; by rcfiec-

tion from magnet, 476

Rotational coefficient, Hall's, 856

Rowland, specific heat of water, 193; mechanical equivalent of heat, 199; force

on magnet due to moving electrical charge, 375 ; measurement of v, 375

photographs of solar spectrum, 438; curved grating, 438

Ruhrakorff's coil, 371

Rumford, relation of heat and energy, 187; conception of heat as motion, 206;

views concerning work done by animals, 256

Saccharimeter, 475

Sarasin and de la Rive, velocity of electromagnetic waves, 376

Saturation of a magnet, 278, 281

Savart, toothed wheel, 165

Scales, musical, 167; transposition of, 168; tempered, 169

Schonbein, chemical theory of electromotive force, 387

Schweigger, multiplier, 357

Screens, diffraction effects at, 434

Screw, 48

Second, 8

Seebeck, thermo-electric currents, 380; thermo-electric series, 381

Self-induction, coefficient of, 346; current of, 367

Set, 123

Shadows, optical, 401

Shear. 110, 117; amount of, 110, 117

Shearing strain, 110; stress, 114

Shunt circuit. 363

Siphon, 136

Siren, determination of number of vibrations by, 165

Smee's cell, 335
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Snell , law of refraction, 407

Solenoid, 354

Solidificuliou, 212

Solids, 84, 230; structure of, 85; cr}^stalline, amorphous, 85; movements of, due

to capillarity, 101; distiuctiou betwecu tluids and, 124; soft, hard, 124

Solubility, 102

Solution, 102; equimolecular, 106; indifferent, 106; isotonic, 106

Sound, 149; origin of, 149; propagation of, 150; theoretical velocity of, 159;

velocity of, in air, 161; measurements, 162

Sounding boards, 176

Specific gravity, 131; determination of, for solids, 132; for liquids, 132; for

gases, 133

Specific gravity bottle, 132

Specific heat, 193; mean, 194; varies with temperature, 210; with change of

state, 210

Specific heat of gases, 224; at constant volume, 324; at constant pressure, 224;

determination of, at constant pressure, 224; ratio of these, 225; relation ta

elasticities, 226

Specific inductive capacity. See Capacity, specific inductive, 292

Spectrometer, 437; method of using, 437

Spectroscope, 443

Spectrum, pure, 436; produced by diffraction grating, 436; of first order, etc.,

436; formed by prism, 439; solar, 443; dark lines in, 443; study of, 445;

of solids and liquids, 445; of gases, 450; explanation of, of a gas, 452;

characteristics of, 454; of gases which undergo dissociation, 454

Spectrum analysis, 449

Spheroidal state, 219

Spherometer, 7

Spottiswoode and Moulton, electrical discharge in high vacua, 391

Sprengel, air-pump, 145; theory of, 139

Statics, 10

Steam, total heat of, 228

Steam-engine, 252

Stirling's hot-air engine, 253

Stokes, study of fluorescence, 455

Storage cells, 336

Strain, 108, 109; homogeneous, 109; principal axis of, 109; superposition of

111

Stress, 28; in medium, 108, 111; superposition of, 114; hydrostatic, 115
Substances, simple, compound, 84

Sun, energy of, 257

Surface density, 67; of magnetism, 262; of electrification, 287

Surface energy of liquids, 94

Surface tension of liquids, 92; relations to surface energy, 94; modified by
electrical effects, 339
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Sutherland, shrinkage of molecules with rise of temperature, 240

System of points, 11

Tait, experiments in thermo-electricity, 382; thermo-electric formula, 385
Telephonic transmitters and receivers, 370

Telescope, 425, 426; nuiguifying power of, 426

Temperament of musical scale, 169

Temperature, 189; scales of, 19U; change of, during solidification, 213; critical,

220, 221, 239; absolute zero of, 223, 235, 248; absolute, 223, 247, 249;

kinetic measure of, 232; absolute, relation of, to temperature of air-ther-

mometer, 249; movable equilibrium of , 451; radiation of heat dependent
on, 453

Tension, 112

Thermodynamics, first law of, 243; second law of, 246

Thermo-electric currents, 380; how produced, 381; reversal of, 382
Thermo electric diagram, 382

Tliermo-electric element, 381

Thermo electric power, 382

Thermo-eleclrically positive and negative, 381

Thermometer, 189; construction of, 189; air, 191, 223; limits in range of, 193;

weight. 209; zero of air, 223

Thermopile, 381

Thomson, J. J., tubes of force, 304; theory of electrical field, 311; currents

due to inequalities of temperature, 357; explanation of discharge in

rarefied gases, 391

Thomson, Sir Wm. (Lord Kelvin), theory of vortex atom, 87; vortices, 142;

absolute scale of temperature, 248; theory of solar energy, 258; absolute

electrometer, 297; quadrant electrometer. 298; law of counter electromo-
tive force, 320; contact theory of electromotive force, 337; measurement
of «, 374; oscillatory dischaige, 37(5; thermo-electric currents in non-

homogeneous circuits, 382; thermo-electric power a function of temper-
ature, 384; the Thomson effect, 386; electromotive force required to force

spark through air, 388; gyroscopic model of ether, 396; estimates of
rigidity and density of ether, 396

Thomson effect, 386

Tides, eneigy of, 257

Time. 3; unit of, 8; measurement of, 8

Tones, musical, 164; differences in, 164; determination of number of vibra-

tions in, 164; whole and semi-, 168; fundamental, 172; analysis of com-
plex. 178; resultant, 183

Tonic, 168

Torricelli, barometer, 129; experiment of, 139; theorem for velocity of efflux,

136; experiments to prove, 138

Torsion, amount of, 121; moment of, 133

Torsion balance, 122, 286
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Tourmaline, 464

Tractiou, loogitudinal, 114; elasticity of, 120

Truiishitiou, 4U

Tniusmissiou of radiations, 448

Triad, major, 167; miuor, 167

Troutou, polarization of electromagnetic waves, 379

Trowbridge, changes in intensity of magnetization, 279

Tubes, rise of liquid In ctipilhay, 99

Tubes of force, 63; relation of force to cross-section of, 67
Tuning-fork, 174; sounding-box of, 175

Tyudall, conductivity of wood, 205

Umbra, 401

Units, fundamental and derived, 4; dimensions of, 9; systems of, 9

Vacuum tube, electrical discharge in, 389

Van der Waals, theory of a gas, 237; pressures in gases, 242

Vapor, 210; saturated, 217; pressure of, 217; pressure of, over solutions, 218;

production of, in limited space, 220; departure of, from Boyle's law, 221;

pressure of saturated, 221

Vaporization, 216; energy necessary for, 227; heat equivalent of, 228

Vector, 12; composition and resolution of, 13

Velocity, 15; angular, 18; composition and resolution of, 16

Velocity of efHux of a liquid, 135; into a vacuum, 137

Velocity, mean, of molecules of gas, 234, 241

Velocities, composition and resolution of, 16; of angular, 51

Vfna contracta, 138

Ventral segment, 157

Verdet, electromagnetic rotation of plane of polarization, 475

Vernier, 4

Vertex of spherical mirror, 409

Vibiatioiis of sounding bodies, 170; modes of exciting, in tubes, 172; longl-

tudiiiiil, of rods, 173; of cords, 173; transverse, of cords, 173; of rods,

174; of plates, 174; communication of, 174; of a membrane, 176; optical

method of studying, 180

Vibrations, light, transverse to ray, 460, 463; relation to plane of polarization,

461 ; elliptical and circular, 469

Viscosity, 88: of fluids, 89; of gase's, 90; of solids, 124

Vision, ancient theory of, 394; Aristotle's view of, 394

Visual angle, 424

Vocal chords, 173

Volt, a unit of electromotive force, 359

Volta, change in volume of Leyden jar, 302; electrophorus, 299; contact differ-

ence of potential, 312; voltaic battery, 313; heating by current, 313; con-

tact theor}"^ of electromotive force, 337



512 IKDEX.

Voltaic cells, 334; polarization of, 335; theories of electromotive force of, 337;

arrangements of, 363

Voltaic cells; Grove's gas battery, 384; Smee's, 335; Daniell's, 335; Planle's

secondary, 336; Clark's, 336

Voltameter, 326; weight, 337; volume, 327

Volume, change of, with change of state, 213

Vortex, in perfect fluid, 142; line, 142; filament, 143; properties of a, 142;

strength of, 142; illustrations of, 143

Vortex atom, theory of, 87

Vowel sounds, dependent on quality, 179

Water, specific heat of, 193; maximum density of, 201, 210; expansion of,

by heat, 210; on solidification, 213

Water-power, energy of, 255

Wave, on surface of liquid, 140; studied by H. and W. Weber, 140

Wave, sound, 151; mode of propagation of, 151; graphic representation of, 152;

displacement in, 158; velocity of vibration in, 154; stationary, 156; reflec-

tion of, 157; in sounding bodies, 170

Wave, light, surface of, 396; relation of, to the direction of propagation, 399;

emergent from prism, 407, 408; measurement of length of, 430, 437;

values of lengths of, 438; surface of, in uniaxial crystals. 458; in biaxial

crystals, 472

Weber, theory of magnetism, 280; equivalence of circuit and small magnet,

342; theory of diamagnetism, 355; electrodynamometer, 358.

Weber, H. and W., study of waves, 140

Weber and Kohlrausch, measurement of v, 373

Wedge, 48

Weighing, methods of, 80

Weight of a body, 73

Wheatstoue's bridge, 361

Wheel and axle, 48

Wiedemann, electrical endosmose, 340

Wilcke's calorimeter, 194

Wind-power, energy of, 255

WoUaston, dark Hues in solar spectrum, 443

Work, 29; and energy, equivalence of, 29; unit of, 31; principle of, 43

Wren, theory of gravitation, 71

Wright, connection of electromotive force and heat of chemical combination

328

Young, theory of capillarity, 92; optical method of studying vibrations, 180;

interference of light from two similar sources, 429
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