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PREFACE.

THIS volume, which is issued as Part II. of an Elemen-

tary Text-Book of Physics, deals with the elements of

Sound.

An effort has been made to give, as simply and as

clearly as possible, a fairly complete exposition of the

fundamental facts and principles of the subject. The

experiments described in the text are intended to illus-

trate and develop the theory, but in most cases the

descriptions are given with sufficient experimental detail

to be of service in the laboratory.

This Part is complete in itself, but a knowledge of

some of the elementary principles of Dynamics dealt with

in Part I. is necessarily assumed.

April, 1909.

19.2870
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SOUND.

CHAPTER I.

SIMPLE HARMONIC VIBRATION.

1. Simple Harmonic Motion. Let P (Fig. 1) be any point

on the circumference of the circle APB, and AB any diameter

of the circle. From P draw Pp perpendicular to the diameter

R

Fig. 1.

AB, and meeting the diameter at the point p. The point p is

the projection of the point P on the diameter AB. For different

positions of the point P on the circumference of the circle, the

pointy will have different positions on the diameter AB, for the

point p will in all positions be the foot of the perpendicular

from P on to the diameter.

Now, imagine the point P to move round the circumference

of the circle with uniform speed, and consider the corresponding
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motion of the point p along the diameter AB. It will be seen

that as P moves round and round the circle the point p moves

backwards and forwards along the diameter AB, making a

complete backward and forward movement for each complete

revolution made by P. The point P makes a complete revolu-

tion from any starting point on the circumference of the circle

every time it passes through the starting point; the point p,

therefore, makes a complete backward and forward movement

from any starting point on the diameter every time it passes

through the starting point in the same direction as it had at the

instant of starting. Thus, when P moves round the circle from

B through Q, A, and R back to B, the point /;
moves along the

diameter AB from B, through 0, to A, and back through to

B. Or, as P moves from Q through A, R, and B back to Q, the

point p moves from to A, back through to B, and then back

to again.

The point p is said to move with simple harmonic motion

along the line AB. That is, if a point moves round the circum-

ference of a circle with uniform speed, the projection of this

point on any diameter of the circle moves backwards and for-

wards along the diameter in simple harmonic motion.

2. Period of Simple Harmonic Motion. The point P
moves round the circle with uniform speed, and, therefore,

describes each complete revolution in the same time. The

point p makes a complete backward and forward movement

for each complete revolution made by P, and must, therefore,

describe each complete movement in a definite constant period

of time equal to the time occupied by P in making one complete

revolution. This period of time is known as the period of the

motion. In the case of a point moving in simple harmonic

motion, the period of the motion may, therefore, be defined as

the time occupied by the point in making one complete back-

ward and forward movement. The motion of a point in simple

harmonic motion is evidently a repetition, period after period, of
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complete backward and forward movements, each described in

a constant period of time. For this reason the motion of the

point is said to be periodic. Simple harmonic motion is the

simplest type of periodic motion.

3. Amplitude of Simple Harmonic Motion. -- The

motion of the point p, as described above, is defined as simple

harmonic motion. The line AB is the path of the motion, and

O is the middle point or centre of the path of motion. The

distance OA or OB is the greatest distance the point travels

from O during its motion
;

this distance is known as the

amplitude of the motion.

In the case of a point moving in simple harmonic motion

the amplitude of the motion may, therefore, be defined as the

greatest distance the point moves from the centre of its path

during the motion.

The distance of a point in simple harmonic motion from the

centre of its path is sometimes called the displacement of the

point. The term displacement, used in this way, implies that

the centre of the path is the normal position of the moving

point when at rest. If this term is used the amplitude of the

motion may be defined as the maximum displacement of the

point during the motion.

4. Variation of Displacement during Simple Har-

monic Motion. The displacement of a point moving in

simple harmonic motion varies, during a complete period, in

a manner specially characteristic of the motion.

If the point p (Fig. 2) moving in simple harmonic motion

along AB be supposed to start a complete backward and forward

movement from the centre of its path, and to move from

towards A, the successive positions of the point at intervals of

one-sixteenth of a period from the start are indicated by the

points 0, 1, 2, 3, . . . 16 on the line AB, and the corre-

sponding successive displacements of the point are, therefore,

represented by the distances 01, 02, 03, . . . measured
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from O towards A or B. These distances represent, therefore,

successive values of the displacement Op at intervals of one-

sixteenth of a period, and indicate the manner in which this dis-

placement varies during a complete period. The points 0, 1, 2, 3,

. . . 1 6 on the line AB are easily obtained in the following

manner : The point P moves round the circle with uniform

speed; its successive positions at intervals of one-sixteenth of

the period of motion from the start are, therefore, obtained by

dividing the circumference of the circle into sixteen equal parts.

As the point p is supposed to start from 0, and to move towards

A, the point P must start from the point marked on the

12 B

Fig. 2.

circumference of the circle in the same direction, and the

division of the circumference into sixteen equal parts must,

therefore, begin at this point, giving the points 0, 1, 2, 3

. . . 16 shown on the circumference. The corresponding

successive positions of the point p during its motion along AB
are merely the projections of these points on the line AB.

5. The Displacement Curve for Simple Harmonic

Motion. The variation of the displacement of a point in simple

harmonic motion during a period starting from the instant the

point passes through the centre of its path is conveniently ex-

hibited by means of a curve. The motion of the point p, as
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above described, is represented by the curve shown in Fig. 3.

In this figure distance along OX represents time, and the scale

of representation is such that the distance OX represents the

period of the motion. The distances 01, 12, 23, . . . being

each one-sixteenth of OX, evidently represent one- sixteenth of

the period. The ordinates of the curve at the points 1, 2,

3, &c., represent successively the displacements of the point at

intervals of one, two, three, &c., sixteenths of a period from

the start, as shown in Fig. 2.

The curve OBX is, therefore, drawn so that its ordinate at

any point represents the displacement of the point p at a par-

ticular instant. Thus, if the point A is so placed that OA is

Fig. 3.

one-fifth of OX, then AB, the ordinate of the curve at A, repre-

sents the displacement of the point p at an instant one-fifth

of a period after the point passes to the left through the centre

of its path of motion.

A curve drawn in this way is usually called a displacement

curve. It shows how the displacement of a point moving in

simple harmonic motion varies from instant to instant during

a complete period. The form of the curve is characteristic of

the motion, for whatever may be the period or amplitude of the

motion the form of the curve is always the same.

6. Velocity of a Point in Simple Harmonic Motion.

The velocity of a point in simple harmonic motion evidently
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varies from point to point in its path. From Fig. 2 it can be

seen that the point p moves over the unequal distances 01, 12,

23, 34, &c., in successive equal intervals of time. Its velocity,

therefore, changes from point to point in its path, and by

comparing the distances passed over in successive equal intervals

of time, it is evident that it decreases as the point travels away
from the centre of the path, and increases as it travels towards

the centre. At the extreme points of the path, the points 4 and

12 in Fig. 2, the point is for an instant at rest. As it passes

through the centre of its path, in either direction, its velocity is

a maximum.

The variation of the velocity of a point moving in simple

harmonic motion, follows the same law as the variation of the

displacement of the point, and may be represented by a curve

similar to the displacement curve. It must be remembered,

however, that when the displacement of the moving point is a

maximum, its velocity is zero, and when the displacement is

zero, the velocity is a maximum.

7. Simple Harmonic Vibration. When a particle moves

with simple harmonic motion, it is sometimes said to

be in simple harmonic vibration, and each complete

backward and forward movement of the particle is

called a complete vibration. A heavy particle, such as

a shot or small bullet, suspended, as shown at in

Fig. 4, by a fine elastic thread, may be readily set in

simple harmonic vibration. When displaced vertically

A and released, it moves or vibrates up and down along

- the vertical path AB in simple harmonic motion. If

the period of the motion, or the period of vibration, be

p. 4
determined by noting the time of a number of vibra-

tions, and then calculating the time of one from the

data obtained, it will be found that the perio'd is constant as

long as the motion continues.

The amplitude of the motion will be observed to decrease as
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the motion continues, until the particle finally comes to rest, but

the period of the motion remains constant throughout.

The displacement of the particle from the centre of its path

(which, in this case, is the normal position of rest for the

particle) varies also, in the manner described in Art. 5, for

simple harmonic motion. If the particle moved sufficiently

slowly for its position and displacement to be observed at

intervals of one-eighth or one sixteenth of a period, and if the

observed displacements were plotted to give a curve as shown in

Fig. 3, it would be found that the curve would have the form

characteristic of simple harmonic motion.

The motion of the bob of a simple pendulum is a familiar

example of simple harmonic vibration. Thus, if a small bullet

or brass ball be suspended by a fine thread, about a metre long,

and set in vibration as a pendulum, with swings of small amplitude,

it will be found that the motion of the bob approximates very

closely to simple harmonic vibration.

The bob O, as shown in Fig. 5, moves

backwards and forwards along a small arc AB.

If the amplitude of vibration is small, the arc

is very short, and may be considered, without

serious error, as a straight line. The path of

vibration of the bob is, therefore, practically a

straight line.

If the period of vibration is determined by
direct observation, it will be found to be con-

p- 5

stant as long as the pendulum continues to

swing. The amplitude of vibration decreases as the motion

dies away, but the period of the motion is constant throughout.

The displacement of the bob from the centre of its path (the

position of the bob when at rest) varies also in the manner

required for simjiJe harmonic vibration, and the displacement

curve, if drawn from experimental data, would be found to have

the form characteristic of simple harmonic motion.
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From what has been said above, it will be plain that a particle

in simple harmonic vibration fulfils three main conditions.

(1) The path of motion is a straight line.

(2) The period of motion is constant and independent of the

amplitude. This condition is characteristic of every type of

periodic motion, and is not sufficient by itself to specify simple

harmonic motion. It is sometimes referred to as the isochronism

of the motion.

(3) The displacement of the particle varies from instant to

instant, in the manner described in Art. 5, and the displace-

ment curve for the motion of the particle has the form

characteristic of simple harmonic motion.

This last condition is specially characteristic of simple har-

monic vibration. The law of variation of the displacement, or

the form of the displacement curve, is the criterion which serves

to distinguish the different types of periodic motion from each

other. For any type of periodic motion the displacement curve,

if drawn for a number of successive periods, consists of a

succession of exactly similar curve lengths for the successive

periods, but the form of the curve length for a period is

characteristic of the type of motion. Simple harmonic motion

is the simplest type of periodic motion, and the displacement

curve characteristic of it is represented by the simple curve

shown in Fig. 3. This curve is similar in form to the curve

which shows the variation of the sine of an angle with the

magnitude of the angle, and is, therefore, sometimes called the

sine curve.

Experiment 1. Set up a simple pendulum so that its bob moves

in front of a wall or vertical screen. By means of a movable mark
on the wall or screen, take different points in the path of motion of

the bob as the starting point for determining complete vibrations.

Xote that, wherever the starting point be taken, the bob describes

successive complete vibrations in the intervals between its successive

passages, in the same direction, through the starting point. Determine

the time occupied by 5, 10, 15, and 20 complete vibrations, as given
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by three or four different starting points, and calculate from each

observation the average period of vibration of the pendulum. It will

be found that, within the limits of experimental error, the average
value of the period is the same for all the observations taken. This

indicates that the period of vibration is constant.

Experiment 2. Set up a simple pendulum with a heavy bob and

a length of at least 4 metres. Arrange that the bob moves in front of

a plainly marked scale, placed parallel to the path of the bob. The

scale should be divided into inches, and the divisions numbered from

a zero at the centre outwards in both directions. This scale should

be placed so that when the bob is at rest, a fine pointer attached to

the bob is immediately in front of the zero mark on the scale. With
a scale marked and arranged in this way, the position of the bob at

any instant during its vibration can be read off on the scale, and the

displacement of the bob at that instant can therefore be determined.

Now adjust a metronome to give 120 ticks per minute, or a clock to

tick half-seconds. Then, when the pendulum is in steady motion,

read off, on the scale, the position of the bob at each successive tick

of the metronome or clock. From the data thus obtained the dis-

placement curve for the motion of the bob can be plotted. It will

be found that the form of the curve is that characteristic of simple

harmonic motion.

8. Frequency Of Vibration. It has been explained that

in the case of simple harmonic vibration, the period of the

motion is constant. That is, the time occupied by one complete

vibration is constant. It follows from this that a particle in

simple harmonic vibration makes a constant number of complete

vibrations in a second. The number of complete vibrations per

second made by a particle in simple harmonic vibration is

called the frequency of the vibration, or, simply, the vibration

frequency.

The frequency and the period of any simple harmonic vibration

are evidently related, so that one. is the reciprocal of the other.

Thus, if a particle makes n complete vibrations per second that

is, if its frequency is n vibrations per second then the time of

one complete vibration or the period of the motion is evidently

1/Ti second. Similarly, if t seconds be the period of the motion,

then the vibration frequency is l/t vibrations per second.
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Numerical Examples. If the period of vibration of a particle is '05

second (^ second), then the vibration frequency for the particle is

20 vibrations per second.

If the period of vibration is '003 second (^-$-3 second), the vibration

frequency is ^^- or 333 vibrations per second.

If a particle takes 84 seconds to make 50 complete vibrations, the

vibration period is 1 '68 seconds.

9. Vibration Of Extended * Bodies. Under certain con-

ditions an extended body, such as a solid rod or strip, a string or

wire, a metal plate, a membrane, a bell, or a column of gas or

liquid in a pipe, may be set in vibration. Each particle in the

body vibrates in a manner determined by its position in the

body, and by the mode of vibration established
;
and the con-

certed vibration of the system of particles which make up the

body constitutes what is called the vibration of the body.

Thus a thin strip of wood or steel, such as a flat ruler or steel

scale, may be set in vibration by fixing one end in

a vice, as shown in Fig. 6, and plucking the free end

aside. When the free end is pulled aside from its

position of rest to the point A, and then let go, the

strip flies back from the dotted position shown at

A to the dotted position shown at B, and then

vibrates backwards and forwards with gradually

decreasing amplitude between two extreme posi-
? tions corresponding to those shown at A and B

in the figure.

In this case the path of vibration of each particle

is evidently a short arc joining the two extreme positions of the

strip at the point where the particle is placed. The amplitude

of vibration is greatest for the particle at the free end of the

strip, and decreases to zero at the fixed end, but the period of

* The term extended body is used to distinguish it from a particle or

body of negligible small dimensions. An "extended" body is a body
which extends to appreciable dimensions and consists of a very large

number of particles.
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vibration is the same for each particle, and the strip, as a whole,

has a definite constant period of vibration.

A string or wire stretched between two fixed points may be

set in vibration by plucking it aside, or striking it lightly at any

point; a metal plate, when properly mounted, may be set in

vibration by striking it or bowing its edges ;
a stretched mem-

brane vibrates when struck lightly with a suitable hammer
;
a

bell vibrates when struck by the tongue ;
and a column of air in

a pipe may be set in vibration by blowing obliquely across the

open end of the pipe.

In the case of the vibration of extended bodies, the particles

of the body very rarely vibrate in simple harmonic vibration.

The motion is always periodic, but the type of motion is usually

a compound or complex type of periodic motion, and not the

simple harmonic motion described above. In the case of the

vibration of the thin strip dealt with above, however, the motion

of the particles approximates very closely to simple harmonic

motion.

10. Longitudinal and Transverse Vibration. In the

case of extended bodies, such as a rod or string, of which the

dimension usually called the length is obvious and well marked,

it is necessary to distinguish between two possible modes of

vibration, known as longitudinal and transverse vibration. If

the paths of vibration of the particles of the body in vibration

are parallel to the length of the body, the vibration is said to be

longitudinal, but if the paths of vibration are at right angles to

the length of the body, the vibration is transverse.

Thus, if a rod, or strip of wood or metal, is fixed in a vice, as

in Fig. 6, and set in vibration by plucking the free end aside

laterally every particle in the rod vibrates in a path at right

angles to the length of the rod, and the vibration is said to be

transverse vibration. But if the rod is grasped lightly about the

middle with a glove or rubber lightly sprinkled with powdered

rosin, and the hand drawn smartly along the rod towards the
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free end, the rod can be set in longitudinal vibration. When
excited to vibration in this way, every particle in the rod

vibrates in a path parallel to the length of the rod.

The vibration of a stretched string, when plucked aside at any

point in its length, is also an instance of transverse vibration.

Each point on the string vibrates in a path at right angles to its

length. A stretched string or wire may, however, be set in

longitudinal vibration by rubbing it lengthways with a suitable

rubber.
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CHAPTER II.

PRODUCTION OF SOUND.

11. Sound may be Produced by Vibration. It will be

explained later that a body in vibration is not always a source

of sound, and that all sounds are not produced by a body in

vibration. Thus, the bob of a simple pendulum in vibration

is not a source of sound, and the report of a gun is not

produced by a vibrating body as its source.

With certain limitations, however, a vibrating body is a

source of sound, and it will be found that practically all

musical sounds have a body in vibration as their source.

When a tightly stretched violin string is set in transverse

vibration by plucking it or bowing it a sound is heard, and

it can be seen from the blurred appearance of the string that

it is in rapid vibratory motion. As the vibration dies away
the sound becomes fainter and fainter and ultimately ceases.

If the vibration is suddenly stopped by touching the string the

sound at once ceases.

If a glass bell-jar is set in vibration by bowing the rim a

sound is at once produced, and the quivering motion of the

rim which accompanies the vibration of the jar can be clearly

seen. Even when the frequency of the motion is too high

or the amplitude too small for the motion of the rim to be

visible, it can be detected by bringing a pith ball suspended

by a thread near the side of the jar, or by touching it with

the point of a pencil held lightly in the hand. It will always

be found that if a sound is heard the jar is in vibration. Also,

as in the case of the string, as the vibration dies away the
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sound becomes fainter and fainter, and ultimately ceases when

the vibration ceases. If the vibration is suddenly stopped by

touching the jar the sound at once ceases to be heard.

If a tuning fork is struck or bowed so as to set the prongs

in transverse vibration a sound is at once produced, and ceases

only when the vibration dies away or is suddenly stopped. The

vibration of the fork is readily detected by touching the tongue

or teeth with one of the prongs, or by sprinkling sand on the

face of one of the prongs held in a

horizontal position. It can be made

evident to the eye in an interesting

way by attaching a short and fairly stiff

bristle or wire, B, to the end of one

prong of the fork P, as shown in Fig. 7,

and then, when the fork is in vibration,

drawing the end of the bristle lightly

along the smoked surface of a piece of

glass. A. wavy line, such as that shown

in the figure, is traced by the bristle point

on the smooth smoked surface. The best

way of smoking the glass surface is to

hold it in the smoky part of the flame of

a piece of burning camphor. The vibra-

tion of a tuning fork is also conveniently

exhibited to the eye by attaching a small,

light plane mirror with wax to the flat

outer surface of one of the prongs of the

fork. The image of a bright point seen in this mirror is a

point when the fork is at rest, but becomes a short vertical

line when the fork is in vibration. If the fork is moved

quickly sideways when the eye is fixed on this vertical line,

the line assumes the wavy form shown in Fig. 7.

12. Sound Produced^ by the Vibration of a Rod or

Strip. If a short and fairly stiff steel rod be fixed in a vice,

Fig. 7.
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as shown in Fig. 6, and set in transverse vibration by striking

it lightly with a small mallet, a sound similar to that emitted

by a tuning fork is produced. A tuning fork, which consists

essentially of a steel rod bent at the middle into a narrow

U-shaped fork, is an example of the application of the trans-

verse vibration of a rod for the production of sound. A
common form of the instrument is shown in Fig. 8.

Similarly, a thin strip of sheet metal may, if short enough,

be set in transverse vibration so as to produce a sound. The

tongues of the reeds used in some musical instruments, such as

the harmonium, are short rectangular strips or tongues of thin

metal fixed on a metal plate so as to cover, or partly cover,

rectangular openings in the plate. The vibration of these

tongues is not the source of sound in the instrument in which

Fig. 8.

they are used, but they control by their vibratory motion the

passage of an air blast through the rectangular openings in

the plate on which they are fixed, and the rapid succession

of air puffs thus obtained through these openings is the real

source of sound.

A thin strip of metal resting horizontally on two supports,

placed at points about one -third of the length of the strip

from each end, may be set in transverse vibration, and

become a source of sound, by striking it about the middle
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point with a light wooden hammer. In the musical toy called

the harmonicon the sounds are produced in this way.

If a glass rod or tube is clamped in a horizontal position at

the middle point, and excited to longitudinal vibration by

rubbing it lengthways with a pad of cotton wool dipped in

alcohol, it emits a sound of very high pitch produced by the

longitudinal vibration of the rod. The longitudinal vibration

of rods has no application in musical instruments.

13. Sound Produced by the Transverse Vibration of

a String" Or Wire. A suitable string or wire tightly stretched

between two points emits a musical sound when set in transverse

vibration by plucking, bowing, or striking it lightly at any point.

In all stringed instruments of the violin and banjo type the

sounds are produced by the transverse vibration of the strings of

the instrument.

In the piano the sounds are produced by the transverse vibra-

tion of steel wires. The wires are tightly stretched between

wrest-pins on a suitable frame, and they are set in vibration by
the stroke of a light leather-covered hammer actuated by the

keys of the instrument.

14. Sound produced by the Vibration of a Plate or

Membrane. A metal plate, mounted as shown in Fig. 9, may
be set in vibration by striking it lightly at particular points, or

by bowing it across an edge ;
when in vibration it emits a

clear, musical sound. The vibration of the plate is easily made

apparent to the eye by sprinkling sand on it. If the plate, when

at rest, is lightly sprinkled with sand, and then set in vibration,

the sand is at once disturbed by the motion of the plate, and

collects along certain nodal lines in a pattern characteristic of

the mode of vibration of the plate.

The circular metal gongs, in common use as dinner gongs, are

examples of the use of metal plates as a source of sound. They
are usually set in vibration by striking them with a soft, leather-

covered hammer.
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A bell is practically a plate bent into the usual bell form. In

form it bears something the same relation to a plate as a tuning

fork bears to a rod. When struck by the tongue, the bell is set

in vigorous vibration, and produces a well-defined and familiar

sound.

A membrane tightly stretched across a circular frame, as in

the case of a drum or tambourine, may be set in vibration, and

made to act as a source of sound by striking it with a soft

hammer or with the hand.

Fig. 9. Chladni's plate.

15. Sound produced by the Longitudinal Vibration

Of a Column of Air in a Pipe. A column of air in a pipe

may be set in longitudinal vibration in various ways, but most

effectively by directing a stream of air across the open end of

the pipe, or across a specially constructed opening in the side of

the pipe. When the column is thus set in vibration, it at

once becomes a source of sound. The sounds produced by an

ordinary whistle, a flute, an organ pipe, and other similar
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"wind" instruments, are caused by the longitudinal vibration

of the air column in the tube or pipe. In fact, in all wind

instruments, the sounds produced by them are due to the

vibration of the masses of air which fill

the tubes of the instruments.

The vibration of the air column in an

organ pipe can easily be detected. A small

pan, made by stretching a fine membrane

over a light circular frame, is suspended

by three long threads, so that it can be

lowered in a horizontal position into an

open organ pipe. A few grains of dry
sand are placed on the membrane, and

when the pipe is sounding strongly, the

pan is lowered into the pipe. The up-

and-down vibration of the air particles

in the pipe sets the light membrane of

the pan in rapid motion, and the rattle

of the disturbed sand grains on the

rapidly moving membrane can be dis-

tinctly heard. If the organ pipe is

specially made, as shown in Fig. 1 0, with

one side of glass, the motion of the

sand grains on the membrane can be

seen as well as heard.

If the motion of air particles at

different points in the length of the

pipe is studied by means of this simple

apparatus, it will be found that all

the particles in the air column conform to a definite scheme

or system of vibration, which constitutes the vibration of the

column as a whole.

16. Limits of Frequency for the Production of Sound

by Vibration. It has already been stated that a body in

Fig. 10. Organ-pipe
sand pan.
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vibration is not always a source of sound. It will be noticed

that in all the examples, given in the foregoing articles, where

the vibrating body is a source of sound, the frequency of

vibration is comparatively high. On the other hand, it is

noticeable that in all cases where the frequency of vibration

is very low, the vibrating body is not a source of sound
;

thus, a long lath in transverse vibration, with one end fixed

in a vice, is not a source of sound.

These facts suggest that there may be a lower limit of

frequency below which a vibrating body is not a source of

sound. This suggestion may be investigated by studying the

vibration of a thin steel strip, with one end fixed in a vice.

Experiment 3. Take a thin steel strip or rod, about 60 cm.

long, and fix it in a vice so that a length of about 50 cm. is free

to vibrate. It will be noticed that the vibrations are fairly slow,

and that the motion of the rod can be clearly followed by the eye ;

also, no sound is heard. Now fix the rod further into the vice,

so that a length of about 40 cm. is free to vibrate. It will be

noticed that the frequency of vibration, although still low, is higher
than in the first instance, but that no sound is produced.

Repeat this process of shortening the free length of the rod,

until a decisive result is obtained. It will be found that, as the

free length of the rod is reduced, the frequency of vibration

increases, until, ultimately, a sound of very low pitch is produced.
If the experiment is continued beyond this point, it will be found

that the vibrating rod continues to be a source of sound, the only
difference being that the pitch of the sound heard rises as the

vibration frequency of the rod increases.

This experiment indicates that when the vibration frequency

is below a certain limit, a vibrating body is not a source of

sound. Careful experiments with different vibrating bodies

confirm this result, and show that when the vibration

frequency is below about 30 per second, the vibrating body
is not a source of sound.

When the vibration frequency is above 30 per second, a

sound is produced which rises in pitch as the frequency
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increases. If, however, the frequency becomes higher than a

variable, but very high, limit no sound is heard by the

human ear. This upper limit for the audibility of sound lies

generally, for man, between 30,000 and 40,000 vibrations per

second
;

it varies considerably for different persons, and is pro-

bably much higher for dogs, cats, and other animals than for men.

The upper limit of audibility cannot readily be determined

experimentally by any very simple direct method. It can,

however, be readily found by means of a specially constructed

Fig. 11. Savart's wheel.

whistle of very small dimensions. By shortening the length

of the air column in the whistle, the pitch of the sound

produced can be raised until it reaches the limit of audibility

in any particular case. The vibration frequency of the air

column in the whistle can then be determined indirectly

by measuring the length of the column.

These limitations of audibility are obviously physiological

limitations determined by the structure of the ear.

17. Savart's Wheel. Savart's wheel is a toothed wheel

mounted, as shown in Fig. 11, so that it can be set in rapid

rotation. If the wheel is set in rapid rotation, and a card is-
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held so that the teeth of the moving wheel strike lightly on

the edge of the card, a sound is produced by the regular

motion of the card.

The card cannot be said to be, in the proper sense of the

term, a vibrating body, but it is kept in rapid periodic motion

by the action of the teeth of the wheel, and if the frequency

of its motion is greater than 30 vibrations per second it acts

as a source of sound.

Savart used this wheel as a means of determining the vibra-

tion frequency of the card as a source of sound.

It is evident that if the number of teeth in the wheel is

known, and the rate of revolution of the wheel observed for

any particular sound, the vibration frequency of the card can

be at once determined. Thus, if a wheel with n teeth makes

N revolutions per second the vibration frequency of the card

must be given by Sit.

Numerical Example. If a Savart wheel having 20 teeth makes

15 revolutions per second the vibration frequency of the card is

evidently (20 x 15) or 300 per second.

By means of this wheel Savart determined the lower and upper
limits of frequency for the production of sound by the vibration (or

periodic motion) of the source.

18. Seebeck's Siren. Sound can also be produced by the

periodic interruption of a jet of air so that the jet is broken up
into a regular succession of puffs at equal intervals of time.

This periodic interruption of a steady air jet may be con-

veniently effected by the following simple piece of apparatus

invented by Seebeck, and known as Seebeck's siren, or some-

times as the cardboard siren. A circular disc of cardboard or

metal has one or more rings of equidistant holes pierced round

its edge, as shown in Fig. 1 2, and is mounted so that it can,

like Savart's wheel, be set in rapid rotation. A jet of air from

a fine nozzle is directed on the disc so that the jet strikes a

ring of holes as the disc rotates.
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By this arrangement it is obvious that, during the rotation

of the disc, the jet is broken up into a series of puffs. Every
time a hole in the disc comes opposite the nozzle of the jet, a

puff of air through the hole occurs, and if the disc rotates

rapidly at uniform speed, a rapid succession of regularly timed

puffs is thus produced.

Fig. 12. Cardboard siren.

It is found that, provided the number of puffs per second is

more than thirty, a characteristic sound is produced in this way.

The source of sound, in this case, is the intermittent jet of air
;

it cannot be said to be in vibration in the strict meaning of the

word, but it has a definite periodic motion impressed on it by
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the action of the siren disc, and so is capable of becoming a

source of sound.

It will be seen that the frequency of the source can be deter-

mined in this case in exactly the same way as for Savart's

wheel. Thus, if the number of holes in the siren disc is n,

and the disc makes N revolutions per second, the jet of air

is interrupted Nrc times per second, and becomes a source of

sound of which Nw is the frequency.

19. Production of Non-musical Sounds OP Noises.

It is found that in all cases, such as those already considered

in this chapter, where sound is produced by the vibration or

periodic motion of the source, the sound is of the character com-

monly called musical. Many sounds of a non-musical character

are, however, of common occurrence; in fact, most of the common

sounds heard in daily life are of this character. All sounds of a

non-musical nature are conveniently included under the term

noise.

A consideration of the origin of noises of various kinds

suggests that they are produced by rapid and irregular or

non-periodic motion at the source. When a plank is struck

by a hammer a loud noise is produced ;
the particles of the

plank can be felt to be in motion, possibly in vibratory motion,

but the vibratory disturbance produced in the plank is of no

regular systematic character, such as would obtain if the plank

were set in vibration as a whole. The blow apparently pro-

duces merely an irregular disorganised disturbance of a vibratory

character, distributed in a partial or irregular manner throughout

the particles of the plank, and this irregular disturbance is the

source of the noise produced.

The sound of an explosion is another case in point. When
a amall quantity of gunpowder is exploded a small quantity of a

solid substance occupying a small volume is suddenly converted

into gases occupying a very large volume. This sudden expansion

is the origin of sound produced by the explosion of the powder.
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Similarly, when an explosive mixture of gases, such as a mixture

of oxygen and hydrogen or a mixture of gas and air, explodes, a

mixture occupying a considerable volume is suddenly converted

into a gaseous product occupying, at the instant of explosion, a

very different volume to that of the initial mixture. This sudden

change of volume is the origin of the sound produced by the

explosion. In most cases of this kind the first effect during

the explosion is probably a sudden expansion, due to the heat

developed by the explosive combustion, followed by a sudden

contraction, due to the condensation of the water vapour and

the rapid cooling of the gaseous products of explosion.

Thunder is another case of a noise produced by sudden

expansion followed by sudden contraction at the source of the

sound. The air along the path of the lightning flash is

intensely heated by the flash, and the very sudden expansion

thus produced, followed by the contraction due to rapid cooling,

is the origin of the thunder which always follows a lightning

flash.

Non-musical sounds or noises may thus be said to be produced

by irregular non-periodic motion or disturbance at the source of

the sound. As in the case of musical sounds, however, the

originating motion or disturbance must be of a sufficiently rapid

or sudden character.



CHAPTER III.

WAVE MOTION.

20. Meaning- of the Term Phase as applied to Vibra-

tion. A particle in vibration describes each complete vibration

in a definite constant time called the period of the vibration.

During a complete vibration that is, during the interval of time

measured by the period the particle passes through all the stages

of the motion which constitutes a complete vibration. Any

particular stage in a complete vibration is usually called the

phase of the motion.

The phase of a particle in vibration may be specified at any
instant by stating exactly its position and direction of motion in the

path of vibration at that instant. It is, however, more usual and

more convenient to specify the phase at any instant by stating

the interval of time, expressed as a fraction of a period, between

the instant of passing through the centre of its path (or any other

specified starting point) and the instant considered. Thus, the

phase of a particle in vibration may be specified as that reached

by the particle in one-eighth, or one-tenth, or one-sixteenth, or in

any other fraction of a period, after the instant of passing through

the centre of its path of motion. Similarly, two particles in

vibration with the same period may differ in phase by any

fraction of a period. Thus, if at the instant one particle is

passing through the centre of its path, the other particle, moving
in a parallel path, is also passing through the centre of its path,

but in the opposite direction, the difference of phase for the two

particles is evidently half a period. That is, we may say that

one particle is half a period in advance of the other, or that one

particle is half a period behind the other in phase.
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21. Medium. The medium at any point is the substance in

which the point is taken, and through which any disturbance

originating in the substance at the point can be propagated. If

the outer boundary of the medium is at a sufficiently great

distance from the point considered, the propagation of any
disturbance from the point will depend only on the physical

properties of the medium, and will be free from all boundary
conditions ; when this is the case, the medium at the point is

said to be a free medium.

Thus, the material medium surrounding objects at the surface

of the earth is, in general, air
;
the material medium at a point in

the sea is sea-water
;
the material medium at a point in a block

of iron is iron
;
and the medium at a point in space, where no

material substance exists, is the ether, which pervades all space

and all matter. In the study of sound we have to do only with

material media.

The physical properties of matter on which the propagation of

any disturbance through a material medium depends are the

elasticity and density of the medium.

Elasticity is that property of matter which enables any portion

of it, while undergoing change of volume or change of shape, to

resist that change, and by virtue of which it is- able, within

certain limits, to recover its original volume or shape when the

force causing the change is removed.

The density of a substance is the mass per unit volume of the

substance. Thus, the density of water at 4 C. is almost

exactly 1 grm. per cub. cm., or about 62'5 Ibs. per cub. ft.,

and the density of air at C. is 1*293 grms. per litre, or

1*291 ozs. per cub. ft.

When the properties of a medium are the same in all direc-

tions at any point in it, the medium is said to be an isotropic

medium.

22. Wave Motion. When a body or a particle surrounded

by any medium is in vibration it communicates its vibratory
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motion to the layer of medium adjacent to it. This layer in

turn, by virtue of the elasticity of the medium, communicates the

motion to the next adjacent layer, and so on, from layer to layer.

In this way the vibratory motion of the source in vibration

travels outwards from the source into the medium. This trans-

mission of vibratory motion from layer to layer through the

medium constitutes what is called wave motion in the medium.

A body in vibration in a medium thus becomes the source or

origin of wave motion travelling out in all directions from the

source into the medium. If the medium is uniform and has the

same properties in all directions at any point, the speed of trans-

mission of vibratory motion along any line from the source that

is, the velocity of the wave motion along any line of transmission

must be uniform and the same in all directions.

Thus, if O (Fig. 13) be a centre of vibratory disturbance in

A Z Y X

Fig. 13.

any isotropic medium, the disturbance is transmitted outwards

from into the medium with the same uniform velocity in all

directions. The particles of the medium along any line of trans-

mission, such as OA, or OB, or 00, all vibrate in exactly the

same way as the source, and with the same period. It will be

seen, however, that although the vibratory motion of the source

is thus transmitted from particle to particle along any line of

transmission, and the particles are therefore all vibrating with

the same period and along similar and similarly placed paths, the

particles along any line cannot all be in the same phase. The



28 SOUND.

process of transmission of the vibratory motion from particle to

particle occupies time, and the phase for each particle must

therefore be later and later as the distance from the source at

increases. This retardation of phase is due to the time taken by
the wave motion in travelling from point to point along the line,

and the difference of phase between any two particles on the line

is, therefore, measured by the time taken by the motion in

travelling from one particle to the other.

It follows from this that the difference in phase for two

particles separated by the distance which the wave motion

traverses in the time of one complete vibration of the source

must be a complete period. Thus, if OX, XY, YZ, . . .

represent the equal distances traversed by the wave motion from

the source at 0, along the line OA, during the first, second,

third, and successive complete vibrations of the source, then the

particle at X is a complete period later in phase than the source

at 0, the particle at Y is a period later than that at X, the

particle at Z is a period later than that at Y, and so on. Since

the particles at X, Y, Z, . . . differ in phase by a complete

period they may be said to be in the same phase. Similarly,

particles in corresponding positions on OX, XY, YZ,

differ in phase by a complete period, and may also be said to be

in the same phase.

It will be understood from what has been said above, that if

equal lengths, such as OX, XY, YZ, . . . equal to the distance

traversed by the wave motion in one complete period be taken in

order from any starting point along any line of transmission in

the medium, the motion of the particles in every length will be

exactly the same, and the motion in any one length may, therefore,

be taken as completely representative of the wave' motion in the

medium.

23. Wave Length. In a uniform medium, in which the

velocity of wave motion is the same in all directions from the

source of motion, the wave disturbance along any line of trans-
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mission travels over a definite constant distance during the time

of one complete vibration of the source. This distance is called

the wave length of the motion. As explained in the preceding

article, this distance is also the distance between two particles

which differ in phase by one complete period, and may, there-

fore, be said to be the shortest distance between two particles

in the same phase. The wave length for wave motion in any

given medium may, therefore, be defined as the distance

travelled over by the wave motion, along any line of trans-

mission in the medium, during the time of one complete

vibration of the source of the motion
;

or it may be defined

as the shortest distance between two particles in the same

phase. In Fig. 13 the distances OX, XY, YZ, . . . represent

wave lengths along the line of transmission OA.

-2 \ . Relation between the Wave Length and Velocity
of the Wave Motion in any Medium. If the wave length

for wave motion in any medinm be defined as the distance

traversed by the wave motion during the time of one complete

vibration of the source, then the distance traversed by the wave

motion in one second that is, the velocity of the motion in the

medium is obviously given by the product of the frequency of

the source into the wave length.

Thus, if X denote the wave length and n the frequency of the

source, then X being the distance traversed by the motion in

the time of one vibration, n\ is the distance traversed in the

time of n vibrations that is, in one second. But the distance

traversed in one second by the motion is the velocity of the

motion in the medium. Hence, if this velocity is denoted by
V we at once get the relation V = n\, which expresses con-

cisely the relation between the velocity V, the frequency n, and

the wave length X. It is important to remember that the

quantities V and X must refer to the same medium. The

same source, or sources of the same frequency, may set up
wave motion in different media, and the values of V and X
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will be different for the different media, but for any given

medium the relation V = n\ always holds.

Numerical Examples. If a source of frequency 400 per second sets

up wave motion in air of which the wave length is 3 feet, then the

velocity of the wave motion in air is (400 x 3) feet per second, or

1,200 feet per second.

If a source of frequency 120 per second sets up wave motion in a

medium for which the velocity of the motion is 1,200 feet per second,

the wave length in the medium is
( ~|^~-J feet, or 10 feet.

If a source of frequency 120 per second sets up wave motion in a

medium for which the velocity of the motion is 8,400 feet per second,

(Q

A(\(\\
'

j
feet, or

/u reet.

If wave motion in a given medium is found to have a wave length
of 20 cm. and the velocity of the motion is known to be 33,000 cm.

per second, the frequency of the source of the motion is (
^- J

,

or 1,650 vibrations per second.

25. Longitudinal and Transverse Wave Motion. As

already explained, wave motion in any medium involves the

transmission of vibratory motion from layer to layer, or from

particle to particle along any line of transmission. If the

vibratory motion thus transmitted is of such a character that

Fig. 14.
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Fig. In.

the paths of vibration of the particles are in and along the

line of transmission, the wave motion is called longitudinal

wave motion. If, however, the paths of vibration of the

particles are at right angles to the line of transmission, then

the wave motion is transverse wave motion. Thus, if the

line of dots in Figs. 14 and 15 represent a few of the
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particles along a line of transmission OA the wave motion is

longitudinal if the paths of vibration, shown by the dotted

line through the particles, are along the line OA, as in Fig. 14,

and transverse if the paths are at right angles to the line OA,

as in Fig. 15.

26. Longitudinal Wave Motion. The propagation of

longitudinal wave motion in any medium evidently results

from the elastic resistance which the medium offers to com-

pression or rarefaction. When the vibratory motion of the

source first reaches any layer in the medium the layer is

displaced outwards or inwards in the direction of transmission.

If it is displaced outwards towards the next layer the portion

of the medium made up of the two layers is compressed. The

medium, however, by virtue of its elasticity, resists this compres-

A C

B D
Fig. 16.

sion and tends to recover its normal state by displacing the next

layer outwards. Similarly, if the layer is displaced inwards away
from the next layer the portion of the medium made up of the

two layers is rarefied, and tends to recover from its state of

rarefaction by drawing the next layer inwards.

The propagation of longitudinal wave motion in a medium

thus depends upon the elasticity which enables the medium to

resist compression and rarefaction.

The velocity of propagation, however, depends not only upon
this elasticity, but also upon the density of the medium. The

greater the elasticity the greater the forces causing the dis-

placement of the layers of the medium, but the greater the

density the greater the mass of these layers. Hence it follows

that the greater the elasticity and the smaller the density the

greater is the velocity of propagation.
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It follows from what has been said that the propagation of

longitudinal wave motion in a medium must involve the develop-

ment and transmission of successive states of condensation and

rarefaction in the medium. Let AB and CD, in Fig. 1 6, represent

small portions of two layers of the medium taken, a short distance

apart, on a line of transmission of the wave motion from one

layer to the next. If the layers AB and CD are equally displaced

from their normal positions in the same direction along the line

of transmission OX, the portion of the medium between the

layers is neither compressed nor rarefied. If, however, the

layers are unequally displaced so as to be brought nearer together

or drawn further apart, the medium between them must be

either compressed or rarefied. Now, during the propagation

of longitudinal wave motion along OX each layer is in regular

vibration along OX, between positions such as those shown by the

dotted lines in the figure. Each layer is, therefore, subject to

displacement along OX from its normal position, and as the

layer CD is always later in phase than AB by the time

necessary for the disturbance to travel from AB to CD, the

displacements of the layers at any instant must, in general,

be unequal.

It follows from this that the medium between the two layers

must be, during the propagation of the motion, in a varying

state of compression and rarefaction. Suppose the distance

between the layers to be such that the difference of phase

between the layers is one -eighth of a period, and then con-

sider, as exhibited in Fig. 17, the relative position of the

layers at intervals of one -sixteenth of a period during a

complete vibration. It will be found that during a complete

vibration the medium between the layers passes through a

complete cycle of alternating states of compression and rare-

faction. Each state, existing during half a period, gradually

iucreases from the normal to a maximum and then decreases

to the normal state, to be- at once followed by a similar varia-
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tion in the opposite state. Or it may be said that, during a

complete vibration, the density of the medium between the

layers changes, regularly and gradually, between a maximum
and minimum limit. When the density is greater than its
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normal value the medium is subject to compression, and when

the density is less than its normal value the medium is subject

to rarefaction.

In Fig. 1 7 the paths of vibration of the layers are indicated

at the top of the figure. They are shown disproportionately
3
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long and arranged to overlap, so as to make the states of

compression and rarefaction more apparent to the eye. The com-

plete vibration shown, at intervals of one-sixteenth of a period, in

the figure, begins at an instant when the particles are equally

displaced although they differ in phase by one-eighth of a period.

The medium between the layers is, therefore, in its normal state

at the beginning and at the end of the vibration. During the

complete vibration, however, it is shown to pass through

a complete cycle of states of compression and rarefaction.

During the first quarter of the period (1 to 5) it is in a

state of gradually increasing rarefaction, during the second

quarter (5 to 9) the state of rarefaction gradually decreases

to the normal state, during the third quarter (9 to 13) a

state of gradually increasing compression is developed, and

during the last quarter (14 to 17) the state of compression

gradually decreases to the normal state. The two vertical

dotted lines in the figure mark the normal positions of the

layers, and their distance apart on any line indicates the

normal distance between the layers in the normal state of

the medium.

The states of compression and rarefaction which are developed

in this way between any two layers must evidently be transmitted

from layer to layer. Along any line of transmission, outwards

from the source, successive layers are later and later in phase.

As a result of this, it must follow that the state of the medium

between any two layers at a given instant appears a moment

later between the next two layers on the line, and a moment

later still, between the next two layers, and so on. In this way
the successive states of compression and rarefaction which are

developed during a complete vibration between any two adjacent

layers "travel" on, one after the other, along the line of trans-

mission with the velocity of the wave motion.

Fig. 18 shows at intervals of one-sixteenth of a period, the

variation in the state of the medium during a complete period
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over a wave length along a line of transmission. Along each

line in the figure, layers one-sixteenth of a wave length apart,

and differing, therefore, in phase by one-sixteenth of a period are

shown. The first line shows the state of the medium, for a wave

length, at the beginning of the period. The lines 2 to 1 7 show

the successive states for the same leave lenqth at successive instants
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taken at intervals of one-sixteenth of a period up to the end of

the period. In this figure the vibratory motion of any particular

layer, the retardation of phase along the line of transmission,

the transmission, from layer to layer, of the successive displace-

ments which constitute vibratory motion, the cycle of states of

compression and rarefaction developed between any two layers,
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and the transmission of these states from layer to layer may all

be traced and studied.

If longitudinal wave motion is originated in a medium by the

vibration of a particle or small source at any point in it, the dis-

turbance spreads out from the source with the same velocity in

all directions, and must, therefore, extend into the medium as a

spherical wave having the source as its centre. At any instant

the disturbance reaches, simultaneously, all points on the surface

of a sphere round the source as centre, and it travels outwards as

Fig. 19.

time goes on by advancing from one spherical shell or layer to

the next. In a spherical wave the line of transmission from the

source through any point in the surrounding medium is obviously

the radius through that point. Even when the source of the

motion is a vibrating body of not very small dimensions, the

front of the advancing wave at a distance from the source, large

compared with the dimensions of the body, is practically spherical.

Fig. 19 shows the state of the medium in a spherical wave of

longitudinal wave motion, for an instant, at the end of the third

complete vibration of the source.
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It is important to remember that the passage of longitudinal

wave motion through any medium, does not involve any actual

permanent displacement of any portion of the medium. The

particles of the medium at any point are set in vibration about

their normal positions, and the medium at the point is subject

to alternating states of compression and rarefaction, but no

portion of the medium is permanently displaced from its

normal position.

Experiment 4. Set up a long, wide, glass tube in a horizontal

position, and place a lighted candle so that the flame is directly

opposite one end of the tube. Fill the tube with smoke, and let

it stand until the ends of the tube are fairly clear, and only the

middle section is filled with smoke. Now strike two pieces of

wood together some distance from the free end of the tube. Notice

that the longitudinal wave disturbance propagated through the tube

affects the candle flame vigorously, and may even blow it out, but

the smoke-laden air in the tube is not appreciably disturbed or

displaced. This effect is very different to that which could be

produced by blowing through the tube.

A source of sound in periodic motion gives rise to longitudinal

wave motion in the surrounding medium, and, in a limited sense,

sound may be said to be longitudinal wave motion in material

media.

27. Crova's Disc. The propagation of longitudinal wave

motion may be. illustrated very clearly by means of an interesting

device known as Crova's Disc. This disc, as shown in Fig. 20,

may be constructed as follows : In the centre of a large sheet of

cardboard, or drawing paper, describe a small circle about 5 mm.

in radius. Take 8, 10, 12, or more equidistant points on the

circumference of the circle, and with these points, taken in order

round the circle for several revolutions, as centres, describe a

series of circles with radii beginning at about 10 cm. and

increasing, for each circle, by an amount not less than the

distance between the equidistant points on the small central

circle. Cut out the disc marked by the outermost of these
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circles, and mount it so that it can be rotated steadily round an

axis passing through the centre of the small circle.

Then take a card about 10 cm. long by 5 cm. wide, and cut

a narrow rectangular slit about 8 cm. long in it. Set up this

card in front of the disc, as close to the face of the disc as

possible, and in such a position that the length of the slit, as

shown at CD in Fig. 20. crosses the circles on the disc along a

Fig. 20.

radius through the axis of rotation. A radial row of short

parallel arcs can now be seen through the slit, and it will be

found on rotating the disc at a uniform rate, that the motion of

these arcs is such as to illustrate very effectively the propagation

of longitudinal wave motion along the row.

It will be seen that, as the disc rotates, the centres of the large

circles drawn on it move in a small circle round the axis of
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rotation. Since the radius of the central circle is comparatively

small, the general result of the rotation on the motion of any arc

seen through the slit is, therefore, practically the same as if the

centre of the corresponding circle moved backwards and forwards,

in simple harmonic motion, along the diameter of the small circle

which lies in a line with the length of the slit. That is, each

arc moves backwards and forwards in simple harmonic motion

along a path parallel to the length of the slit
;
the amplitude of

the motion is equal to the radius of the small central circle, and

the period is equal to the time of a complete revolution of the

disc.

Further, it will be seen that the arcs are not all in the same

phase, but that there is a constant difference of phase from arc

to arc along the row. For, since the centres of the arcs are taken

in order round the small central circle, it follows that, as the disc

rotates, the centres of successive arcs follow each other through

any given position, at a constant interval of time, determined by
the number of points on the circle; the arcs must, therefore, be

subject to a corresponding retardation of phase from arc to arc.

If n denote the number of points on the small circle, this

retardation of phase is evidently 1/wth of the period of the

motion of the arcs, and if the disc be rotated so that the centres

of the arcs follow each other through any given position in the

order in which they were drawn (from the centre outwards), the

retardation will also be outwards from arc to arc along the row.

The motion communicated to the arcs by the uniform rotation

of the disc is thus a fairly exact imitation of the motion which

would attend the propagation of longitudinal wave motion from

arc to arc along the row. The harmonic motion of each arc, the

uniform retardation of phase from arc to arc, and the formation

and propagation of successive states of condensation and rare-

faction along the row, can all be seen and followed by studying

the motion of the arcs through the slit.

The velocity of propagation of the wave motion may also be
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determined from the fact that it travels from arc to arc in a time

equal to I /nth the period of the motion of the arcs.

Experiment 5. Set up a Crova's disc, with the observation slit in

front of it. Turn the disc slowly, and note carefully the following

points characteristic of longitudinal wave motion :

1. Every arc moves backwards and forwards in the same way, in

approximately simple harmonic motion, with a period equal to the

time of revolution of the disc.

2. There is a difference of phase, from arc to arc, of I/nth of a

period, where n is the number of equal parts into which the small

central circle is divided. It will be noticed that, in one direction,

the phase gets later and later from arc to arc. This direction is

determined by the direction of rotation of the disc, and can be

reversed by reversing the direction of rotation.

3. The direction of propagation is the direction of retardation of

phase.
4. The distance between any two adjacent arcs decreases and

increases in a systematic way, and passes through the same com-

plete cycle of change during every complete vibration of either arc.

This is illustrative of the periodic cycle of states of compression and

rarefaction, which are produced during longitudinal wave motion

between adjacent layers in the medium.

5. The cycle of states of "
compression" and "rarefaction," which

occur between any two arcs, is later and later in "phase" as we

pass along from arc to arc in the direction of propagation. As a

result of this, each successive stage of compression or rarefaction

appears to travel on from arc to arc in the direction of propagation.

6. The velocity of propagation of the "wave motion "
along the line

of arcs, is approximately given by Nnd, where N denotes the number

of revolutions made, per second, by the disc ; n, the number of equi-

distant points on the small circle ; and d, the common difference

between the radii of the large circles on the disc. The wave length
of the motion is nd.

28. The Wave Spiral. The propagation of longitudinal

wave motion may also be effectively illustrated by means of a

long spiral of wire, suspended by threads so as to hang freely in

a horizontal position. The spiral may be made by winding

fairly thick brass wire (No. 18 S W.G.) on a suitable rod into a

long spiral, 6 or 8 feet long and 3 or 4 inches in diameter. The
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turns of the wire should not be too close together ;
in a spiral of

the dimensions given they should be about half an inch apart.

It is best mounted for use by suspending it from two fixed

parallel rods, by threads looped through every fourth or fifth

turn, as shown in Fig. 21.

A spiral of this kind is best adapted to illustrate the forma-

tion and propagation of the states of compression and rare-

faction which attend the propagation of longitudinal wave

motion through a medium. If one end of the spiral is suddenly

forced inwards a compression of the turns is started at that end,

and can be seen to travel along the spiral to the other end.

Similarly, if the end of the spiral is suddenly pulled outwards a

Fig. 21.

*

rarefaction
"

is started which can also be seen to travel along

the spiral.

It should be noticed that the pulse of compression or rare-

faction which is thus made to travel along the spiral extends

over a definite length of the spiral, and varies in degree from

point to point on the pulse. The degree of compression or

rarefaction is zero at the front of the pulse, it increases gradually

to a maximum value at the middle of the pulse, and it then

decreases gradually to zero at the rear of the pulse.

If one end of a very long spiral were set in periodic in

and out motion, alternate pulses of compression and rarefac-

tion illustrative of wave motion would be seen to form and

travel along the spiral from the disturbed end. This train

of pulses would quickly be complicated by reflection from the

other end of the spiral, but, as first seen, each pulse would

extend over half a wave length, and a complete wave length
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taken anywhere along the spiral between any two points in

the same phase, would, in all cases, include all the elements of

two complete pulses, one of compression and one of rarefaction.

29. Transverse Wave Motion. In the propagation of

transverse wave motion, when the vibratory motion of the

source first reaches any small portion of a layer such as AB,

Fig. 22, it is not displaced towards or away from the adjoining

layer CD, but laterally, at right angles to the direction of

propagation, as shown in Fig. 23.

The position of the medium between the layers is obviously

not compressed or rarified by this displacement. It is, however,

strained or deformed in the manner indicated in a general way

by the shading in the figures. Of material media only solids

resist this form of strain which is usually called a shear
;
a fluid

medium offers no elastic resistance to a shearing strain of this

kind. It follows, therefore, that transverse wave motion may be

propagated in a solid medium, but not in a liquid or gaseous

medium.

Transverse wave motion in solid material media is of no

special interest, and has not been studied experimentally.

Transverse wave motion in the ether, the medium "which is

supposed to fill all space and all matter is, however, of the

greatest interest. Every body, by virtue of the vibratory motion

of its molecules, is a source of transverse wave motion in the

ether. This transverse wave motion is called the radiation

from the body.
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As an illustration of the general character of wave motion,

the propagation of transverse wave motion along a line of

particles is of interest.

Let the dots along the line OX, Fig. 24, represent a few

equidistant particles along the line of propagation, and imagine

the vibratory motion of the particles to begin at 0.

Let it be supposed that the particle at vibrates up and

down along the line AB taken at right angles to OX, and that

this vibratory motion is transmitted from particle to particle

along the line OX, with a retardation of phase determined by
the time the wave motion takes to travel from particle to

particle.

During the time that the particle at describes a complete

Fig. 24.

vibration over the path OBAO, the disturbance will have

travelled a wave length out along OX, and will have reached a

particle at some point S on this line. If this particle is the nth

particle from 0, the retardation of phase along the row of

particles will be I /nth of a period, and at the end of the first

complete vibration of the particle at 0, the particles between O
and S will occupy the positions shown in the figure and

will be moving, each in its own path of vibration, in the

directions indicated by the arrows. The positions of the

particles along the wave length OS lie on the curve OPQRS,
which is evidently the same as the displacement curve for the

motion of the particle at O. As the motion continues the

positions of the particles along the line of propagation will

change, but the retardation of phase from particle to particle will
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remain constant, and the particles will, therefore, always lie on

some portion of a curve which is made up of repetitions of the

wave length section represented by OPQRS. Thus, at the

instant the particle at has completed one and a quarter

complete vibrations, the disturbance will have travelled from a

distance of one and a quarter wave lengths along OX to a

particle at G, and the particles will lie on the dotted curve

BCDEFG shown in the figure.

A string or cord may be considered as a continuous row of

connected particles, and a wave of transverse displacement may
be transmitted along a stretched string. If, for example, a

rope is stretched fairly tightly in a horizontal position between

two posts and is plucked aside at a point near one end, a half

wave or pulse, curved in form like either half of the curve

OPQRS, may be seen travelling up to the other end where it is

reflected with lateral reversal of its displacements. The force

involved in the propagation of transverse pulses along a stretched

string is the tension of the string.

Experiment 6. Attach one end of a long piece of stout rubber

tubing to the ceiling or to a beam overhead, and hold the lower end

in one hand so that the tube is in a nearly vertical position Now
strike the tube transversely with the other hand. A transverse half

wave or pulse is produced at the point struck, and travels up the tube

to the top end where it is reflected with lateral reversal of its

displacements, and then returns so reversed.

30. Ripples and Surface Waves. The ripples and waves

on the surface of a liquid are also familiar examples of trans-

verse wave motion. These waves are propagated, not as

transverse wave motion in the liquid as a medium, but as waves

of transverse displacement along the surface of the liquid ;
and

the forces involved in their propagation are not determined by

the elasticity of the liquid, but by the surface tension and weight

of the liquid.

If the surface of a liquid is disturbed at any point the general
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result is to originate up and down periodic motion of the

particles of the surface at this point. The disturbance is,

therefore, propagated from particle to particle along the

horizontal surface of the liquid as transverse wave motion,

and the particles along any line of propagation will, therefore,

take up positions on a curve similar to that shown at OPQRS
in Fig. 24. As a result of this the surface assumes the familiar

trough and crest formation characteristic of waves and ripples

on a liquid surface. The crest of a wave is evidently the

locus of the particles in the wave at the highest points of their

paths, and the trough is similarly, the locus of the particles

at the lowest points of their paths. It follows that the

horizontal distance from crest to trough in any wave is half

the wave length, and the horizontal distance from crest to crest,

or from trough to trough, for adjacent waves is a complete wave

length.

To an observer looking at the propagation of surface waves on

a liquid, each individual wave appears to be moving on bodily in

the direction of transmission. This illusion is characteristic of

wave motion. Each particle simply moves up and down in a

fixed path, but the position occupied by any particle at a

particular instant is occupied a moment later by the next

particle on the line of transmission. For example, the crest of

a wave which, at any instant, is formed by a line of particles at

their highest points, will a moment later be formed by a line of

particles a little further on in the direction of propagation. In

this way the sequence of positions which determine the form of

any wave, as seen at a particular instant, travels on in the

direction of propagation, and so gives rise to the illusion that

the mass of water outlined by the travelling form is moving on

bodily.

Experiment 7. Fix a small cone of wax or cork to the prong of a

large tuning fork by attaching its base to the flat outer surface of

the prong near the free end. Set the fork in vibration and hold it,
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so that while vibrating, the apex of the attached cone dips below the

surface of mercury or water at rest in a large shallow vessel. Note
the ripples produced by the vibratory motion of the cone as source.

Experiment 8. Drop a stone into water with its surface at rest.

Note the ripples produced by the vibratory disturbance caused by
the passage of the stone through the surface of the liquid.

The same effect is produced in a more effective way by letting
small drops of mercury fall at intervals on the surface of mercury at

rest in a large shallow vessel.

Experiment 9. Fill a long rectangular trough, such as that shown

in Fig. 2o, with water. Surface waves larger than ripples, and

dependent upon the weight of the liquid more than upon the surface

tension of the liquid for their propagation, may be produced by

Fig. 25.

periodically raising and lowering a block of wood at one end of this

trough.

Sprinkle a few pieces of cork on the surface of the water and note

they are not carried backwards or forwards by the wave motion, but

that each piece simply oscillates up and down in a fixed path. The

path of vibration for a particle at any depth in the layer of liquid

disturbed by the wave motion may be studied by means of small balls

of bees wax, mixed with sand or iron dust until the balls are of the

same average density as water, these balls are in equilibrium at any

depth in the liquid, and may, therefore, be placed so as to indicate the

path of motion at any point in the liquid. It will be found by

studying the motion of the pieces of cork at the surface, and of wax

balls at various depths that the paths of motion of the disturbed

particles of water are, in general, as shown in the figure, closed curves

in a vertical plane containing the direction of propagation.

31. Simple Harmonic Wave Motion. If the source of

wave motion in a medium is in simple harmonic vibration, the

wave motion is called simple harmonic wave motion.

A source of wave motion must necessarily be in periodic
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motion, and just as simple harmonic motion is the simplest form

of periodic motion, so simple harmonic wave motion is the

simplest form of wave motion.

32. Non-periodic Disturbances. A source of rapid ir-

regular motion, not of a periodic character, cannot give rise to

wave motion properly so called. It can, however, give rise to an

irregular disturbance similar in character to wave motion. This

disturbance in a fluid medium would be of the "
longitudinal

"

type, and would consist of a sequence of
"
longitudinal

"
dis-

placements, varying in an irregular and, it may be, very abrupt

manner, accompanied by a corresponding sequence of irregularly

varying states of compression and rarefaction, and it would travel

into the medium from the centre of the disturbance with the

velocity of regular longitudinal wave motion.

If the motion of the source is of short duration, then the

"wave" disturbance is of correspondingly short length, but if

the motion of the source is continuous, then the irregular wave

spreads out continuously from the source as long as the motion

lasts.

33. Intensity Of Wave Motion. A source of wave motion

in a medium communicates energy to the medium. If the

amplitude of vibration of the source is constant, the same

quantity of energy is communicated to the medium during each

complete vibration of the source, so that the quantity of energy

communicated to the medium by the source in one second is con-

stant. This energy travels out from the source into the medium,

as energy of wave motion, and as it travels out the area, across

which it is transmitted from layer to layer, increases as distance

from the source increases. The quantity of energy which is

transmitted per second across unit area, from any one layer to

the next, must, therefore, decrease as distance from the source

increases. That is, the intensity of the wave motion decreases

as the distance from the source increases, for the quantity of

energy which is transmitted per second across unit area, at any
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point, is generally taken as a measure of the intensity of the wave

motion at that point.

If the source be assumed to be at a point in the medium, the

energy communicated by the source to the medium travels out

into the medium from one spherical layer to the next, and as the

total energy transmitted from layer to layer per second is constant,

the quantity that crosses unit area from any one spherical layer

to the next, in one second, decreases as the radius of the layers

increases. If Q denote the quantity of energy communicated by
the source to the medium in one second, then the quantity of

energy which is transmitted per second across unit area of any
0*

spherical surface of radius r round the source as centre is - 9
-

4?rr-

That is, the intensity of the wave motion at a distance r from

the source is, in this case, given by
~ and the form of the

result shows that, when the source is at a point in the medium,

the intensity of the wave motion, at any distance from the source,

is inversely proportional to the square of the distance. When
the source is of finite dimensions, the same law holds, approxi-

mately, at distances from the source, which are great compared
with the dimensions of the source.

Since the intensity of the wave motion decreases as the distance

from the source increases, it follows that the amplitude of vibra-

tion of the particles of the medium also decreases as the distance

increases. It can be shown that the intensity of the wave

motion as defined above is, at any point in the medium, directly

proportional to the square of the amplitude of vibration of the

particles of the medium at that point. That is, the amplitude of

vibration of the particles of the medium is inversely proportional

to the first power of the distance from the source.

34. Wave Form. As explained above, wave motion results

from the transmission of the vibratory motion of the source from

* The area of a spherical surface of radius r is 4?rr2
,
where IT = 3 '14 16.
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layer to layer out into the surrounding medium. It has also

been explained that the vibratory motion of the source is trans-

mitted from particle to particle along any line of transmission

with regular retardation of phase. It follows, as a result of this,

that the varying displacement of the source during a complete

vibration is reproduced, wave length after wave length, in the

successive displacements of the particles along the line of

transmission. Thus, the displacement curve which exhibits the

displacement variation of the source during a complete vibration,

shows, also, subject to correction for decrease of intensity, the

displacement variation from point to point along the corresponding

wave length of the wave motion. This characteristic of the wave

motion, being indicated by the form of the curve, is sometimes

called the wave form.

The character of the variation of the displacement of the par-

ticles along a line of propagation at any instant determines, as

already explained, the character of the sequence of states of

compression and rarefaction, which is found along the line of

propagation at that instant. Both these characteristics of wave

motion are, therefore, included in the term wave form, as applied

to wave motion.

35. Wave Front. The wave front at a given instant for

wave motion, from any source, is the locus of all points which

the motion has just reached at that instant. Thus, the wave

front at any instant for wave motion, from a point source in an

isotropic medium, is a spherical surface having its centre at the

source, and its radius equal to the distance which the wave motion

has travelled from the source at the given instant. For some

purposes a wave front may be defined as the locus of all points

in the same phase in the same wave length.

When the wave front at any instant is known, the wave front at

an instant any given interval of time later can be determined

by a simple construction. In the case of an isotropic medium,
in which the velocity of propagation of the motion is the same in

4
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all directions at any point in it, the construction is as follows :

Let a spherical surface of radius, equal to the distance travelled

by the wave motion in the given interval of time, be described

round every point on the given wave front; then the surface

which encloses or envelops these spherical surfaces, and touches

each one of them tangentially, is the new wave front. Thus, in

Fig. 26, let AA represent the trace of a plane wave front at right

angles to the plane of the paper, and let it be required to find the

wave front at an instant t seconds later. Let a spherical surface

of radius V/, where Y is the velocity of the wave motion in the

medium, be supposed to be described round every point in the

wave front, and let the circles round the points a, , a, ...
in the figure, be the traces of these surfaces for a few of the points

in the plane of the paper. The wave front at the end of the

time t will be the plane tangential to all these spherical sur-

ft a a & a

-ZT
a a a a a

Fig. 26.

faces, and the trace of this wave front in the plane of the paper

is represented by the line BB, tangential to the circles round

the points a, a, a, . . . and touching the circles at the

points b,b,b, . . . as shown in the figure.

The lines ab, ab, ab, . . . from the points a, a, a, . .

in the wave front AA, to the points b, b, b, ... in the wave

front BB, are lines of transmission of the wave motion, from one

wave front to the other, in the sense that the disturbance from

any point a may be considered as transmitted through the medium

to the corresponding point b along the line ab.

A line of transmission, defined in this way, is, therefore, always

at right angles to the wave front, and it follows that in longitu-

dinal wave motion the paths of vibration of the particles of the

medium are always at right angles to the wave front, while in

transverse vibration they must be in the wave front.
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CHAPTER IV.

PROPAGATION OP SOUND.

36. Sound. The term sound connotes both the sensation of

sound and the external physical phenomena to which this

sensation is due. The subject of sound sensation belongs

mainly to Physiology ;
the external physical phenomena to

which sound sensation is due constitute what is usually under-

stood by Sound or Acoustics as a branch of Physics.

It has already been explained that a body in vibration or in

periodic motion of any kind within certain limits of frequency,

or even in irregular non-periodic motion within certain limits

of rapidity of motion, is a source of sound, either a musical

sound or a noise.

It has also been explained that a body in periodic motion, or

in irregular non-periodic motion, in a material medium surround-

ing it sets up longitudinal wave motion, or an irregular wave-like

disturbance of longitudinal type, in the medium, and that this

wave motion or disturbance travels out from the body into the

surrounding medium.

These facts, taken together, at once suggest that the sensation

of sound is due to the incidence of the wave motion or disturbance

from the source of sound on the drum of the ear.

In a limited sense, sound may be defined as longitudinal wave

motion in material media, and is, therefore, a form of energy.

37. Elasticity. From what has been said in Chapter III., it

will be understood that the essential property of a material

medium for the propagation of sound as longitudinal wave

motion in the medium is elasticity. The elasticity necessary for

the propagation of sound is that property of the medium which

enables it to resist compression or rarefaction, and by virtue of
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which it is able, within certain limits, to recover its original state

when the force causing the strain is removed. Substances like

steel, glass, and ivory, which offer very great resistance to com-

pression or extension, are said to be very highly elastic, but the

limits of change of volume within which they possess the property

are very narrow. Thus, if glass is compressed or extended beyond
a very small extent it breaks into fragments. India-rubber, on

the other hand, offers comparatively little resistance to compression

or extension, and is, therefore, of low elasticity, but its limits of

elasticity are very wide. Lead is an example of a substance of

comparatively low elasticity, and some substances, such as clay,

are practically without elasticity.

38. The Propagation of Sound in Material Media.

It will now be understood from what has been said above, that

sound is propagated as longitudinal wave motion in material

media. A sound is heard because the wave motion set up by the

source of the sound in the surrounding medium travels from the

source to the ear, through the intervening material media, and by
its incidence on the drum of the ear produces the sensation of

hearing.

It is, therefore, essential for hearing a sound, that a material

medium or a succession of material media, should extend con-

tinuously from the source of the sound to the ear.

Experiment 10. Take a small bell actuated by clockwork which

will ring gently but continuously for some time, and rest it on a

thick pad of felt under the receiver of an air pump. When ^he
receiver is in position, and the pump ready for action, the sound of

the bell can be heard quite distinctly. Now work the pump slowly,

and notice the effect on the sound heard.

It will be found that as the receiver is exhausted of air, the sound

of the bell becomes fainter and fainter, and, ultimately, if the pump
gives a good vacuum, it becomes too faint to be heard.

Now turn the tap which admits air into the receiver, so that the air

enters very slowly, and note the effect on the sound heard.

It will be found that as the air re-enters the receiver, the sound

heard becomes louder and louder, until it attains its initial intensity.
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This experiment shows that when a gap is made in the media ex-

tending from the bell to the ear, by withdrawing the air in the receiver,

the sound of the bell ceases to be heard. It also shows that the

loudness of the sound depends upon the density of the medium in

which it is produced.

Instances of the propagation of sound by material media are

readily found. The sounds that we hear in daily life reach our

ears through the air. The sound produced by the wind in

telegraph wires is propagated through the wood of the telegraph

posts, and can be heard distinctly by applying the ear directly to

a post. The sound of a distant train is propagated through the

iron rails, and can be heard by applying the ear to a rail, just as

the sound of the galloping of a horse can be heard through the

ground by applying the ear to the ground. Sounds produced

under water are propagated through the water, and can be heard

very distinctly, and at great distances from the source by an

observer under water, or by means of a long ear trumpet placed

with its receiving end under water.

If a sounding body is small and presents a surface of small

extent to the surrounding medium, the wave motion set up by
the body as a source of sound may be of very low intensity, and

the sound may be almost inaudible at a short distance from the

source. The surface of contact between the body and the medium

being very small the energy communicated to the medium at

each vibration of the source is very small, and the intensity of

the resulting wave motion is correspondingly low. If, however,

the sounding body is put in contact with a board of light, dry

wood in such a way that it sets the particles of the wood in

vibration without having its own vibratory motion destroyed,

the area of the surface at which vibratory motion from the

source of sound is communicated to the medium is greatly

extended, and the intensity of the wave motion set up in the

medium is correspondingly increased. Thus, if a tuning fork

is struck and held in the air the sound heard is very feeble

and scarcely audible. If, however, the end of the stem of the
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fork is put in contact with the top of a light table the sound of

the fork is at once heard loudly and distinctly at a considerable

distance from it. Similarly, a string stretched between two nails

in a wall gives out but a very faint sound when set in vibration.

If, however, the string is mounted on a sounding board, or on

a violin, it gives out a loud, distinct sound.

It should be noted, however, that the sound given out by a

sounding body, such as the fork or string referred to above,

dies away much more quickly when in contact with a sounding

board than when vibrating by itself; in the former case the

body gives out much more energy per second to the medium

than in the latter case, and, therefore, loses much more quickly

the stock of energy it initially possessed.

When sound waves pass from one medium to another re-

flection always takes place at the surface of separation of the

two media, and the amount of energy which passes from one

medium into the other, may, in certain cases, be very small.

When the media differ considerably in density, sound waves in

either medium, incident on the surface of separation of the media,

are, even for direct incidence, almost entirely reflected, and the

intensity of the wave motion transmitted across the surface from

one medium to the other is, therefore, very small. This explains

why sound waves do not readily pass from air into surrounding

solid and liquid media, or from these media into air. Thus, under

certain conditions, sound waves pass from air to water, and from

water to air, but the loss of energy by reflection at the surface of

separation is always great, and a sound originating in one medium

and heard in the other is always much fainter than if heard in

the medium in which it originated.

Similarly, sound waves do not readily pass from the earth to

the air. Thus, the sound caused by water running in pipes or

drains underground cannot easily be heard in the air; but if

the ear be placed on the ground, or if a sounding rod of light,

dry wood be placed between the ground and the ear, the sound



PROPAGATION OF SOUND. .">.">

can be clearly heard. These sounds could also be heard with

the help of a piece of rubber tubing opening into a cup-like

expansion at one end. If the rim of the cup is applied to the

ground, and the other end of the tube to the ear, the sound

waves are carried to the ear by the column of air in the tube,

and the sounds are distinctly heard. This principle is applied

in the stethoscope used by medical men for listening to the

sounds made by the heart and lungs in action. These sounds

can be heard faintly by applying the ear directly to the wall

of the chest; but they are quite inaudible in the air, even

when the ear is quite close to the wall.

Experiment 11. Sound a tuning fork and apply its stem to one

end of a long rod of wood. Rest the other end of the rod on the top

of a light wooden stool. Notice how the sound of the fork increases

in loudness when the rod rests on the stool.

Experiment 12. Apply the ear to one end of a long beam of wood

and note that the sound made by scratching the other end with a nail

can be distinctly heard.

Experiment 13. Stand a cylindrical gas jar, or a large tin canister,

on a light wooden stool resting on a felt pad, and fill the jar with

water. Take a fairly large tuning fork and attach a light cone of

cork to one prong by fastening the base of the cone to the flat outer

surface of the prong.

Set the fork in vibration and hold it so that the apex by the cone

dips into the water as the fork vibrates. Note that the sound of the

fork is clearly heard only when the cone is in contact with the water.

Remove the stool, stand the jar on the felt, and repeat the experi-

ment. Note that the loudness of the sound is not now appreciably

increased by pntting the cone in contact with the water.

When the jar rests on the stool the wave motion originated by the

motion of the cone travels through the water, the glass of the jar,

and the wood of the stool to the air and then through the air to the

ear. The stool acts as a sounding board ; much more wave motion

energy passes per second from the wood of the stool to the air than

from the glass of the jar to the air.

Experiment 14. Take two cylindrical wooden boxes, like large and

rather deep pill boxes, and join them by a long piece of string or wire

securely attached to the bottoms of the boxes. It will be found that
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words spoken into one of the boxes can be heard with some distinct-

ness by applying the ear to the other box. The connecting line may
be taken round corners by supporting it on loops of string.

This apparatus is generally called the string telephone. The sound

waves originated at one end by speaking into the box travel through
the bottom of the box and along the connecting line to the other box,

and thence through the air to the ear.

39. Conditions favourable to the Propagation of

Sound. The first essential for the propagation of sound in

any medium is that the medium should possess elasticity. A
substance, such as clay or putty, which is practically devoid of

elasticity, cannot transmit sound waves. Similarly, masses of

substances, such as sand, sawdust, felt, wool, and other similar-

materials which have no continuity of structure, are essentially

inelastic, and are, therefore, unable to act effectively as con-

ductors of sound. For this reason they are generally used in

the construction of sound-proof walls and floors.

Experiment 15. Enclose a small clockwork bell in a box and cover

the box with a mass of clay or freshly-made putty. It will be found

that the sound of the bell cannot be heard, showing that the covering
of the box is impervious to sound waves.

Experiment 16. Enclose a clockwork bell in a box and pack it with

sand, or sawdust or cork dust, in another box. It will be found that

the sound of the bell does not travel through the packing.
Force a bradawl through the side of the outer box into the side of

the inner one. The sound of the bell can now be heard distinctly.

The propagation of sound through any continuous elastic

medium is limited in two important ways. The sound wave

may lose energy in doing work against the molecular friction

opposing the vibratory motion of the molecules of the medium,

or the wave motion may be broken up and scattered as the

result of a want of uniformity or homogeneity in the structure

and properties of the medium.

If the physical properties of a substance are such that wave

motion meets with appreciable molecular friction in the sub-

stance, then sound cannot be propagated through that substance
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to any great distance, and the substance is in that sense a bad

conductor of sound. If, however, the properties of the substance

are such that the molecular friction is small, then sound may be

propagated through the substance to great distances, and the

substance is said to be a good conductor of sound.

Even when the physical properties of a medium are favour-

able to the propagation of sound waves, a further condition

absolutely essential for propagation without material loss of

energy is the homogeneity of the medium. If the medium is

not homogeneous or uniform throughout in structure, density,

and physical properties generally, the wave motion is subject

to continuous loss of energy on account of the numerous

reflections and refractions which tend to break up and scatter

the wave. A medium such as the air is rarely quite homo-

geneous over large masses
;
disturbance due to wind currents,

the presence of convection currents due to local heating or

cooling, the presence and irregular distribution of water

vapour, all tend to produce a want of homogeneity which is

highly detrimental to the propagation of sound through the

air. The effect of the varying homogeneity of the air on

the propagation of sound explains the great differences which

are commonly observed in its power of transmitting sound.

Under some conditions sounds "
carry

"
only comparatively

short distances
;

at other times, when the air is still and free

from the disturbances referred to above, sounds "
carry

"
to

very great distances. This is specially the case in a fog; a

fog can form only in still, homogeneous air, and is, therefore,

an indication of the existence of conditions specially favourable

to the propagation of sound.

Experiment 17. Arrange two tin or cardboard tubes, each about

3 feet long and 2 inches in diameter, end to end in the same line, but

with a gap of about half an inch between them. Place a ticking

watch at one end of the tube and note that it can be clearly heard

at the other end.

Arrange a Bunsen flame just below the gap between the tubes so
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that a current of hot air and gases rises through the gap. Test if the

watch can now be heard as at first. Also, arrange a beaker of boiling
water below the gap so that a current of steam rises through it, and

test again with the watch.

It will be found that in both these cases the up current of heated

gas or vapour is an effective bar to the transmission of sound along
the tube.

The presence of particles in a medium does not interfere in

the least with the propagation of wave motion through the

medium, provided the dimensions of the particles are small

compared with the wave length of the motion. Thus, although

the presence of small particles of smoke and dust in the atmo-

sphere may interfere seriously with the propagation of light, it

has no effect whatever on the propagation of sound. A thick

fog, for example, is practically opaque for light, but foggy air

is specially favourable to the propagation of sound, for the

air is then homogeneous and the fog particles are much too

small to interfere at all with the propagation of the sound

waves.

For the same reason, any curtain or screen which does not

interrupt the continuity of the medium does not interrupt the

propagation of sound waves through the medium. For example,

a curtain of muslin or silk, or any loosely woven material through

which air passes easily, has, in air, little or no effect in obstructing

the passage of sound waves through it. If, however, the material

is wet, so as to present a continuous film of water in the path

of the waves, reflection takes place and the sound waves are

practically completely reflected at the wet screen.

Experiment 18. Arrange two tubes end to end, as in Exp. 17, and

fix a screen of linen or silk transversely in the gap between the two

tubes. Now test whether the ticking of a watch is audible from end

to end of the tubes (a) when the screen is dry, (b) when the screen

is wet.

It will be found that when the screen is dry the ticking is heard as

distinctly as if the screen were not there, but when it is wet the

ticking is not heard at all.
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40. Velocity of Propagation of Sound. It has already

been explained that wave motion travels through any medium

with a uniform velocity determined by the physical properties of

the medium. It is, therefore, to be expected that the longi-

tudinal wave motion which constitutes sound, travels through any

given medium with a definite velocity which may be characterised

as the velocity of sound in the medium.

Everyday experience proves that sound takes time to travel

through air. The report of a gun fired at a distance is heard

some seconds after the flash is seen, the whistle from the engine

of an approaching train is heard a little after the escape of steam

at the steam whistle is observed, and the thunderclap which

accompanies a lightning flash is always heard after the flash is

seen. Since the velocity of light is very great. (186,000 miles

per second), the time taken by light in travelling from the flash

or jet of steam to the eye may be neglected, and the interval

observed in these cases may be taken as the interval between the

instant at which the sound is produced at the source, and the

instant at which it is heard by the observer. This interval

is therefore a measure of the time taken by the sound in

travelling from the source to the observer, and it is a matter of

common observation that the length of the interval depends upon

the distance of the source from the observer
;
the greater the

distance at which a gun is fired, the longer is the interval

between the instants of seeing the flash and hearing the sound
;

the more distant the lightning flash the longer is the interval

between seeing the flash and hearing the thunder. Hence, if the

time taken by sound to travel over different measured distances

be carefully observed, it is possible to show that sound travels in

air with a uniform velocity, and also to determine the magnitude

of this velocity. Thus, let a cannon be fired at a convenient

centre, and let three observers be placed at three stations, A, B,

and C, at distances of 1 mile, 2 miles, and 3 miles, respectively,

from the cannon. Let the observer at each station measure with
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a stop watch, reading to fifths of a second, the interval between

seeing the flash and hearing the report of the cannon, and let

these intervals be 44 seconds, 9f seconds, 144 seconds at the

stations A, B, and C, respectively. These data give the average

velocity of sound over the distances between the cannon and the

stations A, B, and C, as 1,100 ft. per sec., 1,123 ft. per sec., and

1,115 ft. per sec. Allowing for experimental errors, these results

indicate that sound travels through air with a definite uniform

velocity of about 1,120 feet per second.

Many careful determinations of the velocity of sound in air

have been made by this and other methods, and it is now

established that the velocity of sound in air, under ordinary

atmospheric conditions, is about 1,120 feet per second.

In the same way it can be shown that sound travels through

water with a definite constant velocity of about 4,700 feet per

second.

It is found, too, that the velocity of sound in any medium is

practically the same for all sounds; musical sounds and noises

travel with the same velocity, and, within ordinary limits, this

velocity is quite independent of the intensity or pitch of the

sound. This result may be inferred from the fact that music

played by a band is heard at any distance in correct tune and

harmony ;
all the sounds reach the ear in the exact sequence in

which they are played, and must, therefore, travel through the air

with the same velocity.

There is some evidence that the velocity of sound increases

with the intensity of the sound
; thus, it is asserted, that in rifle

practice the sound of the command to fire is sometimes heard by
distant observers after the sound of the firing. It is also stated

that the velocity of sound increases slightly with rise in the pitch

of the sound. The experimental evidence in support of these

statements is, however, somewhat inadequate.

As explained in Art. 21, the velocity of propagation of longi-

tudinal wave motion in a medium, depends upon the elasticity and
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density of the medium. The velocity of sound in any medium

must, therefore, as already explained, depend upon the elasticity

and density of the medium
;
the greater the elasticity and the

smaller the density, the greater the velocity. Any change of

state, therefore, which affects the elasticity or density of a

substance, may change the value of the velocity of sound in that

substance.

Thus, in any gas, such as air, a change of pressure causes a

change of density and a change of elasticity. The properties of

a gas, however, are such that the changes in density and elasticity,

due to a change of pressure, are so related that their combined

effect on the velocity of sound in the gas is nothing. That is, the

velocity of sound in air is not affected by change of pressure only.

A change in temperature, on the other hand, causes a change in

density without affecting the elasticity of the gas, and, therefore,

causes a change in the velocity of sound in the gas. A rise in the

temperature of the air, for example, causes a decrease in density,

and, therefore, increases the velocity of sound in air. Similarly,

a fall in temperature causes a decrease in the velocity of sound in

air.

In the same way the presence of water vapour in the air, by

decreasing the general density of the air, causes an increase in the

velocity of sound in air.

In the case of gases at the same pressure, it can be shown that,

in general, the velocity of sound in the gases is inversely propor-

tional to the square root of the density. For example, if the

density of one gas is sixteen times that of another, the velocity of

sound in the denser gas is one-fourth the velocity in the other gas.
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CHAPTER V.

CHARACTERISTICS OP SOUNDS.

41. A Musical Sound. It has already been stated that a

body in vibratory motion within certain limits of frequency

gives rise to a musical sound. It will also be found that the

musical sounds with which we are familiar can generally be

referred to a body in vibratory motion as source. The notes of

a piano are produced by the vibration of the steel wires strung

on its frame, the notes of the violin have their origin in the

vibratory motion of the strings, and the notes of the organ are

due to the longitudinal vibration of the air columns in the organ

pipes. It has further been shown, by means of Savart's wheel

and Seebeck's siren, that periodic motion at the source, even if

not of a vibratory character, can give rise to a musical sound.

It may, therefore, be stated generally that any source of

periodic disturbance in a medium is, within certain limits of

frequency, a source of a musical sound.

It follows from what has been said above, that the sensation

which we associate with a musical sound is due to the incidence

on the ear of waves of compression and rarefaction, which are

all exactly equal in wave length and exactly similar in

character. That is, the effect of any single wave on the drum

of the ear is repeated wave after wave, and the drum is thus

subjected to a periodic disturbance which gives rise to the

sensation generally associated with a musical sound.

The distinctive characteristic of a musical sound is thus

periodicity. The motion of the source is periodic, and the

wave motion, constant in wave length and fixed in form, gives

rise to a periodic stimulus in the ear.

If the motion of the source is simple harmonic motion the
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resulting wave motion is simple harmonic wave motion, and the

musical sound produced is known as a simple sound or pure tone.

If, however, the motion of the source is periodic, but not

simple harmonic in character, the wave motion is not of the

simple harmonic type, and the musical sound produced is known

as a complex sound or compound tone. The note of a tuning

fork, for example, when not sounding very loudly, is practically

a pure tone
;
the note of a violin string, on the other hand, i&

complex in character and is a good example of a compound
tone.

42. Noise. All sounds other than musical sounds are usually

grouped under the general term noise.

Just as periodicity is the distinctive characteristic of a

musical sound, so irregularity or want of periodicity is the

distinctive characteristic of noise. The motion of the source in

the case of a noise is non-periodic in character. The disturbance

set up by the source in the surrounding medium is, therefore,

merely an irregular sequence of states of compression and

rarefaction in which there is no periodic recurrence of the same

sequence of states. The disturbance is, therefore, not divisible

into wave lengths, and if its form were represented by a curve

(Art. 34) the form of the curve would be quite irregular and

entirely wanting in any element of periodicity. It will be seen,

however, that irregular disturbances of this kind admit of

infinite variety in form, and this accounts for the great differ-

ences which exist between the many noises which we hear

around us.

The incidence of an irregular disturbance of this kind on the

ear gives rise to the sensation usually associated with a noise,

provided the irregular sequence of states of compression and

rarefaction which constitute the disturbance come within the

physiological limits of rapidity for this sensation.

The character of the noise heard depends upon the form of

the incident disturbance.
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43. Characteristics of Musical Sounds. A musical

sound, considered as a sensation, possesses three distinctive

characteristics which enable us to differentiate one musical

sound from another. These characteristics are loudness, pitch,

and quality.

Loudness is a quality of sound sensation which belongs to all

sounds, to noises as well as to musical sounds. The general

meaning of the term is commonly understood
;

it applies to the

strength or degree of the sensation, and is applicable as a general

term to sounds of all degrees of audibility. The terms soft,

faint, feeble, loud, as commonly used, apply to this characteristic

of a musical sound.

Pitch is the quality which enables us to distinguish between

the different notes of a musical scale. On any musical scale the

pitch rises from note to note as we ascend the scale, and falls as

we descend the scale
;
notes low down on the scale are notes of

low pitch, and notes high up on the scale are notes of high

pitch. The terms low, deep, shrill, high, as commonly used,

apply to this characteristic of a musical sound.

Quality, in the special sense in which the term is here used, is

the characteristic of a musical sound by means of which we are

able to distinguish between sounds of the same pitch, and, it

may be, of the same loudness, but of different general character.

Thus, the differences between musical sounds which we

usually refer to difference in origin or in mode of production

are differences in quality. The terms clear, harsh, thin, mellow,

full, round, as commonly used, apply to some special feature in

the quality of a note.

A note given out by a tuning fork differs essentially in

quality from a note of the same pitch given out by a stretched

string ;
so also a note given by a closed organ pipe differs in

quality from a note of the same pitch given by an open pipe.

The French term timbre is sometimes used instead of quality

in this special sense.
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Each of these three characteristics of a musical sound, as a

sensation, can be referred to a corresponding characteristic of

the motion of the source of the sound, and of the wave motion

by which it is propagated.

44. Loudness. The loudness of a musical sound may be

traced to the amplitude of vibration of the source of sound.

When a tuning fork is sounding the loudness of the sound heard

decreases as the amplitude of the vibration of the prongs of the

fork decreases. When a violin string is sounding, the loudness

of the sound decreases as the amplitude of vibration decreases.

Similarly, in the case of any other source in vibratory motion,

the loudness of the sound depends on the amplitude of vibration

and can be shown to be directly proportional to the square of the

amplitude.

The sensation of loudness is, however, due to the effect of the

wave motion incident on the drum of the ear. Loudness is,

therefore, more directly traceable to the intensity of the wave

motion incident on the ear; the greater the intensity the greater

the loudness of the sound. The intensity of wave motion at any

point in the medium is proportional to the square of the amplitude

of vibration of the particles of the medium at that point. The

loudness of a sound may, therefore, be referred to the amplitude

of vibration of the air particles near the ear, and, if loudness be

assumed to be proportional to the intensity of the wave motion

incident on the ear it may be said to be proportional to the

square of the amplitude of the air particles near the ear.

The amplitude of vibration of the air particles at any point in

air carrying wave motion from a source of sound is directly pro-

portional to the amplitude of vibration of the source, so that

although the loudness of a sound is most directly referred to the

amplitude of vibration of the air particles near the ear of the

observer, it can also be referred, as stated above, to the amplitude

of vibration of the source itself.

As explained in Art. 33, the intensity of the wave motion from
5
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a source of sound at any point in the medium is inversely pro-

portional to the square of the distance of the point from the

source. It follows then, from what is stated above, that the

loudness of the sound heard at different distances from a constant

source of sound varies inversely as the square of the distance of

the hearer from the source. Thus, at distances of 100 yards and

200 yards from the same source of sound, the loudness of the

sound heard at the more distant point is only one-fourth the

loudness at the nearer point. The loudness of a sound is also

found to depend upon the density of the medium surrounding
the source. The greater the density the louder the sound and

the smaller the density the fainter the sound.

Experiment 19. Suspend a small clockwork bell in a large flask or

receiver fitted so that it can be filled with air at different pressures,
water vapour, hydrogen, or any other gaseous medium.

It will be found that the loudness of the sound heard varies with the

density of the medium, and that the denser the medium the louder the

sound.

The reason for this effect of the density of the medium sur-

rounding the source of the sound is evidently found in the fact

that the energy communicated by the source to the surrounding

medium during each complete vibration is directly proportional

to the density of the medium. As a result of this, the intensity

of the wave motion at any point, and, therefore, the loudness of

the sound heard at that point, are directly proportional to the

density of the medium surrounding the source. Loudness as a

sensation cannot be measured. It is possible only to compare,

generally, the relative loudness of two sounds, and, perhaps, to

decide when two sounds are equally loud.

45. Pitch. The pitch of a musical sound depends upon the

vibration frequency of the source.

Experiment 20. Set up a Seebeck siren or a Savart wheel, and test

how the pitch of the note produced by the revolution of the disc or the

wheel varies with the speed of revolution.
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It will be found that if the speed is increased the pitch rises, if it is

kept constant the pitch remains constant, and if it is decreased the

pitch falls. That is, the pitch of the note changes when the frequency
of the source changes ; it rises or falls as the frequency increases or

decreases.

The relation between pitch and vibration frequency indicated

by this experiment may be brought out more clearly by the

apparatus shown in Fig. 27.*

Fig. 27.

A block of four Savart wheels, W, and a siren disc, D, with

four concentric circles of holes, are fixed on the same axis and

mounted on a stand so that they can be rotated at any required

speed by means of the driving wheel and belt shown in the

figure.

The numbers of the teeth on the four wheels, taken in

ascending order, are respectively the same as the numbers of the

holes in the four circles of the siren plate, and these numbers are

* See Sound by Poynting & Thomson, p. 9.
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in the ratio 4:5:6:8. A card, C, is held in a stand so that

it can be adjusted to any one of the four wheels, and a tube,

T, is held in another stand so that it can be adjusted to direct

a stream of air on to any one of the four circles of holes in the

plate.

Experiment 21. Set up this apparatus and adjust the card C to

one of the wheels, and the nozzle of the tube T to the corre-

sponding ring of holes in the siren plate. Put the air jet in action

and turn the driving wheel so as to set the wheels and plate in rapid
rotation.

It will be found that the note given by the wheel and the note given

by the siren are always of the same pitch whatever may be the speed
of rotation, but that, as in Exp. 20, this pitch rises and falls as the

speed of rotation increases and decreases.

The same result will be obtained for any one of the four wheels and

the corresponding ring of holes in the siren plate.

This experiment shows that the pitch of a note depends only

on the frequency of the source, and is not affected by the manner

in which the note is produced. In this case the frequencies of

the two notes are necessarily the same at all speeds of rotation,

and it is found that although the pitch varies with the speed,

the notes are always in unison.

Experiment 22. Set up the same apparatus as in the last experi-

ment, and while the wheels and siren plate are in fairly rapid rotation

at a uniform rate test the sequence of notes obtained (a) by touching

the four wheels with the card in succession, beginning with the wheel

having the smallest number of teeth, (6) by directing the air jet in

similar succession on the four circles of holes in the plate.

Provided the speed of rotation is uniform for the short interval

of time necessary to get a sequence of four notes as in (a) or (6),

it will be found that at all speeds the sequence obtained is the

same, and constitutes the common chord on the note of lowest pitch

as tonic.

This experiment shows that the difference in pitch or the

interval between any two notes is determined, whatever may
be the individual frequencies of the notes, by the ratio of
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their frequencies. In the experiment the ratio of the fre-

quencies of the four notes is fixed, by the construction of

the apparatus, at the value 4:5:6:8, and it is found that

at all speeds that is, for all frequencies the intervals between

the successive notes of the sequence remain constant.

The ratios corresponding to the familiar intervals which occur

in the common chord, d m s d 1

,
should be noted. The interval

d to m, measured by the ratio f ,
is a major third

;
the interval

d to s, measured by the ratio -J ,
is a fifth

;
and the interval d to

d 1

,
measured by the ratio f, is an octave. It will be seen from

the value of the ratio corresponding to an octave interval that

the pitch of a note may be raised an octave by doubling the

frequency of the source, or lowered an octave by halving

the frequency.

Although the pitch of a sound is thus found to depend on

the vibration frequency of the source, its direct cause as a

sensation is the incidence on the ear of the wave motion

originated by the source. Pitch, therefore, depends directly

upon the number of wave lengths incident on the ear in one

second. This explains why the pitch of a note from a source

of constant frequency is altered by the relative motion of the

source and the observer.

46. The Diatonic Scale. The diatonic scale is the familiar

musical scale associated with the common chord referred to above.

The relative frequencies of the notes included in an octave of the

scale are denoted by the numbers given below :

d r m f s 1 t d'

24 27 30 32 36 40 45 48

Thus, if we take the frequency for the middle C of the piano

as 256, the diatonic scale (not the piano scale) on this note as

tonic is given by

C D E F G A B c

256 288 320 341 384 427 480 512
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The successive intervals which occur in the scale are tones and

semitones, arranged in the following sequence :

d r m f s 1 t d'

Tone. Tone. Semitone. Tone. Tone. Tone. Semitone.

t -V- H t V t

It will be seen, however, that the tones are not exactly

equal, some being measured by the ratio \- and others by
the ratio -; the two semitones are equal, each being measured

by the ratio ^f .

Since the interval between any two notes is measured by
the ratio of the corresponding frequencies, it follows that two

intervals may be added by taking the product of the ratios which

measure them. Thus, the interval from d to s on the common

chord is the sum of the intervals d to m and m to s, and it is

clear that
-f
=

-f-
x

-J. Similarly, the difference of two intervals

is obtained by dividing the ratio for the greater of the two

intervals by the ratio for the smaller. Thus, the difference

between the two tones which occur in the diatonic scale is

given by f -r-
-,

or f.
It should also be noted that two intervals are equal when

the frequency ratio for each interval is the same. Thus, a

note for which the frequency is 300 may be said to be

midway in pitch between notes for which the source fre-

quencies are 200 and 450 respectively, because the interval

measured by the ratio fff, or f, is equal to the interval

measured by the ratio -{{& or
-f.

In the same way it can

be seen that the semitone found in the diatonic scale is not

exactly half either of the tones of the scale; for -J4-
x if,

or f|-f, has a value less than f and greater than -.

The scale to which a piano is tuned is a modified or tempered

form of the diatonic scale. The octave is divided into twelve

equal intervals so that all the tones are equal, and the semitone

is exactly half a tone.
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The standard of absolute pitch is not very well defined. In

England concert pitch requires the middle C of the piano to

correspond to a source frequency of 273. The new standard

pitch is defined by stating that standard tuning forks giving

the C and A of the middle octave must have a frequency of

261 and 439 respectively, at 68 F.

47. Quality. The quality or timbre of a note may be

referred to the manner in which the displacement of the source

varies during a complete period; that is, to the form of the dis-

placement curve for the motion of the source.

The quality of a musical sound as perceived by the ear is,

however, more directly referred to the wave form of the incident

waves. The orderly sequence of states of compression and rare-

faction which determine the form of a longitudinal wave recur,

wave length after wave length, in the same general cycle for all

waves. The manner in which state follows state through the

same general cycle admits, however, of infinite variety in detail,

and may, therefore, serve to differentiate one wave from another,

even when the wave length and intensity of the waves are the

same.

The quality of a note depends, therefore, upon the wave form

of the wave motion incident on the ear, the wave form being

determined by the special character of the sequence of states of

compression and rarefaction which constitute a wave length of

the motion.

It should be noticed that the three characteristics of a musical

sound loudness, pitch, and quality may each be referred to a

corresponding attribute of (a) the source, (b) the wave motion

originated by the source, and (c) the vibratory motion of the

particles of the medium carrying the wave motion.

Thus, with reference to the source, loudness depends upon the

amplitude of vibration, pitch on the vibration frequency, and

quality on the nature of the displacement variation during a com-

plete vibration.
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With reference to the wave motion originated by the source,

loudness depends upon the intensity of the motion, pitch upon
the wave length, and quality on the wave form.

With reference to the vibratory motion of the particles of the

medium, loudness depends upon the amplitude of vibration, pitch

upon the vibration frequency, and quality upon the nature of

the displacement variation during a complete period for particles

near the ear of the observer.
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CHAPTER VI.

REFLECTION AND REFRACTION OF SOUND.

48. Reflection and Refraction of Wave Motion. When

wave motion in any medium is incident on the boundary surface

separating the medium from another medium the motion is, in

part, turned back or reflected at the surface, and, in part, trans-

mitted across the surface or refracted into the second medium.

In general, too, some portion of the wave motion is absorbed at

the surface
;
that is, a portion of the energy of the wave motion

is, in general, converted into heat at the surface.

The reflection of the wave motion at the surface of separation

of the media depends, in character, on the nature of the surface.

If the surface is rough the reflection at any point on the surface

is diffuse in character. That is, the disturbance incident on

the surface along any particular line of transmission is not

reflected at the point of incidence in another definite direction

back into the medium, but is reflected or diffused in all directions

from this point.

If the surface is smooth the reflection at any point on the

surface is regular in character
;

the disturbance incident on the

surface along any particular line of transmission is reflected at

the point of incidence along another definite direction related to

the direction of the incident disturbance by definite laws, known

as the laws of regular reflection.

The degree of smoothness necessary for regular reflection

depends upon the wave length ;
if the inequalities of the surface

are small compared with the wave length of the incident wave

motion the reflection of the motion will be regular in character.

The extent of surface necessary for the reflection of wave motion
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depends also on the wave length ;
the extent must be large com-

pared with the wave length in order to obtain appreciable

reflection.

In the case of a smooth surface of regular geometrical form the

wave front of the reflected wave is determined geometrically by
the form of the incident wave front and the form of the reflecting

surface.

The refraction of the wave motion from one medium into

another depends, also, on the nature of the surface of separation

of the media. If the surface is rough the incident wave motion

is, in general, practically all reflected diffusively or absorbed at

the surface. If the surface is smooth the motion is partly

reflected and partly refracted so that the greater the reflected

portion is, the smaller is the portion refracted into the second

medium.

In the case of refraction from one uniform medium into

another, the disturbance travelling along any particular line in

the first medium is refracted at the surface of separation along

another definite line in the second medium. The direction of

this refracted line of disturbance is related to the direction

of the incident line of disturbance by definite laws, known

as the laws of refraction. The relation involved in these

laws depends mainly, as shown below, on the ratio of the

velocities of the wave motion in the two media. It follows,

also, from this relation that the directions of the incident and

refracted lines of disturbance are not, in general, in the same

straight line
;
that is, the line of transmission of the disturbance

from one medium to the other suffers a sudden change of direc-

tion at the point where it crosses the surface of separation of

the media.

The laws of reflection and refraction of wave motion may be

deduced theoretically by a geometrical method due to Huyghens.
A brief and incomplete outline of this method is given below for

the case of the reflection and refraction of a plane wave that
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is, a wave with a plane wave front at the plane surface of

separation between two uniform media.

In Fig. 28 let the plane of the wave front and the plane of

the surface of separation of the media be at right angles to the

plane of the paper, and let SS denote the trace of the surface

and AB the trace of the wave front at the instant the point A
is incident on the surface of separation. By the time the

disturbance at B has travelled on to C, and the whole wave

front AB has been incident on the surface from A to C, the

reflected disturbance from A will have travelled to all points

on a hemispherical surface of radius AD, equal to BC, and the

Fig. 28.

refracted disturbance from A will have travelled to all points

on the surface of a hemisphere of radius AE, greater or less

than AD and BC according as the velocity of the wave motion

in the second medium is greater or less than in the first medium.

The ratio of AE to AD or BC is evidently the ratio of the

velocities of the wave motion in the media in which these

distances are taken. In the figure AE is shown less than AD,
thus indicating that the velocity of the wave motion in the

second medium is less than in the first medium.

Similarly, the reflected and refracted disturbances from n

equidistant points, intermediate between A and C, will have

reached the surfaces of hemispheres of radii which decrease



76 SOUND.

regularly for the reflected disturbances by 1 /nth of AD, and

for the refracted disturbances by I /nth of AE.

It follows from this that a plane through C, at right angles

to the plane of the paper and tangential to any one of the

spherical surfaces for the reflected disturbances from points

between A and C, is tangential to all the surfaces, and is,

therefore, the front of the reflected wave at the instant the

disturbance from B reaches C. Also, since the surfaces are

spherical their points of contact with this plane lie in the

plane of the paper, and the trace of the reflected wave front

is, therefore, given by the line CD, drawn from C tangential

to the circle AD.

Similarly, a plane through C, at right angles to the plane

of the paper and tangential to the spherical surfaces for the

refracted disturbances from points between A and C, is the

front of the refracted wave at the instant the disturbance

from B reaches C, and the trace of the refracted wave front

is given by the line CE, drawn from C tangential to the

circle AE.

Let us now consider the reflection and refraction of the

disturbance travelling along a particular line in the incident

wave. The disturbance at the point P travels along the line

PA to the point A, so that PA may be taken as a line of

disturbance incident at the point A on the surface of separation

of the two media. This line of disturbance is, by the construc-

tion of Fig. 28, reflected along the line AD and refracted along

the line AE. Let NAN' be the normal to the surface at A, the

point of incidence
;
then PAN is the angle of incidence for the

disturbance along PA, DAN is the angle of reflection, and

EAN' is the angle of refraction. The following results can

now be readily proved from the geometry of the figure :

(a) The angle DAN is equal to the angle PAN.

(b) The angles PAN and EAN are respectively equal to the

angles BAC and EGA, and the ratio of the sines of the angles
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is, therefore, constant for all corresponding values of the angles.

For we have

sir^PAN _ sin BAG _ BC _ Vj
siiTEAN

~
sin EGA

~~
AE

~
Vy

where V
l
and V

2
are the velocities of the wave motion in the

first and second media respectively.

(c) The lines PA, AD, AE, and NAN' are all in the same

plane.

From these results the laws of reflection and refraction can

now be formulated.

For the laws of reflection we have

(i) The angle of reflection is equal to the angle of

incidence.

(ii) The incident line of disturbance, the normal at the

point of incidence, and the reflected line of disturbance are

in the same plane.

Similarly, for the laws ot refraction we have

(i) The ratio of the sine of the angle of incidence to the

sine of the angle of refraction is constant for all corre-

sponding values of these angles.

(ii) The incident line of disturbance, the normal at the

point of incidence, and the refracted line of disturbance are

in the same plane.

The ratio of the sine of the angle of incidence to the sine of

the angle of refraction for any two media is called the index of

refraction for these two media, and is usually denoted by ju.

Thus, when wave motion is refracted from a medium A to a

medium B, if i denote the angle of incidence and r the angle of

refraction, we have

sin i

where /u
denotes the index of refraction from the medium A

into the medium B.
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It can be seen, from the construction of Fig. 28, that when

wave motion is refracted from one medium into another in

which the velocity is greater than in the first there must be a

particular angle of incidence, less than 90, at which the radius

of the circle AE is equal to AC. In this case the angle of

refraction is 90, and the direction of the refracted wave will

be parallel to the surface of separation of the media. This

angle is called the critical angle for the two media, and it is

evident that, for angles of incidence greater than this critical

angle, the construction of Fig. 28 is impossible and no direction

can be determined for the refracted wave. This corresponds

with the experimental results that, in the case here considered,

wave motion incident on the surface of separation of the media

is partially reflected and partially refracted for all angles of

incidence up to the critical angle for the media, but that

at the critical angle refraction ceases and for all angles of

incidence greater than the critical angle the wave motion is

totally reflected.

Total reflection, therefore, takes place when wave motion in

any medium is incident on the surface of a second medium

in which the velocity of propagation of the motion is greater

than in the first, at an angle greater than the critical angle for

the two media. The magnitude of the critical angle for any

two media is readily determined by the fact that the critical

angle is the angle of incidence which corresponds to an angle

of refraction of 90, so that if i denote the critical angle for any

two media, we have

sin i

sin 90
~~ ^'

and since sin 90 = 1, we get the relation

sin i
fji.

That is, the critical angle for any two media is the angle whose

sine is the index of refraction for the media.
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49. Reflection Of Sound. Sound is known to be longi-

tudinal wave motion in material media, and should, therefore, be

subject to reflection in accordance with the laws of reflection of

wave motion. General experience and the results of experiments

show that this is the case. Sound waves in air are reflected at

the surfaces of walls and cliffs, at the surface of water, at the

surfaces of clouds, at the surface of a warmer or colder mass of

air; in fact, at the surface of separation of the air from any other

substance or medium, in which the velocity of the waves differs

from their velocity in the air in which they are travelling.

Echoes are caused by the reflection of sounds from surfaces of

this kind, and the confusion of sound observed in a room ill

designed for speaking or singing is due to reflection from the

walls of the room. Noises and musical sounds are reflected alike,

pulses of irregular longitudinal disturbance being reflected in

exactly the same way as regular wave motion.

The reflection of sound cannot be studied experimentally with

the same exactitude as is possible in the case of light, but it can

be shown by a few simple experiments that it is subject to the

general laws of the reflection of wave motion.

Experiment 23. Take a cardboard tube about 3 ft. long and 1 inch

in diameter, and fix it in the position shown at AB in Fig. 29, so that

E M F

Fig. 29.

it makes an angle of about 30 with the horizontal surface of the table

top shown at EF.

Now, suspend a watch just inside the tube at A, and then adjust

another similar tube CD in position until the position is found in

which the ticking of the watch at A can be most distinctly heard by an
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ear at D. When this adjustment is made it will be found that AM
and MD, the axes of the tubes AB and CD are equally inclined to the

normal to the surface of the table at M, and that both axes and the

normal are in the same plane. That is, the wave motion transmitted

along the axis AM, and incident upon the reflecting surface of the table

at M, is reflected along the axis MD in a direction such that the angle
of reflection NMD is equal to the angle of incidence AMN, and the

two lines AM and MD and the normal MN are in the same plane.

Experiment 24. Adapt the foregoing experiment so as to obtain

reflection of sound from the surface of a large flat flame or from the

surface of a stream of warm or cold air issuing as a thin sheet from a

nozzle with a narrow slit opening.

It will be found most convenient to arrange the two tubes in the

same horizontal plane at an angle of about 120, and then to adjust

the position of the plane of the flame or the sheet of air until good
reflection is obtained.

It will be found when the adjustment is made that the angles of

reflection and incidence are equal and in the same plane.

Experiment 25. Set up two large concave mirrors *
facing each

other about 10 feet apart, and adjust their positions so that their axes

are in the same straight line.

Place a ticking watch at the focus of one mirror and a small funnel,

with a long piece of rubber tubing attached to its stem at the focus of

the other mirror. The open end of the funnel should be directed

towards the mirror.

If the free end of the rubber tubing be now applied to the ear the

ticking of the watch can be distinctly heard. The sound travels from

the watch to the first mirror and is there reflected to the second

mirror where it is again reflected to the funnel at the focus. The fact

that the sound disturbance travels from the focus of one mirror to the

focus of the other by successive reflections from the surfaces of the

mirrors is a proof that it is reflected at each mirror in accordance with

the laws of regular reflection.

It has been explained in Art. 48 that the degree of smooth-

ness and the extent of surface necessary for regular reflection of

wave motion both depend upon the wave length.

The wave length for audible musical sounds varies from about

35 feet for sounds of the lowest audible pitch to less than

* See Chapter V. in the Section on Light.
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half an inch for sounds of the highest pitch, so that the degree

of smoothness or the extent of surface necessary for the regular

reflection of sound varies within somewhat wide limits according

to the pitch of the sound.

The surface of an ordinary plaster wall, for example, is smooth

enough to reflect sounds of the highest pitch, but the extent

necessary for efficient reflection would increase from a few square

inches for sounds of high pitch to many square yards for sounds

of very low pitch. A good brick wall of sufficient extent would

reflect all sounds except, perhaps, those of the very highest pitch.

On the other hand, the face of a quarry or a cliff, or a mountain

side might be smooth enough, and would certainly be of sufficient

extent to reflect sounds of very low pitch. In the case of a

broken surface, such as the face of a cliff or quarry, it is possible

that many of the small surfaces which make up the face may act

individually as reflecting surfaces for sounds of fairly high pitch,

while the surface as a whole ma}7 reflect only sounds of very low

pitch, or may even be too irregular to give regular reflection of

any sound.

The wave length of spoken sounds in ordinary conversation

varies from about 2 feet to about 6 feet, so that a fairly rough
surface will reflect these sounds, but it is obvious that for efficient

reflection the extent of the reflecting surface must be fairly

large.

Noises cannot be said to have pitch, but the pulse of irregular

disturbance associated with a noise may be long or short,

according to the character of the noise. The pulse for a sharp,

clear sound, such as the stroke of a hammer on an anvil, is very

short, while the pulse associated with the report of a cannon is

fairly long. The conditions for the efficient reflection of a noise

depend upon the length of the pulse in the same way as they

depend, in the case of a musical sound, on the pitch.

50. Echoes. An echo of any sound is caused by the reflec-

tion of the sound at some suitable surface, such as the face of a

6
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wall, a cliff, or a mountain side. The reflection may even take

place, as in the case of thunder, at the surface of a cloud or at

the surface of a current of hot or cold air.

The conditions under which an echo may be heard, in addition

to those which apply to the reflection of the sound, include the

physiological fact that the hearing sensation for any sound lasts

or persists for about one-tenth of a second after the sound wave

or pulse has ceased to act on the ear. Hence, in the case of a

short, sharp sound of practically no duration, such as the stroke

of a hammer on an anvil, the sound itself and the echo cannot be

heard as distinct separate sounds unless the echo reaches the ear

at least one-tenth of a second after the wave of the initial sound

has left it. That is, if the observer be placed at the point where

the sound originates at some distance from a suitable reflecting

surface, an echo will be heard only if the perpendicular distance

of the surface from the observer is such that the sound takes at

least one-tenth of a second to travel from the ear to the reflecting

surface and back to the ear after reflection at the surface. That is,

if we take the velocity of sound to be about 1,120 feet per second,

the distance of the reflecting surface from the observer must be

at least 56 feet, for the double distance from the ear to the re-

flecting surface and back will then be 1 1 2 feet, or the distance

travelled by the sound in one-tenth of a second.

If the sound reflected has an appreciable duration then it is

evident that a complete separate echo of the sound will not be

heard unless the distance of the reflecting surface is such that

the echo of the beginning of the sound reaches the ear one-tenth

of a second after the end of the sound leaves the ear. That is,

if the duration of the sound is t tenths of a second, the beginning

of the sound must travel for at least
(t + 1) tenths of a second

before reaching the ear as an echo. In this time the sound will

have travelled 112 (t + 1
) feet, and the distance of the reflecting

surface necessary to give a complete and separate echo of a sound

of t tenths of a second duration must, therefore, be at least
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56
(t -f 1) feet. If the distance is less than this the echo begins

before the sound ends and only the end of it is heard as a distinct

sound
;

if the distance is greater than this there is an interval

between the sound and its echo.

In the case of sounds uttered by the human voice it is found

that the minimum time necessary for the distinct articulation

of a short syllable is about one-tenth of a second, and that,

therefore, not more than five syllables can be uttered and heard

as distinct sounds in one second. The echo of a single syllable

sound will, therefore, be heard immediately after the sound ends

if the distance of the reflecting surface is at least (56 X 2) feet,

or 1 1 2 feet, for the value of t in this case is 1 if we take the

duration of the sound to be exactly one-tenth of a second. In

the case of a shout or sound of n syllables, uttered as rapidly

as possible, the distance of the reflecting surface, in order to

give a distinct echo of all n syllables, must evidently be at least

(n X 112) feet. If the distance is less than this the echo of

the first syllable returns before the whole of the n syllables have

been uttered, and the echoes of only a few of the end syllables

are heard after the sound has ceased. For example, if the

distance of the reflecting surface is 1 1 2 feet, the echo of only

the last syllable is heard as a separate sound; if the distance

is 224 feet, the echoes of only the last two syllables are heard;

and if the distance is r (112) feet, the echoes of only the last

r syllables of the sound are heard. Echoes which repeat more

than one syllable of a polysyllabic sound after the sound ends

are sometimes called polysyllabic echoes.

When a sound is reflected at a number of different surfaces

a number of different echoes of the same sound may be heard,

and if these follow each other at short intervals they may have

the effect of prolonging a short loud sound into a long roll or

rumble. It is possible, also, to get a very prolonged echo by
successive reflection between two suitably placed surfaces. The

rolling of thunder, for example, is caused in this way, by
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multiple and successive reflections from a large number of

reflecting surfaces.

51. Speaking Tubes. The action of a speaking tube is

due primarily to reflection at the inner surface of the tube.

The energy communicated per second to the air in the tube

across the transverse layer at the mouth of the tube is passed

on from layer to layer along the tube, and as the cross-section

of the tube is constant in area, the area across which this energy
is transmitted from layer to layer is constant. That is, the

energy transmitted across unit area per second, or the intensity

of the wave motion (Art. 33) transmitted along the tube, does

not decrease as distance from the starting point increases, but

remains constant from point to point along the tube, except

, Fig. 30.

in so far as it is decreased by work done against friction in

the tube.

Wave motion originated at the mouth of the tube would,

in tlie open air, spread out into the medium in the manner

indicated by the wave front diagram (Art. 35) shown in

Fig. 30. The area of the wave front across which the energy

is transmitted from a layer obviously increases as the distance

from the origin increases, and the intensity of wave motion

decreases as this area increases. In fact, at no great dis-

tance from the starting point the wave motion spreads out

into the medium practically as a spherical wave, and the

intensity is inversely proportional to the square of the

distance.

The wave motion originated at the mouth of the tube travels
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through the air in the tube, however, practically as a plane wave,

in the manner indicated in the wave front diagram shown in

Fig. 31. The area of the wave front across which the energy

is transmitted from layer to layer is constant, and the intensity

of the wave motion is, therefore, constant and subject only to

decrease by work done against frictional resistance as the motion

travels along the tube.

It will be seen that in the transmission of the wave motion

along the tube the plane wave front is prevented from spreading

latterally, as in Fig. 30, by the reflection at the inner wall of

the tube of disturbances originating at points in the wave front

close to the Avail.

It will be understood from what has been said above that

sound may be transmitted through a tube for very considerable

Fig. 31.

distances without undergoing any great decrease in loudness.

A speaking tube is a tube used in this way for the purpose

of speaking from one room to another some distance away.

The tube need not be more than an inch in diameter and it

may be of considerable length. It may also be bent at any

point in any direction provided the bends are made smoothly

and not too abruptly. The inner wall should be smooth to

avoid loss of energy by frictional resistance.

The action of an ear trumpet is practically the same as that

of a speaking tube. The instrument is essentially a long, conical

tube, tapering towards the ear, and commonly bent into a com-

pact form convenient for use. The wave motion entering the

mouth of the trumpet travels along the tube, round the carefully

constructed bends, to the ear. Since the tube tapers towards

the ear, the wave fronts across which the energy is transmitted
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from layer to layer decrease in area, and the intensity of the

wave motion therefore increases, and may, when it enters the

ear, be considerably greater than at the point where it enters

the trumpet.

The stethoscope used by medical men in auscultation is

another instance of the application of the principle of the

speaking tube.

52. Whispering" Galleries. In any room or enclosure of

circular plan in which the inner wall surface is free from

obstructions and smooth enough to reflect sounds, a sound pro-

duced at any point near the wall is transmitted round the

circumference of the room by successive reflection from the wall,

and may be distinctly heard at any point in the circumference.

In the circular gallery round the wall in the dome of St. Paul's

Cathedral, for example, a whisper at any point is distinctly

audible all round the gallery,

The explanation of this effect of successive reflection at the

wall of the gallery is best understood with the aid of a diagram.

Let O, in Fig. 32, represent on the plan of the gallery shown in

the figure, the point at which the sound is produced, and let the

circle MN represent the plan of a cylindrical surface in the air,

concentric with the surface of the wall and of any radius less

than CO. Through O, the position of the source of sound, the
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lines FOR and QOS are drawn tangential to the circle MN at

the points M and N.

It will be clear from this construction that the wave motion

diverging from within the angle POQ will be reflected round

and round the gallery, within the ring of air, lying between the

circle MN and the wall of the gallery. The disturbance along the

lines OP and OQ will be subjected to successive reflection from

the wall, along chords of equal length tangential to the circle

MN
;
and the disturbance along any line between OP and OQ

will be reflected round along chords tangential to a circle

between MN and the wall. It follows, therefore, that the wave

motion diverging from 0, between the lines OP and OQ is

transmitted round the gallery by successive reflection from the

wall, in such a way that it travels only in the air between MN
and the wall. The energy transmitted from between the lines

OP and OQ is thus transmitted to a limited mass of air, and is

prevented from spreading out as in an open medium. The

intensity of the motion, therefore, decreases very slowly as the

wave travels round the gallery, and it follows that a faint sound

produced at any point may be audible at all points in the

gallery.

In the same way it will be seen that the wave motion

diverging from within the angle ROS also travels round the

gallery, in the opposite direction, in the air between the circle

MN and the wall. That is, a sound produced at any point in

the gallery is reflected round and round the gallery in opposite

directions from the point at which it is produced.

53. Musical Note Produced by Successive Reflection.

It has already been explained that the sensation associated

with a musical sound is caused by the incidence of a periodic

wave disturbance on the drum of the ear. If, therefore, suc-

cessive reflections or echoes of the same sound fall upon the ear

in regular, and sufficiently rapid sequence, the sensation produced

must, in some measure, correspond to that for a musical note.
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The initial sound must necessarily be of short duration, not more

than one-thirtieth of a second, but it may be a short sharp

sound of any kind, for the periodicity of the train of pulses

incident upon the ear is due to the regular sequence of reflection

of the same pulse, and does not depend upon the form of the

pulse itself. The quality of the note will, however, depend upon
the form of the initial pulse, for this determines the form of the

wave incident upon the ear.

This effect may be observed if a very short, sharp sound, such

as may be produced by striking two pieces of metal together, is

produced near a railing. If the pulse set up in the air at the

production of the sound is short enough, it will be reflected at

each rail, and the regular sequence of reflected pulses which are

thus returned to. the ear will be rapid enough to produce a

musical note which is usually heard as a short musical ring

immediately following the initial sound.

A musical note produced in this way can be heard very

distinctly near a boarded fence in which the boards are set in

the usual way with overlapping edges. A sharp sound produced

near the fence is well reflected at the edges of the successive

boards, and a clear musical ring following the sound can be

distinctly heard.

Successive reflection from the faces of the individual steps of

a flight of steps, may also give rise to a similar effect.

In cases of this kind it is evident that if d denote the distance

between the reflecting surfaces and V the velocity of sound in the

air, the pitch of the note heard by an observer in or near the

plane of the reflecting surfaces corresponds to a frequency given

by -= Thus, in the case of a boarded fence, if the distance
2tOL

between the edges of the boards is 4 inches and the velocity of

sound in the air be taken as 1.120 feet per second, the frequency

1 1 20 x 3
for the note heard is - -

per second, or 1,680 per second.
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That is, the note is about two octaves and a sixth above the

middle C of the piano.

54. Refraction Of Sound. Just as sound is reflected in

accordance with the laws of reflection of wave motion, so is it

refracted at the surface of separation of two media in accordance

with the laws of refraction. This may be verified by showing

that sound waves are affected by refraction through a plate or

prism or lens of any suitable medium in exactly the same general

way as light.* Thus, if sound waves are refracted through a

lens, the lines of transmission are made either more convergent

or more divergent by the refraction, according to the form of the

lens and the nature of the material of which it is made. If the

waves diverge from a point on the axis of the lens it can be shown

that, after refraction through the lens, they diverge from or con-

verge to another point on the axis of the lens and that the two

points are as in the case of light conjugate foci.

A suitable lens for the refraction of sound is made by enclosing

carbon dioxide gas in a collodion bag, shaped, when full, like a

large double convex lens. The velocity of sound in carbon

dioxide is less than in air, so that this lens acts as a converging

lens for sound waves.

Experiment 26. Suspend a carbon dioxide lens with its axis in a

horizontal position, and place a ticking watch at a point on the axis

at a distance from the lens equal to about twice the radius of curvature

of the faces of the lens.

Use a small funnel attached to a length of rubber tubing (as in

Exp. 25), as an "ear," and find the point on the axis at which the

sound pulses diverging from the watch are brought to a focus. When
this point is found interchange the positions of the "ear" and the

watch, and show that the positions are conjugate.

Measure the distances of the conjugate foci from the lens and

calculate the focal length of the lens by the usual formula for a lens.

It is to be noticed in connection with the refraction of sound

that the velocity of sound in most liquid and solid media is con-

* See Chapter IV. in the Section on Light.
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siderably greater than in air. It follows, therefore, that sound

waves in air may be totally reflected at the surface of these

media, and that the critical angle in most cases will be small.

Thus, in the case of air and water, the index of refraction as

determined by the ratio of the velocities of sound in these two

media is about *24, and the critical angle for the media is, there-

fore, an angle of about 1 4. That is, for all angles of incidence

greater than 14, sound waves are totally reflected at the surface

of water. For most other liquid and solid media and air the

critical angle is even smaller and it follows that, except in the

case of nearly direct incidence, sound waves in air are totally

reflected at the surface of any liquid or solid medium.

In the case of gases the velocity of sound increases as the

density decreases so that total reflection takes place as in the

case of light when sound is travelling in the rarer medium.

It should be remembered when comparing the refraction of

sound and light that the terms " rarer
" and " denser

"
as used

in light do not apply in sound. Light travels in any transparent

substance as transverse wave motion in the ether which permeates

the substance,* and, as a general rule, its velocity increases as

the density of the substance decreases. Sound, however, travels

in the material media, and this general relation does not at all

apply for solids and liquids, although, for the reason given in

Art. 40, it happens to be true for gases.

* See Art. 5 in the Section on Light.
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CHAPTER VII.

VELOCITY OP SOUND IN AIR AND WATER.

55. Introductory. The determination of the velocity of sound

in air has been the subject of experiment for over two hundred

years. The early experiments were made by the simple direct

method of measuring the time taken by a sound in travelling

over a long measured distance. Recent determinations have also

been made by this direct method, but over shorter distances and

with much more elaborate and accurate methods of measuring

time. Good determinations have also been made by several

indirect methods.

In this chapter it is proposed to notice only some of the simpler

direct methods of determination.

56. Early Determinations of the Velocity of Sound
in Air. One of the simplest and most direct methods of deter-

mining the velocity of sound in air is to note the interval of time

which elapses between the instant of seeing the flash and the

instant of hearing the report of a gun fired at a known distance

from the observer. This method has been dealt with in

Art. 40.

A rough determination may also be made by noting the interval

of time which elapses between hearing a sound and hearing its

echo from a reflecting surface at a known distance from the

observer.

Thus, if an observer stationed at a point on the perpendicular

from the source of the sound to the reflecting surface, and at a

distance of 1,000 yards from the surface, finds, by a stop watch,

that the interval between the instant he hears the direct sound

and the instant he hears the echo is 5f seconds, the average
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velocity of sound between the observer and the reflecting surface

is given by -7^7- feet Per second, or 1,111 feet per second.

It should be noticed that a method of this kind is subject to

three important sources of error. A considerable error is possible

in the measurement of the distance involved, and a much larger

percentage error is probable in the measurement of the com-

paratively short time to be observed, unless a specially accurate

method of measurement is adopted. A third source of error is

due to the physiological fact that every observer is liable to an

appreciable error in recording the instant at which a particular

observation is made
;
this error is sometimes called the personal

equation of the observer, and it usually differs slightly for

different observers.

In all experiments of this kind, too, the motion of the air as well

as its temperature and hygrometric state (Art. 40) have to be con-

sidered. If the air is in motion that is, if there is any wind

the velocity obtained in this way is really the resultant of the

velocity of the sound in still air and the velocity of the air in the

direction considered. Thus, if sound is travelling with the wind

the observed velocity of sound is the sum of its true velocity in

still air and the velocity of the wind. If the sound is travelling

directly against the wind then the observed velocity is the

difference between the true velocity of sound in still air and the

wind velocity. As, however, the velocity of sound in air is over

700 miles per hour, and the wind velocity under the conditions

selected for an experiment would naturally be very much lower,

the error resulting from omitting the velocity of the wind from

the data of the experiment would be comparatively small. The

effect of the wind velocity can, however, be eliminated by the

method of reciprocal observations described below.

In the earliest experiments the velocity of sound in air was

determined simply by observing the time taken by the report of

a gun or cannon fired at a particular station, in travelling to
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another station at a known distance from the first. The observer

at the observation station noted by means of a clock or chrono-

meter the time that elapsed between the instant of observing the

flash and the instant of hearing the report of the gun at the

firing station.

The influence of the wind was usually neglected, and the

temperature and humidity of the air were not recorded as they

were not supposed to have any influence on the result.

Among the early determinations, that made by Derham in

1707 holds an important place. Derham observed the time

taken by the report of a cannon to travel from a firing station

on Blackheath to the tower of Upminster Church in Essex, a

distance of 12J miles. A long series of observations were made

under different atmospheric conditions in order to determine,

and, if possible, eliminate the effect of the wind.

The effect of variation in temperature and humidity was

overlooked, but the effect of the wind was conclusively established

in accordance with theory. It was found that the time taken

by the report of the cannon in travelling between the two

stations varied between 55 seconds and 63 seconds, according to

the direction of the wind. As the final result of his experi-

ments Derham found the velocity of sound in air to be 1,142

feet per second.

57. The Method of Reciprocal Observations. In later

experiments for the determination of the velocity of sound in air

by long distance observations of the type described above, the

effect of wind velocity was eliminated by the method now known

as the reciprocal observation method.

Two stations at any exactly known distance apart are selected.

A gun is fixed at each of the two stations, and the time taken

by the report in travelling over the intervening distance in each

direction is carefully determined. The average, or mean, of the

two times thus observed gives the time in which sound would

travel over the distance between the stations in still air,
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provided the velocity of the wind is not great and remains

practically constant during the time in which the observations

are made. For if S denote the distance between the stations,

V the velocity by sound in air, v the velocity of the wind along

the line joining the stations, and ^ and t
2
the observed times

taken by the report in travelling with and against the wind

respectively, we have

S S

and
2 v-

If the ratio ^ is small, these results reduce approximately

to

*
l
=
VV

1 ~
V

and t

-.

In this relation ^ ^ is the mean of the observed times,

S
and ~ is evidently the time taken by sound in travelling over

the distance S in still air.

The effect of the wind is thus eliminated under conditions

such as would prevail during a determination.

In most of the determinations by this method the temperature

of the air was noted and recorded among the data of the

experiments.

Some of the earliest determinations were made in France by
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this method. In 1738 the Academic des Sciences arranged for

a careful determination of the velocity of sound in the open air

between two stations near Paris. One station was at Mont-

Ihery and the other at Montmartre, 28 kilometres distant.

Cannons were fired at these stations alternately, at intervals of

half an hour, and observers posted at points on the line joining

the stations noted the instants at which the successive sounds

were heard. Clocks with pendulums beating half seconds were

used for the time observations.

The value obtained by these experiments was 337 metres

per second, the temperature of the air being 6 C.

Later, in 1822, the Bureau des Longitudes promoted a

determination which was made by experimenting between

stations at Montlhery and Villejuif, over a distance of nearly

1 8 kilometres. Cannons were fired alternately at these stations

at intervals of five minutes, and the times taken by the reports

in travelling over the distance between the observing stations

were measured by means of special chronometers.

The results of the experiments gave the velocity of sound in

air at 16 C. as 341 metres per second.

Other important determinations have been made by this

method, and the general result of all the best determinations is

to fix the velocity of sound in dry air at C. at 332 metres per

second, or 1,090 feet per second.

58. Stone's Experiments in Cape Town. In 1871 a

careful determination of the velocity of sound in air was made

by Mr. Stone, of the Cape Town Observatory. The one o'clock

gun fired at Port Elizabeth served as the source of sound.

Two observers were stationed on the line joining the gun to

the Observatory, one being 641 feet from the gun, and the other

at the Observatory, 15,449 feet distant. Each observer signalled

electrically, by pressing a key, the instant he heard the report

of the gun. These signals were recorded at the Observatory

on a specially constructed chronograph, and from the record
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given by this instrument the time taken by the sound in

travelling over the distance between the observers was accur-

ately known.

Special precautions were taken to eliminate the personal

equation of the observers. As the result of these experi-

ments Stone gives the velocity of sound in dry air at C.

as 1,090-6 feet per second, or 332*4 metres per second.

59. Renault's Experiments. In 1864 Regnault carried

out some important open-air experiments for the determination

of the velocity of sound in air.

He adopted the method of reciprocal observations. A gun
was used as the source of sound, and the instants of firing the

gun and hearing the reports were recorded electrically on a

suitable chronograph.

In these experiments Regnault determined the average velocity

of sound in air over two distances, one of 1,280 metres and the

other of 2,445 metres. He found the average velocity of sound

in dry air at C. over the 1,280 metres to be 331*37 metres

per second, and over the 2,445 metres to be 330'7 metres per

second. These results seem to indicate that as the sound wave

travels on and gets less intense its velocity decreases slightly as

the intensity decreases. This would explain why the average

velocity over the longer distance is less than over the shorter

distance.

The possibility that loud sounds travel faster than faint

sounds was first suggested by the fact that, during experi-

ments in the Polar regions on the velocity of sound in air,

the report of the gun fired in the experiments was usually heard

before the order to fire.

A number of other results partially confirming this conclusion

have been obtained, but it is still doubtful whether sufficient

care has been taken to eliminate the effect of the " wind "
of the

explosion, or air displacement, which usually accompanies the pro-

duction of a loud sound.
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60. Effect of Change of Temperature on the Velocity

Of Sound in AiP. It has been found, both by theory, as

explained in Art. 40, and by experiment, that the velocity of

sound in air increases with rise of temperature.

The velocity of sound in dry air at C. is 1,090 feet per

second, or 332 metres per second, and is found to increase by
about 2 feet per second, or -6 metre per second, for each degree

centigrade rise of temperature. Thus the velocity of sound in

dry air at an ordinary temperature of, say, 15 C. is 1,120 feet

per second, or 341 metres per second. In ordinary atmospheric

air at this temperature the velocity would be slightly greater

than this on account of the presence of water vapour in the air.

In 1889, Greely made a number of determinations of the

velocity of sound in air in the Arctic regions at temperatures

between 10 C. and 45 C. As a result of his experiments

he found that the velocity of sound in dry air increases by
about 0*6 metre per second for each degree centigrade rise of

temperature.

61. Experimental Determination of the Velocity of

Sound in Water. The velocity of sound in water was deter-

mined experimentally by Colladon and Sturm in 1826. The

experiments were made in the water of the Lake of Geneva.

The time taken by a sound in travelling between two stations,

a measured distance apart in the water was carefully determined

by means of a stop watch, and the velocity of sound in water

was deduced directly from the observed results.

The source of sound used in the experiments was a bell fixed

under water at a depth of about a metre. The bell was struck

by a hammer worked by a lever from the boat moored at the

striking station. The same lever carried a lighted taper so

arranged that it fired a charge of powder at exactly the same

instant as the bell was struck by the hammer. As the experi-

ments were made at night the flash of the powder discharge

was plainly visible at any point on the lake, and thus served

7
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to signal to the observer at the receiving station the instant at

which the bell was struck.

The arrival of the sound of the bell at the receiving station

was detected by means of a long ear trumpet. The wide end

of the trumpet, closed by a thin sheet of rubber, was immersed

in the water in the proper position to receive the wave trans-

mitted through the water, and the other end was applied to

the ear in the usual way. By this means the sound of the

bell could be heard through the water over very long distances
;

it was found during the experiments that it was distinctly

audible from one side of the lake to the other, over a distance

of nearly 10 miles. It was, therefore, possible to take two

stations on the lake far enough apart to make the time taken

by the sound in travelling from one to the other great enough

to be determined with considerable accuracy.

A large number of observations were made in this way, and

as the final results of their experiments, Colladon and Sturm

found the velocity of sound in water to be about 1,435 metres

per second, or 4,700 feet per second. The average temperature

of the water was about 8 C.
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CHAPTER VIIT.

TRANSVERSE VIBRATION OP STRINGS.

G2. String's. A string, as the term is used in sound, applies

to a thread or filament of any material. A fibre of silk, a thread

of glass, a string of catgut, and a thin steel wire are all strings

in this general sense.

The cross-section of a string is generally assumed to be circular

in form and uniform in diameter, so that for a string of any given

material the mass per unit length is constant. The essential

characteristic of a string is, however, flexibility. A string must

be so flexible that the resistance which it offers to the small

bending strains which it undergoes during transverse vibration

is negligible.

63. The Transverse Vibration of a String
1 stretched

between Two Fixed Points. If a string, AB (Fig. 33),

A PC:.., .....->*

Fig. 33.

stretched between two fixed points, A and B, is pulled aside

into one of the two dotted positions shown in the figure, and

then let go, it is set in transverse vibration between these two

dotted positions.

The motion of the string is periodic in character, each complete

vibration being performed in a definite constant period. This is

proved by the fact that when the vibration frequency is high

enough to give a musical note the pitch of the note is found to

be constant.

The amplitude of vibration decreases as the vibration continues

until the string ultimately comes to rest in. its initial position.
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The following points characteristic of this mode of vibration

of the string should be noted :

(a) Every point on the string vibrates in a path at right angles

to the length of the string ;
the string is, therefore, said to be in

transverse vibration (Art. 10).

(b) The vibratory motion is the same in period and in phase

for all points, but differs in amplitude from point to point along

the string. The amplitude is evidently a maximum at the

middle of the string and decreases gradually from the middle

towards the ends to zero at each end.

(c) The bending or flexure to which the string is subjected

during vibration varies from point to point along the string.

Thus, a very small length taken at the middle of the string under-

goes practically no bending during vibration; its direction

remains parallel to the initial direction of the string throughout

a complete vibration. A small length taken at either end of the

string, however, undergoes appreciable bending; during half a

period, for example, it bends through the small angle between

the directions of the dotted curves at the point A or B in the

figure. Similarly, a small length taken anywhere between the

middle and the end of the string undergoes an amount of bending

which increases, as the distance from the middle increases, from

zero at the middle to a maximum at each end. The extreme

bending at any point is in fact measured by the angle between

the tangents at this point to the two dotted curves in Fig. 33,

and this angle evidently increases from zero at the middle of the

string to a maximum at each end.

The two end points and the middle point of the string in

vibration thus possess two important characteristics.

Each end point is a point of minimum (zero) amplitude of

vibration and maximum bending strain. A point on a vibrating

body which possesses these characteristics is called a node. The

end points of the string in this mode of vibration are, therefore,

nodes.
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The middle point is the point of maximum amplitude and

minimum (zero) bending strain. A point on a vibrating body
which possesses these characteristics is called an antinode. The

middle point of the string in this mode of vibration is, therefore,

iin antinode,

A node on a vibrating body is specially noticeable because it

is a point of no motion
;

it remains at rest throughout the

vibratory motion of the body. In the case of the vibrating

string here considered the end points are fixed and are necessarily

nodes, but it will be seen later that nodes may form at points

which are not mechanically fixed.

The distance from node to node in a vibrating body is some-

times called a segment or an internode, and the string in the

mode of vibration here described is said to vibrate in a single

segment.

This mode of vibration, sometimes called the fundamental

mode, is the simplest mode in which the string can vibrate. It

is not, however, the only mode of vibration of which the string

is capable.

64. Period of Vibration of a Stretched String.
A string is, by definition, assumed to be so flexible that the forces

which result from the slight bending which it undergoes during
vibration are negligibly small.

It is assumed, too, that the stretching strains which accompany
its vibration are so small that the forces due to them are also

negligible. That is, the elastic properties of the material of the

string are not involved in its vibration, and the only force on

which the vibratory motion depends is the tension of the string.

The motion of any element of the string thus depends dynamically

only on the tension of the string, the length of the vibrating

segment, and the mass per unit length of the string. The period

of vibration, therefore, involves only these three quantities, and

is quite independent of the material of the string except in so

far as this determines the mass per unit length.
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The relation between the period of vibration and the tension,

length, and mass per unit length of the string can be calculated

theoretically as a problem in dynamics. It can also be deduced

experimentally by investigating how the period varies with each

of the three quantities on which it depends taken separately.

Thus, the relation between the period and the length of the

string may be determined by finding how the period of vibration

of a particular string under a fixed constant tension varies with

the length set in vibration. The mass per unit length and the

tension are here constant, so that any observed variation of the

period will be due entirely to the change in length.

The variation of the period of vibration is readily noted and

measured by noting the change in the pitch of the note given out

by the vibrating string. Thus, if a particular change in length

causes the pitch to rise an octave, it is known at once that the

vibration frequency of the string is doubled and its period,

therefore, halved.

Experiment 27. Stretch a thin steel wire on a sounding-board over

two knife edges or bridges as shown at A and B in Fig. 34. The wire

A C B

:

'

|

Fig. 34.

should be attached to a fixed pin, Q, at one end, and to a screw wrest

pin, P, at the other end. Adjust the tension of the string by means

of the wrest pin at P until the string vibrating as a single segment
between A and B gives out a note of convenient pitch, about that of

the middle C.

Now insert the movable bridge C (which should be very slightly

higher than the bridge at A and B) between A and B, and adjust its

position until the length AC, which is cut off between the bridges A
and C, gives, on vibrating as a single segment, a note an octave higher

than that given by the string as a whole.

It will be found that when this adjustment is made, the length AC
is half of AB ; that is, the frequency is doubled when the length of

the vibrating segment is halved.

Similarly, if the position of the bridge C is adjusted until the string
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AC, vibrating as a single segment, gives a note a fifth above that given

byAB, it will be found thatAC is two-thirds of AB i.e.
,
when the length

is varied in the ratio 3 : 2, the frequency varies in the ratio 2 : 3.

This result is further confirmed by verifying that if the position of

the bridge C is adjusted so as to give AC successive values, equal to

f> r f > ir > > YTT> an(l i f AB, the successive notes are found to be the

notes of the diatonic scale (Art. 46) in ascending order.

It follows from the results of this experiment that the vibra-

tion frequency of a string, vibrating as a

whole, in a single segment varies inversely as

the length of the string, provided the tension ^
and mass per unit length do not change.

The relation between the vibration fre-

quency and the tension of the string, when

the length and the mass per unit length

remain constant, may be established by the

following experiment.

Fig. 35.

Experiment 28. Fix a sounding-board pro-

vided with two fixed bridges A and B in a

vertical position, as- shown in Fig. 35, by

screwing it to horizontal strips of wood nailed

across vertical battens on a wall. Take a

thin steel wire, attach one end to the pin at

P and stretch it over the bridges at A and

B, by means of weights placed in the scale

pan P.

With this arrangement the tension is evi-

dently measured by the weight carried by the wire at P, and can,

therefore, be adjusted as required.

A large bucket may be used as a scale pan ; the stretching weight
can then be conveniently adjusted by pouring measured quantities of

water into the bucket, instead of using weights.

Adjust the tension until the length AB, vibrating as a single

segment, gives a note of fairly low pitch. For subsequent reference

it is convenient to adjust the tension until the note heard is in tune

with that given by another string or a tuning fork. Note the amount

of this tension as given by the weight carried by the wire, including

the weight of the scale pan, or bucket.

Now increase the tension and note that the pitch of the note rises.
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Continue to increase the tension until the pitch rises (a) a third, (6)

a fifth, and (c) an octave, and note the amount of the tension applied

to the wire in each case.

It will be found (a) that to raise the pitch a third the tension must

be increased in the ratio 16 : 25 ; (b) that to raise the pitch a fifth the

tension must be increased in the ratio 4:9; and (c) that to raise the

pitch an octave the tension must be increased in the ratio 1 : 4. That

is, (a) when the tensions of the string are in the ratio 16 : 25, the

vibration frequencies of the string are in the ratio 4 : 5 or \/16 : v/25;

(6) when the tensions are in the ratio 4 : 9 the vibration frequencies

are in the ratio 2 : 3 or ^4 : x/9 ; and (c) when the tensions are in

the ratio 1 : 4 the vibration frequencies are in the ratio 1 : 2 or v/1 : V/4T

It follows from this experiment as a general result, that the

vibration frequency of the string vibrating as a whole in a single

segment is directly proportional to the square root of the tension

when the length and mass per unit length are constant.

The relation between the vibration frequency and the mass

per unit length, when the length and tension of the string are con-

stant, cannot be determined quite so directly. The mass per unit

length evidently cannot be adjusted to any desired value; it is only

possible to take a number of strings differing in this particular,

and to compare the pitch of the notes they give out when equal

lengths are made to vibrate under the same tension. The pitch

of these notes is best compared by means of a string stretched

on a sounding-board, provided with a movable bridge as in

Fig. 34. The length of a portion, AC, of the string is adjusted

until the note it gives out is in unison with each of the notes to

be compared. The vibration frequencies of the strings giving

these notes can then be assumed by the result of Exp. 27, to be

inversely proportional to the lengths of AC to which they

correspond.

The mass per unit length can then be determined for each

string by weighing a known length of the string and dividing

the mass by the length.
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Experiment 29. Take several strings of catgut and metal (steel and

brass wire) and find the mass per unit length for each by weighing a

metre of the string and calculating the mass per cm.

Stretch the string of greatest mass per unit length as in Fig. 35,

and adjust the tension until it gives out a note of rather low pitch.

Take the apparatus of Fig. 34 and adjust the tension of the string

by means of the wrest pin, until it gives a note a little lower in 'pitch

than the note given by the string under test. Then adjust the posi-

tion of the movable bridge C until the note given by the part AC is in

unison with this note. Measure and record the length of AC.

Now stretch each of the other strings in the same way as the first,

under the same tension and with the same distance between the

bridges. Also adjust the length AC of the reference string (without

altering its tension) in each case until it gives a note in unison with

the note given by each string in turn. Measure the length of AC in

each case and record the lengths.

If now Jj and lz are the recorded lengths of AC for any two strings, and

m and m2 the masses per unit length for these strings, it is known

from the result of Exp. 28, that if % and n2 denote the vibration

frequencies for these strings n
: :n2

= 12 : lr.

It will be found, however, from the data of this experiment that

I2 :ll== fjm2 : /Jm^ It follows, therefore, that % : ?i2
= /Jm^ : mjm^

For example, if the masses per unit length for any two of the strings

are in the ratio 4:9, the vibration frequencies for equal lengths of

these strings under the same tension are in the ratio J9 : \/4 or

3:2.

The general result of this experiment may evidently be ex-

pressed by saying that the vibration frequency of a string

vibrating as a whole in one segment is inversely proportional to

the square root of its mass per unit length, provided its length

and tension are kept constant.

This relation can be established more neatly, but perhaps less

obviously, by adjusting the tension of each of the strings so that

equal lengths give out notes of the same pitch and then deducing

the relation from the result of Exp. 28.

Experiment 30. Stretch each of the strings to be compared as in

Fig. 35, and adjust the tension in each case so that the strings all give

a note of the same pitch.

Record the tension in each case.
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It will be found on comparing the data of the experiment that the

tension necessary for this adjustment is, for each string, directly pro-

portional to the mass per unit length.
It follows, therefore, that since, by Exp. 28, the vibration frequency

is directly proportional to the square root of the tension, it must be

inversely proportional to the square root of the mass per unit length.

The three general results or laws established by these experi-

ments are most conveniently expressed algebraically. Thus, if

n denote the vibration frequency of the string, I the length in

vibration, t the tension, and m the mass per unit length, we have

(i) n is proportional to
y,

when t and m are constant

(Exp. 27).

(ii) n is proportional to ^Jt, when / and m are constant

(Exp. 28).

(iii) n is proportional to
-pz,

when I and t are constant

(Exps. 29, 30).
v m

Combining these three results algebraically we get

i /T

or,

where k is a constant.

If n is determined for a string for which I, t, and m are known r

it will be found that the value of k is J, and we therefore get

i
/To / \ wYi

*

This formula expresses concisely the three laws for the trans-

verse vibration of a string, which have been formulated

above.

It will be seen from the formula that for strings of the same
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length, n is proportional to
-y

~~ and is, therefore, constant if the

ratio - is constant. This is the relation established by Exp. 30.
m

This formula is sometimes expressed in somewhat different

terms. Thus, if r denote the radius of cross-section of the string,

and d the density of its material, we have, m =
irt^d, and the

formula reduces to

i /T"
2frV ^'

which may evidently be expressed verbally in four " laws."

Similarly, if s denote the stretching stress, or tension per unit

area of cross-section, and a the area of cross-section, we have

t = as and m = ad, and the formula becomes

i 17

&f*
The formula, n = -&J ,

can evidently be applied to

determine n directly for any string for which /, t, and m are

known. This determination can readily be made with the

apparatus of Exp. 28. The quantities I, t,
and m are measured

directly, and the value of n calculated from the formula. The

units in which I, t, and m are expressed must, however, be

consistent. Thus, / may be in centimetres, m in grammes per cm.,

and t in dynes ;
or / may be in feet, m in pounds per foot, and

t in poundals.

Numerical Example. A string stretched as in Exp. 28, is 50 cm.

long, its mass per unit length is *01 grm., and its tension is due to

the weight of 8 '83 kilogrms., calculate its vibration frequency.

Here, from the data of the question, we have I = 50 cm., m = '01

grm., and t = 8,830 x 981 dynes.

The value of n is, therefore, given by

n =
looV"

8,830 x 981

01

or, n = 294-3.
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This method of determining the vibration frequency of a string

may evidently be applied to determine the vibration frequency
for any source of a musical note. For example, if the tension

of the string is adjusted until it gives a note in unison with the

note of a tuning fork (or any other source) the value found for

n from the values of
I, t, and m for the string is also the value of

n for the source which gives a note in unison with the note of

the string.

Numerical Example. A string whose mass per unit length is '0016

grm. is stretched by a weight of 3,924 grms., and it is found that a

length of 19 cm. of it gives a note in unison with the note of a tuning
fork. Find the vibration frequency of the tuning fork.

Here, from the data given I = 19 cm., m = '0016 grm., and
t = 3,924 x 981 dynes.
The value of n is, therefore, given by

_1 /3,924 x 981~
38\ '0016

or, 71 = 129.

The pitch of the note given by the fork is, therefore, about the C
below the middle C of the piano.

65. Harmonic Modes of Vibration of a String-. When
a string AB is stretched, as in Fig. 34. over two fixed bridges at

A and B, any portion of it between the bridge at A, and a

movable bridge inserted at C, can be set in vibration as a single

segment by plucking it or bowing it at the middle point of the

segment. It is found, however, that if the length AC is an

exact sub-multiple of the length AB, the vibration is not confined

to the segment AC ; the whole string divides into segments,

each of which is equal in length to AC and vibrates in the same

manner as that segment. Thus, if AC is a half, or a third, or a

fourth of AB, the string vibrates as a whole in two, three, or

four segments, as shown in Fig. 36. The vibration of each

segment is the same in period and amplitude, but there is a

difference in phase between any two adjacent segments of

exactly half a period, so that at any instant the lateral displace-
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meiits of adjacent segments are in opposite directions. In Fig.

36, the two extreme positions between which the string vibrates

are shown by a dotted line and a thin continuous line respec-

tively, and it can be seen that the segments into which it is

divided are at any instant alternately above and below the

initial position of the string.

A string can be set in vibration in this manner without the

use of a movable bridge. It is only necessary to damp the

Fig. 36.

string at the point C, by touching it lightly with some suitable

object, such as the finger or the edge of a paper knife, and then

to pluck or bow the segment AC at its middle point. Thus if a

string AB is damped lightly at a point C, such that AC is

one-sixth of AB, and the segment AC plucked aside gently at its

middle point, the whole string will at once break up into six

segments, and will continue to vibrate in this manner for some

time.

It will be noticed that when a string vibrates in this way,
nodes are formed at points which are not mechanically fixed,

and antinodes are formed at points which have not been plucked

or bowed. Thus, if a string vibrates in four segments as shown

in Fig. 36, there are, in addition to the nodes at the ends of the

string, three equidistant nodes at the points where the string

divides into segments ;
there are also four antinodes, one at the

middle of each segment.
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When a string vibrates in segments the amplitude of vibration,

even at an antinode, is usually very small, so that it is practically

impossible to detect the existence of nodes and antinodes at

particular points by mere inspection. The existence of these

points can, however, be effectively demonstrated by the following

experiment.

Experiment 31. Take a fairly long string, AB, stretched over

terminal bridges at A and B, as shown in Fig. 37, and mark the points

Ik

Fig. 37.

C, D, E, dividing the string into four equal lengths. Now get five

small strips of paper about 1 mm. wide and 2 cm. long, and bend each

strip at its middle point into a V-shaped rider. Place these riders

across the string at the points D and E, and at the middle points of

the segments CD, DE, and EB, as shown in the figure.

Now damp the string lightly at the point C and bow the segment
AC at its middle point.

It will be found that the instant AC is bowed, the riders at the

middle points of CD, DE, and EF are thrown off the string, but that

the riders at D and E are not perceptibly disturbed.

This indicates that the points D and E are nodes or points of zero

displacement, and the middle points of CD, DE, and EB antinodes,

or points of maximum displacement.

The string is, therefore, vibrating in four segments, with nodes at

the points A, B, C, D, E, and an antinode at the middle point of each

segment.

In the case of a string vibrating in segments the vibration

frequency of the string is the vibration frequency of its segments.

A string of 1 ength I vibrating in n segments is practically n short

strings of length l/n vibrating in unison.

Now it has been shown (Exp. 27) that the vibration frequency

of different lengths of the same string vibrating under the same

tension is inversely proportional to the length in vibration.
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Hence it follows that when a string vibrates in n segments, its

vibration frequency is n times the frequency with which it

vibrates as a single segment. For, if / be the length of the

string, the length of each segment when it divides into n

segments is l/n, and the vibration frequency of this length is n

times that of the length I.

If, therefore, a string vibrate in 2, 3, 4, 5 ... n segments,

the vibration frequency becomes 2, 3, 4, 5 ... n times the

vibration frequency for the fundamental mode in one segment.

The note given out by a string vibrating in the fundamental

mode is called the fundamental tone of the string. Hence

when a string vibrates in 2, 3, 4, 5, &c., segments the notes

given out are, successively, an octave, an octave and a fifth, two

octaves, and two octaves and a third, &c., higher in pitch than

the fundamental note.

Notes for which the frequencies are, respectively, 2, 3, 4, 5

. . . n times the frequency for a given note are called the

harmonics of that note.

When, therefore, a string vibrates in 2, 3, 4, 5 ... n

segments, the notes given out are, respectively, the harmonics

of the fundamental note. The modes of vibration in which a

string divides into segments are, for this reason, generally called

the harmonic modes of vibration for the string.

66. Compound Modes of Vibration of a String. When
a string is set in vibration in any way, it does not usually vibrate

in its fundamental mode only, or in any one harmonic mode, but

generally in a complex mode compounded of the fundamental

mode and a number of the harmonic modes.

The note given out by a string vibrating in this way is, there-

fore, a compound note made up of the simple notes corresponding

to the component modes of vibration present in the string's actual

mode of vibration. In some cases the existence of the component
notes present in a compound tone can be detected by the ear.

Thus, if the middle C of the piano be struck sharply, and the key
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held down to prevent damping, the presence of the first harmonic,

an octave above the fundamental note, and the second harmonic,

a fifth above the first, can usually be detected by a trained ear

in the compound note produced.

The notes of higher pitch compounded with the fundamental

note in any compound note are generally called the overtones of

the note. The overtones in the case of a note given by a vibrating

string are the harmonics of the fundamental note in unbroken

sequence (up to a certain point), but it is more generally the case

that the overtones of a compound note include only certain

members of the harmonic series. Some notes, for example,

contain only the even harmonics (the second, fourth, sixth, &c.),

while others contain only the odd harmonics as overtones.

The quality of a musical note, as defined in Art. 47, depends

very largely upon the number, order, and relative intensity of the

harmonics present in its overtones.

67. Relation between the Velocity of Propagation of

a Transverse Displacement along a String and the

Vibration Frequency of the String. The period of vibra-

tion of a string stretched between two fixed points depends upon

B

b

Fig. 38.

the velocity of propagation of a transverse displacement along

the string.

Imagine a segment of a string, AB (Fig. 38), to be set in

vibration by setting its middle point, c, in periodic motion along

a short transverse path ab. As the middle point moves from c

to a the transverse displacement thus impressed on the string at

c travels along the string from c in both directions towards A and

B. When the point c has reached a, and so completed a quarter

of a complete vibration, the transverse displacement will have



TRANSVERSE VIBRATION OF STRINGS. 113

reached points A and B equidistant from the middle point. The

length AB thus determines the length of the segment which can

be set in vibration with the period of the periodic motion im-

pressed on the string at c
;
and if the points A and B are fixed

the segment AB will vibrate as a whole with this period.

Now, the length AB is evidently twice the distance travelled

by the transverse displacement impressed on the string at c in

one quarter of the period of vibration. That is, the displacement

travels half the length of the string in a quarter of a period, and

the period of vibration of the string AB as one segment is, there-

fore, equal to the time in which a transverse displacement travels

twice the length of the string. Hence, if the velocity of trans-

mission of a transverse displacement along the string be denoted

21

,
the period of vibration of a string of length I is

,
and the

V

vibration frequency of the string is, therefore, given by

v
=

2?

It can, however, be proved that the value of v for a stretched

string is given by
i

where t denotes the tension and m the mass per unit length of

the string.

Substituting this value of v in the relation, n =
,
we get

I IL'

an m

This is the relation already obtained in Art. 64 as the general

result of an experimental investigation of the relation between

the quantities involved in the formula.
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CHAPTER IX.

LONGITUDINAL VIBRATION OP RODS AND
COLUMNS OP AIR.

68. Longitudinal Vibration of a Rod fixed at both Ends.

A rod AB, Fig. 39, extending between two fixed points, A and

B, can be set in longitudinal vibration, in its fundamental mode,

by displacing its middle point C slightly, in the direction of its

length towards one of the ends, and then letting it go. Thus, if

the middle section at C be displaced into either of the dotted

positions shown at a and b in the figure, one half of the rod is

slightly extended, and the other half slightly compressed, so that

Fig. 39.

when the constraint is removed, the rod by virtue of its elasticity

recovers its original unstrained state by a series of longitudinal

vibrations, in which each half of the rod alternately lengthens

and shortens through a gradually decreasing range until the

initial state of rest is attained.

The mode of vibration of a rod under these conditions is

exactly analogous to the transverse vibration of a string AB
stretched between two fixed points A and B, and vibrating in one

segment as described in Art. 63. Every section of the rod

vibrates longitudinally, backwards and forwards on each side of

its normal position, with the same period and in the same phase,

but the amplitude of vibration decreases from a maximum at the

middle to zero at each end. Thus, in Fig. 39, if dotted lines

similar to those shown at a and b for the sections at C and D be
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taken to indicate the range of vibration at any point on the rod,

the distance between the lines will decrease from the centre to

each end, and the mode of vibration is such that all sections pass

through corresponding positions such as the a positions, the

normal positions, and the b positions, in the same direction at the

same instant.

The longitudinal vibration of a rod is obviously accompanied

by elastic strain in the material of the rod, and it will be readily

understood from what has been said, that the strain is of the

nature of an extension or a compression. The amount of

strain at any point in the rod depends upon the difference in

the displacement of adjacent sections during vibration. This

difference is not the same for all points on the rod, so that

the strain at any instant will vary from point to point along
the rod. Further, the strain at any point varies from instant

to instant during a complete vibration. When every section

is in its normal position there is no strain at any point ;
and

when every section is in either of its extreme positions the

strain is at its maximum for that point. At the middle point of

the rod the amplitudes or maximum displacements of adjacent

sections are practically equal and the maximum strain at this

point is, therefore, of zero value. Also, the difference between

the maximum displacements of adjacent sections increases from

the middle to each end of the rod, so that the maximum
strain at any point increases from the middle outwards towards

the ends of the rod. The range of strain during a complete
vibration is thus zero at the middle point, and increases from

point to point along either half of the rod to a maximum at

the ends.

It has already been noted that during vibration one half of the

rod lengthens while the other shortens
;

it follows that if at any
instant all points in one half of the rod are in extension all points

in the other half will be in compression. It will also be noticed

that when the sections of the rod are displaced from their normal
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positions towards one end, the half of the rod at that end is in

compression and the other half is in extension.

The end points of the rod, being fixed, are nodes, or points of

zero displacements, but maximum range of strain; the middle

point, similarly, is an antinode, or point of maximum displace-

ment, but zero range of strain.

Thus, the rod AB, when its ends A and B are fixed, vibrates

longitudinally in its fundamental mode in one segment with a

node at each end and an antinode at its middle point.

In addition to its fundamental mode of vibration the rod is

also capable of certain harmonic modes of vibration.

If the rod is fixed or clamped at a point C, such that the

AC B
nanananana nan.

Fig. 40.

length AC is I /nth of AB, where n is an integer, the rod may be

set in longitudinal vibration in n segments, each equal to AD, by

exciting it at the middle point of that segment. The points of

division of the rod into segments are nodes, and the middle point

of each segment is an antinode. Thus if, as in Fig. 40, AC is

one-sixth of AB, the rod, when excited at the middle point of

AC, vibrates in six equal segments with nodes at the points

marked n and antinodes at the points marked a.

The mode of vibration in each segment is exactly the same as

that described above for the rod as a whole. It must be

remembered, however, that while the phase is the same for all

points in any one segment it differs by half a period for adjacent

segments. Thus, while points in any one segment are always

moving in the same direction, points in adjacent segments are

always moving in opposite directions. That is, points on

opposite sides of a node are, at any instant, moving either

towards the node or away from it.

A rod fixed at both ends may thus vibrate longitudinally in
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any number of segments, and its actual mode of vibration is,

in general, a complex mode compounded of two or more of the

various modes of which it is capable.

69. Longitudinal Vibration of a Rod Fixed at one

End. Let AB, Fig. 41, represent a rod fixed at the end B and

free at the end A. If the rod is extended slightly, so that the

end A. is pulled out to b, or compressed slightly so that the end

A is pushed in to
,
and then let go, the rod, by virtue of its

elasticity, recovers its original unstrained state after a number

of periodic longitudinal vibrations in which the rod alternately

lengthens and shortens through a gradually decreasing range,

until it finally comes to rest in its initial state.

Fig. 41.

The conditions of constraint are here such that the end B is

necessarily a node, and the end A an antinode. The simplest

mode of vibration possible for the rod is, therefore, that in

which it vibrates as a single half segment, with a node at B
and an antinode at A. This, then, is the fundamental mode of

vibration of the rod.

The harmonic modes of vibration possible for the rod are

limited by the conditions that the point B must always be

a node and the point A an antinode. The rod must, therefore,

in all cases divide into an odd number of half segments ; that is,

it may vibrate in one half segment, as in its fundamental mode, or

in 3, 5, 7, 9 . . . half segments for its harmonic modes.

A rod fixed at one end may thus vibrate longitudinally in

any odd number of half segments, and its actual mode of vibration

is, in general, a complex mode compounded of two or more of

the modes of which it is capable.

The general characteristics of the vibration of the rod in any
of its modes of vibration, are exactly the same as those described
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in the foregoing article with reference to a rod fixed at

both ends.

In the case of a rod free at both ends and fixed at the

middle point, each half of the rod must evidently vibrate

as a rod fixed at one end and free at the other end. The

fundamental and harmonic modes of vibration of the rod,

are, therefore, those of the half rod vibrating as a rod fixed

at one end.

The case of a rod free at both ends and not subject to

constraint at any other point evidently cannot be realised in

practice. These conditions are, however, realised in the case of

an air column in longitudinal vibration in a pipe open at

both ends.

70. Laws of the Longitudinal Vibration of Rods.

The vibration frequency of a rod in longitudinal vibration

cannot conveniently be determined by experiment as in the case

of the transverse vibration of a string. It can, however,

be deduced by the principle explained in Art. 67, from the

velocity of propagation of a longitudinal displacement along

the rod.

Thus, let it be supposed that the section at C in a uniform

rod AB (Fig. 42), is set in periodic motion along a short

A aCl B

Fig. 42.

longitudinal path ab. As the section moves from C to a the

longitudinal displacement thus impressed on the rod at C,

travels along the rod in both directions as a pulse of compres-

sion towards A, and as a pulse of extension towards B. When
the section at C has reached a, and has therefore completed

a quarter of a complete vibration, the longitudinal displacement

initiated at C will have reached two points, A and B, equidistant

from the middle point. The length AB, thus determined, gives

the length of the segment of the rod which can be set in
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longitudinal vibration with the period of the motion impressed

on the rod at C
;
and if the points A and B are fixed, the

segment AB will vibrate as a whole with this period.

The vibration frequency of a rod fixed at both ends for its

fundamental mode of vibration is, therefore, such that a

longitudinal displacement travels along half the length of the

rod in a quarter of the period of vibration. That is, a longi-

tudinal displacement travels along twice the length of the rod

in the period of vibration of the rod. If it be remembered

that a segment of a rod in any mode of vibration vibrates

as a short rod fixed at both ends, this result may be stated

quite generally by saying that the vibration frequency of a rod

in longitudinal vibration in any mode is such that a longitudinal

displacement travels along twice the length of a segment in the period

of vibration.

Hence, if / denote the length of a segment and V the velocity

of propagation of a longitudinal displacement along the rod, the

21

period of vibration of the rod is - and the vibration frequency

of the rod is given by

V
" =

27

Now V, the velocity of propagation of a longitudinal dis-

placement along the rod, is really the velocity of sound along the

rod, and its magnitude therefore varies with the material of the

rod, but is independent of the area of cross-section.

V
The relation, n =

, may be expressed verbally in two simple
21

laws for the longitudinal vibration of rods. These laws are :

(i) The vibration frequency for rods of the same material

(same value of V) is inversely proportional to the lengths

of the segments in which the rods vibrate.

(ii) The vibration frequency for rods in longitudinal

vibration with the same length of segment (same value of
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/) is directly proportional to the velocity of sound along

the rod.

It will be seen that these laws are quite general, and apply to

the longitudinal vibration of rods in all modes and under all

conditions of vibration.

In the case of a rod fixed at both ends, vibrating in its

fundamental mode, the length of a segment is the length of the

rod, so that, if L denote the length of the rod, we have / = L,

and the vibration frequency for this mode is given by

V
* =

2L'

If the rod vibrates in a harmonic mode of p segments, the

length of a segment is -- and the vibration frequency is,

vV P

therefore, ~r or pn. That is, if n denote the vibration frequency
2Li

for the fundamental mode of vibration, the vibration frequencies

for the harmonic modes of 2, 3, 4, 5 ... p segments are 2n,

3n, 4:ii, 5^ ... pn respectively.

It follows from this that when a rod fixed at both ends

vibrates in a compound mode, the overtones of the note are the

harmonics of the fundamental tone.

In the case of a rod fixed at one end vibrating in its funda-

mental mode, the length of a segment is twice the length of the

rod, so that I = 2L, and the vibration frequency for this mode is

given by
V

=

4L'

where L denotes, as above, the length of the rod.

When the rod vibrates in any one of its harmonic modes it

always divides, as we have seen, into an odd number of

half segments, so that if n denote the vibration frequency for

the fundamental mode of vibration, the vibration frequencies for
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the harmonic modes in which the rod divides into 3, 5, 7, 9

. . . half segments are 3n, 5n, 7n, 9n . . . respectively.

It follows from this that when a rod fixed at one end

vibrates in a compound mode, the overtones of the note emitted

include only the odd harmonics of the fundamental note.

In the case of a rod free at both ends and fixed at its middle

point, each half vibrates as a rod fixed at one end and

free at the other. Its fundamental and harmonic frequencies

are, therefore, those of a rod of half its length, vibrating

as a rod fixed at one end. That is, if L denote the length

y
of the rod, the fundamental frequency is given by n = =.

,
and

2Li

the harmonic frequencies are 3n, 5n, 7n, 9% ... as explained

above.

Numerical Example. The velocity of sound along a glass rod is

about 15,000 feet per second ;
calculate the vibration frequency for a

glass rod 3 feet long, fixed at one end and vibrating in its funda-

mental mode.

In this case the length of the segment is twice the length of the

rod. Hence, in the formula

we have

,.JWOO = 2,500.

That is, the vibration frequency of the rod is 2,500 per second.

This result illustrates the fact that for most solid materials,

the velocity of sound along a rod of the material is so great

that the pitch of a note emitted by a rod in longitudinal

vibration is very high, unless the rod is of considerable length.

Experiment 32. Take four rods or tubes of glass of the same kind,

about 20, 25, 29, and 35 inches long respectively. Fix them in turn

with one end in a clamp or vice, so that the free lengths are respec-

tively 15, 20, 24, and 30 inches. Set each rod in longitudinal
vibration in its fundamental mode as a rod fixed at one end, and

compare the pitch of the notes emitted. The rods are readily set in
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vibration by using a pad of cotton-wool moistened with alcohol as a

rubber
;
the pad should be held so as to grip the rod lightly, about

6 inches from the free end, and then drawn smartly along and away
from the rod at the free end.

It will be found, if the glass is really the same for each rod, that

the notes given by the rods form the common chord of the diatonic

scale on the note given by the longest rod as tonic.

That is, when the lengths of the rods are in the ratio 30 : 24 : 20 : 15

their frequencies are in the ratio -fa : Jf : -fa : ^ or 4 : 5 : 6 : 8. The

frequencies are therefore inversely proportional to the lengths of

the rods. This result is in accordance with the first law given above.

Rods of wood cut from the same piece of wood may be used instead

of glass rods. The free lengths of the rods might conveniently be 4,

5, 6, and 8 feet respectively. A piece of leather sprinkled with

powdered resin will serve as a rubber.

Experiment 33. Take two rods of the same length, one of good
white pine and one of fir. Clamp each in turn so that it can vibrate

as a rod fixed at one end, and determine the interval between the

notes given by the rods.

The frequency ratio for this interval gives the ratio of the values of

the velocity of sound along the rods.

The rods should be about 8 or 10 feet long, in order that the pitch
of the notes emitted may be low enough to admit of the interval

between them being determined with some accuracy.
Rods of glass, iron, steel, or brass may also be used.

71. Characteristics of the Vibratory Motion and
Strain at any Point in a Rod in Longitudinal Vibration.

The main characteristics of the states of motion and strain at

any point in a rod in longitudinal vibration, as explained above,

may here be summarised.

I. Displacement. Every cross-section of a rod in longitudinal

vibration is subject to periodic displacement parallel to the length

of the rod, so that it vibrates longitudinally backwards and for-

wards on each side of its normal position with the same period

as that in which the rod vibrates.

The main characteristics of this periodic displacement or

vibratory motion for points on a rod in longitudinal displacement

are given below.
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(i) Period. The period is the same at all points in the rod ; it is

the period in which the rod itself vibrates.

(ii) Phase. The phase is the same for all points in the same

segment, but differs by half a period for points in adjacent segments.

(A segment extends from node to node.)

(iii) Amplitude. The amplitude varies from point to point along the

rod in the following manner : It is zero at a node and a maximum at

an antinode ; and, in each segment, it increases in the same way from

its zero value at the nodes to its maximum value at the antinode. The

Pate Of increase of the amplitude from node to antinode in any

segment gradually decreases.

II. Strain. Just as every cross-section of a rod in longi-

tudinal vibration is subject to periodic displacement or vibration,

Normal State

decreasin

Maximum I \Maximum
Extension I

J Compression

Extension \^ ^.Compression
increasing vs^^

.X^ decreasing

Normal State

Fig. 43.

so the material of the rod at every cross-section is subject to

periodic strain, and passes through a complete cycle of states of

strain between extreme limits differing in opposite senses from

the normal state, in the period of one complete vibration of the

rod. The nature of the strain is that of linear extension

(stretching) or linear compression, so that each transverse layer

or slice of the rod is subject to periodic change of state within

certain extreme limits of longitudinal extension and compression.

The cycle of states which constitute the periodic strain in any
section are indicated diagrammatically in Fig. 43.

It will be understood that when every section of the rod is in its

normal position there is no strain at any point in the rod. When, how-

ever, in any half segment from node to antinode, the sections are
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displaced from their normal positions towards the node, each section

is subject to compression, and this compression is "increasing" or

"decreasing" according as the section is moving" towards the node

or away from it. When, on the other hand, the sections in any half

segment are displaced from their normal position away from the

node, each section is subject to extension, and this extension is

"increasing" or "decreasing" according as the section is moving
1

away from the node or towards it.

The characteristics of this periodic strain for points on a rod

in longitudinal vibration are given below.

(i) Period. The period is the same at all points in the rod
;

it is

the period in which the rod itself vibrates.

(ii) Phase. If we consider lengths on the rod equal to segments,
but takenfrom antinode to antinode, the phase is the same for all points
in any one length, but differs by half a period for points in adjacent

lengths. Thus, if a point on the strain cycle circle of Fig. 43 gives at

any instant the state in any one of these lengths, the point dia-

metrically opposite gives the state at the same instant in the adjacent

lengths.

It should be noted that the phase and period of the strain at any

point are always the same as the phase and period of -the vibratory
motion at that point.

(iii) Range or "Amplitude." The range or "amplitude" of the

strain that is, the degree or extent of the extreme deviation from the

normal state varies from point to point along the rod. It is of zero

value at an antinode, and of maximum value at a node ; and in each

length taken from antinode to antinode it increases in the same way
from its zero value at the antinodes to its maximum value at the node.

72. Longitudinal Vibration of a Column of Air in a

Pipe. A column of any fluid enclosed in a tube or pipe can

be set in longitudinal vibration, like a solid rod, if excited by

suitable means under suitable conditions. The general character

of the vibration of the column is exactly similar to that of a

rod in longitudinal vibration. There is, however, one important

difference between the two cases. The strain in the rod is one

of linear compression or extension in the direction of the length

of the rod that is, the material of the rod is extended or
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compressed in only one direction. The strain in the fluid

column is one of volume compression or expansion -that is,

the fluid at any point under strain is expanded or compressed

in all directions. The periodic strain at any point in a fluid

column in longitudinal vibration is, therefore, accompanied by
a corresponding periodic variation in the density of the fluid

at the point, and also by a periodic variation in the pressure at

that point in the fluid.

The laws of longitudinal vibration of a fluid column are the

same as those already given for a solid rod. The frequency of

y
vibration is, therefore, given by n = --, where V denotes the

/

velocity of sound in the fluid and / the length of a segment of

the fluid column. The frequency of vibration is thus directly

proportional to V and inversely proportional to I, but is quite

independent of the area and form of the cross-section of the

column. The dimensions of the cross-section must, however,

be considerably smaller than the length of the column.

What has been said above applies to the longitudinal vibration

of a column of any fluid, whether a liquid or a gas.

The longitudinal vibration of a column of air in a pipe of

uniform section is. however, the only case that need be further

considered.

A column of air cannot be constrained in the same way as

a solid rod. It can, however, be subjected to certain constraints

by means of the pipe in which it is enclosed. The length of

the column is determined by the length of the pipe, and either

end of the column becomes "
fixed

"
or "

free
"
according as that

end of the pipe is closed or open.

A node in a column of air in longitudinal vibration is a point

of zero displacement and maximum range of strain, accompanied

by maximum changes in the density and pressure of the air at

that point. The "
fixed

"
end of a column is necessarily a point

of zero displacement, and is, therefore, always a node.
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An antinode is a point of maximum displacement and zero

range of strain. It is, therefore, a point at which there is no

change in the density or pressure of the air during the vibration

of the column. The "
free

"
end of a column is necessarily an

antinode, for at a free end, the air of the column is in free

communication with the outer air, and cannot, therefore, be

subj-ect to any variation in pressure or density at that point.

For the same reason an antinode is determined also at any

point in the air column which is in free communication with

the outer air through a hole in the tube at that point.

A column of air in a pipe is usually set in vibration by

producing, in some way, a variation in pressure at an "
open

"

point in the column. Thus, the air column in a length of glass

tubing can be set in vibration by blowing across the open end.

The blast of air disturbs the pressure equilibrium at the mouth

of the tube, and sets the column in vibration by initiating a

compression or rarefaction at that point ;
the manner in which

the vibration is maintained cannot, however, be very simply

explained.

The columns of air in a whistle, a flute or fife, and in an

organ pipe are all set in vibration by means

of a specially directed air blast acting at an

open end of the column.

A column of air may also be set in

vibration by impressing periodic motion of

the proper period on the air at an "
open

"

point in the column. Thus, if the prong

of a tuning fork, T, Fig. 44, be set in vibra-

tion at a point, A, near the open end of a

column of air, AB, the longitudinal dis-

placement impressed on the air at A, during

the first quarter vibration of the prong from A to a, travels

down the column and reaches a point, B, just as the prong

reaches the point a at the extreme end in its downward dis-
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placement. Now, as in the case of the string in Art. 67, this

length, AB, determines the length of the half segment which

can vibrate longitudinally with the period of the prong of

the tuning fork, and if the column is constrained so that a

node can form at B, its frequency of vibration will be the

same as that of the tuning fork. For example, if the tube

is closed at B the column AB vibrates in its fundamental

mode with the period of the fork. During the first quarter

vibration of the prong the compression accompanying the

displacement caused by the motion of the prong extends from
A to B, and the column AB is compressed to the length aB

;

after that the column lengthens and shortens between the

limits Ea and B6 as the prong vibrates up and down between

the limits a and b. The action of the prong on the air column

at A is thus, at every instant during its motion, exactly timed

to maintain the column AB in longitudinal vibration.

This action of the prong of the tuning fork is an example

of the general principle of resonance, which states that periodic

motion of a particular period is readily impressed on a body
whose natural period of vibration is the same as that of the

impressed motion.

It has already been stated that if n denote the vibration

frequency of a fluid column, V the velocity of sound in the fluid,

and / the length of a segment of the vibrating column, then

n =
|,

or V = -2nl.

Also, if V denotes the velocity of sound in the surrounding

medium, we have

V = n\

where X denotes the wave length of the wave motion set up in

the medium by the vibrating column as a source of sound.

It follows from this that

V 21

V ~ F
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An important special case of this relation is that in which the

fluid of the vibrating column and the surrounding medium are

the same. We then have, V = V', and A = 21. This condition

is realised in the longitudinal vibration of an air column in air

as the surrounding medium. In this case V and V are equal,

each being the velocity of sound in air, and A the wave length

of the wave motion in the air surrounding the column is equal

to 21, or to twice the length of a segment of the vibrating

column.

It should be noted, however, that even in this case V is not

exactly equal to V
;
the velocity of sound through air along a

tube depends, to a small extent, on the diameter of the tube, and

is always slightly less than the velocity of sound in air as an open
medium.

73. Modes of Vibration of a Column of Air in a Tube
Closed at One End. The modes of vibration of a column of

air in a tube closed at one end and open at the other end, are

exactly the same as those of a rod fixed at one end and free at

the other.

The constraint imposed on the column by the tube is such

that there will in all cases be a node at the closed end and an

antinode at the open end. The fundamental mode of vibration

of the column is, therefore, that in which it vibrates as a single

half segment, with a node at one end and an antinode at the

other end. Similarly, in its harmonic modes of vibration the

column must divide into an odd number of half segments ;
that

is, its harmonic modes are those in which it divides into

3, 5, 7, 9 ... half segments. Hence, if n denote the vibration

frequency of the fundamental mode, the vibration frequencies of

the successive harmonic modes are 3n, 5w, 7n, 9% ... respectively,

The notes given by these harmonic modes include, therefore, only

the odd harmonics of the fundamental note.

The modes of vibration of the column for the frequencies

n, 3w, 5n, and In are indicated diagrammatically in Fig. 45; the
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positions of the nodes and antinodes are shown in each case at

n and a in the figure.

It will be seen that if L denote the length of the column, n the
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column is, therefore, always a little longer than the pipe.

Experiment shows that the correction for this effect of the open
end depends upon the diameter of the pipe, and may generally be

taken as equal to O'Qr, where r denotes the radius of the pipe.

That is, if L denote the length of the pipe, the length of the

vibrating column, in the case here considered, is (L + 6r), and

the relation, A 4L, becomes X =
4(L + -

6r).

When a column of air in a pipe is set in longitudinal vibration

it usually vibrates, not in any one mode, but in a compound mode

compounded of some or all of the modes of vibration of which it

is capable.

It follows from this that when a column of air in a pipe closed

at one end gives out a compound note, the overtones of the note

will include only the odd harmonics of the fundamental note.

74. Modes of Vibration of a Column of Air in a Pipe

Open at Both Ends. In this case the constraint imposed on

the column by the pipe is such that an antinode must, in all

modes of vibration, form at each end of the pipe.

The fundamental mode of vibration is, therefore, that in

which the column vibrates in two half segments with an

antinode at each end, and a node at the middle point of the

column. Similarly, in its harmonic modes of vibration the

column must, in all cases, divide into an even number of half

segments ;
that is, its harmonic modes are those in which it

vibrates in 4, 6, 8, 10 . . . half segments. Hence, if n denote

the vibration frequency of the fundamental mode, the vibration

frequencies of the harmonic modes taken in ascending order are

'2n, 3n, n, on . . . respectively. The notes corresponding to

these harmonic modes of vibration are, therefore, in this case,

the harmonics of the fundamental note.

The modes of vibration of the column for the frequencies n,

2n, 3n, kn are indicated diagrammatically in Fig. 46
;

the

positions of the nodes and antinodes are shown in each case at

the points marked n and a in the figure.
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In this case it will be seen that if L denote the length of the

column, n the frequency of the fundamental mode, I the length

of a segment of the vibrating column, and V the velocity of

sound in air, we have

and, Iv _ _ "--

21

n . 2L.

V
2L'

or, V

We also have as before

V =
wX,

where X denotes the wave length in the air of the fundamental

note of the column. It follows, therefore, that X = 2L
;
that is,
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mental note. The quality of the note must, therefore, differ

from that of a note of the same pitch given by a pipe closed at

one end, for in this note only the odd harmonics of the funda-

mental note are present as overtones.

Experiment 34. Take a glass-tube about 150 cm. long and 2 cm.

in diameter, and connect it by means of a length of rubber-tubing
with a large funnel or reservoir, F, in the manner shown in Fig. 47.

Pour sufficient water into the funnel to fill the

tubes and the stem of the funnel, when the neck

of the funnel is on a level with the top of the

glass-tube. The level of the water in the tube

can now be raised or lowered as required by
raising or lowering the funnel.

Get a fairly large tuning fork of frequency
about 256, and hold it, while in vibration, over

the mouth of the glass-tube at A, as the level of

the water in the tube is slowly lowered.

It will be found that as the column of air in

the tube increases in length, a point is soon

reached at which the faint sound given out by
the fork is reinforced by a note due to the vibra-

tion of the air column. If the level of the water

is now lowered very slowly, it will be found that

as the air column slowly increases in length, this

reinforcement of the sound of the fork first in-

creases very rapidty, and attains a maximum
value for a particular length of the air column,

and then rapidly decreases and dies away. With

a little practice the point of maximum reinforce-

ment or resonance can be fixed with fair accuracy.

Suppose this point occurs when the water in the

tube is at B, then AB is the length of the air

column which vibrates in its fundamental mode

with the frequency of the fork. Resonance is not confined strictly to

this particular length, for the fork is able to set up slight vibrations

of its own period in columns a little shorter or a little longer than

AB. Hence, if L denote the length of AB, r the radius of the

tube, and n the vibration frequency of the fork, then A, the wave

length of the note given by the fork and the air column, is equal to

4 (L + -6r), and V, the velocity of sound in air (along the tube), is

given by
V = 4w (L + -6r).

Fig. 47.
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That is, if n is known, and I and r are carefully measured, the

velocity of sound in air can be calculated from the data of this

experiment.

Now lower the level of the water in the tube still further until a

second point is found at which resonance again occurs, and let C be

the point at which the level stands when maximum resonance for the

note of this fork is obtained.

It will then be found that the length of the column AC is a little

more than three times the length of the column AB. The length of

AC is such that when vibrating in its first harmonic mode, in three
half segments with a node at C and a node at B, its vibration

frequency is the same as that of the column AB, and can, therefore,

be set in vibration in this mode by the fork. The distance BC is an

exact segment of the vibrating column, and is, therefore, greater

than twice AB, which is less than a quarter segment by the correction

for the open end of the pipe.

Hence, if I denote the length BC, we have

X = 21,

and V = 2nl.

That is, if n, the vibration frequency of the fork, is known, and I,

the length of the segment BC, is carefully measured, the velocity of

sound in air can be determined from the data of the experiment
without the necessity for applying the correction for the open end of

the tube.

If the tube were long enough it would be possible to find other points

at which resonance would occur for air columns of lengths about 5, 7, 9

. . . times the length of AB ; these columns by vibrating respectively

in 5, 7, 9 ... half segments would each have a node at B, and their

vibration frequencies would, therefore, be the same as that of the

column AB.

In this way it can be shown, experimentally, that an air column in

a pipe closed at one end can vibrate in any odd number of half

segments.

Numerical Example. In an experiment of this kind the frequency
of the fork was known to be 256, the radius of the tube 1*5 cm., and

the lengths AB and BC were found to measure respectively 32 -5 cm.

and 66'6 cm.

From these data the velocity of sound in air calculated from the

length of AB, with the aid of the correction for the open end, is given

by V = 1,024 (32-5 + '9)

or, V = 1,024 x 33-4 = 342,016.

That is, the velocity is about 342 metres per second.
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If the velocity is calculated from the length BC we get at once,

without any correction,

V = 512 x 66-6 = 340,992.

That is, the velocit}' is about 341 metres per second.

It may be seen, too, from the data that the correction for the open
end given by BC/2 - AB is (33 '3 -

32-5) cm., or -8 cm., which differs

very little from 'Gr, which is *6 x I'D cm., or *9 cm.

75. Characteristics of the States of Motion and Strain

in a Column of Air in Longitudinal Vibration. The

main characteristics of the state of motion and strain in a rod or

column in longitudinal vibration have already been summarised

in Art. 71. It will, however, be convenient to repeat the sum-

mary here in terms specially applicable to the vibration of an air

column.

I. Displacement Every transverse layer of an air column in

longitudinal vibration is subject to periodic displacement parallel

to the length of the column, so that it vibrates backwards and

forwards, longitudinally, on each side of its normal position with

the same period as that in which the column vibrates.

The main characteristics of this periodic displacement or

vibratory motion at points in an air column in longitudinal

vibration are given below.

(i) Period. The period is the same at all points in the column ; it

is the period in which the column itself vibrates.

(ii) Phase. The phase is the same for all points in the same seg-

ment, but differs by half a period for points in adjacent segments.

(iii) Amplitude. The amplitude varies from point to point along the

column in the following manner. It is zero at a node, and a maximum
at an antinode ; and in each segment it increases in the same way from

its zero value at the nodes to its maximum value at the antinode.

The rate Of increase of the amplitude from node to antinode in

any segment gradually decreases.

II. Strain. Just as every layer of an air column in longi-

tudinal vibration is subject to periodic displacement or vibration,

so every layer is subject to periodic strain, and passes through a
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complete cycle of states of strain between extreme limits differing

in opposite senses from the normal state, in the period of one

complete vibration of the column. The nature of the strain is

that of volume compression or rarefaction, so that each transverse

layer of the column is subject to periodic strain within certain

extreme limits of compression and rarefaction which vary from

point to point along the column. The cycle of states which

constitute the periodic strain in any section are indicated dia-

gramma tically in Fig. 43.

It will be understood that when every layer of the column is

in its normal position there is no strain at any point in the

column. When, however, in any half segment, from node to

antinode, the layers are displaced from their normal positions

towards the node, each layer is subject to compression, and this

compression is
"
increasing

"
or "

decreasing
"

according as the

layer is moving towards the node or away from it. When, on

the other hand, the layers in any half segment are displaced from

their normal positions away from the node, each layer is subject

to rarefaction, and this rarefaction is "increasing" or "decreasing"

according as the section is moving away from the node or towards

it.

The main characteristics of this periodic strain for points in an

air column in longitudinal vibration are given below.

(i) Period. The period is the same at all points in the column; it

is the period in which the column vibrates.

(ii) Phase. If we consider lengths of the column equal to segments,
but taken from antinode to antinode, the phase is the same for all

points in any one length, but differs by half a period for points in

adjacent lengths.. Thus, if a point on the strain cycle circle of Fig. 43

gives, at any instant, the state of strain in any one of these lengths,

the point diametrically opposite gives the state at the same instant in

the adjacent lengths.

(iii) Range or "Amplitude." The range or "amplitude" of the

strain that is, the extent of the extreme deviations from the normal

state varies from point to point along the column. It is of zero value

at an antinode, and of maximum value at a node ; also, in each length
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taken from antinode to antinode, it increases in the same way from its

zero value at the antinodes to its maximum value at the node.

76. Organ Pipes. The use of pipes in an organ is the

most important application of the longitudinal vibration of air

columns in the construction of musical instruments.

Organ pipes are usually either wooden pipes of square section

or thin metal pipes of round section. As already

explained, in Art. 72, the pitch of the note emitted

by a pipe varies with its length, but is quite in-

dependent of the form or area of the cross-section,

provided the dimensions of the latter are not out

of proportion to the length.

An organ pipe is set in vibration by forcing a

blast of air from the bellows of the organ, through
a narrow slit at the mouth of the pipe. The con-

struction by which this is effected is shown in the

cross-section of a wooden pipe shown in Fig. 48.

The mouth or embouchure of the pipe is shown

at M. It is a narrow rectangular opening in the

side wall of the pipe, and its upper edge, ab, is

bevelled to a very thin edge sometimes called the

feather edge. The cross-section of the pipe on a

level with the lower edge of the opening is closed

by the block in which the flue or passage com-

municating with the organ bellows is cut, and the

narrow slit cd, shown on the top of this block, is

the upper end of this passage, at the point where

it opens into the pipe.
Fig. 43.

The air from the wind-chest of the bellows enters the pipe at

A, and passes up the tubular opening in the stem of the

flue block into the air cavity shown at B in the figure. Here

the air blast is diverted by the sloping face of the block C

through the slit cd, so that the thin ribbon-like stream of

air which emerges from the slit is directed towards the feather
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edge of the embouchure. The direction of this stream of air is.

in this way, so arranged that a very small displacement will

divert it inside the feather edge into the pipe, or outside

the edge into the outer air. Hence, when the air column in the

tube is once set in vibration by the change in pressure caused

by the action of the air blast at the mouth of the pipe, the thin

stream of air in following the displacement in the air column at

that point is periodically diverted in and out of the tube, and

so maintains the column in longitudinal vibration with a period

determined by its length.

The end of the pipe at which the embouchure is situated is

evidently an open end, for the air column is in direct com-

munication with the outer air through that opening. The

other end may be open as in an open pipe, or closed as in a

stopped pipe.

\Vhen an organ pipe is blown gently it gives a note com-

pounded of its fundamental tone and its overtones. The

fundamental tone is the loudest, and appears to an untrained

ear to be the only tone given by the pipe ;
the overtones are

usually fainter and fainter as their order rises, and it is

difficult to detect the presence of more than the first, or the first

and second by the ear. When the pipe is blown more strongly

the note sounded lacks the fundamental tone, and is com-

pounded only of the overtones, with the first overtone as the

predominant note. If blown more strongly still it may be made

to give a note based on the second or the third, or even on a

higher overtone as the lowest component of the note.
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Resonance, 127.

Ripples, 44.

Rod, compound, Modes of vibra-

tion of, 117, 120, 121.

,, Fundamental modes of vibra-

tion of, 116, 117, 120.

,, Harmonic, 116, 117, 120.

Rods, Laws of longitudinal vibration

of, 118.

, , Longitudinal vibration of, 1 14,

Savart's wheel, 20.

Scale, The diatonic, 69.

Seebeck's siren, 21.

Segment, 101.

Shearing strain, 42.

Sine curve, 8.

Siren, Seebeck's or cardboard, 21.

Sonometer, 102, 103.

Sound, Complex, 63.

Musical, 13, 23, 62.

Non-musical, 23.

Production of, 13.

Propagation of, 51.

Reflection of, 79.

Refraction of, 89.

Simple, 63.

Velocity of, in air, 91.

,, in water, 97

Sounding board,' 54.

Speaking tube, 84.

Stethoscope, 55, 86.

Stone's experiments, 95.

Strain in a column of air in longi-
tudinal vibration, 124, 134.
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Strain in a rod in longitudinal vibra-

tion, 115, 123.

,, in medium transmitting lon-

gitudinal wave motion, 32.

, , in medium transmitting trans-
verse wave motion, 42.

,, Shearing, 42.

String, 99.

, , Compound modes of vibration

of, 111.

,, Fundamental modes of vibra-
tion of, 101.

,, Harmonic modes of vibration

of, 108.

Period of vibration of

stretched, 101.

,, Velocif/y of transverse pulse
along a, 112.

Strings, Transverse vibration of, 99.

Temperature, Effect of, on velocity
of sound, 61, 97.

Timbre, 64.

Tuning-fork, 15.

Velocity of point in S.H.M., 5.

., of sound in air, 11.

,, effect of tem-

perature on,
97.

,, of sound in water, 97.

Vibration, Complete, 6.

,, Compound modes of, 6.

, , Frequency of, 9.

Vibration, Fundamental modes of r

101, 116, 120, 128, 130.

Harmonic modes of, 108,

116, 120, 128, 130.

Longitudinal, 11.

of columns of air, 124,
128.

of extended bodies, 9.

,, of membrane, 16.

of plate, 16.

of rods, 114.

of strings, 99.

,. Simple harmonic, 6.

., Sound produced by, 13.

Transverse, 11.

w
Wave form, 48, 71.

front, 49.

length, 28.

,, and velocity of wave
motion, 29.

Plane, 85.

Spherical, 36, 84.

Spiral, 41.

motion, 25, 26.

Absorption of, 73.

Diffusion of, 73.

Intensity of, 47.

Longitudinal, 30, 31.

Reflection of, 73.

Refraction of, 73.

Simple harmonic, 46.

Transverse, 30, 42.

Velocity of, 27, 29.

Waves, Surface, 44.

Whispering galleries, 86.
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